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Abstract Vasiliev generating system of higher-spin equa-
tions allowing to reconstruct nonlinear vertices of field equa-
tions for higher-spin gauge fields contains a free complex
parameter 1. Solving the generating system order by order
one obtains physical vertices proportional to various powers
of n and 77. Recently 5 and 7° vertices in the zero-form sector
were presented in Didenko et al. (JHEP 2012:184, 2020) in
the Z-dominated form implying their spin-locality by virtue
of Z-dominance Lemma of Gelfond and Vasiliev (Phys. Lett.
B 786:180, 2018). However the vertex of Didenko et al.
(2020) had the form of a sum of spin-local terms depen-
dent on the auxiliary spinor variable Z in the theory modulo
so-called Z-dominated terms, providing a sort of existence
theorem rather than explicit form of the vertex. The aim of
this paper is to elaborate an approach allowing to system-
atically account for the effect of Z-dominated terms on the
final Z-independent form of the vertex needed for any prac-
tical analysis. Namely, in this paper we obtain explicit Z-
independent spin-local form for the vertex TCZZCC for its
oC CC-ordered part where w and C denote gauge one-form
and field strength zero-form higher-spin fields valued in an
arbitrary associative algebra in which case the order of prod-
uct factors in the vertex matters. The developed formalism
is based on the Generalized Triangle identity derived in the
paper and is applicable to all other orderings of the fields in
the vertex.
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1 Introduction

Higher-spin (HS) gauge theory describes interacting systems
of massless fields of all spins (for reviews see e.g. [1,2]).
Effects of HS gauge theories are anticipated to play a role at
ultra high energies of Planck scale [3]. Theories of this class
play a role in various contexts from holography [4] to cos-
mology [5]. HS theory differs from usual local field theories
because it contains infinite tower of gauge fields of all spins
and the number of space-time derivatives increases with the
spins of fields in the vertex [6-9]. However one may ask
for spin-locality [3,10-12] which implies space-time local-
ity in the lowest orders of perturbation theory [11]. Even
though details of the precise relation between spin-locality
and space-time locality in higher orders of perturbation the-
ory have not been yet elaborated, from the form of equations
it is clear that spin-locality constraint provides one of the
best tools to minimize the space-time non-locality. More-
over demanding spin-locality one actually fixes functional
space for possible field redefinitions that is highly important
for the predictability of the theory.
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A useful way of description of HS dynamics is provided
by the generating Vasiliev system of HS equations [13]. The
latter contains a free complex parameter 7. Solving the gener-
ating system order by order one obtains vertices proportional
to various powers of 1 and 7. In the recent paper [14], n* and
71> vertices were obtained in the sector of equations for zero-
form fields, containing, in particular, a part of the (;54 vertex
for the scalar field ¢ in the theory. Though being seemingly
Z-dependent, in [14] these vertices were written in the Z-
dominated form which implies their spin-locality by virtue of
Z-dominance Lemma of [15]. In this paper we obtain explicit
Z-independent spin-local form for the vertex Tarjg cc starting
from the Z-dominated expression of [14]. The label wCCC
refers to the wC C C-ordered part of the vertex where w and
C denote gauge one-form and field strength zero-form HS
fields valued in arbitrary associative algebra in which case
the order of the product factors in wC C C matters.

There are several ways to study the issue of (non)locality
in HS gauge theory. One is reconstruction the vertices from
the boundary by the holographic prescription based on the
Klebanov—Polyakov conjecture [4] (see also [16,17]). Alter-
natively, one can analyze vertices directly in the bulk starting
from the generating equations of [13]. The latter approach
developed in [11,12,14,15,18] is free from any holographic
duality assumptions but demands careful choice of the homo-
topy scheme to determine the choice of field variables
compatible with spin-locality of the vertices. The issue of
(non)locality of HS gauge theories was also considered in
[19,20] with somewhat opposite conclusions.

From the holographic point of view the vertex that con-
tains ¢* was argued to be essentially non-local [21] or at least
should have non-locality of very specific form presented in
[22]. On the other hand, the holomorphic, i.e., 772 and anti-
holomorphic 77> vertices, where 7 is a complex parameter
in the HS equations, were recently obtained in [14] where
they were shown to be spin-local by virtue of Z-dominance
lemma of [15]. The computation was done directly in the
bulk starting from the non-linear HS system of [13].

In this formalism HS fields are described by one-
forms w(Y; K|x) and zero-forms C(Y; K|x) where x are
space-time coordinates while Y4 = (yq, ¥5) are auxiliary
spinor variables. Both dotted and undotted indices are two-
component, o, & = 1,2, while K = (k, 12) are outer Klein
operators satisfying k « k = k xk = 1,

{k, y*}e = (k, 2%% = {k, 3}, = {k, 2%
= [k, 0%} = [k, 0%} = 0,

[k, 1, = [k, 2974 = [k, y*1s = [k. 2%1%
= [k, 09, = [k, 0%], = O, (1.1)

where 6 and 6 are anticommuting spinors in the theory.
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Schematically, non-linear HS equations in the unfolded
form read as

do+oso=7Tw,o,C)+ T (w,w,C,C)+---, (1.2)
i C+owoxC—-C*x0o=7T(w,C,C)+T(w,C,C,C)+---.
(1.3)

As recalled in Sect. 2, generating equations of [13] that
reproduce the form of Egs. (1.2) and (1.3) have a simple form
as a result of doubling of spinor variables, namely

oY; K|x) — W(Z;Y; K|x),
C(Y;K|x) — B(Z;Y; K|x).

Equations (1.2) and (1.3) result from the generating equations
of [13] upon order by order reconstruction of Z-dependence
(for more detail see Sect. 2). The final form of Egs. (1.2)
and (1.3) turns out to be Z-independent as a consequence of
consistency of the equations of [13]. This fact may not be
manifest however since the r.A.s.’s of HS equations usually
have the form of the sum of Z-dependent terms.

HS equations have remarkable property [23] that they
remain consistent with the fields W and B valued in any
associative algebra. For instance W and B can belong to the
matrix algebra M at,, with any n. Since in that case the compo-
nents of W and B do not commute, different orderings of the
fields should be considered independently. (Mathematically,
HS equations with this property correspond to Ay, strong
homotopy algebra introduced by Stasheff in [24-26].) For
instance, holomorphic (i.e., n-independent) vertices in the
zero-form sector can be represented in the form

T, C,C)=Tiee+ Voo + Tcw
T"(w,C,C,C) =T tcet T ence T itwe T Vel Cu
(1.4)

where the subscripts of the vertices 7" refer to the ordering
of the product factors.

The vertices obtained in [14] were shown to be spin-local
due to the Z-dominance Lemma of [15] that identifies terms
that must drop from the r.A.s.’s of HS equations together with
the Z-dependence. Recall that spin-locality implies that the
vertices are local in terms of spinor variables for any finite
subset of fields of different spins [18] (for more detail on the
notion of spin-locality see [18]). Analogous vertices in the
one-form sector have been shown to be spin-local earlier in
[12].

The main achievement of [14] consists of finding such
solution of the generating system in the third order in C that
all spin-nonlocal terms containing infinite towers of deriva-
tives in y(y) between C-fields in the (anti)holomorphic in
n(i7) sector do not contribute to n? (77%) vertices by virtue
of Z-dominance Lemma. Thus [14] gives spin-local expres-
sions for the vertices 7" (w, C, C, C) which, however, have
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a form of a sum of a number of Z-dependent terms. To
make spin-locality manifest one must remove the seeming
Z-dependence from the vertex of [14]. Technically, this can
be done with the help of partial integration and the Schouten
identity. The aim of this paper is to show how this works in
practice.

Since the straightforward derivation presented in this
paper is technically involved we confine ourselves to the par-
ticular vertex 7, (1.4). Complexity of the calculations in
this paper expresses complexity of the obtained vertex having
no analogues in the literature. Indeed, this is explicitly cal-
culated spin-local vertex of the third order in the equations,
corresponding to the vertices of the fourth (and, in part, fifth)
order for the fields of all spins. The example described in the
paper explains the formalism applicable to all other order-
ings of the fields in the vertex that are also computable. So,
our results are most important from the general point of view
highlighting a way for the computation of higher vertices in
HS theory that may be important from various perspectives
and, in the first place, for the analysis of HS holography. It
should be stressed that the results of [14] provided a sort
of existence theorem for a spin-local vertex that was diffi-
cult to extract without developing specific tools like those
developed in this paper. In particular, it is illustrated how the
general statements like Z-dominance Lemma work in practi-
cal computations. Let us stress that at the moment this is the
only available approach allowing to compute explicit form
of the spin-local vertices for all spins at higher orders.

