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The Interplay of Magnetism and Topology in Topological
Insulators

Niall Brendan Devlin

The conductive helical edge states in topological insulators (TIs) have been lauded over
the last decade as a means towards the development of low-energy electronic and spintronic
devices. Unfortunately, development of TI devices have been hampered by issues such as
impurities and difficulty in fabrication, meaning that they are no closer to replacing traditional
semiconductor platforms than when they were discovered over a decade ago. However, while
the low carrier mobility of edge states in TI devices may always preclude their use in the
electronics industry, the non-trivial topological nature of these edge states mean they are
also a novel playground for the development and observation of exotic physics and emergent
phenomena. Indeed, in recent years focus has transitioned from finding utility in bare TI
devices to investigating combination of topological protection with other effects, such as
magnetism and superconductivity. In particular, the introduction of magnetism into TIs leads
to a variety of unique phenomena and exotic quasiparticles not observed in conventional
material systems, such as the quantum anomalous Hall effect (QAHE) and Majorana fermions.
The study and development of devices based on such phenomena are not only interesting from
the perspective of fundamental physics, but also propose practical applications in spintronics
and quantum computing. This thesis presents work on the interplay between magnetism and
topology and discusses the technological significance of such an interaction.

Early stage research into the introduction of magnetism into TIs focused on doping TIs
with magnetic adatoms, or engineering magnetic insulator/TI interfaces to induce magnetism
into the TI edge states through a proximity effect. However, as was the case with bare TI
devices, fabricating devices based on such platforms is not without difficulty. Inhomogeneities
in the concentration of magnetic adatoms in doped samples, and the very weak interaction
between the TI and magnetic insulator in proximity based devices mean that interesting effects
and phenomena are only observable at temperatures on the range of 10’s of millikelvins.
In recent years, the discovery of intrinsic magnetic TIs has attracted an intense amount of
research activity, as they provide a novel platform to investigate both topology and magnetism
in van der Waals materials without suffering from many of the shortcomings of magnetically
doped TIs or TI/magnetic insulator heterostructures. Furthermore, the antiferromagnetic
coupling between layers gives rise to interesting layer dependent phenomena, where the
electronic structure of samples is dependent on the parity of the number of layers, i.e. whether
there are an even or odd number of layers. Literature has mainly focused on MnBi2Te4,
whose order along the 𝑧 axis means that it can host the QAHE and axionic insulator state.
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However, the family of intrinsic magnetic TIs is extensive and can host different magnetic
configurations.

In particular, in this thesis we have investigated in-plane magnetisation as a means to
engineer flat-bands in the energy dispersion relation of topologically non-trivial materials.
When considering antiferromagnetic interlayer coupling, we uncover an interesting dependence
of the electronic dispersion and the local density of states on the parity of the number of layers.
Furthermore, we demonstrate that magnetic textures at the surface of magnetic topological
materials lead to spin-polarised flat-bands. In addition, the infinite mass quasiparticles
occupying these flat-band states are strongly localised around magnetic domain walls.

The means of engineering flat-bands developed in this thesis may have great technological
significance in electronic and spintronic applications. For instance, we propose that the
system discussed in chapter 4 could be used in re-configurable magnetic memory, however
they may also prove useful in the investigation of exotic physics and emergent phenomena.
It is well known that the high density of electronic states in flat-bands leads to many-body
interactions gaining greater importance in the overall dynamics of a system. As a result,
flat-band systems can exhibit strong electronic correlations, which can result in the emergence
of interesting phenomena such as non-BCS superconductivity, and other non-Fermi liquid
phases, and charge or spin fractionalization. While the investigation of strongly correlated
physics is beyond the scope of this thesis, the results presented here nevertheless demonstrate
that magnetic TI systems are novel playgrounds for the investigation of emergent phenomena
that could advance our understanding of fundamental physics in condensed matter systems.
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Chapter 1

Introduction

1.1 Topology in Condensed Matter

The concept of topology in condensed matter physics was introduced as early as the 1970s
through the discovery of a superfluid phase of helium-3 [102]. However, in the 1980s
the concept of topological order was introduced 1980’s following von Klitzing, Dorda
and Pepper’s discovery of the integer quantum Hall effect (QHE) [175]. Since then it has
transformed from a purely theoretical topic on the fringes of condensed matter physics into
being one of the most widely researched areas of modern physics, with applications in
low-power electronics, spintronics and quantum information processing, to name only a few
[28, 176, 103, 183, 190, 49, 108].

A topological phase, more correctly referred to as a symmetry protected topological
(SPT) phase, is a band insulator that falls outside the Landau-Ginzburg paradigm used in
the traditional description of phase-transitions. Rather than being characterised by a local
order parameter that can change through the process of spontaneous symmetry breaking,
a topological phase’s properties are related to the underlying global symmetries of its
Hamiltonian and are robust to perturbations in material parameters. The ground state
electronic properties of the system can only change through a topological phase-transition
which occurs when the underlying symmetries are broken, e.g. by an externally applied field,
or through the addition of a potential term that does respect the underlying symmetries of
the system, but is large enough such that the energy gap is closed. It is for this reason that
the ground state electronic properties of topological phases are referred to as topologically
protected.

This thesis will focus primarily on the family of topological insulators (TIs) protected
by time-reversal symmetry (TRS) and a charge conservation symmetry (generally, we will
not refer to the presence of charge conservation symmetry as it is only broken in topological
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superconductors which fall outside of the remit of this thesis). The strong spin-orbit coupling
in TIs leads to an inversion between the valence and conduction bands at an odd number of
points in the Brillouin zone (BZ), leading to linearly dispersing conductive surface states
[48, 50]. As such, these materials are insulators within their bulk, but also have a metallic
boundary when interfaced with a trivial insulator (we will clarify the notions of trivial
and non-trivial in the following sections when we introduce the concept of topological
invariants). A conductive boundary/interface is not a unique feature of TIs and can appear
in band insulators/semiconductors due to sharp changes in the crystal potential, but what
makes TI surface states remarkable is that are robust to small perturbations that do not
break TRS or uninvert the electronic bands, i.e. they are symmetry protected. These small
perturbations may be non-magnetic impurities and disorder, surface roughness or other
interfacial imperfections. It is this proposed immunity to the usual imperfections that hamper
electronic devices that has led many to suggest that TIs may be a platform upon which
future microelectronics are built, moving beyond traditional semiconductor based transistors.
However, while there has been some promising work in this regard, TI devices have been
hampered by a range of issues that have kept their carrier mobility well below theoretical
predictions. As yet, there is a long way to go before a TI based field effect transistor FET can
compete with current technologies and becomes commercially viable.

However, TIs possess many remarkable and unique properties that offer numerous
applications beyond FETs. In particular, another consequence of TRS is that electrons at the
surface of a TI are spin-momentum locked meaning that the spin of an electron is always
orientated perpendicularly to its momentum. TI surface states are usually composed of
counterpropagating spin-up and spin-down electrons (known as a helical mode) which may
be exploited to realise extremely large spin-orbit torques (SOT), a method of switching
the magnetisation of a ferromagnet (FM) through a spin-polarised current in an adjacent
layer. The helical nature of TI surface states means that an unpolarised current injected
into a TI generates a pure spin current perpendicularly to the applied current (this is also
known as the spin Hall effect). The resulting spin accumulation can be harnessed to switch
the magnetisation in a proximate FM layer with a much higher efficiency than current
methods, such as spin-transfer torque (STT). This offers the possibility of future SOT-MRAM
technologies operating at much lower current densities and much higher efficiency than current
STT-MRAM. So far, topological materials have shown plenty of promise in SOT-based
devices and appear to be the material platform of choice over other materials with charge-spin
conversion capabilities, such as heavy metals.

In the above examples of the potential uses in TIs in low-power electronics, TRS played
an important role. Breaking TRS, however, offers the possibility of realising novel states of
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matter and exotic quantum phenomena. In particular, breaking TRS through the introduction
of magnetic exchange terms can provide a platform for the topological magnetoelectric effect,
the Weyl semimetal phase and the quantum anomalous Hall effect (QAHE). Of all of these
effects, it is perhaps the QAHE with the greatest technological promise. The QAHE is a zero
magnetic field version of the QHE and was predicted by Haldane in 1988 [55], well before
the discovery of TIs. Similarly to non-magnetic TIs the QAHE has a plethora of proposed
uses in low-power electronics and spintronics, but it is also one of the key building blocks
in realising Majorana fermions which provide the basis for topological quantum computing
architectures [49, 108]. We will discuss magnetic TIs, particularly with regard to the QAHE,
in greater detail below, but we briefly mention that considerable progress has been made in
realising a high temperature QAHE through the discovery and subsequent development of
intrinsic magnetic TIs over the last 4 years.

In the remainder of this introductory chapter, we will give a brief history of SPT phases
in condensed matter physics and early models of TIs. After developing this theoretical
framework, we will discuss the relevant aspects of quantum electron transport in TIs.
Following from this we will briefly review the interplay of magnetism with topology and
offer a discussion on current trends within the research field of magnetic TIs. We will then
conclude this section with an outline of the remainder of this thesis.

1.1.1 A Pedagogical Review of Topological Insulators

In this section we will expand upon the details mentioned in the previous. Readers already
familiar with the fundamentals of topological band theory of insulators may skip this section.

The integer quantum Hall effect

The history of TIs begins in 1980 with the experimental discovery of the QHE by von Klitzing
et al. In the classical Hall effect [56], first observed in 1879, applying an external magnetic
field perpendicularly to a metal leads to a Lorentz force that deflects charge perpendicularly to
the current direction leading to a finite transverse voltage, known as the Hall voltage given by

𝑉𝑥𝑦 = − 𝐼𝑥𝐵𝑧
𝑡
𝑅𝐻

where 𝑅𝐻 =
1
𝑛𝑒
,

(1.1)
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where 𝐼𝑥 is the current, 𝐵𝑧 is the magnetic field and 𝑡 is the thickness of the metal. The
quantity 𝑅𝐻 is known as the Hall coefficient and can be calculated using the elementary
charge, 𝑒, and the carrier density 𝑛. In terms of the conductance

𝜎Hall
𝑥𝑦 =

𝑗𝑥

𝐸𝑦
= −𝑛𝑒

𝐵𝑧
= − 1

𝑅𝐻𝐵𝑧
. (1.2)

where 𝑗𝑥 is the current density along the 𝑥 axis and 𝐸𝑦 the electric field along the 𝑦 axis.
However, work in the 1970’s hinted that this may not be the whole story and that quantum

effects may play an important role in the Hall effect in 2D electron gases (2DEGs). This
culminated in 1980 with von Klitzing’s seminal experiment on a silicon based MOSFET in a
high magnetic field [175]. He discovered that the longitudinal conductance vanished whilst
the transverse conductance was exactly quantized:

𝜎
𝑄𝐻𝐸
𝑥𝑦 = −𝜈𝑒

2

ℎ
, 𝜈 ∈ N (1.3)

according to some integer 𝜈 = 𝑛ℎ/𝑒𝐵𝑧, referred to as the filling factor. This quantization
persists over a range of values of 𝐵𝑧, giving rise to the famous quantized plateaus of the QHE
experiment. Undergraduate courses in physics usually explain the QHE in terms of Landau
levels and filled bands, however this simple description fails to account for the universality
of the quantization i.e. why the quantization is independent of the device geometry or
impurities within it. In 1981, Laughlin proposed an elegant thought experiment based on
charge pumping to explain the observed quantization [100]. First consider a 2D metallic
ribbon subject to a strong perpendicular magnetic field, 𝐵. In the Landau gauge, 𝑨 = −𝐵𝑦𝒙̂,
the system Hamiltonian is given by

𝐻 =
1

2𝑚

(
(ℏ𝑘𝑥 − 𝑒𝐵𝑦)2 + 𝑝2

𝑦

)
(1.4)

with solutions given by

𝜓𝑛,𝑘𝑥 (𝑥, 𝑦) ∝ 𝑒𝑖𝑘𝑥𝑥𝑒(𝑦−𝑦0)2/2𝑙2
𝐵
𝜕𝑛

𝜕𝑦𝑛
𝑒−(𝑦−𝑦0)2/𝑙2

𝐵 (1.5)

where 𝑙𝐵 =
√︁
ℏ/𝑒𝐵 is the magnetic length and 𝑦0 = 𝑘𝑥𝑙

2
𝐵

shifts the centre of the wavefunction
to 𝑦0 for the 𝑛th Landau level at energy 𝐸𝑛 = (𝑛 + 1/2)ℏ𝜔𝑐 where 𝜔𝑐 = 𝑒𝐵/𝑚 is the cyclotron
frequency. We assume that the Fermi level is located in the gap between Landau levels
meaning that the system is in an insulating phase.

The next step of Laughlin’s argument is to first attach the edges of the ribbon at
𝑦 = 0, 𝐿𝑦 to two electron reservoirs and then wrap the ribbon into a cylinder by tapping
together the ends at 𝑥 = 0, 𝐿𝑥 . A magnetic flux, 𝜙, is threaded through the cylinder
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𝑩

𝜙(𝑡)

Fig. 1.1 Schematic of a Laughlin cylinder. A radial magnetic field 𝑩 penetrates the cylinder
at a normal angle, while an additional, tunable magnetic flux 𝜙 threads the cylinder. The
edges of the cylinder are a 𝑦 = 0, 𝐿𝑦.

while maintaining the perpendicular (now radial) magnetic field, as shown in figure 1.1.
From the definition of magnetic flux and Stokes’ theorem 𝜙 =

∫
𝑩 · 𝑑𝑺 =

∮
𝑨 · 𝑑 𝒍.

Therefore, it is possible to incorporate an additional flux through the gauge transformation
𝑨 → 𝑨+ 𝛿𝑨 = 𝑨+∇𝜆 = 𝑨+ 𝜙/𝐿𝑥 𝒚̂. As a result, the wavefunction is transformed according
to 𝜓 → 𝑒𝑖𝜆𝜓. Normally, this redefinition would have no physical meaning since the addition
of a constant to the vector potential can be gauged away. We also note that wrapping the
ribbon into a cylinder quantizes 𝑘𝑥 such that 𝑘𝑥 = 2𝜋𝑚/𝐿𝑥 due to the periodic boundary
conditions, for integer 𝑚 = 0, 1, ..., 𝐿𝑥 . As such, the system Hamiltonian is modified to

𝐻 =
1

2𝑚

((
2𝜋𝑚ℏ
𝐿𝑥

− 𝑒𝐵𝑦 − 𝑒𝜙

𝐿𝑥

)2
+ 𝑝2

𝑦

)
(1.6)

with the same solutions as we had previously but now shifted such that

𝑦0 → 𝑦𝑚 =

(
ℏ𝑘𝑥

𝑒𝐵
− Φ

𝐵𝐿𝑥

)
=

(
2𝜋𝑚ℏ
𝑒𝐵𝐿𝑥

− 𝜙

𝐵𝐿𝑥

)
=

(
𝑚 − 𝜙

𝜙0

)
ℎ

𝑒𝐵𝐿𝑥

= 𝑘𝑚 (𝜙)𝑙2𝐵

(1.7)
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where 𝜙0 = ℎ/𝑒 is a single flux quantum. The final step is to make 𝜙 time dependent, i.e.
𝜙 → 𝜙(𝑡). If we adiabatically increase 𝜙 from 0 to 𝜙0 in time Δ𝑡, then the wavefunctions
centred around 𝑦𝑚 will have shifted to 𝑦𝑚−1, meaning that all the electrons along the cylinder
axis will have simply shifted one step along.

The net result is that if 𝑛 Landau levels are filled, a total charge of

Δ𝑄 = 𝑛𝑒 (1.8)

has been transferred from one edge of the cylinder to the other. Furthermore, by Faraday’s law
the change in flux will induce a potential difference around the cylinder, in turn generating a
current between the edges of the cylinder

𝐼 = 𝜎𝑥𝑦
𝜕𝜙

𝜕𝑡

= 𝜎𝑥𝑦
ℎ

𝑒Δ𝑡
,

(1.9)

and the conductance is therefore

𝜎𝑥𝑦 = −𝑒𝐼Δ𝑡
ℎ

= −𝑒Δ𝑄
ℎ

= −𝑛𝑒
2

ℎ
, (1.10)

where we identify 𝑛, the number of filled Landau levels, with von Klitzing’s filling factor,
𝜈! Recall that we have placed the Fermi level between Landau levels and the system is an
insulator, i.e. 𝜎𝑥𝑥 = 0 - this is why a voltage around the cylinder does not induce a current
which is also directed around the cylinder, but rather is directed across it between the edges.
Examining the Hamiltonian (1.6), we find that the periodic boundary conditions (in reality,
we consider the the large 𝐿 limit of system size) ensure that increasing the flux by a single
quantum, Δ𝜙 = 𝜙0 = ℎ/𝑒, maps the Hamiltonian back onto itself

𝐻 (𝜙 = 0) = 𝐻 (𝜙 = 𝜙0). (1.11)

In other words, periodic boundary conditions and gauge invariance have ensured that the
system is back in its original state, but 𝑄 = 𝑛𝑒 worth of charge has been pumped from one
side to the other. The actual geometry of the setup is unimportant and the above argument is
still applicable for periodic ribbons.

There does, however, seem to be a blatant paradox in the above argument. Namely, if the
Fermi level is deliberately placed between Landau levels such that the QHE is in an insulating
state, what is carrying the Hall current? The answer lies at the edges of our geometry and
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𝐸

𝑘

𝐸𝐿
𝐹

𝐸𝑅
𝐹

Fig. 1.2 Energy-dispersion relation of a 2DEG in a ribbon geometry with an externally applied
perpendicular magnetic field. At the edges of the sample a strong confining potential causes
the otherwise flat Landau levels to gain a non-zero group velocity. Applying a non-zero
transverse voltage between the two edges in a sufficiently clean system leads to differing
chemical potentials on either edge, 𝐸𝐿

𝐹
, 𝐸𝑅

𝐹
, and a resulting current along the length of the

ribbon.

can actually be clearly understood from the classical Hall effect. In the classical Hall effect,
electrons are forced to move in cyclotron orbits due to the Lorentz force. However, the
edges interrupt these cyclotron orbits and cause skipping along the edge of the sample, with
electrons on one edge moving in one direction and electrons on the other edge moving in
the opposite (so called chiral edge states). It is therefore only the 2D bulk of our 2DEG that
is insulating, the edges are 1D conductors [57]. However, it is a well known result that are
disorder can localise 1D conducting channels and yet the QHE has been shown to exist in
systems with a high concentration of impurities. The resolution to this is that these edge
states are immune to backscattering because of their chiral nature. Currents on one edge
can only travel in a single direction and, provided the two edges are far enough away from
each other and electron-electron interactions are neglected, cannot backscatter and become
localised by impurities.

Examining the energy dispersion of a 2DEG in the ribbon geometry in an externally
applied perpendicular magnetic field is perhaps the simplest way to understand this edge
transport. Figure 1.2 shows the band structure of this geometry, where the dispersionless
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(non-conductive) regions correspond to the bulk Landau levels. Near the edge of the sample,
however, there is a strong confining potential which results in linearly dispersing edge states
with a positive drift velocity on one edge of the ribbon and a negative velocity on the other.
Since the bulk of the 2DEG ribbon is insulating when the Fermi energy is between Landau
levels, we may separately consider the chemical potentials on the left and right edge, where
the difference is given by Δ𝜇 = 𝜇𝐿 − 𝜇𝑅. Physically, of course, this difference can be induced
by the application of a transverse electric field/voltage, 𝑒𝑉𝑥𝑦 = Δ𝜇. If Δ𝜇 = 0 then no
current flows along the ribbon since there are the same number of forward moving edge
modes as there are backward moving. However, if we apply a transverse voltage such that
𝜇 ≠ 0 then we can ensure that there are different populations of electrons on either edge.
An elementary result in quantum mechanics tells us that a single transport channel has a
quantum of conductance 𝐺0 = 𝑒2/ℎ, and therefore for 𝑛 edge channels in the presence of an
applied voltage

𝐼𝑥 =
𝑛𝑒2

ℎ
𝑉𝑥𝑦 =⇒

𝜎𝑥𝑦 =
−𝑛𝑒2

ℎ
.

(1.12)

Changing the magnetic field or the Fermi energy changes the number of edge states available,
allowing us to access different QHE plateaus. From this argument, it is clear that the edge
states are pumping the electrons across the bulk in Laughlin’s QHE cylinder. This treatment
of the QHE with respect to edge states was first made by Halperin in 1982 [57], where he
showed that the QHE and its associated edge states were robust to weak disorder in the 2D bulk.

An interesting question develops from the edge state argument we just made above: what
happens when two QHE ribbons are glued together? Separately, each ribbon has a certain
number of chiral modes on either edge. If there are the same number of edge states in
either ribbon, then gluing them together just makes a fatter ribbon, as in figure 1.3, since the
oppositely moving modes on the glued edges cancel each other out. However, if there are
different number of edge modes in either ribbon, say 𝑛1 and 𝑛2 then we will still have a net
number, 𝑛 = 𝑛1 − 𝑛2 of edge modes at the point they were glued together, i.e. conductive
channels appear at the domain wall between the two different QHE states. This is our first
introduction to the concept of topological invariants.
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Fig. 1.3 Gluing two QHE ribbons together creates a thicker ribbon with the same number of
edge states, since the forward and backward propagating states along the two edges that are
joined cancel out.

The TKNN invariant and Chern numbers

While the above arguments provided by Laughlin and Halperin are elegant and motivated
by simple thought experiments, the Hall conductivity can be calculated in a more rigorous
fashion through the use of linear response theory. In 1982, Thouloss, Kohmoto, Nightingale
and den Nijs (TKNN) did exactly this in order to demonstrate a deep connection between the
transverse (Hall) conductivity, the Bloch wavefunctions and the topology of the Brillouin
zone [174, 11].

First, it is helpful to define the Bloch wavefunctions. In a periodic potential, Schrodinger’s
equation can be written as

𝐻 (𝒌)
��𝜓𝑛,𝒌 (𝒓)〉 = 𝐸𝑛 (𝒌) ��𝜓𝑛,𝒌 (𝒓)〉 (1.13)

where 𝑛 is the band index and
��𝜓𝑛,𝒌 (𝒓)〉 the single-electron wavefunction. Using Bloch’s

theorem, this wavefunction can be written as the product of a plane-wave and a periodic
function

��𝜓𝑛,𝒌 (𝒓)〉 = 𝑒𝑖𝒌·𝒓 ��𝑢𝑛,𝒌 (𝒓)〉 (1.14)

where
��𝑢𝑛,𝒌 (𝒓)〉 has the same periodicity as the crystal potential. The periodicity of the

BZ means that it is topologically equivalent to a torus. In the DC regime at absolute zero
temperature, the Hall conductivity can be calculated using the Kubo formula as

𝜎𝑥𝑦 =
𝑖𝑒2

ℏ𝐴0

∑︁
𝒌∈𝐵𝑍

∑︁
𝐸𝛼<𝜇<𝐸𝛽

⟨𝑢𝛼 | 𝜕𝑘𝑥𝐻
��𝑢𝛽〉 〈

𝑢𝛽
�� 𝜕𝑘𝑦𝐻 |𝑢𝛼⟩ − ⟨𝑢𝛼 | 𝜕𝑘𝑦𝐻

��𝑢𝛽〉 〈
𝑢𝛽

�� 𝜕𝑘𝑥𝐻 |𝑢𝛼⟩
(𝐸𝛼 − 𝐸𝛽)2

(1.15)
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where 𝜕𝑘𝑖𝐻 = 𝜕𝐻
𝜕𝑘𝑖

where 𝐻 is the Hamiltonian, similar to that given in (1.4), and 𝐴0 is the are
of the system. We have dropped the 𝒌 dependence of the Bloch wavefunctions for notational
clarity, but it is implied. We rewrite

⟨𝑢𝛼 | 𝜕𝑘𝑖𝐻
��𝑢𝛽〉 = ⟨𝑢𝛼 | 𝜕𝑘𝑖

(
𝐻

��𝑢𝛽〉) − ⟨𝑢𝛼 | 𝐻
��𝜕𝑘𝑖𝑢𝛽〉

= (𝐸𝛽 − 𝐸𝛼)
〈
𝑢𝛼

��𝜕𝑘𝑖𝑢𝛽〉
= −(𝐸𝛽 − 𝐸𝛼)

〈
𝜕𝑘𝑖𝑢𝛼

��𝑢𝛽〉 (1.16)

using 𝜕𝑘𝑖
〈
𝑢𝛼

��𝑢𝛽〉 = 0 =⇒
〈
𝜕𝑘𝑖𝑢𝛼

��𝑢𝛽〉 = −
〈
𝑢𝛼

��𝜕𝑘𝑖𝑢𝛽〉 in the final two lines. We therefore
rewrite our expression for 𝜎𝑥𝑦 as

𝜎𝑥𝑦 =
𝑖𝑒2

ℏ𝐴0

∑︁
𝒌∈𝐵𝑍

∑︁
𝐸𝛼<𝜇<𝐸𝛽

〈
𝜕𝑘𝑦𝑢𝛼

��𝑢𝛽〉 〈
𝑢𝛽

��𝜕𝑘𝑥𝑢𝛼〉 − 〈
𝜕𝑘𝑥𝑢𝛼

��𝑢𝛽〉 〈
𝑢𝛽

��𝜕𝑘𝑦𝑢𝛼〉 . (1.17)

The next step is to utilise the completeness relation to eliminate the unoccupied states, i.e.∑︁
𝜇<𝐸𝛽

��𝑢𝛽〉 〈
𝑢𝛽

�� = 1 −
∑︁
𝐸𝛽<𝜇

��𝑢𝛽〉 〈
𝑢𝛽

�� (1.18)

to give

𝜎𝑥𝑦 =
𝑖𝑒2

ℏ𝐴0

∑︁
𝒌∈𝐵𝑍

∑︁
𝐸𝛼<𝜇

〈
𝜕𝑘𝑦𝑢𝛼

��𝜕𝑘𝑥𝑢𝛼〉 − 〈
𝜕𝑘𝑥𝑢𝛼

��𝜕𝑘𝑦𝑢𝛼〉
→ 𝑖𝑒2

ℏ

∑︁
𝐸𝛼<𝜇

∫
𝐵𝑍

𝑑2𝒌

(2𝜋)2

〈
𝜕𝑘𝑦𝑢𝛼

��𝜕𝑘𝑥𝑢𝛼〉 − 〈
𝜕𝑘𝑥𝑢𝛼

��𝜕𝑘𝑦𝑢𝛼〉
= −𝑖𝑒

2

ℎ

∑︁
𝐸𝛼<𝜇

∫
𝐵𝑍

𝑑2𝒌

2𝜋
⟨∇𝒌𝑢𝛼 | × |∇𝒌𝑢𝛼⟩𝑧

(1.19)

where we have taken the sum over k-space to an integral in the first two lines. Defining

A𝑖 = −𝑖
∑︁
𝐸𝛼<𝜇

⟨𝑢𝛼 | 𝜕𝑘𝑖 |𝑢𝛼⟩ (1.20)

we find a final expression for the transverse conductivity

𝜎𝑥𝑦 =
𝑒2

ℎ

∫
𝐵𝑍

𝑑2𝒌

2𝜋
(∇𝑘 ×A)𝑧 . (1.21)
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We notice that the quantity defined in (1.20) is none other than the Berry connection, a
geometric vector potential first introduced by Michael Berry in 1984 when he considered the
cyclic adiabatic evolution of an eigenstate in parameter space [17]. Rather than cyclically
evolving a parameter, the Berry connection in (1.20) describes the evolution of eigenstates in
k-space and, in addition, is summed over all the occupied bands. Furthermore, the integrand
in (1.21) is often referred to as the Berry curvature Ω𝑖 𝑗 = 𝜕𝑘𝑖A 𝑗 − 𝜕𝑘 𝑗A𝑖 which is analogous
to a k-space magnetic field. The integral of the curvature, analogous to the flux, is known as
the first Chern number

𝐶 =
∑︁
𝐸𝛼<𝜇

𝐶𝛼

where 𝐶𝛼 =
1

2𝜋

∫
𝐵𝑍

𝑑2𝒌Ω𝛼
𝑥𝑦

(1.22)

where 𝐶𝛼 is the Chern number associatted with a particular band. In order to demonstrate
that the Chern number is an integer, it is quite tempting to use the usual gauge transformation
argument to show that the integral of A around a closed path (known as the Berry phase)
must be an integer. However, since the BZ (we are actually dealing with the magnetic BZ,
but that won’t make any difference to our arguments) is topologically equivalent to a torus, it
is unclear how to take the surface integral in (1.21) to a path integral using Stokes’ theorem.
However, as shown by Kohmoto in 1985 [92], we are free to chose a loop in the BZ, 𝛾 to
divide the torus into closed interior and exterior regions such that

∫
𝐵𝑍

𝑑2𝒌Ω𝑥𝑦 =

∫
int
𝑑2𝒌Ω𝑥𝑦 +

∫
ext
𝑑2𝒌Ω𝑥𝑦

=

∮
𝛾

𝑑𝒌 ·Aint +
∮
−𝛾
𝑑𝒌 ·Aext

=

∮
𝛾

𝑑𝒌 ·Aint −
∮
𝛾

𝑑𝒌 ·Aext

(1.23)

where we have used the fact that if the boundary of the interior is 𝛾 then the boundary of the
exterior is −𝛾. The Berry connection is not a gauge invariant quantity (the curvature is) and
therefore at the boundary between the interior and exterior regions, can be related by a gauge
transformation

Aext = Aint + ∇𝜒(𝒌) (1.24)

for some scalar function 𝜒(𝒌). Therefore
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∫
𝐵𝑍

𝑑2𝒌Ω𝑥𝑦 =

∮
𝛾

𝑑𝒌 · ∇𝜒 (1.25)

In terms of the Bloch wavefunction, this gauge transformation amounts to
��𝑢𝛼,𝒌〉 →

𝑒𝑖𝜒(𝒌)
��𝑢𝛼,𝒌〉 and therefore ∫

𝐵𝑍

𝑑2𝒌Ω𝑥𝑦 = 2𝜋𝑛, 𝑛 ∈ Z, (1.26)

since the wavefunctions must match exactly after completing a full loop around 𝛾. Finally,
we arrive at the TKNN invariant

𝜎𝑥𝑦 =
𝑒2

2𝜋ℎ

∑︁
𝛼

𝐶𝛼 =
𝑛𝑒2

ℎ
, 𝑛 ∈ Z. (1.27)

which describes the relationship between the first Chern number, an integer topological
invariant, and the Hall conductivity. Of course, there is no guarantee that the Chern number
will be non-zero. Again using the analogy of the Berry connection and curvature to the vector
potential and magnetic field of classical electrodynamics, we see that 𝑛 ≠ 0 when there is
a singularity in A(𝒌) in the BZ corresponding to a monopole source of Berry curvature.
Mathematically, this occurs if we cannot define a smooth and continuous gauge for the phases,
𝜒(𝒌) of

��𝑢𝛼,𝒌〉 everywhere in the BZ, i.e. A(𝒌) is not globally well-defined across the entire
BZ. In this case, we divide the BZ into various patches, each with their own local gauge - this
corresponds to the loop we described in the previous paragraph to separate the BZ into and
interior and an exterior (we can generalise this to taking many loops and breaking the BZ
into many patches if there are multiple singularities). Generally, this tells us something about
the topology of the manifold of Bloch states

��𝑢𝛼,𝒌〉 defined over the toroidal BZ.

From the above discussion, it is clear that there are topologically distinct QHE states
characterised by different Chern numbers, since different insulating phases are characterised
by a different number of filled Landau levels/topological invariants. Moving between distinct
topological phases is only possible through closing the bulk energy gap, that is moving the
Fermi level through the next Landau level.

We can now revisit our discussion from the previous section and rephrase our argument
of gluing distinct QHE states together in terms of topological invariants. At the boundary
between two inequivalent topological phases, characterised by the invariants 𝑛1 and 𝑛2, the
bulk band gap must close such that there is a topological transition at the interface between
the two materials, resulting in 𝑛1 − 𝑛2 chiral modes. This is known as the bulk-boundary
correspondence so-called as we have calculated the topological invariants using only the bulk
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spectrum, but these uniquely define the behaviour at the boundary between topologically
inequivalent phases.

Are there any other topological phases apart from the quantum Hall state? That is,
are there other means of inducing non-trivial topology that do not involve the application
of an external magnetic field? In 1988, Haldane showed that this was indeed possible by
constructing a toy-model based on graphene [55]. Before going into the detail of Haldane’s
model, we will discuss why a magnetic field can induce non-trivial topology in the first place.

Time-reversal and Inversion symmetry

The concept of time-reversal symmetry (TRS) is relatively easy to understand - it is a
transformation, 𝑇 which reverses the direction of time 𝑇 : 𝑡 → −𝑡. As an example of TRS in
classical mechanics, consider the case of a simple harmonic oscillator with the equation of
motion given as

𝑚 ¥𝑥 + 𝑘𝑥 = 0 (1.28)

where 𝑥 gives the position of the mass 𝑚 and 𝑘 is a constant paramterising the restoring
force acting on the mass. The position of the mass, 𝑥 is unchanged under 𝑡 → −𝑡 as is the
acceleration and, therefore, this system respects TRS. If we now consider a realistic oscillator
with some damping then we must modify our equation of motion to

𝑚 ¥𝑥 + 𝑏 ¤𝑥 + 𝑘𝑥 = 0 (1.29)

where 𝑏 parameterises the damping force. Since ¤𝑥 = 𝑑𝑥/𝑑𝑡 → 𝑑𝑥/𝑑 (−𝑡) = −¤𝑥, the inclusion
of a dissipative force ensures that our system no longer respects TRS.

A more relevant example for our circumstances is the situation of a charged particle
moving in a perpendicular magnetic field. It is well known that the Lorentz force is given by

𝑭 = 𝑞𝒗 × 𝑩. (1.30)

If a proton is fired into a region where 𝐵𝑧 ≠ 0, it will be deflected perpendicular to its path
and generally undergo circular motion. Applying the time-reversal operator to this equation,
i.e. reversing the direction of motion/the sign of 𝒗, we find the equation of motion is now
given by

𝑭 = −𝑞𝒗 × 𝑩. (1.31)
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With this equation of motion the particle will not travel backwards along its original path,
since the direction of the centripetal force is also reversed. A magnetic field, therefore, breaks
TRS.

Of course, the concept of TRS is well-defined in quantum mechanics as well. We will
discuss this in greater detail in the next section, but for now we will simply state that the
action of time-reversal, 𝑇 on the Bloch Hamiltonian and associated eigenstates in systems
respecting TRS is

𝑇𝐻 (𝒌)𝑇−1 = 𝐻 (−𝒌)

𝑇
��𝑢𝑛,𝒌〉 = ���𝑢∗𝑛,𝒌〉 = 𝑒𝑖𝜙(𝒌)

��𝑢𝑛,−𝒌〉 (1.32)

where the definition of a time-reversal eigenstate includes an arbitrary phase since quantum
states are only defined up to an arbitrary phase.

As a brief aside, we note that spin (a type of angular momentum) must be odd under
time-reversal. For spin 1/2 particles this requires 𝑇𝑺𝑇−1 = −𝑺 where 𝑺 = ℏ

2𝝈 and 𝝈 is the
vector of Pauli matrices. If 𝑇 is a unitary operator then it can be chosen, without loss of
generalisation, to be

𝑇 = 𝑒𝑖𝒏̂·𝝈𝜃/2 (1.33)

where 𝒏̂ is a unit vector. It is clear to see that applying 𝑇 is akin to a rotation about the axis
along 𝒏̂ and, therefore, we cannot recover the behaviour that spin 1/2 systems are odd under
time-reversal with this definition. In order to do so we must define

𝑇 = 𝑈𝑇𝐾 (1.34)

where 𝑈𝑇 is a unitary matrix and 𝐾 is the operation of complex conjugation. Given that
𝐾𝜎𝑦𝐾 = −𝜎𝑦, the only possible choice for 𝑇 is

𝑇 = 𝑒𝑖𝜎𝑦𝜋/4𝐾

= 𝑖𝜎𝑦𝐾
(1.35)

𝑇 is therefore an anti-unitary operator (this is true for all systems, not just spin 1/2) and
𝑇2 = −1 for spin 1/2 systems (generally, 𝑇2 = −1 for half integer spin and 𝑇2 = 1 for integer
spin).
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As well as TRS, we introduce the concept of inversion symmetry. Again, more details
will follow in the next section, but for now we define the action of inversion symmetry to be

𝑃𝐻 (𝒌)𝑃−1 = 𝐻 (−𝒌)
𝑃

��𝑢𝑛,𝒌〉 = ��𝑢𝑛,−𝒌〉 = 𝑒𝑖𝜙(𝒌) ��𝑢𝑛,𝒌〉 (1.36)

similar to the action of time-reversal, but without the complex conjugation. Inversion is,
therefore, a unitary symmetry.

Armed with our definitions of time-reversal and inversion symmetry, we will now re-
examine the (quantum) Hall effect. The Hall conductivity, 𝜎𝑥𝑦 = 𝑗𝑥/𝐸𝑦, is odd under
time-reversal, 𝑇 : 𝜎𝑥𝑦 → −𝜎𝑥𝑦 since the current is odd under time-reversal. Therefore, the
only way to get a non-zero Hall conductivity is to break TRS. This is also reflected in the
Berry curvature

𝑇Ω(𝒌) = −𝑖
〈
∇𝒌𝑇𝑢𝑛,𝒌

�� × ��∇𝒌𝑇𝑢𝑛,𝒌
〉

= −𝑖𝜖𝑖 𝑗
∫

d𝒓𝜕𝑘𝑖𝑇𝑢
∗
𝑛,𝒌𝜕𝑘 𝑗𝑇𝑢𝑛,𝒌

= −𝑖𝜖𝑖 𝑗
∫

d𝒓𝜕𝑘𝑖𝑢𝑛,−𝒌𝜕𝑘 𝑗𝑢
∗
𝑛,−𝒌

= −𝑖𝜖𝑖 𝑗
∫

d𝒓𝜕𝑘 𝑗𝑢
∗
𝑛,𝒌𝜕𝑘𝑖𝑢𝑛,𝒌

= −𝑖𝜖 𝑗𝑖
∫

d𝒓𝜕𝑘𝑖𝑢
∗
𝑛,𝒌𝜕𝑘 𝑗𝑢𝑛,𝒌

= 𝑖𝜖𝑖 𝑗

∫
d𝒓𝜕𝑘𝑖𝑢

∗
𝑛,𝒌𝜕𝑘 𝑗𝑢𝑛,𝒌

= −Ω(𝒌)

(1.37)

where we have used the definitions given in (1.32) and the antisymmetry of the Levi-Civita
tensor, 𝜖𝑖 𝑗 = −𝜖 𝑗𝑖. Therefore, in systems where TRS is respected the Berry curvature is odd
under time-reversal , Ω(−𝒌) = −Ω(𝒌). Similarly, in systems with TRS the Chern number
obeys 𝐶𝛼 = −𝐶𝛼 for all filled bands, the only solution of which is 𝐶𝛼 = 0.

We note that TRS does not demand that the Berry curvature must vanish, only that the
Chern number/Hall conductivity does. However, investigating the action of inversion on the
Berry curvature
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𝐼Ω(𝒌) = −𝑖
〈
∇𝒌 𝐼𝑢𝑛,𝒌

�� × ��∇𝒌 𝐼𝑢𝑛,𝒌
〉

= −𝑖𝜖𝑖 𝑗
∫

d𝒓𝜕𝑘𝑖 𝐼𝑢
∗
𝑛,𝒌𝜕𝑘 𝑗 𝐼𝑢𝑛,𝒌

= −𝑖𝜖𝑖 𝑗
∫

d𝒓𝜕𝑘𝑖𝑢
∗
𝑛,−𝒌𝜕𝑘 𝑗𝑢𝑛,−𝒌

= −𝑖𝜖𝑖 𝑗
∫

d𝒓𝜕𝑘𝑖𝑢
∗
𝑛,𝒌𝜕𝑘 𝑗𝑢𝑛,𝒌

= Ω(𝒌)

(1.38)

implying Ω(−𝒌) = Ω(𝒌) in systems with inversion symmetry, i.e. the Berry curvature is
even. To force the Berry curvature to vanish, it is therefore sufficient to demand that system
respects both time-reversal and inversion symmetry (since the only solution for a function
that is both even and odd is that it vanishes everywhere).

The Haldane model

Given our symmetry considerations, it is now clear that magnetic fields induce a non-trivial
topology because they break TRS. Haldane’s aim in constructing his model was to realise the
QHE, i.e. a non-trivial topological phase, without the application of a magnetic field. He
began by considering a spinless toy-model of graphene, constructed using a triangular lattice
and two sites per unit cell, 𝐴 and 𝐵, see Figure 1.4. Considering only nearest-neighbour (NN)
hopping terms, the Bloch Hamiltonian is given as

𝐻 (𝒌) = 𝑡1
3∑︁
𝑖=1

(cos(𝒌 · 𝒂𝑖)𝜎𝑥 − sin(𝒌 · 𝒂𝑖)𝜎𝑦) (1.39)

where 𝒂1 = (1, 0), 𝒂2 = 1
2 (−

√
3, 1) and 𝒂2 = 1

2 (−
√

3,−1) are the NN lattice vectors and 𝜎𝑥,𝑦,𝑧
are the Pauli matrices acting on the sublattice degrees of freedom. The energy dispersion of
this toy model is shown in figure 1.5.

At the six corners of the hexagonal BZ, the energy gap closes and the dispersion relation
is approximately linear. Due to the threefold rotational symmetry of the Hamiltonian only
two of the six corners are distinct, referred to as 𝐾 and 𝐾′. Since the dispersion relation
around these points is linear, they are also known as Dirac points (DPs) due to the similar
dispersion relation found in Dirac Hamiltonian. This system respects both time-reversal and
inversion symmetry according to the operators



1.1 Topology in Condensed Matter 17

Fig. 1.4 Hexagonal lattice for graphene with NN and NNN hoppings. The two lattice points
per unit cell are shown by the orange and blue points. Note that the model given in 1.39
considers only the NN hoppings between blue and orange sites (𝐴𝐵 hoppings) while the
model QAHE model given in equation 1.41 considers NNN hoppings, i.e. 𝐴𝐴 and 𝐵𝐵
hoppings between sites of the same colour.

𝑇 = 𝐾

𝐼 = 𝜎𝑥
(1.40)

Haldane’s brilliance, which eventually saw him share the 2016 Nobel prize in physics, was
to introduce a next-nearest-neighbour (NNN) hopping and a local magnetic field, 𝑩(𝒓),
perpendicular to the 2D plane and with the periodicity of the underlying lattice, but with zero
total flux through the unit cell. In addition, Haldane included an energy offset between the 𝐴
and 𝐵 sublattices, controlled by a parameter 𝑀 . The modified Hamiltonian is given as
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Fig. 1.5 Energy dispersion of the Haldane model with only a nearest-neighbour hopping
term as described by 1.39. In the dispersion relation shown there are 6 points where the
conduction and valence band touch, however the threefold rotational symmetry means only
two of these points are inequivalent.
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𝐻 (𝒌) = 𝑡2 cos 𝜙
∑︁
𝑖

cos (𝒌 · 𝒃𝑖) + 𝑡1
∑︁
𝑖

(
cos(𝒌 · 𝒂𝑖)𝜎𝑥 − sin(𝒌 · 𝒂𝑖)𝜎𝑦

)
+

(
𝑀 − 2𝑡2 sin 𝜙

∑︁
𝑖

sin (𝒌 · 𝒃𝑖)
)
𝜎𝑧

= 𝜖 (𝒌) + 𝒅(𝒌) · 𝝈

(1.41)

where 𝜙 is a tunable parameter related to the periodic magnetic field and 𝒃𝑖 are the NNN lattice
vectors, see Figure 1.4. The effect of the NNN hoppings is to break TRS when sin 𝜙 ≠ 0,
while the 𝑀𝜎𝑧 term breaks inversion symmetry. The low-energy effective Hamiltonian near
the 𝑲 and 𝑲′ points is given as

𝐻± = ℏ𝑣 𝑓 (𝛿𝑘𝑥𝜎𝑥 − 𝛿𝑘𝑦𝜎𝑦) + 𝑚±𝜎𝑧 (1.42)

where ℏ𝑣 𝑓 = 3𝑡1/2𝑎 and 𝑚± = 𝑀 ∓ 3
√

3𝑡2 sin 𝜙. The spectrum of this Hamiltonian looks
like a massive Dirac spectrum, with an energy gap proportional to 2𝑚± at the 𝐾/𝐾′ points.
Tuning the flux 𝜙 can, therefore, result in the energy gap closing and eventually inverting, i.e.
a band inversion. As previously discussed, closing the energy gap is sufficient for a change in
the value of the Chern number and the topological phase. In fact, the Chern number of the
full system can be calculated as

𝐶 =
1
2
(sign(𝑚−) − sign(𝑚+)). (1.43)

i.e. the difference of the Chern numbers (given by the sign of the mass term) for the
Hamiltonians at the two distinct corners of the hexagonal BZ. A final point to mention is that
since the band gaps at the 𝐾 and 𝐾 𝑝𝑟𝑖𝑚𝑒 points switch at different values of 𝜙, there will be
points where the value of the sum of their signs is non-zero, i.e. the Haldane model is in a
topologically non-trivial phase.

Figure 1.6 shows the phase diagram Haldane derived. The regions labelled 𝐶 = ±1 show
a zero-field QHE, i.e. the QHE without a magnetic field, and occur when |𝑀/𝑡2 | < 3

√
3 sin 𝜙

for 𝑡2/𝑡1 < 1/3 where the latter condition always us to safely assume that the conduction and
valence band never overlap (that is, there is always a gap between them or they touch).

It is for this reason that this topological phase is often referred to as the quantum anomalous
Hall effect (QAHE). Furthermore, comparing the equations (1.15) and (1.21) we find an
alternative expression for the Berry curvature
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𝐶 = −1 𝐶 = 1

𝐶 = 0

𝜙

𝑀/𝑡2

3
√

3

−3
√

3

0 𝜋 2𝜋

Fig. 1.6 Schematic of the phase diagram for the Haldane model with a net nearest neighbour
hopping and a mass term, given in equation 1.41. The red line and blue lines plot the curves
𝑀/𝑡2 ∓3

√
3 sin 𝜙, respectively. Below the red line, the mass term in the effective Hamiltonian

at the 𝐾 point is positive, while below the blue the line the mass term at the 𝐾′ point is
positive. Between the two curves the mass terms have different signs resulting in a non-trivial
phase.

