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Abstract

This thesis presents a simultaneous cross section measurement of top quark-antiquark
pair (tt̄) production in association with b jets, c jets, a Higgs boson, or a Z boson in the
H/Z→ bb̄ decay mode with exactly two charged leptons (e,µ), targeting the dilepton tt̄
decay channel. The measurement is performed at the CMS experiment at the CERN LHC
in proton-proton collisions at a center-of-mass energy of 13 TeV and the analyzed data
corresponds to an integrated luminosity of approximately 60 fb−1. Collision events are
modeled as a mathematical graph structure and processed using graph transformer neural
network architectures based on multi-head attention mechanisms to perform multi-class
classification. The measured cross sections are parameterized as signal strength parameters
relative to the cross sections predicted by the Standard Model of particle physics (SM). Four
signal strength parameters are simultaneously extracted in a maximum likelihood fit to data
and result to 𝜇obs

tt̄B = 0.98+0.34
−0.25, 𝜇obs

tt̄C = 0.74+0.41
−0.41, 𝜇obs

tt̄H = 0.89+0.95
−0.93, and 𝜇obs

tt̄Z = 1.28+1.15
−1.06,

corresponding to an observed (expected) significance of 15𝜎 (16𝜎) for tt̄B, 1.8𝜎 (2.9𝜎) for
tt̄C, 1.0𝜎 (1.1𝜎) for tt̄H, and 1.2𝜎 (1.0𝜎) for tt̄Z compared to the SM prediction without
these processes. The results reveal a good agreement with the SM expectation for the
signal strength of one within the 68% confidence interval.
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1 Overview

The quest to uncover the most fundamental constituents of nature has driven humanity
throughout its entire history. The Standard Model of particle physics (SM) is a relativistic
quantum field theory that describes the currently known elementary particles and the
interactions between them. It describes three of the four known fundamental interactions,
namely the electromagnetic, weak, and strong interactions, while gravity is not part of
the theory. The SM has withstood numerous precision measurements and to date has not
been falsified by any attempts to disprove it. One of the most significant accomplishments
of the SM was the prediction of the Higgs boson [1–6], which was ultimately confirmed by
the ATLAS and CMS Collaborations [7, 8]. However, the SM is limited due to its inability
to explain certain phenomena such as Dark Matter, Dark Energy, the gravitational force,
or size of the matter-antimatter asymmetry in the universe.

Two intriguing particles in the SM are the top quark and the Higgs boson. The top quark
is the heaviest known particle in the SM and provides crucial insights into the interactions
between quarks and the origin of mass. The Higgs boson, on the other hand, is pivotal for
understanding the Higgs field, which imparts mass to fundamental particles and thereby
determine the structure of the universe. Processes in which the top quark couples to the
Higgs boson are of particular interest as they allow for the direct study of interactions
between these two heaviest known particles. One such process is the top quark-antiquark
pair production (tt̄) in association with a Higgs boson (tt̄H). These interactions offer to
precisely determine the top quark’s coupling to the Higgs boson, and may provide hints of
physics beyond the Standard Model (BSM). The dominant decay mode of the Higgs boson
is the decay into a pair of bottom quarks (b), denoted as H(bb̄). However, investigating
the tt̄H(bb̄) process rises significant challenges. Due to the relatively small predicted
cross section of 𝜎tt̄H(bb̄) = 0.29 pb, this process is difficult to measure, as it is irreducibly
overshadowed by other processes. Notably, the production of tt̄ in association with an
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4 1 Overview

additional b quark-antiquark pair (tt̄bb̄) has a predicted production cross section that is
approximately ten times higher. Moreover, distinguishing tt̄H(bb̄) from the associated
production of tt̄ with a charm quark-antiquark pair (tt̄cc̄), where the flavor of the additional
charm quark must be precisely identified, is an additional difficulty. Another irreducible
background process is the production of tt̄ in association with a Z boson and a subsequent
decay of Z → bb̄. Despite being undesirable backgrounds, all processes are inherently
intriguing. A precise investigation of these processes provides insights into the nature of
quantum chromodynamics (QCD) and could shed light on BSM physics.

The objective of this thesis is a simultaneous measurement of all four processes. This allows
for a homogeneous treatment of all processes as well as their uncertainties while all processes
are treated with equal importance. The analysis strategy is built upon distinguishing the
processes through a two-stage, multi-class classification approach, leveraging machine learn-
ing techniques as a branch of Artificial Intelligence (AI). Graph transformer architectures
based on multi-head attention mechanisms are employed, as used in large-language models
or foundation models across various domains. In the two-stage process, the jets of an event
are first assigned to their respective origin, with this information then being used in a
subsequent multi-class classification procedure for event classification. The signal strength
parameters of the four processes are extracted through maximum likelihood fits to binned
distributions of data and statistical inference methods.

The measurement is conducted at the Compact Muon Solenoid (CMS) experiment at the
Large Hadron Collider (LHC) at Conseil Européen pour la Recherche Nucléaire (CERN).
The analyzed data correspond to an integrated luminosity of 59.83 fb−1 in proton-proton
collisions at a center-of-mass energy at

√
𝑠 = 13 TeV during the data-taking in LHC Run-II.

Collision events are included in the data analysis if they feature exactly two charged
leptons, i.e. electrons or muons. This selection targets the decay channel of the tt̄ system
where both top quark decays include leptonic processes.

The thesis is structured in eleven chapters. This introduction forms the starting point.
In Chapter 2, theoretical foundations are discussed, such as the SM based on relativistic
quantum field theories, along with an experimental perspective introducing elementary
particles. Chapter 3 focuses on the experimental setup, starting with an overview of
the LHC and a discussion of the CMS experiment whose data are studied in this thesis.
Chapter 4 explains the object reconstruction process, which translates detector data into
physics objects and observables, enabling the inference of underlying physics processes
during a collision. Additionally, the process of event simulation is discussed in this chapter,
which is used to model and predict detector signals. In Chapter 5, the basic concepts of
machine learning are introduced, playing a central role in differentiating between processes
in this thesis. Chapter 6 presents key concepts of statistical data analysis, which form the
basis for drawing conclusions about the analyzed processes in precision measurements at
the end of this analysis. Chapter 7 offers an in-depth discussion of the motivation and
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challenges of this thesis, positioning the thesis within the landscape of current research,
and outlines the analysis strategy and goals of this thesis. In Chapter 8, the phase space
and all physics objects of the analysis are defined, followed by a qualitative comparison
between predictions based on simulated events and the recorded data. Chapter 9 provides
a detailed explanation of the data set and the architecture of the AI model based on graph
transformer neural networks. In Chapter 10, a statistical model is developed to infer the
underlying processes from the data. The statistical model is thoroughly examined, with a
comprehensive quantitative comparison between predictions based on simulated events and
the recorded data. Finally, the key parameters are determined using maximum likelihood
estimation and statistical inference techniques. The thesis concludes with a summary of
the results in Chapter 11.
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2 Theoretical fundamentals

In this chapter, the key theoretical concepts essential for the subsequent thesis are discussed.
The primary focus is on the Standard Model of particle physics (SM), as this thesis is a
precision measurement of certain aspects of the SM. The chapter is structured as follows: In
Section 2.1, the SM is introduced theoretically and formulated as a relativistic quantum field
theory. Section 2.2 provides an experimental perspective, describing all known fundamental
particles and their properties. Section 2.3 is dedicated specifically to the top quark, which
plays a central role in this work. Finally, Section 2.4 addresses important aspects of physics
at hadron colliders, including the factorization theorem, and concludes with a specific
discussion for the tt̄bb̄ process, which is pivotal in this thesis.

2.1 Standard model of particle physics
The SM is a theoretical model describing the constituents of matter and their interactions.
This fundamental theory describes all known elementary particles and their interactions
through three of the four fundamental forces. The SM accounts for the strong interaction,
the weak interaction, and the electromagnetic interaction, excluding gravity. The success
of the SM lies in the fact that it underwent extensive testing and validation across
numerous experimental aspects, e.g. the observation of the Higgs boson [7, 8]. However,
some phenomena such as the aforementioned gravitation, Dark Matter, Dark Energy, or
the mass of neutrinos are not accounted by the SM and require extended models, often
summarized as physics beyond the Standard Model (BSM). The SM is designed as a
relativistic, renormalizable quantum field theory based on symmetry principles of gauge
theories. The underlying principles are outlined in the following sections, based on Ref. [9].

2.1.1 Quantum electrodynamics

In quantum field theories, particles are understood as manifestations of field excitations.
In the context of a field theory, the Lagrangian density serves as the field-theoretic analog

9



10 2 Theoretical fundamentals

of the Lagrangian function in classical mechanics, forming the basis of the Lagrangian
formalism. The Lagrangian density ℒ (𝜑(𝑥), 𝜕𝜇𝜑(𝑥)) is a function of the field 𝜑(𝑥) and its
derivative 𝜕𝜇𝜑(𝑥), where 𝑥 denotes space-time coordinates. For example, the Lagrangian
density of quantum electrodynamics (QED) describes interactions with the photon field and
allows for calculations of the interaction between fermions, e.g. electrons and photons [10–
15]. Free fermions are spin1-1/2 particles and satisfy the Dirac equation, which is a
first-order differential equation for relativistic particles that have spin-1/2 [16]. According
to the Dirac equation, the Lagrangian density becomes

ℒfermion = 𝜓(𝑥) (𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓(𝑥) , (2.1)

where 𝜓(𝑥) denotes the Dirac spinor, 𝜓(𝑥) = 𝜓†(𝑥)𝛾0 refers to the Dirac adjoint spinor,
𝛾𝜇 are the Dirac matrices, and 𝑚 denotes the fermion mass. With respect to global and
local symmetry principles, the equation is invariant under a global unitary transformation
in a one-dimensional complex vector space 𝑈(1). To impose the invariance of the system
under a local 𝑈(1) transformation, it is necessary to introduce the substitution

𝜕𝜇 → 𝐷𝜇 = 𝜕𝜇 + 𝑖𝑞𝐴𝜇 , (2.2)

where 𝐴𝜇 denotes a gauge field and 𝐷𝜇 is the covariant derivative. The constant 𝑞 emerges
from the continuous symmetry and, according to Noether’s theorem, leads to a conserved
quantity [17].

To obey local gauge symmetry, the gauge field 𝐴𝜇 is transformed according to

𝐴𝜇(𝑥)→ 𝐴𝜇(𝑥)− 1
𝑞
𝜕𝜇𝜙(𝑥) , (2.3)

where 𝜙(𝑥) is a space-time dependent local phase and 𝐴𝜇 is the vector field associated with
the gauge boson [18]. Bosons, in contrast to fermions, are particles characterized by having
an integer spin value, such as 0, 1, or 2. In QED, 𝐴𝜇 is interpreted as the photon field
with the Lagrangian density

ℒkin = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 , (2.4)

where 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 denotes the electromagnetic field strength tensor. Thus, the
Lagrangian density describes the dynamics of the electromagnetic field. Together with a
term −𝑞𝜓𝛾𝜇𝐴𝜇𝜓 to describe the interaction of the fermion 𝜓 with the photon field 𝐴𝜇, the
Lagrangian density of QED becomes

1The spin is a fundamental property of particles describing the intrinsic angular momentum in quantum
mechanics.

10



2.1 Standard model of particle physics 11

ℒQED = 𝑖𝜓𝛾𝜇𝜕𝜇𝜓 −𝑚𝜓𝜓 − 𝑞𝐴𝜇𝜓𝛾
𝜇𝜓 − 1

4𝐹𝜇𝜈𝐹
𝜇𝜈 . (2.5)

Hence, the coupling is proportional to the constant 𝑞, interpreted as the electric charge, 𝑚
refers to the mass of the electron and the photon remains massless.

2.1.2 Quantum chromodynamics

To describe the strong interaction, the concept of gauge field theories used for QED is
extended to non-Abelian Lie-groups [19–21]. Quantum chromodynamics (QCD) is based
on the special unitary group 𝑆𝑈(3), which consists of eight generators and leads to eight
different gauge bosons. In the 𝑆𝑈(3)𝐶 group of QCD, the three charges (𝐶) are associated
with the fundamental particles, namely quarks and gluons, where quarks and gluons carry
color charges and gluons mediate the strong force between them. The term ‘‘chromo’’ in
QCD refers to the metaphorical use of color charges, which are denoted as red, green, and
blue as well as their corresponding anti-colors.

As stated before, the Lagrangian density of the theory must remain invariant under
both global and local 𝑆𝑈(3) transformations. Analogously to QED, gauge fields 𝐴𝑎

𝜇

are introduced representing gluon fields. The covariant derivative is defined as 𝐷𝜇 =
𝜕𝜇 − 𝑖𝑔𝑠𝑇

𝑎𝐴𝑎
𝜇, where 𝑔𝑠 is a coupling constant, and 𝑇 𝑎 are the generators of the 𝑆𝑈(3)

group. The dynamics of gluons are described by the field strength tensor

𝐹 𝑎
𝜇𝜈 = 𝜕𝜇𝐴

𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝑔𝑠𝑓

𝑎𝑏𝑐𝐴𝑏
𝜇𝐴

𝑐
𝜈 , (2.6)

where 𝑓𝑎𝑏𝑐 are the structure constants of the 𝑆𝑈(3) group. Finally, the Lagrangian density
of QCD is given by

ℒQCD =
∑︁

q
𝜓q,𝑖(𝑖𝛾𝜇𝜕𝜇 −𝑚q)𝜓q,𝑖 − 𝑔s

(︁
𝜓q,𝑖𝛾

𝜇𝑇 𝑎
𝑖𝑗𝜓q,𝑗

)︁
𝐴𝑎

𝜇 −
1
4𝐹

𝑎
𝜇𝜈𝐹

𝜇𝜈
𝑎 , (2.7)

where the generators 𝑇 𝑎
𝑖𝑗 are represented by the Gell-Mann matrices. The first two terms

describe free quarks 𝑞 with mass 𝑚𝑞, similar to electrons in QED, while the third term
denotes the quark-gluon coupling, proportional to the coupling 𝑔s. The last term represents
the gluon propagation and self-interaction. Similar to the Lagrangian density of QED,
Equation 2.7 does not include mass terms for the gauge bosons, implying that gluons, like
photons, are massless. However, in contrast to QED, gluons carry the charge associated
with their quantum field theory, i.e. the color charge. This leads to not only an interaction
of gluons with quarks, but also the self-interaction as reflected in the Lagrangian density.
This also leads to a phenomena known as confinement, where quarks and gluons are
confined within hadrons and cannot exist as free particles at low energies or the equivalent

11



12 2 Theoretical fundamentals

of large distances [22–24]. At high energies, or short distances, quarks behave effectively as
free particles and the coupling becomes weaker. This characteristic is known as asymptotic
freedom. Together with quantum fluctuations, this leads to an energy dependence of the
coupling constants, which is referred to as running coupling. The coupling constant of the
strong force 𝛼𝑆 , which is frequently referenced throughout this thesis, is related to the
coupling 𝑔𝑠 in Equation 2.7 via the relation 𝛼𝑆 = 𝑔2

𝑠
4𝜋 .

2.1.3 Weak interaction and electroweak unification

When a neutron decays, a proton, an electron, and an anti-neutrino are produced. This
process known as beta decay is mediated by the weak interaction [25]. In principle, the
Lagrangian density for weak interactions can be derived in a similar way to those of QED
and QCD, but the construction of a quantum field theory poses some challenges. It has
been experimentally proven that only left-handed particles and right-handed anti-particles
interact weakly, requiring a chiral theory [26, 27]. Furthermore, the electromagnetic and
weak forces can be seen as different aspects of the same interaction at high energies and are
therefore described using a combined gauge group. The concept of a unified discription of
the electromagnetic and weak interactions is referred to as electroweak unification [28–30].
The symmetry group of the electroweak interaction is 𝑆𝑈(2)𝐿×𝑈(1)𝑌 , where 𝐿 represents
the chiral characteristic of left-handed particles and 𝑌 is the weak hypercharge of the
𝑈(1) gauge group. The conserved quantity of the 𝑆𝑈(2)𝐿 group is the weak isospin 𝑇 ,
i.e. a quantum number associated with the weak interaction [17]. The electric charge 𝑄
of a particle is related to the weak isospin and hypercharge via the Gell-Mann–Nishijima
relation

𝑄 = 𝑇3 + 𝑌

2 , (2.8)

where 𝑇3 is the third component of weak isospin for the particle, i.e. ±1/2 for weak isospin
doublets [31–33].

The covariant derivative is given by

𝐷𝜇𝜑 = (𝜕𝜇 − 𝑖𝑔
𝜎𝑖

2 𝑊
𝑖
𝜇 − 𝑖𝑔′𝑌

2 𝐵𝜇)𝜑 , (2.9)

where 𝑊 𝑎
𝜇 are the 𝑆𝑈(2)𝐿 gauge fields, 𝐵𝜇 is the 𝑈(1)𝑌 gauge field, 𝑔 (𝑔′) is the weak

(electromagnetic) coupling constant, and 𝜎𝑖 are the three Pauli matrices. With the covariant
derivative, the Lagrangian density of the electroweak interaction results in

ℒEW = 𝜓𝐿(𝑖𝛾𝜇𝐷𝜇)𝜓𝐿 + 𝜓𝑅(𝑖𝛾𝜇𝐷𝜇)𝜓𝑅 −
1
4𝑊

𝑖
𝜇𝜈𝑊

𝑖,𝜇𝜈 − 1
4𝐵𝜇𝜈𝐵

𝜇𝜈 , (2.10)

12



2.1 Standard model of particle physics 13

where 𝑊 𝑖,𝜇𝜈 with 𝑖 ∈ {1, 2, 3} are the field strength tensors of the weak isospin, 𝐵𝜇𝜈

is the field strength tensor of the hypercharge, and 𝜓𝐿 (𝜓𝑅) are the left-handed (right-
handed) components of the fermion. However, similar to QED and QCD, the gauge bosons
remain massless, which contradicts experimental observations [34–36]. The introduction
of mass terms into the Lagrangian density such as 1

2𝑚
2
𝑊𝑊𝜇𝑊

𝜇 violate the underlying
gauge invariance of the theory and leads to an inconsistent theory. A key to resolving this
problem is offered by the principle of spontaneous symmetry breaking, as discussed in the
following section. Together with the gauge group of QCD, the gauge group of the SM is
based on the combination

𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 . (2.11)

2.1.4 Spontaneous symmetry breaking: the Higgs mechanism

To obtain masses for the gauge bosons of the weak force as experimentally proven, the idea
of the Higgs mechanism is to introduce a complex scalar field 𝜑 constructed as a doublet
under the 𝑆𝑈(2)𝐿 gauge symmetry [1–6]. The doublet is constructed as

𝜑 =

⎛⎝𝜑+

𝜑0

⎞⎠ , (2.12)

where 𝜑+ (𝜑0) is the electrically charged (neutral) component of the field.

The Higgs potential is chosen such that the vacuum state is minimized at a nonzero value
of the Higgs field. A two-dimensional illustration of this potential can be seen in Figure 2.1.

The potential is symmetrical in its equilibrium state, however, this state is unstable as a
perturbation destroys the symmetry. The symmetry is broken once the Higgs field acquires
a nonzero vacuum expectation value at any of the potential’s minima in the figure. A
potential reflecting this character is described by

𝑉 (𝜑) = 𝜇2|𝜑|2 + 𝜆|𝜑|4 , (2.13)

where 𝜇2 < 0 is required to allow for spontaneous symmetry breaking to occur and 𝜆 > 0
is a coupling constant.

The ground state is chosen as

𝜑0 = 1√
2

⎛⎝ 0

𝑣 +𝐻

⎞⎠ , (2.14)

13



14 2 Theoretical fundamentals

Figure 2.1: Illustration of the Higgs potential. Any point at the minimum breaks the
rotational 𝑈(1) symmetry, as illustrated by the blue pearl. Taken from Ref. [37].

where 𝑣 denotes the vacuum expectation value 𝑣 =
√︁
−𝜇2/𝜆 and H is an electrically

neutral Higgs boson. The concept of spontaneous symmetry breaking requires the field
to be isotropic. Hence, a scalar field is chosen, as any spin other than 0 would create a
preferred direction or orientation in space, which would undermine the process of symmetry
breaking. The Lagrangian density is formulated to satisfy the equation of motion defined
by the Klein-Gordon equation and is given by

ℒHiggs = (𝐷𝜇𝜑)† (𝐷𝜇𝜑)− 𝜇2𝜑†𝜑− 𝜆(𝜑†𝜑)2 , (2.15)

where the first term describes the kinetic part and the second and third term reflect the
Higgs potential of Equation 2.13.

The mass terms of the physical gauge bosons W and Z are generated when the gauge group
symmetry is broken and the Higgs field develops the nonzero vacuum expectation value 𝑣.
The covariant derivative acting on the Higgs field results to

ℒmass(W) = 1
2𝑔

2𝑣2𝑊+
𝜇 𝑊

𝜇− and ℒmass(Z) = 1
2(𝑔2 + 𝑔′2)𝑣2𝑍𝜇𝑍

𝜇 , (2.16)

with the W boson mass 𝑚𝑊 = 1
2𝑔𝑣 and the Z boson mass 𝑚Z = 1

2(
√︀
𝑔2 + 𝑔′2𝑣). Conse-

quently, the massless gauge bosons mix after spontaneous symmetry breaking to form the
massive W± and Z bosons, whereas the photon remains massless. In the following section,
the coupling and consequently the mass terms for the fermions of the SM are discussed.

14



2.2 Particles and interactions 15

2.1.5 Yukawa coupling

The previously introduced scalar Higgs field also interacts with spin-1/2 particles, i.e.
fermions such as quarks and leptons of the SM (cf. Section 2.2) endowing them with mass
via the mechanism of Yukawa coupling [38]. The Lagrangian density for the fermion-Higgs
interaction term is

ℒYukawa = −𝑦𝑓𝜓𝐿𝜑𝜓𝑅 + h.c. , (2.17)

where 𝑦𝑓 is the fermion-Higgs Yukawa coupling, e.g. for an electron. In the case of quarks,
the coupling is a matrix that allows flavor mixing.

After spontaneous symmetry breaking, the fermion-Higgs interaction gives mass to the
fermion with

𝑚𝑓 = 𝑦𝑓
𝑣√
2

. (2.18)

Thus, the fermion mass depends on the strength of the interaction, i.e. the Yukawa coupling,
and the vacuum expectation value of the Higgs field.

2.2 Particles and interactions

In the previous section, the SM, based on the principles of quantum field theory and
local gauge symmetries, described by the gauge group 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 , was
introduced from a theoretical perspective. In this section, the SM is discussed from an
experimental perspective, focusing on the introduction of all the known particles. The
previously described coupling constants, along with the fermion and boson masses, are free
parameters of the SM and require experimental assessment.

The fundamental particles are categorized into two groups: fermions and bosons. Fermions
possess half-integer spin and follow Fermi-Dirac statistics [39, 40], whereas bosons have
integer spin and follow Bose-Einstein statistics [41, 42]. The known fermions include quarks
and leptons, whereby quarks form the building blocks of protons and neutrons. There
are six flavors of quarks, namely up (u), down (d), charm (c), strange (s), top (t) and
bottom (b). The u ,c, and t quark are also referred to as up-type quarks, whereas the d, c,
and b quark are denoted as down-type quarks. Quarks carry an electric as well as a color
charge, and their masses range over five orders of magnitude from 2 MeV for the up quark
to 173 GeV for the top quark. The c, b, and top quarks are referred to as heavy flavor
quarks due to their masses of 1 GeV or greater. These quarks and their corresponding
anti-particles are the focus of this thesis and are examined in the analysis. Since the top
quark plays a central role in this thesis, it is discussed separately in Section 2.3. In contrast,
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16 2 Theoretical fundamentals

Table 2.1: Fermions of the SM. The electric charge 𝑄 is given in units of the elementary
charge 𝑒. The third component of the weak isospin 𝑇3 corresponds to left-
handed particles and right-handed anti-particles. Right-handed particles and
left-handed anti-particles are isospin singlets with 𝑇3 = 0. All anti-particles
carry opposite electric charge. All values taken from Ref. [43].

Gen. Fermion Interaction Q 𝑇3 Mass

Q
ua

rk
s

1 up quark (u) strong, electroweak +2
3 +1

2 2.2± 0.1 MeV
down quark (d) strong, electroweak −1

3 −1
2 4.7± 0.1 MeV

2 charm quark (c) strong, electroweak +2
3 +1

2 1.27± 0.01 GeV
strange quark (s) strong, electroweak −1

3 −1
2 93.5± 0.8 MeV

3 top quark (t) strong, electroweak +2
3 +1

2 172.57± 0.29 GeV
bottom quark (b) strong, electroweak −1

3 −1
2 4.18± 0.01 GeV

Le
pt

on
s

1 electron neutrino (𝜈e) weak 0 +1
2 < 0.8 eV

electron (e−) electroweak −1 −1
2 0.51 MeV

2 muon neutrino (𝜈µ) weak 0 +1
2 < 0.8 eV

muon (µ−) electroweak −1 −1
2 105.7 MeV

3 tau neutrino (𝜈τ) weak 0 +1
2 < 0.8 eV

tau lepton (τ−) electroweak −1 −1
2 1776.9± 0.1 MeV

the u, d, and s quarks, which have masses up to 100 MeV, are referred to as light flavor
quarks. Leptons are a family of particles that include electrons, muons, tau leptons, and
their respective neutrinos. The electrons, muons, and tau leptons carry electric charge and
range from 511 keV for the electron to 1.8 GeV for the tau lepton, whereas the neutrinos
are electrically neutral particles. A summary of all fermions is given in Table 2.1

The SM consists of five bosons that mediate the fundamental forces, as discussed in the
previous section and summarized in Table 2.2. The photon transmits the electromagnetic
interaction and is massless. The W and Z bosons mediate the electroweak interaction,
whereby the W bosons carry an electric charge and the Z boson is neutral. The W bosons
possess a mass of around 80.4 GeV, while the Z boson has a mass of around 91.2 GeV.
The gluons are responsible for the strong interaction and are massless. The Higgs boson
is a consequence of the Higgs mechanism by which particles obtain their mass through
interaction with the Higgs field, as discussed in Section 2.1.4.

2.3 Top quark physics

The top quark and its anti-particle play a central role in this analysis and are therefore
also reflected in the title of the thesis. The top quark is the heaviest known elementary
particle in the SM and possesses unique properties, which invite deeper exploration. The

16



2.3 Top quark physics 17

Table 2.2: Bosons of the SM. All values taken from Ref. [43].

Boson Spin Interaction Charges Mass

Gluons (𝑔) 1 strong color massless

Photon (𝛾) 1 electromagnetic massless

W± bosons 1 electroweak electric, weak 80.369± 0.013 GeV
Z boson 1 electroweak weak 91.188± 0.002 GeV
Higgs boson (H) 0 weak 125.20± 0.11 GeV

particle was discovered in 1995 by the CDF [44] and D0 Collaborations [45] at the Fermilab
Tevatron collider in searches for top quark-antiquark pair production (tt̄) and is an active
field of research today [46–49]. The top quark’s Yukawa coupling to the Higgs boson, as
discussed in Section 2.1.5, plays a special role in the SM as it is the strongest Yukawa
coupling due to the exceptionally large top quark mass. According to Equation 2.18, with an
vacuum expectation value of 𝑣 ≈ 246 GeV the top-Higgs Yukawa coupling is approximately
𝑚𝑡 = 𝑦𝑡

𝑣√
2 ≈ 1 [43]. This property has profound physical implications, positioning the top

quark as a pivotal figure in exploring the Higgs mechanism and uncovering phenomena
in BSM physics. The coupling also affects the mass of the Higgs boson which obtains
contributions from quantum fluctuations of all particles that couple to the Higgs field.
Among these contributions, the top quark’s is particularly dominant, leading to a divergence
that grows quadratically with the energy scale Λ

Δ𝑚2
𝐻 ∼ −

3|𝑦𝑡|2

4𝜋2 Λ2 , (2.19)

where Λ is the Planck scale in the order 𝒪(1019 GeV), at which quantum gravity effects
become significant. Hence, an extremely large correction to a comparably small value of
the Higgs mass requires a fine balance of the relevant parameters in Equation 2.19, which
makes the value of 𝑦𝑡 exceptionally intriguing.

At the Large Hadron Collider (LHC), the primary production mechanism for tt̄ arises
from gluon initial states (gg → tt̄). However, depending on the colliding particles and
the center-of-mass energy, also quark-antiquark pairs can produce tt̄ in an collison event.
The dependency is depicted in Figure 2.2. The tt̄ production process depends on the
composition described by the proton’s parton distribution function (PDF), as discussed in
Section 2.4.

The top quark has a life time of 5× 10−25 seconds and decays via the charged current of
the weak interaction before hadronization. The top quark decays almost exclusively into a
W boson with a branching fraction of
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Figure 2.2: Cross section measurements at the LHC and Tevatron of tt̄ production as a
function of the center-of-mass energy. The uncertainties are based on Ref. [50],
the figure is taken from Ref. [51].
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Γ(t→Wb)
Γ(t→Wq(q = b,s,d)) = 0.975± 0.034 . (2.20)

This property is reflected in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which
describes the transformation probabilities of quarks in weak decays [52, 53]. When
considering the CKM matrix in the Wolfenstein parametrization, the corresponding entry
for the transition from top to b quark is exactly one [54].

Since the top quark predominantly decays into a W boson and a b quark, the decays are
usually characterized by the subsequent decay of the W boson. The branching fraction of
the W boson to decay hadronically into a quark-antiquark pair (W→ qq̄′) is 67%, while
the branching fraction of the W boson to decay in a charged lepton and the corresponding
neutrino is 33%. The decay combinations in a tt̄ system are categorized into three channels:
The first channel is the fully hadronic channel where both W bosons decay hadronically.
In the second channel, one W boson decays hadronically, while the other one decays
leptonically, which is referred to as the semileptonic channel. The third channel is the
dilepton channel, where both W bosons decay leptonically. The resulting fractions of these
channels are shown in Figure 2.3. In this thesis, in the following leptons refer exclusively to
electrons and muons, as tau leptons are usually treated separately due to their additional
decay processes. Each channel offers unique benefits and presents distinct challenges.
The fully hadronic channel has the highest branching fraction with approximately 45%,
but suffers from QCD background processes. In the semileptonic channel, the charged
lepton in the signature plays a key role in enhancing the separation from background
processes. With a branching fraction of about 30%, this channel has a reduced branching
fraction compared to the fully hadronic channel, but features a signature that is easier to
distinguish, as leptons are simpler to identify in collider detectors compared to hadronic
decays. The dileptonic channel features the clearest signature due to the presence of two
charged leptons. However, its low branching fraction of around 5% introduces significant
statistical uncertainties, which can impact the measurements. The remaining 20% of
the branching fraction are attributed to channels involving tau leptons. In this thesis,
the dilepton channel is analyzed to take advantage of its clear signature. The dileptonic
channel is further categorized by lepton combinations into three sub-channels as shown in
Figure 2.3: the e+e− channel, the e±µ∓ channel, and the µ+µ− channel.

2.4 Hadron collider physics
Protons used in collisions at the LHC consist of quarks and gluons, bound together by the
strong interaction and described by the parton model. At an energy scale 𝑄2, a proton
consists of a collection of partons, where the partons carrying the electric charge and the
quantum numbers of the proton are referred to as valence quarks. In addition, quark-
antiquark pairs from the vacuum can arise, which are known as sea quarks. Furthermore,
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Figure 2.3: Decay channels of the tt̄ system. Each axis represents the decay products of
a W boson. The percentages denote the branching fractions of the W boson
decays into electrons, muons, tau leptons, and the corresponding neutrinos as
well as the quark-antiquark combinations ud̄ and cs̄. Adapted from [55].

all quarks can absorb and emit gluons according to the laws of QCD. The distribution of
partons within a proton is described by PDFs, which represent the probability density of
finding a parton with a given longitudinal momentum fraction 𝑥 at a specific energy scale
𝑄2. Since in the case of proton-proton collisions, not necessarily the valence quarks, but in
essence any existing parton may collide, an accurate understanding of the PDFs is crucial.
The PDFs cannot yet be determined from first principles and need to be determined
experimentally, e.g. in deep inelastic scattering processes. The evolution of PDFs as a
function of the energy scale can be described using renormalization group equations (RGEs).
The result from a measurement can be translated to a different energy scale using the
RGEs, which are formulated in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations [56–59]. Since PDFs are universal, they are determined through global fits across
multiple experiments and can be applied to various experimental contexts [60]. Figure 2.4
illustrates the PDFs at two different energy scales and demonstrates how the quark and
gluon PDFs are shifted at high energies, i.e. the probabilities for finding the valence quarks
decrease, while the sea quarks and gluons gain relevance. Additionally, the b quark PDF
becomes noticeable at higher energy scales, whereas it is not apparent at the lower energy
scale.

To calculate the total cross section 𝜎 for a process in proton-proton collisions, the partonic
cross section is integrated over all momentum fractions of the partons inside the protons.
This is achieved by convoluting the partonic cross section with the previously described
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Figure 2.4: Example PDF sets as a function of the momentum fraction 𝑥 at two different
energy scales 𝑄2 = 10 GeV2 (left) and 𝑄2 = 104 GeV2 (right). The gluon
distributions are scaled down by a factor of 10. At both energy scales, valence
quarks dominate the high-momentum fractions, while gluons prevail at the
lower momentum fractions. Taken from Ref. [60].
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PDFs. This strategy is feasible due to the factorization theorem, which separates a process
into contributions from different energy scales in QCD. At high energies and small values
of the coupling constant 𝛼𝑆 , sub-processes can be calculated using perturbation theory.
For this, the quantum mechanical transition amplitudes, also known as the scattering
matrix element (ME), are calculated for a given process. At low energies, corresponding
to long-range effects, the coupling constant rises and leads to a non-perturbative QCD
regime. Factorization separates these contributions, enabling the independent treatment
of short-range and long-range parts. To separate these two cases, a factorization scale 𝜇𝐹

is introduced. This scale differentiates between the cross section for the hard partonic
process 𝜎̂, calculated using perturbation theory, and further processes such as soft and
collinear gluon radiation, while are included in the PDFs.

For a proton-proton collision process into a final state 𝑋, the QCD factorization results in
a cross section of

𝜎𝑝𝑝→𝑋 =
∑︁
𝑗𝑘

∫︁ ∫︁
𝑑𝑥𝑗𝑑𝑥𝑘 𝑓𝑗

(︁
𝑥𝑗 , 𝜇

2
𝐹

)︁
𝑓𝑘

(︁
𝑥𝑘, 𝜇

2
𝐹

)︁
· 𝜎̂𝑝𝑗𝑝𝑘→𝑋

(︁
𝑥𝑗𝑝1, 𝑥𝑘𝑝2, 𝜇

2
𝐹 , 𝛼𝑆

(︁
𝜇2

𝑅

)︁)︁
,

(2.21)

where 𝑓𝑗,𝑘 are the PDFs of the two partons 𝑝𝑗,𝑘 with a momentum fraction 𝑥𝑗,𝑘 in the two
protons with the momenta 𝑝1,2. The factorization scale 𝜇𝐹 denotes the energy scale at
which the PDFs are evaluated. The hard partonic process 𝜎̂ is a function of the coupling
constant 𝛼𝑆 , which, in turn, depends on the renormalization scale 𝜇𝑅. The renormalization
scale is the energy scale at which the strong coupling constant is evaluated, controlling how
the interaction strength varies with energy. In Section 2.1.2, the running of the coupling
constant in QCD is discussed. This running is described by RGEs which describe the
dependence of 𝛼𝑆 on the renormalization scale. It is a key aspect of the renormalization
process, where infinities in quantum field theories are removed by redefining parameters to
absorb these divergences. The connection between 𝛼𝑆 and 𝜇𝑅 is discussed in detail in the
context of the thesis results in Chapter 10.

In event simulation, the renormalization and factorization scales are typically defined
dynamically, i.e. depending on the kinematics of each individual simulated process. This
can be seen in the following example of an important process in this thesis. In the simulation
of the production of a top quark-antiquark pair in association with additional b quark-
antiquark pairs (tt̄bb̄), where the tt̄bb̄ process is calculated at ME level, the scales are
defined as

𝜇𝑅 = 𝜅𝑅 · 4

⎯⎸⎸⎷ ∏︁
t,t,b,b̄

(𝑚T,𝑖) = 𝜅𝑅 ·
4

√︃
𝑚T,t ·𝑚T,t ·𝑚T,b ·𝑚T,b , (2.22)
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and

𝜇𝐹 = 𝜅𝐹 ·
∑︁

t,t,b,b̄,g

(𝑚T,𝑖) = 𝜅𝐹 ·
(︁
𝑚T,t +𝑚T,t +𝑚T,b +𝑚T,b + 𝑝T,𝑔

)︁
, (2.23)

where 𝑝T is the transverse momentum as defined in Equation 3.2, 𝑚T is the transverse
mass with 𝑚T,𝑖 =

√︁
𝑚2

𝑖 + 𝑝2
T,𝑖, and 𝜅𝑅,𝐹 are constant pre-factors.

The choice of calculation at ME level also affects the PDF set. Since the PDFs are
evaluated at an energy scale 𝜇𝐹 where the b quark mass is small compared to the energy
scale (𝑚b ≪ 𝜇𝐹 ), the b quark mass can be dropped in the ME calculations. In this case,
the PDF contains five active flavors, i.e. flavors that actively contribute to virtual and real
emissions. This approach is referred to as five flavor scheme (5FS). Calculations for hard
scattering with heavy quarks with mass 𝑚q include terms log(𝜇2/𝑚2

q) arising from collinear
gluon splittings (g→ qq̄), and power-suppressed terms proportional to 𝑚2

q/𝜇
2 at an energy

scale 𝜇. If 𝑚q is set to zero in ME calculations, divergent logarithmic contributions are
absorbed into the PDFs for initial states and into the parton shower (PS) for final states
(cf. Section 4.6).

An alternative approach is the four flavor scheme (4FS), which treats b quarks as massive
and assumes four active flavors in the PDF. In this scheme, the b quark PDFs are omitted,
and initial state b quarks arise from g → bb̄ splittings in the ME calculations. This
approach is the preferred option for the description of the tt̄bb̄ process, as it represents a
more precise characterization of this process.
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3 Experimental environment

Fundamental theories, such as those discussed in Chapter 2, rely on experimental validation.
The interplay between theory and experiment allows for theoretical models to be falsified
and for experimental findings to enhance our understanding by determining parameters
of a theory. The experimental environment at the Conseil Européen pour la Recherche
Nucléaire (CERN) provides a unique opportunity to test and expand our knowledge of the
Standard Model of particle physics (SM) and beyond. All data analyzed in this thesis were
recorded at CERN. To achieve data gathering, Section 3.1 first describes the necessary
particle accelerator concept for proton-proton collisions. Section 3.2 briefly describes the
experimental setup of the detector as well as the main components employed for recording
the data.

3.1 The Large Hadron Collider
The Large Hadron Collider (LHC), the largest and most powerful particle accelerator
in the world, is located at the CERN site. Positioned underground in the border area
between Switzerland and France, the LHC has a circumference of approximately 27 km.
As the LHC cannot be operated stand-alone, it relies on a series of pre-accelerators to
develop its full operational potential. Either protons or lead nuclei can be accelerated in
this chain of accelerators to a center-of-mass energy of up to 14 TeV and 5.6 TeV/nucleon,
respectively. The data analyzed in this thesis were recorded during the operation of the
accelerator with proton-proton collisions at a center-of-mass energy of 13 TeV during the
period known as Run-II [61]. All subsequent explanations therefore refer to the accelerator
design and detector complex during this phase of operation. The accelerator complex is
shown schematically in Figure 3.1.

Initially protons are obtained from hydrogen atoms by ionization. Following this, the
extracted protons are accelerated to an energy of 50 MeV using the linear accelerator
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Figure 3.1: The accelerator complex at CERN, taken from Ref. [62]. A chain of coordinated
accelerators ends with the LHC as last element (dark blue). Four experiments
located at the LHC are indicated at their relative position as yellow dots.
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LINAC2. Due to the nature of the acceleration process using radio-frequency cavities the
protons are already broken down into bunches at this stage in the accelerator chain. This
bunched structure runs through the entire subsequent accelerator chain and no continuous
proton beam is produced. After the linear pre-accelerator, three circular accelerators follow
in sequence, each with an increasingly larger circumference to achieve higher center-of-mass
energies. The first circular machine is the BOOSTER with a targeted beam energy of
1.4 GeV, followed by the Proton Synchrotron with a beam energy of 26 GeV. The last
circular pre-accelerator is the Super Proton Synchrotron with a beam energy of 450 GeV.
The protons are then ejected from this synchrotron and injected into the final accelerator
ring, the LHC [61]. Unlike in the preceding accelerators, the protons are now split into
two beam pipes, one pipe running clockwise and the other one counter-clockwise in the
accelerator.

