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In this talk, I shall focus on theories beyond the Standard Model which predict massive
neutrinos. Hybrid inflation emerges naturally in these theories: the slow-rolling inflaton field
is a gauge singlet which couples with a GUT Higgs field which triggers the end of inflation. In
the standard scenario, spontaneous symmetry breaking takes place at the end of inflation at
a scale M; Mgutr > M > Mz for inflation to solve the GUT monopole problem and cosmic
strings always form at this intermediate scale. WMAP data constrain M € [10'*5 — 10%-%]
GeV and thesinglet-Higgs coupling x € [1077 — 10_2]. The spectral index ns 2 0.98 in slight
conflict with WMAP3. When the symmetry which is broken at the end of inflation is gauged
B — L, both the inflaton and the strings decay into right-handed neutrinos. There are then
two competing non-thermal scenarios for baryogenesis via leptogenesis which take place at the
end of inflation, during reheating and from cosmic strings decay. Which of the two scenarios
dominates depends on the inflaton-neutrino sector parameters.

1 Introduction

Up to the discovery of the ’acoustic’ peaks in the CMB power spectrum !, there were two com-
pelling mechanisms for explaining cosmological perturbations: inflation and cosmic strings 2.
Since cosmic strings predict a single peak, they are now excluded as main source of the cosmo-
logical perturbations. However, a mixed scenario with both inflation and cosmic strings with a
string contribution less than about 10% is still allowed by the data34. In many models with both
inflation and strings, the scalar perturbations are dominated by the scalar perturbations from
inflation, and the string contribution may be too low for detection via the CMB temperature
anisotropies. However they could be detected via the B-type polarization of the CMB 5.

From a theoretical point of view, inflation is often associated with the formation of cosmic
strings. Perhaps the best particle physics motivated model of inflation is hybrid inflation ©.
It arises naturally in Supersymmetric (SUSY) Grand unified Theories (GUTs) 78, in effective
strings theories and in brane worlds. Naturally meaning that the fields and the potential leading
to hybrid inflation are needed to build the theory itself (I now focus on the case of SUSY GUTs)
and the coupling constant which enters is the order unity. In either cases, spontaneous symmetry
breaking takes place at the end of inflation @ and cosmic strings form &1213-1', In this talk I
will consider Standard hybrid inflation in the context of SUSY GUTs. And I shall be mainly
concerned about models which contain B— L as a gauge symmetry and predict massive neutrinos
via the See-saw mechanism !5,

1 11

2In non minimal models of hybrid inflation such as shifted inflation '° or smooth inflation
symmetry breaking takes place before or during inflation, and no defect form at the of inflation.

, spontaneous
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In section 2, I show that cosmic strings always form at the end of standard ® hybrid inflation
when inflation solves the GUT monopole problem. In section 3, I study the CNIB anisotropies
which are predicted by these models. Matching theoretical predictions with the data gives
constraints on two of the GUT parameters, the Spontaneous Symmetry Breaking (SSB) scale
at the end of inflation and the relevant coupling constant 1617, In section 4, I show that when
the symmetry which is broken at the end of inflation is gauged B — L, there are two competing
non-thermal baryogenesis scenarios which take place after inflation: from reheating, and from
cosmic strings decay 8.

2 Inflation and cosmic strings

2.1 Inflation from particle physics

Inflation must come from the particle physics model describing fundamental interactions at high
energies. As a particle physicist, the first question i will ask is 'Can we get inflation from
the Standard Model?’ On general grounds, the answer is 'No’, because the inflationary energy
scale would be the order of 100 GeV which is far too low to produced the required amount
of primordial perturbations . The next question i will ask is ’Can we get inflation from the
simplest extensions of the Standard Model?” As an aparté, we know since the discovery of
neutrinos oscillations that neutrinos are massive and hence that the Standard Model must be
extended. In order to explain the smallness of the observed neutrinos masses, one could just add
a gauge singlet and a tiny coupling constant. However, by adding a U(1)g—, gauge symmetry to
the Standard Model gauge group Ggp = SU(3). x SU(2)r x U(1)y, massive neutrinos become
a prediction 1°. Adding the idea of unification of the gauge coupling constants, one is lead to
grand unified theories. So I shall rephrase the question as 'Can we get inflation from a grand
unified theory?’ At first sight, 'the unification scale MgyT ~ 10'® GeV is just the energy scale
needed for inflation to explain the cosmological perturbations’.

