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Local chromatic correction optics are proposed for the Future Circular eþ − e− Collider. These new
optics assume an identical layout of the magnets at all operation energies and include a new design for the
arcs, for the straight sections, and for the final focus. The arcs design is a step forward from the classic
FODO lattice that achieves near cancellation up to the fourth order of chromatic and geometric aberrations.
Straight sections and the final focus benefit from the application of transparency conditions and are thus
minimally impacting the global beam dynamics. The final focus design includes both vertical and
horizontal chromaticity correction sections, crab sextupoles, and additional specific sextupoles and
decapoles for the optimization of the dynamics off-energy. Decapoles are very effective in mitigating the
reduction of dynamic aperture due to synchrotron radiation. Nonlinear magnet settings are further
optimized with multiobjective algorithms. The overall properties of the new optics proposed are analyzed
in the presence of errors and compared to other optics designs.
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I. INTRODUCTION

The Future Circular Collider (FCC) project [1] is being
evaluated as the next high-energy collider for the
international community, targeting precision Higgs boson
Physics and tests of the standard model. The FCC project
has several steps of implementation to exploit at most the
use of the ∼91 km tunnel required for its construction.
The first stage is represented by an electron positron
collider (FCC-ee), to be operated at the center of mass
energies corresponding to the production of Z bosons
(45.6 GeV), W bosons, Higgs bosons (125 GeV), and tt̄
quark pairs (182.5 GeV). The present electron beam
optics of the FCC-ee collider, named Global Hybrid
chromaticity Correction (GHC) optics, are detailed in [2]
and available in a dedicated repository [3]. The optics
proposed in this paper, called henceforth local chromatic
correction (LCC) optics, present several advantages com-
pared to the optics in [2,3]: strongly improved beam

dynamics off-axis and off-energy, reduced energy loss
per turn, and weaker magnetic strengths. The arcs of the
LCC optics are designed with techniques used for the
design of synchrotron radiation (SR) light sources [4,5].
The final focus (FF) design is an evolution of the
SuperB [6] design with many features specifically devel-
oped for FCC-ee. For example, a novel technique was
developed to reduce detrimental effects induced by syn-
chrotron radiation from the interaction region quadrupoles.
In the later section, the design choices and the properties of
the LCC lattice optics are detailed.
Section II introduces the optics design strategy.
Sections III, IV, and V detail the design choices for the

arcs long straight sections (LSS), and the final focus,
respectively.
Section VI describes the optimizations of nonlinear

optics with numerical algorithms.
Sections VII and VIII detail the lattice properties and

sensitivity to errors.

II. OPTICS DESIGN STRATEGY

The optics design aims to achieve the highest possible
degree of achromaticity and anharmonicity. Moreover,
chromaticities and transverse nonlinearities are compen-
sated as locally as possible. This approach presents several
advantages: minimization of the absolute value of the
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resonance driving terms [7] and Montague functions [8];
reduced sensitivity of nonlinear cancellations to errors;
orthogonal cancellation of aberrations; and the creation of
orthogonal tuning knobs. A lattice is considered achro-
matic if the variation of the main optics parameters, such
as the tunes and the optics (β�h;v, α

�
h;v) at the interaction

point (IP), has a small dependency on the variation of
energy in a range as large as possible, ideally above 2% at
Z and 3% at tt̄ energy [9–11]. Similarly, a lattice is
anharmonic when transverse dynamics scale linearly with
respect to x and y actions. To evaluate achromaticity
and anharmonicity, given lattice figures such as Fig. 1
are produced. The “starfish” plots on the left side of
Fig. 1 show the tracking for particles at increasing initial
transverse offset horizontally, vertically, or diagonally
(X ¼ Y). The tracking is performed for five turns only,
and for better clarity, the tunes are set far from 0 and 0.5:
ðQh;QvÞ ¼ ð0.2; 0.3Þ to produce five straight lines in
phase space. For large amplitude, the nonlinear contribu-
tions transform the initial coordinates distributed onto a
straight line into a curve with nonzero second and higher
order polynomial components. The more a lattice is
anharmonic, the more the coordinates at each of the five
turns will be close to straight lines. A “quasi time-
independent” motion is achieved by seeking a solution
where the particles after five turns return to the original
coordinates. This is very significant because a time-
independent motion corresponds to stable particles and
provides a quick insight into the extent of the DA.
Achromaticity is instead visualized by the standard

detuning with momentum when chromaticities are set
to ðξh; ξvÞ ¼ ð0.0; 0.0Þ as in the right plots of Fig. 1.
Higher order amplitude detuning coefficients (∂nQh;v=∂nx,
∂nQh;v=∂ny, ∂nQh;v=∂nðx ¼ yÞ) are minimized to achieve
anharmonicity. High-order detuning coefficients ∂nQh;v=∂nδ
close to zero make the lattice nearly achromatic. Starfish
plots produce a quick snapshot of the combined effects of
high-order amplitude and energy detuning coefficients
on transverse beam dynamics. Throughout the present
work, they are used as a global and fast observable for all
high-order effects.

A crucial aspect of the design of a collider is the ability to
insert sections with minimum impact on the overall ring
performances with respect to arc-only performances. This
is achieved by using the transparency condition (TC)
described in [5] and reported later in Sec. IVA.
The design of the final focus (FF) system does not rely

on the arc sextupoles to correct the chromaticity of the low
β insertions. This allows maximal margins for dynamic
aperture (DA) and momentum acceptance (MA) optimiza-
tion. The FF is treated as an insertion in the ring that meets
the transparency conditions just as any other section
inserted in the optics.
Several methodologies and solutions are adopted to

accommodate all the necessary lattice requirements as
defined in the FCC-ee Conceptual Design Report (CDR)
[1], such as general ring layout, crossing angle at the IP,
straight sections length, parasitic crossing, rf, injection
region, and arcs distance between eþ and e− rings, with

FIG. 1. Coordinates at each of five turns tracking particles starting on the horizontal axis (first plot on the left), vertical axis (second
plot from the left), and for particles with identical horizontal and vertical coordinates (third plot from the left). The fourth and fifth
plots show horizontal and vertical detuning with momentum. The curves refer to two FODO arc lattice options with phase advance
ðμh; μvÞ ¼ ð90; 90Þ deg: 148 cells (Z) and 296 cells (tt̄). These are used by the GHC optics and utilize noninterleaved sextupoles
pairs at −I .

TABLE I. Full-ring general parameters for the two energies
considered.

