
SLAC-~~13-165 

ERRATUM 

March 23, 1967 

Physical Review 148, 1467, ( 1966) 

APPLICATIONS OF THE CHIRAL U(6)$3J(6) ALGEBRA OF CURRENT DENSITIES 

J. D. Bjorken 

The conclusions of Section IX, which considers the radiative corrections to vector 

p - decay, are incorrect. In addition to the divergent contribution to the corrections 

calculated there, there is an additional divergent piece {which contributes to ( 
M (b) 

PV 
in (9.8) 

) 
coming from the equal time commutator of the space components 

of isoscalar electromagnetic current with the axial current. This contribution is 

model - dependent. In a model in which the isospin current is carried by J = *, 

I = $ fields of charge & f & the total divergent correction is (in place of (9.20)) 

M = GP pYa (l--Y& u 
I 

3a! - A2 
1 + 8n (l+zQ) log mu 

My thanks go to Helen Quinn for finding the mistake. The details of this axial 

contribution will be given in a forthcoming paper, in collaboration with R. Norton, 

E. Abers, and D. Dicus. 
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AE%ST;RACT -- 

Consequences of the local commutation relations of vector and axial currents 

proposed by Gell-Mann are explored: (1) A recipe for detecting and isolating 

Schwinger terms in the commutators, proportional to derivatives of the &function, 

is discussed. (2) Under assumptions of smooth asymptotic behavior of form 

factors for forward scattering of the isovector current from a proton, we show 

that the U(3) @ U(3) algebra for the time components of the currents implies 

the U(6)@ U(6) algebra for space components, at least for spin-averaged 

diagonal single particle states. (3) The derivation of the Adler-Weisberger 

formula for GA/GV is sharpened by giving arguments that, at fixed energy, the 

forward ‘IT- p Green’s function satisfies an unsubtracted dispersion relation in the 

pion mass. (4) A lower bound for inelastic electron-nucleon scattering at high 

momentum transfer is derived on the basis of U(6) @ U(6). (5) The contribution 

of very virtual photons to the hyperfine anomaly in hydrogen is shown to be related 

to an equal-time commutator of currents; this contribution is crudely estimated to 

be <4ppm. (6) The logarithmically divergent part of electromagnetic mass differ- 

ences of hadrons is shown to be proportional to matrix elements of the equal-time 

commutator of the electromagnetic current with its time derivative. It is suggested 

that this “divergent” part be identified with the Coleman-Glashow “tadpoles”; this 

is discussed in the framework of asimple quark model. (7) The logarithmically 

divergent part of the electromagnetic correction to the process n--+ no + e- + v 

is, on the basis of the U(6) @ U(6) current algebra, shown to be nonvanishing and 

is computed. (8) A speculative argument is presented that the rate e+ + e-bhadrons 

is comparable to the rate es‘ + e--++ + p - in the limit of large energies. 
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I. INTRODUCTION 

In this paper we apply the chiral U(6) ,x; U(6) algebra of current densities 

proposed by Cell-Mann’ and by Feynman, Gell-Mann and Zweig’ to various 

processes. We propose a criterion for detecting and isolating singular terms 

proportional to gradients of delta functions. These Schwinger terms3 have in- 

hibited the use of the full information contained in the algebra of current den- 

sities. In particular, the behavior of matrix elements of currents as the momentum 

q carried by the currents approaches infinity can be determined in terms of the 

current algebra. Some applications involving electromagnetic corrections to 

hadron processes have been found. The program of the paper is as follows: 

Section II: We propose a criterion for identification of Schwinger terms. The 

crux of the matter is that the T-product of currents used in making sum rules is 

in general not covariant. This was recognized and discussed4 by K. Johnson in 

1961. We give a rule for constructing the T-product from the corresponding co- 

variant amplitude. The difference of the two objects is the Schwinger term. 

Section III: The claims of Section II are illustrated for the vacuum expectation 

value of the T-product of two currents and is essentially a summary of Johnson’s 

paper. 

Section IV: We next take the T-product of two isovector currents between protons 

at rest and show that the only Schwinger terms are in the disconnected graphs, 

provided certain form factors behave reasonably at infinity. If this is the case, 

we can furthermore show that if the time components of the current densities sat- 

isfy a U(3) .‘g U(3) algebra, the space components satisfy the U(6) ,3 U(6) algebra, 

at least for diagonal matrix elements between singledparticle states, spin averaged. 



. . . . .._ 

Section V: In this section we show that the forward r-p scattering amplitude for 

a virtual pion (whose interpolating field is dPjP(x)axial ) satisfies an unsubtracted 

dispersion relation in the mass, for fixed laboratory energy. This allows one to 

sharpen the derivation of the Adler-Weisberger formula5 for 
I I 

GA 

GV 
by giving 

some justification for the analytic continuations needed in that calculation. 

Section VI: We look at the spin-dependent part of,forward Compton scattering of 

a virtual photon and using the U(6) @ U(6) algebra derive an inequality for in- 

elastic electron-nucleon scattering: 

03 
lim lim q4E J 

dv d 87~~~ GA 

q2- E.--w 
inc 

0 inc v dq2dv 
(up + an> > - - 3 GV 

(1.1) 

where v = Einc - Ef . We conjecture that 

do 7ra2 
--J->---- 
ds2 - q4 

(1.2) 

in the same limit. 

