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Abstract Vasiliev generating system of higher-spin equa-
tions allowing to reconstruct nonlinear vertices of field equa-
tions for higher-spin gauge fields contains a free complex
parameter η. Solving the generating system order by order
one obtains physical vertices proportional to various powers
of η and η̄. Recently η2 and η̄2 vertices in the zero-form sector
were presented in Didenko et al. (JHEP 2012:184, 2020) in
the Z -dominated form implying their spin-locality by virtue
of Z -dominance Lemma of Gelfond and Vasiliev (Phys. Lett.
B 786:180, 2018). However the vertex of Didenko et al.
(2020) had the form of a sum of spin-local terms depen-
dent on the auxiliary spinor variable Z in the theory modulo
so-called Z -dominated terms, providing a sort of existence
theorem rather than explicit form of the vertex. The aim of
this paper is to elaborate an approach allowing to system-
atically account for the effect of Z -dominated terms on the
final Z -independent form of the vertex needed for any prac-
tical analysis. Namely, in this paper we obtain explicit Z -
independent spin-local form for the vertex Υ

ηη
ωCCC for its

ωCCC-ordered part where ω and C denote gauge one-form
and field strength zero-form higher-spin fields valued in an
arbitrary associative algebra in which case the order of prod-
uct factors in the vertex matters. The developed formalism
is based on the Generalized Triangle identity derived in the
paper and is applicable to all other orderings of the fields in
the vertex.
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1 Introduction

Higher-spin (HS) gauge theory describes interacting systems
of massless fields of all spins (for reviews see e.g. [1,2]).
Effects of HS gauge theories are anticipated to play a role at
ultra high energies of Planck scale [3]. Theories of this class
play a role in various contexts from holography [4] to cos-
mology [5]. HS theory differs from usual local field theories
because it contains infinite tower of gauge fields of all spins
and the number of space-time derivatives increases with the
spins of fields in the vertex [6–9]. However one may ask
for spin-locality [3,10–12] which implies space-time local-
ity in the lowest orders of perturbation theory [11]. Even
though details of the precise relation between spin-locality
and space-time locality in higher orders of perturbation the-
ory have not been yet elaborated, from the form of equations
it is clear that spin-locality constraint provides one of the
best tools to minimize the space-time non-locality. More-
over demanding spin-locality one actually fixes functional
space for possible field redefinitions that is highly important
for the predictability of the theory.
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A useful way of description of HS dynamics is provided
by the generating Vasiliev system of HS equations [13]. The
latter contains a free complex parameter η. Solving the gener-
ating system order by order one obtains vertices proportional
to various powers of η and η̄. In the recent paper [14], η2 and
η̄2 vertices were obtained in the sector of equations for zero-
form fields, containing, in particular, a part of the φ4 vertex
for the scalar field φ in the theory. Though being seemingly
Z -dependent, in [14] these vertices were written in the Z -
dominated form which implies their spin-locality by virtue of
Z -dominance Lemma of [15]. In this paper we obtain explicit
Z -independent spin-local form for the vertex Υ

ηη
ωCCC starting

from the Z -dominated expression of [14]. The label ωCCC
refers to the ωCCC-ordered part of the vertex where ω and
C denote gauge one-form and field strength zero-form HS
fields valued in arbitrary associative algebra in which case
the order of the product factors in ωCCC matters.

There are several ways to study the issue of (non)locality
in HS gauge theory. One is reconstruction the vertices from
the boundary by the holographic prescription based on the
Klebanov–Polyakov conjecture [4] (see also [16,17]). Alter-
natively, one can analyze vertices directly in the bulk starting
from the generating equations of [13]. The latter approach
developed in [11,12,14,15,18] is free from any holographic
duality assumptions but demands careful choice of the homo-
topy scheme to determine the choice of field variables
compatible with spin-locality of the vertices. The issue of
(non)locality of HS gauge theories was also considered in
[19,20] with somewhat opposite conclusions.

From the holographic point of view the vertex that con-
tains φ4 was argued to be essentially non-local [21] or at least
should have non-locality of very specific form presented in
[22]. On the other hand, the holomorphic, i.e., η2 and anti-
holomorphic η̄2 vertices, where η is a complex parameter
in the HS equations, were recently obtained in [14] where
they were shown to be spin-local by virtue of Z -dominance
lemma of [15]. The computation was done directly in the
bulk starting from the non-linear HS system of [13].

In this formalism HS fields are described by one-
forms ω(Y ; K |x) and zero-forms C(Y ; K |x) where x are
space-time coordinates while YA = (yα, ȳα̇) are auxiliary
spinor variables. Both dotted and undotted indices are two-
component, α, α̇ = 1, 2, while K = (k, k̄) are outer Klein
operators satisfying k ∗ k = k̄ ∗ k̄ = 1,

{k, yα}∗ = {k, zα}∗ = {k̄, ȳα̇}∗ = {k̄, z̄α̇}∗
= {k, θα}∗ = {k̄, θ̄ α̇}∗ = 0,

[k, ȳα̇]∗ = [k, z̄α̇]∗ = [k̄, yα]∗ = [k̄, zα]∗
= [k, θ̄ α̇]∗ = [k̄, θα]∗ = 0, (1.1)

where θ and θ̄ are anticommuting spinors in the theory.

Schematically, non-linear HS equations in the unfolded
form read as

dxω + ω ∗ ω = Υ (ω,ω,C) + Υ (ω,ω,C,C) + · · · , (1.2)

dxC + ω ∗ C − C ∗ ω = Υ (ω,C,C) + Υ (ω,C,C,C) + · · · .

(1.3)

As recalled in Sect. 2, generating equations of [13] that
reproduce the form of Eqs. (1.2) and (1.3) have a simple form
as a result of doubling of spinor variables, namely

ω(Y ; K |x) −→ W (Z; Y ; K |x),
C(Y ; K |x) −→ B(Z; Y ; K |x).
Equations (1.2) and (1.3) result from the generating equations
of [13] upon order by order reconstruction of Z -dependence
(for more detail see Sect. 2). The final form of Eqs. (1.2)
and (1.3) turns out to be Z -independent as a consequence of
consistency of the equations of [13]. This fact may not be
manifest however since the r.h.s.’s of HS equations usually
have the form of the sum of Z -dependent terms.

HS equations have remarkable property [23] that they
remain consistent with the fields W and B valued in any
associative algebra. For instance W and B can belong to the
matrix algebra Matn with anyn. Since in that case the compo-
nents of W and B do not commute, different orderings of the
fields should be considered independently. (Mathematically,
HS equations with this property correspond to A∞ strong
homotopy algebra introduced by Stasheff in [24–26].) For
instance, holomorphic (i.e., η̄-independent) vertices in the
zero-form sector can be represented in the form

Υ η(ω,C,C) = Υ
η
ωCC + Υ

η
CωC + Υ

η
CCω,

Υ ηη(ω,C,C,C) = Υ
ηη
ωCCC+Υ

ηη
CωCC+Υ

ηη
CCωC+Υ

ηη
CCCω,

. . . (1.4)

where the subscripts of the vertices Υ refer to the ordering
of the product factors.

The vertices obtained in [14] were shown to be spin-local
due to the Z -dominance Lemma of [15] that identifies terms
that must drop from the r.h.s.’s of HS equations together with
the Z -dependence. Recall that spin-locality implies that the
vertices are local in terms of spinor variables for any finite
subset of fields of different spins [18] (for more detail on the
notion of spin-locality see [18]). Analogous vertices in the
one-form sector have been shown to be spin-local earlier in
[12].

The main achievement of [14] consists of finding such
solution of the generating system in the third order in C that
all spin-nonlocal terms containing infinite towers of deriva-
tives in y(ȳ) between C-fields in the (anti)holomorphic in
η(η̄) sector do not contribute to η2 (η̄2) vertices by virtue
of Z -dominance Lemma. Thus [14] gives spin-local expres-
sions for the vertices Υ ηη(ω,C,C,C) which, however, have
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a form of a sum of a number of Z -dependent terms. To
make spin-locality manifest one must remove the seeming
Z-dependence from the vertex of [14]. Technically, this can
be done with the help of partial integration and the Schouten
identity. The aim of this paper is to show how this works in
practice.

Since the straightforward derivation presented in this
paper is technically involved we confine ourselves to the par-
ticular vertex Υ

ηη
ωCCC (1.4). Complexity of the calculations in

this paper expresses complexity of the obtained vertex having
no analogues in the literature. Indeed, this is explicitly cal-
culated spin-local vertex of the third order in the equations,
corresponding to the vertices of the fourth (and, in part, fifth)
order for the fields of all spins. The example described in the
paper explains the formalism applicable to all other order-
ings of the fields in the vertex that are also computable. So,
our results are most important from the general point of view
highlighting a way for the computation of higher vertices in
HS theory that may be important from various perspectives
and, in the first place, for the analysis of HS holography. It
should be stressed that the results of [14] provided a sort
of existence theorem for a spin-local vertex that was diffi-
cult to extract without developing specific tools like those
developed in this paper. In particular, it is illustrated how the
general statements like Z -dominance Lemma work in practi-
cal computations. Let us stress that at the moment this is the
only available approach allowing to compute explicit form
of the spin-local vertices for all spins at higher orders.

The rest of the paper is organized as follows. In Sect. 2,
the necessary background on HS equations is presented with
brief recollection on the procedure of derivation of vertices
from the generating system. Section 3 reviews the notion
of the H+ space as well as the justification for a computa-
tion modulo H+. In Sect. 4, we present step-by-step scheme
of computations performed in this paper. Section 5 contains
the final manifestly spin-local expression for Υ

ηη
ωCCC ver-

tex. In Sects. 6–10 technical details of the steps sketched in
Sect. 4 are presented. In particular, in Sect. 7 we introduce
important Generalised Triangle identity which allows us to
uniformize expressions from [14]. Conclusion section con-
tains discussion of the obtained results. Appendices A, B,
C and D contain technical detail on the steps listed in the
scheme of computation. Some useful formulas are collected
in Appendix E.

2 Higher spin equations

2.1 Generating equations

Spin-s HS fields are encoded in two generating functions,
namely, the space-time one-form

ω(y, ȳ, x) = dxμωμ(y, ȳ, x)

=
∑

n,m

dxμωμα1...αn ,α̇1...α̇m (x)yα1 . . . yαn ȳα̇1 . . . ȳα̇m

(2.1)

with s = 2+m+n
2 and zero-form

C(y, ȳ, x) =
∑

n,m

Cα1...αn ,α̇1...α̇m (x)yα1. . . yαn ȳα̇1. . . ȳα̇m (2.2)

with s = |m−n|
2 , where α = 1, 2 and α̇ = 1, 2 are two-

component spinor indices. Auxiliary commuting variables
yα and ȳα̇ can be combined into an sp(4) spinor Y A =
(yα, ȳα̇), A = 1, . . . , 4.

The vertices Υ (ω,ω,C,C, . . .) (1.2) and Υ (ω,C,C, . . .)

(1.3) result from the generating system of [13]

dxW + W ∗ W = 0, (2.3)

dx S + W ∗ S + S ∗ W = 0, (2.4)

dx B + W ∗ B − B ∗ W = 0, (2.5)

S ∗ S = i(θ AθA + ηB ∗ γ + η̄B ∗ γ̄ ), (2.6)

S ∗ B − B ∗ S = 0. (2.7)

Apart from space-time coordinates x , the fieldsW (Z; Y ; K |x),
S(Z; Y ; K |x) and B(Z; Y ; K |x) depend on Y A, Z A =
(zα, z̄α̇) and Klein operators K = (k, k̄) (1.1). W is a space-
time one-form, i.e., W = dxνWν while S -field is a one-form
in Z spinor directions θ A = (θα, θ̄ α̇), {θ A, θ B} = 0, i.e.,

S(Z; Y ; K ) = θ ASA(Z; Y ; K ). (2.8)

B is a zero-form.
Star product is defined as follows

( f ∗ g)(Z; Y ; K ) = 1

(2π)4

∫
d4U d4VeiUAV A

× f (Z +U,Y +U ; K )g(Z − V,Y + V ; K ). (2.9)

Elements

γ = θαθαe
izα yα

k and γ̄ = θ̄ α̇ θ̄α̇e
i z̄α̇ ȳα̇

k̄ (2.10)

are central because θ3 = 0 since θα is a two-component
anticommuting spinor.