The rest of the paper is organized as follows. In Sect. 2,
the necessary background on HS equations is presented with
brief recollection on the procedure of derivation of vertices
from the generating system. Section 3 reviews the notion
of the H™ space as well as the justification for a computa-
tion modulo H . In Sect. 4, we present step-by-step scheme
of computations performed in this paper. Section 5 contains
the final manifestly spin-local expression for Tcggcc ver-
tex. In Sects. 6-10 technical details of the steps sketched in
Sect. 4 are presented. In particular, in Sect. 7 we introduce
important Generalised Triangle identity which allows us to
uniformize expressions from [14]. Conclusion section con-
tains discussion of the obtained results. Appendices A, B,
C and D contain technical detail on the steps listed in the
scheme of computation. Some useful formulas are collected
in Appendix E.

2 Higher spin equations
2.1 Generating equations

Spin-s HS fields are encoded in two generating functions,
namely, the space-time one-form

w(y,y,x) =dxtw,.(y, y,x)
= Z dxﬂa)ual...an,dl...dm (X)ya' s yan)—)éu cee )_)dm

n,m

2.1)

24+-m-+n
2

with s = and zero-form

C(1.5.3) =Y Coyoanyiodiy )Yy 5059 (2.2)

n,m

with s = @ where « = 1,2 and & = 1,2 are two-

component spinor indices. Auxiliary commuting variables
y* and % can be combined into an sp(4) spinor Y4 =
%, ¥, A=1,..., 4

The vertices T (w, w, C,C,...)(1.2)and T (w, C, C, ...)
(1.3) result from the generating system of [13]

AW+ WsxW=0, (2.3)
S+ WxS+SxW =0, (2.4)
deB+WxB—BxW =0, 2.5)
SxS=i(0%0s+nBxy +01Bx7p), (2.6)
S«B—BxS=0. (2.7)

Apart from space-time coordinates x, the fields W(Z; Y; K |x),
S(Z;Y; K|x) and B(Z;Y; K|x) depend on YA, 74 =
(z%, 7%) and Klein operators K = (k, k)(1.1). Wisa space-
time one-form, i.e., W = dx" W, while S -field is a one-form
in Z spinor directions 84 = (6%, 69), {94,608} =0, i.e.,
S(Z:Y; K) =0484(Z; Y: K). 2.8)

B is a zero-form.
Star product is defined as follows

Z;Y: K) = d'U d*velUaV”
(f * 9)(Z; V5 K) (Zn)4/ e
xf(Z+U.Y+U:K)g(Z—~ V.Y +V:K).

2.9)
Elements
7 = 0% k

y = 0%, k and (2.10)

are central because #° = 0 since 6, is a two-component
anticommuting spinor.

2.2 Perturbation theory

Starting with a particular solution of the form

Bo(Z;Y; K) =0, So(Z;Y;K)=0%+ 0%,
Wo(Z; Y; K) = w(Y; K), (2.11)

which indeed solves (2.3)—(2.7) provided that w(Y; K) sat-
isfies zero-curvature condition,

do+w*w =0, (2.12)

@ Springer
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one develops perturbation theory. Starting from (2.7) one
finds

[So, Bil« = 0. (2.13)
From (2.9) one deduces that
.0
[Za, f(Z; Y K)]*=—2lmf(Z;Y;K)- (2.14)
Hence, Eq. (2.13) yields
[So, Bi] = —2i0A 2B = —2idyB =0
= B|1(Z;Y;K)=C(;K). (2.15)

The Z-independent C-field that appears as the first-order part
of B is the same that enters Eqgs. (1.2) and (1.3). The per-
turbative procedure can be continued further leading to the
equations of the form

dzPr41 = J (P, Pr—1, .. .), (2.16)

where @y is either W, S or B field of the k-th order of per-
turbation theory, identified with the degree of C-field in the
corresponding expression, i.e.,

W=w+W(o,C)+W(w,C,C)+ -,
§=3S80+ 851(C) + S(C,C)+---,
B=C+B2(C7C)+B3(C7C5C)+"’~

To obtain dynamical equations (1.2), (1.3) one should plug
obtained solutions into Egs. (2.3) and (2.5). For instance,
(2.5) up to the third order in C-field is

dC + [w, Clx = —dy By — [Wy, Cl.

—dy B3 — [Wy, Bals — [W2, Cli + - - (2.17)

Though the fields Wy, W, and B>, B3 and hence various
terms that enter (2.17) are Z-dependent, Eqgs. (2.3)—(2.7) are
designed in such a way that, as a consequence of their con-
sistency, the sum of the terms on the rh.s. of (2.17) is Z-
independent. To see this it suffices to apply dz realized as
%[So, ]« to the r:h.s. of (2.17) and make sure that it gives
zero by virtue of already solved equations. For more detail
we refer the reader to the review [2].

3 Subspace H* and Z-dominance lemma
3.1 HT
In this section the definition of the space H™ [14] that plays

a crucial role in our computation is recollected. Function
f(z, y|9) of the form

1
£z y10) = / 4T T%" ¢ (T2, y|T0, T) 3.1
0

@ Springer

belongs to the space T if there exists such areal & > 0, that

lim 7' ~%¢(w, ul6, T) = 0. (3.2)
T—-0
Note that this definition does not demand any specific
behaviour of ¢ at 7 — 1 as was the case for the space
HHO of [18].

In the sequel we use two main types of functions that obey
(3.2):

To
¢I(TZ1 y|79a T) = ?(ﬁl(Tz, y|T9)s

1~
(T2, Y1760, T) = HT — 52)7—_¢2(Tz, yI76)  (3.3)

with some §; » > 0. (Note that the second option with § > 0
can be interpreted as the first one with arbitrary large §;.
Here step-function is denoted as ¥ to distinguish it from the
anticommuting variables 6.)

Space H™T can be represented as the direct sum

HY =Hf @ Hf @ H7, (3.4)

where ¢ (w, u|0,7) € H;; are degree- p forms in 6 satisfying
(3.2).

All terms from H™' on the rh.s. of HS field equations
must vanish by Z-dominance Lemma [15]. Following [14]
this can be understood as follows. All the expressions from
(2.17) have the form (3.1) and the only way to obtain Z-
independent non-vanishing expression is to bring the hid-
den 7 dependence in ¢(7z, y|76,7) to §(7). If a func-
tion contains an additional factor of 7°¢ or is isolated from
7T = 0, it cannot contribute to the Z-independent answer
which is the content of Z-dominance Lemma [15]. This just
means that functions of the class Hg cannot contribute to
the Z-independent equations (1.3). Application of this fact
to locality is straightforward once this is shown that all terms
containing infinite towers of higher derivatives in the vertices
of interest belong to HS’ and, therefore, do not contribute to
HS equations. This is what was in particular shown in [14].

3.2 Notation

As in [14] we use exponential form for all the expressions
below where by wCCC we assume

(Yo, Y)*C (Y1, Y)%C (Y2, y)*C(y3, y) (3.5)

with * denoting star-product with respect to y. Derivatives
0, and d; act on auxiliary variables as follows
0 d
= ’ jOt = .
IyE ay§
After all the derivatives in y,, and y; are evaluated the latter
are set to zero, i.e.,

(3.6)

awa

Yo =Y; = 0. 3.7
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In this paper we use the following notation of [14]:

/dn,0+ ::/dpl oo dpn O (p1) . 0 ().

ly = —10upq,

(3.9)

3.3 Contribution to Ta?gcc modulo H+

The 1>C3 vertex in the equations on the zero-forms C result-

ing from equations of [13] is

T"(w,C,C,C)=—
+ W,

(d:BY" + [, BY"1.

BJl« +[W)", Cls +diB ). (3.10)

Recall, that, being Z-independent, 77" is a sum of Z-
dependent terms that makes its Z-independence implicit.

As explained in Introduction, "7 can be decomposed
into parts with different orderings of fields @ and C. In this
paper we consider

Y =T"(w,C,C,C) (3.11)

wCCC’

Since the terms from H™ do not contribute to the physical
vertex such terms can be discarded. Following [14] equality
up to terms from H T referred to as weak equality is denoted
as & .

