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APPLICATIONS OF THE CHIRAL U (6)XU(6) ALGEBRA OF CURRENT DENSITIES

J. D. Bjorken

The conclusions of Section IX, which considers the radiative corrections to vector

B - decay, are incorrect. In addition to the divergent contribution to the corrections
calculated there, there is an additional divergent piece (which contributes to |
Mpw(b) in (9.8) ) coming from the equal time commutator of the space components
of isoscalar electromagnetic current with the axial current. This contribution is
model - dependent. In a model in which the isospin current is carried by J = 3,

I =1 fields of charge Q * % the total divergent correction is <in place of (9. 20))

2
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m
My thanks go to Helen Quinn for finding the mistake. The details of this axial
contribution will be given in a forthcoming paper, in collaboration with R. Norton,

E. Abers, and D. Dicus.
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ABSTRACT

Consequences of the local commutation relations of vector and axial currents
proposed by Gell-Mann are explored: (1) A recipe for detecting and isolating
Schwinger terms in the commutators, proportional to derivatives of the §-function,
is discussed. (2) Under assumptions of smooth asymptotic behavior of form
factors for forward scattering of the isovector current from a proton, we show
that the U(3) ® U(3) algebra for the time components of the currents implies
the U(6)@® U(6) algebra for space components, at least for spin-averaged
diagonal single particle states; (3) The derivation of the Adler-Weisberger
formula for G A/ GV is sharpened by giving arguments that, at fixed energy, the
forward m-p Green's function satisfies an unsubtracted dispersion relation in the
pion mass. (4) A lower bound for inelastic electron-nucleon scattering at high
momentum transfer is derived on the basis of U(6) @ U(6). (5) The contribution
of very virtual photons to the hyperfine anomaly in hydrogen is shown to be related
to an equal-time commutator of currents; this contribution is crudely estimated to
be <4ppm. (6) The logarithmically divergent part of electromagnetic mass differ-
ences of hadrons is shown to be proportional to matrix elements of the equal-time
commutator of the electromagnetic current with its time derivative. It is suggested
that this '"divergent' part be identified with the Coleman-Glashow "tadpoles''; this
is discussed in the framework of asimple quark model. (7) The logarithmically
divergent part of the electromagnetic correction to the process m — ©+e + v
is, on the basis of the U(6) @ U(6) current algebra, shown to be nonvanishing and
is computed. (8) A speculative argument is presented that the rate e" + e —hadrons

is comparable to the rate e +e —p  + p in the limit of large energies.



I. INTRODUCTION

In this paper we apply the chiral U(6).X; U(6) algebra of current densities
proposed by Gell—Mann1 and by Feynman, Gell-Mann and Zweig2 to various
processes. We propose a criterion for detecting and isolating singular terms
proportional to gradients of delta functions. These Schwinger ‘cerms3 have in-
hibited the use of the full information contained in the algebra of current den-
sities. In particular, the behavior of matrix elements of currents as the momentum
q carried by the currents approaches infinity can be determined in terms of the
current algebra. Some applications involving electromagnetic corrections to
hadron processes have been found. The program of the paper is as follows:
Section II: We propose a criterion for identification of Schwinger terms. The
crux of the matter is that the T-product of currents used in making sum rules is
in general not covariant., This was recognized and discuésed4 by K. Johnson in
1961. We give a rule for constructing the T-product from the corresponding co-
variant amplitude. The difference of the two objects is the Schwinger term.
Section III: The claims of Section II are illustrated for the vacuum expectation
value of the T-product of two currents and is essentially a summary of Johnson's
paper. |
Section IV: We next take the T-product of two isovector currents between protons
at rest and show that the only Schwinger terms are in the disconnected graphs,
provided certain form factors behave reasonably at infinity. If this is the case,
we can furthermore show that if the time components of the current densities sat-
isfy a U(3) X) U(3) algebra, the space components satisfy the U(6) X)U(6) algebra,

at least for diagonal matrix elements between single-particle states, spin averaged.
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Section V: In this section we show that the forward =-p scattering amplitude for

a virtual pion (whose interpolating field is a“j“(x)axml ) satisfies an unsubtracted

dispersion relation in the mass, for fixed laboratory energy. This allows one to

G

sharpen the derivation of the Adler-Weisberger formulat5 for G—A by giving
A%

some justification for the analytic continuations needed in that calculation.
Section VI: We look at the spin-dependent part of forward Compton scattering of
a virtual photon and using the U(6) X) U(6) algebra derive an inequality for in-

elastic electron-nucleon scattering:

~ 2 |G
) . 4
211m tm d Einc f dTV Czl (Up+ % > SW; G—é_ (1.1)
q - Eiﬁéw o dg dv v
where v =E. - E.. We conjecture that
. inc f
do 1r0!2
23 (.2
dq q

in the same limit.

Section VII: The results of Section VI are applied to the hyperfine structure in
hydrogen; it is concluded that the contribution of very virtual photons ( q2 K« —m%)
is bounded by a few (~4) parts per million and probably cannot explain the 20 ppm
anomaly.

Section VIII: We show that the logarithmically divergent part of electromagnetic
mass differences is proportional to matrix elements of the equal time commutators
of the currents with their time derivatives. On the basis of a simple quark model,
we argue (but cannot prove) that these matrix elements are finite, nonvanishing,
and have SU(3) octet transformation properties. If the quark mass term in H is
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dominant, many of the Coleman-Glashow 'tadpole' theory results emerge.
Section IX: We examine the radiative corrections to pB-decay of a pion, and show,
on the basis of chiral U(6) &) U(6), that to all orders of strong interaction the |
radiative correction diverges logarithmically; in particular &
2
7)2 ~ 7720 1+%’:—logﬁ-§ g (1. 3)
where 7@ . is the lowest order amplitude.

