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Abstract In this study, we explore the structural and sta-
bility properties of anisotropic dark matter stars within the
framework of gravity’s rainbow. By incorporating energy-
dependent rainbow functions into the spacetime metric, we
examine quantum gravitational effects on compact stars
under extreme conditions. Utilizing a modified Tolman–
Oppenheimeer–Volkoff (TOV) formalism, we derive exact
analytical solutions and perform numerical simulations to
investigate the impact of anisotropy and rainbow parame-
ters on stellar mass, radius, and compactness. Our analysis
includes stability criteria such as the static stability condition,
adiabatic indices, and sound speed causality, highlighting
the dynamic behavior of these stars. The findings reveal that
gravity’s rainbow allows for more massive and stable com-
pact stars compared to General Relativity, offering insights
into quantum gravitational corrections and their astrophysi-
cal implications.

1 Introduction

The exploration of anisotropic compact stars [1–5] has
become a focal point of contemporary astrophysical research,
largely due to their potential to unravel the mysteries of
extreme gravitational environments and the fundamental
interactions shaping them. Within the framework of modi-
fied theories of gravity [6–9], the study of compact objects
gains additional significance as a testing ground for devia-
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tions from General Relativity (GR). In this context, the con-
cept of gravity’s rainbow, originally proposed to incorporate
quantum gravitational effects at the Planck scale, offers a
compelling avenue for understanding the intricate behavior
of stellar structures under extreme conditions [10–12].

Gravity’s rainbow modifies the spacetime metric by intro-
ducing energy-dependent rainbow functions, �(x) and �(x),
where x = E/Ep represents the ratio of particle energy E to
the Planck energy Ep. These functions alter the relativistic
dispersion relations, enabling the study of quantum gravita-
tional effects in high-energy regimes [13,14]. Compact stars,
especially those composed of dark matter, are ideal candi-
dates for investigating such effects, as they represent envi-
ronments where gravitational and quantum effects interplay
significantly [15–20].

Anisotropy, characterized by unequal radial (Pr ) and tan-
gential (P⊥) pressures, naturally arises in compact stars due
to factors such as phase transitions, electromagnetic fields,
and density gradients [21,22]. In the context of gravity’s rain-
bow, anisotropic stars provide a unique platform for ana-
lyzing how modified spacetime geometries influence stel-
lar equilibrium, stability, and observable properties. Recent
studies have demonstrated that anisotropic models can better
accommodate astrophysical observations, such as the mass-
radius relationship of neutron stars, compared to isotropic
models [23–27].

Our motivation stems from the need to explore the inter-
play between anisotropy and quantum gravitational correc-
tions in compact stars. Dark matter stars, hypothesized to be
composed of exotic matter, serve as ideal systems for such an
investigation. By incorporating a polytropic equation of state
that accounts for anisotropy, we aim to elucidate the impact
of gravity’s rainbow on the structural and stability charac-
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teristics of these stars [28–30]. Additionally, the inclusion
of anisotropy as an extra matter component offers a versa-
tile framework for analyzing the deviations introduced by
rainbow gravity [31,32].

This paper is organized as follows: in Sect. 2, we present
the field equations governing the structure of anisotropic
stars in the context of gravity’s rainbow. Section 3 provides
a detailed review of gravity’s rainbow and the modified TOV
equations. Section 4 is dedicated to numerical results and dis-
cussions, where we analyze the dependence of stellar proper-
ties on the rainbow parameters � and the anisotropy param-
eter β. The stability analysis, including the static stability
criterion, adiabatic indices, and sound speed causality, is pre-
sented in Sect. 5. Finally, we summarize our findings and
propose future research directions in Sect. 6.

