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Abstract
We consider multi-edge or banana graphs bn on n internal edges ei with different
masses mi . We focus on the cut banana graphs �(�R(bn)) from which the full result
�R(bn) can be derived throughdispersion.Wegive a recursive definition of�(�R(bn))
through iterated integrals. We discuss the structure of this iterated integral in detail. A
discussion of accompanying differential equations, of monodromy and of a basis of
master integrals is included.
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1 Introduction

We define a banana graph bn by two vertices v1, v2 connected by n edges forming
a multi-edge.1 Furthermore, v1, v2 are both n + 1 valent vertices so that bn has an
external edge at each vertex.

1.1 General considerations

We study associated banana integrals �D
R (bn). The case n = 3 has been intensively

studied and initiated a detailed analysis of elliptic integrals in Feynman amplitudes,
see, for example, [1–11]. Evaluation at masses m2

i ∈ {0, 1} � k2n was recognized to
provide a rich arena for an analysis of periods in Feynman diagrams [12] including
the appearance of elliptic trilogarithms at sixth root of unity in the evaluation of b4
[8].

Let us pause and put the problem into context.

1 Often b2 is called a bubble, b3 a sunset and b4 a banana graph. We call all bn , 2 ≤ n < ∞ banana graphs.
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1.1.1 Recursion and splitting in phase-space integrals

The imaginary part � (�D
R (bn)

)
of �D

R (bn) has been a subject of interest for almost
seventy years at least [13–15]. This imaginary part has the interpretation of a phase
space integral. Our attempt below to express it recursively by an iterated integral can
be traced back to this early work. In fact, computing � (�D

R (bn)
)
by identifying an

imaginary part � (�D
R (bn−1)

)
as a subintegral amounts to a split in the phase-space

integral and this recurses over n.

1.1.2 Banana integrals andmonodromy

In the more recent literature, the graphs bn were studied in an attempt to interpret
the monodromies of the associated functions depending on momenta and masses
�D

R (bn)(s, s0, {m2
i }) as a generalization of the situation familiar from the study of

polylogarithms. This role of elliptic functions was prominent already in the historical
work cited in Sect. 1.1.1 and continued to give insights into the structure of phase
space systematically [5, 9]. Recently, the aim shifted to explore it in the spirit of mod-
ern mathematics. This brought concepts developed in algebraic geometry—motives,
Hodge theory, co-actions, symbols and such—to the forefront [7, 8, 11, 16–19]. For
us, the focus is less on elliptic integrals and elliptic polylogarithms prominent in recent
work. Rather, we focus on the recursive structure of � (�D

R (bn)
)
as it has a lot to offer

still for mathematical analysis.

1.2 Iterated integral structure for bn

Our task is to find iterated integral representations for � (�D
R (bn)

)
which give insight

into their structure for all n. We will use � (�D
R (b2)

)
as a seed for the iteration.

� (�D
R (b3)

)
which has � (�D

R (b2)
)
as a subintegral then gives a complete elliptic

integral as expected, see Sect. 2.3. Already, the computation of b4 indicates more
subtle functions to appear as Sect. 2.5 and Eq. (2.11) demonstrate. Nevertheless, it
turns out that such functions are very nicely structured as we explore in Sect. 2.6.

We want to understand the function �D
R (bn) obtained from applying renormalized

Feynman rules �D
R in D dimensions

�D
R (bn) = S�

R ��D(bn)(s, s0),

to the graph bn .
We will study in particular the imaginary part � (�D

R (bn)
)
having in mind that

�D
R (bn) can be obtained from � (�D

R (bn)
)
by a dispersion integral.

We will mostly work with a kinematic renormalization scheme in which tadpole
integrals evaluate to zero. This is particularly well suited for the use of dispersion.
Indeed, � (�D

R (bn)
)
is free of short-distance singularities as the n constraints putting

n internal propagators on-shell fix all non-compact integrations.
This reduces renormalization of bn to a mere use of sufficiently subtracted disper-

sion integrals. Correspondingly, in kinematic renormalization we can work in a Hopf
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algebra HR = H/Itad of renormalization which divides by the ideal Itad spanned by
tadpole integrals rendering the graphs bn primitive:

�HR (bn) = bn ⊗ I + I ⊗ bn .

Therefore,

S�D

R ��D(bn) = �D(bn)(s) − T ( j)�D(bn)(s, s0).

�D are the unrenormalized Feynman rules in dimensional regularization and T ( j) is
a suitable Taylor operator.

Nevertheless, there is no necessity to regulate Feynman integrals in our approach as
we can subtract on the level of integrands. Indeed, T ( j) can be chosen to subtract in the
integrand. We implement it in Eq. (1.1) using the dispersion integral. Our conventions
for Feynman rules are in “App. A”.

Our interest lies in a compact formula for

�
(
�D

R (bn)
) (

s, {m2
i }
)

=
∫

Mn

Icut(bn),

with Icut(bn) given in Eq. (A.1). We will succeed by giving it as an iterated integral
in Eq. (2.14) which is part of Thm. (2.2).

Results for �D
R (bn)(s, s0, {m2

i }) then follow by (subtracted at s0) dispersion which

implements T ( D
2 −1)(n−1):

�D
R (bn)

(
s, s0, {m2

i }
)

= (s − s0)
( D
2 −1)(n−1)

π

∫ ∞
(∑n

j=1 m j

)2

∫
Mn

Icut(bn)(x)

(x − s)(x − s0)
( D
2 −1)(n−1)

dx .

(1.1)
Note that in the Taylor expansion of �D

R (bn)(s, s0, {m2
i }) around s = s0, the first

( D2 −1)(n−1) coefficients vanish. These are our kinematic renormalization conditions.
For example, �4

R(b2)(s0, s0) = 0. On the other hand, �2
R(b2)(s, s0) = �2

R(b2)(s)
as it does not need subtraction at s0 as it is ultraviolet convergent. So, s0 disappears
from its definition and the dispersion integral is unsubtracted as ( D2 − 1)(n − 1) = 0
and for D = 6, �6

R(b2)(s0, s0) = 0 = ∂s�
6
R(b2)(s, s0)|s=s0 .

1.3 Normal and pseudo-thresholds for bn

To understand possible choices for s0, define a set thresh of 2n−1 real numbers by

thresh =
{
(±m1 ± · · · ± mn)

2
}

,

and set

smin := min{x ∈ thresh}.
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Note that the maximum is achieved by snormal :=
(∑n

j=1m j

)2
. Our requirement for

s0 is
s0 � smin. (1.2)

This ensures that the renormalization at s0 does not produce contributions to the
imaginary part of the renormalized �D

R (bn)(s, s0) as �(�D(bn)(s0)) = 0.
We call snormal normal threshold and the 2−1 −1 other elements of thresh pseudo-

thresholds.
Also we call mn

normal := ∑n
j=1m j the normal mass of bn and any of the other

2n−1 − 1 numbers | ± m1 · · · ± mn| a pseudo-mass of bn . For any ordering o of the
edges of bn , we get a flag b2 ⊂ · · · bn−1 ⊂ bn such that

m j+1
normal = m j

normal + m j+1, j ≤ n − 1.

On the other hand, for any chosen fixed pseudo-mass there exists at least one ordering
o of edges of bn for which the pseudo-mass is m1 − m2 ± · · · .
Remark 1.1 By the Coleman–Norton theorem [20] (or by an analysis of the second
Symanzik polynomial ϕ(bn), see Eq. (D.1) in “App. D”), the physical threshold of bn
is when the energy

√
s of the incoming momenta kn = (kn;0, 
0)T equals the normal

mass

√
s = mn

normal.

The imaginary part � (�D
R (bn)

)
is then given by the monodromy associated with that

threshold and is supported at s ≥ mn
normal.

In this paper, we are mainly interested in the principal sheet monodromy of bn and
hence in the monodromy at

√
s = mn

normal which gives �(�D
R (bn)). Pseudo-masses

are needed to understand monodromy from pseudo-thresholds off the principal sheet.
They can always be expressed as iterated integrals starting possibly from a pseudo-

threshold of �D
R (b2). Such non-principal sheet monodromies need to be studied to

understand the mixed Hodge theory of �D
R (bn) as a multi-valued function in future

work. See [21] for some preliminary considerations.
In preparation to such future work, we note that iterated integral representations

can also be obtained for pseudo-thresholds in quite the same manner as in Eq. (2.14)
by changing signs of masses (not mass squares) in Eq. (2.13) as given in Eq. (D.2) and
correspondingly in the boundaries of the dispersion integral. This dispersion will then
reconstruct variations onnon-principal sheets.Wecollect these integral representations
in “App. D” (Fig. 1). |
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Fig. 1 Banana graphs bn on |bn | = (n − 1) loops. We indicate momenta at internal edges e1, . . . en
labelling from top to bottom. We assign mass square m2

i to edge ei . A positive infinitesimal imaginary part
is understood in each propagator. Both vertices have an external edge with incoming momenta kn and −kn .
Note that edges e1, . . . , e j , n > j ≥ 2 constitute a banana graph b j with external momentum k j flowing
through. It is a ( j − 1)-loop subgraph of bn . In particular, we have a sequence b2 ⊂ b3 ⊂ · · · ⊂ bn of
graphs which gives rise to an iterated integral

Fig. 2 The bubble b2. It gives rise to a function �D
R (b2)(k

2
2 ,m2

1,m
2
2). We compute its imaginary

part �
(
�D

R (b2)(k
2
2 ,m2

1,m
2
2)
)
below. It starts an induction leading to the desired iterated integral for

�(�D
R (bn)). The edges e1, e2 are given in red or blue. Shrinking one of them gives a tadpole integral

�D
R (t1)(m

2
1) (red) or �D

R (t2)(m
2
2) (blue) (colour figure online)

2 Banana integrals � (
8D

R (bn)
)

2.1 Computing b2

We start with the two-edge banana b2, a bubble on two edgeswith two different internal
masses m1,m2, indicated by two different colours in Fig. 2.
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The incoming external momenta at the two vertices of b2 are k2,−k2 which can be
regarded as momenta assigned to leaves at the two three-valent vertices.

We discuss the computation of b2 in detail as it gives a start of an induction which
leads to the computation of bn . The underlying recursion goes long way back as
discussed in Se. (1.1.1) above, see [15] in particular. More precisely, it allows to
express �(�D

R )(bn) as an iterated integral with the integral �(�D
R )(b2) as the start so

that bn is obtained as a (n − 2)-fold iterated one-dimensional integral.
For the Feynman integral �D

R (b2), we implement a kinematic renormalization
scheme by subtraction at s0 ≡ μ2

� (m1 − m2)
2 in accordance with Eq. (1.2).

This implies that the subtracted terms do not have an imginary part, as μ2 is below
the pseudo-threshold (m1 − m2)

2. For example, for D = 4

�4
R(b2)(s, s0,m

2
1,m

2
2) =

∫
dDk1

⎛

⎜⎜
⎜⎜
⎝

1

k21 − m2
1︸ ︷︷ ︸

Q1

1

(k2 − k1)
2 − m2

2︸ ︷︷ ︸
Q2

− {k22 → μ2}

⎞

⎟⎟
⎟⎟
⎠

.

We have s := k22. For D = 6, 8, . . ., subtractions of further Taylor coefficients at
s = μ2 are needed.

As the D-vector k2 is assumed timelike (as s > 0), we can work in a coordinate
system where k2 = (k2;0, 
0)T and get

�D
R (b2) = ω D

2

∫ ∞

−∞
dk1;0

∫ ∞

0

√
t1

D−3
dt1

×
(

1

k21;0 − t1 − m2
1

1

(k2;0 − k1;0)2 − t − m2
2

− {s → s0}
)

.

We define the Källen function, actually a homogeneous polynomial,

λ(a, b, c) := a2 + b2 + c2 − 2(ab + bc + ca),

and find by explicit integration, for example, for D = 4,

�4
R(b2)(s, s0;m2

1,m
2
2)

=

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

√
λ(s,m2

1,m
2
2)

2s
ln

m2
1 + m2

2 − s −
√

λ(s,m2
1,m

2
2)

m2
1 + m2

2 − s +
√

λ(s,m2
1,m

2
2)

− m2
1 − m2

2

2s
ln

m2
1

m2
2

︸ ︷︷ ︸
W 4

2 (s)

−{s → s0}︸ ︷︷ ︸
W 4

2 (s0)

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

.

The principal sheet of the above logarithm is real for s ≤ (m1 + m2)
2 and free of

singularities at s = 0 and s = (m1 − m2)
2. It has a branch cut for s ≥ (m1 + m2)

2.
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See, for example, [5, 21] for a discussion of its analytic structure and behaviour off
the principal sheet.

