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Abstract

We consider multi-edge or banana graphs b, on n internal edges e; with different
masses m;. We focus on the cut banana graphs J(®Pr(b,)) from which the full result
® g (b,) can be derived through dispersion. We give arecursive definition of I(® g (b))
through iterated integrals. We discuss the structure of this iterated integral in detail. A
discussion of accompanying differential equations, of monodromy and of a basis of
master integrals is included.
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1 Introduction

We define a banana graph b, by two vertices vy, v connected by n edges forming
a multi-edge.l Furthermore, vy, vy are both n + 1 valent vertices so that b,, has an
external edge at each vertex.

1.1 General considerations

We study associated banana integrals @g (by). The case n = 3 has been intensively
studied and initiated a detailed analysis of elliptic integrals in Feynman amplitudes,
see, for example, [1-11]. Evaluation at masses ml2 € {0,1} > k,2, was recognized to
provide a rich arena for an analysis of periods in Feynman diagrams [12] including
the appearance of elliptic trilogarithms at sixth root of unity in the evaluation of b4
[8].

Let us pause and put the problem into context.

1 Often b, is called a bubble, b3 asunset and by a banana graph. We call all b,,2 < n < oo banana graphs.
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1.1.1 Recursion and splitting in phase-space integrals

The imaginary part 3 (®% (b)) of ®% (b,) has been a subject of interest for almost
seventy years at least [13—15]. This imaginary part has the interpretation of a phase
space integral. Our attempt below to express it recursively by an iterated integral can
be traced back to this early work. In fact, computing J (Cbg (bn)) by identifying an
imaginary part J (CDRQ (bn-1 )) as a subintegral amounts to a split in the phase-space
integral and this recurses over n.

1.1.2 Banana integrals and monodromy

In the more recent literature, the graphs b,, were studied in an attempt to interpret
the monodromies of the associated functions depending on momenta and masses
CIDR{) (by) (s, s0, {ml.z}) as a generalization of the situation familiar from the study of
polylogarithms. This role of elliptic functions was prominent already in the historical
work cited in Sect.1.1.1 and continued to give insights into the structure of phase
space systematically [5, 9]. Recently, the aim shifted to explore it in the spirit of mod-
ern mathematics. This brought concepts developed in algebraic geometry—motives,
Hodge theory, co-actions, symbols and such—to the forefront [7, 8, 11, 16—19]. For
us, the focus is less on elliptic integrals and elliptic polylogarithms prominent in recent
work. Rather, we focus on the recursive structure of J¥ (CDQ (bn)) as it has a lot to offer
still for mathematical analysis.

1.2 Iterated integral structure for b,

Our task is to find iterated integral representations for I (@g (bn)) which give insight
into their structure for all n. We will use I (CDQ (bz)) as a seed for the iteration.
3 (@R (b3)) which has I (P2 (b2)) as a subintegral then gives a complete elliptic
integral as expected, see Sect.2.3. Already, the computation of b4 indicates more
subtle functions to appear as Sect.2.5 and Eq. (2.11) demonstrate. Nevertheless, it
turns out that such functions are very nicely structured as we explore in Sect.2.6.

We want to understand the function ® Ig (by) obtained from applying renormalized
Feynman rules dbg in D dimensions

DR (by) = SH*®P (by)(s, 50),

to the graph b,,.

We will study in particular the imaginary part 3 (®2 (b,)) having in mind that
@2 (b,) can be obtained from I (X (b,)) by a dispersion integral.

We will mostly work with a kinematic renormalization scheme in which tadpole
integrals evaluate to zero. This is particularly well suited for the use of dispersion.
Indeed, 3 (CDRQ (b,,)) is free of short-distance singularities as the n constraints putting
n internal propagators on-shell fix all non-compact integrations.

This reduces renormalization of b, to a mere use of sufficiently subtracted disper-
sion integrals. Correspondingly, in kinematic renormalization we can work in a Hopf
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algebra Hg = H /Iiyq of renormalization which divides by the ideal Ii,g spanned by
tadpole integrals rendering the graphs b, primitive:

AHR(bn) = bn QI+I® bn'
Therefore,
b .
Sg *®P(by) = @P(by)(s) — TV O (b,) (s, 50).

®P are the unrenormalized Feynman rules in dimensional regularization and T is
a suitable Taylor operator.

Nevertheless, there is no necessity to regulate Feynman integrals in our approach as
we can subtract on the level of integrands. Indeed, T() can be chosen to subtract in the
integrand. We implement it in Eq. (1.1) using the dispersion integral. Our conventions
for Feynman rules are in “App. A”.

Our interest lies in a compact formula for

S (@R @) (s, tm?)) = /M e,

with Ioy(b,) given in Eq. (A.1). We will succeed by giving it as an iterated integral
in Eq. (2.14) which is part of Thm. (2.2).
Results for dDRl? (bn) (s, 59, {ml.z}) then follow by (subtracted at sg) dispersion which

implements T(g—l)(n—l):

_ oy (B=D@-1) Teut (b
CDRQ(bn) (S,SO, {mlz}> _ (s —s0)" 2 /(OO fM,, t(bn) (x)

T e ’"j)z (x—s)(x — so)(g_l)(n_l)
(1.1
Note that in the Taylor expansion of CD,? (by) (s, 5o, {miz}) around s = s, the first
(% —1)(n—1) coefficients vanish. These are our kinematic renormalization conditions.
For example, &% (b2)(s0, s0) = 0. On the other hand, ®% (b2)(s, s0) = ®%(b2)(s)
as it does not need subtraction at s¢ as it is ultraviolet convergent. So, so disappears
from its definition and the dispersion integral is unsubtracted as (% —Dn—-1)=0
and for D = 6, ®% (b2)(s0, 50) = 0 = ;D% (52) (s, 50) [s=s0 -

1.3 Normal and pseudo-thresholds for b,,
To understand possible choices for so, define a set thresh of 2"~! real numbers by
thresh = { () & - £ )2
and set
Smin := min{x € thresh}.
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2
Note that the maximum is achieved by Spormal := (Z?:] m j) . Our requirement for
S0 is
50 < Smin- (1.2)
This ensures that the renormalization at so does not produce contributions to the
imaginary part of the renormalized CDQ (bn)(s, s0) as J(DP(b,) (s9)) = 0.

We call spormal normal threshold and the 2~! — 1 other elements of thresh pseudo-
thresholds.
Also we call m), .\ = Z;': 1 mj the normal mass of b, and any of the other

2"=1 — | numbers | & m - - - & m,| a pseudo-mass of b,. For any ordering o of the
edges of by, we geta flagby C ---b,—1 C b, such that
Jj+1 J

m =m

normal = Mnormal T Mj+1, J =1 — L

On the other hand, for any chosen fixed pseudo-mass there exists at least one ordering
o of edges of b, for which the pseudo-mass is m; —mp £ ---.

Remark 1.1 By the Coleman—Norton theorem [20] (or by an analysis of the second
Symanzik polynomial ¢(b,), see Eq. (D.1) in “App. D), the physical threshold of by,
is when the energy /s of the incoming momenta k, = (k,.0, 0)” equals the normal
mass

_.n
“/E = Mpormal-

The imaginary part J (QJRQ (b,,)) is then given by the monodromy associated with that
threshold and is supported at s > mp ..

In this paper, we are mainly interested in the principal sheet monodromy of b,, and
hence in the monodromy at /s = myoemal Which gives S(Cbg (by,)). Pseudo-masses
are needed to understand monodromy from pseudo-thresholds off the principal sheet.

They can always be expressed as iterated integrals starting possibly from a pseudo-
threshold of <I>R? (b2). Such non-principal sheet monodromies need to be studied to
understand the mixed Hodge theory of CDI,? (bp) as a multi-valued function in future
work. See [21] for some preliminary considerations.

In preparation to such future work, we note that iterated integral representations
can also be obtained for pseudo-thresholds in quite the same manner as in Eq. (2.14)
by changing signs of masses (not mass squares) in Eq. (2.13) as given in Eq. (D.2) and
correspondingly in the boundaries of the dispersion integral. This dispersion will then
reconstruct variations on non-principal sheets. We collect these integral representations

in “App. D” (Fig. 1). |
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ki

Fig. 1 Banana graphs b, on |b,| = (n — 1) loops. We indicate momenta at internal edges ey, ...e,
labelling from top to bottom. We assign mass square ml2 to edge e;. A positive infinitesimal imaginary part
is understood in each propagator. Both vertices have an external edge with incoming momenta &, and —k;,.
Note that edges e], ..., ej,n > j > 2 constitute a banana graph b; with external momentum k; flowing
through. It is a (j — 1)-loop subgraph of b,. In particular, we have a sequence b, C b3 C --- C by of
graphs which gives rise to an iterated integral

.7

Fig. 2 The bubble by. It gives rise to a function <I>R1?(b2)(k2,m%, m%). We compute its imaginary

part <<I>RQ (b2) (K3, m%, m%)) below. It starts an induction leading to the desired iterated integral for

3(@2 (bn)). The edges e, ep are given in red or blue. Shrinking one of them gives a tadpole integral
B (11)(m?) (red) or O (12)(m3) (blue) (colour figure online)

2 Banana integrals (PP (bn))
2.1 Computing b,

We start with the two-edge banana b;, a bubble on two edges with two different internal
masses m1, my, indicated by two different colours in Fig.2.

@ Springer



38 Page 6 of 50 D. Kreimer

The incoming external momenta at the two vertices of b, are k>, —k, which can be
regarded as momenta assigned to leaves at the two three-valent vertices.

We discuss the computation of b; in detail as it gives a start of an induction which
leads to the computation of b,. The underlying recursion goes long way back as
discussed in Se. (1.1.1) above, see [15] in particular. More precisely, it allows to
express J(PL)(by) as an iterated integral with the integral J(PX)(b) as the start so
that b, is obtained as a (n — 2)-fold iterated one-dimensional integral.

