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Abstract

In this thesis, collapsing models in different modified gravity theories are

investigated. We’ve looked into the phenomenon of collapse in f(R) and

f(R, T ) theory in particular. The gravitational collapse of spherically sym-

metric metric and Friedmann-Robertson-Walker (FRW) metric is the focus

of our research. We examined the collapsing models of charge anisotropic

fluid in f(R) gravity and dust collapse, charge perfect fluid collapse and

higher dimensional collapse in f(R, T ) gravity. The matching criteria are

used for smooth matching of inner and outer regions. The Ricci scalar and

the trace of the energy momentum tensor are assumed to be constant and

linear equation of state are used for solving the field equations. For Col-

lapsing system, we computed the gravitational mass. For various scenarios,

we also examined the apparent horizons and their time creation.

First, we examined at collapsing model of in f(R) gravity. As a result

of this collapse, two physical horizons, called black hole and cosmological

horizons, are detected. After the birth of both horizons, a singularity is

generated. The electromagnetic field lowers the limit of the f(R) term by

lowering the pressure, causing the entire collapse process to accelerate. The

electromagnetic field influences the time gap between the singularities and

cosmological horizon. The impact of the cosmological constant and the

f(R) term is the same. Second, we examined at collapsing models of in

f(R, T ) gravity. As a result of this collapse, The cosmological constant in

general relativity and the f(R,T) term have the same impact. In f(R, T )

gravity, the extra term T slows the collapse rate more than in f(R) gravity.
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The electromagnetic field lowers the limit of the f(R, T ) term by lower-

ing the pressure, causing the entire collapse process to accelerate. The

electromagnetic field influences the time gap between the singularities and

cosmological horizon. Two physical horizons, called black hole and cosmo-

logical horizons, are detected. After the birth of both horizons, a singularity

is generated.
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Introduction

Einstein’s golden year was 1905, when he produced three articles, each of

which was nominated for a Nobel Prize. One of the papers dealt with spe-

cial relativity theory. This theory is applied in a special case when there

is no gravity. During next ten years, he kept working on this theory and

then presented a beautiful theory known as GR. The gravitational force is

expressed in the form of metric curvature in this theory. This theory is

based on the equations of the field, which relate the matter and geometry

of spacetime. The earliest accurate solutions of these equations were the

Schwarzschild metric depicting the outer of a spherically symmetric metric

and the Friedmann cosmological models. There is a spacetime singularity

in each of these solutions at a place where the standard representation of

the spacetime cannot be anticipated [1]. Since then, under specific assump-

tions that permit spacetime singularity, a significant number of accurate

solutions have been obtained.

Gravitational collapse of huge objects causes spacetime singularities in our

universe. This is especially true for huge objects measuring between 106M�−
108M� [2], where M� is the basic measure of solar mass. Gravitational col-

lapse describes the process by which enormous things fall under the effect

of gravity. Since the development of the singularity theorem [3]- [5] and

the CCC suggested by Penrose [6], it has remained a fundamental subject

in general relativity. The presence of naked singularity is ruled out by the

cosmic censorship hypothesis. The singularity theorem predicts that if a

trapped surface emerges during the collapse of a compact object, the re-

sult will be a spacetime singularity. These theorems don’t tell us whether

or not a spacetime singularity is visible. This means that no information

about how the energy density and spacetime curvature diverge there can

be obtained.
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The following are some of the reasons why examining the accuracy of the

CCC in GR is worthwhile. If naked singularities really exist in GR, they

signal a breakdown in predictability since the development of spacetime be-

yond a naked singularity is impossible to predict. Such singularities would

then indicate to a revision of GR that would restore a proper kind of pre-

dictability in the MTG. Furthermore, if GR permits naked singularities,

they may be observed in nature. Given the lack of a theorem proving or

disproving CCC, it would be fascinating to analyze a model case of gravi-

tational collapse to see if the collapse results in a observable singularity or

a BH.

As a result, the most of gravitational collapse research has focused on spher-

ically symmetric systems [1]. This is owing to the fact that these systems

are straightforward and have clear physical implications. The benefit of

such symmetry is that it may be solved analytically to provide precise re-

sults. Depending on the initial data, there are both naked singularity and

BH solutions in these examples.

Oppenheimer and Snyder [7] are the initiators in studying a model of grav-

itational collapse. They considered the Friedmann model in inner and the

static Schwarzschild in outer regions of the star. They found that the end

state of a symmetric spherically inhomogeneous dust collapsing model is

a BH. They did not observe local or global naked singularity. This work

opened a new gate to the other researchers. The spherically symmetric inho-

mogeneous dust collapse described by the Tolamn-Bondi metric [8]- [9] has

been investigated by several authors [10]- [18]. Markovic and Shapiro [19]

also considered the model of [7] and carried out their research in the presence

of positive CC. Later on, Lake [20] extended the work of [19] by adding both

negative and positive CC to the EFEs. A perfect fluid collapse with positive

CC has been analyzed by Sharif and Ahmad [21]. Rocha et al. [22] analyzed

the collapse of self similar perfect fluid model. Spherical anisotropic col-

lapse and expansion solutions of EFEs have been investigated by Glass [23].

Gravitational collapse of shear free and perfect fluid model with heat flux

has been examined by Herrera et al. [24] with the conformal flatness condi-

tion. The collapse of spherical radiating model with vanishing Weyl stresses

has been examined by Maharaj et al. [25].

Many modifications to Einstein’s GR have been proposed in the past. f (G),
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f (R), f (R,T) and f (R,G) are some MTG which have been presented in the

near past. To examine the gravitational collapse in MTG, a great number

of researchers have shown their interest. Among the MTG, f (R) theory is

one of the most well-known theory of gravity in which Ricci scalar has a

generic function called Lagrangian. This theory was first proposed by Hans

Adolph Buchdah [26] in 1970. This theory acquired by fixing Ricci scalar

with its generic function. In such a developing universe, the f (R) gravity

describes the change from deceleration to acceleration rather naturally. Due

to its simplicity in the modification, this theory has a dominant popularity.

Different people have contributed a significant amount of work to this the-

ory [27]- [36]. Pun et al. [37] analyzed the presence of a Schwarzschild-like

BH solution in f (R) gravity. Capozziello et al [38] explored the grouping of

galaxies using f (R) gravity. The f (R) theory [39] provides the stability and

existence of neutron stars. In f (R) gravity, Addazi and Capozziello [40] ex-

plored the destiny of Schwarzschild de-sitter BH. Farasat et al. [41] explored

dust collapse in the f (R) gravity, and Ahmad and Shoaib [42] generalized

their findings. Sharif and Kausar [43] analyzed the collapse of a spheri-

cally symmetric isotropic fluid using f (R) theory, while Abbas et al. [44]

generalized their findings. In f (R) gravity, Capozziello et al. [45] analyzed

cosmologial isotropic fluids.

Harko et al. [46] developed f (R,T) theory as a modification of f (R) theory

in 2011. Different people have contributed a significant amount of work

to this theory [47]- [56]. In palatini f (R,T) gravity, Barrientos and Ru-

bilar [57] looked at the singularities in the surface curvature of polytropic

spheres and found that they don’t occur when these polytropic spheres

form a constrained family of models. Using f (R,T) gravity, Adhav [58]

looked at the precise solution for Bianchi type I locally rotationally sym-

metric metric. In f (R,T)gravity, Sahoo et al. [59] examined the cosmology

background of power and exponential volumetric laws growth. Shabani and

Ziaie [60] examined the stability of the Einstein stationary universe under

f (R,T) gravity and discovered that f (R) unbalanced models are balance

under modified f (R,T) gravity. The spherically symmetric isotropic fluid

collapse under f (R,T) gravity was examined by Jamil and Sadia [61]. They

came to the conclusion that two physical horizons are generated and that

the phrase f (R,T) slows the mechanism of collapse.
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For the last few decades, researchers have been fascinated by the behavior

of electromagnetic fields under a powerful gravitational environment. The

influence of the electromagnetic field on the collapsing phenomena has been

recognized by several studies. When an electromagnetic field is introduced

into a collapsing situation, the Coulomb repulsive force balances the grav-

itational attraction force [62]. Numerous scholars in GR and MTG have

looked at the collapse of several fluid models with and without charge [63]-

[71]. Sahoo and Mishra [72] studied cylindrically symmetric cosmic strings

connected with Maxwell fields in biometric relativity. Sharif and Farooq [73]

investigated the spherical charge stellar model under f (R) gravity. Sharif

and Abbas [74]- [75] examined the isotropic charged fluid collapse in four

and five dimensions with a CC. Sharif and Yousaf [76] examined the collapse

of a isotropic charged fluid using f (R) theory. Nashed and Capozziello [77]

researched and tested the stability of spherically symmetric charged BH

solutions under f (R) gravity. Tripathy and Mishra [78] investigated the

anisotropic solutions in f (R) theory. A number of scholars [79]- [82] have

examined the collapse of anisotropic fluids without and with charge using

matching circumstances. The dynamical properties of an anisotropic cos-

mological model were investigated by Mishra et al. [83]. Ahmed et al. [84]

analyzed spherical collapse using an anisotropic fluid at high speed. Khan

et al. [85] explored last stage of anisotropic charged collapse.

Some modern theories like string theory recommend that gravity is not

just a four-dimension interaction but it interacts in higher dimensions. It

is therefore important to analyze the gravitational collapse and singularity

creation in higher dimensions. In GR, the uncovered higher dimensional

singularities are examined by Banerjee et al [86]. Khan et al. [87] inves-

tigated spherical and anisotropic collpase in five dimensions with a CC.

Feinstein [88] analyzed Gravitational collapse of a black string in a higher

dimensional vacuum. In f (R) gravity, Patil et al [89] analyzed geodesic

structure and naked singularities in higher dimensional dust collapse. Many

researchers looked into collapsing models of higher dimensional to see if the

four-dimensional results were replicated in higher dimensional models. The

difference between the two models has recently been discovered to be nil.

It’s also been noted that in certain circumstances, the outcomes are explic-

itly dependent on higher dimensions. In the existence of heat flux, Nyonyi
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et al. [90] investigated generalised higher dimensional collapse. Their results

are influenced by higher dimensions, and their n = 2 results are similar to

four dimensional results. They also developed a generalised heat transfer

equation for temperature and determined that the temperature profile is

directly proportional to the spacetime dimension. Non-adiabatic collapse

of higher dimension with heat flow was studied by Bhui et al [91]. They

came at a conclusion by comparing their findings to Santos four dimensional

findings [92], that their results are also directly dependent on the spacetime

dimension. Keeping in mind the importance to study gravitational collapse

MTG, we aim to study gravitational collapse in f (R) and f (R,T) theories of

gravity in different physical situation. This thesis is sorted in the following

order:

• Chapter one covers some key terminologies relevant to this thesis.

• Chapter two is related to the study of spherically symmetric charge

anisotropic gravitational collapse in metric f (R) gravity.

• Chapter three is related to the study of gravitational dust collapse in

f (R,T) gravity.

• Chapter four is concerned about the investigation of the gravitational

collapse in the presence of charge in f (R,T) gravity.

• Chapter five is concerned about the investigation of spherically sym-

metric higher dimensional gravitational collapse of isotropic fluid in

f (R,T) gravity.

• The last chapter six contains the summery of the work done.
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Chapter 1

Preliminaries

In this chapter, we present some essential and important terminologies to

comprehend this thesis.

1.1 Einstein Field Equations

A field equation, in general, explains how a fundamental force interacts

with matter. Poisson’s equation represents the field equation in Newton’s

gravity as

∇2ψ = 4πρG (1.1.1)

where the gravitational potential describes the gravitational field. Einstein

devised a series of equations in which gravity plays a crucial role in the

curvature of spacetime. This curvature is mostly caused by matter fields

that exist in spacetime. Through the well-known field equations, Einstein

described how geometry is associated to matter distribution given by

Gµν = Rµν −
Rgµν

2
= κTµν , (1.1.2)

here µ and ν are Greek indices while Gµν is Einstein tensor, R is Ricci

scalar, Rµν is Ricci tensor, Tµν is energy momentum tensor, gµν is metric

tensor and κ is the coupling constant.
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1.2 Energy Momentum Tensor

The energy momentum tensor is a rank two symmetric tensor generally

represented by Tµν , and it represents the flux and density of momentum

and energy in spacetime. In GR field equations, this tensor represents the

gravitational field, much as the mass density does in Newtonian gravity. Its

value is 0 in the vacuum case. It has the following form for an arbitrary

manifold

T µν = ρuµuν + %αβδµαδ
ν
β, (1.2.1)

here uµ, ρ and %αβ is four-velocity vector, matter density and stress density

defined as following.

%αβ =
dFα

dSβ
(α, β = 1, 2, 3), (1.2.2)

here the force acting on dSβ, the area element, is denoted by dFα. The

following are the meanings of Tµν components:

• The energy density of matter is represented by the T00 component,

which is represented by ρ.

• The flux energy and momentum is represented by the Tα0 component.

• The stress tensor representing pressure is represented by the Tαβ com-

ponent.

1.2.1 Isotropic Fluid

The isotropic fluid is defined in terms of density ρ and pressure p and has

no viscosity and heat conduction. The energy stress tensor with signature

(+,−,−,−) for isotropic fluid can be described as

Tµν = (ρ+ p)uµuν − pgµν . (1.2.3)
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For signature (−,+,+,+), it is represented as

Tµν = (ρ+ p)uµuν + pgµν . (1.2.4)

We have p = 0 in dust case and the energy stress tensor becomes

Tµν = ρuµuν . (1.2.5)

1.2.2 Anisotropic Fluid

Pressure changes in spatial directions for an anisotropic fluid. An anisotropic

fluid can be defined as the isotropic fluid’s simplest generalization, in which

pressure is controlled separately on each axis. The energy stress tensor with

signature (+,−,−,−) for an anisotropic fluid is defined as follows

Tµν = (ρ+ pt)VµVν − ptgµν + (pr − pt)XµXν , (1.2.6)

here pt and pr are pressures orthogonal to time-like vector V µ =
δµ0
g00

and

in the direction of time-like vector V µ, ρ denote the energy density and

Xµ =
δµ1
g11

is the unit space-like vector in the direction of radial vector and

XµXµ = −1, XµVµ = 0 and V µVµ = 1.