2 Equation of state and setup

In this section, we establish the equation of state (EoS) and the
anisotropic profile used in the analysis, inspired by the theo-
retical framework discussed in [33]. Boson stars are intrigu-
ing self-gravitating configurations, which can be composed
of either spin-zero fields (scalar boson stars) [34] or spin-one
fields (Proca stars) [17,35,36]. Earlier works [37,38] demon-
strated the maximum mass attainable by scalar boson stars
without self-interactions, while later studies [29,39] revealed
that self-interactions significantly influence the maximum
mass. According to [40], scalar boson stars reach their max-
imum mass in systems without interactions. However, as
noted in [29,41–44], self-interactions can notably alter these
stars’ mass.

A canonical complex scalar field, ϕ, is governed by the
Einstein-Klein-Gordon action:

S = ∫
d4x

√−g
( R

16π
+ LM

)
, (1)

LM = −gμν∂μϕ∂νϕ
∗ − V (|ϕ|), (2)

where g is the determinant of the metric tensor gμν , R is
the Ricci scalar, LM is the Lagrangian density of the matter
content, and V (|ϕ|) denotes the scalar potential [42].

For static, spherically symmetric configurations, the scalar
field is parametrized as follows:

ϕ(r, t) = ψ(r) exp(−i
 t), (3)

where 
 is a real parameter corresponding to the oscillation
frequency [42].

Although the scalar field depends on time, the result-
ing stress-energy tensor remains time-independent. Conse-
quently, Einstein’s field equations for an anisotropic fluid
take the standard form, where the energy density is given by
[2,44]:

ρ = 
 2e−2νψ2 + e−2λψ ′2 + V (ψ), (4)

and the radial and tangential pressures are expressed as:

Pr = 
 2e−2νψ2 + e−2λψ ′2 − V (ψ), (5)

P⊥ = 
 2e−2νψ2 − e−2λψ ′2 − V (ψ). (6)

The anisotropy factor, defined as the difference between tan-
gential and radial pressures, is given by:

σ ≡ P⊥ − Pr = −2e−2λψ ′2 < 0. (7)

This negative anisotropy is characteristic of boson stars [30].
Under specific conditions, the anisotropy can be negligi-

ble, allowing the system to be approximated as isotropic. A
particular model assumes the scalar potential:

V (|ϕ|) = m2
x |ϕ|2 + �

2
|ϕ|4, (8)

wheremx is the scalar field mass, and � is the self-interaction
coupling constant. The corresponding EoS is described by
[29]:

Pr = ρ0

3

(√
1 + ρ

ρ0
− 1

)2

, (9)

with ρ0 defined as:

ρ0 = m4
x

3�
. (10)

This EoS is valid for approximately isotropic boson stars,
provided the condition:

�

4π
� m2

x , (11)

is satisfied [28].
The EoS recovers well-known limits in specific regimes.

For dilute stars [30]:

Pr ≈ ρ2

12ρ0
, ρ 	 ρ0, (12)

and in the ultra-relativistic limit:

Pr ≈ ρ

3
, ρ � ρ0. (13)

The equation of state of a Bose–Einstein condensate is
expressed in polytropic form:

Pr = Kρ2, (14)

where K is the proportionality constant related to the mass
m and the scattering length a as:

K = 2πa

m3
x

. (15)

Let us define K = z
B , where z is dimensionless and B

is a pressure-related dimension. For convenience, one can
set z = 0.05 and B = 66 [MeV/fm3] [45,46]. However, it
is also worth noting that there are other studies that suggest
this aligns with neutron and quark star energy densities, with
B ≈ (150 MeV)4 [47,48].
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Finally, we consider an anisotropy factor [22,23,49–51]:

σ = βPr
(

1 − e−2λ
)

. (16)

where β is a dimensionless prefactor ensuring dimensional
consistency and vanishing anisotropy at the center and sur-
face of the star. In non-relativistic regimes, 1 − e−λ 	 1
implies σ ∼ 0. Since Pr > P⊥ (Eqs. 5 and 6), β < 0 is
required to maintain σ < 0. Thus, in our numerical analysis,
we consider β within the range [− 2, 0].

In summary, this section presents the foundation for study-
ing boson stars with anisotropic matter and explores the influ-
ence of the EoS and anisotropy on stellar properties.

