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Abstract
In the field of personalized learning path planning for higher education, traditional methods lack in-depth analysis of 
students’ dynamically changing learning status and interests, resulting in insufficient personalization, and focus on the 
analysis of a single data type, making it difficult to integrate data of different modalities. This paper proposes a multimodal 
learning analysis method for personalized learning path planning in higher education, addressing the limitations of tra-
ditional methods that do not account for dynamic changes in students’ learning behaviors and interests. The approach 
integrates Transformer models, adversarial training, and quantum state classification to analyze multimodal data, includ-
ing text, audio, and video, to capture learning patterns. The Transformer model uses a self-attention mechanism to gener-
ate personalized learning paths based on integrated data. Adversarial training is applied to simulate abnormal data and 
enhance the model’s robustness to various learning scenarios. Quantum state classification improves data processing 
efficiency, addressing challenges in handling high-dimensional multimodal data. Experimental results show that the 
Transformer model achieves stable accuracy of 0.95 and recall of 0.91 for personalized learning path generation. The 
adversarial training method reduces the loss value to around 0.05, while the introduction of quantum state classification 
reduces processing time to 56 s in the 18th round, a 31-s improvement. These results confirm the effectiveness of the 
proposed method in enhancing the accuracy, robustness, and computational efficiency of personalized learning path 
generation in higher education.

Keywords  Learning path planning · Deep generative model · Transformer model · Adversarial training · Quantum state 
classification

1  Introduction

The development of artificial intelligence and machine learning technology has made personalized learning path 
planning more and more widely used in higher education. Analyzing multimodal data such as text, audio and video 
can better understand students’ learning behavior [1, 2]. Using deep generative models, it can more accurately extract 
valuable features from large-scale data [3, 4], providing students with a more personalized learning path [5, 6].
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The traditional personalized learning path planning system relies on static student data [7, 8], ignoring the dynamic 
changes in students’ learning process. This problem also causes these methods to be unable to accurately capture 
students’ interest changes, changes in learning status, and their potential needs during the learning process [9, 10], 
which to some extent limits the accuracy and adaptability of personalized recommendations [11]. Traditional meth-
ods generally rely on single-modal data analysis, most of which only use text data and lack the ability to integrate 
and process multimodal data such as text, audio, and video [12, 13]. This problem prevents the system from fully 
understanding students’ learning behaviors and diverse needs, affecting the effectiveness and personalization level 
of path planning [14, 15]. The above problems also lead to other problems. Traditional models face problems such 
as low computational efficiency and slow processing speed when processing high-dimensional and multi-type data 
[16, 17]. Especially when processing large amounts of student data and multimodal data, traditional methods cannot 
generate efficient learning path recommendations in real time [18], lack adaptability to abnormal data, and are prone 
to bias and misjudgment [19, 20]. Traditional methods have solved the needs of personalized learning path planning 
to a certain extent, but they still have some limitations. New technologies and methods need to be introduced to 
improve the intelligence level of the recommendation system and enhance its dynamic adaptability, data processing 
capabilities, and multimodal data integration capabilities. This is also the main background reason for this paper to 
propose a multimodal learning analysis method based on deep generative models and quantum machine learning.

The research contributions of this article include:

(1)	 This paper explores a personalized learning path planning approach that combines deep generative models with 
quantum machine learning techniques, hoping to address the limitations of existing methods in the field of higher 
education. By integrating the Transformer model, adversarial training, and quantum state classification technology, 
it breaks through the bottleneck of traditional methods and improves the accuracy and real-time performance of 
personalized learning path planning.

(2)	 In this process, the paper used the self-attention mechanism in the Transformer model to conduct in-depth analysis 
of students’ multimodal data, accurately obtain students’ learning status, interest changes, and behavior patterns, 
and generate personalized learning paths. In response to the challenge of abnormal data, adversarial training is 
introduced to generate adversarial samples to enhance the adaptability of the system. The quantum state clas-
sification method in quantum machine learning is combined to address the computational challenges of high-
dimensional features in multimodal data processing, and quantum computing is used to accelerate data processing. 
Traditional methods have poor adaptability, delayed updates, and difficulty in real-time adjustment of recommended 
paths in response to students’ dynamic learning status and interest changes.

(3)	 The method proposed in this paper can capture subtle changes in student behavior through the Transformer model 
self-attention mechanism and quantum state classification technology, generate efficient and personalized learning 
paths in real time, and significantly improve dynamic response capabilities and recommendation accuracy. These 
innovative steps are used to improve the accuracy of personalized learning path planning, generate the best learn-
ing path in real time in the dynamic environment of students’ learning needs and behavior changes, realize efficient 
and intelligent personalized education recommendation, and promote the development of higher education to 
the intelligent and personalized direction.

The structure of this paper is organized as follows:
Section 1 serves as the Introduction, which delineates the background, significance, and limitations of current 

methodologies in personalized learning path planning. It also introduces the proposed multimodal learning analysis 
method grounded in deep generative models and quantum machine learning.

Section 2 presents the Related Work, offering a comprehensive review of existing recommendation algorithms, 
deep learning frameworks, and the application of Transformer models, adversarial training techniques, and quantum 
state classification within the context of personalized learning.

Section 3 elaborates on the Proposed Methodology. This section encompasses an overview of personalized learning 
path planning processes, integration and feature extraction from multimodal data sources, generation of personalized 
paths utilizing Transformer models, adaptive optimization through adversarial training strategies, and efficient data 
processing via quantum state classification.

Section 4 assesses the effectiveness of the proposed methodology by examining various aspects such as the quality 
of generated personalized learning paths, implications arising from adversarial training practices, and efficiency metrics 
associated with data processing using quantum state classification.
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Finally, Sect. 5 concludes this paper by summarizing its contributions while emphasizing avenues for future research 
aimed at addressing identified limitations and further enhancing personalized learning systems.