2.2 Perturbation theory

Starting with a particular solution of the form

B0(Z; Y ; K ) = 0, S0(Z; Y ; K ) = θαzα + θ̄ α̇ z̄α̇,

W0(Z; Y ; K ) = ω(Y ; K ), (2.11)

which indeed solves (2.3)–(2.7) provided that ω(Y ; K ) sat-
isfies zero-curvature condition,

dω + ω ∗ ω = 0, (2.12)
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one develops perturbation theory. Starting from (2.7) one
finds

[S0, B1]∗ = 0. (2.13)

From (2.9) one deduces that

[ZA, f (Z; Y ; K )]∗ = −2i
∂

∂Z A
f (Z; Y ; K ). (2.14)

Hence, Eq. (2.13) yields

[S0, B1] = −2iθ A ∂

∂Z A
B1 = −2idZ B1 = 0

�⇒ B1(Z; Y ; K ) = C(Y ; K ). (2.15)

The Z -independentC-field that appears as the first-order part
of B is the same that enters Eqs. (1.2) and (1.3). The per-
turbative procedure can be continued further leading to the
equations of the form

dZΦk+1 = J (Φk, Φk−1, . . .), (2.16)

where Φk is either W , S or B field of the k-th order of per-
turbation theory, identified with the degree of C-field in the
corresponding expression, i.e.,

W = ω + W1(ω,C) + W2(ω,C,C) + · · · ,
S = S0 + S1(C) + S2(C,C) + · · · ,

B = C + B2(C,C) + B3(C,C,C) + · · · .

To obtain dynamical equations (1.2), (1.3) one should plug
obtained solutions into Eqs. (2.3) and (2.5). For instance,
(2.5) up to the third order in C-field is

dxC + [ω,C]∗ = −dx B2 − [W1,C]∗
−dx B3 − [W1, B2]∗ − [W2,C]∗ + · · · (2.17)

Though the fields W1, W2 and B2, B3 and hence various
terms that enter (2.17) are Z -dependent, Eqs. (2.3)–(2.7) are
designed in such a way that, as a consequence of their con-
sistency, the sum of the terms on the r.h.s. of (2.17) is Z -
independent. To see this it suffices to apply dZ realized as
i
2 [S0, ]∗ to the r.h.s. of (2.17) and make sure that it gives
zero by virtue of already solved equations. For more detail
we refer the reader to the review [2].

3 Subspace H+ and Z-dominance lemma

3.1 H+

In this section the definition of the space H+ [14] that plays
a crucial role in our computation is recollected. Function
f (z, y|θ) of the form

f (z, y|θ) =
∫ 1

0
dT eiT zα yα

φ (T z, y|T θ, T ) (3.1)

belongs to the space H+ if there exists such a real ε > 0, that

lim
T →0

T 1−εφ(w, u|θ, T ) = 0. (3.2)

Note that this definition does not demand any specific
behaviour of φ at T → 1 as was the case for the space
H+0 of [18].

In the sequel we use two main types of functions that obey
(3.2):

φ1(T z, y|T θ, T ) = T δ1

T φ̃1(T z, y|T θ),

φ2(T z, y|T θ, T ) = ϑ(T − δ2)
1

T φ̃2(T z, y|T θ) (3.3)

with some δ1,2 > 0. (Note that the second option with δ2 > 0
can be interpreted as the first one with arbitrary large δ1.
Here step-function is denoted as ϑ to distinguish it from the
anticommuting variables θ .)

Space H+ can be represented as the direct sum

H+ = H+
0 ⊕ H+

1 ⊕ H+
2 , (3.4)

where φ(w, u|θ, T ) ∈ H+
p are degree-p forms in θ satisfying

(3.2).
All terms from H+ on the r.h.s. of HS field equations

must vanish by Z -dominance Lemma [15]. Following [14]
this can be understood as follows. All the expressions from
(2.17) have the form (3.1) and the only way to obtain Z -
independent non-vanishing expression is to bring the hid-
den T dependence in φ(T z, y|T θ, T ) to δ(T ). If a func-
tion contains an additional factor of T ε or is isolated from
T = 0, it cannot contribute to the Z -independent answer
which is the content of Z -dominance Lemma [15]. This just
means that functions of the class H+

0 cannot contribute to
the Z -independent equations (1.3). Application of this fact
to locality is straightforward once this is shown that all terms
containing infinite towers of higher derivatives in the vertices
of interest belong to H+

0 and, therefore, do not contribute to
HS equations. This is what was in particular shown in [14].

3.2 Notation

As in [14] we use exponential form for all the expressions
below where by ωCCC we assume

ω(yω, ȳ)∗̄C(y1, ȳ)∗̄C(y2, ȳ)∗̄C(y3, ȳ) (3.5)

with ∗̄ denoting star-product with respect to ȳ. Derivatives
∂ω and ∂ j act on auxiliary variables as follows

∂ωα = ∂

∂yα
ω

, ∂ jα = ∂

∂yα
j
. (3.6)

After all the derivatives in yω and y j are evaluated the latter
are set to zero, i.e.,

yω = y j = 0. (3.7)
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In this paper we use the following notation of [14]:

tα := −i∂ωα, p jα := −i∂ jα, (3.8)
∫

dnρ+ :=
∫

dρ1 . . . dρn ϑ(ρ1) . . . ϑ(ρn). (3.9)

3.3 Contribution to Υ
ηη
ωCCC modulo H+

The η2C3 vertex in the equations on the zero-forms C result-
ing from equations of [13] is

Υ ηη(ω,C,C,C) = − (
dx B

ηη
3 + [ω, Bηη

3 ]∗
+ [W η

1 , Bη
2 ]∗ + [W ηη

2 ,C]∗ + dx B
η
2

)
. (3.10)

Recall, that, being Z -independent, Υ ηη is a sum of Z -
dependent terms that makes its Z -independence implicit.

As explained in Introduction, Υ ηη can be decomposed
into parts with different orderings of fields ω and C . In this
paper we consider

Υ
ηη
ωCCC := Υ ηη(ω,C,C,C)

∣∣∣
ωCCC

. (3.11)

Since the terms from H+ do not contribute to the physical
vertex such terms can be discarded. Following [14] equality
up to terms from H+ referred to as weak equality is denoted
as ≈ .

We start with the following results of [14]:

Υ̂
ηη
ωCCC ≈ Υ

ηη
ωCCC = −

(
W η

1 ωC ∗ Bη loc
2 + ω ∗ Bηη

3

+W ηη
2 ωCC ∗ C + dx B

η loc
2

∣∣
ωCCC + dx B

ηη
3

∣∣
ωCCC

)
,

(3.12)

where

W η
1 ωC ∗ Bη loc

2 ≈ η2

4

∫ 1

0
dT T

∫ 1

0
dσ

∫
d3ρ+

×δ

(
1 −

3∑

i=1

ρi

)
(zγ tγ

[
zα yα + σ zα tα

]

(ρ1 + ρ2)

× exp
{
iT zα y

α + i(1 − σ)tα∂1α − i
ρ1σ

ρ1 + ρ2
tα p2α

+i
ρ2σ

ρ1 + ρ2
tα p3α + iT zα

(
− (ρ1 + ρ2 + σρ3)tα

−(ρ1 + ρ2)p1α + (ρ3 − ρ1)p2α + (ρ3 + ρ2)p3α

)

+iyα
(
σ tα − ρ1

ρ1 + ρ2
p2α + ρ2

ρ1 + ρ2
p3α

)}
ωCCC, (3.13)

W ηη
2 ωCC ∗ C ≈ −η2

4

∫ 1

0
dT T

∫
d4ρ+ δ

(
1 −

4∑

i=1

ρi

)

× ρ1
(
zγ tγ

)2

(ρ1 + ρ2)(ρ3 + ρ4)
exp

{
iT zα y

α + iT zα
(
(1 − ρ2)tα

−(ρ3 + ρ4)p1α + (ρ1 + ρ2)p2α + p3α

)
+ iyα tα

+ ρ1ρ3

(ρ1 + ρ2)(ρ3 + ρ4)

(
iyα tα + i tα p3α

)

+i

(
(1 − ρ4)ρ2

ρ1 + ρ2
+ ρ4

)
tα p1α − i

ρ4ρ1

ρ3 + ρ4
tα p2α

}
ωCCC,

(3.14)

dx B
η loc
2

∣∣
ωCCC ≈ η2

4

∫ 1

0
dT

∫ 1

0
dξ

∫
d3ρ+

×δ

(
1 −

3∑

i=1

ρi

)
zα y

α
[ (

T zα − ξ yα
)
tα
]

× exp
{
iT zα y

α + i(1 − ρ2)t
α p1α − iρ2t

α p2α

−iT zα
(
(ρ1 + ρ2)tα + ρ1 p1α − (ρ2 + ρ3)p2α − p3α

)

+iyα
(
ξ(ρ1 + ρ2)tα + ξρ1 p1α − ξ(ρ2 + ρ3)p2α

+(1 − ξ)p3α

)}
ωCCC, (3.15)

ω ∗ Bηη
3 ≈ −η2

4

∫ 1

0
dT T

∫
d3ρ+

×δ

(
1 −

3∑

i=1

ρi

)∫ 1

0
dξ

ρ1 [zα (yα + tα)]2

(ρ1 + ρ2)(ρ1 + ρ3)
exp

{
iT zα y

α

+iT zα
(

− tα − (ρ1 + ρ3)p1α + (ρ2 − ρ3)p2α

+(ρ1 + ρ2)p3α

)
+ iyα tα

+i(1 − ξ)yα

(
ρ1

ρ1 + ρ2
p1α − ρ2

ρ1 + ρ2
p2α

)

+iξ yα

(
ρ1

ρ1 + ρ3
p3α − ρ3

ρ1 + ρ3
p2α

)

+i
(1 − ξ)ρ1

ρ1 + ρ2
tα p1α − i

(
(1 − ξ)ρ2

ρ1 + ρ2
+ ξρ3

ρ1 + ρ3

)
tα p2α

+i
ξρ1

ρ1 + ρ3
tα p3α

}
ωCCC, (3.16)

dx B
ηη
3

∣∣
ωCCC ≈ η2

4

∫ 1

0
dT T

∫
d3ρ+δ

(
1 −

3∑

i=1

ρi

)

×
∫ 1

0
dξ

ρ1 (zα yα)2

(ρ1 + ρ2)(ρ1 + ρ3)
exp

{
iT zα y

α

+iT zα
(

− (ρ1 + ρ3)(tα + p1α) + (ρ2 − ρ3)p2α

+(ρ1 + ρ2)p3α

)

+i tα p1α + i(1 − ξ)yα

(
ρ1

ρ1 + ρ2
(tα + p1α) − ρ2

ρ1 + ρ2
p2α

)

+ξ yα

(
ρ1

ρ1 + ρ3
p3α − ρ3

ρ1 + ρ3
p2α

)}
ωCCC. (3.17)

The sum of r.h.s.’s of (3.13)–(3.17) yields Υ̂
ηη
ωCCC (Z; Y ).

Note, that all terms on the r.h.s.’s of (3.13)–(3.17) con-
tain no p jα piα contractions in the exponentials, hence being
spin-local [14]. Thus Υ̂

ηη
ωCCC (Z; Y ) is also spin-local.

Let us emphasize that only the full expression for
Υ

ηη
ωCCC (Y ) (3.11) is Z -independent, while Υ̂

ηη
ωCCC (Z; Y )

(3.12) with discarded terms in H+ is not. This does not allow
one to find manifestly Z -independent expression for Υ

ηη
ωCCC

by setting for instance Z = 0 in Eqs. (3.13)–(3.17).
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In this paper Z -dependence of Υ̂
ηη
ωCCC (Z; Y ) is eliminated

modulo terms in H+ by virtue of partial integration and the
Schouten identity. As a result,

Υ̂
ηη
ωCCC (Z; Y ) ≈ ̂̂Υ ηη

ωCCC (Y ),

where ̂̂Υ ηη
ωCCC (Y ) is manifestly spin-local and Z -independent.

