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Abstract. Recent results on studies of bottomonium and bottomonium-like states at Belle are reported. The

results are obtained with a 121.4 fb−1 data sample collected with the Belle detector in the vicinity of the Υ(5S )

resonance at the KEKB asymmetric-energy e+e− collider.

1 Introduction

Bottomonium is the bound system of bb̄ quarks and is con-

sidered to be an excellent laboratory to study Quantum

Chromodynamics (QCD) at low energies. Due to rela-

tively large mass of the b quark, the system is essentially

non-relativistic, thus the quark-antiquark QCD potential

can be investigated via the bb̄ spectroscopy.

Analysis of spin-singlet states hb(mP) and ηb(nS ) pro-

vides information on the spin-spin interaction in the bot-

tomonium system. Hyperfine splitting is the difference

between the spin-weighted average mass of the P-wave

triplet states χbJ(nP) (n3PJ state) and that of the corre-

sponding hb(mP), or m1P1. These splittings are predicted

to be close to zero [1], and recent precision measurements

of the hc(1P) mass validate this expectation for charmo-

nium.

The CLEO Collaboration has recently measured the

cross section of the e+e− → hc(1P)π+π− process to be

comparable to that of the e+e− → J/ψπ+π− in data taken

above open charm threshold [2]. Such a strong enhance-

ment in the rate contradicts to expectations as the pro-

duction of the hc(1P) requires a c-quark spin flip, while

production of the J/ψ does not. Similarly, the Belle Col-

laboration reported anomalously high rates for e+e− →
Υ(nS )π+π− (n = 1, 2, 3) process at energies near the Υ(5S )

mass [3]. Combined, these observations motivated a more

detailed study of bottomonium production at the c.m. en-

ergy near the peak of Υ(5S ) resonance.

We use a 121.4 f b−1 data sample collected on or near

the peak of the Υ(5S ) resonance (
√

s ∼ 10.865 GeV) with

the Belle detector [4] at the KEKB asymmetric-energy

e+e− collider [5].

2 Observation of hb(mP)

As mentioned above, the CLEO Collaboration observed

strong enchancement in rates of both e+e− → hc(1P)π+π−
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Figure 1. The inclusive Mmiss(π
+π−) spectrum with the combi-

natorial background and K0
S contribution subtracted (points with

errors) and signal component of the fit function overlaid (smooth

curve). The vertical lines indicate boundaries of the fit regions.

and e+e− → J/ψπ+π− processes. Based on the observation

of the anomalously large rate of the e+e− → Υ(nS )π+π−
process in the vicinity of the Υ(5S ) resonance by the Belle

Collaboration, we decided to extend the analysis to mea-

sure the rate of the e+e− → hb(mP)π+π− process. As there

is no dominant hb(mP) decay channel, we use inclusive

reconstruction.

A set of requirements applied to select hadronic events

includes a well reconstructed primary vertex, consistent

with the run-averaged interaction point and at least three

high-quality charged tracks. The π+π− candidates are all

pairs of oppositely charged tracks that are identified as

pions and are not consistent with being electrons. Con-

tinuum e+e− → qq̄ (q = u, d, s, c) background is sup-

pressed utilizing event topology variables: the ratio of the

second to zeroth Fox-Wolfram moments is required to be

R2 < 0.3. More details can be found in Ref. [6].

We calculate missing mass defined as Mmiss(π
+π−) ≡√

(PΥ(5S ) − Pπ+π− )2, where Pe+e− and Pπ+π− are 4-momenta

of the initial e+e− system and π+π− system, respectively.

The Mmiss(π
+π−) spectrum is divided into three adja-

cent regions with boundaries at Mmiss(π
+π−) = 9.3, 9.8,

10.1 and 10.45 GeV/c2 and fitted separately in each re-
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Table 1. The yield and mass determined from the fits to the

Mmiss(π
+π−) distributions.

Yield, 103 Mass, MeV/c2

Υ(1S ) 105.2 ± 5.8 ± 3.0 9459.4 ± 0.5 ± 1.0
hb(1P) 50.4 ± 7.8+4.5

−9.1 9898.3 ± 1.1+1.0
−1.1

3S → 1S 56 ± 19 9973.01

Υ(2S ) 143.5 ± 8.7 ± 6.8 10022.3 ± 0.4 ± 1.0
Υ(1D) 22.0 ± 7.8 10166.2 ± 2.6
hb(2P) 84.4 ± 6.8+23.