It turnsout that when building a model of slow-roll inflation in a theory beyond the Standard
Model three ingredients are usually needed: SUSY, which provides the required flatness of the
potential, a Standard Model singlet, the slow-rolling field, and GUT Higgs fields transforming
under a gauge group G whose rank is larger than the rank of the Standard Model gauge group,
ie. rank(G) > 4 813,

2.2 Standard hybrid inflation

Hybrid inflation & uses two fields instead of one, a gauge singlet S and a Higgs field ®. Hybrid
inflation is arguably the best particle physics motivated model of inflation. In the context of
SUSY GUTs, there are two Higgs superfields ® and ® in complex conjugate representations of
the GUT gauge group Ggyr which lower the rank of the group by one unit when acquiring
vacuum expectation values (VEV) at the end of inflation. The superpotential is given by

Wine = 65(3® — M?), 1)

where a suitable U(1) R-symmetry under which W and S transform in the same way ensures
the uniqueness of this superpotential at the renormalizable level. The scalar potential has an

inflationary valley, which is a valley of local minima, at S > Af and |®| = |®| = 0. At tree
level, the potential along this valley is Vipp = k2AI2 S is the slowing rolling field and slow-
roll conditions thus apply to S. Since |®| = |®| = 0 during inflation, there is no symmetry

bStandard refers to the standard model of SUSY hybrid inflation” where SSB takes place at the end of inflation

‘However it has been recently suggested that an MSSM flat direction might be suitable for inflation '°. Even
though this proposal requires strong fine-tuning, it is interesting in two ways: first of all it uses standard model
physics, and second there is no need of standard model singlet.
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breaking induced by these Higgs fields VEV during inflation. Inflation terminates as S falls
below its critical value S, = A/ and inflation ends in a phase transition during which the Higgs
fields acquire non-zero VEV equal to M: Spontaneous Symmetry Breaking (SSB) takes place
at the end of inflation. The SSB scale A/ and is proportional to the inflationary scale Vl:l/ft the
proportionality coefficient being the squared root of the singlet-Higgs coupling .

The Higgs fields representations ® and ® are conjugate N-dimensional representations of the
GUT gauge group. We are now focusing on GUT which contain gauged U(1)g_; and predict
massive neutrinos via See-saw. The component of of ® (and ®) which gets a VEV at the end of
inflation transforms as an Standard Model singlet, and it also transforms either as an SU(2)g
doublet or as an SU(2)g triplet. In a realistic model where there are no unwanted light fields
between the scale M and the GUT scale, it is the only component which remains light below
Mgyt " (M < MgyT, see section 2.3). The scalar potential along the inflationary valley is flat
at tree level. It is lifted by loop corrections, which are non-zero during inflation because SUSY
is spontaneously broken, and by SUGRA corrections. Assuming minimum Khéler potential it

is given by 1617
v KN x?M?2? 2 2 -2 2 2 -2
i = 1+327T,2[21n< e >+(r +1)%In(14+27%) + (2 — 1)*In(1 — 27%)
M4 M2 m3/2
af M 2 2( M
+ 2 (mp> +laf’z (mp> +4 M ® @

where mp, is the reduced Planck mass and A a cutoff scale; z = |S|/M so that z — 1 at the
critical point; A = 4 cos(argms;; — arg S), we assume that ar_gS is constant during inflation;
N =1 - 3 depending on wether the components of ® and ® which get a VEV at the end
of inflation transform as an SU(2)g doublet or triplet and wether the symmetry group which
breaks at the end of inflation contains an SU(2)g or an U(1)g symmetry. Hidden sector VEV
which lead to low energy SUSY breaking are (2) = amp and  (Whia(2)) = m3, exp“law2 mg,
with mg/, the gravitino mass; the cosmological constant in the global minimum is set to zero
by hand. All subdominant terms are dropped.