We start with the following results of [14]:

AN " nloc 1
Tocce ~ Totee = (Wle * By +wx B;

"‘Wznlcc*C”deBgloc +dBy"|

wccc)’
(3.12)

|wCCC

where

n
Wl wC

oo 2 (! I
*Bg”‘%I/O dTT/O da/d3p+

X (1 - ngpz‘) @yt [2ay* + 02a1"]

= (o1 + p2)

X exXp {iTz(,,y"‘ Fi(l— o) —i 227,
p1+ 02

P20
1% p3q +iTz" (— (p1 + p2 + 0p3)ty

i
p1+ P2

—(p1 + P2)P1a + (03 — p1) P2e + (03 + pz)l’sa)

psa)]wccc,

. 1 02
+iy*(oty — 3.13
¥ (ote = S Epa+ T (3.13)

2 pl 4
~ 1 4
W;Z)CC*CN—Z/O dTT/d p+5<1—§ ,oi>
i=1

2
D (zy7")

(o1 + 02) (03 + p4)
—(p3 + p4) p1a + (01 + 02) P2 + Psa) +iy%ty

p1P3
(p1 + p2)(p3 + p4a)

exp [iTzay"‘ +iT" ((1 — p2)ly

(iyata + itap3oz)

1 —
+i(( P4) 2 +p4) 1y — PO pap1_ pa}wccc
o1+ P p3 + P4
(3.14)
nloc 772 ! ! 3
d.B ~— dT | d d
By ece 4/0 /0 ‘5/ P+

s (1 -~ im) zay"‘[(TZ" — &)%) ta]

X exp IiTzay"‘ +i(1 = p)t* pra — ip2t® Pra
—iTz" ((;01 + p2)tq + p1P1a — (02 + 03) 2o — P3a>

+iy® (5(,01 + Pty +Ep1 P10 — E(02 + P3) P20

+(1 - S)ma)]wCCC, (3.15)
]72 1
a)*Bm] N_Z,/ a’TT/d3p+
o1 [za (0% + 1) .
i Tzq o
( Zp)/o (,01 + p2)(p1 + p3) Xp{l “o¥

+iTz°‘<— ta — (01 + P3)P1a + (02 — P3) P20

+(p1 + :02)173(1) +iyty

. p1 o
+i(l —E)y“( Pla — 2 )
o1+ prtp

. o1 03
+i& y* ( Pia — P2 >
pr+p " prtps

1— 1-—
—H( &)p1 s 1a—i<( £)p2 n &p3 )t“pza
p1+p, p1+p2 p1+p3
i 2P tap3a]a)CCC, (3.16)
p1+p3
'72 1 5 3
nm ~ b .
dy By |wccc“’j/0 dTT/d p+6 1-;0;

1
X/ P1 (2ay%) exp {i,]—zaya
0 (o1 + p2)(p1 + p3)
HT2 (= (o1 + p2) G + Pra) + (02 = p3)p2a

+(p1 + ,Oz)Pza)

+it"pro +i(1 —£)y® <

o1
+£ ¢ -
5 (m+p3p3"

o1 02
(fa + P1a) — P2 )
p1+ 02 “ “ p1+ 02 “

pza) }wccc.

P3
p1+ 03 G17
The sum of r.A.s.’s of (3.13)—(3.17) yields TW’CC(Z Y).

Note, that all terms on the rh.s.’s of (3.13)—(3.17) con-
tain no pj, p;® contractions in the exponentials, hence being
spin-local [14]. Thus TCZZCC (Z;Y) is also spin-local.

Let us emphasize that only the full expression for
T cc(Y) (3.11) is Z-independent, while 7%~ (Z;Y)
(3.12) with discarded terms in 7 is not. This does not allow
one to find manifestly Z-independent expression for Y,/
by setting for instance Z = 0 in Egs. (3.13)-(3.17).

@ Springer
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In this paper Z-dependence of 7,/ (Z; Y) is eliminated
modulo terms in H™T by virtue of partial integration and the
Schouten identity. As a result,

YotecZs V) =T Jiec(Y),

where ’/f/t Z)"C cc (Y) ismanifestly spin-local and Z-independent.

Since Ha' -terms do not contribute to the vertex by Z-
dominance Lemma [15]

T(chc(y) =T Z)UCCC(Y)'

Our goal is to find the manifest form of T T cc).

4 Calculation scheme

The calculation scheme is as follows.

— 1. We start from the expression Egs. (3.13)—(3.17) for the
vertex obtained in [14].

— II. To z-linear pre-exponentials.
Using partial integration and the Schouten identity we
transform Eqgs. (3.13)—(3.17) to the form with z-linear
pre-exponentials modulo weakly Z-independent (coho-
mology) terms. These expressions are collected in Sect. 6,
Egs. (6.1)—(6.4). The respective cohomology terms being
a part of the vertex ')’Z)’g cc are presented in Sect. 5.

— III. Uniformization.
We observe that the r.A.s.’s of Egs. (6.1)—(6.4) can be re-
written modulo cohomology and weakly zero terms in a
form of integrals [ dI" over the same integration domain
z

/dfzaf“(y,t,m,ﬂz,mlf §i, P)EWCCC, (4.1

where the integrand contains an overall exponential func-

tion £
& =E.E, (4.2)
E, = expi{Tza (v + ]P’)"‘} 4.3)
E = expi{éz P (y + ]P’)ayo, 4.4)
(I —p1—pa)(1 — p3)
P2 o~
+£&1 y+P)t
(1= p1 —pa)(1 —p3>( ) ia
P3
+—— (13 + P2 Va
(I—p1—p4)
03 o
- p1t%y 4.5)
(1—p1—pa)(1—p3) “
0
(01 4 2 + pray® + plat“},
(1—p3)
- p1
F= ‘. (4.6)
P1+ pa

@ Springer

P =P+ (- pst, 4.7
P = (1—=p1—ps)(p1+ p2)—(1—p3)(p3 + p2),(4.8)

the integral over Z is denoted as

/dF:foldT/d3§+8(l—g&>
4

x/d4p+5 I—ij

j=1

4.9)

Equations (6.1)—(6.4) transformed to the form (4.1) are
collected in Sect. 8, Eqgs. (8.2)—(8.5).

— IV. Elimination of §-functions.
Using partial integration and the Schouten identity we
eliminate the all factors of §(p;), §(£1) and §(&) from
Eqgs. (8.2)—(8.5). The result is presented in Sect. 9,
Egs. (9.1)-(9.4).

— V. Final step.
Finally, we show in Sect. 10 that a sum of the r.A.s.’s of
Egs. (9.2)-(9.4) is Z-independent up to H™.

By collecting all resulting Z-independent terms we finally
obtain the manifest expression for vertex Tc:’g cc»beingasum
of expressions (5.2)—(5.12).

. nm
5 Main result Twc cc

Here the final manifestly Z-independent wC C C contribution
to the equations is presented.
moo
Vertex ¥ )ccc 18

11
T(chc = Z Jj (CRY)
j=1
with J; given in Egs. (5.2)—(5.12). Note that the integra-
tion regions may differ for different terms J; in the vertex,
depending on their genesis.
Firstly we note that B;m (A.10), that contains a Z-

independent part, generates cohomologies both from w x Bg 7
and from d, B;m’

2
n 3(&3)p2
Ji=——1|dI’ 1) EwCCC, (5.2
! 4/ (02 + p1)(p2 + p3) (Pa)E o ©2)
2
n 3(&3) 02
Jr=— | dI 1) EowCCC. 5.3
: 4/ (02 + pa)(p2 + p3) (PEw ©:3)

Recall that E and dI” are defined in (4.4) and (4.9), respec-
tively. (Note, that, here and below, the integrands on the
r.h.s.’s of expressions for J; are 7 -independent, hence the
factor offo1 d7T indI equals one.)
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Other cohomology terms are collected from (9.2), (9.3),
(9.4),(10.1),(D.2),(B.1),(B.3), (B.4) and (B.5), respectively,

22
[
J3=—— | dI'$ _—
} 4 [ &) T o = 9)
« 3 3
{21 (p1 + p2a[T o = T 1]
N

o —>
+p2(p1 + p2)“(p3 + Pz)a[ 0p — 0 ,01]

o 5 Kt
+02t% (p3 +P2)a[a/)2_ 8K’l]
p1+ pa
(1= p3)
)
s
i [ (é3) (_ P32 7
4 1—p3 (1= p1 — pa)>(1 — p3)
02 re Ft
- Wy =8, 4+ 0 ,]
A=pi—p)U—pp) 77O

S o Y Ale . — 3
T = p( =) (P14 p2)" (+0y [0 py p,])
(5.5)

xEwCCC,

+ 5.4)

“(p1 + p2)a | EwCCC,

Jy =

Yy

Js = ﬂjfdra(&)[l +6(0g -0 &)]

X{ —p2
(1= p1 = pa)2(1 = p3)(p1 + pa)

(p3* 4+ p2*)7'ty

B p3 ,
(= p1 — pa)?(1 — p3)?
1

ot = o)1 + o)

2
.n /%)
Jo =i— | dI' S
6 ’4/ ) T o = o — o221 + 20)

x(p1+ p2)” (1), EoCCC,

“ Y

(5.6)

(;m” + P2t | EwCCC,

(5.7)

P22
(P24 p3)3(1 = p3)3(p1 + pa)
x(v+ (L= p1 = pa)(p1 + p2) + (L= pi)t)" (y +1),,
xt*yy EwCCC,

