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Abstract

In this thesis, collapsing models in different modified gravity theories are
investigated. We’ve looked into the phenomenon of collapse in f(R) and
f(R,T) theory in particular. The gravitational collapse of spherically sym-
metric metric and Friedmann-Robertson-Walker (FRW) metric is the focus
of our research. We examined the collapsing models of charge anisotropic
fluid in f(R) gravity and dust collapse, charge perfect fluid collapse and
higher dimensional collapse in f(R,T) gravity. The matching criteria are
used for smooth matching of inner and outer regions. The Ricci scalar and
the trace of the energy momentum tensor are assumed to be constant and
linear equation of state are used for solving the field equations. For Col-
lapsing system, we computed the gravitational mass. For various scenarios,
we also examined the apparent horizons and their time creation.

First, we examined at collapsing model of in f(R) gravity. As a result
of this collapse, two physical horizons, called black hole and cosmological
horizons, are detected. After the birth of both horizons, a singularity is
generated. The electromagnetic field lowers the limit of the f(R) term by
lowering the pressure, causing the entire collapse process to accelerate. The
electromagnetic field influences the time gap between the singularities and
cosmological horizon. The impact of the cosmological constant and the
f(R) term is the same. Second, we examined at collapsing models of in
f(R,T) gravity. As a result of this collapse, The cosmological constant in
general relativity and the f(R,T) term have the same impact. In f(R,T)

gravity, the extra term 7" slows the collapse rate more than in f(R) gravity.

vi



The electromagnetic field lowers the limit of the f(R,T) term by lower-
ing the pressure, causing the entire collapse process to accelerate. The
electromagnetic field influences the time gap between the singularities and
cosmological horizon. Two physical horizons, called black hole and cosmo-
logical horizons, are detected. After the birth of both horizons, a singularity

is generated.
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Notations

The signs of the spacetime will be (+,--,-) in this thesis. We'll also utilize
the notations and abbreviations listed below.

GR: General Relativity

MTG:  Modified Theory of Gravity

EFE: Einstein Field Equation

BH: Black Hole

CH: Cosmological Horizon
CC: Cosmological Constant
DE: Dark Energy

CCC: Cosmic Censorship Conjecture
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Introduction

Einstein’s golden year was 1905, when he produced three articles, each of
which was nominated for a Nobel Prize. One of the papers dealt with spe-
cial relativity theory. This theory is applied in a special case when there
is no gravity. During next ten years, he kept working on this theory and
then presented a beautiful theory known as GR. The gravitational force is
expressed in the form of metric curvature in this theory. This theory is
based on the equations of the field, which relate the matter and geometry
of spacetime. The earliest accurate solutions of these equations were the
Schwarzschild metric depicting the outer of a spherically symmetric metric
and the Friedmann cosmological models. There is a spacetime singularity
in each of these solutions at a place where the standard representation of
the spacetime cannot be anticipated [1]. Since then, under specific assump-
tions that permit spacetime singularity, a significant number of accurate
solutions have been obtained.

Gravitational collapse of huge objects causes spacetime singularities in our
universe. This is especially true for huge objects measuring between 109 M, —
108 M, [2], where M, is the basic measure of solar mass. Gravitational col-
lapse describes the process by which enormous things fall under the effect
of gravity. Since the development of the singularity theorem [3]- [5] and
the CCC suggested by Penrose [6], it has remained a fundamental subject
in general relativity. The presence of naked singularity is ruled out by the
cosmic censorship hypothesis. The singularity theorem predicts that if a
trapped surface emerges during the collapse of a compact object, the re-
sult will be a spacetime singularity. These theorems don’t tell us whether
or not a spacetime singularity is visible. This means that no information
about how the energy density and spacetime curvature diverge there can
be obtained.



The following are some of the reasons why examining the accuracy of the
CCC in GR is worthwhile. If naked singularities really exist in GR, they
signal a breakdown in predictability since the development of spacetime be-
yond a naked singularity is impossible to predict. Such singularities would
then indicate to a revision of GR that would restore a proper kind of pre-
dictability in the MTG. Furthermore, if GR permits naked singularities,
they may be observed in nature. Given the lack of a theorem proving or
disproving CCC, it would be fascinating to analyze a model case of gravi-
tational collapse to see if the collapse results in a observable singularity or
a BH.

As a result, the most of gravitational collapse research has focused on spher-
ically symmetric systems [1]. This is owing to the fact that these systems
are straightforward and have clear physical implications. The benefit of
such symmetry is that it may be solved analytically to provide precise re-
sults. Depending on the initial data, there are both naked singularity and
BH solutions in these examples.

Oppenheimer and Snyder [7] are the initiators in studying a model of grav-
itational collapse. They considered the Friedmann model in inner and the
static Schwarzschild in outer regions of the star. They found that the end
state of a symmetric spherically inhomogeneous dust collapsing model is
a BH. They did not observe local or global naked singularity. This work
opened a new gate to the other researchers. The spherically symmetric inho-
mogeneous dust collapse described by the Tolamn-Bondi metric [8]- [9] has
been investigated by several authors [10]- [18]. Markovic and Shapiro [19]
also considered the model of [7] and carried out their research in the presence
of positive CC. Later on, Lake [20] extended the work of [19] by adding both
negative and positive CC to the EFEs. A perfect fluid collapse with positive
CC has been analyzed by Sharif and Ahmad [21]. Rocha et al. [22] analyzed
the collapse of self similar perfect fluid model. Spherical anisotropic col-
lapse and expansion solutions of EFEs have been investigated by Glass [23].
Gravitational collapse of shear free and perfect fluid model with heat flux
has been examined by Herrera et al. [24] with the conformal flatness condi-
tion. The collapse of spherical radiating model with vanishing Weyl stresses
has been examined by Maharaj et al. [25].

Many modifications to Einstein’s GR have been proposed in the past. f(G),
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f(R), f(R,T) and f(R,G) are some MTG which have been presented in the
near past. To examine the gravitational collapse in MTG, a great number
of researchers have shown their interest. Among the MTG, f(R) theory is
one of the most well-known theory of gravity in which Ricci scalar has a
generic function called Lagrangian. This theory was first proposed by Hans
Adolph Buchdah [26] in 1970. This theory acquired by fixing Ricci scalar
with its generic function. In such a developing universe, the f(R) gravity
describes the change from deceleration to acceleration rather naturally. Due
to its simplicity in the modification, this theory has a dominant popularity.
Different people have contributed a significant amount of work to this the-
ory [27]- [36]. Pun et al. [37] analyzed the presence of a Schwarzschild-like
BH solution in f(R) gravity. Capozziello et al [38] explored the grouping of
galaxies using f(R) gravity. The f(R) theory [39] provides the stability and
existence of neutron stars. In f(R) gravity, Addazi and Capozziello [40] ex-
plored the destiny of Schwarzschild de-sitter BH. Farasat et al. [41] explored
dust collapse in the f(R) gravity, and Ahmad and Shoaib [42] generalized
their findings. Sharif and Kausar [43] analyzed the collapse of a spheri-
cally symmetric isotropic fluid using f(R) theory, while Abbas et al. [44]
generalized their findings. In f(R) gravity, Capozziello et al. [45] analyzed
cosmologial isotropic fluids.

Harko et al. [46] developed f(R,T) theory as a modification of f(R) theory
in 2011. Different people have contributed a significant amount of work
to this theory [47]- [56]. In palatini f(R,T) gravity, Barrientos and Ru-
bilar [57] looked at the singularities in the surface curvature of polytropic
spheres and found that they don’t occur when these polytropic spheres
form a constrained family of models. Using f(R,T) gravity, Adhav [58]
looked at the precise solution for Bianchi type I locally rotationally sym-
metric metric. In f(R,T)gravity, Sahoo et al. [59] examined the cosmology
background of power and exponential volumetric laws growth. Shabani and
Ziaie [60] examined the stability of the Einstein stationary universe under
f(R,T) gravity and discovered that f(R) unbalanced models are balance
under modified f(R,T) gravity. The spherically symmetric isotropic fluid
collapse under f(R,T) gravity was examined by Jamil and Sadia [61]. They
came to the conclusion that two physical horizons are generated and that

the phrase f(R,T) slows the mechanism of collapse.
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For the last few decades, researchers have been fascinated by the behavior
of electromagnetic fields under a powerful gravitational environment. The
influence of the electromagnetic field on the collapsing phenomena has been
recognized by several studies. When an electromagnetic field is introduced
into a collapsing situation, the Coulomb repulsive force balances the grav-
itational attraction force [62]. Numerous scholars in GR and MTG have
looked at the collapse of several fluid models with and without charge [63]-
[71]. Sahoo and Mishra [72] studied cylindrically symmetric cosmic strings
connected with Maxwell fields in biometric relativity. Sharif and Farooq [73]
investigated the spherical charge stellar model under f(R) gravity. Sharif
and Abbas [74]- [75] examined the isotropic charged fluid collapse in four
and five dimensions with a CC. Sharif and Yousaf [76] examined the collapse
of a isotropic charged fluid using f(R) theory. Nashed and Capozziello [77]
researched and tested the stability of spherically symmetric charged BH
solutions under f(R) gravity. Tripathy and Mishra [78] investigated the
anisotropic solutions in f(R) theory. A number of scholars [79]- [82] have
examined the collapse of anisotropic fluids without and with charge using
matching circumstances. The dynamical properties of an anisotropic cos-
mological model were investigated by Mishra et al. [83]. Ahmed et al. [84]
analyzed spherical collapse using an anisotropic fluid at high speed. Khan
et al. [85] explored last stage of anisotropic charged collapse.

Some modern theories like string theory recommend that gravity is not
just a four-dimension interaction but it interacts in higher dimensions. It
is therefore important to analyze the gravitational collapse and singularity
creation in higher dimensions. In GR, the uncovered higher dimensional
singularities are examined by Banerjee et al [86]. Khan et al. [87] inves-
tigated spherical and anisotropic collpase in five dimensions with a CC.
Feinstein [88] analyzed Gravitational collapse of a black string in a higher
dimensional vacuum. In f(R) gravity, Patil et al [89] analyzed geodesic
structure and naked singularities in higher dimensional dust collapse. Many
researchers looked into collapsing models of higher dimensional to see if the
four-dimensional results were replicated in higher dimensional models. The
difference between the two models has recently been discovered to be nil.
It’s also been noted that in certain circumstances, the outcomes are explic-

itly dependent on higher dimensions. In the existence of heat flux, Nyonyi
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et al. [90] investigated generalised higher dimensional collapse. Their results
are influenced by higher dimensions, and their n = 2 results are similar to
four dimensional results. They also developed a generalised heat transfer
equation for temperature and determined that the temperature profile is
directly proportional to the spacetime dimension. Non-adiabatic collapse
of higher dimension with heat flow was studied by Bhui et al [91]. They
came at a conclusion by comparing their findings to Santos four dimensional
findings [92], that their results are also directly dependent on the spacetime
dimension. Keeping in mind the importance to study gravitational collapse
MTG, we aim to study gravitational collapse in f(R) and f(R,T) theories of
gravity in different physical situation. This thesis is sorted in the following

order:
e Chapter one covers some key terminologies relevant to this thesis.

e Chapter two is related to the study of spherically symmetric charge

anisotropic gravitational collapse in metric f(R) gravity.

e Chapter three is related to the study of gravitational dust collapse in
f(R,T) gravity.

e Chapter four is concerned about the investigation of the gravitational

collapse in the presence of charge in f(R,T) gravity.

e Chapter five is concerned about the investigation of spherically sym-
metric higher dimensional gravitational collapse of isotropic fluid in
f(R,T) gravity.

e The last chapter six contains the summery of the work done.



Chapter 1

Preliminaries

In this chapter, we present some essential and important terminologies to

comprehend this thesis.

1.1 Einstein Field Equations

A field equation, in general, explains how a fundamental force interacts
with matter. Poisson’s equation represents the field equation in Newton’s
gravity as

V) = 4rpG (1.1.1)

where the gravitational potential describes the gravitational field. Einstein
devised a series of equations in which gravity plays a crucial role in the
curvature of spacetime. This curvature is mostly caused by matter fields
that exist in spacetime. Through the well-known field equations, Einstein
described how geometry is associated to matter distribution given by

Rg,.
G = Ry — g“ = KT, (1.1.2)

here p1 and v are Greek indices while G, is Einstein tensor, R is Ricci
scalar, R, is Ricci tensor, T}, is energy momentum tensor, g,, is metric

tensor and k is the coupling constant.