For the Feynman integral @g(bg), we implement a kinematic renormalization
scheme by subtraction at sp = uz < (my — m2)2 in accordance with Eq. (1.2).
This implies that the subtracted terms do not have an imginary part, as u? is below
the pseudo-threshold (m| — m2)?. For example, for D = 4

% (b2) (s, 50, m3, m3) = /del ! ! — (k3 = u?)
k¥ —m? (ky — k1)? —m3
—_—  — —
01 (%))
We have s = k%. For D = 6,8, ..., subtractions of further Taylor coefficients at

s = u? are needed.
As the D-vector k» is assumed timelike (as s > 0), we can work in a coordinate
system where ko = (ka.0, 0)7 and get

¢%bbww/ Mm/ S 3an
2 J-x 0

1 1
X (k%;o = Gao — kiR =1 —m2 —{s— so}) .
We define the Killen function, actually a homogeneous polynomial,
Ma,b,c) = a’>+b>+c* - 2(ab + bc + ca),
and find by explicit integration, for example, for D = 4,

&% (b2)(s, s0; m3, m3)

m R R T s s

% — — {s = so}
m + m2 -5+ V As, ml’mz) " W3 (s0)

W3 (s)

The principal sheet of the above logarithm is real for s < (m; + m»)? and free of
singularities at s = 0 and s = (m| — m»)2. It has a branch cut for s > (m| + m2)>2.
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See, for example, [5, 21] for a discussion of its analytic structure and behaviour off
the principal sheet.
The threshold divisor defined by the intersection L1 N L, where the zero loci

Li: Qi =0,

of the two quadrics meet is at s = (m| + m>)?. This is an elementary example of the
application of Picard—Lefschetz theory [22].

Off the principal sheet, we have a pole at s = 0 and a further branch cut for
s < (my —mp)™.

It is particularly interesting to compute the variation—the imaginary part—of
® g (by) using Cutkosky’s theorem [22]. For all D,

(@B (by)) = a)g/ Ji dt/ k1084 (kio — 4 —m%)
0 —00
Sy ((kz;o —ki.0)? =11 — m%) .
We have

5y ((kz;o —k10)* — 1 — m%) = O(ko;0 — k1:0)8 ((kz;o —ki.0)? =11 — m%) ,

and
1) ((kz;o — k1,00 — 11 — m%)
L 5 (k k \/z+—2>
_ X 1,0 — K2;0 — /11 T M5
2lka;0 = K1zl |k1;0=k2;0+m
1
I — x 8 (kl;o — ka0 + m> :
2|kZ;0 - k1;0| |kl:O:k2:07,/t1+m%

In summary,

Sy ((kz;o - k1;0)2 i m%)

= Okz0 — k108 ((kaio — k1,0> = 11 — m3)

1 (
R 3 k1;o—k2;o+m)’
2[k2;0 — ksl \k1;0=k2;0—\/m

and therefore,

1

o0
J(DPr(br)) = ®p / \/ED_?’dtlS (s —2/sy\/t1 +m3 +m3 — m%) —_—
0 NS -i-m%
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We have from the remaining §-function,

v h +m% (s, m2, m?
(S(s—zﬁ t1 +m3 4+ m3 2) —5<zl—u,

B A s 4s
and hence,

A(s, m3, m3)

0<n = 1
S

k]

whenever the Killen function A (s, m%, m%) is positive, so for s > (m+ m2)? (normal
threshold, on the principal sheet) or for 0 < s < (m — m»)? (pseudo-threshold, off
the principal sheet).

The integral then gives

VD (o2 102
:.V2 (s,ml,mz)

D-3
(, [ A(s, m% m%))

(25)771

S (@R b)) (s.m3 m}) = wp x© (s — (my +ma)*) .
2

with @ ) given in Eq. (A.2). We emphasize that V2D has a pole at s = 0 with residue

Im2 — m2|/2 and note A(s, m2, m3) = (s — (m1 +m2)?)(s — (m1 — m2)?).
We regain CDRP (by) from Ts(d)g (b2)) by asubtracted dispersion integral, for example,
for D = 4:

* 3 (Pp2) @)
(x —5)(x = 50)

O (b2) (s, 50) = S /
Y 0

Here, the renormalization condition implemented in the once-subtracted dispersion
imposes @g(bz)(so, so) = 0 for D = 4.
Finally, we note that for on-shell edges (k; — k)* = m% o}

2 2 2
ky —m35 + my

ky -k = =2 ,
2 1 )

2 2

klzml.

2.2 Computing b3

We now consider the three-edge banana b3 on three different masses.
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Ky

ks — ko

We start by using the fact that we can disassemble b3 in three different ways into a
by subgraph, with a remaining edge providing the co-graph. Using Fubini, the three
equivalent ways to write it in accordance with the flag structure b, C b3 are:

(@B (b3)) = /deN(cbD(bz)) (k%, m?, m§)5+((k3 —k)? — mg), @.1)
s(cb,,l?(bg)) - /deN( b2)> (kg, m%,m§)3+((k3 —kp)? — m%), 2.2)

3(c1>,,’?(b3)) - /dezms(CDD(bz)> (k%, m3, m%)3+<(k3 —k)? — mg) 2.3)

In any of these cases for SS(CDRI? (b3)), we integrate over the common support of the
distributions

s(opg(bz)) (kg, m?, m?) ~ @(kg — (mi + m,-)z) and 8+<(k3 —k)? — mi),

generalizing the situation for ?5((1312(172)) where we integrated over the common
support of

5. (k2 — m?) and 8+((k2 —kp)? — m%)

The integral Eqgs. (2.1, 2.2, 2.3) are well defined and on the principal sheet they are
equal and give the variation (and hence imaginary part) S(GJQ (b3)) of dbg (b3).

CDQ (b3) itself can be obtained from it by a sufficiently subtracted dispersion integral
which reads for D = 4

— 2 o0 4
O (b3) (s, 50) = © ;0) / NGB0
0

(x —$)(x — 50)?
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38 Page 10 of 50 D. Kreimer

For general D, CDQ (b3) is well-defined no matter which of the two edges we choose
as the subgraph, and Cutkosky’s theorem defines a unique function V3D (s),

(DR B3)(5)) =: VL (5)O(s — (m1 + ma +m3)?).

Remark 2.1 Below when we discuss master integrals for b,,, we find that by breaking
symmetry through a derivative 9,,2, we obtain four master integrals for b3. GDQ (b3)

itself, and by applying 9,,> to any of Egs. (2.1,2.2,2.3). |

Let us compute V3D first. We consider edges e, e as a b, subgraph with an external
momentum k; flowing through.

We let k3 be the external momentum of S(CDIQ (b3)), 0 < k% =: 5. For the k;-
integration, we put ourselves in the restframe k3 = (k3.o, 6)T.

Consider then

S (@R®n) () = / dPla® (G — (m) +m2)»)51 (ks — ka)?) — m3)
VL k3, m3, m3).
The §4-distribution demands that k3.9 — k2.0 > 0, and therefore, we get

k3.0 00
’ D-3
3 (‘Dg(bg,)) (s) = a)g f dkz;()/ dtr/1r ®(k%;0 —th — (m + m2)2)
—00 0
x VP (k3.g — t.mi, m3)8((ks,0 — ka:0)* — t2 — m3).

As a function of k».¢, the argument of the §-distribution has two zeros:

kz;() = k3;0 + ./t + m%

As k3.0 — ko0 > O, it follows ko.o = k3.0 — /2 + m% Therefore, k%-o - =

k3.0 4+ m3 — 2k3,04/ 12 + m3.
For our desired integral, we get

o0
3 (cDR’?(bg)) () = wp / dyn" e (kio +m} = 2ks3.00/t2 +mE — (m1 + m2)2>
0

174 (kiO +m3 — 2kz,0,/to + m3, m?, m%)
N2 —|—m%

X

The ®-distribution requires

k3.o +m3 — (m1 +m2)? > 2ks,0,/ 12 + m3.
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Solving for 7, we get

A (s, m%, (my + mz)z)

0<p <
== 4s

As 1o > 0, we must have for the physical threshold s > (m3 + m| + m2)2 which is
indeed completely symmetric under permutations of 1, 2, 3, in accordance with our
expectations for S(QDRL? (b3)(s)). We then have

)»(J.m%,(m1+m2)2)
4s
3 (@3(1;3)@)) ) (s — (1 4+ ma+ m3)2) wp
0
iK1 <S +m3 =25\ /12 + m3,m3, m%) D3
X \/E de,.

NEE m%
There is also a pseudo-threshold off the principal sheet at s < (m3 — m| — m»)?, see

Sect. 2.
2 X 2
Note that the integrand vanishes at the upper boundary M as

2 2 .2 2
)\’ <S + m3 2\/5 12 + m3’ ml ’ m2) |12_}L(_s,m%,(nl]+m2)2)
===

=A ((m1 +ma)?, mi, m%) =0.

Let us now transform variables.

Y2 i=4/h+ m%

2 2
I =y, —m3,
dty = 2ysdys,
A s+m%7(7711+m2)2

=L
—
0 m3

We get

S (PRB3)®) = O (s = (my +m2 + m3)?)

1 2
Sy (y2,m
s+m%—(m|+m2)2 3('2 3)

25 D > 2 2 2D—3
X @D Vs s—i—m3—2\/§y2,m1,m2 \ Y2 —m3 dy,.

ms3

D 2.2 2
V3 (s,ml,mz,m3)

2.4)
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38 Page 12 of 50 D. Kreimer

Had we chosen e3, e3 or e3, e; instead of e, e> for by, we would find in accordance
with Egs. (2.1, 2.2, 2.3)

S (®REGNE)) = © (s = (my +mz +m3)?)

1 2
sa(ya,m
s+m%—(n12+rn3)2 3 (“ 2 1)

D-3
25
xwg/ V2D s—i—m%—Z\/Eyz,m%,m% ,/yz—m% dys,
m

V3D(s,m%,m%,m%)

(2.5)
or

S(®RGNE)) = O (s = Omy +m2 +m3))

1 2
S /2,
s‘+m%—(m3+m])2 3(}2’ 2)

D-3
2Js
Xw%/ VZD s—l—m%—Z\/Eyz,m%,m% ,/yz—m% dy; .

ma

Vf’(s,m%,m%,m%)

(2.6)

with three different s31 (n) = s31 (»2, m%).

We omit this distinction in the future as we will always choose a fixed order of
edges and call the edges in the innermost bubble b, edges ey, e3.

Finally, we note

k2.0 = k3,0 — ¥2,
2 2 2

kol = \/y3 — m3.