Ω(𝒌) = 𝑖
∑︁
𝛼≠𝛽

⟨𝑢𝛼 | 𝜕𝑘𝑥𝐻
��𝑢𝛽〉 〈

𝑢𝛽
�� 𝜕𝑘𝑦𝐻 |𝑢𝛼⟩ − ⟨𝑢𝛼 | 𝜕𝑘𝑦𝐻

��𝑢𝛽〉 〈
𝑢𝛽

�� 𝜕𝑘𝑥𝐻 |𝑢𝛼⟩
(𝐸𝛼 − 𝐸𝛽)2 , (1.44)

i.e., near band degeneracies where the denominator becomes small the Berry curvature should
take on large values. We conclude that band degeneracies (in this context, Dirac points) are
sources/sinks of Berry curvature. The Berry curvature is very strongly localised around the
DPs.

The quantum spin Hall effect and Kramers degeneracy

In the QHE and the QAHE TRS is explicitly broken, resulting in a non-trivial topological
phase characterised by a Z invariant which reflects how many 1D chiral modes are present at
the edge. It is fair to ask if this is the only ’flavour’ of topology we can get in condensed
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matter, or are there other types of topological invariant that can exist in Hamiltonians with
different symmetries?

In 2005, Kane and Mele published two groundbreaking papers demonstrating the existence
of non-trivial topology in systems respecting TRS [78, 79]. Their work generalised Haldane’s
spinless model of graphene at 𝜙 = 𝜋/2 to spin 1/2 electrons and included an inversion
symmetry breaking Rashba spin-orbit coupling term. Essentially, this is just two time-
reversed copies of the Haldane model with a time-reversal invariant coupling between the 𝐻↑
and 𝐻↓ blocks. In the tight-binding formalism, the Kane-Mele Hamiltonian is given as

𝐻̂ =
∑︁
𝑖

𝜖𝑖𝑐
†
𝑖
𝑐𝑖 + 𝑡1

∑︁
⟨𝑖, 𝑗⟩

𝑐
†
𝑖
𝑐 𝑗 + 𝑖𝜆𝑆𝑂

∑︁
⟨⟨𝑖, 𝑗⟩⟩

𝜈𝑖 𝑗𝑐
†
𝑖
𝜎𝑧𝑐 𝑗 + 𝑖𝜆𝑅

∑︁
⟨𝑖, 𝑗⟩

𝑐
†
𝑖
(𝝈 × 𝒅𝑖 𝑗 )𝑧𝑐 𝑗 (1.45)

where 𝑐†
𝑖
𝑐𝑖 are the two component fermionic creation/annihilation operators, 𝑐𝑖 = 𝑐𝑖,↑, 𝑐𝑖,↓),

obeying the usual anticommutation relations, {𝑐𝑖, 𝑐 𝑗 } = 0 and {𝑐𝑖, 𝑐†𝑗 } = 𝛿𝑖 𝑗 , 𝜎𝑥,𝑦,𝑧 are the
Pauli matrices acting in spin space and 𝒅𝑖 𝑗 = 𝒅 𝑗 − 𝒅𝑖 is the lattice vector from site 𝑖 to
𝑗 . The first term is a staggered sublattice potential, where 𝜖𝑖 = ±𝜖 depending on whether
𝑖 corresponds to an 𝐴 or 𝐵 site, and the second term is the NN hopping. The third term
is a NNN, where 𝜈𝑖 𝑗 = 2(𝒅𝑖 × 𝒅 𝑗 )/

√
3 = ±1 depending on whether the bond is directed

clockwise/anticlockwise. This is essentially identical to the NNN hopping at 𝜙 = 𝜋/2 in the
Haldane model, however arises from a spin-orbit interaction rather than a periodic magnetic
field and the sign is reversed depending on the electron spin. The final term is a Rashba
coupling between NNs which breaks inversion symmetry.

In the case 𝜆𝑅 = 0, the Kane-Mele model is exactly equal to two time-reversed copies
of the Haldane model. Since the Chern number is odd under time-reversal, the topological
invariant for the two spin layers are opposite one another, 𝑛↑ = −𝑛↓, and the total Chern
number for the full Hamiltonian vanishes 𝑛 = 𝑛↑ + 𝑛↓ = 0. Clearly there are edge states
present in the model, however they will not be the usual chiral edge states present in the
QHE/QAHE. Due to the presence of TRS edge states will come in spin-up and spin-down
pairs which will be counter-propagating, i.e. opposite spins will move in opposite directions.
This is known as a helical edge mode. Rather than carrying a charge current, this edge mode
carries a pure spin current. When 𝜆𝑅 = 0 we can use the Laughlin argument to show that
each copy of the Haldane model will pump ℏ/2 worth of spin between the edges of a 1D
Kane-Mele model, resulting in a pure spin current between the edges characterised by the
spin conductivity

𝜎
𝑄𝑆𝐻
𝑥𝑦 =

𝑒

2𝜋
. (1.46)
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Fig. 1.7 The energy dispersion relations for the Kane-Mele model in a 1D nanoribbon
geometry with a zigzag edge. On the left is the topological quantum spin-Hall state, while on
the right is the trivial gapped state. These dispersion relations were numerically calculated on
a 21 site wide ribbon using KWANT. In both cases, the dispersion relations were calculated
using the parameters 𝑡 = 1, 𝜖 = 0.2 and 𝜆𝑆𝑂 = 0.06. However, in the topological phase
𝜆𝑅 = 0.05, while in the trivial phase a value of 𝜆𝑅 = 0.35 has opened a gap.

For this reason, the Kane-Mele model is a realisation of the quantum spin Hall insulator
(QSHI). The dispersion relations of the Kane-Mele system in the gapless QSH phase and the
trivial insulating phase for a 1D zigzag strip geometry are shown in Figure 1.7.

Clearly, since it is always zero, the Chern number is not a useful topological invariant to
use when characterising this system. We could use the difference between the Chern numbers
between the two spin sectors, 𝑛↑ − 𝑛↓, however this will only work for 𝜆𝑅 = 0. When 𝜆𝑅 ≠ 0
and |𝜆𝑅/𝜆𝑆𝑂 | < 3

√
3 the energy gap does not close and the edge states persist. However,

since [𝐻, 𝜎𝑧] ≠ 0 spin is no longer a good quantum number and we cannot separate the
system into two spin sectors with independent Chern numbers, 𝑛𝜎. A further consequence of
this is that 𝜎𝑄𝑆𝐻𝑥𝑦 is generally not quantized when 𝜆𝑅 ≠ 0.

Kane and Mele proposed that the answer to this problem could be found by considering
the concept of Kramers theorem. Kramers theorem, sometimes also referred to as Kramers
degeneracy, states that in a half-integer spin system respecting TRS every energy level is
at least doubly degenerate. Put another way, for every eigenstate with energy 𝐸 there is at
least one more eigenstate with energy 𝐸 . To prove this, assume |𝜓⟩ is an eigenstate of the
Hamiltonian with energy 𝐸
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𝐻 |𝜓⟩ = 𝐸 |𝜓⟩ . (1.47)

Recall that in a system with TRS [𝐻,𝑇] = 0. Therefore 𝑇 |𝜓⟩ must also be an eigenstate of
𝐻 with energy 𝐸 since

𝐻𝑇 |𝜓⟩ = 𝑇𝐻 |𝜓⟩
= 𝐸𝑇 |𝜓⟩ .

(1.48)

Kramers theorem then essentially amounts to showing |𝜓⟩ and 𝑇 |𝜓⟩ are different states, i.e.
that they are orthogonal. To show this recall that 𝑇2 = −1 for spin 1/2 systems and therefore

𝑇2 = 𝑈𝑇𝐾𝑈𝑇𝐾

= 𝑈𝑇𝑈
∗
𝑇 = −1 =⇒

𝑇2 = 𝑈𝑇𝑇𝑈
†
𝑇

=⇒
𝑇2𝑈𝑇 = 𝑈𝑇𝑇 =⇒
𝑈𝑇𝑇 = −𝑈𝑇 .

(1.49)

Using this identity

⟨𝜓 |𝑇𝜓⟩ =
∑︁
𝑖, 𝑗

𝜓∗
𝑖 (𝑈𝑇 )𝑖 𝑗𝐾𝜓 𝑗

=
∑︁
𝑖, 𝑗

𝜓∗
𝑖 (𝑈𝑇 )𝑖 𝑗𝜓∗

𝑗

= −
∑︁
𝑖, 𝑗

𝜓∗
𝑗 (𝑈𝑇 ) 𝑗𝑖𝐾𝜓𝑖

= − ⟨𝜓 |𝑇𝜓⟩

(1.50)

where we have used𝑈𝑇
𝑇
= −𝑈𝑇 between the second and third lines. The only solution to this

is that ⟨𝜓 |𝑇𝜓⟩ = 0 and time-reversed partners, also known as a Kramers pair, are orthogonal
in spin 1/2 systems. Therefore, spin 1/2 systems with TRS are at least doubly degenerate.
Extending this to translationally invariant systems, for a Bloch state

��𝑢𝑛,𝒌,𝜎〉 its Kramers
partner is 𝑇

��𝑢𝑛,𝒌,𝜎〉 = 𝑒𝑖𝜙(𝒌)
��𝑢𝑛,−𝒌,−𝜎〉 which is generally at a different momentum. Note

that we have included the spin index in the Bloch states and that it has been reversed by the
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action of 𝑇 . Moreover, TRS precludes any mixing of Kramers pairs, since ⟨𝜓 | 𝐻 |𝑇𝜓⟩ = 0,
and ensures they cannot backscatter into one another.

Points in the BZ where 𝒌 = −𝒌 + 𝑮, where 𝑮 is a reciprocal lattice vector, play a special
role in the QSHI. Clearly 𝒌 = 0 satisfies this condition, but the periodicity of the BZ ensures
that the points at the corners of the BZ will also obey this condition. For example, in 1D these
points are 𝑘 = 0, 𝜋/𝑎 while in 2D these points are 𝑘 = (0, 0), (𝜋/𝑎, 0), (0, 𝜋/𝑎) (𝜋/𝑎, 𝜋/𝑎)
where 𝑎 is the lattice constant (there will generally by 2𝑛 TRIM in 𝑛 dimensions). These points
are known as time-reversal invariant momenta (TRIM). Kramers theorem guarantees that at
TRIM points the Kramers pairs are degenerate, and protected from mixing with one another
by any time-reversal invariant perturbations. Considering gapless modes located in the energy
gap of a 1D BZ, bands are necessarily degenerate with one another at 𝑘 = 0, 𝜋/𝑎, but the
degeneracy is generally lifted between these points in the absence of any other symmetries.
The distinction between trivial and non-trivial states lies in how the bands traverse the energy
gap between these two TRIM. Figure 1.8 shows the situations of a topologically trivial phase
and a non-trivial phase, with robust mid-gap states. In the trivial case, bands forming Kramers
pairs at 𝑘 = 0 form another Kramers pair at 𝑘 = 𝜋/𝑎. However, in the non-trivial phase two
bands will touch to form a Kramers pair at one TRIM, but they will not form a Kramers pair
at the other. The result of this is that the Fermi level will always intersect a mid-gap states in
the non-trivial case but can be placed between mid-gap states in the trivial insulating phase.

The consequence of this can be understood by analysing the scattering matrix of the
system [15]. The scattering matrix is defined as the unitary matrix relating the states incoming
to a transmission region to those which are outgoing

𝑆 =

(
𝑟 𝑡

𝑡′ 𝑟′,

)
(1.51)

where 𝑟/𝑟′ and 𝑡/𝑡′ are square matrix blocks describing reflection and transmission,
respectively. In a system with TRS, we can always write a general scattering state in the input
lead as

|𝜓⟩ =
∑︁
𝑛

𝑐𝑛in,𝐿 |𝑛⟩ + 𝑐
𝑛
out,𝐿 |𝑇𝑛⟩ (1.52)

where in and out refer to whether the states are travelling in or out of the scattering region. A
similar expression can be written for states in the output lead. The scattering matrix then
relates the scattering states in either lead through(

𝑐out,𝐿

𝑐out,𝑅

)
= 𝑆

(
𝑐in,𝐿

𝑐in,𝑅

)
(1.53)
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0−𝜋/𝑎 𝜋/𝑎

𝑘

𝐸

𝐸𝐹

0−𝜋/𝑎 𝜋/𝑎

𝑘

𝐸

𝐸𝐹

Fig. 1.8 Schematic of mid-gap states for topologically trivial (left) and non-trivial (right) band
structures with time-reversal symmetry. In both schematics, bulk states are filled with grey.
Midgap states are shown as (dashed) lines, where dashed lines are the time-reversal partners
of un-dashed lines. As demonstrated, non-trivial topological states form when a midgap state
switches its Kramer’s partner between 0 and 𝜋/𝑎. The result is that, for a non-trivial state,
the Fermi energy will always intersect a midgap band while the Fermi energy can be placed
between mid-gap bands in the trivial insulating state.
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where we have dropped the band index for clarity. Due to TRS, we can also consider the time
reversal partner at the same energy

𝑇 |𝜓⟩ =
∑︁
𝑛

(𝑐𝑛in,𝐿)
∗ |𝑇𝑛⟩ + (𝑐𝑛out,𝐿)

∗ ��𝑇2𝑛
〉

=
∑︁
𝑛

(𝑐𝑛in,𝐿)
∗ |𝑇𝑛⟩ − (𝑐𝑛out,𝐿)

∗ |𝑛⟩

=
∑︁
𝑛

−(𝑐𝑛out,𝐿)
∗ |𝑛⟩ + (𝑐𝑛in,𝐿)

∗ |𝑇𝑛⟩ .

(1.54)

giving an equivalent expression for scattering states(
𝑐∗in,𝐿
𝑐∗in,𝑅

)
= 𝑆

(
−𝑐∗out,𝐿
−𝑐∗out,𝑅 .

)
(1.55)

Left multiplying by 𝑠† and complex conjugating both sides we find(
𝑐out,𝐿

𝑐out,𝑅

)
= −𝑆𝑇

(
𝑐in,𝐿

𝑐in,𝑅

)
(1.56)

resulting in the identity

𝑆 = −𝑆𝑇 . (1.57)

As a result of this identity, the on-diagonal elements of 𝑆 must also obey an antisymmetry
condition 𝑟 = −𝑟𝑇 . However, it is known that antisymmetric matrices of odd rank (i.e. an
𝑁 × 𝑁 matrix where 𝑁 is odd) have at least one eigenvalue equal to zero. Therefore, systems
with TRS and an odd number of Kramers pairs will always have at least one reflection
eigenvalue equal to zero and, by conservation of probability, perfect transmission. Kramers
theorem is, therefore, the origin of dissipationless edge states in time-reversal topological
insulators. Put more simply, if there are an even number of edge states then states can scatter
into backpropagating modes that are not their time-reversal pair. If there are an odd number
of modes then there is always an extra edge state that cannot be gapped out. This should be
compared with Figure 1.8 where there are always an even number of forward (backward) propa-
gating modes at the Fermi level in the trivial phase, but an odd number in the non-trivial phase.

When discussing the topological nature of chiral edge states, it made sense to consider a
Z topological invariant since states on either edge couldn’t backscatter into one another due
to their spatial separation. In the case of helical edge states however, it is clear that it is the
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parity of the number of pairs of edge modes that dictates whether the system is topological.
In this case, we can describe the system by a Z2 topological invariant, i.e. the cyclic group of
order two. In the limit of decoupled spin blocks (𝜆𝑅 → 0) we can calculate the Z2 as

𝜈 =
1
2
(𝑛↑ − 𝑛↓) mod 2

= 𝑛𝜎 mod 2.
(1.58)

More generally, however, it is convenient to formulate the Z2 invariant in terms of Bloch
functions as this will provide a more general method for calculating the topological invariant
in systems where spin is not conserved.

Re-examining the Berry connection and calculating the Z2 invariant

Before discussing the calculation of the Z2 topological invariant in systems where spin is not
conserved, let us first revisit the formulation of the Z topological invariant in terms of the
Berry connection.

Under the modern theory of polarisation proposed by King-Smith and Vanderbilt [88],
the spontaneous polarisation of a crystal can be rewritten in terms of the Berry connection as

𝑷 =
1

2𝜋

∫
𝐵𝑍

d𝒌A(𝒌) (1.59)

where A(𝒌) is the Berry connection previously defined in (1.20). For now, we will only
consider the 1D case for simplicity. Since the Berry connection is not a gauge invariant
quantity, neither is the polarisation under this definition, i.e. if we perform the gauge
transformation 𝑢𝛼,𝒌 → 𝑒𝑖𝜙𝛼 (𝒌)𝑢𝛼,𝒌 then the Berry connection of each band transforms as
A𝛼 → A𝛼 + 𝜕𝑘𝜙𝛼 (𝑘). As a result the polarisation is also changed

𝑃𝛼 → 𝑃𝛼 +
𝑒

2𝜋
(𝜙𝛼 (𝑘 = 𝜋) − 𝜙𝛼 (𝑘 = −𝜋)), (1.60)

where 𝑃 =
∑
𝛼 𝑃𝛼. Since the phase is defined up to modulo 2𝜋, we conclude 𝜙𝛼 (𝑘 =

𝜋) −𝜙𝛼 (𝑘 = −𝜋) = 2𝑚𝜋 and the polarisation is only defined up to modulo an integer, i.e. only
the fractional part of the polarisation is gauge invariant. This is, initially, quite a surprising
result. After all, in the classical picture we are used to thinking of the polarisation as a
macroscopic quantity where the net polarisation of a crystal is the sum of the contributions
from each localized electron dipole. At first glance, the description of the polarisation in terms
of a Berry phase appears counterinutive. However, rather than focusing on the polarization
of a crystal as an equilibrium property, the modern theory postulates that one should speak
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about differences in the polarization between two different states, as this does remain a
gauge invariant quantity. Indeed, this view on the theory of polarisation actually matches
experiments where only differences in polarisation can be measured (switches in polarisation
upon the application of an external electric field are measured, rather than absolute values).
The interested reader is referred to [145] for a detailed discussion on the matter, however this
is intimately linked to the inability to specify the locations of the Wannier charge centres
(Fourier transforms of the Bloch wavefunctions) beyond modulo a lattice vector. Coming
back to the matter at hand, imagine we adiabatically tune some parameter, 𝜆, that changes the
polarisation of a Bloch band. The change in polarisation of the 𝛼𝑡ℎ band can be calculated as

Δ𝑃𝛼 =

∫ 𝜆 𝑓

𝜆𝑖

d𝜆
𝜕𝑃𝛼

𝜕𝜆

= 𝑃𝛼 (𝜆 𝑓 ) − 𝑃𝛼 (𝜆𝑖)

=
1

2𝜋

(∫
𝑐 𝑓

d𝑘A𝛼 −
∫
𝑐𝑖

d𝑘A𝛼

)
.

(1.61)

provided the wavefunctions are continuously defined between 𝜆𝑖 and 𝜆 𝑓 and where 𝑐 𝑓 and 𝑐𝑖
are the loops 𝑘𝑥 = −𝜋 → 𝜋 for 𝜆 𝑓 and 𝜆𝑖. Note that 𝜆 is simply a parameter of the quantum
system that we are at liberty to tune. Therefore, we may interpret it as a flux, as in the case of
the charge pump in the Laughlin argument, or as another momentum component. At this
point we will force the path in 𝜆 space to be a loop. As such, the change in polarisation by
adibatically varying 𝜆 in a closed loop is

Δ𝑃𝛼 =
1

2𝜋

∮
d𝒌 ·A𝛼 (𝒌) (1.62)

where 𝒌 = (𝑘, 𝜆). Comparing this to our expression for the Hall conductance (1.22), we
realise that this integral is exactly the Chern number. This equation should be compared
to (1.21) to observe the link between the change in electric polarisation through a cyclic
evolution of some Hamiltonian parameter and the Hall conductance.

The genius of Fu and Kane was to realise that the key quantity in describing the topology
of the QSH insulator in the presence of spin coupling, was not the charge conductance, nor
the spin conductance, but rather the change in the time-reversal polarisation [47]. To explain
what the time-reversal polarisation is, we will once again revisit the Laughlin argument for the
QHE. Laughlin’s argument was that by threading a single magnetic flux quantum, 𝜙0 = ℎ/𝑒,
through a cylinder with a radial magnetic field, one could pump Δ𝑄 = 𝑛𝑒 worth of charge
between the edges of the cylinder, where 𝑛 is the number of filled Landau levels. Because
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of the periodic boundary conditions, changing the flux in this manner mapped the system
back to itself. Moreover, if for simplicity we consider the cylinder to have circumference of a
single unit cell then we may reinterpret threading a single flux quantum through the cylinder
as traversing the 1D BZ 𝑘𝑥 = 0 → 2𝜋.

If we naively try and copy the Laughlin argument for the QSH state, we will immediately
encounter an issue. Namely, the QSH state in a cylindrical geometry is two, time-reversed
copies of the Laughlin cylinder. We will refer to the two time-reversed copies of the Laughlin
cylinder as 𝐼 and 𝐼 𝐼. Then, if 𝜙0 worth of flux is threaded through the full QSH cylinder
charge in 𝐼 will be pumped in the opposite direction to charge in 𝐼 𝐼, such that the change in
polarisation is zero

Δ𝑃 =

∫ 𝜙0

0
d𝜙

(
𝜕𝜙𝑃

𝐼 + 𝜕𝜙𝑃𝐼 𝐼
)

= 0.
(1.63)

Rather, Fu and Kane’s desire was to modify the Laughlin argument in order to observe
Kramers pairs at the edge switching partners between TRIM points, as discussed in the
previous subsection and shown in Figure 1.8. Therefore, we wish to measure the difference
in the charge polarisation pumped by the two time-reversed cylinders as half a flux quantum
is threaded

Δ𝑃𝑇 = 𝑃𝑇 (𝜙0/2) − 𝑃𝑇 (0)

=

∫ 𝜙0/2

0
d𝜙

(
𝜕𝜙𝑃

𝐼 − 𝜕𝜙𝑃𝐼 𝐼
) (1.64)

where 𝑃𝑇 = 𝑃𝐼 − 𝑃𝐼 𝐼 is the time-reversed polarisation.

In order to define this quantity, we consider the case of a system with 𝑁 occupied Kramers
pairs (i.e. 2𝑁 occupied bands), with no additional symmetry beyond TRS such that the only
band degeneracies are between Kramers pairs at TRIM points. Once again, we limit our
discussion to the 1D BZ for simplicity. Following on from the discussion above, we split the
set of occupied states into two time-reversed sets and label the 𝛼th Kramers pair eigenstates as���𝑢𝐼𝛼,𝑘〉 and

���𝑢𝐼 𝐼𝛼,𝑘〉 such that the combined index (𝛼, 𝑆) labels the band where 𝑆 = 𝐼, 𝐼 𝐼. From
our earlier definitions of TRS and Kramers pairs we have
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𝑇

���𝑢𝐼𝛼,𝑘〉 = −𝑒−𝑖𝜙𝛼 (−𝑘)
���𝑢𝐼 𝐼𝛼,−𝑘〉

𝑇

���𝑢𝐼 𝐼𝛼,𝑘〉 = 𝑒−𝑖𝜙𝛼 (𝑘) ���𝑢𝐼𝛼,−𝑘〉 (1.65)

since the Bloch functions are only defined up to a phase. In a more succinct form

𝑇

���𝑢𝑆𝛼,𝑘〉 = (−1)𝑆𝑒−𝑖𝜙𝛼 ((−1)𝑆𝑘)
���𝑢𝑆𝛼,−𝑘〉 (1.66)

where 𝑆 = 𝐼, 𝐼 𝐼 and 𝑆 is the complement of 𝑆. We then define the partial polarisation due to
the 𝑆 state in a Kramers pair as

𝑃𝑆 =
1

2𝜋

∫ 𝜋

−𝜋
d𝑘A𝑆 (𝑘)

=
1

2𝜋

∫ 𝜋

−𝜋
d𝑘

∑︁
𝛼

𝑖

〈
𝑢𝑆𝛼,𝑘

��� 𝜕𝑘 ���𝑢𝑆𝛼,𝑘〉 (1.67)

Of course, the labels 𝐼, 𝐼 𝐼 were an arbitrary choice and, as such, we should be able to write
𝑃𝑆 in a more symmetric fashion. We do so by considering the positive and negative parts of
the integral separately

𝑃𝑆 =
1

2𝜋

∫ 𝜋

0
d𝑘

(
A𝑆 (𝑘) + A𝑆 (−𝑘)

)
, (1.68)

and then rewriting the second term in terms of 𝐴𝑆 (𝑘)

A𝑆
𝛼 (−𝑘) = 𝑖

〈
𝑢𝑆𝑛,−𝑘

��� 𝜕−𝑘 ���𝑢𝑆𝛼,−𝑘〉
= −𝑖

〈
𝑇𝑢𝑆𝛼,𝑘

��� 𝑒−𝑖𝜙𝛼 ((−1)𝑆̄𝑘)𝜕𝑘𝑒
𝑖𝜙𝛼 ((−1)𝑆̄𝑘)

���𝑇𝑢𝑆𝛼,𝑘〉
= 𝜕𝑘𝜙𝛼 ((−1)𝑆𝑘)

〈
𝑇𝑢𝑆𝛼,𝑘

���𝑇𝑢𝑆𝛼,𝑘〉 − 𝑖 〈𝑇𝑢𝑆𝛼,𝑘 ��� 𝜕𝑘 ���𝑇𝑢𝑆𝛼,𝑘〉
= 𝜕𝑘𝜙𝛼 ((−1)𝑆𝑘) + 𝑖

〈
𝑢𝑆𝛼,𝑘

��� 𝜕𝑘 ���𝑢𝑆𝛼,𝑘〉
= 𝜕𝑘𝜙𝛼 ((−1)𝑆𝑘) + A𝑆

𝛼 (𝑘).

(1.69)

where we have used the definitions in equation (1.65) between the first two lines and 𝑇2 = −1
between the third and fourth. The result is a more symmetric expression for the partial
polarisation, invariant under any unitary transformation of the form

��𝑢𝛼,𝑘〉 → ∑
𝛽𝑈𝛼𝛽

��𝑢𝛽,𝑘〉
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𝑃𝑆 =
1

2𝜋

∫ 𝜋

0
d𝑘A(𝑘) + 1

2𝜋

∑︁
𝑛

(
𝜙𝛼 ((−1)𝑆𝜋) − 𝜙𝛼 (0)

)
=

1
2𝜋

∫ 𝜋

0
d𝑘A(𝑘) + 1

2𝜋

∑︁
𝛼

(𝜙𝛼 (𝜋) − 𝜙𝛼 (0))
(1.70)

where A(𝑘) = A 𝐼 (𝑘) + A 𝐼 𝐼 (𝑘) and we have used 𝜙𝛼 (𝑘TRIM) = 𝜙𝛼 (−𝑘TRIM) since the BZ is
periodic.

Perhaps naively, we might assume that 𝑃𝑇 = 0 since equation (1.70) appears identical
for 𝑆 = 𝐼, 𝐼 𝐼. However, we must take care since A is not a gauge invariant quantity. In fact
𝑃𝐼 = 𝑃𝐼 𝐼 modulo an integer, reflecting the ambiguity of the charge polarisation in (1.60).
Indeed, by rewriting the partial polarisation as

𝑃𝑆 =
1

2𝜋

∫ 0

−𝜋
d𝑘A𝑆 (𝑘) + A𝑆 (−𝑘)

=
1

2𝜋

∫ 0

−𝜋
d𝑘A(𝑘) + 1

2𝜋

∑︁
𝛼

(𝜙𝛼 (0) − 𝜙𝛼 (𝜋))

=
1

2𝜋

∫ 𝜋

0
d𝑘A(−𝑘) − 1

2𝜋

∑︁
𝛼

(𝜙𝛼 (𝜋) − 𝜙𝛼 (0))

(1.71)

we now find

𝑃𝑇 =
1

2𝜋

∫ 𝜋

0
d𝑘 (A(𝑘) − A(−𝑘)) + 1

𝜋

∑︁
𝛼

(𝜙𝛼 (𝜋) − 𝜙𝛼 (0))

= − 1
2𝜋

∫ 𝜋

0
d𝑘

∑︁
𝛼

𝜕𝑘 (𝜙𝛼 (𝑘) + 𝜙𝛼 (−𝑘)) +
1
𝜋

∑︁
𝛼

(𝜙𝛼 (𝜋) − 𝜙𝛼 (0))
(1.72)

Noting (1.65) and the orthogonality of the Bloch functions

〈
𝑢𝑆𝛼,−𝑘

���𝑇 ���𝑢𝑆𝛽,𝑘〉 = 𝛿𝛼𝛽 (−1)𝑆𝑒−𝑖𝜙((−1)𝑆̄𝑘) , (1.73)

Fu and Kane were motivated to define the sewing matrix
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𝑤
𝐼 𝐼,𝐼

𝛼𝛽
(𝑘) =

〈
𝑢𝐼 𝐼𝛼,−𝑘

���𝑇 ���𝑢𝐼𝛽,𝑘〉 = −𝑤 𝐼,𝐼 𝐼
𝛼𝛽

(−𝑘) =⇒

𝑤𝛼 (𝑘) =
(

0 −𝑒−𝑖𝜙𝛼 (−𝑘)

𝑒−𝑖𝜙𝛼 (𝑘) 0

) (1.74)

in order to relate time-reversed wavefunctions. Using 𝜙𝛼 (𝑘TRIM) = 𝜙𝛼 (−𝑘TRIM), we note
that 𝑤𝛼 (𝑘TRIM) = −(𝑤𝛼 (𝑘TRIM))𝑇 , i.e. the sewing matrix is skew-symmetric at TRIM points.
The full sewing matrix, 𝑤 is a tridiagonal block matrix with each block along the diagonal of
the form given in (1.74) for each Kramers pair, i.e.

𝑤(𝑘) =
𝑁⊕
𝛼

𝑤𝛼 (𝑘) (1.75)

and is also skew-symmetric at TRIM points, by the skew-symmetry of each block. We will
now introduce a useful concept for skew-symmetric matrices known as the Pfaffian. The
determinant of a skew-symmetric matrix is the Pfaffian squared,

Pf(𝐴)2 = det(𝐴). (1.76)

We will use the Pfaffian here as it has the convenient property that for a tridiagonal 2𝑁 × 2𝑁
skew-symmetric matrix, such as 𝑤(𝑘TRIM) the Pffaffian is [48],

Pf (𝑤(𝑘TRIM)) = Pf

©­­­­­­­«

0 −𝑒−𝑖𝜙1 (𝑘TRIM) · · · 0 0
𝑒−𝑖𝜙1 (𝑘TRIM) 0 · · · 0 0

...
. . .

...

0 0 · · · 0 −𝑒−𝑖𝜙𝑁 (𝑘TRIM)

0 0 · · · 𝑒−𝑖𝜙𝑁 (𝑘TRIM) 0

ª®®®®®®®¬
= (−1)𝑁 exp

(
−𝑖

∑︁
𝛼

𝜙𝛼 (𝑘TRIM)
)
.

(1.77)

This allows us to rewrite the second term in (1.72) as∑︁
𝛼

(𝜙𝛼 (𝜋) − 𝜙𝛼 (0)) = 𝑖 log
Pf(𝑤(𝜋))
Pf(𝑤(0)) mod 2𝜋 (1.78)

where we are required to take the modulo of both sides by 2𝜋 in order to remove the ambiguity
of the logarithm function.
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On the other hand, the determinant of the sewing matrix is defined throughout the full 1D
BZ and is given as

det(𝑤(𝑘)) =
∏
𝛼

det(𝑤𝑛 (𝑘))

= exp

(
−𝑖

∑︁
𝛼

(𝜙𝛼 (𝑘) + 𝜙𝛼 (−𝑘)
)
,

(1.79)

and so we can write the first term in (1.72) as

∑︁
𝛼

𝜕𝑘 (𝜙𝛼 (𝑘) + 𝜙𝛼 (−𝑘)) = 𝑖𝜕𝑘 log(det(𝑤(𝑘))) mod 2𝜋 (1.80)

Putting this all together, in terms of the sewing matrix the time-reversal polarisation is

𝑃𝑇 =
1

2𝜋𝑖

(
log

det(𝑤(𝜋))
det(𝑤(0)) − 2 log

Pf(𝑤(𝜋))
Pf(𝑤(0))

)
=

1
𝑖𝜋

(
log

√︁
det(𝑤(𝜋))
Pf(𝑤(𝜋))

Pf(𝑤(0))√︁
det(𝑤(0))

)
mod 2

(1.81)

where, once again, the time-reversal polarisation is only defined up to mod 2 due to the
logarithm. Note that each term in the logarithm amounts to sgn (Pf(𝑤(Γ𝑖))), where Γ𝑖 is a
TRIM point.

In order to complete our definition of the Z2 topological invariant, we recall that we
should calculate the change in 𝑃𝑇 after threading 𝜙0/2 flux through our cylinder

Δ𝑃𝑇 = 𝑃𝑇 (𝜙0/2) − 𝑃𝑇 (0)
= 𝑃𝑇 (𝑘𝑥 = 𝜋) − 𝑃𝑇 (𝑘𝑥 = 0)

(1.82)

where we have made an equivalence between the flux through the cylinder and the momentum.
Furthermore, to remove the log in our expression, it is typical to exponentiate Δ𝑃𝑇 such that
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𝑒𝑖𝜋Δ𝑃𝑇 = (−1)𝜈

=
∏

𝚪𝒊∈TRIM

√︁
det(𝑤(𝚪𝒊))
Pf(𝑤(𝚪𝒊))

=

4∏
𝑖=1

𝛿𝑖 = ±1

(1.83)

where the TRIM points are at (0, 0), (𝜋, 0), (0, 𝜋), (𝜋, 𝜋) in the 2D BZ and we have relabelled
the Z2 invariant as 𝜈. If there is no change in the time-reversal polarisation across a pumping
cycle, i.e. no switching of Kramers pairs and therefore topologically trivial,

∏
𝑖 𝛿𝑖 = 1, while

if there is a change in time-reversal polarisation
∏
𝑖 𝛿𝑖 = −1.

In fact an enormous simplification of this invariant is possible in systems with TRS and
inversion symmetry. Extending their previous work, Fu and Kane demonstrated that the Z2

invariant could be written in terms of the inversion eigenvalues of each occupied Kramers
pair at the TRIM points

𝛿𝑖 =

𝑁∏
𝑚=1

𝜉2𝑚 (Γ𝑖), (1.84)

where 𝜉𝑚 (𝒌) = ±1 is the inversion eigenvalue of the 𝑚th band, also known as the parity
eigenvalue, and the index is 2𝑚 since degenerate Kramers pairs have the same inversion
eigenvalue [48].

The reformulation of the Z2 invariant is a remarkable discovery, and its importance to
the development of topological band theory cannot be understated. Band structures have the
potential to be enormously complicated and time-consuming to fully characterise, however
this simple reformulation of the Z2 invariant offers a means to classify the topology of any
system by considering the eigenvalues of occupied states at a handful of points in the BZ.
Furthermore, it offers a simple technique for engineering TI phases - band inversion. It is
known that the parity eigenvalues of s-orbitals are even, while the parity of p-orbitals are odd.
If we have a semiconductor respecting TRS and possessing a band structure with s-orbitals
and p-orbitals either side of the Fermi level, then inverting the order in the orbitals in the band
structure will induce a topological phase transition. This is complementary to our previous
discussions regarding the fact that topological phase transitions may only occur through the
closure of the bulk band gap.
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Topological Insulators in 2D and 3D

Graphene was initially proposed as a candidate material to realise the QSH/2D TI phase, but
it became clear that the spin-orbit coupling in carbon was far too low to induce a topological
transition. However, soon after Kane and Mele’s original paper, Konig et al. announced
the first experimental discovery of a 2D TI in HgTe/(Hg,Cd)Te quantum wells (QWs) [94].
The ability of this set-up to produce a non-trivial QSH phase can be attributed to the large
spin-orbit coupling in Te (which is also present in other heavy chalcogenides). Concurrent to
the experimental work, Bernevig, Zhang and Hughes derived a low-energy 𝒌 · 𝒑 Hamiltonian
for HgTe/(Hg,Cd)Te QWs now known as the BHZ model

𝐻𝐵𝐻𝑍 =

(
ℎ(𝒌) 0

0 ℎ∗(−𝒌)

)

where ℎ(𝒌) =𝜖 (𝒌) + (𝑀 − 𝐵(𝑘2
𝑥 + 𝑘2

𝑦))𝜏𝑧 + 𝐴(𝑘𝑥𝜏𝑥 − 𝑘𝑦𝜏𝑦) =⇒

𝐻𝐵𝐻𝑍 (𝒌) =𝜖 (𝒌) + 𝑀 (𝒌)𝜏𝑧 + 𝐴(𝑘𝑥𝜏𝑥𝜎𝑧 − 𝑘𝑦𝜏𝑦)

(1.85)

in the basis |𝐸, ↑⟩ , |𝐻, ↑⟩ , |𝐸, ↓⟩ , |𝐻, ↓⟩ where 𝐸, 𝐻 label the QW subband and are of opposite
parity eigenvalue and 𝜏𝑥,𝑦,𝑧 are the Pauli matrices acting in orbital space [16]. Note the
similarity of this model to the low-energy Hamiltonian about the 𝑲/𝑲′ points in the Haldane
model. In this case, the spectra will once again include massive Dirac cones centred around
(𝑘𝑥 , 𝑘𝑦) = (0, 0) with an energy gap controlled by the mass term 𝑀 (𝒌) = 𝑀 − 𝐵𝑘2. The
motivation for introducing this model was to describe a topological transition through a band
inversion procedure, as discussed in the previous subsection. In order to demonstrate the
band inversion, let us regularise the continuum BHZ Hamiltonian on the lattice according to
the transformations

𝑘𝑖 → sin(𝑘𝑖)
𝑘2
𝑖 →2 (1 − cos(𝑘𝑖))

(1.86)

giving the tight-binding form of (half of) the BHZ Hamiltonian

ℎ(𝒌) = 𝜖 (𝒌) + (𝑀 − 4𝐵 + 2𝐵(cos 𝑘𝑥 + cos 𝑘𝑦))𝜏𝑧 + 𝐴(sin 𝑘𝑥𝜏𝑥 + sin 𝑘𝑦𝜏𝑦). (1.87)
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By calculating the Chern number of either block (examining the full BHZ model should
convince readers that each block is a time-reversed copy of the other and, therefore, the Chern
numbers should be equal and opposite when non-zero), BHZ showed that the model enters a
topologically non-trivial phase in the regime 0 < 𝑀/𝐵 < 4 where the band gap inverts at
either end of this inequality.

By tuning the thickness of the HgTe/(Hg,Cd)Te QW, Konig et al. were able to observe
a topological transition in the form of a quantized spin conductivity (recall that the spin
conductivity is generally not quantised, but is here due to the lack of coupling between the
two blocks of the BHZ model). As an interesting aside, HgTe wells were proposed as early
as the 1980s as a means to engineer a band inversion by Volkov and Pankratov [134]. The
massive surface states arising from a band inversion due to a smooth, spatially varying mass
term are referred to as Volkov-Pankratov states in the modern literature [172].

Concurrent to the experimental realisations of the 2D TI phase, the theoretical groundwork
for 3D TIs was being laid by Fu and Kane [50]. In 3D there are now eight TRIM points
however, we can reduce the problem of calculating the Z2 invariant in 3D to the same
problem in two dimensions by considering the six faces of the parallelepiped with the the
eight TRIM points forming the vertices at 𝚪𝑖 = (𝑛1𝜋, 𝑛2𝜋, 𝑛3𝜋) where 𝑛𝑖 = 0, 1. Each face
of the parallelepiped can be considered as its own 2D BZ with an associated time-reversal
polarisation/Z2 index. The full Z2 index can be expressed as

(−1)𝜈0 =

8∏
𝑖=1

𝛿𝑖 (1.88)

however, because of the redundancy 𝜈0 = 𝜈𝑛1=0𝜈𝑛1=1 = 𝜈𝑛2=0𝜈𝑛2=1 = 𝜈𝑛3=0𝜈𝑛3=1, there are
only 3 other independent Z2 indices, which are generally chosen as 𝜈1 = 𝜈𝑛1=1, 𝜈2 = 𝜈𝑛2=1

𝜈3 = 𝜈𝑛3=1. Each index in the full set 𝜈0; (𝜈1𝜈2𝜈3) can be 0, 1 meaning that there are a total
of 16 possible 3D TIs. In the case where all of the indices are 0 the topological phase is
trivial. If 𝜈0 = 1 the phase is known as a strong topological insulator (STI), however if 𝜈0 = 0
and any of the other indices are non-zero then the phase is known as a weak topological
insulator (WTI). STIs have an odd number of Dirac cones on all crystal surfaces, while WTIs
possess an even number of Dirac cones on surfaces with normal 𝑮𝜈 = 𝜈1𝒃1 + 𝜈2𝒃2 + 𝜈3𝒃3 for
reciprocal lattice vectors 𝒃𝑖. The inherent anisotropy of WTI phases is interesting from a
device engineering perspective, however candidate materials are in short supply and platforms
based on STIs have tended to dominate the literature. In addition, since the weak topological
indices rely on the translational invariance of the lattice they are not robust to disorder [48].
In any case, the work in this thesis will focus mainly on STI based platforms and we will
therefore neglect further discussion of WTI properties.



1.1 Topology in Condensed Matter 37

In 2008, nearly four decades on from the original discovery of topological condensed
matter, the 3D TI phase was experimentally observed by Hsieh et al. in Bi1−𝑥Sb𝑥 crystals, for
small 𝑥 [67]. Angle resolved photoemission spectroscopy (ARPES) was used to confirm that
the Bi𝑥Sb1−𝑥 alloy had a complicated surface dispersion with five Dirac cones. Following
this momentous discovery, predictions were made that the (Bi, Sb)2(Te, Se)3 (BSTS) family
(previously used for their thermoelectric properties) hosted a single Dirac cone, resulting
in a far simpler energy dispersion relationship than Bi1−𝑥Sb𝑥 [203]. Furthermore, the bulk
band-gap was predicted and later confirmed to be around 0.3 meV, a large value which offered
the possibility of reducing the effect of bulk carriers to zero by effectively tuning the Fermi
level. Therefore, despite being the second generation of 3D TIs, the BSTS family became (and
remains) the archetypal 3D TI material due to their wide band-gap permitting observation
of their topological surface states (TSSs) at higher temperatures, greatly increasing their
potential technological applications.

BSTS and model Hamiltonians for 3D TI phases

To complete our pedagogical review of TRS protected TIs, we will discuss the BSTS TI
family and also introduce a number of Hamiltonians that will make several appearances
throughout the course of this thesis. We will not discuss the detailed quantum transport
behaviour of BSTS and instead leave that for section 1.2.

The crystal structure of the BSTS family is rhombohedral with space group 𝑅3̄𝑚. The
crystal has a layered structure with each layer of X2T3, stacked in the order T-X-T-X-T, referred
to as a quintuple layer and weakly bound to the adjacent layers with van der Waals forces.
The crystal possesses inversion symmetry as well as a threefold rotational symmetry around
the 𝑧 axis. Furthermore, the lack of magnetic materials in this structure ensures that TRS
is also respected, at least in the single-particle regime where electron-electron interactions
may be neglected. Ab initio calculations of Bi2Se3 performed by Zhang et al. demonstrated
that the large spin-orbit coupling led to an inversion of the energy levels at the Fermi level,
inducing a topological transition analogous to the mechanism of a 2D TI in HgTe/(Hg,Cd)Te
QWs [203]. The relevant orbitals around the Fermi level are |𝑃1+, ↑ /↓⟩ , |𝑃2−, ↑ /↓⟩ which
are hybrid orbitals formed of the original 𝑝𝑧 orbitals of the Bi and Se atoms respectively,
where ± labels the parity eigenvalue and ↑ /↓ the spin.

Rather than go through the full derivation of the BSTS Hamiltonian, we will sketch out
the symmetry argument utilised by Liu et al. to restrict the possible form of the Hamiltonian
terms [112]. A general four-band Hamiltonian can be written in terms of the Dirac matrices
as
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𝐻 (𝒌) = 𝜖 (𝒌) +
5∑︁
𝑖=1

𝑑𝑖 (𝒌)𝛾𝑖 +
∑︁
𝑖, 𝑗

𝑑𝑖 𝑗 (𝒌)𝛾𝑖 𝑗 , (1.89)

where the Dirac matrices satisfy the commutation relations {𝛾𝑖, 𝛾 𝑗 } = 2𝛿𝑖 𝑗 and their
commutators are given by [𝛾𝑖, 𝛾 𝑗 ] = 𝛾𝑖 𝑗/2𝑖. In the basis |𝑃1+, ↑⟩ , |𝑃1+, ↓⟩ , |𝑃2−, ↑⟩ , |𝑃2−, ↓⟩
we may choose a representation of the Dirac matrices as

𝛾𝑖 = 𝜎𝑖𝜏𝑥 for 𝑖 = 1, 2, 3

𝛾4 = 𝜏𝑦

𝛾5 = 𝜏𝑧

(1.90)

where 𝜎𝑥,𝑦,𝑧 and 𝜏𝑥,𝑦,𝑧 act on the spin and orbital degrees of freedom respectively. In spin
1/2 systems we have already shown that the time-reversal operator takes the form 𝑇 = 𝑖𝜎𝑦𝐾 ,
while consideration of the crystal structure allows us to choose

𝑃 = 𝜏𝑧

𝐶3 = 𝑒𝑖𝜎𝑧𝜋/3 (1.91)

for the unitary matrices representation inversion and threefold rotation, respectively. The
constraints placed on the Hamiltonian by TRS and inversion have already been discussed,
while for a Hamiltonian obeying n-fold rotational symmetry about the z-axis

𝐶𝑛,𝑧𝐻 (𝑘±, 𝑘𝑧)𝐶−1
𝑛,𝑧 = 𝐻 (𝑒±2𝜋𝑖/𝑛𝑘±, 𝑘𝑧) (1.92)

where 𝑘± = 𝑘𝑥 ± 𝑖𝑘𝑦. Imposing each of these symmetries restricts the forms of 𝑑𝑖 (𝒌) and
𝑑𝑖 𝑗 (𝒌). For example, under inversion

𝑇𝛾𝑖𝑇
−1 =


−𝛾𝑖 for 𝑖 = 1, 2, 3, 4

𝛾𝑖 for 𝑖 = 5
(1.93)

imposing the restriction

𝑑𝑖 (𝒌) =

−𝑑𝑖 (−𝒌) for 𝑖 = 1, 2, 3

𝑑𝑖 (−𝒌) for 𝑖 = 4, 5
(1.94)
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Examining the restrictions imposed by the other symmetries, the full Hamiltonian can be
written up to order O(𝑘3) as

𝐻 (𝒌) = 𝐻1(𝒌) + 𝐻3(𝒌) where

𝐻1(𝒌) = 𝜖 (𝒌) + 𝑀 (𝒌)𝜏𝑧 + 𝐴(𝑘𝑦𝜎𝑥 − 𝑘𝑥𝜎𝑦)𝜏𝑥 + 𝐵𝑘𝑧𝜎𝑧𝜏𝑥
𝐻3(𝒌) = 𝑅1(𝑘3

𝑥 − 3𝑘2
𝑦𝑘𝑥)𝜏𝑦 + 𝑅2(𝑘3

𝑦 − 3𝑘2
𝑥 𝑘𝑦)𝜎𝑧𝜏𝑥

(1.95)

and the orbital splitting is given by 𝑀 (𝒌) = 𝑀0 + 𝑀1𝑘
2
𝑧 + 𝑀2(𝑘2

𝑥 + 𝑘2
𝑦). Note the similarly

of 𝐻1 to the 2D BHZ model at 𝑘𝑧 = 0 - in fact, 𝐻1 can be considered as a 3D BHZ model.
Also note the appearance of third order terms in 𝐻3. These terms are known as the hexagonal
warping terms and will generally deform the Dirac cone at larger energies such that the Fermi
surface has hexagonal symmetry.