−10. 10259.8 ± 0.6+1.4
−1.0

2S → 1S 151.7 ± 9.7+9.0
−20. 10304.6 ± 0.6 ± 1.0

Υ(3S ) 45.6 ± 5.2 ± 5.1 10356.7 ± 0.9 ± 1.1

gion. In the third region, prior to fitting, we perform

bin-by-bin subtraction of the background associated with

the K0
S → π+π− production. The combinatorial back-

ground is parametrized by a Chebyshev polynomial func-

tion (6th order for the first two regions and 7th order

for the third region). The signal component consists of

three Υ(nS ) signals, two hb(mP) signals, Υ(1D) as well as

feed across from the Υ(2S ) → Υ(1S )π+π− and Υ(3S ) →
Υ(1S )π+π− transitions. The peak positions of all signals

are floated, except that for Υ(3S ) → Υ(1S )π+π−, which is

poorly constrained by the fit. The background subtracted

Mmiss(π
+π−) distribution is shown in Fig. 1, where signals

of both hb(1P) and hb(2P) are clearly visible. The signal

parameters are listed in Table 1. Statistical significance of

all signals except that for the Υ(1D) exceeds 5σ.

The measured masses of hb(1P) and hb(2P) are

M = (9898.3 ± 1.1+1.0
−1.1) MeV/c2 and M = (10259.8 ±

0.6+1.4
−1.0) MeV/c2, respectively. Using the world average

masses of the χbJ(nP) states, we determine the hyper-

fine splittings to be ΔMHF = (+1.6 ± 1.5) MeV/c2 and

(+0.5+1.6
−1.2) MeV/c2, respectively, where statistical and sys-

tematic uncertainties are combined in quadrature.

We also measure the ratio of cross sections R ≡
σ(hb(mP)π+π−)
σ(Υ(2S )π+π−)

. To determine the reconstruction efficiency

we use the results of resonant structure studies reported

below. We find the ratio of cross sections to be R =

0.46 ± 0.08+0.07
−0.12

for the hb(1P) and R = 0.77 ± 0.08+0.22
−0.17

for the hb(2P).

3 Observation of Zb(10610 and Zb(10650)

As shown above, the rates of the processes Υ(5S ) →
hb(mP)π+π− (m = 1, 2), that require a heavy quark spin

flip, are found to be comparable to those for the heavy

quark spin conserving transitions Υ(5S ) → Υ(nS )π+π−,

(n = 1, 2, 3). This observation contradicts to a priori theo-

retical expectations and strongly suggests that some exotic

mechanisms are contributing to Υ(5S ) decays.

To study the resonant substructure of the Υ(5S ) →
hb(mP)π+π− (m = 1, 2) three-body decays, we measure

the hb(mP) yield as a function of the hb(mP)π± invariant

mass. We use the same inclusive approach as described

in the previous section. We fit the Mmiss(π
+π−) spectrum

in bins of hb(mP)π± invariant mass, defined as the missing

mass to the opposite sign pion, Mmiss(π
∓). We combine the

-2000

0

2000

4000

6000

8000

10000

12000

10.4 10.5 10.6 10.7
Mmiss(π), GeV/c2

E
ve

nt
s 

/ 1
0 

M
eV

/c
2

(a)

0

2500

5000

7500

10000

12500

15000

17500

10.4 10.5 10.6 10.7
Mmiss(π), GeV/c2

E
ve

nt
s 

/ 1
0 

M
eV

/c
2

(b)

Figure 2. The (a) hb(1P) and (b) hb(2P) yields as a function of

Mmiss(π) (points with error bars) and results of the fit (histogram).

Mmiss(π
+π−) spectra for the corresponding bin in Mmiss(π

−)

and Mmiss(π
+) and use half of the available Mmiss(π) range

to avoid double counting.

The results for the yield of Υ(5S ) → hb(mP)π+π−
(m = 1, 2) decays as a function of the Mmiss(π) are shown

in Fig. 2. The distribution for the hb(1P) exhibits a clear

two-peak structure without a significant non-resonant con-

tribution. A similar distribution is observed for the hb(2P)

yield, though the available phase space is much smaller.