The threshold divisor defined by the intersection L1 ∩ L2 where the zero loci

Li : Qi = 0,

of the two quadrics meet is at s = (m1 + m2)
2. This is an elementary example of the

application of Picard–Lefschetz theory [22].
Off the principal sheet, we have a pole at s = 0 and a further branch cut for

s ≤ (m1 − m2)
2.

It is particularly interesting to compute the variation—the imaginary part—of
�R(b2) using Cutkosky’s theorem [22]. For all D,

�(�D
R (b2)) = ω D

2

∫ ∞

0

√
t1

D−3
dt
∫ ∞

−∞
dk1;0δ+

(
k21;0 − t1 − m2

1

)

δ+
(
(k2;0 − k1;0)2 − t1 − m2

2

)
.

We have

δ+
(
(k2;0 − k1;0)2 − t1 − m2

2

)
= �(k2;0 − k1;0)δ

(
(k2;0 − k1;0)2 − t1 − m2

2

)
,

and

δ
(
(k2;0 − k1;0)2 − t1 − m2

2

)

= 1

2|k2;0 − k1;0| |k1;0=k2;0+
√
t1+m2

2

× δ

(
k1;0 − k2;0 −

√
t1 + m2

2

)

+ 1

2|k2;0 − k1;0| |k1;0=k2;0−
√
t1+m2

2

× δ

(
k1;0 − k2;0 +

√
t1 + m2

2

)
.

In summary,

δ+
(
(k2;0 − k1;0)2 − t1 − m2

2

)

= �(k2;0 − k1;0)δ
(
(k2;0 − k1;0)2 − t1 − m2

2

)

= 1

2|k2;0 − k1;0| |k1;0=k2;0−
√
t1+m2

2

δ

(
k1;0 − k2;0 +

√
t1 + m2

2

)
,

and therefore,

�(�R(b2)) = ω D
2

∫ ∞

0

√
t1

D−3
dt1δ

(
s − 2

√
s
√
t1 + m2

2 + m2
2 − m2

1

)
1

√
t1 + m2

2

.
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We have from the remaining δ-function,

δ

(
s − 2

√
s
√
t1 + m2

2 + m2
2 − m2

1

)
=
√
t1 + m2

2√
s

δ

(

t1 − λ(s,m2
1,m

2
2)

4s

)

,

and hence,

0 ≤ t1 = λ(s,m2
1,m

2
2)

4s
,

whenever the Källen function λ(s,m2
1,m

2
2) is positive, so for s > (m1+m2)

2 (normal
threshold, on the principal sheet) or for 0 < s < (m1 − m2)

2 (pseudo-threshold, off
the principal sheet).

The integral then gives

�
(
�D

R (b2)
) (

s,m2
1,m

2
2

)
=

=:V D
2 (s;m2

1,m
2
2)︷ ︸︸ ︷

ω D
2

⎛

⎜⎜
⎜
⎝

(√
λ(s,m2

1,m
2
2)

)D−3

(2s)
D
2 −1

⎞

⎟⎟
⎟
⎠

×�
(
s − (m1 + m2)

2
)

,

with ω D
2
given in Eq. (A.2). We emphasize that V D

2 has a pole at s = 0 with residue

|m2
1 − m2

2|/2 and note λ(s,m2
1,m

2
2) = (s − (m1 + m2)

2)(s − (m1 − m2)
2).

We regain�D
R (b2) from�(�D

R (b2))bya subtracteddispersion integral, for example,
for D = 4:

�4
R(b2)(s, s0) = s − s0

π

∫ ∞

0

� (�4
R(b2)

)
(x)

(x − s)(x − s0)
dx .

Here, the renormalization condition implemented in the once-subtracted dispersion
imposes �D

R (b2)(s0, s0) = 0 for D = 4.
Finally, we note that for on-shell edges (k2 − k1)2 = m2

2 so

k2 · k1 = k22 − m2
2 + m2

1

2
,

k21 = m2
1.

2.2 Computing b3

We now consider the three-edge banana b3 on three different masses.
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k1

k2 − k1

k3 − k2

k3
−k3

We start by using the fact that we can disassemble b3 in three different ways into a
b2 subgraph, with a remaining edge providing the co-graph. Using Fubini, the three
equivalent ways to write it in accordance with the flag structure b2 ⊂ b3 are:

�(�D
R (b3)) =

∫
dDk2�

(
�D

R (b2)
)(

k22,m
2
1,m

2
2

)
δ+
(
(k3 − k2)

2 − m2
3

)
, (2.1)

�
(
�D

R (b3)
)

=
∫

dDk2�
(
�D

R (b2)
)(

k22,m
2
2,m

2
3

)
δ+
(
(k3 − k2)

2 − m2
1

)
, (2.2)

�
(
�D

R (b3)
)

=
∫

dDk2�
(
�D

R (b2)
)(

k22,m
2
3,m

2
1

)
δ+
(
(k3 − k2)

2 − m2
2

)
. (2.3)

In any of these cases for �(�D
R (b3)), we integrate over the common support of the

distributions

�
(
�D

R (b2)
)(

k22,m
2
i ,m

2
j

)
∼ �

(
k22 − (mi + m j )

2
)
and δ+

(
(k3 − k2)

2 − m2
k

)
,

generalizing the situation for �(�D
R (b2)) where we integrated over the common

support of

δ+
(
k21 − m2

1

)
and δ+

(
(k2 − k1)

2 − m2
2

)
.

The integral Eqs. (2.1, 2.2, 2.3) are well defined and on the principal sheet they are
equal and give the variation (and hence imaginary part) �(�D

R (b3)) of �D
R (b3).

�D
R (b3) itself can be obtained from it by a sufficiently subtracted dispersion integral

which reads for D = 4

�4
R(b3)(s, s0) = (s − s0)2

π

∫ ∞

0

�(�4
R(b3)(x))

(x − s)(x − s0)2
dx .
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For general D, �D
R (b3) is well-defined no matter which of the two edges we choose

as the subgraph, and Cutkosky’s theorem defines a unique function V D
3 (s),

�(�D
R (b3)(s)) =: V D

3 (s)�(s − (m1 + m2 + m3)
2).

Remark 2.1 Below when we discuss master integrals for bn , we find that by breaking
symmetry through a derivative ∂m2

i
, we obtain four master integrals for b3. �D

R (b3)
itself, and by applying ∂m2

i
to any of Eqs. (2.1, 2.2, 2.3). |

Let us compute V D
3 first.We consider edges e1, e2 as a b2 subgraph with an external

momentum k2 flowing through.
We let k3 be the external momentum of �(�D

R (b3)), 0 < k23 =: s. For the k2-
integration, we put ourselves in the restframe k3 = (k3;0, 
0)T .

Consider then

�
(
�D

R (b3)
)

(s) =
∫

dDk2�(k22 − (m1 + m2)
2)δ+((k3 − k2)

2) − m2
3)

V D
2 (k22,m

2
1,m

2
2).

The δ+-distribution demands that k3;0 − k2;0 > 0, and therefore, we get

�
(
�D

R (b3)
)

(s) = ω D
2

∫ k3;0

−∞
dk2;0

∫ ∞

0
dt2

√
t2

D−3
�(k22;0 − t2 − (m1 + m2)

2)

×V D
2 (k22;0 − t,m2

1,m
2
2)δ((k3;0 − k2;0)2 − t2 − m2

3).

As a function of k2;0, the argument of the δ-distribution has two zeros:

k2;0 = k3;0 ±
√
t2 + m2

3.

As k3;0 − k2;0 > 0, it follows k2;0 = k3;0 −
√
t2 + m2

3. Therefore, k
2
2;0 − t2 =

k23;0 + m2
3 − 2k3;0

√
t2 + m2

3.
For our desired integral, we get

�
(
�D

R (b3)
)

(s) = ω D
2

∫ ∞

0
dt2

√
t2

D−3
�

(
k23;0 + m2

3 − 2k3;0
√
t2 + m2

3 − (m1 + m2)
2
)

×
V D
2

(
k23;0 + m2

3 − 2k3;0
√
t2 + m2

3,m
2
1,m

2
2

)

√
t2 + m2

3

.

The �-distribution requires

k23;0 + m2
3 − (m1 + m2)

2 ≥ 2k3;0
√
t2 + m2

3.
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Solving for t2, we get

0 ≤ t2 ≤ λ
(
s,m2

3, (m1 + m2)
2
)

4s
.

As t2 ≥ 0, we must have for the physical threshold s > (m3 + m1 + m2)
2 which is

indeed completely symmetric under permutations of 1, 2, 3, in accordance with our
expectations for �(�D

R (b3)(s)). We then have

�
(
�D

R (b3)(s)
)

= �
(
s − (m1 + m2 + m3)

2
)

ω D
2

∫ λ(s,m2
3,(m1+m2)2)

4s

0

×
V D
2

(
s + m2

3 − 2
√
s
√
t2 + m2

3,m
2
1,m

2
2

)

√
t2 + m2

3

√
t2

D−3
dt2.

There is also a pseudo-threshold off the principal sheet at s < (m3 − m1 − m2)
2, see

Sect. 2.
Note that the integrand vanishes at the upper boundary

λ(s,m2
k ,(mi+m j )

2)

4s as

λ

(
s + m2

3 − 2
√
s
√
t2 + m2

3,m
2
1,m

2
2

)

|t2= λ(s,m2
3,(m1+m2)2)

4s

= λ
(
(m1 + m2)

2,m2
1,m

2
2

)
= 0.

Let us now transform variables.

y2 :=
√
t2 + m2

3,

t2 = y22 − m2
3,

dt2 = 2y2dy2,

∫ λ
4s

0
→
∫ s+m2

3−(m1+m2)2

2
√
s

m3

.

We get

�
(
�D

R (b3)(s)
)

= �
(
s − (m1 + m2 + m3)

2)

× ω D
2

∫ s+m2
3−(m1+m2)2

2
√
s

m3

V D
2

⎛

⎜
⎜
⎝

s13 (y2,m2
3)︷ ︸︸ ︷

s + m2
3 − 2

√
sy2,m

2
1,m

2
2

⎞

⎟
⎟
⎠

√
y2 − m2

3

D−3
dy2

︸ ︷︷ ︸
V D
3 (s,m2

1,m
2
2,m

2
3)

.

(2.4)
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Had we chosen e2, e3 or e3, e1 instead of e1, e2 for b2, we would find in accordance
with Eqs. (2.1, 2.2, 2.3)

�
(
�D

R (b3)(s)
)

= �
(
s − (m1 + m2 + m3)

2)

× ω D
2

∫ s+m2
1−(m2+m3)2

2
√
s

m1

V D
2

⎛

⎜
⎜
⎝

s13 (y2,m2
1)︷ ︸︸ ︷

s + m2
1 − 2

√
sy2,m

2
2,m

2
3

⎞

⎟
⎟
⎠

√
y2 − m2

1

D−3
dy2

︸ ︷︷ ︸
V D
3 (s,m2

1,m
2
2,m

2
3)

,

(2.5)

or

�
(
�D

R (b3)(s)
)

= �
(
s − (m1 + m2 + m3)

2)

× ω D
2

∫ s+m2
2−(m3+m1)2

2
√
s

m2

V D
2

⎛

⎜
⎜
⎝

s13 (y2,m2
2)︷ ︸︸ ︷

s + m2
2 − 2

√
sy2,m

2
3,m

2
1

⎞

⎟
⎟
⎠

√
y2 − m2

2

D−3
dy2

︸ ︷︷ ︸
V D
3 (s,m2

1,m
2
2,m

2
3)

.

(2.6)

with three different s13(y2) = s13(y2,m
2
i ).

We omit this distinction in the future as we will always choose a fixed order of
edges and call the edges in the innermost bubble b2 edges e1, e2.

Finally, we note

k2,0 = k3,0 − y2,

k22 = k23,0 − 2k3,0y2 + m2
3,

| 
k2| =
√
y22 − m2

3.

Written in invariants this is

k3 · k2 = √
s(

√
s − y2),

k22 = s − 2
√
sy2 + m2

3,

| 
k2| =
√
y22 − m2

3.

2.3 b3 and elliptic integrals

Note that for D = 2 (the case D = 4 can be treated similarly as in [5]) and using Eq.
(2.4),
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V 2
3 (s) = ω1

∫ s+m2
3−(m2+m1)2

2
√
s

m3

1√
U (y2)

dy2,

with

U (y2) = λ
(
s + m2

3 − 2
√
sy2,m

2
2,m

2
1

)
(y22 − m2

3)

= s(y2 − m3)(y2 + m3)(y2 − y+)(y2 − y−),

a quartic polynomial so that V 2
3 defines an elliptic integral following, for example, [5].