1.3 The Maxwell Equations

By expanding and unifying the laws of Ampere, Faraday and Gauss, a Scot-

tish scientist named James Clark Maxwell was able to combine magnetic

and electric forces, resulting in the Maxwell equations. Gauss law for mag-

netic field, Gauss law for electric field, Faraday law and Ampere law [93]

8



provide the differential form of these equations given below

∇.E =
ρ

ε0

, (1.3.1)

∇.B = 0, (1.3.2)

∇× E =
−∂B
∂t

, (1.3.3)

∇× B = υ0J +
1

c2

∂E
∂t
, (1.3.4)

here E is electric field, ρ is charge density, ε0 is permittivity, J is current

density, B is magnetic field, ∇ is del operator and υ0 is permeability, re-

spectively. Furthermore, by B = ψ0H, the magnetic field intensity H and

magnetic field B are connected. Eqs.(1.3.1-1.3.4) may be described in forms

of four-vectors with the use of tensor that retains Lorentz transformation

and can connect magnetic and electric fields. The field strength tensor,

often known as Maxwell field tensor Fµν is a two-rank covariant tensor

described in terms of four potential φµ as

Fµν = φν,µ − φµ,ν , (1.3.5)

which is anti-symmetric tensor. Maxwell equations are written as in tensor

notation

F µν
;ν = υ0J

µ, F[µν;ψ] = 0. (1.3.6)

The energy momentum tensor for electromagnetic fields is a tensor of rank

two described in forms of the Maxwell field tensor, that includes all of the

attributes of electromagnetic fields described by [94]

Eµν =
1

2κ
(gµνF

ψξFψξ − 4Fψ
µ Fνψ). (1.3.7)

9



1.4 Modified Theories of Gravity

In the past many MTG to the general theory of relativity have been pre-

sented. In these theories, modified gravity models have been formulated to

recognize the origin of dark energy as modification to the Einstein Hilbert

action. In contrast to most classic GR theories, this is a new form of DE

approach in which gravity is adjusted. Using this technique, we may be

able to uncover revelent cosmological models in which a late-time accelera-

tion can occur naturally. In the 1920s, shortly after Einstein’s theory was

published, the first effort to modify gravity was made. Following that, the

newly introduced GR changed according on the circumstances, responding

to the emergence of new incentives. However, there was very little ongoing

activity in this field for the next 80 years.

Several theoretical and observational elements have suggested that GR can

be modified on a vast scale or with a lot of energy in the last decade. The ef-

fective Lagrangian including higher order curvature invariants is implied by

both quantum field theories in curved metric and string theory’s low energy

limit. Furthermore, GR has only been evaluated at the size of solar system,

and when evaluated at larger scales or at high energies, it may reveal dif-

ferent flaws. Many scholars also believe that the solar system experiments

aren’t conclusive enough to claim that GR is the only viable explanation at

these sizes. Scalar-tensor theory, Gauss-Bonnet theory, f (R) theory, Brans-

Dicke theory, F (T) theory of gravity, and f (R,T) theory are all modified

theories of gravity that expand GR in some way. We will concentrate on

f (R) theory of gravity and f (R,T) theory of gravity in this thesis, as these

are the most simple and exciting theories.
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1.4.1 f (R) Theory of Gravity

At the solar system, galactic, and cosmological scales, f (R) gravity has

recently produced some intriguing results [95]- [96]. It is one of the easiest

modifications to GR, where f (R)is an arbitrary Ricci scalar function,

S =
1

2κ

∫
d4xf(R)

√
−g. (1.4.1)

The basic concept is that if the function f (R) modifies the behavior of

gravity in the low curvature region at late periods, then the DE problem

might be explained by the aforesaid action. In the gravitational Lagrangian,

the non-linear factor f (R) causes uncertainty in the action variation. When

the Einstein Hilbert action is varied with regard to the metric gµν and the

affine connection in GR, the affine connection field equations are just the

metric compatibility equations. As a result, the Levi-Civita connection is

assumed to be the affine connection of a spacetime manifold in GR. This is

no longer the case with f (R) MTG, as well as any variational principle can

be applied. Deriving the modified EFEs from f (R) action can be done in

three ways.

1. Metric variational approach: In this conventional approach, the

field equations are obtained by altering action w.r.t the gµν . The current

fields in the gravitational sector are simply those obtained from the metric

tensor since the link is metric-dependent. The action is given in this case

by

S =
1

2κ

∫ √
−gf(R)d4x+ SM , (1.4.2)

here SM is matter action. The associated fields equation turn out to be

RµνF (R)− gµν
2
f(R)−∇µ∇νF (R) + gµν∇α∇αF (R) = κTµν , (1.4.3)
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here F (R) = df(R)
dR

,∇α is covariant derivative, κ coupling constant and Tµν

energy momentum tensor.

2. Palatini variational approach: The metric and connection are as-

sumed to be separate fields in this technique, and in respect to both of them,

the activity is varied. The field equations, like the Einstein field equations,

are second order. The actions is defined as

S =
1

2κ

∫ √
−gf(R)d4x+ SM(gµν , ψ). (1.4.4)

The field equations become when the action varies with regard to the gµν ,

it follows that

RµνF (R)− gµν
2
f(R) = κTµν . (1.4.5)

Now the action varies with regard to non-Levi-Civita connection, it follows

that

∇λ(g
µνF (R)

√
−g) = 0. (1.4.6)

3. Metric-affine variational approach: Both metric and connection

are treated separately in metric-affine f (R) gravity and the matter action is

supposed to be dependent on the connection as well. The action has been

taken in this case is given by

S =
1

2κ

∫ √
−gf(R)d4x+ SM(gµν ,Γ

σ
µν , ψ). (1.4.7)

The following field equations are determined by changing this action with

respect to the metric tensor and the non-Levi-Civita connection

RµνF (R)− gµν
2
f(R) = κTµν . (1.4.8)
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and

1√
−g

[∇σ(
√
−ggµσδνλ)−∇λ(F (R

√
−ggµν)]

+ 2F (R(gµνΓσλσ − gµρΓσρσδνλ + gµσΓνσλ) = κ∆µν
λ , (1.4.9)

here ∆µν
λ = − 2√

−g
δSM
δΓλµν

is called hyper tensor.

1.4.2 f (R,T) Theory of Gravity

Harko et al. [46] designed the f (R,T)MTG, which is one of the most inspir-

ing and eventual forms of MTG. The matter Lagrangian was defined as the

function of the trace of the energy-momentum tensor T and Ricci scalar R.

Exotic imperfect fluids or quantum effects are also thought to be respon-

sible for the dependency on T . The references term, which is represented

by the variation of the matter stress-energy tensor according to the metric,

is the source of the f (R,T)function’s dependence. The expression of this

reference term can be described as a function of the matter Lagrangian Lm.

As a result, for different choices of Lm one gets a different set of field equa-

tions. This idea is derived by simply substituting in the Einstein-Hilbert

Lagrangian of GR, R is replaced by the generic function f(R,T). In [46], the

action of f (R,T)is given by

S =

∫
d4x
√
−g(

1

2κ
f(R, T ) + LM), (1.4.10)

here f(R, T ) and Lm are the function of trace of energy momentum tensor

and Ricci scalar and matter Lagrangian respectively. The stress of energy

momentum tensor is given as

Tµν = −δ(
√
−g)Lm
δgµν

2√
−g

. (1.4.11)
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Furthermore, the matter Lagrangian is considered to be dependent on the

metric tensor components gµν but not on their derivative, resulting in

Tµν = gµνLm − 2
∂Lm
∂gµν

. (1.4.12)

The following expression is derived by altering the action S w.r.t gµν .

δS =
1

2κ

∫
[
∂f(R, T )

∂R
δR +

∂f(R, T )

∂T

δT

δgµν
δgµν

−1

2
gµνf(R, T )δgµν + 2κ

δ
√
−gLm√
−gδgµν

]
√
−gd4x. (1.4.13)

The variation of R gives

δR = δ(gµνRµν) = Rµνδg
µν + gµν(∇αδΓ

α
µν −∇νδΓ

α
µα). (1.4.14)

The covariant derivative with regard to the Christoffel symbol, which is

linked to the metric tensor gµν as in GR, is denoted by the letter ∇α. The

Christoffel symbol is now varied in respect to the metric tensor components,

yielding

δΓαµν =
1

2
gαγ(∇µδgγν +∇νδgµγ −∇γδgµν). (1.4.15)

Using Eq.(1.4.15) in Eq.(1.4.14), we obtain

δR = Rµνδg
µν + gµν2δg

µν −∇µ∇νδg
µν . (1.4.16)

Substituting Eq.(1.4.16) in Eq.(1.4.13), it yields

δS =
1

2κ

∫
[
∂f(R, T )

∂R
Rµνδg

µν +
∂f(R, T )

∂R
gµν2δg

µν

−∂f(R, T )

∂R
∇µ∇νδg

µν +
∂f(R, T )

∂T

δ(gγβTγβ)

δgµν
δgµν − 1

2
gµνf(R, T )δgµν

+2κ
δ(
√
−g)Lm√
−gδgµν

]
√
−gd4x. (1.4.17)

For T , the variation expression is given as [46]

δ(gγβTγβ)

δgµν
= Tµν + Θµν , (1.4.18)
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here

Θµν = gγβ
δ(Tγβ)

δgµν
. (1.4.19)

Using Eqs.(1.4.18)-(1.4.19) in Eq.(1.4.17), we gets

RµνfR(R, T )− gµν
2
f(R, T )−∇µ∇νfR(R, T ) + gµν2fR(R, T )

= 2κTµν + TµνfT (R, T )− fT (R, T )(Θµν). (1.4.20)

When we simply replace f (R,T) by f (R) theory, the field equations of

f (R,T) gravity, provided in Eq.(1.4.20), reduce to the field equations of

f (R) theory. On contraction, Eq.(1.4.20) reveals the following relationship

between R and T

(R + 32)fR(R, T )− 2f(R, T ) = T (κ− fT (R, T )) + Θ. (1.4.21)

From Eq. (1.4.20) and Eq. (1.4.21), eliminating the term 2fR(R, T ), it

follows that

RµνfR(R, T )− 1

3
fR(R, T )Rgµν +

1

6
gµνf(R, T ) = κTµν −

κ

3
Tgµν

−fT (R, T )Θµν −
fT (R, T )

3
Θµν +∇µ∇νfR(R, T ). (1.4.22)

Using the mathematical identity in [97] with the covariant derivative of

Eq.(1.4.20), we obtain

∇µ[RµνfR(R, T )− gµν
2
f(R, T )−∇µ∇νfR(R, T ) + gµν2fR(R, T )] = 0.

(1.4.23)

The divergence of the momentum tensor Tµν gives the following equation

∇µTµν =
fT (R, T )Tµν∇µlnfT (R, T )

κ− fT (R, T )
+
fT (R, T )Θµν∇µlnfT (R, T )

κ− fT (R, T )
+∇µΘµν .

(1.4.24)
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The tensor θµν can be easily measured for the known matter Lagrangian us-

ing Eq.(1.4.19) and Eq.(1.4.23). After varying w.r.t metric tensor, Eq.(1.4.12)

provides the following equation

δT γβ

δgµν
=
Lmδgγβ
δgµν

+
gγβ∂Lm
∂gµν

− 2∂2Lm
∂gµν∂gγβ

=
Lmδgγβ
δgµν

+
gγβ
2

(gµνLm − Tµν)−
2∂2Lm
∂gµν∂gγβ

. (1.4.25)

The expression
δgγβ
δgµν

can be written as follows using the identity gγσg
σβ = δβγ

δgγβ
δgµν

= −gβλgγσδσλµν , (1.4.26)

here δσλµν = δgσλ

δgµν
. Hence using the corresponding values and performing

the basic calculations, the tensor Θµν is obtained from Eq.(1.4.19) in the

following form

Θµν = −2Tµν + Lmgµν − 2gγβ
∂2Lm

∂gµν∂gγβ
. (1.4.27)

The matter Lagrangian is taken as [46]

Lm =
FγβFτσg

γτgβσ

28
, (1.4.28)

for electromagnetic field. As a result, we assume that Θµν = −Tµν . The

Lagrangian can be taken as Lm = −p for perfect fluid. Consequently, from

Eq.(1.4.27) it follows that

Θµν = −(2Tµν + pgµν). (1.4.29)

The lagrangian can be considered as Lm = ρ for dust and anisotropic fluid.

Consequently, from Eq.(1.4.27) it follows that

Θµν = −(2Tµν − ρgµν). (1.4.30)
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1.4.3 Different Models in f (R,T) Theory of Gravity

Harko et al. [46] used some specific classes of f (R,T) models to solve the

field equations, which were obtained directly by describing the functional

form of f (R,T). In general, through the tensor θµν , the field equations are

influenced by the physical structure of the matter field. Because the field

equations in the f (R,T) modified theory of gravity are dependent on the

type of the matter source and the choice of f(R,T), multiple theoretical

models have been developed by various authors. Harko et al. [46] described

the three types of f (R,T) models as follows:

f(R, T ) =


R + 2f(T ),

f1(R) + f2(T ),

f1(R) + f2(R)f3(T ).

(1.4.31)

In the first model of f (R,T) MTG, we suppose that the function f (R,T) is

provided by f(R, T ) = R+ 2f(T ), here f(T ) is an arbitrary function of the

trace of the energy momentum tensor. In the second model of f (R,T)MTG,

we suppose that the function f (R,T) is provided by f(R, T ) = f1(R)+f2(T ),

here f2(T ) and f1(R) are arbitrary function of T and R. In the last model of

f (R,T) MTG, we suppose that the function f (R,T) is provided by f(R, T ) =

f1(R) + f2(R)f3(T ), here f1(R) and f2(R) are arbitrary function of R and

f3(T ) is arbitrary function of R.

1.5 Spacetime Singularity

One of the most prominent discoveries of general relativity is spacetime

singularity, which created during the dynamical development of the mat-

ter field in a metric. It’s a spot in spacetime where physical parameters

17



like metric curvature, energy density, and so on become infinite, and the

rules of physics don’t apply any longer. Singularities emerge when the field

equations solutions are obtained by applying a high level of symmetry on

metric. There are two classes of spacetime singularities

• Coordinates Singularity

• Essential Singularity

A coordinate or detachable singularity is a singularity that develops as a

result of a bad coordinate system choice and may be removed by altering

the coordinate system. A true or essential singularity is one that cannot be

removed. The essential singularity can be further classified into two classes:

• Covered Singularity

• Uncovered Singularity

1.5.1 Covered Singularity

A covered singularity or BH is a place in spacetime where the gravitational

pull is so powerful that even light can’t go away. The event horizon is

the border of covered singularity. When a big star (& 10M�) undergoes

gravitational collapse, the resulting object has a mass of & 3.2M�. BHs are

dense and completely collapsed objects with the following features [1, 98]

• Covered singularities describes the gravitational field of a completely

collapsed object. Three parameters can be used to describe this field:

charge Q, mass M and angular momentum Ma. For a rotating BH,

the connection between magnetic moment and angular momentum is

the same as for electrons.
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• Covered singularities are encircled by a surface known as the event

horizon, which has such a strong gravitational field that particles and

light rays that enter it can never escape and can never penetrate

indefinitely.