Z tt̄

C (km) 90.659 90.659
Energy (GeV) 45.6 182.5
Number of IP per ring 4 4
Crossing angle (mrad) 30 30
Betatron tunes (198.26, 174.38) (350.224, 266.36)
Chromaticity (0.20, 0.21) (0.23, 1.66)
ϵh (pm rad) 684.72 2100.9
J (1, 1, 2) (1, 1, 2)
αc 2.894 × 10−5 0.946 × 10−5

U0 (MeV/turn) 34.3 8808.2
σE 3.715 × 10−4 14.9 × 10−4

β�v (mm) 0.7 1.6
β�h (mm) 100 1000
Bunch length (mm) 3.4 2.7
rf Voltage (GV) 0.17 10.4
rf frequency (MHz) 400 400
Long. damping time (ms) 401.6 6.3
Synchrotron tune 0.045 0.074
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minimal impact on the electron beam dynamics and optics
parameters.
Some relevant parameters for the Z and tt̄ lattice options

are reported in Table I.
The arcs, LSS, and FF optics matching the baseline

layout are detailed in the following sections.
The optics presented in this document include: (i) arcs

with a radius identical to baseline [2]; (ii) FF section length
set to match the overall ring circumference: 90.66 km;
(iii) 30 hybrid focusing defocusing (HFD) arc cells

(see Fig. 2) in each octant; (iv) four 2032 m long straight
sections (see Fig. 3); and (v) four final focus (FF) systems
(see Fig. 4).
Specialized LSS optics for injection, collimation,

beams crossing, and rf are presently not included. rf
cavities are included for 6D tracking with SR and located
in the LSS. Geometric constraints for the integration of
the cryomodules or for swap from 400 to 800 MHz
cavities as foreseen presently when going from Z
to tt̄ energy are not taken into account at this stage.

FIG. 2. HFD arc cell optics at tt̄ and magnet families naming convention.

FIG. 3. Half long straight section. The last four dipoles are halved to suppress dispersion. The quadrupoles and sextupoles adjacent to
the LSS on both sides are also tuned for on- and off-energy optics optimization.

FIG. 4. One of the four final focus systems. The interaction point is located in the center of the displayed region. Sextupole names are
reported in correspondence of their location. Crab sextupoles are named SCRAB. Green stars on the horizontal axis mark IP image point
locations described in Sec. V.
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Figure 5 shows the whole lattice optics considered in the
present work.

III. ARC LATTICE

A. Scaling of an FODO cell

High-luminosity colliders based on large Piwinski angle
and crab waist (CW) [12,13] require very small equilibrium
horizontal emittance ϵh and β�h;v. The small emittance leads
to the need to increase the number of basic FODO cells in
the arcs as much as possible.
In general, multiplying the number of cells (Ncells) of an

FODO lattice by a factor nwhile keeping the circumference
fixed (scaling all the elements proportionally) and keeping
the basic cell phase advance constant results in (i) emittance
decreases by n3. (ii) Quadrupoles strength and number
increase by a factor of n. (iii) Sextupole strengths increase
by n3 and number of sextupoles by a factor of n.
(iv) Following the scaling rules in [5], momentum accep-
tance (MA) decreases by a factor of n, and dynamic
aperture (DA) decreases by a factor > n3.
The cost and power consumption of quadrupoles scale

thus with N2
cells. These scaling laws are confirmed by

simulations in Fig. 6, where the circumference, tunes,
and chromaticity are kept constant.

To limit the number of cells, the intrinsic arc cell
emittance should be as small as possible. At the same
time, the emittance increase due to insertions (e.g., FF)
should also be minimized.
Anharmonicity and achromaticity become more severe

with more cells. Figure 1 supports this statement by
comparing FODO lattices with the increasing number of
cells in the same total length.

B. HFD optics layout and matching criteria

The basic HFD cell (see Fig. 2) consists of ten dipoles
(all of the same length), ten quadrupoles, and eight sextu-
poles [first QD1A and central QF6A quadrupoles do not
need a sextupole]. The HFD cell is left-right symmetric.
Quadrupole are grouped in two families (QF� and QD�);
sextupoles are grouped in four families as shown in Fig. 2.
The strengths of the quadrupole’s and sextupole’s

families in one HFD cell are determined imposing optimal
values for the following parameters: (i) KQF�: horizontal
natural emittance, selecting the corresponding μh; (ii)KSF1A
and KSF2A: horizontal chromaticity ξh ≃ 0 and first-order
variation of horizontal tune with horizontal amplitude
∂Qh
∂x ≃ 0; (iii) KQD�: first-order variation of vertical tune

with vertical amplitude ∂Qv
∂y ≃ 0 selecting the optimal μv

(several μv fulfill this condition, lower values with respect
to μh are preferred, see Sec. III C); and (iv) KSD1A and
KSD1A: vertical chromaticity ξv ≃ 0 and first-order cross-
term amplitude detuning ∂Qh

∂y ≃ 0, ∂Qv
∂x ≃ 0.

By adding additional quadrupole families (following the
naming scheme in Fig. 2), further reduction of nonlinear-
ities is possible.
The lattice characteristics are highly orthogonal with

respect to the matching constraints.
These matching conditions generate a lattice with very

small tune footprints (see Fig. 7).
The layout of the HFD arc visible in Fig. 2 is a standard

FODO sequence with two missing sextupoles (at QD1A
and QF6A) for every ten quadrupoles. BPMs are placed
at each sextupole location (between sextupole and
quadrupole).

FIG. 5. LCC (version 92) lattice at Z including eight arcs, four long straight sections, and four final focus systems.

FIG. 6. Scaling of emittance, total quadrupole, and sextupole
strength versus number of cells for an FODO lattice. Synchrotron
radiation and tapering are included for horizontal emittance
computations.
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C. Choice of the phase advance

The optimized HFD FODO average phase advance
between consecutive quadrupoles (QF� or QD�) for tt̄
operation is about ðμh; μvÞ ¼ ð100; 74Þ deg. Weaker
lattices utilize all the arc magnet complement at weaker
settings (the same magnet layout is used for all energies). A
weaker lattice with a phase advance of about ðμh; μvÞ ¼
ð50; 44Þ deg is achromatic and anharmonic as well; it is
considered to be used for Z and W [1] operations and in
general for any mode that requires a large momentum
compaction. Both lattices have an MA in excess of
�3% and extremely large DA, as will be detailed later
in Sec. III D.
The vertical phase advance μv has been chosen as the

best compromise between chromaticities, detunings, and
sensitivity to transverse collective effects (by limiting peak
and average β functions). In Fig. 8, the HFD cell vertical
phase advance μv is varied keeping constant the horizontal
phase advance μh. In general, a vertical phase advance μv ≃
0.8μh results in lower chromaticity and relaxed require-
ments on magnets strengths, in particular sextupoles, while
peak vertical beta functions (βv) remain almost unchanged.
Further lowering μv eventually leads to increased sensi-
tivity to collective effects due to a larger average βv.
Remarkably, peak βh;v are very similar for HFD

phase advance choices ðμh; μvÞ ¼ ð100; 74Þ deg (tt̄) and
ðμh; μvÞ ¼ ð50; 44Þ deg (Z).
Figure 9 compares the optics function of a short FODO

(90, 90) deg (L ¼ 52.4 m) and the HFD (100, 74) deg.

Given the larger μh HFD needs fewer and longer cells to
produce the same horizontal emittance. Figure 10 compares
the optics function of HFD (50, 44) deg and FODO (90,
90) deg with about twice the cell length (L ¼ 106.8 m).
The GHC optics approach for the Z energy is to preserve
the (90, 90) deg phase advance but double the length of the
FODO lattice period (by switching off every other quadru-
pole). HFD optics, on the other hand, simply change the
phase advance of the cell.