Since H+
0 -terms do not contribute to the vertex by Z-

dominance Lemma [15]

Υ
ηη
ωCCC (Y ) = ̂̂Υ ηη

ωCCC (Y ).

Our goal is to find the manifest form of ̂̂Υ ηη
ωCCC (Y ).

4 Calculation scheme

The calculation scheme is as follows.

– I. We start from the expression Eqs. (3.13)–(3.17) for the
vertex obtained in [14].

– II. To z-linear pre-exponentials.
Using partial integration and the Schouten identity we
transform Eqs. (3.13)–(3.17) to the form with z-linear
pre-exponentials modulo weakly Z -independent (coho-
mology) terms. These expressions are collected in Sect. 6,
Eqs. (6.1)–(6.4). The respective cohomology terms being
a part of the vertex Υ

ηη
ωCCC are presented in Sect. 5.

– III. Uniformization.
We observe that the r.h.s.’s of Eqs. (6.1)–(6.4) can be re-
written modulo cohomology and weakly zero terms in a
form of integrals

∫
dΓ over the same integration domain

I
∫

dΓ zα f α(y, t, p1, p2, p3|T , ξi , ρi )E ωCCC, (4.1)

where the integrand contains an overall exponential func-
tion E

E = Ez E, (4.2)

Ez := exp i
{
T zα(y + P)α

}
(4.3)

E := exp i
{
ξ2

−ρ2

(1 − ρ1 − ρ4)(1 − ρ3)

(
y + P

)α
yα (4.4)

+ξ1
ρ2

(1 − ρ1 − ρ4)(1 − ρ3)

(
y + P

)α
t̃α

+ ρ3

(1−ρ1−ρ4)
(p3 + p2)

α yα

− ρ3

(1−ρ1−ρ4)(1−ρ3)
ρ1t

α yα (4.5)

+ ρ1

(1−ρ3)
(p1

α + p2
α)tα + p3α y

α + p1αt
α
}
,

t̃ = ρ1

ρ1 + ρ4
t, (4.6)

P = P + (1 − ρ4)t, (4.7)

P = (1−ρ1−ρ4)(p1 + p2)−(1−ρ3)(p3 + p2),(4.8)

the integral over I is denoted as

∫
dΓ =

∫ 1

0
dT

∫
d3ξ+ δ

(
1 −

3∑

i=1

ξi

)

×
∫

d4ρ+ δ

⎛

⎝1 −
4∑

j=1

ρ j

⎞

⎠ . (4.9)

Equations (6.1)–(6.4) transformed to the form (4.1) are
collected in Sect. 8, Eqs. (8.2)–(8.5).

– IV. Elimination of δ-functions.
Using partial integration and the Schouten identity we
eliminate the all factors of δ(ρi ), δ(ξ1) and δ(ξ2) from
Eqs. (8.2)–(8.5). The result is presented in Sect. 9,
Eqs. (9.1)–(9.4).

– V. Final step.
Finally, we show in Sect. 10 that a sum of the r.h.s.’s of
Eqs. (9.2)–(9.4) is Z -independent up to H+.

By collecting all resulting Z -independent terms we finally
obtain the manifest expression for vertex Υ

ηη
ωCCC , being a sum

of expressions (5.2)–(5.12).

5 Main result Υ
ηη

ωCCC

Here the final manifestly Z -independent ωCCC contribution
to the equations is presented.

Vertex Υ
ηη
ωCCC is

Υ
ηη
ωCCC =

11∑

j=1

J j (5.1)

with Ji given in Eqs. (5.2)–(5.12). Note that the integra-
tion regions may differ for different terms J j in the vertex,
depending on their genesis.

Firstly we note that Bηη
3 (A.10), that contains a Z -

independent part, generates cohomologies both from ω∗Bηη
3

and from dx B
ηη
3 ,

J1 = −η2

4

∫
dΓ

δ(ξ3)ρ2

(ρ2 + ρ1)(ρ2 + ρ3)
δ(ρ4)E ωCCC, (5.2)

J2 = η2

4

∫
dΓ

δ(ξ3)ρ2

(ρ2 + ρ4)(ρ2 + ρ3)
δ(ρ1)E ωCCC. (5.3)

Recall that E and dΓ are defined in (4.4) and (4.9), respec-
tively. (Note, that, here and below, the integrands on the
r.h.s.’s of expressions for Ji are T -independent, hence the
factor of

∫ 1
0 dT in dΓ equals one.)
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Other cohomology terms are collected from (9.2), (9.3),
(9.4), (10.1), (D.2), (B.1), (B.3), (B.4) and (B.5), respectively,

J3 = − iη2

4

∫
dΓ δ(ξ3)

1

(ρ2 + ρ3)(1 − ρ3)

×
{
ρ2t

α(p1 + p2)α
[−→

∂ ρ2 − −→
∂ ρ3

]

+ρ2(p1 + p2)
α(p3 + p2)α

[−→
∂ ρ4 − −→

∂ ρ1

]

+ρ2t
α(p3 + p2)α

[−→
∂ ρ2 − −→

∂ ρ1

]

+ ρ1 + ρ4

(1 − ρ3)
tα(p1 + p2)α

}
E ωCCC, (5.4)

J4 = iη2

4

∫
dΓ

δ(ξ3)

1 − ρ3

(
− ρ3

(1 − ρ1 − ρ4)2(1 − ρ3)
tγ yγ

− ρ2

(1 − ρ1 − ρ4)(1 − ρ3)
tγ yγ [−−→

∂ ρ1 + −→
∂ ρ2 ]

− ρ2

(1 − ρ1 − ρ4)(1 − ρ3)
(p1 + p2)

γ (y + t̃)γ [−→∂ ρ4 − −→
∂ ρ1 ]

)

×EωCCC, (5.5)

J5 = −i
η2

4

∫
dΓ δ(ξ3)

[
1 + ξ1(

−→
∂ ξ1 − −→

∂ ξ2 )
]

×
{ −ρ2

(1 − ρ1 − ρ4)2(1 − ρ3)(ρ1 + ρ4)
(p3

α + p2
α)γ tγ

− ρ3

(1 − ρ1 − ρ4)2(1 − ρ3)2 tα yα

+ 1

(ρ2 + ρ3)(1 − ρ3)(ρ1 + ρ4)
(p1

α + p2
α)tα

}
E ωCCC, (5.6)

J6 = i
η2

4

∫
dΓ δ(ξ3)

ρ2

(1 − ρ1 − ρ4)(1 − ρ3)2(ρ1 + ρ4)

×(p1 + p2)
γ (t)γ EωCCC, (5.7)

J7 = −η2

4

∫
dΓ δ(ξ3) ξ1

ρ2ρ2

(ρ2 + ρ3)3(1 − ρ3)3(ρ1 + ρ4)

×(
y + (1 − ρ1 − ρ4)(p1 + p2) + (1 − ρ4)t

)γ (
y + t̃

)
γ

×tα yαE ωCCC, (5.8)

J8 = −η2

4

∫
dΓ δ(ρ3)

(
ρ1δ(ξ3)

+
[
iδ(ρ4) − (p2α + p1α)tα

]{
iδ(ξ3) + t̃γ yγ

})

×E ωCCC, (5.9)

J9 = iη2 1

4

∫
dΓ δ(ρ1)δ(ρ4)δ(ξ3) exp

{
− iξ2(p1 + p2 + t

−ρ2(p3 + p2))α(y)α − ξ1(y + p1 + p2 − ρ2(p3 + p2))γ (t)γ

+(1 − ρ2)(p3 + p2)
γ yγ + p3γ y

γ + tβ p1β

}

×ωCCC, (5.10)

J10 = −iη2 1

4

∫
dΓ δ(ρ4)δ(ξ1)δ(ρ1) exp i

{
− ξ2(y + p1 + p2

+t − ρ2(p3 + p2))α(y)α + (1 − ρ2)(p3 + p2)
γ yγ

+p3γ y
γ + tβ p1β

}
ωCCC, (5.11)

J11 = iη2

4

∫
dΓ δ(ρ1)δ(ρ4)y

α tα exp i
{
p3γ y

γ + tβ p1β

+(y + P0 + t)γ (ξ1t − ξ2y)γ + (1 − ρ2)(p3 + p2)
γ yγ

}

×ωCCC. (5.12)

Let us emphasize, that neither exponential function E (4.4)
nor the exponentials on the r.h.s.’s of Eqs. (5.10)–(5.12) con-
tain ∂iα∂k

α terms. Hence, as anticipated, all J j are spin-local.

One can see that though having poles in pre-exponentials
these expressions are well defined.
For instance a potentially dangerous factor on the r.h.s. of
(5.2) is dominated by 1 as follows from the inequality ρ2 −
(ρ1 +ρ2)(ρ2 +ρ3) = −ρ3ρ1 ≤ 0 that holds due to the factor
of

∏
ϑ(ρi )δ(1 − ∑

ρi )δ(ρ4). Analogous simple reasoning
applies to the r.h.s. of (5.3).

The case of (5.4)–(5.8) is a bit more tricky. By partial
integration one obtains from (5.4)–(5.6)

J3 + J4 + J5 = iη2

4

∫
dΓ δ(ξ3)

1

(ρ2 + ρ3)(1 − ρ3)

×
{

− δ(ρ3)t
α(p1 + p2)α − δ(ρ1)

ρ2

(1 − ρ3)
tγ yγ

+[δ(ρ4) − δ(ρ1)]ρ2(p1 + p2)
α(p3 + p2)α

+tα(p3 + p2)α − δ(ρ1)ρ2t
α(p3 + p2)α

+[δ(ρ4) − δ(ρ1)] ρ2

(1 − ρ3)
(p1 + p2)

γ (y + t̃)γ

−δ(ξ2)
( −ρ2

(ρ2 + ρ3)(ρ1 + ρ4)
(p3

α + p2
α)γ tγ

− ρ3

(ρ2 + ρ3)(1 − ρ3)
tα yα + 1

(ρ1 + ρ4)
(p1

α + p2
α)tα

)}

×E ωCCC. (5.13)

Using that, due to the factor of δ(1 − ∑
ρi ), for positive ρi

it holds

ρ2

(ρ3 + ρ2)(1 − ρ3)
− 1= −ρ3(1 − ρ3 − ρ2)

(ρ3 + ρ2)(1 − ρ3)
≤ 0, (5.14)

1

(ρ2 + ρ3)(1 − ρ3)
≤ 1

(ρ2 + ρ3)(1 − ρ3 − ρ2)

= 1

(ρ3 + ρ2)
+ 1

(ρ1 + ρ4)
, (5.15)

one can make sure that each of the expressions with poles
in the pre-exponential in Eqs. (5.7), (5.8) and (5.13) can be
represented in the form of a sum of integrals with integrable
pre-exponentials. For instance, the potentially dangerous fac-
tor in (5.8), by virtue of (5.14) and (5.15) satisfies

ρ2ρ2

(ρ2 + ρ3)3(1 − ρ3)3(ρ1 + ρ4)

≤ 1

(1 − ρ3)(ρ1 + ρ4)
+ 1

(ρ3 + ρ2)
+ 1

(ρ1 + ρ4)
. (5.16)

Each of the terms on the r.h.s. of Eq. (5.16) is integrable,
because integration is over a three-dimensional compact area∑

ρi = 1 in the positive quadrant. For instance consider the
first term. Swopping ρ4 ↔ ρ2 one has

∫
d4ρ+δ(1 −

4∑

1

ρi )
1

(1 − ρ3)(ρ1 + ρ2)

=
∫

d3ρ+ϑ(1 −
3∑

1

ρi )
1

(1 − ρ3)(ρ1 + ρ2)

123



  605 Page 8 of 18 Eur. Phys. J. C           (2021) 81:605 

= −
∫ 1

0
dρ1

∫ 1−ρ1

0
dρ2

log(ρ1 + ρ2)

(ρ1 + ρ2)
= 1

2

∫ 1

0
dρ1 log2(ρ1),

(5.17)

which is integrable.
Analogously other seemingly dangerous factors can be

shown to be harmless as well.