Written in invariants this is

k3 ko = N/s(v/s — ),

k5 =5 —2/syy +m3,
lka| = V3 —m3.
2.3 b3 and ellipticintegrals

Note that for D = 2 (the case D = 4 can be treated similarly as in [5]) and using Eq.
(2.4),
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ﬁ»m%f(szrm 1 )2

2Js 1

V2(s) = w; f ————dy»,
. s NI
with

UG2) = (s +md = 2532, m3, mi) 03 = md)
=s(y2 —m3)(y2 +m3)(y2 — y) (2 — y-),

a quartic polynomial so that V32 defines an elliptic integral following, for example, [5].
Here,

(s~|—m§—m%—m§):|:2 m%m%

y£ = Zﬁ
So, indeed
2 _ _
V2(s) = w] K ((y +m3)(y+ m3)> ’ 27
4 +m3)(y— —m3)  \(y— —m3)(y4+ +m3)
with K the complete elliptic integral of the first kind. Finally,
1 [ V2
2 (b3)(s) = —/ ﬁdx, (2.8)
T Jm+my+my)? (X —8)

gives the full result for b3 in terms of elliptic dilogarithms in all its glory [6, 7, 16] for
D = 2. For arbitrary D, we get

dR(b3)(s, s0) =

D-2 e’} D
(s —s50)7" / Vi () dr. (2.9
(

T my+mytmy)? (X — 5)(x — 50)P2
To compare our result Eq. (2.7) with the result in [5] say, note that we can write
UOn) = %)» (s, s31, m%) A <s31, m%, m%) ,
as
A (s, 51, m%) = (s31 — (Vs - m3)2) <s31 — (Vs + m3)2> =4s (y% — m%) ,
with s = s — 2/sy> + m3, and use b = 53, db = —2./sdy, to compare.
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38 Page 14 of 50 D. Kreimer

2.4 Computing b,

Above we have expressed V3D as an integral involving VZD . We can iterate this
procedure.

Let us compute V4D next repeating the computation which led to Eq. (2.4). We
consider edges e1, €2, e3 as a b3 subgraph with an external momentum k3 flowing
through.

We let k4 be the external momentum of I (P 12 (bs)),0 < k‘% = 5. We put ourselves

in the restframe k4 = (k4.0, 6)T for the k3-integration.
Consider then

3 (@,Q(m)) () = /de3® (k% — (m1 +my + m3)2)
5t ((k4 - k3)2) —m2)VP (k%, m?, m3, m2> .
The &4 distribution demands that k4.9 — k3.0 > 0, and therefore, we get

ka:0

3 (cb,,l?(m)) () = /_OO

V3D (kg;o — 13, m%, m%, m%) 1) ((k4;0 — k3;0)2 — 13— mz) .

o° D-3
dk3;()/(; dt3\/g ® (kg;o —t3— (my+my+ m3)2)

As a function of k3.9, the argument of the §-distribution has two zeros: k3.0 = k4.0
NIcE mﬁ

As kg0 — k3.0 > 0, it follows k3.0 = ka;o — /13 + m3. Therefore, k3., — 13 =
ki.o 4+ m3 — 2ka;0,/ 13 + m3.

For our desired integral, we get

oo
3 (@’,3(1;4)) () = wp /0 dts /5570 (kio +m3 = 2kg0\/13 + m] — (my +ma + m3)2>

vP (kio +m3 — 2ka0,/t3 +m3, m3, m3, m%)

X .

,/t3+m£

The ©-distribution requires

kio +m3 — (my 4+ my 4+ m3)* > 2ka;04/13 + m3.
Solving for 73, we get

2 2
0<is< A(s, my, (m14+ my + ms3) )_
s
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As 13 > 0, we must have for the physical threshold s > (m4 + m3 +m + mz)z. We
then have

A(s‘m%.(m1+mz+m3)2)

4s
3 (q>,[;(b4)(s)) ) (s — (m1 4 ma+m3 + m4)2) wp /
0

V3D(s + mﬁ — 2.5, /t3 + mﬁ, m% m%, m%)

‘/t3+mi

VaPan.

Let us now transform variables again.

y3 = /t3+mj,

2 2

diz = 2y3dys,

I A‘+m%7(ml+m2+m3)2
Is 25
—>
0 my

We get

(@R (B4)(5)) = O (s — (my + ma + m3 + my)?)

1
54(33)
stm3—(m+mp+m3)? 40

D-3
25 D 2 2 02 2
X ®p V3 (‘v+m4—2ﬁy3,ml,m2,m3) y3—m?t dys.
my

Vf(;‘,m%,m%m%,mi)

We have thus expressed V4D as an integral involving V3D . As we can express V3D by
V.2, we get the iterated integral,

s+m%—(ml+m2+m3)2 .Yi (y3)+m%—(m1+n12)2
25 T
v (st o) = o, [ ([
2 Jmy m3

D-3
x VP (sf(yz, ¥3), m?, m%) VY2 —m3 dyz)
D—-3
x\/y3 —m3  dys. (2.10)

We abbreviated

572, ¥3) = 54(¥3) — 24/s4(33)y2 +m3

=s2 —2,/52)13 +m42L —2\/sg —2,/s2y3 +m3y2 +m§,
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0._
Sy =S,

2.5 Beyond elliptic integrals for b,

Note that V42 cannot be read as a complete elliptic integral of any kind. It is a double
integral over the inverse square root of an algebraic function. V32 was in contrast a
single integral over the inverse square root of a mere quartic polynomial. Concretely,
the relevant integrand is

1

\/(y32 —m$)2(y3 — m3)va(y2, )

In fact, the innermost y, integral can still be expressed as a complete elliptic integral
of the first kind as in Eq. (2.7), as v4 is a quadratic polynomial in y; so that

(V3 —m3)vg = (y2 — m3)(y2 +m3)(y2 — y2.4)(v2 — y2.-)

is a quartic in y; albeit with coefficients y, 4 which are algebraic in y3. We have

(m?} +m3 —m3 — s} (y3)) & 2,/mim}

y2,+£(y3) =
2,/54(33)

We get the more than elliptic integral over an elliptic integral of the first kind,

s+mi—(m1 +n12+m3)2
275 2w

ma (2,4 (y3) +ma)(y2,—(y3) — ma)
<(y2,—(y3) +ma) (2,4 (y3) — WZ4)> 1

(y2,-(y3) — m4) (y2,+(y3) + ma4) m

Vi) = o

dys.  (2.11)

2.6 Computing b, by iteration

Iterating the computation which led to Eq. (2.10), we get

Theorem 2.2 Let b,, be the banana graph on n edges and two leaves (at two distinct
vertices) with masses m; and momenta k,, —k, incoming at the two vertices in D
dimensions.

(1) it has an imaginary part determined by a normal threshold as

2

3 (@RP(bn)) =0 (s m;| |vPe. tmd.
j=1
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and with a recursion (n > 3)

.H»m%—(Z?;{ mj )2

Dyg.. 2\ 24/50 D 0 0 2 2 2
vV, (s; {mi})—w%/ " Vo1(sy — 248y Yyn—1 +my,my, ... ,my )
my
5 D-3
Xy/ys_y —m2  dys_1.

Remark (i) This imaginary part is the variation in s of d>g (by)(s) in the principal
sheet. Variations on other sheets are collected in “App. D”. See [21] for an introduction
to a discussion of the role of such pseudo-thresholds. |

Theorem (ii) Define foralln > 2,0 < j <n —2,

S, =,
: J J .
andforn—2> j>1,s; =sn(yn7j7 <oy Yn—1; My, ---»mn7j+l)y
J Jj—1 Jj—1 2
Sn =81 —2Vsn Yn—j +mn_j+1. (2.12)

Define
. . 2
n—j—1
s; +m3hj - (Zi:]j mi>

up] 1= ‘ ,

then VnD is given by the following iterated integral:

D 5 2 2 Upg UP,',(yn—l) UP%(}‘n—l,yn—z)
[N |
V), (s,my,...,my) = wp / / /
2 mpy mu—1 muy—2

up) 3 (¥30een Yn1)
. (/ VL0 (v2e - o Yao1). my, m3)

ms3

5 2D—3 5 5 D-3
Xy Yy —m3 dy2>”' Yn—2 =My dy”—z)

D-3
x i —m2  dy,_. (2.14)

(2.13)

D-3
7
Here, VZD(a, b,c) = % so that
a2
D-3
— 2
D n-2 s 9 A(S;;l 2(y2»~-~ayn—l)’m%,m%>
Vs (sn (yg,...,yn_l),ml,mz) =a)% .

:
(sr’i* (y2,~-~7)’n71)>
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Remark (ii) We solve the recursion in terms of an iteration of one-dimensional inte-
grals. VZD(bz) serves as the seed, VZD = ng(sg—z, m%, m%)/sg_l) and s,',’_2 =
51’1_2 Vne1y o+ o V25 m% e, mﬁ) depends on integration variables y; and on mass
squares m? e j =2,...,n—1.For b3, we need a single integration; for b,,, we need
to iterate (n — 2) integrals. Note that we could always do the innermost y,-integral in
terms of a complete elliptic integral (replacing s; — 7~ in Eq. (2.11), etc.) and use
that as the seed. |

Theorem (iii) We have the following identities:

2
n

VOIS mi | cmiy| =0, (2.15)

j=1
Py Y1)y uph = M1, (2.16)
up;ﬁ()’n—j, “.’yn_l)‘ynfj:upl]1'71 ZmVl_j’ (217)
uPﬁ_S(Y& ) ynfl)‘y3:upz—4 =m3, (218)
VY (sn 2 mi,m3), s = 0. (2.19)

Remark (iii) Equation (2.15) ensures that the dispersion integrand vanishes at the
lower boundary x = (mj+---+m )2 (the normal threshold) as it should. Following
Egs. (2.16-2.18) for any y;-integration but the innermost integration the integrand
vanishes at the lower and upper boundaries. By Eq. (2.19) for the innermost y,_
integral this holds for D > 2.

At D = 2, the result can be achieved by considering

upy;——n
lim coodyp—1.
10 Jms4n
In the limit /s — m}, .. for which upﬁ‘3 — m3, one confirms the analysis in [5]

that a finite value at threshold remains.
Summarizing for any D this amounts to compact integration as we have in any y;
integration a resurrection of Stokes formula

j+1

UPn
f By, fGj)--dyj =0, (2.20)

mij4q

for any rational function f(y;) inserted as a coefficient of V2D . The dots correspond
to the other iterations of integrals in the y; variables. These are integration-by-parts
identities.

This reflects the fact that the n §-functions in a cut banana b,, constrain the (n -D
integrationsof kj,0, j = 1, ..., n—1and also the total integration over r = Z';;} |kl
Here, we can set |l€j| = ruj, and the u; parameterize a (n — 1)-simplex and hence a
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compactum. Angle integrals are over compact surfaces SP~2. Only integrations over
boundaries remain. |

Theorem(iv) We have

dysi = =258 19,2 i V(=) <k < (-1, (2.21)

if all masses are different. The case of some equal masses is left to the reader.

