
MYRRHA DAQ DEVELOPMENT 
R. Modic, P. Mekuc, Cosylab, Ljubljana, Slovenia 

D. Vandeplassche, P. Della Faille, SCK-CEN, Mol, Belgium 

Abstract 
We have implemented a generic Data Acquisition 

(DAQ) solution for the MYRRHA test stand at Louvain-la-
Neuve (Belgium). The work was motivated by the need for 
better sampling performance, signal quality, arbitrary pro-
cessing and storage of measurements. A full integration of 
the DAQ system into the global EPICS control environ-
ment was a strong requirement. An intermediate DAQ plat-
form was put in place to satisfy the control and experiment 
needs. The NI PXI platform was selected to minimize inte-
gration and development effort. National Instruments (NI) 
LabVIEW is used to create a generic DAQ application and 
the CALab library, supported by DESY, is used to connect 
LabVIEW and EPICS. A Control System Studio GUI pro-
vides the user with the necessary control, visualization and 
configuration capability. The technical and organizational 
approach to the collaboration will be detailed in the paper, 
as well as the necessary customizations of CSS and CALab 
and experience of using NI PXI for a DAQ platform. 

INTRODUCTION 
The need for better sampling performance, signal qual-

ity, arbitrary processing and storage of measurements was 
the main motivation for this work. A full integration of the 
DAQ system in the global EPICS control environment was 
a strong requirement. An intermediate DAQ platform was 
put in place to satisfy the control and experiment needs. 

DESIGN AND IMPLEMENTATION 
National Instruments (NI) LabVIEW and the DAQmx 

[1] driver was used to create a generic DAQ application 
that runs on a PXIe [2] industrial computer with a Multi-
function I/O Module. This platform was chosen because it 
was most suitable to comply with the requirement to ac-
quire data with a frequency up to 2 MHz on 16 channels 
simultaneously and process it in real-time. 

The software architecture consists of four independent 
modules that each executes its own function: Data acquisi-
tion, EPICS, Data Logger and Error Handler. Each of these 
modules has its own queue and other modules can send 
messages with payloads to those queues allowing the mod-
ules to interact with each other while at the same time re-
maining independent. 

The Data Acquisition (DAQ) module (Fig. 1) is a master 
module and defines the workflow of the application. This 
main loop in the Data Acquisition module executes a state 
machine. States define what is considered as the positive 
workflow and what is not, e.g. the system is waiting for a 
configuration from the GUI, the system is waiting for a 
trigger or the system is acquiring data. Messages from 
other modules work as interrupt routines to the state ma-
chine execution. If a message arrives from another module, 

the next iteration of the main loop handles this message. 
Actions and state transitions are defined by the type of mes-
sage and its payload. An example of a message to the DAQ 
module from the EPICS module is of type ‘configure’ with 
the details of the configuration data contained in the pay-
load. This message triggers a configuration validation, 
storing the configuration and a state transition from the 
‘init’ state to the ‘configured’ state. The DAQ module also 
contains an asynchronous process loop. This loop gets ac-
quired samples from the DAQ module, processes the sam-
ples for the GUI and for storage and forwards the results to 
the EPICS and Data Logger modules. 

 
Figure 1: SW architecture of DAQ module. 

The EPICS module runs SoftIOC from the CALab [3] 
library. This is where process variables (PVs) are stored. 
The EPICS module serves as a communicator with the EP-
ICS control environment. Its main functionality is to up-
date control and data PVs from SoftIOC to the DAQ appli-
cation and vice versa. The EPICS module intercepts all 
user actions on the GUI and forwards it to the DAQ mod-
ule. 

The Data Logger module takes care of storing the ac-
quired data and measurement configurations for post-anal-
ysis. The TFS text data format [4], defined by CERN, was 
chosen to the store data. The header contains configuration 
and static beam parameters and the body contains the ac-
quired and processed data with the timestamp of acquisi-
tion. 