In the following we refer to these structures as Zb(10610)

and Zb(10650), respectively. To fit the Mmiss(π) spectrum

we use the following combination:

|BW1(s,M1,Γ1) + aeiφBW1(s,M2,Γ2) + beiψ|2 qp√
s
. (1)

Here
√

s ≡ Mmiss(π); the variables Mk, Γk (k = 1, 2),

a, φ, b and ψ are free parameters;
qp√

s is a phase-space

factor, where p (q) is the momentum of the pion orig-

inating from the Υ(5S ) (Zb) decay measured in the rest

frame of the corresponding mother particle. The P-wave

Breit-Wigner amplitude is expressed as BW1(s,M,Γ) =√
M Γ F (q/q0)

M2−s−iM Γ
. Here F is the P-wave Blatt-Weisskopf form

factor F =

√
1+(q0R)2

1+(qR)2 , q0 is a daughter momentum calcu-

lated with pole mass of its mother, R = 1.6 GeV−1. The

function (Eq. 1) is convolved with the detector resolution

function, integrated over the histogram bin and corrected

for the reconstruction efficiency. The fit results are shown

as solid histograms in Fig. 2. We find that the non-resonant

contribution is consistent with zero in accord with the ex-

pectation that it is suppressed due to heavy quark spin-flip.

In case of the hb(2P) we fix the non-resonant amplitude at

zero.

Another possibility to study the observed Zb states is

provided by the e+e− → Υ(nS )π+π−, n = 1, 2, 3 process.

The observed rates for these processes are about two or-

ders of magnitude higher than expected. To study these

processes we use a full reconstruction approach that al-

lows to reduce the background significantly.

To reconstruct Υ(5S ) → Υ(nS )π+π−, Υ(nS ) → μ+μ−
candidates, we select events with four charged tracks with

zero net charge that are consistent with coming from

the interaction point. Charged pion and muon candi-

dates are required to be positively identified. Candi-

date Υ(5S ) → Υ(nS )π+π− events are selected by requir-

ing |Mmiss(π
+π−) − mΥ(nS )| < 0.05 GeV/c2, where mΥ(nS )
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Figure 3. Comparison of fit results (open histogram) with experi-

mental data (points with error bars) for events in the Υ(1S ) (top),

Υ(2S ) (middle), and Υ(3S ) (bottom) signal regions. The solid

histogram is for JP = 1+ model, dashed one is for JP = 2+ model

for Zb states. The hatched histogram shows the background com-

ponent.

is the mass of an Υ(nS ) state [7]. Sideband regions

are defined as 0.05 GeV/c2 < |Mmiss(π
+π−) − mΥ(nS )| <

0.10 GeV/c2. To remove background due to photon con-

versions on the innermost parts of the Belle detector, we

require M2(π+π−) > 0.20/0.14/0.10 GeV/c2 for a final

state with an Υ(1S ), Υ(2S ), and Υ(3S ), respectively. More

details can be found in Ref. [8].

One-dimensional invariant mass distributions for

events in the Υ(nS ) signal regions are shown in Fig. 3,

where two peaks are evident in the Υ(nS )π system near

10.61 GeV/c2 and 10.65 GeV/c2.

Amplitude analyses are performed by means of un-

binned maximum likelihood fits to six-dimensional phase

space [9]. The variation of reconstruction efficiency across

the Dalitz plot is determined from a GEANT-based MC

simulation. The distribution of background events is de-

termined using sideband events and found to be uniform

across the Dalitz plot.

We parametrize the Υ(5S ) → Υ(nS )π+π− three-body

decay amplitude by:

M = AZ1
+ AZ2

+ Aσ + Af0 + Af2 + Anr, (2)

where AZ1
and AZ2

are amplitudes to account for contribu-

tions from the Zb(10610) and Zb(10650), respectively.

Consequently, we parametrize the observed Zb(10610)

and Zb(10650) peaks with an S -wave Breit-Wigner func-

tion BW(s,M,Γ) =
√

MΓ
M2−s−iMΓ

, where we do not consider

possible s-dependence of the resonance width. To account

for the possibility of Υ(5S ) decay to both Z+
b π

− and Z−b π
+,

the amplitudes AZ1
and AZ2

are symmetrized with respect

to π+ and π− transposition. Using isospin symmetry, the

resulting amplitude is written as

AZk = aZk e
iδZk (BW(s1,Mk,Γk) + BW(s2,Mk,Γk)), (3)