1.2 Energy Momentum Tensor

The energy momentum tensor is a rank two symmetric tensor generally
represented by 7}, and it represents the flux and density of momentum
and energy in spacetime. In GR field equations, this tensor represents the
gravitational field, much as the mass density does in Newtonian gravity. Its
value is 0 in the vacuum case. It has the following form for an arbitrary
manifold

T" = pu'u” + 0’640}, (1.2.1)
here u#, p and o is four-velocity vector, matter density and stress density

defined as following.

dS;

(avﬁ = 17273), (122)

here the force acting on dSgs, the area element, is denoted by dF'*. The

following are the meanings of 7, components:

e The energy density of matter is represented by the Ty, component,

which is represented by p.
e The flux energy and momentum is represented by the 7,9 component.

e The stress tensor representing pressure is represented by the 7;,3 com-

ponent.

1.2.1 Isotropic Fluid

The isotropic fluid is defined in terms of density p and pressure p and has
no viscosity and heat conduction. The energy stress tensor with signature
(+,—, —, —) for isotropic fluid can be described as

T = (p + D)ttt — PYpuv- (1.2.3)
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For signature (—, +,+, +), it is represented as
T = (p + P)uptty + PYpu- (1.2.4)
We have p = 0 in dust case and the energy stress tensor becomes

T = puyi,. (1.2.5)

1.2.2 Anisotropic Fluid

Pressure changes in spatial directions for an anisotropic fluid. An anisotropic
fluid can be defined as the isotropic fluid’s simplest generalization, in which

pressure is controlled separately on each axis. The energy stress tensor with

signature (4, —, —, —) for an anisotropic fluid is defined as follows
T,u,u - (P +pt)V/LVV — PtGuv + (pr - pt)XuXw (126)
here p; and p, are pressures orthogonal to time-like vector V#* = % and

goo

in the direction of time-like vector V#, p denote the energy density and
Xt = % is the unit space-like vector in the direction of radial vector and

XrX, =—1, X*V, =0 and VAV, = 1.

1.3 The Maxwell Equations

By expanding and unifying the laws of Ampere, Faraday and Gauss, a Scot-
tish scientist named James Clark Maxwell was able to combine magnetic
and electric forces, resulting in the Maxwell equations. Gauss law for mag-

netic field, Gauss law for electric field, Faraday law and Ampere law [93]



provide the differential form of these equations given below

VE = 2, (1.3.1)
€0
VB = 0, (1.3.2)
—0B
1 OE
VXB = U()J‘I—ga, (134)

here E is electric field, p is charge density, ¢ is permittivity, J is current
density, B is magnetic field, V is del operator and vy is permeability, re-
spectively. Furthermore, by B = 1o H, the magnetic field intensity H and
magnetic field B are connected. Eqs.(1.3.1-1.3.4) may be described in forms
of four-vectors with the use of tensor that retains Lorentz transformation
and can connect magnetic and electric fields. The field strength tensor,
often known as Maxwell field tensor F), is a two-rank covariant tensor

described in terms of four potential ¢, as

F,uz/ - ¢V,}L - gb#,w (135)

which is anti-symmetric tensor. Maxwell equations are written as in tensor
notation

F’;;;V = UOJ'Ua F[,uy;z/;] = 0. (136)

The energy momentum tensor for electromagnetic fields is a tensor of rank
two described in forms of the Maxwell field tensor, that includes all of the

attributes of electromagnetic fields described by [94]

1
E, = ﬂ(gWF%ng —AFYF,y). (1.3.7)



1.4 Modified Theories of Gravity

In the past many MTG to the general theory of relativity have been pre-
sented. In these theories, modified gravity models have been formulated to
recognize the origin of dark energy as modification to the Einstein Hilbert
action. In contrast to most classic GR theories, this is a new form of DE
approach in which gravity is adjusted. Using this technique, we may be
able to uncover revelent cosmological models in which a late-time accelera-
tion can occur naturally. In the 1920s, shortly after Einstein’s theory was
published, the first effort to modify gravity was made. Following that, the
newly introduced GR changed according on the circumstances, responding
to the emergence of new incentives. However, there was very little ongoing
activity in this field for the next 80 years.

Several theoretical and observational elements have suggested that GR can
be modified on a vast scale or with a lot of energy in the last decade. The ef-
fective Lagrangian including higher order curvature invariants is implied by
both quantum field theories in curved metric and string theory’s low energy
limit. Furthermore, GR has only been evaluated at the size of solar system,
and when evaluated at larger scales or at high energies, it may reveal dif-
ferent flaws. Many scholars also believe that the solar system experiments
aren’t conclusive enough to claim that GR is the only viable explanation at
these sizes. Scalar-tensor theory, Gauss-Bonnet theory, f(R) theory, Brans-
Dicke theory, F(T) theory of gravity, and f(R,T) theory are all modified
theories of gravity that expand GR in some way. We will concentrate on
f(R) theory of gravity and f(R,T) theory of gravity in this thesis, as these

are the most simple and exciting theories.
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1.4.1 f(R) Theory of Gravity

At the solar system, galactic, and cosmological scales, f(R) gravity has
recently produced some intriguing results [95]- [96]. It is one of the easiest

modifications to GR, where f(R)is an arbitrary Ricci scalar function,

S = i/d‘le(R)\/—_g. (1.4.1)

The basic concept is that if the function f(R) modifies the behavior of
gravity in the low curvature region at late periods, then the DE problem
might be explained by the aforesaid action. In the gravitational Lagrangian,
the non-linear factor f(R) causes uncertainty in the action variation. When
the Einstein Hilbert action is varied with regard to the metric g,, and the
affine connection in GR, the affine connection field equations are just the
metric compatibility equations. As a result, the Levi-Civita connection is
assumed to be the affine connection of a spacetime manifold in GR. This is
no longer the case with f(R) MTG, as well as any variational principle can
be applied. Deriving the modified EFEs from f(R) action can be done in
three ways.
1. Metric variational approach: In this conventional approach, the
field equations are obtained by altering action w.r.t the g,,. The current
fields in the gravitational sector are simply those obtained from the metric
tensor since the link is metric-dependent. The action is given in this case
by

S = i / V=9f(R)d'z + Sy, (1.4.2)

here S); is matter action. The associated fields equation turn out to be

R F(R) — g—g” F(R) = V,V,F(R) + gu VoV F(R) = kT,  (1.4.3)

11



here F'(R) = %, V, is covariant derivative, x coupling constant and 7},
energy momentum tensor.

2. Palatini variational approach: The metric and connection are as-
sumed to be separate fields in this technique, and in respect to both of them,

the activity is varied. The field equations, like the Einstein field equations,

are second order. The actions is defined as

S = o [ VEOHR) + Sarlgn ) (1.4.4)

The field equations become when the action varies with regard to the g,,,
it follows that

R F(R) — % F(R) = KT, (1.4.5)

Now the action varies with regard to non-Levi-Civita connection, it follows

that

V(g F(R)v/=g) = 0. (1.4.6)

3. Metric-affine variational approach: Both metric and connection
are treated separately in metric-affine f(R) gravity and the matter action is
supposed to be dependent on the connection as well. The action has been

taken in this case is given by

S = o [ VEOHRIS + Sl T, (147)

The following field equations are determined by changing this action with

respect to the metric tensor and the non-Levi-Civita connection

R, F(R) — % F(R) = KT, (1.4.8)

12



and

1
\/—_—g[VJ(x/—gg“"5K) — Va(F(Rv—g9")]
+ 2F(R(g"TS, — g"1'7,05 + g" Iy ,) = kALY, (1.4.9)
here AY” = _\/ng% is called hyper tensor.

1.4.2 f(R,T) Theory of Gravity

Harko et al. [46] designed the f(R,T)MTG, which is one of the most inspir-
ing and eventual forms of MTG. The matter Lagrangian was defined as the
function of the trace of the energy-momentum tensor 7" and Ricci scalar R.
Exotic imperfect fluids or quantum effects are also thought to be respon-
sible for the dependency on T'. The references term, which is represented
by the variation of the matter stress-energy tensor according to the metric,
is the source of the f(R,T)function’s dependence. The expression of this
reference term can be described as a function of the matter Lagrangian L,,.
As a result, for different choices of L,, one gets a different set of field equa-
tions. This idea is derived by simply substituting in the Einstein-Hilbert
Lagrangian of GR, R is replaced by the generic function f(R,T). In [46], the

action of f(R,T)is given by

S— / d%g\/_—g(i FRT) + L), (1.4.10)

here f(R,T) and L, are the function of trace of energy momentum tensor
and Ricci scalar and matter Lagrangian respectively. The stress of energy

momentum tensor is given as

T, = W9 ln 2 (1.4.11)

e agm g
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Furthermore, the matter Lagrangian is considered to be dependent on the
metric tensor components g, but not on their derivative, resulting in

oL,,
ogrv’

T,uu = g,ulem -2 (1412)

The following expression is derived by altering the action S w.r.t g"”.

1 [0f(RT) df(R,T) 6T
55—%/[ OR OR+ oT 5w5

—%gm,f(R,T)ég“” +2nf/__5 oV =gd'z. (1.4.13)

The variation of R gives
0R = 6(9" Ry) = R 09" + g" (Voo — V,0170,). (1.4.14)

The covariant derivative with regard to the Christoffel symbol, which is
linked to the metric tensor g,, as in GR, is denoted by the letter V. The
Christoffel symbol is now varied in respect to the metric tensor components,
yielding

e 1 e
5F/,LI/ = 59 ’Y<vu59'yu + Vyfsgw - V75g#y). (1415)

Using Eq.(1.4.15) in Eq.(1.4.14), we obtain
0R = R, 00" + ., 06g"™ — V,V,69". (1.4.16)

Substituting Eq.(1.4.16) in Eq.(1.4.13), it yields

0S8 = % [af(ajz 1) R,.,09" + %guuﬂdq“y
ok 5\(/\/__5;#1/ IV =gd'z (1.4.17)
For T, the variation expression is given as [46]
5(9;535) T+ O, (1.4.18)
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here

Y8 5(T“/B)
dghv

Using Eqs.(1.4.18)-(1.4.19) in Eq.(1.4.17), we gets

O =g (1.4.19)

By fo(R.T) = %6 f(R.T) =V, 9, fa(R.T) + 9,0 Dfn(R.T)

= 26T + T fr (R, T) — f2(R,T)(O,). (1.4.20)

When we simply replace f(R,T) by f(R) theory, the field equations of
f(R,T) gravity, provided in Eq.(1.4.20), reduce to the field equations of
f(R) theory. On contraction, Eq.(1.4.20) reveals the following relationship

between R and T'
(R+30)fr(R,T)—-2f(R,T)=T(k — fr(R,T)) + O. (1.4.21)

From Eq. (1.4.20) and Eq. (1.4.21), eliminating the term Ofgr(R,T), it

follows that

1 1 K
RquR<Ra T) - _fR(Ra T>Rg/w + Bg,uuf(R7 T) = /{T,ul/ - §Tg/w

3
fT(R7 T)

—fr(R,1T)0,, — O +V, V. fr(R,T). (1.4.22)

Using the mathematical identity in [97] with the covariant derivative of
Eq.(1.4.20), we obtain

VM[R/U/fR(R7 T) - gzﬂf(Ra T) - VMVVfR(Rv T) + ngDfR(Rv T)] =0.

(1.4.23)

The divergence of the momentum tensor 7}, gives the following equation

fr(R,T)T,,VFinfr(R,T) fr(R,T)0,V*nfr(R,T)

VT = k— fr(R,T) k— fr(R,T)

+V*O,,.
(1.4.24)
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The tensor 6, can be easily measured for the known matter Lagrangian us-
ing Eq.(1.4.19) and Eq.(1.4.23). After varying w.r.t metric tensor, Eq.(1.4.12)

provides the following equation

5T75 _ Lm(Sg%B g%g(‘)Lm 282Lm

69/“’ 69/“/ aglﬂ/ agMVag’Yﬁ
Lmégyﬁ gWﬁ 282Lm

= — 4+ (gulm —T,) — ————. 1.4.25
Sgh 2 (9 ) Dghvdg"8 ( )
The expression gglf can be written as follows using the identity ¢,,9°° = (55
08 _ g 57 (1.4.26)

5gul/ BAIve Oy s t
here §9) = %. Hence using the corresponding values and performing

224 dgh

the basic calculations, the tensor ©,, is obtained from Eq.(1.4.19) in the

following form

Ouw = —2Tp + LG — 29”6%. (1.4.27)
The matter Lagrangian is taken as [46]
L, = M, (1.4.28)
28
for electromagnetic field. As a result, we assume that ©,, = 7). The
Lagrangian can be taken as L,, = —p for perfect fluid. Consequently, from
Eq.(1.4.27) it follows that
Oy = (2T, + Py (1.4.20)

The lagrangian can be considered as L,, = p for dust and anisotropic fluid.