6 To z-linear pre-exponentials

Step II of the calculation scheme of Sect. 4 is to transform
r.h.s.’s of Eqs. (3.13)–(3.17) to Z -independent terms plus
terms with linear in z pre-exponentials (modulo H+).

To this end, from (A.10) one straightforwardly obtains
that

ω ∗ Bηη
3 ≈ J1 + η2

4

∫
dΓ

δ(ξ3)δ(ρ4)

(1 − ρ1)(1 − ρ3)

×
[

− ρ2zα(y + t)α(p1β + p2β)(p2
β + p3

β)

+i
[(

δ(ρ1) + δ(ρ3)
)
(1 − ρ1)(1 − ρ3) − δ(ξ2)

]

×zα
(
(1 − ρ1)(p1

α + p2
α) − (1 − ρ3)(p2

α + p3
α)
)

+i zα(p1
α + p2

α)(1 − ρ1)
(
δ(ξ2) − δ(ξ1)

)]
exp

{
iT zα

(
yα

+tα + (1 − ρ1)(p1
α + p2

α) − (1 − ρ3)(p2
α + p3

α)
)

+ i(1 − ξ1)ρ2

ρ1 + ρ2
(yα + tα)(p1α + p2α)

+ iξ1ρ2

ρ2 + ρ3
(yα + tα)(p2α + p3α) − i(yα + tα)p2α

}

×ωCCC, (6.1)

where J1 is the cohomology term (5.2). Analogously,

dx B
ηη
3 ≈ J2 − η2

4

∫
dΓ

δ(ξ3)δ(ρ4)

(1 − ρ1)(1 − ρ3)

×
[

− ρ2(zα y
α)(p1β + tβ + p2β)(p2

β + p3
β)

+i
[(

δ(ρ1) + δ(ρ3)
)
(1 − ρ1)(1 − ρ3) − δ(ξ2)

]

×zα
(
(1 − ρ1)(p1

α + tα + p2
α) − (1 − ρ3)(p2

α + p3
α)
)

+i zα(p1
α + tα + p2

α)(1 − ρ1)
(
δ(ξ2) − δ(ξ1)

)]
exp

{
iT zα

(
yα

+(1 − ρ1)(p1
α + tα + p2

α) − (1 − ρ3)(p2
α + p3

α)
)

+ i(1 − ξ1)ρ2

ρ1 + ρ2
yα(p1α + tα + p2α) + iξ1ρ2

ρ2 + ρ3
yα(p2α + p3α)

−iyα p2α + i tβ p1β

}
ωCCC (6.2)

with J2 (5.3). Using the Schouten identity and partial inte-
gration one obtains from Eqs. (3.13)–(3.15), respectively,

W η
1 ωC ∗ Bη

2 ≈ η2

4

∫ 1

0
dT

∫ 1

0
dτ

∫ 1

0
dσ1

∫ 1

0
dσ2

×
[
i zα t

αδ(1 − τ) + zα(p2
α + p3

α)

1 − τ

(
i
(
δ(σ1) − δ(1 − σ1)

)

−[
yα + p1

α + p2
α − σ2(p2

α + p3
α)

]
tα
)]

exp
{
iT zα y

α

+iT zα
(
τ(p1

α + p2
α) − ((1 − τ) + σ2τ)(p2

α + p3
α)

+(
σ1 + τ(1 − σ1)

)
tα
)

+ i tα p1α

+iσ1
[
yα + p1

α + p2
α − σ2(p2

α + p3
α)

]
tα

−i
(
σ2 p3

α − (1 − σ2)p2
α
)
yα

}
ωCCC, (6.3)

W ηη
2 ωCC ∗ C ≈ − iη2

4

∫
dΓ δ(ξ3)δ(ρ3)

(zγ tγ )

ρ1 + ρ4

×
[

− ρ1
(
δ(ρ4) + i tα(p1α + p2α)

)

+ξ1δ(ξ2)
]

exp
{
iT zα y

α

+iT zα
(
(1 − ρ1 − ρ4)(p1

α + p2
α) − (1 − ρ3)(p2

α + p3
α) + (1 − ρ4)t

α
)

+iyα

(
ξ1ρ1

1 − ρ2
tα + p3α

)
+ i

(
1 − ρ1 − ξ1ρ1ρ2

1 − ρ2

)
tα p1α

−i(1 − ξ1)ρ1t
α p2α + i

ξ1ρ1

1 − ρ2
tα p3α

}
ωCCC, (6.4)

dx B
η
2 ≈ iη2

4

∫
dΓ δ(ξ3)δ(ρ4) (zα y

α)

×
[
i tγ (p1γ + p2γ ) + δ(ρ4) − δ(ρ1)

]
exp

{
iT zα y

α

+iT zα
(
(1 − ρ1 − ρ4)(p1

α + p2
α) − (1 − ρ3)(p2

α + p3
α)

+(1 − ρ4)t
α
) + i(1 − ρ2)t

β p1β − iρ2t
β p2β + iξ2 y

α
(
(ρ1 + ρ2)tα

+ρ2 p1α − (1 − ρ2)p2α − p3α

)
+ iyα p3α

}

×ωCCC. (6.5)

7 Generalised triangle identity

Here a useful identity playing the key role in our computa-
tions is introduced.

For any F(x, y) consider

I =
∫

[0,1]
dτ

∫
d3ξ+δ(1 − ξ1 − ξ2 − ξ3)

×zγ
[
(a2−a1)γ δ(ξ3)+(a3−a2)γ δ(ξ1) + (a1−a3)γ δ(ξ2)

]

×F
(
τ zβ P

β, (−ξ1a1 − ξ2a2 − ξ3a3)αP
α
)

(7.1)

with arbitrary τ, ξ - independent P and ai .
Let G(x, y) be a solution to differential equation

∂

∂x
G(x, y) = ∂

∂y
F(x, y). (7.2)

Hence

I =
∫

[0,1]
dτ

∫
d3ξ+δ(1−ξ1−ξ2−ξ3)(a1−a3)

α(a3−a2)α

−→
∂ τG

(
τ zβ P

β, (−ξ1a1 − ξ2a2 − ξ3a3)αP
α
)
. (7.3)

Note that there is a factor of (a1 − a3)
α(a3 − a2)α equal to

the area of triangle spanned by the vectors a1, a2, a3 on the
r.h.s. of (7.3).

This identity is closely related to identity (3.24) of [11],
that, in turn, expresses triangle identity of [27]. Hence, (7.3)
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will be referred to as Generalised Triangle identity or GT
identity.

Note that, for appropriate G partial integration on the r.h.s.
of (7.3) in τ gives z-independent (cohomology) term plus
H+-term. Namely,

I = −
∫
d3ξ+δ(1−ξ1−ξ2−ξ3)(a1−a3)

α(a3−a2)α

×G
(
0, (−ξ1a1 − ξ2a2 − ξ3a3)αP

α
)

+
∫
d3ξ+δ(1−ξ1−ξ2−ξ3)(a1−a3)

α(a3−a2)α

×G
(
zβ P

β, (−ξ1a1 − ξ2a2 − ξ3a3)αP
α
)
. (7.4)

The second term on the r.h.s. belongs to H+ if G is of the
form (3.1) satisfying (3.2).

To prove GT identity let us perform partial integration on
the r.h.s. of (7.1) with respect to ξi . This yields

I =
∫

[0,1]
dτ

∫
d3ξ+ δ(1 − ξ1 − ξ2 − ξ3)

×
[
zγ (a3−a2)γ P

αa1α + zγ (a1−a3)γ P
αa2α

+zγ (a2−a1)γ P
αa3α

]

× ∂

∂y
F
(
τ zαP

α, −(ξ1a1 + ξ2a2 + ξ3a3)αP
α
)
. (7.5)

The Schouten identity yields
[
zγ a1γ P

α(a3 − a2)α + zγ a2γ P
α(a1 − a3)α

+zγ a3γ P
α(a2 − a1)α

]
=

[
zγ Pγ

{
a1

α(a3 − a2)α

+aα
2 (a1 − a3)α + aα

3 (a2 − a1)α
} + zγ (a3 − a2)γ P

αa1α

+zγ (a1 − a3)γ P
αa2α + zγ (a2 − a1)γ P

αa3α

]
. (7.6)

One can observe that
[
zγ (a3 − a2)γ P

αa1α + zγ (a1 − a3)γ P
αa2α

+zγ (a2 − a1)γ P
αa3α

]
= −

[
zγ a1γ P

α(a3 − a2)α

+zγ a2γ P
α(a1 − a3)α + zγ a3γ P

α(a2 − a1)α

]
, (7.7)

whence it follows (7.3).
A useful particular case of GT identity is that with

F(x, y) = f (x + y), namely
∫

[0,1]
dτ

∫
d3ξ+ δ(1−ξ1−ξ2−ξ3)z

γ

×
[
(a2−a1)γ δ(ξ3) + (a3−a2)γ δ(ξ1) + (a1−a3)γ δ(ξ2)

]

× f
(
(τ z−ξ1a1−ξ2a2−ξ3a3)αP

α
)

=−
∫

[0,1]
dτ

∫
d3ξ+ δ(1−ξ1−ξ2−ξ3)(a1−a3)

α(a3−a2)α

−→
∂ τ f

(
(τ z−ξ1a1−ξ2a2−ξ3a3)αP

α
)
. (7.8)

8 Uniformization

Step III of Sect. 4 is to uniformize the r.h.s. ’s of Eqs. (6.1)–
(6.5) putting them into the form (4.1), where GT identity
(7.1) plays an important role. Details of uniformization are
given in Appendix B (p. 13).

As a result, Eq. (3.12) yields

Υ̂
ηη
ωCCC

∣∣∣
mod cohomology

≈
4∑

j=1

Fj (8.1)

with Fj presented in (8.2)–(8.5).
Note that different terms of Fj will be considered sep-

arately in what is follows. For the future convenience the
underbraced terms are re-numerated, being denoted as Fj,k ,
where j refers to Fj while k refers to the respective under-
braced term in the expression for Fj . For instance, F1 =
F1,1 + F1,2 + F1,3 + F1,4, etc.

−ω ∗ Bηη
3

∣∣∣
mod δ(ρ1)&δ(T )

≈ F1 :

= −η2

4

∫
dΓ

δ(ξ3)δ(ρ4)

(1 − ρ1 − ρ4)(1 − ρ3)

×
[
ρ2(zβPβ)(p1α + p2α)(p2

α + p3
α)

︸ ︷︷ ︸
1

+ iδ(ρ3)(1 − ρ1 − ρ4)(1 − ρ3)(zαPα)︸ ︷︷ ︸
2

+−iξ1δ(ξ2)(zαPα)︸ ︷︷ ︸
3

+ i(1 − ρ1 − ρ4)zα(p1
α + p2

α)
(
δ(ξ2) − δ(ξ1)

)

︸ ︷︷ ︸
4

]

×EωCCC, (8.2)

−dx B
ηη
3

∣∣∣
mod δ(ρ1)&δ(T )

≈ F2 := +η2

4

∫
dΓ

× δ(ξ3)δ(ρ1)

(1−ρ1−ρ4)(1−ρ3)

[
ρ2(zβPβ)(p1 + p2)α(p2 + p3)

α

︸ ︷︷ ︸
1

+ ρ2(1 − ρ4)(zβ t
β)tα(p2

α + p3
α)

︸ ︷︷ ︸
2

+ ρ2(1 − ρ4)(zβ t
β)(p1α + p2α)(p2

α + p3
α)

︸ ︷︷ ︸
3

+ ρ2(zβPβ)tα(p2
α + p3

α)
︸ ︷︷ ︸

4

+ iδ(ρ3)(1 − ρ1 − ρ4)(1 − ρ3)(zαP
α)︸ ︷︷ ︸

5

+−iξ1δ(ξ2)(zαPα)︸ ︷︷ ︸
6

+−iξ1δ(ξ2)(1 − ρ4)zα t
α

︸ ︷︷ ︸
7

+ i(1 − ρ1 − ρ4)zα(p1
α + p2

α)
(
δ(ξ2) − δ(ξ1)

)