The protons are accelerated by radio-frequency cavities that generate a strong oscillating
electric field to boost the kinetic energy and continuously compensate for radiation losses due
to synchrotron radiation. The radio-frequency cavities of the individual accelerators operate
at different frequencies: 80 MHz for the Proton Synchrotron, approximately 200 MHz for
the Super Proton Synchrotron, and 400 MHz for the LHC. At the collision rate of 40 MHz,
two particle bunches, each consisting of approximately 1011 protons, collide every 25 ns.
However, the limiting factor for achieving a maximum high center-of-mass energy is not
the cavity design, but the bending magnets that keep the protons on an almost circular
trajectory. For this purpose, superconducting dipole magnets operated at a temperature of
2 K generate a magnetic flux density of approximately 8 T. To focus the proton beams,
quadrupole magnets are employed which compensate for the naturally induced divergence
of protons within a bunch transversely to the beam axis [61].

In addition to the center-of-mass energy mentioned at the beginning, a further important
key parameter for the physics program and important figure for an accelerator is the
instantaneous luminosity. This parameter quantifies the particle flux and allows inferences
about the number of successful particle collisions. The instantaneous luminosity for head-on
collisions is given by

𝐿inst = 𝑓rev · 𝑛𝑏 ·
𝑛𝑐𝑛𝑐𝑐

4𝜋𝜎𝑥𝜎𝑦
, (3.1)

where 𝑓rev describes the revolution frequency, 𝑛𝑏 the number of colliding bunches, and 𝑛𝑐

(𝑛𝑐𝑐) the number of protons per bunch of the clockwise (counter-clockwise) beam. The
spatial distribution of the protons in a bunch transversely to the beam axis is described
by 𝜎𝑥 and 𝜎𝑦, which denote the standard deviations of the Gaussian beam profile. The
LHC is designed to reach an instantaneous luminosity of 1034 cm−2s−1. The integral of the
instantaneous luminosity with respect to time is a measure of the amount of data recorded
in a given period of time.
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The proton beams traveling in opposite directions collide at four distinct points at the
LHC as shown in Figure 3.1. Protons within a bunch that have not collided remain in the
beam, undergo the aforementioned acceleration and focusing procedures of the LHC again
and can be induced to collide at one of their next beam crossings.

Data acquisition of collision events takes place with four detectors at the LHC. The
ALICE detector focuses on heavy-ion collisions and examines the strong-interaction sector
of the SM [63]. In contrast, the LHCb experiment is a general purpose detector in
forward direction and follows a diverse physics program including measurements of B
hadrons and charge conjugation parity symmetry (CP) violation [64]. The ATLAS and the
Compact Muon Solenoid (CMS) experiments are also general purpose detectors and pursue
a manifold physics program [65, 66]. Both experiments aim to test the SM through precision
measurements and perform searches for new physics in the form of unknown particles and
interactions. Despite sharing the same goals and being capable of independently verifying
each other’s results, the two experiments are conceptually similar, but differ in numerous
detector structures, components and designs. The CMS detector used to record data
analyzed in this thesis is described in Section 3.2.

3.2 The Compact Muon Solenoid experiment

As a versatile detector, the CMS experiment must meet a wide range of requirements. For
precision measurements of the SM and searches for physics beyond the Standard Model
(BSM), it is essential to reconstruct as many particles as possible with the utmost resolution
and precision. In subsequent stages, different particles must be distinguished as accurately
as possible. The CMS detector is able to reconstruct all known stable particles, but
neutrinos remain undetected due to their vanishingly small interaction with the detector
materials. The experiment is designed with a detector having 4𝜋 angular coverage for the
most seamless reconstruction possible. The central part features a barrel design surrounding
the beam pipe similar to an onion shell consisting of various components. End caps are
installed at the detector’s two ends in the forward and backward directions which also
enable particle reconstruction. The key detector components are briefly outlined in the
following section, a detailed description can be found in Ref. [66]. The experiment is also
shown in Figure 3.2. The term ‘‘compact’’ in the detector’s name needs to be understood in
the light of comparable devices such as the ATLAS experiment, as the detector measures
15 m in diameter and a total length of 28.7 m.

3.2.1 Detector components

The CMS detector is designed to reconstruct a variety of particles produced through
proton-proton collisions at high energies and high rates. In order to accomplish this
mission, the CMS detector consists of various detector components, each targeting specific
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SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

PRESHOWER
Silicon strips ~16 m2 ~137,000 channels

SILICON TRACKERS

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight
Overall diameter
Overall length
Magnetic field

: 14,000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

CMS DETECTOR

Pixel (100x150 μm2) ~1.9 m2 ~124M channels
Microstrips (80–180 μm) ~200 m2 ~9.6M channels

Figure 3.2: Graphical representation of the partially opened CMS detector, taken from
Ref. [67]. Various detector elements form a dense cylindrical onion shape
around the beam pipe (top left to bottom right).
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objectives. Although each component is responsible for its respective role, it is the interplay
and combination of all elements that provide a holistic picture and understanding of a
collision event.

3.2.1.1 Tracking system

The tracking system is positioned at the innermost point of the detector as close as possible
to the beam pipe and thus also to the collision point [66]. The purpose of the tracking
system is to reconstruct the trajectory of particles produced during the collision event. Due
to the presence of a magnetic field, which is described in more detail below, charged particles
trace a curved trajectory from which a particle’s momentum and the electric charge sign can
be determined. Combining both of these elements with the energy deposit in the detector
material, the mass and consequently the type of particle can be reconstructed using the
energy-momentum relation. In addition, the tracking system can resolve vertices by using
suitable reconstruction methods [68, 69]. For example, the reconstruction is important to
identify vertices displaced from the collision point, which are a characteristic of the decay
of B hadrons. The innermost unit of the tracking system consists of silicon semiconductor
pixel detectors. The requirements for these detectors include a high granularity which is
needed due to their position close to the collision point and the high particle flux. The
material choice ensures minimal particle interactions to maintain the initial trajectory and
a low material budget. Silicon also withstands radiation and fulfills the requirement of
radiation hardness during operations of the LHC. The semiconductor detectors are reverse
biased with a high voltage in order to create a maximized detector volume depleted of free
electric charge carriers. If a charged particle passes through the semiconductor, an electric
current is induced and recorded. The pixel size in the innermost layer is 100× 150 µm2.
A total of four layers of pixel detectors are arranged around the beam pipe with radii
of 29, 68, 109, and 160 mm, enabling a reconstruction of three-dimensional space points.
Microstrip detectors are mounted around these layers of pixel detectors and a reconstruction
in two-dimensional space points is achieved. This results in a total of over 200 m2 of active
silicon [66, 70–72].

3.2.1.2 Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) surrounds the tracking system. Its purpose is
to reconstruct the energy of particles with electromagnetic interactions, causing passing
particles to deposit almost all of their energy [73, 74]. Among these particles are mainly
photons as well as electrons and positrons. Other charged particles can also deposit energy
to a small extent. The primary interaction mechanism is bremsstrahlung together with pair
production of electrons and positrons, leading to electromagnetic showers. Characterized
by the radiation length 𝑋0, the electromagnetic showers can continue until the remaining
energy drops below the threshold for electron-positron pair production. In this case, the
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energy deposition process ends with ionization. The amount of energy deposited in the
ECAL is determined by the number of photons produced via scintillation, which is recorded
as an electrical signal by avalanche photodiodes. As the ECAL is located inside the
solenoid there are limitations to the calorimeter’s dimensions and the choice of material.
The ECAL is designed as a homogeneous calorimeter where active material and absorber
are identical. For this purpose lead tungstate crystals (PbWO4) are chosen. To improve
the separation of photons originating from bremsstrahlung processes (𝑒± → 𝛾𝑒±) from
photon pair production through the decay of neutral pions (𝜋0 → 𝛾𝛾), a preshower detector
is installed in the endcaps [75–77].

3.2.1.3 Hadronic calorimeter

The purpose of the hadronic calorimeter (HCAL) is the energy measurement of neutral
and charged hadrons. It is the only detector element in which neutral particles such as
hadrons can leave a signature. Therefore, the HCAL is a crucial component in the indirect
reconstruction of neutrinos or exotic particles, as these particles can only be inferred from
missing transverse momentum (see Section 3.2.2) in the entire experiment. The HCAL
encases the ECAL and is also located within the magnet. Unlike the ECAL, the HCAL is
a sampling calorimeter consisting of alternating slices of absorber material and scintillator.
Incoming hadrons interact with the absorber material via scattering processes, creating
new particles and hadronic showers. As many different production processes can occur
and electromagnetic sub-showers are also possible, hadronic showers are more diverse
compared to the effects in the ECAL. The hadronic interaction length 𝜆ℎ, the equivalent
to the radiation length 𝑋0 in the ECAL, is considerably larger in comparison and hadronic
showers are subject to higher fluctuations. As a result, the HCAL is noticeably larger and
full absorption within the HCAL is not always guaranteed. The HCAL is composed of
layers of brass for absorption and plastic scintillators [78, 79].

3.2.1.4 Superconducting solenoid

The superconducting magnet can reach field strengths of up to 4 T and is operated at 3.8 T.
The solenoid encloses the tracking systems described before as well as the calorimeter
units. A steel return yoke mounted around the magnet stabilizes the magnetic field and
houses the muon system described in the following. Outside the magnet, the magnetic field
strength is 2 T [66, 80]. Without the strong magnetic field that bends the trajectories of
all electrically charged particles, measurements of momenta and the separation of particle
types would not be feasible in the sub-detectors.

3.2.1.5 Muon system

The mission of the muon detector is the dedicated reconstruction of muons. As minimum
ionizing particles, muons deposit very limited amounts of energy via ionization in the
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detector layers, allowing them to pass through all preceding layers. Hence, dedicated
muon detectors are installed in the return yoke of the solenoid which enable a reliable
reconstruction of muons. Since large spatial areas have to be covered, gas detectors
are chosen. Although they offer lower resolution compared to solid-state detectors like
silicon, gas detectors provide a full solid-angle coverage over large volumes and are more
cost-effective. During the fly-through of a muon, the gas mixture in the detector is ionized.
By applying a high voltage, electrons are accelerated and can also generate additional free
electrons. The arising cascade of electrons is read out and measured as an electric current.
The gas mix used is argon and CO2 [81, 82].

3.2.1.6 Trigger system

The collision rates of proton bunches at 40 MHz, as referred to in Section 3.1, with an
average of 15 to 35 proton-proton collisions per bunch lead to rates of over 1 GHz. This
results in raw data amounting to multiple terabytes per second in the experiment which
precludes storing all data. In order to reduce the data rate and retain only relevant
and interesting collisions a multi-level trigger system is implemented. This multi-stage
procedure can trigger objects such as muons based on specific transverse momentum
thresholds, among other kinematic quantities and combinations (cf. Section 3.2.2). First, a
decision is made on a rough but fast basis using the Level-1 (L1) trigger as to whether, for
example, measured ionizations in the muon chambers could in principle match a muon
object. Within microseconds this hardware trigger decides whether formed clusters match
a trigger pattern. For this, the data are massively parallelized and temporarily stored at
the detector front end allowing for rapid processing. If no trigger pattern is matched, the
event is rejected already at this stage. If the evaluation is successful, the entire event is
fed into the succeeding trigger stage. With the help of the L1 trigger system the rate is
reduced from a few GHz to the order of 100 kHz [83]. The subsequent trigger stage receives
the pre-processed and filtered information and determines, within less than a second,
whether more specific requirements for an interesting event candidate have been met. This
so-called high-level trigger (HLT) operates in a highly parallelized manner on processor
farms. Complex reconstruction methods and algorithms are avoided at this point in favor
of high performance and a loose selection is required. A list of trigger paths is queried
which have different requirements for objects or kinematic quantities and which may later
be selected in dedicated analyses. Once an event meets one or more HLT requirements,
the event is recorded. The HLT paths queried in this thesis are listed in Section 8.2.1. For
some trigger paths an additional prescaling is implemented since the trigger rates are still
too high to be recorded. In this case only every 𝑛-th event is recorded at a predefined level.
This trigger system makes it possible to reduce the event rate down to 1 kHz and achieve
reliable data storage [84].
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Figure 3.3: Schematic overview of the coordinate system at the CMS experiment. The
pseudo rapidity of 𝜂 = 2.4 is shown to illustrate the maximum polar angle
considered in this analysis (cf. Chapter 8). The relative scales of the LHC and
the CMS experiment do not reflect actual dimensions.

3.2.2 Coordinate system and kinematic quantities

The coordinate system at the CMS experiment is defined as a right-handed Cartesian
coordinate system centered at the collision point. The 𝑥-axis points towards the center
of the LHC, the 𝑦-axis points vertically upwards, and the resulting 𝑧-axis points in the
beam direction towards the Jura mountains. Due to the cylindrical shape of the detector
and the rotational invariance of a collision, cylindrical coordinates are a suitable choice.
The polar angle 𝜃 is defined between the 𝑧-axis and a given vector while the azimuth angle
𝜑 is defined from the 𝑥-axis into the 𝑥, 𝑦-plane. The coordinate system is illustrated in
Figure 3.3.

In a collision of the proton’s constituents, the partons (cf. Chapter 2), the vectorial part of
the momentum in the 𝑥, 𝑦-direction is insignificantly low. Furthermore, the part of the
momentum of the proton in the 𝑧-direction carried by the parton is unknown. This leads to
some useful considerations. Since the momentum component in the 𝑥, 𝑦-plane is negligibly
small before the collision, the sum of the momentum vectors in this plane for all particles
produced must be zero after the collision due to the conservation of momentum. The
momentum vector in this plane is referred to as transverse momentum 𝑝T and is defined by

𝑝T :=
√︁
𝑝2

𝑥 + 𝑝2
𝑦 . (3.2)

Therefore, the transverse momentum is invariant under Lorentz transformations along the
𝑧-axis.

However, the sum of measured transverse momenta in an event is typically not zero.
Because some electrically neutral particles interact only weakly or not at all with the
detector material, their transverse momenta cannot be detected. Among these particles
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are neutrinos and hypothetical dark matter candidates which could be produced in the
collision. The negative sum of all measured transverse momenta then forms a quantity
referred to as missing transverse energy (MET) [85], which is described in more detail in
Section 4.5.

Another useful quantity is the rapidity. It is a measure of a particle’s velocity and is
defined as

𝑦 := tanh−1
(︂
𝑝𝑧

𝐸

)︂
= 1

2 ln 𝐸 + 𝑝𝑧

𝐸 − 𝑝𝑧
, (3.3)

where 𝐸 denotes the particle’s energy. The difference of this quantity between two particles
is Lorentz invariant under boosts along the 𝑧-axis. For momenta significantly larger than
the particle’s mass (𝑝≫ 𝑚), which is generally given at the detector as well in this thesis,
the rapidity can be substituted by the pseudo rapidity 𝜂 and simplified to

lim
𝑝≫𝑚

𝑦 := 𝜂 = − ln tan
(︂
𝜃

2

)︂
. (3.4)

Consequently, this quantity depends solely on the polar angle 𝜃. As a result, values of
𝜂 → 0 point orthogonally to the 𝑧-axis while values of 𝜂 →∞ lie in the direction of the
𝑧-axis, cf. Figure 3.3.

For a geometric distance between two objects 𝑖 and 𝑗, the spatial distance Δ𝑅 is defined
by

Δ𝑅𝑖𝑗 :=
√︁

(𝜂𝑖 − 𝜂𝑗)2 + (𝜑𝑖 − 𝜑𝑗)2 , (3.5)

where 𝜂𝑖,𝑗 and 𝜑𝑖,𝑗 are the pseudo rapidity and azimuthal angle of the respective particles.
The quantities listed here are frequently used in this thesis to describe properties of objects
or relationships between them.
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4 Object reconstruction and event
definition

This chapter is dedicated to the reconstruction of physics objects in the Compact Muon
Solenoid (CMS) detector, representing an elementary part of data analysis. The goal is to
reconstruct particles and their properties based on the recorded signals in all sub-detectors,
such as energy deposits in the calorimeters or tracks in the tracking system, as discussed
in the previous chapter. Reconstruction requires precise processing and interpretation of
the detector signals in order to identify physics objects such as leptons, jets, or missing
transverse energy (MET) correctly. Thus, the object reconstruction forms the connection
between the raw detector data and the physics analysis, which ultimately allows conclusions
to be drawn about the underlying physics processes. The chapter is structured as follows:
The track and vertex reconstruction is discussed in Section 4.1. In Section 4.2 the particle-
flow algorithms are described and the overall reconstruction strategy of the most important
objects in this analysis is outlined. The focus of Section 4.3 is on the reconstruction
algorithm of jets. Based on this, in Section 4.4, the heavy flavor jet tagging algorithms
are explored, which play an important role in this thesis. The reconstruction of MET
is detailed in Section 4.5. At the end of this chapter, the event simulation is described
in Section 4.6. This section also includes definitions of physics processes that are used
throughout this thesis.

4.1 Track and vertex reconstruction

As outlined in Section 3.2.1.1, the tracking system constitutes the innermost layer of the
CMS detector. The purpose of track reconstruction is to assemble hits into a consistent
trajectory representing a particle’s path through the tracker. At the CMS experiment, a
combinatorial track finding algorithm is employed using Kálmán filters [86, 87].
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Charged particles passing through the detector leave hits in the silicon pixel and strip
detectors in a magnetic field generated by the solenoid. Each hit corresponds to a localized
energy deposit caused by the interaction of the particle with the detector material. For
the track reconstruction, potential seeds are created initially by combining neighboring
hits to form track candidates, referred to as seed generation. These seeds are constructed
using hits from adjacent layers of the pixel detector. Next, trajectories are developed by
identifying hits across all detector layers that align with the track candidate’s extrapolated
path based on the initial seed. This step, referred to as track finding, is based on Kálmán
filters [86, 87]. The magnetic field forces charged particles to follow a helical trajectory. In a
subsequent track fitting step, the trajectories of the charged particle candidates are refined
to closely match the observed hits. During this step, deviations and uncertainties of the
reconstruction are reflected in the fitting procedure. Additionally, tracks are extrapolated
to determine their origins, which is an important step to determine the primary collision
vertex as described below. Finally, tracks are evaluated and discarded if they fail to meet
quality criteria such as 𝑝T thresholds. If a candidate satisfies all criteria, its associated
hits are removed from the overall collection, and the iterative process continues with the
remaining hit collection.

The algorithm for vertex finding clusters tracks into potential vertex candidates based
on the 𝑧-position of their extrapolated origins. Each candidate’s position is refined using
an adaptive vertex fitting algorithm [88]. The primary vertex is determined as the one
with the highest sum of the squared transverse momenta 𝑝2

T of the tracks assigned to it.
An important observable is the impact parameter, defined as the distance to the primary
vertex. In this thesis, the impact parameter is divided into two components, along the
radial direction |𝑑𝑥𝑦| and the longitudinal direction |𝑑𝑧|. The vertex requirements for
different objects, including leptons and jets, are detailed in Chapter 8.

4.2 Particle-flow algorithm
The particle-flow algorithm at the CMS experiment is a sophisticated method to reconstruct
objects based on a comprehensive combination of all detector components [89]. Rather than
reconstructing objects within isolated detector components, the particle-flow algorithm
takes a unified approach by combining measurements from the tracking system, the
electromagnetic calorimeter (ECAL), the hadronic calorimeter (HCAL), and the muon
system. The reconstruction process proceeds sequentially, starting with particles that are
easier to reconstruct based on energy resolution, trajectory, and momentum. The algorithm
then proceeds to reconstruct particles that are more challenging to identify by utilizing
the remaining signals. A summary of the individual particle reconstruction procedures is
provided below. Further details on the particle-flow algorithm can be found in Ref. [89].

Electrons are reconstructed by correlating their trajectory in the tracking system (cf.
Section 3.2.1.1) with energy deposits in the ECAL (cf. Section 3.2.1.2). This requires
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identifying a track in the tracking system that matches the energy observed in the ECAL,
enabling the measurement of their energy and momentum. Additionally, photons produced
through bremsstrahlung in the tracking system are taken into account. Details on the
electron selection criteria employed in this analysis are provided in Section 8.2.2.

Photons are also identified through their energy deposits in the ECAL. In contrast
to electrons, photons do not produce a track in the tracking system. Additionally, the
production of electron-positron pairs from photons in the tracking system must be considered.
This is achieved by detecting secondary tracks that arise from photon interactions in the
tracker material, displaced from the primary interaction vertex.

Muons are categorized into three different types based on their reconstruction. Standalone
muons are identified solely in the muon system (cf. Section 3.2.1.5) of the CMS detector.
Global muons additionally require the presence of a corresponding track in the tracking
system. Tracker muons are reconstructed in the tracking system, extrapolated to the muon
system, and require at least one segment or hit in the muon chambers that matches the
extrapolated track. The object requirements for muons are detailed in Section 8.2.3.

Charged hadrons are reconstructed through clusters in the ECAL and HCAL (cf.
Section 3.2.1.3) with matching tracks in the tracking system. For the reconstruction of
charged hadrons, the momentum reconstruction in the tracking system is more precise
than the energy measurement in the calorimeter.

Neutral hadrons do not leave tracks in the tracking system and solely deposit their
energy in the HCAL. After reconstructing all other physics objects, the residual HCAL
energy is assigned to neutral hadrons. Therefore, neutral hadrons rely exclusively on the
HCAL, resulting in limited resolution.

4.3 Jet reconstruction

In high-energy proton-proton collisions, quarks and gluons are produced, each carrying
a color charge (cf. Section 2.1.2). However, due to the strong force of quantum chromo-
dynamics (QCD), quarks and gluons cannot exist freely and instead hadronize to form
composite, color-neutral particles, i.e. hadrons. As a result, a stream of collimated particles
is generated during hadronization, referred to as a jet. These jets are reconstructed with
the anti-𝑘T algorithm at the CMS experiment [90]. This algorithm satisfies two key criteria:
collinear and infrared safety. Collinear safety guarantees that a particle splitting with a
narrow angular separation does not create a new jet, keeping the original jet candidate
unaffected. By ensuring infrared safety, radiation at low momentum fractions is handled
so that the jet candidate remains invariant without producing additional jets. The anti-𝑘T

algorithm is based on a sequential recombination using a distance measure 𝑑𝑖𝑗 between all
particle-flow candidates, which is defined as
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𝑑𝑖𝑗 = min
(︁
𝑝−2

T,𝑖, 𝑝
−2
T,𝑗

)︁ Δ𝑅2
𝑖𝑗

𝑅2 . (4.1)

In this distance measure, Δ𝑅𝑖𝑗 is the spatial distance of the two particle-flow candidates
in the detector, as defined in Equation 3.5. The radius parameter 𝑅 is set to 𝑅 = 0.4 as a
default choice for jets at the CMS experiment. Additionally, the distance value

𝑑𝑖 = 𝑝−2
T,𝑖 , (4.2)

is defined for each particle and the values 𝑑𝑖𝑗 and 𝑑𝑖 are calculated. If the distance measure
𝑑𝑖𝑗 is the smallest value, the two particles are merged into a pseudo-particle. Both particles
are then removed from the collection and replaced with the pseudo-particle. If 𝑑𝑖 is the
smallest distance, the (pseudo-)particle 𝑖 is removed from the collection and the collection
is defined as a jet. The anti-𝑘T algorithm is applied iteratively until all particle-flow
candidates are fully clustered into jets.

The resulting jets are cone-shaped with a radius of approximately 0.4 in the 𝜂-𝜑 space.
Particles with high 𝑝T values play a significant role in the clustering algorithm, as the
procedure incorporates squared momenta into the distance calculation, which effectively
accounts for the primary energy flow. Consequently, particles with higher momentum are
preferentially grouped when in close proximity. Lower-energy particles, with less influence
on the distance calculation, are subsequently added to the jet candidate.

4.4 Heavy flavor jet tagging

The identification of the jet flavor plays a central role in this analysis. With the help of
sophisticated algorithms, it is possible to identify the flavor of the initial particle. The
flavor identification of jets harnesses fundamental properties of quarks. Heavy quarks,
compared to light quarks or gluons, undergo fragmentation and hadronization over short
distances. For example, B hadrons typically travel a few hundred micrometers before
they decay in their rest frame. The reason is the suppressed transition in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, as discussed in Section 2.1. This property results in a
secondary decay vertex that is located at a distance from the original collision point, as
illustrated in Figure 4.1. The secondary vertex information is an important input in flavor
identification techniques.

Heavy flavor jet identification algorithms are an active field of research at the CMS
experiment. The DeepCSV flavor tagger is an identification algorithm based on deep neural
networks (DNNs) [91]. A more comprehensive approach, DeepJet, uses a convolutional
neural network architecture and shows improved performance over DeepCSV [92]. Further
developments such as ParticleNet are based on graph convolutional neural networks [93].
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Figure 4.1: Illustration of a heavy flavor jet featuring a secondary vertex (SV) displaced
from the primary vertex (PV), arising from the decay of a b or c hadron
and producing charged-particle tracks. The decay results in a large impact
parameter (IP) value. Taken from Ref. [91].

The Particle Transformer flavor tagger uses as a transformer architecture with
attention mechanisms [94]. The continuous improvement of architectures and efficiencies
enables the analysis of processes that are difficult to access, such as tt̄ in association with
additional c jets (cf. Section 7.2.4). Beyond this, the algorithms developed must also be
capable of handling the future challenges of the experimental environment. In particular,
this includes the challenges posed by the increased pileup in the high-luminosity Large
Hadron Collider (LHC) era, in which tagging algorithms must operate reliably in hostile
collision environments. The heavy flavor jet tagging algorithms have been examined and
upgraded for such future scenarios [95] within this thesis.

The heavy flavor jet tagging algorithm employed in this thesis is the DeepJet tagger, which
is the standard jet tagger in Run-II analyses and is also used in related measurements [96].
The DeepJet tagger is based on a convolutional DNN, replacing the track-based lifetime
information used in DeepCSV with low-level observables of 25 charged and neutral
particle-flow jet constituents with the highest 𝑝T value. Additionally, the four leading
secondary vertices associated with a jet are incorporated. For each input set, separate
1× 1 convolutional layers are implemented with progressively smaller filter sizes, applied
individually to each charged particle, neutral particle, or secondary vertex. Thus, the
convolutional layers extract local features of a jet to identify key sub-structures. The
output from the convolutional layers is fed into a set of multiple recurrent layers based
on Long Short-Term Memory (LSTM) cells. The purpose of the LSTM is to capture
additional dependencies between the jet constituents independently for charged particles,
neutral particles, and secondary vertices. The LSTM outputs are then combined with
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Figure 4.2: Architecture of the DeepJet heavy flavor jet tagging algorithm. Taken from
Ref. [92].

information of global jet observables and propagated through a multilayer perceptron
(MLP) (cf. Section 5.1) to concatenate all features. The output layer of the multi-class
classification is composed of six nodes, each assigning a probability that a jet belongs to
one of the categories. Three nodes correspond to different properties of b jets: with one B
hadron, two B hadrons and B hadrons containing leptonic decays. The combination of
these three output nodes defines the discriminant quantity used in this thesis, which is
referred to as b tagging value. Jet and event classification performed with graph neural
networks (GNNs) in this thesis relies significantly on this input feature, as described in
Chapter 9. The remaining three output nodes represent the jet classes corresponding to c-,
up/down/strange (uds)-, and gluon-initiated jets. The architecture of the DeepJet tagger
is shown in Figure 4.2.

Two-dimensional discriminants can be constructed from the prediction scores of the
DeepJet tagger. For this, ratio observables are defined based on the DeepJet output
node probabilities, which reflect the predictions of the c vs. b (CvB) and c vs. light (CvL)
jet discrimination. Light jets in this thesis refer to jets originating from up, down, and
strange quarks, as well as gluons. The two observables are defined as

CvB = 𝑝(c)
𝑝(c) + 𝑝(b) + 𝑝(bb) + 𝑝(lepb) , (4.3)

and

CvL = 𝑝(c)
𝑝(c) + 𝑝(uds) + 𝑝(g) , (4.4)

where 𝑝(𝑖) refers to the probability in the output node 𝑖 of the DeepJet tagging algorithm.
The tagger performance is evaluated on simulated events, e.g. tt̄+jets in the fully hadronic
channel. For this purpose, the Receiver Operating Characteristic (ROC) is calculated,
where the light jet misidentification rate is measured against the b jet efficiency. The ROC
performance measure is depicted in Figure 4.3.

40



4.5 Missing transverse energy 41

Figure 4.3: ROC of the DeepJet heavy flavor jet tagging algorithm on simulated tt̄
events in the fully hadronic channel for all jets with transverse momentum
of 𝑝T ≥ 30 GeV (left). The performance of the tagging algorithm is evaluated
at a fixed 1% misidentification rate of light jets as a function of the jet 𝑝T

(right). The b jet efficiencies are separated into the four Run-II data-taking
eras. Taken from Ref. [97].

Typically, three different working points (WPs) are defined at constant light-jet misiden-
tification rates: 0.1% (tight WP), 1% (medium WP), and 10% (loose WP). Although
the WPs are not utilized in this analysis as the phase space is chosen to be inclusive
without selections on b-tagged jets, control distributions reflecting bins of the number
of b-tagged jets defined with the medium WP can be found in Section 8.5. Figure 4.3
illustrates the dependence of the b jet efficiency on the jet’s transverse momentum. For
jets with 𝑝T ≥ 30 GeV, the efficiency ranges from 70% to 80% for the medium WP in the
2018 data-taking era. For jets with a transverse momenta of 20 to 30 GeV, the efficiency
is significantly lower. For this reason, only jets with 𝑝T ≥ 30 GeV are considered in this
thesis, as outlined in Chapter 8.2.4.

4.5 Missing transverse energy

Particles produced during collisions that are only weakly interacting and electrically neutral
cannot be reconstructed in the CMS detector. These undetectable particles include not
only neutrinos but also hypothetical Dark Matter candidates. However, the presence of
these particles can be inferred indirectly by calculating the sum of transverse momenta in
an event. At the LHC, the transverse momenta of the colliding protons are negligibly small,
as they collide head-on along the beam axis, which is depicted in Figure 3.3. Therefore,
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the sum of the transverse momenta of all produced particles must also be zero after
the collision. Deviations in the transverse momenta indicate that energy is missing and
potentially carried away by undetected particles. Therefore, the MET is calculated with

MET =
⃒⃒⃒⃒
⃒− ∑︁

detected
𝑝T,𝑖

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒ ∑︁
undetected

𝑝T,𝑖

⃒⃒⃒⃒
⃒ . (4.5)

Two key aspects must be considered: First, the transverse energy of all particles must be
fully reconstructed. Therefore, MET is sensitive to sub-detector resolutions and detector
artifacts. Second, the number of undetected particles and their respective MET fractions
cannot be determined.

4.6 Event simulation
Event simulation is an essential element in measurements at the CMS experiment to
understand physics processes in proton-proton collisions and to interpret the measured
data. As shown in Chapter 7, in a given recorded collision event the physics process that
occurred is unknown. Particularly in events with identical reconstructed final states, it
is not possible to unambiguously determine the process leading to the signature in the
detector. Therefore, events from all processes expected to occur in the proton-proton
collisions are simulated to estimate and predict the signatures of data observed in the
measurements. The object reconstruction methods are identical for simulated events and
recorded data. This approach enables the search for beyond the Standard Model (BSM)
physics and the precise testing of existing theories, such as the Standard Model of particle
physics (SM). In addition, simulated events are valuable as they enable the training of
Artificial Intelligence (AI) models in supervised learning methods using labeled data, as
discussed in Chapter 9.

Simulating an event is a comprehensive procedure involving a combination of theoretical
and experimental knowledge at various stages. An overview of the main steps is given
below. Additionally, an exemplary implementation is discussed for the most important
simulation setup in this thesis.

The first step of every event simulation is the calculation of the matrix element (ME) for
a given physics process. The ME refers to the quantum mechanical transition amplitude
for a process resulting in a specific final state scenario. The next step is the simulation
of the hard process, which is the primary collision in which high-energy particles are
generated. The leading order (LO) calculation in QCD considers Feynman diagrams with
the lowest order in the strong coupling constant 𝛼𝑆 . Additional Next-to-leading order
(NLO) corrections take into account contributions from radiation processes or loop diagrams.
The Powheg Box (A Positive Weight Hardest Emission Generator) is an ME event
generator for the implementation of these steps [98, 99]. After hard scattering, additional
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radiation is simulated, referred to as parton shower (PS), taking into account higher-order
contributions. The PSs consider additional radiation before the scattering, referred to as
initial-state radiation (ISR), and after the scattering, called final-state radiation (FSR). As
the name suggests, Powheg Box generates the hardest emission first and can be interfaced
with a PS simulator such as Pythia for the remaining radiation [100]. For this, the MEs
and PSs must be matched in a procedure that handles the transitions between the ME
calculation for the hard process and the PS correctly to avoid double counting of radiation.
The splitting into two partons in the PS is calculated with Sudakov form factors [101]. The
factors describe the probability of a parton at an energy scale 𝑞2

𝑖 to evolve to an energy scale
𝑞2

𝑓 without emitting an additional parton. However, as the PS energy decreases and 𝛼𝑆

consequently increases, simulating hadronization processes becomes necessary. When the
energy scale drops below 1 GeV, the strong coupling constant assumes values of 𝒪(1), and
perturbation theory can no longer be applied. After the PS, quarks and gluons transition
into bound states through the process of hadronization. This process is described using
phenomenological models such as the Lund string model implemented in Pythia [102].
Finally, the simulated particles are propagated to a detector simulation of the CMS
experiment to simulate the interaction of all particles with the detector components. Thus,
at this level of simulation, the event resembles the signal as it would appear in a recorded
event from a real collision. For the detector simulation, the Geant 4 software framework
is employed [103]. Still, the simulation is inherently an approximation, constrained by the
available knowledge of the detector, the underlying physics, and other relevant factors.
Known discrepancies between simulated data and recorded data in the reconstruction
process are corrected, as detailed in Section 8.4. Simplified detector simulations, for
instance with Delphes, can simulate the detector behavior up to two orders of magnitude
faster [104]. However, a study on the event simulation with Delphes for the production
of training data for relevant processes in this thesis shows that the distributions of basic
kinematic observables can deviate by up to 10% compared to the event simulation with an
extensive detector description in Geant 4 [105].

4.6.1 Jet flavor identification and jet origin

For the analysis strategy, as defined in Section 7.3, the flavor and origin of a clustered jet
from stable final-state particles at the generator level, i.e. before the detector simulation,
is crucial. However, this requires the information about the hadrons from hadronization
at this level. The information is obtained in several steps. First, all B and C hadrons in
the event are identified. For each hadron, the corresponding b or c quark is determined
by tracing the particle chain back to the initial state particles. During this process, each
B or C hadron is matched to a single quark. The parent of this quark is then considered
the origin of the hadron, which can be a top quark, Higgs boson, Z boson, gluon, or any
other particle. Finally, each hadron has to be associated with a jet. For this, a ghost
clustering algorithm is employed [106, 107]. In this process, the momenta of the hadrons
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are scaled to infinitely small values. These hadrons, each with negligible energy, are then
clustered together with the stable final-state particles. Due to the chosen jet clustering
algorithm, the original jet is not altered. The hadron among the jet constituents can then
be identified, and the information about the flavor and the origin of this jet is revealed.

4.6.2 Event topologies

In case where a b jet originates from a top quark decay, it is referred to as a b jet from the
tt̄ system in this thesis. On the other hand, if a jet that does not stem from a top quark
decay, e.g. from a gluon splitting or H/Z boson decay, it is referred to as an additional jet.

A distinction is made between different event topologies of simulated tt̄ events based on the
hadron flavor in the additional jets. Events in which two additional B hadrons enter two
different jets in addition to the tt̄ system they are referred to as tt̄bb̄. If both additional B
hadrons appear in one additional jet, it is referred to as tt̄2b. This occurs when both B
hadrons are clustered in a jet due to a collinear g→ bb̄ splitting, for example. In events
in which one B hadron is matched to an additional jet, but the other B hadron is out
of acceptance, this is referred to as tt̄b. The group of tt̄bb̄, tt̄2b, and tt̄b is collectively
referred to as tt̄B. Correspondingly, tt̄H(B) and tt̄Z(B) are defined with the equivalent
sub-process definitions. If no additional B hadrons are present, but additional C hadrons
exist, analogous logics are applied to tt̄C and its sub-processes. If neither additional B nor
C hadrons are present, the process is referred to as tt̄LF, where LF indicates the additional
light flavor jets.
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In proton-proton collisions, the reconstructed collision products result in unknown final
state physics object multiplicity, e.g. the number of jets in an event. Furthermore, all decay
products in an event form a permutation invariant set of final state objects. Mathematical
graphs satisfy these two properties, making graph neural networks (GNNs) a natural choice
for jet and event classification. In this chapter, the key properties of GNNs are explored,
structured as follows: Section 5.1 provides an introduction to the fundamental principles
of neural networks. Section 5.2 focuses on key properties of mathematical graphs, whose
topology forms the basis of GNNs. Section 5.3 delves into the core principles of message
passing and aggregation in GNN architectures. The application and the architecture
employed for classification in this thesis are discussed in detail in Chapter 9.

5.1 Machine learning and neural networks
Modeled after their biological counterparts, neural networks emulate the core processes of
natural neural systems. A single neuron can handle simple decision-making tasks, while an
entire network can analyze complex relationships and recognize intricate patterns. The
structure of a single perceptron is composed of 𝑛 inputs, denoted as 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛. Each
input 𝑥𝑖 is assigned a weight 𝑤𝑖, which scales the input to reflect its relative importance.
The sum of the weighted inputs serves as argument for a non-linear activation function
𝜓. The activation function processes the sum of the weighted inputs and determines a
prediction 𝑝, calculated with

𝑝 = 𝜓

(︃
𝑛∑︁

𝑖=1
𝑥𝑖𝑤𝑖

)︃
. (5.1)

The prediction 𝑝 enables the perceptron to perform a decision. If 𝑝 is less than or equal
to a threshold 𝑏, the perceptron assigns the input to class 𝐴; otherwise, the input is
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classified as class 𝐵. During the training process of the perceptron, both the weights 𝑤𝑖

and the threshold 𝑏 are adjusted to optimize the classification performance. Combining
multiple perceptrons into a structured network enables the classification of more complex
patterns. This is achieved by organizing multiple perceptrons in several layers, referred to
as multilayer perceptron (MLP). In an MLP, each perceptron in a given layer is connected
to each perceptron in the subsequent layer, known as fully connected feedforward network.
The input layer is the first layer in an MLP, where the data is fed into the network,
followed by a series of hidden layers. The final layer is called the output layer, which
enables prediction or classification into categories, as discussed for a single perceptron.
Hence, the output from a perceptron in the 𝑙-th layer serves as one of the inputs for the
(𝑙 + 1)-th layer in the MLP. An MLP with multiple hidden layers is considered a deep
neural network (DNN).

In this thesis, the non-linear activation function employed is the LeakyReLU function,
defined as

𝜓(𝑥′) =

⎧⎨⎩𝑥
′ if 𝑥′ > 0

𝜖𝑥′ if 𝑥′ ≤ 0
, (5.2)

where 𝜖 is a tunable parameter and set to 𝜖 = 0.1 in this thesis. The activation function
is preferred for its simplicity. It is based on the ReLU function, but unlike ReLU,
the LeakyReLU function has a non-zero slope for negative values. This prevents the
vanishing gradient problem by ensuring small gradients for negative input values, which
allows gradients to propagate through the network during backpropagation, as explained
below.

The sigmoid activation function is used in the output layer for classification in this thesis,
which is defined as

𝜎(𝑥′) = 1
1 + 𝑒−𝑥′ . (5.3)

Its ability to produce values between 0 and 1 is advantageous, as these values can be
directly interpreted as probabilities, such as the likelihood of a jet belonging to a specific
class.

Training a neural network involves adjusting its weights and biases, collectively referred
to as trainable parameters. The training process seeks to adjust the trainable parameters
to improve the network’s ability to predict values that are close to the true value, e.g.
in a classification task. Therefore, the loss function 𝐿 is introduced as a measure of how
good the predictions of the network are compared to the true class. The cross-entropy is a
suitable choice, as it quantifies the difference between the predicted probability distribution
and the actual target class distribution. It is defined as
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𝐿 = −
∑︁

𝑖

𝑦𝑖 log(𝑦𝑖) , (5.4)

where 𝑦𝑖 is the one-hot encoded true label and 𝑦𝑖 denotes the predicted probability for
class 𝑖. Consequently, if the network assigns a high probability to the true class, the
cross-entropy loss is minimized.

To minimize the loss function, a gradient descent approach is applied during training. In
this procedure, the gradient of the loss function with respect to the weights is calculated
and adjusted in the direction of the steepest descent.