Section VII: The results of Section VI are applied to the hyperfine structure in 

hydrogen; it is concluded that the contribution of very virtual photons ( q2 << -mi ) 

is bounded by a few (w 4) parts per million and probably cannot explain the 20 ppm 

anomaly. 

Section VIII: We show that the logarithmically divergent part of electromagnetic 

mass differences is proportional to matrix elements of the equal time commutators 

of the currents with their time derivatives. On the basis of a simple quark model, 

we argue (but cannot prove) that these matrix elements are finite, nonvanishing, 

and have SU(3) octet transformation properties. If the quark mass term in H is 
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dominant, many of the Coleman-Glashow f%adpole” theory results emerge. 

Section IX: We examine the radiative corrections to p-decay of a pion, and show, 

on the basis of chiral U(6) @ U(6), that to all orders of strong interaction the 

radiative correction diverges logarithmically; in particular 

(1.3) 

where q o is the lowest order amplitude. 

Section X: Finally we look at the process -- e+ + e-- hadrons, and show that the 

total cross section satisfies the relation 

J dq2 q4 qot(q2) = 16T2a%J<OI [jzP,_x), [WzO]] 10>d3x (1.4) 

where q2 is the square of the total center-of-mass. energy. 

Using the toy Hamiltonian of Section VIII, we find a quartic divergence in 

the right-hand side, suggesting that within logarithmic factors 

ctot(q2) ‘u 4 as q2 - * 
q 

(1.5) 

II. THE SCHWINGER TERMS 

The Schwinger terms 394 are singular terms in the commutator of current 

densities, Specifically, Schwinger showed that 

[ j,(O,xLJO,g)] = Cp3 (x,-g) (2.1) 

where jP(x) is, say, the electromagnetic current density. That such a term is 

present can be demonstrated by manipulation of the vacuum expectation value. In 
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constructing sum rules such terms get in the way; what we shall endeavor to do 

is to give a recipe which identifies and isolates these contributions. 

We argue that the existence of Schwinger terms is demanded by locality 

and Lorentz kinematics alone, and indeed may be isolated by using only this in- 

formation. We illustrate what we mean by considering the isovector AS = 0 

currents ji defined by the P-decay interaction, satisfying 

[ 1 Q”, Q- = 2Q3 

Q* zz 
J 

d3x&, 0) 

[ 1 Q3,Q" = iQ* 

We center our considerations on the time-ordered product’ 

Mpv(q,...) = -i 
s 

d4xeiq’ x < A ] T (j~oj~c0,) 1B > 

(2.2) 

(2.3) 

and the absorptive parts 

ppvtq, l l .) -I 

J” 

d4xeiq* x < A ( j,‘(x) j;(O) 1 B > 

pccv(% * - -) = 
/ 

d4xEiq* x <A 1 j,(O) j:(x) ( B > 

p,lJ 
= g(271)4s4(q+P Bmpn) 

The main point of this section is that in general, for kinematical reasons alone, 

the time-ordered product is not a covariant amplitude; i.e., it does not transform 
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as a 2nd rank tensor. This will be shown below by considering the vacuum ex- 

pectation value; however, before delving into the arithmetic, we note that there 

always does exist a covariant amplitude; defined by the second-order weak 

matrix element shown in Fig. 1. The covariance of the S-matrix demands that 

the amplitude % 
WJ 

which multiplies the lepton currents does transform as a 

2nd rank tensor. 

We now rephrase the problem of Schwinger terms in the following way: 

Given (phenomenologically) the covariant amplitude G 
PV ’ 

how do we construct 

the time-ordered product? We want the T-product, because we can then use the 

Fubini-Furlan technique to construct sum rules. 

We propose that M and & 
PV w ’ 

considered as analytic functions of q. , 

have the same absorptive parts p 
PV 

and pPv (considered in coordinate space 

this means MPv(x) = GP,,(x) for x0 # 0). Therefore, M and %I differ 
PV PV 

at most by a polynomial in q, (in coordinate space, this means terms d (x0) P 

6’ (x0) 7 . . .). Finally, the time-ordered product vanishes as q. - *, as seen 

from expanding (2.3) and truncating the intermediate state sum (as we will 

eventually do in one way or another anyway before confronting the theory with 

experimental numbers) : 

(2.5) 

Thus we construct the time-ordered product M from the covariant 
PV 

amplitude M I.lv by letting qo-+ VJ at fixed q , identifying any polynomial in ..- 

90 
and subtracting it off. 
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It is useful also to observe that the term 

tional to the equal-time commutator of the currents 

as q. --t 00 is propor- 

(2. f-3 

= $ Id3x < A ] [ jL(O,z), j;(O,O)] (B > e-iq’z 

The higher terms involve multiple commutators of the currents with 

H ; e.g., the next term is 

1 
ZT.Z- 

/ 
d3x-&.% <A 

IN 
ji(O,xJ, H] ji (0) ]I B > 

III. VACUUM EXPECTATION VALUE 

For completeness, we consider briefly the previous case with 

IA;>= ]B >= 10 >, although this is treated in Johnson’s paper. 4 The absorptive 

part Pup has the form 

(2.7) 

(3.1) 

and we take the covariant amplitude7 as obtainable by a dispersion integral8 over p : 

(3.2) 
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I 

To obtain M we let 
PV 

q p = qovp and let q. --‘qp = (l,O,O, 0) 

ii 
NJ--- ‘yip -gcly’ 

/ 
do2P(a2) 

% j@J 271. 