D. HFD dynamic aperture

A standard FODO lattice with a sextupole for every
quadrupole is very achromatic but not anharmonic. The
FODO with phase advance (90, 90) deg (adopted by the
GHC optics) with noninterleaved sextupoles pairs placed
at −I locations is less achromatic but more anharmonic.
This is visible in Fig. 11.

FIG. 8. Vertical chromaticity (∂Qv=∂δ) and maximum βv in the
HFD cell for varying vertical phase advance μv (2π units). On the
left figure μh ¼ 0.25, while on the right figure μh ¼ 0.125.

FIG. 9. Comparison of arc optics for tt̄: an FODO (90, 90) deg
short cell (top) and an HFD (100, 74) deg cell (bottom). Lattice
sequences are periodic over ten dipoles.

FIG. 10. Comparison of arc optics for Z: an FODO (90, 90) deg
long cell (top) and an HFD (50, 44) deg cell (bottom). Lattice
sequences are periodic over ten dipoles.

FIG. 7. Tune footprint of 224 unit cells for Z energy (left) and tt̄
(right) for increasing horizontal amplitude, vertical amplitude,
and energy deviation. The amplitudes are marked for each
dimension considered.
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The ultimate source of high-order chromaticity for
the GHC optics is uncorrected chromaticity and second-
order dispersion driven by the quadrupoles with no nearby
sextupoles.
For the HFD arc optics, both anharmonicity and achro-

maticity can be achieved simultaneously, as visible in
Fig. 12. Other approaches may be followed. For example,
the CEPC (Circular Electron Positron Collider) collider
strategy is to cancel the second-order chromaticity with
sextupole families encompassing eight cells [14].
For the HFD optics, it is in fact possible to remove the

second-order chromaticity while still maintaining the (geo-
metric) properties of the noninterleaved sextupoles scheme.
The linear detuning can be canceled by adjusting the phase
between the sextupole pairs to nonexact −I transforma-
tions. This technique can be applied for any given cell
phase advance. This technique is effective when the frac-
tional horizontal cell phase advance is close to 90 deg
because sextupole tends to be close to −I transformation.
However, for lower phase advance, the chromaticity
decreases very fast; thus the intrinsic nonlinearities from
the sextupoles become very weak. In fact, the lower phase
advance lattice for Z energy has much larger DA and MA
with respect to tt bar. Natural chromaticity is shown for
FODO and HFD lattice options in Table II, showing how
the HFD optics provide lower values.
The HFD lattice includes four sextupole families. These

additional degrees of freedom allow for the determination

of anharmonic and achromatic solutions for a continuous
range of μh between 30 and 110 deg. HFD arc lattice with
ðμh; μvÞ ¼ ð50; 44Þ deg and ðμh; μvÞ ¼ ð100; 74Þ deg pro-
duces machine parameters that closely match those of the
FCC-ee CDR [1].
The transverse DA and MA of a ring composed of HFD

arc cells only (without FF and LSS) are extremely large for
both Z and tt̄ optics as visible in Fig. 13. For reference in
the same figure also the DA of an FODO (90, 90) deg
lattice is shown. The advantages of a detuning free lattice
are evident.
HFD optics provide simultaneously very large transverse

and momentum acceptance.

E. Magnet requirements

The HFD cell dipoles are about 29.6 m long. QD
and QF quadrupoles are 1.8 and 2.4 m long, respectively.

FIG. 11. Coordinates at each of five turns turns tracking particles starting on the horizontal axis (first plot on the left), vertical axis
(second plot from the left), and for particles with identical horizontal and vertical coordinates (third plot from the left). The fourth and
fifth plots show horizontal and vertical detuning with momentum. The curves refer to two FODO (90, 90) deg arc lattices with
sextupoles at −I locations or at all quadrupoles. The lattice used is composed of eight arc cells, without LSS.

FIG. 12. Coordinates at each of five turns turns tracking particles starting on the horizontal axis (first plot on the left), vertical
axis (second plot from the left), and for particles with identical horizontal and vertical coordinates (third plot from the left). The fourth
and fifth plots show horizontal and vertical detuning with momentum. The curves refer to two arc lattice options: HFD with low
phase advance (Z) and large phase advance (tt̄). The lattice used is composed of eight ARC cells and eight LSS. Compared to Fig. 1
(same scales), HFD optics are the most anharmonic and achromatic options.

TABLE II. Natural chromaticity for HFD and FODO arc optics
at two FCC-ee operating energies.

Optics Energy ξh ξv

HFD Z −159.60 −156.62
FODO Z −236.13 −235.81
HFD tt̄ −380.81 −313.71
FODO tt̄ −471.38 −471.38
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A total of 2240 quadrupoles per ring are needed for the
arcs. SD and SF sextupoles are 50 and 35 cm long,
respectively, making use of the sextupole design [1,15]
already available for the baseline optics. Dipoles have all
the same length so the eþ=e− arcs can be longitudinally
shifted to align opposite polarity quadrupoles for the two
rings. Twin quadrupoles [1] and an additional short QF
(60 cm long) can be used to replace the QF/QDs of the
two arcs. If high temperature superconducting [16]
magnets are used, quadrupoles do not need to be paired
and the sextupole coils can be wrapped around the
quadrupole ones, thus improving the dipoles filling ratio
and reducing the horizontal natural equilibrium emittance.
The sextupoles design is consistent with the FCC base-
line one. Trim coils are foreseen on the sextupoles for
orbit (horizontal and vertical correctors) and optics
correction (normal and skew quadrupole). No additional
correctors are needed.

IV. LONG STRAIGHT SECTION MATCHING

The insertion of the straight sections (see Fig. 3) is
performed by requiring the Transparency Conditions
described in [5]. This allows to insert any straight section
(SS) in a ring magnetic lattice, without any significant
degradation of its characteristics (DA/MA, detuning, etc.),
despite the symmetry breaking. Moreover, this approach
does not require the introduction of additional sextupole
families. The TCs can be applied for any given SS,
provided that enough quadrupoles are available to match
the conditions on each side of the long straight section.

A. Transparency conditions

For a left-right symmetric insertion section, the TCs are
reported here for completeness (all these conditions are
achieved by linear optics matching): (i) conditions to ensure
that the arc optical functions periodicity is kept for the on-
energy electrons: (a) αh ¼ αv ¼ η0 ¼ 0 (optics matching
condition) at the center of the straight section; (ii) conditions
to ensure thenonlinear transverse dynamic transparency (with
N and M integer numbers): (a) Δμh ¼ 0þ N, (b) Δμv ¼
0þM=2, where Δμh;v are the additional phase advances (in
units of 2π) generated by the insertion; (iii) conditions to
ensure that the optical functions periodicity is kept for the
off-energy electrons as well (at first order) (a) ∂Wh

∂s ¼ ∂Wv
∂s ¼

∂η0
∂s ¼ 0, with Wh;v the Montague functions defined in [8]
evaluated at the center of the straight section.
In general, high-order contributions are reduced if (i) for

a superperiodic lattice (arcs+SSs), the phase advance
between arcs is far from 0 and 0.5. The overall integer
part of the tunes should not be a multiple of the super-
periodicity. (ii) The overall chromaticity of the straight
section is minimized as much as possible.
Observing Fig. 3, only the linear optics between the last

and first sextupoles of the adjacent arcs are modified. The
matching quadrupoles are between QFS0A and QFS5A.