Consequently, from Eq.(1.4.27) it follows that

O, = — (2T — pyu)- (1.4.30)
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1.4.3 Different Models in f(R,T) Theory of Gravity

Harko et al. [46] used some specific classes of f(R,T) models to solve the
field equations, which were obtained directly by describing the functional
form of f(R,T). In general, through the tensor 6,,, the field equations are
influenced by the physical structure of the matter field. Because the field
equations in the f(R,T) modified theory of gravity are dependent on the
type of the matter source and the choice of f(R,T), multiple theoretical
models have been developed by various authors. Harko et al. [46] described

the three types of f(R,T) models as follows:

R+2f(T),
F(RT)=q filR)+ fo(T), (1.4.31)
Ji(R) + f2(R) f3(T).
In the first model of f(R,T) MTG, we suppose that the function f(R,T) is
provided by f(R,T) = R+2f(T), here f(T') is an arbitrary function of the
trace of the energy momentum tensor. In the second model of f(R,T)MTG,
we suppose that the function f(R,T) is provided by f(R,T) = fi(R)+ f2(T),
here fo(T") and fi(R) are arbitrary function of 7" and R. In the last model of
f(R,T) MTG, we suppose that the function f(R,T) is provided by f(R,T) =
[1(R) + f2(R) f3(T), here fi(R) and f>(R) are arbitrary function of R and

f5(T") is arbitrary function of R.

1.5 Spacetime Singularity

One of the most prominent discoveries of general relativity is spacetime
singularity, which created during the dynamical development of the mat-

ter field in a metric. It’s a spot in spacetime where physical parameters
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like metric curvature, energy density, and so on become infinite, and the
rules of physics don’t apply any longer. Singularities emerge when the field
equations solutions are obtained by applying a high level of symmetry on

metric. There are two classes of spacetime singularities
e Coordinates Singularity
e Essential Singularity

A coordinate or detachable singularity is a singularity that develops as a
result of a bad coordinate system choice and may be removed by altering
the coordinate system. A true or essential singularity is one that cannot be

removed. The essential singularity can be further classified into two classes:
e Covered Singularity

e Uncovered Singularity

1.5.1 Covered Singularity

A covered singularity or BH is a place in spacetime where the gravitational
pull is so powerful that even light can’t go away. The event horizon is
the border of covered singularity. When a big star (2 10Mg) undergoes
gravitational collapse, the resulting object has a mass of 2 3.2M,. BHs are

dense and completely collapsed objects with the following features [1, 98]

e Covered singularities describes the gravitational field of a completely
collapsed object. Three parameters can be used to describe this field:
charge (), mass M and angular momentum M,. For a rotating BH,
the connection between magnetic moment and angular momentum is

the same as for electrons.
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Covered singularities are encircled by a surface known as the event
horizon, which has such a strong gravitational field that particles and
light rays that enter it can never escape and can never penetrate

indefinitely.

An essential singularity of the gravitational field is formed in the end
state of collapse, and it resides inside the covered singularity event

horizon.

A covered singularity is stable and can never be annihilated by ex-
ternal fields since it is a dense form of matter. Any sort of substance
that enters the BH from the outside can affect its charge, mass and

angular momentum.

The area of covered singularity does not decrease for any physical
process. This is analogous to the second rule of thermodynamics,
which states that the total entropy of all substance in the universe is

nondecreasing.

1.5.2 Uncovered Singularity

A singularity without any surrounding (event horizon) which can be ob-

served from outside is known as uncovered singularity. The characteristics

of uncovered singularity are as follows [99]- [100]

e The formation of strong gravity and high curvature regions is repre-

sented by an uncovered singularity.

e Gravitational waves are generated by an uncovered singularity:.

19



e Even though collapsing stars have same mass, size, and radius, the
energy released during the creation of uncovered singularity is less

than that released during the creation of covered singularity.

e The knowledge regarding quantum gravity physics may be acquired

through the uncovered singularity.

1.6 Trapped Surface and Apparent Horizons

In 1965, Penrose suggested the notion of trapped area for the develop-
ment of singularity theorems in general relativity. A trapped area is a
two-dimensional spacelike surface that has the feature of all light rays em-
anating from it converging [3]. The presence of a trapped surface in a
spherical gravitational collapse would result in the generation of BH when-
ever the dropping matter is in a poor energy state. When a large amount of
stuff is compacted into a tiny volume during gravitational collapse, trapped
surfaces form. If the validity of CCC is accepted, the existence of trapped
surfaces indicates the creation of BH [101].

BH is an area in spacetime from which nothing, even light can’t go away
[102]. The event horizon is the boundary of BH. In other terms, an event
horizon is the border of an area of spacetime that a distant observer cannot
study. According to Hawking and Ellis [103], the event horizon is a null
area that may portray the causal structure of spacetime in great detail. The
event horizon for Schwarzschild BH is » = 2m. The apparent horizons are
the furthest boundaries of a BH area that encompass trapped surface. The
production of BH is predicted by the gravitational collapse of a huge star,

which predicts that the event horizons would be built before the apparent
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horizons [103]. The event horizon and the apparent horizon of a BH are not
necessarily the identical. Only for stationary spacetimes does the apparent
horizon correspond with the event horizon. If an apparent horizon occur,

it is always contained inside BH event horizon.

1.7 Matching Conditions

The surface of a galaxy (typically represented by X) separates spacetime
geometry into two parts, the inner portion and the outer portion. Radia-
tion and matter are found in the inner of a star, whereas radiation from the
star’s interior is found on the outside [104]. Oppenheimer and Snyder [7]
solved the field equations for the inner section of a galaxy filled with dust
cloud with a Schwarzschild exterior, and Misner and Sharp [105] solved
the field equations for a perfect fluid configuration with a static outside.
Schwarzschild [106]- [107] determined the solutions to the field equations
with a vacuum exterior. The outer solutions of EFEs with an exterior
portion including null radiation were demonstrated by Vaidya [108]. The
Schwarzschild solution was extended to the spherically symmetric charged
case by Reissner [109]. A comparable solution, known as the Reissner-
Nordstrom spacetime, was later shown by Nordstrom [110]. The field equa-
tion solutions for the two sides split by a surface X, i.e., the exterior and
interior spacetime, may be stitched together to form a comprehensive image
of the collapsing phenomena. A series of matching conditions may be used
to achieve smooth matching of a star’s inner and exterior. For the smooth

matching of the two parts, several scientists have developed various ways,
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such as Darmois [111], Brien and Synge [112] and Lichnerowicz [113]. Bon-
ner and Vickers [114] discovered comparable matching conditions. Among
all of the foregoing, the Darmois [111] matching conditions are the most

well-known. Darmois matching criteria are as follows:
1. The first continuity form over 3 yields
(dSi_)E = (dSQ_)E = (d82)2. (171)

Here the line components of inner and outer spacetimes are repre-

sented by ds® and ds?, respectively.
2. The second continuity form over ¥ gives
(K] = K:V -K,=0, (n,v=0,23) (1.7.2)

here K jl, represents the extrinsic curvature which is given by

0%z ozl 0z
K =-nt = apy £ % 1.7.3
uv na (35#851}) 85“ aé-y ? ( )
here n are the outward unit normals to ¥ given by
=+ f’ o 1
n, = —————|2. 1.7.4
RIS Ly

Here the equation of hypersurface ¥ defined by f = 0.

With the modification of GR, a need was felt to improve the matching coni-
tions which could work for f(R) theory of gravity. Senovilla [115] presented

his matching conditions for f(R) theory of gravity as follows:
R|i— = 07 f7RR [a’uR|i— = 07 f,RR 7& 0. (175)

The above restriction specifies that even for very thin shells, the curvature

scalar must be continuous over the surface Y. With the modification of
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f(R) theory of gravity, a need was felt to improve the matching conitions
which could work for f(R,T) theory of gravity. Rosa [116] presented his
matching conditions for f(R,T) theory of gravity. The complete set of
junction conditions for the f(R,T) gravity in the general case of a matching

with a thin-shell at ¥ is thus composed of the following equations as follows:

[haﬁ] =0, [k] =0, [R] =0, [T] =0,
n“(frr|OR] + frr[0:.T) =0,

(871' + fT)Sag = —EfR[Kaﬁ]. (176)
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Chapter 2

Spherically Symmetric
Gravitational Collapse of
Anisotropic Fluid in the
Presence of Charge in Metric

f(R) Gravity

In this chapter, the metric f(R) gravity is used to investigate the spheri-
cally symmetric anisotropic fluid collapse in the existence of charge. For
the exterior and interior portions of a collapsing object, we study static
and spherically symmetric non-static spacetimes, respectively. The Sen-
ovilla and Darmois matching criteria are used for smooth matching of inner
and exterior areas. Field equations are used to find closed form solutions.
Furthermore, we investigate the physical significance of apparent horizons.
It contains two sections. Section 2.1 contains the fields equations and their

solution. Apparent horizons are studied in the last Section 2.2.
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2.1 Field Equations and Their Solutions in
f(R) Gravity

The symmetric 3-dimensional hypersurface Y, which separates metric into
exterior and interior areas, is considered here. The interior region’s line

element is given by
ds* = dt* — D*dr? — L*(d9* + sin® 9d¢?), (2.1.1)

where D = D(t,r) and L = L(t,r). An anisotropic fluid’s stress energy

momentum tensor is defined as

T/W = (p +pt)vuvl/ — DrGuw + (pr - pt)XHXy, (212)

here p, and p, are pressures orthogonal to time-like vector V,, and in the
direction of V), p denote the energy density and X, is the unit space like
vector in the direction of radial vector. Using Eqgs.(1.4.3), (2.1.2), and

(1.3.7), the field equations Eq.(1.4.3) can be presented as follows

1
fRRMV - §f(R)gw/ - VMVVfR + g,uuvvv’yfR = K’((p + pt)VMV;/

1 1
—PtGuw + (pr — pt>X#Xu + E(_QWFWFV@ZJ + ZQWFWFW))-(Q-L?’)

Solving the Maxwell equations Eq.(1.3.6) for the metric Eq.(2.1.1) yields
the Einstein-Maxwell equations. In this case, the four current and four

potential take the form

b, = (¢(t,7),0,0,0), (2.1.4)
97 = ou?, (2.1.5)

here o is charge density. From Eq.(2.1.4) and Eq.(1.3.5), it yields

0
Fop = —Fip = _8_(f’ (2.1.6)
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and using Eq.(2.1.6) and Eq.(1.3.6), we get

82

D L' 0¢
o DL

)25;':: 47TUZ)2,

o b1 oo_
otor D L' or
It is obtained by integrating Eq.(2.1.7)

0.

99 c(r)D
or L

(2.1.7)

(2.1.8)

(2.1.9)

The intensity of electric charge in the inner region is provided by ¢(r) =

Am for oDL*dr. E(r,t) = +%5 is the uniform intensity of electric charge

4mL?

that is spread throughout the unit spherical area. Field equations for the

inner region Eq.(2.1.1) have non-zero and independent components, given

below
D L 1 1 —F"(R) DF(R)
- = 2= = 2k ER + = —
527 F<R)[87Tp+ KT 0+2f(R) [ +t—5
D'F'(R)  2LF(R) 2L'F'(R)
n T ”+ =~ 57— (2.1.10)
D _2DL 2 [L’ D’L’]_ 1 g
D pr DXL DL'T Fm-
1 . 2LF(R) 2L'F'(R)
2
+ 2“/~e7rE0.+ §f('R?+F<R)+ T "Dl (2.1.11)
L L, DL L" L D'l

- @ ot ot o) oo or) .
_ ﬁ[@ ~ Sy — 2w — [F(R)

b Do)+ Ly - EEUY

o2 L - Doy

For explicit value of D, integrating Eq.(2.1.13), it yields

oQL'F + F'[,
D = exp / sFr Lo
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We use the assumption of a constant Ricci scalar to solve field equations
analytically. Given the above assumption, Eqs.(2.1.10)-(2.1.13) will have

the following form

D L 1 f(R.)
- 2= = 2k B2 2.1.1
D F(Ro)[Sﬂ—pO—i_ R 0+ 2 ]7 ( 5)
_b_,pL 2 DL 1 g
D "DL DL DL' F(R,)" 2
+ 2kmE; — 87p,,], (2.1.16)
L L, DL L" L., DL D .,
A2 R Ry 2 A A5 2
1 f(R)
— F(Ro)[ 5 — 87py, — 2k EY], (2.1.17)
DL L
5 =T (2.1.18)
Integration of Eq.(2.1.18) gives
L/
D== 2.1.1
A? ( 9)

here A = A(r). We get the following result by using the above value of D

in Eqs.(2.1.15)-(2.1.17)

Loy 1 /(Ro)
2+ -)? = - 4 2 — — 2 El2 _ .
L+(L) _I_( LQ ) F(RD)[ 7T(< pto p?”o) p0)+ KT 0 2 ]
(2.1.20)