"
J1 = —I/dft?(és)él

(5.8)
2
Jg = —%/dfﬁ(p3)<p15(éz)

+i8600) = (b2 + pr)i]fis ) + 73, })

xEwCCC,

1
Jo = inzzfdI"B(pl)S(p4)8(Es)eXp{ —i&a(pr+p2ti

(5.9)

—p2(p3 + p2)a (M = &1y + p1 + p2 — p2(p3 + p2))y (Y
+(1 = p2)(p3 + p2)" yy + p3yy”’ + lﬁ[’lfi]

xwCCC, (5.10)

1
Jio = —in21/dr5(04)5(5|)5(01) eXPi{ &G +pitp;
+1 — p2(p3 + p2)a (M + (1 — p2)(p3 + p2)7 ¥y

+p3, 3" +1 prgeccc, (5.11)

2
1 .
Jin = %/dr(s(m)ﬁ(m)y“laexm{p3yyy +1Ppig

0+ Po+ 07 (11— &3y + (1= p2)(p3 + p2)7 vy |

xwCCC. (5.12)

Letus emphasize, that neither exponential function E (4.4)
nor the exponentials on the 7:A.5.’s of Egs. (5.10)—(5.12) con-
tain d; 4 ¢* terms. Hence, as anticipated, all J; are spin-local.

One can see that though having poles in pre-exponentials
these expressions are well defined.
For instance a potentially dangerous factor on the rh.s. of
(5.2) is dominated by 1 as follows from the inequality py —
(p1+p2)(p2+p3) = —p3p1 < 0 that holds due to the factor
of [T (pi)d(1 — Y pi)8(pa). Analogous simple reasoning
applies to the rh.s. of (5.3).

The case of (5.4)—(5.8) is a bit more tricky. By partial
integration one obtains from (5.4)—(5.6)

.2

in 1
Jy+Ja+Js=— [ dIl'$S
3TAES 4/ &) or + o)1= )

_ @ _ _ P2y
x| =80 1+ pra = 300 TSy
+[8(ps) — 8(pD)]p2(p1 + P2)* (P3 + P2)a
+t%(p3 + p2)a — 8(p1)P21*(p3 + P2)a

H8(p4) — 8(p1)—2—(p1 + p2)’ (v + Dy

(1= p3)
—p2
-5 o any
(52)((:024‘,03)(,01 —i—,04)(1173 +tp2)ty
03 o R N 3
T e G 71 )|
xEwCCC. (5.13)

Using that, due to the factor of (1 — Y_ p;), for positive p;
it holds

02 1= —p3(1 — p3 — p2) <0, (5.14)
(o3 + p2)(1 — p3) (o3 + p2)(1 — p3)
1 1
(o2 + p3)(1 — p3) = (o2 + p3)(1 — p3 — p2)
= ! ,  (5.15)
(o3 +02) (o1 + p4)

one can make sure that each of the expressions with poles
in the pre-exponential in Eqgs. (5.7), (5.8) and (5.13) can be
represented in the form of a sum of integrals with integrable
pre-exponentials. For instance, the potentially dangerous fac-
tor in (5.8), by virtue of (5.14) and (5.15) satisfies

P22
(02 + p3)3(1 — p3)3(p1 + p4)
1 1 1

S Uit st it

Each of the terms on the rh.s. of Eq. (5.16) is integrable,
because integration is over a three-dimensional compact area
> pi = 1 in the positive quadrant. For instance consider the
first term. Swopping p4 <> py one has

(5.16)

4
1

dos1-%Y"p)—o

/’)*( ;p)(l—ps)(m—i-/)z)

3
1

=[P - pp———

/ pB( Ip)(l—p3)(P1+P2)

@ Springer
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= o leg(pit ) 1 !
dm/ pp—————— = / dpy log*(p1),
./ (o1 + p2) 2Jo £

(5.17)

which is integrable.
Analogously other seemingly dangerous factors can be
shown to be harmless as well.

6 To z-linear pre-exponentials

Step II of the calculation scheme of Sect. 4 is to transform
rh.s.’s of Egs. (3.13)-(3.17) to Z-independent terms plus

terms with linear in z pre-exponentials (modulo H ™).
To this end, from (A.10) one straightforwardly obtains
that

2 8(£3)8
w*Bgn%-ﬁ-l—%/dF (63)5(pa)

(1= p1)d = p3)

X [ — p22a(y + D (p1g + p2p) (P2 + p3?)

+i[ (300 +800)) (1 = p1)(1 = p3) = 5(&2)]

xzq (1= (1% + p2™) = (1 = pa)(p2" + p3™))

+iza (1 + p2*) (1= p1) (8(62) 8(51))} oxp {1724y

+1Y+ (1= p)(P1* + p2%) — (1 — p3)(P2* + p3Y))

+i(1 — &)
p1+ P2
i&1p2

P2+ p3

xwCCC,

O + ) (Pra + P2a)

O + 1) (P2a + p3a) = 1 + 1% p2a |
6.1)

where J; is the cohomology term (5.2). Analogously,

s~ s T / 080

: = p(1 = p3)
X [ — p2(2aY*)(P1g + 15 + p2p) (2P + p3P)
+i[ (300 +80)) (1 = p1)(1 = p3) = 5(&2)]
xzq (1= pO(P1* + 1% + p2™) = (1= p3) (P2 + p3™))
Hiza(p1® + 1% + p2*)(1 = p)(8(62) - a(sl))] exp [Tz (»
+(1 = pD)(P1* + 1% + p2*) — (1 = p3)(p2* + p3®))
+z(l —&)p2 i&102

+ 1y + +
o1+ o Y (Pia o« + P2or) o+ P

—iy® pao + itﬂl)lﬂ}wCCC

————y*(p2a + P3ar)
6.2)

with J> (5.3). Using the Schouten identity and partial inte-
gration one obtains from Egs. (3.13)—(3.15), respectively,

WY c % BY N—/ dT/ dr/ dm/ doy

Za(p2® + p3“ )(1(8(01) 51 70’1))

xliizat"‘é(lft)+ A

@ Springer

[+ p1* + 2 — o (p2® + P3a)]la)] exp iiTZaya
+T 20 (T + p2) = (1 = 1) + 20 (2" + p3™)
+(o1+7(1— 01))10’) +it" pra

+iol[y* + p1® + p2¥ — o2 (p2® + P39 |ta

ﬂ'(azpf —a- (Tz)pza) }wccc (6.3)

Wilee»Cx = [ ar s e —

x [ = p1(8(pa) +it* (pra + p2a)
+618E) |exp [iTza”
+HTza (1= p1 = p(P1 + p2%) = (L= p)(p2™ + ps™) + (1 = po)1*)

iy (fifp tu+p3a)+i (l—p. B Sllflp2>tapla

P
—i(1 = &)1t poo + i f“’; “ pajocCC, (6.4)
- P2

0 in’ o
d.B] ~ T/dr(S(Es)ﬁ(/u) )

x[i17 1y + p2y) + 8(0) = 8(p0) | exp {iT20y°
+iTza (1 = p1 — p)(P1* + p2*) — (1 — p3)(p2* + p3%)
+( = p)t) + i1 = p2)i® pig = ipat? pag + 2y (01 + P2t

+02P10 — (1 = p2) 2o — P3a) +iyaﬂ3a}

xwCCC. (6.5)

7 Generalised triangle identity

Here a useful identity playing the key role in our computa-
tions is introduced.
For any F(x, y) consider

1=/ dr/d3€+5(1—§1 P
[0,1]

xz¥ [(az—al)y5(§3)+(a3 —a)y8(81) + (a1 —as)y5(52)]
— &ay — £3a3)q P) (7.1)

with arbitrary t, £- independent P and a;.
Let G(x, y) be a solution to differential equation

xF(tzp PP, (—&1a)

9 9
—G(x y) = —yF(x y). (7.2)

Hence

_ / dr fd3$+5(1—§1 6 —&3)(a1—a3)* (a3 —a2)a
[0,1]

—_
3 :G(rzpPP. (—E1a1 — &2a2 — £303)0 P®).

Note that there is a factor of (a; — a3)¥(a3 — az)y equal to
the area of triangle spanned by the vectors ay, a2, a3 on the
r.h.s. of (7.3).

This identity is closely related to identity (3.24) of [11],
that, in turn, expresses triangle identity of [27]. Hence, (7.3)

(7.3)
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will be referred to as Generalised Triangle identity or GT
identity.