︸ ︷︷ ︸
8
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+ i(1 − ρ1 − ρ4)zα t
α
(
δ(ξ2) − δ(ξ1)

)

︸ ︷︷ ︸
9

]
EωCCC, (8.3)

−dx B
η
2 − W ηη

2 ωCC ∗ C
∣∣∣
mod δ(T )

≈ F3 :

= −η2

4

∫
dΓ δ(ρ3)δ(ξ3)

[
iδ(ρ1)(zαP

α)︸ ︷︷ ︸
1

+ −i zα tα ξ1δ(ξ2)

ρ1 + ρ4︸ ︷︷ ︸
2

+ tα(p1α + p2α)zγPγ

︸ ︷︷ ︸
3

+ −iδ(ρ4)zαPα

︸ ︷︷ ︸
4

+ tγ (p1γ + p2γ )zα t
α

(
(1 − ρ4) − ρ1

ρ1 + ρ4

)

︸ ︷︷ ︸
5

]

×E ωCCC, (8.4)

−(dx B
ηη
3 + ω ∗ Bηη

3 )

∣∣∣
δ(ρ1)

∣∣∣
mod δ(T )

− W η
1 ωC ∗ Bη loc

2 ≈ F4 :

= −η2

4

∫
dΓ

δ(ξ3)δ(ξ2) zα(p2
α + p3

α)

(ρ2 + ρ3)(ρ1 + ρ4)
×

×

⎛

⎜⎜⎜⎝i
(
δ(ρ1) − δ(ρ4)

)
E

︸ ︷︷ ︸
1

+ i Ez

(
∂

∂ρ1
− ∂

∂ρ4

)
E

︸ ︷︷ ︸
2

⎞

⎟⎟⎟⎠

×ωCCC. (8.5)

Note that

F1,2 + F3,4 = 0, (8.6)

F2,5 + F3,1 = 0. (8.7)

Let us emphasise that, by virtue (E.1), each Fj is of the
form (4.1) as expected.

Note that during uniformizing procedure the vertices
(5.9)–(5.12) are obtained in Appendix B (p. 13).

9 Eliminating δ(ρ j ) and δ(ξ j ): result

The fourth step of Sect. 4 is to eliminate all δ(ρi ), δ(ξ1) and
δ(ξ2) from the pre-exponentials on the r.h.s.’s of Eqs. (8.2)–
(8.5).

More precisely, using partial integration, the Schouten
identity and Generalised Triangle identity (7.3), taking into
account Eqs. (4.6)–(4.8) one finds that Eq. (8.1) yields
(
Υ̂

ηη
ωCCC − G1 − G2 − G3

)∣∣
mod cohomology ≈ 0, (9.1)

where

G1 := J3 + η2

4

∫
dΓ δ(ξ3)zγ

{
(y + t̃)γ ρ2 tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

×Ez

[
∂

∂ρ2
− ∂

∂ρ3

]
E

+(yγ + t̃γ )
ρ2 (p1

α + p2
α)(p2α + p3α)

(1 − ρ1 − ρ4)(1 − ρ3)
Ez

[
∂

∂ρ4
− ∂

∂ρ1

]
E

+(y + t̃)γ
ρ2 tα(p2α + p3α)

(1 − ρ1 − ρ4)(1 − ρ3)

×Ez

[
∂

∂ρ2
− ∂

∂ρ1

]
E + (y + t̃)γ

(ρ1 + ρ4)tα(p1α + p2α)

(1 − ρ1 − ρ4)(1 − ρ3)
E

+(y + t̃)γ
ρ3 tα(p2α + p3α)

(1 − ρ1 − ρ4)2(1 − ρ3)
E

+ρ2tγ (p2 + p3)
α(p1 + p2 + t − t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)(ρ1 + ρ4)
E
}

×ωCCC (9.2)

G2 := J4 + η2

4

∫
dΓ

δ(ξ3)

1 − ρ3
zα

{
ρ3(yα + t̃α)tγ (yγ + Pγ )

(1 − ρ1 − ρ4)2(1 − ρ3)
E

− ρ2ρ4 tα(yγ + P
γ )tγ

(1 − ρ1 − ρ4)(1 − ρ3)(ρ1 + ρ4)2 E

−ρ2 (yα + t̃α)tγ (p1γ + p2γ )

(1 − ρ1 − ρ4)(1 − ρ3)
E

− ρ2 (p1α + p2α)(yγ + P
γ )tγ

(1 − ρ1 − ρ4)(ρ1 + ρ4)(1 − ρ3)
E

+Ez
ρ2 tγ (yγ + Pγ )(yα + t̃α)

(1 − ρ1 − ρ4)(1 − ρ3)

[
∂

∂ρ1
− ∂

∂ρ2

]
E

+Ez
ρ2 (yα + t̃α)(p1

γ + p2
γ )(yγ + Pγ )

(1 − ρ1 − ρ4)(1 − ρ3)

×
[

∂

∂ρ1
− ∂

∂ρ4

]
E

}
ωCCC, (9.3)

G3 := J5 + η2

4

∫
dΓ δ(ξ3)

(
1 + ξ1

[
∂

∂ξ1
− ∂

∂ξ2

])

×zα

{
ρ2 tα(p2

γ + p3
γ )(yγ + t̃γ )

(1 − ρ1 − ρ4)2(1 − ρ3)(ρ1 + ρ4)

+ −ρ2 tα(y + t̃)γ (yγ + Pγ )

(1 − ρ1 − ρ4)2(1 − ρ3)2(ρ1 + ρ4)

+ −ρ3(yα + t̃α)(tγ yγ )

(1 − ρ1 − ρ4)2(1 − ρ3)2

+ (yα + t̃α)(p1
γ + p2

γ )tγ
(1 − ρ1 − ρ4)(1 − ρ3)2

}
E ωCCC, (9.4)

with J3, J4 and J5 being the cohomology terms (5.4), (5.5)
and (5.6), respectively. (Details of the derivation are pre-
sented in Appendix C (p. 15).)

Note that schematically

G1 + G2 + G3 = J3 + J4 + J5

+
∫

dΓ δ(ξ3)zαg
α(y, t, p1, p2, p3|ρ, ξ)E ωCCC,

(9.5)

as expected . Let us stress that gα(y, t, p1, p2, p3|ρ, ξ) on
the r.h.s. of (9.5) is free from a distributional behaviour.

10 Final step of calculation

Here this is shown that the sum of the r.h.s.’s of Eqs. (9.2)–
(9.4) gives a Z -independent cohomology term up to terms in
H+.

More in detail, the expression G1 +G2 +G3 of the form
(9.5) consists of two types of terms with the pre-exponential
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of degree four and six in z, y, t, p1, p2, p3, respectively.
That with degree-four pre-exponential separately equals a
Z -independent cohomology term up to terms in H+. This
is considered in Sect. 10.1. The term with degree-six pre-
exponential is considered in Sect. 10.2. As a result of these
calculations J6 (5.7) and J7 (5.8) are obtained.

10.1 Degree-four pre-exponential

Consider the sum of expressions with z-dependent degree-
four pre-exponential from Eqs. (9.2)–(9.4), denoting it as
S4. Partial integration yields

S4 ≈ J6 + η2

4

∫
dΓ δ(ξ3)

[ ρ2tαzα(p3 + p2)
γ (t− t̃)γ

(1−ρ1−ρ4)(1−ρ3)(ρ1 + ρ4)

+ ρ2ρ4tγ zγ
(
y + P

)α
tα

(1 − ρ1 − ρ4)(1 − ρ3)2(ρ1 + ρ4)2

+
ρ2(p1 + p2)

γ
(
y + (1 − ρ4)t

)
γ
zαtα

(1 − ρ1 − ρ4)(1 − ρ3)2(ρ1 + ρ4)

+ ρ2tγ zγ (p3 + p2)
α(y + t̃)α

(1 − ρ1 − ρ4)2(1 − ρ3)(ρ1 + ρ4)

+
ρ2

( − P + t̃
)γ (

y + t̃
)
γ
zαtα

(1 − ρ1 − ρ4)2(1 − ρ3)2(ρ1 + ρ4)

]

×EωCCC, (10.1)

where the cohomology term J6 is given in (5.7). It is not
hard to see that the integrand of the remaining term is zero
by virtue of the Schouten identity.

10.2 Degree-six pre-exponential

Terms of this type either appear in (9.2), (9.3) via differen-
tiation in ρ j or in (9.4) via differentiation in ξ j . Denoting a
sum of these terms as S6 we obtain

S6 = η2

4

∫
dΓ δ(ξ3)

{
Ez

ρ2(y + t̃)γ zγ tα((p1 + p2)α)

(1 − ρ1 − ρ4)(1 − ρ3)

×
[
(
−→
∂ ρ2 − −→

∂ ρ3)E
]

+Ez

ρ2(p1 + p2)
γ
(
y + (1 − ρ4)t

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

×[−→∂ ρ4 − −→
∂ ρ1]E

+Ez

ρ2tγ
(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

×[−→∂ ρ2 −−→
∂ ρ1]E + iξ1

[ ρ2
2 zαt

α

(1−ρ1−ρ4)3(1−ρ3)3(ρ1+ρ4)

×(
y + (1−ρ1−ρ4)(p1 + p2) + (1−ρ4)t

)γ (
y + t̃

)
γ

− ρ3ρ2

(1 − ρ1 − ρ4)3(1 − ρ3)3

(
y + t̃

)γ
zγ t

α yα

+ρ2
(
y + t̃

)γ
zγ (p1

α + p2
α)tα

(1 − ρ1 − ρ4)2(1 − ρ3)3

]

×E
(
y + P

)α
(y + t̃)α

}
ωCCC (10.2)

Recall that the integral measure dΓ (4.9) contains the factor
of δ(1 − ∑3

1 ξi ). Hence taking into account the factor of
δ(ξ3) on the r.h.s. of (10.2) the dependence on ξ2, ξ3 can be
eliminated by the substitution ξ2 → 1−ξ1, ξ3 → 0. Then we
consider separately the terms that contain and do not contain
ξ1 in the pre-exponentials. As shown in Appendix D, those
with ξ1-proportional pre-exponentials give J7 (5.8) up toH+,
while those with ξ1-independent pre-exponentials give zero
up to H+.

11 Conclusion

In this paper starting from Z -dominated expression obtained
in [14] the manifestly spin-local holomorphic vertex Υ

ηη
ωCCC

in the Eq. (1.3) is obtained for the ωCCC ordering. Besides
evaluation the expression for the vertex, our analysis illus-
trates how Z -dominance implies spin-locality.

One of the main technical difficulties towards Z -independent
expression was uniformization, that is bringing the exponen-
tial factors to the same form, for all contributions (3.13)–
(3.17) with the least amount of new integration parameters
possible. Practically, some part of the uniformization proce-
dure heavily used the Generalized Triangle identity of Sect. 7
playing important role in our analysis.