Often, we are more interested in studying thin film of 3D TIs, for example in order to
further suppress bulk conduction or in order to tune the interaction between TSSs on opposite
surfaces. In this case, it is more appropriate to use the thin film TI Hamiltonian, first derived
by Shan et al [155]

𝐻 (𝒌) = ℏ𝑣 𝑓 (𝑘𝑦𝜎𝑥 − 𝑘𝑥𝜎𝑦)𝜏𝑧 + (𝑚 + 𝐵𝑘2)𝜏𝑥 (1.96)

in the basis ( |𝑡, ↑⟩ , |𝑡, ↓⟩ , |𝑏, ↑⟩ , |𝑏, ↓⟩)𝑇 where 𝑡/𝑏 label the top/bottom surface and 𝜎𝑥,𝑦,𝑧,
𝜏𝑥,𝑦,𝑧 are the Pauli matrices acting in spin and surface space respectively [155]. Restricting
the geometry of the 3D TI even further, we are often only interested in the TI surface itself.
In that case, for a surface with normal parallel to the 𝑧-axis, we adopt the Dirac-Rashba
Hamiltonian [58] given by

𝐻surf = ℏ𝑣 𝑓 (𝑘𝑦𝜎𝑥 − 𝑘𝑥𝜎𝑦) (1.97)

1.2 Quantum Electron Transport

Having set the scene with a discussion of the history of TIs, we will now address their
transport properties. Not only is the study of the transport properties in TIs interesting
from the perspective of the development of electronic device technologies, but probing the
transport properties also provides a means for material characterisation. We should, however,
note that there are a plethora of alternative characterisation methods available, each with their
own benefits and drawbacks.
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1.2.1 Growth and Device Fabrication

Before introducing the transport experiments that may be used to characterise TI devices, we
will discuss the means by which one can grow high quality TI films, as well as the issues and
shortcomings of current device fabrication techniques with a particular emphasis on their
effect on transport experiments.

Molecular beam epitaxy

Molecular beam epitaxy (MBE) has been established as one of the main growth methods
used in the production of high quality TI films since their experimental realisation [52].
Initial studies used the self-flux method where stoichiometric mixtures of Bi/Sb and Se/Te
are melted in a quartz tube before being very slowly cooled [171, 144]. However, since no
nucleation site is provided at the start of the crystal growth there is quite a high chance that
the resultant material is polycrystalline, making this quite an inefficient method of crystal
growth. On the other hand, MBE has been the chosen as a preferred growth method due
to the higher level of reproducibility in crystal structure (compared to other techniques).
While other techniques can lead to very high local fluctuations in material composition, MBE
growth is slow enough to allow for atomic reorganisation and diffusion. The ability to reliably
control the temperature of the cells independently is also a major advantage over other growth
techniques. Once optimisation of the flux rates of the molecules used in growth has been
achieved, a growth campaign can be carried out using this recipe to produce many high
quality samples. MBE also allows for the production of complex heterostructures and offers
a high degree of control over crystal doping. Early efforts to grow the BST family focused on
tuning the relative concentrations of Bi and Sb in order to move the Fermi level into the bulk
band gap [91, 3, 52] (naturally occurring defects lead to Bi2Te3 being n-type, while Sb2Te3

is p-type [65, 193]).
MBE growth is performed in Ultra-High Vacuum (UHV) conditions (𝑃 < 10−9mbar). In

these UHV conditions, the mean free path of a molecule can be many orders of magnitude
larger than the chamber size, so the molecules are considered non-interacting. During growth,
molecules are effused from high temperature cells and deposited on a substrate. Control of
the temperature of the substrate is essential in controlling the stoichiometry of the compound
formed. While the choice of substrate for any material growth is usually extremely important,
TI growth is (in theory) less restrictive and the condition for lattice matching between the TI
and substrate is significantly relaxed [179]. This is due to the van der Waals forces between
TI QLs which mean that the TI is only weakly bonded to the substrate and grows with lower
levels of strain, even on substrates with a relatively large lattice mismatch. This reduction
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in film strain means that TI growth can be quite different from standard epitaxial growth
[124]. There are some reports that the reduction in strain ensures that there are no defects,
even within the first QL of Bi2Te3 film grown on Si [18], however it is more realistic that
the defects due to lattice mismatch with the substrate are contained within the first few QLs
[87, 13]. Optimisation of TI thin film growth requires the control of many variables including
substrate type, substrate temperature during growth, atomic flux ratio of the constituent
elements and atomic growth rate among other factors. As the composition of the TI becomes
more complex (for example BST is a ternary compound and more difficult to grow than
Bi2Te3), the optimisation period grows longer.

In the limit of thin films, the presence of strain in the first few QLs of MBE grown TI
thin films becomes more obvious. Defects and disorder at the interface can promote bulk
defects (e.g. vacancies, antisites, etc.) causing an increase in bulk carrier concentration and a
shift of the Fermi level into the bulk conduction/valence bands, leading to bulk dominated
transport [178, 182, 77, 139]. Furthermore, the presence of parallel bulk conduction
channels overwhelms the transport contribution from TSSs severely hinders the observation
of quantum phenomena. Therefore, in order to promote purely TSS mediated transport in
all film thicknesses, it is desirable to control and eliminate defects present within films due
to interfacial strain. One such method of achieving this is through the use of an insulating
buffer layer between the TI and bare substrate. Promising buffer layers include the family
of triel chalcogenides (e.g. In2Se3,Al2Te3, etc.) due to their wide bulk band gap and
close structural and chemical match to BST. Indeed, in 2015 Koirala et al. showed that
(Bi𝑥In1−𝑥)2Se3/Bi2Se3 bilayers [93], where the concentration of In and Bi was slowly tuned
across the interface between the two materials, led to a then record surface state mobility of
16 000 cm2V−1s−1. Recent MBE studies have provided encouraging results with regards to
the production of high mobility bilayers [182].

In addition to improving surface state mobility, graded buffer layers offer a means to inves-
tigate other novel quantum phenomena. For example, the presence of a graded TI interface
raises the interesting question of where exactly the TSS would be located [188]. Additionally,
massive Volkov-Pankratov (VP) states (precursors to linearly dispersing TSSs) would exist
within the graded region [172]. It is known that these states are massive and lack topological
protection, but there is a lack of experimental study on them. While they have been observed
in strained HgTe heterostructures [71] they have not been observed in 3D TIs. VP states
therefore represent new, exciting physics and understanding their role in electronic transport,
as well as their interplay with TSSs, is of paramount importance to the operation of TI devices.
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Just as there is the ability to grow higher quality with TI films using a buffer layer, one
can also cap the TI in situ to prevent unwanted ageing effects through the exposure to ambient
gases after it leaves the vacuum chamber [148] (although the exact nature of the contamination
remains controversial). Elemental Te remains the most common capping layer for BST, since
BST is usually grown in a Te overpressure anyway and can be thermally desorbed prior to
return the TSSs to their pristine condition for ex situ characterisation [64, 109]. Te, therefore,
is a good capping layer for the transfer of BST samples in air before further experiments
[127, 95]. However, more work needs to be completed regarding the suitability of capping
layers for use in TI devices. As well as providing protection against ambient gases, a long
term capping layer is required to not affect the stoichiometry of the TI and not affect the
transport properties of the device through band bending or offering alternative conduction
pathways. In addition, it would be favourable to develop a capping layer with a large dielectric
constant in order to facilitate a top gate that could be used to tune the Fermi level within the
TI.

Device fabrication

Following the growth of a TI sample using a suitable method, small pieces can be cleaved
from films/exfoliated from crystals to be processed into useful devices. Numerous processing
methods exist, the most primitive of which being to simply scratch a pattern into the TI film
to create a suitable device architecture. Because of the imprecise nature of this method,
scratched devices tend to be limited to Hall bar geometries. Despite this, high quality devices
are often achievable because of the lack of harsh chemicals and reduced opportunity for
contamination of the TI film.

On the other hand, if more complex device geometries are desired then more advanced
etching methods are available. Furthermore, scratching devices is hardly a scaleable means
of fabrication and is not commercially viable. Photolithography followed by either dry or
wet etching can produce complex device geomtries in bulk. However wet etching of BSTS,
in particular, is quite challenging due to the chemicals involved and the relative chemical
and structural instability of BSTS. As liquids generally work their way between the van der
Waals layers, this can cause long term degradation to the TI and prevent the observation of
quantum phenomena. Even something as chemically inert as water can be an issue, due
to its polar nature inducing band bending [109] (this also occurs at a much lower rate in
atmospheric conditions, leading to the aforementioned degradation of TI surface states). In
addition, common developers used during the photolithography process actually etch away at
the TI (for example, those based on tetramethylammonium hydroxide, such as MF-319, or
polyamides, such as PA401D [24]). To reduce the use of wet chemistry dry etching techniques
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are generally safer for TSSs, however there is still an element of wet chemistry involved in
the development stage of the process.

Therefore, it is desirable to develop a processing method that eliminates the use of wet
chemistry as far as possible. However, there has been extremely limited research on this
matter with regards to TI devices. One means forward could be to preferentially etch away
the native oxide layer on Si (111) substrates prior to loading in an MBE chamber. It is known
that BST will preferentially grow on the crystalline Si (111) surface over the amorphous
native oxide, due to BST and Si (111) sharing hexagonal symmetry [14]. Therefore, it may
be possible to pre-pattern substrates in order to grow TI films in particular device geometries
and limit the post-growth patterning stage of device fabrication. While such a method would
certainly limit the exposure of the TI to aqueous chemicals, it would severely limit the scale
of the features and complexity of the device geometries. Further research is required in order
to develop a processing method that is scaleable and limits the degradation of the TSSs.

1.2.2 Magnetotransport

In the previous section, the ballistic nature of helical edge modes was already discussed and
explained in terms of TRS and Kramer’s degeneracy. Here, we shall discuss in greater detail
the transport properties of topologically protected surface states with specific emphasis on the
BSTS family. In particular, magnetotransport measurements will offer a means to probe the
non-trivial band dispersion and Berry phase of topological materials. In order to understand
these measurements in context we will briefly introduce the relevant length scales over which
such transport occurs.

• Mean free path 𝑙𝑒: the average distance travelled by an electron before significantly
changing its direction of motion due to collisions and interactions with other bodies. 𝑙𝑒
is, therefore, the average distance between scattering events. Associated with this length
is a characteristic time scale, 𝜏𝑒 given by 𝑙𝑒 = 𝑣 𝑓 𝜏𝑒 where 𝑣 𝑓 is the Fermi velocity.

• Phase coherence length 𝑙𝜙: in the quantum regime, we associate the electron with a
wavefunction 𝜓 = 𝜓0𝑒

𝑖𝜙 where 𝜙 is the phase. 𝑙𝜙 is the length after which an electron’s
phase has significantly changed. After a distance 𝑙𝜙, information related to interference
phenomena is lost. In this case, the characteristic time scale is given by 𝑙𝜙 =

√︁
𝐷𝜏𝜙

where 𝐷 = 𝑣2
𝑓
𝜏𝑒/𝑑 is the diffusion constant where 𝑑 = 1, 2, 3 is the dimensionality of

the system.

• Spin-orbit length 𝑙𝑆𝑂: approximately the distance an electron has to travel before the
spin-orbit interaction induces a 𝜋 rotation of its spin state (i.e. a spin-flip).
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These definitions are also relevant for hole carriers. Generally, however, different charge
carrier types will have different length/time scales. Generally the regimes of interest will be:

• Weak localization/quantum diffusive regime, 𝑙𝜙 >> 𝑙𝑒 where electrons maintain their
phase coherence even after multiple scattering events and interference phenomena play
an important role.

• Mesoscopic regime, 𝑙𝜙 > 𝐿 where 𝐿 is one of the dimensions (length or width) and
transport in that dimension can be neglected

• Ballistic regime, 𝑙𝑒 > 𝐿 where the flow of carriers is unimpeded.

Hall effects

The QHE has already been discussed in the previous section as an early ancestor of the TI
state, however the use of its classical counterpart remains an effective method of measuring
carrier concentrations and mobilities. The classical Hall effect is observed up to moderate
magnetic fields (∼ 8 T) in TIs. In the presence of hole and electron carriers the Hall coefficient
is given as

𝑅𝐻 =
𝑝𝜇2

ℎ
− 𝑛𝜇2

𝑒

𝑒(𝑝𝜇ℎ + 𝑛𝜇𝑒)2 (1.98)

where 𝑛/𝑝 are the electron and hole concentrations, respectively and 𝜇𝑒/𝜇ℎ are the
electron/hole mobilities. In the case of a single carrier type, this equation simplifies to (1.1)
with the sign of 𝑅𝐻 indicating the carrier type. In the more general case where both carrier
types are present, one can utilise additional experimental methods to constrain the values of
parameters in 𝑅𝐻 before fitting using transport data. For example, by measuring the scattering
rate/mean free time of the carriers using, e.g. terahertz (THz) spectroscopy, one can calculate
the mobility using 𝜇 = 𝑞𝜏𝑒/𝑚∗ where 𝑚∗ is the effective mass of the carrier which can be
determined through band structure calculations.

At high fields, the observation of a QHE is possible. However, in contrast to the usual
linear dependence of the energy spacing of Landau levels on the magnetic field, the Landau
level spacing in TIs follow a

√
𝑛𝐵𝑧 relationship due to the massless nature of the Dirac

fermions in the linear surface state dispersion. Another implication of 𝐸𝑛 ∝
√
𝑛𝐵𝑧 is that

Dirac fermions in a magnetic field will always exhibit a zero mode, i.e. 𝐸𝑛=0 = 0, and,
therefore, the Hall conductance of a single Dirac cone will have half integer values:

𝜎𝑥𝑦 = (𝑛 + 1
2
) 𝑒

2

ℎ
. (1.99)
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As yet, this half integer quantization has not been observed in any TI QHE experiment as the
Dirac cones on the top and bottom surface both contribute to the transport, giving a total
conductance is given as

𝜎𝑇𝑜𝑡𝑎𝑙𝑥𝑦 = (𝑛top + 𝑛bottom + 1) 𝑒
2

ℎ
. (1.100)

However, evidence of half integer quantization is provided through fabricating a gated device
and tuning the carrier densities on either surface to be equal, 𝑛top = 𝑛bottom = 𝑛 leading to
odd integer conductance plateaus 𝜎𝑥𝑦 = (2𝑛 + 1) 𝑒2

ℎ
[192].

Separate to the Hall effect and QHE is the planar Hall effect (PHE) realised in the case of
an in-plane magnetic field. Examining the surface Hamiltonian given in (1.97), applying an
in-plane magnetic field (and ignoring the orbital effect)

𝐻𝑠𝑢𝑟 𝑓 = ℏ𝑣 𝑓 (𝑘𝑦𝜎𝑥 − 𝑘𝑥𝜎𝑦) + 𝜇𝐵𝑩 · 𝝈

= ℏ𝑣 𝑓
(
(𝑘𝑦 + 𝐵′𝑥)𝜎𝑥 − (𝑘𝑥 − 𝐵′𝑦)𝜎𝑦

)
= ℏ𝑣 𝑓 (𝑘′𝑦𝜎𝑥 − 𝑘′𝑥𝜎𝑦)

(1.101)

it appears as though the only effect of an in-plane field is to trivially shift the position of the
Dirac cone in momentum space. However, Taskin et al. [170] demonstrated the surprising
appearance of a longitudinal anisotropic magnetoresistance (AMR) and a PHE given by

𝜎𝑥𝑥 = 𝜎⊥ + (𝜎∥ − 𝜎⊥) cos2 𝜙

𝜎𝑥𝑦 = (𝜎∥ − 𝜎⊥) cos 𝜙 sin 𝜙
(1.102)

where the angle 𝜙 parameterises the magnetic field 𝑩 = 𝐵(cos 𝜙, sin 𝜙) and 𝜎∥ = 𝜎𝑥𝑥 (𝜃 =

0), 𝜎⊥ = 𝜎𝑥𝑥 (𝜃 = 𝜋/2). As yet, the cause of the PHE and longitudinal AMR are not fully
understood, however proposed mechanisms include scattering of electrons due to the in-plane
field breaking TRS, or the inclusion of higher order quadratic terms in (1.97) leading to a tilt
of the Dirac cone in momentum space and anisotropic backscattering [210, 142].

Weak antilocalization

At low temperatures, the wave-like nature of carriers becomes more apparent and interference
effects begin to become visible in the transport data. Localization effects, in particular, offer a
useful means of quantifying the length scales over which interference phenomena are visible.
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We note that we are discussing localization in the weak localization regime, rather than the
Anderson regime of strong disorder.

In trivial semiconductors and metals, the weak localization (WL) effect manifests as a
positive correction to the resistivity (negative correction to the conductance) that is destroyed
with increasing magnetic field (i.e. negative magnetoresistance). This can be understood in
terms of the Aharanov-Bohm effect, where two time-reversed scattering loops, starting at
a point 𝐴, propagate clockwise and anticlockwise around a defect. The probability of the
electron returning to 𝐴 is given by

𝑃𝐴 ∝ 1 + cos 4𝜋𝜙/𝜙0 (1.103)

where 𝜙 is the magnetic flux through the loop traced out by the electron, 𝜙 ∼ 𝐵𝑙2
𝜙
. At

𝜙 = 0, the partial waves constructively interfere leading to an enhanced probability the
electron returns to the point 𝐴, i.e. the electron is weakly localized and the conductivity is
slightly suppressed. Increasing the flux destroys this constructive interference leading to the
observation of a positive magnetoconductance/negative magnetoresistance.

Weak antilocalization (WAL), on the other hand, manifests as a negative correction to the
resistance (positive correction to the conductivity) that is suppressed in increasing magnetic
field. WAL occurs in topologically non-trivial systems due to the presence of a non-zero
Berry phase. It can be shown that non-trivial Dirac electrons obtain a 𝜋 Berry phase after
circulating the Fermi surface and, therefore, there will be a 𝜋 phase difference between the two
time-reversed loops. As a result the localization behaviour present in trivial semiconductor
and metals is suppressed since the time-reversed trajectory now destructively interfere around
the scattering loop. Viewed from another perspective, the presence of time-reversal symmetry
in a TI ensures the absence of elastic backscattering around time-reversal invariant defects
and, therefore, a positive correction to the conductivity. When a magnetic field is applied,
TRS is broken leading to a suppression in the conductivity in the form of a cusp in the
resistance data around 0 T.

In any case, the change in the conductivity can be modelled with the Hikami-Larkin-
Nagoaka (HLN) formula for 2D transport as

Δ𝜎𝑥𝑥 (𝐵) = 𝛼
𝑒2

2𝜋ℎ

(
𝜓

(
𝐵𝜙

𝐵
+ 1

2

)
− ln

𝐵𝜙

𝐵

)
(1.104)

where 𝜓 is the digamma function, 𝐵𝜙 = ℏ/4|𝑒 |𝑙2
𝜙

is the characteristic field and 𝛼 is
a phenomenological term which is positive for WL and negative for WAL [63]. The log
term is due to modelling the scattering as a 2D random walk and solving the resulting
diffusion equation, while the digamma function averages over all impurity configurations.



1.2 Quantum Electron Transport 47

|𝛼 | = 1
2 for each surface state, that is 2|𝛼 | should give the number of surface states present,

however experimentally fitted values of 𝛼 vary over a wide range due to non-idealities and
the non-negligible contribution of bulk carriers. In the limit where the spin orbit length is
non-negligible, we must include an additional correction to the model [126]

Δ𝜎𝑥𝑥 (𝐵) = 𝛼
𝑒2

2𝜋ℎ

(
𝜓

(
𝐵𝜙

𝐵
+ 1

2

)
− ln

𝐵𝜙

𝐵

−2𝜓
(
𝐵𝜙 + 𝐵𝑆𝑂

𝐵
+ 1

2

)
+ 2 ln

𝐵𝜙 + 𝐵𝑆𝑂
𝐵

−𝜓
(
𝐵𝜙 + 2𝐵𝑆𝑂

𝐵
+ 1

2

)
+ 2 ln

𝐵𝜙 + 2𝐵𝑆𝑂
𝐵

) (1.105)

In fact, the situation may become more complex still as we consider the crossover between
WL and WAL. Such a situation may occur when both topological surface states and trivial
bulk states contribute to the transport, or when a gap opens in the Dirac surface states due to
magnetic impurities, hybridisation of opposite surface states etc. In this case, the correction
to the conductivity is given as a sum of WAL and WL contributions

Δ𝜎𝑥𝑥 =
∑︁
𝑖

𝛼𝑖
𝑒2

2𝜋ℎ

(
𝜓

(
𝐵𝜙𝑖

𝐵
+ 1

2

)
− ln

𝐵𝜙𝑖

𝐵

)
(1.106)

where the index 𝑖 runs over the WAL and WL contributions [115].
Despite the often variable quality of TI devices, WAL features are often extremely

prominent in longitudinal transport data due to 𝑙𝜙 >> 𝑙𝑒. As a result, WAL cusps tend to be
quite sharp and extend over quite a narrow range of magnetic field (𝐵 ∼ 1 T).

Shubnikov-de Haas oscillations

As well as the half-integer QHE, the Landau level quantization of TIs, namely 𝐸𝑛 ∝
√
𝑛𝐵𝑧,

also modifies the oscillations of longitudinal resistance with magnetic field, known as
Shubnikov-de Haas (SdH) oscillations, compared to trivial band structures.

In trivial materials, SdH oscillations occur as the energy of the Landau levels increase with
increasing magnetic field. As each Landau level intersects the Fermi surface, it contributes
to the density of states and the resistance drops. This leads to periodic oscillations in the
longitudinal resistance

Δ𝜌𝑥𝑥 (𝐵) ∼ cos
(
2𝜋

𝑓1/𝐵
𝐵

− Γ

)
(1.107)
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where 𝑓1/𝐵 is the characteristic frequency of oscillation given as 𝑓1/𝐵 =
𝐸2
𝐹

2𝑒ℏ𝑣2
𝑓

for Dirac

fermions [159, 6]. Assuming a linear dispersion relation 𝐸𝐹 = ℏ𝑣 𝑓 𝑘𝐹 where 𝑘𝐹 =
√︁

4𝜋𝑛/𝑔
is the Fermi wavevector, 𝑛 is the 2D carrier concentration and 𝑔 is the spin degeneracy factor
then

𝑓1/𝐵 =
2𝜋ℏ
𝑒𝑔

𝑛. (1.108)

The frequency of SdH oscillations therefore offers a means of measuring the carrier con-
centration of the TI. The phase shift in (1.107) is given as Γ = 𝜋 − 𝛾 where 𝛾 is the Berry
phase for the case of small spin-orbit interactions and inversion symmetry [119]. In the more
general case of a TI lacking inversion symmetry and with (necessarily) strong spin-orbit
interactions, the formula for the phase shift is modified but is generally still dependent on a
non-trivial Berry phase. Nevertheless, comparing the phase of the SdH oscillations to those
measured from a trivial material offers a means to probe the Berry phase of a TI.

1.3 Magnetism and Topology

Since the experimental discovery of 3D TIs, researchers have been fervently investigating the
interplay between magnetism and topology. The introduction of magnetism in a TI breaks
TRS leading to a magnetic TI (MTI) in class A of the Altland-Zirnbauer classification (more
on this in the next chapter). If the magnetic exchange vector is orientated along the growth
(𝑧) axis and the MTI is taken to the thin film (2D) limit, this offers a means to induce a finite
Berry curvature and realise the QAHE, as predicted in the Haldane model. As discussed
in section 2.1, rather than the helical edge states protected by a non-trivial Z2 topological
invariant, the QAHE possesses chiral edge states with a Z topological invariant.

Examining the Hamiltonian for a thin film TI given in equation (4.23) and adding a
magnetic exchange term along the growth axis we find

𝐻 = ℏ𝑣 𝑓 (𝑘𝑦𝜎𝑥 − 𝑘𝑥𝜎𝑦)𝜏𝑧 + 𝑡𝑠𝜏𝑥 + 𝑴 · 𝝈
= ℏ𝑣 𝑓 (𝑘𝑦𝜎𝑥 − 𝑘𝑥𝜎𝑦)𝜏𝑧 + 𝑡𝑠𝜏𝑥 + 𝑀𝑧𝜎𝑧 =⇒

𝑈𝐻𝑈† =𝐻′ = ℏ𝑣 𝑓 (𝑘𝑦𝜎𝑥 − 𝑘𝑥𝜎𝑦) + 𝑡𝑠𝜎𝑧𝜏𝑧 + 𝑀𝑧𝜎𝑧

where 𝑈 = 𝑒𝑖𝜏𝑦
𝜋
4

(
1 0
0 𝜎𝑧

) (1.109)
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where 𝑡𝑠 = 𝑚 + 𝐵𝑘2 and 𝑴 = (𝑀𝑥 , 𝑀𝑦, 𝑀𝑧) is the magnetic exchange vector. In the
new basis ( |+, ↑⟩ , |−, ↓⟩ ,− |−, ↑⟩ ,− |+, ↓⟩)𝑇 , where |±, ↑⟩ = 1√

2
( |𝑡, ↑⟩ ± |𝑏, ↑⟩) and |±, ↓⟩ =

1√
2
( |𝑡, ↓⟩ ± |𝑏, ↓⟩), 𝐻′ is given in matrix form as

𝐻′ =

(
ℎ+ + 𝑀𝑧𝜎𝑧 0

0 ℎ− + 𝑀𝑧𝜎𝑧

)
(1.110)

where ℎ± = ℏ𝑣 𝑓 (𝑘𝑦𝜎𝑥 − 𝑘𝑥𝜎𝑦) ± 𝑡𝑠𝜎𝑧 with eigenvalues

𝐸𝜎,𝜂 = 𝜎

√︃
ℏ2𝑣2

𝑓
𝑘2 + (𝑡𝑠 + 𝜂𝑀𝑧)2 (1.111)

where 𝜎, 𝜂 = ±1 and refer to the spin (↑ /↓) and parity (+/−) degrees of freedom. In
the limit 𝐵 → 0, this is exactly the low energy limit of the Haldane model of graphene.
Similarly to Haldane’s model, one can calculate the Chern number of (1.110) as 𝑛 =
1
2 (sgn(𝑚 + 𝑀) − sgn(𝑚 − 𝑀)), i.e. the difference in the Chern number between the two
blocks. For 𝑀 = 0, 𝑛 = 0 and the system is in the QSH state. For sufficiently large 𝑀, the
Chern number changes sign for one of the blocks and the system enters a QAHE phase [201].
In terms of the band structure, this corresponds to one pair of bands inverting while the other
pair of bands are pushed apart even further in energy. In other words, a magnetic exchange
gap opens in the TSSs leading to the formation of dissipationless chiral edge states from the
original QSH phase helical edge states.

Electronic transport measurements have provided evidence for the presence of the QAHE
in thin film MTIs. Provided the Fermi level lies in the exchange gap 𝜌𝑥𝑦 = ℎ/𝑒2 and 𝜌𝑥𝑥 → 0.
The first experimental observation of the QAHE was in thin film (5 QLs) Chromium doped
BST, Cr0.15(Bi0.1Sb0.9)1.85Te3 which was noted to be "nearly charge neutral" allowing the
Fermi level to be fine tuned using a back gate electrode [28]. Confirmation that this was the
QAHE was provided by applying a finite magnetic field, localising all dissipating states, at
30 mK. The effect of the magnetic field is to switch the direction of magnetisation in the
sample, only leading to a change in the polarity of 𝜌𝑥𝑦 and a non-zero value of 𝜌𝑥𝑥 at the
coercive field, 𝐻𝑐 = ±𝑀 .

Accessing the QAHE state brings with it an enormous breadth of technological applications
in areas such as spintronics and quantum information processing (QIP). The dissipationless
nature of the chiral edge modes has applications in low-power electronics and topological
transistors [197]. The QAHE state is also a prerequisite for the realisation of chiral Majorana
edge modes, via the coupling of a QAHE insulator to a proximate superconductor [108].
The search for Majorana modes is a key issue within the condensed matter community due
to their non-Abelian statistics which form the basis for fault tolerant topological quantum
computation (particles with non-Abelian statistics are also known as anyons). However,
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even after millions of dollars of investment into their research and the involvement of global
behemoths such as Microsoft, there has been no unambiguous demonstration that Majorana
modes have been realised.

A distinct magnetic phase is realised when the net magnetism of an MTI is zero, i.e. an
antiferromagnetic MTI where the magnetisation vector on the top and bottom surfaces are
anti-aligned. A coercive field can be used to align the magnetisation along the 𝑧 axis, however
at intermediate values opposite surfaces have an opposite QAHE response leading to zero
Hall conductance plateau (ZHCP), i.e. persistent values of zero transverse conductance across
a range of applied fields. In addition to ZHCP, the antiferromagnetic coupling of surface
magnetisation vectors leads to an additional term in the Lagrangian of the electromagnetic
response of the state

𝛿L =
𝜃𝑒2

2𝜋ℎ
𝑬 · 𝑩 (1.112)

where 𝑬 and 𝑩 are the usual electric and magnetic fields in the material and 𝜃 (𝒓) is known
as the axion field, which has the effect of mixing 𝑬 and 𝑩. It can be shown that in a trivial
insulator 𝜃 = 0, whereas in a topological phase 𝜃 = 𝜋 modulo 2𝜋 [43]. This results in what is
known as the topological magnetoelectric effect (TME), where an applied electric field induces
a spontaneous magnetic field in the same direction and vice versa, with a coupling constant
defined in units of 𝑒2/2ℎ [180, 153]. The TME is not only interesting from the standpoint
of fundamental physics, but also provides a non-invasive method of optically probing the
topological characteristics of a material. There are also magnetic memory applications,
where an applied electric field can induce a magnetic field to control the magnetisation
vector of a proximate magnetic material. Because of the similarity of the Lagrangian (1.112)
to the axion field of electrodynamics, this topological phase is referred to as an Axion Insulator.

The main challenges facing the realisation of these topological phases and the future
adoption of their descendent technologies is establishing long range magnetic order in
MTIs at technologically relevant temperatures. While magnetically doped TIs such as
(Cr𝑦Bi𝑥Sb1−𝑥−𝑦)2Te3 (Cr:BST) and (V𝑦Bi𝑥Sb1−𝑥−𝑦)2Te3 (V:BST) order magnetically below
∼ 15 K and ∼ 70 K, respectively [28, 106], the QAHE is observed at significantly lower
temperatures. Early work observed full conductance quantisation at ∼ 50 mK, and even
state-of-the-art co-doping techniques have only increased this temperature to 300 mK [132].
This fragility is most likely due to strong disorder of magnetic dopants (e.g. magnetic adatom
antisites, clustering of magnetic dopants, etc.) leading to difficulties in establishing long-range
ferromagnetic order [181], the presence of parasitic conduction channels in the bulk and
difficulty in stabilising the Fermi level inside the (potentially position-dependent) exchange
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gap of the TSS [191], among other issues. Increasing the critical temperature at which the
QAHE appears could have long-term and far-reaching implications. Low-energy electronics
and spintronics devices could herald a new age of microprocessors, beyond Moore’s law,
while the braiding of anyons provides a platform for topological computation. In an era of big
data, dwindling energy reserves and a demand for ever faster computation a high temperature
QAHE would be a very timely advance.

While our focus in the following section will be on the QAHE and closely related phases,
there are numerous other recent developments regarding alternative phases of matter in
and future applications of magnetic TIs. These include real space magnetic textures and
skyrmions [206, 136], spin orbit torque for the effective switching of magnetisation and an
energy efficient writing mechanism for magnetic memory [133, 189], and higher order TIs
(HOTIs) [149, 44, 165]. While the wider field of topological spintronics and magnetoelectrics
promises the development of disruptive technologies, we will unfortunately have to forego
their inclusion in the following review in the interests of brevity. We refer the interested read
to these excellent review articles [166, 113, 60].

1.3.1 The Magnetic Proximity Effect

To overcome the disadvantages of inducing magnetic order through doping, that is disorder
and magnetic inhomogeneity, one can attempt to induce magnetism externally by placing
a magnetic insulator (MI) proximate to a TI. This method is known as the magnetic
proximity effect (MPE). MIs have the benefit of having a much higher Curie temperature than
magnetically doped TIs, whilst not providing an alternative conduction pathway due to their
high electrical resistance. Additionally, there will be no significant hybridisation between the
TI and MI states due to the large bulk band gap present in the MI. However, the growth of
such heterostructures is a challenging process. In order to overcome the issues facing their
development, numerous material properties of the MI must be considered, which include but
are not limited to:

• Wide band gap: this is crucial to avoid the MI becoming an alternative conduction
pathway, negating the TSSs;

• High Curie/Néel temperature: it is desirable to ensure that the QAHE critical tempera-
ture is not limited by the ordering temperature of the adjacent MI. In addition, higher
ordering temperatures may indicate the possibility of higher temperature QAHE;
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• Matching the lattice constant: just as when discussing appropriate buffer and capping
layers, interfacial strain should be minimised at the MI/TI interface to ensure a small
concentration of bulk defects and TSS mediated transport. It is therefore important to
ensure that any proximate MPE is sufficiently structurally matched to the TI;

• Matching the chemical environments: it is crucial to ensure minimal diffusion of atoms
from the MI across the interface into the TI. Firstly, this will reduce the concentration
of bulk defects and prevent the formation of parasitic conduction channels in the bulk.
Secondly, interlayer diffusion will lead to a local change in the TI thickness. Since the
Chern number is dependent on the thickness (inter-surface tunnelling parameter), as
demonstrated in the model given in (1.110), this may lead to a locally varying Chern
number and topologically distinct domains throughout [117]. This will hamper the
detection of fully quantized conductivity as well as device development;

• Enhanced orbital overlap: there remains debate regarding the exact mechanism of the
MPE and it is possible that it varies between materials [1, 106]. However, it is apparent
from elementary quantum mechanics that the stronger the orbital overlap, the stronger
the magnetic exchange mechanism. Recent experimental studies have indicated that
the overlap of 3𝑑 orbitals in the MI with the Te/Se 5𝑝 orbitals in BSTS give the
highest quality MPE [129, 185]. On the other hand, the tightly localised 4 𝑓 orbitals in
rare-earth based MIs are less promising [45], perhaps due to their small spatial extent.
However, band alignment is also important to ensure the orbitals are close in energy
for a large orbital overlap. A further benefit of band alignment, not directly related to
orbital overlap, is that band bending at the interface will be limited precluding as far
as possible the existence of trivial interface states that would overwhelm the TSSs in
electronic transport.

Early studies of the MPE in TIs focussed on the use of EuS as an adjacent ferromagnetic
insulator (FMI). However, early DFT studies on EuS/Bi2Se3 found that the MPE had a
negligible effect on the tiny exchange gap opened at the Dirac point, with the thickness of
the material and inter-surface hybridisation being the largest contributors to the mass term
[39]. Surprisingly, experimental studies have directly contradicted these conclusions and
results show that EuS/BST heterostructures display weak localization behaviour in transport
experiments [196] indicating broken TRS (as previously discussed, bare TIs should show
WAL behaviour) while there is also evidence of a high-temperature ferromagnetic phase has
been observed along with an anomalous Hall voltage [82]. Despite these intriguing results,
recent work has claimed that there is no evidence of an MPE at the EuS/Bi2Se3 interface [45].
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Besides FMIs, it is also possible to use a proximate antiferromagnetic insulator (AFMI)
to induce magnetism in the Dirac electrons, due to the uncompensated spins at the AFMI/TI
interface. The benefit of this approach is that AFMIs possess a negligible net magnetisation
and therefore produce no stray fields. The lack of macroscopic magnetisation makes the AFMI
more robust and insensitive to external magnetic fields, protecting the induced ferromagnetic
order induced at the surface of the TI, while the absence of stray fields ensures that there is
minimal effect on the bulk properties of the interfacial TI layer and reduced crosstalk between
adjacent TI/AFMI layers. The first example of antiferromagnetic exchange coupling in a TI
heterostructure was by He et al in 2017, when it was shown there was an MPE in superlattices
of CrSb (a half metal) and Cr:BST [61]. In addition to the MPE there was also an observed
enhancement the magnetic ordering temperature of the Cr-BST to 90 K, despite the bare
MTI only ordering below 30 K, demonstrated by the presence of the AHE in the TI layer
(although, since CrSb is metallic there could be some ambiguity concerning in which layer
the AHE originates). In addition, CrSb/BST/CrSb heterostructures were shown to undergo
a process of unsynchronised switching of the magnetisation vectors on opposite surfaces,
offering the possibility of realising the Axion Insulator phase [62]. There have also been
promising results from the other members of the NiAs family of antiferromagnets.

Nearly a decade on from the original MPE proposals, there are dozens of potential
material candidates. There are far too many to survey in this short literature review and the
interested reader can refer themselves to table I of [53] for a comprehensive list of proximate
magnets and their suitability. Despite the explosion of material candidates and research
interest, at the time of writing there is still only a single example of a fully quantized QAHE in
a Zn1−𝑥Cr𝑥Te/BST/Zn1−𝑥Cr𝑥Te (ZCT/BST/ZCT) trilayer [185]. With reference to the list of
requirements for a strong MPE that we gave above, ZCT does indeed appear to be an excellent
material choice. It has a wide band gap of 2.28 eV while ZnTe (111) is lattice mismatched to
Bi2Te3 by only ∼ 1.6%. Doping with chromium drives the insulator into the ferromagnetic
phase and the authors note that the 3𝑑 levels of Cr are close in energy to the 5𝑝 orbitals of Te
in the adjacent TI. Furthermore, they theorise that the presence of Te on both sides of the
FMI/TI interface draws the TSS further into the ZCT and assists in an even stronger orbital
overlap. The same effect was observed by this author in an unpublished collaboration with
Anirban, appendix B [7]. Nevertheless, even with such a well matched FMI the temperature
at which the QAHE was observed was still only 30 mK. Creativity is required in designing
MIs for use in a robust MPE mediated QAHE, perhaps devising a method which combines
the use of a proximate magnet and doping the TI with a magnetic species.
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1.3.2 Intrinsic Magnetic Topological Insulators

It is fair to ask, given the delayed progress and slow advancement, whether there is an
alternative to the MPE in the development of MTIs capable of realising a high temperature
QAHE. In order to avoid the worst effects of disorder and the complications of interface
engineering, it is desirable to search for a stoichiometric TI with intrinsic magnetic order.
In 2017, Eremeev et al suggested a new type of TI heterostructure that could overcome
these issues [40]. By combining ideas from doping of TIs and the MPE, they developed
the concept of using a magnetic insertion layer to induce long range magnetism in a TI.
This method involved identifying a suitable magnetic bilayer that could be inserted into a
quintuple layer in order to create magnetic septuple layers, bound by weak van der Waals
forces. In other words, given a magnetic bilayer MT and a TI B2T3, the bilayer is inserted
between the second and third layers of B2T3 to form a septuple layer T-B-T-M-T-B-T, i.e.
MB2T4 where M is some magnetic element, B is Bi or Sb and T is Te or Se. In the year
following this suggestion Otrokov et al identified the first such intrinsic magnetic TI as the
antiferromagnetic TI MnBi2Te4 (MBT) using ab initio calculations and then confirming their
theoretical predictions with experiment [131].

MBT is an A-type antiferromagnet meaning that spins couple ferromagnetically in-plane
and antiferromagnetic out of plane. In addition, below its Néel temperature of 25K [131],
spins order along the 𝑧 direction. While the presence of magnetism does break TRS in a TI,
the antiferromagnetic coupling in MBT ensures that the system still respects the symmetry
𝑆 = 𝑇𝜏1/2 where 𝜏1/2 is an operator which translates the lattice by half a magnetic unit
cell. The presence of 𝑆-symmetry ensures that MBT, in fact all antiferromagnetic TIs
(AFMTIs), possesses a Z2 topological classification [121]. This A-type antiferromagnetism
endows MBT, and the related family of materials, with interesting thickness dependent
properties. Depending on the parity of the number of layers (odd or even) of a sample the
magnetisation vector is aligned (odd layer) or anti-aligned (even layer) on opposite surfaces.
The uncompensated spins in odd layer samples lead to a QAHE phase, while the net zero
magnetisation in even layer samples should give rise to ZHCP due to the opposite signs for the
half-integer Hall conductance on either surface. Therefore, depending on the thickness of the
sample, the topological phase of MBT oscillates between the QAHE and the axion insulator
[130]. Of course, while it is desirable to have atomically flat surfaces it is unlikely that steps
and terraces can be avoided even using epitaxial growth techniques. In order to fabricate
devices with consistent numbers of layers it is probable that techniques such as exfoliation
of single crystal will be used, for at least the near future. Furthermore, the similarity of the
lattice constant and structure of MBT with Bi2Te3 (both are in space group 𝑅3̄𝑚 while MBT
has an in-plane lattice constant of ∼ 4.32 Å compared to 4.38 Å for Bi2Te3 [195]) facilitates
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the growth of MnBi2Te4/(Bi2Te3)𝑛 superlattices in an effort to tune the RKKY mediated
interlayer coupling from antiferromagnetic to ferromagnetic [90]. This offers a route towards
engineering stoichiometric ferromagnetic TIs, Weyl semimetals or HOTI phases, see below
[25, 205, 75, 41, 209, 54].

Theory predicts that a magnetic exchange gap should open in the Dirac cone at 𝑆 breaking
surfaces, but given that MBT is naturally n-type due to crystal defects alloying with MnSb2Te4,
the Fermi level must be tuned to reside within the gap. Calculations indicate that this gap can
be quite large (up to 80 meV) [105, 131]. Experimental work by Chen et al has corroborated
this to an extent by demonstrating a reasonably wide range of compositions for which
Mn(Bi1−𝑥Sb𝑥)2Te4 has the Fermi level in the exchange gap, namely 0.25 < 𝑥 < 0.35 for bulk
samples, however the authors note that increasing Sb composition actually alters the band
gap and drives the material towards the trivial phase and uninverting the band gap at 𝑥 ∼ 0.5
[29]. Other work indicates that the Sb composition required to reach the charge neutral
point may vary with sample thickness and is also affected by unintentional doping during the
device fabrication process [184]. As a brief aside, while MnSb2Te4 is a topologically trivial
ferromagnet the closely related MnSb4Te7 (i.e. a MnSb2Te4/Sb2Te3 superlattice) exhibits a
number of topological magnetic phases [69].

However, there are numerous conflicting reports on the observation of a magnetic exchange
gap in MBT films in the first place [168, 125]. While MBT research is still in its relative
infancy the consensus is that it is likely that this sample dependent gap in MBT is due to
crystal defects within the crystal lattice. Specifically, this may be due to the presence of the
antisite defects MnBi (Mn at a Bi site) and BiMn (Bi at an Mn site) which lead to ferrimagnetic
behaviour, disrupting the interlayer ferromagnetism of perfect MBT [194, 97]. Other issues
may be surface quality or the charge states of the antisite defects and vacancies leading to
uncompensated surface charge which could change the size of the gap at the Dirac point [157].
Given that tuning the Fermi level to sit in the exchange gap is crucial for the elimination of
bulk states transport contributions and the realisation of the QAHE this is an important issue
that must be overcome. In fact, there has been an apparent lack of positive progress towards a
high temperature QAHE phase and there remains only a single instance of a zero-field QAHE
in a five septuple layer sample at 1.4 K [33]. Other instances where the presence of quantized
conductance and chiral edge states have been observed have been at high magnetic fields,
in order to align the Mn spins in a ferromagnetic phase, but promisingly high temperatures
[111, 200]. In fact, one report has shown a Hall resistance plateau (although not a quantized
value) at 45 K, well above the Néel temperature of 25K [51].
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Within the wider XB2T4 family, other possible AFMTIs are X = Eu, V and Ni [105].
While MBT orientates its spins along the 𝑧 axis, the remaining AFMTIs all have their magnetic
easy axis orientated in-plane. While this makes them unsuitable for a zero-field QAHE phase,
they present a versatile playground for the investigation of magnetic topological phases. For
example, it has been predicted that alloying VBi2Te4 (VBT) with MBT offers a means to
induce a ferromagnetic coupling between septuple layers, while preserving the out-of-plane
magnetic easy axis and the non-trivial topological nature of the material [212, 107, 66].
As previously mentioned, single layer steps in thickness are unavoidable during MBE
growth of MBT materials. Given the thickness dependent properties of the material in its
antiferromagnetic phase, it is then necessary to exfoliate the sample in order to fabricate
devices with a deterministic number of layers. However, this method of device fabrication
has an extremely low yield and it is desirable to avoid this process altogether. Tuning the
interlayer coupling such that MBT and its related alloys order ferromagnetically is, therefore,
an interesting route towards a high temperature QAHE phase. While we have previously
discussed MBT/BST superlattices in the context of ferromagnetic ordering, they also suffer
from the issue of controlling the number of BST spacer layers to a high precision, potentially
making it a more difficult approach than MBT/VBT alloys. Theoretical investigations
have focused on two approaches - doping MBT with vanadium to form Mn1−𝑥V𝑥Bi2Te4, or
alternating septuple layers of MBT and VBT to form an MBT/VBT superlattice. In the case
of the doping strategy, ferromagnetic coupling is promoted for doping concentrations in the
range 0.333 < 𝑥 < 0.667 and is strongest at 𝑥 = 0.5. However, as with doping strategies
of bare TIs, disorder and antisite defects can lead to position dependent exchange gaps and
parasitic bulk conduction [66]. Despite the fact that VBT has an easy in-plane magnetic
axis, DFT studies have found that the exchange interaction of the Mn and V spins leads to
the formation energy of a spin configuration where they are all aligned along the 𝑧 axis is
lower than some non-colinear configuration [212]. MBE growth of MBT/VBT superlattices
is certainly a more challenging route than doping, however it would be an interesting study to
find how sensitive the presence of ferromagnetic coupling is to the exact sequence of MBT
and VBT layers.