The weight update in the gradient descent is calculated with

𝑤
(𝑙)
𝑗𝑖 ← 𝑤

(𝑙)
𝑗𝑖 − 𝜆

𝜕𝐿

𝜕𝑤
(𝑙)
𝑗𝑖

, (5.5)

where 𝑤(𝑙)
𝑗𝑖 represents the assigned weight of the connection between the 𝑗-th perceptron in

the 𝑙-th hidden layer and the 𝑖-th perceptron in the preceding layer. The hyperparameter 𝜆
known as the learning rate determines the step size for updating the network’s weights and
is a tunable parameter of the model. Hence, the gradient descent compels the network to
progressively minimize the loss function. This process is operated iteratively over multiple
epochs, during which the loss function is evaluated in each epoch and the weights updated
incrementally. An epoch refers to a full cycle through the entire training data set during
the network’s training procedure.

The gradient descent procedure is executed using the Adam optimizer in this thesis [108].
Adam uses an adaptive learning rate 𝜆 for each parameter, adjusting it individually based
on the size of the previous gradient, which improves optimization efficiency. The optimizer
employs exponential moving averages of the gradients combined with squared gradients,
which speeds up and stabilizes the convergence by considering past gradients.

A potential risk in the neural network minimization process is overfitting the trainable
parameters to the training data, which can compromise the network’s generalization
ability. To avoid such overfitting during the training procedure, regularization techniques
are employed. One regularization technique, called dropout [109], randomly deactivates
perceptrons during training to prevent overfitting. At each epoch, each perceptron is
dropped out with a predefined probability, effectively excluding it from all computations.
This enforces the network to learn robustly and not rely on individual perceptrons. During
testing or validation, dropout is disabled, and all perceptrons remain active.
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5.2 Graph properties

A mathematical graph is a structure defined by a set of nodes (𝑉 ) and a set of edges (𝐸).
A graph is then an ordered structure defined as the tuple 𝐺 = (𝑉,𝐸), where 𝑉 =
{𝑣1, 𝑣2, . . . , 𝑣𝑁} represents the set of nodes and 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges connecting
pairs of nodes [110]. Each edge (𝑢, 𝑣) ∈ 𝐸 connects two nodes 𝑢 and 𝑣. Furthermore, graph
structures carry additional information stored in nodes and edges, referred to as features in
this thesis. A weight 𝑤𝑢𝑣 is associated with each edge (𝑢, 𝑣) that represents the strength
or importance of the respective connection between two nodes. Similarly, each node 𝑣 of a
graph is assigned features, i.e. multiple properties representing the characteristics of the
node object. However, properties can also be assigned to the entire graph, for example a
label for the overall characteristic of the graph. A practical application of a structure with
the aforementioned properties is, for example, a molecule. In an exemplary graph, nodes
represent atoms (e.g. carbon or hydrogen atoms), edges represent the chemical bonds (e.g.
single bonds between carbon and hydrogen) and the chemical properties of the molecule
can be attributed to the entire graph (e.g. the type of molecule).

A key element in the representation of the graph structure is the adjacency matrix 𝐴. For
a graph with 𝑁 nodes, 𝐴 is an 𝑁 ×𝑁 matrix in which the matrix elements 𝐴𝑖𝑗 are

𝐴𝑖𝑗 =

⎧⎨⎩1 if an edge from node 𝑖 to 𝑗 exists

0 otherwise
. (5.6)

As mentioned before, in case of weighted graphs, 𝐴𝑖𝑗 represents the weight 𝑤𝑖𝑗 of the edge
between the node 𝑖 and 𝑗. Generally, graphs can be categorized into two groups: directed
and undirected graphs. For undirected graphs, the adjacency matrix is symmetric, i.e.
𝐴𝑖𝑗 = 𝐴𝑗𝑖, whereas this does not apply to directed graphs. All graphs in this thesis are
directed graphs.

As the name indicates, GNNs are a type of neural networks specifically designed to process
graph-structured data. Unlike feedforward DNNs, which are typically applied to grid-like
data such as images or sequential data, GNNs are specifically designed to capture the
relationships between nodes in irregular, non-Euclidean structures. While both GNNs and
feedforward DNNs share the fundamental principle of learning representations through
layers of transformation as discussed in Section 5.1, GNNs differ in their ability to process
and update information based on the graph’s topology. GNNs leverage the structure of
the graph to learn meaningful representations for nodes, edges, or the entire graph, by
iteratively aggregating and transforming information from neighboring nodes. The paper
in Ref. [111] systematically analyzes the differences between DNNs and GNNs for typical
data structures of proton-proton collision decay products and constitutes results of the
research associated with this thesis.
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GNNs are capable to perform predictions on three different levels. In the following,
exemplary applications across various domains are demonstrated. The first level is the edge
level prediction. At this level, predictions are made for individual edges, focusing on their
properties or existence, for instance, predicting whether two users in a social network might
become friends. The second level is the node level prediction (NLP). In this case, the task
is a prediction for individual nodes based on their own information and neighboring nodes,
e.g. if a product is relevant for a customer under scrutiny. The third level is the graph
level prediction (GLP). At this level, predictions are made about the entire graph as a unit.
A typical application is classifying a molecule based on its structure, such as predicting
the toxicity. This thesis employs the latter two levels: NLP and GLP. In Section 9.1, the
transformation of the event topology into a graph structure is presented. The classification
of jets using NLPs is described in Section 9.2, whereas the classification of events based on
GLPs is discussed in Section 9.3.

5.3 Message passing and aggregation
The core mechanism in the training procedure of a GNN is called message passing. The
goal is to collect information from the neighborhood of a node and iteratively incorporate
it into new node representations, referred to as embedding. Consequently, a node can
update its properties not only based on its own information, but also on the information
of its neighbors, with connections represented by the adjacency matrix. Message passing,
aggregation, and update in GNNs involve three major steps.

In the first step, the message 𝑚(𝑖)
𝑢→𝑣 sent from node 𝑢 to node 𝑣 in the 𝑖-th iteration1 is

calculated with

𝑚(𝑖)
𝑢→𝑣 = 𝜑(ℎ(𝑖)

𝑢 , ℎ(𝑖)
𝑣 , 𝑒𝑢𝑣) , (5.7)

where the message depends on the embedding ℎ
(𝑖)
𝑢 and ℎ

(𝑖)
𝑣 of the nodes involved and

connected with the edge 𝑒𝑢𝑣. The function 𝜑 can be chosen as an MLP or any weighted
linear function.

The second step is an aggregation of all messages sent by all connected nodes to the node
under scrutiny. All incoming messages 𝑚(𝑖)

𝑢→𝑣 for the node 𝑣 are collected and aggregated
with

𝑚̄(𝑖)
𝑣 = AGG({𝑚(𝑖)

𝑢→𝑣 | 𝑢 ∈ 𝒩 (𝑣)}) , (5.8)

where AGG is the aggregation function. The aggregation function can be chosen arbitrarily;
however, the function must be independent of the order of the neighbors. This choice

1The term iteration instead of layer reflects the fact that certain GNN architectures involve multiple
iterations per layer.
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enables permutation invariance. Functions that fulfill this requirement are the sum, average,
or maximum. With this, the aggregation process reduces any number of incoming messages
to a consolidated message. Therefore, the calculation is also invariant to the size of the
graph, enabling different node multiplicities to be processed identically. This property is
exploited in this thesis, as it allows all possible jet multiplicities in events to be considered
by the GNN (cf. Chapter 9). In this thesis, a weighted aggregation is implemented based
on an attention mechanism as introduced in transformer models [112]. As a result, the
aggregation function is given an additional attention weighting 𝛼𝑢𝑣 and is calculated with

AGG =
∑︁

𝑢∈𝒩 (𝑣)
𝛼𝑢𝑣𝑚

(𝑖)
𝑢→𝑣 . (5.9)

The third step is updating the current embedding, in which the aggregated messages are
processed to update the representation of each node. The new embedding of the node 𝑣 is
determined with

ℎ(𝑖+1)
𝑣 = 𝜓(ℎ(𝑖)

𝑣 , 𝑚̄(𝑖)
𝑣 ) , (5.10)

where 𝜓 is any non-linear transformation implemented as an activation function such as
LeakyReLU (cf. Equation 5.2). Hence, the updated embedding can, for instance, be
calculated with

ℎ(𝑖+1)
𝑣 = 𝜎

(︁
𝑊 [ℎ(𝑖)

𝑣 ‖𝑚̄(𝑖)
𝑣 ]
)︁

, (5.11)

where ‖ is the concatenation function and 𝑊 a weight matrix containing trainable parame-
ters. The dimensions of the vector can be changed ℎ(𝑖+1)

𝑣 compared to ℎ(𝑖)
𝑣 with the choice

of the weight matrix 𝑊 . The technical implementation, along with the detailed selection
of GNN models, is thoroughly examined in Chapter 9.
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In particle physics and this thesis, statistical data analysis methods are a fundamental part
when extracting small signals from vast data sets in precision measurements. Processes
in particle physics are inherently probabilistic, since the underlying quantum mechanical
wave functions are interpreted as probability density functions (PDFs). Yet, stochastic
phenomena not only play a central role from a theoretical perspective, but are also crucial in
experiments. Since the determination of cross sections is essentially a counting experiment
that is affected by statistical fluctuations, statistical tools are required for evaluation.
Eventually, hypothesis tests are used to analyze the large amount of data in order to
determine the parameter of interests (POIs) of the measurement and compare the results
with theoretical predictions. This chapter summarizes the most important statistical
methods used in this thesis. In Section 6.1, the concept of a cross section measurement is
introduced and the POI based on it is defined. The principle of a maximum likelihood fit and
a parameter determination thereof are described in Section 6.2. In Section 6.3, hypothesis
tests are discussed to evaluate a result and assess the significance of the measurements
performed.

6.1 Cross sections and signal strengths
The cross section is a measure of the probability that a particular process, e.g. tt̄bb̄
production, will occur in an event. It is denoted as 𝜎 in this thesis and is expressed in
units of area denoted as barn (b), where 1 b = 10−28 m2. All cross sections in this thesis
are stated in pb. The predicted cross sections of all processes considered in this thesis are
discussed in Chapter 8 and are documented in Table 8.1. The expected number of events
𝑁 within a point in time 𝑡 then results from

𝑁 = 𝜎 ·
∫︁ 𝑡

0
𝐿inst d𝑡′ , (6.1)
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where 𝐿inst is the instantaneous luminosity defined in Equation 3.1. To determine the
cross section of a specific process in the Compact Muon Solenoid (CMS) experiment, this
relation is used by subtracting the number of expected background events (𝑁bkg) from
the number of observed events (𝑁obs). Combined with the product of the acceptance and
reconstruction efficiency denoted as 𝜖, which reflects the fraction of actually reconstructed
events determined by auxiliary measurements or simulation, the cross section of interest is
defined as

𝜎 = 𝑁obs −𝑁bkg

𝜖 ·
∫︁ 𝑡

0
𝐿inst d𝑡′

. (6.2)

The simplicity of Equation 6.2 conceals the complexity of the actual application in a
precision measurement. Since precision measurements aim to detect small signals and, as
mentioned at the beginning of this chapter, involve stochastic processes alongside numerous
systematic uncertainties (cf. Section 10.1), the actual determination of a cross section is
far more complex. Therefore, the remainder of this chapter is devoted to this concept and
based on Ref. [113–115].

Typically, the cross section in measurements is parameterized and expressed as a signal
strength parameter, which is defined as

𝜇 = 𝜎obs

𝜎SM , (6.3)

where 𝜎obs denotes the observed cross section and 𝜎SM refers to the cross section predicted
by the SM. Accordingly, the signal strength parameter 𝜇 is defined as the cross section
relative to the expectation from a theory prediction. If the signal strength parameter equals
one, the measured cross section corresponds precisely to its SM prediction.

6.2 Maximum likelihood fits and parameter estimation
Generally, the observed data and predictions are represented as histograms for data
reduction in this analysis. The parameter estimation, which determines the parameters
that best fit the data given a particular model, is performed using a maximum likelihood
fit. In this method, the content of each bin 𝑖 of the histogram is expressed by a probability
𝒫, while the products over all bins form the likelihood with

ℒ
(︁
𝜇⃗, 𝜃

)︁
=
∏︁

𝑖

𝒫
(︁
𝑛𝑖|𝜆𝑖(𝜇⃗, 𝜃)

)︁
. (6.4)

In this equation, 𝒫 describes the probability of observing 𝑛𝑖 events, whereas a value of 𝜆𝑖 is
expected. This expected yield 𝜆𝑖 depends on two sets of parameters, which are summarized
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to 𝜇⃗ and 𝜃. The former describes the POIs, such as signal strength parameters from
Equation 6.3, while the latter describes the nuisance parameters (NPs), which are also part
of the model, but are of indirect interest. In contrast to other analyses that search for only
one signal, in this thesis 𝜇⃗ is a set of four parameters, which are defined in Chapter 10.
With the help of the NPs, it is possible to incorporate systematic uncertainties into the
statistical model, which is discussed in Section 10.1. The expected yield 𝜆𝑖 is derived from
the number of signal events (𝑠𝑖) and background events (𝑏𝑖) with

𝜆𝑖(𝜇⃗, 𝜃) = 𝜇⃗ · 𝑠⃗𝑖(𝜃) + 𝑏𝑖(𝜃) . (6.5)

Thus, the signal strength parameters scale the signal linearly. Since four signal strength
parameters are measured in this thesis, the product 𝜇⃗ · 𝑠⃗𝑖(𝜃) is given by

𝜇⃗ · 𝑠⃗𝑖(𝜃) = 𝜇tt̄bb̄,𝑖 𝑠tt̄bb̄,𝑖(𝜃) + 𝜇tt̄cc̄,𝑖 𝑠tt̄cc̄,𝑖(𝜃) + 𝜇tt̄H,𝑖 𝑠tt̄H,𝑖(𝜃) + 𝜇tt̄Z,𝑖 𝑠tt̄Z,𝑖(𝜃) . (6.6)

The probability 𝒫 in bin 𝑖 follows a Poisson distribution, as it is a natural choice describing
independent events with a constant mean rate within a given interval. The Poisson
distribution with respect to the parameters introduced is described by

𝒫
(︁
𝑛𝑖|𝜆𝑖(𝜇⃗, 𝜃)

)︁
= 𝜆𝑛𝑖

𝑖 (𝜇⃗, 𝜃)
𝑛𝑖!

𝑒−𝜆𝑖(𝜇⃗,𝜃) . (6.7)

To incorporate systematic uncertainties into the model via the NPs, the likelihood from
Equation 6.4 combined with Equation 6.5 is modified with an additional constraint term,
which results in

ℒ
(︁
𝜇⃗, 𝜃

)︁
=
∏︁

𝑖

𝒫
(︁
𝑛𝑖|𝜇⃗ · 𝑠𝑖(𝜃) + 𝑏𝑖(𝜃)

)︁
· 𝑃 (⃗̃𝜃|𝜃) . (6.8)

The constraint term is associated with the degree of belief 𝑃 (𝜃|⃗̃𝜃) for values of 𝜃 given ⃗̃𝜃

and indicates what the true values of the NPs 𝜃 could be via Bayes’ theorem

𝑃 (𝜃|⃗̃𝜃) ∝ 𝑃 (⃗̃𝜃|𝜃) · 𝜋
𝜃
(𝜃) , (6.9)

where 𝑃 (⃗̃𝜃|𝜃) is a conditional probability obtained from auxiliary measurements or theoret-
ical calculations, ⃗̃𝜃 are the default values of the NPs, and 𝜋

𝜃
(𝜃) is the prior probability of

𝜃, often assumed to be uniformly distributed [113].

As previously mentioned, systematic uncertainties incorporated into the likelihood via NPs
can be considered correlated or uncorrelated (cf. Section 10.1). In the case of a correlation,
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systematic uncertainties are described by the same NP, while in the uncorrelated case,
they are described by different NPs. To determine the optimal set of parameters, the NPs
𝜃 are profiled as functions of the POIs 𝜇⃗, which reduces the total number of parameters to
be estimated. The optimal test statistic results from the likelihood ratio according to the
Neyman-Pearson lemma [116]. This ratio is defined as the likelihood, which is maximized
by a set of parameters {𝜇⃗, ⃗̂𝜃(𝜇⃗)} for fixed values of 𝜇⃗ relative to the likelihood whose set
of parameters {⃗̂𝜇, ⃗̂𝜃(⃗̂𝜇)} maximizes the likelihood function globally. For example, 𝜇⃗ = 0
can be chosen for the fixed value of the parameter set in the numerator, whose choice
is motivated in the following section. By constructing a profiled negative log-likelihood
ratio, it is possible to perform a numerically preferable minimization procedure instead of
a maximization method. As a result, the test statistic 𝑞𝜇⃗ to be minimized is

𝑞𝜇⃗ = −2 log

⎛⎜⎜⎝ℒ
(︂
𝜇⃗,
⃗̂
𝜃(𝜇⃗)

)︂
ℒ
(︂
⃗̂𝜇,
⃗̂
𝜃(⃗̂𝜇)

)︂
⎞⎟⎟⎠ . (6.10)

It should be noted that this method determines the parameter values that are most
compatible with the data for a given model rather than finding the correct model. The
construction of an accurate model therefore remains crucial. The correlation of parameters
𝛼 ∈ {𝜇⃗, 𝜃} can be calculated from the inverse of the Hessian matrix of the likelihood
function, which is defined as matrix of second derivatives at the maximum of the likelihood.
The components of this covariance matrix 𝐶 are then calculated from

𝐶−1
𝑖𝑗 = 𝜕ℒ

𝜕𝛼𝑖𝜕𝛼𝑗

⃒⃒⃒⃒
⃒
⃗̂𝛼

. (6.11)

In addition, confidence intervals can be obtained from the covariance matrix with

𝛼↑↓
𝑖 = 𝛼̂𝑖 ±

√︀
𝐶𝑖𝑖 . (6.12)

Alternatively, the test statistic 𝑞𝜇⃗ can be used in the limit of large samples to form confidence
intervals according to the Wilks’ theorem [117]. The confidence intervals then correspond
to Gaussian standard deviations, since 𝑞𝜇⃗ asymptotically follows a 𝜒2 distribution. The
interval boundaries can then be read from the values of the test statistic, as all parameter
values that lie within 𝑠 Gaussian standard deviations belong to the considered interval

𝑞↑↓
𝜇⃗ (𝑠) = 𝑞min

𝜇⃗ ± 𝑠2 . (6.13)
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6.3 Hypothesis tests and significance

In particle physics, the null hypothesis 𝐻0 is typically chosen as ‘‘background-only’’, i.e.
the absence of the signal processes with a prediction of the data by a model with all known
processes. The alternative hypothesis 𝐻1 is the combination of both, which is referred to
as ‘‘signal + background’’. Therefore, hypothesis tests are performed to determine whether
the data are compatible with the null hypothesis or whether they deviate significantly.
The probability distribution under the 𝐻0 hypothesis, representing the background-only
model, is used to evaluate the significance of a result quantified by a 𝑝-value. Due to
the conservative approach of defining the signal + background hypothesis as 𝐻1, the null
hypothesis is only rejected if 𝐻0 can be excluded with a high level of certainty. This
approach minimizes the probability of false-positive results, also known as Type I error.
Hence, this procedure ensures an unbiased approach for testing the alternative hypothesis
𝐻1.

The test statistic 𝑞𝜇⃗ from Equation 6.10 is the optimal test statistic for performing the
hypothesis test [116]. To represent the null hypothesis in the test statistic, 𝜇⃗ = 0 is set
in the numerator. The corresponding test statistic is referred to as 𝑞0 and the optimal
values from the minimization in data (‘‘observed’’) are designated ⃗̂

𝜃obs
0 . This 𝑝-value is

then defined as

𝑝 = 𝒫
(︁
𝑞0 ≥ 𝑞obs

0

)︁
. (6.14)

Pseudodata can be generated to evaluate 𝒫 based on the model with ⃗̂
𝜃obs

0 as NP allowing
for Poisson-distributed fluctuations of the event yields in each bin. The resulting PDFs
can then be used to determine how likely it is to observe a value equal to or greater than
𝑞obs

0 if the null hypothesis is true:

𝑝 =
∫︁ ∞

𝑞obs
0

𝑓

(︂
𝑞0|0, ⃗̂𝜃obs

0

)︂
d𝑞0 . (6.15)

The smaller the 𝑝-value, the stronger the observed result contradicts the null hypothesis,
which can be rejected in favor of the 𝐻1 hypothesis.

The decision to reject the null hypothesis can be based on a previously specified threshold.
However, the 𝑝-value is usually converted into a significance, which is also referred to as
𝑍-score. The 𝑍-score represents how many standard deviations a result differs from the
mean of a Gaussian distribution. This significance can be calculated with

𝑍 = Φ−1(1− 𝑝) , (6.16)
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where Φ is the cumulative distribution function of the standard normal distribution with

Φ(𝑧) =
∫︁ 𝑧

−∞

1√
2𝜋
𝑒− 𝑥2

2 d𝑥 . (6.17)

By convention, passing a 3𝜎 threshold (𝑍 = 3) is considered an ‘‘evidence’’, while exceeding
5𝜎 (𝑍 = 5) is considered a ‘‘discovery’’, leading to the rejection of the null hypothesis, as
in the case of the Higgs boson discovery by the ATLAS and CMS Collaborations [7, 8]. A
significance of 5𝜎 corresponds to a 𝑝-value of 3 · 10−5%.

In this thesis, results that are calculated on pseudodata are referred to as ‘‘expected’’, e.g.
‘‘expected significance’’. Results that are determined on data are referred to as ‘‘observed’’.
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7 Introduction

This chapter serves as an overview and introduction to the experimental part of this
thesis. First, the motivation for performing the analysis and its relevance are outlined in
Section 7.1. Additionally, the methodological difficulties are highlighted. This is followed
by a review of related measurements, if any, and their varying approaches and findings
in Section 7.2. Finally, the objective of the analysis is defined and the overall strategic
concept is summarized in Section 7.3.

7.1 Motivation and challenges
Top quark physics plays an important role at the Large Hadron Collider (LHC), as
elaborated in Section 2.3. Also, the key fundamentals of Higgs physics have been discussed
in Section 2.1.4. This thesis addresses both topics, for which there are numerous reasons
to pursue open questions. However, this combination inherently includes many associated
challenges, which are outlined in the following.

The interaction of the Higgs boson with another particle is proportional to the particle’s
mass. Hence, the coupling to the particle with the largest known mass, the top quark, is
particularly interesting. Since the direct decay of a Higgs boson into a top quark-antiquark
pair (H→ tt̄) is kinematically forbidden, the associated production of a Higgs boson and a
top quark-antiquark pair (tt̄H) can be used for probing the top-Higgs Yukawa coupling.
Precision measurements of the top-Higgs Yukawa coupling are thus an important test of
the Standard Model of particle physics (SM). In addition, these measurements may answer
questions about physics beyond the Standard Model (BSM) that predict different coupling
strengths. In this thesis, the tt̄H production with a subsequent decay of the Higgs boson
into a b quark-antiquark pair (H → bb̄) is investigated. With a branching fraction of
(53± 8)%, the H→ bb̄ channel represents the highest branching fraction of all channels
and offers the advantage of a pure coupling of the Higgs boson to third generation fermions,
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which allows direct access to the Higgs Yukawa sector [43]. However, the signals of tt̄H(bb̄)
productions in the data are overshadowed by tremendous backgrounds that are quantified
later.

An irreducible process to tt̄H(bb̄) is the associated production of a top quark-antiquark pair
with a Z boson (tt̄Z). If the Z boson, analogously to the Higgs boson, decays into b quark-
antiquark pair (Z→ bb̄), both processes constitute identical final states. Therefore, the
tt̄Z(bb̄) process must be thoroughly understood in order to enable a precise measurement of
tt̄H(bb̄). However, the tt̄Z(bb̄) process is not only interesting as a background to tt̄H(bb̄),
but also in its own terms. The weak coupling of the Z boson to the top quark is a test of
the SM and contributions from BSM physics can in principle be explored in this process.
Although these tests are more efficient when considering leptonic Z boson decay channels
due to their cleaner signatures and lower background levels, the Z→ bb̄ final state provides
a complementary probe offering valuable insights.

Another process in the phase space of tt̄H(bb̄) and tt̄Z(bb̄) is the associated production
of a top quark-antiquark pair with additional jet radiation (tt̄+jets). In particular, if
the additional radiation results in a b quark-antiquark pair (e.g. g → bb̄), the so-called
tt̄bb̄ process also forms an irreducible background for the two processes discussed so far.
However, the tt̄bb̄ process is not just an undesired background for tt̄H(bb̄) and tt̄Z(bb̄).
Due to the two different energy scales of the top and the b quark masses, the modeling of
the process is challenging. An accurate measurement of the tt̄bb̄ process is therefore key
to a profound understanding of its multiscale quantum chromodynamics (QCD) nature.
While tt̄bb̄ processes have a comparably distinct signature with respect to tt̄ events with
additional light flavor radiation (tt̄LF) from u, d, s, and g, this characteristic is less
pronounced for tt̄ processes with additional c jets (tt̄cc̄). However, dedicated heavy flavor
tagging algorithms, which also enable c jet identification, allow for a distinction between
tt̄bb̄, tt̄cc̄, and tt̄LF signatures. Therefore, tt̄cc̄ measurements are a crucial element to
thoroughly understand the underlying processes in the tt̄ + heavy flavor phase space.

In this thesis, the dileptonic tt̄ channel is chosen due to its particular clear signature at
the sacrifice of lower rates. Therefore, reduced data statistics compared to other channels
is an additional challenge in this analysis. Detailed advantages and disadvantages of
the top decay channels are described in Section 2.3. The leading order (LO) Feynman
diagrams of the processes tt̄bb̄, tt̄H(bb̄), and tt̄Z(bb̄) are depicted in Figure 7.1. In all
processes, the dominant production mode at the LHC is the interaction of two gluons. The
top quark (antiquark) decays into a W boson and a b quark (antiquark), as detailed in
Section 2.3. In both cases, the W boson decays leptonically to a charged lepton (e,µ) and
the corresponding (anti-)neutrino (W→ ℓ𝜈ℓ). The only difference in the three diagrams is
the center part where a different boson is created. In the tt̄bb̄ process, an additional bb̄
pair arises from gluon splitting (g→ bb̄). In the other two cases, the quark-antiquark pair
originates from the decay of the H/Z boson.
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Figure 7.1: Examples of LO Feynman diagrams for the tt̄bb̄ (left), tt̄H(bb̄) (middle), and
tt̄Z(bb̄) (right) processes in the dilepton channel.

In Figures 7.2 and 7.3, an example of a simulated tt̄H(bb̄) event is shown in three dimensions
from different angles. In these figures, tracks and energy depositions can be observed in
the sub-detectors. In addition to an electron and a muon, the event contains other low
𝑝T leptons that are removed after an event cleaning procedure, as they do not pass the
requirements defined in Section 8.2. Six jets can be identified in these figures, represented
as cones of clustered particles. However, it is not possible to infer the underlying production
process causing a given final state in an individual data event based on the measured
signatures. Such determinations cannot be achieved on an event-by-event basis. Instead,
statistical analysis must be employed, relying on expected rates, kinematic distributions,
and other properties of the final state objects, as introduced in Chapter 6.

To summarize, the precision measurements of these four processes are essential for under-
standing the SM and exploring BSM theories in multiple aspects. Furthermore, all these
processes are also crucial in other analyses where they form important backgrounds. The
tt̄+jets processes can be found in numerous phase spaces of analyses at the LHC. Together
with the tt̄H(bb̄) and tt̄Z(bb̄) processes, these processes form important backgrounds in
analyses such as four top quark production in channels with up to two leptons [119].
These analyses are of interest as they can complementarily measure the top quark Yukawa
coupling. Four top quark measurements also serve as a probe for BSM physics, since
some models predict an extended Higgs sector leading to additional scalar particles with
Yukawa-like couplings to top quarks [120].

In previous analyses each of the four processes have been only treated independently as a
signal process while others have been treated as background. Therefore, as a new methodol-
ogy, instead of defining one process as a signal and performing a separate measurement, all
processes are treated as signals simultaneously. This allows for a homogeneous treatment
of all processes as well as a correct treatment of correlations. Additionally, all processes
are treated with equal importance. For example, the event classifier in Chapter 9 is not
tuned for any specific process in a way that would compromise the sensitivity to other

61



62 7 Introduction

Figure 7.2: Display of a simulated tt̄H(bb̄) event in the dilepton channel projected onto the
𝑥𝑧 (top) and 𝑦𝑥 (bottom) planes. Reconstructed tracks are visualized in yellow.
Energy depositions in the electromagnetic calorimeter (ECAL) are indicated in
green and in the subsequent hadronic calorimeter (HCAL) in blue. A muon is
represented as a red line. Clustered jets are illustrated in orange. Simulated
event visualized with [118].
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Figure 7.3: Display of a simulated tt̄H(bb̄) event in the dilepton channel. Reconstructed
tracks are visualized in yellow. Energy depositions in the ECAL are indicated
in green and in the subsequent HCAL in blue. A muon is represented as a
red line. Clustered jets are illustrated in orange. Simulated event visualized
with [118].
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processes. However, the ambition to measure all these processes at the same time leads to
numerous challenges.

The biggest challenge is the irreducible final state and the highly imbalanced production
cross sections of the processes in tt̄ + heavy flavor phase space. Figure 7.4 shows the cross
section of selected processes and indicates how the tt̄ cross sections exceeds the tt̄Z and
tt̄H cross sections by three orders of magnitude.

Considering the branching fractions of Z and H bosons decaying into bb̄, the cross section
for the tt̄bb̄ process is an order of magnitude higher than the cross sections times branching
fraction for tt̄H(bb̄) and tt̄Z(bb̄), which are approximately 𝜎tt̄H(bb̄) = 0.29 pb and 𝜎tt̄Z(bb̄) =
0.13 pb [122, 123]. Additionally, the tt̄bb̄ process is difficult to model due to the different
scales mentioned above. The relevant energy scale of pp → tt̄ is in the order of several
hundred GeV, whereas the energy scale of the additional b quark-antiquark pair is of
the order of 10 GeV. This results in two widely separated energy scales, without the
scale of the bb̄ being negligible. The tt̄bb̄ process, which is already substantially more
prevalent compared to tt̄H(bb̄) and tt̄Z(bb̄), additionally suffers from large uncertainties
depending on the modeling approach [96, 124]. The choice of the renormalization and
factorization scales leads to an uncertainty of up to 50 % on the cross section [125]. This
makes tt̄bb̄ the leading factor of sensitivity in previous measurements of tt̄H(bb̄) at the
CMS experiment [126]. As of the time of this thesis, there is no clear answer regarding the
best possible modeling approach of tt̄bb̄. The current state of the art is summarized in
Section 7.2.

Another challenge in distinguishing events in the tt̄ + heavy flavor phase space for a
simultaneous measurement is the difficulty in the identification of the b jets. In LO
calculations four jets are expected (cf. Figure 7.1), but the reconstruction of b jets is only
possible at certain levels of precision (cf. Section 4.4). This leads to the misidentification of
light (u, d, s, g) and c jets as b jets, as well as b jets that are not identified. Consequently,
it is possible, among other scenarios, for events with a tt̄ pair and an additional c quark-
antiquark pair to resemble the tt̄bb̄ process. Similarly, a tt̄Z(bb̄) event might not be
recognized as having a Z → bb̄ decay because the b jets were not identified as such.
Further difficulties for simultaneous measurement are numerous uncertainties, which are
discussed in Section 10.1.

7.2 Landscape of related measurements
In this section, the current theoretical and experimental understanding of the four processes
examined in this thesis is reviewed. The section addresses the state-of-the-art modeling of
the processes, the current experimental results, which are sometimes in contradiction with
each other, as well as unexplored domains. General introductions to top quark physics and
hadron collider physics are provided in Sections 2.3 and 2.4. The following sections build
upon these foundations.
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Figure 7.4: Cross sections measured by Compact Muon Solenoid (CMS) at various energies
for selected processes. Gray bands refer to the SM theory uncertainty prediction
while colored bands indicate the total uncertainty of the measurement. The
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7.2.1 tt̄bb̄ measurements

The ATLAS and CMS Collaborations have both published several measurements on tt̄bb̄
in proton-proton collisions at

√
𝑠 = 13 TeV. Three of these measurements cover data

recorded in 2016 at the LHC. The ATLAS experiment has published a measurement in
the semileptonic and dilepton channels with an integrated luminosity of 36.1 fb−1 [127].
An analog measurement by the CMS Collaboration is based on an integrated luminosity
of 35.9 fb−1 with one or two leptons in the final state [128]. Additionally, an analysis in
the fully hadronic channel has been published using the same data set [129]. In these
measurements, the tt̄bb̄ process is described by the inclusive simulation of tt̄ at Next-
to-leading order (NLO) accuracy in QCD + parton shower (PS) in Powheg Box and
Pythia in the five flavor scheme (5FS) (cf. Section 2.4). In contrast, the following analysis
employ a dedicated modeling of tt̄bb̄ simulated with Powheg Box and Pythia at NLO
accuracy in QCD in the four flavor scheme (4FS). Both collaborations have performed
two measurements covering the full Run-II data set. The ATLAS analysis includes the
semileptonic and dilepton channel; however, only the combination of exactly one electron
and one muon [130]. The tt̄bb̄ model uses 𝜅𝑅 = 0.5 and 𝜅𝐹 = 0.5 as pre-factors for
the renormalization and factorization scale in Equations 2.22 and 2.23. In this way, the
model applies identical scales to those used in a combined study for modeling of tt̄bb̄ as
an important background for tt̄H(bb̄) measurements [124]. This study, as well as the
inclusive and differential measurement of tt̄bb̄ in the semileptonic channel, shows that
the CMS Collaboration uses a different setting for the factorization scale [96, 131]. While
the pre-factor of the renormalization scale is also set to 𝜅𝑅 = 0.5, a lower pre-factor of
𝜅𝐹 = 0.25 is chosen for the factorization term. A dedicated analysis of scale choice in a
tt̄bb̄ measurement indicates that a suitable choice to describe the fiducial cross section is a
combination of 𝜅𝑅 = 0.5 and 𝜅𝐹 = 0.5 [132]. This is consistent with findings from studies
in the following section, in which the tt̄bb̄ process forms an important background. In
addition to the simulation of tt̄bb̄ with Powheg Box, Pythia and the renormalization
and factorization scales mentioned before, alternative simulations for tt̄bb̄ were also tested
in Refs. [96, 132]. All simulations are tested in different phase spaces, which partially
overlap, but investigate different aspects of tt̄bb̄ with increasing requirements for the
number of jets, number of b jets, and light flavor jets if applicable. However, none of
the tt̄bb̄ simulations simultaneously describe all measured distributions in the various
phase space regions equally well. In the most inclusive phase space region, the fiducial
cross section is best described by the previously mentioned Powheg Box and Pythia
tt̄bb̄ model, which is also used in this thesis to describe the tt̄bb̄ process. However, this
model predicts cross sections larger than the measured cross sections in the more exclusive
fiducial phase space regions. Additionally, the modeling demonstrates limited accuracy
in describing the distributions of jet multiplicity and b jet multiplicity, as illustrated
in Figure 7.5. In Chapter 10, the strategic approach for addressing and incorporating
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Figure 7.5: Predicted and observed normalized differential cross sections in the ≥ 5 jets,
≥ 3b jets fiducial phase space for the inclusive jet multiplicity (left) and the
b jet multiplicity (right). The cross section predictions are obtained at the
particle level from various simulation approaches. The ‘‘Powheg+OL+P8 tt̄bb̄
4FS’’ simulation (blue star) corresponds to the tt̄bb̄ model employed in this
thesis. Taken from Ref. [96].

this mismodeling into the analysis is detailed. The ‘‘Robust Independent Validation of
Experiment and Theory’’ (Rivet) framework allows modeling of physics processes in Monte
Carlo event simulation (MC) to be tested independently of the experiment. A Rivet routine
is available in Ref. [133] for the tt̄bb̄ measurement by the CMS Collaboration Ref. [96]
and allows future modeling approaches to be compared with the measured data along all
analyzed models.

7.2.2 tt̄H(bb̄) measurements

The ATLAS and CMS Collaborations have each published several analyses for tt̄H produc-
tion in the H→ bb̄ decay channel in proton-proton collisions at

√
𝑠 = 13 TeV. The CMS

experiment published a signal strength (cf. Section 6.1) of 0.72± 0.45 in an analysis with at
least one lepton and a signal strength of 0.9± 1.5 in a measurement in the fully hadronic
channel on data recorded in 2016 with an integrated luminosity of 35.9 fb−1 [134, 135].
The former measurement has an observed (expected) significance of 1.6 (2.2) standard
deviations. Due to the limited statistics compared to an analysis on full Run-II data, the
relative uncertainty is dominated by the statistical uncertainty. Beyond these measure-
ments, both experiments have published analyses of tt̄H(bb̄) on the full Run-II data set
and a combination of all channels. The ATLAS Collaboration has reported a search for
tt̄H(bb̄) with data corresponding to an integrated luminosity of 139 fb−1 and published
a measured signal strength of 0.35+0.36

−0.34. This measurement corresponds to an observed
(expected) significance of 1.0 (2.7) standard deviations [136]; however, the analysis is
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superseded by Ref. [137] as discussed below. The corresponding measurement of the CMS
experiment, performed on Run-II data with an integrated luminosity of 138 fb−1 and a
combination of all channels, revealed a signal strength of 0.33 ± 0.26 with an observed
(expected) significance of 1.3 (4.1) standard deviations [126]. With these results, the two
independent measurements match well in the ratio of the measured cross section to the
SM prediction and feature a compatible level of sensitivity. Although the two analyses
differ in details such as the parameter choice in event simulation for tt̄bb̄, analysis methods
like artificial neural networks, and the characterization of theoretical uncertainties, their
findings remain consistent and compatible. This also applies to other findings in the
analyses. The nuisance parameter pulls of both analyses suggest that the cross section of
tt̄bb̄ is higher than assumed in the modeling. Likewise, in both cases it is found that the
description of tt̄bb̄ is a decisive factor in the sensitivity of a tt̄H(bb̄) measurement. For
this reason, a joint effort is conducted in the LHC Higgs Working Group to synthesize
findings and derive a refined strategy for describing the theoretical uncertainties in tt̄H(bb̄)
measurements across the two experiments [124]. A Rivet routine is also available for this
study [138].

However, in a re-analysis of the same data set published two years later, the ATLAS
Collaboration reported a signal strength of 0.81+0.22

−0.19 corresponding to an observed (expected)
significance of 4.6 (5.4) standard deviations [137]. The measured tt̄H cross section is
considerably closer to the expected cross section in the SM and larger compared to the
previous full Run-II data analyses. Also, this measurement demonstrates an increased
observed significance of the tt̄H signal hypothesis compared to a SM background-only
scenario. All measured signal strengths, including the signal strengths in the dilepton
channels for a better comparison with the results from this thesis, are summarized in
Table 7.1. The result can be attributed to a number of factors, albeit the individual
impact of each change compared to the initial analysis on the overall result is not evident
and the main driver cannot be explicitly discerned. The changes include improved b
jet identification and looser selection criteria, which increase the signal acceptance by a
factor of three. Furthermore, the classification in control regions is improved with an
advanced neural network using transformer architectures. A new feature of the analysis
are data-driven modeling corrections for tt̄+≥1c and tt̄LF. Additionally, there is a new
dedicated event simulation for tt̄+≥1b processes using updated scale settings and an
extended uncertainty scheme. As a result, the modeling of tt̄ in association with additional
b jets is no longer the leading driver of the total systematic uncertainty, which is a
change compared to analyses before. Instead, the modeling of the signal now dominates
the uncertainty of the measurement. The estimated probability that the result of the
re-analysis is compatible with the previous result is 21% [137]. This is mainly based on a
correlation study of both analyses, which determined a statistical correlation of 19% using
a bootstrapping method [137].
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Table 7.1: Results of tt̄H(bb̄) measurements by ATLAS and CMS in various publications.
The signal strength of all channels is reported as 𝜇tt̄H, as well as the signal
strength for the dilepton channel only 𝜇tt̄H, DL, if applicable. The last two
columns quote the expected and observed significance in standard deviations,
if reported in the paper. The abbreviations SL, DL, and FH refer to the
semileptonic, dileptonic, and fully hadronic channel, respectively.

Analysis 𝜇tt̄H 𝜇tt̄H, DL 𝜎exp. 𝜎obs.

