10th Int. Partile Accelerator Conf.
ISBN: 978-3-95450-208-0

IPAC2019, Melbourne, Australia

JACoW Publishing
doi:10.18429/JACoW-IPAC2019-WEPGWO74

MYRRHA DAQ DEVELOPMENT

R. Modic, P. Mekuc, Cosylab, Ljubljana, Slovenia
D. Vandeplassche, P. Della Faille, SCK-CEN, Mol, Belgium

Abstract

We have implemented a generic Data Acquisition
(DAQ) solution for the MYRRHA test stand at Louvain-la-
Neuve (Belgium). The work was motivated by the need for
better sampling performance, signal quality, arbitrary pro-
cessing and storage of measurements. A full integration of
the DAQ system into the global EPICS control environ-
ment was a strong requirement. An intermediate DAQ plat-
form was put in place to satisfy the control and experiment
needs. The NI PXI platform was selected to minimize inte-
gration and development effort. National Instruments (NI)
LabVIEW is used to create a generic DAQ application and
the CALab library, supported by DESY, is used to connect
LabVIEW and EPICS. A Control System Studio GUI pro-
vides the user with the necessary control, visualization and
configuration capability. The technical and organizational
approach to the collaboration will be detailed in the paper,
as well as the necessary customizations of CSS and CALab
and experience of using NI PXI for a DAQ platform.

INTRODUCTION

The need for better sampling performance, signal qual-
ity, arbitrary processing and storage of measurements was
the main motivation for this work. A full integration of the
DAQ system in the global EPICS control environment was
a strong requirement. An intermediate DAQ platform was
put in place to satisfy the control and experiment needs.

DESIGN AND IMPLEMENTATION

National Instruments (NI) LabVIEW and the DAQmx
[1] driver was used to create a generic DAQ application
that runs on a PXIe [2] industrial computer with a Multi-
function I/O Module. This platform was chosen because it
was most suitable to comply with the requirement to ac-
quire data with a frequency up to 2 MHz on 16 channels
simultaneously and process it in real-time.

The software architecture consists of four independent
modules that each executes its own function: Data acquisi-
tion, EPICS, Data Logger and Error Handler. Each of these
modules has its own queue and other modules can send
messages with payloads to those queues allowing the mod-
ules to interact with each other while at the same time re-
maining independent.

The Data Acquisition (DAQ) module (Fig. 1) is a master
module and defines the workflow of the application. This
main loop in the Data Acquisition module executes a state
machine. States define what is considered as the positive
workflow and what is not, e.g. the system is waiting for a
configuration from the GUI, the system is waiting for a
trigger or the system is acquiring data. Messages from
other modules work as interrupt routines to the state ma-
chine execution. If a message arrives from another module,

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

the next iteration of the main loop handles this message.
Actions and state transitions are defined by the type of mes-
sage and its payload. An example of a message to the DAQ
module from the EPICS module is of type ‘configure’ with
the details of the configuration data contained in the pay-
load. This message triggers a configuration validation,
storing the configuration and a state transition from the
‘init’ state to the ‘configured’ state. The DAQ module also
contains an asynchronous process loop. This loop gets ac-
quired samples from the DAQ module, processes the sam-
ples for the GUI and for storage and forwards the results to
the EPICS and Data Logger modules.

DAQ MODULE ASYNC PROCESS LOOP

- buffer and cut acquired data
- do (running) averaging
- convert timestamps from LV to Linux
- decimate data for channel access

——Mesurements—>

MAIN LOOP

PROCESS MESSAGES
Config
= Arm
YES— Trigger
Stop

WORKFLOW
Init

Configured
Waiting for trigger
Acquisition

@ NO->
CLEAN
1 up 4

Status
Wamings
Errors

DEQUE |
MSG

INIT —

A A

. - Processed Cont
Shutdown Mesurements Pros
command

ocessed
-Configdata RBs Mesurements
ERROR

: 2
EPI oICS DATA ERROR
EPICS [EFICS J LOGGER Uvmwo,m

Figure 1: SW architecture of DAQ module.

The EPICS module runs SoftlOC from the CALab [3]
library. This is where process variables (PVs) are stored.
The EPICS module serves as a communicator with the EP-
ICS control environment. Its main functionality is to up-
date control and data PVs from SoftIOC to the DAQ appli-
cation and vice versa. The EPICS module intercepts all
user actions on the GUI and forwards it to the DAQ mod-
ule.