Beyond alloying the wider family of intrinsic magnetic TIs with MBT, these materials are
also interesting in their own right as we shall demonstrate in later chapters. As yet however,
MBT has dominated research into intrinsic magnetic TIs and no other member of the wider
family has been synthesised.
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1.4 Thesis Structure

Having concluded the introductory chapter, the remaining structure of the thesis will now be
outlined. Chapter 2 will detail the history and development of topological invariants within
the field of condensed matter physics, discussing the various anti-unitary symmetries that
give rise to the rich mathematical structure underpinning the classification of topological
phases of matter. In Chapter 3 we will utilise the ideas presented in Chapter 2 to show how
an in-plane magnetisation can result in topological insulators with trivial and non-trivial
flat-bands. Chapter 4 will develop on these ideas by introducing the notion of magnetic
textures and how these can be used to control the local-density of states around topological
flat-bands. Finally, Chapter 5 concludes this thesis by summarising the main findings, as well
as musing on their technological significance, and presenting ideas for further development
and research.





Chapter 2

An Introduction to Topological Invariants

2.1 The Role of Symmetries in Quantum Mechanics

Following on from our pedagogical discussion of topology in condensed matter in section
2.1, we will now present a modern analysis of the topic. Much of the following discussion of
symmetry has been adapted from [147, 31].

Our discussion of topology within condensed matter systems begins, as with nearly all
aspects of quantum mechanics, with the topic of symmetry. Indeed, symmetry is integral to
quantum mechanics - the symmetry of a Hamiltonian and its corresponding eigenspectrum
reflect the physical observables of the system (von Neumann’s principle). Mathematically,
symmetry is represented by the invariance of the Hamiltonian under the action of a group of
unitary transformations. Specifically, in the case of the second quantized Hamiltonian

𝐻̂ =
∑︁
𝐴,𝐵

𝑐
†
𝐴
𝐻𝐴𝐵𝑐𝐵, (2.1)

where 𝐻𝐴𝐵 is a component of the first quantized Hamiltonian acting in single particle space,
the indices 𝐴 and 𝐵 are a tuple representing the site labels and other relevant quantum
numbers e.g. spin, 𝜎 =↑ /↓, and 𝑐†

𝐴
/𝑐𝐵 are the (potentially multi-component) fermionic

creation/annihilation operators obeying the usual anticommutation relations

{𝑐𝐴,𝑐𝐵} = {𝑐†
𝐴
, 𝑐

†
𝐵
} = 0

{𝑐𝐴, 𝑐†𝐵} = 𝛿𝐴𝐵,
(2.2)

a unitary transformation, Û is a symmetry of the Hamiltonian if
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Û𝐻̂Û† = 𝐻̂. (2.3)

In terms of the first quantized Hamiltonian, if the unitary transformation admits a matrix
representation𝑈, then the symmetry is expressed as

𝑈𝐻𝑈† = 𝐻 i.e.

[𝑈, 𝐻] = 0,
(2.4)

Using an elementary result of linear algebra, namely that two commuting matrices have a
shared eigenbasis, we can block diagonalise 𝐻 according to its unitary symmetries,

𝐻 = 𝐻1 ⊕ 𝐻2 ⊕ · · · ⊕ 𝐻𝑛. (2.5)

Each block, 𝐻𝑖, will be symmetry-less in the sense that there are no additional unitary
operators that commute with it. Now that we have a set of irreducible block Hamiltonians,
each acting on their own regions of the full Hilbert space, we may ask: how many different
classes of irreducible Hamiltonians are there? At first, it may appear that our desire to
classify arbitrary Hamiltonians is futile given that we have already exhausted all our unitary
symmetries. However, Wigner’s theorem states that symmetries of a quantum system may be
unitary or anti-unitary, i.e. operators of the form 𝐴 = 𝑈𝐾 where𝑈 is a unitary operator and
𝐾 is the operation of complex conjugation. In contrast to unitary symmetries, anti-unitary
symmetries cannot be continuous (since the product of any two anti-unitary symmetries is
unitary), however they will impose certain reality conditions on the block Hamiltonian which
we may use as part of a classification scheme.

2.1.1 Anti-unitary symmetries

We preface this discussion by noting that the anti-unitary symmetries we consider are
non-spatial in the sense that they do not act on the spatial part of the Hamiltonian (i.e. do not
exchange site labels 𝑖 and 𝑗).

Time Reversal Symmetry

We begin our discussion of anti-unitary symmetries with time-reversal symmetry (TRS). As
previously discussed this transformation inverts the direction of time under the transformation
𝑡 → −𝑡. If T̂ is defined as the operator that implements time reversal, then its action on the
position and momentum operators is
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T̂ 𝑥T̂ −1 = 𝑥, T̂ 𝑝T̂ −1 = −𝑝. (2.6)

analogously to time reversal in classical mechanics. Using Heisenberg’s uncertainty relation,
[𝑥, 𝑝] = 𝑖ℏ, we may then infer that T is an anti-unitary operator since

T̂ [𝑥, 𝑝]T̂ −1 = T̂ 𝑖ℏT̂ −1

−[𝑥, 𝑝] = T̂ 𝑖ℏT̂ −1 =⇒
T̂ 𝑖T̂ −1 = −𝑖.

(2.7)

Having established the anti-unitary nature of T̂ , we now define its action on the fermionic
creation and annihilation operators as

T̂ 𝑐𝑖,↑T̂ −1 = 𝑐𝑖,↓, T̂ 𝑐†
𝑖,↑T̂

−1 = 𝑐
†
𝑖,↓

T̂ 𝑐𝑖,↓T̂ −1 = −𝑐𝑖,↑, T̂ 𝑐†
𝑖,↓T̂

−1 = −𝑐†
𝑖,↑

(2.8)

where we pick up an extra minus sign since the spin of an electron is a form of angular
momentum which must be odd under time reversal, i.e. T̂ 𝜎̂T̂ −1 = −𝜎̂. We also define
the spinor 𝜓̂ = (𝑐𝑖,↑, 𝑐†𝑖,↑, 𝑐𝑖,↓, 𝑐

†
𝑖,↓, · · · ), such that the second quantized Hamiltonian can be

written in terms of the first as

𝐻̂ =
∑︁
𝐴,𝐵

𝜓̂
†
𝐴
𝐻𝐴,𝐵𝜓̂𝐵 = 𝜓̂†𝐻𝜓̂. (2.9)

We may now summarise the action of T̂ as

T̂ 𝜓̂𝐴T̂ −1 =
∑︁
𝐵

(𝑈𝑇 )𝐴,𝐵𝜓̂𝐵 (2.10)

where𝑈𝑇 is a unitary operator and 𝜓̂𝐴 is a component of the spinor 𝜓̂.

It should be emphasised that, so far, we have defined the action of T̂ in Fock space in the
formalism of second quantization. In order to move to the first quantized picture, we note that
if the second quantized Hamiltonian respects TRS T̂ 𝐻̂T̂ −1 = 𝐻̂. Then using (2.10) we find
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T̂ 𝐻̂T̂ −1 =
∑︁
𝐴,𝐵

T̂ 𝜓̂†
𝐴
T̂ −1T̂𝐻𝐴,𝐵T̂

−1T̂ 𝜓̂𝐵T̂ −1

=
∑︁
𝐴,𝐵

∑︁
𝐶,𝐷

(𝑈𝑇 )†𝐶,𝐴𝜓̂
†
𝐶
𝐻∗
𝐴,𝐵 (𝑈𝑇 )𝐵,𝐷𝜓̂𝐷

=
∑︁
𝐶,𝐷

𝜓̂
†
𝐶
𝐻𝐶,𝐷𝜓̂𝐷 = 𝐻̂

(2.11)

where 𝐻𝐶,𝐷 = (𝑈𝑇 )†𝐶,𝐴𝐻
∗
𝐴,𝐵

(𝑈𝑇 )𝐵,𝐷 i.e. 𝑈†
𝑇
𝐻∗𝑈

𝑇
. Note that the first quantized Hamiltonian,

𝐻, has been complex conjugated since the action of T̂ flips the sign of 𝑖. We may then define
a first quantized version of T̂ which acts on the single particle space, 𝑇 . The action of 𝑇 on
the first quantized Hamiltonian is

𝑇𝐻𝑇−1 = 𝐻 where 𝑇 = 𝑈𝑇𝐾 (2.12)

where 𝐾 is the operation of complex conjugation. We may constrain the form of 𝑈𝑇 by
noticing that T̂ 2𝐻̂T̂ −2 = 𝐻̂, or rephrased in terms of the first quantized Hamiltonian

(𝑈∗
𝑇𝑈𝑇 )†𝐻 (𝑈∗

𝑇𝑈𝑇 ) = 𝐻 (2.13)

i.e. 𝑈∗
𝑇
𝑈
𝑇

commutes with the Hamiltonian. By Schur’s lemma 𝑈∗
𝑇
𝑈
𝑇
= 𝑒𝑖𝜙, i.e. the

identity up to some phase. Right multiplying by 𝑈†
𝑇

and using the unitarity of 𝑈𝑇 we find
𝑈∗
𝑇
= 𝑒𝑖𝜙𝑈

†
𝑇
. Similarly, taking the complex conjugate of both sides and left multiplying by

𝑈
†
𝑇

implies 𝑈∗
𝑇
= 𝑈

†
𝑇
𝑒−𝑖𝜙. Equating these two conditions, 𝑈†

𝑇
𝑒−𝑖𝜙 = 𝑒𝑖𝜙𝑈

†
𝑇

or equivalently
𝑈
𝑇
𝑒𝑖𝜙 = 𝑒−𝑖𝜙𝑈

𝑇
which implies 𝑒𝑖𝜙 = ±1 and 𝑇2 = 𝑈

𝑇
𝑈∗
𝑇
= ±1.

We therefore have three possibilities: the system does not respect TRS, the system respects
TRS where 𝑇2 = 1 or, the system respects TRS where 𝑇2 = −1. In fact, this result predates
the concept of topological condensed matter in quantum mechanics by several decades and
can be attributed to Freeman Dyson’s work in foundational quantum mechanics [37]. In his
work, Dyson utilised random matrix theory to show that there can only be three possible
types of irreducible representations (irrep) of a Hilbert space and, hence, three possible types
of Hamiltonian defined on that Hilbert space. He named these representations complex,
real and quaternionic due to the isomorphism between each irrep and the respective number
algebra. A correspondence also exists between Dyson’s threefold way and our own discussion
of TRS: the complex representation corresponding to the case of no TRS, real corresponding
to 𝑇2 = 1 and the quaternionic to 𝑇2 = −1.
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Particle-Hole Symmetry

Where-as classical physics and quantum physics alike posses the notion of TRS, particle-hole
symmetry (PHS) is a purely quantum phenomenon. The notion of particle-hole symmetry
(often also known as charge conjugation) is to interchange electrons for holes. In contrast to
T̂ , the operator P̂ implementing particle-hole exchange is unitary in the second quantized
picture, P̂𝑖P̂−1 = 𝑖. Its action on the fermionic creation and annhiliation spinors, 𝜓̂†/𝜓̂ we
defined in the previous section is

P̂𝜓̂𝐴P̂
−1 =

∑︁
𝐵

𝜓̂
†
𝐵
(𝑈𝑃)𝐵,𝐴 (2.14)

where𝑈𝑃 is a unitary operator. Using this definition, we implement the transformation of 𝐻̂
under P̂ as

P̂𝐻̂P̂−1 =
∑︁
𝐴,𝐵

P̂𝜓̂†
𝐴
P̂−1P̂𝐻𝐴,𝐵P̂

−1P̂𝜓̂𝐵P̂−1

=
∑︁
𝐴,𝐵

∑︁
𝐶,𝐷

(𝑈𝑃)
†
𝐴,𝐶
𝜓̂𝐶𝐻𝐴,𝐵𝜓̂

†
𝐷
(𝑈𝑃)𝐷,𝐵

=
∑︁
𝐴,𝐵

∑︁
𝐶,𝐷

𝛿𝐶,𝐷 (𝑈𝑃)
†
𝐴,𝐶
𝐻𝐴,𝐵 (𝑈𝑃)𝐷,𝐵 − 𝜓̂

†
𝐷
(𝑈𝑃)𝐷,𝐵𝐻𝐴,𝐵 (𝑈𝑃)

†
𝐴,𝐶
𝜓̂𝐶

=
∑︁
𝐴,𝐵

∑︁
𝐶,𝐷

(𝑈𝑃)†𝐴,𝐶𝐻𝐴,𝐵 (𝑈𝑃)𝐶,𝐵 − 𝜓̂
†
𝐷
(𝑈𝑃)𝐷,𝐵𝐻𝑇𝐵,𝐴 (𝑈𝑃)

†
𝐴,𝐶
𝜓̂𝐶

=
∑︁
𝐴,𝐵

(
𝛿𝐴,𝐵𝐻𝐴,𝐵 −

∑︁
𝐶,𝐷

𝜓̂
†
𝐷
(𝑈𝑃)𝐷,𝐵𝐻𝑇𝐵,𝐴 (𝑈𝑃)

†
𝐴,𝐶
𝜓̂𝐶

)
= Tr(𝐻) −

∑︁
𝐶,𝐷

𝜓̂
†
𝐷
𝐻𝐷,𝐶𝜓̂𝐶 ,

(2.15)

where we have used the anticommutation relation {𝜓̂
𝐴
, 𝜓̂

†
𝐵
} = 𝛿

𝐴,𝐵
between the second and

third lines and the unitarity of𝑈𝑃 between the fourth and fifth lines. Note that the action of
P̂ on the first quantized Hamiltonian is trivial, i.e. P̂𝐻𝐴,𝐵P̂−1 = 𝐻𝐴,𝐵, contrary to the case
of TRS. As before, we require P̂𝐻̂P̂−1 = 𝐻̂ if our Hamiltonian respects PHS demanding the
conditions

Tr(𝐻) = 0

𝑈𝑃𝐻
∗𝑈†

𝑃
= −𝐻.

(2.16)
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where we have utilised the Hermicity of 𝐻 = 𝐻† =⇒ 𝐻𝑇 = 𝐻∗ in the second inequality.
These two conditions are actually complementary since the symmetry condition on the single
particle Hamiltonian implies that the eigenspectrum is symmetric

if 𝐻 |𝜓⟩ = 𝐸 |𝜓⟩ =⇒
𝐻∗ ��𝜓̄〉

= 𝐸∗ ��𝜓̄〉
=⇒

𝑈𝑃𝐻
∗𝑈𝑃𝑈

†
𝑃

��𝜓̄〉
= 𝐸𝑈𝑃

��𝜓̄〉
=⇒

𝐻
��𝜓̄〉

= −𝐸
��𝜓̄〉

,

(2.17)

i.e. if |𝜓⟩ is an eigenstate of 𝐻 at energy 𝐸 then there exists an eigenstate
��𝜓̄〉

= 𝐾 |𝜓⟩ at
energy −𝐸 . If 𝐷 is then some unitary operator that diagonalises 𝐻 then Tr(𝐷𝐻𝐷−1) =

Tr(𝐻𝐷𝐷−1) = Tr(𝐻) = 0.

Following the same procedure that we used for the case of TRS, we now define a first
quantized version of the particle-hole operator, 𝑃. The action of 𝑃 on the first quantized
Hamiltonian is then

𝑃𝐻𝑃−1 = −𝐻 where 𝑃 = 𝑈𝑃𝐾. (2.18)

Interestingly, the particle-hole operator in the second quantized picture was linear and unitary,
P̂𝑖P̂−1 = 𝑖 where-as in the first quantized picture 𝑃 is anti-linear and anti-unitary since it
contains the operation of complex conjugation. Following an identical argument to that
which we used to constrain the form of𝑈𝑇 , we find that 𝑃2 = 𝑈

𝑃
𝑈∗
𝑃
= ±1. once again then,

we have three possibilities: the Hamiltonian does not respect PHS, the Hamiltonian respects
PHS and 𝑃2 = 1 or, the Hamiltonian respects PHS and 𝑃2 = −1.

The Altland-Zirnbauer Classification and Tenfold Way

The existence of PHS as well as TRS extends Dyson’s original threefold classification
to a nine-fold one, however we have yet to investigate what happens under their product.
Therefore, we introduce the concept of chiral symmetry, Ŝ = T̂ · P̂, or in terms of the first
quantized picture 𝑆 = 𝑇 · 𝑃 = 𝑈𝑇𝐾 ·𝑈𝑃𝐾 = 𝑈𝑇𝑈

∗
𝑃
= 𝑈𝑆, which transforms our fermionic

creation/annihilation operators as

Ŝ𝜓̂𝐴Ŝ−1 =
∑︁
𝐵

(𝑈𝑆)𝐴,𝐵𝜓̂†
𝐵
. (2.19)
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We also note that in the picture of second quantization, Ŝ is an anti-unitary operator,
Ŝ𝑖Ŝ−1 = −𝑖 since it is the product of a unitary and an anti-unitary operator, where-as𝑈𝑆 is a
unitary operator in the single particle space. As before, we investigate the action of Ŝ on 𝐻̂,

Ŝ𝐻̂Ŝ−1 =
∑︁
𝐴,𝐵

Ŝ𝜓̂†
𝐴
Ŝ−1Ŝ𝐻𝐴,𝐵Ŝ

−1Ŝ𝜓̂𝐵Ŝ−1

=
∑︁
𝐴,𝐵

∑︁
𝐶,𝐷

(𝑈𝑆)
†
𝐴,𝐶
𝜓̂𝐶𝐻

∗
𝐴,𝐵𝜓̂

†
𝐷
(𝑈𝑆)𝐷,𝐵

=
∑︁
𝐴,𝐵

∑︁
𝐶,𝐷

𝛿𝐶,𝐷 (𝑈𝑆)
†
𝐴,𝐶
𝐻∗
𝐴,𝐵 (𝑈𝑆)𝐷,𝐵 − 𝜓̂

†
𝐷
(𝑈𝑆)𝐷,𝐵𝐻∗

𝐴,𝐵 (𝑈𝑆)
†
𝐴,𝐶
𝜓̂𝐶

=
∑︁
𝐴,𝐵

∑︁
𝐶,𝐷

(𝑈𝑆)†𝐴,𝐶𝐻𝐴,𝐵 (𝑈𝑆)𝐶,𝐵 − 𝜓̂
†
𝐷
(𝑈𝑆)𝐷,𝐵𝐻

†
𝐵,𝐴

(𝑈𝑆)†𝐴,𝐶𝜓̂𝐶

=
∑︁
𝐴,𝐵

(
𝛿𝐴,𝐵𝐻𝐴,𝐵 −

∑︁
𝐶,𝐷

𝜓̂
†
𝐷
(𝑈𝑆)𝐷,𝐵𝐻𝐵,𝐴 (𝑈𝑆)

†
𝐴,𝐶
𝜓̂𝐶

)
= Tr(𝐻) −

∑︁
𝐶,𝐷

𝜓̂
†
𝐷
𝐻𝐷,𝐶𝜓̂𝐶 ,

(2.20)

where we have complex conjugated the fist quantized Hamiltonian between the first and
second lines due to the anti-unitarity of Ŝ, implemented the fermionic anticommutation
relation between the second and third lines and between the fourth and fifth lines we have
utilised the unitarity of 𝑈𝑆 and the Hermicity of 𝐻. If the second quantized Hamiltonian
respects chiral symmetry Ŝ𝐻̂Ŝ−1 = 𝐻̂ and therefore

Tr(𝐻) = 0

𝑈𝑆𝐻𝑈
†
𝑆
= −𝐻.

(2.21)

Similarly to the case of PHS, this conditions are complementary to one another since the
second equality will result in an eigenspectrum which is symmetric about 0. We note that,
although𝑈𝑆 is a unitary operator, chiral symmetry is not described as a unitary symmetry
of the single particle Hamiltonian since {𝑆, 𝐻} = 0, rather than the usual commutation
relationship which defines unitary symmetries. As before, we constrain the form of 𝑈𝑆 by
examining 𝑆2 = 𝑈2

𝑆
= 𝑒𝑖𝜙 by Schur’s lemma. We recall that𝑈𝑆 = 𝑈𝑇𝑈∗

𝑃
and the relationships

𝑈𝑇𝑈
∗
𝑇
= ±1 and 𝑈𝑃𝑈∗

𝑃
= ±1 imply that the phases of 𝑈𝑇 and 𝑈𝑃 are completely arbitrary.

Without loss of generality, we can therefore redefine 𝑈𝑆 → 𝑈𝑆𝑒
𝑖𝜙/2 and find that 𝑈2

𝑆
= 1,

meaning that there are only two possibilities: the system does not respect chiral symmetry, or
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the system does respect chiral symmetry with𝑈2
𝑆
= 1.

It is clear that in eight of the nine classification schemes we have so far discussed, the
question of whether the Hamiltonian respects chiral symmetry is pre-determined, i.e. fixing
one or both of TRS/PHS uniquely determines whether Ŝ is a symmetry. However, in the case
where neither T̂ or P̂ is a symmetry of the Hamiltonian we have the interesting situation
where their product, Ŝ may or may not be a symmetry. In total then, there are actually 10
possible classes of irreducible Hamiltonian which are summarised in the table below:

class 𝑆 𝑃 𝑇

A
AIII 1
AI 1
BDI 1 1 1
D 1
DIII 1 1 -1
AII -1
CII 1 -1 -1
C -1
CI 1 -1 1

The slightly obscure symmetry class labels in the left hand column of the table are known
as Cartan symbols after work by the French mathematician Elie Cartan [27]. Cartan’s
original work gave a complete classification of Riemannian symmetric spaces (defined as
a Riemannian manifold where inversion symmetry exists about each point). Although his
work was completed some half a century prior to the discovery of topological matter, it is of
fundamental importance in the classification of irreducible Hamiltonians. As discussed below,
there is a one-to-one correspondance between equivalence classes of Clifford algebras and
Cartan’s symmetric spaces. The role of Clifford algebras in representing the various classes
of irreducible Hamiltonians then provides the link between Cartan’s original classification
and the tenfold way of condensed matter physics. The right hand columns in the table detail
which symmetries are respected in each class and the value of the symmetry operator squared.
For example, the AII ("A-two") class respects TRS where 𝑇2 = −1. This tenfold way of
classifying irreducible Hamiltonians, also known as the Altland-Zirnbauer classification
after the two researchers who identified the tenfold classification in the context of condensed
matter, can be considered an extension of Dyson’s threefold way once PHS is admitted as a
possible anti-unitary symmetry of the single-particle Hamiltonian [5].
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Before concluding this section, we briefly discuss the situation where the system possesses
translational symmetry. In this case, we may use Bloch’s theorem to parameterise the
single-particle Hamiltonian in terms on the crystal momentum, 𝒌 and rewrite the second
quantized Hamiltonian as

𝐻̂ =
∑︁
𝑘

𝜓̂
†
𝐴
(𝒌)𝐻𝐴,𝐵 (𝒌)𝜓̂𝐵 (𝒌)

where 𝜓̂𝐴 (𝒌) =
1
√
𝑉

∑︁
𝒓

𝑒−𝑖𝒌·𝒓𝑖 𝜓̂𝐴 (𝒓), 𝐻𝐴,𝐵 (𝒌) =
∑︁
𝒓

𝑒−𝑖𝒌·𝒓𝑖𝐻𝐴,𝐵 (𝒓).
(2.22)

where 𝑉 is the number of sites/crystal volume and we have explicitly parameterised the real
space fermionic operators and single particle Hamiltonian in terms of the displacement 𝒓.
The action of TRS, PHS and chiral symmetry on the single particle Bloch Hamiltonian is then

𝑇𝐻 (𝒌)𝑇−1 = 𝐻 (−𝒌)
𝑃𝐻 (𝒌)𝑃−1 = −𝐻 (−𝒌)
𝑆𝐻 (𝒌)𝑆−1 = −𝐻 (𝒌)

(2.23)

where the momentum is inverted in the cases of TRS and PHS due to the action of complex
conjugation.

2.2 Topological Classification of Hamiltonians

Having introduced the concept of 10 symmetry classes describing all irreducible Hamiltonians,
we will now discuss the possibility of different phases emerging in each of this classes. Of
course, these phases and the transitions between them will not be described within the paradigm
of Landau’s phenomenological model since this necessarily involves spontaneous symmetry
breaking (and we are considering the notion of phases within the same symmetry class), but
instead we will introduce the notion of topological equivalence between Hamiltonians in the
same symmetry class. In the course of this discussion we will neglect interactions and only
consider Hamiltonians with gapped spectra, i.e. insulators.

We follow the usual definition in the literature and define two irreducible, gapped
Hamiltonians, 𝐻1(𝒌) and 𝐻2(𝒌), to be homotopy equivalent if they are in the same symmetry
class we can continuously deform their spectra into one another without closing the spectral
gap at any point. To clarify, we consider an adiabatic spectral flattening transformation
which transforms Hamiltonians to a form such that their eigenvalues, 𝜖 (𝒌) undergo the
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transformation 𝜖 (𝒌) → 𝜖 (𝒌) = sign(𝜖 (𝒌)) i.e. positive/negative eigenvalues are replaced by
±1, respectively. Thus, the Hamiltonian for a system with 𝑚 filled bands and 𝑛 unfilled is
given by

𝐻 (𝒌) = 𝑊 (𝒌)𝑄𝑚,𝑛𝑊−1(𝒌) (2.24)

where 𝑄𝑚𝑛 = −1𝑚 ⊕ 1𝑛 and𝑊 (𝒌) is a (𝑛 + 𝑚) × (𝑛 + 𝑚) unitary matrix. During the course
of this spectral flattening, no eigenvalue passed through 0 and hence the spectral gap did not
close. Two Hamiltonians are therefore homotopy equivalent if they have the same number of
bands and the same number of negative eigenvalues. Conversely, non-equivalent insulating
phases can only be connected to one another through a closure of the spectral gap, which we
will define as a topological phase transition.

In 2009, Kitaev proposed a general classification of topological insulators and supercon-
ductors based on the tenfold-classification of condensed matter by adopting Clifford algebras
and K-theory [89]. Kitaev’s arguments are well beyond the scope of this thesis, however we
give a brief outline of his main points below.

2.2.1 Introduction to Clifford algebras

First, we will go over the basic definitions of a Clifford algebra. For greater detail we refer
the interested reader to [9, 101, 81]. A Clifford algebra, usually denoted 𝐶𝑙𝑝,𝑞, is defined by
an identity element and the set of generators {𝑒1, 𝑒2, ..., 𝑒𝑝, ..., 𝑒𝑝+𝑞} such that

{𝑒𝜇, 𝑒𝜈} = 2𝜂𝜇𝜈 (2.25)

where 𝜂 is a matrix of the quadratic form defining the algebra, which we will specify below.
With these definitions, it is then possible to construct a basis {1, 𝑒1, ..., 𝑒𝑝+𝑞, 𝑒1𝑒2, ..., 𝑒1𝑒𝑝+𝑞, ..., 𝑒1𝑒2...𝑒𝑝+𝑞}
containing 2𝑝+𝑞 possible elements. A general element of a Clifford algebra is a linear combina-
tion of elements of the basis. Multiplication of generators of a Clifford algebra is understood
as

𝑒1𝑒2 = 𝑒1 · 𝑒2 + 𝑒1 ∧ 𝑒2 (2.26)

where the first term is the dot/interior product and 𝑒1 ∧ 𝑒2 = −𝑒2 ∧ 𝑒1 is the exterior product.
For a real Clifford algebra, 𝐶𝑙𝑝,𝑞 (R)

𝜂𝜇𝜈 =


−𝛿𝜇𝜈 for 0 < 𝜇, 𝜈 ≤ 𝑝

𝛿𝜇𝜈 for 𝑝 < 𝜇, 𝜈 ≤ 𝑝 + 𝑞
(2.27)
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while for a complex Clifford algebra, 𝐶𝑙𝑝+𝑞 (C)

𝜂𝜇𝜈 = 𝛿𝜇𝜈 . (2.28)

In a real Clifford algebra the coefficients of a general element must be real while they may
take on complex values in a complex Clifford algebra, i.e. 𝐶𝑙𝑝,𝑞 (R) ⊗ C ≃ 𝐶𝑙𝑝+𝑞 (C). In the
following, we will distinguish between the signatures of the generators (the signature of an
element being the value of 𝑒2

𝑖
) by writing the set of generators as {𝑒1, 𝑒2, ..., 𝑒𝑝; 𝑒𝑝+1, ..., 𝑒𝑝+𝑞}

for a real algebra where 𝑒2
𝑖
= −1, 𝑖 ≤ 𝑝 and 𝑒2

𝑖
= 1, 𝑖 > 𝑝.

A fair question at this point is, why have introduced Clifford algebras at all? The reason
for it, is that Clifford algebras naturally appear in Dirac Hamiltonians because of their use in
describing spinor quantities. In addition, Clifford algebras are a concise way of keeping track
of the various symmetries in condensed matter systems, as well as describing the objects
that generate these symmetries. For example, we have shown in the preceding section that
𝑇𝐻𝑇 = 𝐻 where 𝑇2 = ±1, 𝑃𝐻𝑃 = −𝐻 where 𝑃2 = ±1 and 𝑆𝐻𝑆 = −𝐻 where 𝑆2 = 1.
Each symmetry operator may be represented as a generator of a Clifford algebra, while the
quadratic form 𝜂𝜇,𝜈 keeps track of the nature of this symmetry operator.

Before moving on, we note that the lower Clifford algebras give us the division algebras

𝐶𝑙0,0 ≃ R 𝐶𝑙1,0 ≃ C 𝐶𝑙2,0 ≃ H (2.29)

where ≃ denotes an isomorphism and H is the set of quaternions. Higher order Clifford
algebras are isomorphic to matrix algebras, i.e.

𝐶𝑙1,1(R) ≃𝐶𝑙0,2(R) ≃ R(2)
𝐶𝑙0,1 ≃ R2 (2.30)

where R(2) is the set of 2 × 2 real matrices and R𝑛 is the n-dimensional set of real numbers,
i.e. n-dimensional Euclidean space. Furthermore the recurrence relations, which we will
simply quote,

𝐶𝑙𝑝,𝑞 ⊗ 𝐶𝑙2,0 ≃ 𝐶𝑙𝑞+2,𝑝

𝐶𝑙𝑝,𝑞 ⊗ 𝐶𝑙1,1 ≃ 𝐶𝑙𝑝+1,𝑞+1

𝐶𝑙𝑝,𝑞 ⊗ 𝐶𝑙0,2 ≃ 𝐶𝑙𝑞,𝑝+2

(2.31)
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allow us to construct all higher order Clifford algebras from the lower ones described above.
The result of this is that all Clifford algebras are isomorphic to R(𝑑),C(𝑑) or H(𝑑). Clifford
algebras are, therefore, a powerful abstraction of the usual matrix algebras we deal with
when describing Dirac Hamiltonians. Importantly though, they do not require an explicit
representation. To surmise, the Clifford algebras offer a powerful way to represent our
Hamiltonian in that they are covers of the relevant classifying spaces.

2.2.2 The periodic table of topological insulators

We recall that our ultimate goal to to determine how many distinct ground states a Hamiltonian
with a particular set of symmetries may posses. As described in the previous section, Clifford
algebras offer a means to keep track of these symmetries. Our strategy, therefore, will
be to construct the relevant Clifford algebras from the symmetries present and then find
which generators can be added under the condition they form another Clifford algebra.
Kitaev referred to this as the Clifford extension problem. In the language of matrices and
Hamiltonians, we are simply asking which terms can be added that respect the symmetry of
the system but lead to a new ground state. In the following, we will adopt the framework set
out by Morimoto and Furasaki to classify single-particle, gapped Hamiltonians by considering
possible extensions to the Clifford algebra with generators corresponding to the allowed terms
in the spectral flattened Hamiltonian, 𝑄, and the relevant symmetries [122, 123].

First, we consider a minimal, massive Dirac Hamiltonian in d-dimensions of the form

𝐻 =

𝑑∑︁
𝑖=1

𝑘𝑖𝛼𝑖 + 𝑚𝛽 (2.32)

where {𝛼𝑖, 𝛼 𝑗 } = 2𝛿𝑖 𝑗 , 𝛽2 = 1 and {𝛼𝑖, 𝛽} = 0∀𝑖. This choice of 𝛼𝑖, 𝛽 define a complex
Clifford algebra, 𝐶𝑙𝑑+1. The choice of 𝛽 may not be unique, depending on the dimensionality
of the system and the number of bands (matrix rank). For example in a two band system,
we can always describe the Hamiltonian in terms of the Pauli matrices, {𝜎𝑥 , 𝜎𝑦, 𝜎𝑧} which
form another complex Clifford algebra. Therefore, in 1D there are two possible choices for
the matrix 𝛽. This ambiguity in the choice of 𝛽 is actually integral to the Clifford extension
problem and we will return to it later.

The conditions for TRS, PHS or chiral symmetry in terms of 𝛼𝑖, 𝛽 are given as
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TRS : {𝑇, 𝛼𝑖} = [𝑇, 𝛽] = 0

PHS : [𝑃, 𝛼𝑖] = {𝑃, 𝛽} = 0

Chiral : {𝑆, 𝛼𝑖} = {𝑆, 𝛽} = 0.

(2.33)

Given that Clifford algebras are based on anticommutation relations, the fact that we have
commutation relations describing the above symmetry constraints is an issue if we would like
to use this symmetries as generators. However, recalling that 𝑇 = 𝑈𝑇𝐾 and 𝑃 = 𝑈𝑃𝐾 we can
define an additional element 𝐽 such that 𝐽2 = −1 and {𝑇, 𝐽} = {𝑃, 𝐽} = 0, i.e. 𝐽 takes the
role of the imaginary unit 𝑖. As such, we can rewrite all the above symmetry constraints as
anticommutation relations

TRS : {𝑇, 𝛼𝑖} = {𝑇, 𝐽𝛽} = 0

PHS : {𝑃, 𝐽𝛼𝑖} = {𝑃, 𝛽} = 0
(2.34)

If we do include this imaginary unit, 𝐽, then if 𝑇 is a generator 𝑇𝐽 = −𝐽𝑇 is also a generator
since [𝐽, 𝛼𝑖] = [𝐽, 𝛽] = 0 and

{𝑇, 𝐽} = 𝑇𝐽 + 𝐽𝑇 = 0 =⇒
𝑇𝑇𝐽 + 𝑇𝐽𝑇 = 0 =⇒

{𝑇,𝑇𝐽} = 0.

(2.35)

There is, of course, a similar argument for 𝑃. Finally, in AZ classes with both 𝑇 and 𝑃 present
we will consider the generator 𝑇𝑃𝐽 instead of 𝑆 (recall that 𝑆 = 𝑇𝑃). Since 𝑇𝑃𝐽 = 𝐽𝑇𝑃

we actually only need to consider one of 𝑇𝑃𝐽 and 𝑇𝑃 as generators in our Clifford algebra,
but we chose the latter in order to maintain consistency with the treatment of Murimoto and
Furasaki.

With all this in mind, we present an extension of table 2.2.2 with the appropriate Clifford
algebra and generators below
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class 𝑆 𝑃 𝑇 𝐶𝑙𝑝,𝑞

A 𝐶𝑙𝑑+1 : {𝜶, 𝛽}
AIII 1 𝐶𝑙𝑑+2 : {𝜶, 𝛽, 𝑆}
AI 1 𝐶𝑙1,𝑑+2 : {𝛽𝐽;𝜶, 𝑇, 𝑇𝐽}
BDI 1 1 1 𝐶𝑙𝑑+1,3 : {𝜶𝐽, 𝑇𝑃𝐽; 𝛽, 𝑃, 𝑃𝐽}
D 1 𝐶𝑑,3 : {𝜶𝐽; 𝛽, 𝑃, 𝑃𝐽}
DIII 1 1 -1 𝐶𝑙𝑑,4 : {𝜶𝐽; 𝛽, 𝑃, 𝑃𝐽, 𝑇𝑃𝐽}
AII -1 𝐶𝑙3,𝑑 : {𝛽𝐽, 𝑇, 𝑇𝐽;𝜶}
CII 1 -1 -1 𝐶𝑙𝑑+3,1 : {𝜶𝐽, 𝑃, 𝑃𝐽, 𝑇𝑃𝐽; 𝛽}
C -1 𝐶𝑙𝑑+2,1 : {𝜶𝐽, 𝑃, 𝑃𝐽; 𝛽}
CI 1 -1 1 𝐶𝑙𝑑+2,2 : {𝜶𝐽, 𝑃, 𝑃𝐽; 𝛽, 𝑇𝑃𝐽}

Note that in the four classes with TRS and PHS (BDI, DIII, CII, CI) we have only included
the operators 𝑃, 𝑃𝐽 and 𝑇𝑃𝐽, while apparently omitting 𝑇 and 𝑇𝐽 as generators. The reason
for this is that we can always chose [𝑇, 𝑃] = 0, without loss of generality. Therefore, 𝑇/𝑇𝐽
cannot be in the same Clifford algebra as 𝑃/𝑃𝐽. However, the symmetry of the time-reversal
operator is still captured by the 𝑇𝑃𝐽 generator. We also note that A and AIII are complex,
while the remaining AZ classes have real Clifford algebras.

Returning to the Clifford extension problem, we are essentially asking which mass terms
we can add to the above table of generator sets such that we extend the relevant Clifford algebra.
The symmetry of these mass terms will reflect the symmetry of the Clifford algebra and,
therefore, will form a classifying space, V. The notion of extending Clifford algebras may
appear ambiguous - after all, if we have a Clifford algebra𝐶𝑙𝑝,𝑞 we can chose𝐶𝑙𝑝,𝑞 → 𝐶𝑙𝑝+1,𝑞

or 𝐶𝑙𝑝,𝑞 → 𝐶𝑙𝑝,𝑞+1 as two valid extensions. However, we can consider the algebras given
in the above table as the extended algebras. That is, we remove the 𝛽/𝛽𝐽 term from each
algebra and then add it back in to form the extended Clifford algebra. The third column of
the below table summarises this concept of Clifford algebra extension for each AZ class:
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class Clifford extension 𝑑 = 0 extension
A 𝐶𝑙𝑑 → 𝐶𝑙𝑑+1 C0 : 𝐶𝑙0 → 𝐶𝑙1 ≃ C → C ⊕ C

AIII 𝐶𝑙𝑑+1 → 𝐶𝑙𝑑+2 C1 : 𝐶𝑙1 → 𝐶𝑙2 ≃ C ⊕ C → C(2)
AI 𝐶𝑙0,𝑑+2 → 𝐶𝑙1,𝑑+2 R0 : 𝐶𝑙0,2 → 𝐶𝑙1,2 ≃ R(2) → R(2) ⊕ R(2)
BDI 𝐶𝑙𝑑+1,2 → 𝐶𝑙𝑑+1,3 R1 : 𝐶𝑙1,2 → 𝐶𝑙1,3 ≃ R(2) ⊕ R(2) → R(4)
D 𝐶𝑙𝑑,2 → 𝐶𝑙𝑑,3 R2 : 𝐶𝑙0,2 → 𝐶𝑙0,3 ≃ R(2) → C(2)
DIII 𝐶𝑙𝑑,3 → 𝐶𝑙𝑑,4 R3 : 𝐶𝑙0,3 → 𝐶𝑙0,4 ≃ C(2) → H(2)
AII 𝐶𝑙2,𝑑 → 𝐶𝑙3,𝑑 R4 : 𝐶𝑙2,0 → 𝐶𝑙3,0 ≃ H → H ⊕ H

CII 𝐶𝑙𝑑+3,0 → 𝐶𝑙𝑑+3,1 R5 : 𝐶𝑙3,0 → 𝐶𝑙3,1 ≃ H ⊕ H → H(2)
C 𝐶𝑙𝑑+2,0 → 𝐶𝑙𝑑+2,1 R6 : 𝐶𝑙2,0 → 𝐶𝑙2,1 ≃ H → C(2)
CI 𝐶𝑙𝑑+2,1 → 𝐶𝑙𝑑+2,2 R7 : 𝐶𝑙2,1 → 𝐶𝑙2,2 ≃ C(2) → R(4)

We will briefly pause to examine some features of this table. The third row shows the Clifford
extension problem in the case of 𝑑 = 0 where we have also used the isomorphisms given in
(2.29) and (2.30) to rephrase the problem in terms of algebra homomorphisms. We have also
labelled each entry in the 𝑑 = 0 classification by C𝑛 or R𝑛 in the case of the complex and real
classes, respectively. Before elucidating the meaning of these labels, we will examine the
recurrence relations given in (2.31) used for constructing higher order algebras. First, using
the first two isomorphisms in (2.31) we note that

𝐶𝑙𝑝+8,𝑞 ≃ 𝐶𝑙𝑝,𝑞 ⊗ 𝐶𝑙8,0
≃ 𝐶𝑙𝑞,𝑝 ⊗ (𝐶𝑙2,0 ⊗ 𝐶𝑙0,2 ⊗ 𝐶𝑙2,0 ⊗ 𝐶𝑙0,2)
≃ 𝐶𝑙𝑝,𝑞 ⊗ (R(2) ⊗ H ⊗ R(2) ⊗ H)
≃ 𝐶𝑙𝑝,𝑞 ⊗ (R(4) ⊗ R(4))
≃ 𝐶𝑙𝑝,𝑞 ⊗ R(16)

(2.36)

where we have used H(𝑚) ⊗ H(𝑛) ≃ R(4𝑚𝑛). Through an identical argument, we also have
the isomorphism

𝐶𝑙𝑝,𝑞+8 ≃ 𝐶𝑙𝑝,𝑞 ⊗ R(16) (2.37)

We also recall that

K(𝑚) ⊗ R(𝑛) ≃ K(𝑚𝑛) (2.38)

where K is one of K = R,C or H. This isomorphism along with those presented in (2.36) and
(2.37) are summarised as
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𝐶𝑙𝑝+8,𝑞 ≃ 𝐶𝑙𝑝,𝑞+8 ≃ 𝐶𝑙𝑝,𝑞 ⊗ R(16) (2.39)

At this point, we will also use the notion of Morita equivalence, which states that K(𝑛) ≈ K

where (in more technically language, Morita equivalence means that two rings have the same
representation theory) [81]. We conclude that the Clifford algebras𝐶𝑙𝑝+8,𝑞 ≈ 𝐶𝑙𝑝,𝑞+8 ≈ 𝐶𝑙𝑝,𝑞
where ≈ denotes Morita equivalence.

An analogous set of arguments may be used to establish the periodicity of complex
Clifford algebras. Using the definition of the complex Clifford algebra

𝐶𝑙2(C) ≃ 𝐶𝑙1,0 ⊗ 𝐶𝑙0,2 ≃ 𝐶𝑙0,3
≃ C(2)

(2.40)

Using this result, we can establish periodicity of the complex Clifford algebras up to Morita
equivalence as

𝐶𝑙𝑛+2(C) ≃ 𝐶𝑙𝑛+2,0 ⊗ C

≃ 𝐶𝑙𝑛,0 ⊗ 𝐶𝑙0,2 ⊗ C

≃ 𝐶𝑙𝑛,0 ⊗ C(2)
≃ 𝐶𝑙𝑛 (C) ⊗ 𝐶𝑙2(C)

(2.41)

i.e. the complex Clifford algebras are Morita equivalent modulo 2, 𝐶𝑙𝑛 (C) ≈ 𝐶𝑙𝑛+2(C),
which is also reflected in the classification of the Clifford algebra extension, C𝑛 = C𝑛 mod 2.
The periodicity of Clifford algebras is often known as Bott periodicity in the context of K
theory, terminology which we will also adopt here [9, 167].

Having established the Bott periodicity of Clifford algebras up to Morita equivalence,
we will return to our explanation of the labels for each Clifford extension. For the complex
class the extension 𝐶𝑙𝑛 → 𝐶𝑙𝑛+1 is straightforwardly labelled by C𝑛 mod 2. Ironically, the
real case is slightly more complex. This is due to the aforementioned ambiguity in the
Clifford extension problem (i.e. whether the positive or negative generators are extended).
Except for the classes AI and AII, all the extensions are of the form 𝐶𝑙𝑝,𝑞 → 𝐶𝑙𝑝,𝑞+1, i.e.
positive generator extension. For now, we will label the positive generator extension as
R𝑝,𝑞. Analysing the case of the negative generator extension problem, we recall the final
isomorphism in (2.31) such that we map the extension 𝐶𝑙𝑝,𝑞 → 𝐶𝑙𝑝+1,𝑞 to 𝐶𝑙𝑞,𝑝+2 → 𝐶𝑙𝑞,𝑝+3.
Therefore, we may label the extension problem of negative generators by R𝑞,𝑝+2. Finally,
using the isomorphisms in (2.30) and the middle relation in (2.31) we find
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𝐶𝑙𝑝,𝑞 ⊗ 𝐶𝑙1,1 ≃ 𝐶𝑙𝑝+1,𝑞+1

≃ 𝐶𝑙𝑝,𝑞 ⊗ R(2)
(2.42)

meaning that the extension problem only depends on 𝑞 − 𝑝, since the direct product with
R(2) has no effect on the classification of the problem through the isomorphism (2.38).
Therefore, for the positive generator extension R𝑝,𝑞 = R𝑞−𝑝 mod 8 and for the negative
generator extension R𝑝,𝑞 = R𝑝−𝑞+2 mod 8.