• An essential singularity of the gravitational field is formed in the end

state of collapse, and it resides inside the covered singularity event

horizon.

• A covered singularity is stable and can never be annihilated by ex-

ternal fields since it is a dense form of matter. Any sort of substance

that enters the BH from the outside can affect its charge, mass and

angular momentum.

• The area of covered singularity does not decrease for any physical

process. This is analogous to the second rule of thermodynamics,

which states that the total entropy of all substance in the universe is

nondecreasing.

1.5.2 Uncovered Singularity

A singularity without any surrounding (event horizon) which can be ob-

served from outside is known as uncovered singularity. The characteristics

of uncovered singularity are as follows [99]- [100]

• The formation of strong gravity and high curvature regions is repre-

sented by an uncovered singularity.

• Gravitational waves are generated by an uncovered singularity.
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• Even though collapsing stars have same mass, size, and radius, the

energy released during the creation of uncovered singularity is less

than that released during the creation of covered singularity.

• The knowledge regarding quantum gravity physics may be acquired

through the uncovered singularity.

1.6 Trapped Surface and Apparent Horizons

In 1965, Penrose suggested the notion of trapped area for the develop-

ment of singularity theorems in general relativity. A trapped area is a

two-dimensional spacelike surface that has the feature of all light rays em-

anating from it converging [3]. The presence of a trapped surface in a

spherical gravitational collapse would result in the generation of BH when-

ever the dropping matter is in a poor energy state. When a large amount of

stuff is compacted into a tiny volume during gravitational collapse, trapped

surfaces form. If the validity of CCC is accepted, the existence of trapped

surfaces indicates the creation of BH [101].

BH is an area in spacetime from which nothing, even light can’t go away

[102]. The event horizon is the boundary of BH. In other terms, an event

horizon is the border of an area of spacetime that a distant observer cannot

study. According to Hawking and Ellis [103], the event horizon is a null

area that may portray the causal structure of spacetime in great detail. The

event horizon for Schwarzschild BH is r = 2m. The apparent horizons are

the furthest boundaries of a BH area that encompass trapped surface. The

production of BH is predicted by the gravitational collapse of a huge star,

which predicts that the event horizons would be built before the apparent
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horizons [103]. The event horizon and the apparent horizon of a BH are not

necessarily the identical. Only for stationary spacetimes does the apparent

horizon correspond with the event horizon. If an apparent horizon occur,

it is always contained inside BH event horizon.

1.7 Matching Conditions

The surface of a galaxy (typically represented by Σ) separates spacetime

geometry into two parts, the inner portion and the outer portion. Radia-

tion and matter are found in the inner of a star, whereas radiation from the

star’s interior is found on the outside [104]. Oppenheimer and Snyder [7]

solved the field equations for the inner section of a galaxy filled with dust

cloud with a Schwarzschild exterior, and Misner and Sharp [105] solved

the field equations for a perfect fluid configuration with a static outside.

Schwarzschild [106]- [107] determined the solutions to the field equations

with a vacuum exterior. The outer solutions of EFEs with an exterior

portion including null radiation were demonstrated by Vaidya [108]. The

Schwarzschild solution was extended to the spherically symmetric charged

case by Reissner [109]. A comparable solution, known as the Reissner-

Nordstrom spacetime, was later shown by Nordstrom [110]. The field equa-

tion solutions for the two sides split by a surface Σ, i.e., the exterior and

interior spacetime, may be stitched together to form a comprehensive image

of the collapsing phenomena. A series of matching conditions may be used

to achieve smooth matching of a star’s inner and exterior. For the smooth

matching of the two parts, several scientists have developed various ways,
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such as Darmois [111], Brien and Synge [112] and Lichnerowicz [113]. Bon-

ner and Vickers [114] discovered comparable matching conditions. Among

all of the foregoing, the Darmois [111] matching conditions are the most

well-known. Darmois matching criteria are as follows:

1. The first continuity form over Σ yields

(ds2
+)Σ = (ds2

−)Σ = (ds2)Σ. (1.7.1)

Here the line components of inner and outer spacetimes are repre-

sented by ds2
− and ds2

+, respectively.

2. The second continuity form over Σ gives

[Kµν ] = K+
µν −K−µν = 0, (µ, ν = 0, 2, 3) (1.7.2)

here K±µν represents the extrinsic curvature which is given by

K±µν = −n±α (
∂2xα±
∂ξµ∂ξν

) + Γαβγ
∂xβ±
∂ξµ

∂xγ±
∂ξν

, (1.7.3)

here n±α are the outward unit normals to Σ given by

n±α =
f, α

[gβγf, βf, γ
]
1
2 . (1.7.4)

Here the equation of hypersurface Σ defined by f = 0.

With the modification of GR, a need was felt to improve the matching coni-

tions which could work for f (R) theory of gravity. Senovilla [115] presented

his matching conditions for f (R) theory of gravity as follows:

R|+− = 0, f,RR [∂vR|+− = 0, f,RR 6= 0. (1.7.5)

The above restriction specifies that even for very thin shells, the curvature

scalar must be continuous over the surface Σ. With the modification of
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f (R) theory of gravity, a need was felt to improve the matching conitions

which could work for f (R,T) theory of gravity. Rosa [116] presented his

matching conditions for f (R,T) theory of gravity. The complete set of

junction conditions for the f (R,T) gravity in the general case of a matching

with a thin-shell at Σ is thus composed of the following equations as follows:

[hαβ] = 0, [k] = 0, [R] = 0, [T ] = 0,

nc(fRR[∂cR] + fRT [∂cT ] = 0,

(8π + fT )Sαβ = −εfR[Kαβ]. (1.7.6)
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Chapter 2

Spherically Symmetric
Gravitational Collapse of
Anisotropic Fluid in the
Presence of Charge in Metric
f (R) Gravity

In this chapter, the metric f (R) gravity is used to investigate the spheri-

cally symmetric anisotropic fluid collapse in the existence of charge. For

the exterior and interior portions of a collapsing object, we study static

and spherically symmetric non-static spacetimes, respectively. The Sen-

ovilla and Darmois matching criteria are used for smooth matching of inner

and exterior areas. Field equations are used to find closed form solutions.

Furthermore, we investigate the physical significance of apparent horizons.

It contains two sections. Section 2.1 contains the fields equations and their

solution. Apparent horizons are studied in the last Section 2.2.
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2.1 Field Equations and Their Solutions in

f (R) Gravity

The symmetric 3-dimensional hypersurface Σ, which separates metric into

exterior and interior areas, is considered here. The interior region’s line

element is given by

ds2
− = dt2 −D2dr2 − L2(dϑ2 + sin2 ϑdφ2), (2.1.1)

where D = D(t, r) and L = L(t, r). An anisotropic fluid’s stress energy

momentum tensor is defined as

Tµν = (ρ+ pt)VµVν − prgµν + (pr − pt)XµXν , (2.1.2)

here pt and pr are pressures orthogonal to time-like vector Vµ and in the

direction of Vµ, ρ denote the energy density and Xµ is the unit space like

vector in the direction of radial vector. Using Eqs.(1.4.3), (2.1.2), and

(1.3.7), the field equations Eq.(1.4.3) can be presented as follows

fRRµν −
1

2
f(R)gµν −∇µ∇νfR + gµν∇γ∇γfR = κ

(
(ρ+ pt)VµVν

−ptgµν + (pr − pt)XµXν +
1

4π
(−gµνFµϕFνψ +

1

4
gϕψFµϕF

νψ)
)
.(2.1.3)

Solving the Maxwell equations Eq.(1.3.6) for the metric Eq.(2.1.1) yields

the Einstein-Maxwell equations. In this case, the four current and four

potential take the form

φϕ = (φ(t, r), 0, 0, 0), (2.1.4)

ϕ = σuϕ, (2.1.5)

here σ is charge density. From Eq.(2.1.4) and Eq.(1.3.5), it yields

F01 = −F10 = −∂φ
∂r
, (2.1.6)
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and using Eq.(2.1.6) and Eq.(1.3.6), we get

∂2φ

∂r2
− (

D′

D
− 2

L′

L
)
∂φ

∂r
= 4πσD2, (2.1.7)

∂2φ

∂t∂r
− (

Ḋ

D
− 2

L̇

L
)
∂φ

∂r
= 0. (2.1.8)

It is obtained by integrating Eq.(2.1.7)

∂φ

∂r
=
c(r)D

L2
. (2.1.9)

The intensity of electric charge in the inner region is provided by c(r) =

4π
∫ r

0
σDL2dr. E(r, t) = c

4πL2 is the uniform intensity of electric charge

that is spread throughout the unit spherical area. Field equations for the

inner region Eq.(2.1.1) have non-zero and independent components, given

below

− D̈

D
− 2

L̈

L
=

1

F (R)
[8πρ+ 2κπE2

0 +
1

2
f(R)− [

−F ′′(R)

W 2
+
ḊḞ (R)

D

+
D′F ′(R)

D3
+

2L̇Ḟ (R)

L
− 2L′F ′(R)

D2L
]], (2.1.10)

− D̈

D
− 2ḊL̇

ḊL
+

2

D2
[
L′

L
− D′L′

DL
] =

1

F (R)
[−8πpr

+ 2κπE2
0 +

1

2
f(R) + F̈ (R) +

2L̇Ḟ (R)

L
− 2L′F ′(R)

D2L
], (2.1.11)

− L̈

L
− (

L̇

L
)2 − ḊL̇

DL
+

L′′

D2L
+ (

L′

DL
)2 − D′L′

D3L
− (

D

DL
)2

=
1

F (R)
[
f(R)

2
− 8πpt − 2κπE2

0 − [F̈ (R)− F ′′(R)

D2
+
Ḋ

D
Ḟ (R)

+
D′

D3
F ′(D) +

L̇

L
Ḟ (R)− L′F ′(R)

D2L
]], (2.1.12)

− 2
L̇′

L
+ 2

˙DL′

DL
=

1

F (R)
[Ḟ ′(R)− Ḋ

D
F ′(R)]. (2.1.13)

For explicit value of D, integrating Eq.(2.1.13), it yields

D = exp

∫
2L̇′F + Ḟ ′L

2L′F + F ′L
dt. (2.1.14)
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We use the assumption of a constant Ricci scalar to solve field equations

analytically. Given the above assumption, Eqs.(2.1.10)-(2.1.13) will have

the following form

− D̈

D
− 2

L̈

L
=

1

F (R◦)
[8πρ0 + 2κπE2

0 +
f(R◦)

2
], (2.1.15)

− D̈

D
− 2

Ḋ

D

L̇

L
+

2

D2
[
L′′

L
− D′L′

DL
] =

1

F (R◦)
[
f(R◦)

2

+ 2κπE2
0 − 8πpr◦ ], (2.1.16)

− L̈

L
− (

L̇

L
)2 − ḊL̇

DL
+

L′′

LY 2
+ (

L′

LY
)2 − D′L′

DLY 2
− (

D

LY
)2

=
1

F (R◦)
[
f(R◦)

2
− 8πpt◦ − 2κπE2

0 ], (2.1.17)

˙DL′

LD
=
L̇′

L
. (2.1.18)

Integration of Eq.(2.1.18) gives

D =
L′

A
, (2.1.19)

here A = A(r). We get the following result by using the above value of D

in Eqs.(2.1.15)-(2.1.17)

2
L̈

L
+ (

L̇

L
)2 + (

1− A2

L2
) = − 1

F (R0)
[4π((2pt◦ − pr◦)− ρ0) + 2κπE2

0 −
f(R0)

2
].

(2.1.20)

Integrating Eq.(2.1.20) yields

L̇2 = A2 − 1 + 2
m(r)

L
− L2

3F (R0)
[4π((2pt◦ − pr◦)− ρ0) + 2κπE2

0 −
f(R0)

2
].

(2.1.21)

Here m(r) is mass of collapsing system and m(r) > 0. From Eq.(2.1.21),

Eq.(2.1.19) and Eq.(2.1.15), we obtain

m′ =
4π

F (R◦)
((2pt◦ − pr◦) + κE2

0 + ρ◦)L
′L2. (2.1.22)
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After integration with respect to r, Eq.(2.1.22) becomes

m(r) =
4π

F (R◦)
((2pt◦ − pr◦) + κE2

0 + ρ◦)

∫
L′L2dr + c(t), (2.1.23)

here integration function is c(t). For the outer region, we investigate the

Reissner-Nordstrom spacetime, which is given as

ds2
+ = B(R)dT2 − 1

B(R)
dR2 − R2(dθ2 + sin2θdφ2), (2.1.24)

where

B(R ) = (1− 2M

R
+
Q2

R 2
), (2.1.25)

where Q denotes charge and M denotes a non-zero constant, respectively.