CMS 36 fb−1, SL/DL [134] 0.72± 0.45 −0.24+1.21
−1.12 2.2 1.6

CMS 36 fb−1, FH [135] 0.9± 1.5 N/A N/A N/A
ATLAS 139 fb−1 [136] 0.35+0.36

−0.34 0.60+0.69
−0.65 2.7 1.0

ATLAS 139 fb−1, re-analysis [137] 0.81+0.22
−0.19 1.03+0.38

−0.34 5.4 4.6
CMS 138 fb−1 [126] 0.33± 0.26 −0.23+0.42

−0.41 4.1 1.3

The three full Run-II data measurements of tt̄H(bb̄) by ATLAS and CMS apply different
pre-factors 𝜅𝑅,𝐹 for the renormalization and factorization scales of their tt̄bb̄ model, which
is simulated with Powheg Box and Pythia with tt̄bb̄ at matrix element (ME) level in
both cases. While the first ATLAS measurement applied 𝜅𝑅 = 1 and 𝜅𝐹 = 0.5 [136], in the
re-analysis the tt̄bb̄ process was modeled with a reduced renormalization scale pre-factor
of 𝜅𝑅 = 0.5 while fixing 𝜅𝐹 to 𝜅𝐹 = 0.5 [137]. The corresponding measurement by the
CMS Collaboration used 𝜅𝑅 = 0.5 and 𝜅𝐹 = 0.25 [126]. In this analysis, the observed tt̄B
normalization is scaled by a factor of 1.19 and thus favors higher cross sections for these
processes. Yet, the tt̄bb̄ cross section is scaled to the cross section prediction of the tt̄bb̄
process described with tt̄ at ME level, which is shown to predict a cross section of 10% to
24% lower than the dedicated measurements in Refs. [96, 132]. Consequently, although
the same model is used for tt̄bb̄ in the tt̄H(bb̄) analysis by the CMS Collaboration in [126]
as in this thesis, it is expected that the tt̄B normalization differs from the measured signal
strength parameter for these processes in this analysis.

An examination of the scale choice variation of 𝜇𝑅 and 𝜇𝐹 in a dedicated tt̄bb̄ analysis
demonstrates the behavior of tt̄bb̄ models in the tt̄H signal phase space and provides
additional insights on the impact of tt̄bb̄ in tt̄H(bb̄) measurements [132]. Given the
behavior of varied tt̄bb̄ models based on distinct scale combinations in Ref. [132], it cannot
be concluded that the increased tt̄H signal strength in the re-analysis by ATLAS (Ref. [137])
is solely based on the improved model and therewith the updated choice of the two scales.
However, the choice of the revised scale of 𝜅𝑅 = 0.5 and 𝜅𝐹 = 0.5 in Ref. [137], which
is suggested in Section 7.2.1 based on the findings in Ref. [132], is consistent with the
determined normalization factor for tt̄bb̄. In contrast to the previous studies, the tt̄bb̄
normalization factor with this scale choice is now closer to one and thus the predicted cross
section closer to the measured cross section.
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The sensitivity in a tt̄H(bb̄) analysis is usually driven by the semileptonic channel, where
the systematic uncertainties dominate the measurement. In contrast, the sensitivity in the
dilepton channel is limited due to the reduced event yield and therefore the size of the data
set. The measurements of the tt̄H signal strength parameters exclusively in the dilepton
channel show larger variance. While the ATLAS experiment determines a signal strength
of 0.60+0.69

−0.65 in the initial analysis, the re-analysis revealed a measured signal strength
of 1.03+0.38

−0.34 agreeing well with the SM expectation [136, 137]. Given the uncertainties,
both signal strength measurements are mutually compatible. At the CMS experiment, a
significantly lower value was found in the dilepton channel. A signal strength estimate of
−0.23+0.42

−0.41 is technically possible since the fit is intentionally designed to allow negative
values based on the structure of the model’s likelihood function. However, statistical
methods can be applied to transform these estimates into physically meaningful ranges.

7.2.3 tt̄Z(bb̄) measurements

A measurement of the associated production of a Z boson with a top quark-antiquark pair
where the Z boson subsequently decays to a b quark-antiquark pair (tt̄Z(bb̄)) has not been
performed in the dilepton channel yet. In a thesis analyzing data recorded in 2018, a
signal strength of −0.77+1.19

−1.26 was measured in the semileptonic tt̄ channel for tt̄Z(bb̄) [139].
Therefore, this is the first cross section measurement of tt̄Z in the dilepton phase space with
resolved hadronic Z boson decays. Analyses with the closest thematic proximity usually
deal with leptonic decays of the Z boson, which allow for very clean reconstruction of the
Z boson [140]. However, these processes are outside the targeted phase space of this thesis
and are explicitly removed, as discussed in Chapter 8. In addition, some studies are carried
out in the boosted regime of the Z boson [141]. In this case, the event signature is different,
as the Z → qq̄ decay products are merged together forming a single but larger jet. The
resulting jet in this case is clustered with a distance parameter of 0.8 (cf. Section 4.3). This
applies to cases where the Z boson has transverse momenta of more than 200 GeV, which
is explicitly required in these analyses [141]. The choice of this phase space is beneficial for
the examination of effective field theories because deviations from the SM are expected at
large 𝑝T values of the Z boson.

7.2.4 tt̄cc̄ measurements

Compared to the tt̄bb̄ process, the production of a top quark-antiquark pair in association
with additional charm jets (tt̄cc̄) has been explored to a lesser extent both experimentally
and theoretically. The first measurement of the inclusive tt̄cc̄ cross section was performed
by the CMS Collaboration on recorded data in 2017 in proton-proton collisions at a center-
of-mass energy at

√
𝑠 = 13 TeV, corresponding to an integrated luminosity of 41.5 fb−1 [142].

The analysis focuses exclusively on the dilepton tt̄ channel and the tt̄+jets phase space
is modeled with an inclusive description of tt̄ with up to two additional jets at NLO in
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QCD, merged using the FxFx scheme [143]. Thus, no dedicated simulation is employed
for tt̄bb̄ and tt̄cc̄. One event simulation of tt̄+jets is conducted with Powheg Box and
Pythia, the other one with MadGraph5_aMC@NLO. The heavy flavor jet tagging
algorithm employed is DeepCSV, which is the predecessor of the DeepJet tagger used
in this thesis and features a lower b jet identification efficiency [91]. Both of the tested
simulation approaches in Ref. [142] are consistent with observed data at the level of one to
two standard deviations, but both under-predict the measured cross section for tt̄cc̄.

The ATLAS Collaboration has performed a measurement of the tt̄cc̄ process on recorded
data between 2015 and 2018 at

√
𝑠 = 13 TeV, corresponding to an integrated luminosity of

140 fb−1 [144]. The measurement considers events in the semileptonic and dilepton channel
and applies a dedicated flavor tagging algorithm to distinguish c and b jets. As in the
previously described analyses by ATLAS, a tt̄+jets simulation with Powheg Box and
Pythia as well as a dedicated tt̄bb̄ simulation with Powheg Box and Pythia are also
used in this tt̄cc̄ analysis. The scales employed for the renormalization and factorization
scale are 𝜅𝑅 = 0.5 and 𝜅𝐹 = 0.5 and therefore identical to the scales used in the tt̄H(bb̄)
re-analysis by the ATLAS Collaboration discussed before [137]. Further alternative models
are tested additionally. In this measurement, all tt̄cc̄ predictions at NLO accuracy in
QCD are consistent with the observed values and the Powheg Box and Pythia models
agree with the measurement within 0.5 to 1.1 standard deviations. However, all models
under-predict the measured cross sections. The alternative models tested under-predict the
measured values by up to 40%. Limiting factors driving the uncertainties are the modeling
of all tt̄ processes as well as the heavy flavor jet tagging algorithm calibration and data
statistics [144].

7.3 Analysis strategy and goal
The objective of this analysis is the simultaneous measurement of processes in the tt̄X
phase space in the dilepton channel where X stands for bb̄, cc̄, H→ bb̄, and Z→ bb̄. Due
to the equivalent final state of these processes a separation based on cuts is not feasible.
Even though measurements focusing on single processes, as described above, already exist
for some cases, this is the first time that a multi-dimensional measurement of all processes
is being attempted simultaneously. Also, previous analyses which target the measurement
of a single process use refined machine learning methods in order to cope efficiently with the
event classification. In this thesis, state-of-the-art Artificial Intelligence (AI) methods are
used to achieve powerful jet and event classifications. For this purpose, graph transformer
neural networks are employed. This allows the conversion of simulated events and data
with an intrinsic graph structure into the equivalent of a mathematical graph, but at the
same time the use of attention mechanisms that are successfully applied in natural language
processing. In contrast to other analyses such as [126], in which the phase space was
subdivided and multiple neural networks were trained, in this analysis strategy the graph
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transformer models cover the entire phase space. This means no cuts are applied, e.g. on
the number of b-tagged jets to create signal and background enriched phase space regions
in which different graph transformer models are trained. Moreover, compared to using
deep neural networks, the implementation of graph neural network architectures provides
advantages in performance, convergence speed, and generalizability, while needing fewer
trainable parameters [111]. Beyond this, properties such as permutation invariance and the
independence of the model architecture in terms of the number of jets in an event constitute
an ideal setting. Details of graph neural network (GNN) architectures are discussed with a
theoretical focus in Chapter 5, while the technical implementation, the network modeling,
as well as the resulting performance are described in Chapter 9. Using maximum likelihood
fits, the signal strength parameters, their uncertainties, correlations, etc. are determined
relying on the preceding GNN-based event classification of the processes. This allows
conclusions to be drawn about the agreement between expectations from SM theory given
the data from proton-proton collisions. For the large statistics tt̄bb̄ and tt̄cc̄ production
channels, this is an important test of the current predictions and the SM. In the case of
tt̄H(bb̄) production, there may be indications as to why signal strengths deviating from
one were found in the past. For tt̄Z(bb̄), new insights are gained for the first time.
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In this chapter, the object and event selection is described that forms the basis of the
analysis. The simulated events, which are considered in the phase space of the analysis, are
discussed in Section 8.1. Section 8.2 covers the definition of all analysis objects in an event.
Based on this, the event selection is defined in Section 8.3. In Section 8.4, corrections
are discussed which adjust emerging discrepancies between data and simulation. Finally,
Section 8.5 presents the resulting distributions, validating the agreement between data
and simulation.

8.1 Event simulation
The event simulation introduced in Section 4.6 focusing on technical aspects, serves three
central purposes in this thesis. The first purpose is to estimate signal and background
contributions across all measurement regions using simulated events for each process.
Second, it ensures that a solid physics model is built before a measurement is performed.
This allows for a neutral strategy and unbiased measurements after successfully completing
a series of statistical tests. As a result, this procedure prevents wrong hypotheses from being
favored due to mismodeling. The third purpose is to provide labeled inputs for training
classifiers, which would not be feasible without simulated events in this thesis. All samples
of simulated events considered in the analysis phase space are summarized in the following.
A breakdown is given in Table 8.1 along with cross sections 𝜎 for the normalizations of
the samples. In this thesis, the term ‘‘sample’’ always refers to a simulated data set of a
specific process.

tt̄+jets: The production of a top quark-antiquark pair in proton-proton collisions is
simulated with the Powheg Box version 2 matrix element (ME) generator at Next-to-
leading order (NLO) precision in quantum chromodynamics (QCD) [98, 99]. In contrast
to a simulation at leading order (LO), this implies up to one real emission of a gluon or
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quark that can occur in addition to the tt̄ pair. For the simulation of the parton shower
(PS) as well as the hadronization, the ME generator is interfaced with Pythia version
8.240 [100]. An additional b quark-antiquark pair in this simulation therefore always arises
from the splitting of a gluon (g→ bb̄) simulated in the PS. The b quarks are assumed to
be massless in this event simulation approach. Hence, for the measurement of the tt̄bb̄
process as shown in Figure 7.1, a dedicated simulation is used which already defines tt̄bb̄
at ME level as explained below. The protons’ inner structure is described with five active
flavors, which is referred to as five flavor scheme (5FS). The parton distribution function
(PDF) set chosen is 5FS NNPDF3.1 at Next-to-next-to-leading order (NNLO) in QCD [60].
A dynamic renormalization and factorization scale is applied similar to Equations 2.22
and 2.23. However, since only the top quark-antiquark scale is relevant in this simulation
the scales are reduced to

𝜇𝑅,𝐹 =
√︃
𝑚T,t +𝑚T,t . (8.1)

In Powheg Box, a damping function is used to regulate the contribution of high-𝑝T

emissions in the ME calculation, preventing excessive weights and ensuring a consistent
description with the PS across energy scales. The corresponding damping parameter ℎdamp

is set to 1.379 times the top quark mass. The damping parameter value has been determined
in a tuning procedure by the Compact Muon Solenoid (CMS) Collaboration [145]. In
comparison, the ATLAS Collaboration chooses an ℎdamp parameter value of 1.5 times the
top quark mass for their tt̄ simulations [124]. The top quark mass is set to 𝑚t = 172.5 GeV
for all simulated samples. In Pythia, a series of parameters must be specified to describe
the underlying event structure. The chosen set of parameters is known as CP5 tune [145].
Each tt̄ decay channel is simulated separately, resulting in three different samples for the
dilepton, semileptonic, and fully hadronic tt̄+jets simulation.

tt̄bb̄: The tt̄bb̄ signal process, which is fundamental in this thesis, is not sufficiently de-
scribed in the previous inclusive tt̄+jets simulation. Therefore, a dedicated tt̄bb̄ calculation
is performed at ME level. This ME calculation is implemented in Powheg Box Res and
OpenLoops 2 [146, 147]. As in the tt̄+jets simulation described above, the PS simulation is
accomplished with Pythia8. However, in contrast to the tt̄+jets simulation, the b quarks
are no longer massless. Instead, the b quark mass is set to 𝑚b = 4.75 GeV and a different
flavor scheme is used. Since the initial state of the b quark is now no longer obtained
from the PDF but the calculation is performed at ME level, only four active flavors are
required in the proton PDF. The flavor scheme is referred to as four flavor scheme (4FS)
and the PDF set chosen is 4FS NNPDF3.1 NNLO [60]. The ℎdamp parameter and the
tune are fixed to the same values as in the tt̄+jets simulation. The renormalization and
factorization scales are chosen as dynamical scales as defined in Equations 2.22 and 2.23.
Hence, the renormalization and factorization scales used reflect the relevant mass and 𝑝T
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scales of all expected final state quarks calculated at ME. In comparison to the previous
tt̄+jets simulation, the relevant scales of the b quarks also appear in the tt̄bb̄ simulation
for 𝜇𝑅,𝐹 . As the b quarks are not taken into account in the ME calculation for the tt̄+jets
simulation, their scale was not considered in the renormalization and factorization scales. A
consequence of adding the b quark scale is that the associated scale uncertainty is expected
to increase [125]. This is also shown in a modeling study of tt̄bb̄ processes at ATLAS and
CMS in Ref. [124]. The resulting uncertainties are dominated by the 𝜇𝑅 scale compared to
the 𝜇𝐹 scale, as the former has a strong 𝛼4

𝑆 (𝜇𝑅) dependency in the ME calculations. The
pre-factors of the renormalization and factorization scales in Equations 2.22 and 2.23 are
set to 𝜅𝑅 = 0.5 and 𝜅𝐹 = 0.25, respectively.

Combination of tt̄+jets and tt̄bb̄: Since the tt̄+jets simulation does not adequately
describe the tt̄bb̄ sub-processes, whereas the dedicated tt̄bb̄ simulation does not cover the
entire phase space of tt̄+jets events, a combination is employed to unify the strengths of
the two simulation approaches while preserving a complete description of the entire phase
space. A ghost-hadron matching procedure is used to determine the relevant simulated
events that need to be extracted from the samples, which is explained in Section 4.6.1.
Here, jets play a central role in the selection process which are present in addition to the
tt̄ system and referred to as additional jets in this thesis. If an event contains at least one
additional particle-level jet with a ghost-matched B hadron, this event is taken from the
dedicated tt̄bb̄ simulation in the 4FS scheme. Analogously, events with this properties are
cut out from the tt̄+jets 5FS event simulation. Events bearing this signature are referred
to as tt̄B. Thus, the majority of the inclusive analysis phase space defined in Section 8.3 is
described by the tt̄+jets simulation. Additionally, two further processes are defined with a
similar logic. If there is at least one additional particle-level jet with a ghost-matched C
hadron but no B hadron, it is referred to as tt̄C. All remaining events that are neither tt̄B
or tt̄C are referred to as tt̄LF. An exemplary LO Feynman diagram of the tt̄B process is
shown in Figure 7.1.

tt̄H, tt̄Z, and tt̄W: The associated production of a top quark-antiquark pair with a Higgs
boson is simulated with the Powheg Box version 2 ME generator at NLO precision in
QCD. The Higgs boson mass is set to 𝑚H = 125 GeV. One dedicated sample considers only
the H→ bb̄ decays, while the other event simulation targets the remaining decay channels
(H→ nonbb̄). Differently from the tt̄H and tt̄+jets simulations, the tt̄Z process is simulated
with MadGraph5_aMC@NLO version 2.6.5 at NLO in QCD [148]. The decay of the Z
boson is modeled using the MadSpin package to preserve the spin correlation of the decay
products [149]. In the tt̄Z event simulation, a distinction is made between Z boson decay
channels. One sample solely addresses the leptonic Z boson decays (𝑍 → ℓℓ, 𝜈𝜈), while
the other covers the hadronic part of the decay (Z→ qq̄). Two exemplary LO Feynman
diagrams of the tt̄H and tt̄Z processes are shown in Figure 7.1. Similar to the signal
process simulations of tt̄H and tt̄Z, the background contributions of the tt̄ production in
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association with a W boson (tt̄W) are simulated with MadGraph5_aMC@NLO version
2.6.5 at NLO in QCD and MadSpin. While one sample is dedicated to the W→ ℓ𝜈 decay,
the other handles the hadronic W boson decay. In Figure 8.1, an exemplary Feynman
diagram at LO accuracy in QCD is shown.

single top: The single top quark production forms a background in this analysis and
is simulated in varying ways depending on the top quark production channel. In the
s-channel it is simulated with the MadGraph5_aMC@NLO ME generator at NLO
accuracy in QCD. In the t-channel as well as in the associated production with a W boson,
it is simulated with the Powheg Box toolbox at NLO accuracy in QCD. An exemplary
Feynman diagram in the associated production with a W boson is shown in Figure 8.1.

VV and V+jets (Vx): Additional backgrounds stem from the product of one or two
vector bosons (V = W,Z) with leptonic decays in association with jets. Diboson production
includes WW, WZ, and ZZ production, abbreviated as VV, and is simulated with Pythia at
LO accuracy. A separate simulation is performed for each of the three boson combinations.
The WW sample is normalized to the NNLO QCD prediction, while WZ and ZZ are
normalized to the NLO QCD prediction. Processes of vector boson production in association
with jets, i.e. W+jets and Z+jets, are simulated with MadGraph5_aMC@NLO at LO
accuracy in QCD and are abbreviated as V+jets. The simulation of V+jets production
includes processes with up to four jets at ME level and the samples are binned in HT and
𝑚ℓℓ where applicable. The inclusive cross sections are normalized to NNLO. As long as no
distinction is needed, VV and V+jets are summarized as Vx in this thesis. Exemplary LO
Feynman diagrams are shown together with the other backgrounds in Figure 8.1.

In addition to the samples discussed, the simulation of multi-jet events from QCD processes
is examined. However, tests on the contribution of these QCD events in the considered
phase space revealed a fraction of QCD events compared to all other simulated events of
less than 0.5% . Therefore, QCD multi-jet production is negligible in this analysis with
respect to all other processes and their systematic uncertainties discussed in Section 10.1.
The vanishing contribution is particularly driven by the selection of exactly two leptons
discussed in Section 8.3. Due to the negligible contribution, QCD events are not considered
further in this analysis and the event simulation is not discussed in similar detail compared
to simulations actually used in this analysis.

All simulated processes are summarized in Table 8.1 associated with the cross sections for
normalization.

8.2 Object cleaning, definition and selection

8.2.1 Pre-selection: Trigger requirements

In order to narrow down the total amount of recorded data relevant for the analysis phase
space, dedicated high-level trigger (HLT) paths are queried as described in Section 3.2.1.6.
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Table 8.1: Simulated processes considered in the analysis phase space. Sub-categories are
defined based on the simulation approach for each process. Cross sections are
chosen based on theory calculations or directly from the simulation.

Process Sub-category 𝜎 [pb] Source

tt̄+jets
dilepton channel 88.5 [50, 150]
semileptonic channel 366.3 [50, 150]
fully hadronic channel 378.9 [50, 150]

tt̄bb̄
dilepton channel 4.6 simulation
semileptonic channel 19.2 simulation
fully hadronic channel 19.9 simulation

tt̄H H→ bb̄ 0.2953 [122]
H→ nonbb̄ 0.2118 [122]

tt̄Z Z→ ℓℓ and Z→ 𝜈𝜈 0.2529 [123]
Z→ qq̄ 0.5297 [123]

tt̄W W→ ℓ𝜈 0.2043 [123]
W→ qq′ 0.4062 [123]

single top

s-channel, W→ ℓ𝜈 3.30 [151]
t-channel, t 80.95 [152]
t-channel, t 136.02 [152]
tW-channel, t 19.56 [151]
tW-channel, t 19.56 [151]

VV
WW 118.7 [153]
WZ 65.5443 [154]
ZZ 15.8274 [155]

W+jets
with

W→ ℓ𝜈

70 GeV ≤ HT < 100 GeV 1443.7 [156]
100 GeV ≤ HT < 200 GeV 1434.5 [156]
200 GeV ≤ HT < 400 GeV 383.19 [156]
400 GeV ≤ HT < 600 GeV 51.68 [156]
600 GeV ≤ HT < 800 GeV 12.53 [156]
800 GeV ≤ HT < 1200 GeV 5.62 [156]
1200 GeV ≤ HT < 2500 GeV 1.32 [156]
2500 GeV ≤ HT 0.009 [156]

Z+jets
with

Z→ ℓℓ

10 GeV ≤ 𝑚ℓℓ < 50 GeV 18 610.0 [156]
50 GeV ≤ 𝑚ℓℓ and 70 GeV ≤ HT < 100 GeV 211.21 [156]
50 GeV ≤ 𝑚ℓℓ and 100 GeV ≤ HT < 200 GeV 183.2 [156]
50 GeV ≤ 𝑚ℓℓ and 200 GeV ≤ HT < 400 GeV 55.29 [156]
50 GeV ≤ 𝑚ℓℓ and 400 GeV ≤ HT < 600 GeV 7.846 [156]
50 GeV ≤ 𝑚ℓℓ and 600 GeV ≤ HT < 800 GeV 1.933 [156]
50 GeV ≤ 𝑚ℓℓ and 800 GeV ≤ HT < 1200 GeV 0.831 [156]
50 GeV ≤ 𝑚ℓℓ and 1200 GeV ≤ HT < 2500 GeV 0.183 [156]
50 GeV ≤ 𝑚ℓℓ and 2500 GeV ≤ HT 0.004 [156]
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Figure 8.1: Examples of LO Feynman diagrams for the background processes in the dilepton
channel.

All HLT paths chosen in this thesis are not pre-scaled, which means that all events passing
the trigger requirement are recorded, in contrast to only selecting a subset of events. In
addition, HLT paths are chosen to have the loosest object selection requirements. This
approach allows to achieve a maximum data utilization. Additionally, not only dedicated
dilepton HLT paths are queried, but single lepton HLT paths are considered as well. With
this procedure a fraction of events can additionally be considered in this analysis even
though the dilepton HLT paths have not accepted those events. This can be attributed to
events that meet the subsequent event selection, however one of the two leptons has not
been captured by the dilepton HLT paths. The amount of events that can be recovered
through this procedure and used additionally for the analysis is approximately 7.8%. The
list of all triggers used in the analysis is summarized in Table 8.2. The trigger paths
are linked with logical disjunctions (ORs). Hence, an event in a given lepton channel
satisfies at least one of the triggers. The lepton channel refers to the possible combinations
of electrons and muons as discussed in Section 2.3. The HLT path names indicate the
conditions placed on the event. Among these requirements are the calorimeter, track, and
isolation conditions of the lepton according to the Particle Flow algorithm, as discussed
in Section 4.2. The number following the lepton name tag (Ele and Mu for electrons and
muons respectively) indicates the 𝑝T threshold in GeV. This is followed by further encoded
conditions, which are explained in Table 8.2. Leptons in this analysis refer to electrons or
muons, as defined in the following.
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Table 8.2: HLT paths for the e+e−, e±µ∓, and µ+µ− dilepton decay channels used in the
analysis. The value following the lepton name tag (Ele and Mu for electrons
and muons, respectively) indicates the 𝑝T threshold in GeV. CaloIdL and
TrackIdL refer to the loose working point (WP) of the lepton identification in
the calorimeter and tracker, respectively. IsoVL denotes the very loose WP of
the lepton isolation. The abbreviation GSF refers to the Gaussian sum filter,
a dedicated track fitting algorithm for electrons [157]. TrkIsoVVL signifies a
very-very loose isolation of the muon in the tracker. IsoMu implies an isolated
muon. The condition Mass3p8 pertains to a condition to reject muon pairs from
J/Ψ decays. DZ indicates the application of a longitudinal impact parameter 𝑑𝑧

filter to ensure that the leptons originate from the primary vertex. The trigger
paths are linked with logical disjunctions (ORs).

Channel HLT path

e+e−
HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ OR

HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL OR
HLT_Ele32_WPTight_Gsf

e±µ∓

HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL OR
HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ OR
HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ OR
HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ OR

HLT_Ele32_WPTight_Gsf OR
HLT_IsoMu24

µ+µ− HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8 OR
HLT_IsoMu24
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8.2.2 Electron selection

Electrons are required to have transverse momenta of ≥ 25 GeV (≥ 20 GeV) for the leading
(subleading) electron and a pseudorapidity range of |𝜂| < 2.4. The pseudorapidity range
is indicated in Figure 3.3. This decision is driven by the limited coverage of the silicon
tracker. Although the coverage of the inner tracker and calorimeter reaches up to |𝜂| < 2.5
with a suitable efficiency, it is set to a slightly lower threshold in order to keep the angular
definition identical to muons that are limited to |𝜂| < 2.4, as explained in the following
section. The effects of bremsstrahlung are taken into account by clustering all photons
within a cone of Δ𝑅 ≤ 0.1 to the electron. This method is also known as ‘‘dressing’’.
The calorimeter supercluster (SC) region of 1.4442 < |𝜂SC| < 1.566 is excluded since this
region corresponds to the transition section between the barrel and endcap regions of
the electromagnetic calorimeter (ECAL). Additional cuts are performed on the impact
parameters (cf. Section 4.1), dependent on the calorimeter SC region

|𝑑𝑥𝑦| < 0.05 AND |𝑑𝑧| < 0.1 , if |𝜂SC| ≤ 1.479
|𝑑𝑥𝑦| < 0.1 AND |𝑑𝑧| < 0.2 , if |𝜂SC| > 1.479 ,

(8.2)

where |𝑑𝑥𝑦| is the impact parameter in the transverse direction and |𝑑𝑧| in the longitu-
dinal direction. This ensures an upper distance boundary from the interaction vertex.
Additionally, observables are defined that require particular conditions in the detector
elements to ensure desired properties of the electrons, as described in the following. As
recommended by the CMS Collaboration, the additional requirements are set for genuine
electrons which correspond to the ‘‘tight’’ WP in Ref. [158]. This setting corresponds to an
efficiency of approximately 70% for genuine electrons [158]. Isolation observables can be
constructed by summing the transverse momenta of charged hadrons, photons, and neutral
hadrons inside an isolation cone with a distance of Δ𝑅 < 0.3 with respect to the electron
direction. This is particularly helpful since electrons with higher momenta correspond to
higher energy spreads along their direction in the sub-detectors. Therefore, thresholds
for the required electron isolation are parameterized as a function of the electron 𝑝T. To
mitigate effects from pileup, the pileup contributions are subtracted from the isolation
requirements through an effective term 𝜌𝐴eff, where 𝜌 is the median of the 𝐸T density per
unit area in the event and 𝐴eff denotes the effective area of the electron’s isolation region.
The full relative isolation variable 𝐼e reads as

𝐼e = 𝑝−1
T,e ·

⎛⎝ ∑︁
Δ𝑅<0.3

𝑝T,ch + max

⎧⎨⎩0,
∑︁

Δ𝑅<0.3
𝑝T,n +

∑︁
Δ𝑅<0.3

𝑝T,𝛾 − 𝜌𝐴eff

⎫⎬⎭
⎞⎠ , (8.3)
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Table 8.3: Tracker and SC related electron identification requirements used in this analysis.
The observable 𝜎𝑖𝜂𝑖𝜂 refers to the log-weighted distribution of energies in the
supercluster as defined in Ref. [158]. The variables 𝜂tr and 𝜑tr refer to the
extrapolated innermost track position and 𝑝tr refers to the track momentum at
the closest point to the vertex. Prompt electrons arising from the beamline are
separated from secondary background electrons through the number of expected
hits in the innermost pixel detector layers. A conversion veto ensures that no
tracks originating from charged particles with a hit in the innermost layer are
unmatched to a reconstructed conversion vertex [158].

Observable Barrel (|𝜂SC| ≤ 1.479) Endcaps (|𝜂SC| > 1.479)

Relative isolation 𝐼e (Eq. 8.3) < 0.0287 + 0.506𝑝T < 0.0445 + 0.963/𝑝T

𝜎𝑖𝜂𝑖𝜂 < 0.010 < 0.035
|𝜂SC − 𝜂tr| < 0.0026 < 0.0050
|𝜑SC − 𝜑tr| < 0.022 < 0.024
𝐸Hadr/𝐸EM < 0.026 + 1.15

𝐸SC
+ 0.032𝜌

𝐸SC
< 0.019 + 2.06

𝐸SC
+ 0.183𝜌

𝐸SC

|𝐸−1
SC − 𝑝

−1
tr | < 0.16 < 0.0197

No. of missing inner hits ≤ 1 ≤ 2
Pass conversion-safe veto True True

where the indices of 𝑝T denote the transverse momenta of charged hadrons (ch), neutral
hadrons (n), and photons (𝛾) in a clustered cone around the electron with a distance
parameter of Δ𝑅 = 0.3. Additional requirements are summarized in Table 8.3.

8.2.3 Muon selection

Identical to electrons, muons are required to have transverse momenta of ≥ 25 GeV
(≥ 20 GeV) for the leading (subleading) muon and a pseudorapidity range of |𝜂| < 2.4. The
dressing method is equivalently used for muons as for electrons, even though it plays a
minor role for muons. Although the inner tracker is capable of reconstructing momenta
of charged particles up to |𝜂| < 2.5, the muon system outside the solenoid is limited to
|𝜂| < 2.4. Additional cuts are applied on the impact parameters with a requirement of
|𝑑𝑥𝑦| < 0.2 and |𝑑𝑧| < 0.5. The ‘‘tight’’ WP criteria are applied to the muon candidates in
order to separate prompt muons from background muons as recommended by the CMS
Collaboration [159]. Such background muons can arise from meson decays or even from
cosmic rays produced outside the detector. With the help of additional criteria summarized
in Table 8.4, these unwanted background muons are suppressed as they usually originate
from decays in flight and from hadronic punch-through. Similar to the procedure with
electrons, for muons these criteria are combinations of characteristics in the tracker as well
as the dedicated muon chambers. The relative isolation variable for muons is defined as
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Table 8.4: Tracker and muon chambers related muon identification requirements used
in this analysis. The chosen cuts correspond to the ‘‘tight’’ WP of the CMS
recommendation [159].

Requirement Cut

Relative isolation 𝐼µ (Eq. 8.4) < 0.15
Tracker and global muon True
No. of matching segments in muon stations > 1
𝜒2/ndf of global muon track fit < 10
No. of muon chamber hits ≥ 1
No. of pixel hits ≥ 1
No. of tracker layer hits ≥ 6

𝐼µ = 𝑝−1
T,µ ·

⎛⎝ ∑︁
Δ𝑅<0.4

𝑝T,ch + max

⎧⎨⎩0,
∑︁

Δ𝑅<0.4
𝑝T,n +

∑︁
Δ𝑅<0.4

𝑝T,𝛾 −
1
2

∑︁
Δ𝑅<0.4

𝑝T,PU

⎫⎬⎭
⎞⎠ (8.4)

and structured in an analogous way to 𝐼e for electrons (cf. Equation 8.3). In contrast to 𝐼e,
the distance parameter for the anti-𝑘T clustering is increased to Δ𝑅 = 0.4 for 𝐼µ. Pileup
(PU) contributions are subtracted in a similar way by summing the transverse momenta
𝑝T,PU of all pileup interactions. With the application of these methods for muons, three
of the four muons in the exemplary tt̄H(bb̄) event simulation in Figures 7.2 and 7.3 are
rejected as these most likely do not stem from the beamline.

8.2.4 Jet selection

Jets, as introduced in Section 4.3, must pass a series of quality requirements in a similar
way to the leptons. All jets are required to have transverse momenta of 𝑝T > 30 GeV
and a pseudorapidity of |𝜂| < 2.4. Consequently, all considered objects are in the same
pseudorapidity range. Jets are reconstructed from Particle Flow (PF) candidates using
the anti-𝑘T clustering algorithm discussed in Section 4.2 with a distance parameter of
𝑅 = 0.4. However, all jet candidates within a distance of 𝑅 ≤ 0.4 of any electron or muon
object according to the previous definitions are excluded from the jet collection. Jets with
𝑝T ≤ 50 GeV need to fulfill an additional loose pileup rejection criterion constructed with a
boosted decision tree to reject jets originating from pileup interactions. Additional criteria
for jets are summarized in Table 8.5 which comply with the ‘‘tight’’ WP recommendations
by the CMS Collaboration [160, 161].

In principle, a lower 𝑝T threshold value would also be possible and thereby increase the
data yield, however, this is waived in this thesis. As the relevant and interesting jets in this
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Table 8.5: Jet identification requirements used in this analysis. The chosen cuts correspond
to the ‘‘tight ID’’ for jets of the CMS recommendation [160, 161].

Requirement Cut

Charged hadron energy fraction > 0
No. of charged hadrons ≥ 1
Charged EM energy fraction < 0.99
Neutral hadron energy fraction < 0.9
Neutral EM energy fraction < 0.9
No. of constituents ≥ 2
Muon energy fraction < 0.8

analysis are primarily b jets, the required threshold is raised to 30 GeV since the efficiency
of the jet flavor tagging algorithm used is significantly reduced for jets with 𝑝T between
20 and 30 GeV. This behavior can be observed in Figure 4.3. In order to determine the
jet flavor, the DeepJet heavy flavor jet tagging algorithm is chosen [97]. A jet needs to
pass the ‘‘medium’’ WP of the DeepJet classifier to be considered a b jet in this analysis.
Details on the heavy flavor tagging procedure, the algorithm, and the WP are described in
Section 4.4. However, no selection is made on the basis of the number of b-tagged jets.
A cut to a small number of b-tagged jets would indeed increase the signal to background
ratio in the analysis phase space, but this separation is carried out by the event classifier
later, which is given the DeepJet heavy flavor jet tagging information for each jet in
an event. As a result, no assumption is made about the number of b-tagged jets, which
depends on the b tagging modeling and may increase the model dependency. Moreover, a
more inclusive phase space is enabled and analyzed.

8.2.5 MET selection

A cut on missing transverse energy (MET) of ≥ 40 GeV is applied in the e+e− and µ+µ−

channels to reduce contributions from Drell-Yan events. This is only necessary in two
dilepton channels with the same lepton flavor, as the Drell-Yan contribution in the e±µ∓

channel is negligible.

8.3 Event selection

All objects in both simulated events and data must fulfill the requirements described above.
Moreover, each event must fulfill a set of defined requirements. At least three jets must
be present in an event in order to pass the selection, which is lower than the expected
number of jets in LO calculations. This allows for some background enriched regions and
limited reconstruction efficiencies to be taken into account. This also accounts for events
in which, for example, a jet is out of acceptance. To select preferably dileptonic tt̄ events,
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Table 8.6: Data yields and expected event yields from simulation of the signal and back-
ground processes for a combination of all lepton channels as well as a breakdown
to the e+e−, e±µ∓ and µ+µ− channels. Due to rounding to integers, the sum
of all individual channels for a given processes may not be equal to the corre-
sponding value in the all channels column.

Process all channels e+e− channel e±µ∓ channel µ+µ− channel

Data 266138 38289 142686 85163
tt̄B 12638 1588 7475 3574
tt̄C 26698 3392 15764 7542
tt̄H 461 60 267 135
tt̄Z 599 95 321 183
tt̄LF 193178 24566 114939 53674
tt̄W 594 83 342 169
single top 17316 2384 10091 4841
VV 1279 246 582 451
W+jets 485 81 299 104
Z+jets 17838 4903 1644 11290
Data/MC 0.982 1.024 0.940 1.039

dedicated selection criteria are constructed which require exactly two isolated leptons
to prevent contributions from unwanted backgrounds. The two leptons are required to
carry an opposite electric charge. In addition, the invariant mass of the dilepton system
𝑚ℓℓ needs to be outside a 15 GeV mass window from the Z boson mass of 𝑚Z = 91 GeV.
This requirement reduces contributions from Drell-Yan events as well as tt̄Z events with
a leptonically decaying Z bosons (Z → ℓℓ) in the fully hadronic tt̄ channel. This rule
only applies to events in which the two leptons have the same lepton flavor, i.e. the
e+e− and µ+µ− channels. Furthermore, the invariant mass of the dilepton system must
exceed 20 GeV to suppress contributions from low mass resonances in the phase space.
Additionally, events are vetoed if further leptons are present with 𝑝T > 15 GeV. The
event yields resulting from object and event definitions, broken down for the respective
processes in Monte Carlo event simulation (MC) and for data recorded in 2018 at the
CMS experiment are summarized in Table 8.6. The simulated events deviate by up to
6% relative to the recorded data, which is justified, as it is a pre-fit comparison and the
likelihood function will adjust the yields further (cf. Chapter 10).

8.4 Event corrections
Although simulated events are based on deep theoretical understanding and sophisticated
simulation techniques, differences remain in certain aspects when compared predictions
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with data. Such effects can be corrected with the help of auxiliary measurements. The
correction determined in such a procedure can then be applied to other phase spaces or
measurements. For this recalibration, scale factor (SF) corrections are derived which adjust
observed discrepancies in auxiliary measurements. An SF is the ratio of the efficiency 𝜖 in
data to the efficiency in simulation and is calculated with

SF = 𝜖data
𝜖simulation

. (8.5)

The efficiencies for data and simulation are defined as the fraction of events that fulfill
certain criteria, e.g. a dedicated selection, relative to the total number of events examined.
Usually, the SFs are a function of certain parameters, typically a number of kinematic
observables and properties, e.g. the 𝑝T, 𝜂, and flavor of a jet. In this case, each jet
in an event is evaluated and the whole event is given a weight. Through this method,
each event receives a dedicated weight for each correction, resulting in a whole series of
weights that take all corrections into account. This results in reweighting the kinematic
distributions of simulated events to better match the distributions observed in data. This
form of calibration is explained below for a series of corrections applied in this thesis. Each
correction possesses its own uncertainty, which is explained in the context of systematic
uncertainties in Section 10.1.

8.4.1 Pileup reweighting

Pileup, i.e. the occurrence of multiple interactions within the same proton bunch crossing,
differs in data and simulated events. In simulation, the pileup in an event is described by
a mean expected number of pileup interactions. The behavior is then characterized by
means of a Poisson distribution. In addition, a collision before and after the bunch crossing
under investigation can be mistakenly considered as part of it. A pileup reweighting is
determined by a dedicated group within the CMS Collaboration. An inclusive data set
is taken for this calculation, the details can be found in Ref. [162]. The corresponding
observable is the number of primary vertices in an event, which is shown in Figure 8.2 and
already includes the determined corrections. It can be seen that after the application of
the reweighting a substantial mis-agreement between data and simulated events still exists.
This is a well-known problem and also occurs in other analyses, e.g. in the semileptonic
tt̄bb̄ phase space [132]. However, since the reweighting leaves all other relevant observables
invariant and the number of primary vertices is irrelevant for this analysis, no further
correction is performed.

8.4.2 L1 pre-fire reweighting

Muon candidates identified by the trigger system (cf. Section 3.2.1.6) can be associated to
the wrong proton bunch due to a limited time resolution of the muon detector elements in
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Figure 8.2: Number of primary vertices in an event after pileup reweighting. The systematic
uncertainties include a 4.6% variation of the estimated inelastic proton-proton
cross section.

the 2018 data-taking era. However, this effect is not incorporated in the event simulation
and therefore leads to a discrepancy between data and simulated events. To accommodate
the effect post simulation, the probability 𝑝 for an event not to pre-fire is calculated. The
calculation considers all offline photons, jets, and muons present in an event and takes
individual efficiencies for each object into account. The Level-1 (L1) pre-fire event weight
is obtained by

𝑤pre-fire = 1− 𝑝 (pre-fire) =
∏︁

𝑖=𝛾,jets,µ

(︁
1− 𝜖pre-fire

𝑖 (𝑝T, 𝜂)
)︁

. (8.6)

While the effect is constant for objects with 𝑝T > 25 GeV and thus stable for almost all
objects in this thesis, the core dependency lies with 𝜂. The scale of the effect is between
0% and 3%.