2 � Related work

In the field of personalized learning path planning, recommendation algorithms based on collaborative filtering are 
widely used in the field of education, which can infer personalized paths based on students’ historical learning behaviors 
and similar user data [21, 22]. This type of algorithm has certain advantages in improving recommendation efficiency, 
but it relies on students’ static historical data, ignores the dynamic changes in learning interests and behaviors, and 
makes the recommendations inaccurate. For instance, collaborative filtering may struggle to adapt to sudden changes 
in a student’s learning preferences, resulting in suboptimal learning paths [23]. In order to further improve the applica-
bility of path recommendations, some researchers have introduced deep learning models such as convolutional neural 
networks and long short-term memory networks into this field [24, 25]. This type of deep learning model has achieved 
good results in static learning state analysis due to its powerful feature extraction capabilities [26], but it is still difficult to 
cope with students’ dynamically changing learning needs. For example, CNNs can effectively process text data to identify 
key learning concepts, while LSTMs can capture temporal dependencies in students’ learning behaviors. However, these 
models still face challenges in handling dynamic and multimodal data, limiting their ability to provide comprehensive 
and adaptive learning paths [27]. The integration of multimodal data, including text, audio, and video, has been identified 
as a critical factor in improving the accuracy and personalization of learning path recommendations [14]. Several studies 
have explored the use of multimodal data to capture students’ learning behaviors more comprehensively. For instance, 
some researchers have used text data to analyze students’ written assignments and audio data to assess classroom inter-
actions [28]. However, most existing methods focus on single-modal data analysis and lack the ability to integrate and 
process multimodal data effectively [11]. This limitation prevents the system from fully understanding students’ learning 
behaviors and diverse needs, affecting the effectiveness and personalization level of path planning.

Some studies have shown that the attention mechanism of the Transformer model can realize the integrated analysis 
of multimodal data in personalized recommendation, and better improve the ability to respond to students’ dynamic 
learning status [29, 30]. Transformer’s self-attention mechanism allows the model to identify important feature informa-
tion from large-scale multimodal data, so it shows good applicability when processing multimodal data such as text, 
audio and video [31, 32]. Adversarial training, as an important means in deep learning, uses the generation of adversarial 
samples to enhance the model’s adaptability to abnormal data and different learning scenarios, and improve the model’s 
robustness in dealing with complex data environments [33, 34]. Quantum state classification is gradually being applied 
to multimodal data processing due to its ability to efficiently process high-dimensional data [35, 36]. The rapid classifi-
cation of quantum states can effectively solve the problem of speed limitations of traditional deep learning models in 
multimodal high-dimensional data processing. When these methods are applied alone, they cannot fully improve the 
accuracy and real-time performance of personalized learning paths.

However, despite these advancements, several literature gaps remain:

1.	 Integration of Multimodal Data: While there is a growing body of research on using multimodal data for personal-
ized learning, few studies have effectively integrated these data types to capture the dynamic learning behaviors 
and interests of students. Most existing methods focus on single-modal data analysis, limiting the comprehensive 
understanding of students’ learning needs and behaviors.

2.	 Dynamic Adaptation: Traditional methods often rely on static student data and fail to account for the dynamic 
changes in students’ learning processes. This limitation results in inaccurate and less adaptive personalized learning 
paths, which do not fully address the evolving interests and learning states of students.

3.	 Robustness and Generalization: Existing models face challenges in handling high-dimensional and multi-type data, 
leading to low computational efficiency and slow processing speeds. Additionally, these models lack robustness in 
dealing with abnormal data and different learning scenarios, resulting in biased or incorrect recommendations.

4.	 Quantum Machine Learning: Although quantum machine learning has shown potential in handling high-dimensional 
data, its application in personalized learning path planning is still in its infancy. The integration of quantum state 
classification with deep generative models and adversarial training has not been thoroughly explored, leaving sig-
nificant room for improvement in computational efficiency and real-time performance.
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5.	 Interpretability and Transparency: Many advanced models, such as the Transformer, are often considered "black 
boxes" due to their complex structures. This lack of interpretability makes it difficult to understand the decision-
making processes of these models, which is crucial for their application in educational settings where transparency 
and trust are essential.

6.	 Fairness and Bias: With the increasing use of data-driven personalized recommendation systems, concerns about 
fairness, transparency, and bias have emerged. Existing models may exacerbate achievement gaps between students, 
particularly when recommendations rely heavily on historical learning data, potentially leading to biased or unfair 
outcomes.

Addressing these gaps requires further research and development to enhance the integration of multimodal data, 
improve dynamic adaptation, increase robustness and generalization, explore the potential of quantum machine learn-
ing, and ensure interpretability, fairness, and transparency in personalized learning path planning systems.

3 � Method

Figure 1 is the overall process of personalized learning path planning, which collects students’ multimodal data in order 
to fully understand their learning behaviors and interest characteristics, and provides input for subsequent analysis based 
on these data. Transformer-based personalized path generation, inputs multimodal features into the Transformer model, 
uses its self-attention mechanism to analyze students’ dynamic learning status, and generates personalized learning 
paths. The Transformer model can effectively capture important features in multimodal data and achieve more accu-
rate and personalized recommendations. Adversarial training improves the model’s adaptability to abnormal learning 
behaviors and data noise. The introduction of adversarial training to generate adversarial samples simulates possible 
abnormal scenarios, improves the reliability and adaptability of personalized path planning, and quantum state classifica-
tion improves computational efficiency. After generating the personalized path, quantum state classification is used to 
efficiently classify the path data. Quantum state classification can quickly process high-dimensional data and effectively 
improve the processing efficiency of the model in multimodal data.