We use the Senovilla [115] and Darmois [111] matching criteria for smooth

inner and outer region matching over Σ, it follows that

(DL̇′ − ḊL′)Σ = 0, (2.1.26)

M =
L

2
[1− L̇

2 − L′2

D2 +
Q2

L2 ]Σ. (2.1.27)

R|+− = 0, f,RR [∂vR |+− = 0, f,RR 6= 0. (2.1.28)

The constraints are specified in Eq.(2.1.26) and Eq.(2.1.27) due to Darmois

matching criteria. The restriction given in Eq.(2.1.28) is due to modi-

fied gravity, which specifies that even for very thin shells, the curvature

scalar must be continuous over the surface Σ. Substituting Eq.(2.1.21) and

Eq.(2.1.19) in Eq.(2.1.27), we get

M =
Q2

2L
+m(r)− L3

6F (R0)
[4π((2pT◦ − pR◦)− ρ0)− f(R0)

2
]. (2.1.29)

The total energy M(r, t) for the inner portion can be calculated using the

mass function [105]

M(r, t) =
L

2
[1 + gγδ(L),γ(L),δ]. (2.1.30)
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In above equation, substituting Eq.(2.1.21) and Eq.(2.1.1), it yields

M(r, t) =
b2

2L
+m(r)− L3

6F (R◦)
[4π((2pt◦ − pr◦)− ρ◦)−

f(R◦)

2
].(2.1.31)

For the solution of Eq.(2.1.21), we suppose that the term 1
F (R◦)

[4π((2pt◦ −

pr◦)− ρ◦) + 2κπE2
0 −

f(R0)
2

] is positive with A = 1, we get

L = (
6mF (R◦)

4π((2pt◦ − pr◦)− ρ0) + 2κπE2
0 − 1

2
f(R◦)

)
1
3 sinh

2
3 ψ(r, t), (2.1.32)

ψ(r, t) =

√
3(4π((2pt◦ − pr◦)− ρ0) + 2κπE2

0 − 1
2
f(R◦))

4F (R◦)
[ts(r)− t]. (2.1.33)

From Eq.(2.1.19) with A(r) = 1, it follows that

D =
( 6mF (R0)

4π((2pt◦ − pr◦)− ρ0) + 2κπE2
0 − 1

2
f(R0)

) 1
3
[m′

3m
sinhψ(r, t)

+ t′s(r)

√
4π((2pt◦ − pr◦)− ρ0) + 2κπE2

0 − 1
2
f(R0)

3F (R0)

cosh ψ(r, t)
]

sinh
−1
3 ψ(r, t), (2.1.34)

here ts = ts(r). When E0 → 0 and f(R◦) → 8π((2pt◦−pr◦ )−ρ◦)
2

, Eq.(2.1.34)

and Eq.(2.1.32) corresponding to the solution of Tolman-Bondi [10]

L = [
9m(r)

2
(ts − t)2]

1
3 , (2.1.35)

D =
m′ts −m′t+ 2mt′s

[6m2(ts − t)]
1
3

. (2.1.36)

2.2 Apparent Horizons

The following general expression can be used to calculate a fixed border

with null normals pointing outward

gνγ(L),ν (L),γ = (L̇)2 − (
L′

D
)2 = 0. (2.2.1)
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Substituting Eq.(2.1.21) and Eq.(2.1.19) in Eq.(2.2.1), we get

1

F (R0)

[
4π(2pt◦ − pr◦ − ρ0) + 2κπE2

0 −
f(R0)

2

]
L3 − 3L+ 6m = 0, (2.2.2)

In L, this is a cubic equation. The positive roots of Eq.(2.2.2) for L are

used to calculate apparent horizons. For

f(R0) = 2(4π((2pT◦ − pR◦)− ρ0) + 2κπE2
0), (2.2.3)

we obtain the Schwarzschild horizon that is L = 2m. Using the Cardano

approach, solve Eq.(2.2.2). For Eq.(2.2.2), the Cardano discriminant is

3m−

√
F (R◦)

4π(2pt◦ − pr◦ − ρ◦) + 2κπE2
0 − 1

2
f(R◦)

. (2.2.4)

For the positive roots of Eq.(2.2.2), we now investigate the three cases

below.

case(1):

For 3m <
√

F (R◦)

4π(2pt◦−pr◦−ρ◦)+2κπE2
0−

1
2
f(R◦)

result in two horizons

Lc =

√
4F (R◦)

4π(2pt◦ − pr◦ − ρ◦) + 2κπE2
0 − 1

2
f(R◦)

cos
ϕ

3
, (2.2.5)

Lbh = −

√
4F (R◦)

4π(2pt◦ − pr◦ − ρ◦) + 2κπE2
0 − 1

2
f(R◦)

× (cos
ϕ

3
−
√

3 sin
ϕ

3
), (2.2.6)

here cosϕ = −3m
√

4F (R◦)

4π(2pt◦−pr◦−ρ◦)+2κπE2
0−

1
2
f(R◦)

. For m = 0, it follows from

Eq.(2.2.6) and Eq.(2.2.5) as

Lc =

√
4F (R◦)

4π(2pt◦ − pr◦ − ρ◦) + 2κπE2
0 − 1

2
f(R◦)

, (2.2.7)

Lbh = 0. (2.2.8)

Case(2): For 3m =
√

F (R◦)

4π(2pt◦−pr◦−ρ◦)+2κπE2
0−

1
2
f(R◦)

, result in a single horizon

i.e.,
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Lc = Lbh =
√

F (R◦)

4π(2pt◦−pr◦−ρ◦)+2κπE2
0−

1
2
f(R◦)

. Both the BH and the CH

have a range that may be expressed as follows

0 ≤ Lbh ≤

√
F (R◦)

4π(2pt◦ − pr◦ − ρ◦) + 2κπE2
0 − 1

2
f(R◦)

≤ Lc ≤

√
3F (R◦)

4π(2pt◦ − pr◦ − ρ◦) + 2κπE2
0 − 1

2
f(R◦)

. (2.2.9)

The maximum proper area for a BH horizon is provided by

8πL2 =
8πF (R◦)

8π(2pt◦ − pr◦ − ρ◦) + 4κπE2
0 − f(R◦)

, (2.2.10)

and the CH is placed between

8πF (R◦)

8π(2pt◦ − pr◦ − ρ◦) + 4κπE2
0 − f(R◦)

(2.2.11)

and

24πF (R◦)

8π(2pt◦ − pr◦ − ρ◦) + 4κπE2
0 − f(R◦)

. (2.2.12)

Case(3): For 3m >
√

F (R◦)

4π(2pt◦−pr◦−ρ◦)+2κπE2
0−

1
2
f(R◦)

, there is no horizon in

this case since there are no non-negative roots. We use Eq.(2.2.2) and

Eq.(2.1.32) to compute the apparent horizons time formation, it follows

that

tn = ts−

√
4F (R◦)

12π(2pt◦ − pr◦ − ρ◦) + 2κπE2
0 − 3

2
f(R◦)

sinh−1(
Ln
2m
−1)

1
2 , (n = 1, 2)

(2.2.13)

This corresponds to Tolman Bondi [10] solution, if f(R◦)→ 8π(2pt◦−pr◦−

ρ◦) + 2κπE2
0

tah =
−4

3
[
−3

4
ts +m]. (2.2.14)

From Eq. (2.2.13) it is evident that

Ln
2m

= cosh2 ψn, (2.2.15)
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here

ψn(r, t) =

√
3(4π(2pt◦ − pr◦ − ρ◦) + 2κπE2

0 − 1
2
f(R◦))

4F (R◦)
[ts(r)−tn]. (2.2.16)

Lc ≥ Lbh and t2 ≥ t1, respectively, are implied by Eq.(2.2.13) and

Eq.(2.2.9). The time required for a BH and a CH to develop is represented

by t2 and t1, respectively. The inequality t1 and t2, i.e., t2 ≥ t1, indicates

that the BH horizon forms after the CH. The time gap between the emer-

gence of a BH and singularity, as well as the emergence of a singularity and

the BH horizon, is as follows. Using Eqs.(2.2.5)-(2.2.6), it can be seen that

d( Lc
2m

)

dm
=

1

m
(
3 cos ϕ

3

cosϕ
−

sin ϕ
3

sinϕ
) < 0, (2.2.17)

d(Lbh
2m

)

dm
=

1

m
(
3 cos ϕ+4π

3

cosϕ
−

sin ϕ+4π
3

sinϕ
) > 0. (2.2.18)

The time difference between the appearance of a singularity and horizon

can be calculated as follows:

Tn = ts − tn. (2.2.19)

From Eq. (2.2.19) and Eq. (2.2.15), it yields

dTn

dLn
2m

=
1√

3[(2pt◦ − pr◦ − ρ◦) + 4κπE2
0 −

f(R◦)
2

] sinh γn cosh γn

. (2.2.20)

Using Eq. (2.2.17) and Eq. (2.2.20), the time difference between the for-

mation of the singularity and CH can be calculated as follows

dT1

dm
=

dT1

d Lc
2m

×
d( Lc

2m
)

dm

=
1

m1

√
3[4π(2pt◦ − pr◦ − ρ◦) + 2κπE2

0 − 1
2
f(R◦)] sinh γ1 cosh γ1

× (−
sin φ

3

sinφ
+

3 cos φ
3

cosφ
) < 0. (2.2.21)
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This indicates that as mass increases, the time it takes for a singularity and

a CH to form decreases. Because T1 is a diminishing function of mass. Sim-

ilarly, Eqs. (2.2.20) and (2.2.18) can be used to calculate the time difference

between the formation of the BH horizon and singularity, as follows:

dT2

dm
=

dT2

dLbh
2m

×
d(Lbh

2m
)

dm

=
1

m
√

[−12πpr◦ + 24πpt◦ − 12πρ◦ + 6κπE2
0 − 3

2
f(R◦)] sinh γ2 cosh γ2

× (−
sin φ+4π

3

sinφ
+

3 cos φ+4π
3

cosφ
) > 0. (2.2.22)

Contrary to the above, the mass increases the formation time of singular-

ity and CH. It happened because T2 is an increasing function of mass m.

Eq.(2.1.21) determines gravitational collapse rate

L̈ = −m
L2

+
1

F (R◦)
[4π(2pt◦ − pr◦ − ρ◦) + 2κπE2

0 −
1

2
f(R◦)]

L

3
, (2.2.23)

L̈ < 0 is required for the collapsing process, and it is only feasible if

L < (
6mF (R◦)

4π(2pt◦ − pr◦ − ρ◦) + 2κπE2
0 − 1

2
f(R◦)

)
1
3 . (2.2.24)

Eq.(2.2.24) shows that f(R◦) slows the collapsing motion when

1
F (R◦)

[4π(2pt◦ − pr◦ − ρ◦) + 2κπE2
0 − 1

2
f(R◦)] > 0, but the influence of f(R◦)

is reduced by electromagnetic fields.
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Chapter 3

Gravitational Dust Collapse in
f (R,T) Theory of Gravity

In this chapter, the metric f (R,T) theory is used to examine the dust grav-

itational collapse. For the interior and exterior portions of a collapsing

object, we study Friedmann-Robertson-Walker (FRW) and Schwarzschild

spacetimes, respectively. The Rosa and Darmois matching criterias are used

for smooth matching of inner and exterior areas. Field equations are used to

find closed form solutions. Furthermore, we investigate the physical signif-

icance of apparent horizons. It contains two sections. Section 3.1 contains

the fields equations and their solution. Apparent horizons are studied in

the last Section 3.2.

3.1 Field Equations in f (R,T) Gravity

For inner portion, we take 4-dimensional FRW spacetime as follows [41]

ds2
− = dt2 − x2(t)dr2 − x2(t)y2(r)(dθ2 + sin2θdφ2), (3.1.1)
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where x(t) represents the cosmic scale factor and

y(r) =


sin r, k = 1,

r, k = 0,

sinh r k = −1.

The stress energy tensor for dust can be defined as

Tµν = ρuµuν , (3.1.2)

here uϕ and ρ, are the four dimensional velocity vector meeting the equation

uϕ = δ0
ϕ and matter density respectively. Using Eqs.(1.4.20), (3.1.2), and

(1.3.7) with f(R, T ) = f1(R) + f2(T ), the field equations Eq.(1.4.20) can

be written as follows

Rµν =
1

F1(R)
[κρuµuν + F2(T )(ρuµuν − ρgµν) +

gµν
2

(f1(R) + f2(T ))

+∇µ∇νF1(R)− gµν∇ϕ∇ψF1(R)]. (3.1.3)

Here F1(R) = ∂f1(R)
∂R

and F2(T ) = ∂f2(T )
∂T

. We get three independent partial

differential equations for the inside region Eq.(3.1.1), as shown below:

−3
ẍ

x
=

1

F1(R)
[κρ+

f1(R) + f2(T )

2
− 3

ẋ

x
Ḟ1(R)], (3.1.4)

ẍ

x
+ 2(

ẋ

x
)2 − 2

y′′

x2y
=

1

F1(R)
[−f1(R) + f2(T )

2
+ F2(T )ρ

+2
ẋ

x
Ḟ1(R) + F̈1(R))], (3.1.5)

ẍ

x
− y′′

x2y
+ 2(

ẋ

x
)2 − (

y′

xy
)2 +

(1)

x2y2
=

1

F1(R)
[−f1(R) + f2(T )

2

+F2(T )ρ+ 2
ẋ

x
Ḟ1(R) + F̈1(R)]. (3.1.6)

A dash and a dot indicate the partial derivatives w.r.t ”r” and ”t”, re-

spectively. These non-linear differential equations do not seem to have an

obvious solution. For obtaining solution, we’ll use R = R0 and T = T0,

where R0 and T0 are non-zero constants. As a result of this assumption,
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ρ = ρ0, that is, ρ is constants. Eqs.(3.1.4)-(3.1.6) assume the following form

when using the preceding assumptions

−3
ẍ

x
=

1

F1(R0)
[κρ0 +

f1(R0) + f2(T0)

2
], (3.1.7)

ẍ

x
+ 2(

ẋ

x
)2 − 2

y′′

x2y
=

1

F1(R0)
[F2(T0)ρ0 −

f1(R0) + f2(T0)

2
],(3.1.8)

ẍ

x
+ 2(

ẋ

x
)2 − y′′

x2y
− (

y′

xy
)2 +

(1)

x2y2
=

1

F1(R0)
[F2(T0)ρ0

−f1(R0) + f2(T0)

2
]. (3.1.9)

From Eqs.(3.1.7)-(3.1.9), it follows that

2
ẍ

x
+ (

ẋ

x
)2 + (

1− y′2

x2y2
) = − 1

F1(R0)
(
κρ0 − F2(T0)ρ0

2
+
f1(R0) + f2(T0)

2
).

(3.1.10)

The 4-dimensional Schwarzschild metric is taken as outer spacetime

ds2
+ = (1− 2M

R̃
)dT 2 − 1

1− 2M
R̃

dR̃2 − R̃2(dθ2 + sin2θdφ2). (3.1.11)

We use the Rosa [116] and Darmois [111] matching criteria for smooth inner

and outer region matching over Σ, it follows that

(ẏ/)Σ = 0, (3.1.12)

M =
1

2
[xy + xẋ2y3 − xyy′2]

Σ
. (3.1.13)

[hαβ] = 0, [k] = 0, [R] = 0, [T ] = 0,

nc(fRR[∂cR] + fRT [∂cT ] = 0,

(8π + fT )Sαβ = −εfR[Kαβ]. (3.1.14)

The constraints are specified in Eq.(3.1.12) and Eq.(3.1.13) due to Darmois

matching criteria. The restrictions given in Eq.(3.1.14) is due to f (R,T)

gravity. Taking Eq.(3.1.12) and integrating it gives us

y′ = H. (3.1.15)
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Here H = H(r). Substituting Eq.(3.1.15) in Eq.(3.1.10), it follows that

2
ẍ

x
+ (

ẋ

x
)2 + (

1−H2

x2y2
) = − 1

F1(R0)
(
κρ0 − F2(T0)ρ0

2
+
f1(R0) + f2(T0)

2
).