The Error Handler module takes care of any events that 
could cause any malfunction in the operation of the appli-
cation. It stores all status, warning and error events in a .log 
file for later inspection. The Error Handler module takes 
care of the proper shut-down of the system in the case of a 
critical error or a user shut-down action from the GUI. 

To be able to integrate the DAQ application running on 
National Instruments hardware into the EPICS control en-
vironment, we needed a library for LabVIEW that would 

10th Int. Partile Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPGW074

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

WEPGW074
2645

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



be able to run SoftIOC and establish communication with 
it over EPICS channel access. We evaluated a number of 
options according to performance, ease of use, features and 
licensing and we chose the best two: CALab from BESSY 
and the National Instruments native support for EPICS. 
The CALab library performed better in upstream data up-
date, which has a far more demanding requirement than 
downstream, and it integrated better into the LabVIEW en-
vironment. This led us to implement the DAQ application 
with the CALab library. 

The GUI developed in Control System Studio [5] pro-
vides the user with the necessary configuration, visualiza-
tion and control capability. The GUI has three tabs (Fig. 2), 
each with a specific functionality. Firstly, the user sets the 
acquisition parameters and acquisition type in the Config-
uration tab. In the Control tab, the user issues software trig-
gers, stops or aborts acquisitions and shuts down the DAQ 
application after use. The Measurements tab (Fig. 2) dis-
plays the last measurements in real-time on an amplitude-
time graph. Visible channels can be selected. There is also 
functionality to manipulate the graph and for quick inspec-
tion of the data. 

 
Figure 2: Measurements tab of the DAQ application GUI 
developed in Control System Studio. 

PROJECT FORMAT 
We decided to use the DAQ project as an exercise in re-

quirement-driven engineering. An upcoming MINERVA 
endeavor by SCK will greatly scale the required control 
system efforts. Control system components developed will 
have to follow global control system design decisions, gov-
erned by an experienced control system architect. 

We wanted to utilize the best software engineering prac-
tices early on and equip the SCK team with a scalable con-
trol system development strategy. Cosylab helped with the 
requirement definition and review. The requirements were 
then approved by SCK. The design and implementation, 
code review and elaborate test plan together with review 
process were done by Cosylab. The test plan was approved 
by SCK. Acceptance was done via execution of the test 
plan first at Cosylab (FAT). This made it possible to address 
any problems and comments before shipping the solution 
to LLN. Installation and on-site acceptance were done by 
the Cosylab team at LLN. The test plan was executed by 
SCK for final acceptance. 

Cosylab managed the complete project, while SCK re-
mained in full control through requirement and test plan 

approval. Using such an approach, SCK was able to make 
good use of the available resources, while fully controlling 
the deliverable to obtain the required functionality. 

Any additional ideas for functionality were noted as fea-
ture requests and will be implemented in the next version 
of the application. 

CONCLUSION 
A fully functional, configurable DAQ solution was de-

veloped for MYRRHA [6] using National Instruments 
hardware and drivers. The DAQ application runs in Lab-
VIEW on native hardware. For integration into the EPICS 
control system, the CALab was used. The user interface for 
configuration and data visualization was done in Control 
System studio. 

REFERENCES 
[1] NI-DAQmx Software,

https://www.ni.com/dataacquisition/nidaqmx.htm

[2] PXI Systems, http://www.ni.com/sl-
si/shop/pxi.html 

[3] CALab, https://www.helmholtz-ber-
lin.de/zentrum/locations/it/software/ex-
steuer/calab/index_en.html 

[4] TFS file format,
http://mad.web.cern.ch/mad/madx.old/In-
troduction/tfs.html 

[5] Control System Studio, http://controlsystemstu-
dio.org/records.html 

[6] MYRRHA, http://sckcen.be/en/Technology_fu-
ture/MYRRHA 

10th Int. Partile Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-WEPGW074

WEPGW074
2646

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T04 Accelerator/Storage Ring Control Systems