Data Collection

Data Preprocessing

Multimodal Data Integration

Feature Extraction & Selection

Personalized Path Generation

Robust Model Deployment

Quantum State Classification

Effcient Data Processing

Path Planning Optimization

Real-Time Path Recommendation

Preprocessing

Model Training & Optimization

Quantum Integration

Final Output

Transformer Model Training

Adversarial Training for Robustness

Fig. 1   Personalized learning path planning process



Vol.:(0123456789)

Discover Artificial Intelligence            (2025) 5:29  | https://doi.org/10.1007/s44163-025-00252-6 
	 Research

3.1 � Multimodal data integration and feature extraction

3.1.1 � Preprocessing and feature encoding of multimodal data

This study collects data from the Learning Through’ learning management system, including student text, audio, video 
data, which can be used to analyze subsequent students’ learning behavior and generate personalized learning paths. 
Text data contains 50,000 student learning records, including after-class notes and answer feedback, accounting for 50% 
of the overall data; the audio data covers 10,000 recordings, mainly for classroom interaction and Q & A records, account-
ing for 30% of the overall data; the video data includes 2,000 classroom teaching segments and student self-study process 
recording, accounting for 20%". In the third paragraph of 3.1.2, in order to ensure the efficient integration of different 
modal features, a multi-modal alignment mechanism based on the unified embedded space is studied and designed. 
These heterogeneous features are mapped to a shared embedded space through linear transformation to ensure that 
the features of different modes have the same dimension and semantic distribution. In the embedded space, the self-
attention mechanism is further used to excavate the interaction relationship between the modes. The self-attention 
mechanism according to the importance of modal features dynamically adjusts the weight, emphasizes the capture of 
specific modal information, and weakens the interference of irrelevant features. This mechanism can realize the depth 
fusion of modal features to generate high-quality joint representations to meet the needs of multimodal data joint analy-
sis and personalized learning path recommendation. Multi-modal data integration and feature extraction of students’ text, 
audio and video data are conducted to obtain the multi-dimensional behavior characteristics and interest characteristics 
of students in the learning process. The three types of modal data are preprocessed, the text data is transformed into 
embedded vector representation, the audio data is used for feature extraction, the video data obtains visual features 
through image frame processing [37]. In the text data is processed, the original text is transformed into dense vector by 
word embedding method, and the BERT (Bidirectional Encoder Representations from Transformers) model is used to 
facilitate the subsequent modal integration. Audio data uses short-time Fourier transform (STFT) [38, 39] to obtain the 
frequency and time domain features of the audio signal, and then MFCC (Mel Frequency Cepstral Coefficients) is used 
to extract its low-order features to obtain the voice information and rhythm features of the audio data. The video data 
processing steps include segmenting and extracting video frames, and using the convolutional neural network ResNet 
(Residual Network) [40, 41] to extract visual feature vectors for each frame, focusing on extracting data such as students’ 
facial expressions and gestures during the learning process to supplement emotion and attention-related information.

After obtaining the preliminary features of different modal data, the features of each modality are further encoded 
based on the autoencoder; the conditional autoencoder is used to map the multimodal data to a unified feature space 
to eliminate the distribution differences between the modalities. The feature vectors of text, audio, and video are �t , �a , 
and �v respectively. The encoder E of the conditional autoencoder is used to encode the features of each modality into 
a unified potential representation � , that is:

ct , ca , and cv are modal feature conditional labels, which are used to ensure that modality-specific semantic informa-
tion is retained during the encoding process. After normalization in a unified feature space, the imbalance of feature 
weights caused by scale differences between modalities is avoided, laying the foundation for subsequent personalized 
path recommendations.

3.1.2 � Feature fusion

The representation effect of multimodal features needs to be further improved. The study uses the variational autoen-
coder (VAE) in the deep generative model [42, 43] to achieve feature fusion and feature reconstruction. For the normal-
ized multimodal data, it is input into the VAE encoder, and the mean � and standard deviation � of the latent variables 
are encoded to generate the latent feature distribution. The formula is as follows:

By using this probabilistic feature representation, VAE can effectively suppress noise while retaining feature informa-
tion, improving the robustness and fusion of features in multimodal space.

(1)� = E
(
�t|ct

)
= E

(
�a|ca

)
= E

(
�v|cv

)

(2)� ∼ N
(
�, �2

)
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During the fusion process, VAE not only maintains the feature information of each modality, but also introduces the 
correlation between modalities, and uses distribution learning in the shared latent space to achieve information comple-
mentarity between modalities. Information from different modalities is processed uniformly through the distribution of a 
shared latent space, avoiding the one-sidedness of single modality information. Text features can be combined with visual 
information from videos, and emotional information from audio can be supplemented with learning behavior data, pro-
viding a more comprehensive representation of students’ learning status and interest changes. To ensure efficient fusion 
of different modal features, we designed a multimodal feature alignment mechanism based on a unified embedding 
space. These heterogeneous features are mapped to a shared embedded space through linear transformation to ensure 
that the features of different modes have the same dimension and semantic distribution. In the embedded space, the 
self-attention mechanism is further used to excavate the interactive relationship between the modes. The self-attention 
mechanism according to the importance of modal features dynamically adjusts the weight, emphasizes the capture of 
specific modal information, and weakens the interference of irrelevant features. This mechanism can realize the depth 
fusion of modal features, so as to generate high-quality joint representations to meet the needs of multimodal data joint 
analysis and personalized learning path recommendation. In the feature reconstruction stage, the latent variables are 
input into the VAE decoder to regenerate the features of each modality. The reconstructed features are represented as 
�̂ , and the high-fidelity reconstruction of the features is achieved by maximizing the data likelihood p

(
�̂|�

)
.

The loss function of VAE consists of two parts: reconstruction error and KL divergence (Kullback–Leibler Divergence):

Eq(�|�) is the reconstruction error and DKL is the KL divergence, which are used to control the smoothness of the distri-
bution of latent variables.

Figure 2 shows the whole process of multimodal data integration. It includes preprocessing, feature extraction, embed-
ding generation, feature standardization and multimodal fusion of text, audio and video data. After word segmentation 
and cleaning, the text data is passed through the BERT encoder to extract semantic features; after the audio data is pro-
cessed by noise reduction and frame segmentation, the frequency and time domain features are extracted using STFT 
and MFCC; the video data is processed by ResNet to extract visual feature vectors.

3.2 � Personalized path generation based on transformer model

Based on the integration of multimodal data, the Transformer model is used to analyze students’ learning behavior data 
and generate personalized learning paths through the self-attention mechanism. The Transformer model can capture 
the dynamic changes of students’ learning interests and states, thereby generating real-time adaptive path recommen-
dations and improving personalization.