Section X: Finally we look at the process e+ + e — hadrons, and show that the

total cross section satisfies the relation
2 4 2 2 2 . . 3
qu 4" go(a7) = 1670 f<0|[JZ(0,;s), [H,JZ<0>]] |o>d x (L.

where q2 is the square of the total center-of-mass. energy.
Using the toy Hamiltonian of Section VIII, we find a quartic divergence in

the right-hand side, suggesting that within logarithmic factors

2
2 o 2
"tot(q ) ~ 5 as q — = (1.5)
q

II. THE SCHWINGER TERMS

The Schwinger terms3’ 4 are singular terms in the commutator of current

densities, Specifically, Schwinger showed that

[150:20, j0.x) | = 0¥ 6 (- x) (2.1)
where ju(x) is, say, the electromagnetic current density. That such a term is

present can be demonstrated by manipulation of the vacuum expectation value. In



constructing sum rules such terms get in the way; what we shall endeavor to do
is to give a recipe which identifies and isolates these contributions.

We argue that the existence of Schwinger terms is demanded by locality

and Lorentz kinematics alone, and indeed may be isolated by using only this in-

formation. We illustrate what we mean by considering the isovector AS= 0

currents ); defined by the g-decay interaction, satisfying

[¢".q7] - 2q,

Q* = f ’xit(x, 0)

3 & +
[@%.d7 - «q
We center our considerations on the time-ordered product6
. 4 iqg-x A, -
M @) = fd xe < A,T (Ju(X)JV(0)> ,B D>
and the absorptive parts

P o) = f RN N INCT R

B ) = f a*xe' ¥ (A | O5m | B >

p

P

4 4 .-
y~ 50’ @Ppop) Al O] 0> ¢

P %(2"7454(Q+PA'Pn) <Alj;(o) l n >(nl j;(O) l B )

i(0) \B >

(2.2)

(2.3)

2.4

The main point of this section is that in general, for kinematical reasons alone,

the time-~ordered product is not a covariant amplitude; i.e., it does not transform

5



as a 2nd rank tensor. This will be shown below by considering the vacuum ex-
pectation value; however, before delving into the arithmetic, we note that there
always does exist a covariant amplitude, defined by the second-order weak
matrix element shown in Fig. 1. The covariance of the S-matrix demands that
the amplitude Muu which multiplies the lepton currents does transform as a
2nd rank tensor,

We now rephrase the problem of Schwinger terms in the following way:
Given (phenomenologically) the covariant amplitude 1\7qu , how do we construct
the time-ordered product ? We_ want the T-product, because we can then use the
Fubini-Furlan technique to construct sum rules.

We propose that le and ﬁuu , considered as analytic functions of q, -
have the same absorptive parts puv and p;i v (considered in coordinate space
this means MHV(X) = Muu(x) for X, # 0). Therefore, MuV and Mul/ differ
at most by a polynomial in q, (in coordinate space, this means terms § (xo),
5 (xo) , «..). Finally, the time-ordered product vanishes as q,—> 0, a5 seen
from expanding (2.3) and truncating the intermediate state sum (as we will
eventually do in one way or another anyway before confronting the theory with

experimental numbers):

m'p(€&~4 @, ~d,...)
IM“Um,“.)=j[ O | # 0 ~ P 7 (2. 5)

(27 q, - g q, + d,

Thus we construct the time-ordered product M Y from the covariant

amplitude Muv by letting q,— at fixed q, identifying any polynomial in

ann

q, and subtracting it off.




It is useful also to observe that the term 0(—1—-) as g - is propor-

tional to the equal-time commutator of the currents

1 rdq . '
MUJ/__*— N lrpu_u(qg’ (.-1—.7”') —pl/ll(qO’ _gl.“)_l
T 95eq, v (2m) LT : -
(2. 6)

. fd3x <Al [j+(0 %),j(O 0)] B >eTd%
a4 ut 2 W

The higher terms involve multiple commutators of the currents with

H ; e.g., the next term is

t . —
) - qO[p[lV(qz)’ g:-°') +PV“(CI:),—92---)]

2.7
1 3 —ige X + i
S fdxeww<A|“3“(o,§), H| JV(O)]lB>

I0. VACUUM EXPECTATION VALUE

For completeness, we consider briefly the previous case with
lA > = ’B >= ,O >, although this is treated in Johnson's patper.4 The absorptive

part o has the form

Py @ =5, (4) = (04,8,78,, 4 @) (3.1)

and we take the covariant ampli’cude7 as obtainable by a dispersion integra18 over p

(3.2)

2
o 0,75,0) /‘dozp(a)

Hv 27 qz-az



To obtain Mp.l/ we let qp = qor;u and let q0~oo(n“ =(1,0,0,0)

o~ /dango ) (3.3)
2T

M — nn, -8 )
BYy Lo BV Cw

a4

This is the Schwinger term; the time-ordered product is

2
M oF o - ao®p(e? ,
ww " - 8,) [ o (3.4

uv

To evaluate the equal-time commutator, we may take unﬁ and integrate
(2. 3) by parts
" _ 3 A - , =ig-x
dm = [dx <A‘ 30(0,35),)”(0)] lB > el X

