17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032007 doi:10.1088/1742-6596/219/3/032007

HEP C++4 meets reality

Giulio Eulisse, Lassi Tuura, Peter Elmer

Abstract.

In 2007 the CMS experiment first reported some initial findings on the impedance mismatch
between HEP use of C++ and the current generation of compilers and CPUs. Since then we
have continued our analysis of the CMS experiment code base, including the external packages
we use. We have found that large amounts of C++ code has been written largely ignoring
any physical reality of the resulting machine code and run time execution costs, including and
especially software developed by experts. We report on a wide range issues affecting typical
high energy physics code, in the form of coding pattern - impact - lesson - improvement.

1. Mismatch between CPU and code

When writing in C4++ physicists have the tendency to think that the CPU will somehow be
able to digest any code produced by the compiler. In particular we tend to think that memory
operations have no latency, the memory structure is flat, code branches are cheap and that the
CPU is always able to find out what instruction to do next.

Reality is however much different.

While processor performances have evolved in exponentially, following the so called Moore’s
law [1], (dynamic) RAM memory has not kept up the pace with the result that its access has
huge latency. The net result is that the faster processor the higher is the risk of having it sitting
idle waiting data or code coming from memory. This is commonly referred as the Memory Wall.

Well aware of this, all the CPU vendors try to mitigate the problem in various ways. First
of all, modern CPUs have a hierarchy of so called cache memories which are small quantities
of on chip RAM implemented using the much faster (but much more expensive) static RAM
cells which act as intermediary between the slow main memory and the CPU. Moreover, they
use various way of predicting ([2], [3]) the program flow and mitigating the cost of pipeline
stalls due to branches. In particular most of mainstream CPUs implement a Branch Prediction
Unit (BPU) that use branch history to predict whether or not a given branch will be executed.
Finally, the Memory Management Unit (MMU) of a CPU is equipped with so called Translation
Lookaside Buffers (TLBs) which assist the conversion between the virtual address space where a
program run and the physical address space. While all this devices alleviate the cost of memory
access and push the memory wall forward, technological limitations make so that those resources
are actually small and in general limited.

Just to give an example, a relatively new Core 2 Duo (tm) [4] processor from Intel has the
specs show in Table 1.

As time goes by and technology / economics permits those numbers obviously increase, but
so far what we have is a few kilobytes of level one (L.1) caches and a few megabytes of L.2/1.3
cache. Moreover things get even more complicated [5] due to the multi-core nature of latest
generations of CPUs.

© 2010 IOP Publishing Ltd 1

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032007 doi:10.1088/1742-6596/219/3/032007

Table 1. Modern CPU specs

Core 2 Duo E8000 series

L1 Instruction Cache Size (kB) 32kB
L1 Data Cache Size (kB) 32kB
L2 Unified Cache Size 6MB, shared by all cores
Number of 4kB pages entries in the TLB 128

If we then look at some of the characteristics of CMS offline reconstruction software (CMSSW
[6]) as shown in Table 2

Table 2. CMSSW

Numbers for a representative workflow

Size of a representative executable 200MB
Actual size of CODE sections 50MB
Average number of libraries loaded 500
Number of symbols in one single executable 50K
Representative VSIZE for a run 1GB
Size of the event 2MB

we see a clear mismatch between what the hardware provides and the inherent dimensions
in play of CMSSW. If on one side we talk about dozens of kilobytes for L1 caches and a few
megabytes for the L2 ones, on the other side we are in the hundreds of megabytes of code size
and, particularly peculiar for our software, is the vast amount of symbols and shared libraries.
While these last item might not seem of too much importance to a first look, one has to think
that due to the nature of dynamic code, symbol tables do have to be loaded into memory at
execution time and every single library has to be loaded in a separate page, therefore increasing
pressure on the ITLB. Moreover, as reported separately [7] the overheads due to this large
amount of symbols and libraries make the port to 64 bit architecture more difficult.