Here,

y± =
(s + m2

3 − m2
1 − m2

2) ± 2
√
m2

1m
2
2

2
√
s

.

So, indeed

V 2
3 (s) = 2ω1

(y+ + m3)(y− − m3)
K

(
(y− + m3)(y+ − m3)

(y− − m3)(y+ + m3)

)
, (2.7)

with K the complete elliptic integral of the first kind. Finally,

�2
R(b3)(s) = 1

π

∫ ∞

(m1+m2+m3)2

V 2
3 (x)

(x − s)
dx, (2.8)

gives the full result for b3 in terms of elliptic dilogarithms in all its glory [6, 7, 16] for
D = 2. For arbitrary D, we get

�D
R (b3)(s, s0) = (s − s0)D−2

π

∫ ∞

(m1+m2+m3)2

V D
3 (x)

(x − s)(x − s0)D−2 dx . (2.9)

To compare our result Eq. (2.7) with the result in [5] say, note that we can write

U (y2) = 1

4
λ
(
s, s13 ,m

2
3

)
λ
(
s13 ,m

2
1,m

2
2

)
,

as

λ
(
s, s13 ,m

2
3

)
=
(
s13 − (√

s − m3
)2) (

s13 − (√
s + m3

)2) = 4s
(
y22 − m2

3

)
,

with s13 = s − 2
√
sy2 + m2

3, and use b = s13 , db = −2
√
sdy2 to compare.
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2.4 Computing b4

Above we have expressed V D
3 as an integral involving V D

2 . We can iterate this
procedure.

Let us compute V D
4 next repeating the computation which led to Eq. (2.4). We

consider edges e1, e2, e3 as a b3 subgraph with an external momentum k3 flowing
through.

We let k4 be the external momentum of �(�D
R (b4)), 0 < k24 = s. We put ourselves

in the restframe k4 = (k4;0, 
0)T for the k3-integration.
Consider then

�
(
�D

R (b4)
)

(s) =
∫

dDk3�
(
k23 − (m1 + m2 + m3)

2
)

δ+
(
(k4 − k3)

2
)

− m2
4)V

D
3

(
k23,m

2
1,m

2
2,m

2
3

)
.

The δ+ distribution demands that k4;0 − k3;0 > 0, and therefore, we get

�
(
�D

R (b4)
)

(s) = ω D
2

∫ k4;0

−∞
dk3;0

∫ ∞

0
dt3

√
t3

D−3
�
(
k23;0 − t3 − (m1 + m2 + m3)

2
)

V D
3

(
k23;0 − t3,m

2
1,m

2
2,m

2
3

)
δ
(
(k4;0 − k3;0)2 − t3 − m2

4

)
.

As a function of k3;0, the argument of the δ-distribution has two zeros: k3;0 = k4;0 ±√
t3 + m2

4.

As k4;0 − k3;0 > 0, it follows k3;0 = k4;0 −
√
t3 + m2

4. Therefore, k
2
3;0 − t3 =

k24;0 + m2
4 − 2k4;0

√
t3 + m2

4.
For our desired integral, we get

�
(
�D

R (b4)
)

(s) = ω D
2

∫ ∞

0
dt3

√
t3

D−3
�

(
k24;0 + m2

4 − 2k4;0
√
t3 + m2

4 − (m1 + m2 + m3)
2
)

×
V D
3

(
k24;0 + m2

4 − 2k4;0
√
t3 + m2

4,m
2
1,m

2
2,m

2
3

)

√
t3 + m2

4

.

The �-distribution requires

k24;0 + m2
4 − (m1 + m2 + m3)

2 ≥ 2k4;0
√
t3 + m2

4.

Solving for t3, we get

0 ≤ t3 ≤ λ(s,m2
4, (m1 + m2 + m3)

2)

4s
.
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As t3 ≥ 0, we must have for the physical threshold s > (m4 + m3 + m1 + m2)
2. We

then have

�
(
�D

R (b4)(s)
)

= �
(
s − (m1 + m2 + m3 + m4)

2
)

ω D
2

∫ λ(s,m2
4,(m1+m2+m3)2)

4s

0

×
V D
3 (s + m2

4 − 2
√
s
√
t3 + m2

4,m
2
1,m

2
2,m

2
3)

√
t3 + m2

4

√
t3

D−3
dt3.

Let us now transform variables again.

y3 :=
√
t3 + m2

4,

t3 = y23 − m2
4,

dt3 = 2y3dy3,

∫ λ
4s

0
→
∫ s+m2

4−(m1+m2+m3)2

2
√
s

m4

.

We get

�(�D
R (b4)(s)) = �

(
s − (m1 + m2 + m3 + m4)

2)

× ω D
2

∫ s+m2
4−(m1+m2+m3)2

2
√
s

m4

V D
3 (

s14 (y3)
︷ ︸︸ ︷
s + m2

4 − 2
√
sy3,m

2
1,m

2
2,m

2
3)

√
y3 − m2

4

D−3
dy3

︸ ︷︷ ︸
V D
4 (s,m2

1,m
2
2,m

2
3,m

2
4)

.

We have thus expressed V D
4 as an integral involving V D

3 . As we can express V D
3 by

V D
2 , we get the iterated integral,

V D
4

(
s,m2

1,m
2
2,m

2
3,m

2
4

)
= ω2

D
2

∫ s+m2
4−(m1+m2+m3)2

2
√
s

m4

(∫ s14 (y3)+m2
3−(m1+m2)2

2
√

s14 (y3)

m3

×V D
2

(
s24 (y2, y3),m

2
1,m

2
2

)√
y2 − m2

3

D−3
dy2

)

×
√
y3 − m2

4

D−3
dy3. (2.10)

We abbreviated

s24 (y2, y3) := s14(y3) − 2
√
s14(y3)y2 + m2

3

= s04 − 2
√
s04 y3 + m2

4 − 2

√

s04 − 2
√
s04 y3 + m2

4y2 + m2
3,
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s04 := s.

2.5 Beyond elliptic integrals for b4

Note that V 2
4 cannot be read as a complete elliptic integral of any kind. It is a double

integral over the inverse square root of an algebraic function. V 2
3 was in contrast a

single integral over the inverse square root of a mere quartic polynomial. Concretely,
the relevant integrand is

1
√

(y23 − m2
4)

2(y22 − m2
3)v4(y2, y3)

.

In fact, the innermost y2 integral can still be expressed as a complete elliptic integral
of the first kind as in Eq. (2.7), as v4 is a quadratic polynomial in y2 so that

(y22 − m2
3)v4 = (y2 − m3)(y2 + m3)(y2 − y2,+)(y2 − y2,−)

is a quartic in y2 albeit with coefficients y2,± which are algebraic in y3. We have

y2,±(y3) =
(m2

1 + m2
2 − m2

3 − s14(y3)) ± 2
√
m2

1m
2
2

2
√
s14(y3)

.

We get the more than elliptic integral over an elliptic integral of the first kind,

V 2
4 (s) = ω1

∫ s+m2
4−(m1+m2+m3)2

2
√
s

m4

2ω1

(y2,+(y3) + m4)(y2,−(y3) − m4)

×K

(
(y2,−(y3) + m4)(y2,+(y3) − m4)

(y2,−(y3) − m4)(y2,+(y3) + m4)

)
1

√
y23 − m2

4

dy3. (2.11)

2.6 Computing bn by iteration

Iterating the computation which led to Eq. (2.10), we get

Theorem 2.2 Let bn be the banana graph on n edges and two leaves (at two distinct
vertices) with masses mi and momenta kn,−kn incoming at the two vertices in D
dimensions.

(i) it has an imaginary part determined by a normal threshold as

�
(
�D

R (bn)
)

(s) = �

⎛

⎜
⎝s −

⎛

⎝
n∑

j=1

m j

⎞

⎠

2
⎞

⎟
⎠ V D

n (s, {m2
i }),
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and with a recursion (n ≥ 3)

V D
n (s; {m2

i }) = ω D
2

∫ s+m2
n−(

∑n−1
j=1 m j )

2

2
√

s0n

mn

V D
n−1(s

0
n − 2

√
s0n yn−1 + m2

n,m
2
1, . . . ,m

2
n−1)

×
√
y2n−1 − m2

n

D−3
dyn−1.

Remark (i) This imaginary part is the variation in s of �D
R (bn)(s) in the principal

sheet. Variations on other sheets are collected in “App. D”. See [21] for an introduction
to a discussion of the role of such pseudo-thresholds. |
Theorem (ii) Define for all n ≥ 2, 0 ≤ j ≤ n − 2,

s0n := s,

and for n − 2 ≥ j ≥ 1, s jn = s jn (yn− j , . . . , yn−1;mn, . . . ,mn− j+1),

s jn = s j−1
n − 2

√
s j−1
n yn− j + m2

n− j+1. (2.12)

Define

up j
n :=

s jn + m2
n− j −

(∑n− j−1
i=1 mi

)2

2
√
s jn

, (2.13)

then V D
n is given by the following iterated integral:

V D
n (s,m2

1, . . . ,m
2
n) := ωn−2

D
2

∫ up0n

mn

(∫ up1n(yn−1)

mn−1

(∫ up2n(yn−1,yn−2)

mn−2

· · ·
(∫ upn−3

n (y3,...,yn−1)

m3

V D
2 (sn−2

n (y2, . . . , yn−1),m
2
1,m

2
2)

×
√
y22 − m2

3

D−3
dy2

)
· · ·
√
y2n−2 − m2

n−1

D−3
dyn−2

)

×
√
y2n−1 − m2

n

D−3
dyn−1. (2.14)

Here, V D
2 (a, b, c) = λ(a,b,c)

D−3
2

a
D
2 −1

, so that

V D
2

(
sn−2
n (y2, . . . , yn−1),m

2
1,m

2
2

)
= ω D

2

λ
(
sn−2
n (y2, . . . , yn−1),m2

1,m
2
2

) D−3
2

(
sn−2
n (y2, . . . , yn−1)

) D
2 −1

.
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Remark (ii) We solve the recursion in terms of an iteration of one-dimensional inte-
grals. V D

2 (b2) serves as the seed, V D
2 = ω D

2
λ(sn−2

n ,m2
1,m

2
2)/s

D
2 −1) and sn−2

n =
sn−2
n (yn−1, . . . , y2;m2

3, . . . ,m
2
n) depends on integration variables y j and on mass

squares m2
j+1, j = 2, . . . , n− 1. For b3, we need a single integration; for bn , we need

to iterate (n − 2) integrals. Note that we could always do the innermost y2-integral in
terms of a complete elliptic integral (replacing s14 → sn−3

n in Eq. (2.11), etc.) and use
that as the seed. |
Theorem (iii)We have the following identities:

V D
n

⎛

⎜
⎝

⎛

⎝
n∑

j=1

m j

⎞

⎠

2

; {m2
i }
⎞

⎟
⎠ = 0, (2.15)

up1n(yn−1)|yn−1=up0n
= mn−1, (2.16)

up j
n(yn− j , . . . , yn−1)|yn− j=up j−1

n
= mn− j , (2.17)

upn−3
n (y3, . . . , yn−1)|y3=upn−4

n
= m3, (2.18)

V D
2 (sn−2

n ,m2
1,m

2
2)|y2=upn−3

n
= 0. (2.19)

Remark (iii) Equation (2.15) ensures that the dispersion integrand vanishes at the
lower boundary x = (m1 + · · · +mn)

2 (the normal threshold) as it should. Following
Eqs. (2.16–2.18) for any y j -integration but the innermost integration the integrand
vanishes at the lower and upper boundaries. By Eq. (2.19) for the innermost yn−1
integral this holds for D � 2.

At D = 2, the result can be achieved by considering

lim
η→0

∫ upn−3
n −η

m3+η

· · · dyn−1.

In the limit
√
s → mn

normal for which upn−3
n → m3, one confirms the analysis in [5]

that a finite value at threshold remains.
Summarizing for any D this amounts to compact integration as we have in any y j

integration a resurrection of Stokes formula

∫ up j+1
n

m j+1

∂y j f (y j ) · · · dy j = 0, (2.20)

for any rational function f (y j ) inserted as a coefficient of V D
2 . The dots correspond

to the other iterations of integrals in the y j variables. These are integration-by-parts
identities.