B. Dispersion suppressor and long straight

For FCC, the cells on either side of the long straight
sections are dispersion suppressors (DS) cells (see Fig. 3).
In order to match first- and second-order dispersion, four

dipoles in the arcs on each side of the straight section have
optimized tapered lengths. Compared to a simple missing
dipole dispersion suppressor scheme, this solution allows to
easily match second-order dispersion.
At the end of the DS, harmonic sextupoles are inserted

(for example, SF3ASR in Fig. 3) in order to further improve
the dynamic aperture and possibly optimize the phase space
shape in the straight sections.
Matching the sections following the TCs guarantees

the periodicity of the chromatic functions. They remain
periodic with sextupoles off and on as shown in Fig. 14.
No additional sextupole families are needed to restore
chromatic properties up to the third order.

FIG. 13. Transverse dynamic aperture for FCC LCC arcs (top)
and FODO (90, 90) deg arcs (bottom) at Z and tt̄ energy
computed at the center of QD1A. The 6D tracking for one
damping time includes quantum diffusion and synchrotron
radiation.
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A lattice composed of arc+LSS has small second and
higher order chromaticity terms in both planes that do not
limit the MA at least up to �3% (see Fig. 12).

C. Use of HFD and LSS to design other lattices

HFD produces highly anharmonic and achromatic arc
cells. HFD matching criteria work well to build quasilinear
lattices for a large range of cell phase advances.
Overall, MA above �5% can be achieved for a ring

composed of up to 300 cells. HFD could be used for low-
emittance rings, damping rings, and synchrotron light
sources as well. TCs are a simple and analytical method
to insert special sections in the arc preserving the ring DA
and MA of the fully periodic structure.

V. FINAL FOCUS

The final focus has been dimensioned to meet the
parameters and requirements (layout, synchrotron radia-
tion, geometrical constraints, etc.) of the FCC-ee baseline
design [1].
LCC requirements are fulfilled in the Final Focus

sections by correcting the low-β IP chromaticity within
the FF in both planes and nearly entirely. In order to
minimize the crab sextupoles [17] impact on the MA, they
are placed in a nearly achromatic region: the FF outer ends
(see Fig. 4, SCARBL and SCRABR magnets). This
solution has been developed for the SuperB [6] and has
been adopted by CEPC [14] as well.
Half FF (incoming or outgoing) is basically a telescope

that starts after the arcs dispersion suppressor and ends at
the IP. The FF is built to be as much as possible a high-order

achromat in both planes. In this section, the methods used
to optimize the FF will be described as well as the
definitions of the related tuning knobs and their effect
on overall performances. This methodology can be applied
very generally to any low β insertion. By construction, the
whole FF is an identity transformation and can be readily
inserted in the ring according to the TCs criteria. Each knob
in fact targets a specific detuning with momentum term.
Special locations with an integer phase advance with
respect to the IP called IP-phase or IP image points (see
Fig. 4) are available in the optics and are used to place
dedicated magnets. Magnets in these locations are almost
as effective as magnets placed directly in the proximity
of the IP or the final doublet and thus may be used to
create very powerful tuning knobs. The main knobs used
to tune the FF are (i) sextupoles SDy and SFx to correct
almost completely the final doublet (FD) chromaticity in
both planes (∂Qh;v

∂δ ). (ii) SDy and SFx sextupoles phase
advance, with respect to the IP, to set second-order

chromaticity to zero (∂
2Qh;v

∂2δ ). The sextupoles should be in
phase with the main chromaticity source (the FD).
(iii) IP-phase sextupoles SDM and to correct third-order

chromaticity (∂
3Qh;v

∂3δ ). (iv) IP-phase octupoles for fourth-
order chromaticity. (v) IP-phase decapoles for fifth-order
chromaticity. (vi) Decapoles pairs in CCSX and CCSY
to correct off-energy dependent x, y, and x-y detuning
with amplitude. (vii) Phase advance between −I sextupole
pairs in horizontal and vertical chromaticity correction
sections (CCSX and CCSY) reduces the ∂Qh

∂x ,
∂Qv
∂y , and

∂Qh;v

∂ðx¼yÞ amplitude detuning coefficients due to the long

sextupole aberration [18].
The dipoles distribution in the lattice optics has also to be

optimized to minimize aberrations related to high-order
dispersion.

A. Final focus chromatic correction

In order to evaluate the performance of the FF optics
design, the observables are variations of β and α at the IP
versus energy deviation and detuning with momentum.
Figures 15 and 16 show these curves for various
FF configurations to better visualize the effect of each
element added to the FF design. From Fig. 15, the MA at
the IP can be also estimated. In particular, the FF MA
without chromatic compensation (all sextupoles OFF) is
infinitesimal.
First-order chromatic correction is obtained by tuning

the main SDy and SFx pairs (see Fig. 4) in order to zero the
derivatives of αh and αv with respect to energy (see
Fig. 16). For second-order chromatic correction, the phase
advance between the sextupole pairs SFx and SDy (see
Fig. 4) with respect to the IP is optimized (see Fig. 15). The
optimal value is close but not equal to ðN þ 1=2Þπ rad, to
take into account the other small chromatic contributions

FIG. 14. W functions and dispersion derivative with energy for
one octant of the LCC FCC lattice. Both off-energy optics
functions are periodic with sextupoles OFF (top) and ON
(bottom) for a lattice composed of arcs and LSS.
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(at different phases) from the other quadrupoles in the
FF. The optimal phases are set with simple linear optics
matching. The quadrupoles available in the lattice allow
the change of these phases while maintaining all the
other parameters unchanged (βh;v, αh;v, ηh;v, η0h;v, and
Δμh;v at relevant locations). Higher order chromatic
terms remain, in particular, the third order is visible
in Figs. 15 and 16.
The chromatic behavior for an off-energy beam is

heavily affected by third-order chromaticity. Optics
(β and α) at the crab sextupoles (CS) are still strongly
varying off-energy (still the variation is smaller than if no
action was taken): βCSh ∼ 100, βCSv ∼ 400 (see Fig. 17).
Sextupoles are less effective in correcting the chroma-

ticity for off-energy electrons. The reason is that the β
functions at the sextupoles for off-energy particles are
lower (see Fig. 17), so they do not correct the chromaticity
effectively anymore and also the relative phase with respect
to the final doublet (FD) changes.

FIG. 16. β� at IP (top) and α� at IP as a function of the energy
deviation considering only the FF optics turning on progressively
the multipoles for nonlinear corrections.

FIG. 15. Tunes versus momentum introducing one by one the
nonlinear multipoles in the final focus optics. Results are
obtained by 6D particle tracking without synchrotron radiation.