U
(3.5)

2 2
_ [‘(’I'Q)Uy N qu]f da;:r(o ) :(O,g)/dazeﬂga )

This is the result of Schwinger. If we use (2.6) and evaluate the term
O ( —(—11—) from (3.2) and (3.4), we arrive at the same conclusion. It may also be
o
obtained by directly evaluating (2.5); here the Schwinger term arises because the

polynomial projection operator (q”qy - gw}qzl) depends upon the integration vari-

able qg .
IV. EXPECTATION VALUE BETWEEN PROTONS |

We now consider the same commutator between proton states of the same
spin and momentum, and averaged over spins. 9 (The spin-dependent terms will
be considered later.) This is the case considered by Adler, who has derived

fixed-momentum-transfer sum rules. 10 The general form of the covariant



amplitude I\NIII“/ is then

~ 1

4 ig-x . Ao .
Mul/ 5 % '/:i xe'd < Ps ,T(J“(X)JV(O)»PS > + Schwinger terms
=P B, T ) + @ a+ B a)TFpa ) + 4,050 r)
wv ’ pry v ouv2vt e u P33yt

+, 3,0 v) v =42

(4.1)
which we rewrite as

~ 2 2 2
= + - . + -P
le PHPVMO(V) [q PMPU (o] P)(unV +qVP“) (' P) g’“’jl Ml(q U)

2 2
+ (q“qy—gwq%Mz(q V) + QP tq P, -8 P)Ma@, v)

2 ~
- + +
+ g“,,M‘l(q V) B/w Duv
4.2)
Buv is the Born term and 5“1/ the disconnected covariant amplitude,

identical to (3. 2).11

1 1 2
5 :2(Py+72—q#)(Py+—gqy) [2 q 2]
py M(q”+ 2MV)
4.3)
(@,q,-8,,9)
(@,9,-8,,0

2
F, +F )
2M(q%+ 2Mv) ( lvo—2v

where F1V and F2v are the Dirac isovector form factors normalized to 1

and ( Kp~ KN) respectively.



For qz

< O (spacelike), the absorptive parts of MHV are confined

to the conserved pieces M1 and M2 which satisfy fixed q2 dispersion

relations in v .

2
q .

Thus Mo’ M3, and M 4 are polynomials in v for fixed

In constructing Mﬂl/ from Mul/’ we see we will obtain a Schwinger

term from ]5
ry

, as well as losing MO completely. However, provided

szl -0

2

q M, —O

2

(4. 4)

q PM3 —0

M4 —=-0

€

as q,—~ oo (Ui ;qz —= ~-c0) no other Schwinger terms will be induced. These

are reasonable assumptions, which we hereafter accept. Then Mﬂ

by (4.2), with

is given
v g

M_ omittedand D  —=D . Taking the divergence, we find:
o pv py

(Py + =g ) ¢
m _ 42 v-o2 2 2 I
q M;w q PVM3 + qVM4 + —-——-—-————M F1v -———-4M2 F2v + Duv (4.5)

From local commutation relations, 1 we expect, from (2.2) and (2. 3),

1 3
= S
M 2 %fd’KP

Ps >e 4%

[ iy 0.9, j;(O)]

= zs:<Ps| j?/ (O) Ips > + Disconnected piece

Py
= — + Disconnected piece

M “.6)
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Equating (4.6) and (4. 5),

2
1 2 2
=y (1o fe, - w2
3 qu v 4M2 2v
4.7
1 2 & .2 ]
M,=-— jF, - F
4 oM [ 1v 4M2 2v
We find an interesting result in the case that
3
qOM1 —s- 0O
q3M —=Q 4.8)
0 2 '
2
q Fi < w
Then as q0—>ioo , everything comes from. M3 .
np +nP -g 1nP
M~ pv vy py (4.9)
Mq0
and aside from the Schwinger term in the disconnected part 2 we find
iq- ' - nP +npP -g NP
< Z/d3xélﬂ X <Ps||j+(0,x),j (O)“Ps>= wv vp W
2 s [TANEE e % M
(4.10)
This is what is expected from quark currents, e.g.,
. . P 63
11(0,%,3,(0)| = 2i°(0) §°( (4.11)

- 11 -



Thus it appears that the theory which is ""as smooth as possible' is that
for which the current algebra is chiral  U(6) x; U(6).
The Adler sum rule10 is obtained by demanding the coefficient of

(Puqv+ P, qﬂ) in Muu satisfy an unsubtracted dispersion relation; we need

not go into detail here, as it has been discussed considerably elsewhere. 13

V. THE ADLER-WEISBERGER FORMULA

As an application of some of these ideas, we sharpen the derivation of
=4
the Adler-Weisberger sum rule’ for the axial vector renormalization in B~decay.