8.4.3 Trigger efficiencies

In this analysis, numerous HLT trigger paths are queried as discussed in Section 8.2.1. The
efficiencies of these trigger combinations differ only slightly between data and simulated
events, nevertheless SFs are calculated resulting in values close to one. For this purpose,
individual efficiencies must be calculated for each HLT path combination in Table 8.2,
from which the SFs can then be determined according to Equation 8.5. For the calculation
of the SFs, a set of 𝑝miss

T baseline triggers (cf. Section 4.5) is used whose efficiency is
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independent of the HLT paths used in this thesis. Still, a possible correlation is included
as systematic uncertainty on the calculated SFs. Simulated events of tt̄ processes are used
for the efficiency calculations on simulation, while a data set primarily containing MET
enriched events are used for the efficiency determination in data. For each channel, SFs
are obtained that depend on the transverse momenta of the two leptons. Since the chosen
trigger combinations were already deployed in analyses at the CMS experiment, the trigger
SF are available. Details of the trigger SF calculations can be found in Refs. [163, 164].
The SFs used for all three channels are shown in Figures 8.3 and 8.4.

8.4.4 Electron reconstruction efficiencies

The reconstruction efficiency of electrons in data and simulated events are determined
in auxiliary measurements in a phase space where Z→ e+e− events are enriched using a
tag-and-probe method. This process provides a clean, well-defined signal with high purity
and therefore a high significance. The total efficiency for electrons is composed of

𝜖e, total = 𝜖e, ID · 𝜖e, reco , (8.7)

with efficiencies for the identification (ID) and reconstruction (reco) as discussed in
Section 8.2.2. The electron efficiencies are determined by specialized groups at the CMS
experiment [158]. In the e+e− channel of this thesis, the efficiencies for both electrons are
determined and multiplied.

8.4.5 Muon reconstruction efficiencies

The efficiency calculations for muons are similar to the procedure for electrons. The overall
efficiency results from

𝜖µ, total = 𝜖µ, ID · 𝜖µ, reco · 𝜖µ, iso , (8.8)

whereby an additional efficiency is added here for the muon isolation (iso), which does
not exist for the electrons. Details are discussed in Section 8.2.3. The calculation of
the efficiencies is performed in events with Z → µ+µ− processes and is determined by
dedicated groups within the CMS Collaboration [159]. In the µ+µ− channel of this thesis,
the efficiencies for both muons are determined and multiplied.

8.4.6 Jet energy corrections

Similar to leptons, reconstructed jets need to be calibrated to match the true jet energy.
Due to differences between reconstructed jets in data and simulated events, a jet energy
correction (JEC) is performed [160]. In essence, the JEC consists of two components: the
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Figure 8.3: Trigger SFs for the e+e− channel (top) and the µ+µ− channel (bottom). The
SFs are functions of the leading and subleading lepton 𝑝T. The SFs are shown
for each bin including the total uncertainties. Taken from Refs. [163, 164].
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Figure 8.4: Trigger SFs for the e±µ∓ channel. The SFs are functions of the muon and
electron 𝑝T. The SFs are shown for each bin including the total uncertainties.
Taken from Refs. [163, 164].

jet energy scale (JES) and the jet energy resolution (JER) correction. In general, the JECs
are determined using simulated events of various processes. The calculated corrections
are subsequently applied to data and simulated events. The multi-stage process of the
calculation is sketched in Figure 8.5. The initial step is the pileup correction, which removes
energy deposits in the detector from pileup interactions from the jets. Differences between
data and simulated events are determined using the random cone method [160]. This is
followed by corrections to the jet response based on a comparison of reconstructed jets
in simulated events relative to the true information of jets at generator level. Remaining
differences are applied using so-called residual corrections which are determined in 𝛾/Z+jet
and multi-jet events as a function of 𝜂 and 𝑝T. The differences in the JER between data
and simulated events are corrected in simulation. For this purpose, a jet matching from
detector level to particle level is performed and a SF is calculated for the 𝑝T value of
the corresponding jet. If the matching fails, the resolution is corrected with a SF that is
randomly smeared based on a Gaussian distribution.

8.4.7 Top 𝑝T reweighting

According to earlier measurements by the CMS Collaboration, the top quark 𝑝T in simulated
tt̄ events at NLO precision in the ME calculation shows discrepancies when compared to
data [165]. The deviation of simulated events and data in the spectrum of the transverse
momenta of the tt̄ system is reduced if NNLO predictions are used instead. Hence, a
reweighting procedure is used which maps the NLO spectrum of the top quark 𝑝T observable
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Figure 8.5: Steps of the JEC procedure for data and simulated events. The source of the
calculation is indicated, whereby RC refers to random cone and MJB refers to
multi-jet events. Taken from Ref. [160].

to the corresponding spectrum at NNLO. With this technique, an event weight 𝑤NNLO/NLO

is calculated, which consists of a combination of the two SFs for the top quark and the top
antiquark as a function of their transverse momenta, which is calculated with

𝑤NNLO/NLO =
√︁

SF(𝑝t
T)SF(𝑝t̄

T) , (8.9)

with SF(𝑝T) = 𝛼𝑒−𝛽𝑝T/GeV + 𝛾𝑝T/GeV + 𝛿, where 𝛼 = 0.103, 𝛽 = 0.0118, 𝛾 = −0.000134,
and 𝛿 = 0.973. This parameterized weight function is based on Ref. [166].

8.4.8 Heavy flavor jet tagging efficiency

Generally, there are two ways to calibrate the efficiency of the heavy flavor jet tagging
algorithm. In the first approach, the efficiencies for the three predefined WPs (cf. Section 4.4)
are corrected. These corrections adjusts the yields of the b jet multiplicities. In the second
approach, the full b jet tagging discriminant shape is corrected. This is particularly
important if the complete information from the heavy flavor tagger is used. In this thesis,
this procedure is necessary since the entire b jet tagger information is used as an input
feature for the graph transformer networks for jet and event classification in Chapter 9.
To achieve a better agreement of the b jet tagging discriminant in data and simulated
events, the iterative Fit (itFit) method is used based on Ref. [97]. To determine the
weights that compensate for the discrepancies, data are compared to simulated events in
different event topologies such as tt̄ or QCD events, specifically chosen for their varying jet
flavor compositions. The iterative procedure is based on a tag-and-probe method requiring
exactly two jets and simultaneously determines the SFs for both b and light flavor jets.
The SFs are derived as a function of the DeepJet discriminant value in bins of 𝑝T and 𝜂

of the jet and are provided by the CMS Collaboration [91, 97].

However, the application of the centrally provided SFs, which are intended to correct only
the shape of the b tagging discriminant, also affects other observables and their distributions.
This is due to the fact that the phase space for determining the corrections can deviate
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significantly from the analysis phase space. Observables that should be invariant under the
application of SFs are, for example, the number of jets (Njets) and the sum of all transverse
momenta (HT) in an event. For this reason, a correction is applied that reverses the effects
of the applied itFit b tagging weight 𝑤b, which represent the SF in these observables. This
is achieved by calculating the ratio 𝑅 of the sum of the event weights before the application
(∑︀𝑤before) relative to the sum of the event weights after the application (∑︀𝑤after) in bins
of Njets and HT:

𝑅 (Njets,HT) =
∑︀
𝑤before (Njets,HT)∑︀
𝑤after (Njets,HT) . (8.10)

The new, corrected event weight is obtained by multiplying the ratio 𝑅 with the b tagging
event weight, which is the product of the individual jet weights

𝑤b, corr = 𝑅 (Njets,HT) ·
Njets∏︁

𝑖

𝑤b (𝐷𝑖, 𝑝T 𝑖, 𝜂𝑖) , (8.11)

where 𝐷𝑖 is the b tagging value of the 𝑖-th jet in an event. The distribution of the b
tagging value can be seen in Figure 8.6. Three scenarios are shown: no application of the
itFit b tagging weights, application of the itFit b tagging weights 𝑤b, and the application
of the reweighted itFit b tagging weights 𝑤b, corr according to Equation 8.11. It can be
seen that the application of the itFit b tagging weights changes the rate and the shape of
the unweighted discriminant. The application of 𝑤b, corr compared to the itFit b tagging
weights causes a small rate change for the majority of the discriminant. This behavior
is different for the observables Njets and HT that are used to calculate the reweighting
depicted in Figure 8.7. It can be seen how the number of events increases due to the
application of the itFit b tagging weights for increasing jet multiplicities compared to
the distribution without the application of these corrections. This unwanted effect is
compensated if the corrected weights 𝑤b, corr are applied instead. With the application of
the corrected weights 𝑤b, corr the distribution of Njets does not change, which reflects the
desired behavior. Analogous behavior can be seen for the HT observable in this figure.

8.5 Control distributions

Control distributions verify the agreement between data and simulated events, ensuring
that the predictions of all simulated processes reflect real conditions at the CMS experiment.
Likewise, control distributions can be utilized to verify the accuracy and conformity of
object reconstruction in both data and simulation. For example, possible systematic effects
in certain observables can be identified. Known and relevant corrections for these effects
are discussed in the previous section and are applied to all events.
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Figure 8.6: Distributions of the b tagging discriminant of the DeepJet heavy flavor tagging
algorithm without itFit b tagging weights, with itFit b tagging weights and
with corrected itFit b tagging weights. The application of the weights results
in a rate and shape changing effect compared to the distribution without the
weights, as can be seen in the ratio plot in the lower panel.
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Figure 8.7: Distributions of the Njets (top) and the HT (bottom) observable without itFit b
tagging weights, with itFit b tagging weights and with corrected itFit b tagging
weights. The application of the itFit b tagging weights results in a rate and
shape changing effect compared to the distribution without the weights, as
can be seen in the ratio plot in the lower panel. The application preserves the
original distribution of both observables.
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Jet, lepton, and MET observables are depicted in Figure 8.8 and 8.9. It can be seen that the
uncertainty bands, which include all a-priori uncertainties described in Section 10.1, enclose
the majority of data points. For events with three jets in the analysis phase space, the
ratio of the data yield to simulated events is approximately one. For event with increased
jet multiplicities, larger event yields are predicted. Comparing this behavior with the event
yields as a function of the number of b-tagged jets in the events that fulfill the medium WP,
it can be recognized that events without b-tagged jets tend to be under-predicted. Events
without b-tagged jets form a region containing predominantly background processes. In
this region, the uncertainty of the prediction does not cover the data point. Events with
one or two b-tagged jets, on the other hand, are over-predicted in the event simulation. In
this region, tt̄C events in particular are enriched, but also tt̄B and tt̄H(B) as well as tt̄Z(B)
events can occur, in cases where some b jets do not fulfill the medium WP or jets are
out of acceptance. In the phase space region with three b-tagged jets, an over-prediction
prevails, while the prediction matches the data in the region with four b-tagged jets. In
this region, fully resolved tt̄B, tt̄H(B) as well as tt̄Z(B) are enriched. However, it should
be noted that the statistical uncertainty increases with rising b-tagged jet multiplicities.
In Section 10.2.4, a quantitative evaluation is performed using a goodness-of-fit test for the
statistical model of the predictions. This test demonstrates that the predictions meet the
required criteria. The only exceptions are the ratio observables c vs. b (CvB) and c vs.
light (CvL) (cf. Equations 4.3 and 4.3), which, as discussed in Section 9.1.1, do not fulfill
these requirements and are therefore excluded.
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Figure 8.8: Jet multiplicity (top left), jet 𝑝T (top right), jet 𝜂 (middle left), jet 𝜑 (middle
right), HT of all jets (bottom left), and MET 𝜑 (bottom right) in the analy-
sis phase space. The contributions of all processes are displayed as stacked
histograms, with data represented as black dots. The bottom pad depicts the
ratio of data to the expected yields from event simulation. The gray bands
include the a-priori uncertainties described in Section 10.1.
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Figure 8.9: DeepJet b tagging discriminant (top left), number of b-tagged jets at the
medium WP 𝑝T (top right), DeepJet CvB tagging discriminant (middle left),
and DeepJet CvL tagging discriminant (middle right), lepton 𝑝T (bottom left),
and lepton 𝜂 (bottom right), in the analysis phase space. The contributions of
all processes are displayed as stacked histograms, with data represented as black
dots. The bottom pad depicts the ratio of data to the expected yields from
event simulation. The gray bands include the a-priori uncertainties described
in Section 10.1.
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9 Data set and AI model design

In this chapter, the classification of events using Artificial Intelligence (AI) techniques,
particularly leveraging its machine learning branch to apply multivariate analysis methods,
is examined in the analysis phase space defined in Chapter 8. First, the transformation
of simulated events into a fully connected graph is explained and the overall design of
the graph training structure is discussed. The two stages of classification, the particular
designs and the results of trainings with graph neural network (GNN) are described in
Sections 9.2 and 9.3.

9.1 Data transformation and network architecture

Simulated events and recorded data at the Compact Muon Solenoid (CMS) experiment are
stored in various data formats. Only a few of these formats are suitable for extensive data
analyses, as the rapidly increasing storage requirements of more expensive formats that
store details of particle candidates make effective data handling impossible. Data storage
in the raw format can be in the order of megabytes per event while the smallest data
format takes only a few kilobytes of memory per event. Therefore, when processing several
billions of data points1 in this analysis, a technically feasible data format must be chosen.
In the smallest format, known as nano Analysis Object Data (nanoAOD), the total storage
requirement amounts to approximately 6.3 terabytes. A skimming procedure reduces the
amount of data and simulation to approximately 110 gigabytes. Skimming refers to the
process of extracting only relevant information and removing event candidates that do not
pass the selection criteria stated in Chapter 8. An additional 80 gigabytes are generated
after skimming due to additional simulations of systematic uncertainty variations. In

1A total of 4 611 694 287 events in data and simulation are generally candidates in this analysis phase
space and require processing. This does not include any additional simulations for the consideration of
specific systematic uncertainties.
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98 9 Data set and AI model design

the nanoAOD data format, only high-level information on physics objects such as jets
and leptons are available. For example, individual components for clustered jets such
as information on particle-flow candidates (cf. Section 4.2) are truncated. The jet origin
information crucial for the training in this chapter does not exist in the standard nanoAOD
format. This information needs to be taken from the next higher compression format, the
mini Analysis Object Data (miniAOD) format, in a dedicated procedure for all tt̄+jets,
tt̄bb̄, tt̄H, and tt̄Z event simulations. In total, about 10 million unweighted simulated
events remain in the nanoAOD format after the skimming procedure.

To enable supervised training on simulated events, all required information must be present
at the detector simulation level. At this level the degree of information is equivalent to
the degree of information in recorded data. However, information about whether a jet
originated from a top quark, for instance, only exists at generator simulation level at
most. In the common event simulation procedure at the CMS experiment as described in
Section 4.6.1, there is no information at detector level about the origin of a jet. This lack
of information is remedied by a matching procedure transferring the jet origin information
between the two simulation levels. Jets at the generator simulation level are compared
to jets at the detector simulation level and all distances are calculated. If the distance
between a generator level jet and a detector level jet is less than Δ𝑅 = 0.4, the jet origin
information is transferred. The matching efficiency of jets at the two different levels is
99.5% to 99.7% depending on the event simulation in this thesis.

In this thesis, GNNs are used due to their ability to represent relationships and patterns
between objects in an event. Unlike a feedforward deep neural network (DNN), GNNs
offer structural advantages such as permutation invariance and flexible input dimensions.
However, GNNs do not outperform DNNs by default. In fact, GNNs only unfold their full
potential when domain knowledge of the physics processes is incorporated in various aspects
into the graph structure. In a preceding comparison study between GNNs and DNNs
conducted for a generic Large Hadron Collider (LHC) experiment with a similar event
topology and a closely related classification task associated to this thesis, the advantages
of GNNs over DNNs are elaborated in detail [111]. This study demonstrates how carefully
designed GNNs are able to outperform comparable DNN structures, converge faster,
generalize more strongly, and require fewer free parameters for the classification task.
The initial design of the graph structure in this thesis based on domain knowledge is
conceptually equivalent with the construction of the graphs in this study and is explained
in the following sections.

Several Bachelor and Master theses thoroughly explored various aspects of jet and event
classification in the tt̄ + heavy flavor phase space in preparation of this thesis. The
jet classification using DNNs in Ref. [167] represents the first step and cornerstone of
subsequent analyses. In Ref. [168], jet classification using GNNs is examined. Ref. [169]
focuses on the Bayesian optimization of GNNs as well as hyper-graph structures, which
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reflect properties of groups in a GNN such as the top quark decay products with hadronically
decaying W bosons. The studies in Ref. [170] provide dedicated performance comparisons
of GNNs with equivalent DNN structures. In addition, this study includes investigations
on properties of GNNs for a deeper understanding of important factors impacting the
stability and reliability of GNNs. The thesis in Ref. [105] is dedicated to simulations of
tt̄B, tt̄H, and tt̄Z processes with a simplified detector simulation for fast event simulation
with reduced computational complexity. The studies in Ref. [171] analyze implementation
strategies for a measurement in the tt̄ + heavy flavor phase space. Finally, the study in
Ref. [172] examines the GNNs used in this thesis to determine the key factors driving their
performance, focusing on the importance of the input features.

9.1.1 Input features

The graph structures are composed of the kinematic observables that are accessible from
the physics objects at nanoAOD level, except for the jet origin. Each final state object is
thus translated into a node of the graph structure. The transformation of an exemplary
event into a graph structure is illustrated in Figure 9.1. Generally, the maximum number
of nodes is arbitrary and can be freely configured for each event. In contrast to DNNs, it is
not necessary to set an upper boundary on the number of jets for the graph or to apply a
padding procedure to fill empty nodes due to a fixed input layer size [111]. The initial size
of the graph representation of an event in this thesis is a function of the jet multiplicity.
The total number of nodes 𝑛 in a graph results from the jet multiplicity plus three, as
there are always exactly two leptons and missing transverse energy (MET) in the event
after the selection, cf. Section 8.3. Consequently, a graph comprises a minimum of six
nodes. Initially, the features of each node in the graph follow a fixed pattern represented
by a vector referred to as node feature vector. The kinematic information of an object is
initially embedded in a predefined order in this node feature vector: 𝑝T, 𝜂, 𝜑, M, E, electric
charge, and the b tagging value. The b tagging value refers to the DeepJet heavy flavor
jet tagging algorithm score as described in Section 4.4. If a feature does not exist, this
value is artificially set to zero, e.g. the b tagging value for a lepton. In addition, the type of
object is encoded in the node feature vector with a flag in the form of a one-hot encoding.
The first flag denotes a jet, the second refers to a lepton, and the third corresponds to
MET. This offers the GNN a simple but effective way of distinguishing the type of object.

The relation between two physics objects in the detector is also embedded in the graph.
In the comparison study between GNNs and DNNs, it was revealed that GNNs are able
to process this information superior to DNNs [111]. Furthermore, the GNN benefits
significantly from the embedding of this domain-knowledge and can therefore also increase
its performance compared to an equivalent DNN model and a GNN model without this
information. In the benchmark study, relational information is added individually to the
graph structure, demonstrating the strong performance gain from embedding a single

99



100 9 Data set and AI model design

additional jet

additional jet

b jet

lepton
neutrino

lepton neutrino

b jet

t		

t		

b jet

b jet

lepton

lepton

MET

additional jet

additional jet

𝑒!" =	ΔR#$$.	'()	!,	#$$.	'()	",
m	#$$.	'()	!,	#$$.	'()	", …

𝑓+ 		= 𝑝T, 𝜂, 𝜙,𝑀, 𝐸, … ,

𝑒+-

Figure 9.1: Each object in an event (jet, lepton, MET) (left) corresponds to a node in
the graph (right). Each node possesses kinematic properties of 𝑝T, 𝜂, 𝜑,𝑀,𝐸,

charge sign, and the b tagging value if applicable as its node feature vector.
The edges of the fully connected graph structure are characterized by relational
information of the node pairs, for example the mass 𝑚𝑖𝑗 or distance Δ𝑅𝑖𝑗

between the two objects 𝑖 and 𝑗.

quantity such as the distance Δ𝑅𝑖𝑗 or mass 𝑚𝑖𝑗 between two objects. In contrast, multiple
quantities based on domain-knowledge are embedded simultaneously in the graph structure
in this thesis in order to benefit more effectively from the combination of all observables.

To prevent certain features from dominating the training, e.g. 𝑝T, all features are normalized
to a range of [0, 1] for continuous variables. Such normalization avoids an imbalance in
the importance of a sub-set of features and prevents convergence issues in the optimization
algorithm during training. All node features are summarized in Table 9.1. Relational
information, of which a total of six features are constructed, is implemented as edges in
the graph. These are calculated for every combination of nodes 𝑖 and 𝑗, and include 𝑚𝑖𝑗 ,
𝑝T,𝑖𝑗 , 𝑚T,𝑖𝑗 , Δ𝑅𝑖𝑗 , Δ𝜂𝑖𝑗 , and Δ𝜑𝑖𝑗 .

In Figure 9.2 the jet distributions of the node features 𝑝T and 𝜂 as well as the edge
features 𝑚𝑖𝑗 and Δ𝑅𝑖𝑗 are shown as selected examples for tt̄+jets, tt̄H, and tt̄Z events. All
remaining node and edge feature distributions can be found in Appendix A. A distinction
is made between b jets from the tt̄ system and additional jets. The term additional jets
denotes jets that do not stem from the tt̄ system, but from gluon splitting such as g→ bb̄
or the boson decays H,Z→ bb̄, as defined in Section 8.1. Generally, the four observables
shown in this figure reveal particularly strong separation power between the jets from the
tt̄ system and the additional jets (cf. Section 4.6.2) for all three processes. A multivariate
method can therefore be used to identify the origin of a jet, which is referred to as jet
classification in this thesis. Beyond that, the figure also show that not only a jet separation
is possible, but also an event separation between tt̄+jets, tt̄H, and tt̄Z simulated events. It
is expected that the tt̄ system looks rather similar in tt̄+jets, tt̄H, and tt̄Z events, however,
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Table 9.1: Input features used for jet and event classification.

Input feature Jets Leptons MET

𝑝T 𝑥 ∈ [0, 1] 𝑥 ∈ [0, 1] 𝑥 ∈ [0, 1]
𝜂 𝑥 ∈ [0, 1] 𝑥 ∈ [0, 1] 0
𝜑 𝑥 ∈ [0, 1] 𝑥 ∈ [0, 1] 0
𝑚 𝑥 ∈ [0, 1] 𝑥 ∈ [0, 1] 0
𝐸 𝑥 ∈ [0, 1] 𝑥 ∈ [0, 1] 0
Electric charge sign 0 𝑥 ∈ {−1, 1} 0
b tagging value 𝑥 ∈ [0, 1] 0 0
Jet flag (one hot) 1 0 0
Lepton flag (one hot) 0 1 0
MET flag (one hot) 0 0 1

the behavior of the additional jets in these features differs across the three processes. Hence,
an event classification using multivariate methods is feasible especially when the attention
centers on the additional jets. This procedure is referred to as event classification in this
thesis.

The 𝑝T distribution in Figure 9.2 shows that the additional jets carry smaller transverse
momenta compared to the jets from the tt̄ system. Also, it is apparent that while the
additional jets in tt̄H and tt̄Z events are similar in 𝑝T, both reveal larger values compared
to the additional jets in tt̄+jets events. The observable 𝜂 indicates that the jets from the
tt̄ system tend to be located in the more central region of the detector compared to the
additional jets. Particularly small pseudo rapidities occur in the case of additional jets
in tt̄+jets events compared to additional jets from tt̄H and tt̄Z simulated events. The
quantity 𝜑 does not contain any direct separation power by definition due to the given
azimuthal symmetry in the detector. However, as a spatial component in combination with
other quantities, 𝜑 can form a strong observable, for example when geometric distances
such as Δ𝑅 to other objects in the event are calculated. Even though the distances Δ𝑅𝑖𝑗

are integrated as edges separately into the network, the quantity 𝜑 is added to the network
in order to determine potential relations to other observables. Furthermore, the observables
𝑚 and 𝐸 are added to the network as node features. Despite the fact that 𝑚 and 𝐸 are
linked to the momenta via the energy-momentum relation and thus contain correlated
information, all three quantities are added to the network. In this way, it is the task of the
network to decide which information is most suitable for classification and it is not required
to learn the energy-momentum relation, for example. The b tagging value information
also contains distinguishing characteristics. While the b jets from the tt̄ system tend to
have large b tagging values, the additional b jets tend to have smaller values relative to
these b tagging values. This is a result of the fact that, as shown above, the b jets from
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Figure 9.2: Input feature distributions of jet 𝑝T (top left) and jet 𝜂 (top right) included
as node features for simulated tt̄+jets, tt̄H, and tt̄Z events. The distributions
are separated into b jets from the tt̄ system and additional jets. The bottom
row shows the jet pair mass (left) and the distance Δ𝑅 (right) of jet pairs for
b jets from the tt̄ system and additional jets. Jet pair information is used as
edge features in the graph structure.
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the tt̄ system have larger transverse momenta. Consequently, secondary vertices can be
more pronounced, which in turn is an important parameter for heavy flavor tagging. Also,
Figure 4.3 reveals that the tagging efficiency increases with higher transverse momenta.

The reconstruction of the mass from jet pairs through the combination of the two four-
vectors is one of the most distinct observables. While the mass distributions of jet pairs
from the tt̄ system show no remarkable characteristics, the additional jets in the case
of tt̄H and tt̄Z events reveal the mass peaks of the Z and H bosons prominently shown
Figure 9.2. In contrast, in the case of tt̄+jets events the additional jets show no resonances,
as expected, and the distribution of the jet pair masses is shifted to smaller values relative
to the masses from the b jet pairs of the tt̄ system. Another important observable is the
spatial distance Δ𝑅𝑖𝑗 in the detector between two jets. With this distance measure it can
be noticed that the additional jets generally show smaller angular separation compared to
the b jets from the tt̄ system in an event. Since there is an angular correlation in additional
jets resulting from the splitting of a gluon, for example, this pattern is expected. The
Δ𝑅𝑖𝑗 distribution of the b jet pairs from the tt̄ system show relatively larger distances and
reaches a maximum at 𝜋 before dropping rapidly. This behavior results from the definition
of Δ𝑅𝑖𝑗 in Equation 3.5, as Δ𝜑𝑖𝑗 can only attain a maximum value of 𝜋. In differential
measurements of the tt̄bb̄ process the Δ𝑅 observable is intentionally chosen in order to
achieve a good accuracy in finding the additional b jet radiation in the event without
employing a multivariate method in favor of a straightforward kinematic definition [96].
In the analysis in Ref. [96], the additional jets are defined as the jets with the smallest
distance among all b jets in the event.

The training of models in this thesis is performed exclusively on simulated events, as this
allows for supervised learning with labeled training samples. Subsequent inference using
the trained models to evaluate data implies the assumption of identical behavior between
data and simulation in all input features. To verify the validity of this assumption, each
feature used is subjected to a goodness of fit test. This statistical test examines whether the
distribution of simulated events deviates from the respective observable in data for each
feature. The required threshold at which it is assumed that the distributions do not match
is a 𝑝-value below 5%. Further details about the method can be found in Section 10.2.4,
where it is discussed in detail within the context of the statistical model. The summary
of the goodness of fit tests for all input features can be seen in Figure 9.3. Each feature
embedded in trainings satisfies the required 𝑝-value threshold.

Two variables that are not utilized in this analysis as they do not pass the goodness of fit
test are the DeepJet tagger scores CvB and CvL, as defined in Equations 4.3 and 4.4.
These two-dimensional jet flavor discriminants allow a distinction between b jets and c
jets as well as c jets and light flavor jets, as described in Section 4.4. In the appendix,
Figure A.1 demonstrates that these two observables provide a strong distinction between
additional jets and b jets from the tt̄ system. However, a difference in the behavior of
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Figure 9.3: Resulting 𝑝-values of the goodness of fit tests performed for each observable
between data and simulation. Observables with 𝑝-values greater than 5% are
used as input features in the training. The two DeepJet jet flavor tagger
discriminants c vs. b (CvB) and c vs. light (CvL) do not pass the test, all other
kinematic features are considered in the training.

the two scores between simulation and data can be observed in areas with particularly
high and particularly low scores. In addition, these two value ranges account for the
majority of jets. Performing a calibration or applying a scale factor (SF) as discussed
in Section 8.4.8 does not resolve the divergence. Instead of the two-dimensional tagger
information the one-dimensional b tag score is used. By definition, this feature is correlated
with the two two-dimensional observables, but the differing behavior of the b tagging value
in simulation and data can be corrected with a SF provided by the CMS Collaboration.
Although incorporating CvB and CvL as node features improves the performance of all
analyzed models, both are removed from the training due to the mismatch between event
simulation and data.

9.1.2 Training strategy

Since the additional jets play a key role in event separation, a two-stage training procedure
is designed. First, a classification algorithm is implemented which is tasked with identifying
the additional jets in an event. This information, i.e. a probability estimation from a jet
classifier that an object in an event is an additional jet, is used in a subsequent event
classification algorithm. The event classification constitutes the second stage. The overall
transformation of the event into a graph structure is conceptually identical in both stages.
The node and edge features are constructed as previously described. However, the jet
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Figure 9.4: Conceptual representation of the steps from event simulation to event classifi-
cation. Graphs are constructed and trained based on simulated events. First, a
binary node level prediction is performed which predicts for each node of a graph
whether it is an additional jet or not. This information is then incorporated
into an equivalent graph structure, which now also contains this information
from the pre-classifier. In the second training stage, a graph level prediction is
performed that predicts the type of event for each graph. The events are then
categorized into the class for which the highest score is achieved.

prediction score from the first classification stage is concatenated to each node feature vector
in the graph structure of the second stage. Based on an overall similar input structure, the
main technical difference in the two stages is the type of classification of the GNN. Given
the different classification objective, a node level prediction (NLP) is performed in the first
classification stage to identify the jet-type. This classification is a binary decision as to
whether a node in the graph is an additional jet or not. The evaluation is performed for
each node in the graph structure. In the second stage, a graph level prediction (GLP) is
performed to distinguish signal from background events. Here, a multi-class classification
is performed in which the classifier assigns a score to each graph structure for belonging
to a predefined event class. This score can be interpreted as a probability for an event
to be a tt̄B event, for example. This two-stage procedure is depicted in Figure 9.4. Since
the graphs are constructed from identical domain knowledge, the output of the NLP as
additional input to the GLP model is redundant information from a physics perspective.
However, it is demonstrated in Section 9.3.3 how this pre-classifier procedure boosts the
event classification performance with explicit, refined information about the jet origin.

While the initial graph structure of the two-stage training procedure remains almost
identical, numerous differences exist in the training architecture. For the jet classification
with NLP these can be found in Section 9.2, while those for the event classification with
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GLP can be found in Section 9.3. With the help of the event classification the relevant
parameters of the constructed physics model can then be extracted in a fit model. The
application of the event classifier is described in Chapter 10.

Two additional conceptual principles are implemented in both training stages. The first
principle relates to running and testing each network architecture multiple times. In this
thesis, the term ‘‘architecture’’ refers to the overall structure of a network with various
layers, while the term ‘‘model’’ refers to a specific configuration of the architecture with a
fixed choice of hyperparameters, random weight initialization, and the subsequent execution
of the optimization on the training sample. In general, each configuration is trained ten
times in this thesis. This enhances the robustness and reliability of the model and prevents
a particularly good or relatively poor optimum from being found by coincidence during the
training process. Performing only one training could result in the false selection or rejection
of a model, even though the setting may (not) constitute the optimal configuration. Instead,
training identical network configurations ten times with different random seeds ensures
that the best architecture is found objectively.

The second principle is to perform the training procedure with a two-fold training sample.
The reason for splitting the simulated events into two orthogonal subsets arises mainly
from the use of the trained models in the subsequent fit model rather than the performance
evaluation during the training procedure. For the fit model of this analysis, both simulated
events and data must be evaluated with the trained model. To prevent trained models
from being evaluated on simulated events that were already seen in the training procedure
the simulated events are split into two folds. While one model is trained on all events with
an even event ID, the trained model for the subsequent statistical model (cf. Chapter 10)
is only evaluated on simulated events with an odd event ID. Similarly, a second model
with identical settings and thus the same architecture is trained on all events with odd
event IDs and selected for the evaluation of all simulated events with even IDs. In this
way, a possible bias in the behavior of the AI model on simulated events relative to data,
for example when performing statistical tests on simulated events, can be prevented.

9.2 Jet classification: Node level prediction

As described in Section 9.1, the additional jets are particularly crucial for event separation,
which is why special emphasis is put on their identification. The two-staged process
illustrated in Figure 9.4 can in principle be standardized into a single training step.
However, as the jet identification step is extremely important, it is designed in two separate
training stages. The main advantage of this procedure is that the results of the jet
identification can be investigated independently from the event classification. Likewise,
the quality of the classification performance can be benchmarked against other methods of
jet identification and, if necessary, replaced by a different approach.
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9.2.1 NLP architecture and training

For the training of jet identification, state of the art machine learning methods are employed.
To exploit the advantages of both GNNs and transformer architectures discussed in this
section, a combined graph transformer network architecture is employed. Two key reasons
advocate for the use of graph transformer network architectures. First, the graph structure
described above is exploited, into which events are translated in a natural manner. Second,
the advantages of transformer architectures with self-attention mechanisms are utilized,
which learn and reflect relationships in sequences [112]. The latter is used successfully in
particular for natural language processing in large language and foundation models. The
TransformerConv operator in Pytorch Geometric is used for this purpose [173].

After the normalization and translation of the observables into node and edge features of
the graph structure as described in the previous section, the graph is first translated into
the embedding space. This is done with an encoding layer that changes the dimension of the
initial node feature vector and transforms all features into a representation in the embedding
space. The dimension 𝐸 of the vector in the embedding space is a hyperparameter of
the model and remains unchanged in the transformer architecture. At this point, the
straightforward interpretation and readability of the graph structure built from components
of physics quantities is no longer given. Following the encoding step, a further normalization
is performed and passed on to the activation function. This is followed by a series of graph
transformer blocks in which the key operations of the training are performed. These graph
transformer blocks are repetitive units of identical operations, analogous to multiple hidden
layers of a feedforward neural network. Similar to the embedding dimension, the number
of blocks is also a hyperparameter of the architecture. In these blocks, the general idea
is identical to other GNNs, in which the nodes of the graph are updated using message
passing. The first step in the message passing procedure is to compute the message for each
node. Each node calculates a message for each of its connected neighbors. In the model of
this thesis the calculation is done for each encoded representation that was initially created
from physics objects into the embedding space since it is implemented as a fully connected
graph. The calculated message for a node is a function of its own feature vector, the edge
to the neighbor, and the feature vector of the neighbor. After the message calculations,
the messages are sent and each node in the graph aggregates the received messages. The
sum or mean can be used for message aggregation, in this thesis, the former is used. In
the final step, the feature vector is updated by combining the aggregation with a node’s
own feature vector to create an updated node feature vector. This entire process runs in
parallel and synchronously for all nodes in the graph. After the graph transformer blocks,
a multilayer perceptron (MLP) is placed to generate the prediction. The architecture
is shown in Figure 9.5 and the details about the mathematical operations in the graph
transformer blocks are explained in the following.
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Figure 9.5: Jet identification architecture designed with graph structures and transformer
architectures using multi-head attention mechanisms. After a total of 𝑁
transformer blocks the embedding dimension of the feature vectors is decreased
with an MLP to a scalar predicting the type of node. Adapted from [173].

108



9.2 Jet classification: Node level prediction 109

Instead of the typical adjacency matrix in GNNs, which reflects the weighted connections
for message passing, in this architecture it is replaced by the multi-head attention matrix
to enable self-attention mechanisms. The attention mechanism of the transformer models
in its originally proposed form [112] is adapted for GNNs [173]. The self-attention is
calculated in a sub-block referred to as head and based on Ref. [173]. As a first component
for the calculation of the attention in a head of the GNN, query (𝑞) and key (𝑘) vectors
are required. For the embedded node features 𝐹 (𝑙) = {𝑓 (𝑙)

1 , 𝑓
(𝑙)
2 , ..., 𝑓

(𝑙)
𝑁 } of the graph with

a total of 𝑁 nodes, these are calculated using matrix multiplications and bias vectors 𝑏 for
a connection from node 𝑗 to 𝑖 through

𝑞
(𝑙)
𝑐,𝑖 = 𝑊 (𝑙)

𝑐,𝑞𝑓
(𝑙)
𝑖 + 𝑏(𝑙)

𝑐,𝑞

𝑘
(𝑙)
𝑐,𝑗 = 𝑊

(𝑙)
𝑐,𝑘𝑓

(𝑙)
𝑗 + 𝑏

(𝑙)
𝑐,𝑘 ,

(9.1)

where 𝑐 denotes the current head and 𝑙 the current layer of the calculation. With this,
the feature vector 𝑓 (𝑙)

𝑖 and connected feature vector 𝑓 (𝑙)
𝑗 are transformed into a query

vector 𝑞(𝑙)
𝑐,𝑖 ∈ R𝑑 and key vector 𝑘(𝑙)

𝑐,𝑗 ∈ R𝑑 with dimension 𝑑 identical in all heads. The
transformation is performed through a multiplication of the feature vectors with the
matrices 𝑊 (𝑙)

𝑐,𝑞 , 𝑊 (𝑙)
𝑐,𝑘 ∈ R𝑑×𝐸 and biases 𝑏(𝑙)

𝑐,𝑞, 𝑏(𝑙)
𝑐,𝑘 ∈ R𝑑 which contain trainable parameters

of the model. The trainable parameters are optimized during the training procedure. Since
each head operates independently, it is possible to learn unique patterns. Multiple heads
therefore allow the model to learn various relationships in parallel, enhancing the overall
expressiveness and improve the generalization of the model.

The grade of attention, which can be calculated from a scaled dot-product of two vectors
in the query-key space, is given by

⟨𝑞(𝑙)
𝑐,𝑖 , 𝑘

(𝑙)
𝑐,𝑗⟩ = exp

⎛⎝(𝑞(𝑙)
𝑐,𝑖)T(𝑘(𝑙)

𝑐,𝑗)
√
𝑑

⎞⎠ . (9.2)

This involves an exponential scalar product of the two vectors with a normalization relative
to the dimension 𝑑 of the two vectors. The dimension 𝑑 of the query and key vectors is
smaller than the embedding dimension 𝐸 of the node features 𝑓 (𝑙)

𝑖,𝑗 and is given by 𝑑 = 𝐸/𝐶,
where 𝐶 is the number of multi-heads. The property of the scalar product is used to
determine the attention. In this way the relevance of the key vector with respect to the
query vector is determined based on linear algebra principles. If the two vectors point in the
same direction in query-key space, the value of the dot-product is large, whereas orthogonal
vectors result in a dot-product of zero. Vectors pointing in opposite directions cause the
scalar product to be negative which is interpreted as a low attention, i.e. importance of
the key vector for the query vector. The exponential function transforms the scale of this
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dot-product. Hence, the more similar the query and key vectors are, the greater the scalar
product and the greater the attention of node 𝑗 to 𝑖.

The edge 𝑒𝑐,𝑖𝑗 between the two nodes under consideration is calculated in the analogous
way to the node features in Equation 9.1, but with independent trainable weight matrices
𝑊𝑐,𝑒 and biases 𝑏𝑐,𝑒:

𝑒𝑐,𝑖𝑗 = 𝑊𝑐,𝑒𝑒𝑖𝑗 + 𝑏𝑐,𝑒 . (9.3)

The embedded edge vector is added to the previously determined key vector 𝑘𝑐,𝑗 and the
result of the calculated attention matrix is

𝛼
(𝑙)
𝑐,𝑖𝑗 =

⟨𝑞(𝑙)
𝑐,𝑖 , 𝑘

(𝑙)
𝑐,𝑗 + 𝑒𝑐,𝑖𝑗⟩∑︀

𝑢∈𝒩 (𝑖)⟨𝑞
(𝑙)
𝑐,𝑖 , 𝑘

(𝑙)
𝑐,𝑢 + 𝑒𝑐,𝑖𝑢⟩

. (9.4)

The applied sum runs over all nodes 𝒩 (𝑖) connected to node 𝑖 to ensure a normalized
attention. The calculation of the value vector is done using the weight matrices 𝑊 (𝑙)

𝑐,𝑣 with
the biases 𝑏(𝑙)

𝑐,𝑣. Both contain further trainable parameters of the model. The value vector
𝑣

(𝑙)
𝑐,𝑗 results from

𝑣
(𝑙)
𝑐,𝑗 = 𝑊 (𝑙)

𝑐,𝑣𝑓
(𝑙)
𝑗 + 𝑏(𝑙)

𝑐,𝑣 . (9.5)

This value vector together with the edge is then weighted based on the previously determined
attention

𝑓
(𝑙+1)
𝑖 =

⃦⃦⃦⃦
⃦

𝐶

𝑐=1

[︁ ∑︁
𝑗∈𝒩 (𝑖)

𝛼
(𝑙)
𝑐,𝑖𝑗(𝑣(𝑙)

𝑐,𝑗 + 𝑒𝑐,𝑖𝑗)
]︁

, (9.6)

where ‖ is the concatenation function for all heads 𝐶 that are calculated in parallel. With
this step a new direction is calculated that shifts the original vector to a new, optimized
position based on the direction of the value vector 𝑣(𝑙)

𝑐,𝑗 and the edge 𝑒𝑐,𝑖𝑗 . This directional
translation is weighted with the previously determined attention 𝛼

(𝑙)
𝑐,𝑖𝑗 .