Given Bott periodicity, we conclude that it is sufficient to solve the Clifford extension
problem for 𝑑 = 0 since considering the dimension will simply shift the classifying spaces of
each class by 𝑑, that is

C𝑛 → C𝑛+𝑑 mod 2

R𝑛 → R𝑛+𝑑 mod 8
(2.43)

Having constructed a set of algebra extensions/homomorphisms for each topological
class, we can now characterise V𝑖, that is the classifying space of mass terms that lead to
the extended algebra. As discussed by Morimoto et al, in 𝑑 dimensions there is a minimum
matrix rank required such that there are any possible mass terms [123]. For example, as
discussed at the beginning of this section, there is an ambiguity over the choice of 𝛽 in a
two-band system where 𝑑 = 1, however in 𝑑 = 3 there is no possibility of an additional
mass term in a two-band system. Therefore, for each dimension 𝑑 there will be a minimum
matrix rank 𝑟𝑚𝑖𝑛 below which there would be no possible mass matrices. However, as will
become clear later, it is not particularly illuminating to consider the classifying spaces for the
minimum matrix rank, 𝑟𝑚𝑖𝑛.

As previously discussed, it is clear that Hamiltonians in the same topological class should
be should be homotopy equivalent (i.e. equivalent under continuous deformation). In terms
of the flattened Hamiltonian presented in equation 2.24, 𝑄, homotopy equivalence can be
understood as Hamiltonians of equal rank sharing the same number of negative eigenvalues.
However, this definition of equivalence is quite restrictive and does not permit a particularly
robust classification system, as we shall discuss later in the small dimensional exceptions
section as the end of this chapter. Rather, Kitaev proposed that Hamiltonians should be
classified on the basis of stable equivalence, a notion borrowed from the mathematical subject
of 𝐾-theory that essentially communicates equivalence of Hamiltonians up to augmentation
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with some number of trivial valence bands, and in the stable regime that is, in the limit of a
large number of valence and conduction bands.

A brief introduction to 𝐾-theory

While the intricacies of 𝐾-theory will not be discussed here, it is worth briefly clarifying its
relationship to the task at hand, namely the topological classification of Hamiltonians. Much
of this discussion is taken from [10, 81, 83]. 𝐾-theory is concerned with the classification of
vector bundles up to stable isomorphism. Recall a vector bundle as the triplet 𝜖 = (𝐸, 𝑀, 𝑝),
where 𝐸 is known as the total space, 𝑀 is known as the base space and 𝑝 is an infinitely
differentiable projection, satisfying the relationship 𝑝 : 𝐸 → 𝑀 . For each 𝑥 ∈ 𝑀 the fibres
are defined as 𝐸𝑥 := 𝑝−1({𝑥}). This triplet is considered a vector bundle if the following are
conditions are satisfied:

• 𝐸𝑥 carries the structure of a vector space of dimension 𝑛 ∈ N, 𝑉𝑛;

• For each 𝑥 ∈ 𝑀 there exists an open neighbourhood 𝑈 and an integer 𝑛𝑥 ∈ N such
that there exists a diffeomorphism 𝜙 : 𝑈 × C𝑛𝑥 → 𝑝−1(𝑈) which is fibrewise linear
𝜙𝑥 : {𝑥} × K𝑛𝑥 → 𝑝−1({𝑥}) := 𝐸𝑥 , i.e. 𝜖 is locally trivial (as the total space can be
considered to locally have a product structure). If 𝑛𝑥 = 𝑛 for all𝑈 covering 𝑀 then the
rank of the bundle is said to be 𝑛. Here K is either the field of real or complex numbers,
therefore giving a real or complex vector bundle, respectively.

In the current setting, we are considering the valence bundle, a sub-bundle of the Hilbert
bundle, with the Brillouin Zone as the base space, 𝑀 = T𝑑 where 𝑑 ∈ N is the dimension
of the crystalline material, and the fibres are Hilbert spaces formed of the eigenstates of the
Hamiltonian, 𝐻 (𝒌) where 𝒌 ∈ 𝑀. In addition, the fibres of the valence bundle come with
additional structure due to the symmetries discussed in the previous section.

Two vector bundles with the same base space, 𝜖1 = (𝐸1, 𝑀, 𝑝1) and 𝜖2 = (𝐸2, 𝑀, 𝑝2),
are isomorphic if there exists a smooth, bijection 𝑓 : 𝐸1 → 𝐸2 that satisfies 𝑝2 · 𝑓 = 𝑝1

and 𝑓 |𝑝−1
1 ({𝑥}) : 𝑝−1

1 ({𝑥}) → 𝑝−1
2 ({𝑥}, i.e. 𝑓 is a linear isomorphism over each fibre. Just

as two Hamiltonians cannot be homotopically equivalent unless they have the same size
and number of negative eigenvalues, two vector bundles cannot be isomorphic if they do
not have the same rank meaning that different vector bundles over the same base space are
classified by their rank. The set of isomorphism classes over the base space 𝑋 is then denoted
vect(𝑀) =

⋃
𝑚∈N vect𝑚 (𝑀) where vect𝑚 (𝑀) is the set of isomorphism classes of vector

bundles of rank 𝑚 ∈ N. Furthermore, an additive operation, known as the Whitney sum, can
be defined and used to combine vector bundles in a similar manner to the direct sum, i.e if



2.2 Topological Classification of Hamiltonians 77

𝜖, 𝜖′ are bundles with rank 𝑚, 𝑛 respectively 𝜖 ⊕ 𝜖′ is a vector bundle of rank 𝑛 + 𝑚.

At this point, we will quote some useful results without proof that will later aid us in the
topological classification of vector bundles. Firstly, let us define the complex Grassmanian,
𝐺𝑚 (C𝑛) and real Grassmanian, 𝐺𝑚 (R𝑛) as

𝐺𝑚 (C𝑛) = 𝑈 (𝑛)/𝑈 (𝑛 − 𝑚) ×𝑈 (𝑚)
𝐺𝑚 (R𝑛) = 𝑂 (𝑛)/𝑂 (𝑛 − 𝑚) ×𝑂 (𝑚)

(2.44)

which can be interpreted as the space of all p-dimensional linear subspaces of K𝑛. The
relevance of Grassmannians to our discussion on topological classification will become
clearer in the following section. Classifying spaces for the unitary and orthogonal groups are
then defined in the colimit,

𝐵𝑈 (𝑚) = lim
→𝑛

𝐺𝑚 (C𝑛)

𝐵𝑂 (𝑚) = lim
→𝑛

𝐺𝑚 (R𝑛)
(2.45)

that is, the classifying spaces for the unitary and orthogonal groups are constructed as the
Grassmannian of n-planes in an infinite-dimensional space, C∞ and R∞ respectively.

Using the above definitions we now quote without proof the classification theorem for
isomorphism classes of vector bundles. Namely, there is a bijection between the set of
isomorphism classes of vector bundles over 𝑀 and homotopy classes of maps from 𝑀 into
Grassmannians,

[𝑀, 𝐵𝑈 (𝑚)] � vect𝑚 (𝑀) (2.46)

for complex vector bundles, with an analogous relation for real vector bundles.

Rather than only considering the set vect(𝑀), 𝐾-theory promotes vect(𝑀) to a group
through the use of Grothendieck completion. For a set 𝑋 , the Grothendieck group is
defined as the product 𝑀 × 𝑀/∼ where the equivalence relation in the ’divisor’ is given by
(𝑎, 𝑏) ∼ (𝑎′, 𝑏′) =⇒ ∃𝑐 ∈ 𝑀𝑠𝑡.𝑎 + 𝑏′ + 𝑐 = 𝑎′ + 𝑏 + 𝑐. Rephrased, the Grothendieck group
considers the difference class (𝑎, 𝑏) ∈ 𝑋 × 𝑋 , usually represented in the group as 𝑎 − 𝑏.

The zeroth 𝐾-group of the manifold 𝑋) is then defined as,
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𝐾0(𝑀) = G(vect(𝑀))
= {(𝜖, 𝜖′) |𝜖 = (𝐸, 𝑝, 𝑀), 𝜖′ = (𝐸′, 𝑝′, 𝑀)}

(2.47)

i.e. the elements of 𝐾0(𝑀) are the virtual bundles 𝜖 − 𝜖′, where the subtraction operation is
defined by the Grothendieck completion above. Note that for real vector bundles, we often
say that the Grothendieck completion leads to the zeroth 𝐾𝑂-group.

The final step towards stable equivalence of vector bundles is to define the reduced
𝐾-group of the space 𝑀 , denoted as 𝐾̃ (𝑀), as the group of vector bundles over 𝑀 under the
∼ equivalence relation defined above, namely

𝜖 ∼ 𝜖′ if

𝜖 + 𝜁𝑠1 � 𝜖
′ + 𝜁𝑠2

(2.48)

for some integers 𝑠1, 𝑠2, where 𝜁𝑠 is a trivial vector bundle of rank 𝑠. The reduced 𝐾-group is
then the group of stable equivalence classes of vector bundles. In terms of electronic spectra,
these equivalence classes are the valence bundles equivalent with one another modulo a
trivial bundle. This is an incredibly powerful result. Rather than only consider homotopy
equivalence for Hamiltonians of the same rank and flattened spectra, stable equivalance via
Grothendieck completion has allowed us to topologically classify Hamiltonians up to the
addition of any number of trivial electronic bands. We will revisit this notion in section 2.2.4,
where we shall discuss systems with fragile topology which become trivial under the addition
of a trivial band.

Before moving back to the main text, we will give a classification for (reduced) 𝐾-theory
based on that given for vector bundles above. Given the definition of 𝐾̃0(𝑀) as the stable
equivalence classes of vector bundles over 𝑀 there is an isomorphism

𝐾̃0(𝑀) � [𝑀, 𝐵𝑈] (2.49)

where 𝐵𝑈 = lim→𝑚 𝐵𝑈 (𝑚) is the classifying space of the infinite unitary group. An
analogous result is obtained for real vector bundles in terms of the reduced ˜𝐾𝑂-group,

˜𝐾𝑂0(𝑀) � [𝑀, 𝐵𝑂] (2.50)

This result will be used below when classifying the 10 Altland-Zirnbauer classes of topological
matter.
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Classifying spaces

In order to determine the classifying spaces for the real classes, we introduce the following
sequence of groups

...𝑂 (16𝑟) ⊃ 𝑈 (8𝑟) ⊃ 𝑆𝑝(4𝑟) ⊃ 𝑆𝑝(2𝑟) × 𝑆𝑝(2𝑟) ⊃ 𝑆𝑝(2𝑟)
⊃ 𝑈 (2𝑟) ⊃ 𝑂 (2𝑟) ⊃ 𝑂 (𝑟) ×𝑂 (𝑟) ⊃ 𝑂 (𝑟)...

(2.51)

where ⊃ denotes a proper superset and we have introduced the orthogonal, unitary and
symplectic lie groups defined as

𝑂 (𝑟) = {𝑀 ∈ 𝐺𝐿 (𝑟,R) : 𝑀𝑀𝑇 = 𝑀𝑇𝑀 = 1}
𝑈 (𝑟) = {𝑀 ∈ 𝐺𝐿 (𝑟,C) : 𝑀𝑀† = 𝑀†𝑀 = 1}
𝑆𝑝(𝑟) = {𝑀 ∈ 𝐺𝐿 (𝑟,H) : 𝑀𝑀̄ = 𝑀̄𝑀 = 1},

(2.52)

where 𝐺𝐿 (𝑛, 𝐹) are the 𝑛 × 𝑛 general linear matrices over the field 𝐹 and we have defined
𝑀̄ = (𝑀★)𝑇 and ★ is the conjugation operation for the quaternions, 𝑞★ = 𝑞0 − 𝑞1𝑖− 𝑞2 𝑗 − 𝑞3𝑘 .
This should be compared to the nested sequence of algebras

...R(16) ⊃ C(8) ⊃ H(4) ⊃ H(2) ⊕ H(2) ⊃ H(2)
⊃ C(2) ⊃ R(2) ⊃ R ⊕ R ⊃ R.

(2.53)

There is a slight abuse of notation in the sequence of groups - the direct product𝑂 (𝑛) ×𝑂 (𝑚)
is isomorphic to (

𝐴𝑛 0
0 𝐴𝑚

)
(2.54)

where 𝐴𝑛/𝑚𝐴𝑇𝑛/𝑚 = 1. Similarly, for the complex spaces we introduce the sequence of
groups

...𝑈 (2𝑟) ⊃ 𝑈 (𝑟) ×𝑈 (𝑟) ⊃ 𝑈 (𝑟) (2.55)

and compare it to

...C(2) ⊃ C ⊕ C ⊃ C. (2.56)
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There is a one-to-one correspondence between the group/algebra pairs given above in the
sense that matrices in each group are norm preserving [167, 42].

Using these results, it is then possible to establish the classifying space of generators
to extend the Clifford algebra. For example, class AIII corresponds to the homomorphism
taking 2 block diagonal matrices acting on C to a 2 × 2 matrix acting on C(2). As well, recall
that Morita equivalence permits us to write this homomorphism as C(𝑚) ⊕ C(𝑚) → C(2𝑚).
We should bear this in mind as we are generally dealing with 𝑛 + 𝑚 band Hamiltonians, as
discussed at the beginning of this section. As argued by Abramovici and Kalugin [2], the
action of the Dirac mass matrix, 𝛽, is a norm preserving mapping of C𝑚 → C𝑚, where 𝑚 is
the number of (filled) bands below the Fermi level. Similarly, classes BDI and CII correspond
to the homomorphisms R(2) ⊕ R(2) → R(2) and H ⊕ H → H(2) and 𝛽 must be a norm
preserving mapping of R𝑚 → R𝑚 and H𝑚 → H𝑚, respectively. Therefore

V =


BDI: 𝑂 (𝑚)
AIII: 𝑈 (𝑚)
CII: 𝑆𝑝(𝑚)

(2.57)

Conversely, the classes A, AI and AII all take the form K(𝑟) → K(𝑟) ⊕ K(𝑟) for the algebras
R,C,H for some matrix rank 𝑟 . In the case of class A, the action of 𝛽 is, therefore, to split the
space C𝑛+𝑚 into C𝑛 ⊕ C𝑚. Of course, there is ambiguity with regards into how this splitting
should occur and, therefore, the correct form of 𝛽 should be 𝑈 (𝑛 + 𝑚)/(𝑈 (𝑛) ×𝑈 (𝑚)) 1.
Furthermore, there is an ambiguity in the partition of 𝑛 + 𝑚 bands (for example, we can just
as well split 𝑛 + 𝑚 bands into 𝑛 − 1 empty and 𝑚 + 1 filled bands). Therefore the classifying
space for each class is actually the union of every unique partition of 𝑛 + 𝑚 bands, i.e.

V =


AI:

⋃
𝑚 𝑂 (𝑛 + 𝑚)/(𝑂 (𝑛) ×𝑂 (𝑚))

A:
⋃
𝑚𝑈 (𝑛 + 𝑚)/(𝑈 (𝑛) ×𝑈 (𝑚))

AIII:
⋃
𝑚 𝑆𝑝(𝑛 + 𝑚)/(𝑆𝑝(𝑛) × 𝑆𝑝(𝑚))

(2.58)

Finally, we have the classes D, DIII, C and CI where the algebra homomorphisms take
one algebra to another, K(𝑚) → K′(𝑚) and K(𝑚) → K′(2𝑚). In the case of class D, this
involves assigning a complex structure to a real vector space, i.e. R2𝑚 into C𝑚. Since the
complex space is invariant under unitary transformations, the mass matrix must be of the
form 𝑂 (2𝑚)/𝑈 (𝑚). Repeating this treatment for the remaining classes we have

1Recall that if K is a normal subgroup of G that is, 𝐾 = {𝑘 : 𝑔𝑘𝑔−1 = 𝑘, 𝑔 ∈ G} then G/K = {𝑔𝐾 : 𝐾, 𝑔 ∈
H} is the set of all left cosets of K in G.
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V =



D: 𝑂 (2𝑚)/𝑈 (𝑚)
DIII: 𝑈 (2𝑚)/𝑆𝑝(𝑚)
C: 𝑆𝑝(𝑚)/𝑈 (𝑚)
CI: 𝑈 (𝑚)/𝑂 (𝑚)

(2.59)

Note the the factor of 2 is present in the classes D and DIII, but not in C or CII.
We surmise the discussion above in the table below, showing the classifying spaces for

each AZ class with reference to the corresponding algebra homomorphisms:

class 𝑆 𝑃 𝑇 𝑑 = 0 extension V
A C0 : C → C ⊕ C

⋃
𝑚𝑈 (𝑛 + 𝑚)/𝑈 (𝑛) ×𝑈 (𝑚)

AIII 1 C1 : C ⊕ C → C(2) 𝑈 (𝑚) ×𝑈 (𝑚)/𝑈 (𝑚) ≃ 𝑈 (𝑚)
AI 1 R0 : R(2) → R(2) ⊕ R(2) ⋃

𝑚 𝑂 (𝑛 + 𝑚)/𝑂 (𝑛) ×𝑂 (𝑚)
BDI 1 1 1 R1 : R(2) ⊕ R(2) → R(4) 𝑂 (𝑚) ×𝑂 (𝑚)/𝑂 (𝑚) ≃ 𝑂 (𝑚)
D 1 R2 : R(2) → C(2) 𝑂 (2𝑚)/𝑈 (𝑚)
DIII 1 1 -1 R3 : C(2) → H(2) 𝑈 (2𝑚)/𝑆𝑝(𝑚)
AII -1 R4 : H → H ⊕ H

⋃
𝑚 𝑆𝑝(𝑛 + 𝑚)/𝑆𝑝(𝑛) × 𝑆𝑝(𝑚)

CII 1 -1 -1 R5 : H ⊕ H → H(2) 𝑆𝑝(𝑚) × 𝑆𝑝(𝑚)/𝑆𝑝(𝑚) ≃ 𝑆𝑝(𝑚)
C -1 R6 : H → C(2) 𝑆𝑝(𝑚)/𝑈 (𝑚)
CI 1 -1 1 R7 : C(2) → R(4) 𝑈 (𝑚)/𝑂 (𝑚)

It is interesting to compare the classifying spaces to the sequence of groups discussed
earlier. Indeed, starting at the appropriate point in the sequence, one can be convinced that
V𝑖 ≃ G𝑖/G𝑖+1 where G𝑖 is the appropriate Lie algebra. Remarkably, the classifying spaces,
V correspond exactly to the 10 symmetric spaces considered by Cartan, as mentioned in the
previous section. Given this correspondence, the classifying space is occasionally referred to
as a manifold.

2.2.3 Topological Invariants in the AZ Classification

Of course, of all the Hamiltonians in a given symmetry class many will not be topologically
non-trivial. For instance, as discussed in the previous chapter, Bi2Se3 and Sb2Se3 possess
the same Hamiltonian but while the former possess a non-trivial Z2 invariant the latter is
trivial. A final question remains: can we use the AZ classification to predict the topological
invariants that will classify Hamiltonians in a given class? Phrased another way, given the
classifying space of each AZ class how many topologically distinct ground-states are there?



82 An Introduction to Topological Invariants

Once again we will consider a flattened Hamiltonian, but this time we shall explicitly
construct it as

𝑄(𝒌) = 1 − 2
∑︁
𝛼

|𝜓𝛼 (𝒌)⟩ ⟨𝜓𝛼 (𝒌) | (2.60)

where 𝛼 runs over all filled bands. Recalling the completeness relation, 1 =
∑
𝛼 |𝜓𝛼⟩ ⟨𝜓𝛼 | +∑

𝛽

��𝜓𝛽〉 〈
𝜓𝛽

�� where 𝛽 indexes the empty bands, it is clear to see that the eigenvalues of
𝑄(𝒌) are ±1 and Tr(𝑄(𝒌)) = 𝑛 − 𝑚 [151]. The eigenvectors themselves, however, are the
same as 𝐻 (𝒌) and we can, therefore, consider 𝑄(𝒌) to be a valid implementation of the
spectral flattened Hamiltonian. Given a particular AZ class, 𝑄(𝒌) must, of course, possess
the relevant symmetries. Indeed, with the previous discussion of classifying spaces in mind
we can state that 𝑄(𝒌) ∈ V𝑖. Alternatively, we can reinterpret 𝑄 as a mapping from the BZ,
a d-dimensional torus, to the relevant classifying space manifold, i.e.

𝑄 : T𝑑 → V𝑖 (2.61)

The question of ’how many distinct ground-states are there?’ is actually a question of how
many such maps there are. Mathematically this is given by the set of homotopy class of maps
𝑄 such that 𝑄 : T𝑑 → V𝑖, denoted [T𝑑 ,V𝑖]. Note the similarity of this expression to those
given in equations 2.49 and 2.50. In general, computing homotopy classes is not an easy task,
however the problem is greatly simplified if we can consider a map from a d-dimensional
sphere, 𝑆𝑑 rather than the torus, T𝑑 . That is, we wish to consider [𝑆𝑙 ,V𝑖] where 𝑙 ≤ 𝑑. While
this may appear to be quite an alarming substitution to make (after all, every knows you can’t
deform an orange into a donut) Avron et al [11] demonstrated that, under certain conditions,
it is indeed acceptable to consider a spherical BZ (there is actually a slight subtlety here
that we will not address - taking the BZ as a sphere rather rather than a torus only allows us
to consider strong topological phases, but does not allow us to consider the possibility of
weak ones. Generally however, homotopy groups of T𝑑 can be written as the direct sum of
homotopy groups over 𝑆𝑑 . For a more detailed mathematical account of this issue, the reader
is referred to Kennedy and Guggenheim [86]). As such, the problem of characterising the
number of distinct ground states in an AZ class can be reduced to considering the homotopy
groups

𝜋𝑑 (V𝑖) (2.62)

where 𝜋𝑑 (𝑋) is the homotopy group describing maps from the d-dimensional sphere 𝑆𝑑 to
𝑋 . As shown by Kitaev using K-theory [89], the homotopy groups of the real and complex
spaces possess an iterative structure
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𝜋𝑑 (R𝑞) = 𝜋0(R𝑞−𝑑)
𝜋𝑑 (C𝑞) = 𝜋0(C𝑞−𝑑),

(2.63)

meaning that calculating the zeroth order homotopy group for each classifying space solves
the problem in every dimension, 𝑑. Furthermore, Bott periodicity of complex and real
classifying spaces (which was described algebraically in the previous section) is given for
sufficiently large 𝑚 as

𝜋𝑑 (𝑂) ≃ 𝜋𝑑+8(𝑂)
𝜋𝑑 (𝑈) ≃ 𝜋𝑑+2(𝑈)

(2.64)

Therefore, characterising the topological invariants of each AZ class is a matter of calculating
the homotopy group 𝜋0(V), i.e. determining how many maps there are from the 0-sphere
to the manifold V. Recalling that the 0-sphere is simply a pair of points, calculation of the
zeroth homotopy group is simply a question of path connectedness, that is a space 𝑋 is path
connected, 𝜋0(𝑋) = 0, if for every pair of points 𝑥, 𝑦, ∈ 𝑋 there is a path between them. As an
example, consider the unitary group which corresponds to class A. Since every unitary matrix
can be diagonalised by another unitary matrix, i.e. 𝐴 = 𝑉Λ𝑉† for some unitary matrices
𝐴,𝑉,Λ where Λ = diag(𝑒𝑖𝜃1 , 𝑒𝑖𝜃2 , · · · , 𝑒𝑖𝜃𝑛), and detΛ = 1 =⇒ ∑

𝑖 𝜃𝑖 = 0 mod 2𝜋. There
is therefore a map 𝑓 (𝑡) = 𝑉diag(𝑒𝑖𝑡𝜃1 , 𝑒𝑖𝑡𝜃2 , · · · , 𝑒𝑖𝑡𝜃𝑛)𝑉† where 𝑓 (0) = 1𝑛 and 𝑓 (1) = Λ

connecting the identity to every unitary. Therefore,𝑈 (𝑛) is path connected and 𝜋0(C1) = {1},
i.e. the homotopy group contains exactly one element and is trivial. On the other hand, the
manifold

⋃
𝑚𝑈 (𝑛 + 𝑚)/(𝑈 (𝑛) ×𝑈 (𝑚)) is not path connected. While each component of C0

is path connected the full space is made up of disconnected components. Therefore, there
are an integer number disconnected components of the space and 𝜋0(C0) = Z. Using Bott
periodicty of complex spaces, we conclude that for large enough 𝑚

𝜋𝑑 (𝑈) =


0 𝑛 is even

Z 𝑛 is odd.
(2.65)

Similarly, the path connected components of the real classifying spaces can be calculated to
give the full topological classification. The table below details the topological invariants of
these classifying spaces for the dimensions 0 ≤ 𝑑 ≤ 7, after which the sequence repeats:
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class 𝑆 𝑃 𝑇 d=0 1 2 3 4 4 6 7
A Z 0 Z 0 Z 0 Z 0
AIII 1 0 Z 0 Z 0 Z 0 Z

AI 1 Z 0 0 0 2Z 0 Z2 Z2

BDI 1 1 1 Z2 Z 0 0 0 2Z 0 Z2

D 1 Z2 Z2 Z 0 0 0 2Z 0
DIII 1 1 -1 0 Z2 Z2 Z 0 0 0 2Z

AII -1 2Z 0 Z2 Z2 Z 0 0 0
CII 1 -1 -1 0 2Z 0 Z2 Z2 Z 0 0
C -1 0 0 2Z 0 Z2 Z2 Z 0
CI 1 -1 1 0 0 0 2Z 0 Z2 Z2 Z

2Z represents the set of even integers. Note the patterns present in the homotopy groups
of the complex and real spaces, namely 𝜋𝑛+1(C𝑞) ≃ 𝜋𝑛 (𝐶𝑞+1 mod 2) and 𝜋𝑛+1(R𝑞) ≃
𝜋𝑛 (R𝑞+1 mod 8).

2.2.4 Beyond the Tenfold Way

The classification given above describes a concise and formulaic approach to interrogating
the topological properties of matter, and provides condensed matter physicists with a crucial
set of tools that may aid in the understanding of exotic phases of matter. However, soon after
the theoretical prediction and experimental discovery of TIs protected by a Z2 invariant, it
was found that 3D lattices with Hamiltonians that respected no antiunitary symmetries (that
is, class A systems) could still host topologically non-trivial states [163]. Furthermore, new
research has delved beyond the stable regime of 𝐾-theory to consider low rank systems that
can host fragile and delicate topology predicted by homotopy theory. We end this chapter
with a brief discussion on extensions to the tenfold way.

Crystalline Symmetries

As yet, we have only discussed how the local symmetries of a Hamiltonian, namely the
time-reversal, particle-hole and chiral symmetries, are used to characterise the topological
properties of the system in terms of the tenfold way of Altland-Zirnbauer topological classes.
However, in the following chapters we will heavily rely on spatial symmetries to extend this
classification. In particular, the local symmetries previously discussed will not necessarily be
respected by the introduction of a magnetic exchange term, however a composite symmetry
𝑀 = 𝑔𝐴, where 𝐴 is one of the antiunitary symmetries discussed above and 𝑔 is a space
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group symmetry, is respected. This section will briefly discuss the theoretical foundations of
extending the tenfold way with crystalline symmetries.

First, we define the action of a space group symmetry on the Bloch Hamiltonian. An
element of the space group of a system 𝐺 is denoted {𝑝 |𝒂} ∈ 𝐺 which acts on position as
𝒙 → 𝑝𝒙 + 𝒂. The element 𝑝 is an element of the point group 𝑝 ∈ 𝑃, the class of symmetry
elements on the lattice that leave the origin fixed. For each 𝑔𝑝 = {𝑝 |𝒂𝑝} ∈ 𝐺, one can define
a unitary operator,𝑈𝑝, that acts on the Bloch Hamiltonian, giving the symmetry relation in
momentum space

𝑈𝑝 (𝒌)𝐻 (𝒌)𝑈†
𝑝 (𝒌) = 𝐻 (𝑝𝒌). (2.66)

The unitary transformation adheres to the symmetry of the lattice such that𝑈𝑝 (𝒌) = 𝑈𝑝 (𝒌+𝑮)
where 𝑮 is a reciprocal lattice vector. Note that for crystalline symmetries which leave a point
fixed, i.e. 𝒌0 = 𝑝𝒌0, the Hamiltonian commutes with the unitary symmetry [𝐻 (𝒌0),𝑈𝑝 (𝒌0)],
meaning that if 𝒌0 is a TRIM then it is possible to define the topological invariants at that
point in the eigenspace of𝑈𝑝 (𝒌0).

Systems in which TRS is broken, but remain protected by another emergent antiunitary
symmetry have already been discussed in the previous chapter, namely antiferromagnetic
TIs where the combination of half a lattice translation and TRS still provides topological
protection according to a Z2 index. In general, however, one can consider spatial symmetries
from the space group of the Hamiltonian acting in unison with TRS as well. Such an extension
to the topological classification based on the local antiunitary symmetries described in this
chapter is similar to the notion of a topological crystalline insulators (TCI) [46].

Following the theoretical description of a 3D TI, it was soon noticed that the presence of
additional spatial symmetries could greatly simplify the task of computing the Z2 invariant,
however spatial symmetries can also modify and extend the topological classification of
materials beyond the tenfold way. Weak topological insulators rely on the presence of a
translational symmetry on the lattice, however additional point group symmetries can lead to
the existence topologically protected phases in cases where antiunitary symmetries alone may
not prove sufficient. Such phases of matter are generically known as TCIs. As an example,
consider a tetragonal lattice with fourfold rotational symmetry around the 𝑧-axis 𝐶4𝑧 and a
spinless TRS, 𝑇 where 𝑇2 = 1. Consulting the AZ-classification table, one finds this system is
in class 𝐴𝐼 which hosts only topologically trivial phases in 2D and 3D. However, solving for
the electronic dispersion of the system in a slab geometry (i.e. a translationally invariant 2D
system) demonstrates the existence of a doubly degenerate quadratic band crossing forming
surface states on the (001)-surface. Indeed, by considering the composite symmetry𝑈𝐶4𝑧𝑇
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and noticing that (𝑈𝐶4𝑧𝑇)2 = −1 one can demonstrate that these doublet bands admit a Z2

classification.
A more concrete demonstration of the role of space group symmetries in the physics of

topological states can be found from a slight adjustment to the definition of the sewing matrix,
introduced by Fu and Kane [47] and discussed in the previous chapter. Recall the definition
of the sewing matrix in equation 1.74 as

𝑤𝑚𝑛 (𝒌) = ⟨𝑢𝑚 (−𝒌) | 𝑇 |𝑢𝑛 (𝒌)⟩ . (2.67)

which is calculated over the set of occupied bands. It is specifically the elements of the
sewing matrix at the TRIM, Γ𝑖, that are the objects of importance in the context of calculating
the Z2 invariants. In particular, the strong topological invariant 𝜈0 is given by

(−1)𝜈0 =
∏
𝑖

𝛿𝑖 where

𝛿𝑖 =

√︃
det

{
𝑤 (Γ𝑖)

}
Pf(𝑤(Γ𝑖))

.

(2.68)

However, the set of points Γ𝑖 are fixed by the space group of the lattice, motivating us to
determine how the space group transforms under a space group symmetry,𝑈𝑝:

𝑤𝑚𝑛 (𝒌) = ⟨𝑢𝑚 (−𝒌) |𝑇𝑢𝑛 (𝒌)⟩
= ⟨𝑢𝑚 (−𝑝𝒌 |𝑈†

𝑝𝑇𝑈𝑝 |𝑢𝑛 (𝑝𝒌)⟩
= 𝑤𝑚𝑛 (𝑝𝒌),

(2.69)

implying that where high symmetry points are related to one another by the lattice point
group, the values of 𝛿 at these points must be equal. A concrete example provided by Slager
[163] considers a square lattice with TRIM given at the points Γ = (0, 0), 𝑋 = (𝜋, 0), 𝑌 =

(0, 𝜋), 𝑀 = (𝜋, 𝜋). From the definition of the Z2 topological invariant given above, it is clear
that a non-trivial phase can only exist when an odd number of 𝛿𝑖 are negative. Therefore,
the tuple (𝛿Γ, 𝛿𝑋 , 𝛿𝑌 , 𝛿𝑀) = (1,−1,−1, 1) should result in a trivial phase, according to the
tenfold way. However, the presence of the 𝐶4 symmetry in the square lattice leads to a
non-trivial topological phase protected by crystal symmetry. In particular, because the 𝑋
and 𝑌 points are related by 𝐶4 symmetry (i.e. they are symmetry equivalent TRIM), the
band inversions at these points are pinned in the topological phase, resulting in a TCI. It is
clear from this example that it is not simply the product of the values of 𝛿𝑖 at the TRIM that
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control the topological properties of the phase, as those TRIM related by a spatial symmetry
must necessarily have the sign of 𝛿𝑖 equal. It is therefore sufficient to consider a subset of
inequivalent TRIM in the BZ that are not related by any spatial symmetry. Alternatively, one
considers the set of TRIM that are equivalent in the sense that they are related by spatial
symmetry. The values of 𝛿 for all TRIM within each set are, therefore, equal. Labelling each
set of TRIM 𝑎, 𝑏, 𝑐, · · ·, distinct topological phases are produced by setting one of 𝛿𝑎 = −1
(the signs can be reversed, leaving the resulting phase unaffected). This procedure is general
enough to be abstracted to the topological classification of materials with any space group
symmetry [163].

Using the above ideas, one is then in a position to build out an equivariant 𝐾-theory that
incorporates spatial symmetries, as presented by Kruthoff et. al. [96]. First, one considers
the high symmetry points in the band structure. At these points, the Bloch Hamiltonian
commutes with elements of the little co-group 𝐺̃ 𝒌 = 𝐺 𝒌/𝑇 , where 𝐺 𝒌 is the little group
consists of the set of space group symmetries that leave 𝒌 invariant up to a reciprocal lattice
vector and 𝑇 ⊂ 𝐺 is the subgroup of lattice translations (the little co-group is therefore
the point group of the little group). As mentioned above, eigenfunctions of 𝐻 (𝒌) at these
points are also eigenfunctions of the little co-group. Consequently, the valence band states at
𝒌 form a representation of 𝐺̃ 𝒌 . Furthermore, one can consider how these representations
along high symmetry lines connect to one another. Specifically considering the case of
class A systems, the representations of these bands must connect continuously at their
endpoints. Rephrased, given a symmetry operation and a Bloch state, the eigenvalue of this
operation cannot suddenly change at the endpoint of a high symmetry line in the BZ. Using
this simple observation, a straightforward combinatorial algorithm can be developed that
amounts to connecting representations at high symmetry points in the BZ according to a
set of gluing conditions. Such a procedure, although built from little more than elementary
band representation theory, completely classifies the topological phases in class A where
additional crystalline symmetries are considered for one and two dimensions, and agrees with
the formal 𝐾-theoretic results. In the following chapter we will revisit the topic of extensions
to the tenfold way utilising crystalline symmetries.

Small dimensional exceptions

To conclude this chapter, we will briefly discuss the situation where we do not consider
the limit of very large Hamiltonians. We only briefly mentioned in a previous section that
considering Hamiltonians with a small number of bands was not particularly useful for a
stable classification, but we will flesh out these issues in more detail here.
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Examining the table of topological invariants given in (2.2.3), we find that class A
has no topologically non-trivial phase in three-dimensions, i.e. there is no QAHE phase
in 3D. However, consider a two band Hamiltonian with one band filled in class A of
the AZ classification. The classifying space of this system is given by the Grassmannian
𝐺1(C2) = 𝑈 (2)/𝑈 (1)×𝑈 (1) which is homotopy equivalent to the 2-sphere. The Hamiltonian
of the system is then given by

𝐻 (𝒌) = 𝒏(𝒌) · 𝝈 (2.70)

Therefore, we can consider 𝐻 to be a map from the 3-torus to the 2-sphere, that is the
3D-BZ to the surface of a sphere embedded in R3. Following the discussion of the previous
section, we wish to determine the number of topologically distinct ground states that exist
by calculating the homotopy group of such a map, [T3, 𝑆2]. As before, we will restrict our
discussion to strong invariants and take the torus as a sphere. This gives us a somewhat
surprising result that we do indeed have the possibility of a topologically non-trivial phase:

𝜋3(𝑆2) = Z (2.71)

This is the well known Hopf fibration describing a non-trivial mapping of the 3-sphere to
the 2-sphere 𝑓 : 𝑆3 → 𝑆2. Referring to our above discussion on bundles, we identify the
triplet (𝑆3, 𝑆2, 𝑓 ) as a fibre bundle with 𝑓 −1({𝑥}) = 𝑆1 ∀𝑥 ∈ 𝑆2 as the fibres. The Hopf
index, which is the topological index characterising the system, therefore takes on integer
values and is calculated as

𝜒(𝑛) = −
∫
𝐵𝑍

𝛀 · 𝑨d𝒌 (2.72)

where 𝛀 = ∇× 𝑨 is the Berry curvature and 𝑨 is the Berry connection [32, 98]. The presence
of a non-zero Hopf index guarantees the presence of topologically protected gapless surface
states at the interface between the Hopf model and a normal insulator/vacuum. This phase,
therefore, exists outside the tenfold classification of topological phases, but the restriction on
the number of bands needs to be fixed means that this is known as a delicate topological phase.
Indeed, augmenting the Hopf insulator by a single trivial band destroys the topology. K-theory
and the notion of stable equivalence are, therefore, a more robust method of classifying
topological spaces. It is experimentally challenging to realise a Hopf insulator because of the
necessity of only two bands in a three dimensional model, ruling out many material systems.
Nevertheless, it has been recently proposed that a Hopf insulator could be realised on a lattice
of dipolar spins [154] and that Floquet engineering on an optical lattice can be utilised to
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supply the necessary third periodic dimension to a two-band model in two dimensions to
realise this phase [214].

More generally, however, restricting to finite/small rank leads us away from 𝐾-theory and
stable equivalence and towards homotopy classification. This, along with the consideration
of multiple band gaps within the electronic band structures, has led to a new field of interest
known as multi-gap topology where nodal points between bands can possess non-Abelian
topological invariants, also referred to as homotopy charges in this context [23, 20, 22]. Such
homotopy charges have observable effects in the form of non-Abelian braiding of phonons
[137, 138], temperature driven topological phase transitions [30] and the manipulation
of topological band nodes in metamaterials [73, 74]. In addition the out-of-equilibrium
drynamics of such systems have proved to be a fruitful topic of study [213, 208, 161].





Chapter 3

Flat-bands in Antiferromagnetic
Topological Insulators

3.1 Chapter Summary

This chapter introduces extensions to the tenfold-way of topological classification discussed
in the previous chapter by considering magnetic textures and the presence of reflection
symmetries. In particular, by considering the magnetic space group and composite magnetic
symmetries we investigate extensions to class A and AIII materials in magnetic topological
insulators. In particular, when considering an in-plane magnetisation one can engineer a set
of dispersionless edge states at 𝐸 = 0 protected by the underlying chiral symmetry of the
lattice. Lattice simulations are performed on a toy model before considering more realistic
materials by adopting parameters for the BSTS family of TIs.

3.2 Introduction

In section 1.3, intrinsically magnetic TIs were highlighted as a means to introduce long range
magnetic order across the Dirac electrons in a TI, with the QAHE discussed as a potential
application of these AFMTIs. In this chapter we will examine other spin configurations,
with a particular focus on in-plane alignment, and demonstrate that both ferromagnetic and
antiferromagnetic coupling of spins between layers can lead to interesting layer-dependent
effects. As previously discussed, when only considering the surface Hamiltonian, such a
configuration simply results in a shift of the Dirac cones in 𝑘-space by an amount proportional
to the magnetisation, i.e.
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𝐻 = ℏ𝑣𝐹 (𝑘𝑦𝜎𝑥 − 𝑘𝑥𝜎𝑦) + 𝑴 ∥ · 𝝈
= ℏ𝑣𝐹

(
(𝑘𝑦 + 𝑀𝑥)𝜎𝑥 − (𝑘𝑥 − 𝑀𝑦)𝜎𝑦

)
= ℏ𝑣𝐹 (𝑘′𝑦𝜎𝑥 − 𝑘′𝑥𝜎𝑦)

(3.1)

However, as we shall demonstrate in this chapter, when considering a multilayer het-
erostructure we can engineer non-trivial effects on the band structure with an in-plane
magnetisation. In particular, we observe dispersionless regions in the electronic band
structure with the states forming these flat-bands strongly localised along the edges of our
material geometry, i.e. quasiparticles of infinite effective mass. We will show that, depending
on the type of coupling between layers, the electronic dispersion relations in even and odd
layer samples with in-plane magnetisation can be topologically distinct from one another,
comparable to the case of the QAHE/Axion Insulator states in odd/even layer samples with
out-of-plane magnetisation.

The vanishing kinetic energy in flat-bands makes them of particular interest in condensed
matter physics, due to the possibility of enhanced electron-electron interactions leading to
correlated many body physics. Topological flat-bands have recently been observed in twisted
bilayer graphene [110], prompting a great deal of interest. Other material set-ups have been
proposed as a means to generate flat-bands [169, 199], but the recent discovery of intrinsic
magnetic topological insulators provides a new means of engineering them. In particular, we
will take inspiration from the MnBi2Te4 family of intrinsic magnetic TIs and examine the
effect of ferromagnetic and antiferromagnetic coupling of magnetic moments between layers
on the formation of flat-bands. As discussed in section 1.3.2, recent research has focused
heavily on the compound MnBi2Te4, which orders along the z axis (that is, along the growth
axis), and is viewed as the most promising candidate for observation of a high-temperature
QAHE, however there is a wider family of AFMTIs supporting different spin configurations.
For instance, VBi2Te4 and EuBi2Te4, see Figure 3.1, possess an easy in-plane magnetisation
axis and could provide a promising route to engineer the flat-bands discussed in this chapter.

In order to model multilayer magnetic topological insulators akin to the MnBi2Te4 family
of AFMTIs discussed in 1.3, we adopt the model for Bi2Se3 proposed by Liu et. al. [112],
namely

𝐻 (𝒌) = 𝐶 (𝒌) + 𝑀 (𝒌)𝜏𝑧 + 𝑣(𝑘𝑥𝜎𝑥 + 𝑘𝑦𝜎𝑦)𝜏𝑥 + 𝑣𝑧𝑘𝑧𝜎𝑧𝜏𝑥 + 𝑤(𝑘3
𝑥 − 3𝑘𝑥𝑘2

𝑦)𝜏𝑦, (3.2)
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(a) (b)

Bi Te V/Eu

Fig. 3.1 Crystal structure of VBi2Te4/EuBi2Te4 along the (a) 𝑎-axis and (b) 𝑐-axis. The
crystal structure is rhombohedral with the space group 𝑅3̄𝑚. The crystal is a layered structure
formed of septuple layers (red box) separated by a van der Waals gap. The paramagnetic unit
cell (black box) is shown in (a), however it should be noted that the A-type antiferromagnetism
of this material leads to a magnetic unit cell twice the length of that shown. Figure produced
with VESTA [120].

𝐶 (𝒌) = 𝐶0 + 𝐶1𝑘
2
𝑧 + 𝐶2(𝑘2

𝑥 + 𝑘2
𝑦) and 𝑀 (𝒌) = 𝑀0 + 𝑀1𝑘

2
𝑧 + 𝑀2(𝑘2

𝑥 + 𝑘2
𝑦) and we have set

ℏ = 1. Unless otherwise stated, we will set 𝐶 (𝒌) = 0. The material dependent parameters
𝐴, 𝐵, ... can be calculated ab. initio using k · p theory. A topological phase emerges from
this model when 𝑀0𝑀1 < 0. As the parameter 𝑀0 physically corresponds to the energy gap
between the bulk conduction and valence bands, topologically protected edge modes will
occur when 𝑀0 < 0 if 𝑀1 > 0. We will eventually discretise this model on a hexagonal lattice
to perform electronic structure calculations, however we will first examine the symmetries of
this system in a slab geometry by discretising along the 𝑧 axis. The Hamiltonian of such a
system is given by



94 Flat-bands in Antiferromagnetic Topological Insulators

𝑦

𝑥

𝑧
(a) (b)

Fig. 3.2 The canted magnetisation configurations considered in this paper. Such configurations
can be achieved by applying an external magnetic field perpendicular to the easy magnetic
axis of an antiferromagnetic topological insulator.

𝐻 =

©­­­­­«
𝐻1 𝑇𝑧 0 · · · 0
𝑇
†
𝑧 𝐻2 𝑇𝑧 · · · 0
...

. . .
...

0 · · · 𝑇
†
𝑧 𝐻𝑛

ª®®®®®¬
(3.3)

where the onsite Hamiltonian and exchange terms are

𝐻 𝑗 = 𝐻0 + 𝐻exc where

𝐻0 = 𝐶 (𝒌) + 𝑀̃ (𝒌)𝜏𝑧+𝑣(𝑘𝑥𝜎𝑥 + 𝑘𝑦𝜎𝑦)𝜏𝑥 + 𝑤(𝑘3
𝑥 − 3𝑘𝑥𝑘2

𝑦)𝜏𝑦
𝐻exc = 𝑴 𝑗 · 𝝈,

(3.4)

and the interlayer hopping term is given by

𝑇𝑧 = −𝑀1𝜏𝑧 −
𝑖𝐵

2
𝜎𝑧𝜏𝑥 , (3.5)

where 0 < 𝑗 < 𝑛 is the layer index, 𝑴 𝑗 is the exchange term within the 𝑗 th layer and
𝑀̃ (𝒌) = 𝑀0 + 2𝑀1 + 𝑀2(𝑘2

𝑥 + 𝑘2
𝑦).

We will consider two different types of magnetisation configurations in this chapter - one
where the z-component of the magnetisation is antiferromagnetically coupled between layers
and there is an in-plane (IP) canting, see Figure 3.2(a), given by the magnetisation vector

𝑴 ∥ (𝒓) = 𝑀0(sin(𝜃) cos(𝜙), sin(𝜃) sin(𝜙), (−1)𝑧 cos(𝜃)) (3.6)

and another where the in-plane component of the magnetisation is antiferromagnetically
coupled between layers and there is an out-of-plane (OOP) canting, see Figure 3.2(b), given
by the vector

𝑴⊥(𝒓) = 𝑀0((−1)𝑧 sin(𝜃) cos(𝜙), (−1)𝑧 sin(𝜃) sin(𝜙), cos(𝜃)) (3.7)
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As we shall see in subsequent sections, the antiferromagnetic coupling between magnetic
moments in adjacent layers will result in even and odd layer systems exhibiting distinct
behaviours.