This is the Schwinger term; the time-ordered product is 

M =$ 
w w - ‘qL% - gpv) / 

do2p(g2) 
zn 

(3.3) 

(3.4) 

To evaluate the equal-time commutator, we may take q M” 
P v 

and integrate 

(2.3) by parts 

This is the result of Schwinger. If we use (2.6) and evaluate the term 

O$ 
( 1 

from. (3.2) and (3.4)) we arrive at the same conclusion. It may also be 
0 

obtained by directly evaluating (2.5); here the Schwinger term arises because the 

polynomial pro jet tion operator (qpqv - g,p$ depends upon the integration vari- 

able qb . 

IV. EXPECTATION VALUE BETWEEN PROTONS 

We now consider the same commutator between proton states of the same 

spin and momentum, and averaged over spins. ’ (The spin-dependent terms will 

be considered later.) This is the case considered by Adler, who has derived 

fixed-momentum-transfer sum rules. 
10 The general form of the covariant 
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amplitude % is then 
PV 

iTi 
PV 

= + g d4x eiq* x 
s 

< Ps T j+(x)jv(0) Ps > + Schwinger terms ( ( ~ )I 

= p&.J 3gs29 VI + Ppqv+ pv qJ F2tq29v ) + s,qv~(s2,v ) 

+g P 4(92, v) ~~9g 
(4.1) 

which we rewrite as 

ii = PcrPv Ma(v) f q2P P 
PV p v -tq-P)tq&, +qvPp) + WY2i&, Ml(s2,v) 1 

+ (4c1qv- gpvq M2(s2, v) f (q,& + q P 2, v p -gpv9.P)M3tq2, v) 

+ s,$‘14(s2, v) + Bpv + Epv 
(4.2) 

B is the Born term and 6 
CLV 

clv the disconnected covariant amplitude, 

identical to 11 (3.2). 

2(P ++- 1 2 

B = 
q ) Pv +yv) 

-- 
W M(q2 + 2Mv) 

2 q F2 
Flv 4M2 2v 1 

(4.3) 
(q q, -g y43 2 

2M (q2+ 2M v) Flv+ F2v 

where Flv and F 2v are the Dirac isovector form factors normalized to 1 

and (K~- K$ respectively. 
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For q2 < 0 (spacelike), the absorptive parts of %I are confined 
PV 

to the conserved pieces MI and M2 which satisfy fixed q2 dispersion 

relations in v . Thus MO, M , and M 3 4 are polynomials in v for fixed 

In constructing %I from M 
PO w 

we see we will obtain a Schwinger 
.v 

term from D 
PV ’ 

as well as losing MO completely. However, provided 

q2MI -0 

q2M2 -0 

(4* 4) 
qSPM3 -0 

M4 -0 

as - -m) no other Schwinger terms will be induced. These 

are reasonable assumptions, which we hereafter accept. Then M 
PV 

is given 

Taking the divergence, we find: by (4.2), with MO omitted a.nd 5 -+D 
w l-w’ 

qpMpJ 
2 

=q PvM3+qvM4 + 
<pv + $ qv) 

M 

From local commutation relations, ’ we expect, from (2.2) and (2.3)) 

qpMpV 
=+ g /d3x <PS 1 [ jz (O,a, j;(O)] IPs >Ei%Z 

= F <Ps / jt (0) Ips > + Disconnected piece 

pV = - + Disconnected piece 
M (4.6) 
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Equating (4.6) and (4.5)) 

2 
Ffv--eF2 

4M2 2v 
(4.7) 

We find an interesting result in the case that 

q:Ml -- 0 

qZM2 ,-0 

q2Fi < w 

Then as 90 -ia, , everything comes from. M3 . 

M- 
WJ 

wy-q,)p -g pp 

MqO 

(4.8) 

(4.9) 

and aside from the Schwinger term in the disconnected part 12 we find 

+ c d3x ,&.,x 
s I 

<Ps([ jL(O,z),j; (O)]IPS> = V’pv+‘vp~-gW’*p 
M 

(4.10) 

This is what is expected from quark currents, e.g., 

(4.11) 
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Thus it appears that the theory which is “as smooth as possible” is that 

for which the current algebra is chiral U(6) 9 U(6). 

The Adler sum rule 10 is obtained by demanding the coefficient of 

(Ppv+ Pvqp) in Gpv satisfy an unsubtracted dispersion relation; we need 

not go into detail here, as it has been discussed considerably elsewhere. 13 

V. THE ADLER-WEISBERGER FORMULA 

As an application of some of these ideas, we sharpen the derivation of 

the Adler,-Weisberger sum rule5 for the axial vector renormalization in p-decay. 

We consider 

M(q2,v) = -i 
s 

d4x eiq* x < P 1 T(D +(x) D-(O)) 1 P > 

Here P > is a proton state of momentum P and I 
f 

D*(X) = 
aj (X)Aeal 

dX 
P 

(5.1) 

(5.2) 

For spacelike q2, M satisfies a dispersion relation in v ; the even part we sub- 

tract once, and the odd part we leave unsubtracted in accordance with the 

Pomeranchuk theorem. 