FIG. 17. FF β functions, dispersion, W functions, and second-
order dispersion at δp=p ¼ �0.2% with and without IP-phase
sextupoles SFM and SDM, starting from the IP. Tracking is
performed assuming the FF as a transfer line and using the on-
energy IP β�h;v as input values.
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B. Final focus high-order chromatic corrections

The two additional weak sextupoles are added in the IP
image points (SFM and SDM, IP-phase sextupoles) outside
the −I pairs. Since they are at low β locations, they do not
harm the FF anharmonicity. Off-energy vertical β functions
at the SDM location become very large. Similarly off-
energy horizontal β functions at the SFM location. Thus,
the SFM and SDM sextupoles are very effective in restoring
the nominal βh;v of the main sextupoles for all energies. The
βh;v at the crab sextupoles (SCRABR) become close to
nominal for all energies as well (see Fig. 17). Using SFM
and SDM sextupoles, the chromaticities are well corrected
for on- and off-energy beam as well. The contribution of the
IP-phase sextupoles for the off-energy beam is evident (see
Figs. 15, 16, 17). The IP-phase SDM and SFM sextupoles
make the FF a third-order achromat. To match the arcs W
functions, a linear chromaticity different from zero has been
set. The remaining terms above the third order are visible (on
a large scale) in Fig. 15 and their effect on the variation of
optics at the IP versus energy in Fig. 16. Following the same
principle, an octupole at the same location of the SDM can
cancel the fourth-order chromaticity and a decapole can
cancel the fifth-order chromaticity.

C. Final focus geometric aberrations

The long sextupole aberration has a large contribution on
the DA. The corresponding amplitude detuning coefficients
can be reduced by adjusting the−I transformation between
the CCSY=X SDy s and SFxs pairs to be slightly different
from exactly −I. Optimal phase advances difference from
π is of the order of 10−3 rad. In fact, the optimal values are
determined by zeroing the overall detuning contribution
introduced by the final focus (fringe fields, octupoles,
SDM, and SFM).

D. Final focus geometry

The FF geometry (see Fig. 18) is adjusted in order to
recover entirely the IP crossing angle, thus having parallel
beams entering the arcs, such that modifications to arc’s
dipoles are not necessary. At the end of the FF, the e− and eþ
beams are parallel and separated by 40 cm. This is achieved
using (following the trajectory of the beam): (i) short CCSLeftX
section with “strong bends”; (ii) long CCSLeftY section with
“weak bend”; (iii) short CCSRightY section with strong bends;
and (iv) long CCSRightX section with weak bend.

1. Left FF

Figure 4 shows the FF optics. The last four dipoles before
the IP have a critical energy, Ec ∼ 130 keV, consistent with
the FCC-ee tt̄ synchrotron radiation requirement. CCSLeftY
optics produces a large dispersion at the sextupoles for a
given bend angle in the −I regions (see Fig. 4).

Lengths and bending angles of the CCSLeftY , CCSLeftX ,
CCSRightY , and CCSRightX dipoles are optimized to have maxi-
mum dispersion on CCSLeftY and minimum overall emittance
growth and SR. The CCSY sextupoles are 0.6 m long and are
veryweakwithKsext ∼ 0.7 m−2 at tt̄ andKsext ∼ 0.9 m−2 atZ
energy. In fact, the arc sextupoles design (magnetic and
mechanical) can be used in the FF as well.

2. Right FF

All the dipoles in the CCSRightY have the same field, as this
is the best configuration to recover the beams separation in
the most effective way space wise with minimal synchro-
tron radiation. Similarly, CCSRightY optics have been opti-
mized to obtain the largest dispersion, given this dipole
configuration. The nonlinear optimization detailed in the
previous section is performed independently for the two
sides of the FF. A very long dispersion free straight section,
∼400 m is present in the dispersion suppressor of the right
side of the FF. Two drifts, each about 100 m long, are also
present in the CCSRightX −I transformation region. These
straight sections could be used to accommodate diagnostics
such as polarimeters and emittance monitors among others.
Fine-tuning of the linear optics in the FF left and right

allows to have W functions and second-order dispersion
derivative at the end of the FF matching those of the arcs.
For example, the dispersion derivative (∂ηx=∂s) in the

center of the CCSX is used to equal left and right FF ∂2ηx
∂s∂δ,

thus avoiding the beating of the second-order dispersion
(∂ηx∂δ ) in the ring. αy in the center of CCSX is used to equal

left and right ∂αy
∂δ , thus avoiding the beating of the W

functions in the ring.
This tuning is very effective when done numerically as

will be described later in Sec. VI.

FIG. 18. Footprint in Cartesian floor coordinates of the low-β
insertion.
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The tuning of the dispersion derivative in the center of
the CCS is also applied to αy in the CCSRightX and CCSLeftX
(that is different from zero). This makes the βv functions
asymmetric at the CCS sextupoles (SDy and SFx) but
restores symmetry in the FF nonlinear optics (W functions
and dispersion derivative) at the left and right side of the IP.

E. Full-ring chromatic properties

W functions in the arcs are periodic, and their maximum
amplitude is about 6 units in both planes (see Fig. 19). As
mentioned before, arc sextupoles are not needed to correct
the FF chromaticity. The FF sextupole pairs are set to match
the arc W functions at the FF exit. Given this “quasi-Full
Achromat” condition, there is no need to change the arcs
and FF sextupoles (and crab sextupoles) settings when the
β squeeze is done with the β-matching quadrupoles.
Looking at Fig. 17, any beam entering the FF, independent
of the energy (achromatic) and amplitude (anharmonic),
will be focused at the IP. Moreover the β functions at the
exit of the FF are also independent from the energy up
to ∼� 2%.
Since the LCC FF optics are very achromatic, there is no

luminosity loss for off-energy particles. This feature will be
extremely effective to reach top performances when chang-
ing the β� at each IP. Luminosity leveling by tuning
individually the four IPs β� is straightforward.

F. Cancellation of the energy dependent Y and X-Y
detuning with decapoles

The −I condition between the CCS sextupole pairs is
broken for off-energy particles. Given the large β functions
at the sextupoles, this generates very strong detuning
coefficients (in ascending order of relevance):

∂2Qv

∂x∂δ
;

∂2Qv

∂y∂δ
;

∂2Qh

∂x∂δ
;

∂2Qh

∂y∂δ
:

Decapole pairs adjacent to the sextupoles are very powerful
enough to cancel those aberrations without introducing

geometric aberrations because of the cancellation due to the
−I transformation (as for sextupoles). FF left and right
decapoles pairs (DECF and DECD in Fig. 4) are tuned to
achieve global cancellation instead of targeting the pro-
perties of each side of the FF individually. In fact, only
two decapole pairs are available in each side of the FF,
whereas three aberrations have to be canceled. The decap-
ole knobs are: (i) CCSLefty decapoles are negative and cancel

xy-detuning at δ ≠ 0. (ii) CCSRighty decapoles are positive
and cancel y-detuning at δ ≠ 0. (iii) CCSLeftx and CCSRightx

decapoles are positive and cancel x-detuning at δ ≠ 0.
βh;v at CCSLefty CCSRighty are set to maximize the decapole

effectiveness as listed in Table III.
Figure 20 shows the effect of the decapoles on the off-

energy phase space.
Each decapole pair is very effective for a specific

detuning, given the large difference in β functions.
High-order residual nonlinearities (mainly vertical) due

to the CCSY decapoles are canceled altogether because of
the opposite sign of the left/right decapoles. βh at DECDL
is much larger than at DECDR. So DECDL is effective to

cancel the cross-term detuning (
∂2QvðhÞ
∂xðyÞ∂δ), whereas DECDR is

effective to cancel the vertical detuning (∂
2Qv
∂y∂δ). There are no

side effects on the DA and on on-energy detuning coef-
ficients. The third-order chromaticity is weakly affected.
This results in a small change in the IP-phase sextupoles
settings, making the horizontal IP-phase sextupoles (SFM)
10% weaker.