3 Review of gravity’s rainbow and stellar structure
equations

3.1 Rainbow theory

Since the concept of doubly special relativity (DSR) was
introduced by Amelino-Camelia [10] as a generalization of
special relativity, further details can be found in Ref. [13]. In
this theory, two fundamental constants, the speed of light c
and the Planck energy Ep , are referred to as “doubly special.”
Although DSR has achieved significant milestones, it faces
unresolved challenges, such as the so-called “soccer ball”
problem. To address this issue, Magueijo and Smolin [11]
extended DSR to curved spacetimes, proposing a framework
called rainbow gravity (or gravity’s rainbow). This frame-
work is based on the assumption that the background space-
time depends on the energy of a test particle.

In this context, particles with different energies perceive
unique distortions of spacetime, modifying the conventional
relativistic dispersion relation at high-energy scales, specifi-
cally near the Planck scale. The modified dispersion relation
is given by

E2�(x)2 − p2�(x)2 = m2, (17)

where �(x) and �(x) are the so-called rainbow functions,
defined in terms of the dimensionless ratio x = E/Ep. Here,
E and Ep represent the relativistic total energy of the probe
particle and the Planck energy, respectively. The rainbow
functions have distinct forms and are responsible for altering
the ultraviolet regime of spacetime, contributing significantly
to the structure of rainbow gravity. At low-energy scales,
characterized by x = E/Ep → 0, the rainbow functions
satisfy

lim
x→0

�(x) = 1, lim
x→0

�(x) = 1, (18)

and the standard energy dispersion relation is recovered. The
selection of rainbow functions is crucial as it determines the
quantum gravitational modifications to spacetime. A widely

used choice is given by �(x) = 1 and �(x) = √
1 − ηxn ,

where η and n are dimensionless parameters that introduce
deviations from General Relativity while preserving consis-
tency in the low-energy regime. Another common alterna-
tive, derived from deformed Lorentz transformations in DSR,
takes the form �(x) = �(x) = 1

1+λx . Both choices have
been extensively explored in astrophysical scenarios [12,20].
In this study, we adopt the former form due to its analytical
tractability and its capability to capture essential quantum
gravity effects in stellar structure equations.

The metric in rainbow gravity, gμν(x), is written as [11]

gμν(x) = ηabeμ
a (x) ⊗ eν

b(x), (19)

where eμ
a (x) represents the energy-dependent vierbein fields,

related to the energy-independent tetrads ẽμ
a by the relations

eμ
0 (x) = 1

�(x)
ẽμ

0 , eμ
k (x) = 1

�(x)
ẽμ
k , (20)

where the spatial indices k take values (1, 2, 3). The tilde
denotes the energy-independent tetrads. Note that the rain-
bow functions, which are implicitly dynamical functions of
the coordinates, modify not only the relativistic dispersion
relation but also the metric structure of spacetime.

Rainbow gravity has emerged as a plausible framework for
investigating quantum gravitational effects in highly dense
and compact stellar objects. Within this framework, the equa-
tion of motion takes the form [11]

Gμν(x) ≡ Rμν(x) − 1

2
gμν(x)R(x) = k(x)Tμν(x), (21)

where Tμν(x) represents the stress-energy tensor, which acts
as the source of spacetime curvature, and Gμν(x) is the Ein-
stein tensor. The term k(x) = 8πG(x) introduces an energy-
dependent gravitational coupling constant. For simplicity, we
work in units where G(x) = 1.

3.2 Modified TOV equations of gravity’s rainbow

Here, we derive the equations of hydrostatic equilibrium in
the framework of rainbow gravity, under the assumption of a
static, four-dimensional spherically symmetric metric, which
is modified as a rainbow metric in the following form [11]:

ds2 = − e2ν(r)

�2(x)
dt2 + e2λ(r)

�2(x)
dr2 + r2

�2(x)
d�2, (22)

where the functions ν(r) and λ(r) depend on the radial coor-
dinate r , and d�2 is defined as d�2 = dθ2 + sin2 θ dφ2.
The rainbow functions �(x) and �(x) depend on the dimen-
sionless energy ratio x = E/Ep and are independent of the
spacetime coordinates (r , t , θ , φ).