where s1 = M2[Υ(nS )π+], s2 = M2[Υ(nS )π−]. The rela-

tive amplitudes aZk , phases δZk , masses Mk and widths Γk

(k = 1, 2) are free parameters. We also include the Af0
and Af2 amplitudes to account for possible contributions

in the π+π− channel from the f0(980) scalar and f2(1270)

tensor states, respectively. We use a Breit-Wigner func-

tion to parametrize the f2(1270) and a coupled-channel

Breit-Wigner function for the f0(980). The mass and width

of the f2(1270) state are fixed at their world average val-

ues [7]; the mass and the coupling constants of the f0(980)

state are fixed at values determined from the analysis of

B+ → K+π+π−: M[ f0(980)] = 950 MeV/c2, gππ = 0.23,

gKK = 0.73 [10].

The non-resonant amplitude Anr is parametrized as

Anr = anr
1 eiδnr

1 + anr
2 eiδnr

2 s3, where s3 = M2(π+π−) (s3 is

not an independent variable and can be expressed via s1

and s2 but we use it here for clarity), anr
1 , anr

2 , δnr
1 and δnr

2

are free parameters of the fit.

The logarithmic likelihood function L is then con-

structed as

L = −2
∑

log( fsigS (s1, s2) + (1 − fsig)B(s1, s2)), (4)

where S (s1, s2) is the density of signal events |M(s1, s2)|2
convolved with the detector resolution function, B(s1, s2)

describes the combinatorial background that is considered

to be constant and fsig is the fraction of signal events in the

data sample. The fractions of signal events in the signal

region are determined from fits to the Mmiss(π
+π−) spec-

trum and are found to be 0.937 ± 0.015(stat.), 0.940 ±
0.007(stat.), 0.918 ± 0.010(stat.) for final states with

Υ(1S ), Υ(2S ), Υ(3S ), respectively. Both S (s1, s2) and

B(s1, s2) are efficiency corrected.

In the fit to the data, we test the following assumptions

on the spin and parity of the observed Zb states: JP = 1+,

1−, 2+ and 2−. Note that JP = 0+ and 0− combinations

are forbidden because of the observed Zb → Υ(nS )π and

Zb → hb(mP)π decay modes, respectively. We find that the

model with JP = 1+ assigned to both Zb states provides the

best description of the data for all final states. Results of

the fits to Υ(5S ) → Υ(nS )π+π− signal events are shown in

Fig. 3, where one-dimensional projections of the data and

fits are compared. More details can be found in Ref. [9].

Analysis of quark composition of the initial and final

states allows to state that Zb states should be comprised of

(at least) four quarks. The proximity of the Zb(10610) and

Zb(10650) masses to the sum of the B and B∗ mesons and

the sum of the two B∗ mesons, respectively, suggests that

the decay rates of Zb states to these final states might be

large. To search for Zb → B(∗)B̄∗ decays we study three-

body e+e− → B(∗)B̄∗π transitions.

B mesons are reconstructed in the following channels:

B+ → J/ψK+, B+ → D̄0π+, B0 → J/ψK∗0, B0 → D−π+,
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Figure 4. The (a) recoil mass distribution to Bπ system and (b) pion recoil mass distribution for signal BB∗π candidates, and (c)

pionrecoil mass distribution for signal B∗B∗π candidates. Points with error bars are data, solid line is the result of the fit with the

nominal model (see text), dashed line - fit to pure non-resonant amplitude; dotted line - fit to one Zb state plus a non-resonant, and

dash-dotted - two Zb states and non-resonant. Hatched histograms represent level of combinatorial background.

B0 → D∗−π+. We identify B candidates by their invariant

mass, M(B), and momentum P(B). We require M(B) to be

within 30 to 40 MeV/c2 (depending on the B decay mode)

of the nominal B mass. Neutral (charged) D mesons origi-

nating from B decays are reconstructed in the D̄0 → K+π−
and D̄0 → K+π+π−π− (D− → K+π−π−) modes. Those

originating from D∗− decays are also reconstructed in the

D̄0 → K+π−π0 mode. To identify D∗− candidates we re-

quire |M(D̄0π−) − M(D̄0) − 0.14542| <2 MeV/c2. The in-

variant mass of the J/ψ → μ+μ− candidates is required to

satisfy |M(μ+μ−) − MJ/ψ| < 30 MeV/c2, where MJ/ψ is the

nominal mass of the J/ψ meson. The K∗0 is reconstructed

in the K∗0 → K+π− mode, the invariant mass of the K∗0
candidate is required to be within 70 MeV/c2 of the nomi-

nal K∗0 mass. The invariant mass of a two-photon combi-

nation is required to be within 12 MeV/c2 of the nominal

π0 mass.