1. Dynamic aperture with and without SR

The effectiveness of the −I decapoles pairs (near to SDy
and SFx sextupoles) to recover the on-energy transverse
dynamic aperture in the presence of synchrotron radiation
is evident from Fig. 21. The DA reduction in the presence
of synchrotron radiation is dominated by the FD quadru-
poles. By reducing the off-energy detuning coefficients
with decapoles, the DA reduction due to synchrotron
radiation is lowered. This is a novel approach to effectively
address the degradation due to the quadrupoles (in par-
ticular the FD) synchrotron radiation. With synchrotron
radiation, the beam loses energy quadratically with the
action; however, with decapoles, it experiences greatly
reduced detuning coefficients (see Fig. 20).

FIG. 19. Full-ring chromatic properties: W functions and
dispersion derivative with energy. In the IP region, the W
functions reach ∼5000 units.

TABLE III. Optics and decapole’s strengths in the FF at tt̄
energy.

Section Name βh (m) βv (m) ηh (m) Kdec (m−4)

CCSLeftx DECFL 693 22 0.46 þ90

CCSLefty DECDL 207 6400 0.31 −900
CCSRighty DECDR 55 6400 0.39 þ1300

CCSRightx DECFL 692 35 0.77 þ60
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The decapole values can be determined analytically. The
breaking of the −I between CCS sextupoles due to
chromaticity generates an octupolar term proportional to

Koct ∝ K2
sextδ:

Similarly, a decapole at the same sextupole location may be
set to generate an octupolar term for off-energy particles
proportional to

Koct ¼ 4Kdecηhδ:

The strength of the decapoles (Kdec) are chosen to cancel
the octupole strengths (Koct) introduced by the sextupoles.

G. Sensitivity of the FF sextupoles parameters
on DA and MA

FF sextupoles strengths are driven by the chromaticity
generated by the quadrupoles necessary to obtain low-β

functions at the IP, which are defined by luminosity
considerations. Larger β-functions at sextupoles do reduce
the sextupole strength but have little effect on error
sensitivity. Larger dispersion at sextupoles reduces their
strength as well and consequently: (i) decreases as ∝ 1=η
the waist shift (betatron mismatch) due to horizontal orbit
error; (ii) decreases as ∝ 1=η the coupling due to vertical
orbit error; (iii) decreases as ∝ 1=η2 (or more) the residual
nonlinear geometric (and some chromatic) aberrations; and
(iv) does not affect the dispersion mismatch due to orbit
errors.
Larger dispersion is, in general, beneficial, provided that

the second-order dispersion is properly compensated and
the SR from stronger dipoles does not impact the IP area
radiation handling and the emittance. LCC FF has much
higher dispersion at the SDs with respect to the baseline

FIG. 21. Transverse dynamic aperture without and with decap-
oles in the FF in the presence of synchrotorn radiation: in none of
the magnets, in all the magnets apart the final doublet (FD), and in
all magnets. This last case is reported also with crab sextupoles
turned on.

FIG. 20. Starfish plots for different decapoles settings at δ ¼ −0.2%. Tracking is performed with synchrotron radiation and with crab
sextupoles set to zero.

FIG. 22. Path lengthening versus amplitude for the LCC optics at
Z and tt̄ energies as observed at the center of the straight sections.
High-order momentum compaction terms are negligible.
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FCC optics. Henceforth, lower sensitivities to errors are
expected (see Sec. VIII).
In addition, the large dispersion across the FF sextupole

pairs reduce fourth and higher order path lengthening with
amplitude (see Fig. 22). Overall, path lengthening has
negligible effect on beam dynamics. With the LCC optics
design, the on-energy dynamics are linear (see Fig. 12):
resonances are virtually nonexistent. Those are extremely
favorable beam conditions to minimize unwanted beam-
beam effects [19], in particular lifetime in collision.

H. Optimization of optics with crab sextupoles

Preservation of the DA with CS set for optimal lumi-
nosity (later called CS on state) is critical. In order to
minimize the impact of turning on the CS, the optics have
been optimized as follows: (i) Reduce all nonlinearities
between the CS. In particular, the nonlinearities due to
the −I pair sextupoles and the ones from the IP-phase
sextupoles. R12=R34 between the −I pair sextupoles are
optimized with CS on. This optimization is also valid for
CS off. (ii) Reduce the strength of the IP-phase sextupoles
by increasing ηh on the sextupoles. (iii) Optimized βh;v and
αh;v at the IP-phase sextupoles. (iv) Flattened βh;v versus δ
at the CS. (v) Zeroed ηh versus δ at the CS.
The last two bullet points are equivalent to achieving a

section that is a perfect achromat between the left and right
CS (see also Fig. 17). On-energy nonlinearities due to the
CS are relatively weak. However, CS do introduce a very

strong ∂2Qh;v

∂δ∂ðx¼yÞ,with quadratic behavior with respect to the

CS strength. This effect is visible in the off-energy starfish
phase space plot of Fig. 23.
This aberration is partially compensated with the FF

decapole complement. Further optimizations of the optics
in order to make the decapoles more effective have to be
foreseen.

I. Magnets requirements

There are no reverse bends in the FF, thus simplifying the
SR handling for the distributed absorbers.

The stronger dipoles are in the CCSRighty just downstream
the IP, they are anyway about 10% weaker with respect to
the arcs ones.
The “soft bend” upstream of the IP is about 230 m long

with a SR critical energy Ec ∼ 130 keV at tt̄ energy.
Overall, the ratio of energy loss/bending angle

U0=θjZ;FF ¼ 5.44 MeV=rad in the FF is very similar to
the arc oneU0=θjZ;arcs ¼ 5.46 MeV=rad. Henceforth,U0 is
very close to the minimum possible (that of an accelerator
without FF insertions).
No superconducting magnets are required, except for the

FD ones. FF quadrupoles are shorter and weaker compared
to the arc’s. The sextupole strengths of this lattice,
compared to the baseline GHC design, are shown in
Fig. 24. FF sextupoles have integrated K values similar
to the ones required in the arcs. The sextupoles Ksext for the
Z optics are about 5 times weaker with respect to tt̄ optics.
Figure 25 shows the total number, integrated lengths, and

integrated strengths (absolute values) for the magnets of the
LCC optics and GHC optics. The overall requirements
for number of magnets, total lengths of magnets, and
integrated strengths are heavily reduced for LCC optics
with respect to GHC optics. In particular, LCC lower

FIG. 23. Off-energy (δ ¼ 0.2%) starfish plot with and without CS. A strong detuning with amplitude for off-energy particles with CS

on is visible in the X ¼ Y phase space ( ∂2Qh;v

∂δ∂ðx¼yÞ).