Integrating Eq.(2.1.20) yields

' o £ (Ro)
L2 = A2 —1 Qm(r) N A 9 ) — ) E2 B 0 |

+2— 3F(R0)[ m((2pe, = pr) = po) + 267 Ef — =]
(2.1.21)

Here m(r) is mass of collapsing system and m(r) > 0. From Eq.(2.1.21),
Eq.(2.1.19) and Eq.(2.1.15), we obtain

47
m = IR ((2ps, — pr,) + KES + po) L' L?. (2.1.22)
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After integration with respect to r, Eq.(2.1.22) becomes

Wﬂ—Fmem—mJ+M%ﬂw/ﬂﬁm+dm (2.1.23)

here integration function is ¢(t). For the outer region, we investigate the

Reissner-Nordstrom spacetime, which is given as

1
ds> = B(R)dT* — mdR2 — R*(d6? + sin*0d¢?), (2.1.24)
where
oM Q?
B(R)=(1-"—+ =% 2.1.2
(R)=(1——+23), (2.1.25)

where () denotes charge and M denotes a non-zero constant, respectively.
We use the Senovilla [115] and Darmois [111] matching criteria for smooth

inner and outer region matching over X, it follows that

(DL’ — DL')yx =0, (2.1.26)
L o L7 Q?
M==[1-1"-=+ s 2.1.27
2[ D2 + LQ]E ( )
RIT =0, fmlOR|T =0 fm#0. (2.1.28)

The constraints are specified in Eq.(2.1.26) and Eq.(2.1.27) due to Darmois
matching criteria. The restriction given in Eq.(2.1.28) is due to modi-
fied gravity, which specifies that even for very thin shells, the curvature

scalar must be continuous over the surface X. Substituting Eq.(2.1.21) and

Eq.(2.1.19) in Eq.(2.1.27), we get

0 I3 f (L)
M = 3 +m(r) — GF(RO)[47T((QPTO — PR.) — Po) — 5

]. (2.1.29)

The total energy M (r,t) for the inner portion can be calculated using the

mass function [105]
M(r,t) = 5[1 +¢"°(L) ,(L) s]. (2.1.30)
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In above equation, substituting Eq.(2.1.21) and Eq.(2.1.1), it yields

M) = 57+ m(r) = g tin(@, = o) = ) = L5

o7 ].(2.1.31)

For the solution of Eq.(2.1.21), we suppose that the term m[@r(@pto —

Pry) — po) + 26w E2 — L)) s positive with A = 1, we get

_ 6mF(R,) P
b= (47T((2pto —pr) — po) + 26mE2 — 1 (Ro)) sinhs ¢(r,t), (2.1.32)

brt) = \/3<4w<<2pto —pe) =) £ 20TE] 31 (R)) o g

4F(R,)
From Eq.(2.1.19) with A(r) = 1, it follows that

b= <47T((2Pto — Pro) — po) + 2TEG — %f(Ro)> [3771 sinh(r, ¢)
, A ((2pr, = pr,) — po) + 26mEg — 5 f(Ro)
R 3F(Ry) 2
cosh  9(r, t)] sinh s W(r,t), (2.1.34)

here ty = ts(r). When Ey — 0 and f(R,) — 8W((2pt°_2p’°°)_p°), Eq.(2.1.34)

and Eq.(2.1.32) corresponding to the solution of Tolman-Bondi [10]

I ::P"?”(g-wﬂ%, (2.1.35)

~ mty —m't + 2mt; (2.1.36)
o em2(t, — )5 o

2.2 Apparent Horizons

The following general expression can be used to calculate a fixed border

with null normals pointing outward

g (L), (L), = (L)*> = (%)*=0. (2.2.1)
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Substituting Eq.(2.1.21) and Eq.(2.1.19) in Eq.(2.2.1), we get

R
A7 (2ps, — pry — Po) + 2R7TE§ — f(2 0)

I?—3L+6m=0, (2.2.2
D | +6m =0, (2.2.2)

In L, this is a cubic equation. The positive roots of Eq.(2.2.2) for L are

used to calculate apparent horizons. For

f(Ro) = 2(4n((2pr, — pr.) — po) + 26T Ep), (2.2.3)

we obtain the Schwarzschild horizon that is L = 2m. Using the Cardano

approach, solve Eq.(2.2.2). For Eq.(2.2.2), the Cardano discriminant is

F(R,)
3Im — T .
47 (2py, — Pro — Po) + 26TEG — 5 f(Ro)

For the positive roots of Eq.(2.2.2), we now investigate the three cases

(2.2.4)

below.
case(1):
For 3m < \/ o v— _i()}i";m BE=I7() result in two horizons
4F (R,
L. = (Fe) T cos f, (2.2.5)
AT (2p1, — Pro — po) + 26TEF — 3 f(Rs) 3
I 4F(R,)
bh = —
AT (2pr, — Pr. — po) + 26T EG — 5f(Ro)
X (cosg —V/3sin g), (2.2.6)
here cosp = —3m\/ o v—— _4:&;1 17 For m = 0, it follows from

Eq.(2.2.6) and Eq.(2.2.5) as

4F (R,
Lo = |15 (Fo) - . (22.7)
Tr( pto - p'f‘o - po) _'_ 2K;7TEO - 5 (RO>
Ly, = 0. (2.2.8)
. _ F(R.) . . .
Case(2): For3m = \/4 B oo o BT result in a single horizon
™ to —Pro —Po RTLG—5 o

ie.,
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Le= Lu = /3 F(Fo) Both the BH and the CH

2pto —Pro—po)+26mEZ—5 f(Ro)

have a range that may be expressed as follows

F(R,
AT (2ps, — pro — po) + 26TEG — 5 f(Ro)
3F (R,
<L.< (7) T . (2.2.9)
47T(2pto - p'l"o - po) + 2K:7TE0 - 5 (Rc’)
The maximum proper area for a BH horizon is provided by
81 F(R,)
8rL?* = , 2.2.10
" T 85 @1, — pro — po) + Ak By — [(Ro) ( )
and the CH is placed between
S (F) . (2.2.11)
87 (2pt, — pro — po) + 4kmEG — f(Ro)
and
247 F (R,
mF () . . (2.2.12)
87 (2p1, — pr, — po) + 4TEG — f(Ro)
) F(Ro) . . .
Case(3): For 3m > \/M(tho oo po ) enn =L () there is no horizon in

this case since there are no non-negative roots. We use Eq.(2.2.2) and
Eq.(2.1.32) to compute the apparent horizons time formation, it follows

that

4F (R, DY /N
by = ts— (Fe) 3 sinh 1(——1)§,(n:1,2)
127(2py, — Pro — po) + 26TEG — 5 f(Ro) 2m
(2.2.13)

This corresponds to Tolman Bondi [10] solution, if f(R.) — 87(2ps, — pr, —

po) + 2kTER

4 -3
ton = — =24, +ml]. 2.2.14
p= ot ) (22.14)
From Eq. (2.2.13) it is evident that
Ly,
% — COSh2 z/jm (2.2.15)
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here

3(4m(2py, — Pro — po) + 267EZ — 5 f(R,))
¥n(r:t) = \/ 1F(R.)

[ts(r)—ta]. (2.2.16)

L. > Ly, and ty > t;, respectively, are implied by Eq.(2.2.13) and
Eq.(2.2.9). The time required for a BH and a CH to develop is represented
by ts and t;, respectively. The inequality t; and ts, i.e., to > 1, indicates
that the BH horizon forms after the CH. The time gap between the emer-
gence of a BH and singularity, as well as the emergence of a singularity and

the BH horizon, is as follows. Using Eqs.(2.2.5)-(2.2.6), it can be seen that

d(L=) 1 3cosf  sinf

2m
- <0, 2.2.17
dm m. cosp singp) ( )
d(T%’):i 3003%4”_3111%)>0 (2.2.18)
dm m°  cos¢g sin ¢ ' o

The time difference between the appearance of a singularity and horizon

can be calculated as follows:
T, =ts,—t,. (2.2.19)

From Eq. (2.2.19) and Eq. (2.2.15), it yields

dT,, 1
o= . (2.2.20)
2m \/ 3((2pe. — Pr. — po) + 4umEZ — L8] sinh v, cosh v,

Using Eq. (2.2.17) and Eq. (2.2.20), the time difference between the for-

mation of the singularity and CH can be calculated as follows

dr, _ dT d(£)
dm d2L7Cn dm
B 1
my \/3[47r(2pt0 — Pro — Po) + 26mE3 — 3 f(R,)] sinh v coshyy
) [
sing  3cosz
= < 0. 2.2.21
x| singb+ cosgzﬁ) ( )

32



This indicates that as mass increases, the time it takes for a singularity and
a CH to form decreases. Because T} is a diminishing function of mass. Sim-
ilarly, Eqs. (2.2.20) and (2.2.18) can be used to calculate the time difference

between the formation of the BH horizon and singularity, as follows:

dly _ dD Xcﬂ%%)
dm d% dm

1
m\/[—127rpro + 24mp,, — 1210p, + 657 EG — 2 f(R,)] sinh y, cosh 7y,

s o+4AT ¢+4m
sin =5— 3 cos 3
X (= > 0. 2.2.22
( sin ¢ cos ¢ ) ( )

Contrary to the above, the mass increases the formation time of singular-
ity and CH. It happened because T5 is an increasing function of mass m.

Eq.(2.1.21) determines gravitational collapse rate

. m
jA—
T F(R)

1 L
[4%@&%-—p%——pJ—%2me€——§f(RJ}§, (2.2.23)

L<0is required for the collapsing process, and it is only feasible if

6mF(R,)
Am(2pe, — pro — po) + 26mEF — 5 f(Ro)

=

L <(

). (2.2.24)

Eq.(2.2.24) shows that f(R,) slows the collapsing motion when
%[4#(2}%0 — Pro — Po) + 26mE] — 1 f(Ro)] > 0, but the influence of f(R,)

is reduced by electromagnetic fields.
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Chapter 3

Gravitational Dust Collapse in
f(R,T) Theory of Gravity

In this chapter, the metric f(R,T) theory is used to examine the dust grav-
itational collapse. For the interior and exterior portions of a collapsing
object, we study Friedmann-Robertson-Walker (FRW) and Schwarzschild
spacetimes, respectively. The Rosa and Darmois matching criterias are used
for smooth matching of inner and exterior areas. Field equations are used to
find closed form solutions. Furthermore, we investigate the physical signif-
icance of apparent horizons. It contains two sections. Section 3.1 contains
the fields equations and their solution. Apparent horizons are studied in

the last Section 3.2.

3.1 Field Equations in f(R,T) Gravity

For inner portion, we take 4-dimensional FRW spacetime as follows [41]

ds® = dt* — 2*(t)dr?* — 2*(t)y*(r)(d6* + sin*0d¢?), (3.1.1)
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where z(t) represents the cosmic scale factor and

sinr, k=1,
ylr)=9q n k=0,
sinhr k= -—1.