Also,
i-1 — ' i—1 -
[TVt ) o =21 (\/:’ ~ Yn- ;—1> : (2.22)
j=0 j=0

For derivatives with respect to masses, we have forO <r <k — 1,

k 1 j
5. sk= ‘F YnGHD (2.23)

I‘l r n
Jj= r+l s,,

while 9, » ) ls,]; = 1. Furthermore, for 1 <i <n—-2—r,0<r <n -3,
n—k+

n—1—i n
3y s" 2 = 2, /sh7] ]_[ (2.24)
Yn—i }’l n n j— 1 : :

j=24r Sn

Remark (iv) These formulae allow to trade 8 derivatives with 9, 2 derivatives

and to treat d; derivatives. This is useful below when discussing d1fferent1a1 equation,
integration-by-parts and master integrals for &2 7 (bn). |

Theorem (v) Dispersion. Let |[n, v]| — 1 (see Eq. (C.2)) be the degree of divergence
of ®R (by)y. Then,

DR (by) (s, s0) =

i (x — 5)(x — sq)ln-vIi

(s — S())I[n")]| /oo V[n v] (x, {m )
(Z —1’”1)

is the renormalized banana graph with renormalization conditions
®R (b)) (50, 50) = 0, j < |[n, v]| — 1

where <I>D(b )(j)(so, s0) is the jth derivative of CDD(b,,),,(s, s0) at s = sq.

Remark (v) This gives CDD (bp), from V v in kinematic renormalization. See “App.
C” for notation. For a result in d1mens1ona1 integration with MS, use an unsubtracted
dispersion

o0 V[?’V] (x, {mlz})

1
CDMs(bn) (5) = /(Z;' 1m/)2 (x —5)
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and then renormalize by Eq. (B.1) as tadpoles do not vanish in MS.

Theorem(vi) Tensor integrals (see “App. C”). We have
i »
kjpi-kj=m5  —sy ' =y (2.25)

= —\/S'J_j_l (\/s,?_j_l - yn—j> L J =2,

k2 —m3 + m?
ky -k = 2——2——1 22 L

(2.26)

k? = st/ in particular k3 =s""2, (2.27)

ki kiprkigr kg ko -k

kj-k s .
kipy -k
\/Fi:l-i—]
k"k]—kl.kH_lkl'H'k1+2"'kj—l'kj
J k12+1~-~k]2-_1

n—j=1 n_o 2 2 J
S — .
=12 o m2+m1||<\/sr7l—yi+1>,j—121~
(2.29)

Furthermore, V[f b I8 obtained by using Egs. (2.25-2.29) to insert tensor powers
as indicated by v in the integrand of V2D (s;l'_z, m%, m%) and apply derivatives with
respect to mass squares accordingly.

Remark (vi) We first give in Fig.3 with k? = s, =/ also the irreducible squares of

internal momenta (there is no propagator k? — m? in the denominator of b,,).

Equation (2.26) is needed as Eq. (2.25) cannot cover the case j = 1, due to the fact
that for the b, integration dPk; both edges are constrained by a 8. -function, while
each other loop integral gains only one more constraint, giving us a y; variable.

Equations (2.25-2.29) allow to treat tensor integrals involving scalar products of
irreducible numerators. Irreducible as there is no propagator 1/ (k? — m? 41) in our
momentum routing for b, see Fig. 3.

Equations (2.28, 2.29) for irreducible scalar products follow by integrating tensors
in the numerator in the order of iterated integration. For example, for the case of b3,

1 1
f/kl k3 —dPk1dPky =/A(k§)k2.k3—d’)k2 = C(k3),
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. 2
]%1, mi

_kn,

0 _ 2
— Rn—1, S, = S, My,

“n
Fig. 3 We indicate momenta and masses at internal edges from top to bottom. We now also indicate
momentum s;, for edges e, ..., e,. The mass-shell conditions encountered in the computation of VnD
enforce k2 = sndfor2 < j < n. Equation (2.25) simply expresses the fact that —2k; - k;1| =

(kjp1 —kj)? —kf+l —k§ with (kj1 — k)% = m§+1

and

ki koko - ke 1 K3ko - k3 1
// i 222 3_delde2:/A(k§)%_de2=C(k§),
2 PR

using
ki
[ Hak = Ak

and dots - - - correspond to the obvious denominator terms. |

Proof (i) and (ii) follow from the derivation of Eq. (2.10) upon setting 4 — n, 3 —
n — 1 in an obvious manner.
(iii) follows from inspection of Eq. (2.6): For example,

ol S = it m)?
pn_ 2\/5 ’

Sym2_| —(my+ -+ my_2)?

upyll Yn-1) = ) ; ,
S

n

with
St n—1) =5 — 2/Syn—1 + m2.
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Then,

Loy mit e ma)? Hmp = (it ma)?
upn(upn) = = mnfla
2(my + -+ mp—1)

and so on. '
(iv) straight from the definition Eq. (2.12) of s;. For example,

9 .53 (\/g - yn—2) (\/g - )’n—3>

(v) This is the definition of dispersion in kinematic renormalization conditions.
(vi) For tensor integrals, we collect variables kj,o and ¢; in any step of the

computation in terms of y; = m . O

2.6.1 s{, iterating square roots

Choose an order o of the edges which fixes
by Cb3 C--- Cby—1 Cby.
Here, we label
Ep, =:{e1, e2}, Ep, ={e1,ez,e3}, ..., Ep, ={Ep,_ Uey}.
Then,

S,],(yn—l) =5 - 2\/5)711—1 +m37

Sy%(ynfl’ Yn—2) =S5 — 2\/;)%71 + m% - 2\/ §— 2\5)%71 + m%)’n72 + mz_l»
S;::(Yn—h Yn—2s Yn—3) =8 — 2\/§yn—1 + m% - 2\/ s — 2\/5)711—1 + m%yn—2 + m,zl,l

_2\/5 - 2\/Eynfl + m% - 2\/ s = 2\/‘;)’;171 + m%)@z72 +m%,1

2
XyYn-3 +m, _,,

T

ST ety ooy 935 92) = S ety ey ¥3) = 20/ 50 Gnets -0y y3) V2 + 3

Remark 2.3 The iteration of square roots in particular for s,’}_z which is the crucial
argument in V,” (s,’{’z, m%, m%) is hopefully instructive for a future analysis of periods
which emerge in the evaluation of that function [11]. This iteration of square roots
points to the presence of a solvable Galois group with successive quotients Z/27Z
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reflecting iterated double covers in momentum space. Thanks to Spencer Bloch for
pointing this out. |

3 Differential equations and related considerations

This section collects some comments with respect to the results above with regard to:

Dispersion. We want to discuss in some detail why raising powers of propagators
is well defined in dispersion integrals even if a higher power of a propagator
constitutes a product of distributions with coinciding support.

Integration by parts (ibp) [23]. We do not aim at constructing algorithms which
can compete with the established algorithms in the standard approach [24]. But at
least we want to point out how ibp works in our iterated integral set-up.
Differential equations. Here, we focus on systems of linear first-order differential
equations for master integrals [25]. We also add a few comments on higher-order
differential equation for assorted master integrals which emerge as Picard—Fuchs
equations [6, 7, 10, 19].

Master integrals. Master integrals are assumed independent by definition with
regard to relations between them with coefficients which are rational functions
of mass squares and kinematic invariants [26, 27]. We will remind ourselves
that such a relation can still exist for their imaginary parts [S5]. We trace this
phenomenon back to the degree of subtraction needed in dispersion integrals to
construct their real part from their imaginary parts. Furthermore, we will offer a
geometric interpretation of the counting of master integrals for graphs b,,.

3.1 Dispersion and derivatives

As we want to obtain full results from imaginary parts by dispersion, we have to
discuss the existence of dispersion integrals in some detail. There are subtleties when
raising powers of propagators. It is sufficient to discuss the example of b;.

With @g (by) given, consider a derivative with respect to a mass square such that a

propagator is raised to second power,

O (b2)2,1 := 3,2 PR (b2)(s, m7, m3).

Similar to the imaginary part,

3 (cb’,?(bz)z,l) = 0,23 <<I>R’?(b2)) (s, m3, m3).

We have (for D = 4 say)

_ 00 3 2 (O(x — (my + mp)?)Vi(x, m?, m%)
5 <I>‘,‘g(b2)2,1 _S=50 mj ( 2 172 )dx.
T 0

(x —8)(x — s50)
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5,(Q1)6:(Q2) 1

Fig.4 The doubling of propagators indicated by a dot on the edge creates a problem

There is an issue here. It concerns the fact that to a propagator, itself a distribution,

+ in3(r2 — m2),

1
,m) = =P.V.
Q(r.m) = -7—3 3

r —m2

(using Cauchy’s principal value and the §-distribution) we can associate a well-defined
distribution by ‘cutting’ the propagator:

o 84(Q(r, m)) = O(r0)8(r* — m?).

The expression

50+(Q0r. m))
— 0

obtained from cutting any one of the two factors in the squared propagator,

1 1 5+(Q(r,m))
—0,,2 =— — 2 ,
Q(r,m)  Q%(r,m) Q
is ill defined as the numerator forces the denominator to vanish. Hence, higher powers
of propagators are subtle when it comes to cuts on any one of their factors (Fig.4).

Remarkably, dispersion still works despite the fact that derivatives like Bm% do just

that: generating such higher powers.
We have

m
9,3 (@R (B2)) = 3(s — (my + )V (s, mi. m3) (1 * m_?>
+O(s — (m1 + mz)z)am% VY (s, mi, m3),

where

m
(1 + —2> = 9,2 (m + my)?.

mi
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Using

. 5 5 D-3
(s, my, m3)

D 9
sz

D 2 2
V2 (S9m19m2) =

the above is singular at s = (m + m2)2. Indeed, both terms on the rhs are ill defined,
but their sum can be integrated in the dispersion integral

8,20 (b2) = L /oo (5<x — (m1 +m2)*)VY (x, m}, m3) (1 + @)
T 0 mi
1

+ O — (m + mz)z)am% V2D(X, m%? m%)> mdx

so that the singularity drops out for all D by Taylor expansion of
0,200, m) = 8,2 ((r = (1 +m)) & = (m = m2)h))

near the point x = (m + mz)z.
We are not saying that it is meaningful to replace

1 54+(0Q)
—

02 0’

to come to dispersion relations.
Instead, we can exchange either:

(i) Taking derivatives wrt masses on an imaginary part J (<I>Rl? (bn)v) first and then
doing the dispersion integral, or,
(i1) Doing the dispersion integral first and then taking derivatives.

3.2 Integration-by-parts

Integration-by-parts (ibp) is a standard method employed in high energy physics
computations.
It starts from an incarnation of Stoke’s theorem in dimensional regularization

d
Y 7)) ,
O_/d kakﬂv,LF({k r},

where F' is a scalar function of loop momentum k and other momenta and v, is a
linear combination of such momenta employing a suitable definition of D-dimensional
integration for D € C.