(3.1.16)

Integration of above equation w.r.t t, gives

(ẋ)2 =
H2 − 1

y2
+ 2

m(r)

x1y3
− x2

3F1(R0)
(
κρ0 − F2(T0)ρ0

2
+
f1(R0) + f2(T0)

2
),

(3.1.17)

here m = m(r) and has the following value

m(r) =
(κρ0 − F2(T0)ρ0)x3y3

6F1(R0)
. (3.1.18)

We consider the mass m(r) to be positive for physical reasons, i.e. m(r) > 0.

When Eq.(3.1.15) is used in Eq.(3.1.17), it yields

M = m− x3y3

6F1(R0)
(
κρ0 − F2(T0)ρ0

2
+
f1(R0) + f2(T0)

2
). (3.1.19)

The total energy for the inner section may be calculated using the formula,

according to Misner and Sharp [105]

M(r, t) =
xy

2
[1 + gπχ(xy),π(xy),χ]. (3.1.20)

Utilizing Eq.(3.1.17), The mass function has the following shape

M(r, t) = m(r)− x3y3

6F1(R0)
(
κρ0 − F2(T0)ρ0

2
+
f1(R0) + f2(T0)

2
). (3.1.21)

The value of the metric function xy takes the following form when utilizing

Eq.(3.1.17) with H(r) = 1

xy = (
−24m(r)F1(R0)

2(κρ0 − F2(T0)ρ0) + 2(f1(R0) + f2(T0))
)
1
3 sinh

2
3 α(r, t), (3.1.22)

here

α(r, t) =

√
−3[2(κρ0 − F2(T0)ρ0) + 2(f1(R0) + f2(T0))]

16F1(R0)
[ts(r)−t]. (3.1.23)
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Here ts(r) is considered as an arbitrary function. When f1(R0) + f2(T0)→

−(κρ0−F2(T0)ρ0), we get Tolman-Bondi solution [10] from the above equa-

tions

xy = [
9m(r)

2
(ts − t)2]

1
3 . (3.1.24)

3.2 Apparent Horizons

When the border of two trapped spheres is formed, we get the apparent

horizon. In this part, we look for such a border between two trapped spheres

with null outward normals. This is stated for the inner spacetime Eq.(3.1.1)

as

gπχ(xy),π (xy),χ = (ẋ)2y2 − y′2. (3.2.1)

Utilizing Eq.(3.1.17), above equation take the form

1

F1(R0)
[
κρ0 − F2(T0)ρ0

2
+
f1(R0) + f2(T0)

2
]x3y3 + 3xy − 6m = 0. (3.2.2)

The values of xy give the apparent horizons. For f1(R0)+f2(T0) = −(κρ0−

F2(T0)ρ0), we have ab = 2m, i.e., Schwarzschild horizon. It yields de-Sitter

horizon when m = 0, i.e.,

xy =

√
−3F1(R0)

κρ0−F2(T0)ρ0
2

+ f1(R0)+f2(T0)
2

. (3.2.3)

We explore the following cases by examining at the positive roots of

Eqs. (3.2.2):

Case(1): When 3m1 <

√
−F1(R0)

κρ0−F2(T0)ρ0
2

+
f1(R0)+f2(T0)

2

, we get two horizons,

(xy)c and (xy)bh, respectively

(xy)c =

√
−4F1(R0)

κρ0−F2(T0)ρ0
2

+ f1(R0)+f2(T0)
2

cos
φ

3
(3.2.4)
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and

(xy)bh = −
√

−4F1(R0)
κρ0−F2(T0)ρ0

2
+ f1(R0)+f2(T0)

2

(cos
φ

3
−
√

3 sin
φ

3
), (3.2.5)

where

cosφ = −3m1

√
−F1(R0)

κρ0−F2(T0)ρ0
2

+ f1(R0)+f2(T0)
2

. (3.2.6)

When m1 = 0, Eqs. (3.2.5) and (3.2.6) take on the following form

(xy)c =

√
−3F1(R0)

κρ0−F2(T0)ρ0
2

+ f1(R0)+f2(T0)
2

,

(xy)bh = 0. (3.2.7)

Case(2): When 3m =

√
−F1(R0)

κρ0−F2(T0)ρ0
2

+
f1(R0)+f2(T0)

2

, we have (xy)c = (xy)bh,

i.e.,

(xy)c = (xy)bh =

√
−F1(R0)

κρ0−F2(T0)ρ0
2

+ f1(R0)+f2(T0)
2

. (3.2.8)

The following is the range of these horizons

0 ≤ (xy)bh ≤
√

−F1(R0)
κρ0−F2(T0)ρ0

2
+ f1(R0)+f2(T0)

2

≤ (xy)c

≤
√

−3F1(R0)
κρ0−F2(T0)ρ0

2
+ f1(R0)+f2(T0)

2

. (3.2.9)

Case (3): There is no positive root at all for 3m1 >

√
−F1(R0)

κρ0−F2(T0)ρ0
2

+
f1(R0)+f2(T0)

2

.

As a result, in this scenario, no apparent horizon will form. Eqs. (3.2.2) and

(3.1.22) may be used to calculate the time required to shape the apparent

horizon. It follows from Eqs. (3.2.2) and (3.1.22) that

tn = ts −
√

−4F1(R0)
κρ0−F2(T0)ρ0

2
+ f1(R0)+f2(T0)

2

sinh−1[
Ln

2m1(r)
− 1]

1
2 ,

n = 1, 2. (3.2.10)

When f1(R0) + f2(T0) → −(κρ0 − F2(T0)ρ0), the outcome is the same as

the Tolman-Bondi [10] solution

tn = ts −
4m

3
. (3.2.11)
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Eq.(3.2.10) yields

(xy)n
2m

= cosh2 αn, (3.2.12)

here

αn(R, T ) =

√
−3(κρ0−F2(T0)ρ0

2
+ f1(R0)+f2(T0)

2
)

4F1(R0)
. (3.2.13)

It is obvious from Eq.(3.2.10) that the trapped areas arise before the sin-

gularity t = ts. The rate of collapse can be calculated using Eq.(3.1.17) as

follows:

ẍy = − m

(xy)2
+

xy

3F1(R0)
[
κρ0 − F2(T0)ρ0

2
+
f1(R0) + f2(T0)

2
]. (3.2.14)

ẍy is required for collapsing process, and it is only feasible if

xy <

[
− 3mF1(R0)

κρ0−F2(T0)ρ0
2

+ f1(R0)+f2(T0)
2

] 1
3

. (3.2.15)

When the expression 1
F1(R0)

(κρ0−F2(T0)ρ0
2

+ f1(R0)+f2(T0)
2

) < 0 is fulfilled in

Eq.(3.2.14), the preceding equation holds. It’s worth noting that the col-

lapsing process is slowed by the f1(R0) + f2(T0) term. Due to the f1(R0) +

f2(T0) term, two horizons, namely BH horizon and CH, occur. The f(R, T )

term, as pointed out in [5], performs the same function as the CC in general

relativity. Our research shows that the term (−F2(T0)ρ0
2

+ f1(R0)+f2(T0)
2

) serves

the same purpose as the CC in general relativity.
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Chapter 4

Effects of Electromagnetic
Field on Gravitational Collapse
in f (R,T) Gravity

In this chapter, we investigate spherically symmetric collapse with isotropic

fluid matter in the existence of an electromagnetic field in f (R,T) gravity.

By studying static exterior and non-static interior spherically symmetric

spacetimes, we applied the Darmois and Rosa matching criteria. We look

at the physical significance of apparent horizons. It includes three sec-

tions. Section 4.1 contains Maxwell and Einstein field equations. Section

4.2 contains solution of field equations. Subsection 4.2.1 contains solution

for f(R, T ) = R + 2f(T ) model. Subsection 4.2.2 contains solution for

f(R, T ) = f1(R) + f2(T ) model. Section 4.3 contains apparent horizons.

4.1 Maxwell and Einstein Field Equations

We consider non-static spherically symmetric spacetime for the inner section

as follows:

ds2
− = dt2 −D2dr2 − L2(dθ2 + sin2θdφ2), (4.1.1)
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where D = D(r, t) and L = L(r, t). For an isotropic fluid, the stress energy

tensor is defined as

Tϕζ = (ρ+ p)uϕuζ − pgϕζ , (4.1.2)

here uϕ, p and ρ are the 4 dimensional velocity vector meeting the equa-

tion uϕ = δ0
ϕ, pressure and matter density of the fluid respectively. Using

Eqs.(1.4.20), (4.1.2), and (1.3.7), the field equations Eq.(1.4.20) can be

written as follows (We set κ = 8πG = 1 for the rest of this study)

fR(R, T )Rϕψ −
1

2
f(R, T )gϕψ −∇ϕ∇ψfR(R, T ) + gϕψ∇ζ∇ζfR(R, T )

= (ρ+ p)uϕuψ − pgϕψ + fT (R, T )(ρ+ p)uϕuψ

+
1

4π
(−gµνFϕµFψν +

1

4
gϕψFµνF

µν). (4.1.3)

Solving the Maxwell equations Eq.(1.3.6) for the metric Eq.(4.1.1) yields

the Einstein-Maxwell equations. Magnetic field will be vanish due to the

charged coordinate co-moving system. In this case, the four potential and

four current take the form

φϕ = (φ(t, r), 0, 0, 0), (4.1.4)

ϕ = σuϕ, (4.1.5)

here σ represents the charge density. Eq.(4.1.4) and Eq.(1.3.5), we may

deduce that

F01 = −F10 = −∂φ
∂r
, (4.1.6)

and also utilizing Eqs.(4.1.5) and (1.3.6), it follows that

∂2φ

∂r2
− (

D′

D
− 2

L′

L
)
∂φ

∂r
= 4πσD2, (4.1.7)

∂2φ

∂t∂r
− (

Ḋ

D
− 2

L̇

L
)
∂φ

∂r
= 0. (4.1.8)
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Integrating Eq.(4.1.7), it follows that

∂φ

∂r
=
c(r)D

L2
, (4.1.9)

The intensity of electric charge in the inner region is provided by c(r) =

4π
∫ r

0
σDL2dr. E(r, t) = c

4πL2 is the uniform intensity of electric charge

that is spread throughout the unit spherical area.

4.2 Solution of Field Equations

In this section we will obtain solution of field equations for two different

f(R,T) models. In the first subsection we will obtain solution of field equa-

tions for f(R, T ) = R+ 2f(T ) model and in the second subsection solution

field equations will be obtained for f(R, T ) = f1(R) + f2(T ) model.

4.2.1 Solution for f(R, T ) = R + 2f(T ) Model

Utilizing Eq.(4.1.3) with f(R, T ) = R + 2f(T ), here f(T ) = λT and λ is

any non-zero arbitrary constant, we obtain

Rϕψ = (ρ+ p)uϕuψ − pgϕψ + 2λ(ρ+ p)uϕuψ

+
gϕψ
2

(R + 2λT ) +
1

4π
(−gµνFϕµFψν +

1

4
gϕψFµνF

µν). (4.2.1)

43



We get four independent partial differential equations for the inside region

Eq.(4.1.1), as shown below:

− D̈

D
− 2

L̈

L
= ρ+ 2λ(ρ+ p) + 2πE2

0 +
1

2
(R + 2λT ), (4.2.2)

− D̈

D
− 2

Ḋ

D

L̇

L
+

2

D2
[
L′′

L
− D′L′

DL
] =

1

2
(R + 2λT )

−p+ 2πE2
0 , (4.2.3)

− L̈

L
− (

L̇

L
)2 − ḊL̇

DL
+

1

D2
[
L′′

L
+ (

L′

L
)2 − D′L′

DL
− (

D

L
)2]

=
1

2
(R + 2λT )− p− 2πE2

0 , (4.2.4)

− 2
L̇′

L
+ 2

˙DL′

DL
= 0. (4.2.5)

A dash and a dot indicate the partial derivatives w.r.t ”r” and ”t”, respec-

tively. It follows from Eq.(4.2.5) that

D(r, t) =
L′(r, t)

X1

, (4.2.6)

where X1 = X1(r). Using Eq.(4.2.6) in Eqs.(4.2.5)-(4.2.2), we get

2
L̈

L
+ (

L̇

L
)2 + (

1−X2
1

L2
) =

1

2
[(p− ρ)− λ(p+ ρ)]

+ 2πE2
0 −

1

2
(R + 2λT ). (4.2.7)

Using the energy tensor trace in the previous equation, it yields

2
L̈

L
+ (

L̇

L
)2 + (

1−X2
1

L2
) =

1

2
[(p− ρ)− λ(p+ ρ)]

+ 2πE2
0 −

1

2
(R + 2λ(ρ+ 3p)). (4.2.8)

By solving the preceding equation, we obtain the explicit value of D. We

utilize the assumptions R = R0 = constant and the linear equation of state

p = ςρ with ς = −4
6

and λ = 1 for the solution. Eqs.(4.2.8) take the

following form when these conditions are employed

2
L̈

L
+ (

L̇

L
)2 + (

1−X2
1

L2
) = 2πE2

0 −
1

2
R0. (4.2.9)
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Eqs.(4.2.9) integrating with respect to t, it yields

(L̇)2 = X2
1 − 1 + 2

m1(r)

L
+
L2

3
[2πE2

0 −
1

2
R0], (4.2.10)

here m1 = m1(r) and has the following value

m′1 = E2
0L
′L2. (4.2.11)

Eqs.(4.2.11) integrating w.r.t r, it yields

m1(r) = E2
0

∫
L′L2dr + a(t), (4.2.12)

where a(t) is an integration constant. We consider the mass m1(r) to be pos-

itive for physical reasons, i.e. m1(r) > 0. We use the Reissner-Nordstrom

spacetime for the outer section, which is given as

ds2
+ = N(R )dT2 − 1

N (R )
dR 2 − R2(dθ2 + sin2θdφ2), (4.2.13)

here

N (R ) = (1− 2M

R
+
Q2

R 2
), (4.2.14)

where Q denotes charge and M denotes a non-zero constant, respectively.