Inspired by [14], we investigate the possible existence of
exotic stars composed of anisotropic matter in the context of
rainbow gravity. To describe the matter distribution, we use
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the following energy-momentum tensor [15]:

Tμν = (ρ + P⊥)uμuν + P⊥gμν − (P⊥ − Pr )χμχν, (23)

where ρ(r) is the energy density, Pr (r) is the radial pressure,
and P⊥(r) is the tangential pressure. The fluid is assumed to
be at rest, so the four-velocity of the fluid is given by

uμ =
(

�(x)

eν(r)
, 0, 0, 0

)

, (24)

with the condition uμuμ = − 1. The unit normal vector in the
radial direction is represented as χμ, satisfying χμχμ = 1.

By introducing a new variable, e−2λ(r) = 1− 2Meff (r,x)
r , the

modified TOV equations for a static, spherically symmetric
spacetime can be written using the metric (22) and the stress-
energy tensor (23) in the following form [12]:

Meff(r, x) =
∫ r

0

4πr2ρ(r)

�2(x)
dr ≡ m(r)

�2(x)
, (25)

P ′
r = −(ρ + Pr )ν

′ + 2

r
(P⊥ − Pr ) , (26)

ν′(r) = Meff(r, x)�2(x) + 4πr3Pr (r)

r (r − 2Meff(r, x)) �2(x)
, (27)

where the prime denotes differentiation with respect to the
radial coordinate r . Now we are in a position to solve the
differential equations (25)–(27) for the specified EoSs under
appropriate boundary conditions.

4 Numerical results and discussions

In this section, we examine the physical characteristics of
anisotropic dark matter stars within the framework of rain-
bow gravity. Using the given equations of state (EoS) in
Eqs. (14) and (16), we explore the interior solutions by
numerically solving the modified TOV equations, Eqs. (25)–
(27). The numerical approach relies on initial conditions
specified at the star’s center (r = 0), such that m(0) = 0
and ρ(0) = ρc, where ρc represents the central energy den-
sity. Additionally, at the surface of the star (r = R), the
boundary conditions Pr (R) = P⊥(R) = 0 are satisfied, and
the total mass of the star is given by M = m(r = R). We
present our findings by analyzing the impact of the rainbow
parameter � and the anisotropy parameter β. Furthermore,
we assess the stability of the star’s configuration using the
static stability criterion, the adiabatic index, and the speed of
sound. In the following discussion, the radius of the star is
expressed in kilometers (km), the bag constant is measured
in MeV/fm3, and the stellar mass is given in solar masses
(M
).

Fig. 1 From top to bottom, we present the energy density ρ, radial
pressure Pr , and transverse pressure P⊥ as functions of the radial coor-
dinate r . The range of values for � is � ∈ [0.9, 1.1], while the other
parameters are fixed as B = 70 MeV/fm3, β = −0.5, and z = 0.05.
The GR result is shown by a black dashed line

4.1 Profiles for variation of �

To analyze the effects of the rainbow parameter � on
the stellar structure, we compute the stellar properties for
� ∈ [0.9, 1.1], while keeping the other parameters fixed
as B = 70 MeV/fm3, β = −0.5, and z = 0.05. Figure 1
depicts the variation of energy density ρ, radial pressure Pr ,
and transverse pressure P⊥ with respect to the radial coor-
dinate r . For comparison, we include the case of pure GR,
corresponding to � = 1.0 (Fig. 2).
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Fig. 2 From top to bottom, we present the energy density ρ, radial
pressure Pr , and transverse pressure P⊥ as functions of the radial coor-
dinate r . The range of values for β is β ∈ [−2.0, 0.0], while the other
parameters are fixed as B = 70 MeV/fm3, � = 0.8, and z = 0.05. A
black dashed line represents the isotropic solution

We further examine the mass-radius (M − R) and mass-
compactness (M − M/R) relations in Fig. 3. The numerical
results, summarized in Table 1, show that the maximum mass
and the corresponding radius increase with larger values of�.
For instance, the maximum mass reaches Mmax = 3.38M

with a radius of R = 20.19 km at � = 1.08. This indicates
that rainbow gravity predicts more massive compact stars
compared to GR when � > 1.