We want to discuss ibp and Stokes theorem from the viewpoint of the y; -integrations
in our iterated integral.
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We let Int;, be the integrand in Eq. (2.14). It is made from three factors:

D
D-3 ., D3 -3
Imt,, =Y, x3,;,7" x0, *,

with Y, 3,,, 0, defined by,

D3 = 2 , P73
Y, = Hvyj “Mis
j=2

D-3
3073 = \/?»(s,'ifz(yz, e YaeD) m3m3)
1-2 1
op * =

D_q°

(S;Zl_z(y27 A yn*l)) 2

We have the following identities which allow to trade derivatives with respect to y;
with derivatives with respect to m? 41018,

1
W Yy=yi———Y,=—2y;8 » Y, (3.1)
Yj Jyjz'_mi_H n J mi n
2 _m2 —m2
a_y-sn — — n 1 2 (ay.sn72)3n
! )"(S:ll 2()’2»--~a)’n—l)vm%’m%) o
—j—1
2/ L sk
= (3:30) Vs [ — (3.2)
S = Yn—1 k=1 Sn — Yn—k—1
n—j—1
= —2/s, 8m§+13"’
J=l n—i—1
— —j—1 § -V
dyjon = 0y, 5, P=2ys? H T
1= Sn
-2 n— —18
= Sn m? lan
—j—1
-2/ " sk
= d,0p Vs [] —= (3.3)
S =Yl -y Sn— Yn—k—l
We also note that
by 3= (0. Y (m28 ) —m2d 2)3 (3.4)
miy n — mi i on m%—m% 1¥m1 2%m; n» .
and |
-2 2 2
i (mlam% - mzam%) 3. (3.5)

)
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Furthermore, insertion of tensor structure given by v following Sect. 1 and Egs.
(2.25-2.29) define an integrand Int,, ,.
Now, using Eq. (2.20) we have for any such integrand,

j+1

UpPp
/ 3)‘] (Intbn")) dyj = 0’ V‘,’ 2 = ‘] = (}’l - 1)

nmj41

Proposition 3.1 The above evaluates to an identity of the form,
> Inty, ,, =0,
J

between tensor integrals Inty, ; for some tensor structures v;.

Proof Derivatives with respect to y; can be traded for derivatives with respect to
masses and with respect to the scale s using Egs. (3.1, 3.3, 3.1). Starting with v, this
creates suitable new tensor structures v;. Homogeneity of A allows to replace the d;
derivatives by Inty, ;, with once-more modified tensor structures ;. O

3.3 Differential equations

Functions @g (G)({ki - kj}, {mg}) for a chosen Feynman graph G fulfil differential
equations with respect to suitable kinematical variables [25]. Those variables are given
by scalar products k; - k; of external momenta. For G = b,, these are differential
equations in the sole scalar product s = k,, - k,, of external momenta.

CDQ (by) (s, {mg}) is a solution to an inhomogeneous differential equation, and the
imaginary part J (@g (b,,)) (s, {mg}) solves the corresponding homogeneous one.

More precisely, there is a set of master integrals {b,, } 5y defined as a class of Feynman
graphs such that any given graph b, giving rise to integrals @RP bn)v (s, so, {mg})—
so with all its corresponding tensor integrals and arbitrary integer powers of
propagators—can be expressed as linear combinations of elements of {,}.

Let us consider the column vector S;, formed by the elements of {b,}s. One
searches for a first-order system

05 Sp, (s) = ASp,(s) + T,
with A = A(s, {mz}) a matrix of rational functions and T = T({mz}) the inhomo-
geneity provided by the minors of b,. Those are (n — 1)-loop tadpoles #, obtained
from shrinking an edge e, t, = b, /e.
One then has
95 3(Sp, ) (s) = AI(Sp, ) (5),

where J(Sp,) is formed by the imaginary parts of entries of Sp, and S(CDRL? (t.)) =0.
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For b3, for example, one has Sy, = (Fo, F1, F2, F3)T, with Fy = ®R(b3), F; =
Bm[zcbg(bg;),i e{1,2,3}.

The 4 x 4 matrix A and the four-vector T for that example are well-known, see
[10].

From such a first-order system for the full set of master integrals, one often derives
a higer-order differential equation for a chosen master integral. For b3 or by, it is a
Picard-Fuchs equation [10].

For banana graphs b,,, it is a differential equation of order (n — 1):

n—1

> (05%)) @R ) = Ti(s), (3.6)

j=0

where Q(j ) are rational functions in s, {mz} and one can always set Q(" D—ne
has been studied extensively [6, 7, 10, 11, 19].

We want to outline how our iterated integral approach relates to such differential
equations, to master integrals and to the integration-by-parts (ibp) identities which
underlay such structures.

Our first task is to remind ourselves how to connect the homogeneous and
inhomogeneous differential equations, and we turn to b, for some basic considerations.

3.3.1 Differential equation for b;

We set D = 2 for the moment. Consider the imaginary part of the bubble

1
JA(s, m%, m%)

We can recover <I>%e(b2) by dispersion which reads for D = 2,

(D% (B2))(s) = O(s — (my +m)?).

o0 ~ a2
O
(m1+my)? (x —s)

We now use this representation to analyse the well-known differential equation [6] for
b, given in
Proposition 3.2
2 2.0 2 2 2 1
k(s,ml,mz)aJr(s—ml—mz) ©R(b2)(S)=;, (3.7

and for the imaginary part

9
(A(s m2, mz)— + (s —md— m2)> (cb%e(bQ)(s)) (3.8)
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Note that Eq. (3.8) is the homogeneous equation associated with Eq. (3.7) as it must
be [25].
The following proof aims at deriving Eq. (3.7) from the dispersion integral.

Proof Let us first prove Eq. (3.8).

A (s, m?, m3 i;® s —(m 2
, My, Ny 3 1 +m2)
s Jr(omitomd)
—(s+m?>+m3
_—Gmitm) g (s — (m +m2)2)

(5. 2m3)

o (s~ )

_ 2 2
_ w@ (s — (m +m2)2)
X (s, mi, m3)

=~ (s +m}+m3) 3 (P}n)) ),

as desired. We use A((m| + m2)?, m3, m3) = 0.

Now, for Eq. (3.7). Evaluating the lhs gives

1 [ 1
LHS = A(s, m, m%)—/ dx (3.9)
T mma) S md md) (x = 5)>
1 o] 2 2
+—/ S=mi—m) g (3.10)
T

(mi+m2)* 3 (x, m3, m3)(x —s)

A partial integration in the first term (3.9) delivers

dx

1 © A A(x, m?, m2
LHS = —,\(s,m%,mg)—f xA(x, my, m3)
(

2 2 3
mitma) ,/A(x,m%,m%) (x — )

2 2
+lfoo Gomizm) gy
(

T mim)? (x, m3, m3)(x — s)

1

1

T/ 2 2 '
)\' ) ) -
(x, my, my)(x —s) .

e¢]

—A(s, m3, m3)

We have
A (x, m2, mg) =2 (x —m? - m%) — v (x), v1(x) — vi(s) = 2(x —5), (3.11)
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and

A (s, m%, m%)—k (x, m%, m%) = (s—x) ((s +x) — 2(m% + m%)) = w(x,s)(s—x).
(3.12)
Using this the lhs of Eq. (3.7) reduces to a couple of boundary terms. We collect

Ll
T Mx Jmy+ma)?
+s—2(m%+m§)[ 1 T"

7 Vix (m1+m2)?
|: 1 (s —x)w(s,x)+ Ax]oo
T Vax(x —s) (m1+m2)?
1
=

as desired.
Indeed, using that w(s, x) = s +x — 2(m% + m%) we see that the term ~ w in the
third line cancels the first and second lines. The remaining term is

[1 Ax T" 1
TA =) Jnyamee T

as \/A((ml +mp)2, m2,m2) = 0 and limy_o /A(x, m3, m2) = x. 0

Remark 3.3 So, for b, we have by Eqgs. (3.12, 3.11)

2 9
Qo) = 2= =)

=1.
2, 2, m2) and Q(x)

This is a trivial incarnation of Eq. (3.6). As (Qo(x) — Qo(s)) ~ (x — s5), we cancel
the denominator 1/(x — s) in the dispersion integral and we are left with boundary
terms which constitute the inhomogeneous terms.

Remark 3.4 The non-rational part @g (b2)Transe of @g (by) is divisible by V2D and
gives a pure function in the parlance of [2]. Indeed, one wishes to identify such pure
functions in the non-rational parts of @g (by) (s, s0).

For example, for D = 4 (ignoring terms in CID‘I‘e (by)(s) which are rational in s)

m% —l—m% -5 —,/)L(s,m?,m%)
m%—i—m% — S +,/A(s,m%,m%)

This follows also for all b,, n > 2, as long as the inhomogenuity 7}, (s) fulfils

(ID‘}Q (b2)(s)'l‘ransc/V24(S) =1In

3(Tu(s)) =0,
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which is certainly true for the case by with T>(s) = 1/x. Indeed, for f(s) a solution
of the homogeneous

n—1
> 0i)d | fs)=0,

j=0

the inhomogeneous Picard—Fuchs equation

n—1
> 03] | g(s) = Tu(s),
j=0

can be solved by setting g(s) = f(s)h(s). Using Leibniz’ rule, this determines %(s)
as a solution of an equation

n—1 n—1
Y O DY () aj@) I | = us),
k=1 =k

with fU=0(s) = 877 £(s) and similarly for 2% (s). Note £UR (s) are given by
solving the homogeneous equation. Hence, g(s) indeed factorizes as desired.

This relates to co-actions and cointeracting bialgebras [28, 29] and will be discussed
elsewhere.

3.3.2 Systems of linear differential equations for b,

To find differential equations for the iterated y;-integrations of Eq. (2.14), we first

systematically shift all y ;-derivatives acting on , / yjz - m% 41 toacton VZD (s,f, m%, m%)
using partial integration. We can ignore boundary terms by Thm. (2.2(iii)). We use

1 1
0 — | F=———""—F

mj o[ 2 3
Yj—1 —n; 2/yj_1—m§
2 2 2
Yiop —m; yi_
_ Jj—1 J s+ Jj—1 S| F
Zm? [¥j-1 —m? 2m? [Yj-1 —m?
1 9 1
N _y y_j—l—
2m? [yi-1 —m? Zm? [Yi-1 —m?