This reflects the fact that the n δ-functions in a cut banana bn constrain the (n − 1)
integrations of k j;0, j = 1, . . . , n−1 and also the total integration over r = ∑n−1

j=1 | 
k j |.
Here, we can set | 
k j | = ru j , and the u j parameterize a (n − 1)-simplex and hence a
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compactum. Angle integrals are over compact surfaces SD−2. Only integrations over
boundaries remain. |
Theorem(iv) We have

∂yk s
j
n = −2

√
sn−k−1
n ∂m2

k+1
s jn ,∀(n − j) ≤ k ≤ (n − 1), (2.21)

if all masses are different. The case of some equal masses is left to the reader.
Also, ⎛

⎝
i−1∏

j=0

√
s jn

⎞

⎠ ∂ss
i
n = 2

i−1∏

j=0

(√
s jn − yn− j−1

)
. (2.22)

For derivatives with respect to masses, we have for 0 ≤ r � k − 1,

∂m2
n−r

skn =
k−1∏

j=r+1

√
s jn − yn−( j+1)

√
s jn

, (2.23)

while ∂m2
n−k+1

skn = 1. Furthermore, for 1 ≤ i ≤ n − 2 − r , 0 ≤ r ≤ n − 3,

∂yn−i s
n−2−r
n = −2

√
si−1
n

n−1−i∏

j=2+r

sn− j−1
n − y j

sn− j−1
n

. (2.24)

Remark (iv) These formulae allow to trade ∂y j derivatives with ∂m2
j+1

derivatives

and to treat ∂s derivatives. This is useful below when discussing differential equation,
integration-by-parts and master integrals for �D

R (bn). |
Theorem (v) Dispersion. Let |[n, ν]| − 1 (see Eq. (C.2)) be the degree of divergence

of �D
R (bn)ν . Then,

�D
R (bn)ν(s, s0) = (s − s0)|[n,ν]|

π

∫ ∞
(∑n

j=1 m j

)2
V D[n,ν](x, {m2

i })
(x − s)(x − s0)|[n,ν]| dx,

is the renormalized banana graph with renormalization conditions

�D
R (bn)

( j)
ν (s0, s0) = 0, j ≤ |[n, ν]| − 1,

where �D
R (bn)

( j)
ν (s0, s0) is the j th derivative of �D

R (bn)ν(s, s0) at s = s0.

Remark (v) This gives �D
R (bn)ν from V D[n,ν] in kinematic renormalization. See “App.

C” for notation. For a result in dimensional integration with MS, use an unsubtracted
dispersion

�D
MS(bn)ν(s) = 1

π

∫ ∞
(∑n

j=1 m j

)2
V D[n,ν](x, {m2

i })
(x − s)

dx,
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and then renormalize by Eq. (B.1) as tadpoles do not vanish in MS. |
Theorem(vi) Tensor integrals (see “App. C”). We have

k j+1 · k j = m2
j+1 − sn− j−1

n − sn− j
n (2.25)

= −
√
sn− j−1
n

(√
sn− j−1
n − yn− j

)
, j ≥ 2,

k2 · k1 = k22 − m2
2 + m2

1

2
, (2.26)

k2j = sn− j
n , in particular k22 = sn−2

n , (2.27)

k j · kl = kl · kl+1kl+1 · kl+2 · · · k j−1 · k j
k2l+1 · · · k2j−1

=
√
sn− j−1
n

√
sn−l−1
n

j∏

i=l+1

(√
sn−i
n − yi+1

)
, j − l � 1, j > l, l � 1, (2.28)

k j · k1 = kl · kl+1kl+1 · kl+2 · · · k j−1 · k j
k2l+1 · · · k2j−1

=
√
sn− j−1
n
√
sn−2
n

sn−2
n − m2

2 + m2
1√

sn−2
n

j∏

i=2

(√
sn−i
n − yi+1

)
, j − 1 � 1.

(2.29)

Furthermore, V D[n,ν] is obtained by using Eqs. (2.25–2.29) to insert tensor powers

as indicated by ν in the integrand of V D
2 (sn−2

n ,m2
1,m

2
2) and apply derivatives with

respect to mass squares accordingly.

Remark (vi) We first give in Fig. 3with k2j = sn− j
n also the irreducible squares of

internal momenta (there is no propagator k2j − m2
j in the denominator of bn).

Equation (2.26) is needed as Eq. (2.25) cannot cover the case j = 1, due to the fact
that for the b2 integration dDk1 both edges are constrained by a δ+-function, while
each other loop integral gains only one more constraint, giving us a y j variable.

Equations (2.25–2.29) allow to treat tensor integrals involving scalar products of
irreducible numerators. Irreducible as there is no propagator 1/(k2j − m2

j+1) in our
momentum routing for bn , see Fig. 3.

Equations (2.28, 2.29) for irreducible scalar products follow by integrating tensors
in the numerator in the order of iterated integration. For example, for the case of b3,

∫ ∫
k1 · k3 1

· · ·d
Dk1d

Dk2 =
∫

A(k22)k2 · k3 1

· · ·d
Dk2 = C(k23),
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Fig. 3 We indicate momenta and masses at internal edges from top to bottom. We now also indicate

momentum s jn for edges e2, . . . , en . The mass-shell conditions encountered in the computation of V D
n

enforce k2j = sn− j
n for 2 ≤ j ≤ n. Equation (2.25) simply expresses the fact that −2k j · k j+1 =

(k j+1 − k j )
2 − k2j+1 − k2j with (k j+1 − k j )

2 = m2
j+1

and

∫ ∫
k1 · k2k2 · k3

k22

1

· · ·d
Dk1d

Dk2 =
∫

A(k22)
k22k2 · k3

k22

1

· · ·d
Dk2 = C(k23),

using

∫
k1μ

· · · d
Dk1 = A(k22)k2μ,

and dots · · · correspond to the obvious denominator terms. |

Proof (i) and (ii) follow from the derivation of Eq. (2.10) upon setting 4 → n, 3 →
n − 1 in an obvious manner.

(iii) follows from inspection of Eq. (2.6): For example,

up0n = s + m2
n − (m1 + · · · + mn−1)

2

2
√
s

,

up1n(yn−1) = s1n + m2
n−1 − (m1 + · · · + mn−2)

2

2
√
s1n

,

with

s1n(yn−1) = s − 2
√
syn−1 + m2

n .
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Then,

up1n(up
0
n) = (m1 + · · · + mn−1)

2 + m2
n−1 − (m1 + · · · + mn−2)

2

2(m1 + · · · + mn−1)
= mn−1,

and so on.
(iv) straight from the definition Eq. (2.12) of s jn . For example,

∂m2
n
s3n =

(√
s1n − yn−2

) (√
s2n − yn−3

)

√
s1n
√
s2n

(v) This is the definition of dispersion in kinematic renormalization conditions.
(vi) For tensor integrals, we collect variables k j;0 and t j in any step of the

computation in terms of y j =
√
t j + m2

j+1. ��

2.6.1 sjn: iterating square roots

Choose an order o of the edges which fixes

b2 ⊂ b3 ⊂ · · · ⊂ bn−1 ⊂ bn .

Here, we label

Eb2 =: {e1, e2}, Eb3 = {e1, e2, e3}, . . . , Ebn = {Ebn−1 ∪ en}.

Then,

s1n (yn−1) = s − 2
√
syn−1 + m2

n,

s2n (yn−1, yn−2) = s − 2
√
syn−1 + m2

n − 2
√
s − 2

√
syn−1 + m2

n yn−2 + m2
n−1,

s3n (yn−1, yn−2, yn−3) = s − 2
√
syn−1 + m2

n − 2
√
s − 2

√
syn−1 + m2

n yn−2 + m2
n−1

−2

√

s − 2
√
syn−1 + m2

n − 2
√
s − 2

√
syn−1 + m2

n yn−2 + m2
n−1

×yn−3 + m2
n−2,

· · · ,

sn−2
n (yn−1, . . . , y3, y2) = sn−3

n (yn−1, . . . , y3) − 2
√
sn−3
n (yn−1, . . . , y3)y2 + m2

3.

Remark 2.3 The iteration of square roots in particular for sn−2
n which is the crucial

argument in V D
n (sn−2

n ,m2
1,m

2
2) is hopefully instructive for a future analysis of periods

which emerge in the evaluation of that function [11]. This iteration of square roots
points to the presence of a solvable Galois group with successive quotients Z/2Z
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reflecting iterated double covers in momentum space. Thanks to Spencer Bloch for
pointing this out. |

3 Differential equations and related considerations

This section collects some comments with respect to the results above with regard to:

• Dispersion. We want to discuss in some detail why raising powers of propagators
is well defined in dispersion integrals even if a higher power of a propagator
constitutes a product of distributions with coinciding support.

• Integration by parts (ibp) [23]. We do not aim at constructing algorithms which
can compete with the established algorithms in the standard approach [24]. But at
least we want to point out how ibp works in our iterated integral set-up.

• Differential equations. Here, we focus on systems of linear first-order differential
equations for master integrals [25]. We also add a few comments on higher-order
differential equation for assorted master integrals which emerge as Picard–Fuchs
equations [6, 7, 10, 19].

• Master integrals. Master integrals are assumed independent by definition with
regard to relations between them with coefficients which are rational functions
of mass squares and kinematic invariants [26, 27]. We will remind ourselves
that such a relation can still exist for their imaginary parts [5]. We trace this
phenomenon back to the degree of subtraction needed in dispersion integrals to
construct their real part from their imaginary parts. Furthermore, we will offer a
geometric interpretation of the counting of master integrals for graphs bn .

3.1 Dispersion and derivatives

As we want to obtain full results from imaginary parts by dispersion, we have to
discuss the existence of dispersion integrals in some detail. There are subtleties when
raising powers of propagators. It is sufficient to discuss the example of b2.

With �D
R (b2) given, consider a derivative with respect to a mass square such that a

propagator is raised to second power,

�D
R (b2)2,1 := ∂m2

1
�D

R (b2)(s,m
2
1,m

2
2).

Similar to the imaginary part,

�
(
�D

R (b2)2,1
)

:= ∂m2
1
�
(
�D

R (b2)
)

(s,m2
1,m

2
2).

We have (for D = 4 say)

�
(
�4

R(b2)2,1
)

= s − s0
π

∫ ∞

0

∂m2
1

(
�(x − (m1 + m2)

2)V 4
2 (x,m2

1,m
2
2)
)

(x − s)(x − s0)
dx .
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Fig. 4 The doubling of propagators indicated by a dot on the edge creates a problem

There is an issue here. It concerns the fact that to a propagator, itself a distribution,

Q(r ,m) = 1

r2 − m2 = P.V.
1

r2 − m2 + iπδ(r2 − m2),

(using Cauchy’s principal value and the δ-distribution) we can associate a well-defined
distribution by ‘cutting’ the propagator:

1

Q(r ,m)
→ δ+(Q(r ,m)) = �(r0)δ(r

2 − m2).

The expression

2
δ+(Q(r ,m))

Q
,

obtained from cutting any one of the two factors in the squared propagator,

−∂m2
1

Q(r ,m)
= 1

Q2(r ,m)
→ 2

δ+(Q(r ,m))

Q
,

is ill defined as the numerator forces the denominator to vanish. Hence, higher powers
of propagators are subtle when it comes to cuts on any one of their factors (Fig. 4).

Remarkably, dispersion still works despite the fact that derivatives like ∂m2
1
do just

that: generating such higher powers.
We have

∂m2
1
�(�D

R (b2)) = δ(s − (m1 + m2)
2)V D

2 (s,m2
1,m

2
2)

(
1 + m2

m1

)

+�(s − (m1 + m2)
2)∂m2

1
V D
2 (s,m2

1,m
2
2),

where

(
1 + m2

m1

)
= ∂m2

1
(m1 + m2)

2.
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Using

V D
2 (s,m2

1,m
2
2) =

√
λ(s,m2

1,m
2
2)

D−3

s
D
2 −1

,

the above is singular at s = (m1 +m2)
2. Indeed, both terms on the rhs are ill defined,

but their sum can be integrated in the dispersion integral

∂m2
1
φD
R (b2) = (s − s0)

π

∫ ∞

0

(
δ(x − (m1 + m2)

2)V D
2 (x,m2

1,m
2
2)

(
1 + m2

m1

)

+ �(x − (m1 + m2)
2)∂m2

1
V D
2 (x,m2

1,m
2
2)
) 1

(x − s)(x − s0)
dx,

so that the singularity drops out for all D by Taylor expansion of

∂m2
1
λ(x,m2

1,m
2
2) = ∂m2

1

(
(x − (m1 + m2)

2)(x − (m1 − m2)
2)
)

,

near the point x = (m1 + m2)
2.

We are not saying that it is meaningful to replace

1

Q2 → δ+(Q)

Q
,

to come to dispersion relations.
Instead, we can exchange either:

(i) Taking derivatives wrt masses on an imaginary part � (�D
R (bn)ν

)
first and then

doing the dispersion integral, or,
(ii) Doing the dispersion integral first and then taking derivatives.