We consider

M@2,v) = -i fd4x X p‘T(n*(x)D‘(O))‘P > 6.1)

Here IP D is a proton state of momentum P and

di, (9,
Dty - —LAxal (5.2)

ox

For spacelike qz, M satisfies a dispersion relation in p ; the even part we sub-
tract once, and the odd part we leave unsubtracted in accordance with the

Pomeranchuk theorem.

o5
|podd 2 1 2
M@ty = B+ [ S e uT ) ey
w?- v

B is the Born term. The rigorous formula, from the current algebra, is that

24
ov

0 2
£ ™ - B) =1-G (6.4
v O q*=v=o A



To relate this to pion scattering, one argues that the continuum amplitude A

is dominated by the double pion pole for small values of q2

24
ap
553 Ap )
@ -u)

AP v) ~ (5.5)

where a  is a constant related to the pion decay amplitude. The pole dominance
(5.5) is plausible, if A satisfies an unsubtracted dispersion relation in q2 .
One knows14 that for fixed v, A is analytic in the cut q2 plane, with branch
point at ~8 % uz for ¥ ~0. Now, on the basis of reasonable commutation re-
lations we shall show that A  indeed satisfies an unsubtracted dispersion re-
lation in q2 , strengthening the argument (5.5). Although this is a fine point
in the AS= O sum rule, it may be of some significance in understanding why

5

the AS=1 sum rulelo works at all.

We return to (5.1) and let qo->ioo . The term of order a—l— is odd in

0
v, and has the form {see (2.5) and (2.6)] :
M = (_11_ fd3x eLZcp|[D'©0,%,07] P> (.6)
(0} O

. . . . . 2 .
From the dispersion relation, valid for spacelike q~ as is the case here, we

find, assuming the Born terms vanish rapidly for large q2

~ odd , 2
(Odd) V dV' p (q ’ V)
M —— 5 6.7
2m ( Vo= VZ)
Vo
q |2
But the threshold v, in the dispersion integral is ~ for large q, 3
2M
therefore
' | %]
‘L\>___>>1 (5.8)

v i~ aMm
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Thus as ¢ — Po.

Is) |

odd 2
[o]
We conclude that
£y oA’ v) ! 3. -iq-x + -
— /dxeilu<p|[1) (0,)5),D(O)]|P>
M aV y=0 q —-w q )

(. 10)

Thus A'(qz, 0O) satisfies an unsubtracted dispersion relation provided the com-

mutator exists, 16 I D-t(x) is proportional to a canonical pion field, the commutator

vanishes. If it is bilinear in fermi fields, e.g.,

D'(®) = CPy T Y 6.11)
then
2
oA | __, f? as  Q—e-o 6.12)
ov q°
V=0

Vi. SPIN-DEPENDENT VIRTUAL COMPTON SCATTERING

We apply these ideas to the antisymmetric part of the virtual Compton ampli-

tude from a proton, assuming quark structure for the electromagnetic currents j“

[ju(o,zo,j,,(qJ - -2y, N 00600 6.1

+ gradient terms

- 14 -



where

i, =¥y QY
6.2)
P =Py Q=2 Py w5y Q¥
7 5%u 975 37757,
and
2 \\
3 0 0 \
B 1 \
Q= 0 -3 0 €193 = 1 6.3)
1
0 0 -3
The general structure of the antisymmetric part M;SCB of Muv , defined as in
(2. 3) with j“ replacing j: , is given by
@ _ 1 _sl l [ l ‘ i j 2
M == U s P - , P+ , P- uG s
Ly | P, Ypd By |y, |PraiuGany)
6.4
Ll o] g [ pet] a0 e o fucy
+ = - +
5 u?)' | q, m,d qQ* (e 7pld uGy,(q™, v)
From crossing symmetry, M;(Lal)l q,...) = +M‘(;L) (-4,...) = -Mlﬁ),(—q, ...) and
2 2
Gl(q a'V) = Gl(q aV)
(6.5)

2 2
Gz(q ) _V) = _G2(q 7V)

We assume unsubtracted dispersion relations for both Gr1 and Gr2 .

For q‘z = 0, ML;), is related to the spin-dependent part of the forward

Compton scattering amplitude; for q2 < 0O, the absorptive part of M(a)

MY, is

related to the spin-dependent part of inelastic electron-proton scattering.



Specifically,

doH doN _ 4a2

dq2dE" do?dE'  o%E?

[M(E +E' cosg)Im G, +q° Im Gz:l

(6. 6)

do'H is the cross section when the spins of electron and proton are parallel
and along the direction of motion of incident electron; dOH the cross section

for antiparallel spins. E, E' and 6 are energies ard scattering angle of the

2

electron, q2 = -4EE' sin and y = E - E'. We have set m, = O.

g
2 I

The photoproduction eross section for qz = O 1is given by the optical theorem:

e Im G, - o [orH -oH] (6.7

where OH is the cross section for photon and proton spins aligned. The Born

Lerms are given by

2

Born 24 Fy(F + Fy) Born _ 2V (Fy t Fy

Gy~ 3 53 Gy = 7% 572 (6.8)
M@ -4M v") q -4M"v '

We extract a useful result by considering the limit 9, io of Mt(lal)/

Using (2.6) and (6. 1) we find

. - 2i€ -2i€ g’ .
1im M@ - oo o p jZ(O)|P>= ——-‘-‘2————<P|J5(0)’P>
pv q 2
; o) q
% ~ (6.9)
we define
< ps iz Ips >=Z Uy yu= - 7s” (6. 10)
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Upon identification of this with the asymptotic behavior of G, and G2 we

1
find that -27Z

G,—»~—

G,—>0(— (6.11)
(@, —=i=)

On the other hand we may evaluate G, by using an unsubtracted dispersion

1
rclation
0 0 dv' V' Im Gl(qz,y')
G@a,y) = - - (6.12)
1 m VvZ _ V2
[o]
amd17 as qo-*iv.
29
2 ~ dv' 2 2
Gi@a,m~ — ]7'" Im G,(@",v) =G0 (6.13)
]
or
o
A\l
/95’7 Im G, @, v") 5 - "’5 (6.14)
v q —=-»x Mq ‘