2 The argument can be extended by replacing the requirement J(75(s)) = 0 by Vary (7, (s)) = 0 where
Var, is the variation around a given threshold divisor x. For banana graphs b;, we only have to consider

X = Snormal-
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2
[y 1—m j—1—m;
y] 1 dy;_ 1F)
\/yj 1 —m
y] 1(\/ 32F>
\/y] 1 —m

We could trade a derivative wrt y; | for a derivative wrt m?2 thanks to Thm. (2.2(iv)).
This holds under the proviso that all masses are different. Else, we use the penultimate
line as our result:

(ayj—lyj—lF)

1 1
Oy~ | F = +————yj—1 (3, F).

m=
j ] 2 2 . 2
[Yj—1—m; 2mj [Vj—1—m;

We can iterate this and shift higher than first derivatives

1
oy | F
VY- —m?

J J

to derivatives on F'.
We note that from the definition of )»(s,’f’z, m%, m%) we have

A (s,'fz, m3, m%) =52 (s,’ffz -2 (m% + m%))
+ (m% - m%)2 .
By Euler (2 is homogeneous of degree two),
2A( m%,ml)_anzk< 2m2,m1>+8 z)»(”2m%,m%)

+9,22 (s,",_z, m3, m%) .

Also,
n=2 .2 2\ _ 2 2 _ n=2
8m%)» (sn ,m2,m1) —2<m1—m2—sn ),
n—2 2 2\ _ 2 2 _ -2
Bm%k<sn ,m2,m1)—2<m2—ml—sn ),
8m§)‘ (s,’f_z, m3, m%) =2 (s,'l’_z —m? - mg) 8m§s,’,’ 2. V3<j<n,
s A (s,'lz_z, m%, m%) =2 (s,'f_z - m% - mz) ass,’;—z.
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With this, Thm. (2.2) allows to derive differential equations.
Let us rederive, for example, the differential equation for the three-edge banana.
Let us define

Fo = ®Rr(b3),
F = 3m%F0,
= 3m%F0,
= 8m§F0,
Fy = 0, Fp.
Then, we have
3
(D—3)F0+Zm§F,- = 50, Fo, (3.13)
j=1
and similarly,
3
<(D—4)+Zm$am_2) F; =sd,F;, j €{1,2,3}. (3.14)
i=1

The integrands I; for (D — 3)F0,m%F1 ,m%Fz,m%F3, and s F; can be written as

num; (y2) | D=5 _p_s
I = —12 y% — m% VA (s3l, m%, m%)
52

with suitable polynomials num; in y,. Equation (3.13) follows immediately as the
corresponding numerators num; (y2) add to zero.
Equation (3.14) for Fy, F>, F3 can be proven in precisely the same manner, and
many more differential equations follow from using the ibp identities Eqs. (3.1-3.3).
Furthermore, Fy, F1, F», F3 provide master integrals for the Feynman integrals
PR (b3)y [10].

Remark 3.5 Note that we can infer the independence of Fy, Fy, F», F3 from the fact
that the corresponding polynomials are different, in fact of different degree in y;.
We could also use different integral representations for F1, F», F3 by setting

;= 8m§ rhs of Eq. (2.1),
= 8m% rhs of Eq. (2.2),
F| = Bm% rhs of Eq. (2.3).

and conclude from there. |
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3.4 Master integrals

We want to comment on two facts:

(i) A geometric interpretation of the known formula for the counting of master
integrals for b,,,

(ii) That the independence of elements x of a set S;,, of master integrals does not imply
the independence of elements of J(x), x € (Sp, )

3.4.1 A geometric interpretation: powercounting

Let us start with a geometric interpretation. We collect a well-known proposition [26,
27].

Proposition 3.6 The number of master integrals for the n-edge banana with different
masses is 2" — 1.

Let us pause. For b3, we have four master integrals, Fy, and three possibilities to put
a dot on an internal edge. Furthermore, we can shrink any of the three internal edges,
giving us three two-petal roses as minors. This makes 7 = 23 — 1 master integrals
amounting to the fact that all tensor integrals ® (b, )v can be expressed as a linear
combination of those seven, with coefficients which are rational functions in the mass
squares and in s.

Similarly, for by we have ®Z(bs) itself, four integrals 0,2 PR (bs) and six

9,2 8m_2d>Rl? (bg), i # j. There are four minors as well, so that we get the desired
J i

15 = 2* — 1 master integrals.
For arbitrary n, there are indeed (?) possibilities to put one dot on j edges, and

()=2'—n-1,

possibilities to put a single dot on up to n — 2 edges. Furthermore, we have n minors
from shrinking one of the n edges, so we get 2" — 1 master integrals.

Furthermore, it is obvious from the structure of the iterated integral in Eq. (2.14) that
the two edges forming the innermost b, do not need a dot. Indeed, the corresponding
loop integral in & is fixed by two &4 functions. Integration by parts then ensures that
we do not need more than one dot per edge at most.

Remark 3.7 One can analyse this from the viewpoint of powercounting. Let us choose
D = 4 so that b; is log-divergent. Let us note that for D = 4

#E

——
4n—1)—-22n-2) =0, (3.15)

where #E is the number of edges of a banana graph b,, which has (n — 2) edges with
a single dot each. Equation (3.15) says that b, furnished with the maximum of n — 2
dots gives an overall logarithmic singular integral for any 7.
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Fig. 5 The graph b3 and its triangular cell C3. The codimension-one boundaries (sides) are given by the
condition A; = 0, indicated in the figure by i = 0, i € {1, 2, 3}. The graph b3 with two yellow leaves as
external edges is put in the barycentre. All its edges are put on-shell. The cell decomposes into six sectors
miA; > mjA; > mpAy asindicated by i > j > k. The lines m; A; = m jA; (indicated by i = j) start at
the midpointmid; ; : Ay =0, A;m; = Ajm  of the codimension one boundary Ay = 0 and pass through
the barycentre bc : mjA| = mpAp = m3A3 towards the corner ¢ : A; = A; = 0, labelled k. Such
corners are removed. For these three lines, the three intervals [mid; s be] from the midpoints of the sides to
the barycentre of the cell form the spine. It indicated in turquoise. The bold hashed line indicated by 2 < 3
(sompAy < m3A3z)on the left and 2 < 1 (so mpAy < m1Aq) on the right is an example of a fibre over
one (the vertical) part (on the 1 = 3-line) of the spine (the turquoise line from m1A| = m3A3, A =0to
the barycentre). On the left, along the fibre the ratio A» /A3 < m3/m is a constant, on the right similarly.
Finally, to the two yellow leaves we assign incoming four-momenta k3, —k3 with k% = s. The spine
partitions the cell C3 into three 2-cubes, boxes LI(j) with four corners for any LI(j): mid; ;, be, mid; ., c;.
For each such box [J(j) there is a diagonal d;. It is a line from a corner to the barycentre: d; : Jc;, be] for
which we have m; A; = my Ap. We assign to this diagonal d; a graph for which edges ¢;, ¢ are on-shell
and edge e carries a dot. Along the diagonal d;, we have A jm j > (A;m; = Apmy) (colour figure online)

A lesser number of dots give a higher degree of divergence and hence higher sub-
tractions in the dispersion integrals. Conceptually, higher degrees of divergence are
probing higher coefficients in the Taylor expansion in s which provide the needed
master integrals. We see below how this interferes with counting master integrals but
first our geometric interpretation as given in Fig.5. |

3.4.2 bz and its cell

The parametric representation of b3 as given in “App. E” provides insight into the
structure of its Feynman integral and the related master integrals.

Remark 3.8 Let us note that any graph b, has a spanning tree which consists of just
one of its internal edges. Hence, any associated spanning tree has length one. As by,
has n internal edges its associated cell C(b;) (in the sense of Outer Space [30]) is a
(n — 1)-dimensional simplex Cj,

C(by) = Cy.
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The graph b, has internal edges ¢;. To each such edge, we assign a length A;, 0 <
A; < oo which we regard as a coordinate in the projective space P, = P1(RS).

Shrinking one edge ¢; to length A; = 0 gives the graph b, /e; which is associated
with the codimension-one boundary determined by A; = 0.Itis a (n —2)-dimensional
simplex C,,_1.

Note b, /e; is arose with (n — 1) petals. Each petal corresponds to a tadpole integral
for a propagator with mass m%, Jj #£i.

Different points of C(b,) correspond to different points

Pp,o2p: (A1:Ax: -1 Ay).

We can identify n! sectors o : Ay > Ag@2) > -+ > Ag(n) for any permutation
o € S, with associated sector o.

DR (ba) (s, 50) =/ Inty, (s, 50: p) = »_ | TD) [Inty, (s, 50: p)].
By, (Ry)

o€es, o
(3.16)
with
In 2B 6) ()
Inty, (5, 503 p) = —— 2@,
I/fbi (p)
T®D) is a suitable Taylor operator with subtractions at s = sp ensuring overall

convergence and p7, the UV degree of divergence. Here,

D(bn)(s)(p) = 1_[ Aj (S - (Z A,-m,?) (Z A%))
j=1 i=1 k=

T P(by)

and

o) (24)
Each sector allows for a rescaling according to the order of edge variables such that
the singularity is an isolated pole.
Here, T P (b,) is the toric polynomial of b, as discussed in [11, 31] and prominent
in the GKZ approach used there.
Such approaches with their emphasis on hypergeometrics and the rdle of confluence
have a precursor in the study of Dirichlet measures [32]. The latter have proven their
relevance for Feynman diagram analysis early on [33].
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The spine of C(b,) is a n-star, with the vertex in the barycentre and n rays from the
barycentre bc of C(b;) to the midpoints of the n codimension-one cells C,,—1 which
are (n — 2)-simplices.

These rays provide n corresponding cubical chain complices cc(i) each provided
by single intervals [0, 1].

For the two endpoints 0 and 1 of each cc(i), we assign:

(i) to 1,—the barycentre bhc common to all cc(i) we assign b,, with internal edges
removed, hence evaluated on-shell. This corresponds to J (CDR? (b,,)).

(i) To O, we assign the graph b, /e; (a rose with n — 1 petals) with petals of equal
size—hence a tadpole CIDRI?(b,,/e,-) with Ajm; = Agmy, j, k #i. See Fig. 5. |

Figure 5 gives the graph b3 and the associated cell, a 2-simplex C3. It is a triangle
with corners ¢y, ¢3, ¢3. Points of the cell are the interior points of C3 and furthermore
the points in the three codimension-one boundaries C» (i), the sides of the triangle.

The corners ¢; are removed and do not belong to the cell. Points of the cell param-
eterize the edge lengths A; of the internal edges of b3 as parameters in the parametric
integrand, see Eq. (E.1).

The boundaries are given by C»(i) : A; = 0 and correspond to tadpole integrals
for tadpoles 1> (i) = b3/e; for which edge e; has length zero.