2.8 Cosmic strings form at the end of standard hybrid inflation

Since SSB takes place at the end of inflation, cosmic strings always form if the later solves
the GUT monopole problem '3. The underlying reason being that the rank of the gauge group
is lowered by one unit at the end of inflation 8:13. This is illustrated in reference ! where an
exhaustive study of all SSB breaking patterns for all GUT gauge groups with rank less than
height and phenomenologically acceptable has been performed. The aim of this section is to
understand why indeed cosmic strings form. Further details can fe found in reference 3.
Suppose that the Standard Model gauge group Ggps is embedded in a GUT gauge group
Ggur. This must be broken down to Gsys at around Mgy ~ 1016 GeV, which is the scale at
which the gauge couplings unify
Gour MET ... Gen TSV SU@3)e x U(1)g. (3)
In SUSY. the breaking of Ggur down to Ggar can be direct of via intermediate symmetry
groups, whereas in the non SUSY case there must be at least one intermediate step. If (some
of) the Higgs fields used to break G¢u:7 have a superpotential given by Eq.(1)¢. inflation takes
place and the spontaneous symmetry breaking of Ggyr takes place at the end of inflation. But
in this scenario, cosmologically catastrophic monopoles which ought to form in all GUTSs, form
after inflation. In order to cure the monopole problem, one must introduce an intermediate

9The rank of Geur has to be strictly greater than the rank of Gsa '
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symmetry group H, a subgroup of Gy, and use ®, ® not to break the GUT itself but this
intermediate symmetry group H; the symmetry breaking scale M of H is < Mgyr. H must be
chosen in such a way that the monopoles form between Ggyr and H and no unwanted defect
form when H breaks down to Gss

Monopoles &.®, No unwanted defect 102 GeV
Gour B . .H = we = Gapr = SUB)e x U(l)g. (4)

It can be shown that the rank of H must be greater than five, that it must contain a U(1)

factor 813, and that cosmic strings always form when H breaks down to Gy 81213,
. . . . 2 r
GGUT I\Iong;:oles H Inflation, Cgimlc Strings o GSM 10 _(__:,e\/ SU(3)C x U(I)Q. (5)

3 CMB constraints and predictions

Ifthe strings which form at the end of inflation are stable down to low energy, they will contribute
to the CMB temperature anisotropies. The perturbations from inflation and cosmic strings are
uncorrelated and they add up independently 8

0T 6T\2 6T\2
(F )™ \/ (Tt (F (©)
The inflation contribution to the quadrapole is

(D), - s

T inf: 12\/57rmg \ %4 ’ (7)

o=0Q

with a prime denoting derivative w.r.t. the real normalized inflaton field ¢ = v/2|S], and the
subscript Q denoting the time observable scales leave the horizon. V is the scalar potential along
the inflationary trajectory given by Eq.(2). The tensor perturbations from inflation (67/7 )tens ~
1072H /my, are very small.

The string induced perturbations are proportional to the string tension (0T/T).s = yGu,
with p the tension and y parameterizing the density of the string network. Recent simulations
predicts y = 9 + 2.5, but values in the range y = 3 — 12 can be found in the literature 2.
The strings are formed by the Higgs fields ® and ® which wind around the string in opposite
directions. They are not BPS and do not satisfy the Bogomolnyi bound and hence they are
lighter than BPS strings forming at the same energy scale!®. The string tension is

p=2nwM?§(3), with 6(3) =~ 2.4In(2/6)" (8)

where the function 6 encodes the correction away from the BPS limit and 8 = (mg/ma)? ~
(k/gcuT)? with géUT ~ 47 /25. Requiring the non-adiabatic string contribution to the quadrupole
to be less than 10% gives the bound !©

O/y)
6(8)

The bound which comes from pulsar timing (the stochastic gravitational wave background
produced by cosmic strings can disrupt pulsar timing and this has not been observed) is
Gpr < 1.0 x 1077 2!, it is more stringent, but it has also more uncertainties. It corresponds
to the 10% bound with y = 20.7.