We use the Rosa [116] and Darmois [111] matching criteria for smooth inner

and outer region matching over Σ, it follows that

(DL̇′ − ḊL′)Σ = 0, (4.2.15)

M =
L

2
[1− L̇2 − L′2

D2
+
Q2

L2
]Σ. (4.2.16)

[hαβ] = 0, [k] = 0, [R] = 0, [T ] = 0,

nc(fRR[∂cR] + fRT [∂cT ] = 0,

(8π + fT )Sαβ = −εfR[Kαβ]. (4.2.17)
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The constraints are specified in Eq.(4.2.15) and Eq.(4.2.16) due to Darmois

matching criteria. The restriction given in Eq.(4.2.17) is due to f (R,T)

gravity. When Eq.(4.2.10) and Eq.(4.2.6) are used in Eq.(4.2.16), it yields

M =
Q2

2L
+m1(r)− L3

6
[2πE2

0 −
1

2
R0]. (4.2.18)

The total energy for the inner section may be calculated using the formula,

according to Misner and Sharp [104]

M(r, t) =
L

2
[1 + gϕψL,ϕL,ψ]. (4.2.19)

After applying Eq.(4.2.10) and Eq. (4.2.6), M(r, t) takes the form

M(r, t) =
c2

2L
+m1(r)− L3

6
[2πE2

0 −
1

2
R0]. (4.2.20)

Here, we suppose that

2πE2
0 −

1

2
R0 > 0. (4.2.21)

The value L takes the following form when utilizing Eq. (4.2.10) with

X1(r) = 1

L = (
6m1

2πE2
0 − 1

2
R0

)
1
3 sinh

2
3 β(r, t). (4.2.22)

here

β(r, t) =

√
3(2πE2

0 − 1
2
R0)

4
[ts(r)− t]. (4.2.23)

Use the value of L in Eq.(4.2.6) with X(r) = 1, we obtain

D = (
6m1

2πE2
0 − 1

2
R0

)
1
3 [
m′1
3m1

sinh β(r, t)

+ t′s(r)

√
2πE2

0 − 1
2
R0

3
cosh β(r, t)] sinh

−1
3 β(r, t), (4.2.24)
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When E → 0 and R0 + 4T0 → 0 , we get Tolman-Bondi solution [10] from

the above equations

L = [
9m1(r)

2
(ts − t)2]

1
3 , (4.2.25)

D =
m′1(ts − t) + 2m1t

′
s

[6m2
1(ts − t)]

1
3

. (4.2.26)

4.2.2 Solution for f(R, T ) = f1(R) + f2(T ) Model

Utilizing Eq.(4.1.3) with f(R, T ) = f1(R) + f2(T ), we obtain

Rϕψ =
1

F1(R)
[(ρ+ p)uϕuψ − pgϕψ + F2(T )(ρ+ p)uϕuψ

+
gϕψ
2

(f(R, T )) +∇ϕ∇ψF1(R)− gϕψ∇ζ∇ζF1(R)

+
1

4π
(−gµνFϕµFψν +

1

4
gϕψFµνF

µν)]. (4.2.27)

Here F1(R) = ∂f1(R)
∂R

and F2(T ) = ∂f2(T )
∂T

. We get four independent partial

differential equations for the inside region Eq.(4.1.1), as shown below:

− D̈

D
− 2

L̈

L
=

1

F1

[ρ+ F2(ρ+ p) + 2πE2
0 +

f(R, T )

2
− [−F

′′
1

D2

+
Ḋ

D
Ḟ1 +

D′

D3
F ′1 + 2

L̇

L
Ḟ1 − 2

L′

D2L
F ′1]], (4.2.28)

− D̈

D
− 2

Ḋ

D

L̇

L
+

2

D2
[
L′′

L
− D′L′

DL
] =

1

F1

[
f(R, T )

2
− p+ 2πE2

0

+ F̈1 + 2
L̇

L
Ḟ1 − 2

L′

D2L
F ′1)], (4.2.29)

− L̈

L
− (

L̇

L
)2 − ḊL̇

DL
+

1

D2
[
L′′

L
+ (

L′

L
)2 − D′L′

DL
− (

D

L
)2]

=
1

F1

[
f(R, T )

2
− p− 2πE2

0 −
(
F̈1 −

F ′′1
D2

+
Ḋ

D
Ḟ1

+
D′

D3
F ′1 +

L̇

L
Ḟ1 −

L′F ′1
D2L

)
], (4.2.30)

− 2
L̇′

L
+ 2

˙DL′

DL
=

1

F1

[Ḟ1
′ − Ḋ

D
F ′1]. (4.2.31)

A dash and a dot indicate the partial derivatives w.r.t ”r” and ”t”, re-

spectively. The explicit value of D is required, which may be found by
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solving the set of partial differential equations Eqs.(4.2.28)-(4.2.31). To

solve these severely non-linear equations, we use R = R0 = constant and

T = T0 = constant. This implies that the density and pressure are con-

stant, Eqs. (4.2.28)-(4.2.31) will have the following form

− D̈

D
− 2

L̈

L
=

1

F1(R0)
[ρ0 + F2(T0)(ρ0 + p0)

+2πE2
0 +

f(R0, T0)

2
], (4.2.32)

− D̈

D
− 2

Ḋ

D

L̇

L
+

2

D2
[
L′′

L
− D′L′

DL
] =

1

F1(R0)
[
f(R0, T0)

2

− p0 + 2πE2
0 ], (4.2.33)

− L̈

L
− (

L̇

L
)2 − ḊL̇

DL
+

1

D2
[
L′′

L
+ (

L′

L
)2 − D′L′

DL
− (

D

L
)2]

=
1

F1(R0)
[
f(R0, T0)

2
− p0 − 2πE2

0 ], (4.2.34)

− 2
L̇′

L
+ 2

˙DL′

DL
= 0. (4.2.35)

It follows from Eq.(4.2.35) that

D(r, t) =
L′(r, t)

X2

, (4.2.36)

where X2 = X2(r). Substituting Eq.(4.2.36) in Eqs.(4.2.32)-(4.2.34), we get

2
L̈

L
+ (

L̇

L
)2 + (

1−X2
2

L2
) = − 1

F1(R0)

× [
1

2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0, T0)

2
].(4.2.37)

Eqs.(4.2.37) integrating with respect to t, it yields

(L̇)2 = X2
2 − 1 + 2

m2(r)

L
+

L2

3F1(R0)

× [
1

2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0, T0)

2
],(4.2.38)

here m2 = m2(r) and has the following value

m′2 =
1

2F1(R0)
(p0 + ρ0 + E2

0)L′L2. (4.2.39)
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Eqs.(4.2.39) integrating w.r.t r, it yields

m2(r) =
1

2F1(R0)
(p0 + ρ0 + E2

0)

∫
L′L2dr + b(t), (4.2.40)

where b(t) is an integration constant and we consider the mass m2(r) to be

positive due to physical reason. When Eq.(4.2.38) and Eq.(4.2.36) are used

in Eq.(4.2.16), it follows that

M =
Q2

2L
+m2(r)− L3

6F1(R0)
[
1

2
(p0 − ρ0)

−F2(T0)(p0 + ρ0) + 2πE2
0 −

f(R0, T0)

2
]. (4.2.41)

The total energy for the inner section may be calculated using the formula,

according to Misner and Sharp [105]

M(r, t) =
L

2
[1 + gϕψL,ϕL,ψ]. (4.2.42)

After applying Eq.(4.2.38) and Eq.(4.2.36), M(r, t) takes the form

M(r, t) =
c2

2L
+m2(r)− L3

6F1(R0)

× [
1

2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0, T0)

2
].(4.2.43)

Here, we assume that

1

F1(R0)
[
1

2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0, T0)

2
] > 0. (4.2.44)

The value of the metric variable L takes the following form when utilizing

Eq.(4.2.38) with X2(r) = 1

L = (
6m2F1(R0)

1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 − 1
2
f(R0, T0)

)
1

n+1 sinh
2
3 ω(r, t).

(4.2.45)
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Use the value of L in Eq. (4.2.36) with X2(r) = 1, it yields

D = (
6m2F1(R0)

1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 − 1
2
f(R0, T0)

)
1
3 [
m′2
3m2

sinhω(r, t)

+t′s(r)

√
1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 − 1
2
f(R0, T0)

3F1(R0)

coshω(r, t)] sinh
−1
3 ω(r, t), (4.2.46)

here

ω(r, t) =

√
3(1

2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 − 1
2
f(R0, T0))

4F1(R0)
[ts(r)− t].

(4.2.47)

When E → 0 and f(R0, T0) → (p0−ρ0)−2F2(T0)(p0+ρ0)
2

, we get Tolman-Bondi

solution [10],

L = [
9m2(r)

2
(ts − t)2]

1
3 , (4.2.48)

D =
m′2(ts − t) + 2m2t

′
s

[6m2
2(ts − t)]

1
3

. (4.2.49)

4.3 Apparent Horizons

In this part, we examine the BH and CH, as well as the time difference

between the generation of singular points and horizons, given the afore-

mentioned two solutions. The pace of a collapsing star is explained using

Newtonian force. For the inner section Eq.(4.1.1), the border of trapped

2-spheres is illustrated below

gϕψL,ϕ L,ψ = (L̇)2 − (
L′

D
)2 = 0. (4.3.1)

4.3.1 First Solution

Substituting Eq.(4.2.10) in Eq.(4.3.1), we get

[2πE2
0 −

1

2
R0]L3 − 3L+ 6m1 = 0. (4.3.2)
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Different values of L can be used to investigate apparent horizons. When

E0 = 0 and R0 = 0, L takes the value 2m1, called Schwarzschild hori-

zon. When m1 = 0 = E0, the de-Sitter horizon may be calculated using

Eq.(4.3.2)

L =

√
6

R0

. (4.3.3)

We explore the following cases by examining at the positive roots of Eqs.

(4.3.2): Case(1): When 3m1 <
√

1
2πE2

0−
1
2
R0

, we get two horizons, Lc and

Lbh, respectively

Lc =
2√

2πE2
0 − 1

2
R0

cos
φ

3
(4.3.4)

and

Lbh = − 1√
2πE2

0 − 1
2
R0

(cos
φ

3
−
√

3 sin
φ

3
), (4.3.5)

where

cosφ =
−3m1√

2πE2
0 − 1

2
R0

. (4.3.6)

When m1 = 0, Eqs. (4.3.5) and (4.3.4) take on the following form

Lc =
2√

2πE2
0 − 1

2
R0

,

Lbh = 0. (4.3.7)

Case(2): When 3m1 = 1√
2πE2− 1

2
R0

, we have Lc = Lbh, i.e.,

Lc = Lbh =
1√

2πE2
0 − 1

2
R0

. (4.3.8)

The following is the range of these horizons

0 ≤ Lbh ≤
1√

2πE2
0 − 1

2
R0

≤ Lc ≤
2√

2πE2 − 1
2
R0

. (4.3.9)
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The largest area of Lbh is given below

4πL2 =
4π

2πE2
0 − 1

2
R0

, (4.3.10)

and Lc has the largest area between

4π

2πE2
0 − 1

2
R0

, (4.3.11)

and

12π

2πE2
0 − 1

2
R0

. (4.3.12)

Case (3): There is no positive root at all for 3m1 >
1√

2πE2
0−

1
2
R0

. As a

result, in this scenario, no apparent horizon will form. Eqs. (4.3.2) and

(4.2.22) may be used to calculate the time required to shape the apparent

horizon. It follows from Eqs. (4.2.22) and (4.3.2) that

tn = ts −
2√

3[2πE2
0 − 1

2
R0]

sinh−1[
Ln

2m1(r)
− 1]

1
2 , n = 1, 2. (4.3.13)

When R0 → 0 and E → 0, the outcome is the same as the Tolman-Bondi

[10] solution

tn = ts −
4m1

3
. (4.3.14)

Eq.(4.3.13) yields

Ln
2m1

= cosh2 αn, (4.3.15)

here

αn(R0, T0) =

√
3(2πE2

0 − R0

2
)

4
. (4.3.16)

It is obvious from Eq.(4.3.13) that the trapped areas arise before the sin-

gularity t = ts. Utilizing the Eqs. (4.3.4)-(4.3.6), it follows that

d( Lc
2m1

)

dm1

=
1

m1

(
3 cos φ

3

cosφ
−

sin φ
3

sinφ
) < 0, (4.3.17)
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d( Lbh
2m1

)

dm1

=
1

m1

(
3 cos φ+4π

3

cosφ
−

sin φ+4π
3

sinφ
) > 0. (4.3.18)

The time difference between the appearance of a horizon and singularity

can be calculated as follows:

Tn = ts − tn. (4.3.19)

In view of Eq. (4.3.19), Eq. (4.3.15) becomes

dTn

d Ln
2m1

=
1√

3[2πE2
0 − R0

2
] sinhαn coshαn

. (4.3.20)

Using Eq.(4.3.20) and Eq.(4.3.17), it follows that

dT1

dm1

=
dT1

d Lc
2m1

×
d( Lc

2m1
)

dm1

=
1

m1

√
3[2πE2

0 − R0

2
] sinhα1 coshα1

× (−
sin φ

3

sinφ
+

3 cos φ
3

cosφ
) < 0. (4.3.21)

Because T1 is a diminishing function of mass m1, the time gap between the

shaping of the CH and singularity decreases as mass increases. Similarly, if

Eq.(4.3.20) and Eq.(4.3.18) are used, then follows that

dT2

dm1

=
dT2

d Lbh
2m1

×
d( Lbh

2m1
)

dm1

=
1

m1

√
3[2πE2

0 − R0

2
] coshα2 sinhα2

× (
3 cos φ+4π

3

cosφ
−

sin φ+4π
3

sinφ
) > 0. (4.3.22)

Because T2 is a rising function of mass m1, the time gap between the shaping

of a singularity and the black hole horizon increases as mass increases.