3.2.1 � Learning behavior analysis based on transformer model

After integrating multimodal data, this paper uses the Transformer model to conduct in-depth analysis of students’ 
learning behavior data and generate personalized learning paths. The integrated text, audio, and video features are 
transformed into embedding vectors of the same dimension through linear mapping, and each modal feature vector is 
represented as an item in the time series. These vectors are input into the encoder part of the Transformer model. The 
model uses the self-attention mechanism to model the students’ historical learning behavior data, and obtains the stu-
dents’ interest changes, learning status, and behavior patterns during the learning process. In each self-attention layer, 
for the input feature sequence � =

[
�1, �2, ..., �n

]
 , the model is used to calculate the attention weight between each pair 

of features:

(3)LVAE = Eq(�|�)
[
logp(�|�)

]
− DKL[q(�|�)| |p(�)]

(4)� = softmax

�
��T

√
gk

�
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� and � are the query vector and key vector generated by the input feature vector, � is the attention matrix, 
√
gk  is 

the normalization factor, and gk is the feature dimension. This step calculates the importance of each feature vector in a 
given context and updates the output feature representation based on the weight.

The configuration of the Transformer model includes 6-layer encoder and 6-layer decoder, each layer adopts 8-head 
self-attention mechanism, the hidden layer dimension is set to 512, and the hidden layer dimension of the feedforward 
network is 2048, using the ReLU activation function. This structure was chosen based on the advantages of Transformer 
in handling long sequence dependencies and multiple coding decoding layers to effectively capture dynamic changes 
in students’ learning behavior. Super parameter selection reason mainly considering the computing resources and model 
balance, deep network layers and larger hidden layer dimension helps to improve the expression ability of the model, but 
may bring high computing overhead, 8 head since the attention mechanism can capture more characteristic interaction 
information, suitable for processing the complexity of multimodal data.

The key factors affecting the model performance include learning rate, batch size and training rounds. Too high learn-
ing rate may lead to gradient explosion, while too low will lead to slow convergence; batch size affects the stability of gra-
dient estimation; training rounds determines whether the model can effectively learn all modes. These hyperparameters 
were adjusted by cross-validation to ensure that the model achieves an optimal balance between accuracy and efficiency.

In this process, the Transformer model can automatically identify and focus on the most representative information in 
the student’s learning process, especially in the dynamic changes in learning interests, fluctuations in learning status, and 
changes in learning behavior patterns. These analyses help generate accurate personalized learning paths for students 
and respond to changes in student needs in real time. By using the self-attention mechanism, the model can effectively 
integrate the temporal characteristics of multimodal data. It not only relies on static learning history, but also can obtain 
the short-term fluctuations and long-term evolution trends of students’ interests.

In education, traditional Transformer models are usually regarded as a" black box " due to their self-attention mecha-
nism and multi-level structure, which makes it difficult to intuitively understand it in the decision-making process. To 
address this problem, this article explores ways to improve the interpretability of the model, drawing on the mathemati-
cally interpretable white-box Transformer model CRATE (Contextualized Recurrent Attention Transformer Encoder) pro-
posed by Ma Yi’s team. CRATE introduces a transparent decision-making mechanism based on the attention mechanism. 
While ensuring the performance of the Transformer, it can provide a clear mathematical basis to explain each decision-
making process. Using the visualized attention weights, researchers can trace how the model generates personalized 
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Text Embedding Generation

Audio Data
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Fig. 2   Multimodal data integration flow chart
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paths based on students’ learning history, interests, and status. CRATE also introduces the module of interpretability to 
clarify the decision basis of each layer, to help decision makers understand the reasoning process of the model, and to 
enhance the transparency of the model. This paper introduces a CRATE interpretability framework in the application of 
Transformer model. When selecting the recommended content, the model can clearly show which behavior or knowledge 
points influence the current recommended path, CRATE provides a traceable "interpretation module" in each decision 
node to help users understand how the model evaluates and processes the input data, and ensure the transparency and 
operability of the model. This interpretability framework provides higher trust and controllability for model application 
in the educational field.

3.2.2 � Optimization and adaptability of generating personalized learning paths

In the process of generating personalized learning paths, the Transformer model can make path recommendations based 
on students’ current learning status and use the self-attention mechanism to predict future learning needs, thereby 
improving the adaptability and personalization of the path to a certain extent. Based on the output feature representa-
tion of the model, � =

[
�1,�2, ...,�n

]
 is put into the multi-head self-attention mechanism for further processing to obtain 

useful information in different subspaces:

In the formula, headi is the attention output of the i th head, �O is the output weight matrix, and �out is the multi-head 
attention output. At this stage, the Transformer model can analyze the student’s learning status from multiple angles, 
allowing the model to comprehensively consider the student’s long-term interests, short-term needs, and learning pro-
gress, and generate a learning path that best meets the student’s personalized needs.

This paper also introduces position encoding and time perception mechanisms to improve the model’s adaptability 
to dynamic changes in learning behavior and better adapt to the time series characteristics of students’ learning process. 
Position encoding adds information related to its position in the time series to each input feature vector, enabling the 
model to understand the relationship between the time order in the data:

t  is the current time step, i is the feature dimension index, and d is the total dimension of the model. The introduction of 
position encoding allows the Transformer model to more accurately obtain the law of student behavior changes over time 
when processing students’ dynamic learning status, and provide time-sensitive dynamic analysis for personalized path 
recommendation. This mechanism takes into account long-term effects and sustainability to a certain extent, especially 
the generation of personalized learning paths and real-time adaptability to students’ dynamic learning status. In the 
long run, this continuous adaptability may have a positive impact on students’ long-term learning outcomes, especially 
in cultivating students’ autonomous learning and lifelong learning abilities.

Using the above method, the Transformer model can generate paths based on students’ current learning data, respond 
to changes that may occur in the learning process in real time, and provide flexible and personalized learning path rec-
ommendations. The key advantage of this process is that the model can comprehensively consider students’ historical 
data, current status and future trends, and provide real-time adaptive learning paths in a dynamically changing learning 
environment, greatly improving the accuracy and practicality of personalized learning paths.