Additionally, the variation of the maximum compactness
for different� values is illustrated in the lower panel of Fig. 3.

Fig. 3 The effects of the rainbow function on the mass-radius and
maximum compactness relations for dark matter compact stars. The
results are derived using the parameter values from Fig. 1. The GR
result is shown by a black dashed line

As observed in Table 1, the maximum compactness M/R
remains constant at M/R = 0.248, satisfying the Buchdahl
limit M/R < 4/9. This ensures that the considered config-
urations do not form apparent horizons, thereby classifying
them as stable compact objects rather than black holes. How-
ever, highly compact configurations such as ultracompact
stars or gravastars remain interesting possibilities for further
study [49,52]. Additionally, compactness plays a crucial role
in gravitational wave emission, as more compact objects may
exhibit modified quasi-normal mode frequencies, providing
observational tests for quantum gravity-inspired deviations
[53]. These results suggest that � significantly influences
the overall mass and size of the star while maintaining the
stability criterion.

4.2 Profiles for variation of β

Figure 2 demonstrates the effect of the anisotropy parameter
β on ρ, Pr , and P⊥ for the structure of the stars, with the
isotropic case shown for comparison. Parameter sets repre-
sent varying values for β ∈ [− 2.0, 0.0] with the correspond-
ing values being B = 70 MeV/fm3, z = 0.05, and � = 0.8.
Further, we show the (M − R) and (M − M/R) relations in
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Table 1 Structural properties of
dark matter stars for
B = 70 MeV/fm3, z = 0.05,
β = − 0.5, and varying
� ∈ [0.9, 1.1]

� M [M
] RM [km] ρc [MeV/fm3] M/R

0.92 2.88 17.20 563 0.248

0.96 3.00 17.95 563 0.248

1.0 (GR) 3.13 18.69 563 0.248

1.04 3.25 19.44 563 0.248

1.08 3.38 20.19 563 0.248

Table 2 A summary of the
structural properties of dark
matter stars for B = 70
MeV/fm3, z = 0.05, � = 0.8,
and different values of
β ∈ [− 2.0, 0.0]

β M [M
] RM [km] ρc [MeV/fm3] M/R

− 2.0 1.83 13.43 863 0.202

− 1.5 1.98 13.88 713 0.212

− 1.0 2.14 13.76 713 0.231

− 0.5 2.31 13.56 713 0.253

0.0 2.50 14.17 562 0.260

Fig. 4 The effects of the anisotropy parameter β on the mass-radius
and maximum compactness relations for dark matter compact stars. The
results are derived using the parameter values from Table 2. A black
dashed line represents the isotropic solution

Fig. 4. As we are dealing with dark matter stars, we consider
a set of negative values of β; see Sect. 2 for further details.
The influence of β on the (M − R) relations is substantial,
with higher values of β correlating with increased maximum
masses. It can be observed from Table 2 that the maximum

mass goes up to Mmax = 2.31M
 for β = − 0.5 with a max-
imum radius of Rmax = 14.17 km. In addition, the highest
mass of dark matter stars at β = 0 (isotropic solution for
rainbow gravity) is noted to be 2.50M
. The intriguing fea-
ture of the dark matter model is that isotropic solutions pos-
sess a greater mass than their anisotropic counterparts when
β < 0 is considered (see Fig. 4). Subsequently, we illustrate
the influence of β on the characteristics of the (M − M/R)

relations in the lower panel of Fig. 4. According to Table 2,
the maximum compactness of the star increases with β, and
at β = − 0.5, this value could be M/R = 0.260.