Using Eq. (6.6) as L ——swat fixed q2

2 tH H
ImG, @y —LE {d" - Yo ] (6. 15)

8 azM dqzdv dqzdu

and we find

~

lim lim °
2
e o E__Nb/d,v' [daH ) aott ] _ -8m°z 6.16)

|
v dqzdv' dqzdv' q4E

o]
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It will be a long time before these cross sections are measured. Furthermore,
we do not know the value of Z, although SU(6) predicts Zp =5/9 and Zn = 0.
However, if we take the difference between pfoton and neutron we know from

(6. 2), assuming always the U(6) (X) U(6) current algebra, that

G
1{"A
Zp—zn:§<a—\—;—> (6.17)
Thus,
T @' d e ottt -sme® (Sa
f " [O{o"’p "ot "In ]“’3q4E <GV> (6.18)

Something may be salvaged from this worthless equation by constructing an in-

equality:18

- do do, 2 G
lim lim q4E %‘% 5 P, 211 ' S S;ra GA
qz e o o dq dV' dq dv v

(6. 19)

Aside from the factor —l}; in the dispersion integral, this is similar in form to

. the Adler sum rulelo for neutrino processes

do do

2
lim lim —— - = — (6. 20)
2 2 T
q2 e F o (dq dqg >
4 1

where —% replaces Gz. We suspect the factor i is due to our inefficiency

¢
o

in using only the spin-dependent amplitude, and conjecture that a '"practical" in-

equality for electron scattering is

(6. 21)

in direct analogy to the result for neutrinos.



VII. HYPERFINE INTERACTION

The asymptotic part of the spin-dependent Compton amplitude (6. 4) will also
contribute to the hyperfine inte.raction and has not been included in previous
analyses, 19 for which the asymptotic behavior (e.g., Born terms) is more
rapid than 1/l<0 . The 2nd-order matrix element for the spin-dependent part

of forward electron-proton scattering asymptotically (k0—> i) approaches:

, 4
I @ et / (2;1)‘1(1(6 ﬁ)/“w”qu‘g (P, k) (7.1)

Inserting (6.9), and doing the spin algebra, we find

@ _ ta’z a*k A Y

= T y € S
m 27r2 - k6 Yy u 1Y

oQ
2
+3a2Zﬁ'}/5¢u/d—l—iI-
k
114

where ﬁz is some effective lower cutoff. Comparing with the first-order term,

(7.2)

’

we find a correction

AV
1V

Z M
- 22 |#p’ [me p} (7.9)
p

—2
m

Choosing Zp ~ 1 and rle = mi , we find an answer

AV
v

~3.5%x10°% =3.5 ppm (7.4

This appears to be too small by nearly an order of magnitude to account for the
anomaly19 of ~20 ppm, and we conclude that within the general picture we have
taken (convergent dispersion integrals and chiral U(6) x U(6) current algebra)
that the large 1{2 region is probably not a major contributor to the hyperfine

anomaly. _ 19 -



VIII. ELECTROMAGNETIC MASS SHIFTS

The same methods may be applied to any process where high-momentum
(spacelike) virtual photons are involved, in particular, to radiative corrections
to processes involving hadrons. The most interesting are the electromagnetic
mass shilts of hadrons and the radiative corrections to weak interactions. We
survey first the mass shifts. We consider the expression (4.1) for IT/ij , with
electromagnetic currents replacing isospin currents, and spins averaged. To
be explicit, we consider the proton, although our results will be general. Then
the analogue to (4.2) is:

[a2p o 2 2
M, = |aPP, - @P)@pP, +q P) +@P) gw] M, (", q'P)

2 2
*@,4,-8,,94) My@, qP) (8.1)

[Ny M 1p 4M2 2p w

g 2
+B -—HE(FZ - F2)+D
In order to be consistent with the absence of Schwinger terms and with a

chiral U(6) x U(6) current algebra, we demand, aside from the disconnected

_ 1 . .
graphs D ., that M“?O(q(%) as qzeiw. This means

1
M0 <T>
qO

8.2



as q0_>iu. . We assume the Born terms may be ignored in this limit, which

is satislied if

(8. 3)

We concentrate our attention on the divergent part of the electromagnetic
mass shift which we calculate a la Cottingham. 20 This comes from the terms
associated with M1 and Mz , since the Born contributions have been evalu-

atchl in terms of measured electromagnetic form factors and found to be

convergent,
- 1'02 d4 "
OM -~ 3 MZ(q,P)-DZ
2(2m q (L
. 4 [
. 2lg / T4+ 2 MM, ) - 3q2M2<q2,u>] + Born terms
87 q |

My =q-P

8.4)
Following Cottingham, 20 we rotate the q, integration contour to iqO and

then express Ml and M2 in terms of dispersion integrals over v , which

we leave unsubtracted. 22

2 dV' V' Im Ml(qz, V')
Mi(q ) =

R (8.5)
V' -V

< 3

min
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From this dispersion relation, we know (because the threshold v min "%
2
like jﬁ— ) that for q2= -k2, v =ikcos §, cosf £1,

R e R ®.6)

The divergent part of §M is therefore

o)

div_ « 2 213 .2 2 2

We see that dew 7
k

cisely this term which is determined by the equal-time commutation relations

depends upon the term O(—L> in Mi(kz, 0). It is pre-

of the currents with H. According to (2.7), we ha,ve23 as q0~—>ioo , 4= 0;