Table 1 shows sample data of some students’ learning behaviors, including text, audio, and video features related to 
their behaviors. Each student’s behavior is tracked at multiple timestamps, and their corresponding feature values are 
provided. Taking the behavior of student 001 as an example, alternating between learning and resting, it has different 
feature values in different modes. This data is critical to understanding how students’ behaviors and learning preferences 
evolve over time, which can be used to leverage the Transformer model to recommend personalized learning paths based 
on their real-time activities and preferences.

Table 2 shows the key steps of self-attention calculation when the Transformer model processes student behavior 
data. Different feature pairs of each student are calculated through the query vector, key vector and value vector, and 

(5)�out = Concat
(
head1, head2, ..., headi

)
�O

(6)��(t, 2i) = sin
(

t

100002i∕d

)

(7)��(t, 2i + 1) = cos
(

t

100002i∕d

)
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the attention weight is further fused with the value vector to generate the output feature. In this way, the model can 
dynamically adjust the learning path based on the relationship between features. Each row in the table represents the 
calculation process of student behavior data at a specific time point, reflecting how the model integrates multimodal 
information and uses the self-attention mechanism to capture the correlation between different features, thereby gen-
erating personalized learning path recommendations.

3.3 � Adaptive optimization of adversarial training

This paper introduces adversarial training methods in the training process to improve the adaptability of the learning path 
planning system in the face of uncertain data and changes in student behavior, and uses the generation of adversarial 
samples to strengthen the model. The process of generating adversarial samples is based on the fast gradient symbol 
method to generate input data with slight perturbations to test the stability of the model in different learning scenarios. 
Given the label � corresponding to the real input data � , the gradient ∇�L of the loss function relative to the input value 
is calculated to generate perturbation data �adv:

� is a hyperparameter that controls the size of the perturbation, and sign represents the sign function of the gradient 
direction. The generated adversarial sample �adv contains a small amount of noise compared to the original data, simu-
lating possible abnormal data. The addition of this adversarial data makes the model robust to potential deviations in 
different learning scenarios during training.

The selection criteria are based on the amplitude of sample disturbance, the sensitivity of classification boundaries, 
and the impact on model performance. By controlling the perturbation size � to ensure that the generated confrontation 
samples still have labels consistent with the original sample. The paper selects the � ∈ [0.01, 0.1], strike a balance between 
disturbance and sample authenticity; preferentially select samples near the classification boundary for perturbation. 

(8)�adv = �+ ∈ ⋅sign
(
∇�L(�,�,�)

)

Table 1   Example table of 
some student behavior data 
and characteristics

Student ID Timestamp Text features Audio features Video features Behavior type 
(study or rest)

001 2024/11/1 8:00 [0.1, 0.5, 0.3] [0.4, 0.3, 0.2] [0.2, 0.6, 0.1] Study
001 2024/11/1 8:30 [0.2, 0.4, 0.5] [0.5, 0.4, 0.3] [0.3, 0.7, 0.4] Rest
001 2024/11/1 9:00 [0.1, 0.6, 0.4] [0.3, 0.2, 0.1] [0.2, 0.5, 0.3] Study
002 2024/11/1 8:00 [0.3, 0.6, 0.1] [0.6, 0.2, 0.1] [0.1, 0.4, 0.2] Study
002 2024/11/1 8:30 [0.2, 0.5, 0.4] [0.5, 0.4, 0.3] [0.3, 0.6, 0.2] Study
002 2024/11/1 9:00 [0.3, 0.7, 0.2] [0.6, 0.5, 0.4] [0.2, 0.6, 0.3] Study
003 2024/11/1 8:00 [0.4, 0.3, 0.2] [0.5, 0.3, 0.2] [0.3, 0.4, 0.1] Study
003 2024/11/1 8:30 [0.1, 0.5, 0.3] [0.4, 0.2, 0.1] [0.2, 0.5, 0.2] Rest
003 2024/11/1 9:00 [0.2, 0.6, 0.3] [0.5, 0.3, 0.2] [0.3, 0.4, 0.2] Rest

Table 2   Transformer self-
attention calculation example 
data

Student ID Query vector Key vector Value vector Attention weights Output features H
out

001 [0.1, 0.3, 0.1] [0.4, 0.3, 0.2] [0.2, 0.6, 0.1] [0.4, 0.2, 0.2] [0.3, 0.5, 0.4]
001 [0.1, 0.3, 0.5] [0.2, 0.7, 0.5] [0.4, 0.4, 0.1] [0.5, 0.4, 0.1] [0.4, 0.6, 0.5]
001 [0.2, 0.5, 0.4] [0.2, 0.6, 0.3] [0.1, 0.4, 0.2] [0.6, 0.4, 0.3] [0.4, 0.5, 0.3]
002 [0.1, 0.4, 0.2] [0.6, 0.5, 0.4] [0.2, 0.6, 0.3] [0.4, 0.4, 0.2] [0.4, 0.1, 0.4]
002 [0.1, 0.3, 0.2] [0.1, 0.5, 0.3] [0.5, 0.3, 0.2] [0.6, 0.4, 0.3] [0.5, 0.6, 0.4]
002 [0.2, 0.4, 0.3] [0.4, 0.2, 0.1] [0.2, 0.5, 0.2] [0.5, 0.3, 0.2] [0.3, 0.5, 0.4]
003 [0.1, 0.4, 0.2] [0.6, 0.4, 0.3] [0.4, 0.4, 0.2] [0.2, 0.6, 0.3] [0.3, 0.5, 0.3]
003 [0.1, 0.3, 0.2] [0.1, 0.5, 0.3] [0.5, 0.3, 0.2] [0.6, 0.4, 0.3] [0.5, 0.6, 0.4]
003 [0.2, 0.4, 0.3] [0.4, 0.2, 0.1] [0.2, 0.5, 0.2] [0.5, 0.3, 0.2] [0.3, 0.5, 0.3]
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Because these samples have the greatest impact on the model’s decision, we can evaluate the effectiveness of using test 
adversarial samples to mutate the model output, and retain those samples that can significantly weaken the model’s clas-
sification accuracy in the training process. This criterion ensures that the generated confrontation samples can effectively 
expose the vulnerable points of the model. At the same time, not too many uncontrollable factors will be introduced to 
affect the overall optimization of the model. The effectiveness of the sample is evaluated by comparing the performance 
of the model on the original test set and the test set, if the performance of the model on the test set is obviously reduced, 
it proves that the sample can expose the weaknesses of the model, it shows that the generation strategy of the sample 
is reasonable, and the training process is effective. The impact of confrontation training on model performance is mainly 
reflected in two aspects. On the one hand, it enhances the robustness of the model to noise and abnormal data, allowing 
the model to better adapt to multiple changes in the learning scenario; on the other hand, it may lead to the increase 
of training time because of the high complexity of generating confrontation samples and training time. Although the 
adversarial training may slightly reduce the adaptation speed of the model to simple samples, it significantly improves the 
performance of complex samples, which can optimize the stability and generalization ability of the overall performance.