To prevent the model from oversmoothing, a gated residual connection is implemented
which bypasses the self-attention mechanism. For this, an additional residual vector 𝑟(𝑙)

𝑖 is
calculated with

𝑟
(𝑙)
𝑖 = 𝑊 (𝑙)

𝑟 𝑓
(𝑙)
𝑖 + 𝑏(𝑙)

𝑟 (9.7)

in an analogous way to Equation 9.1, but with independent matrices 𝑊 (𝑙)
𝑟 and biases 𝑏(𝑙)

𝑟 .
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The new final node representation results from the gated residuals and the message passing
through attention mechanisms as discussed using

𝛽
(𝑙)
𝑖 = sigmoid(𝑊 (𝑙)

𝑔 [𝑓 (𝑙+1)
𝑖 ; 𝑟(𝑙)

𝑖 ; 𝑓 (𝑙+1)
𝑖 − 𝑟(𝑙)

𝑖 ])

𝑓
(𝑙+1)
𝑖 = LeakyReLU(LayerNorm((1− 𝛽(𝑙)

𝑖 )𝑓 (𝑙+1)
𝑖 + 𝛽

(𝑙)
𝑖 𝑟

(𝑙)
𝑖 )) ,

(9.8)

where 𝛽(𝑙)
𝑖 is determined from the concatenation of the vectors 𝑓 (𝑙+1)

𝑖 , 𝑟(𝑙)
𝑖 , and 𝑓 (𝑙+1)

𝑖 − 𝑟(𝑙)
𝑖 ,

multiplied with the weight matrix 𝑊 (𝑙)
𝑔 , and transformed into a range of (0, 1) with the

sigmoid function, as defined in Equation 5.3. The 𝛽(𝑙)
𝑖 vector can be applied to add the gated

residual information in a weighted manner to the output value of the multi-head attention
mechanism. The application of 𝛽(𝑙)

𝑖 is considered a hyperparameter of the architecture.
This involves the application of the sigmoid function to stabilize the numerical calculations.
With the LeakyReLU function, a further non-linear function is employed, as defined in
Equation 5.2. An important aspect in the design of the architecture is the implementation
of a normalization referred to as LayerNorm at the end of each graph transformer block.
The first problem that can occur when no normalization is applied is known as internal
covariate shift. This occurs especially in deep neural networks where the output from
the first layer enters the second, the second enters the third, etc., so that changes in
leading layers affect layers further back in the network. From this, two consequences
arise. Firstly, without suitable normalization, the training is slowed down since the trailing
layers have to adapt continuously. Secondly, the network stability can suffer if gradients
become too large or too small and thus almost vanish, which in turn leads to worse
generalization. By renormalizing each batch, the internal covariate shift can be prevented.
This is called batch normalization (BatchNorm) [174, 175]. The second problem that can
occur without performing a normalization is the effect of unwanted oversmoothing. In
GNNs, the node embeddings become too similar after several layers, which reduces the
differentiation capability of the nodes and renders them almost indistinguishable. As a
result, the performance of the model can gradually decrease with the number of layers. In
GNNs, this is remedied by normalizing the node embedding in each layer so that differences
are retained. This normalization is referred to as pair normalization (PairNorm) [176].
The choice of layer normalization, whether it is BatchNorm or PairNorm, is considered a
hyperparameter of the architecture and is part of the hyperparameter optimization process
to identify the optimal model for the classification task.

After the completion of multiple graph transformer blocks in the training, the dimension 𝐸
of the embedded node feature is changed. The dimension of the node vector was previously
always kept constant, but is now reduced to one to enable the NLP indicating the additional
jet-ness of a node. To decrease the node feature dimension, an MLP is constructed for the
embedded node, consisting of multiple layers. In each consecutive hidden layer of the MLP,
the dimension of the nodes is gradually reduced by a fixed factor. The output layer of the
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Table 9.2: Event yields per process used for training of the NLP model.

Process No. of events

tt̄bb̄ 34682
tt̄b 50000
tt̄H(bb̄) 69881
tt̄H(b) 43036
tt̄Z(bb̄) 27998
tt̄Z(b) 23290
tt̄Z(nonB) 50000
tt̄cc̄ 57618
tt̄c 50000
tt̄LF 100000∑︀

events 485505

MLP comprises one node with a sigmoid activation function. In this way, the resulting
scalar per node can be interpreted as a probability prediction generated by the model that
a given node mapped to a physics object is an additional jet.

A total of approximately half a million events are used to train the NLP model. Details on
the composition of the training sample are given in Table 9.2. Differences in the number
of simulated events for each process are compensated via reweightings in the loss function.
In all networks, the cross-entropy serves as loss function. The training sample is based on
the event simulations in Table 8.1, taking into account different scenarios that can occur
at the particle level. For instance, the training sample is composed of tt̄bb̄ and tt̄b events,
with only one additional b jet in the latter. This is the case if, for example, a jet is out
of acceptance. The terminology for tt̄H(bb̄) and tt̄H(b), tt̄Z(bb̄), and tt̄Z(b), as well as
tt̄cc̄ and tt̄c is chosen analogously. No additional heavy flavor jets are present in the tt̄LF
event case. Details on the differences are described in Section 4.6. The validation and
test samples are composed in a similar way, each with a size of 5% of the training sample.
Training, validation, and test samples are randomly composed from the event simulation
and are orthogonal to each other. The event simulation for the 2018 data-taking era is
additionally enriched with the simulation from 2017 for the tt̄bb̄, tt̄H, and tt̄Z processes in
order to increase the training statistics.

The optimal architecture is determined by performing a grid search hyperparameter
optimization. As stated before, to avoid choosing a stochastically arbitrary optimum, each
architecture is trained for ten randomized weight initializations in parallel. The Receiver
Operating Characteristic - Area Under the Curve (ROC AUC) is used as a metric for
evaluating a model’s capability to identify additional jets. With this, the ROC AUC serves
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Table 9.3: Hyperparameter settings for NLP trainings.

Hyperparameter Setting

Batch size 2048
Loss function (Eq. 5.4) Binary cross-entropy
Optimizer (cf. Section 5.1) Adam
Learning rate (cf. Section 5.1) 0.01
Number of graph transformer blocks 8
Normalization PairNorm
Activation function (Eq. 5.2) LeakyReLU
Node aggregation Sum
Node embedding dimension 32
Number of multi-head attentions 5
Multi-head consolidation (concat / average) (Eq. 9.6) Concat
Gated residual information weighting 𝛽(𝑙)

𝑖 (Eq. 9.8) False (unweighted)
Dropout probability of normalized attention coefficients 0.2
Additive bias 𝑏 True
Root weight (add transformed root node to aggregation) True
MLP layers 3
MLP embedding dimension 32
MLP embedding dimension reduction factor per layer 0.4
MLP output layer dimension 1

as a single measure of the overall performance, with values closer to one indicating a better
performance. The optimal network achieves a ROC AUC of 0.957. The standard deviation
of the mean value of all training repetitions with identical architectures is below 0.1%. The
hyperparameters of this network are summarized in Table 9.3.

The loss values and the ROC AUC for each epoch during training and validation are shown
in Figure 9.6. A total of 43 epochs are required to complete the training. An epoch is
defined as a full iteration through the entire training sample. The loss function values
decrease rapidly within the first training epochs and the ROC AUC increases steeply as
the initialized weights are quickly adjusted. After the first saturation in the loss curve is
reached in the 19th epoch, the learning rate (cf. Section 5.1) is scaled down by a factor of
0.01. This adjustment ensures that a local minimum can be better exploited, as evidenced
by the subsequent sharp drop in the loss function. Once a new saturation point is reached,
the training is stopped early. Overfitting of the model, which would manifest in an increase
of the calculated loss value on the validation sample, does not occur. A similar pattern is
observed in the ROC AUC performance.
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Figure 9.6: Evolution of the graph transformer network for NLP on simulated events: loss
function values (left) and ROC AUC performance measure (right) per epoch
for training (green) and validation (blue).

The performance of the trained model on the test sample is shown in Figure 9.7, with
performance broken down into the event classes of the training. It can be seen that
especially the performance in events with additional light and c jets is better compared
to events with additional b jets. For example, the performance is best in tt̄ events with
one or more light jets, followed by tt̄Z(nonB) events. The model performance in tt̄c and
tt̄cc̄ events is worse than the performance in tt̄ events with additional light jets, but better
compared to tt̄ events with additional b jets. This is expected because it is difficult for the
network to separate additional jets from b jets originating from the tt̄ system, especially if
the observables show strong similarities. This is the case if the additional jets are also b
jets, resulting in similar b tagging feature values. Additionally, other kinematic variables
such as jet 𝑝T are similar, making separation more challenging. In the case of events
with additional c or light jets, the distinction between a b jet from the tt̄ system and an
additional jet can easily be made based on the b tagging information as a powerful feature.
The most challenging determination of the additional jets is in tt̄H(bb̄) events.

ROC AUC values of over 0.9 are achieved for the events of all processes on the test sample.
This is also due to the fact that theoretically possible misclassifications of the model never
occur. For example, this includes avoiding the simple confusion of an additional jet with a
node representing a lepton. The ability to make this rather simple distinction already leads
to high ROC AUC values. Therefore, in the following section the quality of the model is
examined under various aspects that go beyond a direct ROC AUC determination after
training on the test sample.
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Combined: AUC 0.957
ttbb: AUC 0.935
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ttcc: AUC 0.947
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ttZ(nonB): AUC 0.982
ttLF: AUC 0.993

Figure 9.7: Receiver Operating Characteristic (ROC) curves show specificity (true negative
rate) over sensitivity (true positive rate). The Area Under the Curve (AUC)
serves as a single measure of the overall performance, with values closer to one
indicating a better performance. The total performance on the full test sample
is indicated by a black line. In addition, the performance is broken down for
particular event classes. The dotted gray line represents the lower boundary
for a random classifier.
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Figure 9.8: Evaluation of the NLP model for jets of tt̄bb̄, tt̄H(bb̄), and tt̄Z(bb̄) events.
The NLP score of the binary classifier shows separation between additional jets
and b jets from the tt̄ system as well as other jets.

9.2.2 Node level prediction evaluation

In this section, the trained model is examined in detail and benchmarked to provide a
better understanding of the model performance. With this, three important aspects are
assessed. First, the discrimination power of the NLP model to distinguish additional jets
from other jets in an event is investigated. Second, it is verified that the model learns a
variety of features and does not fail to predict additional jets with particular properties.
Third, the method’s performance is compared to other established methods to rank its
effectiveness.

To assess the separation quality of the NLP model, the output score of the prediction is
examined. By design through the sigmoid function, the score ranges from zero to one. The
distribution of the NLP scores for the additional jets is shown in Figure 9.8. Additionally,
the distribution of the score for all remaining jets is shown, split into b jets from the tt̄
system and other jets, which do not belong to either additional jets or jets from the top
quark decays. The distribution of the NLP scores shows high purity for scores greater
than 0.9. Overall, there is a clear separation between additional jets and b jets from the
tt̄ system as well as other jets. Only a relatively low number of additional jets result in
small NLP scores. At scores between 0.6 and 0.8, the relative number of b jets from the tt̄
system increases slightly before dropping again at large scores.

An alternative method for determining the additional jets using a combinatorial approach
is to calculate the distances of all b-tagged jets and select those with the minimum distance
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Figure 9.9: Jet identification accuracy for the Δ𝑅min method (left) and the NLP model
(right). It is determined how many events have either both additional jets
(2/2), one out of two additional jets (1/2), or no additional jets (0/2) identified.

as the additional jets. This procedure is used, for example, in the differential measurement
of the tt̄bb̄ process at the CMS experiment [96], and is referred to as the Δ𝑅min method.
To compare the accuracy of the Δ𝑅min method with the NLP model, it is determined
how many events have either both additional jets, one out of two additional jets, or no
additional jets identified. For tt̄bb̄ events using the Δ𝑅min method, both additional jets
can be correctly assigned in 31% of all events, one additional jets in 54% of all events, and
in the remaining 14% of events the method fails completely with no additional jet being
found via the distance determination. The evaluation of the NLP model shows significantly
better results: here, two out of two additional jets are found in 49% of the events, one out
of two additional jets in 46% of the events and no additional jet is found in only 5% of all
events. With this, the NLP model demonstrates a relative improvement in precision of
more than 58% in finding both additional jets in tt̄bb̄ events. The detailed performance
breakdown is shown in Figure 9.9. The assignment of additional jets works best in tt̄Z(bb̄)
simulated events. In 41% of all events both additional jets can be found with the Δ𝑅min

method, whereas 54% of all events can be found with the NLP method. The most difficult
distinction between additional jets and other jets is in simulated tt̄H(bb̄) events compared
to simulations of the tt̄bb̄ and tt̄Z(bb̄) processes. Here, both additional jets are found in
26% of all events with the Δ𝑅min method, while both additional jets are found in 39% of all
events with the NLP method. The Δ𝑅min method definition for evaluating the assignment
accuracy differs slightly for tt̄cc̄ events. While the distances between all b-tagged jets are
calculated in tt̄bb̄, tt̄H(bb̄), and tt̄Z(bb̄) events, the distance between all existing jets in
the event is calculated in the case of tt̄cc̄ events. Whichever jet combination show the
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smallest distance, the two jets are then assigned as additional c jets. This results in the
largest difference in the assignment accuracy of two out of two additional jets between
both methods. The assignment accuracy of the Δ𝑅min method is 26% while it is 47% with
the NLP method. As a result, both true additional c jets are correctly assigned in over
80% more events with the NLP method.

As discussed, the Δ𝑅min method offers an effective way of reconstructing the additional
jets, albeit being inferior to the NLP method in terms of accuracy. However, the reduced
accuracy is not the sole caveat. Jets determined as additional jets by the Δ𝑅min method
possess properties that are not typical of the true additional jets. The distribution of the
Δ𝑅min observable for true additional jets exhibits larger values compared to the distances
of the additional jets identified by the Δ𝑅min method, i.e. the closest two b jets in an
event. This is the case by definition as the two closest jets do not necessarily form the true
additional jets. The differences in these distance distributions are shown in Figure 9.10
for tt̄bb̄, tt̄H(bb̄), and tt̄Z(bb̄) events, without breaking down the processes in favor of
clarity. Depicted in this figure is the distribution of the true additional jets as well as the
distribution of the distances between the two closest b jets in an event and thereby those
jets that would be determined by the Δ𝑅min method. In addition, the distribution of the
distances between the two additional jets determined by the NLP method is shown. It is
evident from the distributions that the Δ𝑅min method does not reflect the true inherent
distribution, whereas the NLP method is considerably closer to the true Δ𝑅 pattern. This
also indicates that the NLP method does not rely excessively on the Δ𝑅 observable which
is included as an edge weight into the graph structure. Figure 9.10 also depicts the jet
pair mass of the additional jet distributions. In this case, the jet pair mass is determined
for the true additional jet pairs as well as the additional jet pairs predicted by the NLP
model. For the true additional jet pairs, the expected distributions can be identified in the
breakdowns for tt̄bb̄, tt̄H(bb̄), and tt̄Z(bb̄) events: a continuous spectrum for tt̄bb̄ events,
a peak at the Z boson mass for tt̄Z(bb̄) events, and a peak at the Higgs boson mass for
tt̄H(bb̄) events. The equivalent distributions of the additional jets assigned by the NLP
model also show this characteristic. However, distinctions are less pronounced and the
distributions are skewed towards the average of the three true distributions.

A further important examination is the behavior of the NLP model on data. Since no labels
are available for data, the trained NLP model is evaluated on both data and simulation,
and the distributions of the predictions are compared. The agreement of the predictions
on data and simulated events is shown in Figure 9.11. Generally, it can be seen that all
data points are within the statistical and systematic uncertainty of the prediction based
on simulated events. Details on the uncertainties are discussed in Chapter 10.
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Figure 9.10: Distributions of the distance Δ𝑅 between pairs of true additional b jets,
predicted additional b jets by the NLP model, and additional b jets determined
with the Δ𝑅min method on combined tt̄bb̄, tt̄H(bb̄), and tt̄Z(bb̄) events (left).
Distributions of masses of the jet pair combinations for true additional b jets
and the additional b jets predicted by the NLP model sub-divided for tt̄bb̄,
tt̄H(bb̄), and tt̄Z(bb̄) events (right).
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Figure 9.11: Evaluation of the NLP model on the entire phase space. The NLP score
distribution for data and event simulation as well as their ratio is displayed.
The simulated events of tt̄H and tt̄Z processes are shown both stacked and as
a line, scaled to the integral of all events.
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9.3 Event classification: Graph level prediction

In this section, the second stage of the classification strategy shown in Figure 9.4 is discussed.
This stage involves the classification of events in the analysis phase space based on an
additional AI model. The transformation of events into a graph structure as discussed in
Section 9.1 is identical to the procedure for jet identification with the NLP model discussed
in Section 9.2. However, while the identical event information in the form of observables
is translated into features of the graphs for event classification, in this stage the node
feature vector is additionally enriched with binary information about each node from the
evaluated NLP model. The biggest difference, however, is the type of prediction of the
graph. In contrast to the NLP model for jet identification, which predicts individual nodes
of the graph, this approach predicts the class of the entire graph for event classification.
Compared to NLP, the GLP task is not a binary but a multi-class classification. Also, the
training data set must be refined to ensure that the properties of the entire phase space are
accurately represented, e.g. including all backgrounds. The details of the GLP architecture
and training are explained in the following section.

9.3.1 GLP model and training

The goal of event classification is to build a robust model trained on simulated events
that can distinguish events both in simulation and in data. The resulting distributions
of evaluated events are then analyzed in the fit model in Chapter 10 to determine the
signal strengths of the processes of interest. Similar to the NLPs, the architecture for event
classification is generally based on graph transformer blocks, which employ transformers and
self-attention mechanisms to perform message passing within the GNN model. However,
since neither an NLP is performed nor the classification is binary, the architecture is
modified accordingly. Whereas previously the representation of the embedded node
features with dimension 𝐸 was reduced to a scalar with a different MLP architecture,
now the entire graph is reduced to a linear, fixed-size representation with an MLP. This
flattened representation can then be used to predict the class of the graph and eventually
the event.

To flatten the graph representation, a pooling method is employed for downsampling,
similar to techniques used in image recognition with convolutional neural networks. For
this purpose, the so-called top-𝑘 pooling is added to the graph transformer architecture,
based on [177–179]. The top-𝑘 pooling procedure selects a number of 𝑘𝑁 nodes from a total
of 𝑁 nodes in the graph that are retained for subsequent processing. All other 𝑁 − 𝑘𝑁
nodes and their connections are removed from the graph. Essentially, this procedure
consists of two hyperparameters, the fraction 𝑘 ∈ [0, 1), and the decision after how many
graph transformer blocks the pooling should be executed. In general, it is also possible to
drop a fixed number of nodes, but in this thesis a ratio is chosen in order to respond more
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flexible to varying node multiplicities. Since a ratio is chosen, the resulting product 𝑘𝑁 is
always rounded to an integer. The decision on which nodes to keep is based on a projection
of the node embeddings. Initially, the 𝑁 nodes of the graph, each with 𝐸 features, are
combined to form a matrix 𝐹 𝑙 ∈ R𝑁×𝐸 in the 𝑙-th graph transformer block. This matrix
𝐹 𝑙 is multiplied by a vector2 𝑝𝑙 in the 𝑙-th layer, which contains trainable parameters and
is learned by the model

𝑦𝑙 = 𝐹 𝑙𝑝𝑙

‖𝑝𝑙‖
, (9.9)

where ‖𝑝𝑙‖ denotes the 2-norm of the vector 𝑝𝑙. The projection 𝑦𝑙 resulting from the
multiplication is used to select the highest 𝑘 entries from the vector 𝑦𝑙

𝑖𝑙 = top-𝑘
(︁
𝑦𝑙, 𝑘

)︁
. (9.10)

While 𝑦𝑙 is a vector with dimension 𝑁 , the vector 𝑖𝑙 therefore has the dimension 𝑘𝑁 . To
obtain the top-𝑘 matching embedded nodes

𝐹 𝑙+1 =
(︁
𝐹 𝑙 ⊙ tanh

(︁
𝑦𝑙
)︁)︁

𝑖𝑙
(9.11)

is used to calculate a new representation of the remaining nodes passed to the subsequent
layer 𝑙+ 1. Here, ⊙ is the element-wise product and with the tanh function, a non-linearity
is incorporated into the calculation. The operation ( )𝑖𝑙 selects slices according to the given
indices by the vector 𝑖𝑙. The dimension of node embedding is now reduced to 𝐹 𝑙+1 ∈ R𝑘𝑁×𝐸

compared to 𝐹 𝑙 ∈ R𝑁×𝐸 before.

After executing a total of 𝐿𝑝 pooling layers, a readout layer is designed. This readout layer
is intended as a flattening layer of a fixed size to enable a later processing of the encoded
graph representation by an MLP. For this purpose, the node representations arising in
each pooling operation are summarized, which contain refined information of the graph
based on the optimization steps during training. First, the sum of all node representations
after the top-𝑘 selection is added up in each pooling operation performed, concatenated
with the maximum

𝑠(𝑙) =

⎛⎝ 1
𝑁 (𝑙)

𝑁(𝑙)∑︁
𝑖=1

𝑓
(𝑙)
𝑖

⎞⎠ ⃦⃦⃦ 𝑁(𝑙)
max
𝑖=1

𝑓
(𝑙)
𝑖 , (9.12)

where 𝑓 (𝑙)
𝑖 is the 𝑖-th node’s feature vector with a total of 𝑁 (𝑙) remaining nodes of the

graph in layer 𝑙. The concatenation is denoted by the ‖ symbol. According to Ref. [178],
2For improved readability, explicit vector notation is omitted.

121



122 9 Data set and AI model design

Table 9.4: Hyperparameter settings for GLP trainings.

Hyperparameter Setting

Batch size 2048
Optimizer (cf. Section 5.1) Adam
Learning rate (cf. Section 5.1) 0.01
Loss function (Eq. 5.4) Cross-entropy
Number of graph transformer blocks 4
Normalization BatchNorm
Activation function (Eq. 5.2) LeakyReLU
Node aggregation Sum
Node embedding dimension 32
Number of multi-head attentions 5
Multi-head consolidation (concat / average) (Eq. 9.6) Average
top-𝑘 0.5
Number of poolings 2
Gated residual information weighting 𝛽(𝑙)

𝑖 (Eq. 9.8) False (unweighted)
Dropout probability of normalized attention coefficients 0.5
Additive bias 𝑏 True
Root weight (weight of node relative to aggregation) True
MLP layers 3
MLP embedding dimension 64
MLP embedding dimension reduction factor 0.4
MLP output layer dimension 7

the concatenation of the mean and maximum of 𝑓 (𝑙)
𝑖 improves the resulting representations.

Finally, the sum of all sums is calculated

𝑠 =
𝐿𝑝∑︁
𝑙=1

𝑠(𝑙) , (9.13)

which represents an average of all learned node embeddings and therefore a representation
of the initial graph with a fixed size 𝐸. Either directly or via linear transformation, the
resulting vector 𝑠 serves as an input layer for an MLP. The choice of the embedding
dimension for the MLP as well as the number of layers and thus the size of the MLP are
further hyperparameters of the architecture. All hyperparameters of the GLP architecture
are summarized in Table 9.4.

The pooling operations and the associated MLP are shown in Figure 9.12. The output
layer of the MLP consists of a total of seven nodes with sigmoid as the activation function
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Figure 9.12: Additional pooling operations in the graph transformer network for GLP.
In each pooling step, embedded node representations and their connections
are removed from the graph, creating new graph representations through
downsampling. For the flattening operation, averages are calculated and
concatenated with the maximum of all learned node embeddings. All resulting
representations are summed up to form an input vector, which is transferred
to an MLP with a linear transformation. The MLP performs a multi-class
classification of the initial graph. Adapted from [178].

in order to obtain a probability estimate from the score of a node that the event in question
belongs to the respective class.

A total of seven different classes are defined for the training. The event class definition is
based on the simulated process and the sub-category as defined in Table 8.1, along with
the presence of additional jets and their flavors. The seven classes consist of tt̄B, tt̄H(B),
tt̄Z(B), tt̄Z(nonB), tt̄C, tt̄LF, and Other. The tt̄B class consists of simulated dileptonic
tt̄B events with one or two additional b jets. Accordingly, the tt̄H(B) (tt̄Z(B)) class is
defined as all simulated tt̄H (tt̄Z) events with a subsequent decay of H → bb̄ (Z → bb̄),
which can lead to one or two additional b jets. All events of simulated tt̄Z processes that
do not end in Z→ bb̄ final states are defined as a separate class, which is referred to as
tt̄Z(nonB). The tt̄C class includes all events that do not match the tt̄B class but have
one or two additional c jets. If no additional b or c jets are present in tt̄+jets simulated
events, they belong to the tt̄LF class. All events that do not fit into the preceding classes
belong to the Other class. These include, for example, other tt̄+jets decays such as the
semileptonic decay channel, but most importantly all backgrounds in the phase space.

A total of approximately 642 000 simulated events are used for the training of the GLP
model. As with the NLP training sample, the tt̄H and tt̄Z simulated events are enriched
from event simulations of the 2017 era. The individual classes’ shares can be seen in
Table 9.6. Since not all classes have an equal number of events, the loss function is
weighted according to the proportions so that all classes contribute equally to the loss
without inducing a bias. Reweighting generally allows for greater differences in the number
of events in individual classes. Particularly for tt̄B, tt̄C, and especially tt̄LF events, the

123



124 9 Data set and AI model design

Table 9.5: Training class definitions based on the simulated processes and sub-categories
in Table 8.1. The presence of additional jets based on hadron matching is the
decisive criterion. Cases that cannot occur are indicated with ‘‘−’’. Cases that
are not considered for training are marked with ‘‘∘’’.

Process [Sub-category] Additional jet criteria
≥ 1 add. b jets no add. b jets no add. b jets None

≥ 1 add. c jets no add. c jets

tt̄+jets [dilepton] ∘ tt̄C tt̄LF −
tt̄bb̄ [dilepton] tt̄B ∘ ∘ −
tt̄H [H→ bb̄] tt̄H other other −
tt̄Z [Z→ qq̄] tt̄Z(B) tt̄Z(nonB) tt̄Z(nonB) −
all other − − − Other

Table 9.6: Event yields per class used for training of the GLP model.

Class No. of events

tt̄B 100000
tt̄H 83428
tt̄Z(B) 75326
tt̄Z(nonB) 100313
tt̄C 100000
tt̄LF 100000
other 88278∑︀

events 642045

event simulations yield far higher numbers of simulated events and thus candidates for
training. This can provide a more comprehensive description of these processes for the
trained model and thus increases the variability of the training sample. However, trainings
on samples with a much higher number of simulated tt̄+jets events, resulting in a greater
inequality of the class ratios in the overall training sample, do not show any performance
improvements. In most cases, the performance results are even worse, despite the fact
that the enlarged imbalance in the training sample was compensated by reweighting the
loss function. With the training sample composition in Table 9.6, an optimum in the
performance is achieved.

The loss and ROC AUC trends on the training and validation sample for the individual
training epochs are shown in Figure 9.13. After epoch 19, the learning rate is adjusted and
saturation sets in, where the loss values barely change and the ROC AUC values do not

124



9.3 Event classification: Graph level prediction 125

0 10 20 30 40 50 60
Number of epoch

0.1600

0.1625

0.1650

0.1675

0.1700

0.1725

0.1750

Lo
ss

 (x
10

3 )
(13 TeV)CMSSimulation Work in progress

Training
Validation (x4.0)

0 10 20 30 40 50 60
Number of epoch

0.74

0.75

0.76

0.77

0.78

0.79

0.80

R
O

C
 A

U
C

(13 TeV)CMSSimulation Work in progress

Training
Validation

Figure 9.13: Evolution of the graph transformer network for GLP on simulated events: loss
function values (left) and ROC AUC performance measure (right) per epoch
for training (green) and validation (blue). The loss values of the validation are
scaled by a factor of four due to dropout and to improve the comparability.

increase any further. The evaluation on the validation set shows slightly more fluctuations
than the evaluation of the training, but no overfitting can be recognized. The average
ROC AUC score is 0.805± 0.001.

After training, the trained GLP model is evaluated on the test sample. For this purpose,
each event is assigned to the class whose associated MLP node predicts the highest
GLP score. With the help of a confusion matrix, it is then possible to identify which
confusions occur more frequently, or which predictions work particularly well. For better
interpretability, the confusion matrix is normalized to its respective class shares and
visualized in two versions. One version refers to the efficiency, indicating how a true
class is distributed among the different predicted classes. The other version illustrates the
purity, which shows the proportion of true classes that actually constitute a predicted class.
Both versions can be seen in Figure 9.14. It should be noted that these confusion matrices
reflect equal class sizes, which means that migrations by the GLP model in a general
fashion can be observed. This allows a global evaluation of the performance of the GLP.
However, the confusion matrices do not consider event weights, which are used to describe
the expected event yields and contributions in the phase space. The physically expected
event yields, for example in the tt̄H node of the GLP, can therefore not be directly deduced
and are examined in more detail in Section 9.3.2 and Chapter 10. The expected yields
are then crucial for the physics model. Overall, the diagonality in the confusion matrix is
clearly pronounced. In addition, the separation of the phase space is recognizable through
block-diagonal elements. A b flavor enriched phase space block consisting of events in the
tt̄B, tt̄H, and tt̄Z(B) classes, as well as a separated phase space for the remaining classes, is
visible in both versions of the confusion matrix. Although migrations between these phase
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Figure 9.14: Confusion matrices for the GLP. The true class is placed on the vertical axis
and the predicted class on the horizontal axis. Both confusion matrices contain
the same underlying pattern, but with a different normalization. The green
confusion matrix shows the prediction efficiency of each event class; the sum
of each row is equal to one. The blue confusion matrix shows the purity of
each event class; the sum of each column is equal to one.

space regions generally occur, the migrations are suppressed. The b jet tagging information
is available to the model via the DeepJet b tagging score observable implemented as one
of the node features. Furthermore, some confusions are pronounced, e.g. tt̄Z(B) events
ending up in the tt̄H class. Also, the confusion between tt̄C and tt̄LF events is more
prominent than with other predictions. A possible method of increasing the focus on events
that are more difficult to classify is to reweight the loss function. For this purpose, the
cross-entropy loss function is modified by an additional term (1− 𝑝𝑡)𝛾 , so that the new
loss function results in

FL (𝑝𝑡) = − (1− 𝑝𝑡)𝛾 log (𝑝𝑡) , (9.14)

where 𝑝𝑡 is the predicted probability of the true class and 𝛾 is a tunable focusing parameter
with 𝛾 ≥ 0. This modified loss function is referred to as focal loss [180]. However, applying
a focal loss with various focusing parameters does not increase the performance of the
GLP model. The confusion can also be reduced with the help of the two-dimensional
heavy flavor tagger information CvB and CvL; however, as discussed in Section 9.1, these
observables are not taken into account in the final model due to the failure of the goodness
of fit test of the input features. Trainings conducted with this information included in the
node feature vector show reduced confusion and improved performance.
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9.3.2 GLP evaluation

The evaluation of the GLP model on data and simulated events across the entire phase
space including the consideration of the event weights is shown in Table 9.7. Here, the
expected event yields of each simulated process from Table 8.1 are categorized into the
defined classes of the GLP as defined in Table 9.5. An event is assigned to the class whose
corresponding node has the highest GLP score. Each class is predominantly composed of
tt̄LF events which contribute the largest relative shares. Given that tt̄LF events are the
most significant contribution in the phase space of this analysis, this behavior is anticipated.
However, it should be noted that Table 9.7 does not provide any differential information.
For instance, even if a comparatively large fraction of tt̄LF events dominates the tt̄H class,
it is expected that the distribution of the GLP score differs for tt̄LF and tt̄H events within
this class.

In the tt̄B class it can be seen that the tt̄B event yield is enriched. The signal (S) over
background (B) ratio is 0.33, where tt̄B is defined as the signal in this class and 𝐵 as
all remaining events. The 𝑆/

√
𝐵 ratio, which is an estimate of the significance, is 30.

This estimate is chosen since a Poisson distribution is assumed. This implies that the
number of background events for a background-only hypothesis 𝐵 corresponds to the
expectation value 𝐵 in a Poisson distribution with a standard deviation

√
𝐵. The signal

excess normalized to the uncertainty of the background expectation is then an approximate
indicator of the significance. In the tt̄H class, tt̄H events are enriched but not dominant due
to the higher cross sections of other processes. This class, where the tt̄H events are defined
as a signal, exhibits an 𝑆/𝐵 ratio of 0.2 and the estimated significance is approximately
1.3. The proportion of tt̄Z events defined as signal in the tt̄Z(B) class normalized to the
background is approximately 0.01 and is therefore relatively small. Expressed in absolute
figures, the number of tt̄Z events in this class is even smaller compared to the migrated tt̄Z
events in the tt̄H class. The estimated significance of tt̄Z in the tt̄Z(B) class is 0.57. In the
tt̄C class, the tt̄C events are defined as signal and the tt̄C events are significantly enriched.
The tt̄C events in this class reveal a 𝑆/𝐵 ratio of 0.18 and a significance estimation of 35.
Furthermore, Table 9.7 shows the ratio of data to Monte Carlo event simulation (MC). It
can be seen that the data/MC ratio for the heavy flavor classes tt̄B, tt̄H, tt̄Z(B), and tt̄C
is close to one, while the light flavor classes tt̄Z(nonB) and tt̄LF as well as the Other class
containing remaining backgrounds deviate further from the expectation.

Another test of the GLP model is the behavior of the model on events used for optimization
in the training process (seen events) compared to events that were withheld from the
training procedure (unseen events). For this test, despite even/odd event ID splitting,
the model trained on events with even event IDs is evaluated on events with even and
odd event IDs. The resulting distributions of all output node scores of the multi-class
classifier are then analyzed. The expected result is a model prediction that does not differ
between events that were seen during training and events that were not seen. Figure 9.15
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Table 9.7: Event yield breakdown of each process for each class of the GLP model. Due
to the multi-signal definition, the 𝑆/𝐵 and 𝑆/

√
𝐵 ratios refer to the respective

signal in the dedicated column. For example, the signal in the tt̄B column
is defined as tt̄B, while the signal in the tt̄H column is defined as tt̄H. The
backgrounds are defined as all remaining processes in the respective column.

tt̄B tt̄H tt̄Z(B) tt̄Z(nonB) tt̄C tt̄LF Other Total

Data 13999 7472 4208 38799 46826 114675 40159 266138
tt̄B 3385 1944 1040 1365 1925 2362 619 12638
tt̄H 33 115 32 126 49 54 54 461
tt̄Z 33 47 37 235 66 98 84 599
tt̄C 1914 1284 631 5129 6942 8987 1811 26698
tt̄LF 6046 3461 1782 32828 33129 104112 11821 193178
tt̄W 27 38 25 225 82 111 87 594
single top 2066 848 610 2448 2800 5814 2729 17316
VV 13 5 10 195 100 115 841 1279
W+jets 4 1 6 100 37 40 296 485
Z+jets 193 39 30 804 743 1192 14837 17838

Data/MC 1.02 0.96 1.00 0.89 1.02 0.93 1.21 0.98
𝑆/𝐵 0.33 0.02 0.01 - 0.18 - - -
𝑆/
√
𝐵 30 1.3 0.57 - 35 - - -
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Figure 9.15: Evaluation of the GLP model on events seen during the training versus events
not seen during the training (evt.). The distributions of GLP scores on events
assigned to the tt̄B class are shown for each individual node of the multi-class
classifier. The KL divergence for the distributions of the GLP node scores
for seen (filled histograms) and unseen events (enveloping distribution) is
calculated and given at the top.

shows this behavior. All events classified as tt̄B, i.e. those whose highest score is the tt̄B
node score of the GLP, are shown in this plot. However, not only the score of the tt̄B
node is indicated, but all node scores of the multi-class classifier are shown. It can be
noted how the distribution of node scores of seen events (filled histograms) corresponds to
the distribution of scores of unseen events (enveloping distribution). Only a few bins are
outside the statistical uncertainty. In addition, the Kullback-Leibler (KL) divergences are
calculated and stated for each node. The KL divergence measures the disparity between
two probability distributions, where smaller values signify a stronger similarity between
them. The results show that the GLP model behaves, within the statistical uncertainty,
for events seen in training in the same way as for unseen events. The distributions for
simulated events that fall into the remaining classes are shown in Appendix B.

9.3.3 GLP performance boost through NLP

In order to quantify the extent to which the GLP architecture benefits from the NLP
pre-classifier, different scenarios are examined. A fundamental benchmark of the GLP
model’s performance discussed in the previous section is a comparison with an equivalent
model that does not share the NLP information. For this purpose, the additional jet
prediction score is removed from the node feature vectors, while the embedding dimension
𝐸 is retained in order to maintain the same number of trainable parameters in both models.
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In addition, all other hyperparameters also remain fixed so that both GLP models possess
an identical architecture. The mean ROC AUC value achieved for the model that does not
use the NLP pre-classifier information is 0.793± 0.002. In contrast, the model that utilizes
the NLP score and is described in the previous section achieves a score of 0.805± 0.001. To
identify a theoretical maximum performance, another GLP model of the same architecture
is constructed, which directly obtains the truth information about the additional jets
instead of the NLP scores. The true information in this procedure is transferred to the node
feature vector as 0 or 1, depending on whether a node is an additional jet or not. With
this, the GLP model is equivalent to a model that retrieves information from a perfect
pre-classifier. The GLP model achieves a mean ROC AUC performance of 0.861± 0.001.
Beyond these, multiple GLP models are constructed that reflect the behavior of GLP
models between the two described extrema of no information versus full truth information
about the additional jets as input features. For this purpose, the true information is
injected into the GLP models at different levels and the performance is measured. The level
of true information in all events is artificially increased from zero in 10% increments up to
a maximum of 100%. For example, the label ‘‘GLP training with 20% truth information’’
denotes that the true additional jet information is correctly encoded in a random 20%
of the events in the training sample, while in the other 80% of the events the true flags
are randomly permuted among all jets nodes. In the latter, this information is therefore
pure noise. Due to the randomized construction of events containing true information
and events with noise in this node feature, there are no distinguishing characteristics
between events with truth information and noise. The performance of all models is shown
in Figure 9.16. It can be seen how the performance increases more strongly with the level of
true information and the performance gaps between two models increase. The GLP model
featuring the NLP pre-classifier information is ranked between the models with 30% and
40% truth information. It can also be seen that the GLP model with the NLP pre-classifier
demonstrates the smallest standard deviation of the mean ROC AUC of all models.

In summary, this chapter provides a detailed examination of a two-stage training procedure.
The first stage is to search for the additional jets that do not originate from the tt̄ system, as
their identification significantly improves the accuracy of the subsequent event classification.
In the second stage, a multi-class classification is performed categorizing events into signal
and background classes. The trained GLP model, based on transformer architectures
with attention mechanisms, is utilized to evaluate the entire phase space of the analysis.
The classified events are then used to measure the signal strength parameters and their
significances of the tt̄B, tt̄H, tt̄Z, and tt̄C processes are discussed in the following chapter.
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Figure 9.16: Mean performance scores of identical GLP architectures with different levels
of information about the additional jets (blue dots). The extent of true
information about the additional jets is increased from 0 in 10% increments
up to a maximum of 100%. This means that in 𝑥% of all training events the
true information about the additional is passed to the model, while in 1− 𝑥%
this information is smeared. The GLP model which employs the information
from the NLP pre-classifier is also displayed (green dot).
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10 Statistical model and inference

In this chapter, the construction of the statistical model is tested and discussed in detail.
The statistical model is a representation of the underlying theory for statistical inference of
physics parameters. It should not be confused with the Artificial Intelligence (AI) models
presented in Chapter 9, which perform jet and event classification using graph neural
networks (GNNs). In this chapter, the theoretical methods of statistical data analysis
introduced in Chapter 6 are applied to the analysis objectives outlined in Chapter 7. In
Section 10.1 the systematic uncertainties that enter the fit model as nuisance parameters
(NPs) in the maximum likelihood fit are described. Section 10.2 covers the fit model and its
detailed tests on pseudodata. Finally, in Section 10.3 the fit model is applied to data and
the signal strength parameters, uncertainties, correlations, and dependencies are presented.