Note that, for appropriate G partial integration on the r./1.s.
of (7.3) in 7 gives z-independent (cohomology) term plus
HT-term. Namely,

I= —/d3§+5(1—§1—$2—§3)(a1—a3)°‘(a3—a2)a
xG (0, (—§1a1 — &ra2 — §303)0 P¥)
+ /d3s+8(1—sl —6—E3)(a1—a3)* (a3 —a2)q

xG(zp PP, (€101 — &ra7 — £303)4 P*).

The second term on the r.A.s. belongs to H™ if G is of the
form (3.1) satisfying (3.2).

To prove GT identity let us perform partial integration on
the rh.s. of (7.1) with respect to &;. This yields

(7.4)

I :/ dt/d3f;‘+5(1 —§51—&—8)
[0,1]
x[zy(ag—az)y P%q + 2" (a1—a3)y P%arq
+z"(ay—ay), P“a3a]

d
XaF(TZaPa, —(1a1 + f2a2 + &a3)a PY). (1.5

The Schouten identity yields
[Z”alyP“(CB — @)y + 2 az, PY(a1 — a3)a
+2"az, P*(ay — a])a] = [zy P {ai®(az — az)q
+a5 (a1 — a3)q + a5 (ay — a)a} + 27 (a3 — az), PYa14
27 (a1 — a3)y PUazg + 27 (@2 — @)y Pasa | (7.6)
One can observe that
[Z”(a3 —a)y Pa1q + 27 (a1 — a3), P¥a2q
+27 (ar — al)yPaa3a] = _[Zyalypa(QS — @)
+27az, PO — a3)o + 2 a3y P @ — ane | (17)

whence it follows (7.3).
A useful particular case of GT identity is that with
F(x,y) = f(x +y), namely

/ dr/d3§+5(1—$1_§2_§3)Zy
[0,1]

x| (@2=a1),8(63) + (@3 —a2), 860 + (@1 —a2),8(&2) |
x f((rz—&1a1 —Era2—E3a3)0 PY)

dt f e 8(1—& —5—&3) (a1 —a3)* (a3 —a2)a
]

[0,1

—
3 f((rz—E1a1 —bra2—8303)0 P¥). (7.8)

8 Uniformization

Step III of Sect. 4 is to uniformize the r.A.s. ’s of Egs. (6.1)—
(6.5) putting them into the form (4.1), where GT identity
(7.1) plays an important role. Details of uniformization are
given in Appendix B (p. 13).

As aresult, Eq. (3.12) yields

AN
TwCCC

mod cohomology - /2_; Fj @.1)
with F; presented in (8.2)—(8.5).

Note that different terms of F; will be considered sep-
arately in what is follows. For the future convenience the
underbraced terms are re-numerated, being denoted as Fj x,
where j refers to F; while k refers to the respective under-
braced term in the expression for F;. For instance, F; =
Fii+Fio+ Fi3+ Fla,etc.

nn
—w* By

~

mod $(p)&S(T)
_ —ﬁ/dl“ 3(53)3(pa)
4 (I —p1—pa)(1 = p3)
X[PZ(ZﬂPﬁ)(pla + p2)(P2® + p3%)
1
+i8(03)(1 — p1 — pa)(1 — p3)(za P*)
2
+—i£18(82)(za PY)
—_———
3

i1 = p1 = Pz (p1” + p2) (862 — (&) |

4

F]Z

xEwCCC,

2
—d Bnn ~ F = i/dr
T3 imod 8(p)&S(T) 2 +4
8(&3)8(p1)
(I—=p1—=p4)(1—p3)

(8.2)

[pZ(ZﬂPﬁ)(PI + p2)a(p2 + p3)*
1

+ (1 = pa)(zptP)ta (p2® + p3®)
2
+ 021 — p4) (21" ) (P1ac + P2a) (P2* + P3%)
3

+ 0225 PPYta (p2* + p3*)

4
+i8(03)(1 — p1 — pa)(1 — p3)(2aP*) + —i£18(£2) (24 P)

5 6

+ —iE18(E) (1 — pa)zat®

7

+il = pr = p)za (i + ) (3&) — 8(6n)

8
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+il = p1 = pzat® (38 - 8(6n)) JewcCC, (8.3)

9

7 nm
—dyBy =Wy 00 C

mod 8(T) ~
—izgt" £18(52)
pP1+ P4
2

2
= —%/dF3(03)5($3)[i5(/01)(za]P"")+
—_—
1

+1“(pra + P2a)zy PV + —i8(ps)za P*
—

3 4

P1
+17(p1y + p2y)z t“((l—m)— )]
Ply & P2y )z p1+ P4

5

xE wCCC, (8.4)
- m m _ n nloc ~ .
(dxBy" + w * By )‘S(m) od $(T) W/ ¢ * B} Fy:
n’ / o 8E)3E) 20 (2 + p3®)
-1 X
4 (02 + p3)(p1 + p4)
: . ad d
<[ 1Gen —seo)eiE: (5 3)
! 2
xwCCC. (8.5)
Note that
Fio+F34=0, (8.6)
F5+F;1=0. 8.7)

Let us emphasise that, by virtue (E.1), each F; is of the
form (4.1) as expected.

Note that during uniformizing procedure the vertices
(5.9)—(5.12) are obtained in Appendix B (p. 13).

9 Eliminating é(p;) and &(&;): result

The fourth step of Sect. 4 is to eliminate all §(p;), 6(£1) and
8(&>) from the pre-exponentials on the rA.s.’s of Eqgs. (8.2)—
(8.5).

More precisely, using partial integration, the Schouten
identity and Generalised Triangle identity (7.3), taking into
account Egs. (4.6)—(4.8) one finds that Eq. (8.1) yields
(?ngcc -G =Gy~ G3)|

!

0, (CAY

mod cohomology
where

O+ D7 p2t%(p1 + p2a
(I —p1—pa)(1 = p3)

o
E.|——-—|E
dps  3dp1

772
G =)+ ?/dl“ s@gzy{

(i )
XE, | — — — |E
o2 9p3

;7,)02 (P1% + p2*)(p2a + P3a)
(I —=p1 —pa)(1 — p3)
p2t*(p2o + P3a)
(I = p1 — pa)(1 = p3)

+07 +

+(y + 1)

@ Springer

0 d - t*

VE. [7 B 7]E o+ (p1 + p)1* (Pra + P2a)
op2  dp1 (I —=p1 — pa)(1 — p3)
- t* +

o+ (P20 + P3a)

(I = p1 — pa)>(1 = p3)

pat” (p2 + p3)*(p1+ pa+1t — 1)y }
(1 = p1 — pa)(1 — p3)(p1 + p4)

xwCCC

9.2)
a 03(Yo + foz)ty(Yy +Py)
(1= p1 — pa)>(1 — p3)

3(63)
1 —p3
B p2p4ta (Y + PVt
(1= p1 — pa)(1 — p3)(p1 + pa)?
P2 (Ya + 1)1 (P1y + P2y)
(I —p1 — pa)(1 — p3)
2 (Pra+ P2 + Pty
(I = p1 = pa)(p1 + p)(1 = p3)
P2 ty(yy +]P>y)(yot +1y) |:i _ i]
(I —=p1 — pa)(1 — p3)

nz
G2:=J4+?/d1“

+E
‘ o1 9o

P2 Vo + 1) (p1” + p2")(yy +Py)
(I = p1—pg)(1 = p3)

0 )
X|— — — |EtwCCC,
dp1  dps

G-—J+"2fd1"s( )<1+ [3 - 3})
3=Js+ o & 518?1 T

N { p21%(p2? + p3¥)(y, +1,)

VA= p1 = p)2(1 = p3)(p1 + pa)
—p2t%(y + f)y(yy +]Py)

(1= p1 — pa)>(1 — p3)%(p1 + pa)

—p3(y® + 1) (7 yy)
(1 —p1 — pa)>(1 — p3)?
O+ P + P2ty
(1= p1 — pa)(1 — p3)?

9.3)

94)

}SwCCC,

with J3, J4 and Js being the cohomology terms (5.4), (5.5)
and (5.6), respectively. (Details of the derivation are pre-
sented in Appendix C (p. 15).)

Note that schematically

G +Gy+G3=J3+ 4+ Js

+/dF8($3)zag“(y,t,pl,pz,p3|p,<‘§)5wCCC,
9.5)

as expected . Let us stress that g*(y, t, p1, p2, p3lp, &) on
the rh.s. of (9.5) is free from a distributional behaviour.

10 Final step of calculation

Here this is shown that the sum of the r.A.s.’s of Egs. (9.2)-
(9.4) gives a Z-independent cohomology term up to terms in
HT.

More in detail, the expression G| + G, 4+ G3 of the form
(9.5) consists of two types of terms with the pre-exponential
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of degree four and six in z, y,t, p1, p2, p3, respectively.
That with degree-four pre-exponential separately equals a
Z-independent cohomology term up to terms in H*. This
is considered in Sect. 10.1. The term with degree-six pre-
exponential is considered in Sect. 10.2. As a result of these
calculations Jg (5.7) and J7 (5.8) are obtained.