Comerscy : A; = A; =0, i # j correspond to b3/e; /e; which is degenerate as
it shrinks a loop.

Colours green, red, and blue indicate three different masses. It is understood that a
momentum k3 flows through any edge e; which is chosen to serve as a spanning tree
for bs.

The three edges of the graph give rise to 3! orderings of the edge lengths as indicated
in the figure. We will split the parametric integral accordingly. See “App. E” for
computational details.

To a (i = j)-diagonal of a box LI(k), we associate a b3 evaluated with edges ¢;, ¢;
on-shell and edge ey dotted, so it corresponds to 8m%‘3 ((Dg(by,)).

In the figure, there is also an arc given which is a fibre which has the diagonal d;
as the base. Integrating that fibre corresponds to integrating the b, subgraph on edges
e;,ej. Points (A; : Aj : Ay) on a diagonal dj fulfil

Agmy > x, x ;= Ajm; = Ajm;.

To the barycentre A;m; = A;m, we associate b3 with all three edges on-shell, a
Cutkosky cut providing (CDR? (b3)). To the midpoints A; = A, Ay = 0 of the edges
A; = 0 (e; = 0 in the figure), we assign tadpole integrals. All in all we identified all
seven master integrals in the figure. Note that the cell decomposition in Fig. 5 reflects
the structure of the Newton polyhedron associated with 7' P (b3) [31].

Note that the requirement A;m; = A jm is the locus for the Landau singularity of
the associated by (e;, e) and similarly for Aymy = Aymy = Azm3 and bs.

Remark 3.9 Note that the diagonals d; can be obtained by reflecting a leg of the spine at
the barycentre. The three legs and the three diagonals form the six boundaries between
the sectors A; > Aj > Ag.
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B (2e) B

Fig. 6 The cell C(bg) = C4 on the left. On the right, we see two diagonals d¢, dp and their associated
graphs which have one dotted edge. Points of the triangle bc, B, C are the open convex hull of d¢, dp
which we denote as the span of the diagonals d¢, dg. To them, a graph with two dotted edges is assigned.
On the codimension-one triangles spanned by three corners we indicate the barycentre by a coloured dot.
For example, to the triangle BC D we have the yellow dot and the graph b4 /ey assigned to it where the
yellow edge shrinks to length zero (colour figure online)

A similar analysis holds for any b,. For example, for b4 the cell is a tetrahedron
with four corners ¢;, i € {1, 2, 3, 4}. The spine is a four-star with four lines (rays)
from the barycentre bc : miA| = myAy; = m3A3 = mgAy to the midpoints of the
four sides of the tetrahedraon (triangles). Reflecting these lines at the barycentre gives
four diagonals d; : [bc, c;] from bc to one of the four corners c;.

To be, we associate I (O (b4)). To the diagonals d;, we assign am?\“s (@R (b))
with the edges e;, i # j, on-shell. There are six triangles with sides d;, d;, ]c;, c;[. To
those, we assign 8,%” Bmffs (¢R9(b4)) with the edges ey, k # i, j, on-shell. See Fig. 6.

|

Continuing we get the expected tally: for b,,, we have (g) = 1 graph for the barycen-

tre, (|) = n graphs for the diagonals, ("), m < (n — 2) graphs for the span of m

diagonals, and (nfl) = n tadpoles. It is rather charming to see how mathematics

inspired by the works of Karen Vogtmann and collaborators [30] illuminates results
discussed recently in terms of intersection theory [34].

3.4.3 Real and imaginary independence and powercounting

Next, we want to compare real and imaginary parts to check that the independence of
elements of Sp, does not necessarily imply the independence of elements of I (Sbn).
We demonstrate this well-known fact [5] for b3. Independence is indeed a question of
the values of D.

For b3 and D = 2, we need no subtraction in the dispersion integral for Fy =
D% (b3),

dx,

D% (b3)(s) = —

1 /OO Vf’(x,m%,m%,m%)
TJ(

my+ma+ms3)? (x —s)
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and for F; = 9, Fp again an unsubtracted dispersion integral suffices
1

dx.

D 2 2 2
1 [*> 92 V37 (x, mi, m3, m3)
Fi(s) = —/ l

T J(my+my+m3)? (x =)

The four integrands I; (for the y,-integration) of J(F;), i € {0, 1,2,3} can be

expressed over a common denominator with numerators num; (y;), and for D = 2
D . .. .

(the (s,’;’z) 7~ = 1 is absent), there is indeed a relation between the four numerators.

nums(y>) = cgnumo(y2) + cynum; (y2) + canumz(y2), (3.17)
where c? are rational functions of s, m%, m%, m% independent of y;.

For D = 2, a second relation follows from the fact that the integrand involves the
square root of a quartic polynomial ([S], App. D),

Vi) 1
2) = )
2 —m V5y/ 02 = m3) (2 + m3) (32— y) (2 — o)

where we set for the quadratic polynomial )»(s31 (), m% m%),

A(s3 (), mi, m3) = s(y2 — y4) (2 — y-),

which defines y. See Sect.2.3.
Investigating

upg yél
J, = / dys,
my /Sy (2 —m3) (2 +m3)(v2 — y4) (2 — y-)

as in [5] delivers a further relation between the F;, and we are hence left with only
two independent master integrals for the imaginary parts of b3 in D = 2.

For b3 and D = 4, on the other hand we need a double subtraction in the dispersion
integral for Fp = CID‘I‘e (b3),

dx,

D% (b3)(s, 80) =

my+matms)? (X —$)(x — 50)?

(s — 50)2 /00 VP (x,m3, m3, m3)
T (

whilst for F; = 9,2 F a once-subtracted dispersion integral suffices,

(s —s0) [ 0,2V3 (x, m3, m3, m3)
Fi(s)= — . dx.
T (m1+ma+m3)? (x = 5)(x — s0)

The four integrands [; (for the y-integration) of J(F;), i € {0, 1, 2, 3} have to be
expressed over a different common denominator D = 4, in particular having an extra
factor s31. There is no relation between them.
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This reflects the fact that the Fy dispersion

(s — s0)

V2 (x,mi,m3,md) VP (x,m}, m3, m3)
D% (b3)(s, 50) = L7 75 L2 dx,

(mi-Hm+ms3)? < (x = $)(x = s0) (x — 50)?

subsumes the Taylor expansion s near sg to second order.
In contrast, the Fj, i € {1, 2, 3},

9, 2(13 (b3)(s, s0) = 0,, 2l/

(m1+ma+m3)?

o0 V3 (x, ml,mz, ) V3D(x ml,mz, )
(x —5) (x — s0) *

subsume the Taylor expansion in s near sq to first order.

This is in agreement with the powercounting in Eq. (3.15) and forces the relation
between the four F; to be ~ sd; Fp, see Eq. (3.13). The relation Eq. (3.17) is spoiled
by the extra coefficient in the Taylor expansion of CID‘I‘e (b3)(s, s0).

We are left with four, not two, master integrals. Indeed, starting with a dotted log-
divergent banana integral reducing the number of dots demands more subtractions in
the dispersion integral. Any relation between imaginary parts with different numbers of
dots is spoiled by the difference in degree needed for the subtractions in the dispersion
integral.
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Appendix A: Feynman rules for banana graphs

Having introduced the graphs b,, as our subject of interest we define Feynman rules
for their evaluation. We follow the momentum routing as indicated in Fig. 1.

The graph by, gives rise to an integrand I, (setting ko = (0, 0) where the D-vector
ko is set to the zero-vector (0, 0)7 € MP):

1
Iy, = w(y_ 1)1_[(k

kR m
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0 < j < (n—1)forthe n quadrics Q 41,

and we set Qj—H = (kj+l — kj)z — m?_H,

j=0,...,n— 1. Here,
wh_yy =d k- dPk,

isa D x (n — 1)-form in a (n — 1)-fold product M,, of D-dimensional Minkowski
spaces

M, = (MD)X("_I).

The function Cbg (byy)(s) is multi-valued as a function of s := k,%. It has an imaginary
part given by a cut which amounts to replacing for each quadric

— 84 ((kjr —kj)> —m5, ),
j+1

in the integrand I, . This is Cutkosky’s theorem [36] applied to b,. The distribution
84 acts as

84 (k1 — k> = m3yy) = Okjs1:0 — kji0)d((kj1 — k> = m3y ),

using the Heavyside distribution ® and Dirac §-distribution.
The integrand for the cut banana is correspondingly

n—1
lou(ba) = oy [T 8+ (Ckjr = k? = m2,,). (A1)
j=0
We take the external momentum &, to be timelike so that we can choose k,, = (ky:0, 6) r
and setk; = (kj o, k.,')T. We alsoset k; - k;j =: t; and have ka. = k?;o —t;, and finally
define k; = k;/.,/7;. Hence,
D-3 A
dPkj =dk; o /t;" dt; dk;,

with an angular measure

Here,

P 1
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B @ :@ ®I+I®@+
+©®a+@®09+<>® C% +

10labelings 10labelings

+<> <>®co

30labelings

Slabelings

Fig. 7 The Hopf algebra disentangling the five-banana b5. On the right, we also get roses with n petals,
or tadpoles in a physicists parlance. There are 5 = (Z) labellings for the b4 banana in the first term in

the second row, and 10 = (g) = (g) for the next two tensorproducts. The final term in the third row has

30 = (3) (3) labellings, as there are (3) possibilities to label the edges of the first by banana, and then (3)
to label the second one

We then have as integrations
b o) 00 D_3 . .
/ d kjf(kj) =/ dkj;()/ \/t7 dtj/ dkjf(kj,(),tj,kj).
MP —00 0 §b-2

Appendix B: Minimal subtraction
For the reader which likes to compare with dimensional regularization and the use of

minimal subtraction as renormalization, we have kept D complex in most formulae
and note that in such a situation the coproduct for b, reads

Ap(by) =b, @I +1® by, + Z X ® by px|- (B.1)

x,lx|sn

Here, the sum is over all monomials x of banana graphs b; on less than n edges. For
example,

A(bs) = bs ®H+H®b5+(g)b2®t3+(§)b3®t2+(2)b4®t1 —i—(g) @)bzbz@l‘].

In Feynman graphs, this is Fig.7.
Explicitly, CDAD,, 5(b3) reads, for example,

Dpys(b3) = —(®P(b3)) + Y (PP (ba(ei, €))) DP (11 (er))) + PP (b3)
cycl
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=Y (DL (ba(ei, )P (11 (en)).

cycl

Here, ®P are unrenormalized Feynman rules in D dimensions which evaluate into a
Laurent series in D — 2n, n a suitable integer, (. . .) is the projection onto the pole part
and the sum is over the three cyclic permutations of i, j, k.