3.2 Integration-by-parts

Integration-by-parts (ibp) is a standard method employed in high energy physics
computations.

It starts from an incarnation of Stoke’s theorem in dimensional regularization

0 =
∫

dDk
∂

∂kμ

vμF({k · r}),

where F is a scalar function of loop momentum k and other momenta and vμ is a
linear combination of suchmomenta employing a suitable definition of D-dimensional
integration for D ∈ C.

Wewant to discuss ibp and Stokes theorem from the viewpoint of the yi -integrations
in our iterated integral.
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We let Intbn be the integrand in Eq. (2.14). It is made from three factors:

Intbn = YD−3
n × 3D−3

n × σ
1− D

2
n ,

with Yn, 3n, σn defined by,

YD−3
n =

n−1∏

j=2

√
y2j − m2

j+1

D−3
,

3D−3
n =

√
λ(sn−2

n (y2, . . . , yn−1),m2
1,m

2
2)

D−3
,

σ
1− D

2
n = 1

(
sn−2
n (y2, . . . , yn−1)

) D
2 −1

.

We have the following identities which allow to trade derivatives with respect to y j
with derivatives with respect to m2

j+1 or s,

∂y jYn = y j
1

y2j − m2
j+1

Yn = −2y j∂m2
j+1

Yn, (3.1)

∂y j 3n = sn−2
n − m2

1 − m2
2

λ(sn−2
n (y2, . . . , yn−1),m2

1,m
2
2)

(∂y j s
n−2
n )3n

= (∂s3n)

⎛

⎝ −2
√
s√

s − yn−1

n− j−1∏

k=1

skn
skn − yn−k−1

⎞

⎠ (3.2)

= −2
√
sn− j−1
n ∂m2

j+1
3n,

∂y j σn = ∂y j s
n−2
n = −2

√
sn− j−1
n

j−1∏

l=2

sn−l−1
n − yl

sn−l−1
n

= −2
√
sn− j−1
n ∂m2

j+1
σn

= ∂sσn

⎛

⎝ −2
√
s√

s − yn−1

n− j−1∏

k=1

skn
skn − yn−k−1

⎞

⎠ . (3.3)

We also note that

∂m2
j+1

3n = (∂m2
j+1

sn−2
n )

1

m2
1 − m2

2

(
m2

1∂m2
1
− m2

2∂m2
2

)
3n, (3.4)

and

∂s3n = (∂ss
n−2
n )

1

m2
1 − m2

2

(
m2

1∂m2
1
− m2

2∂m2
2

)
3n . (3.5)
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Furthermore, insertion of tensor structure given by ν following Sect. 1 and Eqs.
(2.25–2.29) define an integrand Intbn ,ν .

Now, using Eq. (2.20) we have for any such integrand,

∫ up j+1
n

m j+1

∂y j
(
Intbn ,ν

)
dy j = 0, ∀ j, 2 ≤ j ≤ (n − 1).

Proposition 3.1 The above evaluates to an identity of the form,

∑

j

Intbn ,ν j = 0,

between tensor integrals Intbn ,ν j for some tensor structures ν j .

Proof Derivatives with respect to y j can be traded for derivatives with respect to
masses and with respect to the scale s using Eqs. (3.1, 3.3, 3.1). Starting with ν, this
creates suitable new tensor structures ν j . Homogeneity of λ allows to replace the ∂s
derivatives by Intbn ,ν̃ j with once-more modified tensor structures ν̃ j . ��

3.3 Differential equations

Functions �D
R (G)({ki · k j }, {m2

e}) for a chosen Feynman graph G fulfil differential
equations with respect to suitable kinematical variables [25]. Those variables are given
by scalar products ki · k j of external momenta. For G = bn , these are differential
equations in the sole scalar product s = kn · kn of external momenta.

�D
R (bn)(s, {m2

e}) is a solution to an inhomogeneous differential equation, and the
imaginary part � (�D

R (bn)
)
(s, {m2

e}) solves the corresponding homogeneous one.
More precisely, there is a set ofmaster integrals {bn}M defined as a class of Feynman

graphs such that any given graph bn , giving rise to integrals �D
R (bn)ν(s, s0, {m2

e})—
so with all its corresponding tensor integrals and arbitrary integer powers of
propagators—can be expressed as linear combinations of elements of {bn}M .

Let us consider the column vector Sbn formed by the elements of {bn}M . One
searches for a first-order system

∂s Sbn (s) = ASbn (s) + T ,

with A = A(s, {m2
e}) a matrix of rational functions and T = T ({m2

e}) the inhomo-
geneity provided by the minors of bn . Those are (n − 1)-loop tadpoles te obtained
from shrinking an edge e, te = bn/e.

One then has

∂s�(Sbn )(s) = A�(Sbn )(s),

where �(Sbn ) is formed by the imaginary parts of entries of Sbn and �(�D
R (te)) = 0.
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For b3, for example, one has Sb3 = (F0, F1, F2, F3)T , with F0 = �D
R (b3), Fi =

∂m2
i
�D

R (b3), i ∈ {1, 2, 3}.
The 4 × 4 matrix A and the four-vector T for that example are well-known, see

[10].
From such a first-order system for the full set of master integrals, one often derives

a higer-order differential equation for a chosen master integral. For b3 or b4, it is a
Picard–Fuchs equation [10].

For banana graphs bn , it is a differential equation of order (n − 1):

n−1∑

j=0

(
Q( j)

bn
∂
j
s

)
�D

R (bn)(s) = Tn(s), (3.6)

where Q( j)
bn

are rational functions in s, {m2
e} and one can always set Q(n−1)

bn
= 1. It

has been studied extensively [6, 7, 10, 11, 19].
We want to outline how our iterated integral approach relates to such differential

equations, to master integrals and to the integration-by-parts (ibp) identities which
underlay such structures.

Our first task is to remind ourselves how to connect the homogeneous and
inhomogeneous differential equations, andwe turn to b2 for some basic considerations.

3.3.1 Differential equation for b2

We set D = 2 for the moment. Consider the imaginary part of the bubble

�(�2
R(b2))(s) = 1

√
λ(s,m2

1,m
2
2)

�(s − (m1 + m2)
2).

We can recover �2
R(b2) by dispersion which reads for D = 2,

�2
R(b2)(s) = 1

π

∫ ∞

(m1+m2)2

�(�2
R(b2))(x)

(x − s)
dx .

We now use this representation to analyse the well-known differential equation [6] for
b2 given in

Proposition 3.2

(
λ(s,m2

1,m
2
2)

∂

∂s
+ (s − m2

1 − m2
2)

)
�2

R(b2)(s) = 1

π
, (3.7)

and for the imaginary part

(
λ(s,m2

1,m
2
2)

∂

∂s
+ (s − m2

1 − m2
2)

)
�
(
�2

R(b2)(s)
)

= 0. (3.8)
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Note that Eq. (3.8) is the homogeneous equation associated with Eq. (3.7) as it must
be [25].

The following proof aims at deriving Eq. (3.7) from the dispersion integral.

Proof Let us first prove Eq. (3.8).

λ
(
s,m2

1,m
2
2

) ∂

∂s

1
√

λ
(
s,m2

1,m
2
2

)�
(
s − (m1 + m2)

2
)

= − (s + m2
1 + m2

2

)

√
λ
(
s,m2

1,m
2
2

) �
(
s − (m1 + m2)

2
)

+
√

λ
(
s,m2

1,m
2
2

)
δ
(
s − (m1 + m2)

2
)

= − (s + m2
1 + m2

2

)

√
λ
(
s,m2

1,m
2
2

) �
(
s − (m1 + m2)

2
)

= −
(
s + m2

1 + m2
2

)
�
(
�2

R(b2)
)

(s),

as desired. We use λ((m1 + m2)
2,m2

1,m
2
2) = 0.

Now, for Eq. (3.7). Evaluating the lhs gives

LHS = λ(s,m2
1,m

2
2)

1

π

∫ ∞

(m1+m2)2

1
√

λ(x,m2
1,m

2
2)(x − s)2

dx (3.9)

+ 1

π

∫ ∞

(m1+m2)2

(s − m2
1 − m2

2)√
λ(x,m2

1,m
2
2)(x − s)

dx . (3.10)

A partial integration in the first term (3.9) delivers

LHS = −λ(s,m2
1,m

2
2)

1

2π

∫ ∞

(m1+m2)2

∂xλ(x,m2
1,m

2
2)

√
λ(x,m2

1,m
2
2)

3
(x − s)

dx

+ 1

π

∫ ∞

(m1+m2)2

(s − m2
1 − m2

2)√
λ(x,m2

1,m
2
2)(x − s)

dx

−λ(s,m2
1,m

2
2)

⎡

⎣ 1

π

1
√

λ(x,m2
1,m

2
2)(x − s)

⎤

⎦

∞

(m1+m2)2

.

We have

∂xλ
(
x,m2

1,m
2
2

)
= 2

(
x − m2

1 − m2
2

)
=: v1(x), v1(x) − v1(s) = 2(x − s), (3.11)
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and

λ
(
s,m2

1,m
2
2

)
−λ

(
x,m2

1,m
2
2

)
= (s−x)

(
(s + x) − 2(m2

1 + m2
2)
)

=: w(x, s)(s−x).

(3.12)
Using this the lhs of Eq. (3.7) reduces to a couple of boundary terms. We collect

+ 1

π

[
x√
λx

]∞

(m1+m2)2

+ s − 2(m2
1 + m2

2)

π

[
1√
λx

]∞

(m1+m2)2

+
[
1

π

(s − x)w(s, x) + λx√
λx (x − s)

]∞

(m1+m2)2

= 1

π
,

as desired.
Indeed, using that w(s, x) = s + x − 2(m2

1 +m2
2) we see that the term ∼ w in the

third line cancels the first and second lines. The remaining term is

[
1

π

λx√
λx (x − s)

]∞

(m1+m2)2
= 1

π
,

as
√

λ((m1 + m2)2,m2
1,m

2
2) = 0 and limx→∞

√
λ(x,m2

1,m
2
2) = x . ��

Remark 3.3 So, for b2 we have by Eqs. (3.12, 3.11)

Q0(x) = 2(s − m2
1 − m2

2)

λ(s,m2
1,m

2
2)

and Q1(x) = 1.

This is a trivial incarnation of Eq. (3.6). As (Q0(x) − Q0(s)) ∼ (x − s), we cancel
the denominator 1/(x − s) in the dispersion integral and we are left with boundary
terms which constitute the inhomogeneous terms.

Remark 3.4 The non-rational part �D
R (b2)Transc of �D

R (b2) is divisible by V D
2 and

gives a pure function in the parlance of [2]. Indeed, one wishes to identify such pure
functions in the non-rational parts of �D

R (bn)(s, s0).
For example, for D = 4 (ignoring terms in �4

R(b2)(s) which are rational in s)

�4
R(b2)(s)Transc/V

4
2 (s) = ln

m2
1 + m2

2 − s −
√

λ(s,m2
1,m

2
2)

m2
1 + m2

2 − s +
√

λ(s,m2
1,m

2
2)

.

This follows also for all bn , n > 2, as long as the inhomogenuity Tn(s) fulfils

�(Tn(s)) = 0,
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which is certainly true for the case b2 with T2(s) = 1/π . Indeed, for f (s) a solution
of the homogeneous

⎛

⎝
n−1∑

j=0

Q j (s)∂
j
s

⎞

⎠ f (s) = 0,

the inhomogeneous Picard–Fuchs equation

⎛

⎝
n−1∑

j=0

Q j (s)∂
j
s

⎞

⎠ g(s) = Tn(s),

can be solved by setting g(s) = f (s)h(s). Using Leibniz’ rule, this determines h(s)
as a solution of an equation

n−1∑

k=1

h(k)(s)

⎛

⎝
n−1∑

j=k

(
j
k

)
a j (s) f

( j−k)(s)

⎞

⎠ = u(s),

with f ( j−k)(s) = ∂
j−k
s f (s) and similarly for h(k)(s). Note f ( j−k)(s) are given by

solving the homogeneous equation. Hence, g(s) indeed factorizes as desired.2

This relates to co-actions and cointeracting bialgebras [28, 29] andwill be discussed
elsewhere.