φ = 1
2
(1− g00), the relation used to obtain the Newtonian potential for the

inner region

φ =
m1

R
+

R 2

6

(
2πE2

0 −
R0

2

)
. (4.3.23)

53



We can now get the newtonian force by calculating the derivative of Eq.(4.3.23)

F =
−m1

R 2
+

R

3

(
2πE2

0 −
R0

2

)
. (4.3.24)

The Newtonian force will vanish if

m1 =
1

3
√(

2πE2
0 − R0

2

) , (4.3.25)

R =
1√(

2πE2
0 − R0

2

) . (4.3.26)

The collapsing substance will remain unchanged in this situation and will

have no influence on the collapsing process. If (2πE2
0−R0

2
) is larger than zero

and R and m1 are greater than the above given numbers, the Newtonian

force will be greater than zero. The values of R and m1 in the above

inequality reveal that the attractive force is resisted by the R0 term, slowing

the collapse rate of the isotropic fluid. The existence of charge affects the

effects of components R0, as indicated by Eq.(4.3.26) and Eq.(4.3.25). As a

result, the rate of collapse increases as the repulsive effect of R0 is reduced.

The pace of collapse may be calculated using equation Eq.(4.2.10)

L̈ = −m1

L2
+
L

3
[2πE2

0 −
R0

2
]. (4.3.27)

The result obtained in the above equation is identical to the result obtained

using the Newtonian force Eq.(4.3.24). As a result, the concept of collapse

rate is identical to that of Newtonian force.

4.3.2 Second solution

Substituting Eq.(4.2.38) in Eq.(4.3.1), we get

1
F1(R0)

[
1

2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0, T0)

2
)]

L3 −3L+ 6m2 = 0. (4.3.28)
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Different values of L can be used to investigate apparent horizons. When

E0 = 0 and f(R0, T0) = 2(1
2
(p0 − ρ0) − F2(T0)(p0 + ρ0)) then L take the

value 2m2 called Schwarzschild horizon. When m2 = 0 = E0, the de-Sitter

horizon may be calculated using Eq.(4.3.28)

L =

√
3F1(R0)

1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2

. (4.3.29)

We explore the following cases by examining at the positive roots of Eqs.(4.3.28):

Case(1): When 3m2 <

√
F1(R0)

1
2

(p0−ρ0)−F2(T0)(p0+ρ0)+2πE2
0−

f(R0,T0)
2

, we get two

horizons Lc and Lbh respectively

Lc =

√
4F1(R0)

1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2

cos
φ

3
(4.3.30)

and

Lbh = −
√

F1(R0)
1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2

(cos
φ

3
−
√

3 sin
φ

3
),

(4.3.31)

where

cosφ = −3m2

√
F1(R0)

1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2

. (4.3.32)

When m2 = 0, Eqs. (4.3.32) and Eqs. (4.3.31) takes on the following form

Lc =

√
4F1(R0)

1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2

,

Lbh = 0. (4.3.33)

Case(2): When 3m2 =

√
F1(R0)

1
2

(p0−ρ0)−F2(T0)(p0+ρ0)+2πE2− f(R0,T0)
2

, we have Lc =

Lbh i.e,

Lc = Lbh =

√
F1(R0)

1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2

. (4.3.34)
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The following is the range of these horizons

0 ≤ Lbh ≤
√

F1(R0)
1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2

≤ Lc ≤
√

F1(R0)
1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2 − f(R0,T0)

2

.(4.3.35)

The largest area of Lbh is given below

4πL2 =
4πF1(R0)

1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2

, (4.3.36)

and Lc has largest area between

4πF1(R0)
1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2

, (4.3.37)

and

12πF1(R0)
1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2

. (4.3.38)

Case (3): There is no positive root at all for 3m2 >

√
F1(R0)

1
2

(p0−ρ0)−F2(T0)(p0+ρ0)+2πE2
0−

f(R0,T0)
2

.

As a result, in this scenario, no apparent horizon will form. Eq.(4.3.28) and

Eq.(4.2.45) maybe used to calculate the time required to shape the apparent

horizon. It follows from Eq.(4.3.28) and Eq.(4.2.45) that

tn = ts −
√

4F1(R0)

3[1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2
]

× (sinh−1[
Ln

2m2(r)
− 1]

1
2 ), n = 1, 2. (4.3.39)

When E → 0 and f(R0, T0)→ 2(1
2
(p0−ρ0)−F2(T0)(p0 +ρ0)), the outcome

is the same as the Tolman-Bondi [10] solution

tn = ts −
4m2

3
. (4.3.40)

Eq.(4.3.40) yields

Ln
2m2

= cosh2 αn, (4.3.41)
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here

αn(R0, T0) =

√
3(1

2
(p0 − ρ0))− F2(T0)(p0 + ρ0) + 2aπE2

0 −
f(R0,T0)

2

4F1(R0)
.

(4.3.42)

It is obvious from Eq.(4.3.39) that the trapped areas arise before the sin-

gularity t = ts. Substituting the Eqs.(4.3.30)-(4.3.32), it follows that

d( Lc
2m2

)

dm2

=
1

m2

(
3 cos φ

3

cosφ
−

sin φ
3

sinφ
) < 0, (4.3.43)

d( Lbh
2m2

)

dm2

=
1

m2

(
3 cos φ+4π

3

cosφ
−

sin φ+4π
3

sinφ
) > 0. (4.3.44)

The time difference between the appearance of a singularity and horizon

can be calculated as follows:

Tn = ts − tn. (4.3.45)

In view of Eq. (4.3.45), the Eq. (4.3.41) becomes

dTn

d Ln
2m2

=
1√

3
F1(R0)

[1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2
] sinhαn coshαn

.

(4.3.46)

Using Eq.(4.3.46) and Eq.(4.3.43), it follows that

dT1

dm2

=
dT1

d Lc
2m2

×
d( Lc

2m2
)

dm2

=
1

m2

√
3

F1(R0)
[1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2
] sinhα1 coshα1

× (−
sin φ

3

sinφ
+

3 cos φ
3

cosφ
) < 0. (4.3.47)

Because T1 is a diminishing function of mass m2, the time gap between the

shaping of the CH and singularity decreases as mass increases. Similarly if
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Eq.(4.3.46) and Eq.(4.3.44) are used, then it follows that

dT2

dm2

=
dT2

d Lbh
2m2

×
d( Lbh

2m2
)

dm2

=
1

m2

√
3

F1(R0)
[1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0,T0)

2
] coshα2 sinhα2

× (
3 cos φ+4π

3

cosφ
−

sin φ+4π
3

sinφ
) > 0. (4.3.48)

Because T2 is a rising function of mass m2, the time gap between the shaping

of a singularity and the BH horizon increases as mass increases. φ = 1
2
(1−

g00) the relation used to obtain the Newtonian potential for the interior

region the result of which is provided as

φ =
m2

R
+

R 2

6F1(R0)

(1

2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
1

2
f(R0, T0)

)
.

(4.3.49)

We can now get the Newtonian force by calculating the derivative of Eq.(4.3.49)

F =
−m
R 2

+
R

3fR(R0, T0)

(1

2
(p0−ρ0)−F2(T0)(p0 +ρ0) + 2πE2

0 −
1

2
f(R0, T0)

)
.

(4.3.50)

The Newtonian force will vanish if

m2 =
1

3
√

1
F1(R0)

(
1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 − 1
2
f(R0, T0)

) ,
(4.3.51)

R =
1√

1
F1(R0)

(
1
2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 − 1
2
f(R0, T0)

) .
(4.3.52)

The collapsing substance will remain unchanged in this situation and will

have no influence on the collapsing process. If 1
F1(R0)

(1
2
(p0−ρ0)−F2(T0)(p0+

ρ0) + 2πE2
0 − 1

2
f(R0, T0)) is larger than zero and R and m2 are greater

than the above given numbers, the Newtonian force will be greater than
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zero. The values of R and m2 in the above inequality reveal that the at-

tractive force is resisted by the R0 term, slowing the collapse rate of the

isotropic fluid. Because of the presence of F2(T0)(p0 + ρ0) and T in f(R,T)

theory, the rate collapse is slower than in f(R) theory. The existence of

charge affects the effects of terms f(R0, T0), F2(T0)(p0 + ρ0) and T , as indi-

cated by Eqs.(4.3.51) and (4.3.52). Because the repulsive effect of f(R0, T0),

F2(T0)(p0 + ρ0) and T is reduced, the collapse rate is accelerated. The rate

of collapse may be calculated using the equation Eq.(4.2.36)

L̈ = −m2

L2
+

L

3F1(R0)
[
1

2
(p0 − ρ0)− F2(T0)(p0 + ρ0) + 2πE2

0 −
f(R0, T0)

2
].

(4.3.53)

The result obtained in the above equation is identical to the result obtained

using the Newtonian force Eq.(4.3.50). As a result, the concept of collapse

rate is identical to that of Newtonian force.
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Chapter 5

Higher Dimensional
Gravitational Collapse of
Perfect Fluid Spherically
Symmetric Spacetime in
f (R,T) Gravity

In this chapter, we investigate isotropic fluid collapse of (n+2)-dimensional

spherically symmetric spacetime in f (R,T) gravity. Consider a spherically

symmetric (n+2)-dimensional non-static metric in the inner area and a

(n+2)-dimensional Schwarzschild metric in the outer area of the star. We

use the trace of energy tensor and the Ricci scalar as constants to solve

the field equations for the aforementioned parameters in f (R,T) gravity. It

contains two sections. In section 4.1, the field equation in f (R,T) gravity.

Section 4.2 contains apparent horizon.
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5.1 Field Equations in f (R, T ) Gravity

For inner portion, we consider spherically symmetric n+ 2 dimensional non

static spacetime as follows

ds2
− = dt2 −D2dr2 − L2dΩ2, (5.1.1)

here L = L(r, t), D = D(r, t) and

dΩ2 = dϑ2
1 +

n∑
a=2

[
n−1∏
b=1

sin2ϑb]dϑ
2
a = sin2ϑ1dϑ

2
2 + sin2ϑ1sin

2ϑ2dϑ
2
3

+...+ sin2ϑ1sin
2ϑ2sin

2ϑ3...sin
2ϑn−1dϑ

2
n. (5.1.2)

For an isotropic fluid, the stress tensor is defined as

Tµν = (ρ+ p)uµuν − pgµν , (5.1.3)

here uµ, p and ρ are the 4 dimensional velocity vector meeting the equa-

tion uµ = δ0
µ, pressure and matter density of the fluid respectively. Using

Eqs.(1.4.20) and (5.1.3) with f(R, T ) = R+2f(T ) and consider f(T ) = λT ,

here λ is any arbitrary non-zero constant, the field equations Eq.(1.4.20)

can be written as follows

Rµν =
1

fR(R, T )
[κ(ρ+ p)uµuν − pgµν + 2λ(ρ+ p)uµuν +

gµν
2
f(R, T )

+ ∇µ∇νfR(R, T )− gµν∇ψ∇ψfR(R, T ). (5.1.4)
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We acquire independent four partial differential equations for inner metric

(5.1.1) as follows:

− D̈

D
− nL̈

L
=

1

fR(R, T )
[κρ+ 2λ(ρ+ p) +

f(R, T )

2
− [−f

′′
R(R, T )

D2
+
Ḋ

D
ḟR(R, T )

+
D′

D3
f ′R(R, T ) + n

L̇

L
ḟR(R, T )− n L′

D2L
f ′R(R, T )]], (5.1.5)

− D̈

D
− nḊ

D

L̇

L
+

n

D2
[
L′′

L
− D′L′

DL
] =

1

fR(R, T )
[−κpf(R, T )

2
+ f̈R(R, T )

+ n
L̇

L
ḟR(R, T )− n L′

D2L
f ′R(R, T ))], (5.1.6)

− L̈

L
− (n− 1)(

L̇

L
)2 − ḊL̇

DL
+

1

D2
[
L′′

L
+ (n− 1)(

L′

L
)2 − D′L′

DL
− (n− 1)(

D

L
)2]

=
1

fR(R, T )
[
f(R, T )

2
− κp−

(
f̈R(R, T )− f ′′R(R, T )

D2
+
Ḋ

D
ḟR(R, T ) +

D′

D3
f ′R(R, T )

+ ḟR(R, T )(n− 1)
L̇

L
− (n− 1)

L′f ′R(R, T )

D2L

)
], (5.1.7)

− n
L̇′

L
+ n

ḊL′

DL
=

1

fR(R, T )
[ḟR
′
(R, T )− Ḋ

D
f ′R(R, T )]. (5.1.8)

It is reference here that in the whole paper and in he above equations, dif-

ferentiation w.r.t ”r” and ”t” are represented by prime and dot respectively.

In the outer region of the star, we get the n+ 2 dimensional Schwarzschild

metric as:

ds2
+ = (1− 2M

R̆
)dT 2 − 1

(1− 2M

R̆
)
dR̆2 − R̆2dΩ2, (5.1.9)

M denotes a non-zero constant. We use the Rosa [116] and Darmois [110]

matching criteria for smooth inner and outer region matching over Σ, it

follows that

(DL̇′ − ḊL′)Σ = 0, (5.1.10)

M =
(n− 1)Ln−1

2
[1− L̇2 − L′2

D2
]Σ. (5.1.11)
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[hαβ] = 0, [k] = 0, [R] = 0, [T ] = 0,

nc(fRR[∂cR] + fRT [∂cT ] = 0,

(8π + fT )Sαβ = −εfR[Kαβ]. (5.1.12)

The constraints are specified in Eq.(5.1.10) and Eq.(5.1.11) due to Darmois

matching criteria. The restriction given in Eq.(5.1.12) is due to f (R,T)

gravity. The explicit value of D is required for the solution of the set of

partial differential equations Eqs.(5.1.5)-(5.1.8). The resulting equations

are very nonlinear, making it difficult to solve them directly unless we add

specific constraints to the various components involved. As a result, we’ll

use R = R0 and T = T0, where R0 and T0 are non-zero constants. As

a result of this assumption, p = p0 and ρ = ρ0, that is, ρ and p, are

constants. Eqs.(5.1.5)-(5.1.8) assume the following form when using the

preceding assumptions

− D̈

D
− nL̈

L
=

1

fR(R0, T0)
[κρ0 + 2λ(ρ0 + p0) +

f(R0, T0)

2
], (5.1.13)

− D̈

D
− nḊ

D

L̇

L
+

n

D2
[
L′′

L
− D′L′

DL
] =

1

fR(R0, T0)
[
f(R0, T0)

2
− κp0], (5.1.14)

− L̈

L
− (n− 1)(

L̇

L
)2 − ḊL̇

DL
+

1

D2
[
L′′

L
+ (n− 1)(

L′

L
)2 − D′L′

DL
− (n− 1)(

D

L
)2]

=
1

fR(R0, T0)
[
f(R0, T0)

2
− κp0], (5.1.15)