02 
M(s2A = B(s2,v) -+ 

dv’ P odd 2 

(d2 

(q , v’) + Meven 2 

- v2) 
tq ,v) (5.3) 

B is the Born term. The rigorous formula, from the current algebra, is that 

C3A G& (M-B) 2 
av 

q2,v,o 
q2zv=o =I- GA 

- 12 - 



To relate this to pion scattering, one argues that the continuum amplitude A 

is dominated by the double pion pole for small values of q2 . 

At&4 
.2 4 

cz ---A- ATp (v) 
(s2 - P2j2 

(5 l 5) 

where a is a constant related to the pion decay amplitude. The pole dominance 

(5.5) is plausible, if A satisfies an unsubtracted dispersion relation in q2 . 

One knowsI that for fixed v , A is analytic in the cut q2 plane, with branch 

point at ‘x 8 i p2 for v ~‘0. Now, on the basis of reasonable commutation re- 

lations we shall show that A- indeed satisfies an unsubtracted dispersion re- 

lation in q2 , strengthening the argument (5.5). Although this is a fine point 

in the AS --y 0 sum rule, it may be of some significance in understanding why 

the AS = 1 sum rule 15 works at all. 

We return to (5.1) and let qowim. The term of order $ is odd in 
0 

v , and has the form [see (2.5) and (2. s>] : 

M------Y ’ q --) fr/J 40 I 
d3x ??= < I? 1 [ D+(O,:), D-(O) ] Ip > (5.6) 

0 

From the dispersion relation, valid for spacelike q2 as is the case here, we 

find, assuming the Born terms vanish rapidly for large q2 
% 

Mtodd)+ v 
/ 

dv’ P Odd &I29 v’) 

2n 
vo 

(d2 - v2, 

But the threshold v. 
lq012 in the dispersion integral is - - 
2M 

therefore 

(5 * 7) 

for large q. ; 

I I L - I I 90 
>> 1 

V ’ 2M 
(5.8) 
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V 
M-2n I 

dd /‘Odd (q’, v’) = dA(q’, yl 
VI2 3V (5.9) 

v=o 
0 

We conclude that 

El, a4q2> v) 1 
P- 

M av v=. q2-- q 
2 / 

d3x $5’ ?i < p 1 [ D+(Q$ D-to)] 1 P > 

I (5.10) 

Thus A’(q2, 0) satisfies an unsubtracted dispersion relation provided the com- 

mutator exists. 16 If D*(x) is proportional to a canonical pion field, the commutator 

vanishes. If it is bilinear in fermi fields, e.g., 

D+(x) = C&Y5T++ (5.11) 

3A I I 
as- 

’ 2 as q2--c0 -- 

y=o q2 
(5.12) 

VI. SPIN-DEPENDENT VIRTUAL COMPTON SCATTERING 

We apply these ideas to the antisymmetric part of the virtual Compton ampli- 

tude from a proton, assuming quark structure for the electromagnetic currents ’ 
JP 

(6.1) 

f gradient terms 

- 14 - 



(6.2) 

and 

2 
3 O 

Q= J 0 

\ 
O ‘1, 

-- 1 3 0 ’ 

-0 
0 

-- 1 /:’ 
3 

’ 0123 = ’ (6.3) 

The general structure of the antisymmetric part ,fa) of M 
PV w ’ 

defined as in 

(2. 3) with .i, replacing ji , is given by 

From crossing symmetry, M (3 
#Lw tq , . . .) = +M.$ (-9, . . *) = -Mfi(-q, . . .) and 

Gl(S2> -v) = Gl(q2, v) 

G2tq2, -v) = -G2(s2,v) 

WC assume unsubtracted dispersion relations for both G1 and G2 . 

For q2 zz 0, M$ is related to the spin-dependent part of the forward 

Compton scattering amplitude; for q2 < 0, the absorptive part of M (“) is 
PV 

related to the spin-dependent part of inelastic electron-proton scattering. 

(6.4) 

(6.5) 
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Specifically, 

do tt 

dq2dE’ 

ti da r- 4a2 
dq2dE’ q2E2 

+ E’ cos0 )Im G1 + q2 Im G2 1 
(6.6) 

daft is the cross section when the spins of electron and proton are parallel 

and along the direction of motion of incident electron; tC do the cross section 

for antiparallel spins. E, E’ and 8 are energies ard scattering angle of the 

electron, q2 = -4EE’ sin 2 8 
2’ and v = E - E’. We have set m = 0 . e 

The 1)llotoproduction cross section for q2 = 0 is given by the optical theorem: 

e2 ImGl:;& 
I 
o tt -,fl 

1 (6.7) 

wlicrc> CJ tt is the cross section for photon and proton spins aligned. The Born 

.tcrins arc given by 

2 
Born = -2q 

Gl 
FltFl f F2) 

MN4 - 4M2v2) 
Born = 

G2 
-2 vF2(Fl f F2) 

q4 - 4M2 v2 
(6.8) 

We extract a useful result by considering the limit qo-’ ia of M;; . 