10.1 Systematic uncertainties

Systematic uncertainties of different sources are considered in this thesis as NP in the
maximum likelihood fit to binned distributions of observables. The concept is introduced
in Section 6.2. Most systematic uncertainties affect the distribution of the individual
processes and are therefore referred to as ‘‘shape’’ uncertainties. However, some sources of
systematic uncertainties are employed as ‘‘rate’’ uncertainties, as they only alter the yield
of the processes. The sources of systematic uncertainties are divided into two categories:
experimental uncertainties and theoretical uncertainties. Experimental uncertainties result
from imperfect experiments and are estimated from dedicated auxiliary measurements, some
of which are discussed in the context of event corrections in Section 8.4. The theoretical
uncertainties, on the other hand, stem from known inaccuracies in the calculation of the
individual processes, e.g. due to the choice of scales and settings in event simulation, as
discussed in the following.
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10.1.1 Sources of systematic uncertainties from experiments

Luminosity − The integrated luminosity of the Large Hadron Collider (LHC) in the 2018
data-taking era is determined in auxiliary measurements at the Compact Muon Solenoid
(CMS) experiment. Based on van der Meer scans, the uncertainty of the luminosity
is determined to be 2.5% [181]. This systematic uncertainty is applied to all processes
considered and is implemented as a correlated, rate-changing effect.

Pileup reweighting − As discussed in Section 8.4.1, the number of pileup events reveals
a discrepancy between recorded data and simulated events and is therefore corrected. The
systematic uncertainty is determined by a 4.6% variation of the inelastic proton-proton
cross section in simulation. The resulting changes are propagated to all fit distributions
and treated as shape variation in the fit. The uncertainty is considered correlated across
all simulated processes.

Level-1 (L1) trigger pre-fire correction − As described in Section 8.4.2, muon
candidates can be associated to the wrong proton bunch in the 2018 data-taking era. This
results in incorrect firing of the L1 trigger. The total uncertainty on this correction is
determined by summing the statistical uncertainty of the pre-fire efficiency and a flat 20%
relative uncertainty in quadrature. The uncertainty is considered correlated between all
simulated processes.

High-level trigger (HLT) efficiencies − As the HLT efficiencies in data and simu-
lated events vary, the deviations are corrected using scale factors (SFs) as described in
Section 8.4.3. The uncertainties on the SFs, which are composed of several sources, are also
determined during the efficiency calculations in data and simulation. These include trigger
correlations, phase space dependencies, run era dependencies, and statistical uncertainties,
with the latter accounting for the largest contribution [163, 164]. The SFs including the
total uncertainties are shown in Figures 8.3 and 8.4. The uncertainties are treated as
correlated across all simulated processes.

Lepton efficiencies − The measurement of the lepton efficiencies in terms of tracking,
reconstruction, identification, and isolation of leptons is described in Section 8.4.4 for
electrons and in Section 8.4.5 for muons. Both the corrections and uncertainties are
relatively small compared to other uncertainties discussed in this thesis. Nonetheless,
all systematic uncertainties are included and propagated to the final discriminant. Even
though these systematic uncertainties are almost negligible, each uncertainty is added
individually as an NP instead of summarizing all lepton uncertainties. The uncertainties
are treated as correlated across all simulated processes.

Jet energy corrections (JECs) − The JECs, consisting of the jet energy scale (JES)
and jet energy resolution (JER), are calibrated as described in Section 8.4.6. Several
systematic uncertainties for the jet energy are considered in the statistical model, which
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originate from different sources and take different aspects of the JES into account. As
there are numerous JES uncertainties, but not all are relevant for this analysis, only
applicable groups of JES uncertainties are considered, following the recommendations of
the CMS Collaboration [182]. The uncertainties in the JECs are evaluated by shifting
the reconstructed jet energies by the amount defined as one standard deviation of the
JES uncertainty. The event is then re-analyzed to assess the change of these shifts on
the jet observables. This process can cause some events to no longer satisfy the selection
criteria, while others, previously excluded, may enter the analysis phase space. The latter
occurs when the required 𝑝T threshold of a jet is exceeded and the jet multiplicity selection
criteria are fulfilled.

Two sources of systematic uncertainties arise from the calibration of the absolute JES
determination, referred to as ‘‘absolute’’ and ‘‘absolute 2018’’, with the latter being a
specific uncertainty for the 2018 data set studied in this thesis. An additional source of
uncertainty describes the difference in calibration fits between the 𝑝T-balance and log-
linear fits of the missing transverse energy (MET) projection fraction methods, designated
as ‘‘relative balance’’. An additional systematic uncertainty is added to account for a
calibration of discrepancies in jets with varying flavor, referred to as ‘‘flavor QCD’’. An
𝜂-dependent source of uncertainty describes the relative JES calibration between relative
residuals observed in di-jet, Z+jets, and 𝛾+jets systems between various simulations.
This uncertainty is referred to as ‘‘relative sample’’. Two systematic uncertainty sources
describe the residual uncertainties of the calibration, designated as ‘‘BBEC1’’ and ‘‘BBEC1
2018’’ [182]. Due to a malfunctioning hadronic calorimeter (HCAL) module in the −2.5 <
𝜂 < −1.3 and −1.57 < 𝜑 < −0.87 detector region (called ‘‘HEM issue’’), an additional
systematic uncertainty with a jet energy variation of 20% is applied to all jets in this
region. All uncertainties are propagated to the final distributions and considered as shape-
changing effects. The JER is corrected as described in Section 8.4.6 and an uncertainty is
calculated. This uncertainty is obtained by increasing and decreasing the difference between
reconstructed and particle-level jets to reflect variations of resolution effects measured in
data. The resulting uncertainty is treated identically to the JES described before. All
uncertainties are treated as correlated across all simulated processes.

Heavy flavor jet tagging efficiencies − In this analysis, the full b tagging discriminant
is corrected using the iterative Fit (itFit) method, as described in Section 8.4.8. The itFit
method also determines a set of uncertainties accounting for various sources of systematic
uncertainties. The uncertainties are applied to jets in simulated events based on their flavor.
One source of uncertainty characterizes the light flavor contamination in the sample to
derive the itFit SFs for the heavy flavor jets, while another one describes the contamination
from b and c jets in the light flavor region. Two NPs for systematic uncertainties for heavy
flavor jets and another two NPs for uncertainties of light flavor jets are employed to reflect
the statistical uncertainty associated with the sample size used to derive the itFit SFs.
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The statistical uncertainties are determined by multiplying linear and quadratic functions
to the statistical uncertainty for each bin in the b tag discriminant. These uncertainties
are applied to both light flavor and b jets. For c jets, two additional, separate sources
of systematic uncertainties apply. All uncertainties are treated as correlated across all
simulated processes.

10.1.2 Sources of systematic uncertainties from theory

Renormalization and factorization scales − The choice of the dynamic 𝜇𝑅 and 𝜇𝐹

scales in the event generator is based on theoretical considerations and experimental
observations. As discussed in Section 7.2, different scales are chosen for simulated events
in the various analyses. As the optimal choice of the renormalization and factorization
scales and their pre-factors is not unambiguous, both scale choices are halved and doubled
independently of each other. All scale variations are included in the matrix element (ME)
calculations and stored in the form of a weight in each event, which is propagated to
the final maximum likelihood fit distributions. Each variation is assigned a different NP
for each of the processes tt̄B, tt̄H, tt̄Z, tt̄C, and tt̄LF. The rate changing effects of all
processes are considered separately, as explained in the following. The uncertainties are
considered uncorrelated.

Quantum chromodynamics (QCD) rate effects − The inclusive cross sections are
derived from theory calculations at Next-to-leading order (NLO) or higher accuracy in
QCD. The calculations in QCD perturbation theory depend on the scale of 𝜇𝑅 and 𝜇𝐹 . As
mentioned before, the rate effect has been removed for all processes. A rate uncertainty of
±34.1% (±11.9%) for the tt̄B (tt̄C) processes is determined in simulation and included as
log-normal rate-changing effect. The uncertainties from theory calculations at (N)NLO
accuracy for all other processes are: +5.8%/− 9.2% for tt̄H processes, +8.1%/− 9.3% for
tt̄Z processes, +2.5%/− 3.6% for tt̄LF processes, +3.1%/− 2.1% for single top processes,
+25.5%/−16.4 for tt̄W processes, ±3.1% for VV processes, ±3.8% for W+jets processes, and
±2% for Z+jets processes. The values are based on calculations by specialized groups within
LHC working groups and Refs. [123, 183]. The systematic uncertainties are considered
correlated among the Vx processes (VV, W+jets, and Z+jets), as well as between tt̄LF
and tt̄W, while being uncorrelated for all other processes.

Parton distribution function (PDF) shape − The inner structure of the colliding
protons is described by the NNPDF3.1 PDF set at Next-to-next-to-leading order (NNLO)
accuracy. The PDF set is determined through a global fit of multiple measurements,
including results from D0, LHCb, ATLAS, and CMS [60]. Numerous variations in the fits
of the PDF set are provided as residuals by the CMS Collaboration. Since the individual
variations are small, they are summarized into an envelope. The rate effect is determined
separately and is discussed in the subsequent uncertainty. As the type of residuals differs
in the four flavor scheme (4FS) compared to the five flavor scheme (5FS) PDF sets, they
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are treated differently. In the case of the 4FS PDF set, the final shape is determined by
the root-mean-square of all individual variations, while in the 5FS PDF set the quadratic
sum is calculated from all residuals corresponding to the eigenvectors of the hessian
matrices. Additionally, a variation of the strong coupling constant 𝛼𝑆 is incorporated into
the resulting envelope. This procedure follows the recommendations in Ref. [184]. The
uncertainties are considered correlated between the tt̄H, tt̄Z, tt̄C, tt̄LF, and tt̄W processes
and uncorrelated from the tt̄B processes.

PDF rate − As described above, the shape and the rate effects of PDF uncertainties
are separated, as the latter do not originate from the simulations but from dedicated
calculations. The only exceptions are the tt̄B and tt̄C processes, as no precise calculations
exist for these cases. In these two cases, the rate change is characterized by the variation
in simulation. The theory calculations at (N)NLO accuracy for all other processes are as
follows: ±3.6% for tt̄H processes, ±3.5% for tt̄Z processes, ±4.2% for tt̄LF processes, ±2.8%
for single top processes, ±3.6% for tt̄W processes, ±5% for VV processes, +0.8/− 0.4% for
W+jets processes, and ±0.2% for Z+jets processes. The results are based on calculations
by specialized groups within LHC working groups and Refs. [123, 183]. A distinction is
made for the correlations of these rate uncertainties based on the initial state from which
the processes originate. All signal processes are uncorrelated. The tt̄LF processes are also
uncorrelated, as they emerge from a gg initial state. Analogously, the single top processes
are uncorrelated, which arises from qg initial states in the dominating 𝑡-channel. The
processes tt̄W, VV, W+jets, and Z+jets processes are treated correlated, as they all arise
from qq initial states.

Parton shower (PS) scales − The PS is evaluated at a scale of the strong coupling
constant 𝛼𝑆 which affects the amount of additional gluon radiation. The scale is indepen-
dently varied up and down by a factor of two for both initial-state radiation (ISR) and
final-state radiation (FSR). The ISR uncertainties are considered as uncorrelated for all
processes, while the FSR uncertainties are considered correlated. This procedure follows
the latest recommendation of the CMS Collaboration.

PS matching to ME − In order to match the PS to the ME calculations at NLO, the
damping of high 𝑝T radiation is controlled via the ℎdamp parameter in the Powheg Box
event generator. An increased ℎdamp value leads to greater suppression of real emissions
and therefore softer radiation (cf. Section 8.1). The nominal setting of ℎdamp = 1.379𝑚t is
varied to ℎdamp = 2.305𝑚t and ℎdamp = 0.8739𝑚t. The expected effect of the varied ℎdamp

parameter is applied by reweighting the simulated events, based on a machine learning
technique [185]. Instead of an additional simulation with varied ℎdamp parameter, this
approach enables the use of existing simulations with comparably high statistics. The
uncertainties are treated as correlated across all tt̄X processes.
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Collinear gluon splitting − The collinear splitting of a gluon into a b quark-antiquark
pair (g→ 2b), as in the tt̄2b process, leads to a divergence in QCD calculations for massless
b quarks, as discussed in Section 2.4. Due to the resulting difficulty in the simulation
of the process, a specific uncertainty is attributed to the tt̄2b process. This uncertainty
is a 50% log-normal constrained rate relative to the normalization of all tt̄B processes.
The uncertainties are treated as correlated across all tt̄B processes. In Section 7.2.1, it
is discussed that the tt̄bb̄ model utilized in this thesis shows deviations compared to the
measured data when examined in bins of the jet multiplicity and in bins of the b jet
multiplicity. The rate and shape of the QCD scales addresses potential jet multiplicity
mismodeling, however, this is not the case for the b jet multiplicity, i.e. a separation
of events with three b jets versus four b jets. This uncertainty therefore differentiates
within this separation of the b jet multiplicity, as the tt̄2b processes primarily occur in
the phase space of three b jets, whereas the tt̄bb̄ process occurs in the phase space with
four b jets. Since no dedicated separation into the number of b jets is performed in this
thesis, the mismodeling does not impose any risk, but it is considered within the associated
uncertainty. It is a strategic choice to avoid sensitivity to these issues by assigning a single
signal strength parameter 𝜇tt̄B to all tt̄B processes.

Underlying event − The modeling of the underlying event, which is the soft background
radiation of processes not related to the hard scattering process, is tuned by the CMS
Collaboration in Pythia8 with a set of parameters referred to as CP5 Tune [145]. Event
simulations with variations of the CP5 Tune are also provided by the CMS Collaboration,
and are taken into account as one sigma standard deviation uncertainties [186]. The
uncertainties are treated as correlated across all tt̄X processes.

Color reconnection − PS algorithms are limited in the description of color lines in multi-
parton interactions. However, color reconnections in multi-parton interactions impact
the kinematics of generated particles and the resulting jet multiplicity [187, 188]. Two
phenomenological models are considered in addition to the default color reconnection model
in this thesis, allowing for a more comprehensive description of color connection topologies.
These phenomenological models are parameterized and tuned to match observations in
data. The first color reconnection model is inspired by QCD, where each parton is indexed,
indicating possible combinations. In the second color reconnection model, gluons can
function as mediators moving partons to another pair of partons, which is referred to as
‘‘gluon move’’. Additionally, an event simulation with the nominal color reconnection
settings is considered as an uncertainty. In this simulation, instead of a top decay after
the color reconnection, the top decays first. This is referred to as early resonance decays
(ERD). Each of these three simulations is considered as a symmetric one sigma standard
deviation variation of the nominal event simulation. The uncertainties are treated as
correlated across all tt̄X processes.
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top 𝑝T modeling − As described in Section 8.4.7, the disagreement between data and
simulation in the tt̄ NLO modeling is corrected. For this purpose, the nominal distribution
is corrected according to Equation 8.9, which reflects the NNLO expectation. A systematic
uncertainty is constructed by applying the correction, equivalent to the size of the effect
itself, i.e. the application and non-application of the correction are constructed as a one
sigma standard deviation symmetrical around the reweighted nominal distribution. The
effect is applied to all tt̄X processes and is considered correlated.

10.1.3 Statistical uncertainties from event simulation

Due to the finite number of simulated events, statistical fluctuations occur in the nominal
prediction for each bin of all fit distributions. To describe the uncertainty of these fluctua-
tions, a Gaussian-constrained NP is added to the fit for each bin of the distributions varying
the total bin yield [189]. This method is known as Barlow-Beeston-lite approach [190].

10.1.4 Smoothing of systematic uncertainties

Certain previously described variations for the characterization of systematic uncertainties
exhibit fluctuations, both in control and fit distributions. However, these fluctuations are
not based on real physics effects in the estimation of the systematic uncertainty, but are
caused by reduced modeling statistics. For example, this can result in the prediction of
the ISR scales’ up and down variation both being above the nominal prediction in a bin of
the fit distribution. Without a treatment of these fluctuations, non-physical constraints
and correlations of the NPs can emerge, as well as biases in the fit model. To compensate
for the fluctuations, the lowess smoothing algorithm is applied [191, 192].

First, the ratios of the up and down variations to the nominal yield prediction from the
simulated events in bin 𝑖 are calculated, which are obtained with

𝑟𝑖 = 1
2 ·
(︃
𝜆↑

𝑖

𝜆0 −
𝜆↓

𝑖

𝜆0

)︃
. (10.1)

In this equation, 𝜆↑/0/↓
𝑖 is the yield in bin 𝑖 for the up (↑), nominal (0), or down (↓)

variation. The smoothed event yields 𝜆̂↑↓
𝑖 of the up and down variation are calculated with

𝜆̂↑↓
𝑖 = (1± 𝑠↑↓𝑟𝑖) · 𝜆0

𝑖 , (10.2)

where 𝑟𝑖 is the smoothed ratio in bin 𝑖 obtained with the lowess smoothing algorithm.
The scales 𝑠↑↓ are chosen to minimize

𝜒2
↑↓ =

∑︁
𝑖

(︃
𝜆̂↑↓

𝑖 − 𝜆
↑↓
𝑖

𝜎𝑖

)︃2

, (10.3)
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reflecting the difference between smoothed and un-smoothed systematic distributions. The
variations derived from Equation 10.2 not only result in smoothed distributions but also
lead to symmetrical uncertainties around the nominal prediction. In this analysis, the 𝜇𝑅,
𝜇𝐹 , ISR, FSR, JEC, b tagging, color reconnection, and underlying event uncertainties
are smoothed. An analogous procedure is employed in the tt̄bb̄ analysis by the CMS
Collaboration [96].

Unless stated otherwise, the systematic uncertainties in all plots in this thesis include the
quadratic sum of all variations described in this section.

10.2 Fit model

The concept of maximum likelihood fits and signal extraction is discussed conceptually in
Chapter 6. The output score of the multi-class graph level prediction (GLP) model, as
discussed in Section 9.3, forms the basis for the statistical model to build a likelihood with
both histogrammed predictions as well as histogrammed data. The distributions derived
from the output score of the evaluated GLP model are used to extract the parameter of
interests (POIs) through a multi-dimensional maximum likelihood fit. A total of four POIs
are defined according to Equation 6.3 for the multi-dimensional fit with

𝜇tt̄B =
𝜎obs

tt̄B
𝜎SM

tt̄B
, 𝜇tt̄C =

𝜎obs
tt̄C
𝜎SM

tt̄C
, 𝜇tt̄H =

𝜎obs
tt̄H
𝜎SM

tt̄H
, 𝜇tt̄Z =

𝜎obs
tt̄Z
𝜎SM

tt̄Z
, (10.4)

where 𝜎obs
𝑖 refers to the observed cross section of process 𝑖, and 𝜎SM

𝑖 denotes the cross
section predicted by the SM. Consequently, the signal strength parameters 𝜇𝑖 scale the
number of the respective events for each process in each bin of the fit distributions, which
are obtained from the GLP model. The uncertainties, discussed previously in Section 10.1,
are considered as NPs 𝜃 in the fit, totaling 376 NPs.

To obtain the discriminant distributions for the maximum likelihood fit, the simulated
events of all processes are evaluated with the node level prediction (NLP) and the GLP
model according to the classification strategy described in Chapter 9. An event is then
assigned to the pre-defined class whose GLP output score shows the highest probability.
This ensures that each event only enters one class of the discriminant and guarantees the
orthogonality of all classes. A total of seven classes are defined in Section 9.3 as output
nodes of the GLP model: tt̄B, tt̄H(B), tt̄Z(B), tt̄Z(nonB), tt̄C, tt̄LF, and Other. As
described in the previous chapter, the event classes are constructed to enrich the events in
which the respective processes took place. The GLP output score distributions are shown
for the four signal classes in Figure 10.1 and for the background classes in Figure 10.2. The
corresponding event yields are discussed in Section 9.3.2 and recorded in Table 9.7. The
statistical and systematic uncertainties are also shown, as discussed in Section 10.1. The
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tt̄H and tt̄Z predictions are additionally displayed as a line scaled to match the integral
of the stack of background histograms, demonstrating their behavior with respect to the
score in each class, which otherwise would not be discernible due to the relatively small
predicted cross sections. The binning of the GLP output score distributions is designed to
optimize the sensitivity in fits to pseudodata, while avoiding excessively fine binning, which
can result in artifacts of artificial constraints leading to exceptionally high sensitivities.
Almost all data points in the tt̄B, tt̄H, and tt̄Z classes lie within the uncertainty bands of
the predictions derived from the statistical and systematic uncertainties. Furthermore, it
is evident that the distribution of predictions varies across different processes within the
same class. This suggests that the differential information about a process within a class
is an important piece of information for the maximum likelihood fit. The discriminant
of the tt̄C class shows that the tt̄C classification tends to be challenging for the GLP
model, with only a few events showing large scores relative to the remaining events in
this class. As discussed in Chapter 9, the core challenge in differentiating tt̄C events from
other simulated events is identified as the lack of c tagging information embedded in the
classifier, which is also evident in the discriminant distribution. Additionally, the evaluated
data events exhibit a slight tendency towards smaller scores in the classifier compared to
the prediction. However, all data points are within the uncertainties.

The background class tt̄Z(nonB) indicates a discrepancy of around 11% between data and
simulated events, with a tendency towards smaller scores for data compared to the model
predictions. However, this minor trend is driven by the contribution of Vx processes. The
majority of the data points are within the overall uncertainties of the statistical model.
In the tt̄LF class, an over-prediction of simulated events relative to data by 7% can be
seen, which is within the overall uncertainty. Conversely, in the Other class, the data are
under-predicted by 21%, a discrepancy that is not accounted for by the uncertainties. This
class clearly demonstrates that the divergence in data compared to simulation stems from
the description of the background processes Vx. The signal regions remain unaffected by
these processes, as the Vx contributions are negligible in the signal classes. The tt̄LF and
Other classes are excluded from the fit, as they are not well modeled and do not improve
the sensitivity in any test performed on pseudodata.

10.2.1 Pseudodata: fit results

Prior to extracting the signal strength parameters from a fit to data, tests are performed
on a pseudodata set. The pseudodata corresponds to the sum of the event weights in
each bin. In this way, the pseudodata set represents the alternative hypothesis to the null
hypothesis, i.e. that the signals are present as predicted by the SM, corresponding to signal
strength parameters of 𝜇 = 1 for all processes [114]. This procedure allows a prediction
of the sensitivity and significance of the measurement without relying on measured data,
referred to as expected results (cf. Section 6.3). The approach also offers the advantage of
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Figure 10.1: Pre-fit distributions of the GLP output score of all signal classes. The con-
tributions of all processes are displayed as stacked histograms, with data
represented as black dots. The tt̄H and tt̄Z predictions are additionally dis-
played as a line scaled to the integral of the stacked histogram. The bottom
panel depicts the ratio of data to the expected yields from event simulation.
The gray bands represent the a-priori uncertainties described in Section 10.1.
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Figure 10.2: Pre-fit distributions of the GLP output score of all background classes. The
contributions of all processes are displayed as stacked histograms, with data
represented as black dots. The tt̄H and tt̄Z predictions are additionally
displayed as a line scaled to the integral of the stacked histogram. The bottom
panel depicts the ratio of data to the expected yields from event simulation.
The gray bands represent the a-priori uncertainties described in Section 10.1.
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investigating unwanted systematic and statistical fluctuations to increase the robustness
of the statistical model. Hence, the risk of bias due to an insufficient model is minimized.
The fits of the negative log-likelihood function (−2Δ log(𝐿)) to pseudodata consists of
the four POIs 𝜇tt̄B, 𝜇tt̄C, 𝜇tt̄H, and 𝜇tt̄Z, and additional 376 NPs in the fit representing
the systematic uncertainties and the statistical uncertainties in the various bins of the
discriminants.

The expected (exp) fit results determined in a fit of the statistical model to pseudodata
result in

𝜇exp
tt̄B = 1.00+0.35

−0.25 = 1.00± 0.03 (stat.)+0.35
−0.25 (syst.) , (10.5)

𝜇exp
tt̄C = 1.00+0.44

−0.37 = 1.00± 0.03 (stat.)+0.44
−0.37 (syst.) , (10.6)

𝜇exp
tt̄H = 1.00+0.94

−0.94 = 1.00+0.61
−0.59 (stat.)+0.72

−0.73 (syst.) , (10.7)
𝜇exp

tt̄Z = 1.00+1.13
−1.06 = 1.00+0.69

−0.68 (stat.)+0.89
−0.81 (syst.) , (10.8)

including the statistical uncertainty (stat.) and systematic (syst.) uncertainty breakdowns
of the total uncertainty. The expected significances of the four processes are

𝑍exp
tt̄B = 16, 𝑍exp

tt̄C = 2.9, 𝑍exp
tt̄H = 1.1, 𝑍exp

tt̄Z = 1.0 . (10.9)

The results indicate that the expected signal strength of tt̄B processes exhibits the smallest
total uncertainty. In this case, the systematic uncertainty drives the total uncertainty,
while the contribution from statistical uncertainty is comparably small. Similarly for
𝜇tt̄C, both signal strength parameters exhibit identical statistical uncertainties. However,
compared to 𝜇tt̄B, the systematic uncertainty is larger for the expected signal strength of
tt̄C processes. In contrast to 𝜇tt̄B and 𝜇tt̄C, the total expected uncertainties on the signal
strengths 𝜇tt̄H and 𝜇tt̄Z are significantly larger. For both processes, the total uncertainties
are driven not only by the systematic uncertainty, but also by substantial contributions
from statistical uncertainties. This behavior is consistent with the small predicted cross
sections and correspondingly low expected yields, as shown in Table Table 9.7. Similarly,
dedicated measurements of tt̄H production by the ATLAS and CMS Collaborations report
strong contributions of statistical uncertainty to the total uncertainty in the dilepton
channel [126, 137].

Alternatively, instead of using the pure GLP output score as input for the fit, other
discriminants can be constructed from the GLP model. In dedicated tt̄H(bb̄) analyses,
such as the measurement by the CMS Collaboration in Ref. [126], a ratio discriminant
is constructed from the feedforward neural network prediction score for the tt̄H and the
tt̄B classes. This approach improves the sensitivity on the tt̄H process by 18% in the
analysis [126]. To evaluate the effect of modified discriminant designs on the expected
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sensitivity in this analysis, various discriminants are constructed. For this purpose, ratios
from the GLP output score are calculated with

𝑅tt̄H vs. tt̄B = 𝑝tt̄H
𝑝tt̄H + 𝑝tt̄B

and 𝑅tt̄H vs. tt̄Z(B) = 𝑝tt̄H
𝑝tt̄H + 𝑝tt̄Z(B)

, (10.10)

where 𝑝𝑖 is the GLP output score of a given event in class 𝑖. Based on these ratios, numerous
discriminants are constructed and tested, of which the results of three constructed statistical
models are discussed in detail below. The first alternative statistical model employs the
ratio 𝑅tt̄H vs. tt̄B as discriminant instead of the pure GLP score of the tt̄H and tt̄B classes,
following a similar strategy to Ref. [126]. Utilizing the ratio discriminant emphasizes the
challenging distinction between the tt̄B and tt̄H processes. In addition to 𝑅tt̄H vs. tt̄B,
the statistical model includes the pure GLP score of the other classes tt̄Z(B), tt̄C, and
tt̄Z(nonB), analogous to the previously discussed statistical model. The second alternative
statistical model uses 𝑅tt̄H vs. tt̄Z(B) instead of the pure GLP score for tt̄H and tt̄Z(B)
events, as well as the pure GLP score of the remaining classes tt̄B, tt̄C, and tt̄Z(nonB).
A third alternative statistical model is a combination of the first two statistical models,
which is referred to as 2D unrolled statistical model in the following. In the 2D unrolled
statistical model, both ratios are used, whereas the ratio discriminants are unfolded
for the statistical model. To achieve this, 𝑅tt̄H vs. tt̄Z(B) distributions are constructed
in bins of 𝑅tt̄H vs. tt̄B. For the tt̄Z(nonB) class, the pure GLP score is retained, as in
the previous models. Consequently, all constructed statistical models are based on the
same level of information from the GLP model. The results of the fits to pseudodata of
the three alternative statistical models are summarized and compared to the statistical
model using the pure GLP score in Table 10.1. The expected total uncertainties on the
signal strength 𝜇tt̄H in the fits to pseudodata reveal that the statistical model employing
the 𝑅tt̄H vs. tt̄B ratio discriminant yields smaller uncertainties compared to the expected
uncertainties on 𝜇tt̄H in the statistical model using the pure GLP score as discriminant.
This is consistent with the findings in the tt̄H(bb̄) analysis by the CMS Collaboration,
which uses a similar discriminant [126]. However, the expected uncertainties on the signal
strength parameters of the other signal processes suggest reduced precision compared to the
statistical model with the pure GLP score, e.g. for 𝜇tt̄Z. The statistical model utilizing the
𝑅tt̄H vs. tt̄Z(B) discriminant shows a small improvement in the sensitivity on 𝜇tt̄Z compared
to the statistical model that uses the pure GLP score. For all other processes, the expected
precision is worse compared to the statistical model with the pure GLP score. The 2D
unrolled statistical model reveals lower expected total uncertainties on the determination
of the signal strength 𝜇tt̄Z. However, a higher expected uncertainty on the determination
of the other three signal strength parameters can also be seen in this statistical model
compared to the statistical model with the pure GLP score as discriminant. In summary,
this demonstrates the ability to construct statistical models that enhance the expected

145



146 10 Statistical model and inference

Table 10.1: Expected fit results of the signal strength parameters obtained from statisti-
cal models based on the GLP score and constructed with different discrim-
inants. The ratios 𝑅tt̄H vs. tt̄B and 𝑅tt̄H vs. tt̄Z(B) are defined according to
Equation 10.10. The 2D unrolled statistical model is a combination of both
ratio observables.

Pure GLP score 𝑅tt̄H vs. tt̄B 𝑅tt̄H vs. tt̄Z(B) 2D unrolled

𝜇exp
tt̄B 1.00+0.35

−0.25 1.00+0.36
−0.26 1.00+0.36

−0.26 1.00+0.38
−0.27

𝜇exp
tt̄C 1.00+0.44

−0.37 1.00+0.52
−0.41 1.00+0.47

−0.40 1.00+0.47
−0.37

𝜇exp
tt̄H 1.00+0.94

−0.94 1.00+0.90
−0.84 1.00+1.32

−1.32 1.00+1.11
−1.17

𝜇exp
tt̄Z 1.00+1.13

−1.06 1.00+1.20
−1.13 1.00+1.09

−1.02 1.00+1.08
−1.00

precision of dedicated signal strength parameters using optimized discriminants, without
specifically optimizing the AI model for classification. Since the statistical model with the
pure GLP score exhibits the lowest overall expected uncertainties for all signal strength
parameters simultaneously compared to all alternative models, this statistical model is
used in the further analysis. This decision aligns with the strategy defined in Chapter 7,
which emphasizes not favoring any of the four signal processes in the simultaneous cross
section measurement.

In addition to the presented alternative statistical models, many other statistical models
are investigated as well. In particular, splittings of the analysis phase space into sub-phase
spaces are evaluated, e.g. by constructing signal enriched regions as well as background
enriched regions through requirements on the number of jets and the number of b-tagged
jets. For instance, regions with at least four jets and at least three or four b-tagged jets along
with complementary orthogonal regions are studied. However, no improvement in terms of
precision is achieved compared to the previously discussed statistical model, even when
dedicated graph transformer models are trained in these phase space regions. Furthermore,
it is also tested whether statistical models achieve lower uncertainties for the expected
signal strength parameters if only events exceeding a predefined GLP output score are
included in the statistical model. For example, discriminants are designed based on events
whose GLP output scores 𝑝𝑖 are greater than 0.5 in one or more GLP classes. Thus, this
approach is based exclusively on events that have been classified with a comparably high
output score, indicating greater confidence in the classification by the GLP. However, none
of the statistical models constructed in these studies exhibited lower expected uncertainties
for the signal strength parameters in the statistical tests than the statistical model with
the full, pure GLP score discriminant information. In fact, almost all models suffered from
large statistical uncertainties.
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Figure 10.3: Correlation matrix of all POIs and NPs in a fit to pseudodata, except for the
NPs representing the statistical uncertainties from event simulation. Positive
correlations are marked in red, while anti-correlations are indicated in blue.

10.2.2 Pseudodata: correlations

The correlations of all parameters are determined from the covariance matrix as introduced
in Section 6.2. The results of the correlations between all POIs and all NPs, except for
the NPs representing the statistical uncertainties from event simulation, in a fit to the
pseudodata set can be seen in Figure 10.3. In this figure, the correlations of the POIs
and the NPs are shown as a symmetric correlation matrix. The vast majority of the
parameters exhibit no or minor (anti-)correlations. However, some parameters display
more pronounced correlations.

The strongest correlation, in terms of absolute magnitude, occurs between the QCD scale
uncertainty on the tt̄B processes and the signal strength parameter 𝜇tt̄B. The uncertainty
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incorporates the rate effect of the uncertainty in the choice of the renormalization scale 𝜇𝑅

of all tt̄B processes. The strong anti-correlation is evident when examining the relationship
between 𝜇𝑅 and 𝜇tt̄B in detail. Generally, the renormalization scale is the ancillary scale that
controls the ultraviolet divergences that occur in QCD calculations. The renormalization
eliminates these divergences by redefining the strong coupling constant 𝛼𝑆 to yield finite
values. This is done by the renormalization group equations (RGEs), with the solution for
𝛼𝑆 given by

𝛼𝑆(𝜇𝑅) = 1

𝛽0 ln
(︂

𝜇2
𝑅

Λ2
QCD

)︂ , (10.11)

where ΛQCD denotes the energy scale of QCD and 𝛽0 is a constant dependent on the
number of quark flavors. Hence, the strong coupling constant decreases with an increasing
energy scale 𝜇𝑅, resulting in a reduced interaction rate between quarks and gluons. This
effect is also known as asymptotic freedom. The dependency can be summarized as follows:
if 𝜇𝑅 increases, 𝛼𝑆 decreases, leading to a decrease in the interaction rate. This pattern
is illustrated in Figure 10.4, which shows the GLP output score of simulated tt̄bb̄ events
in the tt̄B class of the GLP model. In addition, the up and down variations of 𝜇𝑅 are
shown, whereby the up variation is below the distribution with the nominal choice of
renormalization scale. This behavior is consistent with the consideration from the RGEs. In
the fit to pseudodata, the up variation 𝜇𝑅 must now be pulled back up towards the nominal
value, compensated by the rate parameter of the freely floating POI 𝜇tt̄B. Since the NP
describes the pure rate component of this effect, it directly opposes to the signal strength
𝜇tt̄B, resulting in an anti-correlation of nearly −1. In Section 10.3.2, it is demonstrated
that this anti-correlation does not constitute any difficulties.

The correlation of the POIs is also investigated through two-dimensional scans of the
negative log-likelihood function (−2Δ log(𝐿)). All possible combinations of the four signal
strength parameters in a fit to pseudodata are shown in Figure 10.5, with the correlations
corresponding to the respective entries in the correlation matrix in Figure 10.3. Generally,
the more circular the scans appear, the weaker the correlation between the two parameters
under investigation, delivering a holistic perspective on the four POIs. The smallest
correlation is expected between the two parameters 𝜇tt̄B and 𝜇tt̄Z, the strongest correlation
is exhibited between 𝜇tt̄C and 𝜇tt̄Z. Moreover, the scans do not show any irregularities.

10.2.3 Bias test

Another important test of the statistical model is the study of systematic deviations caused
by assumptions or properties in the model. To examine a possible systematic bias of
the statistical model, toy data sets are generated. By uncovering a bias in advance, it is
possible to check whether a bias is present before fitting to measured data. This allows the
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model to be corrected beforehand if necessary while maintaining blindness with respect
to data. Furthermore, an unbiased statistical model prevents the final result of the fitted
POIs from being driven by properties of the statistical model, and instead reflects the true
nature of the data.

The generated toy data set has no correlation with the measured data set but simulates
possible behavior of the measured data set based on the statistical model. To generate
the toy data set, both the background and the signal model are assumed to have a fixed
signal strength parameter, referred to as the true value and set to 𝜇true = 1. Next, random
numbers are drawn from a Poisson distribution based on the expectation value of the
statistical model. By repeating this process to generate 𝑁 toy data sets, a series of randomly
generated toy data sets is generated, which could, in principle, be observed in recorded
data given the assumptions of the statistical model. Each of these toy data sets is then
fitted to determine the fit parameter 𝜇fit and the corresponding uncertainty 𝜎fit. From
this, a pull 𝑃model is calculated for each toy data set with

𝑃model = 𝜇truth − 𝜇fit
𝜎fit

. (10.12)

The resulting distribution of 𝑃model from the 𝑁 pseudo-measurements is histogrammed and
a potential bias can be identified. In case of no bias, a normal distribution centered around
zero with a standard deviation of one will be obtained due to the central limit theorem. If
a bias is present, it can be inferred from the mean of the distribution. A maximum value
of 0.14 is set for the mean value prior to conducting the test. The reasoning behind the
limit of 0.14 is based on the fact that a bias below this threshold would change the overall
uncertainty by less than one percent1. The distribution of the pull for a total of 𝑁 = 5000
toy data sets and the fit of a normal distribution 𝒩 (𝜇, 𝜎2) can be seen in Figure 10.6. The
mean value of 𝜇 = 0.10 and the standard deviation of 𝜎 = 1.00 indicate that there is no
notable bias imposed by the statistical model in any of the four processes investigated in
this thesis. In addition, the fit metric 𝜒2 divided by the number of degrees of freedom
(ndf) is approximately one, indicating that the fit describes the distribution well.

10.2.4 Goodness of fit test

Another pivotal test of the statistical model is the goodness of fit test. In contrast to other
tests in this section, the goodness of fit test depends on data. This test determines whether
the observed data is compatible with the model’s probability density function (PDF).
Similar to the bias test in Section 10.2.3, toy data are generated and fitted afterwards.
The signal strength parameters are freely floating in the fit, allowing for a measure that is
independent from the presence or absence of the signals. For the goodness of fit test, a test

1A bias of 0.14 added in quadrature to the total uncertainty results in a relative change of
√

12 + 0.142 −1 =
0.98%
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Figure 10.6: Distribution of the pull calculated from 5000 toy data sets (blue) based on the
statistical model. A normal distribution 𝒩 (𝜇, 𝜎2) (red) is fitted to the pull
distribution and the result of the fit parameters is given in the legend.

statistic 𝑡 is calculated from which the discrepancy between the toy data and the prediction
by the model can be quantified. The test statistic is based on the so called saturated model,
a generalization of the 𝜒2 test statistic for likelihood fits to binned data [193, 194]. The
test statistics are calculated for a total of 𝑁 = 10000 toy data sets and histogrammed
afterwards, resulting in a distribution 𝑓(𝑡). Additionally, the test statistic 𝑡0 is determined
for the fitted model given the data. The resulting 𝑝-value is derived from

𝑝 =
∫︁ ∞

𝑡=𝑡0
𝑓(𝑡)d𝑡 (10.13)

and should be greater than 0.05. Figure 10.7 shows the distribution 𝑓 (𝑡), the test statistic
𝑡0, and the calculated 𝑝-value. The determined 𝑝-value of 𝑝 = 0.13 exceeds the required
threshold.

10.3 Fit results

In the previous section, it is demonstrated that the constructed statistical model with four
POIs for the processes tt̄B, tt̄C, tt̄H, and tt̄Z together with the uncertainties introduced
in Section 10.1, entering the model in the form of NPs, passes a comprehensive series of
statistical tests on pseudodata. It is also demonstrated that a model using the pure GLP
score as a discriminant achieves the best expected precision across all four signal strength
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Figure 10.7: Distribution of the test statistic derived from 10000 toy data sets (blue) and
the test statistic for the observed data (dashed red line). The resulting p-value
is calculated with Equation 10.13

parameters simultaneously, without favoring selected parameters to the detriment of others.
In this section, the statistical model is examined on measured data at the CMS experiment
in the 2018 data-taking era. The signal strength parameters along with their uncertainties,
significances, correlations, post-fit NP values, and the impacts on the POI are investigated.
Furthermore, the results are compared to related measurements, which are discussed in
Section 7.2.

The observed best-fit signal strength parameters for the four signal processes are

𝜇obs
tt̄B = 0.98+0.34

−0.25, 𝜇obs
tt̄C = 0.74+0.41

−0.41, 𝜇obs
tt̄H = 0.89+0.95

−0.93, 𝜇obs
tt̄Z = 1.28+1.15

−1.06 . (10.14)

The results are also shown in Figure 10.8 with a breakdown of the total uncertainty into
its statistical and theoretical contributions. The statistical uncertainty is determined in a
maximum likelihood fit with all NP describing systematic uncertainties fixed to their best-fit
values. The difference in quadrature between the total uncertainty and the statistical
uncertainty defines the total systematic uncertainty.