Temperature anisotropies from both inflation and cosmic strings depend on two parameters,
the SSB scale M of the intermediate symmetry group H, see Sec 2., and the singlet-Higgs

Gp < 2.3 x 10—7(3) = M<23x10' (9)
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coupling constant «, see Eq.(1). Matching the theoretical predictions with the observed value
(dT/T) = 6.6 x 10764 gives a constrain on M versus «, see figure 11617, The intermediate
symmetry breaking scale must be very close to the GUT scale, M € [10'5 — 10!55) GeV and
the coupling constant & € [10~7 — 1072]. If the strings are unstable !7, larger values of x are
allowed.

The spectral index ng is calculated using the slow-roll parameters and also depends on the
singlet-Higgs coupling constant ; it is also shown on figure 1617, n, is undistinguishable from
unity for small values of s, smaller than unity for intermediate values of x and bigger than
unity for large values of k. It is extremely difficult to get a spectral index smaller than 0.98
with hybrid inflation except maybe with non-minimal models . This is in slight conflict with
WMAP 3-years data, and if these were to be confirmed, it would be excluded.

The string contribution B = (%) /(%) is also a function of the coupling . It is
tot cs

negligibly small for most of the parameter space and saturates the 10% bound for large values
of k, which is the best interesting region for both ns and baryogenesis (see Sec. 4). It is shown

in figure 216
Further details can be found in references 1617,
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Figure 1: Left: CMB constraints on M as a function « for A = 1,3 (blue curves) and the 10% bound (pink
curve). Right: predictions for the spectral index ns as function of x for N' =1, 3.

1

0.1 fmmimm— o

0.01 F

0.001 }

@ le-04 f

le-05 F

1e-06 |

[ —
9

12

10 bound o

Y
y

woaom

le-07

le-06 t——mt "
le-06 1e-07 1le-06 1le-05 1e-04 0.001 0.01 0.1
x

Figure 2: The string contribution (JTT) L/(‘STT) as a function of  for y = 3,6, 9.
to cs

189



4 Baryogenesis via leptogenesis at the end of inflation

Baryogenesis aims to explain the observed matter-antimatter asymmetry of the Universe. It
must take place after inflation, since any previously produced baryon asymmetry is washed-out.
Standard GUT baryogenesis is ruled out because any GUT scale produced baryon asymmetry
is erased by sphalerons transitions unless the universe possesses a B — L asymmetry € 22, A
primordial B — L asymmetry is naturally obtained in theories beyond the standard model which
contain gauged B — L via the out-of-equilibrium decay of heavy Majorana right-handed neu-
trinos 2. This scenario known has leptogenesis is perhaps the best particle physics motivated
model of baryogenesis. Thermal leptogenesis requires a symmetry breaking scale ~ 10% GeV
and a reheating temperature Tg ~ 10 GeV 24. Such high reheating temperature leads to an
overproduction of gravitinos which decay lately and disrupt the predictions of nucleosynthesis.