3.3 Symmetry Classification

3.3.1 Topological Symmetries

We begin by classifying odd and even layer Hamiltonians with various magnetisation
configurations, according to the ten Altland-Zirnbauer (AZ) symmetry classes, by considering
the action of three non-spatial symmetry operations on the Bloch Hamiltonian as described
in Chapter 2

𝑆𝐻 (𝒌)𝑆−1 = −𝐻 (𝒌),
𝑇𝐻 (𝒌)𝑇−1 = 𝐻 (−𝒌),

𝑃𝐻 (𝒌)𝑃−1 = −𝐻 (−𝒌).
(3.8)

where 𝑃 and 𝑇 are the particle-hole and time-reversal symmetry operators, respectively.
Before accounting for the effect of the exchange term we note a relevant symmetry in the
onsite and interlayer hopping terms, given in 3.4 and 3.5,

𝜎𝑧𝜏𝑥𝐻0𝜎𝑧𝜏𝑥 = −𝐻0, 𝜎𝑧𝜏𝑥𝑇𝑧𝜎𝑧𝜏𝑥 = −𝑇†
𝑧 (3.9)

implying the existence of a chiral symmetry given by

𝑆 =

©­­­­­«
0 0 · · · 0 𝜎𝑧𝜏𝑥

0 0 · · · 𝜎𝑧𝜏𝑥 0
...

. . .
...

𝜎𝑧𝜏𝑥 0 · · · 0 0

ª®®®®®¬
. (3.10)

Examining the effect of the chiral symmetry operator S on our exchange term,

𝜎𝑧𝜏𝑥𝐻𝑒𝑥𝑐𝜎𝑧𝜏𝑥 = −𝑴 ∥ · 𝝈 + 𝑀𝑧𝜎𝑧, (3.11)

it is clear that odd-layer systems will possess chiral symmetry when 𝑀𝑧 = 0, regardless of the
canting direction. By contrast, even-layer systems will only possess a chiral symmetry for the
IP canted configuration.
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Turning our attention to the time-reversal (TR) and particle-hole (PH) symmetries, we
note that the onsite and interlayer terms obey the relations

𝜎𝑦𝐻
𝑇
0 (𝒌)𝜎𝑦 = 𝐻0(−𝒌), 𝜎𝑦𝑇𝑧𝜎𝑦 = 𝑇

†
𝑧

𝜎𝑥𝜏𝑥𝐻
𝑇
0 (𝒌) = −𝐻0(−𝒌), 𝜏𝑥𝜎𝑥𝑇𝑧𝜏𝑥𝜎𝑥 = −𝑇𝑧

(3.12)

providing us with the relevant transformations

𝑇 = 𝑈𝑇𝐾 where 𝑈𝑇 =

©­­­­­«
𝑖𝜎𝑦 0 · · · 0 0
0 𝑖𝜎𝑦 · · · 0 0
...

. . .
...

0 0 · · · 0 𝑖𝜎𝑦

ª®®®®®¬
,

𝑃 = 𝑈𝑃𝐾 where 𝑈𝑃 =

©­­­­­«
0 0 · · · 0 𝜎𝑥𝜏𝑥

0 0 · · · 𝜎𝑥𝜏𝑥 0
...

. . .
...

𝜎𝑥𝜏𝑥 0 · · · 0 0

ª®®®®®¬
.

(3.13)

However, examining the effect of these symmetries on the exchange term

𝜎𝑦𝐻
𝑇
𝑒𝑥𝑐𝜎𝑦 = − 𝑀𝑥𝜎𝑥 − 𝑀𝑦𝜎𝑦 − 𝑀𝑧𝜎𝑧

𝜎𝑥𝜏𝑥𝐻
𝑇
𝑒𝑥𝑐𝜏𝑥𝜎𝑥 = 𝑀𝑥𝜎𝑥 + 𝑀𝑦𝜎𝑦 − 𝑀𝑧𝜎𝑧

(3.14)

we observe that TR symmetry is broken for any magnetisation configuration, while PH
symmetry is only respected in the case of even layer samples with OOP canting. Since this is
the only symmetry present in even layer systems with in-plane canting and P2 = 𝑈𝑃𝑈

∗
𝑃
= 1,

we therefore conclude that even layer samples with OOP canting are in class D, which can be
topologically non-trivial in zero, one and two dimensions.

It is tempting to conclude that the remaining magnetisation configurations all belong
to class A. In this case, the only topologically non-trivial behaviour would be due to some
non-zero component of the magnetisation in the z direction, i.e. the QAHE or Axion insulator
state (depending on the canting direction). However, at this point we will introduce the notion
of 1D TRS-like and PHS-like operators, namely
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𝑇𝑘𝑖𝐻 (𝒌)𝑇−1
𝑘𝑖

=𝐻 (𝑘1, 𝑘2, ...,−𝑘𝑖, ...𝑘𝑛)
𝑃𝑘𝑖𝐻 (𝒌)𝑃−1

𝑘𝑖
= − 𝐻 (𝑘1, 𝑘2, ...,−𝑘𝑖, ...𝑘𝑛).

(3.15)

These transformations are possible through the combination of the TRS and PHS transforma-
tions given in 3.13 and additional spatial symmetries.

3.3.2 Spatial Symmetries

We will now begin identifying the spatial symmetries that will enable us to construct the
TRS-like and PHS-like symmetries that will enable us to classify even and odd layer systems
with various magnetisation configurations. Once again, we note the relevant symmetries in
the onsite and interlayer terms

𝜏𝑧𝐻0(𝒌)𝜏𝑧 = 𝐻0(−𝒌), 𝜏𝑧𝑇𝑧𝜏𝑧 = 𝑇
†
𝑧 ,

𝜎𝑥𝜏𝑧𝐻0(𝒌)𝜏𝑧𝜎𝑥 = 𝐻0(−𝑘𝑥 , 𝑘𝑦), 𝜎𝑥𝜏𝑧𝑇𝑧𝜏𝑧𝜎𝑥 = 𝑇𝑧,

𝜎𝑥𝐻0(𝒌)𝜎𝑥 = 𝐻0(𝑘𝑥 ,−𝑘𝑦), 𝜎𝑥𝑇𝑧𝜎𝑥 = 𝑇
†
𝑧 .

(3.16)

The first of these implies the presence of an inversion symmetry

𝐼𝐻 (𝒌)𝐼−1 = 𝐻 (−𝒌)

𝐼 =

©­­­­­«
0 0 · · · 0 𝜏𝑧

0 0 · · · 𝜏𝑧 0
...

. . .
...

𝜏𝑧 0 · · · 0 0

ª®®®®®¬
.

(3.17)

We note that this operator does not act on the spin degree of freedom and, therefore, inversion
symmetry is respected in all odd layer systems and in even layer systems with in-plane canting
when 𝑴 = (𝑀𝑥 , 𝑀𝑦, 0) and out-of-plane canting when 𝑴 = (0, 0, 𝑀𝑧) (these configurations
essentially correspond to ferromagnetic coupling between spins in adjacent layers when the
spins are orientated in and out-of the plane, respectively). The other two symmetries given in
3.16 are mirror/reflection symmetries. In the first instance
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𝑅𝑥𝐻 (𝒌)𝑅−1
𝑥 = 𝐻 (−𝑘𝑥 , 𝑘𝑦)

𝑅𝑥 =

©­­­­­«
𝑖𝜎𝑥𝜏𝑧 0 · · · 0 0

0 𝑖𝜎𝑥𝜏𝑧 · · · 0 0
...

. . .
...

0 0 · · · 0 𝑖𝜎𝑥𝜏𝑧

ª®®®®®¬
,

(3.18)

demonstrates the presence of a mirror symmetry about the 𝑥 axis. Examining its effect on the
exchange term

𝜎𝑥𝜏𝑧𝐻𝑒𝑥𝑐𝜏𝑧𝜎𝑥 = 𝑀𝑥𝜎𝑥 − 𝑀𝑦𝜎𝑦 − 𝑀𝑧𝜎𝑧 (3.19)

we observe that mirror symmetry about the 𝑥 axis is only respected in systems where
𝑴 = (𝑀𝑥 , 0, 0). The final spatial symmetry is a mirror symmetry about the 𝑦 axis given by

𝑅𝑦𝐻 (𝒌)𝑅−1
𝑦 = 𝐻 (𝑘𝑥 ,−𝑘𝑦)

𝑅𝑦 =

©­­­­­«
0 0 · · · 0 𝑖𝜎𝑥

0 0 · · · 𝑖𝜎𝑥 0
...

. . .
...

𝑖𝜎𝑥 0 · · · 0 0

ª®®®®®¬
.

(3.20)

Observing that 𝑅𝑦 acts identically to 𝑅𝑥 on the exchange term, we conclude that mirror
symmetry about the 𝑦 axis is respected in odd layer systems with 𝑴 = (𝑀𝑥 , 0, 0) and in even
layer systems with in-plane canting when 𝑴 = (𝑀𝑥 , 0, 𝑀𝑧) and out-of-plane canting when
𝑴 = (0, 𝑀𝑦, 0).

Finally, we observe that 𝑅2
𝑥 = 𝑅

2
𝑦 = −1 due to the additional factor of 𝑖 - it is required that

𝑅2
𝑖
= −1 in spin-1

2 systems due to fermionic statistics.

3.3.3 Extending the Topological Classification

The previous chapter briefly touched on how space group (SG) symmetries can be used
to characterise topological materials beyond the tenfold way. The methodology proposed
centred around the gluing conditions that arise at high-symmetry points in the band structure
when considering band representations. In this chapter, we will build on the foundations laid
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out by that discussion and discuss how the introduction of magnetic terms in the Hamiltonian
naturally leads us to consider the magnetic space group (MSG).

Magnetic terms in the Hamiltonian naturally break TRS and, as shown in the previous
section, some spatial symmetries depending on the exact magnetic configuration. However,
composite symmetries𝑚 = 𝑇𝑔𝑝 where 𝑔𝑝 = {𝑝 |𝒂𝑝} ∈ 𝐺 is an element of the crystallographic
SG, 𝐺, and 𝑇 the time-reversal operation, may still be respected even where the individual
symmetry terms comprising it are broken. For example, the Mn2Bi2Te4 discussed in the
introductory chapter breaks TRS due to the presence of an antiferromagnetic ground state, yet
respects the combined symmetry 𝑆 = 𝑡1/2,𝑧𝑇 , where 𝑡1/2,𝑧 is half a unit cell translation along
the 𝑧-axis, such that 𝑆𝐻𝑀𝐵𝑇 (𝒌)𝑆−1 = 𝐻𝑀𝐵𝑇 (−𝒌). In general, for each composite symmetry
𝑚 = 𝑇𝑔𝑝 one can define a TRS-like operator 𝑇𝑚 that acts on the Hamiltonian and satisfies the
relation

𝑇𝑚𝐻 (𝒌)𝑇†
𝑚 = 𝐻 (𝑚𝒌) where

𝑚𝒌 = −𝑝𝒌 .
(3.21)

Indeed, considering these composite symmetry elements allows us to compute the 1651
MSGs directly from the original 230 crystallographic SGss. For each of the 230 SGs there
are potentially four types of MSGs that can be constructed. Type I contains 230 MSGs where
𝐺𝑀 = 𝐺, i.e. no antiunitary symmetry is considered and the MSG is identical to the SG.
Type II groups have the form 𝐺𝑀 = 𝐺 + 𝑇𝐺, i.e. all the symmetry operations in 𝐺 plus a
time-reversed copy of it. The final two groups are of the form 𝐺𝑀 = 𝐻 + 𝑚𝐻 where 𝐻 is a
subgroup of 𝐺 with index 2 (i.e. the number of right cosets of 𝐻 in 𝐺). If 𝑚 = 𝑇𝑔 where
𝑔 is a non-trivial point group operation (i.e. translationally equivariant) this is referred to
as type III, and if 𝑚 = 𝑇𝑡1/2 where 𝑡1/2 is a fractional lattice translation then it is referred
to as type IV. From the definitions given above, type II materials respect TRS and describe
non-magnetic materials. Recent work has focused on extending the topological classification
presented in the previous chapter to the 1421 MSGs in type-I, -III and -IV materials, that is
magnetic topological crystalline insulators. Topological classification of magnetic materials
is an active area of research [21, 38, 137]. The aim of this subfield is to extend the original
topological classification of materials via the tenfold way and generalize the underlying
𝐾-theory underpinning the results. Such characterization methods include the Wilson loop
spectrum [4], where the Wilson loop operator is defined as,

W = P exp
{
𝑖

∮
d𝒌 · A

}
(3.22)
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where A𝑚𝑛 = ⟨𝑢𝑚 | ∇𝒌 |𝑢𝑛⟩ is the non-Abelian Berry connection between the Bloch bands
indexed by 𝑚 and 𝑛). The eigenvalues of this operator are given as 𝜆𝛼 = 𝑒𝑖𝛾𝑎 where the 𝛾𝛼
are real valued numbers that can be used to define the Wilson spectrum, known as Wilson
phases. The winding of this spectrum can then be used to infer topologically non-trivial
behaviour. For example, on a square lattice if we define the 𝑘𝑦 directed Wilson loop to be

W(𝑘𝑥) = P exp
{
𝑖

∫ 𝑝𝑖

−𝑝𝑖
d𝑘𝑦 · A(𝑘𝑥 , 𝑘𝑦)

}
(3.23)

then if the Wilson loop phases 𝛾(𝑘𝑥 wind non-trivially as 𝑘𝑥 is varied from −𝑝𝑖 to 𝜋, then we
can conclude there is a non-trivial topology. In this context, non-trivial winding is indicated
by the number of times the phases wrap around [−𝜋, 𝑝𝑖) as 𝑘𝑥 traverses the BZ. The Wilson
loop will be used later in this chapter to indicate the non-trivial topology of the flat-band
systems studied.

In this work, we will investigate the extension of class A and class AIII materials (i.e.
those where the introduction of an exchange term break TRS and PHS) using magnetic
configurations that respect order-2 symmetries, namely reflection. The benefit of this approach
is that we can map directly to the tenfold way and use the results presented in the previous
chapter [122, 31, 158]. However, we should note that Liu Hamiltonian is derived from the
assumption of a rhombohedral crystal with space group 𝑅3̄𝑚, see Figure 3.1 for the lattice
structure. As such, one could consider magnetic extensions that utilise other SG symmetry
elements such as threefold rotation around the 𝑧-axis, 𝐶3,𝑧, twofold symmetry around the
𝑥-axis, 𝑅3,𝑥 , or inversion symmetry 𝑃. In addition, only a single Dirac cone at the Γ-point in
the BZ is considered. For band crossings at higher momenta, defects and perturbations, such
as dislocations, would play a more important role in the electronic properties of the system as
outlined in [163, 160].

Now that we have identified the spatial symmetries present in the various magnetisation
configurations, we define the TRS-like transformations as

𝑇𝑘𝑥 = 𝑅𝑦𝑇

𝑇𝑘𝑦 = 𝑅𝑥𝑇
(3.24)

and similarly for the PHS-like transformations. Explicitly, these are given by the matrices
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𝑇𝑘𝑥 = 𝑈𝑇𝐾 where 𝑈𝑇 =

©­­­­­«
0 0 · · · 0 𝑖𝜎𝑧

0 0 · · · 𝑖𝜎𝑧 0
...

. . .
...

𝑖𝜎𝑧 0 · · · 0 0

ª®®®®®¬
and 𝑇2

𝑘𝑥
= 1,

𝑃𝑘𝑥 = 𝑈𝑃𝐾 where 𝑈𝑃 =

©­­­­­«
𝜏𝑥 0 · · · 0 0
0 𝜏𝑥 · · · 0 0
...

. . .
...

0 0 · · · 0 𝜏𝑥

ª®®®®®¬
and 𝑃2

𝑘𝑥
= 1,

(3.25)

for 𝑘𝑥 , while the analogous set acting on 𝑘𝑦

𝑇𝑘𝑦 = 𝑈𝑇𝐾 where 𝑈𝑇 =

©­­­­­«
𝑖𝜎𝑧𝜏𝑧 0 · · · 0 0

0 𝑖𝜎𝑧𝜏𝑧 · · · 0 0
...

. . .
...

0 0 · · · 0 𝑖𝜎𝑧𝜏𝑧

ª®®®®®¬
and 𝑇2

𝑘𝑦
= 1,

𝑃𝑘𝑦 = 𝑈𝑃𝐾 where 𝑈𝑃 =

©­­­­­«
0 0 · · · 0 𝜏𝑦

0 0 · · · 𝜏𝑦 0
...

. . .
...

𝜏𝑦 0 · · · 0 0

ª®®®®®¬
and 𝑃2

𝑘𝑦
= −1.

(3.26)

Considering the 𝑘𝑥 operators first, we will extend our previous discussion regarding the
effect of the spatial symmetry operators on the exchange term and examine the effect of the
TRS-like and PHS-like operations. The relevant equations are

𝜎𝑧𝐻
𝑇
𝑒𝑥𝑐𝜎𝑧 = −𝑀𝑥𝜎𝑥 + 𝑀𝑦𝜎𝑦 + 𝑀𝑧𝜎𝑧 and

𝜏𝑥𝐻
𝑇
𝑒𝑥𝑐𝜏𝑥 = 𝑀𝑥𝜎𝑥 − 𝑀𝑦𝜎𝑦 + 𝑀𝑧𝜎𝑧 .

(3.27)

TRS-like symmetry is respected in even-layer systems with out-of-plane canting where
𝑴 = (𝑀𝑥 , 0, 𝑀𝑧) and in-plane canting where 𝑴 = (0, 𝑀𝑦, 0), and odd-layer systems where
𝑴 = (0, 𝑀𝑦, 𝑀𝑧). By contrast, in all systems PHS-like symmetry is only respected when
𝑴 = (0, 𝑀𝑦, 0).
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Configuration
In-plane Out-of-plane

𝑴 = (𝑀𝑥 , 𝑀𝑦, 𝑀𝑧) Even Odd Even Odd
(𝑀𝑥 , 𝑀𝑦, 𝑀𝑧) A A D A
(0, 0, 𝑀𝑧) AIII A A A
(𝑀𝑥 , 𝑀𝑦, 0) AIII AIII A AIII
(𝑀𝑥 , 0, 0) AIII AIII AI/C AIII
(0, 𝑀𝑦, 0) BDI/CI BDI/CI A BDI/CI

Table 3.1 Topological classification of even and odd layer system under various magnetisation
configurations.

Now we consider the 𝑘𝑦 symmetry operators, namely

𝜎𝑧𝜏𝑧𝐻
𝑇
𝑒𝑥𝑐𝜎𝑧𝜏𝑧 = −𝑀𝑥𝜎𝑥 + 𝑀𝑦𝜎𝑦 + 𝑀𝑧𝜎𝑧 and

𝜏𝑦𝐻
𝑇
𝑒𝑥𝑐𝜏𝑦 = 𝑀𝑥𝜎𝑥 − 𝑀𝑦𝜎𝑦 + 𝑀𝑧𝜎𝑧 .

(3.28)

In this case, TRS-like symmetry is satisfied in all systems where 𝑴 = (0, 𝑀𝑦, 𝑀𝑧). On the
other hand, PHS-like symmetry is satisfied in even layer systems with out-of-plane canting
where 𝑴 = (𝑀𝑥 , 0, 0) and in-plane canting where 𝑴 = (0, 𝑀𝑦, 𝑀𝑧), and in odd layer systems
where 𝑴 = (0, 𝑀𝑦, 0).

The above arguments are summarised in 3.1 where the topological classification of even
and odd layer systems with various magnetisation configurations are detailed.

Note that the final row contains entries of the form BDI/CI due to the choice of the 1D
anti-unitary operators acting on 𝑘𝑥/𝑘𝑦, respectively. For example, in the case of even layer
systems with in-plane canting and 𝑴 = (0, 𝑀𝑦, 0) with translational invariance along the
𝑦 direction (i.e. 𝑘𝑦 is a good quantum number), it may be more appropriate to interpret its
classification as BDI than CI, since the TRS-like and PHS-like symmetry operators act on 𝑘𝑥
while 𝑘𝑦 may be interpreted as a parameter of the Hamiltonian, i.e. 𝐻 (𝒌) = 𝐻𝑘𝑦 (𝑘𝑥). That
said, since classes C and CI are topologically trivial in the dimensions relevant to our current
system (dots and wires) we will not discuss them any further.
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3.4 Lattice Simulations

3.4.1 Hexagonal tight-binding model

In order to perform electronic structure calculations incorporating the hexagonal warping
term 𝑘3

𝑥 − 3𝑘𝑥𝑘2
𝑦 on a hexagonal lattice, we will rewrite the Hamiltonian 3.3 described in the

previous section in terms of the crystal momenta

𝑘1 = 𝑘𝑥 , 𝑘2 =
1
2
(𝑘𝑥 +

√
3𝑘𝑦), 𝑘3 = 𝑘𝑧 =⇒

𝑘𝑥 = 𝑘1, 𝑘𝑦 =
1
√

3
(2𝑘2 − 𝑘1), 𝑘𝑧 = 𝑘3.

(3.29)

Then, in terms of the hexagonal coordinate vectors 𝑘1, 𝑘2, 𝑘3, the low-energy Hamiltonian is
given by

𝐻 (𝒌) =𝐶0 + 𝐶1𝑘
2
3 +

2𝐶2
3

(𝑘2
1 + (𝑘1 − 𝑘2)2 + 𝑘2

2)

+
(
𝑀0 + 𝑀1𝑘

2
3 +

2𝑀2
3

(𝑘2
1 + (𝑘1 − 𝑘2)2 + 𝑘2

2)
)
𝜏𝑧

+ 𝑣
3
(2𝑘1 + (𝑘1 − 𝑘2) + 𝑘2) 𝜎𝑥𝜏𝑥 +

𝑣
√

3
(𝑘2 − (𝑘1 − 𝑘2)) 𝜎𝑦𝜏𝑥 + 𝑣𝑧𝑘3𝜎𝑧𝜏𝑥

+ 4𝑤
3

(𝑘3
1 − 𝑘

3
2 − (𝑘1 − 𝑘2)3)𝜏𝑦 .

(3.30)

In order to eventually perform real-space calculations, we need to restore the idea of a
lattice model. Our next step, therefore, is to perform a lattice regularisation, namely the
transformations

𝑘𝑖 →
1
𝐿𝑖

sin 𝑘𝑖

𝑘2
𝑖 →

2
𝐿𝑖

(1 − cos 𝑘𝑖).
(3.31)

For notational clarity, we shall set 𝐿𝑖 = 1 for 𝑖 = 1, 2, 3. The resulting lattice regularised
Hamiltonian is given as
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𝐻 (𝒌) =𝐶̃0 − 2𝐶1 cos 𝑘3 −
4𝐶2

3
(cos 𝑘1 + cos (𝑘1 − 𝑘2) + cos 𝑘2)

+
(
𝑀̃0 − 2𝑀1 cos 𝑘3 −

4𝑀2
3

(cos 𝑘1 + cos (𝑘1 − 𝑘2) + cos 𝑘2)
)
𝜏𝑧

+ 𝑣
3
(2 sin 𝑘1 + sin (𝑘1 − 𝑘2) + sin 𝑘2) 𝜎𝑥𝜏𝑥

+ 𝑣
√

3
(sin 𝑘2 − sin (𝑘1 − 𝑘2)) 𝜎𝑦𝜏𝑥

+ 𝑤(− sin 𝑘1 + sin 𝑘2 + sin (𝑘1 − 𝑘2))𝜏𝑦 + 𝑣𝑧 sin 𝑘3𝜎𝑧𝜏𝑥 .

(3.32)

where 𝐶̃0 = 𝐶0 + 2𝐶1 + 4𝐶2 and 𝑀̃0 = 𝑀0 + 2𝑀1 + 4𝑀2.
The final step is now to perform a Fourier transform to move from the momentum

representation to the position representation. Specifically,

𝑐𝒌 =
∑︁
𝒓𝑖

𝑒−𝑖𝒌·𝒓𝑖𝑐𝒓𝑖 (3.33)

where 𝒓𝑖 is the position vector of a particular atomic site and the sum runs over the full
dimensions of the sample. Finally, we arrive at the real space lattice Hamiltonian

𝐻𝑙𝑎𝑡 =
∑︁
𝒓𝑖

𝑐
†
𝒓𝑖

(
𝐶̃0 + 𝑀̃0𝜏𝑧

)
𝑐𝒓𝑖 + 𝑐

†
𝒓𝑖

(
−𝑖𝑣

3
𝜎𝑥𝜏𝑥 −

2𝑀2
3
𝜏𝑧 −

2𝐶2
3

+ 𝑖𝑤
2
𝜏𝑦

)
𝑐𝒓𝑖+𝛿1

+𝑐†𝒓𝑖
(
−𝑖𝑣

6
𝜎𝑥𝜏𝑥 −

𝑖𝑣

2
√

3
𝜎𝑦𝜏𝑥 −

2𝑀2
3
𝜏𝑧 −

2𝐶2
3

− 𝑖𝑤
2
𝜏𝑦

)
𝑐𝒓𝑖+𝛿2

+𝑐†𝒓𝑖
(
−𝑖𝑣

6
𝜎𝑥𝜏𝑥 +

𝑖𝑣

2
√

3
𝜎𝑦𝜏𝑥 −

2𝑀2
3
𝜏𝑧 −

2𝐶2
3

− 𝑖𝑤
2
𝜏𝑦

)
𝑐𝒓𝑖+𝛿3

+𝑐†𝒓𝑖
(
−𝑖𝑣
2
𝜎𝑧𝜏𝑥 − 𝑀1𝜏𝑧 − 𝐶1

)
𝑐𝒓𝑖+𝛿4+ h.c.

(3.34)

where 𝛿1 = (1, 0, 0), 𝛿2 = ( 1
2 ,

√
3

2 , 0), 𝛿3 = ( 1
2 ,−

√
3

2 , 0) and 𝛿4 = (0, 0, 1) and h.c. denotes the
Hermitian conjugate. The relevant exchange term can then be trivially added as an additional
spin-dependent onsite potential.

Lattice simulations are performed using the open-source Python package Kwant. In the
following section, unless otherwise stated, we have used 𝑀0 = −2, 𝑀1 = 1, 𝑀2 = 1, 𝐴 =

1, 𝑣𝑧 = 0.5, 𝑤 = 1.5 as our choice of parameters. In addition, we will set the lattice constant
at 1 nm. In section 3.4.3 we will link theory back to reality by performing lattice simulations
with more realistic set of material parameters.
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3.4.2 Flat-bands in AIII and BDI

In this section we present the results of the electronic properties for even and odd layer systems
in a nanowire geometry. In the following and unless stated otherwise, the magnitude of the
exchange field will be fixed at |𝑴 | = 1.5. This value has been chosen as it is above the critical
value for flat band formation in all systems studied. In general, the critical field value for
flat-band formation is a complex function of the material parameters, so an analytic solution
is not presented. In general, we will avoid direct analytical calculations and will instead focus
on symmetry considerations as a means to explain our results. To avoid finite-size effects
as best as possible whilst also respecting computational resources and limiting simulation
times, the number of lattice points in the direction of the finite dimension will be set to 81 i.e.
40 lattice points either side of the (𝑥, 𝑦) = (0, 0) plane (the odd choice of number reflects
the choice of placing a lattice site at the origin). Finite-size effects will generally be more
prevalent in nanoribbons with a larger number of layers. Due to the difficulty in deriving a
closed form solution the localization length has not been calculated for the flat-band edge
states, however the value of 81 was identified after a set of convergence tests that iteratively
increased the system size by 10 lattice in either direction. The criteria for convergence was
set as the point at which the energy of flat-bands around the Γ-point changed by less than
1𝑒 − 4 using the parameters given above.

For comparison with later results, we first calculate the energy dispersion relationships of
two and three layer systems with no exchange interaction. The bulk dispersions are shown in
Figure 3.3 and the 1D dispersion for wires with translational invariance in the 𝑥 direction are
shown in Figure 3.4. An identical set of plots are obtained for the 1D dispersion relations in
the 𝑘𝑦 direction. While a Dirac point (DP) is visible in both 1D systems, corresponding to
edge states propagating along the length of the nanoribbon, when comparing the dispersion
relations of the bulk systems one finds that only the 3-layer system possesses a DP at the Γ

point. One can understand the difference in the presence (or absence) of a DP at the Γ point
by interpreting the Hamiltonian given in 3.3 as a stack of 2D TIs coupled to one another in
the 𝑧-direction [48].

We will now analyse the results for finite exchange fields.

In-plane canting

We will first begin by examining two layer systems, as the simplest even layer system.
In Figures 3.5 and 3.6 we show the results of a numerical calculation of the energy
dispersion relations for a two layer system with in-plane canting, periodic in the 𝑥 (left) and
𝑦 (right). In Figure 3.5, we demonstrate the evolution of the dispersion relations for the
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Fig. 3.3 Energy dispersion of a two (left) and three (right) layer system for with no exchange
interaction present along the Γ − 𝑀 − 𝐾 − Γ path in the hexagonal Brillouin Zone.

Fig. 3.4 2D bulk energy dispersion of a two (left) and three (right) layer system for with no
exchange interaction present. Note that only the three layer system hosts Dirac points.
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parameter sweep 𝜃 = (𝜋/6, 𝜋/3, 𝜋/2) at 𝜙 = 0, while in 3.6 we demonstrate the evolution
for 𝜙 = (𝜋/6, 𝜋/3, 𝜋/2) at 𝜃 = 𝜋/2, where 𝜃 and 𝜙 are the polar and azimuthal angles
defining the spherical polar coordinates as described in 3.6 and 3.7. Unless otherwise stated,
angular parameter sweeps for both 𝜃 and 𝜙 will be presented for the values (𝜋/6, 𝜋/3, 𝜋/2)
henceforth.

Note that at 𝜙 = 0, the magnetisation breaks the mirror reflection symmetry 𝑅𝑥 in the
nanoribbon periodic in 𝑥, causing an energy dispersion which is asymmetric about 𝑘𝑥 = 0 in
the left-hand column of Figure 3.6. However, the most obvious features of both figures are the
flat-bands that emerge for the magnetisation configurations 𝑴 = (𝑀, 0, 0) (𝜃 = 𝜋/2, 𝜙 = 0)
and 𝑴 = (0, 𝑀, 0) (𝜃 = 𝜋/2, 𝜙 = 𝜋/2), i.e. in plane magnetisation with ferromagnetic
coupling between layers. We can examine the topological nature of these flat-bands by
recalling that even layer systems with in-plane canting are in the AIII and BDI classifications
for the magnetisation configurations 𝑴 = (𝑀, 0, 0) and 𝑴 = (0, 𝑀, 0), respectively. As
such, the flat-bands in both systems can be topologically characterised by a Z topological
invariant known as the winding number.

Following the treatment laid out by [116], we note that Hamiltonians in the AIII and BDI
classes both anticommute with the chiral symmetry operator, 𝑆, and can therefore be written
in the homotopically equivalent, off-diagonal form

𝐻2(𝒌) =
(

0 𝐷 (𝒌)
𝐷†(𝒌) 0

)
(3.35)

in the basis provided by the eigenvectors of 𝑆. While it is possible to solve for the spectrum of
the two-layer system using the off-diagonal form of the matrix, it involves solving a depressed
quartic equation and is not particularly illuminating. However, using the matrix 𝐷 (𝒌) the
winding number, 𝜈 can be calculated as

𝜈(𝑘 ∥) = − 1
2𝜋

Im
∫

d𝑘⊥Tr
(
𝜕𝑘⊥ ln𝐷 (𝒌)

)
= − 1

2𝜋
Im

∫
d𝑘⊥𝜕𝑘⊥ ln det𝐷 (𝒌)

= − 1
2𝜋

∫
d𝑘⊥𝜕𝑘⊥𝜂(𝒌)

(3.36)

where 𝜂(𝒌) = Im ln det𝐷 (𝒌) is the phase of the complex number det𝐷 (𝑘) and (𝑘 ∥ , 𝑘⊥) are
momentum components parallel and perpendicular to the direction of the nanowire (e.g.
𝑘 ∥ = 𝑘𝑥 for a nanoribbon periodic in 𝑥). If the winding number 𝜈(𝑘 ∥) is non-zero in areas of
the BZ we can conclude that the system is topologically non-trivial. It is, therefore, instructive
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Fig. 3.5 Evolution of the electronic dispersion relations for a two layer system with in-plane
canting for various values of 𝜃 at 𝜙 = 0 for nanowire geometries infinite in the 𝑥 (left) and 𝑦̂
directions (right).
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Fig. 3.6 Evolution of the electronic dispersion relations for a two layer system with in-plane
canting for various values of 𝜙 at 𝜃 = 𝜋/2 for nanowire geometries infinite in the 𝑥 (left) and
𝑦̂ directions (right).
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Fig. 3.7 Evolution of 𝜂(𝒌) = Im ln det𝐷 (𝒌) across the Brillouin zone for the in-plane canted
magnetisation configuration with 𝑴 = (𝑀, 0, 0) (left) and 𝑴 = (0, 𝑀, 0) (right). Note that
the BZ is hexagonal, however to more clearly see the effect of the hexagonal warping term,
𝜂(𝒌) is plotted against 𝑘𝑥 and 𝑘𝑦.

Fig. 3.8 Wilson loops of a two-layer nanoribbon periodic in the 𝑥-direction with in-plane
magnetisation directed along the 𝑥 axis and ferromagnetic coupling between layers, calculated
over the valence bands at half-filling. A small canting in the 𝑧-direction has been added to
make the winding of the Wilson loop more clearly visible. The left (right) panel shows the 𝑘2
(𝑘1) directed Wilson loop against the 𝑘1 (𝑘2) wavevector.

to examine the evolution of 𝜂(𝒌) across the full BZ when determining the topological nature
of the flat-bands.

Figure 3.7 shows the evolution of 𝜂 across the BZ for the magnetisation configurations
(𝑀, 0, 0) (left) and (0, 𝑀, 0) (right). In both configurations, singularities in the phase are
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present as 𝜂(𝒌) discontinuously changes from −𝜋 to 𝜋. Comparing the bottom two rows of
Figures 3.6 and 3.5 to 3.7 it is clear that these singularities correspond to the position of
the flat-bands in the energy dispersion relationships of the two-layer nanoribbons and signal
non-trivial topological behaviour. We conclude that the winding number 𝜈(𝑘 ∥) = 1 at the
positions where the vortices appear in 𝜂(𝒌). In addition, the hexagonal warping due to the
non-zero value of 𝑤 in equation 3.34 and the underlying lattice structure is also apparent.
While the underlying BZ of the Hamiltonian given in 3.34 is hexagonal, 𝜂(𝒌) is plotted
against 𝑘𝑥 , 𝑘𝑦 in order to more clearly see the effect of the hexagonal warping term. The
numerical calculation of 𝜂 was performed with a bulk Hamiltonian, while dispersion relations
were calculated on a discretised lattice Hamiltonian, finite in one direction. As such, the
position of the singularities in 𝜂 in the former calculation will not exactly match the position
of the flat-bands in the latter.

Additional confirmation of the topologically non-trivial nature of the bands is confirmed
by examining the Wilson loop flow of the system, as per [4, 19] and given by equation
3.22. The Wilson loop spectra shown in Figure 3.8 are calculated over the valence bands at
half-filling using a slab geometry and integrating over the appropriate periodic directions
provided by the wavevectors given in equation 3.29. The Wilson loop has only been calculated
for a nanoribbon periodic in the 𝑥-direction with magnetisation configuration (𝜃 = 𝜋/2, 𝜙 = 0.
A small canting of the magnetisation in the 𝑧 direction has been added in order to more clearly
see the flow of the Wilson loop. The winding of the flat-band states is clearly visible. The
reader should compare the positions of the flat-bands in the bottom left panel of 3.6 to the
left hand image of 3.8, where the phases around ±𝑝𝑖 match the dispersionless regions in the
band structure.

Finally, examining the local density of states (LDOS) of a two-layer nanoribbon periodic
in the 𝑥 direction with 𝑴 = (𝑀, 0, 0) confirms that the states localised around 𝐸 = 0 are
edge state flat-bands, shown in Figure 3.9

Before moving on to a discussion of three layer systems, it is worth pausing and reflecting
on why exactly flat-bands appear in this system. To do so, we will examine the bulk spectrum
for a two layer system with in-plane canting and magnetisation configuration (𝜃 = 𝜋/2, 𝜙 = 0),
i.e. in-plane magnetisation along the 𝑥-axis with ferromagnetic coupling between layers.
Figure 3.10 shows the bulk energy dispersion relation along the path Γ − 𝑀 − 𝐾 − Γ in the
hexagonal BZ. Two accidental band crossings are clearly visible along the Γ − 𝐾 line at some
momenta (𝑘𝑥 , 𝑘𝑦) = (𝑘1, 0) and (𝑘𝑥 , 𝑘𝑦) = (𝑘2, 0), where 𝑘2 > 𝑘1 (we have an identical
result when only the 𝑦 component of the magnetisation is non-zero where we instead have
nodal points at (𝑘𝑥 , 𝑘𝑦) = (0, 𝑘1) and (𝑘𝑥 , 𝑘𝑦) = (0, 𝑘2)). We can conclude that beyond some
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Fig. 3.9 Local density of states at 𝐸 = 0 of a two-layer nanoribbon periodic in the 𝑥 direction
with magnetisation parameters 𝜃 = 𝜋/2, 𝜙 = 0 and in-plane canting (bottom left image of
Figure 3.6).

critical magnetisation, which is generally a complex function of the system parameters and
number of layers, an in-plane magnetisation can drive the system toward a semimetallic phase.
Additionally the inversion symmetry, given in 3.17, enforces symmetry in the dispersion
relation about 𝒌 = 0 for a nanoribbon periodic in 𝑥, resulting in another dipsersionless region
between (𝑘𝑥 , 𝑘𝑦) = (−𝑘1, 0) and (𝑘𝑥 , 𝑘𝑦) = (−𝑘2, 0).

In general, however, we should not expect these topological surface states to exhibit zero
dispersion. The robustness of these flat-bands is actually linked to the presence of chiral
symmetry, given in equation 3.10 [146, 150]. In general, however, these flat-bands are not
robust to chiral symmetry breaking terms. While we can still expect visible nodal lines for
moderate values of 𝐶 (𝒌 ≠ 0), we should expect some bowing with the inclusion of chiral
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Fig. 3.10 2D bulk electronic dispersion along the path Γ − 𝑀 − 𝐾 − Γ in the hexagonal
Brillouin zone for a two layer system with in-plane magnetisation along the 𝑥 axis and
ferromagnetic coupling between layers.

symmetry breaking terms. This will discussed in greater detail in section 3.4.3.

Having completed our analysis of the edge state flat-bands in two-layer nanoribbons, we
will move on to the examination of three layer systems. Figures 3.11 and 3.12 show the
energy dispersion relations for a three-layer nanoribbon periodic in 𝑥 (left) and 𝑦 (right)
across a sweep of the parameters 𝜃 and 𝜙, respectively. Referring to table 3.1, we note that
even and odd layer systems possess the same topological classification for in-plane canting
magnetisation configurations. Given this, we might assume the dispersion relations of a
three-layer system to be identical to those of a two-layer system and while there are indeed
similarities, such as the evolution of zero-energy flat-band states away from 𝑘 = 0 as 𝜃 → 𝜋/2,
there is additional complexity in the dispersion relation of three-layer nanoribbons in the
form of the presence of a new dispersionless band centred around 𝑘 = 0.

Once again examining the evolution of 𝜂(𝒌) across the BZ as an indicator of the topological
nature of these bands, we do indeed observe the presence of singular behaviour centred
around 𝑘 = 0, shown in Figure 3.13. Interestingly, when comparing the behaviour of 𝜂 for
the 𝑴 = (𝑀, 0, 0) and 𝑴 = (0, 𝑀, 0) configurations we observe slight differences in the
singular regions away from 𝑘 = 0. These lobes are far more pronounced in the 𝑴 = (0, 𝑀, 0)
configuration. Observe also similar behaviour in the electronic dispersion calculations, with
the flat-bands away from 𝑘 = 0 having a much broader extent in 𝑦 periodic nanoribbons with
𝑴 = (0, 𝑀, 0) than their 𝑥 periodic counterparts. This anisotropy is due to the presence of
the hexagonal warping term, 𝑘3

𝑥 − 3𝑘𝑥𝑘2
𝑦 in the Hamiltonian 3.2.
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Fig. 3.11 Evolution of the electronic dispersion relations for a three layer system with in-plane
canting for various values of 𝜃 at 𝜙 = 0 for nanowire geometries infinite in the 𝑥 (left) and 𝑦̂
directions (right).
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Fig. 3.12 Evolution of the electronic dispersion relations for a three layer system with in-plane
canting for various values of 𝜙 at 𝜃 = 𝜋/2 for nanowire geometries infinite in the 𝑥 (left) and
𝑦̂ directions (right).
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Fig. 3.13 Evolution of 𝜂(𝒌) = Im ln det𝐷 (𝒌) across the Brillouin zone for the in-plane canted
magnetisation configuration with 𝑴 = (𝑀, 0, 0) (left) and 𝑴 = (0, 𝑀, 0) (right).

Fig. 3.14 Wilson loops of a three-layer nanoribbon periodic in the 𝑥-direction with in-plane
magnetisation directed along the 𝑥 axis and ferromagnetic coupling between layers, calculated
over the valence bands at half-filling. A small canting in the 𝑧-direction has been added to
make the winding of the Wilson loop more clearly visible. The left (right) panel shows the 𝑘2
(𝑘1) directed Wilson loop against the 𝑘1 (𝑘2) wavevector.

Again, the Wilson loops provide another means of probing the topological nature of the
system, shown in Figure 3.14. An identical set-up was used to calcualte the Wilson loops
as was used for the two-layer system shown in 3.8. The winding of the flat-bands states is
clearly visible.
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Similarly to the two-layer nanoribbon, the zero-energy flat-bands states localise along the
edge of the nanoribbon, as shown in right-hand panel of Figure 3.16. Interestingly, the edge
states penetrate much more deeply into the middle layer than the top or bottom layers.

Once again, it is instructive to examine the bulk dispersion of a three layer system to offer
greater insight to the dispersion relation of the nanoribbon and the ultimate source of the
flat-bands. The top row of Figure 3.15 shows the bulk energy dispersion relation along the
path Γ − 𝑀 − 𝐾 − Γ in the hexagonal BZ, while the bottom row shows a zoomed view of
the dispersion along the 𝐾 − Γ path. As described above, the main difference between the
dispersion relations of the two and three layer systems discussed above is that an additional
flat-band appears in the three layer dispersion relation, centred around 𝑘𝑖 = 0, where 𝑖 = 𝑥, 𝑦
depending on the direction of the magnetisation and periodicity of the nanoribbon. Recall
from Figure 3.3 that only three layer (in fact, all odd layer) systems possess a DP at the
Γ point, while two layer (and all even layer) systems are gapped. A non-zero in-plane
magnetisation will cause the DP to shift in 𝑘-space, as described in the chapter introduction.
The presence of inversion symmetry, given in equation 3.17, ensures that he band structure
is symmetric around 𝒌 = 0 and that there are DPs shifted by equal magnitude either side
of Γ. This leads to the formation of nodal lines centred around Γ linking the two DPs in
multilayer heterostructures with an odd number of layers. This effect is not present in even
layer samples, where no DP exists at zero magnetisation. Additionally, just as was the case
in two layer systems, the in-plane magnetisation can also lead to an accidental crossing of
the bulk bands along the Γ − 𝐾 line in 𝑘-space in the three layer system, leading to the
two additional nodal lines in 3.12. One can therefore use the odd layer systems with the
magnetisation configurations discussed above to engineer a variety of TI-to-semimetal phase
transitions. Such a phase transition could be detected through measurements of various
quantum anomalies, such as the chiral anomaly, that can be observed through transport
measurements [204]. Note that the central flat-band around 𝑘𝑥 = 0 will appear for any
non-zero magnetisation that lies entirely within the plane. The additional nodal lines will
only form beyond the critical magnetisation that we can use to engineer a band crossing.

Finally, we conclude our investigation of in-plane canting orientations with a quick
analysis of the dispersion relations of four and five layer systems. For brevity, only the
dispersion relations for 𝑥 periodic nanoribbons with the parameters 𝜃 = 𝜋/2, 𝜙 = 0 are
presented. Figure 3.17 demonstrates that, once again, increasing the number of layers
adds additional dispersionless bands around 𝐸 = 0. As one asymptotically approaches the
thermodynamic limit of a bulk sample, the expectation is that these separated flat-band
regions would coalesce into a single flat-band localised around 𝐸 = 0.
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Fig. 3.15 2D bulk electronic dispersion along the path Γ − 𝑀 − 𝐾 − Γ in the hexagonal
Brillouin zone for a three layer system with in-plane magnetisation along the 𝑥 axis and
ferromagnetic coupling between layers. The bottom row of the figure shows a closer view
of the band crossings along the 𝐾 − Γ path. Compared to the two layer system shown in
Figure 3.10, an additional crossing exists. This is understood as the original DP, shifted in
momentum space.

Out-of-plane canting

We begin our discussion of systems with out-of-plane canting with reference to table 3.1,
noting that systems with an even number of layers are in Altland-Zirnbauer classes with no
non-trivial topological invariants in our dimensions of interest. Analysing the electronic
dispersion relations for a two-layer nanoribbon periodic in 𝑥 and we do indeed find no
evidence of flat-band behaviour when sweeping the magnetisation parameter 𝜃 → 𝜋/2,
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Fig. 3.16 Local density of states at 𝐸 = 0 of a three-layer nanoribbon periodic in the 𝑥
direction with magnetisation parameters 𝜃 = 𝜋/2, 𝜙 = 0 and in-plane canting.

as shown below in Figure 3.18. Indeed, this shouldn’t be surprising given the previous
discussion regarding the role of chiral symmetry in zero-energy flat-band formation. Since
there is no magnetisation configuration in which we can respect chiral symmetry in even
layer, out-of-plane canted system we can expect no zero-energy dispersionless regions in
these systems. Therefore, rather than dwelling on even layer systems, this section will be
devoted to the study of odd-layer nanoribbons.