3.3.2 Systems of linear differential equations for bn

To find differential equations for the iterated y j -integrations of Eq. (2.14), we first

systematically shift all y j -derivatives acting on
√
y2j − m2

j+1 to act on V
D
2 (s2n ,m

2
1,m

2
2)

using partial integration. We can ignore boundary terms by Thm. (2.2(iii)). We use

⎛

⎝∂m2
j

1
√
y j−1 − m2

j

⎞

⎠ F = 1

2
√
y j−1 − m2

j

3 F

=
⎛

⎜
⎝− y2j−1 − m2

j

2m2
j

√
y j−1 − m2

j

3 + y2j−1

2m2
j

√
y j−1 − m2

j

3

⎞

⎟
⎠ F

=
⎛

⎝− 1

2m2
j

√
y j−1 − m2

j

− y

⎛

⎝∂y j−1

1

2m2
j

√
y j−1 − m2

j

⎞

⎠

⎞

⎠ F

2 The argument can be extended by replacing the requirement �(Tn(s)) = 0 by Varx (Tn(s)) = 0 where
Varx is the variation around a given threshold divisor x . For banana graphs bn , we only have to consider
x = snormal.
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= − 1

2m2
j

√
y j−1 − m2

j

F + 1

2m2
j

√
y j−1 − m2

j

(
∂y j−1 y j−1F

)

= + 1

2m2
j

√
y j−1 − m2

j

y j−1
(
∂y j−1F

)

= + 1

m2
j

√
y j−1 − m2

j

y j−1

(√
s j−1
n ∂m2

j
F

)
.

We could trade a derivative wrt y j−1 for a derivative wrt m2
j thanks to Thm. (2.2(iv)).

This holds under the proviso that all masses are different. Else, we use the penultimate
line as our result:

⎛

⎝∂m2
j

1
√
y j−1 − m2

j

⎞

⎠ F = + 1

2m2
j

√
y j−1 − m2

j

y j−1
(
∂y j−1F

)
.

We can iterate this and shift higher than first derivatives

⎛

⎝∂k
m2

j

1
√
y j−1 − m2

j

⎞

⎠ F

to derivatives on F .
We note that from the definition of λ(sn−2

n ,m2
2,m

2
1) we have

λ
(
sn−2
n ,m2

2,m
2
1

)
= sn−2

n

(
sn−2
n − 2

(
m2

1 + m2
2

))

+
(
m2

1 − m2
2

)2
.

By Euler (λ is homogeneous of degree two),

2λ
(
sn−2
n ,m2

2,m
2
1

)
= ∂sn−2

n
λ
(
sn−2
n ,m2

2,m
2
1

)
+ ∂m2

1
λ
(
sn−2
n ,m2

2,m
2
1

)

+∂m2
2
λ
(
sn−2
n ,m2

2,m
2
1

)
.

Also,

∂m2
1
λ
(
sn−2
n ,m2

2,m
2
1

)
= 2

(
m2

1 − m2
2 − sn−2

n

)
,

∂m2
2
λ
(
sn−2
n ,m2

2,m
2
1

)
= 2

(
m2

2 − m2
1 − sn−2

n

)
,

∂m2
j
λ
(
sn−2
n ,m2

2,m
2
1

)
= 2

(
sn−2
n − m2

1 − m2

)
∂m2

j
sn−2
n , ∀ 3 ≤ j ≤ n,

∂sλ
(
sn−2
n ,m2

2,m
2
1

)
= 2

(
sn−2
n − m2

1 − m2

)
∂ss

n−2
n .
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With this, Thm. (2.2) allows to derive differential equations.
Let us rederive, for example, the differential equation for the three-edge banana.

Let us define

F0 = �R(b3),

F1 = ∂m2
1
F0,

F2 = ∂m2
2
F0,

F3 = ∂m2
3
F0,

Fs = ∂s F0.

Then, we have

(D − 3)F0 +
3∑

j=1

m2
j Fj = s∂s F0, (3.13)

and similarly,

(

(D − 4) +
3∑

i=1

m2
i ∂m2

i

)

Fj = s∂s Fj , j ∈ {1, 2, 3}. (3.14)

The integrands Ii for (D − 3)F0,m2
1F1,m

2
2F2,m

2
3F3, and sFs can be written as

Ii = numi (y2)

s
D
2

√
y22 − m2

3

D−5√
λ
D−5

(s13 ,m
2
2,m

2
1)

with suitable polynomials numi in y2. Equation (3.13) follows immediately as the
corresponding numerators numi (y2) add to zero.

Equation (3.14) for F1, F2, F3 can be proven in precisely the same manner, and
many more differential equations follow from using the ibp identities Eqs. (3.1–3.3).

Furthermore, F0, F1, F2, F3 provide master integrals for the Feynman integrals
�D

R (b3)ν [10].

Remark 3.5 Note that we can infer the independence of F0, F1, F2, F3 from the fact
that the corresponding polynomials are different, in fact of different degree in y2.

We could also use different integral representations for F1, F2, F3 by setting

F3 = ∂m2
3
rhs of Eq. (2.1),

F2 = ∂m2
2
rhs of Eq. (2.2),

F1 = ∂m2
1
rhs of Eq. (2.3).

and conclude from there. |
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3.4 Master integrals

We want to comment on two facts:

(i) A geometric interpretation of the known formula for the counting of master
integrals for bn ,

(ii) That the independence of elements x of a set Sbn of master integrals does not imply
the independence of elements of �(x), x ∈ (Sbn

)
.

3.4.1 A geometric interpretation: powercounting

Let us start with a geometric interpretation. We collect a well-known proposition [26,
27].

Proposition 3.6 The number of master integrals for the n-edge banana with different
masses is 2n − 1.

Let us pause. For b3, we have four master integrals, F0, and three possibilities to put
a dot on an internal edge. Furthermore, we can shrink any of the three internal edges,
giving us three two-petal roses as minors. This makes 7 = 23 − 1 master integrals
amounting to the fact that all tensor integrals �R(bn)ν can be expressed as a linear
combination of those seven, with coefficients which are rational functions in the mass
squares and in s.

Similarly, for b4 we have �D
R (b4) itself, four integrals ∂m2

i
�D

R (b4) and six

∂m2
j
∂m2

i
�D

R (b4), i �= j . There are four minors as well, so that we get the desired

15 = 24 − 1 master integrals.
For arbitrary n, there are indeed

(n
j
)
possibilities to put one dot on j edges, and

n−2∑

j=0

(n
j
) = 2n − n − 1,

possibilities to put a single dot on up to n − 2 edges. Furthermore, we have n minors
from shrinking one of the n edges, so we get 2n − 1 master integrals.

Furthermore, it is obvious from the structure of the iterated integral in Eq. (2.14) that
the two edges forming the innermost b2 do not need a dot. Indeed, the corresponding
loop integral in k1 is fixed by two δ+ functions. Integration by parts then ensures that
we do not need more than one dot per edge at most.

Remark 3.7 One can analyse this from the viewpoint of powercounting. Let us choose
D = 4 so that b2 is log-divergent. Let us note that for D = 4

4(n − 1) − 2

#E
︷ ︸︸ ︷
(2n − 2) = 0, (3.15)

where #E is the number of edges of a banana graph bn which has (n − 2) edges with
a single dot each. Equation (3.15) says that bn furnished with the maximum of n − 2
dots gives an overall logarithmic singular integral for any n.
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Fig. 5 The graph b3 and its triangular cell C3. The codimension-one boundaries (sides) are given by the
condition Ai = 0, indicated in the figure by i = 0, i ∈ {1, 2, 3}. The graph b3 with two yellow leaves as
external edges is put in the barycentre. All its edges are put on-shell. The cell decomposes into six sectors
mi Ai > m j A j > mk Ak as indicated by i > j > k. The lines mi Ai = m j A j (indicated by i = j) start at
the midpoint midi, j : Ak = 0, Aimi = A jm j of the codimension one boundary Ak = 0 and pass through
the barycentre bc : m1A1 = m2A2 = m3A3 towards the corner ck : Ai = A j = 0, labelled k. Such
corners are removed. For these three lines, the three intervals [midi, j , bc] from the midpoints of the sides to
the barycentre of the cell form the spine. It indicated in turquoise. The bold hashed line indicated by 2 < 3
(so m2A2 < m3A3) on the left and 2 < 1 (so m2A2 < m1A1) on the right is an example of a fibre over
one (the vertical) part (on the 1 = 3-line) of the spine (the turquoise line from m1A1 = m3A3, A2 = 0 to
the barycentre). On the left, along the fibre the ratio A2/A3 < m3/m2 is a constant, on the right similarly.
Finally, to the two yellow leaves we assign incoming four-momenta k3,−k3 with k23 = s. The spine
partitions the cellC3 into three 2-cubes, boxes�( j)with four corners for any�( j): midi, j , bc,mid j,k , c j .
For each such box �( j) there is a diagonal d j . It is a line from a corner to the barycentre: d j : ]c j , bc] for
which we have mi Ai = mk Ak . We assign to this diagonal d j a graph for which edges ei , ek are on-shell
and edge e j carries a dot. Along the diagonal d j , we have A jm j > (Aimi = Akmk ) (colour figure online)

A lesser number of dots give a higher degree of divergence and hence higher sub-
tractions in the dispersion integrals. Conceptually, higher degrees of divergence are
probing higher coefficients in the Taylor expansion in s which provide the needed
master integrals. We see below how this interferes with counting master integrals but
first our geometric interpretation as given in Fig. 5. |

3.4.2 b3 and its cell

The parametric representation of b3 as given in “App. E” provides insight into the
structure of its Feynman integral and the related master integrals.

Remark 3.8 Let us note that any graph bn has a spanning tree which consists of just
one of its internal edges. Hence, any associated spanning tree has length one. As bn
has n internal edges its associated cell C(bn) (in the sense of Outer Space [30]) is a
(n − 1)-dimensional simplex Cn

C(bn) = Cn .
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The graph bn has internal edges ei . To each such edge, we assign a length Ai , 0 ≤
Ai ≤ ∞ which we regard as a coordinate in the projective space Pbn := P

n−1(R+).
Shrinking one edge ei to length Ai = 0 gives the graph bn/ei which is associated

with the codimension-one boundary determined by Ai = 0. It is a (n−2)-dimensional
simplex Cn−1.

Note bn/ei is a rose with (n−1) petals. Each petal corresponds to a tadpole integral
for a propagator with mass m2

j , j �= i .
Different points of C(bn) correspond to different points

Pbn � p : (A1 : A2 : · · · : An).

We can identify n! sectors σ : Aσ(1) > Aσ(2) > · · · > Aσ(n) for any permutation
σ ∈ Sn with associated sector σ .

�D
R (bn)(s, s0) =

∫

Pbn (R+)

Intbn (s, s0; p) =
∑

σ∈Sn

∫

σ

T (ρn
D)
[
Intbn (s, s0; p)

]
,

(3.16)

with

Intbn (s, s0; p) = ln �(bn)(s)(p)
�(bn)(s0)(p)

ψ
D
2
bn

(p)
�bn .

T (ρn
D) is a suitable Taylor operator with subtractions at s = s0 ensuring overall

convergence and ρn
D the UV degree of divergence. Here,

�(bn)(s)(p) =
⎛

⎝
n∏

j=1

A j

⎞

⎠

(

s −
(

n∑

i=1

Aim
2
i

)(
n∑

k=1

1

Ak

))

︸ ︷︷ ︸
T P(bn)

,

and

⎛

⎝
n∏

j=1

A j

⎞

⎠

(
n∑

k=1

1

Ak

)

.

Each sector allows for a rescaling according to the order of edge variables such that
the singularity is an isolated pole.

Here, T P(bn) is the toric polynomial of bn as discussed in [11, 31] and prominent
in the GKZ approach used there.

Such approaches with their emphasis on hypergeometrics and the rôle of confluence
have a precursor in the study of Dirichlet measures [32]. The latter have proven their
relevance for Feynman diagram analysis early on [33].
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The spine of C(bn) is a n-star, with the vertex in the barycentre and n rays from the
barycentre bc of C(bn) to the midpoints of the n codimension-one cells Cn−1 which
are (n − 2)-simplices.

These rays provide n corresponding cubical chain complices cc(i) each provided
by single intervals [0, 1].

For the two endpoints 0 and 1 of each cc(i), we assign:

(i) to 1,—the barycentre bc common to all cc(i) we assign bn with internal edges
removed, hence evaluated on-shell. This corresponds to � (�D

R (bn)
)
.

(ii) To 0, we assign the graph bn/ei (a rose with n − 1 petals) with petals of equal
size—hence a tadpole �D

R (bn/ei ) with A jm j = Akmk , j, k �= i . See Fig. 5. |
Figure5 gives the graph b3 and the associated cell, a 2-simplex C3. It is a triangle

with corners c1, c2, c3. Points of the cell are the interior points of C3 and furthermore
the points in the three codimension-one boundaries C2(i), the sides of the triangle.