Let us stress that spin-locality of the vertices obtained in
[14] follows from Z -dominance Lemma. However the eval-

uation the explicit spin-local vertex Υ
η2

ωCCC achieved in this
paper is technically involved. To derive explicit form of other
spin-local vertices in this and higher orders a more elegant
approach to this problem is highly desirable.
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Appendix A: Bηη
3

Bηη
3 modulo H+ terms from [14] is given by

Bηη
3 ≈ −η2

4

∫
dΓ

T ρ2(zα yα)2δ(ξ3)δ(ρ4)

(ρ1 + ρ2)(ρ2 + ρ3)

× exp
(
F
)
CCC, (A.1)

where dΓ is defined in (4.9),

F = iT zα
(
yα + Pα

0

) + i(1 − ξ1)ρ2

ρ1 + ρ2
yα(p1α + p2α)

+ iξ1ρ2

ρ2 + ρ3
yα(p2α + p3α) − iyα p2α, (A.2)

P0 = (1 − ρ1)(p1 + p2) − (1 − ρ3)(p2 + p3). (A.3)

Performing partial integration with respect to T twice we
obtain

Bηη
3 ≈ η2

4

∫
dΓ

δ(ξ3)δ(ρ4)ρ2

(1 − ρ3)(1 − ρ1)

[
δ(T ) + i zαPα

0

+i zαPα
0

(
1 + iT zαPα

0

)]
exp

(
F
)
CCC. (A.4)

Noticing that

i∂

∂ρ1
F = T zα(p1 + p2)

α + (1 − ξ1)ρ2yα(p1 + p2)α

(ρ1 + ρ2)2 ,

(A.5)
∂

∂ρ3
F = iT zα(p2

α + p3
α) − iξ1ρ2yα(p2 + p3)α

(ρ2 + ρ3)2 (A.6)

and performing partial integration with respect to ρ1 and ρ3

we obtain

Bηη
3 ≈ iη2

4

∫
dΓ

δ(ξ3)δ(ρ4)

(1 − ρ3)(1 − ρ1)

[
−iρ2δ(T )

+ zαPα
0

(
(1 − ρ3)(1 − ρ1) (δ(ρ1) + δ(ρ3)) − 1

)

−iρ2zαPα
0

(
ξ2yα(p1α + p2α)

(ρ1 + ρ2)
+ ξ1yα(p2α + p3α)

(ρ2 + ρ3)

)]

× exp
(
F
)
CCC. (A.7)

Observing that

∂F
∂ξ1

= iρ2yα(p2 + p3)α

ρ2 + ρ3
− iρ2yα(p1 + p2)α

ρ1 + ρ2
(A.8)

and using the Schouten identity

zα(p2 + p3)
α yβ(p1 + p2)β = zα y

α(p2 + p3)
β(p1 + p2)β

+zα(p1 + p2)
α yβ(p2 + p3)β (A.9)

after partial integration with respect to ξ1 we obtain

Bηη
3 ≈ iη2

4

∫
dΓ

δ(ξ3)δ(ρ4)

(1 − ρ3)(1 − ρ1)

[
−iρ2δ(T )

+zα(p1
α + p2

α)(1 − ρ1)
(
δ(ξ2) − δ(ξ1)

)

+zαPα
0

[
(1 − ρ1)(1 − ρ3)

(
δ(ρ1) + δ(ρ3)

)
− δ(ξ2)ξ1

]

+iρ2zα y
α(p1 + p2)β(p2 + p3)

β

]
exp

(
F
)
CCC. (A.10)

The δ(T )-proportional term gives rise to J1 (5.2) and J2 (5.3).

Appendix B: Uniformization detail

Here some details of the transformation of integrands (6.1)–
(6.5) to the form (4.1) are presented.

Uniformization can be easily achieved for Eqs. (6.1) and
(6.2) modulo δ(ρ1)-proportional terms. Indeed, eliminat-
ing δ(ρ1)-proportional term from the r.h.s. of (6.1), adding
an integration parameter ρ4 and a factor of δ(ρ4), one
obtains (8.2). Analogously, eliminating δ(ρ1)-proportional
term from the r.h.s. (6.2), adding an integration parameter
ρ4, swapping ρ1 ↔ ρ4 and then adding a factor of δ(ρ1) one
obtains (8.3).

To transform integrands of Eqs. (6.4) and (6.5), as well as
δ(ρ1)-proportional terms of the integrands of Eqs. (6.1) and
(6.2), to the form (4.1) GT identity (7.1) is used in Sects. B.1
and B.2.

B.1 dx B2 + W2 ∗ C

Noticing that the exponential of (6.4) coincides with E at
ξ2 = 0, while the exponential of (6.5) coincides with E (4.2)
at ξ1 = 0, one can easily make sure, that only the δ(ξ2)-
proportional term of (6.4) and the δ(ρ1)-proportional term
of (6.5) have the desired form (4.1).

Using that E (4.2) does not depend on ξ3, swapping ξ3 ↔
ξ1 in the remaining part of (6.5), then swapping ξ3 ↔ ξ2 in
the remaining part of (6.4), one then can apply GT identity
(7.8) to the sum of the two obtained terms . As a result,
Eqs. (6.4), (6.5) yield

dx B
η loc
2 + W ηη

2 ωCC ∗ C ≈ η2

4

∫
dΓ δ(ρ3)δ(ξ3)

×
[

− i
zαtα

ρ1 + ρ4
δ(ξ2) − i(zα y

α)δ(ρ1)
]
EωCCC

+η2

4

∫
dΓ δ(ρ3)

[
iδ(ρ4) − tγ (p1γ + p2γ )

]

×
{
δ(T )̃tα yα + δ(ξ3)(zα t̃

α
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+zα y
α)
}
EωCCC, (B.1)

where the terms in the second row of formula (B.1) result
from applying GT -identity. Rewriting the underlined part as
the result of differentiation with respect to T and performing
partial integration one obtains Eq. (8.4) plus the cohomology
term J8 (5.9).

B.2 (dx B
ηη
3 + ω ∗ Bηη

3 )|δ(ρ1) + W η
1 ωC ∗ Bη loc

2

Uniformization of the sum of δ(ρ1)-proportional terms on
the r.h.s.’s of (6.2) and (6.1) is done with the help of GT
identity (7.8) as follows. Denoting

P̃ = y + p1 + p2 + t − ρ2(p3 + p2) (B.2)

one can see that partial integration in T yields

dx B
ηη
3

∣∣∣∣
δ(ρ1)

≈ − iη2

4

∫
dΓ δ(ρ4)δ(ρ1)δ(ξ1)

×
[
iδ(T ) − zα y

α
]

exp i
{
T zα P̃

α − ξ2 P̃
α yα + p3α y

α

+(1 − ρ2)(p2
α + p3

α)yα + tβ p1β

}
ωCCC, (B.3)

ω ∗ Bηη
3

∣∣∣∣
δ(ρ1)

≈ iη2

4

∫
dΓ δ(ρ4)δ(ρ1)δ(ξ3)

×
[
iδ(T ) − zα(yα + tα)

]
exp

{
iT zα P̃

α − iξ2 P̃
α yα

+iξ1 P̃
αtα + i(1 − ρ2)(p2

α + p3
α)yα

+i p3α y
α + i tβ p1β

}
ωCCC. (B.4)

The sum of (B.3) and (B.4) gives

(
dx B

ηη
3 + ω ∗ Bηη

3

)∣∣∣∣
δ(ρ1)

≈ iη2

4

∫
dΓ δ(ρ4)δ(ρ1)

×
[
zγ (−tγ − yα)δ(ξ3) + zγ y

γ δ(ξ1) + zγ t
γ δ(ξ2)

]

× exp
{
iT zα P̃

α − iξ2 P̃
α yα + iξ1 P̃

αtα + i(1 − ρ2)(p2
α

+p3
α)yα + i p3α y

α + i tβ p1β

}
ωCCC

− iη2

4

∫
dΓ δ(ρ4)δ(ρ1)(zγ t

γ )δ(ξ2) exp i
{
T zα P̃

α

−ξ2 P̃
α yα + ξ1 P̃

αtα + (1 − ρ2)(p2
α + p3

α)yα

+p3α y
α + tβ p1β

}
ωCCC + J9 + J10 (B.5)

with J9 (5.10) and J10 (5.11). By virtue of GT identity (7.8)
the first term weakly equals J11 (5.12). Finally, Eq. (B.5)
yields

(
dx B

ηη
3 + ω ∗ Bηη

3

)∣∣∣∣
δ(ρ1)

≈ J9 + J10 + J11 − iη2

4

∫
dΓ

×δ(ρ4)δ(ρ1)(zγ t
γ )δ(ξ2) exp

{
iT zα P̃

α − iξ2 P̃
α yα

+iξ1 P̃
αtα + i(1 − ρ2)(p2

α + p3
α)yα

+i p3α y
α + i tβ p1β

}
ωCCC . (B.6)

Consider W η
1ωC ∗ Bη loc

2 (3.13). This is convenient to change
integration variables, moving from the integration over sim-
plex to integration over square. As a result

W η
1ωC ∗ Bη loc

2 ≈ η2

4

∫ 1

0
dT T

∫
d2τ+ δ(1 − τ1 − τ2)

×
∫ 1

0
dσ1

∫ 1

0
dσ2 zαt

α
[
zα y

α + σ1zαt
α
]

exp
{
iT zα y

α

+i(1 − σ2)σ1tα p1
α + iσ1σ2t

α p3α + i(1 − σ1)t
α p1α

+iT zα
(
(τ1 + τ2σ1)t

α + τ1 p1
α − (τ2 − τ1(1 − σ2))p2

α

−(τ2 + σ2τ1)p3
α
)

+ iσ1y
αtα − i(1 − σ2)y

α p2α

+iσ2y
α p3α + iσ2y

α p3α

}
ωCCC. (B.7)

Partial integration with respect to T yields

W η
1ωC ∗ Bη loc

2 ≈ −η2

4

∫ 1

0
dT

∫
d2τ+ δ(1 − τ1 − τ2)

×
∫ 1

0
dσ1

∫ 1

0
dσ2 zαt

α
[
T zα

(
τ1(p1

α + p2
α)

−(τ2 + σ2τ1)(p2
α + p3

α)
)

− iT τ1(1 − σ1)zαt
α
]

× exp(F) ωCCC, (B.8)

where

F = iT zα y
α + i tβ p1β + iσ1

(
yα tα + (p1

α + p2
α)tα − σ2(p2

α

+ p3
α)tα

)
− i

(
σ2 p3

α − (1 − σ2)p2
α
)
yα

+ iT zα
(
τ1(p1

α + p2
α) − (τ2 + σ2τ1)(p2

α + p3
α)

+ (σ1 + τ1(1 − σ1))tα
)
. (B.9)

By virtue of evident formulas

τ1

(
∂

∂τ1
− ∂

∂τ2

)
F = iT zα

(
τ1(p1 + p2) + [

(τ1 + τ2)

−(τ2 + σ2τ1)
]
(p2 + p3) + τ1(1 − σ1)t

)
α,

∂

∂σ1
F = iT (1 − τ1)zα t

α + i
(
y + p1 + p2 − σ2(p2 + p3)

)α

tα.

(B.10)

Equation (B.7) acquires the form

W η
1ωC ∗ Bη loc

2 ≈ η2

4

∫ 1

0
dT

∫
d2τ+δ(1 − τ1 − τ2)

×
∫ 1

0
dσ1

∫ 1

0
dσ2

[
i zαt

ατ1

(
∂

∂τ1
− ∂

∂τ2

)

− zα(p2
α + p3

α)

1 − τ1

{
i

∂

∂σ1
+

(
yα + p1

α + p2
α

−σ2(p2
α + p3

α)
)
tα
}

+ i zαt
α

]
exp(F)ωCCC. (B.11)
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After partial integrations in τ1,τ2 and σ1 one obtains

W η
1ωC ∗ Bη loc

2 ≈ η2

4

∫ 1

0
dT

∫
d2τ+δ(1 − τ1 − τ2)

×
∫ 1

0
dσ1

∫ 1

0
dσ2

[
i zα t

αδ(τ2) + zα(p2
α + p3

α)

1 − τ1

{
i
(
δ(σ1)

−δ(1 − σ1)
) −

(
yα + p1

α + p2
α − σ2(p2

α + p3
α)
)
tα
}]

× exp(F)ωCCC. (B.12)

After a simple change of integration variables the underlined
term on the r.h.s. of Eq. (B.12) cancels the r.h.s. of Eq. (B.6).
Performing integration with respect to τ2 in the remaining
part of (B.12), after the following change of the integration
variables
∫ 1

0
dσ1

∫ 1

0
dτ1

∫ 1

0
dσ2 f (σ1, 1 − σ1, τ1, σ2)

=
∫

d4ρ+ δ

⎛

⎝1 −
4∑

j=1

ρ j

⎞

⎠ 1

(ρ2 + ρ3)(1 − ρ2 − ρ3)

× f

(
ρ1

1 − ρ2 − ρ3
,

ρ4

1 − ρ2 − ρ3
, ρ2 + ρ3,

ρ2

ρ2 + ρ3

)
,

exp(F) (B.9) acquires the form E (4.2). As a result, the sum
of Eqs. (B.12) and (B.6) by virtue Eq. (E.1) yields Eq. (8.5).

Appendix C: Eliminating δ(ρ j ) and δ(ξ j )

To eliminate δ(ρ j ) and δ(ξ j ) from of the r.h.s.’s of Eqs. (8.2),
(8.3) this is convenient to group similar pre-exponential terms
as in Appendix C.1–C.5.