Using (2.6) and (6.1) we find 

1 im Mta) r - 2i’P’ou 
PV qo 

< p 1 j”(o) 1 p > = -2iEPiAu cl’ < p 1 j;(o) 1 p > 
5 q 

qo - iW 
(6.9) 

WC define 

ps > = Z iiy5~‘u = - Zs’ (6.10) 
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Upon identification of this with the asymptotic behavior of Gl and G2 we 

find that -22 
G-c- l 

Mq2 

1 
G-O- 2 0 q,4 

(6. 11) 

On the other hand we may evaluate Gl by using an unsubtracted dispersion 

rcliltion 

Gltq2,vl = f 
WdV’ V’ Im Gl(q2, v’ ) 

i v -v2 12 
0 

(6.12) 

and 17 as qo--+i-c 
% 

G1(q2,v) = 2 -77 
I 

+ Jm Glh2, v ‘) = Gl(q2, 0) 

0 

% 

/ 
$$ -ll!z Im Gl (q2, v’) 2 - 2 q ---A Mq 

0 

Using Eq. (ti. 6) as E --+K at fixed q2 

q2E ImGl (q2,v) -- - dot+ d) - - - 
8CY2M dq2dv dq2dv 1 

(6.13) 

(6. 14) 

(6.15) 

and we find 

lim lim cl; 

2 E - CL 
1 1 

d,; da tt du t1 - 87r02Z q --CL ZZ 
V’ dq2d; dq2dv1 1 (6.16) 

0 q4E 
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It will be a long time before these cross sections are measured. Furthermore, 

we do not know the value of Z, although SU(6) predicts Z = 5/9 and Zn = 0. P 
However, if we take the difference between proton and neutron we know from 

(6.2)) assuming always the U(6) @ U(6) current algebra, that 

Thus, 
-dv’ d 

s V’ dq2dvf 
$di-$+ b’ 
PPn n 

0 I 

Something may be salvaged from this worthless equation by constructing an in- 

equality: 18 

rim q4E lim 
q2 - -h, E: ---, ‘u 

da 
p -I- d*n 87ra2 

>3 dq2dv’ dq2dv’ 
I 

GA 

GV 

(6. 18) 

(6.19) 

As idc from the factor -$-- in the dispersion integral, this is similar in form to 

the Adler sum rule 10 for neutrino processes 

(6.20) 

where e4 replaces G2. 
1 

4” We suspect the factor -;;i is due to our inefficiency 

in usi.ng only the spin-dependent amplitude, and conjecture that a l’practicaln in- 

equality for electron scattering is 

da 2 
lim lim P - 7rcY 

2 --CC E-+m dq2 ’ q4 
(6.21) 

in direct analogy to the result for neutrinos. 
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VII. HYPERFINE INTERACTION 

The asymptotic part of the spin-dependent Compton amplitude (6.4) will also 

contribute to the hyperfine interaction and has not been included in previous 

analyses, 19 for which the asymptotic behavior (e.g., Born terms) is more 

rapid than l/k 
0’ 

The Znd-order matrix element for the spin-dependent part 

of forward electron-proton scattering asymptotically (k,-c iw) approaches: 

n t2) z-ie4 

/ 

d4k 
(2nj4k6 

Gyp)rYu u M;; (P, k) 

Inserting (6.9)) and doing the spin algebra, we find 

U-2) 

II +3ck!2zu@l 

n 

-2 . where m is some effective lower cutoff. Comparing with the first-order term, 
, 

WC find a correction 

AV I I go! Izp/ me”p - CA--- 

i I 

-- 
1’ 277 

pP iii2 

Choosing Z - 1 and fii2 2 =m we find an answer 
P P’ 

nv 
1 I 

V - 3.5 X lo6 z 3.5 ppm 

This appears to be too small by nearly an order of magnitude to account for the 

anomaly 19 of -20 ppm, and we conclude that within the general picture we have 

taken (convergent dispersion integrals and chiral U(6) x U(6) current algebra) 

that the large k2 region is probably not a major contributor to the hyperfine 

(7.3) 

anomaly. - 19 - 



VIII. ELECTROMAGNETIC MASS SHIFTS 

The same methods may be applied to any process where high-momentum 

(spacelike) virtual photons are involved, in particular, to radiative corrections 

to processes involving hadrons. The most interesting are the electromagnetic 

mass shifts of hadrons and the radiative corrections to weak interactions. We 

survey first the mass shifts. We consider the expression (4.1) for M 
PV ’ 

with 

electromagnetic currents replacing isospin currents, and spins averaged. To 

be explicit, we consider the proton, although our results will be general. Then 

the analogue to (4.2) is: 

M 
P’ 

.= q2pppv - 
I (4. p) ‘q&, + qyPp) + (s- P) 2 $,I M1(q2. q* P) 

+B -i?F2 
4M2 2P 

+J-J 
i.W 

In order to be consistent with the absence of Schwinger terms and with a 

chiral U(6) x U(6) current algebra, we demand, aside from the disconnected 

graphs D 
I.lv ’ 

that as q-cico. 
0 

This means 

M-CO 2 

(8.1) 

03.2) 
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8S qo-&. We assume the Born terms may be ignored in this limit, which 

is satisfied if 

P-3) 

2 q --m 

We concentrate our attention on the divergent part of the electromagnetic 

mass shift which we calculate a la Cottingham. 20 This comes from the terms -- 

associated with Ml and M2 , since the Born contributions have been evalu- 

atcd21 in terms of measured electromagnetic form factors and found to be 

convergent. 