In each training iteration, the model is optimized using real data and trained using adversarial samples. This measure 
enables the model to still output accurate prediction results when faced with such abnormal data, improves the gen-
eralization ability of the model, reduces the instability of path planning caused by abnormal data, and enhances the 
adaptability of the model in a variety of complex learning scenarios.

In order to further improve the effect of adversarial training, this paper adopts a mixed training strategy of adversarial 
samples and real samples, that is, adding a combination of real samples and adversarial samples in each training to 
optimize the performance of the model under normal and abnormal data. The adversarial sample set is represented as 
�a and the real sample set is �real . The total loss function can be expressed as:

� is a hyperparameter that controls weights and adjusts the model’s emphasis on real samples and adversarial samples. 
By adjusting the value of � , the model’s performance on different types of data can be balanced, allowing the model to 
maintain high accuracy in the case of regular learning data and show strong robustness in abnormal data environments.

Randomness is introduced in the adversarial sample generation stage to make the model more stable in more com-
plex scenarios. Each time an adversarial sample is generated, a small random perturbation is added within the range 
of � values to make the adversarial sample different each time it is trained, to avoid overfitting the model to a specific 
perturbation pattern, and to enhance the model’s adaptability to different abnormal data. This random perturbation 
strategy utilizes the characteristics of dispersed adversarial samples, allowing the model to adaptively adjust when fac-
ing diverse abnormal data, and is not easily restricted by a specific perturbation pattern, thus achieving more robust 
learning path planning to a certain extent.

The influence of adversarial training on model performance is mainly reflected in two aspects: on the one hand, it 
enhances the robustness of the model to noise and abnormal data, and enables the model to better adapt to multiple 
changes in learning scenarios; on the other hand, it may lead to the increase of training time due to the high complexity 
of generating adversarial samples and training time. Although the adversarial training may slightly reduce the adapta-
tion speed of the model to simple samples, it can significantly improve the performance of complex samples, which can 
optimize the stability and generalization ability of the overall performance.

In the above process, this paper introduces adversarial training to simulate abnormal data changes that may occur in 
the actual learning process, and gradually improves the robustness of the model. The model after adversarial training 
can still provide stable and accurate personalized path planning when the learning behavior data undergoes uncertain 
changes, providing a reliable guarantee for the personalized adaptation of the student learning process.

In solving the security problems caused by confrontation samples, multi-layer security protection mechanism is intro-
duced in the model design. Combined with the combination of generated confrontation network and confrontation 
training, the generated confrontation samples are trained together with normal samples, so that the model can not only 
perform well on conventional data, but also resist malicious attacks. The feature transformation adversarial detection 
algorithm can be used to monitor the abnormal behavior of input data in real time, alarm the model and update the 
model.

(9)Ltotal = � ⋅ L
(
�,�real ,�

)
+ (1 − �) ⋅ L

(
�,�a,�

)



Vol.:(0123456789)

Discover Artificial Intelligence            (2025) 5:29  | https://doi.org/10.1007/s44163-025-00252-6 
	 Research

3.4 � Efficient data processing of quantum state classification

In order to better deal with the high-dimensional problem in multimodal data processing, this paper adopts quantum 
state encoding and classification in quantum machine learning methods, and uses quantum states to efficiently rep-
resent and classify feature vectors. The feature vectors in the multimodal data set are mapped to quantum states, and 
the superposition and entanglement characteristics of quantum states are used to significantly compress the storage 
and computing requirements of high-dimensional data. For a given input feature vector � , it is encoded into quantum 
state ��⟩:

�i⟩ is the standard ground state, and ∥ � ∥ is the norm of the feature vector. Using this mapping, the original high-
dimensional features can be represented in the form of linear expansion in the quantum state, allowing subsequent 
calculations to be completed in the quantum state space, avoiding the overhead of performing item-by-item operations 
on high-dimensional data.

This paper uses quantum measurement operations to perform feature classification and clustering. After the quantum 
state ��⟩ is transformed by a series of quantum gates, the classification result of the quantum state is obtained through 
measurement. The target quantum state is ��⟩ . Using the similarity information in the measurement results, the inner 
product | ⟨���⟩�2 of ��⟩ and ��⟩ can be calculated, and the category of the data point can be determined in this way. The 
quantum measurement process is extremely efficient in multi-feature clustering and classification, reducing the com-
plexity caused by the increase in dimensions in traditional computing.

A path recommendation algorithm based on quantum classification is also designed and optimized to meet the 
real-time requirements of the personalized path planning system. The quantum classification algorithm improves the 
data classification speed through quantum coherence and interference phenomena, realizes rapid clustering of features 
in high-dimensional space, and shortens the calculation time. In quantum classification, the quantum support vector 
machine algorithm (QSVM) is used to perform quantum feature mapping on each input quantum state and embed it 
into the quantum Hilbert space. For a given quantum state pair 

����i⟩, ���j⟩
�
 , its kernel function can be expressed as:

This quantum kernel function directly calculates the similarity of two data points on the quantum state, achieving 
rapid data classification in high-dimensional space. The improvement of quantum state classification mainly comes 
from the characteristics of quantum computing, which uses the characteristics of quantum superposition and quantum 
entanglement to achieve data parallelization and feature mapping capabilities. This feature enables quantum state clas-
sification to perform feature clustering and classification more efficiently when processing complex multimodal data, 
especially when facing the curse of dimensionality and nonlinear patterns, showing obvious computational advantages.