The stress energy tensor for dust can be defined as

T, = puyt,, (3.1.2)

here u, and p, are the four dimensional velocity vector meeting the equation
u, = 0y and matter density respectively. Using Egs.(1.4.20), (3.1.2), and
(1.3.7) with f(R,T) = fi(R) + f2(T), the field equations Eq.(1.4.20) can

be written as follows

R, = ﬁ[ﬁpuuuu + B (T)(puytty, — pgyu) + gQﬂ(f 1(R) + £2(T))

+V, VL Fi(R) — g V¥V Fi(R)]. (3.1.3)

Here Fi(R) = 8’;1—%%) and Fy(T) = w;—:(FT). We get three independent partial

differential equations for the inside region Eq.(3.1.1), as shown below:

i1 AR + (T L

i i Ly 1 fiR)+ fo(T)

b +.2(5) _2x2y = AR [— ; + F(T)p
+2§F1(R) + Fy(R))], (3.1.5)
iy to Yo (1) 1 AR+ LT

T 22y * 2<5) (xy) + 22 Fl(R)[ 2
+F2(T)p+2§F1(R) + Fy(R)]. (3.1.6)

A dash and a dot indicate the partial derivatives w.r.t ”"r” and ”t”, re-
spectively. These non-linear differential equations do not seem to have an
obvious solution. For obtaining solution, we’ll use R = Ry and T = Ty,

where Ry and Ty are non-zero constants. As a result of this assumption,
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p = po, that is, p is constants. Eqs.(3.1.4)-(3.1.6) assume the following form

when using the preceding assumptions

N N ~ Ni(Ro) + f2(To)
— 2(;) - 2:1:2y = FiRo) [F2(To)po 5 ,(3.1.8)
ooy Y Y 1 _ 1
- + 2(;)2 - :CTy - (x_y>2 + 7292 - Fi(Ro) [F2(To) po
f1(Ro) ‘2F f2(T0>]_ (3.1.9)
From Eqgs.(3.1.7)-(3.1.9), it follows that
N R O 1 kpo — F5(To)po | fi(Ro) + fo(To)
25+(E) +( z?y? )__F1<RO>( 2 ' 2 )
(3.1.10)

The 4-dimensional Schwarzschild metric is taken as outer spacetime

2M 1

R

dR* — R*(d6* + sin®0dp?).  (3.1.11)

We use the Rosa [116] and Darmois [111] matching criteria for smooth inner

and outer region matching over ¥, it follows that
(y/)s =0, (3.1.12)

1
M = é[xy + ziy® — ayy?] . (3.1.13)
s

[haﬁ] =0, [k] =0, [R] =0, [T] =0,
n(frrl0.R] + frr[0.T) = 0,
(871' —I— fT)SaB = —EfR[Kaﬁ]. (3114)
The constraints are specified in Eq.(3.1.12) and Eq.(3.1.13) due to Darmois
matching criteria. The restrictions given in Eq.(3.1.14) is due to f(R,T)
gravity. Taking Eq.(3.1.12) and integrating it gives us
y =M. (3.1.15)
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Here H = H(r). Substituting Eq.(3.1.15) in Eq.(3.1.10), it follows that

i T 1-H? 1 kpo — Fo(To)po . f1(Ro) + fo(Tp)
e A 1) R —

).
(3.1.16)

Integration of above equation w.r.t ¢, gives
o —1 L o) a?  kpo = Fa(To)po N fi(Ro) + f2(T0)

Y2 3 3F(Ry) 2 2 )
(3.1.17)

(&) =

here m = m(r) and has the following value

(kpo — Fo(To)po)x’y?
6F1(Ro)

m(r) = (3.1.18)

We consider the mass m(r) to be positive for physical reasons, i.e. m(r) > 0.

When Eq.(3.1.15) is used in Eq.(3.1.17), it yields

rpo — Fo(To)po n Ji(Ro) + fo(To)
2 2

$3y3

M=m—
6F1(Ry)

(

). (3.1.19)

The total energy for the inner section may be calculated using the formula,

according to Misner and Sharp [105]
Ty o
M(r,t) = 7 [1+ g™ (2y) x (2y) 5 (3.1.20)

Utilizing Eq.(3.1.17), The mass function has the following shape

2?yd kpo — Fo(Ty) po " fi(Ro) + fo(To)

M(r,1) = mir) = gt (P ]

(3.1.21)

The value of the metric function xy takes the following form when utilizing
Eq.(3.1.17) with H(r) =1

—24m(r)F1(Ry)

Ty = (2(/£p0 ~F o) 20 (Ro) £ f2(To)))§ sinh3 a(r,t), (3.1.22)
here
| 3[2(kpo — Fa(To)po) + 2(f1(Ro) + f2(T0))]
a(r,t) = \/— 165, (Ty) [ts(r)—t]. (3.1.23)
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Here t4(r) is considered as an arbitrary function. When fi(Ry) + fo(Tp) —
—(kpo— F2(Th)po), we get Tolman-Bondi solution [10] from the above equa-

tions

(s — 1)?]5. (3.1.24)

3.2 Apparent Horizons

When the border of two trapped spheres is formed, we get the apparent
horizon. In this part, we look for such a border between two trapped spheres
with null outward normals. This is stated for the inner spacetime Eq.(3.1.1)

as
gWX($y>m (Iy)ux = («I.')Zyz - y’Q. (321)
Utilizing Eq.(3.1.17), above equation take the form

1 kpo— Fa(To)po n f1(Ro) + f2(To)

3,3 _ _
Fl(RO)[ 2 5 Jay® 4+ 3y — 6m = 0. (3.2.2)

The values of zy give the apparent horizons. For fi(Ry)+ fo(1o) = —(kpo—
F5(Th)po), we have ab = 2m, i.e., Schwarzschild horizon. It yields de-Sitter

horizon when m = 0, i.e.,

- 31 (Ro)
Ty = \/HP0F2(T0)P0 + J1(Ro)+f2(To) ~ (3'2’?))
2 2

We explore the following cases by examining at the positive roots of

Egs. (3.2.2):

. =1 (Ro) ;
Case(1):  When 3m; < \/WO_FQ(TO)[)O+f1(R0>+f2(TO), we get two horizons,
2 2

(xy). and (zy)pn, respectively

—4F(Ry) ¢
(zy)e = \/Hpo—Fz(To)Po + i)+ (Tb) COS§ (3.24)
2 2
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and

—4F (Ro) o .0
(Y )on = _\/Npo—Fz(To)PO + J1(Ro)+f2(To) (cos 3 \/§SIH§>’ (3.2.5)
2 2
where
_ —F1(Ry)
cos ¢ = —3m1\/ﬁp0F2(To)pO ACDET DR (3.2.6)
2 2

When m; = 0, Egs. (3.2.5) and (3.2.6) take on the following form

(). = —3F1(Ry)
LY)e = kpo—F2(To)po | fi(Ro)+/f2(To)’
2 + 2

(xy)en = 0. (3.2.7)
Case(2):  When 3m = \/HpoF§<TO;,§1+(?1°()RO);J,2(TO), we have (zy). = (2y)pn,
ie.,
(zy)e = (2y)on = \/ RPO_FQ(TO;fi}fﬁLOH TeE (3.2.8)
The following is the range of these horizons :

—F1(Ro)
0< (zy)on < \/ AL A (zy).
2 2

< \/ 371 (F) (3.2.9)

wpo—Fs(To)po + f1(Ro)+f2(To) -
2 2

—F1(Ro)

Case (3):  There is no positive root at all for 3m; > \/npo—Fg(To)po+f1(Ro>;fz(To> .
As a result, in this scenario, no apparent horizon will form. Eqs. (3.2.2) and
(3.1.22) may be used to calculate the time required to shape the apparent

horizon. It follows from Egs. (3.2.2) and (3.1.22) that

—4F L 1
ty =ts — \/ 1(Fo) sinh ' [—"— — 1]z,

rpo—F»(To) f1(Ro)+f2(To)
£o ;opo_|_1 0220 2m1(7=)

n=1,2. (3.2.10)

When fi1(Ro) + fo(To) — —(kpo — Fa(To)po), the outcome is the same as

the Tolman-Bondi [10] solution

by =ty — —. (3.2.11)



Eq.(3.2.10) yields

(?J)n = cosh? o, (3.2.12)
m
here
_S(NPO—FZ(TO)PO + fl(RO)""fQ(TO))
an(R,T) = 2 2 : 3.2.13
(R, T) \/ 47, (Ro) 32.13)

It is obvious from Eq.(3.2.10) that the trapped areas arise before the sin-

gularity t = t;. The rate of collapse can be calculated using Eq.(3.1.17) as

follows:
. m zy  kpo — Fa(To)po | f1(FRo) + fo(Th)
= — . 3.2.14
Y= wr R 2 T 2 b 8
2y is required for collapsing process, and it is only feasible if
3mFy (R s
vy < mF3 (Ro) (3.2.15)

" kpo—Fa(To)po + J1(Ro)+/f2(To)
2 2

When the expression Fl(lRO)(Kp O_Fé(TO)p 0 4/ 1(R°);f2(TU)) < 0 is fulfilled in

Eq.(3.2.14), the preceding equation holds. It’s worth noting that the col-
lapsing process is slowed by the fi(Ry) + f2(Tp) term. Due to the fi(Ry) +
f2(Ty) term, two horizons, namely BH horizon and CH, occur. The f(R,T)

term, as pointed out in [5], performs the same function as the CC in general

—F>(To)po + J1(Ro)+f2(To) )
2

relativity. Our research shows that the term (==

serves

the same purpose as the CC in general relativity.
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Chapter 4

Effects of Electromagnetic
Field on Gravitational Collapse

in f(R,T) Gravity

In this chapter, we investigate spherically symmetric collapse with isotropic
fluid matter in the existence of an electromagnetic field in f(R,T) gravity.
By studying static exterior and non-static interior spherically symmetric
spacetimes, we applied the Darmois and Rosa matching criteria. We look
at the physical significance of apparent horizons. It includes three sec-
tions. Section 4.1 contains Maxwell and Einstein field equations. Section
4.2 contains solution of field equations. Subsection 4.2.1 contains solution
for f(R,T) = R+ 2f(T) model. Subsection 4.2.2 contains solution for

f(R,T) = fi(R) + f2(T) model. Section 4.3 contains apparent horizons.

4.1 Maxwell and Einstein Field Equations

We consider non-static spherically symmetric spacetime for the inner section

as follows:

ds* = dt* — D%dr?® — L*(d6? + sin*0d¢?), (4.1.1)

41



where D = D(r,t) and L = L(r,t). For an isotropic fluid, the stress energy

tensor is defined as
Toc = (p + PIugtc — P, (4.1.2)

here u,, p and p are the 4 dimensional velocity vector meeting the equa-
tion u, = 52, pressure and matter density of the fluid respectively. Using
Eqgs.(1.4.20), (4.1.2), and (1.3.7), the field equations Eq.(1.4.20) can be

written as follows (We set k = 87G =1 for the rest of this study)

fR(R7 T)Rsm/) - %f<R7 T)-gwl) - vlpviﬁfR(R? T) + gwwvévaR(R7 T)

= (p+ p)upty — Pgpy + fr(R, T)(p + p)upty

1 v 1 v
+E(—gﬂ FSOMFiﬁV—i_ZgSOwFNVFM ) (413)

Solving the Maxwell equations Eq.(1.3.6) for the metric Eq.(4.1.1) yields
the Einstein-Maxwell equations. Magnetic field will be vanish due to the
charged coordinate co-moving system. In this case, the four potential and

four current take the form

b, = (¢(t,7),0,0,0), (4.1.4)

9¥ = ou?, (4.1.5)

here o represents the charge density. Eq.(4.1.4) and Eq.(1.3.5), we may

deduce that

9,
F01 = —Fl() = —a—f, (416)

and also utilizing Eqs.(4.1.5) and (1.3.6), it follows that

?¢ D L dp )
Fo D Lo
otor D L’ or

0. (4.1.8)
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Integrating Eq.(4.1.7), it follows that

9¢ _ c(r)D
or L2

(4.1.9)

The intensity of electric charge in the inner region is provided by ¢(r) =

uv for oDL*dr. E(r,t) = ;% is the uniform intensity of electric charge

that is spread throughout the unit spherical area.

4.2 Solution of Field Equations

In this section we will obtain solution of field equations for two different
f(R,T) models. In the first subsection we will obtain solution of field equa-
tions for f(R,T) = R+ 2f(T) model and in the second subsection solution

field equations will be obtained for f(R,T) = fi(R) + f2(T") model.