Uj“(o,a, H ] i (@}

ps ) (8.8)

1 1 3
M —— 5 ¥ /dx(ps
Uy q2 2 <

while from (8.1) and (8. 6)

2 2 2 2 2
— - M- P + + (- -
M“V I:PIJ«PV n P(nli . ﬂVPu) M- P) guy:l q Ml(q , 0) + (n“nv gm)q Mz(q , 0)

(8.9)
where q“ = n“q o
To proceed, we need a model for the strong Hamiltonian H in order to
evaluate the double commutator. The results appear to be quite model-dependent.
Within the framework of a quark model, however, we can plausibly argue that
the double commutator will not \vanish. To illustrate — and only to illustrate —

the situation we consider a simple quark model for which

3
n= 2 | dtyl [ ig-¥ + fm, + gBV“B“(X)] B + Hy

(8. 10)

= H_ + Hy, + H + Hy
- 29 -



The q/;i are quark fields and B (X) 'is a neutral vector, SU(3) singlet, field.

HB is the Hamiltonian of the B-meson, including possible self-interaction

terms, The only virtue of this H is that it has a simple algebraic structure
and a chiral U(6) x)U(6) current algebra,

The commutator (8.8) can now be computed. Only space components of

j and j  need be considered, because 7 M* =0 L
v (4

K 3
%
either (8.9) or (8.8). Then

-l

/ % [ji(o,x) Hyl» 350

-

> as follows from

- 4iy’ [ai Vj - 61]' & K] Qz(l}

-49 Msz//aiJ. (8.11)

-

/ a’x [;ii(o’z‘)’ | 50 | - sy ["‘iBj “ 6 S‘,"i] Qv

~4

In this model, we see that the ""divergent" part of the mass splittings trans-
form, in the SU(3) limit, as a unitary octet, since the matrices Q2 and QZM
can be reduced to linear combinations of 1, )\3, and )‘8 . As an instant general-
ization we have the theorem:

Theorem: If the part of H which depends upon quark fields Y is bi-

linear in iy and (j/* and contains no off-diagonal SU(3) ma‘crices24

(i.e., only
1,)\3, )‘8) the divergent part of the electromagnetic mass splittings transforms
as an octet (in the SU(3) limit). |

We have not shown that the matrix element is non-vanishing ana cannotv in
fact, do so. However, something can be said about the mass term HM and
hereafter, in the spirit25 of static SU(6), we ignore the other two.
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With this reservation, we find from (8.11) and (8. 8)

4 —
MMV—>;§ <ps|¥ (0 Qﬁ my Py O) | PS> @), - )
8.12)
4mgp)
= £ ®up = 1)

Therefore from (8. 9)

q4M1 —=-0
- 8.13)
(©) (
M, — -4 Zo
2 4

Thus, within these simple-minded assumptions, the electromagnetic mass
of the proton diverges if the bare quark masses and m(()p) are nonvanishing,

and is given by26

2 2

sa @ (& _ 3a @ . A
éMp ~ o My /kz 5 Mo log " (8.14)

min

If H commutes with isospin, then m, =m, in (8.10), and the isospin-

dependent part of the mass splittings is given by

2
6M3 = '5%‘ m, < p | g//(O)T3n//(O)l p >/§_11:§_ (8.15)
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with

=3
"
o © M
t
O b O
o

and matrix indices suppressed. The same calculation may be done for any

particle state and the same factors

am, dk2
—5— (8.16)
21 k

will appear; only the reduced matrix element « p,;Z;(O)TB;(/(O) , p > will vary

from particle to particle.” Of course, for mesons 6M3 is replaced by (6u2)3 .

We recognize from (8. 15) a strong similarity to the ColemanuGlashow27
1tadpole' picture of electromagnetic splittings. In particular, in the SU(3) limit
for the matrix elements <p |1/—/1 31[/|p > we find that the splittings transform as

an octet. Furthermore, the electromagnetic splittings can be related to the

octet splittings of the SU(3) multiplet in question:28

6M8=(m1—m3)<p|¢/jygplp> 8.17)

and ./1 . \

e

v- o 3 0 (8.18)
‘
\ 2
v 0 0 -
\ 3
\
Thus
oMy o[ my \ <p[POTHO[p > rg i
0Mg o my - Mg <P’ JO)Y ‘/’(O)I p> K2
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For meson octets and the decuplet, the ratio of the matrix elements is simply
a Clebsch-Gordan coefficient. For the baryon octet, the ratio depends only
upon the f/d ratio in the octet mass formula.

From the form of (8. 19), we find the general results of Coleman and Glashow

that:

(1) The electromagnetic splittings are octet.

(2) The F/D ratio of the electromagnetic splittings is the same as for
the octet splittings.

(3) The ratio of electromagnetic splittings to octet splittings is universal,
i.e., independent, withi_ﬁ Clebsch-Gordan coefficients, of the particle in
question (to the extent that the logarithm f —ql—{; is independent of the
particle in question), :

In connection with this last result, we find in the Coleman-Glashow notation
[their equations (9) and (10)]

Kk'_ g5t _n-p _E-2 _ of™ fdkz (8. 20)
K-r E-N E-2 z-N 2T\mmglJ 2

Numerically the left-hand side of (8 .20) varies from +0.017 to +0.038, and

when non-tadpole contributions are removed, a best value of about +0.035 results.

Therefore

! f a4
ml—m3 k2

It is curious that, contrary to the naive picture, the isosinglet quark here
has the smallest bare mass.