5 Stability analysis of anisotropic quark stars

In this section, we aim to evaluate the stability of our pro-
posed model. To achieve this, we employ the static stability
criterion, the adiabatic index, and the speed of sound. Each
of these stability conditions is systematically examined and
graphically illustrated.

5.1 Static stability criterion

Here, we analyze the stability of equilibrium configurations
within the framework of rainbow gravity, focusing on the
static stability criterion discussed in [54,55]. The results are
presented in the M − ρc plane, where M is the gravitational
mass and ρc is the central energy density. While this criterion
has been extensively studied in the context of GR, it also finds
relevance in modified gravity theories, as discussed in [56–
59]. The criterion is expressed as:

dM

dρc
< 0 → unstable configuration, (28)
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Fig. 5 The M −ρc curves for a family of anisotropic dark matter stars
with variations in � and β

dM

dρc
> 0 → stable configuration. (29)

It should be noted that this is a necessary but not sufficient
condition for stability. The mass-central density relations are
illustrated in Fig. 5 for each case considered. The pink and
blue points in Fig. 5 denote the transition from stable to unsta-
ble configurations, where dM/dρc = 0, with dM/dρc > 0
indicating stability.

5.2 Adiabatic indices

We now examine the dynamical stability of the astrophysical
models by analyzing the behavior of the adiabatic index, γ .
This concept, first introduced by Chandrasekhar [60], evalu-
ates the stability of equilibrium configurations. Recent stud-
ies, such as [61], have extended this analysis to the framework
of rainbow gravity. The radial adiabatic index γ is defined
as:

γ ≡
(

1 + ρ

Pr

)(
dPr
dρ

)

S
, (30)

where dPr/dρ represents the derivative of the radial pressure
with respect to energy density, and the subscript S denotes
constant entropy. The critical adiabatic index for stability is

Fig. 6 The adiabatic index γ as a function of radius for anisotropic
dark matter stars with variations in � and β

γcr = 4/3, as derived for isotropic fluid spheres [62]. For
stability, the condition γ > γcr must hold. Using Eq. (30),
Fig. 6 depicts how γ varies with radius for several representa-
tive values of � and β. The results indicate that γ decreases
monotonically with r but remains above γcr , suggesting a
dynamically stable configuration.

5.3 Sound speed and causality

Finally, we evaluate the stability of exotic stars by analyzing
the speed of sound, which satisfies the following equation:

v2
r,⊥ = dP{r,⊥}

dρ
. (31)

It is crucial to ensure that the sound speed remains below the
speed of light, as expressed by the condition:

v2
r,⊥ < 1. (32)

To verify this, we examine the speed of sound in dark matter
stars and present the results in Figs. 7 and 8, which illustrate
the radial and transverse sound speeds for several represen-
tative values of � and β, as provided in Tables 1 and 2,
respectively.
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Fig. 7 The squared sound speed in the radial and tangential directions
for anisotropic dark matter stars with variations in �

The findings confirm that the standard results regarding
stellar stability remain valid within the framework of rainbow
gravity. Specifically, all examined configurations adhere to
the causality condition v2

r,⊥ < 1, thereby confirming the
physical viability and stability of the stellar models under
consideration.

6 Concluding remarks

In this study, we investigated the structural and stability
properties of anisotropic dark matter stars within the frame-
work of gravity’s rainbow. We began by formulating the field
equations incorporating the energy-dependent rainbow func-
tions �(x) and �(x), which modify the spacetime geometry
and dispersion relations at high energies. Using these mod-
ified equations, we derived the hydrostatic equilibrium con-
ditions through a generalized TOV formalism. These equa-
tions, given in Eqs. (25)–(27), served as the foundation for
exploring the properties of compact stars.