Reconstructed B+ or B0 candidates are then combined

with a π− candidate and a recoil mass to the Bπ combina-

tion, rM(Bπ), is calculated as rM(Bπ) =

√
E2

cms − P2
Bπ,

where Ecms is the center-of-mass energy, PBπ - three-

momentum of the Bπ combination. Signal Υ(5S ) → BB∗π
events produce a narrow peak in the rM(Bπ) spectrum

around nominal B∗ mass, while Υ(5S ) → B∗B∗π events

produce a peak shifted to higher mass by about 45 MeV/c2

due to a missed photon from the B∗ → Bγ decay. Fig-

ure 4(a) shows the rM(Bπ)+ M(B)− 5.279 GeV/c2 distri-

bution for the experimental data. Use of rM(Bπ)+M(B)−
5.279 GeV/c2 instead of just rM(Bπ) allows to remove

correlations between rM(Bπ) and M(B) and improve res-

olution. It is important to note here that according to sig-

nal MC, BB∗π events where the reconstructed B is the one

from B∗, produce a peak in the rM(Bπ) distribution at the

same position as signal events where the reconstructed B
is the prompt one.

For the subsequent analysis, we require |(rM(B) +

M(B) − 5.279) − MB∗ | < 0.015 GeV/c2 to select Υ(5S ) →
BB∗π events and |(rM(B)+M(B)−5.279)−(MB∗+0.045)| <
0.015 GeV/c2 to select Υ(5S ) → B∗B∗π events. For se-

lected candidate events we calculate mass recoiling against

the charged pion: rM(π) =

√
E2

cms − P2
π, where PBπ -

three-momentum of the charged pion. The rM(π) distribu-

tion for candidates in the BB∗π and B∗B∗π signal regions

are shown in Fig. 4(b) and (c), respectively. Excesses

of signal events over the expected background levels are

clearly visible at lower mass edges of the rM(π) spectra.

Distribution of signal events for the Υ(5S ) → BB∗π decay

is parametrized with the following model:

S BB∗π(m) = AZb(10610) + ANR, (5)

where ANR is the non-resonant amplitude parametrized as

just a complex constant and the Zb(10610) amplitudes is

a Breit-Wigner function. We also apply a correction for

reconstruction efficiency and phase space. As a variation

of this nominal model, we also add a second Breit-Wigner

amplitude to account for possible Zb(10650) → BB∗π de-

cay. We also fit the data with the Zb(10610) channel only.

Results of these fits are shown in Fig. 4(b). Two models

give about equally good description of the data: the nom-

inal model and a model with an additional non-resonant

amplitude. However, we select the former one as our nom-

inal model since adding a non-resonant amplitude does a

not improve the fit quality that much. The worst fit to the

data is provided by a model with just non-resonant ampli-

tude. From this analysis we estimate the significance of

the Zb(10610) → BB∗ signal to exceed an 8σ level.

As the nominal model for the Υ(5S ) → B∗B∗π decay,

we use the following parametrization:

S B∗B∗π(m) = AZb(10650) + ANR (6)

We also fit the data without a non-resonant component and

with a non-resonant amplitude alone. Results of the fits are

shown in Fig. 4(c).

The best description of the B∗B∗π data is achieved by

a model with the Zb(10650) amplitude only. Addition of

a non-resonant amplitude does not provide any signifi-

cant improvement of the fit quality. A fit with a non-

resonant amplitude alone gives a much worse likelihood

value. From this analysis, we estimate the significance of

the Zb(10650) → B∗B∗ signal to be 6.8σ.
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Figure 5. The hb(1P) yield vs. M(1)

miss
(π+π−γ) (a), and hb(2P) yield vs. M(2)

miss
(π+π−γ) in the ηb(1S ) region (b) and in the ηb(2S ) region (c).

The solid (dashed) histogram presents the fit result (background component of the fit function).