When Ggyr,H D U(1)g_ and the & and ® fields entering the inflation superpotential
given by equation (1) are the B — L breaking Higgs fields, gauged B — L is broken at the end
of inflation and the strings which form at the end of inflation are the so-called B — L cosmic
strings2%. There are then two competing non-thermal scenarios for leptogenesis which take place
after inflation: from reheating during inflation 2 and from cosmic strings decay 18:2.

e Non-thermal leptogenesis during reheating

The B — L breaking Higgs field ® which enters the inflationary superpotential Eq.(1)
gives a superheavy Majorana mass to the right-handed neutrinos (W > ® NN or W >
®2NN/m;) and reheating proceeds via production of heavy right-handed neutrinos and
sneutrinos. Right-handed (s)neutrinos decay into electroweak Higgs(ino) and (s)leptons
(W > HyLN), CP is violated through the one-loop radiative correction involving a Higgs
particle and by the self-energy correction, and lepton asymmetry is non-thermally produced
when the right-handed neutrinos are out-of-equilibrium, i.e. when Tp < My,. If Tp >
My, the lepton asymmetry produced is wash-out by L-violating processes involving right-
handed neutrinos until T < My, , where My, is the mass of the lightest right-handed
neutrino. If My, > mg/2, where mg is the mass of the Higgs field in the true vacuum, the
inflaton cannot decay into right-handed neutrinos and reheating must be gravitational.
The resulting baryon asymmetry depends on the reheating temperature at the end of
inflation, which depends on the mass My, of the heaviest right-handed neutrinos the
inflaton can decay into, on the symmetry breaking scale M which is constrained by CMB
data as a function of the coupling  (see Sec. 3) and on the CP violating parameter 8.

e Non-thermal leptogenesis from cosmic strings decay

The strings which form at the end of inflation are the so-called B — L cosmic strings 25.
The main decay channel of B — L strings is into right-handed neutrinos and they also
lead to non-thermal leptogenesis 2>'8. The resulting baryon asymmetry depends upon the
amount of energy loss by the network into right-handed neutrinos and on the density of
strings at the end of inflation; it also depends on the symmetry breaking scale M at the
end of inflation which is constrain by CMB as a function of « 18,

Which of these two scenarios dominates depends on wether the inflaton decay into right-handed
neutrino is kinematically allowed and wether the lightest right-handed neutrino N; is in thermal
equilibrium at reheating. Results, which take into account the CMB constraints derived in the
previous section, are shown in figures 3 and 4. Further details can be found in reference 8.

“Sphalerons transition violate B + L and conserve B — L, where B and L are respectively number and lepton
number.
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Figure 3: The mass My, of the heaviest right-handed neutrino the inflaton can decay into as a function of

the coupling k. The white regions give the measured value of ng/s. The colored regions are excluded. Top:

My, < mg/2 and My, > Tr, both strings and inflation contribute non-thermally to AB. Bottom: My, > mg/2,

reheating is gravitational and only strings contribute non-thermally to AB. Bottom Left: My, > Tr, there is no
wash out. Bottom Right: My, < TRr, there is also a thermal contribution.

5 Conclusions

GUT which predict massive neutrinos are good candidates for hybrid inflation. Cosmic strings
form at the end of inflation and, if they stable down to low energy, they contribute to CMB
anisotropies together with inflation. The symmetry breaking scale is constrained by CMB data
to the range M € [10'4° — 10'55] GeV and the relevant coupling k € [10~7 — 1072]. Scalar
perturbations from inflation dominate for a large part of the parameter space and it might be
impossible to detect the strings using the temperature anisotropies of the CMB. They could
however be detected via the B-type polarization of the CMB °.

Hybrid inflation predicts a spectral index ns 2 0.98. It is very difficult to get smaller values
except maybe by going to non minimal models ?%; hence if the three year WMAP central value
ns = 09511*8;3}3 were to be confirmed, hybrid inflation with minimal SUGRA could be excluded.
But even if scalar perturbations are dominated by scalar perturbations from inflation, tensor
perturbations (which are negligible for hybrid inflation) can nonetheless be dominated by tensor
perturbations from cosmic strings; this can allow a larger value of n, 4.

Finally, when B — L is broken at the end of inflation, baryogenesis via leptogenesis takes
place after inflation during reheating and/or via cosmic strings decay; which of the two scenarios
dominates depends upon the various parameters in the inflaton-neutrino sector.