C.1 Terms proportional to (p1 + p2)
α(p3 + p2)α

Consider F1,1 + F2,1 of (8.2) and (8.3), respectively. Partial
integration with respect to ρ1 and ρ4 yields

F1,1 + F2,1 ≈ −η2

4

∫
dΓ

δ(ξ3)ρ2(p1 + p2)
α(p2 + p3)α

(1 − ρ1 − ρ4)(1 − ρ3)

×(zγPγ )

(
∂

∂ρ4
− ∂

∂ρ1

)
EωCCC. (C.1)

By direct calculation, Eq. (C.1) gives

F1,1 + F2,1 ≈ −η2

4

∫
dΓ

δ(ξ3)ρ2(p1 + p2)
α(p2 + p3)α

(1 − ρ1 − ρ4)(1 − ρ3)

×
[
Ez

(
∂

∂ρ4
− ∂

∂ρ1

)
(zγPγ )E + (zγPγ )T zαt

αE
]

×ωCCC. (C.2)

By virtue of the Schouten identity

zα t
α(p1 + p2)

γ (p3 + p2)γ

= tα(p1 + p2)αz
γ (p3 + p2)γ + tα(p3 + p2)α(p1 + p2)

γ zγ

(C.3)

and its consequence

zαt
α(p1 + p2)

γ (p3 + p2)γ E = tα(p1 + p2)α

×
[
i

( ←−
∂

∂ρ2
−

←−
∂

∂ρ3

)
Ez E + i Ez

(
∂

∂ρ2
− ∂

∂ρ3

)
E

]

+tα(p2 + p3)α

[
i

( ←−
∂

∂ρ2
−

←−
∂

∂ρ1

)
Ez E

+i Ez

(
∂

∂ρ2
− ∂

∂ρ1

)
E
]
. (C.4)

Equation (C.1) yields

F1,1 + F2,1 ≈ +η2

4

∫
dΓ δ(ξ3)

{
(zγPγ )ρ2

(1 − ρ1 − ρ4)(1 − ρ3)

×
(

(p1 + p2)
α(p3 + p2)αEz

[
∂

∂ρ1
− ∂

∂ρ4

]
E

+tα(p1 + p2)α

[
δ(ρ3)E − Ez

(
∂

∂ρ2
− ∂

∂ρ3

)
E

]

+tα(p3 + p2)α

[
δ(ρ1)E − Ez

(
∂

∂ρ2
− ∂

∂ρ1

)
E

])

+ ρ2

(1 − ρ1 − ρ4)(1 − ρ3)
tαzα(p3 + p2)

γ (p1 + p2)γ E

+zγPγ
(
− 1−ρ3−ρ2

(1−ρ1−ρ4)(1−ρ3)2 t
α(p1 + p2)αE

− 1−ρ1−ρ4−ρ2

(1−ρ1−ρ4)2(1−ρ3)
tα(p3 + p2)αE

)}
ωCCC. (C.5)

One can see that δ(ρ1)- and δ(ρ3)-proportional terms on the
r.h.s. of (C.5) (the underlined ones) cancel terms F2,4 (8.3)
and F3,3 (8.4), respectively.

C.2 Term proportional to tα(p1α + p2α)

Consider term F3,5 of F3 (8.4). By virtue of the following
identity

ρ2

(ρ2 + ρ3)(1 − ρ3)
(δ(ρ3) − δ(ρ2)) = 1 (C.6)

F3,5 ≈ −η2

4

∫
dΓ

δ(ξ3)ρ2

(ρ2 + ρ3)(1 − ρ3)

(
δ(ρ3) − δ(ρ2)

)

×
[
(p2α + p1α)tα(zγ t

γ )
(
(1 − ρ4) − ρ1

(ρ1 + ρ4)

)
E
]
ωCCC.

(C.7)

Partial integrations along with the Schouten identity

tα(p1α + p2α)(p3
γ + p2

γ )zγ = −tαzα(p1
γ + p2

γ )(p2γ + p3γ )

+ tα(p3α + p2α)(p1 + p2)
γ zγ (C.8)
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and realization of the underlined terms as derivative of Ez

along with further partial integration yields

F3,5 ≈ −η2

4

∫
dΓ δ(ξ3)

[
ρ4

(1 − ρ3)2 (p2 + p1)α t
αzγ t

γ E

+ρ2ρ4(p2 + p1)α tαzγ tγ

(ρ1 + ρ4)(1 − ρ3)
Ez

[
∂

∂ρ2
− ∂

∂ρ3

]
E

+ ρ2ρ4

(ρ1 + ρ4)(1 − ρ3)
zα t

α

(
− (p1 + p2)γ (p3 + p2)γ Ez

×
[

∂

∂ρ1
− ∂

∂ρ4

]
E − δ(ρ1)(p1 + p2)γ (p3 + p2)γ E

−tα(p3 + p2)αEz

[
∂

∂ρ1
− ∂

∂ρ2

]
E − δ(ρ1)tα(p3 + p2)αE

)

+zα t
α

(
ρ2

(1 − ρ3)(ρ1 + ρ4)
(p1 + p2)γ (p3 + p2)γ E

+ρ4t
α(p3 + p2)α

(ρ1 + ρ4)2 E
)]

ωCCC. (C.9)

One can see that the sum of the underlined δ(ρ1)-proportional
terms cancel F2,2 + F2,3 of (8.3).

C.3 Sum of (p1 + p2)
α(p3 + p2)α-proportional and

tα(p1α + p2α)-proportional terms

Summing up F1,1 + F2,1 (C.5), F3,3 (8.4), F3,5 (C.9) and
F2,2 + F2,3 + F2,4 (8.3), then performing partial integrations
and using the following simple identities

(1 − ρ4) − ρ1

(ρ1 + ρ4)
= ρ4(ρ2 + ρ3)

(ρ1 + ρ4)
,

− ρ4

(ρ1 + ρ4)2 + ρ4

(ρ1 + ρ4)

ρ3

(1 − ρ1 − ρ4)(1 − ρ3)

= −ρ2ρ4

(ρ1 + ρ4)2(1 − ρ1 − ρ4)(1 − ρ3)
, (C.10)

one obtains by virtue of Eqs. (4.6)–(4.8)

F1,1+F2,1+F2,4+F3,3+F3,5+F2,2+F2,3 = G1 (C.11)

with G1 (9.2).

C.4 Terms proportional to δ(ξ1) − δ(ξ2)

Consider a sum of F1,4 (8.2) and F2,8 (8.3). Performing par-
tial integrations with respect to ρ1 and ρ4, then applying the
Schouten identity one obtains

F1,4 + F2,8 ≈ −η2

4

∫
dΓ δ(ξ3)

[
∂

∂ρ1
− ∂

∂ρ4

]

i zα(p1
α + p2

α)

1 − ρ3

(
δ(ξ2) − δ(ξ1)

)
E ωCCC =

= −η2

4

∫
dΓ δ(ξ3)

(
δ(ξ2) − δ(ξ1)

)

×
{

i zγ tγ

(1 − ρ3)

(
Ez

[
∂

∂ρ1
− ∂

∂ρ2

]
E +

(
δ(ρ1) − δ(ρ2)

)
E
)

+ i zα(p1
α + p2

α)

(1 − ρ3)
Ez

[
∂

∂ρ1
− ∂

∂ρ4

]
E

}
ωCCC. (C.12)

The underlined δ(ρ1)-proportional term compensates F2,9

of (8.3). The double underlined δ(ρ2)-proportional term van-
ishes due to the factor of (δ(ξ2) − δ(ξ1)) which after partial
integrations in ξ1 and ξ2 produces an expression proportional
to ρ2.

Summing up F1,4+F2,8 (C.12) and F2,9 (8.3), performing
partial integrations with respect to ξ and T along with the
Schouten identity one obtains

F1,4 + F2,8 + F2,9 ≈ G2 (C.13)

with G2 (9.3).

C.5 Terms proportional to ξ1δ(ξ2)

Consider a sum of F1,3 (8.2), F2,6 (8.3) and F4,1 (8.5).

F1,3 + F2,6 + F4,1 ≈ iη2

4

∫
dΓ

δ(ξ3)δ(ξ2)[δ(ρ1) − δ(ρ4)]
(ρ2 + ρ3)

zα

×
{ Pα

(1 − ρ3)
− ξ1 (p2

α + p3
α)

(ρ1 + ρ4)

}
E ωCCC. (C.14)

Partial integration yields

F1,3 + F2,6 + F4,1 ≈ iη2

4

∫
dΓ δ(ξ3)δ(ξ2)ξ1

×
{
zα t

α

[
1

ρ1 + ρ4

(
Ez

[
∂

∂ρ2
− ∂

∂ρ3

]
E +

[
δ(ρ2) − δ(ρ3)

]
E
)

+ 1

1 − ρ3

(
Ez

[
∂

∂ρ1
− ∂

∂ρ2

]
E +

[
δ(ρ1) − δ(ρ2)

]
E
)]

+
[
zα(p2 + p3)

α

ρ1 + ρ4
+ zα(p1 + p2)

α

1 − ρ3

]
Ez

[
∂

∂ρ1
− ∂

∂ρ4

]
E

}

×ωCCC. (C.15)

One can see that the underlined δ(ρ2)-proportional terms
vanish due to the factor of δ(1 − ∑

ρi ) (4.9), while
δ(ρ1)-proportional term compensates F2,7 (8.3) and δ(ρ3)-
proportional term compensates F3,2 (8.4).

Summing up F2,7 (8.3), F3,2 (8.3), F4,2 and F1,3 + F2,6 +
F4,1 (8.5), and then performing partial integration in T one
obtains by virtue of the Schouten identity

F1,3 + F2,6 + F4,1 + F2,7 + F3,2 + F4,2 ≈ G3 :
= η2

4

∫
dΓ δ(ξ3)δ(ξ2)

{
ρ2 zα tα(p2 + p3)

γ (y + t̃)γ
(1 − ρ1 − ρ4)2(1 − ρ3)(ρ1 + ρ4)

+
ρ2

[
(y + t̃)γ (yγ + Pγ )(zα tα) + iδ(T )tγ (t̃ − P)γ

]

(1 − ρ1 − ρ4)2(1 − ρ3)2(ρ1 + ρ4)

+ρ3
[
iδ(T ) − zγ (y + t̃)γ

]
(tα yα)

(1 − ρ1 − ρ4)2(1 − ρ3)2

+
[ − iδ(T ) + zγ (y + t̃)γ

]
(p1

α + p2
α)tα

(1 − ρ1 − ρ4)(1 − ρ3)2

}
EωCCC.
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(C.16)

Since by the partial integration procedure ξ1δ(ξ2) ≡ 1 +
ξ1(∂ξ1 − ∂ξ2), (C.16) yields G3 (9.4).