4 Evidence for the ηb(2S ) and observation
of hb(1, 2P) → ηb(1S )γ

To study the processes e+e− → Υ(5S ) → hb(mP)π+π−,

hb(mP) → ηb(nS )γ we reconstruct a π+π− pair and

photon. The selection criteria are described in de-

tail in Ref. [6]. The two-dimensional distribution

M(m)

miss
(π+π−γ) ≡ Mmiss(π

+π−γ)− Mmiss(π
+π−)+mhb(mP) vs.

Mmiss(π
+π−) contains a signal cluster at the location of two

crossing bands. A band at Mmiss(π
+π−) = mhb(mP) is due to

events where the π+π− pair from the e+e− → hb(mP)π+π−
process is combined with a low energy combinatorial pho-

ton; a band at M(m)

miss
(π+π−γ) = mηb(nS ) is due to e+e− →

ηb(nS )π+π−γ events, not necessarily produced via hb(mP).

We fit the Mmiss(π
+π−) spectra in M(m)

miss
(π+π−γ) bins to

measure the hb(mP) yield.

The results for the hb(1P) and hb(2P) yields as a func-

tion of M(m)

miss
(π+π−γ) are presented in Fig. 5. Clear peaks

at 9.4 GeV/c2 and 10.0 GeV/c2 are identified as signals for

the ηb(nS ) and ηb(2S ), respectively. Generic MC simula-

tions indicate that no peaking backgrounds are expected in

these spectra.

We fit the hb(mP) yield dependence on M(m)

miss
(π+π−γ)

to a sum of the ηb(nS ) signal components described

by the convolution of a non-relativistic Breit-Wigner

function with the resolution function and a background

parametrized by an exponentiation of a first- [second-] or-

der polynomial in the ηb(1S ) [ηb(2S )] region. The two

M(m)

miss
(π+π−γ) spectra [from the hb(1P) and hb(2P)] with

ηb(1S ) signals are fitted simultaneously. We find event

yields for the hb(mP) → ηb(nS ) transitions of N1P→1S =

(23.5±2.0)×103, N2P→1S = (10.3±1.3)×103 and N2P→2S =

(25.8±4.9)×103; the fitted masses and width are mηb(1S ) =

(9402.4±1.5±1.8) MeV/c2, Γηb(1S ) = (10.8 +4.0
−3.7

+4.5
−2.0) MeV

and mηb(2S ) = (9999.0 ± 3.5 +2.8
−1.9) MeV/c2. The confi-

dence level of the ηb(1S ) [ηb(2S )] fit is 61% [36%]. If

the ηb(2S ) width is allowed to float in the fit, we find

Γηb(2S ) = (4+12
−20) MeV or Γηb(2S ) < 24 MeV at 90% C.L.

using the Feldman-Cousins approach [11]. For mass and

yield measurements, we fix the ηb(2S ) width at its value

from perturbative calculations [12] Γηb(2S ) = Γηb(1S )
Γ
Υ(2S )
ee

Γ
Υ(1S )
ee

=

(4.9+2.7
−1.9) MeV, where the uncertainty is due to the experi-

mental uncertainty in Γηb(1S ).

To estimate the systematic uncertainties in the ηb(nS )

parameters, we vary the polynomial orders and fit in-

tervals in the Mmiss(π
+π−) & M(m)

miss
(π+π−γ) fits, and the

M(m)

miss
(π+π−γ) binning by scanning the starting point of the

10 MeV/c2 bin with 1 MeV/c2 steps. We also multiply

the non-relativistic Breit-Wigner function by an E3
γ term

expected for an electric dipole transition and include the

uncertainty in the hb(1P) and hb(2P) masses and in the

estimated value of the ηb(2S ) width. We add the various

contributions in quadrature to estimate the total systematic

uncertainty. For the hyperfine splittings mΥ(nS ) − mηb(nS )

we determine ΔMHF(1S ) = (57.9 ± 2.3) MeV/c2 and

ΔMHF(2S ) = (24.3+4.0
−4.5

) MeV/c2, where statistical and sys-

tematic uncertainties in mass are added in quadrature.