191



Acknowledgments

I wish to acknowledge Marieke Postma for enjoyable collaboration. I also wish to thank The
Dutch Organization for Scientific Research [NWO] for financial support.

References

1

2.

N ok W

oo

10.

11.

12.

13.
14.
15.

16.
17.
18.
19.

20.

21.
22.
23.
24.

25.
26.

27

. C. B. Netterfield et al. [Boomerang Collaboration], Astrophys. J. 571, 604 (2002)
[arXiv:astro-ph/0104460].

A. Vilenkin and E. P. S. Shellard, “Cosmic strings and other topological defects”, Cam-
bridge monographs on mathematical physics, Cambridge University Press, England, 1994;
M. B. Hindmarsh and T. W. B. Kibble, Rept. Prog. Phys. 58 (1995) 477 [arXiv:hep-
ph/9411342).

L. Pogosian, I. Wasserman and M. Wyman, arXiv:astro-ph/0604141.

D. N. Spergel et al., arXiv:astro-ph/0603449.

U. Seljak and A. Slosar, arXiv:astro-ph/0604143.

. A.Linde, Phys. Rev. D 49, 748 (1994) [arXiv:astro-ph/9307002].

G. R. Dvali, Q. Shafi and R. K. Schaefer, Phys. Rev. Lett. 73, 1886 (1994) [arXiv:hep-
ph/9406319).

. R. Jeannerot, Phys. Rev. D 56 (1997) 6205 [arXiv:hep-ph/9706391].

. R. Kallosh, arXiv:hep-th/0109168, R. Kallosh and A. Linde, JCAP 0310, 008 (2003)
[arXiv:hep-th/0306058].

R. Jeannerot, S. Khalil, G. Lazarides and Q. Shafi, JHEP 0010, 012 (2000) [arXiv:hep-
ph/0002151].

G. Lazarides and C. Panagiotakopoulos, Phys. Rev. D 52, 559 (1995) [arXiv:hep-
ph/9506325].

R. Jeannerot, J. Rocher and M. Sakellariadou, Phys. Rev. D 68, 103514 (2003) [arXiv:hep-
ph/0308134].

R. Jeannerot, arXiv:hep-th/0604214.

N. T. Jones, H. Stoica and S. H. H. Tye, JHEP 0207, 051 (2002) [arXiv:hep-th/0203163].
M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, P. van Nieuwenhuizen and D.
Freeman eds., North Holland, Amsterdam 1979, p. 315; T. Yanagida, Prog. Theor. Phys.
64 (1980) 1103; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912;
J. Schechter and J. W. F. Valle, Phys. Rev. D 22 (1980) 2227.

R. Jeannerot and M. Postma, JHEP 0505 (2005) 071 [arXiv:hep-ph/0503146].

R. Jeannerot and M. Postma, arXiv:hep-th/0604216.

R. Jeannerot and M. Postma, JCAP 0512 (2005) 006 [arXiv:hep-ph/0507162].

R. Allahverdi, K. Enqvist, J. Garcia-Bellido and A. Mazumdar, arXiv:hep-ph/0605035,
D. H. Lyth, arXiv:hep-ph/0605283.

M. Landriau and E. P. S. Shellard, Phys. Rev. D 69 (2004) 023003 [arXiv:astro-
ph/0302166].

A. N. Lommen, arXiv:astro-ph/0208572.

V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 191, 171 (1987).
M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).

W. Buchmuller, R. D. Peccei and T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55, 311 (2005)
[arXiv:hep-ph/0502169). ]

R. Jeannerot, Phys. Rev. Lett. 77, 3292 (1996) [arXiv:hep-ph/9609442].

G. Lazarides and Q. Shafi, Phys. Lett. B 258, 305 (1991). G. Lazarides, Springer Tracts
Mod. Phys. 163, 227 (2000) [arXiv:hep-ph/9904428].

. M. Bastero-Gil, S. F. King and Q. Shafi, arXiv:hep-ph/0604198.

192