The corners ci are removed and do not belong to the cell. Points of the cell param-
eterize the edge lengths Ai of the internal edges of b3 as parameters in the parametric
integrand, see Eq. (E.1).

The boundaries are given by C2(i) : Ai = 0 and correspond to tadpole integrals
for tadpoles t2(i) = b3/ei for which edge ei has length zero.

Corners ck : Ai = A j = 0, i �= j correspond to b3/ei/e j which is degenerate as
it shrinks a loop.

Colours green, red, and blue indicate three different masses. It is understood that a
momentum k3 flows through any edge ei which is chosen to serve as a spanning tree
for b3.

The three edges of the graph give rise to 3! orderings of the edge lengths as indicated
in the figure. We will split the parametric integral accordingly. See “App. E” for
computational details.

To a (i = j)-diagonal of a box �(k), we associate a b3 evaluated with edges ei , e j
on-shell and edge ek dotted, so it corresponds to ∂m2

k
� (�D

R (b3)
)
.

In the figure, there is also an arc given which is a fibre which has the diagonal d j

as the base. Integrating that fibre corresponds to integrating the b2 subgraph on edges
ei , e j . Points (Ai : A j : Ak) on a diagonal dk fulfil

Akmk > x, x := Aimi = A jm j .

To the barycentre Aimi = A jm j , we associate b3 with all three edges on-shell, a
Cutkosky cut providing � (�D

R (b3)
)
. To the midpoints Ai = A j , Ak = 0 of the edges

Ai = 0 (ei = 0 in the figure), we assign tadpole integrals. All in all we identified all
seven master integrals in the figure. Note that the cell decomposition in Fig. 5 reflects
the structure of the Newton polyhedron associated with T P(b3) [31].

Note that the requirement Aimi = A jm j is the locus for the Landau singularity of
the associated b2(ei , e j ) and similarly for A1m1 = A2m2 = A3m3 and b3.

Remark 3.9 Note that the diagonals d j can be obtained by reflecting a leg of the spine at
the barycentre. The three legs and the three diagonals form the six boundaries between
the sectors Ai > A j > Ak .
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Fig. 6 The cell C(b4) = C4 on the left. On the right, we see two diagonals dC , dB and their associated
graphs which have one dotted edge. Points of the triangle bc, B,C are the open convex hull of dC , dB
which we denote as the span of the diagonals dC , dB . To them, a graph with two dotted edges is assigned.
On the codimension-one triangles spanned by three corners we indicate the barycentre by a coloured dot.
For example, to the triangle BCD we have the yellow dot and the graph b4/ey assigned to it where the
yellow edge shrinks to length zero (colour figure online)

A similar analysis holds for any bn . For example, for b4 the cell is a tetrahedron
with four corners ci , i ∈ {1, 2, 3, 4}. The spine is a four-star with four lines (rays)
from the barycentre bc : m1A1 = m2A2 = m3A3 = m4A4 to the midpoints of the
four sides of the tetrahedraon (triangles). Reflecting these lines at the barycentre gives
four diagonals d j : [bc, c j ] from bc to one of the four corners ci .

To bc, we associate � (�D
R (b4)

)
. To the diagonals d j , we assign ∂m2

j
� (�D

R (b4)
)

with the edges ei , i �= j , on-shell. There are six triangles with sides di , d j , ]ci , c j [. To
those, we assign ∂2mi

∂m2
j
� (�D

R (b4)
)
with the edges ek, k �= i, j , on-shell. See Fig. 6.

|
Continuingwe get the expected tally: for bn , we have

(n
0

) = 1 graph for the barycen-
tre,

(n
1

) = n graphs for the diagonals,
(n
m

)
, m ≤ (n − 2) graphs for the span of m

diagonals, and
( n
n−1

) = n tadpoles. It is rather charming to see how mathematics
inspired by the works of Karen Vogtmann and collaborators [30] illuminates results
discussed recently in terms of intersection theory [34].

3.4.3 Real and imaginary independence and powercounting

Next, we want to compare real and imaginary parts to check that the independence of
elements of Sbn does not necessarily imply the independence of elements of � (Sbn

)
.

We demonstrate this well-known fact [5] for b3. Independence is indeed a question of
the values of D.

For b3 and D = 2, we need no subtraction in the dispersion integral for F0 =
�2

R(b3),

�2
R(b3)(s) = 1

π

∫ ∞

(m1+m2+m3)2

V D
3 (x,m2

1,m
2
2,m

2
3)

(x − s)
dx,
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and for Fi = ∂m2
i
F0 again an unsubtracted dispersion integral suffices

Fi (s) = 1

π

∫ ∞

(m1+m2+m3)2

∂m2
i
V D
3 (x,m2

1,m
2
2,m

2
3)

(x − s)
dx .

The four integrands Ii (for the y2-integration) of �(Fi ), i ∈ {0, 1, 2, 3} can be
expressed over a common denominator with numerators numi (y2), and for D = 2

(the (sn−2
n )

D
2 −1 = 1 is absent), there is indeed a relation between the four numerators.

num3(y2) = c30num0(y2) + c31num1(y2) + c32num2(y2), (3.17)

where c3i are rational functions of s,m
2
1,m

2
2,m

2
3 independent of y2.

For D = 2, a second relation follows from the fact that the integrand involves the
square root of a quartic polynomial ([5], App. D),

1
√
y22 − m2

3

V 2
3 (y2) = 1√

s
√

(y2 − m3)(y2 + m3)(y2 − y+)(y2 − y−)
,

where we set for the quadratic polynomial λ(s13(y2),m
2
1,m

2
2),

λ(s13(y2),m
2
1,m

2
2) =: s(y2 − y+)(y2 − y−),

which defines y±. See Sect. 2.3.
Investigating

Jn =
∫ up03

m3

yn2√
s
√

(y2 − m3)(y2 + m3)(y2 − y+)(y2 − y−)
dy2,

as in [5] delivers a further relation between the Fi , and we are hence left with only
two independent master integrals for the imaginary parts of b3 in D = 2.

For b3 and D = 4, on the other hand we need a double subtraction in the dispersion
integral for F0 = �4

R(b3),

�4
R(b3)(s, s0) = (s − s0)2

π

∫ ∞

(m1+m2+m3)2

V D
3 (x,m2

1,m
2
2,m

2
3)

(x − s)(x − s0)2
dx,

whilst for Fi = ∂m2
i
F0 a once-subtracted dispersion integral suffices,

Fi (s) = (s − s0)

π

∫ ∞

(m1+m2+m3)2

∂m2
i
V D
3 (x,m2

1,m
2
2,m

2
3)

(x − s)(x − s0)
dx .

The four integrands Ii (for the y2-integration) of �(Fi ), i ∈ {0, 1, 2, 3} have to be
expressed over a different common denominator D = 4, in particular having an extra
factor s13 . There is no relation between them.
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This reflects the fact that the F0 dispersion

�4
R(b3)(s, s0) = (s − s0)

π

∫ ∞

(m1+m2+m3)2

(
V D
3 (x,m2

1,m
2
2,m

2
3)

(x − s)(x − s0)
− V D

3 (x,m2
1,m

2
2,m

2
3)

(x − s0)2

)

dx,

subsumes the Taylor expansion s near s0 to second order.
In contrast, the Fi , i ∈ {1, 2, 3},

∂m2
i
�4

R(b3)(s, s0) = ∂m2
i

1

π

∫ ∞

(m1+m2+m3)2

(
V D
3 (x,m2

1,m
2
2,m

2
3)

(x − s)
− V D

3 (x,m2
1,m

2
2,m

2
3)

(x − s0)

)

dx,

subsume the Taylor expansion in s near s0 to first order.
This is in agreement with the powercounting in Eq. (3.15) and forces the relation

between the four Fi to be ∼ s∂s F0, see Eq. (3.13). The relation Eq. (3.17) is spoiled
by the extra coefficient in the Taylor expansion of �4

R(b3)(s, s0).
We are left with four, not two, master integrals. Indeed, starting with a dotted log-

divergent banana integral reducing the number of dots demands more subtractions in
the dispersion integral.Any relation between imaginary partswith different numbers of
dots is spoiled by the difference in degree needed for the subtractions in the dispersion
integral.
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Appendix A: Feynman rules for banana graphs

Having introduced the graphs bn as our subject of interest we define Feynman rules
for their evaluation. We follow the momentum routing as indicated in Fig. 1.

The graph bn gives rise to an integrand Ibn (setting k0 = (0, 
0)T , where the D-vector
k0 is set to the zero-vector (0, 
0)T ∈ M

D):

Ibn = ωD
(n−1)

n−1∏

j=0

1

(k j+1 − k j )2 − m2
j+1

,
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and we set Q j+1 = (k j+1 − k j )2 −m2
j+1, 0 ≤ j ≤ (n − 1) for the n quadrics Q j+1,

j = 0, . . . , n − 1. Here,

ωD
(n−1) := dDk1 · · · dDkn−1

is a D × (n − 1)-form in a (n − 1)-fold product Mn of D-dimensional Minkowski
spaces

Mn :=
(
M

D
)×(n−1)

.

The function�D
R (bn)(s) ismulti-valued as a function of s := k2n . It has an imaginary

part given by a cut which amounts to replacing for each quadric

1

Q j+1
→ δ+((k j+1 − k j )

2 − m2
j+1),

in the integrand Ibn . This is Cutkosky’s theorem [36] applied to bn . The distribution
δ+ acts as

δ+((k j+1 − k j )
2 − m2

j+1) = �(k j+1;0 − k j;0)δ((k j+1 − k j )
2 − m2

j+1),

using the Heavyside distribution � and Dirac δ-distribution.
The integrand for the cut banana is correspondingly

Icut(bn) = ωD
(n−1)

n−1∏

j=0

δ+
(
(k j+1 − k j )

2 − m2
j+1

)
. (A.1)

We take the externalmomentum kn to be timelike so thatwe can choose kn = (kn;0, 
0)T
and set k j = (k j,0, 
k j )T . We also set 
k j · 
k j =: t j and have k2j = k2j;0 − t j , and finally

define k̂ j = 
k j/√t j . Hence,

dDk j = dk j,0
√
t j

D−3
dt j dk̂ j ,

with an angular measure

∫

SD−2
dk̂ j 1 = ω D

2
.

Here,

ω D
2

= 2π
D−1
2

�( D−1
2 )

, �

(
1

2

)
≡ √

π. (A.2)
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Fig. 7 The Hopf algebra disentangling the five-banana b5. On the right, we also get roses with n petals,
or tadpoles in a physicists parlance. There are 5 = (

5
4

)
labellings for the b4 banana in the first term in

the second row, and 10 = (
5
3

) = (
5
2

)
for the next two tensorproducts. The final term in the third row has

30 = (
5
2

) (
3
2
)
labellings, as there are

(
5
2

)
possibilities to label the edges of the first b2 banana, and then

(
3
2
)

to label the second one

We then have as integrations

∫

MD
dDk j f (k j ) =

∫ ∞

−∞
dk j;0

∫ ∞

0

√
t j

D−3
dt j

∫

SD−2
dk̂ j f (k j,0, t j , k̂ j ).

Appendix B: Minimal subtraction

For the reader which likes to compare with dimensional regularization and the use of
minimal subtraction as renormalization, we have kept D complex in most formulae
and note that in such a situation the coproduct for bn reads

�H (bn) = bn ⊗ I + I ⊗ bn +
∑

x,|x |�n

x ⊗ tn−|x |. (B.1)

Here, the sum is over all monomials x of banana graphs b j on less than n edges. For
example,

�(b5) = b5 ⊗ I + I ⊗ b5 + (
5
2

)
b2 ⊗ t3 + (

5
3

)
b3 ⊗ t2 + (

5
4

)
b4 ⊗ t1 + (

5
2

) (
3
2

)
b2b2 ⊗ t1.

In Feynman graphs, this is Fig. 7.
Explicitly, �D

MS(b3) reads, for example,

�D
MS(b3) = −〈�D(b3)〉 +

∑

cycl

〈〈�D(b2(ei , e j ))〉�D(t1(ek))〉 + �D(b3)
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−
∑

cycl

〈�D(b2(ei , e j ))〉�D(t1(ek)).

Here, �D are unrenormalized Feynman rules in D dimensions which evaluate into a
Laurent series in D− 2n, n a suitable integer, 〈. . .〉 is the projection onto the pole part
and the sum is over the three cyclic permutations of i, j, k.

This MS-renormalization results �D
MS(bn) can be related to �D

R (bn) if so desired.
See also the discussion with regards to MS and tadpoles in [28].