2. Understanding the reasons for the mismatch

One first naive question is whether or not such an amount of code is actually needed. By
instrumenting our software using gcov and checking the source code coverage of a single, but
representative, workflow, we found out that only one third of the lines of code are actually
executed for this one third, only half of it is actually executed more than once. The main
problem is that the executed and non-executed parts of the code are actually mixed in and it’s
therefore very hard for the memory management system to separate them so that the cold parts
are polluting the execution of hot ones. This actually matches with our past work [8] where we
identified high ITLB pressure as one of the problems for CMS software. The reasons for this
large amount of code are actually multiple, but they can be summarized in four major areas:

e naive programming mistakes

e over-generic code & bad packaging of features which should have been kept separate

C—++ specific idiosyncrasies

the legitimate need for exceptions, debug statements and boundary conditions

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032007 doi:10.1088/1742-6596/219/3/032007

Figure 1. CMSSW linker sections

Data

Relocation 9% Other
1%

Literals » ﬁ% T
4% N A

Debug
4% /
y
-

Exceptions /
%/

Code
! 47%
|

Common |
1% |

——

Moreover a detailed split-up of the contents of our software (see Figure 1) shows how only
half of the software size is due to CODE sections and that exceptions, string literals and symbols
have a large contribution to the final size.

Strong of this understanding and its support data we have started an effort to try to reduce
the size of our executable, knowing that this would have had for sure a concrete impact in
things like memory usage (since code is actually a rather large fraction of our memory footprint
(see also [7]), but also with the hope that this reduction in code-size would have brought an
improvement in performance by alleviating pressure off the CPU caches and TLBs.

One example of code bloat was discovered while trying to understand why we had so much
space devolved to symbol names. It turned out that the object persistency dictionary generator
was mangling helper methods names with the file name of the source file where the actual method
was defined, including the path relative to where the dictionary generator was getting launched.
Changing directory to the actual location of the source file, before invoking genreflex and using
a temporary, short, filename was enough to reduce by 9 MB the size use in the executable due to
those symbols. This is a lampant example of how it’s not only important write correct code, but
that build procedures and packaging of the various software components has a non negligible
impact on the produced code, especially when a large fraction of the code base is automatically
generated.

2.1. Study of symbols size
The simplest thing one can do is to try to plot the size of symbols and their size in a scattered
plot like the one shown in Figure 2.

This clearly shows that there are two different kind of issues:

e Symbols which are suspiciously large

e Multiple symbols which suspiciously have all the same size

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032007 doi:10.1088/1742-6596/219/3/032007

Figure 2.

Normal function size vs. instances

100000

10000

1000

Number of instances

| 10 100 1000 10000 100000 1000000

Symbol size in bytes

In the first case we found the problem laying in some common coding patterns that were
forcing the compiler to inline too much code. In particular we found that having missing, either
because of template classes or because of laziness, out-of-line destructors were responsible for a
number of cases in which the code size exploded with no apparent reason. We have found that
this reaches pathological levels in the case exceptions have been thrown and gcc find himself
unable to detect which exit paths are actually the same and is actually forced to delete temporary
objects (therefore inlining the constructor) on every separate exit path.

The second case is instead peculiar for template classes and in particular it results in
pathological (aggregate) symbol sizes when non template invariant code is left inside templated
classes. In this case gce is unable to recognize the code as common (even in the case of simple
types like int or unsigned int) and produces duplicate copies of the same code. Optimizing and
making sure this does not happen is of particular interest for CMS, since due to CMSSW design
there are a number of template classes (especially smart pointers and custom collections used
for persistency) which get templated over a large number (O(400)) of physics event objects. Of
course the worst case scenario is when both things happens and we have actually found parts of
our code base where this was the case.

3. Using perfmon2 to profile big C++ code-bases

Perfmon2 [9] is a low level profiler for Linux, taking advantage of modern processors self-
inspection capabilities [10]. In particular it is able to produce a statistical profile of which
part of a program used / abused more a given CPU resource (instruction cache, BPU, TLBs)
or even just where the actual time was spent.

The problem is that in order to have a low overhead on the profiled application the
implementation of perfmon2 only provides flat reports, where the caller - callee (stacktrace)
information is lost.

L.e. for example by looking at the ITLB_MISS_RETIRED counts for a given function one gets
to know that such a function is causing high pressure on the instruction TLB, but no information
about what called that function is given.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEPQ9) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032007 doi:10.1088/1742-6596/219/3/032007

Figure 3.

95% of the time

by
o
|
|

w
(8]
|

w
o
I

N
(8]
|

=
U1
|

TIME (% of UNHALTED _CORE_CLOCKS)
= N
o =}
I I

o
ul
|

. n L J
100 200 300 400 500 600 700 800 900
Symbol rank (inverse ordered by TIME)

o
o
o

The net result, at least for large software like CMS one, is that a large fraction of the cost
reported by various CPU counters is assigned to usual suspects (like the memory management
function such as malloc, free etc.) but no information is provided about the actual callers of
those function, which is the information one actually needs in order to improve the software.