10.1 Degree-four pre-exponential

Consider the sum of expressions with z-dependent degree-
four pre-exponential from Eqgs. (9.2)-(9.4), denoting it as
S4. Partial integration yields

~ N p21%zo(p3 + p2)? (t—1),
e T/d”(&) [ iorert 59
20417 2y (v + P) 1o
(1= p1 = pa)(1 — p3)2(p1 + pa)?
p2(p1+ p2)7 (v + (1 = pa)1), 2%

(I = p1 = pa)(1 = p3)(p1 + pa)
p2t" 2 (p3 + p)*(y + Do
(1= p1 — p)>(1 = p3)(p1 + pa)
po( =P +i7) (y+ i),
(I — p1 — p)>(1 — p3)%(p1 + p4)]
xEwCCC,

(10.1)

where the cohomology term Jg is given in (5.7). It is not
hard to see that the integrand of the remaining term is zero
by virtue of the Schouten identity.

10.2 Degree-six pre-exponential

Terms of this type either appear in (9.2), (9.3) via differen-
tiation in p; or in (9.4) via differentiation in &;. Denoting a
sum of these terms as Sg we obtain

p2(y + 1)V 2, t((p1 + P2)ar)
(I—=p1—pa)(1 = p3)

2

So= " [arse|e.

x[(_Z))pz — —8),)3)E]
p2(p1+ p2) (y + (1 = pa)t) 2o (y + D

(1 —p1 — pa)(1 — p3)?

— —
x[0 py— 0 plE
. p2t” (v + (1= p1 = ) (P1 + P2)), 2a(y + D
) (1—p1 — pa)(1 — p3)?

03zqt*

(1—p1—pa)*(1—p3)* (o1 +p4)
x(y+ (1—pi—pa)(p1 + p2) + (1—,04)t)y(y + f)y

B 0302
(1—=p1—pa)31 = p3)3

Z

— — .
[ D py— apl]E+zsl[

(y + f)yZytaya

p2(y +1) 2, (p1* + Pz“)ta]
(I —p1—p)2(1 — p3)3

<E(y +P)*(y + f)a}wccc (10.2)

Recall that the integral measure dI” (4.9) contains the factor
of §(1 — Z% &). Hence taking into account the factor of
8(&3) on the rh.s. of (10.2) the dependence on &;, &3 can be
eliminated by the substitution §&, — 1—£1, &3 — 0. Then we
consider separately the terms that contain and do not contain
&1 in the pre-exponentials. As shown in Appendix D, those
with &;-proportional pre-exponentials give J; (5.8) upto H™,
while those with &;-independent pre-exponentials give zero
up to HT.

11 Conclusion

In this paper starting from Z-dominated expression obtained
in [14] the manifestly spin-local holomorphic vertex ¥,/
in the Eq. (1.3) is obtained for the wC CC ordering. Besides
evaluation the expression for the vertex, our analysis illus-
trates how Z-dominance implies spin-locality.

One of the main technical difficulties towards Z-independent
expression was uniformization, that is bringing the exponen-
tial factors to the same form, for all contributions (3.13)—
(3.17) with the least amount of new integration parameters
possible. Practically, some part of the uniformization proce-
dure heavily used the Generalized Triangle identity of Sect. 7
playing important role in our analysis.

Let us stress that spin-locality of the vertices obtained in
[14] follows from Z-dominance Lemma. However the eval-

uation the explicit spin-local vertex T‘Zécc achieved in this
paper is technically involved. To derive explicit form of other
spin-local vertices in this and higher orders a more elegant
approach to this problem is highly desirable.
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Appendix A: B]"

Bg 7 modulo H* terms from [14] is given by

2 T oV 25 S
BY ~ —n—/dl’ P2(2ay*)"8(83)8(p4)
4 (o1 + p2)(p2 + p3)
X exp (F)CCC, (A.1)
where d I is defined in (4.9),
. i(1—=§)p2
F=iTza ()" +P5) + ————Y"(Pla + P2
(v 5) ot o (P1e + P2a)
i
ﬂy"‘(pza + P3a) — iy% p2as (A.2)
02+ 3
Po =1 —p)(p1+ p2) — A= p3)(p2 + p3). (A.3)

Performing partial integration with respect to 7 twice we
obtain

5(83)8(pa) p2 .
B””w—f 3(T) +izaP§
(1—p3)(1—p1)[ ) +izPy
+izP§ (1 +iTzaPg ) |exp (F)CCC, (A4)
Noticing that
id (I —8D)p2y*(p1 + p2)a
_F == TZo[ + « +
ap1 (Pr+p2) (o1 + p2)?
(A5)
el i “(p2 +
—F = iTze(p2® + p3%) i£102Y% (P2 + p3)a (A6)

9p3 a (02 + p3)?

and performing partial integration with respect to p; and p3
we obtain

—— | —ipd(T
4 (1—,03)(1—,01)[ 1201
+2aP5 (1= p3)(1 = p1) (8(p1) +8(p3)) — 1)

ipyzy PY (Ezy"’(pm +p2)  E1Y*(P2e + p3a)>:|
“o (p1 + p2) (o2 + p3)
X exp (F)CCC.

g~ 8(§3)5(p4)

(A7)
Observing that

ip2y*(p1+ pP2)a
p1+ 02

OF _ippy*(p2+ p3da
981 P2+ p3

and using the Schouten identity

(A.8)

za(p2 4+ p3)*YP(p1 + p2)g = 20y (P2 + p3)P (p1 + p2)g
+2o(p1 + p2)*yP (p2 + p3)gp (A.9)
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after partial integration with respect to £; we obtain

& ] a=p=pn
+2a (1 + p2)(1 = 1) (3(62) — 86

+2PE[ (1 = (1 = p3) (8000 +8(03)) — 860281 |

)
Bl ~ in 8(83)8(p4) |:—ip28('f)

+ip2zay* (p1 + p2)p(p2 + ps)’s} exp (F)CCC. (A.10)

The § (7 )-proportional term gives rise to J1 (5.2) and J; (5.3).

Appendix B: Uniformization detail

Here some details of the transformation of integrands (6.1)—
(6.5) to the form (4.1) are presented.

Uniformization can be easily achieved for Egs. (6.1) and
(6.2) modulo §(pp)-proportional terms. Indeed, eliminat-
ing §(p1)-proportional term from the r.h.s. of (6.1), adding
an integration parameter p4 and a factor of §(p4), one
obtains (8.2). Analogously, eliminating §(p1)-proportional
term from the rh.s. (6.2), adding an integration parameter
P4, SWapping p; <> p4 and then adding a factor of §(p;) one
obtains (8.3).

To transform integrands of Egs. (6.4) and (6.5), as well as
8(p1)-proportional terms of the integrands of Eqgs. (6.1) and
(6.2), to the form (4.1) GT identity (7.1) is used in Sects. B.1
and B.2.

B.l1dyBy + W xC

Noticing that the exponential of (6.4) coincides with £ at
& = 0, while the exponential of (6.5) coincides with £ (4.2)
at & = 0, one can easily make sure, that only the §(&>)-
proportional term of (6.4) and the 6(p;)-proportional term
of (6.5) have the desired form (4.1).

Using that £ (4.2) does not depend on &3, swapping &3 <>
& in the remaining part of (6.5), then swapping &3 <> & in
the remaining part of (6.4), one then can apply GT identity
(7.8) to the sum of the two obtained terms . As a result,
Egs. (6.4), (6.5) yield

4B+ W exC / AT 5(p)b (&)

Zat“ _
— 7 8 _ o o 8
X[ lP1+p4 (62) —i(za)") (Pl)]&uCCC
,72
+Z/dF8(p3)|:la(p4) _ty(ply +p2y)]

x {5(7)?“ Yo + 8(€3) (2T
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+20") ewcCC, (B.1)

where the terms in the second row of formula (B.1) result
from applying G T -identity. Rewriting the underlined part as
the result of differentiation with respect to 7 and performing
partial integration one obtains Eq. (8.4) plus the cohomology
term Jg (5.9).