[ M;tq, P) - $ 

(q2 + 2 v2JM2M1(q2, u) - 3q2M2(q2, V) 
1 

+ Born terms 
J 

Mv=q.l? 

Following Cottingham, 2o we 

then express iVII and M 2 

we leave unsub tracted. 22 

3 

(8.4) 
rotate the q. integration contour to iq and 

0 

in terms of dispersion integrals over v , which 

3. Fdv’ v 1 Im Mi (q2, vr) 
Mi(qY,V ) = ~ 

I ,2 2 (8.5) 
V - v 

V min 
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From this dispersion relation, we know (because the threshold v min-a 
2 

likes) thatfor q2=-k2, v = ikcos 8, cos8 Il, 

Mi(S2, v) -Mitq2, 0) k-oo (8.6) 

The divergent part of bM is therefore 

dMdiv= Q! 
87~ 

4 M’MI (-k2, 0) - 3M,(-k2,0) 
I (8.7) 

We see that bM div depends upon the term 0 1 
( 1 k4 

in Mi(k2, 0). It is pre- 

cisely this term which is determined by the equal-time commutation relations 

of the currents with H. According to (2.7)) we have 23 as q 
0 

-ice , g.,= 0; 

(89 8) 

while from (8.1) and (8.6) 

- VP(nclPv f VVPcl) + (VP)2 gcLv 1 q2Ml(s2, 0) + ‘cy+, - g,Js2M2ts2, 0) 
(8.9) 

where q 
P = rlpqo l 

To proceed, we need a model for the strong Hamiltonian H in order to 

evaluate the double commutator. The results appear to be quite model-dependent. 

Within the framework of a quark model, however, we can plausibly argue that 

the double commutator will not vanish. To illustrate - and only to illustrate - 

the situation we consider a simple quark model for which 

.=$J3, [ 1 d XI)~ (x) - i2-p -t pmi + gP’YpB’l(X) $‘iOx) ’ HB 

(8.10) 

=Ho+HM+HI+HB 
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The 9. 
1 

are quark fields and BP(x) is a neutral vector, SU(3) singlet, field. 

HB is the Hamiltonian of the B-meson, including possible self-interaction 

terms. The only virtue of this H is that it has a simple algebraic structure 

and a chiral U(6) @U(6) current algebra. 

The commutator (8.8) can now be computed. Only space components of 

‘P and $, need be considered, because as follows from 

either (8.9) or (8.8). Then 

(8.11) 

In this model, we see that the ,,divergent,’ part of the mass splittings trans- 

form, in the SU(3) limit, as a unitary octet, since the matrices Q2 and Q2M 

can be reduced to linear combinations of 1, h,, and A, . As an instant general- 

ization we have the theorem: 

Theorem: If the part of H which depends upon quark fields )$J is bi- 

linear in @and Gt and contains no off-diagonal SU(3) matrices 24 (i.e., only 

l,)r3, A,) the divergent part of the electromagnetic mass splittings transforms 

as an octet (in the SU(3) limit). 

We have not shown that the matrix element is non-vanishing,, ana cannot in 

fact, do so. However, something can be said about the mass term HM and 

hereafter, in the spirit 25 of static SU(6), we ignore the other two. 
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With this reservation, we find from (8.11) and (8.8) 

M < ps $k(O) Q; “k+kt0) 1 ps > @pv - $$) 

Therefore from (8.9) 

s4q -0 

M2 

4mF) 
--- 

q4 
qL-* 

(8. 13) 

Thus, within these simple-minded assumptions, the electromagnetic mass 

of the proton diverges if the bare quark masses and m@) o are nonvanishing, 

and is given by 
26 

J 

dk2 - = k2 

If II commutes with isospin, then ml = m2 in (8. lo), and the isospin- 

dependent part of the mass splittings is given by 

6M3 = .2+ ml < P 1 $(0)T3$(O)j p ’ / 
dk2 
7 

(8.14) 

(8.15) 
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with 

and matrix indices suppressed. The same calculation may be done for any 

particle state and the same factors 

am 1 dk2 

27r /- k2 
(8.16) 

will appear; only the reduced matrix element < pl$(0)T3@(O) 1 p > will vary 

from particle to particle: Of course, for mesons GM3 is replaced by (6~1~)~ w 

We recognize from (8.15) a strong similarity to the Coleman-Glashow 27 

“tadpole” picture of electromagnetic splittings. In particular, in the SU(3) limit 

for the matrix elements < p 1$.T3@) p > we find that the splittings transform as 

an octet. Furthermore, the electromagnetic splittings can be related to the 

octet splittings of the SU(3) multiplet in question: 28 

and 

Thus 

8M8 = (ml - “3) <PI$Y+IP> 

i, 
‘i, 0 

0 00 '\ 
I 

1 \ 
3 O/ 

O f 
-- 

/’ 

< PI$(0)T3ti(O) ( P > dk2 

< P( 3;(O)y V+(O) ( P > J- k2 

P-17) 

(8.18) 

(8.19) 
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nor meson octets and the decuplet, the ratio of the matrix elements is simply 

a Clebsch-Gordan coefficient. For the baryon octet, the ratio depends only 

upon the f/d ratio in the octet mass formula. 