4.2.1 Solution for f(R,T) = R+ 2f(T) Model

Utilizing Eq.(4.1.3) with f(R,T) = R+ 2f(T), here f(T) = AT and A is

any non-zero arbitrary constant, we obtain

Ry = (p + p)upty — pgpy + 2M(p + p)usuy

g 1 , 1 ,
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We get four independent partial differential equations for the inside region
Eq.(4.1.1), as shown below:

D L

— B—2Z:p+2)\(p+p)+27rE§+

D DL 2. L' DL, 1
o [ - ] = (R 2T

o *pr tplT T pp) TR

L L, DL 1.L." L., DL D,

A TR AR R T A

1

S(R+22T),  (422)

1

= 5(R +2)T) — p — 27E2, (4.2.4)
L' DL

- 274257 =0 (4.2.5)

A dash and a dot indicate the partial derivatives w.r.t "r” and "t”, respec-

tively. It follows from Eq.(4.2.5) that

D(r,t) = 4.2.6
(rt) = S, (4:2:6)
where X; = X;(r). Using Eq.(4.2.6) in Eqgs.(4.2.5)-(4.2.2), we get
L L 1-X2 1
2— =)? Ly =_[(p—p)— A
7t () (g) =5l —p) = Ap + )]
1
+ 27E: — 5(R +2)T). (4.2.7)
Using the energy tensor trace in the previous equation, it yields
L L 1-X2 1
2— =)? Ly =_[(p—p)— A
7t () =5l —p) = Ap + )]
1
+ 27E; — 5(R + 2X(p + 3p)). (4.2.8)

By solving the preceding equation, we obtain the explicit value of D. We
utilize the assumptions R = Ry = constant and the linear equation of state
= ¢p with ¢ = —% and A = 1 for the solution. Eqgs.(4.2.8) take the

following form when these conditions are employed
L L

27+ () +(

1—X? 1
T3 L) =27E2 — 5 fto- (4.2.9)
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Eqgs.(4.2.9) integrating with respect to ¢, it yields

3 L? 1

here m; = my(r) and has the following value
m) = E;L'L*. (4.2.11)
Eqgs.(4.2.11) integrating w.r.t r, it yields
my(r) = E5 / L'L*dr + a(t), (4.2.12)

where a(t) is an integration constant. We consider the mass my () to be pos-
itive for physical reasons, i.e. my(r) > 0. We use the Reissner-Nordstrom

spacetime for the outer section, which is given as

ds® = N(R)dT* — ﬁd}# — R*(d6? + sin*0d¢?), (4.2.13)
here
oM Q?
N(R)=(1- - T %), (4.2.14)

where () denotes charge and M denotes a non-zero constant, respectively.
We use the Rosa [116] and Darmois [111] matching criteria for smooth inner

and outer region matching over ¥, it follows that

(DL’ — DL')s =0, (4.2.15)
L .y L/2 QQ
M=2[-1"= o+ 5l (4.2.16)

n‘(frr[0:.R] + frr|0.T] = 0,
(871' + fT)Sag = —GfR[Kaﬁ]. (4217)
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The constraints are specified in Eq.(4.2.15) and Eq.(4.2.16) due to Darmois
matching criteria. The restriction given in Eq.(4.2.17) is due to f(R,T)
gravity. When Eq.(4.2.10) and Eq.(4.2.6) are used in Eq.(4.2.16), it yields

2 3

Q L 1
M=%+ my(r) — F[27rE§ - 530]. (4.2.18)

The total energy for the inner section may be calculated using the formula,

according to Misner and Sharp [104]
— L e
M (r,t) 5 1+ g?YL,Ly). (4.2.19)

After applying Eq.(4.2.10) and Eq. (4.2.6), M(r,t) takes the form

M t) = S () — Zpnpz— Ly (4.2.20)
r, = oL mq\r 6 Ly 9 0]- 4.
Here, we suppose that
1
2n By — §R0 > 0. (4.2.21)

The value L takes the following form when utilizing Eq. (4.2.10) with

Xl(r) =1
6m; 1.2
L= (m)3 sinh3 B(T, t) (4222)
here
3(2nEf — 3R
B(r,t) = \/ (2 b s () — 1], (4.2.23)
Use the value of L in Eq.(4.2.6) with X(r) = 1, we obtain
6m; 1 mll .
D = hB(r,t
orE2 — IR _
+ ti(r) % cosh B(r,t)]sinh @ B(r,t), (4.2.24)
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When F — 0 and Ry + 47y — 0 , we get Tolman-Bondi solution [10] from

the above equations

L = [ngl(r)(t — )]s, (4.2.25)
_ it =) & 2ty (4.2.26)
[6 l(ts - t)]
4.2.2 Solution for f(R,T) = fi(R) + fo(T) Model
Utilizing Eq.(4.1.3) with f(R,T) = fi(R) + f2(T'), we obtain
1
Ryy = m[(p + p)ugty = pgoy + F2(T)(p + pluyuy
FEERT)) + VVOR(R) — g0 Ve Fi(R)
+4i(_gWF<qu¢v + ;ngwFWFW)]- (4.2.27)

Here Fi(R) = <’9f81_§%R) and Fy(T) = 8f2 . We get four independent partial

differential equations for the inside region Eq.(4.1.1), as shown below:

D L 1 f(R,T) g
Y S F o2rE? ’

D27 F[p+ 2(p+p) +2mE; + 5 - [- D3

D D’ L )
+ EF1 + ﬁF’ + 2LF1 D2LF1/H’ (4.2.28)

D _DL 2 .L" DL, 1 f(RT)

AT S - 4 OrE?
p 2prt ool ~ oL Fl[ 2 P emby
. L . I/
By +2Zp 9~ 42.2
* Nk gy Dl (4.2.29)
i L, DL 111" ', DL D

Dt ) o (7))

1 . f(R,T) 2 (F F D
D’ L. LF
L DL 1 ., D
- 2— 42 = —[F — =F]]. 4.2.31
A dash and a dot indicate the partial derivatives w.r.t ”r” and ”t”, re-

spectively. The explicit value of D is required, which may be found by

47



solving the set of partial differential equations Eqs.(4.2.28)-(4.2.31). To
solve these severely non-linear equations, we use R = Ry = constant and
T = Ty = constant. This implies that the density and pressure are con-
stant, Eqs. (4.2.28)-(4.2.31) will have the following form

D L 1

- -2t = Fy(T,
D27 fﬂ(fﬁﬁ[pO%_ 2(T0)(po + po)
T
+2WE%—FXXE%LLQL (4.2.32)
_Zj_DL+2Hﬂ_D%_ 1 f(Ro,Tp)
D "DL DL DL F(Ry) 2
— po+2mEg), (4.2.33)
L L, DL 1.L." L., DL D,
B 2R TR i AR R T R
1 f(R07T0> 2
- — py — 27E, 4.2.34
Fl(RO) [ 2 Do ™ 0]7 ( )
L' DL
- 27 +257 =0. (4.2.35)
It follows from Eq.(4.2.35) that
L'(rt
b1y = D, (4.2.36)
Xo

where Xy = Xo(r). Substituting Eq.(4.2.36) in Eqgs.(4.2.32)-(4.2.34), we get

L L 1— X2 1
2_ —\2 2 - _
R A ER Ay Y0y
1 Ry, T,
X [5(]90 — po) — Fo(T0) (po + po) + 2mEG — M].(ALQ.?)?)
Eqgs.(4.2.37) integrating with respect to ¢, it yields
. LQ
P = x2_149m)
(L) 2 + i + S (Fo)
1 Ry, T,
X @m—M—EUMm+m+%%—ﬁJL%@m&
here mgy = my(r) and has the following value
1
b= ES)L'L%. 4.2.
my 2F1(R0) (p0+p0+ 0) ( 39)
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Eqgs.(4.2.39) integrating w.r.t r, it yields

ma(r) = m(po + po + E3) / L'L2dr + b(t), (4.2.40)

where b(t) is an integration constant and we consider the mass ms(r) to be
positive due to physical reason. When Eq.(4.2.38) and Eq.(4.2.36) are used

in Eq.(4.2.16), it follows that

Q2 o1

M = o +ma(r) — m%(ﬁo — Po)
_By(Ty)(po + po) + 272 — M]. (4.2.41)

The total energy for the inner section may be calculated using the formula,

according to Misner and Sharp [105]
L 2y

After applying Eq.(4.2.38) and Eq.(4.2.36), M(r,t) takes the form

c? L3
M(r,t) = — =
(n0) = 5p M) = G Ty
1 Ry, T,
X [5(170 — po) — Fa(T0) (po + po) + 2mEG — f(%){}l.zéli%)
Here, we assume that
1 1 f(Ro, Tp)
Fi(Ro) (5o = po) = Fa(To)(po + po) + 27 E — ; 1>0. (4.2.44)

The value of the metric variable L takes the following form when utilizing

Eq.(4.2.38) with X,(r) =1

6m2F1(R0)
2(po — po) — Fo(To)(po + po) + 27EE — L f(Ro, Tp)

L= )%H sinh3 w(r,t).

(4.2.45)
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Use the value of L in Eq. (4.2.36) with Xs(r) = 1, it yields
6moF1 (R :
maFi(Fo) 1 )3 b sinh w(r, t)
(Po — po) — Fo(To)(po + po) + 2mEG — 5 f(Ro, Tp)

3m2
5 (po — po) — Fo(To) (po + po) + 2mEE — 5 f(Ro, Ty)
3F1(Ro)

coshw(r, t)] sinh w(r, t), (4.2.46)

=

D=

N[

+,(r)

here

(1) = [ 2E@0 = p0) = Fo(To) (o + po) + 27§ — 5 (Ro, To))
Ay 4F} (Ro)

[ts(r) —1].
(4.2.47)

When E — 0 and f(Ro,Tp) — (po_pO)_zF;(TO)(p°+p°), we get Tolman-Bondi

solution [10],

9ma(r)
2

/ . /
p = Malls =)+ 2maty (4.2.49)
[6m3(ts —1)]5

L =] (ts — )73, (4.2.48)

4.3 Apparent Horizons

In this part, we examine the BH and CH, as well as the time difference
between the generation of singular points and horizons, given the afore-
mentioned two solutions. The pace of a collapsing star is explained using
Newtonian force. For the inner section Eq.(4.1.1), the border of trapped

2-spheres is illustrated below

. I
0L L= (L~ (57 =0 (13.1)
4.3.1 First Solution
Substituting Eq.(4.2.10) in Eq.(4.3.1), we get
1
[2nEf — 5RO]L3 —3L+6m; =0. (4.3.2)
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Different values of L can be used to investigate apparent horizons. When
Ey = 0 and Ry = 0, L takes the value 2mq, called Schwarzschild hori-

zon. When m; = 0 = FEj, the de-Sitter horizon may be calculated using

\/RED. (4.3.3)

We explore the following cases by examining at the positive roots of Egs.

(4.3.2): Case(1):  When 3m; < , /m, we get two horizons, L. and

Ly, respectively

Eq.(4.3.2)
L

L.= Ccos — (4.3.4)
2rEZ — %R 3
and
1
Ly, = — (cos $_ V/3sin ?), (4.3.5)
2rE — iR 3 3
where
—3m1
cos ¢ = . (4.3.6)
27TE§ - %Ro

When m; = 0, Egs. (4.3.5) and (4.3.4) take on the following form

2
Lc - )
\/ 27TE§ — %RO
Ly, = 0. (4.3.7)
Case(2):  When 3m; = m, we have L. = Ly, i.e.,
1
L.= Ly, = . (4.3.8)
27TE§ - %Ro
The following is the range of these horizons
1 2
0< Ly < <L.< . (4.3.9)

\/27E2 — LR, 21 E? — 1R,
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The largest area of Ly, is given below

4rl? = #i%%, (4.3.10)
and L. has the largest area between
27TE§4i = (4.3.11)
and
#—W%Ro' (4.3.12)

. . el 1
Case (3):  There is no positive root at all for 3m; > Wem As a
result, in this scenario, no apparent horizon will form. Eqs. (4.3.2) and
(4.2.22) may be used to calculate the time required to shape the apparent

horizon. It follows from Eqs. (4.2.22) and (4.3.2) that

2 L,
t, =1, — sinh ™'

V327 ES — $Ry 2m ()

D=

~1z, n=1,2 (43.13)

When Ry — 0 and £ — 0, the outcome is the same as the Tolman-Bondi

[10] solution

4
ty=t, — -1 (4.3.14)
3

Eq.(4.3.13) yields

Ly,

Iy cosh® o, (4.3.15)
here

3(2rE2 — o
an(Ro, Ty) = \/ % (4.3.16)

It is obvious from Eq.(4.3.13) that the trapped areas arise before the sin-

gularity ¢t = t,. Utilizing the Eqs. (4.3.4)-(4.3.6), it follows that

Lc Eol
W) _ L 3eosg sing, (4.3.17)

dmi  mq coso sin ¢
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d(em) 1 3cos ¢+47r sm ¢+4”

2m
= 4.3.1
dmq ml( cosgb sm(b )>0. (4.3.18)

The time difference between the appearance of a horizon and singularity

can be calculated as follows:
T, =t,—1t,. (4.3.19)

In view of Eq. (4.3.19), Eq. (4.3.15) becomes

dT,, 1
s . (4.3.20)
d 3[2mEE — ] sinh o, cosh o,
Using Eq.(4.3.20) and Eq.(4.3.17), it follows that
dry At dG)
dm1 - d2[7;§1 dm1
B 1
my \/3 2rE3 — ] sinh ay cosh ay
¢ 3 [
o (LSns B8y (4.3.21)

sin ¢ cos ¢
Because T is a diminishing function of mass my, the time gap between the
shaping of the CH and singularity decreases as mass increases. Similarly, if

Eq.(4.3.20) and Eq.(4.3.18) are used, then follows that

ar, _ dTy d(z2e)
dm1 N QLﬂ dm1
my
B 1
my \/3 2rEE — ] cosh as sinh a
3 cos Pp+4m sin p+4m
3 3
— > 0. 4.3.22
< coSs @ sin ¢ ) ( )

Because T5 is a rising function of mass m;, the time gap between the shaping
of a singularity and the black hole horizon increases as mass increases.
¢ = %(1 — goo), the relation used to obtain the Newtonian potential for the
inner region

¢=——+—2rE; — —). (4.3.23)



We can now get the newtonian force by calculating the derivative of Eq.(4.3.23)

—mq R RO
F=—5+ §(2WE3 — 7). (4.3.24)
The Newtonian force will vanish if

1

mp = , (4.3.25)
Ny

1

R = . (4.3.26)

(rEf — )

The collapsing substance will remain unchanged in this situation and will
have no influence on the collapsing process. If (27 E3—2) is larger than zero
and R and m, are greater than the above given numbers, the Newtonian
force will be greater than zero. The values of R and m; in the above
inequality reveal that the attractive force is resisted by the Ry term, slowing
the collapse rate of the isotropic fluid. The existence of charge affects the
effects of components Ry, as indicated by Eq.(4.3.26) and Eq.(4.3.25). As a
result, the rate of collapse increases as the repulsive effect of Ry is reduced.
The pace of collapse may be calculated using equation Eq.(4.2.10)

- mq L 2 RD
L=-7+50rE - 2] (4.3.27)

The result obtained in the above equation is identical to the result obtained
using the Newtonian force Eq.(4.3.24). As a result, the concept of collapse

rate is identical to that of Newtonian force.