During the training phase, QSVM determines the classification surface of various quantum states by maximizing the 
boundary distance of the quantum state, ensuring accurate classification under different personalized path require-
ments. In practical applications, this paper uses the results of quantum state classification to calculate personalized path 
recommendations in real time. After calculating the quantum inner product of each student’s characteristic state and 
the path characteristic state, the paths with higher similarity are recommended first, realizing efficient path planning 
based on quantum classification. The quantum classification process has high parallelism in feature classification. The use 
of quantum state encoding reduces storage space and makes the calculation process of path planning more efficient. 
Quantum state classification is used to achieve efficient processing of multimodal data, especially in high-dimensional 
feature space, which can achieve the effect of real-time classification and path planning.

Table 3 shows the encoding and mapping methods of multimodal data in quantum computing. Different quantum 
state encoding methods are used depending on the data type. Text data uses quantum state superposition encoding to 
map its features to quantum space, while audio data uses quantum state quantization and compression encoding, which 
is suitable for processing higher-dimensional data. The processing of video data requires more complex quantum image 
feature extraction and encoding methods, which can adapt to higher data dimensions. In terms of computational com-
plexity, the processing of text data is relatively simple, with a computational complexity of O(n) , while the computational 
complexity of audio and video data is O

(
n2
)
 and O(nlogn) respectively, and the data requires more computing resources.

(10)
����
�⟩ = 1

∥ � ∥

�n

i=1
xi
����
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Table 4 shows the key processing steps of quantum classification, each of which involves specific data types and 
quantum operation methods. The data mapping step maps the student’s behavioral feature vector to a quantum state 
vector, using quantum state superposition coding to improve data representation efficiency. The feature transforma-
tion operation processes the learning interest and state data through quantum gate transformation and coherence 
operation to obtain a new quantum state. These quantum states perform quantum inner product calculations through 
classification operations, evaluate the similarity between different data, determine the category to which the students 
belong, and calculate the similarity score; based on the students’ categories and path characteristics, the quantum path 
recommendation mechanism uses quantum measurement and classification to generate personalized learning path 
recommendations.

4 � Method effect evaluation

4.1 � Personalized learning path generation effect

After a series of processing, the feature data can reflect the students’ interest fluctuations and behavioral states during 
the learning process. It can also be used to analyze students’ learning behavior and generate personalized learning paths. 
The feature data is divided into training sets and test sets in a ratio of 8:2 for subsequent experiments.

Students’ learning interest data is calculated based on their participation and concentration in the learning content. 
The frequency with which students access certain learning resources or complete tasks within a specific time period 
reflects their interest in the content. The generation of learning paths is achieved through the Transformer model. The 
model uses input students’ learning behavior data to learn students’ interest patterns and adjusts position encoding 
based on these patterns. The model’s self-attention mechanism can obtain the dynamic changes of students’ interests 
during the learning process and recommend paths that adapt to the current learning status.

Figure 3 shows the changes in positional encoding and dynamic learning state. The horizontal axis is the time step 
of learning, reflecting the learning progress of students at different stages, and the vertical axis represents the relative 
level changes of students’ positional encoding and interest; the learning state increases in the early stage of learning, 
indicating that students’ interest in the learning content gradually deepens. As the time step increases, the learning state 
fluctuates, indicating that students experience a decline in interest or fatigue in the later stages of learning. The adjusted 
value of the position encoding reflects the ability of the Transformer model to adjust the learning path according to the 
learning state, and the changes in the position encoding value at different time steps show a certain regularity. As stu-
dents’ interests change, the adjustment of positional encoding values helps the model effectively obtain the relevance 
of learning content at different learning stages; these changes show that the Transformer model not only increases the 
recommendation of learning content when students’ interest is high, but also appropriately adjusts the learning path 
when their interest is low, helping students better cope with different learning states, thereby improving the personal-
ized adaptability of learning.

Accuracy and recall are the main indicators to evaluate the effect of personalized learning pathway generation. During 
the evaluation process, the Transformer-based recommendation model of this study was compared with the traditional 
collaborative filtering (CF) and long short-term memory (LSTM)-based recommendation models, using the same training 
set and evaluation framework to ensure the fairness of the comparison and the comparability of the results. Collabora-
tive filtering is a classic recommendation method, which is widely used in the traditional personalized recommendation 
field. It uses user behavior or item similarity to realize recommendation. As a benchmark model, it is simple and easy to 
implement, and can effectively reflect the improvement of complexity and accuracy. LSTM is widely used in behavior 
prediction and recommendation system, and it is also the model used to generate the most learning paths. Its memory 

Table 3   Quantum state 
encoding and mapping 
method

Data type Feature 
dimension

Quantum state mapping method Compu-
tational 
complexity

Text data 1076 Quantum state superposition encoding O(n)

Audio data 504 Quantum state quantization and compression encoding O
(
n2
)

Video data 2432 Quantum state image feature extraction and encoding O(nlogn)
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unit can learn long-term dependencies and help to capture the time evolution characteristics of students’ behavior. For 
each model, the paper calculates its recommendation accuracy and recall for different student groups. When calculat-
ing the accuracy, it takes the ratio of the number of learning paths successfully recommended by the model to the total 
number of recommendations. When calculating the recall, the paper takes the ratio of the number of correct paths 
recommended by the model to the actual number of paths required by students, to reflect the responsiveness of the 
model to changes in the interests of different students.

Figure 4 shows the changes in accuracy and recall of the Transformer model, traditional collaborative filtering and LSTM 
model in 20 iterations. The Transformer model in Figure a shows volatility in the early stage, but eventually stabilizes, 
with an accuracy rate of 0.95, which can gradually adapt to changes in students’ interests and status. The accuracy of the 
collaborative filtering model was relatively stable, remaining at 0.88 in the 17th round. The accuracy of the LSTM model 
also showed a gradual increase, and finally stabilized at 0.93, showing that its accuracy in obtaining students’ learning 
behaviors has gradually improved, but it is lower than the Transformer model. Figure b shows the performance of the 
three models in terms of recall rate. The recall rate of the Transformer gradually increased from 0.78 to stabilize at 0.91, 
reflecting good recommendation diversity and adaptability. The recall rate of the collaborative filtering model fluctuates 
slightly and finally stabilizes at 0.85, indicating that its effect on diversity recommendation is relatively limited. The recall 
rate of the LSTM model is also stable at 0.91, which also shows its advantages in obtaining student needs, but its overall 
performance is not as good as the Transformer model in this paper.