From the form of (8.19)) we find the general results of Coleman and Glashow 

that: 

(1) The electromagnetic splittings are octet. 

(2) The F/D ratio of the electromagnetic splittings is the same as for 

the octet splittings. 

(3) The ratio of electromagnetic splittings to octet splittings is universal, 

i.e., independent, within Clebsch-Gordan coefficients, of the particle in 

question (to the extent that the logarithm 
J 

dk2 

7 
is independent of the 

particle in question). 

In connection with this last result, we find in the Coleman-Glashow notation 

[their equations (9) and (lo)] 

K” -K+ = S-C+ dk2 
It -+i-r Z-N k2 (8.20) 

Numerically the left-hand side of (8 .20) varies from +O. 017 to +O. 038, and 

when non-tadpole contributions are removed, a best value of about +O. 035 results. 

Therefore 

ml 
m -m 1 3 J 

dk2 30 
F= 

It is curious that, contrary to the naive picture, the isosinglet quark here 

has the smallest bare mass. 

All this is highly speculative, but we draw from this calculation the following 

conclusions : 

(1) The contribution to the electromagnetic mass splittings from a quark 

mass term in the Hamiltonian is divergent. 
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(2) It is unlikely that such a contribution would be cancelled by others. 

(3) Under fairly general assumptions on the structure of H, the divergent 

part of the mass splitting transforms as an SU(3) octet. 

(4) Assuming that the quark mass term is the dominant source of this split- 

ting, many results of the Coleman-Glashow “tadpole” theory follow. 

IX. RADIATIVE CORRECTIONS TO WEAR INTERACTIONS 

Next we consider the divergent part of the radiative corrections to x+@ -decay. 29 

We shall be able to show that, for a U(6) @ U96) current algebra, the first-order 

radiative correction diverges, to all orders of the strong interactions, and we 

compute the coefficient of the divergent logarithm. 

We begin the calculation by considering the invariant amplitude, illustrated 

in Fig. 2, for the process n--+ 7~’ f e- +j7+ y+y’ where y and y’ are virtual 

photons of momenta k. 

We shall write down the asymptotic part of this amplitude all terms O(I/k2) 

and then tie together the photons and integrate to obtain the radiative correction. 

By first considering this amplitude, we can check that the result is gauge invariant. 

The amplitude of Fig. 

the neutrino be virtual. 

The amplitude q fv) 

2 is composed of 3 terms, illustrated in Fig. 3. We let 

is perturbation theory and can be written down in- 

stantly. (We ignore the form factor dependence in the pion vertex. ) 

q (a) = 2 - 
I 

1 1 1 
CLV Ge ‘a u ‘p $+fi-m ‘v + ‘v $-k-m ‘p h-m YQ! U-Y5) (9.1) 

We record also the divergence of v fi’: 

k??;)= Ge2 ‘a ‘Yv **m r” (I-Y5) ’ (9.2) 

- 27 - 



The hadronic piece of nz 
(b) 
PV 

is proportional to 

.+ where J 
30 

~ is the total weak current (V - A) and 

(9.4) 

The general form of P+ 
w 

is,. consistent with (9.4), Lorentz covariance, 

and isovector current conservation, 3,1 

+ Ep(UPYp$y o,(k2, k* P) 

(P - +k ) (Pa- ;k,)’ 
-26. lJ 

k2 
F2 (‘6 

- 2k*P 

(9.5) 

We need the term 0 $- ( ) 
in I? -I- 

Pa 
; this is determined by the equal-time com- 

mutation relations, as in (4.6). Assuming unsubtracted dispersion relations for 

the ai and F(k2) and carrying out an argument similar to (6.13)) consistency 

with the U (6) Q U(6) current algebra 
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:1s It -+ir/J demands, as in Section IV, 
0 

2 aqk,o)-0 - 2 
0 k’ 

f(k2, k* P)-k* P 0 

Then all the contributions of I’ 
PQ 

to the radiative correction a 03 
CLV 

will be 

finite except the term 

(9-f-3 

P 
PQk -t-P ka!-g IYP.k 

k2 
=r+ 

Pal-1 (9-V 

which follows from the U(6) x U(6) current algebra. So we take for fl @) the 
CLV 

approximate expression 

P-8) 
Its divergence is given by 

k’ ,$$i = - Ge2P” u Yv -&--- yol(l- yS) 

-I- Ge2 
p&)+ Pvka - g,,W) 

k2 I 
u Y(l- Y5) 

(9.9) 

Finally, we come to &! 
w 
WJ l 

Here the wave function renormalization is a 

little more delicate than that of the electron line, which is mere perturbation 
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To cope with this we go back to the Fubini-Furlan method 
32 

theory. and 

consider 

‘J&,CPA = -i J 
d4x eiq* x < n- 

considered to all orders of electromagnetism. Taking 

we find as q-0 

O(q2) = qpqy Tclv= 2q. P +i<fl[$ j,(O) , Q’] / 7rr- > 

+i 
I- 

d4x eiq’ x< 7~~ 1 T (8’ jk (x) avji (9) ) 1 rr- > 

We extract the Born terms from the last term, using 

(9.10) 

(9.11) 