This MS-renormalization results @1?4 g(by) can be related to @g (by,) if so desired.
See also the discussion with regards to MS and tadpoles in [28].

Appendix C: Tensor structure
Tensor integrals

We are not interested in <I>£ (by,) alone. To satisfy the needs of computational practice,

we should also raise the powers of quadrics by taking derivatives 82 , with respect to
j
mass squares m% and we should allow scalar products k; - k; in the numerator.

For such a generalization to arbitrary powers of propagators and numerator
structures, we use the notation

DR (by) (s, (m?)),

where v is a (@ — 1>-dimensi0na1 row vector with integer entries (see Sect.
(2.5.1.)) in [10].

e The first n entries v;, 1 < i < n give the powers of the n edge propagators Ql,

e the (n — 2) entries v;, (n + 1) < i < (2n — 2) are reserved for powers of k; - k,
1=<i<@®m-2),

e the (n — 2) entries v;, 2n — 1) < i < (3n — 4) are reserved for powers of

2 2

ky, ... ki,

o and the remaining (n — 2)(n — 3)/2 entries are reserved for powers vj; of k; - k;,

lj—Il>1,1<j,l<(m—1)and3n—3<i< ("("TH)—1>.
This is all what is needed as kl2 = 0 —i—m% and 2k; - ki1 = ki2+kl-2_1 — Qi —miz,

n>i>2.
For example,

CDRl@)(bﬁl)(vl,.‘.,UB)(sv m%a ey mi)
_ / D li[ (K1 - k)" (kz - ka) "0 03)"7 ()™ (k- k)™
- 3) Vit .
M =0 ((kj+1 —kj)? — m§+1) '

For the imaginary part, we have correspondingly
S (RGG, ) (omdm)
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3 3
= [ oy TTa" ((TTo+tn =k =mip
My =0 J+l1

=0

x (k1 - ka)*s (ky - ka) " (k)7 (k3)"* (ky - k3)”‘3)-

We discuss differential equations for chl? (by)v, as well as partial integration identi-

ties and the reduction to master integrals starting from our representation for <I>g (bn)y
in Sects. (3.3, 3.4).

Dispersion for ®2 (b,),
For banana graphs b,, on two vertices, dispersion for tensor integrals is rather simple:
00 V[D

(s — SO)I[n,v]\ vl
O b, 2 = =0 | U —dr, (Cl
R (Bn)v (s, 50 {m,}) = (i emy)? (X — $)(x — s) vl x (€D

where |[n, v]| — 1 is the superficial degree of divergence of CDRL? (by)y according to v:
D n 2n—2 i 3n—4
\[n, v] :<3—1>(n—1)+2v,-+ > 71 + ) v+ v (C2)
j=1 j=n+1 j=2n—1 jl
This is based on

S (PR ) .50, (12D = O = 1+ m)IVE,.

For VP

[n,v]°

see Egs. (2.25-2.29).

Appendix D: Pseudo-thresholds

Let us remind ourselves of a parametric analysis of the second Symanzik polynomial
(with masses) ® for the banana graphs by:

o)) = [T4i | [s— (D m3a; ZI . (D.1)
i : =y

The equation

@ (bn) (Mpgrma) = 0,
has a solution in the simplex A; > 0 for positive A; givenby A;m; = Ajm;.
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For m any pseudo-mass, the solution of ¢(b,)(m) = 0 requires at least one A; to
be negative and it hence gives no monodromy on the physical sheet.

Still, the variations associated with pseudo-masses and thresholds are needed for a
full analysis of @R? (by) to find their Hodge structure.

So, let g, be a sequence of the form

o" = (tm; £t my x---£my,),

with a sign chosen for each entry m;. Let p(i) € {£1} be the sign of the i-entry. A
global sign change leaves the pseudo-thresholds invariant (la — b| = |b — al), so we
have 2"~! choices and adopt to the convention p(1) = +1.

For a flag

(by Cby C---Cby),

this determines subsequences 6> C o> C --- " in an obvious manner.
Define
m n—j—1
—
n—j—1

. 2
st+m_y = () pom:)
up) = =t , (D.2)

24/s;)

which also defines the pseudo-mass m ;n—j-1:

n—j—1

ma,n—j—l = Z p(l)ml

|],i=1
-1l mi+p@ma|+ pB)m3| +--- |+ pn— j— Dmy—j—1].
——

(n—1) bars

Define
Opt =O(s — (my +myn-1)?), O, _ = O((my —myn-1)* —s).
Now, set for p(n — 1) = +1:

Var(bg) = ®n,p(n))

e 0 0 2 2 2 /2 ,P-3
xwg-/ Vg,,,l’n_l(sn—Z SpYn—1+my,miy,...,m;_1) Yo_1 — My dy,—1.

mp

Vh o pn=D=+1

and for p(n — 1) = —1:

Var(b,‘{) = ®n,p(n))
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0 D-3
D 0 0 2 2 2 2 2
X “)% /l;po’” Va"*l,n—l(s’l = 2\/spyn—1 +m;, my, ~-~amn_1)\/yn_1 —my dyy—1 -

n

Vi e pn=1)==1
Apart from the variation for the normal threshold (with p(i) = +1forall 1 <i <n)

corresponding to pseudo-masses and their pseudo-thresholds. They will be discussed
elsewhere.

Appendix E: b3 parametrically

Let us recapitulate b3 in the parametric representation. We list basic considerations.
A detailed analysis in the view of [37, 38] is left to future work.

E.1.The parametric integral

Let Q,, be the one-dimensional real vector space spanned by s = k2, the square of
the Minkowski four-momenta k3, —k3 assigned to the two vertices of b3. Let Py, =
P2(R.) be a projective space given by the ratios of the nonnegative side lengths of
the internal edges of ©.

The parametric integrand function (we consider masses as implicit parameters)

Fb3 :ng X Qb3 XIP’[,3 — C

is (see, for example, Sect. (5.2.1.) in [39])

Po(s;p)
In (d>@(so;p))
3
e

+(s0A1A243 — (MIA| +m3 Ay + m3A3)¥e)
Po(s;p) ) _ P (s;p)
In ((D(;)(S();p)) (S SO) <as In (‘b(;)(SOZP)))s:sO
X .

Vo

Fpy(s,50; p) := (s —s0)A1A2A3

(E.1)

Here,
®p, : Qo xPg — C
is

Dpy (r; p) = rA1A2A3 — (M AL +m3 Ay + m3A3) Y,
Yp, = A1Ar + A2A3 + AzAj.
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Note Fp, (s, p) and 9d; F, (s, p) both vanish at s = s¢ for all p, so these are on-shell
renormalization conditions.
The parametric form is the integrand

Intp, (s, so; p) := Fe(s, 50, P)$2b;.,
Qp, = +A1dAy ANdA3 — Ay dA| ANdA3 + A3dAL ANdA>.

We then have the renormalized value?

dR(b3) (s, 50) = / Inte (s, so; p), (E2)
P2(Ry)

from integrating out p which is the parametric equivalent of Egs. (2.1, 2.9).

E.2. Sectors and fibrations

To study fibrations in our integrand, we start from the fact that there are six orderings
of the edge lengths for the three edge variables A;.

Consider, for example, the sectors 1 > 3 > 2 and 3 > 1 > 2 of Fig. 5 so that edge
e has the smallest length. For the choice 1 > 3 > 2 rescale*

Ay =axAq, Az = azAy,

and in that sector 1 > 3 > 2, we have

00 a3
/ Fp Qpy = / (/ Fp,(1, az, ag)da2> das.
P2(R)N(1>3>2) 0 0

A further change a, = azb; leads to a sector decomposition (in the sense of physicists)

00 1 1 00
/ (/ a3 Fp, (1, bras, a3)db2> daz = / (/ a3 Fp, (1, bras, d3)da3) dbs.
0 0 0o \Jo

Fib(hs)

For any chosen 0 < by < 1, a3Fp,(1, baas, a3) gives points on the corresponding
chosen fibre and Fib(b,) is the integral along that fibre. Integrating b, integrates all
fibre integrals Fib(b,) to the two sector integrals on both sides of the spine.

In fact, for 0 < a3 < m/m3 we are on the left of the spine and for m|/m3 < a3 <
oo on the right.

Let us look at ®p, under the rescalings.

Dpy (A1, Ay, A3) = sA1A2A3 — (mI AL +m3As + m3A3)(A1Ay + AgAs + A3AY))

3 Divergent subgraphs exist but do not need renormalization as the cographs are tadpoles which can be set
to zero in kinematic renormalization. Accordingly Fg vanishes when any two of its three edge variables
A; vanish.

4 Qpy — A%daz A daj under that rescaling.
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— saraz — (m% + m%az + m%a3)(a2 + araz + a3))
— sbza% - (m% + m%b2a3 + m%a3)(b2a3 + bzag +a3))
= a3z(sbraz — (m% + m%bzas + m§a3)(b2 + byaz + 1)) =: Dy, (s, by, a3).

For v, we find

(A1A + A2A3 + A3A))
— (a2 + aza3 + a3z)
— az(by + baz + 1).

We thus find in the region where e is the smallest edge the integrand function
Intp, 2(b2, a3)

Intp, 2(b2, a3) := a3z Fp;(1, braz, a3) = (s — so)bra3

fi>b3 (s;b9.,a3)
By, (s0:02.a3)

soazby — (m% + m%b2a3 + m§a3)(1 + ba(1 + a3))
(br(1 4+ a3) + 1)3
+(sob2az — (m3 4+ m3byaz +m3az)(b2(1 + az) + 1))

By, (s352,a3) By, (53b2.a3)
In{=—""=)—(s—s0)|0sIn| —="T¥—=
<<1>b3(é‘0;b2,a3)> ( 0) ( s (<Db3(So;bz,a3)))S:S0
X .

(by(1 4+ a3z) + 1)3

In < sasby — (m? + m3byaz +m3az)(1 + by(1 + a3)) )

X

Note that Int,, (0, az) = 0 as it must be as petals evaluate to zero under renormalized
Feynman rules in on-shell renormalization conditions.
Finally,

o
Fib(by) = / Int},&z(bz, a3z)das.
0
A point along the (1 = 3)-line of the spine is given by (1, by, 1) € Pp,, for all
0<by <.

Remark 3.10 Upon rescaling in each of the sectors in the three cubes of Fig.5 accord-
ingly and summing over sectors, we get a symmetric representation equivalent to
averaging over the three possible ways of expressing Eq. (2.7) using any of s3l (r2, m?)
and similar to [9]. |
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