1
B2 (0B + o B sy + Wi, % B

Uniformization of the sum of §(p;)-proportional terms on
the r:h.s.’s of (6.2) and (6.1) is done with the help of GT
identity (7.8) as follows. Denoting

P=y+pi+p+t—p2p3+ p2) (B.2)

one can see that partial integration in 7 yields

2
4By’ ~ =T [ arspeosens)

3(p1)

x[i8(T) = zax® | expi{ T2a P* = 2P yu + paay®
+(1 = p2)(p2® + p3®)ya + tﬁplﬁ}a)CCC, (B.3)

nn
a)*B3

in2
~ f dT 5(p3)8(p1)3(£3)
3(p1)

x[i8(T) = 2a v + 1) |exp [iT2u P — i2 Py,
+iE Py +i(1 = p2) (P2 + P3*)Ya
Fipaay* +itPpig }a)CCC. (B.4)
The sum of (B.3) and (B.4) gives

in2

(4B +wxBY")|  ~ 2 [arsosen

8(p1)
X[z (=7 = ¥8(E) + 2,37 860 + 2,786 |

xexp [iTz P — i Py + i1 Pt +1(1 = p2) (p2”

13 Ve + ipray® + itﬂp]ﬂ}wccc

2
_%/df 8(p4)8(p1)(zy17)8(%2) expi{TzaP“

—5 Py + £ Py + (1 = p2)(p2® + P3*) Ve

+p3ay” + tﬂplﬁ}wCCC + Jo+ Jio (B.5)

with Jg (5.10) and Jig (5.11). By virtue of GT identity (7.8)
the first term weakly equals Ji; (5.12). Finally, Eq. (B.5)
yields

£ 2
(4B + 0 BY") %J9+J10+J11—%/d1“

3(p1)
x8(04)8(p1) (21" )8(£2) exp {i:rzaﬁa —i&P%y,
i1 Pty 4+ i(1 — p2) (2% + p3%) Ve

Fipiay® + itﬁpm}wccc. (B.6)

Consider W . * B ¢ (3.13). This is convenient to change

integration variables, moving from the integration over sim-
plex to integration over square. As a result

2 prl
Wi % By~ %/0 dTT/ d*ry 8(1 — 11 — 1)

x /01 da]/: doy zgt” [zay“ + alzat"‘] exp {iTzay“
+i(l = 0)o1ty p1* +i01021% p3g +i(1 — o)t pig
+iT z4 ((Tl +not* + 1p1® — (2 — 1 (l — 02)) p2*
—(12 + 6271)P3a> +io1y*ty —i(1 — 02)y* prg
+io2y® p3e +iony® psa}wCCC. (B.7)

Partial integration with respect to 7 yields
. by )
oc
Wlnwc*B;7 %—Z/O d’]'/d .8(1 — 11 — 1)

1 1
X / do1/ doy 741* [Tza (Tl (P1* + p2%)
0 0

—(r2+02m) (p2 + p3) ) = iITri (1 = 01)zat

x exp(F) oCCC, (B.8)

where

F = iTzy" +itPpig+io (y"‘za + (p1% 4 P2t — o2 (p2©
+P3“)ta) —i(o2p3”* — (1 = 02)p2%) ya
+iTzq (n (P1% + P — (@ + o) (P* + p3%)
+ o)+l — al))z“). (B.9)

By virtue of evident formulas

d a
lz——-7—|F= iTZa(Tl (p1+p2) + [(t1 +12)
Ty k)

~(@2+021)](p2 + p3) + 71— o1 ),
d @
P F=i7T(—1)zqt" +i<y +p1+p2—op2+ p3)) ly.
o1
(B.10)

Equation (B.7) acquires the form

2 pl
W o BI & HZ/O dT/ d*ti8(1 — 11 — 1)

1 1 9 9
x/ da]/ doz[izat“'c] (— — —)
0 0 Jtrn  Im
Z “+p39 (. 0
(P +p3 ){l +(ya+pla+p2a

1—‘1,'1

30‘1
—oa(p2® + p3°’)>ta} + izat"‘} exp(F)wCCC.  (B.11)
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After partial integrations in 71,72 and o1 one obtains

2 rl
W o% B ~ ’L/ dT/ d*ry8(1— 11 — 1)
zZ +
/ dm/ daz[tzat 8(rp) + a(pz Ps )[ (801

—8(1 —01)) — (y“ + 1%+ P = o (p® + ps"))ta}]

x exp(F)wCCC. (B.12)

After a simple change of integration variables the underlined
term on the r.A.s. of Eq. (B.12) cancels the r:A.s. of Eq. (B.6).
Performing integration with respect to 7, in the remaining
part of (B.12), after the following change of the integration
variables

1 1 1
fdcn/ dn/ dos (o1, 1 — 01,71, 0)
0 0 0

1
dpps | 1= p;
/ +9 Z ) (o2 + p3)(1 = p2 — p3)

j=1

o1 04 02
Xf( , , 2 + p3, )
l—p2—p3 1—p2—p3 02+ p3

exp(F) (B.9) acquires the form £ (4.2). As a result, the sum
of Egs. (B.12) and (B.6) by virtue Eq. (E.1) yields Eq. (8.5).

Appendix C: Eliminating §(p;) and §(&;)
To eliminate 6 (p;) and § (& ;) from of the r.h.5.’s of Egs. (8.2),

(8.3) this is convenient to group similar pre-exponential terms
as in Appendix C.1-C.5.

C.1 Terms proportional to (p; + p2)%(p3 + P2)a

Consider Fi 1 + F2,1 of (8.2) and (8.3), respectively. Partial
integration with respect to p; and p4 yields

8(&3)p2(p1 + p2)* (P2 + P3)a
(I —p1 = pe)(1 = p3)

n?
Fii+ P~ —Z/df

x(z,P7) (i - i) EwCCC.

(C.1)
dps i

By direct calculation, Eq. (C.1) gives

’ 5 o )
Fiy+ Fy %—"—[dr (E)02(p1 + p)*(p2 + p3)
! (1= p1 = p)(1 = p3)
.
E Py "E YT . o
X[ : <8p4 ap])(zyp VE + (2 P")T zat 5}
xwCCC.

(C2)
By virtue of the Schouten identity

zat®(p1 + p2)" (P3 + P2)y
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=1"(p1 + p2)az’ (3 + p2)y +1%(p3 + P2a(p1 + P2) 2y
(C.3)

and its consequence
2ot (p1+ p2)" (p3 + p2)y € =1t%(p1 + P2a
<~ <«
(2 9 E.E+iE ( 9 0 ) E
X|il——— i —_———
Iy 0p3) “\opr 003

<~ <~
o (9 0

+HYpr+p3ali| ——— | EE
o2 9p1

E ( o 0 )E]
i —_— - .
“\op 9

Equation (C.1) yields

(C4)

(Zypy)pZ
(I =p1 = pa)(1 = p3)

2
Fii+ Fay %+”Z/dm<ss){

0 d
X <(P1 + p2)*(p3 + p2)o E: [— - —]E

8,01 8,04
o 0 9
+t%(p1 + p2)a [8(,03)5 —E; <— — —)E:|
ap2 ap3
0 0
+t (P3+P2)a[3(m)5 E. ( _) ED
02 9p1
02
* 1%20(p3 + p2)Y (p1 + P2)y €
(1= p1 = pa)(1 = p3) a(p3 +p2)" (p1+ p2)y
1—p3—p2
4z, PY (- o b E
ke ( (1—p1—pa)(1—p3)2 (p1+ p2)
1—p1—ps—p }
1% (p3 + )€ ) fwCCC. (C5
A= —pa(—py P2 T P ) (C.5)

One can see that §(p1)- and §(p3)-proportional terms on the
rh.s. of (C.5) (the underlined ones) cancel terms F> 4 (8.3)
and F3 3 (8.4), respectively.

C.2 Term proportional to t*(p1y + pP2a)

Consider term F3 5 of F3 (8.4). By virtue of the following
identity

P2
P (S(p3) —8(p)) =1 c6
e 603 = 3(p) (C6)
8(&3) 2
Fis5~ -~ 5(p3) — 8
» / (02 + p3)(1 — p3 )( (p2) = 80r)
P1
x[(PZa + pra)t® (zyty)<(1 —p - p4))5]wccc.

(C.7)

Partial integrations along with the Schouten identity

1*(p1a + P22) (P37 + P2z = —1%2a(p1” + P27)(P2y + P3y)
+1%(p3a + P2a)(P1 + P2) 2y (C.8)
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and realization of the underlined terms as derivative of E,
along with further partial integration yields

F3s5~ —*/dl"ﬁ(%)[(l

p204(P2 + POt 2yt” [i_i]E
(p1 + p4)(1 — p3) dpp  9p3

7)2(172 + pDat®zyt" €

0204

———————2at”( = (p1 + P2 (3 + P2)y E
(p1 + p4)(1 — p3) [< (P1+p2)"(p3 + P2)y Ez

d d
[7 - 7] —38(p)(p1 + p2)Y (p3 + p2)y €
ap1  9pa -

0 d
—1t%(p3 + p2)a E; [7 - *]E —38(pt* (p3 + Pz)aE)

a1 I,
)
rat® (—
N = p3) (o1 + pa)

I(X
P4 (p3 + P22)oz E)]wCCC.
(p1 + p4)

(p1+ )V (p3+ p2)y€

(C.9)

One can see that the sum of the underlined § (o1 )-proportional
terms cancel Fp » + F» 3 of (8.3).