(9.12) 

while the continuum terms are obtained by replacing a,jE by fieA j* and 
IJCI 

contracting out the electromagnetic field. We obtain, when the dust settles, to 

lowest order in e2 

0(q2)= 2 q* P + constant + 
z2tPz - Pf)” 

,(q2+2q* P+L(f-$) 
(9.13) 

2 -e 
s 

d4x eiq*x DC”” (x) < rr- IT (jcl(x) jtto)) / r- > 
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M'Il~'lY' I) 
PV 

i 6 the photon propagator. Keeping the term linear in q- P, we 

g~tt ;I I’ul)i~~i--l’u~~l;~n (W~~isl)cr~(!~-A(llc:r) formula 

A 
J (z?rj4 

ti” (k) Tpv(P, k-q) (9.14) 

1 q-0 

~%y displacing that origin in k-space, we can put the differentiation onto Dp $9 ; 

this makes D of order 1 
PV 7 

and allows us to keep only terms of order k 

in T 
PV ’ 

These terms, however, are known from the work in Section III, within 

the same nssuml)tions about asymptotic behavior of inelastic form factors: 
. 

TVv (I’, I<) -.- 2 
kv + Pv k - g ,,P.k 

k2 ) 0 
+o -L 

k2 

Putting all this together, we find that the contribution of the renormalization 

tcrins to ‘Tq (c) is 
PV 

-g vP.k 

(9.15) 

l,;P 
4 

@) 
c1V 

2.I _ (.c2 pIyltv + 5 ka - gvo! lP’ k, --y /J! (1-y ) I ’ 
[ 12 1 5 

l’ulling (!I. Z), (9. 9)) and (9. 15) together, we find the consistency check 

We are now prepared to evaluate the radiative correction. We multiply by 

(9.16) 

4 
+ Dpv(k) + 

Ak k 
, with D 

W 
proportional to 1 

(24 T;” 
+* 

gcll/ k2 
, and inte- 

grate. Diagrams (a) must be handled with care to account for the &- 
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multiplying the amplitude from the reduction formula. The contribution is 

= - - -&- (l+h) log A2 
2 l”/1O 

From (9.8) and (9.15) we obtain the contributions of diagrams (b) and (c) 

( ) 
A2 ZZ ; ;+.$ log - 

n;! m2 O 

(9.18) 

kv+Pv k -g v(P*k) 

k2 1 ur@(l-75) 

= -E(l+h)log $Bo 

(9.19) 

Therefore, to leading order in a! , the pion p-decay amplitude has the structure 

z GPa u Yo (1 - y5) u 
t 

1 +g log 5 (9.20) 

We conclude that a chiral U(6) x U(6) current algebra implies serious diffi- 

culties in making a consistent theory of radiative corrections to weak semilep- 

tonic processes, difficulties which cannot be blamed upon our ignorance of strong 

interaction form factors. However, even for a cutoff A2 - i , the correction 

(9.20) is only about 1%. 
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X. ELECTRON-POSITRON AHNIHILATION INTO HADRONS 

In this section we apply the same kind of speculations as in Section VIII to 

the vacuum expectation value of electromagnetic currents. We define, as in 

(3.1)) 

c IPI I4 < 0 j (0) n >< n j (0) 0 > (270 4 e4 P,-9) = Cs,s,- gpvq2) p (s2) (10.1) 

p(q2) is related to the total cross section for the process e+ + e-+hadrons 

at center-of-mass energy &T 

By multiplying Eq. (10.1) by En = q. and integrating over q. , we find, as- 

suming that the double commutator exists, 

(10.2) 

= q.Pv -g&&s 
16 x2a2 

We go back to the quark Hamiltonian (8.10) and the evaluation of the double 

commutator (8.11). Already the kinetic-energy term produces difficulties: 

0 ’ = - 4i<o ‘+‘+ (aiVj+jij a.v)Q2~ 0 > / 

4- J ‘d4k = 
P704 

Tr (Yikj - 6ij ~*k)&~sQ 
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where S(k) is the propagator for the unrenormalized quark fields 

S(k) = i J 
b2[ w,cmS + P20-4] 

k2 - m2 

and 

s dm2pl(m2) = 1 . 

It is clear that the double commutator diverges quartically 

The mass term is proportional to < 0 $Q2M4J 0 > 
I I 

which is related to 

<O 
-i- 

QAx9 $j, tOlAx ] 10 > - CO /‘+:{i,Y+~O > 

(10.4) 

(10.5) 

(10.6) 

and is finite if we use PCAC and saturate the intermediate states with a pion. 1 

Unfortunately, the interaction term is less amenable to analysis; again, how- 

ever, it is unlikely that it identically cancels off the quartic divergence from the 

first term, and we conclude 

J ds2 q4 atot(s2, = o3 

If we demand that Eq. (10. ‘7)) like Eq. (10.5), diverge quartically, we find 

that (within logarithmic powers) 

(10.7) 

(10.8) 
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which is the perturbation theory result. The idea that the total hadron yield 

from colliding beams of given energy should be approximately the same as, 

say, the p+ - p- yield is folklore, 33 we can consider this calculation as 

sup.port (but certainly not a proof) of this point of view. 34 
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FIGURE CAPTIONS 

1. Second-order weak-interaction S-matrix element. 

2. Radia-Live amplitude for fl - p decay. 

3. Decomposition of the amplitude of Figure 2. 
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