Using Wilks’ theorem, we find 15σ [9σ] for the

hb(1P) → ηb(1S )γ [hb(2P) → ηb(1S )γ] statistical signif-

icance. For the significance of the ηb(2S ) signal, we use

a method [13] that requires definition of the search win-

dow to take into account the “look elsewhere effect.” For

the ratio r =
ΔMHF(2S )
ΔMHF(1S )

, perturbative calculations [14] pre-

dict
m2
Υ(2S )

m2
Υ(1S )

Γ
Υ(2S )
ee

Γ
Υ(1S )
ee

= 0.513 ± 0.011 (where the error is due to

the uncertainties in Γee); this is consistent with the mea-

sured value of 0.420+0.071
−0.079

. To determine boundaries of the

search window, we conservatively assume r = 0 and r = 1.

We find the significance of the ηb(2S ) signal to be 4.8σ
(4.2σ including systematics).

We measure B[hb(1P) → ηb(1S )γ] = (49.2 ±
5.7 +5.6

−3.3)%, B[hb(2P) → ηb(1S )γ] = (22.3± 3.8 +3.1
−3.3)% and

B[hb(2P) → ηb(2S )γ] = (47.5 ± 10.5 +6.8
−7.7)%.

5 Conclusion

In summary, we have observed the P-wave spin-singlet

bottomonium states hb(1P) and hb(2P) in the reaction

e+e− → Υ(5S ) → hb(mP)π+π−. The measured hyper-

fine splittings are consistent with zero as expected. A de-

tailed analysis revealed that hb(mP) states in Υ(5S ) de-

cays are dominantly produced via intermediate charged

bottomonium-like resonances Zb(10610) and Zb(10650).

Dark Matter, Hadron Physics and Fusion Physics

01014-p.5



Both these resonances have also been observed in Υ(nS )π
spectra in the Υ(5S ) → Υ(nS )π+π− decays. Weighted

averages over all five channels give M = 10607.2 ±
2.0 MeV/c2, Γ = 18.4 ± 2.4 MeV for the Zb(10610)

and M = 10652.2 ± 1.5 MeV/c2, Γ = 11.5 ± 2.2 MeV

for the Zb(10650), where statistical and systematic er-

rors are added in quadrature. The relative phase between

Zb(10610) and Zb(10650) is consistent with zero for the

final states with the Υ(nS ) and consistent with 180 de-

grees for the final states with hb(mP). Amplitude analy-

sis strongly favors the JP = 1+ spin-parity assignment for

both the Zb(10610) and Zb(10650) states. Since the Υ(5S )

has negative G-parity, the Zb states have positive G-parity

due to the emission of the pion. We also observe signifi-

cant signals of Zb(10610) and Zb(10650) states in BB∗ and

B∗B∗ final states, respectively.

We report the first evidence for the ηb(2S ) using the

hb(2P) → ηb(2S )γ transition, with a significance, includ-

ing systematics, of 4.2σ, and the first observation of the

hb(1P) → ηb(1S )γ and hb(2P) → ηb(1S )γ transitions.

The mass and width parameters of the ηb(1S ) and ηb(2S )

are measured to be mηb(1S ) = (9402.4± 1.5± 1.8) MeV/c2,

mηb(2S ) = (9999.0 ± 3.5 +2.8
−1.9) MeV/c2 and Γηb(1S ) =

(10.8 +4.0
−3.7

+4.5
−2.0) MeV. The mηb(2S ) and Γηb(1S ) are first mea-

surements; the mηb(1S ) measurement is the most precise

and is about 10 MeV/c2 higher than the current world av-

erage [7]. The hyperfine splittings, ΔMHF(1S ) = (57.9 ±
2.3) MeV/c2 and ΔMHF(2S ) = (24.3+4.0

−4.5
) MeV/c2, are in

agreement with theoretical calculations [14]. We mea-

sure branching fractions for the transitions B[hb(1P) →
ηb(1S )γ] = (49.2 ± 5.7 +5.6

−3.3)%, B[hb(2P) → ηb(1S )γ] =

(22.3 ± 3.8 +3.1
−3.3)% and B[hb(2P) → ηb(2S )γ] = (47.5 ±

10.5 +6.8
−7.7)% that are somewhat higher than theoretical ex-

pectations [1]. We update the hb(1P) and hb(2P) mass

measurements mhb(1P) = (9899.1 ± 0.4 ± 1.0) MeV/c2,

mhb(2P) = (10259.8 ± 0.5 ± 1.1) MeV/c2, and 1P and 2P
hyperfine splittings ΔMHF(1P) = (+0.8 ± 1.1) MeV/c2,

ΔMHF(2P) = (+0.5 ± 1.2) MeV/c2.
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