4.3.2 Second solution

Substituting Eq.(4.2.38) in Eq.(4.3.1), we get

m [%(po — po) — F2(To)(po + po) + 27rEg — w)]

L*  —3L+6my=0. (4.3.28)
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Different values of L can be used to investigate apparent horizons. When
Ey = 0 and f(Ro,To) = 2(5(po — po) — Fo(To)(po + po)) then L take the
value 2my called Schwarzschild horizon. When my = 0 = Ej, the de-Sitter

horizon may be calculated using Eq.(4.3.28)

. 3Fy(Ry)
VLo — po) — B(T, orE2 — {1’
5(Po — po) — Fa(To)(po + po) + 2 Eg 5

(4.3.29)

We explore the following cases by examining at the positive roots of Eqs.(4.3.28):

Case(1):  When 3m, < Fi (o) tt
ase(1) e o \/%(popo)Fz(To)(p0+Po)+27rEgf(R%,TOM we get two

horizons L. and Ly, respectively

4F (R
L=/~ 1(Fo) R 08 4 (4.3.30)
1o — po) — Fo(To)(po + po) + 2B — £55=2 3

and

F;
Ly, = — 1(Ro) _ (COS?_\/gSin?%
Lpo — po) — Fa(To) (po + po) + 2n B — LT 3 3

(4.3.31)

where

F
C0S ¢ = —3myy /1 Sy 7(RoTo) (4.3.32)
L(po — po) — Fo(To)(po + po) + 2mE3 — HE000)

When my = 0, Egs. (4.3.32) and Eqgs. (4.3.31) takes on the following form

L AF(Ry)
NV Lipo = po) - B(Th orE2 — {(RoT)’
5(Po — po) 5(To)(po + po) + 27Ej 2
Ly, = 0. (4.3.33)

Case(2):  When 3my = \/ F1(Ro) we have L, =

3 (po—p0)—F2(To) (po+po)+2m E2— 7f(R%’TO) ’

Lbh i.e,

Lo = Ly = P (Fo)
¢ 1 — _ 2 f(Ro,To) "
5 (Do — po) — Fo(T)(po + po) + 2mEf — S5

(4.3.34)
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The following is the range of these horizons

0< Ly, < Fl(RO)
B =V 2o — po) — Fa(To) (po + po) + 2m 3 — LEgT0)

Fi(R
< L ) LD
5(Po — po) — Fo(To)(po + po) + 2mE? — S50

The largest area of Ly, is given below

dnF
Anl? = : TFi(Ro) T (4.3.36)
3P0 — po) — Fo(To)(po + po) + 2mEF — £
and L. has largest area between
AP (R
1 o) = (4.3.37)
500 — po) — Fa(To) (po + po) + 2mEF — £
and
127 F1 (R,
1 Tl ) 2 _ f(RoTo) (4.3.38)
5(190 — po) — Fo(To)(po + po) + 2mEG — -
F1(Ro)

Case (3):  There is no positive root at all for 3mq > \/;(po—po)—Fz(To)(po+po)+27rE§—f(R%’T(J) :

As a result, in this scenario, no apparent horizon will form. Eq.(4.3.28) and

Eq.(4.2.45) maybe used to calculate the time required to shape the apparent
horizon. It follows from Eq.(4.3.28) and Eq.(4.2.45) that

B 4F(Ry)
bh=1s — 1 2 f(Ro,To)
3[5(o — po) — Fo(To)(po + po) + 2mEf — S5
L,
X (sinh’l[m —1]2), n=12 (4.3.39)

When E — 0 and f(Ro, Ty) — 2(5(po — po) — F(Ty)(po + po)), the outcome

is the same as the Tolman-Bondi [10] solution

4
ty=t, — 02 (4.3.40)
3
Eq.(4.3.40) yields
Ly,
2—% = COSh2 [07°% (4341)



here

3(2(po — po)) — Fo(To)(po + po) + 2am B — LHT0)
aallio o) = 4F1(Ro) ‘
(4.3.42)

It is obvious from Eq.(4.3.39) that the trapped areas arise before the sin-

gularity ¢ = t;. Substituting the Eqs.(4.3.30)-(4.3.32), it follows that

d( LC) 1 3cos? sin?

2mo 3 3
= — 4.3.4
= (s Silw) <0, (4.3.43)
d( Len 1 3cos &t ip &t4r
() _ 1 3eos®5%  sin%E (4.3.44)
de mo COS¢ Slngb

The time difference between the appearance of a singularity and horizon

can be calculated as follows:
T, =ts —t,. (4.3.45)
In view of Eq. (4.3.45), the Eq. (4.3.41) becomes

T, 1

Ln_ . )
Ao \/%[%(po — po) — Fo(To)(po + po) + 2w E2 — @] sinh o, cosh oy,

(4.3.46)
Using Eq.(4.3.46) and Eq.(4.3.43), it follows that

ar dTy Xd(z%g)
de N d;ﬁ dmg

1

mg\/%[%(pg — p()) — FQ(T())(]?() + po) + 27TE3 — M] sinh (03] COSh (03]

0 @ ¢

Sln§ 3
— < 0.
( sin¢+ cos¢)

3 cos

X

Because T is a diminishing function of mass ms, the time gap between the

shaping of the CH and singularity decreases as mass increases. Similarly if

57
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Eq.(4.3.46) and Eq.(4.3.44) are used, then it follows that

ar, _ dny | d(3)
de N dQLTb’; dmg
B 1
Mo \/%[%(m — po) — F5(T0o)(po + po) + 2w EZ — M] cosh arg sinh g
3cos &£ sin ¢
— > 0. 4.3.48
x cos ¢ sin ¢ ) ( )

Because T5 is a rising function of mass ms, the time gap between the shaping
of a singularity and the BH horizon increases as mass increases. ¢ = %(1 —
goo) the relation used to obtain the Newtonian potential for the interior
region the result of which is provided as

1
2

m R? 1
¢p=—+ (= (po — po) — Fa(To)(po + po) + 27 E2 —

R ' 6F(Ro) ‘2 f(Ro, Ty)).

(4.3.49)

We can now get the Newtonian force by calculating the derivative of Eq.(4.3.49)

—-m R 1 1
F= =(po— po) — Fo(T 2rEy — = Ty)).
R2 + 3fR(RO,TO) (2(]?0 PO) 2( 0)(p0+,00)+ Ly 2f(R0a 0))
(4.3.50)
The Newtonian force will vanish if
m 1
2 = ,
3\/F1(1R0) (3(p0 — po) — Fa(To)(po + po) + 2 EG — 5 f(Ro, Tp))
(4.3.51)
P 1
\/Fl(lR_O) (2(po — po) — Fo(T0)(po + po) + 2mEZ — L f(Ro, Tv))
(4.3.52)

The collapsing substance will remain unchanged in this situation and will
have no influence on the collapsing process. If m (5 (po—po) — Fo(To) (po+
po) + 27 E3 — %f(RO,TO)) is larger than zero and R and ms are greater

than the above given numbers, the Newtonian force will be greater than
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zero. The values of R and msy in the above inequality reveal that the at-
tractive force is resisted by the Ry term, slowing the collapse rate of the
isotropic fluid. Because of the presence of Fy(Tp)(po + po) and T in f(R,T)
theory, the rate collapse is slower than in f(R) theory. The existence of
charge affects the effects of terms f(Ry, 1p), Fo(To)(po + po) and T, as indi-
cated by Egs.(4.3.51) and (4.3.52). Because the repulsive effect of f(Ry, Tp),
F5(To)(po + po) and T is reduced, the collapse rate is accelerated. The rate

of collapse may be calculated using the equation Eq.(4.2.36)

. L 1 Ho, T
L= 2 il = ) = FaTa)n 4 o) + 2 - L0,
(4.3.53)

The result obtained in the above equation is identical to the result obtained
using the Newtonian force Eq.(4.3.50). As a result, the concept of collapse

rate is identical to that of Newtonian force.
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Chapter 5

Higher Dimensional
Gravitational Collapse of
Perfect Fluid Spherically
Symmetric Spacetime in
f(R,T) Gravity

In this chapter, we investigate isotropic fluid collapse of (n+2)-dimensional
spherically symmetric spacetime in f(R,T) gravity. Consider a spherically
symmetric (n+2)-dimensional non-static metric in the inner area and a
(n+2)-dimensional Schwarzschild metric in the outer area of the star. We
use the trace of energy tensor and the Ricci scalar as constants to solve
the field equations for the aforementioned parameters in f(R,T) gravity. It
contains two sections. In section 4.1, the field equation in f(R,T) gravity.

Section 4.2 contains apparent horizon.
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5.1 Field Equations in f(R,T) Gravity

For inner portion, we consider spherically symmetric n+ 2 dimensional non

static spacetime as follows
ds® = dt* — D*dr* — L*dQ?, (5.1.1)
here L = L(r,t), D = D(r,t) and

02 = dﬁ% + Z H sm219b d792 = sin’Y, d192 + sm21913m2192d192
a=2 b=1
+... + sin?*Vysin*Vysinvs...sin*V, _1dV?2. (5.1.2)

For an isotropic fluid, the stress tensor is defined as

Tuu - (P + p)up,uu — PAuv, (513)

here u,, p and p are the 4 dimensional velocity vector meeting the equa-
tion wu,, = 52, pressure and matter density of the fluid respectively. Using
Eqgs.(1.4.20) and (5.1.3) with f(R,T) = R+2f(T) and consider f(T) = AT,
here A is any arbitrary non-zero constant, the field equations Eq.(1.4.20)

can be written as follows

Guv
Ry, = ) [5(p + P)wny = pgu + 2X(p + P)uyuy + == f (R, T)

_
fR<R7 T
+ V. Vofr(R,T) = V'V fr(R,T). (5.1.4)

61



We acquire independent four partial differential equations for inner metric

(5.1.1) as follows:

D L 1 f(R,T) "(R,T) D ;

- 5 "7~ m[ﬁp+2)\(l)+p) tea - [—RT + EfR(RvT)
D’ L '

+ ﬁfl/%(Rﬂ T) + nsz(Rv T) - nﬁfé(R> T)H? (515)
D DL = L' DL, 1 f(R,T) =

T D "PL DL DL T fammy) T PR

o0 faBT) — n fr(R.T))), (5.1.6)
L L, DL 1. L" L., DL D,

= 7 =DE) -t el t e =1(7)7 - DL —(n=1(7)]

B 1 f(RT) N "R,T) D . D,

= T 2 T U ST G AT+ R T)

b AR m-DE - - PEE Dy (5.1.7

L' DL 1 o D

It is reference here that in the whole paper and in he above equations, dif-
ferentiation w.r.t 7r” and ”t” are represented by prime and dot respectively.
In the outer region of the star, we get the n 4+ 2 dimensional Schwarzschild

metric as:

ds? = (1— Qg)dTQ -

mdéz — R2d0?, (5.1.9)
R

M denotes a non-zero constant. We use the Rosa [116] and Darmois [110]
matching criteria for smooth inner and outer region matching over X, it
follows that

(DL’ — DL')y = 0, (5.1.10)

[1- L7 — =] (5.1.11)
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[haﬁ] =0, [k] =0, [R] =0, [T] =0,
nc(fRR[ﬁcR] —+ fRT[aCT] = 0,

(87 + fr)Sap = —€fr[Kag). (5.1.12)

The constraints are specified in Eq.(5.1.10) and Eq.(5.1.11) due to Darmois
matching criteria. The restriction given in Eq.(5.1.12) is due to f(R,T)
gravity. The explicit value of D is required for the solution of the set of
partial differential equations Eqs.(5.1.5)-(5.1.8). The resulting equations
are very nonlinear, making it difficult to solve them directly unless we add
specific constraints to the various components involved. As a result, we’ll
use R = Ry and T = Ty, where Ry and Ty are non-zero constants. As
a result of this assumption, p = py and p = py, that is, p and p, are
constants. Egs.(5.1.5)-(5.1.8) assume the following form when using the

preceding assumptions

L 1 f(Ro, Tp)