FIG. 24. Sextupole strengths for one octant of the GHC [2] and
the LCC lattice optics.
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integrated sextupole strengths are a consequence of lower
arc lattice chromaticity and local chromatic correction of
the low-β insertions. The total power consumption required
for sextupoles and quadrupoles is about 2–3 times lower.

VI. NONLINEAR OPTIMIZATION USING
NUMERICAL ALGORITHMS

Starfish plots and detuning with momentum can be
computed rapidly and therefore, in the case of large
rings, such as the FCC, provide convenient observables
to manually optimize the lattice nonlinear dynamics.
However, injection efficiency and lifetime are more repre-
sentative of the machine's performance and can be easily
measured and optimized in the control room. It is, there-
fore, useful to optimize directly these two quantities in
simulations to evaluate the tunability and the final perfor-
mance of the lattice. Direct representations of the lifetime
and injection efficiency can be obtained in simulation
through momentum (MA) and transverse (DA) dynamic
apertures. These require to run massive tracking simula-
tions and specific optimization algorithms.
For these studies, we have used the well-established

multiobjective optimizer NSGA-II [20]. More advanced
methods are now available and could be used to improve
the convergence rate and gain time in future optimiza-
tions. As described in the previous sections, the LCC
optics provide by design well-defined knobs aiming at
tuning targeted quantities. This is the ideal configuration
for such optimization work and allows to proceed in
steps. The optimization of the number of turns and
number of grid points with convergence studies brings
the DA calculation for one case down to less than one
minute. A grid of 51 × 51 points is used, and 256 turns
are tracked for the Z lattice (32 turns for the tt̄ lattice).
The chromaticities are kept constant at the values found
in Table I throughout the full optimization using the SF1
and SD1 sextupole families. The optimization is split into
four main steps: (i) optimize the remaining arc sextupole
families SF2 and SD2, this is done with a simple 2D
scan; (ii) optimize the matching section sextupoles;
(iii) optimize the final focus sextupoles (all, except for

SFx and SDy); and (iv) optimize the higher order multi-
poles (octupoles and decapoles).
For each of these steps, the arc sextupoles can be

included or not, and the magnet strength variations are
kept below 40% for one optimization run.
Figure 26 shows the strengths of the sextupoles and

octupoles that were varied during the optimization process.
Decapoles were optimized manually on the initial lattice
versions, and octupole families 0 and 1 were found to be
ineffective (see Fig. 4 for their location in the final focus).
These are therefore not shown in this figure. Additional
sextupole families (SFx and SDy) are present in the final
focus section of the lattice and could be used for further
optimization. Multipole strengths do not increase by more
than 40% except for the arc sextupoles of the FCC Z lattice
with a maximum increase of 66% for the focusing sextu-
pole family SF2A. This value nevertheless remains well
below the ones of the tt̄ lattice.
Figure 27 summarizes the results of the optimization for

the FCC Z (left) and tt̄ (right) lattices; the initial values

FIG. 26. Sextupole and octupole strengths before and after the
optimization process for the FCC Z (top) and tt̄ (bottom) lattices.

FIG. 25. Total number, integrate lengths, and integrated
strengths (absolute values) of dipoles, quadrupoles, and sextu-
poles for LCC and GHC optics at Z and tt̄. Black profiles indicate
that those magnets are present but not active.

FIG. 27. Transverse and momentum dynamics aperture im-
provement after each optimization step for the FCC Z (left) and tt̄
(right) lattices.
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correspond to the ones obtained from the various improve-
ments and manual optimizations presented in the previous
sections. It should be noted that octupoles are stronger for
the Z lattice. This does not represent a limitation, since the
Z energy is the lowest and could be explained by the fact
that the Z lattice design features fewer octupole families
than the tt̄ lattice design. Further tuning of the lattice design
shall result in a single layout for all energies. The rf voltage
is set to 170 MV and 10.4 GV for the Z and tt̄ lattices,
respectively, such that the momentum aperture is not
limited by the rf acceptance and MA can be further
improved by multipole optimizations. However, the opti-
mal rf voltage operating value in collision for FCC may
differ for other reasons such as beam-beam effects, col-
lective instabilities, polarization measurement, or the maxi-
mum rf voltage available.

It should be noted that the horizontal equilibrium
emittance of the Z lattice is 0.68 nm rad, while it is
2.1 nm rad for the tt̄ lattice. This explains the reduction
of DA observed for the tt̄ lattice when expressed in terms of
beam σ. However, the absolute horizontal DA is �7 mm
for the Z lattice and −8=þ 6 mm for the tt̄ lattice. This
should provide a sufficient margin for off-axis injection and
allow for relaxed gaps in the collimation systems.
These optimizations and results were all done for an

ideal lattice without errors. Introducing realistic field and
alignment errors will have a strong impact on these values.
However, the optimization procedure was applied to differ-
ent lattices and always provided substantial improvements.
It is, therefore, expected that the same method can be used
to optimize lattices with errors as well as the real machine
through online optimizations.

VII. LATTICE PERFORMANCE EVALUATION

Figure 28 shows the transverse dynamic aperture com-
puted in the center of the straight sections (extreme right
of Fig. 3). The 6D tracking for 2350 turns at Z and 40 turns
at tt̄ includes quantum diffusion, synchrotron radiation,
tapering [21], and crab sextupoles at the optimal value for
maximum luminosity. Exact Hamiltonian integrators, as
described in [22], are implemented in the AT software [23]
used for tracking simulations. The tracking has been
benchmarked with MADX-PTC [24] tracking in [25] and
shows remarkable agreement.
Always using the center of the straight sections as

starting point, Fig. 29 shows the positive horizontal
dynamic aperture for off-energy particles.

FIG. 28. Transverse dynamic aperture for FCC LCC optics
(top) and GHC V22 optics (bottom) at Z and tt̄ energy computed
in the center of the straight sections. The 6D tracking for one
damping time includes quantum diffusion, synchrotron radiation,
and tapering. The curves with crab sextupoles use the nominal
value for maximum luminosity.

FIG. 29. Positive horizontal dynamic aperture versus energy
offset for FCC LCC optics at Z and tt̄ energy computed in the
center of the straight sections. The 6D tracking for one damping
time includes quantum diffusion, synchrotron radiation, and
tapering. The effect of crab sextupoles at the nominal value
for luminosity is shown.
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It should be noted that the momentum acceptance in
general is lower in dispersive or very chromatic regions
because off-energy particles will exercise simultaneously
betatron and chromatic oscillations. The local momentum
acceptance for one octant of the lattice is shown in Fig. 30.