All this is highly speculative, but we draw from this calculation the following
conclusions:

(1) The contribution to the electromagnetic mass splittings from a quark

mass term in the Hamiltonian is divergent.
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(2) 1t is unlikely that such a contribation would be cancelled by others.

(3) Under fairly general assumptions on the structure of H, the divergent
part of the mass splitting transforms as an SU(3) octet.

(4) Assuming that the quark mass term is the dominant source of this split-

ting, many results of the Coleman-Glashow "tadpole" theory follow.

IX. RADIATIVE CORRECTIONS TO WEAK INTERACTIONS
Next we consider the divergent part of the radiative corrections to 7r+ﬁ -decay. 29
We shall be able to show that, for a U(6) @ U96) current algebra, the first-order
radiative correction divergés , to all orders of the strong interactions, and we
compute the coefficient of the divergent logarithm.

We begin the calculation by considering the invariant amplitude, illustrated
in Fig. 2, for the process 7 — e +7+ v+v' where y and y' are virtual
photons of momenta K.

We shall write down the asymptotic part of this amplitude all terms O(1 /kz)
and then tie together the photons and integrate to obtain the radiative correction.
By first considering this amplitude, we can check that the result is gauge invariant.

The amplitude of Fig. 2 is composed of 3 terms, illustrated in Fig. 3. We let
the neutrino be virtual.

The amplitude 77( ‘(La;) is perturbation theory and can be written down in-

stantly. (We ignore the form factor dependence in the pion vertex.)

1
T 1
772 Iga;’) B Gez Pa 4 YM pHk-m Yy * Yy ﬁ—lz—m 'Y“ p-m ,YOZ (1_75) (9.1)

We record also the divergence of 77 Iii):

k“??gﬁ) = Ge? P, uy, m ¥ -y (9.2)



The hadronic piece of M(Z)} is proportional to
+ . 4 ik.x 0 . A+ -
I‘ua——lfdxe <m IT(]”(X) ]a(O))!vr > 9.9
+ 3
where ja is the total weak current (V - A) and

The general form of I“:a is, consistent with (9.4), Lorentz covariance,

and isovector current conservation,

+ {2 . .y 2 2.
r”a_{k PP, (kP)(P“ka+Pak“)+(kP) gw] &, (k- P)

2
+ (kpkoz - g“akz) <I>2(k ,k*P)

2
+ e“am,Pﬁchp:;(k ,k*P)

-1 -1 '
_2\/5(51 2kpt)(Poz 2ka) FZ (kZ)

k? - 2k.P
2
1-F !lﬁ ) 1 2
+./2 Bk, + Pk, -8, Pk [ 3 ] VoA F2 k3

(9. 5)

We need the term O (%—) in T :a ; this is determined by the equal-time com-
mutation relations, as in (4.6). Assuming unsubtracted dispersion relations for
the ‘pi and F(kz) and carrying out an argument similar to (6. 13), consistency

with the U (6) ® U(6) current algebra
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as ko-—>iw demands, as in Section IV,

2 1
¢ (k*, 0)—0 <-;>

k
&, (", 0)—=0 <—é->
&, (%, k- P)—k- P o<é> 9. 6)
F(k3) —O

Then all the contributions of r:a to the radiative correction ?72‘(3 will be
finite except the term
Pk +Pk -g Pk
p o

\/_ k2 pa (o)

(]

9.7

which follows from the U(6) x U(6) current algebra. So we take for 7”3)3 the

approximate expression

Pk +Pk -g (Pk _ [Ty
O) = _ ge2 | 2k £ po uy, 37——_1 — yva(l—'}’S) + <
g k - kes- k
©.8)

Its divergence is given by

b)) - slpar 1
k " = Ge P u'}’vm Ya(l—YS)
9.9)
Pk+Pk -g (P ] _ (
+Ge2 ay v% va' u'}’a(l-')/s)
k

Finally, we come to hz(,ﬁ . Here the wave function renormalization is a

little more delicate than that of the electron line, which is mere perturbation
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. 32
theory. To cope with this we go back to the Fubini-Furlan method ™ and

consider
T,, @ =-i fd4x RUE I |T<j;(x) it (©) > |« > ©. 10)

considered to all orders of electromagnetism. Taking

1

~ | o, _ 1
<7 I]“(O)l‘n' >= 7 Z(Pw_+P7ro)“

we find as q+=O

O(qz) = q“qVT“V= 2q-P +Hi<T,

[a“ J';(O),Q+] T >
(9.11)
. 4. iq° . -
+1fd xe ¥, n‘[T(a“ju(X) 2", © ) }w >
We extract the Born terms from the last term, using

.- - o Z 2 Z 2
- O > = — +2q°P) = = - 9.12
i< [9,5,00 | > = B @+ 2B = F g i) (.12

+
while the continuum terms are obtained by replacing a“j“ by :i:ieAMj: and
contracting out the electromagnetic field. We obtain, when the dust settles, to
lowest order in e2
2,2 2.2
Z7(_ - p)

2 2 2
(@™+2q. P+u_-p )

O(q2)= 2q-P + constant +

(9.13)
- &2 f dx 11X Y (y) <1r'|T <jl;(x) jZ(O)) ] >



where l)uV is the photon propagator. Keeping the term linear in g-P, we

get i Fubini-lrurlan (Weisberger-Adler) formula
2 2 5 rdk
@ -1 P, — AR (P, k-q) ©. 14)
2 9q (2m #
g=o