Moving on to the analysis of three-layer nanoribbons as the simplest example of odd-layer
systems, we present the results of electronic dispersion calculations for nanoribbon geometries
periodic in the 𝑥 and 𝑦̂ directions for sweeps across the magnetisation parameters 𝜃 and
𝜙 in Figures 3.20 and 3.21. While even and odd layer systems with an in-plane canted
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Fig. 3.17 Electronic dispersion relationships of four (left) and five (right) layer nanoribbons
for the magnetisation configuration 𝑴 = (𝑀, 0, 0).

configuration displayed similar features in their dispersion relations, the distinct topological
classifications between even and odd layer systems in out-of-plane configurations has resulted
in a remarkably different set of band structures. Furthermore, the presence of out-of-plane
rather than in-plane canting has resulted in an entirely new band structure in odd layer
systems. Most notably, out-of-plane canting has led to the appearance of a single, wide
flat-band centred around 𝑘 = 0 in the configurations 𝑴 = (𝑀, 0, 0) (𝜃 = 𝜋/2, 𝜙 = 0) and
𝑴 = (0, 𝑀, 0) (𝜃 = 𝜋/2, 𝜙 = 𝜋/2), i.e. in-plane magnetisation with antiferromagnetic
coupling between layers. Furthermore, while in the case of in-plane canting increasing
𝜃 → 𝜋/2 lead to the broadening of flat-bands in 𝑘-space, flat-bands only appear at exactly
𝜃 = 𝜋/2 in the out-of-plane canted configuration when the bulk gap is closed. Rephrased, in
the out-of-plane canted configuration the z-component of the magnetisation, 𝑀𝑧, can be used
to continuously tune the group velocity of the low-energy topological states, as demonstrated
in the bottom two rows of Figure 3.20. This is a result of an out-of-plane component of
the magnetisation breaking the chiral symmetry 3.10. This offers the possibility of using
a small perpendicular magnetic field 𝑩 = 𝐵𝑧𝑧 to control the transport behaviour of these
topological nanoribbons. Alternatively, one can use an external perpendicular magnetic
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Fig. 3.18 Evolution of the electronic dispersion relations for a two-layer system with out-
of-plane canting for various values of 𝜃 at 𝜙 = 0 for a nanowire geometry infinite in the 𝑥
direction. No dispersionless regions are observed at any point in the parameter sweep.
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Fig. 3.19 2D bulk electronic dispersion along the path Γ − 𝑀 − 𝐾 − Γ in the hexagonal
Brillouin zone with magnetisation along the 𝑥 axis and antiferromagnetic coupling between
layers. The original DP at Γ has been shifted toward the 𝐾-point by an amount proportional
to the magnetisation. Unlike the case of in-plane canting, as shown in Figures 3.10 and 3.10,
there are no accidental band crossings caused by the bulk band gap closure.

field to engineer a Lifshitz transition observable through the use of a scanning tunnelling
microscopy (STM) probe. Studies have shown that canted magnetic moments can arise in
MTIs at interfaces, or even in bare AFMTIs [186, 82, 12]. It may, therefore, be expected that
a non-zero out-of-plane external magnetic field would be required in order to realise a spin
configuration with no net out-of-plane component. At a critical field, one would therefore
observe a sudden change in the Fermi surface as a flat-band appeared through a large increase
in the electron density which can be probed through the use of STM.

Once again, the presence of flat-bands can be understood from the perspective of the
2D bulk dispersion relation, shown in Figure 3.19. While in the case of in-plane canting
at (𝜃 = 𝜋/2, 𝜙 = 0) (magnetisation along 𝑥 with ferromagnetic coupling between layers)
there was a critical magnetisation at which accidental band crossings occurred, this is not
the case for systems with out-of-plane canting (𝜃 = 𝜋/2, 𝜙 = 0) (magnetisation along 𝑥 with
antiferromagnetic coupling between layers). Rather, we only see a shift of the original DP
by an amount proportional to the magnetisation. In this case, there is no critical in-plane
magnetisation, and a nodal line around the Γ point will always emerge where there is no
𝑧-component to the magnetisation (note that the dispersion relations have been calculated
with magnetisation 𝑚 = 1.5 for consistency with the previous section). Furthermore, the role
of the out-of-plane canting is to gap out this original DP by acting as an effective mass term
that breaks the chiral symmetry of the system.
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Fig. 3.20 Evolution of the electronic dispersion relations for a three-layer system with
out-of-plane canting for various values of 𝜃 at 𝜙 = 0 for nanowire geometries infinite in the 𝑥
(left) and 𝑦̂ (right) directions.
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Fig. 3.21 Evolution of the electronic dispersion relations for a three-layer system with
out-of-plane canting for various values of 𝜙 at 𝜃 = 𝜋/2 for nanowire geometries infinite in
the 𝑥 (left) and 𝑦̂ (right) directions.
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Analysing the behaviour of 𝜂(𝒌) in Figure 3.22 as an indicator of the topological behaviour
of these flat-bands, we once again observe singular behaviour in the areas where the flat-bands
are located implying a non-zero value of the winding number in these regions. Furthermore,
as the top row demonstrates of 3.22, the bands retain their topological character even with
𝑀𝑧 ≠ 0. This gives further credence to the idea of a perpendicular field controlling topological
electronic transport.

The winding of the Wilson loop in this system can also, once again, establish the
topologically non-trivial nature of the flat-band, shown in Figure 3.23. In contrast to the
case of three-layer systems with in-plane canting, shown in Figure 3.14 one should note that
only one of the fully branches winds. This difference can be explained by noting that the
three dispersionless regions in the three-layer system with in-plane canting arise from three
different band crossing points, where-as the single flat-band in this system arises from only a
single band crossing.

We conclude our characterisation of the topological flat-bands in three-layer systems
by analysing the LDOS of a nanoribbon periodic in the 𝑥. Figure 3.24 shows the LDOS
of three-layer nanoribbon for 𝜃 = 𝜋/3, 𝜋/2 (top/bottom row) at 𝐸 = −0.05, 0.0 (left/right
columns).

First, examining the LDOS at 𝜃 = 𝜋/2, 𝐸 = 0.0 (bottom right) we find that the topological
flat-bands are edge states (identically to the in-plane configuration) but are localised entirely
on the top and bottom layers of the nanoribbon. Surprisingly, when the magnetisation vector
is canted in the 𝑧 direction (top right panel) the edge states (which now have a non-zero group
velocity, see Figure 3.20) are now strongly localised within the middle layer with only a very
faint contribution from the top or bottom layers). Roughly the same behaviour occurs for the
LDOS calculated at 𝐸 = −0.05 (left column), however in this case the states contributing to
the LDOS at 𝜃 = 𝜋/2 are more strongly localised across the centre of the top and bottom
layers rather than the edges (recall that the bands at 𝐸 = −0.05 are dispersive at both 𝜃 = 𝜋/3
and 𝜃 = 𝜋/2). We therefore conclude that not only can a perpendicular component of the
magnetisation tune the group velocity of the topological bands, but these results suggest a
non-zero 𝑀𝑧 can also alter the spatial distribution of the topological states.

Analysing the dispersion relation of a five-layer nanoribbon with 𝜃 = 𝜋/2, 𝜙 = 0, shown
in Figure 3.25, suggests that the central flat-band present in the three-layer system is actually
a universal feature in all odd-layered systems.

However, the LDOS of a five-layer nanoribbon, shown in Figure 3.26, paints a much
more complex picture. As before, we calculate the LDOS at 𝐸 = −0.05, 0.0 and with the
configuration 𝜃 = 𝜋/3, 𝜋/2 and 𝜙 = 0. In the five-layer geometry, we observe the surprising
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Fig. 3.22 Evolution of 𝜂(𝒌) = Im ln det𝐷 (𝒌) across the Brillouin zone for the out-of-plane
canted magnetisation configuration for various values of the parameters 𝜃 and 𝜙. The top row
shows 𝜃 = 𝜋/3 while the bottom shows 𝜃 = 𝜋/2. The left hand column shows 𝜙 = 0 and the
right 𝜙 = 𝜋/2.

result that the LDOS is highly localised only on (odd) layers at 𝜃 = 𝜋/2 for both energy
values being investigated, as shown in the bottom row of 3.26. Furthermore, while in the
three-layer nanoribbon the LDOS was localised within the middle layer at 𝜃 = 𝜋/3 it is most
highly localised on the top and bottom surface of the five-layer nanoribbon, as shown by the
deeper shade of blue in the top row of Figure 3.26. While not presented here, the localization
of the states on odd layers has been confirmed for 7 layer samples and is robust to changes in
material parameters when 𝑀𝑧 = 0. This is in fact a manifestation of the well-known result
that bipartite lattices can host majority sublattice chiral flat-bands [141]. In our case, the
even and odd layers of the magnetic TI heterostructure are the sublattices. Finally, note the
presence of a diagonal symmetry plane evident in Figures 3.24 and 3.26 with 𝜃 = 𝜋/3 and
𝐸 = −0.05 (top left image in each figure). This can be understood as a consequence of the 𝑅𝑦
symmetry present in 𝑥-periodic systems given in equation 3.20, which has an anti-diagonal
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Fig. 3.23 Wilson loops of a three-layer nanoribbon periodic in the 𝑥-direction with in-plane
magnetisation directed along the 𝑥 axis and antiferromagnetic coupling between layers,
calculated over the valence bands at half-filling. A small canting in the 𝑧-direction has been
added to make the winding of the Wilson loop more clearly visible. The left (right) panel
shows the 𝑘2 (𝑘1) directed Wilson loop against the 𝑘1 (𝑘2) wavevector.

form. Therefore, the presence of 𝑅𝑦 symmetry in 𝑥-periodic systems suggests the presence of
mirror planes with normals parallel to the 𝑦̂ and 𝑧 axes, creating a resultant diagonal mirror
plane.

To summarise, in this section we have shown that using in-plane magnetisation one can
engineer flat-bands in a multilayer topological insulator heterostructure. In particular, we
have shown that in-plane magnetisation with ferromagnetic coupling between moments in
adjacent layers, shown in the left panel of Figure 3.27, leads to flat bands in even and odd
layer samples while antiferromagnetic coupling between layers, shown on the right of Figure
3.27, gives flat bands in odd layered samples only. The viability of this approach in real
materials is discussed in the following section.

3.4.3 Nodal lines in realistic materials

Having shown that in-plane magnetisation in TI multilayers can produce dispersionless
electronic bands, it is worth reflecting on which material systems are required to observe such
electronic structures. Before concluding this chapter, we will attempt to link theory back to
reality by introducing more realistic material parameters than those used in the prior section.
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Fig. 3.24 Local density of states plots of a three-layer nanoribbon periodic in the 𝑥 direction.
The top row shows 𝜃 = 𝜋/3 while the bottom shows 𝜃 = 𝜋/2. The left hand column shows
𝐸 = −0.05 and the right 𝐸 = 0.

In the introduction, the MnBi2Te4 family of AFMTIs was briefly mentioned as a candidate
system for multilayer magnetic TIs, with VBi2Te4 and EuBi2Te4 mentioned as particularly
promising candidates due to their easy in-plane magnetisation axis. Studies on these materials
remain limited and no set of material parameters fitting the Hamiltonian given in 3.2 have
been derived using DFT. Therefore, in order to perform lattice simulations with a realistic set
of parameters we will refer to those given for the BSTS family of TIs [112]. In particular, we
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Fig. 3.25 Electronic dispersion relation of a five-layer nanoribbon periodic in the 𝑥 direction
with out-of-plane canting for 𝜃 = 𝜋/2, 𝜙 = 0.

will adopt the parameters given for Bi2Te3 and Bi2Se3, given in table 3.2. The in-plane and
out-of-plane lattice constants are given as 𝑎 = 4.33 Å and 𝑐 = 40.33 Å, respectively [35].

So far, we have only studied instances where flat-bands arise in systems respecting chiral
symmetry by enforcing 𝐶 (𝒌) = 0. With our choice of realistic material parameters we have
introduced a term that will cause this symmetry to be broken, meaning that topological
invariants like the winding number can no longer be used to characterize a topological
flat-band. Nevertheless, an in-plane component of the magnetisation can still be used to
close the bulk band gap to create a number of nodal points in the dispersion relation. That
said, given that chiral symmetry is integral to the formation of zero-energy flat bands,
particle-hole/chiral symmetry breaking terms in the Hamiltonian should be expected to lead
to some finite dispersion. In the following we will examine the electronic properties of the
systems that were shown to demonstrate flat-band behaviour using realistic parameters.

The electronic dispersion relations of a two layer system periodic in 𝑥 with and magneti-
sation configuration (𝜃 = 𝜋/2, 𝜙 = 0) and ferromagnetic coupling between layers is shown
in Figure 3.28. Parameters representative of Bi2Te3 and Bi2Se3 are shown on the left and
the right of the image, respectively. An exchange field of 𝑚 = 1.5 eV has been chosen. We
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Fig. 3.26 Local density of states plots of a five-layer nanoribbon periodic in the 𝑥 direction.
The top row shows 𝜃 = 𝜋/3 while the bottom shows 𝜃 = 𝜋/2. The left hand column shows
𝐸 = −0.05 and the right 𝐸 = 0.

note that for both sets of parameters there are nodal lines with a small, but finite, dispersion
centred around 𝑘𝑥 = 0 rather than the two disjoint dispersionless regions that were previously
observed in 3.6. However, there are some interesting differences between the two material
systems. Firstly, we observe that the nearly flat-band overlaps with a dispersive set of bulk
bands in Bi2Te3 due to slightly larger PHS breaking terms, 𝐶 (𝒌). Secondly, the enhanced
interlayer hopping present in Bi2Se3 (i.e. the parameter 𝑣𝑧), has led to nearly flat-bands
appearing at two distinct energies, separated by a small band gap, in contrast to the situation
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𝑦

𝑥

𝑧

Fig. 3.27 The magnetisation leading to flat-band systems for the model given in 3.2 with
𝐶 (𝒌) = 0. The left hand image shows an in-plane magnetisation with ferromagnetic coupling
between layers, while the right shows antiferromagnetic coupling. Note that in the situation
of antiferromagnetic coupling, flat=-bands only appear in odd-layered systems.

in Bi2Te3 where the bands have appeared coalesce more tightly. This can be understood as a
result of the broken chiral symmetry no longer protecting the nodal points at 𝐸 = 0 that were
previously observed in the bulk dispersion 3.10.

The situation of three-layer nanoribbons is similar, as shown in Figure 3.29, but where
there was a band gap in the two-layer case we have a visible third band in Bi2Se3 ensuring
that the system is gapless once again. As in the case of the lattice simulations with the toy
parameters, realistic three band systems have an additional DP at Γ at zero magnetisation
which is shifted in 𝑘-space by the in-plane magnetisation. It is not possible to see the splitting
of the three bands in Bi2Te3, once again due to the suppressed value of the interlayer coupling
term 𝑣𝑧.

Finally, the results of lattice simulations for a three-layer system with in-plane mag-
netisation and antiferromagnetic coupling between layers is shown in Figure 3.30. We see
no evidence of the splitting of nodal lines that was observed in three-layer systems with
ferromagnetic coupling, Figure 3.29, consistent with the behaviour of the toy model only
having a single band crossing due to the shift of the original DP in momentum space. While
not shown here, the LDOS of the nodal lines is localized over all three layers of the system.

Bi2Te3 Bi2Se3
𝐶0/eV -0.18 -0.0083
𝐶1/eVÅ2 6.55 5.74
𝐶2/eVÅ2 49.68 30.4
𝑀0/eV -0.3 -0.28
𝑀1/eVÅ2 2.79 6.86
𝑀2/eVÅ2 57.38 44.5
𝑣/eV Å 2.78 3.33
𝑣𝑧/eV Å 0.3 2.26
𝑤/eVÅ3 45.02 50.6

Table 3.2 Material parameters for the model given in 3.2 for Bi2Te3 and Bi2Se3 [112].
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Fig. 3.28 Dispersion of a two-layer system periodic in 𝑥 with and magnetisation configuration
(𝜃 = 𝜋/2, 𝜙 = 0) and ferromagnetic coupling between layers with parameters derived for
Bi2Te3 (left) and Bi2Se3 (right). A magnetisation energy of 1.5 eV has been used.

Recall from Figures 3.24 and 3.26 that the LDOS around the flat-bands using the toy model
parameters was confined to odd layers. This result should not come as a surprise, as the
presence of majority sublattice flat-bands relied on the chiral symmetry of the model, which
is now broken by the 𝐶 (𝒌) term.

While it is encouraging that nearly flat-bands persist even in realistic materials through
the use of in-plane magnetisation, it must be noted that the value of 𝑚 = 1.5 eV is extremely
high. While nodal points in the 1D band structure occur at a lower critical magnetisation
for both sets of material parameters tested (around 𝑚 ≈ 0.8 eV for a two-layer system) this
magnetisation energy is required to ensure the nodal lines reside in the band gap of the
material and are isolated from the bulk bands. If we were to try and engineer these nodal
lines in a bare TI with an external magnetic field, then assuming a 𝑔-factor of ≈ 4 for the
BSTS family we would need a field strength on the order of tens of thousands of Tesla which
is practically infeasible. In addition, exchange splittings in intrinsic magnetic TIs have been
estimated to be on the order of 10s of millielectronvolts [105, 202, 68], meaning that it is
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Fig. 3.29 Dispersion of a three-layer system periodic in 𝑥 with and magnetisation configuration
(𝜃 = 𝜋/2, 𝜙 = 0) and ferromagnetic coupling between layers with parameters derived for
Bi2Te3 (left) and Bi2Se3 (right). A magnetisation energy of 1.5 eV has been used. In contrast
to the two-layer case, the dispersion is gapless due to a central nodal line arising from the
original DP that has been shifted from Γ in momentum space.

unlikely that one could experimentally probe these nodal lines in the MnBi2Te4 family of
materials, meaning that heterostructure engineering may be required to develop a system with
effective material parameters that allow observation of the flat-band topological surface states
discussed here. Alternatively, one could adopt a different approach to engineering topological
nodal lines, such as strain [99] or, as shall be discussed in the next chapter, magnetic domain
walls.

3.5 Conclusion

To conclude, in this chapter we have examined the effect of the sign of the coupling between the
magnetisation between layers, i.e. the electronic properties of materials with ferromagnetic
vs antiferromagnetic coupling. We have shown that beyond a critical in-plane magnetisation,
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Fig. 3.30 Dispersion of a three-layer system periodic in 𝑥 with and magnetisation configuration
(𝜃 = 𝜋/2, 𝜙 = 0) and ferromagnetic coupling between layers with parameters derived for
Bi2Te3 (left) and Bi2Se3 (right). A magnetisation energy of 1.5 eV has been used. In contrast
to the two-layer case, the dispersion is gapless due to a central nodal line arising from the
original DP that has been shifted from Γ in momentum space.

one can drive the system towards an accidental band crossing in order to realise a pair of
nodal points. In odd layer systems, these nodes can coexist with the original DP that has been
shifted by an amount in 𝑘-space away from the Γ point and proportional to the magnetisation.
Furthermore, in systems where here is an antiferromagnetic coupling between layers and
an easy in-plane axis, an out-of-plane canting can tune the velocity of the boundary states.
Such a situation could be engineered with an out-of-plane magnetic field. The feasibility of
engineering a material system such as this one has been discussed, and the high exchange
splittings required appear to preclude external magnetic fields or intrinsic magnetisation
being a viable route forward due to the strength of the particle-hole symmetry breaking terms
present in realistic materials.

In the next chapter we utilise the results given here, namely that a non-zero component of
the in-plane magnetisation can be used to engineer flat-bands. In particular, we will show that
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the presence of domain walls and magnetic textures leads to the emergence of spin-polarized
chiral flat-bands.





Chapter 4

Magnetic Domain Walls in
Antiferromagnetic Topological Insulator
Heterostructures

4.1 Chapter Summary

This chapter is primarily based on my paper "Magnetic Domain Walls in Antiferromagnetic
Topological Insulator Heterostructures" published in Physical Review B in 2021, co-authored
with Dr. Thierry Ferrus and Professor Crispin Barnes [34].

This chapter builds on the work of the previous, where the the presence of an in-plane
magnetisation that respected the underlying chiral symmetry of the lattice was shown to lead
to the appearance of flat-bands. In this chapter we explore the emergence of spin-polarized
flat bands at head-to-head domain walls (DWs) in topological insulator heterostructures with
in-plane magnetization and interlayer antiferromagnetic coupling. We show in the framework
of quantum well physics that, by tuning the width of a DW, one can control the functional
form of the bound states appearing across it. Furthermore, we demonstrate the effect that the
number of layers in a multilayer sample has on the electronic dispersion. In particular, the
alignment of the magnetization vectors on the top and bottom surfaces of odd-layer samples
affords particle-hole symmetry, leading to the presence of linearly dispersing topologically
nontrivial states around 𝐸 = 0. By contrast, the lack of particle-hole symmetry in even-layer
samples results in a gapped system, with spin-polarized flat bands appearing on either side of
a band gap, with a characteristic energy well within terahertz energy scales. Such a system
is a versatile platform for the development of spintronic devices and proposes one use in
reconfigurable magnetic memory.
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4.2 Introduction

In chapter 3 we investigated in-plane magnetism as a means to engineer topologically
non-trivial flat-bands into the electronic dispersion relationship of a topological insulator. In
this chapter, our investigations consider a multilayer heterostructure where the magnetisation
vector is orientated in-plane with antiferromagnetic coupling between layers, as before, but
now in the presence of magnetic textures, that is, magnetic domain walls (DWs). These
DWs will be used as a means of modifying both the electronic dispersion relation and the
spin-polarisation of the electronic states of the TI heterostructures. In particular, the presence
of head-to-head DWs (tail-to-tail, equivalently) leads to the formation of quasiparticles with
infinite effective mass, localised around the DW [140]. The existence of these quasiparticles
may be inferred through a topological argument. For in-plane magnetisation, the Dirac
cones will be shifted by equal and opposite amounts in momentum space either side of a
DW. The continuity of the energy dispersion relation demands that there must be a band of
bound states joining these two Dirac cones across the DW. Furthermore, in order to respect
the spin-momentum locked nature of the Dirac fermions, such electronic bands must be
spin-polarised.

Throughout this work, we focus on the case of transverse head-to-head (tail-to-tail) DWs.
A schematic of a multilayer heterostructure with this spin texture is given in Figure 4.1. While
such DWs are more experimentally challenging to realise and control than vortex DWs [177],
they offer the advantage of a non-zero in-plane stray field which is a necessary requirement for
DW detection in any device [135]. Furthermore, we shall see that there exists a bound charge
across head-to-head DWs in magnetic TIs, facilitating both the detection and controlled
displacement of the DWs across a macroscopic sample using a local electric field. Bound
states have been studied extensively, for example through the use of dislocations, defects and
magnetic fluxes. The interested reader is referred to [160, 76, 164, 173, 198, 118, 84, 85] for
additional information on the matter.

4.3 Bound States at a Domain Wall

Before we examine the more complex situation of an AFMTI, we will examine the existence
of bound states localised around DWs of varying width within a magnetic TI using a simple
surface model. We adopt the massless Dirac-Rashba Hamiltonian, which describes the
surface states of a TI, given as

ℎ0 = ℏ𝑣 𝑓 (𝝈 × 𝒌)𝑧 + ℎ𝑒𝑥𝑐, (4.1)
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𝑥
𝑦

𝑧

Fig. 4.1 Schematic of a multilayer TI heterostructure with in-plane magnetism and antiferro-
magnetic coupling between adjacent layers. In this article, we will consider samples of infinite
length along the 𝑥 axis. The magnetisation in each layer either side of the domain wall (dashed
line) is shown by black arrows. A sharp head-to-head (tail-to-tail, equivalently) domain wall
is shown, however it should be noted that competition between the magnetocrystalline and
exchange energies will lead to a realistic domain wall having a finite width.

in the 𝜎̂𝑧 basis, where 𝑣 𝑓 is the Fermi velocity and 𝜎̂𝑥,𝑦,𝑧 are the Pauli matrices acting on the
spin states of the Hamiltonian [58]. Neglecting the exchange term ℎ𝑒𝑥𝑐 for the moment, this
minimal model captures the low-energy physics of single-particle TI edge states near the
Dirac point effectively, namely their localisation at the surface and exponential decay into the
bulk, and spin-momentum locking. At higher energies, one should also consider the presence
of higher order momenta terms (e.g. cubic terms that give rise to hexagonal warping) or
disorder terms.

From here, we will adopt units where ℏ = 𝑣 𝑓 = 1. The proximity interaction between
local spins and Dirac electrons is accounted for via the introduction of an exchange term

ℎ𝑒𝑥𝑐 = 𝑴 · 𝝈, (4.2)

where the vector field 𝑴 is interpreted as the local magnetisation with magnitude constant
𝑀 . In order to model domain walls, the in-plane component of the magnetisation is allowed
to rotate around the 𝑧 axis, i.e. Bloch domain walls. We may also generally incorporate a
canting of the magnetisation in the 𝑧 direction such that there is a non-zero magnetic moment.
This phenomenon, known as spin-canting, is observable in some antiferromagnetic materials
as they are cooled towards absolute zero and is therefore an important consideration in our
investigation of AFMTIs. As a result, the magnetisation vector is

𝑴 = (𝑀𝑥 (𝑦), 𝑀𝑦 (𝑦), 𝑀𝑧) (4.3)
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It should be noted here that the minimal model described above omits a number of terms
that would affect the spin dynamics of our system, leading to a deviation from the simple
set-up described. In order to comprehensively model the spin dynamics one would of course
have to run a set of micromagnetic simulations, however on the level of the single-particle
Hamiltonian one can consider additional terms due to anisotropy an the antisymmetric
exchange interaction, also known as the Dzyaloshinski-Moriya interaction (DMI), given by
the term

𝐻𝐷𝑀𝐼 =
∑︁
𝑖, 𝑗

𝐽𝐷𝑀𝐼𝑺𝑖 × 𝑆 𝑗 . (4.4)

where 𝐽𝐷𝑀𝐼 is the DMI coupling constant and 𝑺𝑖 is the local spin at site 𝑖. The DMI arises in
crystals with strong spin-orbit and broken inversion symmetry. Specifically in the multilayer
heterostructures that we will later discuss, the DMI is mediated by topological surface states
and will generally lead to the formation of nontrivial magnetic textures in MTIs, such as
skyrmions which can be detected through the topological Hall effect [143], or topological
magnons which in hexagonal materials generally exhibit a Dirac like magnon dispersion
relation [104, 36]. Generally the DMI occurs at interfaces between ferromagnetic/non-
magnetic materials, for instance due to charge fluctuations at the interface coupling to
magnetic moments, meaning that we should also expect it in the multilayer heterostructures
discussed here [128, 152]. As we shall discuss later, one possible means to engineer the
magnetic textures proposed is through the use of a proximate (anti-)ferromagnet. In this
system, in particular, one should expect a non-negligible DMI at the interface. We will
not consider these terms in the treatment outlined here and will adopt a simpler picture of
localized magnetism, however the interested reader is referred to Hayakawa et. al. [59] for a
more detailed discussion on the microscopic theory of the DMI in topological and Rashba
materials.

In the remainder of this section we shall now show that flat bands constituting bound states,
localised across the DW, occur regardless of DW width, i.e. bound states exist across
arbitrarily smooth or abrupt DWs of the form given in (4.3).

Owing to the spatially varying exchange field, 𝑘𝑦 is no longer a good quantum number.
We make the substitution 𝑘𝑦 → −𝑖𝜕𝑦 to account for this spatial variation and to solve for the
confined surface states of this model. In doing so, we obtain two differential equations for
each spin state
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𝜉𝜓𝜎 (𝑦) =[(−𝑖𝜕𝑦 + 𝑀𝑥) + 𝑖𝜎(𝑘𝑥 − 𝑀𝑦)]
[(−𝑖𝜕𝑦 + 𝑀𝑥) − 𝑖𝜎(𝑘𝑥 − 𝑀𝑦)]𝜓𝜎 (𝑦)

(4.5)

where 𝜎 = ±1 corresponds to the two 𝜎̂𝑧 basis states at energy 𝐸 and 𝜉 = 𝐸2 − 𝑀2
𝑧 . In the

case of an infinite strip, one can use the Jackiw-Rebbi argument [72, 26] to show that there
must be a bound state at 𝐸 = ±𝑀𝑧 satisfying the 1D Dirac equation

[(−𝑖𝜕𝑦 + 𝑀𝑥) − 𝑖𝜎(𝑘𝑥 − 𝑀𝑦)]𝜓𝜎 (𝑦) = 0 (4.6)

which admits solutions of the form

𝜓𝜎 (𝑦) ∝ exp
(
−𝑖

∫
R
𝑀𝑥d𝑦 − 𝜎

∫
R
(𝑘𝑥 − 𝑀𝑦)d𝑦

)
(4.7)

Depending on the exact form of 𝑀𝑦 only one of 𝜓↑/↓ will satisfy the boundary condition
lim𝑦→∞ 𝜓𝜎 (𝑦) = 0. However, as previously mentioned, our main interest is in solutions for
systems of finite width. In the following we will demonstrate the existence of low energy
flat-bands by considering the squared Hamiltonian of (4.1), in agreement with the topological
arguments for their existence made in the introduction. In the first instance, we will consider a
sharp domain wall of the form 𝑀𝑦 = 𝑀 (2𝜃 (𝑦) −1), where 𝜃 (𝑦) is the Heaviside step function
and 𝑀 is a constant. We choose 𝑀 > 0 and note that the 𝑀 > 0 and 𝑀 < 0 cases are related
by a unitary transformation satisfying ℎ0(𝑘𝑥 ,−𝑖𝜕𝑦, 𝑀) = 𝜎𝑦𝑅𝑦ℎ0(𝑘𝑥 ,−𝑖𝜕𝑦,−𝑀)𝑅†

𝑦𝜎𝑦, where
𝑅𝑦 is a reflection operator that takes 𝑦 → −𝑦 such that 𝜕𝑦 → −𝜕𝑦 and 𝑀𝑦 → −𝑀𝑦. We
expand equation (4.5)

𝜉𝜓𝜎 (𝑦) = [−𝜕2
𝑦 + (𝑘𝑥 − 𝑀𝑦)2 + 𝜎𝜕𝑦𝑀𝑦]𝜓𝜎

= [−𝜕2
𝑦 +𝑉 (𝑦)]𝜓𝜎 (𝑦),

(4.8)

to obtain the 1D time-independent Schrödinger equation with the spin-dependent effective
potential 𝑉 (𝑦) = (𝑘𝑥 − sgn(𝑦)𝑀)2 + 2𝜎𝑀𝛿(𝑦) where sgn(𝑦) gives the sign of 𝑦. In the
case of an infinite strip, solving this equation recovers the solution given in (4.7). A finite
strip of length 𝐿 can be modelled by adding an infinite potential in the region |𝑦 | > 𝐿/2. In
this case, we must satisfy the boundary conditions 𝜓𝜎 (𝑦 = ±𝐿/2) = 0 and continuity of the
wavefunction at 𝑦 = 0. The lowest energy bound states are found at 𝐸 = ±𝑀𝑧 and are given
by,
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𝜓𝜎 (𝑦) =

𝜓(0) sinh (𝜆+ (𝑦+ 𝐿

2 ))
sinh (𝜆+ 𝐿

2 )
𝑦 < 0

𝜓(0) sinh (𝜆− (𝑦− 𝐿
2 ))

− sinh (𝜆− 𝐿
2 )

𝑦 ≥ 0
(4.9)

where 𝜆± = |𝑘𝑥 ± 𝑀 |. In the case of the infinite strip only one of the two spin states satisfies the
boundary conditions, however the finite strip now hosts spin polarised flat-bands at 𝐸 = ±𝑀𝑧

for |𝑘𝑥 | < 𝑀, which evolve into a pair of dispersive bands for |𝑘𝑥 | > 𝑀. Furthermore, the
wavefunctions for both spin states are localised around the domain wall at 𝑦 = 0.

Of course, while a sharp DW can prove instructive, it is unlikely to be energetically stable
and, in a more realistic setting, the magnetisation vector will switch over a larger length
scale. With this in mind, we will now consider the situation where the DW varies smoothly
over a longer distance. In the case of the finite strip we can model a smooth DW, to first
approximation, as

(𝑀𝑥 , 𝑀𝑦) =


(0,−𝑀), 𝑦 < −𝑙,
𝑀

(
(1 − ( 𝑦

𝑙
)2) 1

2 ,
𝑦

𝑙

)
, −𝑙 ≤ 𝑦 ≤ 𝑙,

(0, 𝑀), 𝑦 > 𝑙.

(4.10)

Although linear variation of the in-plane exchange field may appear crude, it can be seen as
the lowest order term in a more realistic DW such as 𝑀𝑦 = 𝑀 tanh 𝑦/𝑙 and therefore valid in
the limit of wide DWs. Furthermore, while it is possible to analytically solve for a smooth
DW of the form 𝑴 = 𝑀 (sech 𝑦/𝑙, tanh 𝑦/𝑙) by recasting the whole system in terms of Euler’s
hypergeometric equation, it offers little physical insight and is algebraically dense. As such,
we adopt a linearised potential as a model for a smooth DW.

To calculate the energy spectrum of this system, we define the operators 𝑎̂ = (−𝑖𝜕𝑦 +
𝑀𝑥) + 𝑖(𝑘𝑥 − 𝑀𝑦). The commutation relation of these operators satisfies

[𝑎̂, 𝑎̂†] = 𝜕𝑦𝑀𝑦 (4.11)

using the canonical commutation relation and the commutator identity [ 𝑓 (𝑋), 𝑌 ] = [𝑋,𝑌 ] 𝜕 𝑓
𝜕𝑋

.
Far from the edges of the system within the region |𝑦 | < 𝑙, the Hamiltonian is given by

ℎ̂ =
©­«

𝑀𝑧

√︃
2𝑀
𝑙
𝑐√︃

2𝑀
𝑙
𝑐† −𝑀𝑧

ª®¬ , (4.12)
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where we have defined the creation and annihilation operators for the harmonic oscillator 𝑐 =√︃
𝑙

2𝑀 𝑎̂ satisfying [𝑐, 𝑐†] = 1, 𝑐 |𝑛⟩ = 𝑛 |𝑛 − 1⟩ and 𝑐† |𝑛⟩ = 𝑛 |𝑛 + 1⟩ where ⟨𝑥 |𝑛⟩ = 𝐻𝑛 (𝑥)
are the usual Hermite polynomials of the quantum harmonic oscillator. Representing ℎ̂ in the
restricted basis {|𝑛 − 1⟩ , |𝑛⟩} we find ℎ𝑛 equal to

ℎ𝑛 =

(
𝑀𝑧

1
𝑙𝑛

1
𝑙𝑛

−𝑀𝑧

)
(4.13)

where 𝑙𝑛 = 𝑙𝑠√
2𝑛

and the characteristic length scale is 𝑙𝑠 =
√︃

𝑙
𝑀

. Solving the secular equation,
far from the edges a Landau level (LL) spectrum appears due to the linear variation of the
in-plane exchange field with spectrum

𝐸𝑛 = ±
√︄
𝑀2
𝑧 +

1
𝑙2𝑛
, (4.14)

and associated solutions

𝜓𝑛,𝜎 (𝑦) ∝ 𝐻𝑛 (𝑦/𝑙𝑠) exp
(
−𝑦2/4𝑙2𝑠

)
for |𝑦 | < 𝑙. (4.15)

Before concluding this section, it is worth presenting an alternative treatment of (4.1) that
will allow us to apply some well known results to calculate the electron accumulation (i.e.
bound charge) due to the DW. We begin by rewriting (4.1) as

ℎ0 = (𝝈 × (𝒌 − 𝑒𝒂(𝒓))𝑧 + 𝑀𝑧𝜎𝑧, (4.16)

where we interpret 𝒂 as an "axial vector potential" due to the magnetisation, 𝒂 = 1
𝑒
𝑴 × 𝒛̂.

Equation (4.16) implies that an electron will "feel" an effective axial magnetic field given by
𝒃 = ∇ × 𝒂 which, in terms of the magnetisation vector, 𝑴, is

𝒃(𝒓) = 1
𝑒
( 𝒛̂ · ∇𝑴 (𝒓) − ∇ · 𝑴 (𝒓) 𝒛̂) . (4.17)

Furthermore, it is a well known result within quantum mechanics that a vector potential
coupled to an electron’s momentum will induce a quantum Hall response

𝐽𝑖 = 𝜎𝐻𝜖𝑖 𝑗𝑒 𝑗 (4.18)

where 𝐽𝑖 and 𝑒𝑖 are the 𝑖th components of the current density and axial electric field vectors,
respectively, 𝜎𝐻 = 𝑒2

2𝜋 is the quantised Hall conductance and 𝜖𝑖 𝑗 is the two-dimensional
Levi-Civita tensor. See 1.1.1 for a paedagogical review on the QHE. Note that we are
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considering the axial electric field, defined as 𝒆 = −𝜕𝑡𝒂 (where 𝜕𝑡 is the time derivative).
Substituting the quantum Hall response into the charge conservation equation we have

𝜕𝜌

𝜕𝑡
= −∇ · 𝑱

= −𝜎𝐻 (∇ × 𝒆)𝑧,
(4.19)

where 𝜌 is the electron density. Finally, we use the Maxwell-Faraday equation to express the
axial electric field in terms of axial magnetic field

𝜕𝜌

𝜕𝑡
= − 𝜎𝐻

(
𝜕𝒃

𝜕𝑡

)
𝑧

=⇒

Δ𝜌 = −𝜎𝐻𝑏𝑧,
(4.20)

where Δ𝜌 = 𝜌(𝑏𝑧) − 𝜌(0) is the change in electron density across the domain wall between
the ground state and a non-zero z-component axial magnetic field, 𝑏𝑧. Therefore, In the case
of our head-to-head domain walls Δ𝜌 is generally given as

Δ𝜌 = − 𝑒

2𝜋
𝜕𝑦𝑀𝑦 . (4.21)

In the case of a sharp domain wall centred around 𝑦 = 0, 𝑀𝑦 = 𝑀 (2𝜃 (𝑦) − 1) and the
accumulated bound charge due to the DW is given by

Δ𝜌 = − 𝑒
𝜋
𝑀𝛿(𝑦) (4.22)

i.e. the bound charge is localised around the DW and proportional to the absolute value of
the magnetisation vector. This result is in agreement with those obtained in equations 4.9
and 4.15 for the wavefunctions of Hamiltonians with sharp and wide DWs, respectively. It is
straightforward to extend this formalism to a multilayer sample, such as that shown in Figure
4.1.

4.4 𝒌 · 𝒑 model for an AFMTI

Having discussed the formation of bound states in the limits of both sharp and wide DWs,
we are now equipped to develop a model AFMTI Hamiltonian with transverse head-to-head
DWs. We adopt a Burkov-Balents approach [25] in which we consider thin film TI layers
separated by wide band gap normal insulator (NI) layers representing the van der Waals
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gap between TI layers. We may consider the NI to be the vacuum, in which case any states
existing within the NI are due to tunnelling between the topological layers either side. Within
each TI layer, the non-magnetic part of the Hamiltonian is given as

𝐻𝑡 𝑓 = ℎ0𝜏𝑧 + 𝑡𝑠𝜏𝑥 , (4.23)

in the basis ( |𝑡, ↑⟩ , |𝑡, ↓⟩ , |𝑏, ↑⟩ , |𝑏, ↓⟩)𝑇 , where 𝑡/𝑏 represent the top and bottom surfaces in
each TI layer, ↑ /↓ represent the up/down spin states in the 𝜎̂𝑧 basis, and 𝜎̂𝑥,𝑦,𝑧 and 𝜏𝑥,𝑦,𝑧 are
Pauli matrices mixing the spins and the surfaces respectively [114]. The first term, ℎ0, is the
surface Hamiltonian of a TI with its surface normal parallel to the 𝑧 direction, as given in (4.1).
The second term, 𝑡𝑠 = (𝑚+𝐵𝑘2), gives the intralayer coupling between surfaces in the same TI
layer. The exchange interaction between localised magnetic moments and the Dirac electrons
in the jth TI layer is given as 𝐻 𝑗 ,𝑒𝑥𝑐 = 𝑴 𝑗 ·𝝈, where the interlayer antiferromagnetic coupling
gives the in-plane component of the exchange field as 𝑴 𝑗 ,∥ = (−1) 𝑗 (𝑀𝑥 , 𝑀𝑦)𝑇 = (−1) 𝑗𝑴 ∥ .
Therefore, depending on the parity of the number of layers, the magnetisation on the top and
bottom surfaces of a multilayer sample will be aligned (odd layers) or anti-aligned (even
layers), similar to the situation discussed in Chapter 3. We once again consider the formation
of head-to-head (tail-to-tail) DWs as described in equation (4.3). As was the case in chapter 3,
the model we shall consider here will host only a single DP at the Γ point. The DWs described
here will therefore result in an effective mass term, however if we had DPs at different points
in the BZ then we would expect a different coupling. In addition, we note that the model
given here is not representative of bulk intrinsic magnetic TIs and instead only describes the
edge states. In the MnBi2Te4 family of compounds, changing the number of layers changes
the magnetic coupling between layers from AFM to FM (and vice versa) [130]. In general,
therefore, we should include these terms as they will have observable effects on the electronic
properties of the system. They are omitted here due to the small number of layers considered.

Including the magnetic contribution and the coupling between layers, the full Hamiltonian
of the multilayer AFMTI is given by

𝐻 (𝑘𝑥 ,−𝑖𝜕𝑦) =

©­­­­­­­«

𝐻+ 𝑇𝑧 0 0
𝑇
†
𝑧 𝐻− 𝑇𝑧 0
0 𝑇

†
𝑧 𝐻+ 𝑇𝑧 · · ·

...
. . .

0 𝑇
†
𝑧 𝐻𝜂

ª®®®®®®®¬
(4.24)

where 𝐻𝜂 = 𝐻𝑡 𝑓 + 𝜂𝑴 ∥ · 𝝈 + 𝑀𝑧𝜎𝑧 is the intralayer Hamiltonian, including a canting of
the exchange field towards the 𝑧 axis, and 𝑇𝑧 = 𝑡𝑑𝜏− gives the interlayer hopping between
nearest neighbour TI layers. We have again made the substitution 𝑘𝑦 → −𝑖𝜕𝑦 to account for
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the spatial variation of 𝑴 ∥ . The index 𝜂 = ±1 is used to determine the orientation of the
magnetisation depending on the parity of the layer in question.

We are now in the position to consider the effect of the parity of the number of layers
on the electronic dispersion of an AFMTI. In order to do so we will consider the simplest,
non-trivial examples of even and odd layer parity samples, that is, two and three layer AFMTIs.
This is simply for clarity, as the results we obtain for these systems are also applicable for
larger even and odd layer systems.

In order to solve for a multilayer sample, one can adopt a perturbation theory approach
or a numerical scheme. Here we present a numerical solution, calculated by discretising
Hamiltonian (4.24) on a square lattice through the use of the finite-difference approximation.
All results are for samples of length 50 nm in the 𝑦̂ dimension. Accordingly, parameters
in the Hamiltonian are chosen as ℏ𝑣 𝑓 = 300 meV nm, 𝑚 = 25 meV, 𝐵 = −100 meVnm2,
𝑡𝑑 = 50 meV [114, 207]. For completeness, the results of a perturbative calculation for two
and three layer systems are presented in Appendix A.

4.4.1 Two Layer System

Using the notation of (4.24), the Hamiltonian of a two layer system is given as

𝐻2 =

(
𝐻+ 𝑇𝑧

𝑇𝑧 𝐻−

)
. (4.25)

In systems with an even number of layers the magnetisation vectors will be anti-aligned
on opposite surfaces of the sample, breaking inversion symmetry. However, this Hamiltonian
possesses a 𝐶2 rotation symmetry, [𝐻2, 𝑃] = 0, where 𝑃 is given by

𝑃 =

(
0 𝜎𝑧𝜏𝑥

𝜎𝑧𝜏𝑥 0

)
. (4.26)

Exploiting this symmetry, 𝐻2 (4.25) can be block diagonalised, using the shared eigenbasis
of 𝐻2 and 𝑃

𝑈𝑃𝐻2𝑈
†
𝑃
= 𝐻′

2 =

(
𝐻+ 0
0 𝐻−

)
, (4.27)

where𝑈𝑃 is the unitary matrix formed of the eigenvectors of 𝑃 and the two sub-blocks 𝐻±

are given by
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Fig. 4.2 Electronic dispersion relations from the sub-block Hamilonians 𝐻+ (left) and 𝐻−

(right). States are coloured according to their spin-z expectation value, 𝑆𝑧 = ⟨Ψ| 𝜎𝑧 |Ψ⟩, with
spin up and down given by yellow and blue, respectively.

𝐻± =

(
ℎ0 + 𝑴 ∥ · 𝝈 + 𝑀𝑧𝜎𝑧 𝑡𝑠

𝑡𝑠 −ℎ0 + 𝑴 ∥ · 𝝈 + (𝑀𝑧 ± 𝑡𝑑)𝜎𝑧

)
, (4.28)

where the sub-blocks are labelled according to the corresponding eigenvalues of 𝑃, 𝛼𝑝 = ±1
(see Appendix A for further details). Written in this form, it is slightly easier to see that the
two layer system possess a chiral symmetry when 𝑀𝑧 = 0:

𝐶𝐻′
2(𝒌)𝐶

† = −𝐻′
2(𝒌) where

𝐶 =

(
0 𝜎𝑧𝜏𝑧

𝜎𝑧𝜏𝑧 0

)
.

(4.29)
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Fig. 4.3 The electronic dispersion of a 50 nm wide, two layer system with 𝑀𝑧 = 0. The
dashed red lines correspond to the energies that the thermally broadened LDOS images given
in Figure 4.4 are calculated at, where the lowest energy cut corresponds to the leftmost image.