VIII. SENSITIVITY TO ERRORS

The LCC lattice optics at Z and tt̄ energies have been
analyzed in terms of sensitivity to alignment errors in the
arcs and the final focus. For this purpose, no corrections
are applied. For each lattice optics, figures such as Fig. 31
are produced and compared. Those figures represent the
evolution of β-beating, dispersion deviation, orbit, and
emittances as a function of the rms amplitude of alignment
errors randomly distributed in specific magnets along the
ring. Tables IV (arcs) and V (FF) were compiled selecting
the error values at which a given threshold was attained
from plots as the one in Fig. 31. This was done for arc
magnets and for the final focus magnets separately. The
minimum value among horizontal and vertical alignment

errors has been selected to build a more concise summary.
The LCC lattice is for most parameters more tolerant or
equivalent to the baseline optics [2] and to other similar
lattice design such as CEPC [14].
The effect of errors in the FF is dominant, and more

studies on correction schemes and tuning techniques will

FIG. 30. Local momentum acceptance for one octant of the
LCC optics at Z and at tt̄ energies. Synchrotron radiation is not
included in these simulations.

FIG. 31. Horizontal β-beating versus horizontal and vertical
alignment errors on arc quardrupoles averaged at all BPMs over
ten seeds without corrections. Arc quadrupoles are named
QF½246�A and QD½135�A for the LCC optics and qf½0 − 9�:
and qd½0 − 9�: for the GHC optics. On the left, the LCC optics, on
the right plot, the GHC optics, both at Z energy.

TABLE IV. Approximate alignment sensitivity in μm for arc
quadrupoles and sextupoles leading to β-beating of 1%, hori-
zontal dispersion error of 1 mm, and vertical dispersion error of
1 mm. Tunes are (0.26 0.38) for Z and (0.224 0.36) for tt̄. The
minimum among vertical and horizontal alignment is reported.
The column labeled “#” reports the number of magnets that have
been misaligned for each case.

Orbit Δβ=β Δη

H V H V H V

Criteria 100 μm 100 μm 1% 1% 1 mm 1 mm

Optics E0 # Arc quadrupoles sensitivity (μm)
GHC Z 1420 1.9 1.9 2.9 0.7 0.1 0.1
LCC Z 2168 2.0 1.6 4.5 0.38 0.8 0.25

GHC tt̄ 2836 1.3 1.5 1.5 0.5 0.12 0.2
CEPC tt̄ 3460 0.70 0.83 0.4 0.1 0.09 0.07
LCC tt̄ 2168 1.4 1.0 2.1 0.41 1.2 0.32

Arc sextupoles sensitivity (μm)
GHC Z 600 >100 >100 17 8.5 3.1 2.6
LCC Z 1792 >100 >100 >100 47 14 10

GHC tt̄ 2336 >100 >100 10 7.0 7.5 10
CEPC tt̄ 1024 >100 >100 6.4 4.8 3.1 4.4
LCC tt̄ 1792 >100 >100 24 12 12 12

TABLE V. Approximate alignment sensitivity in μm for FF
quadrupoles and sextupoles leading to β-beating of 1%, hori-
zontal dispersion error of 1 mm, and vertical dispersion error of
1 mm. Tunes are (0.26 0.38) for Z and (0.224 0.36) for tt̄. The
minimum among vertical and horizontal alignment is reported.

Orbit Δβ=β Δη

H V H V H V

Criteria 100 μm 100 μm 1% 1% 1 mm 1 mm

Optics E0 No. FF quadrupoles sensitivity (μm)
GHC Z 436 0.65 0.15 1.2 0.065 0.04 0.014
LCC Z 532 0.57 0.11 0.63 0.035 0.18 0.018

GHC tt̄ 480 2.0 0.35 2.1 0.25 0.23 0.08
CEPC tt̄ 228 0.8 0.2 0.65 0.18 0.12 0.024
LCC tt̄ 532 1.3 0.27 1.4 0.14 0.65 0.08

FF sextupoles sensitivity (μm)
GHC Z 16 >10 >10 >10 0.25 >10 1.2
LCC Z 72 >10 >10 >10 0.7 8 1.8

GHC tt̄ 16 >10 >10 >10 0.50 >10 2.6
CEPC tt̄ 52 >10 >10 9.5 1.3 >10 3.8
LCC tt̄ 72 >10 >10 >10 1.6 >10 3.9
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be addressed in the future to fully evaluate the tolerated
alignment errors.

IX. CONCLUSIONS

HFD lattice used for FCC arcs has a very large DA and
MA and very high dipole filling ratio, thus optimized
energy loss per turn. Transparency conditions allow the
insertion of any kind of straight section with negligible
impact on DA and MA. LCC FF is a very powerful
telescope with very efficient built-in compensation of
high-order aberrations. LCC optic could ameliorate/
alleviate many of the requirements on hardware and power
consumption of FCC-ee. Machine optimization and ramp-
up time might benefit as well, given the relaxed tolerances
and tuning flexibility.
The HFD arc optics are very linear and arc parameters

have a very large range of tunability. In addition, the
horizontal emittance can be continuously varied by imple-
menting horizontal phase advances intermediate between
the Z and tt̄ ones. HFD arcs local chromatic compensation
is very beneficial in particular to reduce sensitivity to errors
and stability to ground motion and temperature variations.
The FF is the most aberration free telescope up to date, and
it can be adopted for any circular collider. Since it has been
optimized for tt̄ operation, the left-FF could also be readily
adopted for a medium energy linear collider as well, and
possibly for a Tev-scale linear collider with appropriate
lengthening to minimize synchrotron radiation effect.
Moreover, the FF has been optimized to minimize the
CS impact on DA and MA.
Arc tuning can be performed with algorithms very

similar to the ones developed for synchrotron light sources
[26]. The FF tuning knobs can be built very similarly
to what has been developed for lepton factories such as
SLC [27], NLC [28,29], LEP [30], and SuperKEKB
[31,32]. The LCC optics present large orthogonality of
many fundamental quantities, which can be varied sepa-
rately without the need to retune other quantities: (i) arc
chromaticities, (ii) machine tunes, (iii) FF chromaticities,
(iv) individual IP β�, (v) individual CS pairs, and (vi) local
FF tuning knobs.
All requirements on tolerances and stability for LCC are

relaxed with respect to the GHC optics design. Similarly, all
requirements on magnets number and integrated strength
(in particular for sextupoles) are greatly reduced. Hardware
requirements for LCC optics are in line with the state of the
art synchrotrons [4].
Beam dynamics optimization of the LCC optics is based

on a solid and deterministic analytic approach. The detailed
analysis of the effect of quadrupoles SR on beam dynamics
has lead to original methods to mitigate the related DA
deterioration.
Crab sextupoles detrimental effect on DA is not critical

since the DA largely exceeds the requirement in [1] and its
origin is clearly understood.

LCC includes all the know-how and experience acquired
in designing, building, commissioning, and operating most
of the high-energy and high-luminosity linear and circular
colliders that have been in operation over the past 30 years.
Many of the solutions developed for the last generation of
synchrotron radiation sources (arc DA and MA optimiza-
tion of low emittance lattices, transparency conditions) are
also utilized.

DATA AVAILABILITY

The data that support the findings of this article are
openly available [33].

APPENDIX A: LCC OPTICS
AND MATCHING FILES

The files corresponding to the LCC optics are provided
as additional files to this paper in [33]. The lattice files are
provided in MAD8 [34] and AT [23] format. The matching
scripts are available in MAD8 format only. The files are
named 92a for the Z optics and 92b for the tt̄ optics.
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