Appendix D: Details of the final step of the calculation

By virtue of Eqs. (E.1)–(E.3), Eq. (10.2) yields

S6 = +i
η2

4

∫
dΓ δ(ξ3)

{ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

× ξ1(1 − ρ3 − ρ2)

(1 − ρ1 − ρ4)(1 − ρ3)2 P
β yβ

+ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

× ξ1(1 − ρ3 − ρ2)

(1 − ρ1 − ρ4)(1 − ρ3)2

(
y + P

)β t̃β

−ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

ξ1ρ2(p3 + p2)β yβ
(1 − ρ1 − ρ4)(1 − ρ3)

−ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

ξ1ρ2(p3 + p2)β t̃β
(1 − ρ1 − ρ4)(1 − ρ3)

−ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

(ρ1 + ρ4)(p1 + p2)β yβ
(1 − ρ3)2

−ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

ρ4t
β yβ

(1 − ρ3)2

−ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

ρ1(p1 + p2)β tβ
(1 − ρ3)2

−
ρ2(p1 + p2)γ

(
y + (1 − ρ4)t

)
γ
zα(y + t̃)αρ2ξ1t

β yβ

(1−ρ1−ρ4)(1−ρ3)2(1−ρ1−ρ4)(1−ρ3)

−
ρ2(p1 + p2)γ

(
y + (1 − ρ4)t

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

×ξ1
ρ2

(1 − ρ1 − ρ4)(1 − ρ3)(ρ1 + ρ4)

(
y + P

)β tβ

+
ρ2(p1 + p2)γ

(
y + (1 − ρ4)t

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

tβ yβ
(1 − ρ3)

−
ρ2(p1 + p2)γ

(
y + (1 − ρ4)t

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

(p1 + p2)β tβ
(1 − ρ3)

−
ρ2t

γ
(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

× ξ1ρ3(p3 + p2)β yβ
(1 − ρ1 − ρ4)2

−
ρ2t

γ
(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

× ξ1ρ3(p3 + p2)β t̃β
(1 − ρ1 − ρ4)2

+
ρ2t

γ
(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

× ξ1ρ3ρ4t
β yβ

(1 − ρ1 − ρ4)(1 − ρ3)(ρ1 + ρ4)

+
ρ2t

γ
(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

× ξ1(p1 + p2)β yβ
(1 − ρ3)

+
ρ2t

γ
(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

× ξ1(p1 + p2)β t̃β
(1 − ρ3)

−
ρ2t

γ
(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

× ξ1ρ2

(1 − ρ1 − ρ4)(1 − ρ3)

ρ4
(
y + P

)β tβ
(ρ1 + ρ4)2

−
ρ2t

γ
(
y+(1−ρ1−ρ4)(p1+ p2)

)
γ
zα(y+ t̃)α

(1−ρ1−ρ4)(1−ρ3)2

(p1+ p2)β yβ
(1−ρ3)

−
ρ2t

γ
(
y+(1−ρ1−ρ4)(p1+ p2)

)
γ
zα(y+ t̃)α

(1−ρ1−ρ4)(1−ρ3)2

(p1+ p2)β tβ
(1−ρ3)

+ξ1

[ ρ2ρ2

(1 − ρ1 − ρ4)3(1 − ρ3)3(ρ1 + ρ4)

×(
y + (1 − ρ1 − ρ4)(p1 + p2) + (1 − ρ4)t

)γ (y + t̃
)
γ
zα t

α

− ρ3ρ2

(1 − ρ1 − ρ4)3(1 − ρ3)3

(
y + t̃

)γ zγ tα yα

+ρ2
(
y+ t̃

)γ zγ (p1+ p2)α tα
(1−ρ1−ρ4)2(1−ρ3)3

](
y+P

)β
(y+ t̃)β

}
EωCCC.

(D.1)

Terms from the r.h.s. of (D.1) with ξ -independent pre-
exponentials are considered in Appendix D.1, while those
with ξ1-proportional pre-exponentials are considered in
Appendix D.2.

D.1 ξ1-independent pre-exponentials

Here we consider only pre-exponentials, omitting for brevity
integrals, integral measures etc. of (D.1). By virtue of
the Schouten identity taking into account that

∑
ρi = 1

Eq. (D.1) yields

I ntegrand(S6)

∣∣∣
mod ξ

= (y + t̃)νzν

×
{

− ρ2(ρ1 + ρ4)tα(p1 + p2)α (p1 + p2)
β yβ

(1 − ρ1 − ρ4)(1 − ρ3)3

−ρ2ρ1tα(p1 + p2)α(p1 + p2)
β tβ

(1 − ρ1 − ρ4)(1 − ρ3)3

+
ρ2(p1 + p2)

γ
(
y + (1 − ρ4)t

)
γ
tα yα

(1 − ρ1 − ρ4)(1 − ρ3)3

−
ρ2(p1 + p2)

γ
(
y + (1 − ρ4)t

)
γ
(p1 + p2)

αtα

(1 − ρ1 − ρ4)(1 − ρ3)3

−
ρ2tγ

(
y+(1−ρ1−ρ4)(p1+ p2)

)
γ
(p1+ p2)

α yα

(1−ρ1−ρ4)(1−ρ3)3
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−
ρ2tγ

(
y+(1−ρ1−ρ4)(p1+ p2)

)
γ
(p1+ p2)

αtα

(1−ρ1−ρ4)(1−ρ3)3

− ρ2ρ4tα(p1 + p2)αtβ yβ
(1 − ρ1 − ρ4)(1 − ρ3)3

}
EωCCC

= (y + t̃)νzν
ρ2

(1 − ρ1 − ρ4)(1 − ρ3)3

×
{
ρ1t

α(p1 + p2)α(p1
α + p2

α)tα + (p1 + p2)
γ yγ tα yα

−(p1 + p2)
γ (1 − ρ4)tγ (p1

α + p2
α)tα

−tγ (1 − ρ1 − ρ4)(p1 + p2)γ (p1
α + p2

α)tα

−tγ yγ (p1
α + p2

α)yα
}
EωCCC

= (y + t̃)νzν
ρ2

(1 − ρ1 − ρ4)(1 − ρ3)3

×
{

− (p1 + p2)
γ (1 − ρ4)tγ (p1

α + p2
α)tα

−tγ (1 − ρ1 − ρ4)(p1 + p2)γ (p1
α + p2

α)tα

−ρ1t
α(p1 + p2)α(p1 + p2)

β tβ
}
EωCCC ≡ 0.

D.2 ξ1-proportional pre-exponentials

S6

∣∣∣
ξ1

= J7 + i
η2

4

∫
dΓ δ(ξ3)ξ1

×
{ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

(1 − ρ3 − ρ2)P
β yβ

(1 − ρ1 − ρ4)(1 − ρ3)2

+ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

(1 − ρ3 − ρ2)
(
y + P

)β
t̃β

(1 − ρ1 − ρ4)(1 − ρ3)2

−ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

ρ2(p3 + p2)
β yβ

(1 − ρ1 − ρ4)(1 − ρ3)

−ρ2(y + t̃)γ zγ tα(p1 + p2)α

(1 − ρ1 − ρ4)(1 − ρ3)

ρ2(p3 + p2)
β t̃β

(1 − ρ1 − ρ4)(1 − ρ3)

−
ρ2zα(y + t̃)α(p1 + p2)

γ
(
y + (1 − ρ4)t

)
γ
ρ2tβ yβ

(1 − ρ1 − ρ4)(1 − ρ3)2(1 − ρ1 − ρ4)(1 − ρ3)

−
ρ2(p1 + p2)

γ
(
y + (1 − ρ4)t

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

× ρ2
(
y + P

)β
tβ

(1 − ρ1 − ρ4)(1 − ρ3)(ρ1 + ρ4)

−
ρ2tγ

(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

×ρ3(p3 + p2)
β yβ

(1 − ρ1 − ρ4)2

−
ρ2tγ

(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

×ρ3(p3 + p2)
β t̃β

(1 − ρ1 − ρ4)2

+
ρ2tγ

(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

× ρ3ρ4tβ yβ
(1 − ρ1 − ρ4)(1 − ρ3)(ρ1 + ρ4)

+
ρ2tγ

(
y+(1−ρ1−ρ4)(p1+ p2)

)
γ
zα(y+ t̃)α

(1−ρ1−ρ4)(1−ρ3)2

(p1+ p2)
β yβ

(1−ρ3)

+
ρ2tγ

(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

(p1 + p2)
β t̃β

(1 − ρ3)

−
ρ2tγ

(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
zα(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

× ρ2
(
y + P

)β
tβ

(1 − ρ1 − ρ4)(1 − ρ3)

ρ4

(ρ1 + ρ4)2

+
ρ2ρ2(y + (1 − ρ1 − ρ4)(p1 + p2) + (1 − ρ4)t)γ

(
y + t̃

)
γ

(1 − ρ1 − ρ4)3(1 − ρ3)3(ρ1 + ρ4)

×tβ
(
y + P

)
β
zγ (y + t̃)γ

−ρ3ρ2(y + t̃)γ zγ tα yα
(
y + P

)β
(y + t̃)β

(1 − ρ1 − ρ4)3(1 − ρ3)3

+ρ2
(
y + t̃

)γ
zγ

(
y + P

)β
(y + t̃)β(p1

α + p2
α)tα

(1 − ρ1 − ρ4)2(1 − ρ3)3

}

×EωCCC, (D.2)

where J7 is the cohomology term (5.8).
This yields

S6

∣∣∣
ξ1

≈ J7 + i
η2

4

∫
dΓ δ(ξ3)

ρ2ξ1(y + t̃)γ zγ
(1 − ρ1 − ρ4)2(1 − ρ3)2

×
{ (1 − ρ3 − ρ2)

(
y + P

)β
(y + t̃)β

(1 − ρ3)
tα(p1 + p2)α

−ρ2t
α(p1 + p2)α(p3

α + p2
β)(y + t̃)β

−
ρ2(p1 + p2)

γ
(
y + (1 − ρ4)t

)
γ
tα yα

(1 − ρ3)

−
ρ2(p1 + p2)

γ
(
y + (1 − ρ4)t

)
γ

(
y + P

)α
tα

(1 − ρ3)(ρ1 + ρ4)

−
ρ3tγ

(
y+(1−ρ1−ρ4)(p1+ p2)

)
γ
(p3+ p2)

α(y+ t̃)α

(1−ρ1−ρ4)2

+
ρ3ρ4tγ

(
y + (1 − ρ1 − ρ4)(p1 + p2)

)
γ
tα yα

(1 − ρ3)(ρ1 + ρ4)

+
(1−ρ1−ρ4)tγ

(
y+(1−ρ1−ρ4)(p1+ p2)

)
γ

(1−ρ3)

×(p1
α+ p2

α)(y+ t̃)α

−ρ2ρ4tγ (y + (1 − ρ1 − ρ4)(p1 + p2))γ
(
yα + P

α
)
tα

(1 − ρ3)(ρ1 + ρ4)2

+ρ2(y + (1 − ρ4)t)γ (y + t̃)γ tα
(
y + P

)α

(1 − ρ1 − ρ4)(1 − ρ3)(ρ1 + ρ4)

+ρ2(p1 + p2)
γ (y + t̃)γ tα

(
y + P

)α

(1 − ρ3)(ρ1 + ρ4)

+
(
y + P

)β
(y + t̃)β(p1

α + p2
α)tα

(1 − ρ3)

−ρ3tα yα
(
y + P

)σ
(y + t̃)σ

(1 − ρ1 − ρ4)(1 − ρ3)

}
EωCCC ≡ J7 (D.3)
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since, using the Schouten identity, one can see that the pre-
exponential of the integrand on the r.h.s. of (D.3) equals zero.

Appendix E: Useful formulas

From (4.4) one has

(
∂

∂ρ1
− ∂

∂ρ4

)
E = i

{ ξ1ρ2tα yα
(1 − ρ1 − ρ4)(1 − ρ3)

+ ρ2ξ1
(
yα + P

α
)
tα

(1 − ρ1 − ρ4)(1 − ρ3)(ρ1 + ρ4)

+ (y + p1
α + p2

α)tα
(1 − ρ3)

}
E (E.1)

(
∂

∂ρ2
− ∂

∂ρ3

)
E = i

{ (1 − ρ3 − ρ2)ξ1
(
yα + P

α
)
(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)2

− ξ1ρ2(p3 + p2)
α(y + t̃)α

(1 − ρ1 − ρ4)(1 − ρ3)
− (ρ1 + ρ4)(p1 + p2)

α yα
(1 − ρ3)2

− ρ4tα yα
(1 − ρ3)2 − ρ1(p1

α + p2
α)tα

(1 − ρ3)2

}
E, (E.2)

(
∂

∂ρ2
− ∂

∂ρ1

)
E = i

{−ρ3ξ1(p3+ p2)
α(y+ t̃)α

(1 − ρ1 − ρ4)2

+ ξ1ρ3ρ4tα yα
(1 − ρ1 − ρ4)(1 − ρ3)(ρ1 + ρ4)

+ ξ1(p1 + p2)
α(y + t̃)α

(1 − ρ3)

− ρ2ξ1

(1 − ρ1 − ρ4)(1 − ρ3)

ρ4
(
y + P

)α
tα

(ρ1 + ρ4)2

− (p1 + p2)
α yα

(1 − ρ3)
− (p1 + p2)

α tα
(1 − ρ3)

}
E . (E.3)
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