If one looks at the full distribution of time costs for the symbols in CMSSW one can notice
that as it very often happens in physics, the interesting part is in the tails of the distribution.

For example, the plot in Figure 3 was done for a typical job of the CMS offline software and
shows a distribution of CLOCK_CORE_UNHALTED counter in different symbols. This is the number
of clock cycles the processor spent in every method. When integrating the results one sees that
the aggregate cost of all the methods using less than 0.5% of the total time sums up to 44% of
the total cost.

While there are other tools, like igprof [11], which provide stack-trace information, they are
not precise enough to provide good enough statistics. The only viable way to proceed in the
analysis is therefore to correlate different results from perfmon2 to try to understand what is
going on. In particular we found very useful to correlate the timing information with those
coming from some other processor counter. This correlates cost (i.e. time) with its possible
cause (cache misses, branch mispredictionsm, etc.) and it therefore gives an indication on what
to look at in the source and take a specific action.

If for example we plot the counts for CLOCK_CORE_UNHALTED and ITLB_MISS_RETIRED together,
using the former to order symbols in both cases, like we do in Figure 4, we immediately see that
there is not a complete correlation between the two counters and that some symbols suffer more
for the ITLB_.MISS_RETIRED than others.

Similarly we can do a scatter plot like the one in Figure 5, where each marker in the plot is a
given symbol in the code. In such a plot, we see that the inter-library entry point suffers a lot
because of ITLB misses, as we would expect because . However, as we said, this has to be (and

17th International Conference on Computing in High Energy and Nuclear Physics (CHEPQ9) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032007 doi:10.1088/1742-6596/219/3/032007

Figure 4.

TIME and ITLB misses per symbol

ey
IS
T

-12

w
5

w
=}

N
U

g
15

TIME (% of UNHALTED_CORE_CYCLES)
- N
=3 =}

i
|
|
|
I
|
|
I
|
I
|
|
I
|
I
|
|
I
|
I
|
|
I
|
I
|
|
I
|
I
|
|
I
|
!
o

ITLB misses (% of ITLB_MISS_RETIRED)

=3
o

|

I

|

|

|

|

I
S
=
|

|

I

|

I
L
|

I

|

I
L
w |
g |
© |
S
=
|

I

|

I

o
o

Figure 5.

ITLB misses vs. TIME

=
N
h

©

-
o
I

Cross library entry point

©
|

ITLB misses (% of ITLB_MISS_RETIRED)

1 2 3
TIME (% of UNHALTED_CORE_CLOCKS)

is being) addressed with a global redisign of the way we package our software, which will take
time and agreement between the various parties involved.

What has a more limited impact but is also more immediate to address and fix are the
problems with symbols represented by dots in the grey area of the same plot. They still show
up in the reports with relatively a measurable amount of time (between 0.3% and 0.5%) and
most important show a significant footprint (few percents) due to some specific problem (ITLB
misses in this case). Moreover, as we have previously said this code is most likely coming from
the truly physics related part of the software and therefore under stricter control and most likely
with limited scope.

3.1. Case study

We now present an example of performance analysis done by using perfmon2 to profile our
software to concretely illustrate the methodology used. In particular we will look at one of the
symbols in the grey area discussed above.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing

Journal of Physics: Conference Series 219 (2010) 032007 doi:10.1088/1742-6596/219/3/032007
Figure 6.

250000 230000

7% improvement for T

SMatrix related
L ! [methods.
200000 \\

225000

150000

220000

100000

215000

50000

0 210000
patched root vanilla patched root vanilla

@ Rest [SMatrix Contribution

The problem was insulated to be in the constructor of one of the classes representing a
symmetric matrix. What was happening in this case was due to a static variable local to the
constructor of the class being used to initialize a lookup table needed to speed up the serialization
of objects of that class. An analysis of produced code revealed that the compiler we used (gcc
3.4.5) was unable to detect the code as a one time initialization and to move it out of the
constructor itself. An otherwise trivial constructor was therefore carrying along the full code for
a one time initialisation of a lookup table. We think this hidden cost was effectively creating
problems in two ways:

e the code for the symbol was too large to be inlined efficiently and was in general fooling
the inline heuristics for that particular bit of code.

e the initialization code, albeit not being executed, still had influence on the pressure on the
ITLB and instruction cache.