The Data Logger module takes care of storing the ac-
quired data and measurement configurations for post-anal-
ysis. The TFS text data format [4], defined by CERN, was
chosen to the store data. The header contains configuration
and static beam parameters and the body contains the ac-
quired and processed data with the timestamp of acquisi-
tion.

The Error Handler module takes care of any events that
could cause any malfunction in the operation of the appli-
cation. It stores all status, warning and error events in a .log
file for later inspection. The Error Handler module takes
care of the proper shut-down of the system in the case of a
critical error or a user shut-down action from the GUI.

To be able to integrate the DAQ application running on
National Instruments hardware into the EPICS control en-
vironment, we needed a library for LabVIEW that would

WEPGW074
2645

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2019). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

10th Int. Partile Accelerator Conf.
= ISBN: 978-3-95450-208-0
A
g be able to run SoftIOC and establish communication with
5 it over EPICS channel access. We evaluated a number of
Z options according to performance, ease of use, features and
= g licensing and we chose the best two: CALab from BESSY
) and the National Instruments native support for EPICS.
° The CALab library performed better in upstream data up-
0 date, which has a far more demanding requirement than
% downstream, and it integrated better into the LabVIEW en-
& vironment. This led us to implement the DAQ application
= with the CALab library.

The GUI developed in Control System Studio [5] pro-
vides the user with the necessary configuration, visualiza-
s tion and control capability. The GUI has three tabs (Fig. 2),
£ each with a specific functionality. Firstly, the user sets the
; acquisition parameters and acquisition type in the Config-
S uration tab. In the Control tab, the user issues software trig-
2 gers, stops or aborts acquisitions and shuts down the DAQ
gapplication after use. The Measurements tab (Fig. 2) dis-
g plays the last measurements in real-time on an amplitude-
£ time graph. Visible channels can be selected. There is also
£ functionality to manipulate the graph and for quick inspec-
2 tion of the data.

uthor(s)

DAQ 0AQ Comue Resgsve

mu

7 P PrR——
)| s m]

[| sl &)

Measurements

E PROJECT FORMAT

<
o

We decided to use the DAQ project as an exercise in re-
> quirement-driven engineering. An upcoming MINERVA
g & endeavor by SCK will greatly scale the required control
s “ system efforts. Control system components developed will
f have to follow global control system design decisions, gov-
° erned by an experienced control system architect.
§ We wanted to utilize the best software engineering prac-
2 o tices early on and equip the SCK team with a scalable con-
: trol system development strategy. Cosylab helped with the
-é’ requirement definition and review. The requirements were
= then approved by SCK. The design and implementation,
2 code review and elaborate test plan together with review
& process were done by Cosylab. The test plan was approved
%by SCK. Acceptance was done via execution of the test

plan first at Cosylab (FAT). This made it possible to address
o any problems and comments before shipping the solution

- to LLN. Installation and on-site acceptance were done by
": the Cosylab team at LLN. The test plan was executed by
£ SCK for final acceptance.

Cosylab managed the complete project, while SCK re-
mained in full control through requirement and test plan

WEPGW074
© 2646

©=2d Content from

IPAC2019, Melbourne, Australia

JACoW Publishing
doi:10.18429/JACoW-IPAC2019-WEPGWO74

approval. Using such an approach, SCK was able to make
good use of the available resources, while fully controlling
the deliverable to obtain the required functionality.

Any additional ideas for functionality were noted as fea-
ture requests and will be implemented in the next version
of the application.

CONCLUSION

A fully functional, configurable DAQ solution was de-
veloped for MYRRHA [6] using National Instruments
hardware and drivers. The DAQ application runs in Lab-
VIEW on native hardware. For integration into the EPICS
control system, the CALab was used. The user interface for
configuration and data visualization was done in Control
System studio.

REFERENCES

[1] NI-DAQmx Software,
https://www.ni.com/dataacquisition/nidagmx.htm

[2] PXI Systems, http://www.ni.com/s1-
si/shop/pxi.html

[3] CALab, https://www.helmholtz-ber-
lin.de/zentrum/locations/it/software/ex-
steuer/calab/index_en.html

[4] TES file format,
http://mad.web.cern.ch/mad/madx.old/In-
troduction/tfs.html

[5] Control System Studio, http://controlsystemstu-
dio.org/records.html

[6] MYRRHA, http://sckcen.be/en/Technology_fu-
ture/MYRRHA

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

TO04 Accelerator/Storage Ring Control Systems