DL [kpo + 2X(po + po) + ] (5.1.13)
D DL n L' DL 1 f(Ry,T0)
— o= == = - 5.1.14
b "ot T T DL T e To)l 2 fpol; - (3-1.14)
L ,, DL 1 L L., DL D,
- z—(”—l)(z) ~ DI ﬁ[er(”—l)(f) ~ DI —(”—1)(3)]
1 f(ROvTO)
= — Kpol, 5.1.15
fR(ROaTO)[ 9 pO] ( )
L' DL
- np+npr =0 (5.1.16)
Eq.(5.1.16) follows that
L/
D(r,t) = (‘; b (5.1.17)

63



where V' = V(r). Using Eq.(5.1.17) in Eqgs.(5.1.13)-(5.1.15), we acquire

L 1-V? 1
27 4 -+ ) =
(n=D(F P+ (0= D7) =~
K A Ry, T
=D — ) = 22+ ) — LT 510
n n 2
Eqgs.(5.1.18) integrating w.r.t ¢, it yields
. L2
L? = V2—1+2m(r) +
(£) L=t (n+1) fr(Ro, To)
8K A f R 7T
< =1 o)~ 2200+ p0) — 22T 5.1.00)
here m = m(r) and has the following value
/ K !/
m = —————((n—1)po+ po) L' L". 5.1.20
nfR<R07T0)<< )pO pO) ( )
Eqgs.(5.1.20) integrating w.r.t r, it follows that
K
m(r) = ———((n— 1)py + /L'L”dr+at, 5.1.21
(1) = (0 = Do+ ) 0, (5120

where a(t) is an integration constant. When Eq.(5.1.17) and Eq.(5.1.19)

are subjected to the 2nd matching condition, the result is

(n — 1)L+
2(n + 1) fr(Ro, To)

M = (n—1)m(r)—

f(Ro, Tp)

5] (5.1.22)

X [%((n — 1)po — po) — 2%(1?0 + po) —

The total energy for interior portion may be calculated using Misner and

Sharp [105] definitions

-1 Ln—l
M(r,t) = %[1 +g*L L. (5.1.23)
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M (r,t) takes the following form using Eq.(5.1.19)

(n— 1)L+

M(r,t) = (n—1)m(r) — 2(n + 1) fr(Ro, To)

x [g((n — 1)po — po) — 22(190 + po) — w].(m.z@
Here we suppose that,
1 KA f(Ro, Tp)
m[((n — 1)po — PO)E - 25(]90 + po) — T] >0, (5.1.25)

and the solution of Eq.(5.1.19) with V(r) = 1, it follows that

2(n + 1)mfR(R0, To) . _2
) )T sinh T w(r, t).

E((n—1)po — po) — 22(po + po) 2

L=(
(5.1.26)

When we use this value of L in Eq.(5.1.17) with V(r) = 1, we obtain

o 2(n + 1)mfR(R0, TQ) %ﬂ m/ .

7 - (%((n — 1)po — po) — 22 (po + po) — LT ) [(n +1)m sinh(r, )
. %((n _ 1)p0 _ PO) _ 2>\(P2+Po) _ f(RgﬂTo)
i tS(r)\/ (n+1)fr(Ro, To)
coshw(r,t) ]sinh% w(r,t), (5.1.27)
here
. (n+ 1)(%((” — 1)po — po) — 2%(190 + po) — lf<R07T0))
W(ﬁ t) - \/ 4fR(R0; TO) 2 [ts(r)_t]'
(5.1.28)

A
When f(Ro, Tp) — 2200—p0)=2u@ot20) 416 Tolman-Bondi [10] solution is

n

obtained form the foregoing equation

mir)(n+ DX = 0?
2

omt! +m!(t, — t
D = mb, +mlt =) (5.1.30)
[(ts — t)""12(n 4 1)~ tmn]net

L =] : (5.1.29)
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5.2 Apparent Horizons

The creation of apparent horizons is caused by the existence of unit out-
ward normals and the covering of trapped n-spheres. The following is the

boundary for Eq.(5.1.1):

gL, L= (L)*— (=)*=0. (5.2.1)

Using Eq.(5.1.19) in the above equation , it yields

TatTo ) [g((” = Dpo = po) = 2%(100 +p0) — w)]

L —(n4+1)L" ' +2(n+ 1)m = 0. (5.2.2)

Different values of L can be used to investigate apparent horizons. When
f(Ro,To) = 2(5((n — 1)po — po) — 25(po + po))), L takes the value L =
(2m)ﬁ, called Schwarzschild horizon. When m = 0, the de-Sitter horizon

may be calculated using Eq.(5.2.2)

L= \/ (n+ 1) fr(fo, To) (5.2.3)
n((n—=1)

Po = po) = 22 (po + po) — LG

I 7755 [£((n = 1)po — po) — 22 (po + po) — LH5T21)] and m, the solution of
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Eq.(5.2.2) by perturbation method up to 1st order are obtained as:

(n+ 1) fr(Ro, To)

= (S((n — L)po — po) — 22 (po + po) — LT i
- e om _n[‘ia)(i%oé@w — )
e o
D = @)
DL (T ;(501 §><n(+1>) S
x (2m) =7 f(Ro, Tp)... (5.2.5)

(L)en, and (L)p, are CH and BH horizon respectively. The existence of
the f(R,T) term is largely responsible for the emergence of (L).,. Using
Eqgs.(5.1.28) and (5.2.2), the time for the formation of the apparent horizon

may be calculated as follows:

L \/ 4fr(Ro, Tp)
n s (TL + 1)[%((’” — 1)p0 — po) — 2%(190 + Po) _ f(R;,To)]
X (sinhl[(é’;);’) — 1]%)’ n=12. (5.2.6)

The result correspondence to Tolman-Bondi [10] solution when f(Ry, 7p) —

—2(2((n — 1)po — po) — 22(po + po)),

2T
ty=t, % (5.2.7)

From Eq. (5.2.6) it is clear that the trapped surfaces form earlier than the
singularity ¢t = t;. Eq. (5.2.7) gives the time of formation of trapped sur-

faces for higher dimensional Tolman-Bondi spacetime. The rate of collapse
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can be calculated using Eq.(5.1.19) as follows:

- (n — 1)m L K A f(R07 TO)
L=-——0 +(n T (B To) [ ((n=1)po=po) =2 (po+po)————1-
(5.2.8)

L is required for collapsing process, and it is only feasible if

L<|- (n = D(n + Dm/fr(Ro, T) " (5.2.9)

& ((n = 1)po = po) = 23 (po + po) — LG

When the expression (E((n = 1)po — po) — @) < 0 is fulfilled

in Eq.(5.2.8), the preceding equation holds. It’s worth noting that the
collapsing process is slowed by the f(Rg,Tp) term. Due to the f(Ry,Tp)
term, two horizons, namely BH horizon and CH, occur. The f(R,T) term,
as pointed out in [5], performs the same function as the CC in GR. It is

evident from our result that the term f(Ro,Tp) — 2%(]90 + po) in GR fulfils

the same role as the cosmological constant
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Chapter 6

Summary

This chapter is devoted to discuss the results that were obtained throughout
our research and are listed in the preceding chapters. The most important
and highly dissipative phenomena in gravitational physics is gravitational
collapse. For investigators in this field, the CCC hypothesis gives a lot of
motivation. Many efforts have been attempted to confirm or reject this
concept by exploring different spacetimes and different kinds of collapsing
matter. There has recently been a lot of interest in looking into gravita-
tional collapse in MGT. This inspires us to investigate the problem using
the f(R) and f(R,T) MTG. We have examined anisotropic fluid collapse of
spherically spacetime with charge in f(R) gravity. Also we have examined
gravitational collapse of FRW spacetime with dust, collapse of spherically
spacetime with charge isotropic fluid and higher dimensional collapse of
isotropic fluid in f(R,T) MGT. In the following results are explored sepa-
rately for each chapter:

In chapter two, we studied anisotropic fluid collapse of spherically space-
time with charge in f(R) gravity. For smooth matching of inner and exte-
rior areas, we employed the Senovilla and Darmois matching criterias. Field

equations with a constant Ricci scalar are used to find closed form solutions.
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For a specific limit, our solution agrees with the Tolman Bondi [10] solu-
tion. The two physical horizons generated during the collapsing process are
BH horizon and CH, whose area decreases in the presence of electromag-
netic charge. The development of the singularity occurs after the creation
of both horizons, and the CCC is validated by f(R) theory. The CC and
the f(R) term have the same impact, and when an electromagnetic field is
included, the collapse rate accelerates faster than in the anisotropic fluid
scenario [42]. we also came to the conclusion that electromagnetic charge
reduced the term f(R) and expedited the collapse process. The time gap be-
tween CH and singularities was also affected by electromagnetic charge. We
can examine the accuracy of our results by checking at previous published
results. When p, = p = p, and Ey(t,r) = 0, all of our solutions correspond
to the results of [43]. Our results are consistent with those found in [76] for
bt =P = Dr.

In chapter three, we studied the gravitational collapse of dust in content
of f(R,T) gravity. In this study we used f(R,T) = fi(R) + fo(T) model.
We used the Rosa and Darmois matching criterias for smooth matching of
exterior and interior portions. Without adding extra constraints, solving
the fields equations analytically is quite difficult. For the solution of field
equations, we assumed (7' = Tp) and (R = Ryp). For a specific limit, our
solution agrees with the Tolman Bondi [10] solution. The two physical hori-
zons generated during the collapsing process are BH horizon and CH. The
development of the singularity occurs after the creation of both horizons,
and the CCC is validated by f(R,T) theory. The CC and the f(R,T) term
have the same impact. In f(R,T) theory, the extra term 7" slows the col-

lapse rate more than in f(R) theory. The accuracy of our findings may be
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verified by comparing them to previously published findings. The findings
of [41] are obtained by setting 7" = 0.

In chapter four, we studied perfect fluid spherically symmetric collapse in
f(R,T) gravity with charge. We used two distinct f(R,T) models: f(R,T) =
R+2f(T) with f(T) = AT where A is any non-zero arbitrary constant, and
f(R,T) = fi(R) + fo(T). We used the Rosa and Darmois matching crite-
ria’s for smooth matching of interior and exterior regions. In the first case,
we employ the constant Ricci scalar and the linear equation of state p = ¢p
with ¢ = —% to solve the field equations. The constant curvature constraint
(R = Ry) is utilized in the second case, implying that trace, pressure, and
density are constant values (T = Ty, p = po and p = pg). For a specific
limit, our solution agrees with the Tolman Bondi [10] solution. During this
collapsing process, two physical horizons, CH and BH horizon, are gener-
ated, the area of which diminishes in the absence of an electromagnetic
field. The development of the singularity occurs after the creation of both
horizons, and the CCC is validated by f(R,T) theory. The term f(R,T)
acts as a CC, slowing the rate of collapse. In f(R,T) theory, the extra term
T slows the collapse rate more than in f(R) theory. We also said that an
electromagnetic field lowers the limit of the f(R,T) term, speeding up the
collapse process. The electromagnetic field has an impact on the time gap
between the singularities and CH. The accuracy of our findings may be
verified by comparing them to previously published findings. The findings
of [61] are obtained by setting Ey(¢,7) = 0. The choice of T' = 0 yields the
results of [76], and the result of Ey(t,7) =0 =T corresponds to [43].

In chapter five, we studied higher dimensional collapse of perfect fluid in

f(R,T) gravity. In this study we used f(R,T) = R+2f(T) with f(T') = AT
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where A\ is any arbitrary non-zero constant, model. We used the Rosa and
Darmois matching criteria’s for smooth matching of exterior and interior
portions. Without adding extra constraints, solving the fields equations an-
alytically is quite difficult. For the solution of field equations, we assumed
(T = Tp) and (R = Ry). We came to the conclusion that CH and BH
horizon are two physical horizons that develop during the process. Follow-
ing both horizons, a singularity is generated. The singularity is depicted
as being covered, and the CCC is validated by f(R,T) gravity. It’s worth
noting that the collapsing process is slowed by the f(Ry,Tp) term. Due to
the f(Ro,Tp) term, two horizons, namely BH horizon and CH, occur. The
f(R,T) term, as pointed out in [117], performs the same function as the CC
in GR. It is evident from our result that the term f(Ro, 7o) — 22(po + po)
in general relativity fulfils the same role as the CC. Our result is reduced
to a dust case when p = 0. We’d like to point out that our solution for
n = 2 matches the results of Jamil and Sadia [61]. As a result, our findings

represent a generalization of [61].
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