C.3 Sum of (p1 + p2)*(p3 + p2)e-proportional and
t*(p1a + p2o)-proportional terms

Summing up Fi 1 + F21 (C.5), F33 (8.4), F35 (C.9) and
F> 24 F2 3+ F> 4 (8.3), then performing partial integrations
and using the following simple identities

01 p4(p2 + p3)
(I —p4) — = ,
(p1 + p4) (p1 + p4)
P 03
(o1 +p2)?  (p1+ps) (1= p1 — pa)(1 — p3)
_ . —P204 ’ (C.10)
(o1 + p4)=(1 = p1 — p4)(1 — p3)
one obtains by virtue of Egs. (4.6)—(4.8)
Fii+h +hat+F3+Fs5+h+F3=G; (Cll)

with G1 (9.2).

C.4 Terms proportional to §(&1) — 6(&2)

Consider a sum of Fj 4 (8.2) and F» g (8.3). Performing par-
tial integrations with respect to p; and p4, then applying the
Schouten identity one obtains

2
) a
Fia+ Fog~ —”Z/dr 5@3)[_ - —]
a1 Op4
iza(p1% + p2%)

1 —p3
772
=2 [arsen (s - se)

(3(52) - 5(51))5wccc -

i 2t (E [ o ]E S8 >
X{—(l—pg) Lo i + (8o — (o) )€
iza(p1“+pz°’)E [ 0

- ii|E}a)CCC. (C.12)
(1= p3)

o1 0p4

The underlined § (p1 )-proportional term compensates F2 9
of (8.3). The double underlined & (p2)-proportional term van-
ishes due to the factor of (6(&2) — 6(&1)) which after partial
integrations in & and &; produces an expression proportional
to 3.

Summing up Fj 4+ F> g (C.12) and F> 9 (8.3), performing
partial integrations with respect to & and 7 along with the
Schouten identity one obtains

Fia+ g+ Fo~G) (C.13)

with G (9.3).

C.5 Terms proportional to £16(&2)

Consider a sum of Fi 3 (8.2), F2,6 (8.3) and Fy 1 (8.5).

8(83)8(£2)[8(p1) — 8(p4)]
(p2 + p3)

}SwCCC.

Ot

in2
Fiz+ e+ Fa1 & e dr

o=
% _
(1= p3)

Partial integration yields

&1 (P2 + p3%)

C.14
(o1 + p4) ( )

i 2
Fua+ Pt P~ O [arsenses

1 d d
oza E,| ———|E ) -3
X{“[p1+p4( [8p2 3p} + [0 (m)])
1 d d
S (E [a—g]m[a(m)—aw] )]
_F[zo¢(l72+173)”‘_l_Z.;¢(171—|—172)"‘]EZ [i_i]E}
1—p3 dp1  0Op4

pP1 + p4
xwCCC. (C.15)

One can see that the underlined &(p2)-proportional terms
vanish due to the factor of §(1 — Y p;) (4.9), while
8(p1)-proportional term compensates F2 7 (8.3) and &(p3)-

proportional term compensates F3 > (8.4).

Summing up F> 7 (8.3), F32(8.3), Fapand F 3+ F2 6+
Fy4,1 (8.5), and then performing partial integration in 7 one
obtains by virtue of the Schouten identity

Fizs+ e+ Fa1+ P+ o+ Fap~Gs:

2 o -

n P2 2at®(p2 + p3)7 (y + 1)y
=—[dlr'$ )

4/ &) @2){(1 o1 — pa)2(1 — p3) (o1 + pa)

P2 [0+ D7 oy + P 10) + 18Dty (— B |
(1= p1 — pa)>(1 — p3)2(p1 + pa)
03 [i8(T) — 2 (y + D)7 ] (1" yo)
(1= p1 — pa)(1 — p3)?
[—i8(T) 42, (v + DV ](p1* + p2*)ta
(1 —p1 — pa)(1 — p3)?

+

}EwCCC.
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(C.16)

Since by the partial integration procedure £;6(&) = 1 +
£1(0g, — 0g,), (C.16) yields G3 (9.4).

Appendix D: Details of the final step of the calculation
By virtue of Egs. (E.1)—(E.3), Eq. (10.2) yields

1’ p2(y + DY 2y 1% (p1 + P2
so=+i'y [arae] T
§10—p3—p) pp
(1= p1 — pa)(1 — p3)?
p2(y + DY 2y 1%(p1 + p2)a
(I'—=p1 = pp)(1 = p3)
§1(1 —p3 —p2) B~
T o -2 0 T BT
O +D (1 + e E1m2(p3 + P2)Pyp
(I—=p1—=pp)(d—p3) (1 —=p1—p4)(1—p3)
P2y + D7 2y 1% (p1 + p2)a E102(p3 + p2)Pip
 A=—pr—ppU—p3) (1—p1—p)(1—p3)
O+ D 2% (p1+ p2)a (P1+ p) (1 + P2)P yp
(I'—=p1 = pp)(1 = p3) (1—p3)?
_nO+ DY 2yt (p1 + p2)a patPyp
(A =p1 —pa)(1 = p3) (1 —p3)2
P+ DY 2y1%(p1 + p2da P1(P1+ P2)P1g
(I —=p1 = pp)(1 — p3) (1—p3)?
p2(p1 + ) (v + (1= p)t) , za (v + D% p2511P yg
(1—=p1—pa)(1—p3)2(1—p1 — pa)(1—p3)
p2(p1+ p2)” (v + (1 = pa)t)  za(y + D)*
(1= p1 — pa)(1 = p3)?
P2
X (I =p1 = pa)(1 = p3)(p1 + p4) O+ P)ﬂtﬁ
p2(p1+ p2)Y (v + (1= pa)t) 2o (y + D)% 1By,
(1= p1 — pg)(1 — p3)? (1 —p3)
p2(p1 + p2) (v + (1= pa)t) 2a(y + D (py + pp)Pig
(1= p1 — pa)(1 — p3)? (I —p3)
p21” (y + (1= p1 = pa) (p1 + p2)), Za (y + D
(1= p1 — pa)(1 — p3)?
LE1o3(ps + p2)Pyg
(1= p1 — pa)?
p2t? (y + (1= p1 = pa)(p1 + P2)),, 2a(y + D)%
(1= p1 — pa)(1 — p3)?
£103(p3 + p2)Pig
(1—p1 —pa)?
p2t” (y + (1= p1 = pa) (p1 + P2)), Za (y + D
- (1—p1 — pa)(1 — p3)?
1030418 yp
(I —p1 = po)(1 — p3)(p1 + p4)

X
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p21” (y + (1= p1 = pa) (p1 + p2)), Za (y + D
(1= p1 — pa)(1 = p3)?
£1(p1+ p2)Pyg
(I —p3)
p2t? (y + (1 = p1 = pa)(p1 + P2)),, Za(y + D)%
(1 —p1 — pa)(1 — p3)?
E1(p1 + p2)Pig
(I —p3)

p21” (v + (1 = p1 = pa) (p1 + P2)), Za (y + D
- (1= p1 — pa)(1 — p3)?
5 £102 paly +P)P1g

(1—p1 —p)(1—p3)  (p1 + pa)?

21" (y+(1=p1=pa)(P1+P2)),, 2 (V+D* (p1+p2)Pyg
- (1—p1—p4)(1—p3)? (1—p3)

pzt”(y+(l—p1—P4)(P1+P2))y1a(y+f)“ (p1+p2)Ptp
- (I=p1—ps)(1-p3)? (1=p3)

P202

TG e
(v + (L= p1 = ) (p1 + p2) + (1= p)1)” (y +1), zat®
3 030

(1—p1 —pa)3(1 — p3)3
i,02(y+f)y2y(1714—1”2)"%(

(1—p1—pa)?(1—p3)3

(y + f)yZytaya

}(y+1p)’f‘(y+f>ﬁ]5wccc.
(D.1)

Terms from the rh.s. of (D.1) with &-independent pre-
exponentials are considered in Appendix D.1, while those
with &|-proportional pre-exponentials are considered in
Appendix D.2.

D.1 &;-independent pre-exponentials

Here we consider only pre-exponentials, omitting for brevity
integrals, integral measures etc. of (D.1). By virtue of
the Schouten identity taking into account that Y p; = 1
Eq. (D.1) yields
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where J7 is the cohomology term (5.8).
This yields
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since, using the Schouten identity, one can see that the pre-
exponential of the integrand on the r.A.s. of (D.3) equals zero.

Appendix E: Useful formulas

From (4.4) one has
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