Appendix C: Tensor structure

Tensor integrals

We are not interested in�D
R (bn) alone. To satisfy the needs of computational practice,

we should also raise the powers of quadrics by taking derivatives ∂k
m2

j
with respect to

mass squares m2
j and we should allow scalar products ki · k j in the numerator.

For such a generalization to arbitrary powers of propagators and numerator
structures, we use the notation

�D
R (bn)ν(s, {m2

i }),

where ν is a
(
n(n+1)

2 − 1
)
-dimensional row vector with integer entries (see Sect.

(2.5.1.)) in [10].

• The first n entries νi , 1 ≤ i ≤ n give the powers of the n edge propagators 1
Qe

,
• the (n − 2) entries νi , (n + 1) ≤ i ≤ (2n − 2) are reserved for powers of ki · kn
(1 ≤ i ≤ (n − 2)),

• the (n − 2) entries νi , (2n − 1) ≤ i ≤ (3n − 4) are reserved for powers of
k22, . . . , k

2
n−1,• and the remaining (n − 2)(n − 3)/2 entries are reserved for powers ν jl of k j · kl ,

| j − l| � 1, 1 ≤ j, l ≤ (n − 1) and 3n − 3 ≤ i ≤
(
n(n+1)

2 − 1
)
.

This is all what is needed as k21 = Q1 + m2
1 and 2ki · ki−1 = k2i + k2i−1 − Qi − m2

i ,
n ≥ i ≥ 2.

For example,

�D
R (b4)(ν1,...,ν13)(s,m

2
1, . . . ,m

2
4)

=
∫

M4

ωD
(3)

3∏

j=0

(k1 · k4)ν5(k2 · k4)ν6(k22)ν7(k23)ν8(k1 · k3)ν13(
(k j+1 − k j )2 − m2

j+1

)ν j+1
.

For the imaginary part, we have correspondingly

�
(
�D

R (b4)(ν1,...,ν13)
)

(s,m2
1, . . . ,m

2
4)
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=
∫

M4

ωD
(3)

3∏

j=0

∂
ν j+1

m2
j+1

((
3∏

l=0

δ+(kl+1 − kl)
2 − m2

l+1)

)

×(k1 · k4)ν5(k2 · k4)ν6(k22)ν7(k23)ν8(k1 · k3)ν13
)

.

We discuss differential equations for �D
R (bn)ν , as well as partial integration identi-

ties and the reduction to master integrals starting from our representation for�D
R (bn)ν

in Sects. (3.3, 3.4).

Dispersion for8D
R(bn)�

For banana graphs bn on two vertices, dispersion for tensor integrals is rather simple:

�D
R (bn)ν(s, s0, {m2

j }) = (s − s0)|[n,ν]|

π

∫ ∞

(m1+···mn)2

V D[n,ν]
(x − s)(x − s)|[n,ν]| dx, (C.1)

where |[n, ν]| − 1 is the superficial degree of divergence of �D
R (bn)ν according to ν:

|[n, ν]| =
(
D

2
− 1

)
(n − 1) +

n∑

j=1

ν j +
⎡

⎢⎢
⎢

2n−2∑

j=n+1

ν j

2

⎤

⎥⎥
⎥

+
3n−4∑

j=2n−1

ν j +
∑

jl

ν jl . (C.2)

This is based on

�
(
�D

R (bn)ν
)

(s, s0, {m2
j }) = �(s − (m1 + · · ·mn)

2)V D[n,ν].

For V D[n,ν], see Eqs. (2.25–2.29).

Appendix D: Pseudo-thresholds

Let us remind ourselves of a parametric analysis of the second Symanzik polynomial
(with masses) � for the banana graphs bb:

ϕ(bn)(s) =
⎛

⎝
n∏

j=1

A j

⎞

⎠

⎛

⎝s −
⎛

⎝
n∑

j=1

m2
j A j

⎞

⎠

⎛

⎝
n∑

j=1

1

A j

⎞

⎠

⎞

⎠ . (D.1)

The equation

ϕ(bn)(m
n
normal) = 0,

has a solution in the simplex Ai > 0 for positive Ai given by Aimi = A jm j .
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For m any pseudo-mass, the solution of ϕ(bn)(m) = 0 requires at least one Ai to
be negative and it hence gives no monodromy on the physical sheet.

Still, the variations associated with pseudo-masses and thresholds are needed for a
full analysis of �D

R (bn) to find their Hodge structure.
So, let σn be a sequence of the form

σ n := (±m1 ± m2 ± · · · ± mn),

with a sign chosen for each entry mi . Let p(i) ∈ {±1} be the sign of the i-entry. A
global sign change leaves the pseudo-thresholds invariant (|a − b| = |b − a|), so we
have 2n−1 choices and adopt to the convention p(1) = +1.

For a flag

(b2 ⊂ b3 ⊂ · · · ⊂ bn),

this determines subsequences σ 2 ⊂ σ 3 ⊂ · · · σ n in an obvious manner.
Define

up j,σ
n :=

s jn + m2
n− j −

(

m
σn− j−1

︷ ︸︸ ︷
n− j−1∑

||,i=1

p(i)mi

)2

2
√
s jn

, (D.2)

which also defines the pseudo-mass mσ n− j−1 :

mσ n− j−1 =
n− j−1∑

||,i=1

p(i)mi

= | · · · ||︸ ︷︷ ︸
(n−1) bars

m1 + p(2)m2| + p(3)m3| + · · · | + p(n − j − 1)mn− j−1|.

Define

�n,+ = �(s − (mn + mσ n−1)2), �n,− = �((mn − mσ n−1)2 − s).

Now, set for p(n − 1) = +1:

Var(bσ
n ) = �n,p(n))

×ω D
2

∫ up0,σn

mn

V D
σ n−1,n−1(s

0
n − 2

√
s0n yn−1 + m2

n,m
2
1, . . . ,m

2
n−1)

√
y2n−1 − m2

n
D−3

dyn−1

︸ ︷︷ ︸
V D

σn ,n , p(n−1)=+1

.

and for p(n − 1) = −1:

Var(bσ
n ) = �n,p(n))
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×ω D
2

∫ ∞
up0,σn

V D
σ n−1,n−1(s

0
n − 2

√
s0n yn−1 + m2

n,m
2
1, . . . ,m

2
n−1)

√
y2n−1 − m2

n
D−3

dyn−1

︸ ︷︷ ︸
V D

σn ,n , p(n−1)=−1

.

Apart from the variation for the normal threshold (with p(i) = +1 for all 1 ≤ i ≤ n)
which givesVar(b(+m1,+m2,...,+mn)

n ) = � (�D
R (bn)

)
, we get 2n−1−1 further variations

corresponding to pseudo-masses and their pseudo-thresholds. They will be discussed
elsewhere.

Appendix E: b3 parametrically

Let us recapitulate b3 in the parametric representation. We list basic considerations.
A detailed analysis in the view of [37, 38] is left to future work.

E.1. The parametric integral

Let Qb3 be the one-dimensional real vector space spanned by s = k23, the square of
the Minkowski four-momenta k3,−k3 assigned to the two vertices of b3. Let Pb3 =
P
2(R+) be a projective space given by the ratios of the nonnegative side lengths of

the internal edges of �.
The parametric integrand function (we consider masses as implicit parameters)

Fb3 : Qb3 × Qb3 × Pb3 → C

is (see, for example, Sect. (5.2.1.) in [39])

Fb3(s, s0; p) := (s − s0)A1A2A3

ln
(

��(s;p)
��(s0;p)

)

ψ3
�

+(s0A1A2A3 − (m2
1A1 + m2

2A2 + m2
3A3)ψ�)

×
ln
(

��(s;p)
��(s0;p)

)
− (s − s0)

(
∂s ln

(
��(s;p)
��(s0;p)

))

s=s0

ψ3
�

. (E.1)

Here,

�b3 : Q� × P� → C

is

�b3(r; p) = r A1A2A3 − (m2
1A1 + m2

2A2 + m2
3A3)ψb3 ,

ψb3 = A1A2 + A2A3 + A3A1.
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Note Fb3(s, p) and ∂s Fb3(s, p) both vanish at s = s0 for all p, so these are on-shell
renormalization conditions.

The parametric form is the integrand

Intb3(s, s0; p) := F�(s, s0, p)�b3 ,

�b3 = +A1 d A2 ∧ d A3 − A2 d A1 ∧ d A3 + A3 d A1 ∧ d A2.

We then have the renormalized value3

�D
R (b3)(s, s0) =

∫

P2(R+)

Int�(s, s0; p), (E.2)

from integrating out p which is the parametric equivalent of Eqs. (2.1, 2.9).

E.2. Sectors and fibrations

To study fibrations in our integrand, we start from the fact that there are six orderings
of the edge lengths for the three edge variables Ai .

Consider, for example, the sectors 1 > 3 > 2 and 3 > 1 > 2 of Fig. 5 so that edge
e2 has the smallest length. For the choice 1 > 3 > 2 rescale4

A2 = a2A1, A3 = a3A1,

and in that sector 1 > 3 > 2, we have

∫

P2(R+)∩(1>3>2)
Fb3�b3 =

∫ ∞

0

(∫ a3

0
Fb3(1, a2, a3)da2

)
da3.

A further change a2 = a3b2 leads to a sector decomposition (in the sense of physicists)

∫ ∞

0

(∫ 1

0
a3Fb3(1, b2a3, a3)db2

)
da3 =

∫ 1

0

(∫ ∞

0
a3Fb3(1, b2a3, a3)da3

)

︸ ︷︷ ︸
Fib(b2)

db2.

For any chosen 0 < b2 < 1, a3Fb3(1, b2a3, a3) gives points on the corresponding
chosen fibre and Fib(b2) is the integral along that fibre. Integrating b2 integrates all
fibre integrals Fib(b2) to the two sector integrals on both sides of the spine.

In fact, for 0 < a3 < m1/m3 we are on the left of the spine and for m1/m3 < a3 <

∞ on the right.
Let us look at �b3 under the rescalings.

�b3(A1, A2, A3) = s A1A2A3 − (m2
1A1 + m2

2A2 + m2
3A3)(A1A2 + A2A3 + A3A1))

3 Divergent subgraphs exist but do not need renormalization as the cographs are tadpoles which can be set
to zero in kinematic renormalization. Accordingly F� vanishes when any two of its three edge variables
Ai vanish.
4 �b3 → A31da2 ∧ da3 under that rescaling.

123



   38 Page 48 of 50 D. Kreimer

→ sa2a3 − (m2
1 + m2

2a2 + m2
3a3)(a2 + a2a3 + a3))

→ sb2a
2
3 − (m2

1 + m2
2b2a3 + m2

3a3)(b2a3 + b2a
2
3 + a3))

= a3(sb2a3 − (m2
1 + m2

2b2a3 + m2
3a3)(b2 + b2a3 + 1)) =: �̃b3(s, b2, a3).

For ψb3 , we find

(A1A2 + A2A3 + A3A1)

→ (a2 + a2a3 + a3)

→ a3(b2 + b2a3 + 1).

We thus find in the region where e2 is the smallest edge the integrand function
Intb3,2(b2, a3)

Intb3,2(b2, a3) := a3Fb3(1, b2a3, a3) = (s − s0)b2a3

×
ln

�̃b3
(s;b2,a3)

�̃b3
(s0;b2,a3)

︷ ︸︸ ︷(
sa3b2 − (m2

1 + m2
2b2a3 + m2

3a3)(1 + b2(1 + a3))

s0a3b2 − (m2
1 + m2

2b2a3 + m2
3a3)(1 + b2(1 + a3))

)

(b2(1 + a3) + 1)3

+(s0b2a3 − (m2
1 + m2

2b2a3 + m2
3a3)(b2(1 + a3) + 1))

×
ln

(
�̃b3 (s;b2,a3)
�̃b3 (s0;b2,a3)

)
− (s − s0)

(
∂s ln

(
�̃b3 (s;b2,a3)
�̃b3 (s0;b2,a3)

))

s=s0

(b2(1 + a3) + 1)3
.

Note that Intb3,2(0, a3) = 0 as it must be as petals evaluate to zero under renormalized
Feynman rules in on-shell renormalization conditions.

Finally,

Fib(b2) =
∫ ∞

0
Intb3,2(b2, a3)da3.

A point along the (1 = 3)-line of the spine is given by (1, b2, 1) ∈ Pb3 , for all
0 < b2 < 1.

Remark 3.10 Upon rescaling in each of the sectors in the three cubes of Fig. 5 accord-
ingly and summing over sectors, we get a symmetric representation equivalent to
averaging over the three possible ways of expressing Eq. (2.7) using any of s13(y2,m

2
i )

and similar to [9]. |
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