Fig. 3   Positional encoding 
and dynamic learning state

Fig. 4   Comparison of accuracy and recall of different recommendation models
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4.2 � Effect of adversarial training

The effectiveness of adversarial training is evaluated by comparing the loss functions of conventional training and adver-
sarial training. In conventional training, only real student behavior data is used; in adversarial training, in addition to real 
data, adversarial samples generated by adversarial methods are also added to the training data.

Figure 5 shows the optimization process of the loss function under different weight parameters � , which helps analyze 
the adaptability improvement effect of the model under diversified data conditions. The horizontal axis represents the 
weight parameter � , ranging from 0 to 1, which is used to balance the relative weights of the original loss and the adver-
sarial loss; the vertical axis represents the loss value, which includes the original loss, adversarial loss, and the weighted 
total loss of the two. The original loss decreases as � increases, the adversarial loss increases as � increases, and the total 
loss is a weighted combination of the two. The trend of the total loss shows that the appropriate selection of � value can 
balance the performance of the model on normal data and adversarial samples. Comparing the total loss values under 
different � s and finding the optimal parameters for improving the model’s adaptability in complex data environments 
helps ensure the stability of the model in various learning scenarios.

Figure 6 has two sub-graphs, a and b, which are the comparison of loss functions and test set accuracy of conventional 
training and adversarial training, respectively. The horizontal axis is 100 iterations. The loss value of conventional training 
is lower in the early stage, decreases slowly, and the optimization speed is limited; the loss value of adversarial training 
decreases more rapidly and lasts longer, and the loss value in the later stage of iteration is significantly lower than that 
of conventional training, fluctuating around 0.05, indicating that adversarial training is more adaptable to abnormal 
data. In the test set accuracy graph, the accuracy of conventional training is higher than that of adversarial training at 
the beginning, but gradually stagnates at a low level in the later stage. The accuracy of adversarial training continues 
to improve, and in the later stage it is significantly higher than that of conventional training, fluctuating around 0.95, 
showing its adaptability to complex scenarios. Adversarial training is superior to conventional training in adaptability 
and robustness, which helps to improve the stability and accuracy of the system in complex environments.

Fig. 5   Schematic diagram of 
loss function optimization
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4.3 � Data processing efficiency of quantum state classification

When evaluating data processing efficiency, this paper uses processing time as the main indicator and compares 
the computing time before and after the introduction of quantum state classification in the Transformer model. The 
training and prediction time of the Transformer model in multimodal data processing before the introduction of 
quantum state classification was measured, and then the training and prediction time combined with the quantum 
state classification method was calculated. The same training set was processed, the time difference between the 
two was compared, and the acceleration effect of quantum state classification in data processing was evaluated.

Figure 7 shows the comparison of processing time between the traditional Transformer model and the one after 
the introduction of quantum state classification. In Figure a, the processing time of the Transformer model before 
the introduction of quantum state classification gradually decreases with the number of iterations, but the change 
is small, and the overall processing time is long, reaching 87 s in the 18th iteration. In Figure b, the model after the 
introduction of quantum state classification shows significant time optimization, and the processing time drops 
rapidly in the early stage, and finally drops to 56 s in the 18th iteration. Quantum computing accelerates data pro-
cessing, especially in later iterations. Quantum state classification effectively improves the computational efficiency 
of the Transformer model, especially in large-scale data processing.

5 � Conclusions

This paper introduces a personalized learning path recommendation method based on the Transformer model and 
quantum state classification, combined with adversarial training to optimize robustness, and solves the limitations 
of traditional methods in dynamic learning scenarios. The Transformer model extracts key features from multimodal 
data through the self-attention mechanism, and integrates information from different modalities through model 
integration and fusion strategies to improve the learning effect of the model. The interactive mechanism enables the 
model to handle the complex relationships between different data sources, optimize feature combinations, and more 
accurately capture the dynamic learning state of students. By generating samples to simulate potential abnormal 
situations, the robustness and stability of the model are improved, the system is guaranteed to operate effectively 
under data uncertainty, and the quantum state classification method is introduced into quantum computing. Quan-
tum feature processing can greatly accelerate the data processing process, and cluster and classify high-dimensional 

Fig. 6   Comparison of adversarial training and conventional training
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data, further improving the computational efficiency and real-time performance of the personalized recommendation 
system. Experimental results show that the Transformer-based recommendation model outperforms traditional col-
laborative filtering and long short-term memory network models in terms of accuracy and recall. In terms of adapt-
ability, adversarial training is used to simulate possible abnormal data, which enhances the model’s adaptability to 
different learning scenarios and makes the recommendation model more stable and reliable when facing uncertain 
data. In terms of computational efficiency, the introduction of quantum state classification methods has significantly 
improved the data processing efficiency of the Transformer model, especially in the later iterations, the processing 
time is significantly reduced, meeting the real-time requirements. This study introduces Transformer model and 
quantum state classification method, which realizes the efficient generation and recommendation of personalized 
learning path under multimodal data, and improves the accuracy and processing efficiency of the system. Studies that 
still have some limitations. Quantum state classification introduces significant computational overhead and requires 
complex quantum circuit design, which is challenging given current hardware limitations. Integrating multimodal 
data is difficult due to heterogeneity and alignment issues, and scaling this integration is resource-intensive. The 
Transformer model’s complexity and lack of interpretability make training challenging and limit transparency. Data 
privacy and security are also concerns, with sensitive student data needing robust protection and compliance with 
regulations like GDPR. Future research can expand the size of the dataset, improve the fairness and transparency 
of the model in more practical scenarios, and explore the improvement of quantum computing hardware and its 
potential for large-scale deployment in educational scenarios, so as to promote further development and innovation 
of personalized learning systems.
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