By displacing the origin in k-space, we can put the differentiation onto Duv(k);

k3

in Tuu . These terms, however, are known from the work in Section III, within

this makes D y of order 1 and allows us to keep only terms of order %

the same assumptions about asymptotic behavior of inelastic form factors:

Pk + Pv k ~-g Pk 1
T (P ky = 2| -£E L +0(—
13 k2 k2

Putting all this together, we find that the contribution of the renormalization

terms to 7)2 l(fl} is

Pk +Pk -g Pk’
By vp S

() 5 _
M, %Ge” d uy “(1-v,)
(1% ok% k2 5
- (9. 15)
. P k +Pk -g (Pk
¢ -
k“}}z( s (}OZ[ @y v o ra ur ® (1-v,)
uy 2 o
k
Putting (9.2), (9.9), and (9. 15) together, we find the consistency check
KH { @, p® (C)} -0 9. 16)
iy uy py
We are now prepared to evaluate the radiative correction., We multiply by
1 d4k 1 Ak k
=D (K , with D proportional to — [g + —L Y , and inte-
2 4 2 2
2 W op e k“ \ * g

grate, Diagrams (a) must be handled with care to account for the /Z 9
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multiplying the amplitude from the reduction formula. The contribution is

2
@ _ 7Y (1o E) dk
772 = GP_ u?" (1-7%) [ 8- (1+>\)fk2 ]

(9.17
=_ 2 (142 lo N
gy (A log — 5 Mo
From (9.8) and (9. 15) we obtain the contributions of diagrams (b) and (c)
®) o _ .2 a*k R AkPk” Paky+Pﬂka—guaP.k = K o
e 7 2 \& T 2 Wy V0%
@2m  k k k k
/(5 A A2
- }(@*Z) log — 7?ZO
m
9. 18)
. 4 - :
o . -l‘gz—f e 1 (s Ak“k"> ; [P#kV+PVkH 2,,® k)} SN
m 2 J ept K2 A K2 - o
o 1\2
= - =14+ A} log —
87r< ) m>2 7720
(9.19)

Therefore, to leading order in « , the pion g-decay amplitude has the structure

2

~ = a0 3a A
772~GPau’Y (L-7)u %1+ﬁ log mz} (9. 20)

We conclude that a chiral U6) x U(6) current algebra implies serious diffi-
culties in making a consistent theory of radiative corrections to weak semilep-
tonic processes, difficulties which cannot be blamed upon our ignorance of strong
interaction form factors. However, even for a cutoff A2 ~ 1 , the correction

G
(9. 20) is only about 1%.



X. ELECTRON-POSITRON ANNIHILATION INTO HADRONS

In this section we apply the same kind of speculations as in Section VIII to
the vacuum expectation value of electromagnetic currents. We define, as in

3.1,

3 <0]1,0|n><ni0|0> 206" @ -0 = (@q,-£,9) p@) (0.1
n

p(qz) is related to the total cross section for the process e’ + e —=hadrons

at center-of-mass energy \{q2 :

2 9
2 161« p(qz)
Oiot@) = 2

By multiplying Eq. (10.1) by En =dq, and integrating over q,, we find, as-

suming that the double commutator exists,

/d3x< o] [j“(?g, [H,jV(O)H o>

2
dg’ 2 )2
(Mp, -8, Jor 4 P@) (10.2)

p, -84  [dg® 4

_ Vv " cu q

T 6 252 waq Utot(qz)
6T

We go back to the quark Hamiltonian (8.10) and the evaluation of the double

commutator (8.11). Already the kinetic-energy term produces difficulties:

fd3x <O|[ji(x),[Ho,jj(O)]]|O > = - 4i<0 lqﬂ‘ (@, V- 6y, av)Q%|o >

!
d’k 2
=4 [=— Tr ('yikj - éij Y-K)Q"S(k)

(2m)
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where S(k) is the propagator for the unrenormalized quark fields

S = J dm‘2[ Kpl(mz) + pz(m%]

kz-m2

and

[, 2 2
Jdm pym7)=1. p, 20

It is clear that the double commutator diverges quartically

fd3x<0 [ji(x), [Ho, jJ.(O)” 0> ~/;14k fdmZ pl(mz)

The mass term is proportional to < Ol@QleP IO > which is related to

<O] 0> ~<0 q-l{Tt{’l:-,M}}q’

Qe 81, © AXJ

0>

(10. 4)

(10.5)

(10. 6)

and is finite if we use PCAC and saturate the intermediate states with a pion, 1

Unfortunately, the interaction term is less amenable to analysis; again, how-

ever, it is unlikely that it identically cancels off the quartic divergence from the

first term, and we conclude

2 4
qu 4" ooy(d) =

If we demand that Eq. (10.7), like Eq. (10.5), diverge quartically, we find

that (within logarithmic powers)
1 2

O‘tot(qz) ~ :1'2- g —ex

- 34 -
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which is the perturbation theory result. The idea that the total hadron yield
{rom colliding beams of given energy should be approximately the same as,
say, the u+ - yield is folklore,'33 we can consider this calculation as

34
support (but certainly not a proof) of this point of view,
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FIGURE CAPTIONS

1. Second-order weak-interaction S-matrix element.
2. Radiative amplitude for n - B decay.

3. Decomposition of the amplitude of Figure 2.
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FIG-1. SECOND-ORDER WEAK-INTERACTION S-MATRIX ELEMENT.
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