Changing the constructor forcing the time initialisation code to be out-of-line had the expected
result of reducing the size of the symbol for the constructor from 300 bytes to 30. Moreover,
accurate measurements on the performance of the global software not only showed a 0.3%
improvement in the total execution time, but they also showed that the the improvement in
performance itself was concentrated in those symbols which referred to the above mentioned
matrix class in their signature (7% improvement for those).

We were also encouraged by the fact that a more recent version of the compiler (gcc 4.3.2)
did autonomously exactly the same thing. While 0.3% of the execution time might be seen as a
minor improvement one must think that one has to factor out the initial part of the distribution
(which as we said is due to dynamic memory usage) and moreover it’s important to note that
due to the nature of the time distribution is not possible to expect anything much better from
a single improvement.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 032007 doi:10.1088/1742-6596/219/3/032007

4. Conclusions
In the last year we have successfully profited from the experience and tools to profiling our
software developed within CMS over the time ([8], [7], [12], [11]). We have confirmed to
ourselves that the methodology discussed in the past [8] is indeed useful and we have extended
it to include symbol size analysis and code coverage information.
In particular, we have improved our understanding of compiler code generation and we have
been able to exploit this knowledge to address several code bloat issues present in our code.
Moreover we have also developed a new methodology on how to use perfmon2 profiling results
to obtain precise information about where and how to intervene on the code and we plan to
further develop this methodology as it looks promising to guide optimization efforts.

5. Aknowledgements

For the support, space and contributions to discussion we would like to thank the rest of CMS
Offline Software Group, the CERN MultiCore R&D group and in particular Vincenzo Innocente.
For the support given both in terms of hardware and software configuration we would like to
thank the CERN PH/SFT division, the Estonian National Institute of Chemical Physics and
Biophysics (NICPB), and in particular Stefan Roiser, Gilles Raymond (CERN), Mario Kadastik
and Ilja Livenson (NICPB). Finally a special thanks goes to Stephan Eranian (ex HP, now at
Google Inc.) for the excellent work he did on the perfmon2 profiler. This work would also have
never been possible without support of the National Science Foundation of the United States of
America.

6. References
[1] Moore, G. (1998). Cramming more components onto integrated circuits. Proceedings of the IEEE. 1
[2] Smith. A study of branch prediction strategies. International Symposium on Computer Architecture. (1998)

1
[3] Uht, A. K., Sindagi, V., & Somanathan, S. (1997). Branch effect reduction techniques. Computer, 30(5),
71-81. 1

[4] http://www.intel.com 1

[5] Innocente, V. (2009). The challenge of adapting HEP physics software applications to run on many-core cpus.
Proceedings of Computing in High-Energy and Nuclear Physics (CHEP09), Prague, 2009. 1

[6] C. Jones et al. The new CMS Event Data Model and Framework. Proceedings of Computing in High-Energy
and Nuclear Physics (CHEP06), Mumbai, 2006. 2

[7] Elmer, P., Eulisse, G., Tuura, L. A., Innocente, V. CMS Software Performance Strategies. Proceedings of
Computing in High-Energy and Nuclear Physics (CHEP09), Prague, 2009. 2, 3, 8

[8] Tuura, L., Innocente, V., & Eulisse, G. (2008). Analysing CMS software performance using IgProf, OProfile
and callgrind. J. Phys.: Conf. Ser. 119 Volume 119 042030 (8pp). 2, 8

[9] Eranian, S. (2006) Perfmon2: a flexible performance monitoring interface for Linux. Proc. of the 2006 Ottawa
Linux Symposium, Ottawa, 2006. 4

[10] Anderson et al. (1997) Continuous profiling: Where have all the cycles gone? ACM Transactions on Computer
Systems TOCS. 4

[11] Eulisse, G., & Tuura, L. (2004) IgProf profiling tool. Proceedings of Computing in High-Energy and Nuclear
Physics (CHEPO04), Interlaken, 2004. 5, 8

[12] Eulisse, G., Muzaffar, S., Osborne, 1., Taylor, L., & Tuura, L. A. (2004). A coherent environment of software
improvement tools for CMS. Nuclear Inst. and Methods in Physics Research, 534, 138-142. 8