We analyzed the role of anisotropy, characterized by the
difference between radial and tangential pressures, � =
P⊥ − Pr , in determining the equilibrium and stability of
dark matter stars. Our results highlighted how the anisotropy

Fig. 8 The squared sound speed in the radial and tangential directions
for anisotropic dark matter stars with variations in β

parameter β and the rainbow parameter � influence key stel-
lar properties such as mass, radius, and compactness. Fig-
ures 1 and 2 demonstrated the variations of energy density ρ,
radial pressure Pr , and tangential pressure P⊥ with respect
to the radial coordinate r , under different parameter settings.
We further examined the mass-radius and compactness rela-
tions, illustrated in Figs. 3 and 4, which showed that higher
values of � and β led to more massive and compact stars.
However, we are addressing a dark matter model; hence,
the obtained isotropic solutions possess a greater mass than
their anisotropic counterparts when β < 0 is considered (see
Fig. 4).

To evaluate the stability of these stellar configurations, we
applied the static stability criterion, adiabatic index analysis,
and sound speed causality conditions. The M − ρc curves in
Fig. 4 confirmed that the stability regions are characterized
by dM/dρc > 0. Additionally, the adiabatic index γ satisfied
the critical threshold γ > 4/3, as shown in Fig. 6, indicating
dynamical stability. The sound speed analysis in Figs. 7 and
8 verified that the causality condition v2 < 1 was upheld
for all cases, further validating the physical feasibility of the
solutions.

Despite the insights gained, our analysis is subject to cer-
tain limitations. The model assumes a static, spherically sym-
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metric configuration, omitting effects such as rotation, mag-
netic fields, and dynamical evolution, which may influence
compact star properties in realistic astrophysical settings.
Additionally, while the adopted polytropic EoS serves as a
reasonable approximation for dark-matter stars, alternative
formulations, such as self-interacting bosonic condensates
or non-minimally coupled dark-matter fields, could yield dif-
ferent equilibrium and stability characteristics [29,30]. Fur-
thermore, the quantum gravitational corrections incorporated
through the rainbow functions are phenomenological, rather
than derived from a fundamental quantum gravity theory,
limiting their predictive power beyond modified dispersion
relations [11,13]. It is also insightful to compare rainbow
gravity with alternative quantum gravity frameworks, such as
asymptotic safety gravity, f (R) gravity, and Horava-Lifshitz
gravity. While asymptotic safety gravity introduces a running
gravitational coupling that affects high-energy astrophysical
environments [63], gravity’s rainbow modifies the disper-
sion relation without requiring a running coupling constant.
Similarly, f (R) gravity modifies the Einstein–Hilbert action
via higher-order curvature terms [9], leading to deviations
from GR even in low-energy regimes. Horava–Lifshitz grav-
ity, on the other hand, introduces anisotropic scaling between
space and time, affecting field equations differently [64].
Unlike these approaches, rainbow gravity preserves compat-
ibility with GR at low energies while incorporating quantum
gravity-inspired deviations in the high-energy regime, mak-
ing it particularly relevant for compact stars under extreme
conditions. Addressing these aspects in future research will
provide a more comprehensive understanding of the inter-
play between modified gravity, anisotropy, and dark matter
in compact objects.

The increased maximum mass predicted by rainbow grav-
ity provides a potential observational test of the modified
TOV equations. Mass measurements of neutron stars, such
as PSR J0740+6620 (M ≈ 2.08M
) [65], serve as con-
straints on the model parameters. Additionally, deviations
in the mass-radius relation can be probed through X-ray
observations by NICER and future missions [66]. Moreover,
gravitational wave signals from binary neutron star mergers,
particularly post-merger oscillations, may exhibit modified
frequencies due to quantum gravity effects [67], providing
further avenues for testing rainbow gravity in astrophysical
observation.

In future work, we aim to extend this study by exploring
the role of different EoS and their impact on the interplay
between anisotropy and quantum gravitational corrections.
Additionally, incorporating rotational effects and magnetic
fields in the framework of gravity’s rainbow would provide
deeper insights into the dynamics of compact stars. Obser-
vational constraints from gravitational wave data and high-
precision pulsar timing will be integrated to refine the models
and enhance their predictive capabilities.
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