− n
L̇′

L
+ n

ḊL′

DL
= 0. (5.1.16)

Eq.(5.1.16) follows that

D(r, t) =
L′(r, t)

V
, (5.1.17)
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where V = V (r). Using Eq.(5.1.17) in Eqs.(5.1.13)-(5.1.15), we acquire

2
L̈

L
+ (n− 1)(

L̇

L
)2 + (n− 1)(

1− V 2

L2
) = − 1

fR(R0, T0)

× [
κ

n
((n− 1)p0 − ρ0)− 2

λ

n
(p0 + ρ0)− f(R0, T0)

2
]. (5.1.18)

Eqs.(5.1.18) integrating w.r.t t, it yields

(L̇)2 = V 2 − 1 + 2
m(r)

Ln−1
+

L2

(n+ 1)fR(R0, T0)

× [
8κ

n
((n− 1)p0 − ρ0)− 2

λ

n
(p0 + ρ0)− f(R0, T0)

2
], (5.1.19)

here m = m(r) and has the following value

m′ =
κ

nfR(R0, T0)
((n− 1)p0 + ρ0)L′Ln. (5.1.20)

Eqs.(5.1.20) integrating w.r.t r, it follows that

m(r) =
κ

nfR(R0, T0)
((n− 1)p0 + ρ0)

∫
L′Lndr + a(t), (5.1.21)

where a(t) is an integration constant. When Eq.(5.1.17) and Eq.(5.1.19)

are subjected to the 2nd matching condition, the result is

M̆ = (n− 1)m(r)− (n− 1)Ln+1

2(n+ 1)fR(R0, T0)

× [
κ

n
((n− 1)p0 − ρ0)− 2

λ

n
(p0 + ρ0)− f(R0, T0)

2
]. (5.1.22)

The total energy for interior portion may be calculated using Misner and

Sharp [105] definitions

M(r, t) =
(n− 1)Ln−1

2
[1 + gϕζL,ϕL,ζ ]. (5.1.23)
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M(r, t) takes the following form using Eq.(5.1.19)

M(r, t) = (n− 1)m(r)− (n− 1)Ln+1

2(n+ 1)fR(R0, T0)

× [
κ

n
((n− 1)p0 − ρ0)− 2

λ

n
(p0 + ρ0)− f(R0, T0)

2
].(5.1.24)

Here we suppose that,

1

fR(R0, T0)
[((n− 1)p0 − ρ0)

κ

n
− 2

λ

n
(p0 + ρ0)− f(R0, T0)

2
] > 0, (5.1.25)

and the solution of Eq.(5.1.19) with V (r) = 1, it follows that

L = (
2(n+ 1)mfR(R0, T0)

κ
n
((n− 1)p0 − ρ0)− 2λ

n
(p0 + ρ0)− f(R0,T0)

2

)
1

n+1 sinh
2

n+1 ω(r, t).

(5.1.26)

When we use this value of L in Eq.(5.1.17) with V (r) = 1, we obtain

D = (
2(n+ 1)mfR(R0, T0)

κ
n
((n− 1)p0 − ρ0)− 2λ

n
(p0 + ρ0)− f(R0,T0)

2

)
1

n+1 [
m′

(n+ 1)m
sinhω(r, t)

+ t′s(r)

√
κ
n
((n− 1)p0 − ρ0)− 2λ(p0+ρ0)

n
− f(R0,T0)

2

(n+ 1)fR(R0, T0)

coshω(r, t) ] sinh
(1−n)
(1+n) ω(r, t), (5.1.27)

here

ω(r, t) =

√
(n+ 1)(κ

n
((n− 1)p0 − ρ0)− 2λ

n
(p0 + ρ0)− 1

2
f(R0, T0))

4fR(R0, T0)
[ts(r)−t].

(5.1.28)

When f(R0, T0) → 2
κ(p0−ρ0)−2λ

n
(p0+ρ0)

n
, the Tolman-Bondi [10] solution is

obtained form the foregoing equation

L = [
m(r)(n+ 1)2(ts − t)2

2
]

1
n+1 , (5.1.29)

D =
2mt′s +m′(ts − t)

[(ts − t)n−12(n+ 1)n−1mn]
1

n+1

. (5.1.30)
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5.2 Apparent Horizons

The creation of apparent horizons is caused by the existence of unit out-

ward normals and the covering of trapped n-spheres. The following is the

boundary for Eq.(5.1.1):

gϕζL,ϕ L,ζ = (L̇)2 − (
L′

D
)2 = 0. (5.2.1)

Using Eq.(5.1.19) in the above equation , it yields

1
fR(R0,T0)

[
κ

n
((n− 1)p0 − ρ0)− 2

λ

n
(p0 + ρ0)− f(R0, T0)

2
)]

Ln+1 −(n+ 1)Ln−1 + 2(n+ 1)m = 0. (5.2.2)

Different values of L can be used to investigate apparent horizons. When

f(R0, T0) = 2(κ
n
((n − 1)p0 − ρ0) − 2λ

n
(p0 + ρ0))), L takes the value L =

(2m)
1

n−1 , called Schwarzschild horizon. When m = 0, the de-Sitter horizon

may be calculated using Eq.(5.2.2)

L =

√
(n+ 1)fR(R0, T0)

κ
n
((n− 1)p0 − ρ0)− 2λ

n
(p0 + ρ0)− f(R0,T0)

2

. (5.2.3)

In 1
F (R0)

[κ
n
((n− 1)p0 − ρ0)− 2λ

n
(p0 + ρ0)− f(R0,T0)

2
)] and m, the solution of
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Eq.(5.2.2) by perturbation method up to 1st order are obtained as:

(L)ch = (
(n+ 1)fR(R0, T0)

κ
n
((n− 1)p0 − ρ0)− 2λ

n
(p0 + ρ0)− f(R0,T0)

2

)
1
2

− 2((
nfR(R0, T0)

κ((n− 1)p0 − ρ0)− 2λ(p0+ρ0)
n

− f(R0,T0)
2

)

(((n+ 1)
κ((n− 1)p0 − ρ0)− 2λ(p0+ρ0)

n
− fR(R0,T0)

2

nfR(R0, T0)
))

n
2

+ (
κ((n− 1)p0 − ρ0)− 2λ

n
(p0 + ρ0)− 1

2
fR(R0, T0)

n(n− 1)(n+ 1)fR(R0, T0)
)
n−2
2 )m...,(5.2.4)

(L)bh = (2m)
1

n−1 +
1

fR(R0, T0)

× (
κ((n− 1)p0 − ρ0)− 2λ(p0+ρ0)

n
− fR(R0,T0)

2

n(n− 1)(n+ 1)
)

× (2m)
3

n−1f(R0, T0)... (5.2.5)

(L)ch and (L)bh are CH and BH horizon respectively. The existence of

the f(R, T ) term is largely responsible for the emergence of (L)ch. Using

Eqs.(5.1.28) and (5.2.2), the time for the formation of the apparent horizon

may be calculated as follows:

tn = ts −
√

4fR(R0, T0)

(n+ 1)[κ
n
((n− 1)p0 − ρ0)− 2λ

n
(p0 + ρ0)− f(R0,T0)

2
]

× (sinh−1[
(Ln)n−1

2m(r)
− 1]

1
2 ), n = 1, 2. (5.2.6)

The result correspondence to Tolman-Bondi [10] solution when f(R0, T0)→

−2(κ
n
((n− 1)p0 − ρ0)− 2λ

n
(p0 + ρ0)),

tn = ts −
(2nm)

1
n−1

n+ 1
. (5.2.7)

From Eq. (5.2.6) it is clear that the trapped surfaces form earlier than the

singularity t = ts. Eq. (5.2.7) gives the time of formation of trapped sur-

faces for higher dimensional Tolman-Bondi spacetime. The rate of collapse
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can be calculated using Eq.(5.1.19) as follows:

L̈ = −(n− 1)m

Ln
+

L

(n+ 1)fR(R0, T0)
[
κ

n
((n−1)p0−ρ0)−2

λ

n
(p0+ρ0)−f(R0, T0)

2
].

(5.2.8)

L̈ is required for collapsing process, and it is only feasible if

L <

[
− (n− 1)(n+ 1)mfR(R0, T0)

κ
n
((n− 1)p0 − ρ0)− 2λ

n
(p0 + ρ0)− f(R0,T0)

2

] 1
n+1

. (5.2.9)

When the expression 1
fR(R0,T0)

(κ
n
((n − 1)p0 − ρ0) − f(R0,T0)

2
) < 0 is fulfilled

in Eq.(5.2.8), the preceding equation holds. It’s worth noting that the

collapsing process is slowed by the f(R0, T0) term. Due to the f(R0, T0)

term, two horizons, namely BH horizon and CH, occur. The f(R, T ) term,

as pointed out in [5], performs the same function as the CC in GR. It is

evident from our result that the term f(R0, T0)− 2λ
n
(p0 + ρ0) in GR fulfils

the same role as the cosmological constant
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Chapter 6

Summary

This chapter is devoted to discuss the results that were obtained throughout

our research and are listed in the preceding chapters. The most important

and highly dissipative phenomena in gravitational physics is gravitational

collapse. For investigators in this field, the CCC hypothesis gives a lot of

motivation. Many efforts have been attempted to confirm or reject this

concept by exploring different spacetimes and different kinds of collapsing

matter. There has recently been a lot of interest in looking into gravita-

tional collapse in MGT. This inspires us to investigate the problem using

the f (R) and f (R,T) MTG. We have examined anisotropic fluid collapse of

spherically spacetime with charge in f (R) gravity. Also we have examined

gravitational collapse of FRW spacetime with dust, collapse of spherically

spacetime with charge isotropic fluid and higher dimensional collapse of

isotropic fluid in f(R, T ) MGT. In the following results are explored sepa-

rately for each chapter:

In chapter two, we studied anisotropic fluid collapse of spherically space-

time with charge in f (R) gravity. For smooth matching of inner and exte-

rior areas, we employed the Senovilla and Darmois matching criterias. Field

equations with a constant Ricci scalar are used to find closed form solutions.
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For a specific limit, our solution agrees with the Tolman Bondi [10] solu-

tion. The two physical horizons generated during the collapsing process are

BH horizon and CH, whose area decreases in the presence of electromag-

netic charge. The development of the singularity occurs after the creation

of both horizons, and the CCC is validated by f (R) theory. The CC and

the f (R) term have the same impact, and when an electromagnetic field is

included, the collapse rate accelerates faster than in the anisotropic fluid

scenario [42]. we also came to the conclusion that electromagnetic charge

reduced the term f (R) and expedited the collapse process. The time gap be-

tween CH and singularities was also affected by electromagnetic charge. We

can examine the accuracy of our results by checking at previous published

results. When pt = p = pr and E0(t, r) = 0, all of our solutions correspond

to the results of [43]. Our results are consistent with those found in [76] for

pt = p = pr.

In chapter three, we studied the gravitational collapse of dust in content

of f (R,T) gravity. In this study we used f(R, T ) = f1(R) + f2(T ) model.

We used the Rosa and Darmois matching criterias for smooth matching of

exterior and interior portions. Without adding extra constraints, solving

the fields equations analytically is quite difficult. For the solution of field

equations, we assumed (T = T0) and (R = R0). For a specific limit, our

solution agrees with the Tolman Bondi [10] solution. The two physical hori-

zons generated during the collapsing process are BH horizon and CH. The

development of the singularity occurs after the creation of both horizons,

and the CCC is validated by f (R,T) theory. The CC and the f (R,T) term

have the same impact. In f(R, T ) theory, the extra term T slows the col-

lapse rate more than in f(R) theory. The accuracy of our findings may be
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verified by comparing them to previously published findings. The findings

of [41] are obtained by setting T = 0.

In chapter four, we studied perfect fluid spherically symmetric collapse in

f (R,T) gravity with charge. We used two distinct f (R,T) models: f(R, T ) =

R+2f(T ) with f(T ) = λT where λ is any non-zero arbitrary constant, and

f(R, T ) = f1(R) + f2(T ). We used the Rosa and Darmois matching crite-

ria’s for smooth matching of interior and exterior regions. In the first case,

we employ the constant Ricci scalar and the linear equation of state p = ςρ

with ς = −4
6

to solve the field equations. The constant curvature constraint

(R = R0) is utilized in the second case, implying that trace, pressure, and

density are constant values (T = T0, p = p0 and ρ = ρ0). For a specific

limit, our solution agrees with the Tolman Bondi [10] solution. During this

collapsing process, two physical horizons, CH and BH horizon, are gener-

ated, the area of which diminishes in the absence of an electromagnetic

field. The development of the singularity occurs after the creation of both

horizons, and the CCC is validated by f (R,T) theory. The term f(R,T)

acts as a CC, slowing the rate of collapse. In f (R,T) theory, the extra term

T slows the collapse rate more than in f (R) theory. We also said that an

electromagnetic field lowers the limit of the f (R,T) term, speeding up the

collapse process. The electromagnetic field has an impact on the time gap

between the singularities and CH. The accuracy of our findings may be

verified by comparing them to previously published findings. The findings

of [61] are obtained by setting E0(t, r) = 0. The choice of T = 0 yields the

results of [76], and the result of E0(t, r) = 0 = T corresponds to [43].

In chapter five, we studied higher dimensional collapse of perfect fluid in

f(R, T ) gravity. In this study we used f(R, T ) = R+2f(T ) with f(T ) = λT
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where λ is any arbitrary non-zero constant, model. We used the Rosa and

Darmois matching criteria’s for smooth matching of exterior and interior

portions. Without adding extra constraints, solving the fields equations an-

alytically is quite difficult. For the solution of field equations, we assumed

(T = T0) and (R = R0). We came to the conclusion that CH and BH

horizon are two physical horizons that develop during the process. Follow-

ing both horizons, a singularity is generated. The singularity is depicted

as being covered, and the CCC is validated by f (R,T) gravity. It’s worth

noting that the collapsing process is slowed by the f(R0, T0) term. Due to

the f(R0, T0) term, two horizons, namely BH horizon and CH, occur. The

f(R, T ) term, as pointed out in [117], performs the same function as the CC

in GR. It is evident from our result that the term f(R0, T0) − 2λ
n
(p0 + ρ0)

in general relativity fulfils the same role as the CC. Our result is reduced

to a dust case when p = 0. We’d like to point out that our solution for

n = 2 matches the results of Jamil and Sadia [61]. As a result, our findings

represent a generalization of [61].
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