The corresponding observed significances as defined in Section 6.3 for an excess of events
over the expected background are
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Figure 10.8: Best-fit signal strength parameters 𝜇 for the tt̄B, tt̄C, tt̄H, and tt̄Z processes.
The total uncertainty is broken down in a contribution from statistical and
systematic uncertainty sources.

𝑍obs
tt̄B = 15, 𝑍obs

tt̄C = 1.8, 𝑍obs
tt̄H = 1.0, 𝑍obs

tt̄Z = 1.2 . (10.15)

The observed signal strength parameters reveal that the measured cross sections for the
tt̄B, tt̄C, and tt̄H processes are smaller than the cross section predictions of the respective
processes. Only the tt̄Z processes show a larger measured cross section relative to the cross
section prediction by the SM. Despite these deviations, all four processes are compatible
with the predicted cross sections of the SM. Consistent with the findings from the tests
on pseudodata, it can be seen that the tt̄B and tt̄C processes are dominated by the
systematic uncertainties. While the total uncertainties for the tt̄H and tt̄Z processes also
have predominantly systematic contributions, they exhibit notable statistical uncertainty
components as well. The observed significances, compared to the expected significances (cf.
Equation 10.9) show small decreases for the tt̄B and tt̄H processes. A more pronounced
decrease of the significance can be observed for tt̄C processes, whereas the observed
significance of the tt̄Z processes show a slight increase compared to the expected significance.
Such deviations between expected and observed significances are a common phenomenon
in statistical analyses and does not constitute an anomaly in the measurement. A detailed
discussion of the observed signal strength parameters is provided at the end of this chapter,
after various factors of the measurement such as correlations, post-fit values of the NPs,
and impacts on the signal strength parameters are examined.

Table 10.2 provides a detailed overview of the contributions to the total uncertainty for
all four signal strength parameters. The QCD scale uncertainty is identified as the most
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significant factor contributing to the signal strength parameters 𝜇tt̄B. The largest source of
uncertainty on the signal strength parameters 𝜇tt̄C is the uncertainty arising from b tagging
with the DeepJet heavy flavor jet tagging algorithm. For the signal strength parameter
of the tt̄H processes, the dominant contribution stems from the modeling uncertainty of
the collinear gluon splitting in tt̄2b processes. The uncertainties reflecting the QCD scale,
PS, damping scale ℎdamp, and JEC are the largest uncertainties contributing to the signal
strength parameter 𝜇tt̄Z, each with roughly equal influence.

The GLP output score distributions after the maximum likelihood fit of the POIs and NPs
are shown in Figure 10.9 for the signal classes and in Figure 10.10 for the background class
considered in the fit. These distributions demonstrate a significantly improved agreement
between predictions and data compared to the pre-fit distributions in Figures 10.1 and
10.2, particularly in bins with high signal purity, i.e. bins with large GLP scores in each
class. For the background class tt̄Z(nonB), the previously described over-prediction in
simulation is mitigated by the fit to the data. However, some data points are not covered
by the uncertainties, as the total uncertainties are reduced after the fit.

10.3.1 Correlations

The correlations between the parameters of the statistical model determined in a fit to data
demonstrate similar patterns compared to the correlations determined in fits to pseudodata.
All parameter correlations are depicted in Figure 10.11.

Some parameter correlations appear more pronounced in the fit to data compared to the
parameter correlations in the fit to pseudodata, while others are comparatively weaker. The
overall NP correlations in the fit to pseudodata are expected to be more pronounced than
those in fits to measured data since pseudodata provides an ideal, noise-free, and systematic
representation of the model predictions. In contrast, measured data includes statistical
fluctuations and uncertainties, which tend to diminish the strength of the correlations.
Hence, several factors can contribute to reduced correlations between POIs and NPs in fits
to data compared to correlations visible in fits to pseudodata. In maximum likelihood fits
to data, deviations in the background modeling or other effects from the measurement can
directly constrain the NPs and reduce their allowed ranges. These constraints reduce their
ability to vary in correlated ways. In contrast, NP correlations in fits to pseudodata are
primarily driven by model assumptions and influenced by the chosen priors. In fits of the
statistical model to data, the constraints from data encoded in the negative log-likelihood
function can dominate and reduce the correlations imposed by the model. Another reason
for reduced correlation arises when the POIs are smaller than expected, leading to a reduced
contribution of the signal to the negative log-likelihood function. This is the case in this
measurement, as signal strength parameters smaller than one are determined in fits to
data for both tt̄C and tt̄H. Therefore, the fit to data is dominated by the background
model compared to fits on pseudodata, which constrains NPs more effectively, limits the
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Table 10.2: Uncertainty breakdown for all observed best-fit signal strength parameters.
The uncertainties under scrutiny are obtained by fixing all other uncertainties
to their post-fit values and evaluating the difference relative to the full-fit
result using quadratic subtraction. To estimate the statistical uncertainty, all
NPs are fixed to their post-fit values and the fit is performed again. The total
uncertainty differs from the quadratic sum of individual contributions due to
rounding and correlations among the NPs. The miscellaneous group includes
all NPs that do not belong to any of the other groups, such as the luminosity.

Source of uncertainty 𝜇tt̄B 𝜇tt̄C 𝜇tt̄H 𝜇tt̄Z

Experimental
b tagging +0.04/− 0.04 +0.37/− 0.38 +0.15/− 0.14 +0.25/− 0.28
JEC ±0.04 +0.10/− 0.09 +0.24/− 0.20 +0.34/− 0.35
Lepton ±0.01 +0.06/− 0.05 +0.08/− 0.11 +0.10/− 0.15

Theory
QCD scale +0.32/− 0.23 +0.06/− 0.05 +0.13/− 0.12 +0.39/− 0.30
tt̄2b gluon splitting +0.06/− 0.03 ±0.01 +0.43/− 0.52 +0.21/− 0.19
PS ±0.02 ±0.04 +0.12/− 0.14 +0.33/− 0.32
ℎdamp +0.07/− 0.05 ±0.08 +0.06/− 0.08 +0.39/− 0.36
top 𝑝T correction ±0.01 ±0.01 +0.28/− 0.18 +0.25/− 0.16
PDF +0.05/− 0.04 ±0.05 +0.07/− 0.11 +0.28/− 0.27
Color reconnection ±0.01 ±0.03 +0.21/− 0.20 +0.14/− 0.30

Miscellaneous ±0.01 +0.06/− 0.07 +0.22/− 0.19 +0.18/− 0.27
Other POIs ±0.01 ±0.01 ±0.17 ±0.18
Statistical ±0.03 ±0.03 +0.62/− 0.61 +0.68/− 0.67

Total +0.34/− 0.25 +0.41/− 0.41 +0.95− 0.93 +1.15/− 1.06
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Figure 10.9: Post-fit distributions of the GLP output score of all signal classes. The
contributions of all processes are displayed as stacked histograms, with data
represented as black dots. The tt̄H and tt̄Z predictions are additionally
displayed as a line scaled to the integral of the stacked histogram. The bottom
panel depicts the ratio of data to the expected yields from event simulation.
The gray bands include the post-fit uncertainties described in Section 10.1.
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Figure 10.10: Post-fit distributions of the GLP output score of the background class
used in the fit. The contributions of all processes are displayed as stacked
histograms, with data represented as black dots. The tt̄H and tt̄Z predictions
are additionally displayed as a line scaled to the integral of the stacked
histogram. The bottom panel depicts the ratio of data to the expected yields
from event simulation. The gray bands include the post-fit uncertainties
described in Section 10.1.
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degrees of freedom and consequently reduces the correlation of the individual NPs. As an
example, a lower parameter correlation in a fit to data, compared to a fit to pseudodata,
can be seen in the correlation of the NP, which describes the c flavor uncertainty of the
b tagging algorithm, with the signal strength parameter for the tt̄C processes. However,
systematic effects in measured data can still introduce new correlations that are absent
in the fit to pseudodata, potentially enhancing certain correlations between the model
parameters. Examples of these cases are given in the discussion of the correlations between
the POIs, which can be found at the end of this section.

The strongest correlation between parameters in the model is between the NP describing
the uncertainty in the choice of the QCD scale for the tt̄B processes and the corresponding
signal strength parameter 𝜇tt̄B. This relationship is elaborated in detail in Section 10.2.2 in
the fit to pseudodata. The second largest correlation is the NP representing the b tagging
uncertainty reflecting the heavy flavor contamination in the light flavor region with the
tt̄C signal strength parameter. As shown in Chapter 9, the information of the heavy flavor
tagger is crucial for the classification of tt̄C events. Since the GNN model relies exclusively
on the b tagging discriminant provided by the DeepJet jet tagging algorithm and does not
possess information specific to c jet tagging, this dependency is particularly pronounced.

The correlations between the POIs are examined in detail in scans of the observed negative
log-likelihood test statistic as a function of the POIs. The negative log-likelihood for two
POIs is scanned for each possible combination, while the remaining two POIs are left freely
floating in the fit. The results of the six possible combinations are shown in Figure 10.12.
The two-dimensional scans allow the correlations of the respective POIs to be discerned, the
value of the parameter correlation is also stated in each panel in the figure. Additionally,
the 68% and 95% CL regions are indicated. The signal strength parameters 𝜇tt̄Z and
𝜇tt̄C exhibit the largest correlation (39%), while the signal strength parameters 𝜇tt̄H and
𝜇tt̄B show the largest anti-correlation (−10%). Compared to the observed anti-correlation
between the 𝜇tt̄H signal strength and the tt̄B background normalization of −48% in the tt̄H
analysis by the CMS Collaboration, the result of this thesis shows a reduced correlation of
the two processes [126]. The axis scaling is chosen individually for each POI to represent
the relevant range of the negative log-likelihood scan. No two-dimensional scan shows
irregularities, all combinations demonstrate circular behavior as expected. The correlation
between the POI combinations in pseudodata (data) is as follows: 0.08 (0.02) for 𝜇tt̄C vs.
𝜇tt̄B, −0.10 (−0.10) for 𝜇tt̄H vs. 𝜇tt̄B, 0.20 (0.27) for 𝜇tt̄H vs. 𝜇tt̄C, 0.13 (0.17) for 𝜇tt̄H vs.
𝜇tt̄Z, 0.0 (0.0) for 𝜇tt̄Z vs. 𝜇tt̄B, and 0.26 (0.39) for 𝜇tt̄Z vs. 𝜇tt̄C. Furthermore, the negative
log-likelihood profiles of all NPs are scanned and examined. The scans of all NPs found to
exhibit the anticipated parabolic structure with no substantial deviations observed.

In summary, correlations provide valuable insights into the statistical model’s behavior
and establish relationships between its parameters. However, non-linearities can lead to
localized constraints on NPs, where the data impose tighter constraints in specific regions
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Figure 10.12: Observed negative log-likelihood test statistic (blue) as a function of the
POIs, with two different combinations of POIs displayed in each panel. The
remaining two POIs that are not displayed in a panel are freely floating in
the fit, whereas the NPs are profiled. Additionally, the best-fit values of the
SM expectation (diamonds) as well as the fit to data (crosses) are shown.
The dashed lines represent the 68% and 95% confidence level (CL) regions.
The correlation between the respective POIs is indicated in the legend of
each panel.
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of the parameter space on a set of NPs. For this reason, the following section examines
not only correlations but also the impacts on the POIs, which are related to correlations
but examine new aspects.

10.3.2 Post-fit parameters and impacts

A comprehensive assessment of the statistical model is given by the determination of the
distance from the post-fit to the pre-fit NP value normalized to the pre-fit uncertainty and
impacts of the NP on the signal strength parameters. The distances and impacts provide a
comprehensive view of the parameter space and allow for an assessment of the robustness
of the analysis. The distances of the NPs from the post-fit to the pre-fit values and the
impacts are used to understand how strongly the data influence the NP and whether
systematic uncertainties are reasonably estimated. Hence, significant shifts in parameter
estimates and tensions with auxiliary measurements can be revealed, indicating potential
issues with the statistical model.

The distance measure for a NP between the post-fit and the pre-fit model is defined
as (𝜃 − 𝜃I)/𝜎I, where 𝜃 is the post-fit value, 𝜃I is the pre-fit value, and 𝜎I is the pre-fit
uncertainty of the NP. With this, the distance measure provides insights into how individual
parameters deviate from their nominal value, offering a measure of agreement with the
statistical model. This distance from the post-fit to the pre-fit value relative to the pre-fit
uncertainty is a standard method of the combine software package used for statistical
analyses by the CMS Collaboration. For example, this measure is used in Ref. [126] and
often referred to in technical jargon as a ‘‘pull’’. However, the definitions of pulls can
vary. In constrained fits, Ref. [195] suggests incorporating the post-fit uncertainty into the
calculation of a proper pull to quantify the compatibility between auxiliary measurements
and the in-situ measurement from data. In contrast to other definitions such as the
distance measure defined in this thesis, which do not include the post-fit uncertainty in the
denominator, the pull definition in Ref. [195] takes the correlation between the uncertainties
in the fit result 𝜃 and the constraint 𝜃I into account. For this reason, the term ‘‘pull’’ is
avoided for the distance measure of the post-fit value to the pre-fit value of a NP.

In the case of fits to pseudodata, the post-fit values correspond to the pre-fit values of
the NP by design. Still, the asymmetric uncertainty bars on this post-fit value are a
particularly important indicator. Due to the normalization of the distance measure to the
pre-fit uncertainty, the uncertainty bars smaller than ±1 state that the NP is constrained
in the fit. The fit constraints of all NPs are calculated on pseudodata and measured data.

The impacts on a signal strength parameter provide valuable insights, allowing for a
dynamic assessment of the relationship between the signal strength parameter and all other
parameters. Impacts quantify the influence of a single NP or POI on the signal strength
parameter under investigation, which is related to the determination of the correlation
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between parameters, but also reflects non-linear relations between these. Since four POIs
are considered simultaneously in this thesis, the impacts of the remaining three POIs on the
signal strength parameter under scrutiny are also examined. The impacts are calculated
by systematically shifting each parameter to its ±1𝜎 uncertainty and re-evaluating the
negative log-likelihood. This reveals the relative change caused by the parameter variation
on the POI under scrutiny. Through this method, impacts demonstrate the sensitivity
of the maximum likelihood fit to specific parameters and enables to identify dominating
contributors to the signal strength measurement. With this, the primary drivers of
uncertainty can be identified, providing insights into areas that could be explored further
to potentially refine precision, such as by improving specific systematic uncertainties.

The distance between the post-fit value 𝜃 and the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 along with the constraints, and the impacts on the observed signal strength
parameters are shown in Figures 10.13 and 10.14. In each instance, one signal strength
parameter of the multi-dimensional fit with four POIs is assessed. In these plots, the
post-fit values of the NPs are identical across all examined signal strength parameters, as
their fit values do not change when a different signal strength parameter is monitored.
However, the impacts differ, as different NPs affect each signal strength parameter in
distinct ways. The NPs are sorted top down from the largest impact to the smallest impact
on the respective signal strength parameter under scrutiny. Each figure shows the 15 most
important parameters simultaneously for expected and observed results. All other impacts
can be found in Appendix C.

The parameter with the highest impact on the signal strength parameter 𝜇tt̄B is the QCD
scale, whose effect is significantly more pronounced than that from all other parameters.
The NP is not constrained in the fit and the post-fit value aligns with the pre-fit value.
Since this NP represents a pure rate effect exclusively on the tt̄B processes, which, as
discussed in Section 10.2.2, strongly anti-correlates with the signal strength parameter 𝜇tt̄B,
it is expected that the NP parameter in the fit remains unchanged. Instead, the freely
floating POI adjusts the rate effects. Therefore, the NP primarily reflects the uncertainty
associated with the choice of the renormalization scale. Other parameters that impact the
signal strength parameter 𝜇tt̄B are the uncertainty on the choice of the ℎdamp parameter,
the signal strength parameter 𝜇tt̄H, and the uncertainty on the tt̄2b process due to the
challenging description of the collinear gluon splitting. Still, these parameters and all
others show only minor impacts on 𝜇tt̄B.

The largest impact on the signal strength parameter of the tt̄C processes is the NP reflecting
the b tagging uncertainty of the heavy flavor contamination (cf. Section 10.1). A large
impact of this NP on 𝜇tt̄C is expected, as heavy flavor jet tagging is particularly challenging
for the reconstruction of c jets compared to b and light flavor jets. Other NPs that impact
the signal strength parameter 𝜇tt̄C when shifting the parameter to its ±1𝜎 value are the
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Figure 10.13: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The
distance from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the
pre-fit uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows
the relative change to the signal strength parameter 𝜇 under scrutiny if the
NP under consideration is shifted to its ±1𝜎 value. The parameters are
sorted according to the size of the impact, parameters one to 15 are shown.
Created with [193].
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Figure 10.14: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The
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Created with [193].
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color reconnection in the QCD-inspired model, the uncertainty on the choice of the ℎdamp

parameter, and the signal strength parameter 𝜇tt̄Z.

The gluon splitting uncertainty in the tt̄2b process shows the largest impact on the
signal strength parameter 𝜇tt̄H. This NP also has the largest impact on the tt̄H signal
strength parameter in the measurement published by the CMS Collaboration [126]. Further
parameters that have a large impact on 𝜇tt̄H are the top quark 𝑝T modeling, the signal
strength parameter 𝜇tt̄C, and the statistical uncertainty of a bin in the tt̄H class of the
GLP.

The largest impact on the signal strength parameter 𝜇tt̄Z is the POI representing the tt̄C
signal strength in the fit. As previously discussed, the tt̄Z and tt̄C processes exhibit the
strongest correlation among all POI combinations. Other parameters that impact the
signal strength parameter 𝜇tt̄Z when shifting the NP to their ±1𝜎 value are the uncertainty
associated with FSR, the uncertainty on the choice of the renormalization scale of the tt̄LF
processes, and the uncertainty on the top quark 𝑝T modeling.

The NPs with the largest difference between the post-fit and pre-fit values are the NPs rep-
resenting the shape-changing effects of the uncertainty in the choice of the renormalization
scale 𝜇𝑅 on the tt̄B and tt̄LF processes. Additionally, the NP representing the statistical
fluctuations on the contamination from light and c flavor jets in the heavy flavor region of
the b tagging algorithm in the fit shows an enhanced difference between the post-fit and
pre-fit values. Also, the NP representing the pileup uncertainty in the fit demonstrates
a difference greater than one between its post-fit and pre-fit values normalized to the
pre-fit uncertainty. In Section 8.4.1, the correction of the pileup in simulated events due
to a known discrepancy between event simulation and data is addressed. Although this
correction reduced the discrepancy, it did not completely resolve the visible deviations (cf.
Figure 8.2), and similar effects are observed in other analyses [132]. The NP reflecting the
statistical uncertainty of the b tagging SF on heavy flavor jets shows the largest constraint
of all NP.

10.3.3 Comparative analysis of the best-fit results

In this section, the measured signal strength parameters of this thesis are contextualized
within the landscape of existing analyses, which are discussed in detail in Section 7.2.

The best-fit signal strength parameter 𝜇obs
tt̄B = 0.98+0.34

−0.25 in this thesis aligns closely with the
results of the inclusive and differential measurements of tt̄bb̄ in the semileptonic channel,
as reported in Refs. [96, 132]. These analyses employed the same model to describe the
tt̄bb̄ processes and observed a cross section lower than predicted, with the discrepancy
increasing in phase spaces enriched with a high signal fraction. In the most inclusive phase
space ≥ 5 jets, ≥ 3b jets of the measurement, the ratio of the measured cross section to
the predicted cross section by the model is approximately one. Furthermore, the signal
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strength parameter 𝜇tt̄B obtained in this thesis is consistent with the tt̄B normalization in
the tt̄H(bb̄) analysis by the CMS experiment, which also utilizes the same tt̄bb̄ modeling
approach [126]. In Ref. [126], the post-fit tt̄B normalization is 1.19. However, the tt̄bb̄
cross section is scaled to the cross section prediction of the tt̄bb̄ processes described with
tt̄ at ME level, which in turn shows to predict a cross section of 10% to 24% lower than
the observed cross sections in Refs. [96, 132]. Thus, due to the modified cross section, the
value of the normalization tt̄B parameter is in agreement with the measured signal strength
parameter 𝜇tt̄B in this thesis. The uncertainty on the 𝜇tt̄B value in this thesis is dominated
by the uncertainty on the choice of the renormalization scale. In the joint study with the
ATLAS Collaboration comparing different tt̄+jets and tt̄bb̄ event simulation approaches,
it is shown that larger 𝜇𝑅 variation uncertainties arise in tt̄bb̄ event simulations with
a definition of tt̄bb̄ at ME level compared to a definition of tt̄+jets at ME level [124].
The variation on 𝜇𝑅 is determined to be up to 70% Ref. [124]., which is also observed in
Refs. [96, 132].

A direct comparison of the best-fit signal strength parameter 𝜇obs
tt̄C = 0.74+0.41

−0.41 with other
measurements is not feasible, as no measurement employing an identical model exists
(cf. Section 7.2). The signal strength parameter measured in this thesis exhibits a lower
observed cross section compared to the cross section prediction by the tt̄cc̄ modeling.
However, the measured cross section is compatible with the SM prediction within the 68%
confidence interval. A signal strength parameter lower than one for the tt̄C process is
also plausible due to challenges in the event classification caused by sparse c jet tagging
information in the GLP. In particular, there is an increased mis-classification rate of tt̄C
events with tt̄LF events. A slight overestimation of tt̄ events with additional light jet
radiation is observed in the analysis phase space, consistent with findings reported in
Ref. [132]. This suggests that the POI for the tt̄C processes partially compensates for these
effects, especially given that the tt̄LF contribution dominates the analysis phase space.

The best-fit signal strength parameter 𝜇obs
tt̄H = 0.89+0.95

−0.93 measured in this thesis indicates a
lower observed cross section compared to the SM prediction. The signal strength parameters
of related analyses including their uncertainties can be found in Figure 10.15 and are based
on Refs. [126, 134, 136, 137]. In this figure, the measured signal strength parameters of all
analyzed channels are provided, along with the results specific to the dilepton channel for
comparison with this thesis, if it was investigated. Related tt̄H analyses exhibit significantly
varying central values for the best-fit parameters, particularly in the dilepton channel.
Some analyses published best-fit signal strength parameter values of 𝜇 < 0 in the dilepton
channel, not compatible with 𝜇 = 1 within the 68% confidence interval. Furthermore,
it is evident that in measurements in the dilepton channel, the statistical uncertainty
contributes substantially to the total uncertainty and, in certain cases, surpasses all other
sources of uncertainty.
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The best-fit signal strength parameter 𝜇obs
tt̄Z = 1.28+1.15

−1.06 in this analysis shows a larger
measured cross section relative to the SM prediction. A comparison of 𝜇tt̄Z with other
measurements is not possible, as no comparable measurements from the ATLAS or CMS
Collaborations in the Z → bb̄ decay channel exist. The tt̄Z cross section measurement
by the CMS Collaboration in the Z→ ℓℓ decay channel, which is the measurement most
comparable with this thesis, observed a 13% larger cross section of 𝜎obs

tt̄Z = 0.95± 0.08 pb
compared to the predicted value of 𝜎obs

tt̄Z = 0.84± 0.10 pb. The thesis in Ref. [139] analyzing
data recorded in the 2018 era at the CMS experiment found a signal strength parameter of
𝜇tt̄Z = −0.77+1.19

−1.26 in the semileptonic tt̄ channel.

To summarize, in this chapter the simultaneous measurement of the four signal strength
parameters 𝜇tt̄B, 𝜇tt̄C, 𝜇tt̄H, and 𝜇tt̄Z is presented and discussed in detail. The construction
of the statistical model is based on the output score of the GLP multi-class classifier,
which is described in Chapter 9. The observed signal strength parameters, summarized
in Figure 10.8, exhibit good agreement with the cross sections predicted by the SM.
Furthermore, all influencing factors, i.e. NPs, on the signal strength parameters are
thoroughly investigated.
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In this thesis, a simultaneous cross section measurement of four different top quark-
antiquark pair production (tt̄) processes with additional heavy flavor jets is performed.
The analyzed processes include the associated production of tt̄ with an additional pair
of b quarks (tt̄bb̄), or an additional pair of c quarks (tt̄cc̄). These processes lead to
different event topologies and are consolidated into tt̄B and tt̄C, respectively. Likewise,
the production of tt̄ in association with a Higgs (tt̄H) or Z boson (tt̄Z), where the boson
subsequently decays into a pair of b quarks (H/Z → bb̄). All four processes feature an
equivalent final state posing a significant challenge for differentiation.

The cross section measurement analyzes the data recorded by the Compact Muon Solenoid
(CMS) experiment at the Large Hadron Collider (LHC) at Conseil Européen pour la
Recherche Nucléaire (CERN). The recorded and analyzed data of proton-proton collisions
at a center-of-mass energy at

√
𝑠 = 13 TeV corresponds to an integrated luminosity of

about 60 fb−1. Collision events are analyzed if they contain exactly two electrons, two
muons, or one electron and one muon, targeting the decay channel of the tt̄ system where
both top quark decays include leptonic processes. Furthermore, at least three jets are
required in an event.

The cross sections are measured in a parameterization and are expressed as signal strength
parameters relative to the cross section predicted by the Standard Model of particle physics
(SM). The signal strength parameters are defined as 𝜇𝑖 = 𝜎obs

𝑖/𝜎
SM
𝑖 , where 𝜎obs

𝑖 denotes the
observed cross section and 𝜎SM

𝑖 refers to the cross section of process 𝑖 predicted by the SM.
With this approach, the cross section is measured in the phase space of three jets and two
leptons and extrapolated to the full phase space using Monte Carlo event simulation (MC).
The results correspond to an observed (expected) significance of 15 standard deviations (𝜎)
(16𝜎) for tt̄B, 1.8𝜎 (2.9𝜎) for tt̄C, 1.0𝜎 (1.1𝜎) for tt̄H, and 1.2𝜎 (1.0𝜎) for tt̄Z compared
to the SM expectation without these processes included. The signal strength parameters
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are simultaneously extracted a in maximum likelihood fit to binned distributions of data
in all regions and result to

𝜇obs
tt̄B = 0.98+0.34

−0.25 = 0.98± 0.03 (stat.)+0.34
−0.25 (syst.) , (11.1)

𝜇obs
tt̄C = 0.74+0.41

−0.41 = 0.74± 0.03 (stat.)+0.41
−0.41 (syst.) , (11.2)

𝜇obs
tt̄H = 0.89+0.95

−0.93 = 0.89+0.62
−0.61 (stat.)+0.72

−0.71 (syst.) , (11.3)
𝜇obs

tt̄Z = 1.28+1.15
−1.06 = 1.28+0.68

−0.67 (stat.)+0.93
−0.84 (syst.) . (11.4)

The analysis strategy to simultaneously measure four processes in the tt̄ + heavy flavor
phase space leverages state-of-the-art Artificial Intelligence (AI) models for jet and event
classification. Collision events are transformed into a mathematical graph structure
and processed with graph transformer neural network architectures based on multi-head
attention mechanisms. The advantages of a graph structure in graph neural networks
(GNNs) compared to deep neural networks (DNNs) are discussed in detail in Ref. [111]
and are applied in this analysis. A two-stage training procedure is implemented. In the
first stage, a classification algorithm is employed which is tasked with identifying the
origin of jets in an event. A binary jet classification is implemented to identify additional
jets in an event that do not originate from the tt̄ system, as these jets show the highest
discrimination power based on an input feature analysis. The classification method is
employed as node level prediction (NLP) and benchmarked against an established method
which identifies the additional jets through the distance measure Δ𝑅. It is shown that
this algorithm shows a significant performance improvement compared to the Δ𝑅 method.
The jet origin information is subsequently fed into the second stage, which is a graph
neural network designed for multi-class event classification, enabling the generation of
multiple signal regions. The performance of the network is extensively studied and tuned.
Additionally, the dependence of event classification on jet identification as an input is
evaluated, highlighting its exceptional importance.

The signal strength parameters are inferred by fitting the negative log-likelihood function of
the statistical model to the observed data. This approach ensures an optimal determination
of the signal hypotheses, as predicted by the statistical model and observed in the data. In
contrast to other analyses, the strategy of this thesis is a simultaneous measurement of
all four processes. This ensures a consistent approach to handling all processes and their
associated uncertainties, with each process being treated with equal importance.

The statistical model incorporates a comprehensive set of systematic uncertainties arising
from both experimental and theoretical sources. These uncertainties are included as
nuisance parameters (NPs) in the fit. Before being applied to the data, the statistical
model is rigorously validated. This involves assessing potential biases, performing a
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goodness-of-fit test, determining all relevant correlations, and examining the influence
of each signal strength parameter in detail. Moreover, it is shown how the design of
various discriminants based on the GNN can be strategically optimized to enhance the
sensitivity on specific processes. The resulting signal strength parameters from the fit to
recorded data are thoroughly explored. Together with an uncertainty breakdown, the
impact of all parameters on each individual signal strength parameter has been analyzed.
This includes, in particular, the quantum chromodynamics (QCD) scale choice as the
determining factor for 𝜇tt̄B, the b tagging uncertainty as the primary driver for 𝜇tt̄C, the
gluon splitting into a pair of b quarks in tt̄ processes as the key influence for 𝜇tt̄H, and the
signal strength parameter of the tt̄H process as the dominant factor for 𝜇tt̄Z. The results
are contextualized both in relation to SM predictions and in comparison to other analyses
with comparable measurements. The findings of this thesis demonstrate good agreement
with the predictions of the SM and particularly with dedicated measurements of the tt̄bb̄
processes. The measurement of the tt̄C processes demonstrates good compatibility with the
SM, while also highlighting potential areas for improvement, such as b vs. c jet separation.
For the tt̄H process, which has shown significant deviations from the SM prediction in the
dilepton tt̄ channel in previous measurements, the central value exhibits good compatibility
with the expectations of the SM in this thesis. In the case of tt̄Z processes, where no related
measurements in Z→ bb̄ exist, the results show agreement with the closest related analysis,
revealing a slightly larger measured cross section compared to the cross section prediction
by the SM. To summarize, this thesis presents a precision measurement of the SM and
reports the parameterized observed cross sections of four parameters in the tt̄ + heavy
flavor phase space for future research. This work also outlines necessary improvements in
future precision measurements to enhance the sensitivity.

Future analyses will benefit significantly from improved heavy flavor jet tagging algorithms,
enhancing the precision of all processes, especially tt̄C. Additionally, exploring tt̄H
production in the H → cc̄ decay channel may constrain or discover the coupling of the
Higgs boson to the charm quark and provide deeper insights into potential new physics.
The inclusion of data from LHC Run-III is expected to improve the precision of all
processes, and in particular reduce the large statistical uncertainties that currently have
a significant impact on tt̄H and tt̄C. Also, a combination with other tt̄ decay channels
such as the semileptonic decay channel would significantly increase the amount of data
and thus lower the statistical uncertainty. Furthermore, breaking down the tt̄B process
into its sub-processes tt̄bb̄, tt̄2b, and tt̄b will allow for a more detailed understanding
of the underlying production mechanisms. This could pave the way for measurements
with improved precision, offering deeper insights into the SM and potential indications of
beyond the Standard Model (BSM) physics.
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Figure A.1: Input feature distributions of jet 𝜑 (top left), jet mass (top right), jet energy
(middle left) and jet b tagging value (middle right) embedded as node features
for simulated tt̄+jets, tt̄H, and tt̄Z events. The tagger values c vs. b and c
vs. light are shown at the bottom left and bottom right respectively. These
inputs are not used in the training process. Distributions are separated into b
jets from the tt̄ system and additional jets.
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Figure A.2: Input feature distributions of jet pair 𝑝T (top left), jet pair 𝜂 (top right), jet
pair 𝜑 (bottom left) and jet pair 𝑚T (bottom right) embedded as edge features
for simulated tt̄+jets, tt̄H, and tt̄Z events. Distributions are separated into b
jets from the tt̄ system and additional jets.
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Figure B.3: Evaluation of the graph level prediction (GLP) model on events seen during
the training versus events not seen during the training (evt.). The distributions
of GLP scores on events assigned to the tt̄H class (top) and tt̄Z(B) (bottom)
are shown for each individual node of the multi-class classifier. The Kullback-
Leibler (KL) divergence for the distributions of the GLP node scores for seen
(filled histograms) and unseen events (enveloping distribution) is calculated
and given at the top.
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Figure B.4: Evaluation of the GLP model on events seen during the training versus events
not seen during the training (evt.). The distributions of GLP scores on
events assigned to the tt̄Z(nonB) class (top) and tt̄C (bottom) are shown for
each individual node of the multi-class classifier. The KL divergence for the
distributions of the GLP node scores for seen (filled histograms) and unseen
events (enveloping distribution) is calculated and given at the top.
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Figure B.5: Evaluation of the GLP model on events seen during the training versus events
not seen during the training (evt.). The distributions of GLP scores on
events assigned to the tt̄LF class (top) and Other (bottom) are shown for
each individual node of the multi-class classifier. The KL divergence for the
distributions of the GLP node scores for seen (filled histograms) and unseen
events (enveloping distribution) is calculated and given at the top.

203



204 11 Appendix

C Post-fit parameters and impacts

204



C Post-fit parameters and impacts 205

2− 1− 0 1 2

Iσ)/Iθ-θ(

B class)tMC stat. uncert. (23rd bin in t

Ctt
µ

Bt: t
F

µ

LFt: t
R

µ

Z(nonB) class)tMC stat. uncert. (0th bin in t

b tag.: c flavor uncert. (quadratic)

Color reconn. (QCD-inspired)

b tag.: heavy flavor contamination

JES relative balance

Ztt
µ

t tdamph

Color reconn. (Gluon move)

Jet energy resolution

JES relative sample

Underlying event

1.1−
1.1+1.3

0.4−
0.4+0.7

0.01− 0 0.01

Btt
µ∆

Fit constraint (obs)  impact (obs)σ+1  impact (obs)σ-1
Fit constraint (exp)  impact (exp)σ+1  impact (exp)σ-1

CMS Work in Progress 0.25−
0.34+ = 0.98

Btt
µ

2− 1− 0 1 2

Iσ)/Iθ-θ(

JES relative sample

Ct: t
F

µ

LFtISR t

b tag.: heavy flavor stat. (quadratic)

Z(nonB) class)tMC stat. uncert. (1st bin in t

Jet energy resolution

LFt: t
F

µ

CtQCD scale: t

b tag.: c flavor uncert. (linear)

2b gluon splittingtt

JES flavor QCD

Z(nonB) class)tMC stat. uncert. (0th bin in t

Color reconn. (Gluon move)

WtLF, ttQCD scale: t

Underlying event

0.1− 0 0.1

Ctt
µ∆

Fit constraint (obs)  impact (obs)σ+1  impact (obs)σ-1
Fit constraint (exp)  impact (exp)σ+1  impact (exp)σ-1

CMS Work in Progress 0.4−
0.4+ = 0.7

Ctt
µ

Figure C.6: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and 𝜇tt̄C
(bottom). Parameter names are organized in the left panel. The distance from
the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit uncertainty
𝜎𝐼 are shown in the middle panel. The right panel shows the relative change to
the signal strength parameter 𝜇 under scrutiny if the NP under consideration
is shifted to its ±1𝜎 value. The parameters are sorted according to the size of
the impact, parameters 16 to 30 are shown. Created with [193].
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Figure C.7: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and 𝜇tt̄Z
(bottom). Parameter names are organized in the left panel. The distance from
the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit uncertainty
𝜎𝐼 are shown in the middle panel. The right panel shows the relative change to
the signal strength parameter 𝜇 under scrutiny if the NP under consideration
is shifted to its ±1𝜎 value. The parameters are sorted according to the size of
the impact, parameters 16 to 30 are shown. Created with [193].
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Figure C.8: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and 𝜇tt̄C
(bottom). Parameter names are organized in the left panel. The distance from
the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit uncertainty
𝜎𝐼 are shown in the middle panel. The right panel shows the relative change to
the signal strength parameter 𝜇 under scrutiny if the NP under consideration
is shifted to its ±1𝜎 value. The parameters are sorted according to the size of
the impact, parameters 31 to 45 are shown. Created with [193].
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Figure C.9: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and 𝜇tt̄Z
(bottom). Parameter names are organized in the left panel. The distance from
the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit uncertainty
𝜎𝐼 are shown in the middle panel. The right panel shows the relative change to
the signal strength parameter 𝜇 under scrutiny if the NP under consideration
is shifted to its ±1𝜎 value. The parameters are sorted according to the size of
the impact, parameters 31 to 45 are shown. Created with [193].
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Figure C.10: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 46 to 60 are shown. Created
with [193].
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Figure C.11: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 46 to 60 are shown. Created
with [193].
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Figure C.12: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 61 to 75 are shown. Created
with [193].
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Figure C.13: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 61 to 75 are shown. Created
with [193].
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Figure C.14: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 76 to 90 are shown. Created
with [193].
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Figure C.15: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 76 to 90 are shown. Created
with [193].
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Figure C.16: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 91 to 105 are shown. Created
with [193].
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Figure C.17: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 91 to 105 are shown. Created
with [193].
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Figure C.18: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 106 to 120 are shown. Created
with [193].
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Figure C.19: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 106 to 120 are shown. Created
with [193].
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Figure C.20: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 121 to 135 are shown. Created
with [193].
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Figure C.21: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 121 to 135 are shown. Created
with [193].
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Figure C.22: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 136 to 150 are shown. Created
with [193].
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Figure C.23: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 136 to 150 are shown. Created
with [193].
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Figure C.24: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 151 to 165 are shown. Created
with [193].
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Figure C.25: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 151 to 165 are shown. Created
with [193].

224



C Post-fit parameters and impacts 225

2− 1− 0 1 2

Iσ)/Iθ-θ(

H class)tMC stat. uncert. (19th bin in t

PDF rate: qq

Z(nonB) class)tMC stat. uncert. (16th bin in t

Zt: t
F

µ

Zt: t
R

µ

HtPDF rate: t

ZtISR t

HtQCD scale: t

Z(nonB) class)tMC stat. uncert. (24th bin in t

H class)tMC stat. uncert. (17th bin in t

Z(nonB) class)tMC stat. uncert. (19th bin in t

Z(nonB) class)tMC stat. uncert. (18th bin in t

Electron-Muon trigger

Z(B) class)tMC stat. uncert. (0th bin in t

C class)tMC stat. uncert. (9th bin in t

0.4− 0.2− 0 0.2 0.4

3−10×

Btt
µ∆

Fit constraint (obs)  impact (obs)σ+1  impact (obs)σ-1
Fit constraint (exp)  impact (exp)σ+1  impact (exp)σ-1

CMS Work in Progress 0.25−
0.34+ = 0.98

Btt
µ

2− 1− 0 1 2

Iσ)/Iθ-θ(

Z(nonB) class)tMC stat. uncert. (16th bin in t

HtQCD scale: t

Zt: t
R

µ

Z(nonB) class)tMC stat. uncert. (10th bin in t

ZtPDF rate: t

PDF rate: qq

B class)tMC stat. uncert. (32nd bin in t

C class)tMC stat. uncert. (2nd bin in t

Z(nonB) class)tMC stat. uncert. (18th bin in t

Z(nonB) class)tMC stat. uncert. (11th bin in t

QCD scale: Vx

Zt: t
F

µ

ZtQCD scale: t

B class)tMC stat. uncert. (13th bin in t

Z(nonB) class)tMC stat. uncert. (9th bin in t

0.2− 0 0.2

3−10×

Ctt
µ∆

Fit constraint (obs)  impact (obs)σ+1  impact (obs)σ-1
Fit constraint (exp)  impact (exp)σ+1  impact (exp)σ-1

CMS Work in Progress 0.4−
0.4+ = 0.7

Ctt
µ

Figure C.26: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 166 to 180 are shown. Created
with [193].
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Figure C.27: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 166 to 180 are shown. Created
with [193].
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Figure C.28: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄B (top) and
𝜇tt̄C (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 180 to 189 are shown. Created
with [193].
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Figure C.29: Pre-fit and post-fit results of the signal strength parameters 𝜇tt̄H (top) and
𝜇tt̄Z (bottom). Parameter names are organized in the left panel. The distance
from the post-fit value 𝜃 to the pre-fit value 𝜃 normalized to the pre-fit
uncertainty 𝜎𝐼 are shown in the middle panel. The right panel shows the
relative change to the signal strength parameter 𝜇 under scrutiny if the NP
under consideration is shifted to its ±1𝜎 value. The parameters are sorted
according to the size of the impact, parameters 180 to 189 are shown. Created
with [193].
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