The result of this is that the bandstructures of the two sub-block Hamiltonians, (4.28), should
be the inverse of one another, i.e. an eigenstate

��𝜓𝑛,𝜎,𝒌〉 at energy 𝐸𝑛,𝒌 of one sub-block
should also be an eigenstate of the other at energy −𝐸𝑛,𝒌 , where 𝜎 =↑ /↓ is the spin of
the electron. Furthermore, it is interesting to note that (4.28) is identical to the thin film
Hamiltonian given in (4.23) with an additional spin-dependent surface inversion asymmetry
equal to ±𝑡𝑑 . Comparison of (4.28) to the surfac Hamiltonian (4.1) implies that we should
expect the appearance of flat-bands at 𝐸 ≈ 𝑀𝑧 and 𝐸 ≈ (𝑀𝑧 ± 𝑡𝑑) with states localised across
the DW at 𝑦 = 𝐿/2, along with edge-states localised around 𝑦 = 0, 𝐿 due to the intralayer
coupling term, 𝑡𝑠.

These hypotheses are confirmed through numerical diagonalisation of the discretised
lattice Hamiltonian, as shown in Figure 4.2 which plots the energy dispersions of the separate
sub-blocks, 𝐻±, with a sharp domain wall, 𝑀𝑦 = 2𝑀 (𝜃 (𝑦) − 1), and 𝑀𝑧 = 0. We focus on
the case 𝑀 > 0 as it is related to the 𝑀 < 0 case by a unitary transformation, the effect of
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Fig. 4.4 The thermally broadened LDOS given at energies corresponding to the flat bands.
From left to right, 𝐸 ≈ −𝑡𝑑 , 0, 0, 𝑡𝑑 . The vertical position in the multilayer structure is shown
along the 𝑧 axis where, for example, 𝑡1 denotes the top surface of the 1st layer. The LDOS
was calculated using equation (4.30) with 𝑘𝐵𝑇 = 1 meV. The cuts in the dispersion relation
at which the LDOS has been calculated are shown in the dispersion relation in Figure 4.3.

which is simply to flip the spin-polarisation of the flat-bands as discussed in section 4.3.
Spin-polarised flat-bands appear in both band structures at 𝐸 ≈ 0 and 𝐸 ≈ ±𝑡𝑑 , along with
edge-bands with Dirac points at 𝐸 ≈ ±𝑡𝑑/2. These bands are formed from the remnants of
flat-bands that would have otherwise formed at 𝐸 = 0 and 𝐸 = ±𝑡𝑑 , had it not been for the
intralayer coupling term, 𝑡𝑠. The strength of the coupling between these edge-states and the
proximate flat-bands can be controlled by tuning the energy difference between them, using
𝑀𝑧, or using the intralayer coupling term, 𝑡𝑠.

The full band structure of the two layer system is shown in Figure 4.3. As the complete
spectrum of 𝐻2 is composed of the 𝐻+ and 𝐻− spectra, there is only a small direct band
gap between the two low energy flat-bands of each block. By varying the coupling between
the top and bottom surfaces of each TI layer using the parameter 𝑚, which appears as the
wavevector independent term in the intralayer coupling 𝑡𝑠, the band gap can be enhanced by
controlling the interaction between the flat-bands and the edge-states.
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Shown in Figure 4.4 are the thermally broadened local density of states (LDOS) at
energies around the flat bands. The thermally broadened LDOS is calculated as

𝜌(𝑦, 𝑧, 𝐸) ∝
∫
𝐵𝑍

𝑑𝑘𝑥

∑︁
𝑛

𝜔(𝐸 − 𝐸𝑛) |𝜓𝑛 (𝑘𝑥 , 𝑦, 𝑧) |2, (4.30)

where 𝐸𝑛 and 𝜓𝑛 (𝑘𝑥 , 𝑦, 𝑧) are the energy and eigenstate of the 𝑛th band, respectively,
and 𝜔(𝐸) = − 𝜕

𝜕𝐸
𝑓 (𝐸) is a thermal broadening function, where 𝑓 (𝐸) is the Fermi-Dirac

distribution. The thermally broadened LDOS, rather than the standard definition of the
LDOS, is chosen for this calculation as it is directly related to the electronic properties of the
system at experimentally relevant temperatures, 𝑇 . For example, the differential conductance
measured by a scanning tunnelling microscopy (STM) probe is dependent on the thermally
broadened LDOS. Furthermore, taking the limit 𝑇 → 0 recovers the definition of the standard
LDOS, i.e.

lim
𝑇→0

𝜌(𝑦, 𝑧, 𝐸) = 𝐿𝐷𝑂𝑆(𝑦, 𝑧, 𝐸) =
∫
𝐵𝑍

𝑑𝑘𝑥

∑︁
𝑛

𝛿(𝐸 − 𝐸𝑛) |𝜓𝑛 (𝑘𝑥 , 𝑦, 𝑧) |2. (4.31)

As demonstrated using the surface model (4.1) the flat-band states are strongly localised
around the domain wall. Interestingly, we find that the low energy flat-band states are localised
across the top and bottom surfaces of the sample, while those at 𝐸 ≈ ±𝑡𝑑 are located within
the bulk (i.e. split across 𝑏1/𝑡2). The 𝐶2 rotation symmetry of the two layer system demands
that the top and bottom surfaces are equivalent, hence that the low energy states are split
equally across them. However, a small electric field applied along the growth (𝑧) direction
can break this symmetry, biasing one side of the sample with respect to the other. One would
expect this to have an experimentally measurable consequence in terms of the anomalous
Hall effect along the domain wall. Electrons transmitted through the DW will be subjected
to out-of-plane spin polarization (in the case of 𝑀𝑧 > 0, the flat-bands consist entirely of
spin-down electrons). The strong SOC in TI heterostructures will lead to a transverse current,
i.e. an observable Hall effect. Where one side the the heterostructure is biased with respect
to the other, as described above, this could in theory lead to a Hall effect confined to a single
layer. This would almost certainly not be observable in a bare AFMTI, however may be
possible in a multilayer heterostructure where MTI layers are separated from one another by
a wide band-gap normal insulator with a high dielectric constant.

We conclude our investigation of the two layer system by examining the effect of a canted
magnetisation, i.e. 𝑀𝑧 ≠ 0. Figure 4.5 shows the effect that 𝑀𝑧 has on the dispersion
relation of the two layer system. The cases 𝑀𝑧 > 0 and 𝑀𝑧 < 0 are related via a unitary
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Fig. 4.5 The effect of𝑀𝑧 ≠ 0 on a two layer system. From left to right,𝑀𝑧 = 10, 15, 25, 50meV.

transformation and so we present results only on the former. Most obviously, the presence
of a non-zero canting breaks the chiral symmetry of the system, given by equation (4.29),
ensuring that the bandstructure is no-longer symmetric around 𝐸 = 0. Moderate values of 𝑀𝑧

shifts the position of the spin down (up) flat-bands downwards (upwards), i.e. the Zeeman
effect, reducing the gap in the 𝐻+ block between the low energy flat-band and the edge-states.
Increasing 𝑀𝑧 > 𝑡𝑑/2 removes the anti-crossing between the flat-band and the edge state at
𝐸 ≈ −𝑡𝑑/2 in the 𝐻+ sub-block, leading to a pair of linear dispersing edge-states. However,
the behaviour of the edge-states in the 𝐻− block is strikingly different. The remnants of the
flat-bands comprising these bands shift in energy, leading to a reduction in the group velocity
until the edge-states are themselves a set of flat-bands at 𝑀𝑧 = 𝑡𝑑/2 = 25 meV. A further
increase in 𝑀𝑧 leads to a complete inversion of the 𝐻− edge state bands, as shown in the
right most panel of Figure 4.5. These results demonstrate the control an experimentalist may
wield upon this system through the use of an external magnetic field. Before concluding,
it is worth briefly commenting on the magnetisation energies required to tune the energy
of the flat bands. If we adopt g-factors of 𝑔𝑧 ≈ 10 for perpendicular magnetic fields, as
motivated by the order of magnitude of the g-factors for the BSTS family of TIs [112], then
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the average external perpendicular magnetic field required to generate a magnetisation energy
of 𝑚 ≈ 25 meV is around 40T which, while certainly experimentally possible, is certainly not
within the reach of most day-to-day lab equipment. Alternative means to realise the flat-bands
discussed above are given in section 4.6.

4.4.2 Three Layer System

Again, in the notation of (4.24), the Hamiltonian of a three layer system is

𝐻3 =
©­­«
𝐻+ 𝑇𝑧 0
𝑇
†
𝑧 𝐻− 𝑇𝑧

0 𝑇
†
𝑧 𝐻+

ª®®¬ (4.32)

Here, as in all odd layer systems, the magnetisation vector aligns on the top and bottom
surfaces of the multilayer sample, affording the system inversion symmetry

𝐼𝐻3(𝒌)𝐼† = 𝐻3(−𝒌) where

𝐼 =
©­­«

0 0 𝜏𝑥

0 𝜏𝑥 0
𝜏𝑥 0 0

ª®®¬ .
(4.33)

We will exploit this inversion symmetry in demonstrating the particle-hole symmetry of the
system, which satisfies

Γ𝐻3(𝒌)Γ† = −𝐻3(−𝒌) where

Γ =
©­­«

0 0 𝑖𝜎𝑦𝜏𝑦

0 𝑖𝜎𝑦𝜏𝑦 0
𝑖𝜎𝑦𝜏𝑦 0 0

ª®®¬𝐾,
(4.34)

where 𝐾 is the complex conjugation operator. In this case, Γ2 = −1, i.e. an anti-unitary
operator. The presence of particle-hole symmetry within this model implies we should expect
that edge states will exist around 𝐸 = 0, that is, low-energy, topologically non-trivial states.
Both inversion and particle-hole symmetry are respected even in the case of 𝑀𝑧 ≠ 0, for all
odd layer systems.

The electronic dispersion of a three layer system is shown in Figure 4.6 with 𝑀𝑧 = 5 meV
to clearly show the formation of gapless low energy edge-states between the spin-polarised
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Fig. 4.6 The electronic dispersion of a 50 nm wide three layer sample with 𝑀𝑧 = 5 meV. The
dashed red lines correspond to the energies that the thermally broadened LDOS images given
in Figure 4.7 are calculated at, where the lowest energy cut corresponds to the leftmost image.

flat-bands at 𝐸 ≈ ±𝑀𝑧. Due to the particle-hole symmetry of the system, we observe that if
there exists a state

��𝜓𝑛,𝜎,𝒌〉 at energy 𝐸𝑛,𝒌 then there is a state
��𝜓𝑛,−𝜎,−𝒌〉 at energy −𝐸𝑛,−𝒌

related by the particle-hole operator given in equation (4.34). It is also notable that in
addition to the low-energy topological edge-states, there are two more pairs of edge-states
with crossings at 𝐸 ≈ ±𝑡𝑑/

√
2.

Also shown are the LDOS of flat-bands in Figures 4.7. In contrast to the flat-band states
in the two layer model, the low-energy flat-band states at 𝐸 ≈ ±𝑀𝑧 in the three layer system
are strongly localised around the DW on either the top or bottom surface due to the presence
of reflection symmetry. Thermal broadening effects show a small intensity on the opposite
surface of the sample, however as the temperature is decreased the LDOS will become more
highly localised on one surface only. As is the case in two-layer samples, higher energy
flat-bands correspond to DW states localised within the bulk layers (i.e. across 𝑏1/𝑡2 and
𝑏2/𝑡3). Hereafter, these states will be referred to as bulk flat-bands.
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Fig. 4.7 The thermally broadened LDOS in a three layer system given at energies corresponding
to the flat bands. From left to right 𝐸 ≈ −𝑡𝑑 −𝑀𝑧,−𝑡𝑑 +𝑀𝑧,−𝑀𝑧, 𝑀𝑧, 𝑡𝑑 −𝑀𝑧, 𝑡𝑑 +𝑀𝑧. The
LDOS was calculated using equation (4.30) with 𝑘𝐵𝑇 = 1 meV. The cuts in the dispersion
relation at which the LDOS has been calculated are shown in the dispersion relation in Figure
4.6.

Analogously to the behaviour of the two layer model, we can tune the coupling between
these bulk edge-states and the corresponding flat-bands by varying the parameter 𝑀𝑧. Again,
we only consider the case 𝑀𝑧 > 0 and present our results in Figure 4.8. Similarly to the two
layer system, the effect of moderate values of 𝑀𝑧 is a Zeeman effect. As the low energy
flat-bands are shifted away from 𝐸 = 0, the group velocity of the low energy edge-states
increases. At larger values of 𝑀𝑧 the bulk flat-bands are migrate towards 𝐸 = 0 and
beyond, eventually removing the anti-crossing between these flat-bands and the edge-states at
𝐸 ≈ ±𝑡𝑑/

√
2. Therefore, at large values of 𝑀𝑧, the resultant band structure is three uncoupled

Dirac cones bounded by a series of flat-bands.

While it is possible in the two layer model to induce a band gap on the order of meV by
tuning the parameters in the Hamiltonian, this is not the case for a three layer sample due
to the low energy topological states. However, we may exploit the finite size effect [211] in
order to gap these topological states.
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Fig. 4.8 The effect of 𝑀𝑧 ≠ 0 on a three layer system. From left to right, 𝑀𝑧 =

15, 25, 50, 60meV.

4.5 Other Domain Wall Configurations

Having shown that head-to-head DWs in TIs can provide a suitable playground to engineer
spin-polarised flat-bands, it is worth investigating whether we obtain the same or similar
results through considering more general DW configurations.

In the first instance, are the presence of flat-bands in multilayer AFMTIs robust to the
presence of DWs of finite width? Given the results of section 4.3, we should expect that
they are when the local spins are confined to the 𝑥𝑦 plane - i.e. a transverse head-to-head
DW - as demonstrated in Figure 4.9(a). Figure 4.10 confirms that this is indeed the case
for two and three layer systems where the magnetisation is allowed to vary smoothly as
𝑴 𝑡 (𝒓) = (−1)𝑧𝑀 (sech (𝑦/𝑙), tanh (𝑦/𝑙), 0), where 2𝑙 = 50 nm is the total width of the DW.
Apart from the exact energies the flat-bands are located at, the low-energy dispersion relations
of both systems are practically identical to those for the case of the sharp domain wall. For
brevity, the thermally broadened LDOS around the flat-bands is not shown for either system,
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𝑥
𝑦

𝑧

(a)

(b)

Fig. 4.9 Possible head-to-head (tail-to-tail) DW configurations in an A-type antiferromagnet.
(a) shows a transverse DW where the spins are restricted to lie in the 𝑥𝑦 plane, rotating around
the 𝑧 axis, where-as (b) shows the out-of-plane DW configuration where spins rotate along
the 𝑥 axis and are restricted to the 𝑦𝑧 plane.

however they are identical to those presented in the previous section except for the fact that
they are now broadened across the entire width of the finite sized DW.

Figure 4.9(b) demonstrates an alternative, out-of-plane (OOP) configuration where the
local spins are restricted to the 𝑦𝑧 plane, 𝑴𝑜𝑜𝑝 (𝒓) = (−1)𝑧𝑀 (0, tanh (𝑦/𝑙), sech (𝑦/𝑙)).
Given the results of the previous section, namely that a global canting of the magnetisation in
the 𝑧 direction resulted in a shift of the flat-bands in energy according to the Zeeman effect,
we should naively expect a similar effect from an OOP DW. However, we find that flat-bands
in two-layer systems are not robust to this spin configuration. As shown in Fig 4.11, the bands
characterising states localised around the DW retain their spin polarisation, but take on a
more parabolic character. While in the transverse configuration a globally uniform canting
of the magnetisation resulted in a shift of the energy bands, the spatial variation of the 𝑧
component in the OOP configuration results in the states localised around the DW gaining a
finite effective mass. Furthermore, the presence of an antiferromagnetic coupling along the 𝑧
axis also demonstrates the breaking of 𝐶2 rotation symmetry that was present for transverse
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Fig. 4.10 The dispersion relations of a two and three layer system as well as the thermally
broadened LDOS of selected domain wall states. The dispersion relations are near identical
to those for a sharp DW configuration, however the LDOS is now broadened across the entire
width of the domain wall. The dashed red lines correspond to the energies that the associated
thermally broadened LDOS images to the right of each dispersion are calculated at.

spin configurations. As a result the states localised along the width of the DW now reside in
a single layer, as shown in Fig 4.11, rather than across both layers of the system, as in Fig 4.4.

Turning our attention to a three-layer system with an OOP spin configuration we find that
the low-energy flat-bands survive despite the introduction of a spatially varying magnetisation
along the 𝑧 axis, in contrast to the behaviour of an OOP two-layer system, as shown in Fig
4.12. Examining the LDOS around these flat-bands, we find that they only contain states
localised along the edges of the system - states localised around the DW have been ’gapped
out’ and, similarly to the two-layer system, comprise electronic bands with a finite effective
mass. The three-layer system does, however, retain its inversion symmetry even in the OOP
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Fig. 4.11 (a) The dispersion relations of a two layer system with a DW with spin configuration
restricted to the 𝑦𝑧 plane and of total width 2𝑙 = 10 nm and (b) the thermally broadened
LDOS’s around the lowest energy parabolic bands. The dashed red lines across the dispersion
relation correspond to the energies that the associated thermally broadened LDOS images to
the right of each dispersion are calculated at. In order to more easily distinguish the parabolic
DW bands from adjacent electronic bands we have used the parameters ℏ𝑣 𝑓 = 300 meV nm,
𝑚 = 25 meV, 𝐵 = −100 meV nm2, 𝑡𝑑 = 75 meV and 𝑀 = 50 meV.

spin configuration. As a result, the location of the DW states in the OOP configuration is
similar to that in the transverse one.
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Fig. 4.12 The dispersion relation, of a two layer system with a DW with spin configuration
restricted to the 𝑦𝑧 plane and of total width 2𝑙 = 10 nm, left panel, and the thermally
broadened LDOS’s around the lowest energy parabolic bands, right panel. The dashed red
lines across the dispersion relation correspond to the energies that the associated thermally
broadened LDOS images to the right of each dispersion are calculated at. In order to more
easily distinguish the parabolic DW bands from adjacent electronic bands we have used
the parameters ℏ𝑣 𝑓 = 300 meV nm, 𝑚 = 25 meV, 𝐵 = −100 meV nm2, 𝑡𝑑 = 75 meV and
𝑀 = 50 meV.

4.6 Discussion and Conclusion

As discussed in Chapters 1 and 3, the V/EuBi2Te4 material system possesses an in-plane
magnetisation as the lowest energy configuration and, as such, may also prove to be a suitable
system in which to engineer the spin configurations proposed and discussed in this chapter.
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However, while this material system possesses the required in-plane easy magnetisation axis
it should be noted that we have not considered the energetics of these spin configurations and
that, in general, determining the DW structure in a material is a complex problem involving
the consideration of shape anisotropy, magnetocrystalline anisotropy and stray fields amongst
other effects. However, adopting the formalism set out by Araki et. al. [8], we may perform
a brief ’back-of-the-envelope’ calculation to estimate the energy of the DW configurations
considered in this chapter. For simplicity, we only consider the surface Hamiltonian (4.1).
For such a Hamiltonian, the free energy per unit area due to the magnetic texture is given as

𝑓 [𝑴] =
∫

R
𝑑𝑦

(
𝐽1 [∇𝑴]2 + 𝐽2 [∇ × 𝑴]2

)
, (4.35)

where [∇𝑴]2 =
∑
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− 11

15

)
,

(4.36)

where 𝑘𝑐 is the momentum cut-off describing the limits of the Brillouin zone and 𝑘 𝑓

is the Fermi wavevector. In order to analyse the energetics of the transverse and OOP
configurations, we will introduce the exchange couplings 𝐽∥ , 𝐽⊥ > 0 which give the strength
of the exchange coupling between the Dirac fermions and the local spins in-plane and
out-of-plane, respectively. As such, the magnetisation vectors for the transverse and OOP
configurations in the simple surface model (4.1) are 𝑴 𝑡 (𝒓) = 𝐽∥𝑀0(sech 𝑦/𝑙, tanh 𝑦/𝑙, 0) and
𝑴𝑜𝑜𝑝 (𝒓) = 𝑀0(0, 𝐽∥ tanh 𝑦/𝑙, 𝐽⊥ sech 𝑦/𝑙). Substituting these magnetisation vectors into
(4.35), we find that the excitation energies of each configuration are
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2𝑀2

0 𝐽
2
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(
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2
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(4.37)

with the energy difference between the two configurations Δ 𝑓 = 𝑓𝑜𝑜𝑝 − 𝑓𝑡 given by

Δ 𝑓 =
2𝑀2

0
3𝑙

(
(𝐽1 + 𝐽2)𝐽2

⊥ − 𝐽1𝐽
2
∥

)
. (4.38)
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As expected, the transverse configuration has a lower excitation energy than the OOP for
𝐽∥ < 𝐽⊥, i.e. an easy in-plane axis. It is important to note that this calculation has only
considered the energy of the magnetic texture and the magnetocrystalline anisotropy, but
effects such as shape anisotropy will play an equally important part in determining the DW
configuration. These effects can be incorporated through micromagnetic simulations and
numerical solutions of the Landau-Lifshitz-Gilbert equation. Furthermore, while we have
only considered transverse and OOP head-to-head DWs, there are numerous other possible
configurations, such as Bloch, spiral, vortex, etc. The aim of this chapter is not to provide
an exhaustive discussion regarding the energetics of all DW configurations, but merely an
introduction to the analysis of magnetic textures and their utility as a playground to engineer
novel Dirac quasiparticles, and the interested reader should refer to the extensive literature on
the subject of DW energetics.

Of course, it may be the case that engineering a head-to-head (tail-to-tail) DW configuration
in an intrinsically magnetic TI such as, EuBi2Te4 or VBi2Te4, may prove too experimentally
challenging in a realistic device architecture. In addition, as noted in the text, the external
magnetic fields required to realise the out-of-plane component of the magnetisation in order to
tune the energy of the flat bands is on the order of 10s of Tesla, which is out of reach for most
laboratories and certainly not feasible in commercial applications. It should, however, be
possible to find a magnetic insulator that can be placed proximate to the surfaces of a thin film
TI in order to couple Dirac electrons to local spins via the magnetic proximity effect, given
that the in-plane component of the magnetisation is within the range of exchange splittings in
ferromagnetic materials and intrinsic magnetic TIs [187, 105]. This set-up would provide the
additional benefit that the proximate insulators could be used as a dielectric should a front
and/or back gated device architecture be developed in order to tune the chemical potential.
However, as discussed above, additional terms such as the asymmetric exchange interaction
become more important at interfaces, meaning that it may be quite challenging to realise a
head-to-head DW as required here. Indeed, more complex spin textures would be expected.
The stray field caused by an adjacent ferromagnet may also distort the band structure, however
one could rectify this by using a proximate antiferromagnetic insulator. In addition, one
would have to potentially limit the size of the multilayer heterostructures to one or two layers,
as it is impractical to create a heterostructure with magnetisation configuration as complex as
shown in 4.1.

In recent years strain has also been identified as a means to generate gauge fields in Dirac
materials through elastic distortions [156, 70]. Practically, it is essentially impossible to
generate a strain field that realises a layer dependent gauge field as we have here, however a
proposal to realise flat-bands on the surface of topological crystalline insulator (TCI) using a
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periodic array of dislocations has been made [169]. This set-up is closely related to the simple
surface models that were studied in section 4.3. Finally, as mentioned in the introduction to
this chapter, bound states have been observed in a number of systems utilising defects and
lattice dislocations. While the analysis above showed that spin-polarization of edge states can
be achieved through the use of in-plane magnetic texture and external fields, it is interesting
to note that one can influence spin edge transport through the use of defects such as grain
boundaries [162, 80].

To conclude, motivated by the recent discovery of intrinsic magnetic TIs with an easy
in-plane axis, in this chapter we have investigated the appearance of bound states at head-to-
head DWs in AFMTIs with ground-state planar magnetism, as motivated by the findings in
chapter 3 where it was found in-plane magnetism can lead to chiral flat-band states around
𝐸 = 0. However, while the flat-bands in Chapter 3 were a result of chiral symmetry and
accidental band crossings, here they arise from the presence of bound states across a DW.
We began our discussion by investigating the cases of sharp and slowly varying DWs and
showed that spin-polarised flat-bands (i.e. quasiparticles with an infinite effective mass)
exist in systems with transverse spin configurations. We extended this treatment to an 𝒌 · 𝒑
model of a multilayer AFMTI and investigated two and three layer multilayer heterostructures,
showing that the parity of the number of layers, rather than the absolute number, strongly
affects the electronic dispersion. We have also shown that the presence of flat-bands is
sensitive to the DW configuration, by considering the case of OOP DWs and demonstrating
the evolution of spin-polarised flat-bands into those with a finite effective mass. Finally, we
have concluded this chapter by briefly considering the material systems that could be used
to observe these quasiparticles, as well as their uses in device technologies an the study of
fundamental phenomena.



Chapter 5

Conclusion

The work carried out over the course of this thesis has provided an outline into how magnetism
can play an important role in tuning the topological character and the low energy electronic
structure of condensed matter systems. This has important applications in the development
of future technologies and devices that may offer a future for topological matter in industry,
beyond the now outdated promise of TIs as a replacement for silicon. In this chapter we will
briefly summarise the results of this thesis before offering ideas for future work and research.

5.1 Summary

In Chapter 1 the theory of topology in condensed matter was introduced before a literature
review covering the state of the art in topological condensed matter, in large part devoted to
the description of magnetic TIs. These were discussed mainly with regards to an alternative
application of TIs, beyond just as a possible replacement for silicon. Indeed, as we discussed,
it appears extremely unlikely that bare TIs will become a viable material platform for low
energy electronics due to sustained difficulties in processing them into devices and low
mobilities due to thin film imperfections causing parasitic bulk conduction.

However, it appears that magnetic TIs may provide an ideal platform to release the
quantum anomalous Hall effect which could provide the basis for low-power electronic
and spintronic devices as well as a viable material platform for the emergence of Majorana
fermions, the building blocks of topological quantum computation. At the time of writing,
there has been no conclusive evidence with regards to the synthesis and braiding of Majorana
fermions and they remain a controversial topic in the field of topological condensed matter
physics. Nevertheless, the interplay of magnetism and topology is one of the most intensely
researched topics across the field of condensed matter physics and the last six years of research
has seen the MnBi2Te4 (MBT) family of intrinsically magnetic TIs emerge as promising
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candidates for room temperature quantum anomalous Hall insulators and possible material
platforms for other spintronic device applications.

Chapter 2 contained a detailed study of topological invariants, beginning with an intro-
duction of the symmetry classification of condensed matter systems and the resulting ’tenfold
way’, also known as the Altland-Zirnbauer classification, resulting from the consideration
of time-reversal, particle-hole and chiral symmetry as anti-unitary symmetries that can
be used to classify irreducible Hamiltonians. Clifford algebras were then introduced as a
mechanism to keep track of the symmetries present in condensed matter systems, due to the
existence of a mapping between the generators of the Clifford algebra and the anti-unitary
symmetries mentioned above. This led to the study of the modern theory of topological
classification in condensed matter and a description of Kitaev’s Clifford extension problem
as a means to construct a periodic table of topological phases for gapped single-particle
Hamiltonians. Finally, the notion of a topological invariant was introduced for each class of
the Altland-Zirnbauer classification and Bott periodicity was used to develop the theory of
topological invariants in different dimensions.

In Chapter 3, we investigated a magnetic TI system discretised on a hexagonal lattice with
the introduction of a magnetic exchange term, similar to the model for the intrinsic magnetic
TIs with antiferromagnetic coupling between spins in adjacent layers introduced in Chapter 1.
We considered two ground-state configurations - one where the spins aligned along the 𝑧 axis
and the other where they aligned in the plane. We then extended this study by considering
the possibility of canted magnetisation configurations, i.e. spins canted in-plane for a ground
state easy axis along the 𝑧 direction and spins canted along the 𝑧 direction for an in-plane
easy axis. The discussions regarding topological classification outlined in Chapter 2 where
utilised in order to determine how the topological character of the system could be altered
by the magnetisation configuration and the parity of the number of layers in the system (i.e.
even or odd numbers of layers).

Through the calculation of electronic dispersion relations and the local density of states
at various energies in nanoribbon geometries, we were able to demonstrate the presence of
low-energy flat-bands formed of edge states. Furthermore, the magnetisation configuration
and the number of layers present in the material was determined to be crucial to both the
presence and the nature of these flat-bands. When considering systems with in-plane canting,
we found that low-energy flat-bands with states localised along the edge of the nanoribbon
formed when the spins aligned in the plane of the nanoribbon, irrespective of the number
of layers. However, in systems with out-of-plane canting, flat-bands appeared only in odd
layer systems when the spins were aligned in the plane as a result of the topologically trivial
nature of even layer systems with out-of-plane canting. Furthermore, it was shown that the
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local density of states at the energy around the dispersionless regions of these flat-bands was
highly localised at the top and bottom surfaces and every other layer. We concluded this
chapter by suggesting VBi2Te4 and EuBi2Te4 as possible candidates for the observation of
these flat bands.

Chapter 4 saw an extension of the work in Chapter 3 to consider domain walls in
antiferromagnetic TIs with in-plane magnetisation. It was shown that such a system also
contains flat-bands, but this time of a spin-polarised nature in the presence of a head-to-
head (tail-to-tail, equivalently) domain walls. While in Chapter 3 in-plane magnetisation
was shown to result in low-energy flat-bands only in multilayer samples, we presented a
topological argument for the presence of flat-bands in single layer systems and provided a
simple analytic calculation to demonstrate the presence of spin-polarised flat-bands even in
a surface Hamiltonian with head-to-head domain walls. We also presented an alternative
interpretation of the in-plane magnetisation on the surface of a topological insulator as an
axial magnetic field, demonstrating that the states forming the flat band were highly localised
around the domain wall.

A 𝒌 · 𝒑 model was discretised on a square lattice in order to extend this study to multilayer
samples. A numerical approach was adopted to perform electronic dispersion and local
density of states calculations in two and three layer nanoribbons. Similarly to Chapter
3 we demonstrated that the electronic structure was highly dependent on the number of
layers present in the sample, a consequence of various spatial symmetries present. We
introduced additional complexity by considering domain walls of a finite width, showing
that the conclusions for drawn in the case of sharp head-to-head domain walls remained
valid. We concluded this chapter by offering a discussion on the feasibility of engineering
such domain walls in magnetic TIs by calculating the energy of formation for head-to-head
versus Neel domain walls and offered the possibility of using strain fields to introduce terms
into topological insulator Hamiltonians similar to those introduced by a spatially varying
exchange field.

5.2 Further Work

Given more time, there are numerous avenues of interest that the author would have desired
to investigate based on the results presented in Chapters 3 and 4. However, the unfortunate
truth is that time waits for no one and a PhD must must end somewhere. Below I give three
examples of future work that could extend the original research presented in this thesis and
conducted throughout this PhD.
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In Chapters 3 and 4, the presence of flat-bands were presented as the main results of each
chapter. In the former, a key claim was that the velocity of the flat-bands present in a system
with in-plane magnetism and antiferromagnetic coupling between layers could be tuned with
an out-of-plane canting, and that this could be verified in electronic transport simulations. It
would be a reasonably straightforward matter to complete such simulations, using the code
the was developed for Chapter 3 and 4. Furthermore, rather than simply just including an
out-of-plane canting in the magnetisation vector, it would be enlightening to simulate the
application of a perpendicular magnetic field, 𝐵𝑧, which would have the additional effect of
modifying the hopping terms, according to the Peierls substitution.

In the introduction, higher order topology was briefly discussed as a generalisation of
the topological effects present in topological insulators. For instance, will a first-order 3D
topological insulator will possess conductive surface states, a second-order 3D topological
insulator will possess 1D hinge states. In general, in an 𝑁-dimensional higher order
topological insulator (HOTI) there will be 𝑁 − 𝑑 dimensional states, where 𝑑 > 1 is the order.
Some of the earliest work into HOTI’s focussed on the presence of an in-plane magnetisation
to drive a TI into a HOTI state - specifically, in finite samples when the in-plane magnetisation
is orientated towards the corners of the sample zero-energy corner states emerge, a hallmark
of higher-order topology. Interestingly, there has been very little research conducted into
how an antiferromagnetic coupling between adjacent layers in a multilayer TI heterostructure
influence the presence of higher order topology. Some exploratory analysis of the effect of
such a coupling was conducted in finite, hexagonal samples with the Hamiltonian described in
Chapter 3, however time constraints ensured that no conclusive results were generated which
could be presented in this thesis. Investigating the effect of such magnetic configurations
would, once again, be a reasonably doable exercise with the code developed during this PhD.

Finally, there are obvious limitations with the approaches adopted in both chapters,
namely the adherence to a single particle Hamiltonian throughout the electronic structure
calculations. The small value of the kinetic energy of the electron in a flat or nearly flat-band
means that effects such as electron-electron interactions can no longer be ignored due to
the highly localised nature of the electrons in a confined region of space. The inclusion of
such terms in the Hamiltonian can promote correlated electronic states and the emergence of
exotic many-body phenomena, such as fractional quantum Hall states and unconventional
superconductivity. We note here that the models considered in Chapters 3 and 4 do not
consider the effect of particle-hole symmetry breaking terms, and these will generally break
the symmetries discussed in these chapters, however when these terms are small we would
expect the previously flat-bands to acquire only a small velocity meaning that a large density
of states and enhanced electron correlations should still be present in realistic materials
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with the magnetic textures described. A more involved extension of this work would be to
theoretically analyse and simulate Dirac Hamiltonians, with and without the particle-hole
symmetry breaking terms, with magnetic textures in real space in a two-body setting.
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Appendix A

Perturbative Calculations of AFMTIs
with Domain Walls

In Chapter 4 numerical simulations, utilising the finite-difference approximation, for layered
AFMTI models were presented. In this appendix we present perturbative calculations of the
bandstructure and bound states of two and three layer heterostructures, for completeness.

A.1 Two Layers

As discussed in the text, we note that the Hamiltonian, 𝐻2 given in equation (4.25) is
symmetric under a 𝐶2 rotation symmetry, [𝐻, 𝑃] = 0 where

𝑃 =

(
0 𝜎𝑧𝜏𝑥

𝜎𝑧𝜏𝑥 0.

)
(A.1)

We therefore block diagonalise 𝐻2 according to the unitary matrix formed of the eigenvectors
of 𝑃

𝑈𝑃 =
1
√

2

©­­­­­­­­­­­­­­«

1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 −1
0 0 1 0 1 0 0 0
0 0 0 1 0 −1 0 0
1 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 1
0 0 −1 0 1 0 0 0
0 0 0 −1 0 −1 0 0

ª®®®®®®®®®®®®®®¬
, (A.2)
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to give

𝑈𝑃𝐻2𝑈
†𝑈𝑃 =

(
𝐻+ 0
0 𝐻−

)
(A.3)

where𝐻± is given by (4.28) and written in the basis 1√
2
( |𝑡1, ↑⟩±|𝑏2, ↑⟩ , |𝑡1, ↓⟩∓|𝑏2, ↓⟩ , |𝑡2, ↑⟩±

|𝑏1, ↑⟩ ,− |𝑡2, ↓⟩ ± |𝑏1, ↓⟩)𝑇 .

To demonstrate the formation of bound states in a two layer model we set 𝑘𝑥 = 0 and
consider a sharp head-to-head domain wall, 𝑀𝑦 = 𝑀 (2𝜃 (𝑦) − 1), in the Hamiltonian given
by (4.28). Following this, we act upon 𝐻± with the unitary transformation given by

𝑈 =

(
1 0
0 𝑖𝜎𝑧

)
𝑒𝑖𝜏𝑦

𝜋
4

(
1 0
0 𝜎𝑦

)
, (A.4)

to give

𝑈𝐻±𝑈† = 𝐻±
0 + 𝐻±

1 , (A.5)

where 𝐻±
0 is treated as the zeroth order Hamiltonian and 𝐻±

1 is the perturbation, given by

𝐻±
0 = 𝑘𝑦𝜇𝑥𝜂𝑧 + 𝑀𝑦𝜇𝑦𝜂𝑧 + 𝑡𝑠𝜇𝑦 ∓

𝑡𝑑

2
𝜇𝑧

𝐻±
1 = −(𝑀𝑧 ±

𝑡𝑑

2
)𝜂𝑦,

(A.6)

where 𝜇𝑥,𝑦,𝑧 and 𝜂𝑥,𝑦,𝑧 are Pauli pseudospin operators. First, solving for the unperturbed
Hamiltonian, the eigenstates, 𝜓𝜇,𝜂 must satisfy

(
𝐸2 −

𝑡2
𝑑

4

)
𝜓𝜇,𝜂 = [𝜂𝑘𝑦 − 𝑖𝜇𝜂𝑀𝑦 − 𝑖𝜇𝑡𝑠]

[𝜂𝑘𝑦 + 𝑖𝜂𝜇𝑀𝑦 + 𝑖𝜇𝑡𝑠]𝜓𝜇,𝜂,
(A.7)

where 𝜇, 𝜂 = ±1. Using the trial wavefunction 𝜓𝜇,𝜂 = 𝑒𝜆𝑦, we find the roots ±𝜆𝜇,𝜂,± at
𝐸 = ∓𝜇𝑡𝑑/2 given by

𝜆𝜇,𝜂,± =
1

2𝐵

(
−𝜇𝜂 ±

√︃
1 + 4𝐵(𝑚 + 𝜂𝑀𝑦)

)
. (A.8)
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Note that we must make the substitution 𝑀𝑦 = −𝑀 for 𝑦 < 0 and 𝑀𝑦 = 𝑀 for 𝑦 > 0 resulting
in the piecewise quantum state,

𝜓𝜇,𝜂 =


𝛼<𝑒

𝜆<𝜇,𝜂,+ + 𝛽<𝑒𝜆
<
𝜇,𝜂,− for 𝑦 < 0,

𝛼>𝑒
𝜆>𝜇,𝜂,+ + 𝛽>𝑒𝜆

>
𝜇,𝜂,− for 𝑦 > 0,

(A.9)

where 𝜆<𝜇,𝜂,± and 𝜆<𝜇,𝜂,± are roots in the half spaces 𝑦 < 0 and 𝑦 > 0, respectively. The
coefficients 𝛼<,> and 𝛽<,> may be fixed by considering continuity of the wavefunction at
𝑦 = 0 and satisfying the boundary conditions 𝜓𝜇,𝜂 (𝑦 = ±𝐿/2) = 0 giving

𝛼< =

1 − exp
(
(𝜆>𝜇,𝜂,+ − 𝜆>𝜇,𝜂,−)𝐿/2

)
1 − exp

(
−(𝜆<𝜇,𝜂,+ − 𝜆<𝜇,𝜂,−)𝐿/2

) 𝛼>,

𝛽< =

1 − exp
(
(𝜆>𝜇,𝜂,+ − 𝜆>𝜇,𝜂,−)𝐿/2

)
1 − exp

(
(𝜆<𝜇,𝜂,+ − 𝜆<𝜇,𝜂,−)𝐿/2

) 𝛼>,
𝛽> = −

(
1 − exp

(
(𝜆>𝜇,𝜂,+ − 𝜆>𝜇,𝜂,−)𝐿/2

))
𝛼>,

(A.10)

where the final coefficient, 𝛼> is fixed by normalisation of the wavefunction,
∫ 𝐿/2
−𝐿/2 𝑑𝑦

��𝜓𝜇,𝜂��2 =

1. This results in two states localised at either edge (𝜇 = 1, 𝜂 = ±1), at energy 𝐸 = ∓𝑡𝑑/2,
and at the domain wall (𝜇 = −1, 𝜂 = ±1), at energy 𝐸 = ±𝑡𝑑/2.

Introducing the perturbing Hamiltonian, 𝐻±
1 , states are shifted by an amount given by

Δ𝐸±
𝜇,𝜂 = 𝜂(𝑀𝑧 ±

𝑡𝑑

2
)
∫ 𝐿/2

−𝐿/2
𝑖𝜓∗

𝜇,𝜂𝜓𝜇,−𝜂𝑑𝑦. (A.11)

States localised around the domain wall are shifted in energy by an amount ∼ 𝜂(𝑀𝑧 ± 𝑡𝑑/2)
owing to their strong overlap, resulting in DW states at 𝐸 ≈ 𝑀𝑧 ± 𝑡𝑑 and 𝐸 ≈ −𝑀𝑧. By
contrast, the overlap between edge-states is extremely small in wide samples since states are
localised on opposite edges. As a result, edge-states remain located around 𝐸 ≈ ∓𝑡𝑑/2.
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A.2 Three Layers

Again, we set 𝑘𝑥 = 0 and adopt a sharp head-to-head domain wall. Noting that the Hamil-
tonian, 𝐻3, given in equation (4.32) is symmetric under reflection, 𝑅𝐻3(𝑘𝑦, 𝑀𝑦, 𝑀𝑧)𝑅−1 =

𝐻3(𝑘𝑦, 𝑀𝑦,−𝑀𝑧), where

𝑅 =
©­­«

0 0 𝜏𝑥𝜎𝑦

0 𝜏𝑥𝜎𝑦 0
𝜏𝑥𝜎𝑦 0 0

ª®®¬ , (A.12)

We block diagonalise 𝐻3 using the unitary matrix formed of the eigenvectors of 𝑅, given
by

𝑈𝑅 =

(
𝜔 Σ𝑥

𝜔 −Σ𝑥

)
(A.13)

where

𝜔 =
1
√

2

©­­­­­­­­­«

𝑒𝑖𝜋/4 0 0 0 0 0
0 𝑒𝑖𝜋/4 0 0 0 0
0 0 𝑒𝑖𝜋/4 0 0 0
0 0 0 𝑒𝑖𝜋/4 0 0
0 0 0 0 𝑒𝑖𝜋/4 0
0 0 0 0 0 𝑒𝑖𝜋/4

ª®®®®®®®®®¬

Σ𝑥 =
1
√

2

©­­­­­­­­­«

0 0 0 0 0 𝑒3𝑖𝜋/4

0 0 0 0 𝑒−𝑖𝜋/4 0
0 0 0 𝑒3𝑖𝜋/4 0 0
0 0 𝑒−𝑖𝜋/4 0 0 0
0 𝑒3𝑖𝜋/4 0 0 0 0

𝑒−𝑖𝜋/4 0 0 0 0 0

ª®®®®®®®®®¬

(A.14)

resulting in the block diagonal Hamiltonian

𝐻
′

3 =

(
𝐻3,+ 𝑀

𝑀† 𝐻3,−

)
(A.15)

where 𝐻3,± and 𝑀 are 6 × 6 matrices given by
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𝐻3,± =
©­­«
𝑘𝑦𝜎𝑥 + 𝑀𝑦𝜎𝑦 𝑡𝑠 0

𝑡𝑠 −𝑘𝑦𝜎𝑥 + 𝑀𝑦𝜎𝑦 𝑡𝑑

0 𝑡𝑑 𝑘𝑦𝜎𝑥 − (𝑀𝑦 ± 𝑡𝑠)𝜎𝑦)

ª®®¬
𝑀 =

©­­«
𝑀𝑧𝜎𝑧 0 0

0 𝑀𝑧𝜎𝑧 0
0 0 𝑀𝑧𝜎𝑧

ª®®¬
(A.16)

In order to write this in the form of an unperturbed Hamiltonian and a perturbation, we
first act on the subblocks 𝐻3,± with the unitary matrix

𝑈1 =

©­­­«
1√
2
12

1√
2
𝜎𝑦 0

− 1√
2
12

1√
2
𝜎𝑦 0

0 0 𝜎𝑥

ª®®®¬ (A.17)

to give

𝑈1𝐻3,±𝑈
†
1 =

©­­­«
𝑘𝑦𝜎𝑥 + (𝑀𝑦 + 𝑡𝑠)𝜎𝑦 0 − 𝑖√

2
𝑡𝑑

0 𝑘𝑦𝜎𝑥 + (𝑀𝑦 − 𝑡𝑠)𝜎𝑦 − 𝑖√
2
𝑡𝑑

𝑖√
2
𝑡𝑑

𝑖√
2
𝑡𝑑 𝑘𝑦𝜎𝑥 + (𝑀𝑦 ± 𝑡𝑠)𝜎𝑦

ª®®®¬ (A.18)

Then, depending on the subblock, we transform according to the unitary matrix

𝑈+ =

©­­­«
0 12 0

− 1√
2
12 0 − 𝑖√

2
12

− 1√
2
12 0 𝑖√

2
12

ª®®®¬ or 𝑈− =

©­­­«
−12 0 0

0 1√
2
12

𝑖√
2
12

0 1√
2
12 − 𝑖√

2
12

ª®®®¬ (A.19)

to give diag(𝑈+𝑈1,𝑈−𝑈1)𝐻
′

3diag(𝑈†
1𝑈

†
+,𝑈

†
1𝑈

†
−) = 𝐻0 + 𝐻1, where 𝐻0 = diag(𝐻+

0 , 𝐻
−
0 )

is interpreted as the unperturbed Hamiltonian where

𝐻±
0 =

©­­­«
𝑘𝑦𝜎𝑥 + (𝑀𝑦 ∓ 𝑡𝑠)𝜎𝑦 0 0

0 𝑘𝑦𝜎𝑥 + (𝑀𝑦 ± 𝑡𝑠)𝜎𝑦 − 𝑡𝑑√
2
𝜎𝑧 0

0 0 𝑘𝑦𝜎𝑥 + (𝑀𝑦 ± 𝑡𝑠)𝜎𝑦 + 𝑡𝑑√
2
𝜎𝑧

ª®®®¬
(A.20)

and a perturbation, 𝐻1, given by
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𝐻1 =

©­­­­­­­­­«

0 𝑡𝑑
2 𝜎𝑧 − 𝑡𝑑2 𝜎𝑧 𝑀𝑧𝜎𝑧 0 0

𝑡𝑑
2 𝜎𝑧 0 0 0 𝑀𝑧𝜎𝑧 0

− 𝑡𝑑2 𝜎𝑧 0 0 0 0 𝑀𝑧𝜎𝑧

𝑀𝑧𝜎𝑧 0 0 0 𝑡𝑑
2 𝜎𝑧 − 𝑡𝑑2 𝜎𝑧

0 𝑀𝑧𝜎𝑧 0 𝑡𝑑
2 𝜎𝑧 0 0

0 0 𝑀𝑧𝜎𝑧 − 𝑡𝑑2 𝜎𝑧 0 0

ª®®®®®®®®®¬
(A.21)

Hereafter, we may adopt the derivation is very similar to the two-layer model and is not
presented here, for brevity.
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