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Abstract: Many previous works have studied gravitational lensing effects from Loop Quantum

Gravity. So far, gravitational lensing effects from Loop Quantum Gravity have only been studied by

choosing large quantum parameters much larger than the Planck scale. However, by construction,

the quantum parameters of the effective models of Loop Quantum Gravity are usually related to

the Planck length and, thus, are extremely small. In this work, by strictly imposing the quantum

parameters as initially constructed, we study the true quantum corrections of gravitational lensing

effects by five effective black hole models of Loop Quantum Gravity. Our study reveals several

interesting results, including the different scales of quantum corrections displayed by each model

and the connection between the quantum correction of deflection angles and the quantum correction

of the metric. Observables related to the gravitational lensing effect are also obtained for all models

in the case of SgrA* and M87*.

Keywords: general relativity; gravitational lensing; Loop Quantum Gravity

1. Introduction

Loop Quantum Gravity (LQG) is a background-independent candidate theory of
quantum gravity [1–3]. While the full theory of LQG is very complicated, the extraction of
physically observable phenomena from full LQG is extremely difficult. There have been
many works obtaining the physical effects of LQG from its symmetry-reduced models with
great success. One such example is Loop Quantum Cosmology (LQC) [4], from which
many exciting results have been obtained. The most important result is the resolution of big
bang singularity by big bounce [5]. A similar approach to simplify the theory has also been
applied to many models of spherically symmetric black holes (BHs) [6–15], also leading to
the resolution of BH singularity. The latest works on LQG black holes have also produced
BH models [16] maintaining general covariance [17].

One of the most critical questions is “How can such a quantum theory of gravity
be tested?” From an observational point of view, the answer to such a question may
reside in examining as many quantum corrections to classical phenomena as possible. A
fundamental theory should be able to consistently explain all experimental observations
using precisely the same rigorously imposed fundamental quantum parameters. This
motivated us to test the theory in various classically observed scenarios, strictly keeping
quantum parameters as introduced in the original model.

So far, many works have focused on the phenomenology of LQG, studying how the
theory can impact classically observable phenomena. Examples include the quasinormal
modes of the non-rotating LQG black holes [18,19], the shadow cast by a rotating polymer-
ized black hole constructed using the revised Newman–Janis method [20], and the Hawking
radiation spectra and evaporation of spherically symmetric LQG black holes [21–24].

One potential testing ground for the theory is gravitational lensing near the BH, where,
theoretically, photons (or other particles) could travel multiple times around the BH before
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escaping, making it possible to amplify the quantum effects to a certain degree. Generally
speaking, gravitational lensing effects describe a phenomenon where a photon emitted
from a distant source is deflected by a massive celestial object between the source and the
observer, such as galaxies or supermassive black holes generating a strong gravitation field,
leading to the bending of light trajectories and deflections of the image of the source as
being received by the observer. There are two main approaches to studying the gravitational
lensing effect, namely the weak field limits, where the light bending occurs far away from
the center of the lens, inducing light deflections around or less than a few arcseconds,
and the strong field limits [25–31], which studies the strong gravitational lensing effect
happening near the photon ring of the lens of the BH. In this work, we would like to explore
the gravitational lensing effects near the photon sphere of the BH using the strong-field-
limit method, since the quantum corrections are usually suppressed as the distance from
the black hole becomes larger.

There are three main goals for this work. First and foremost, although gravitational
lensing effects from LQG have been studied by many works [32–35], these works treat
the quantum parameter as a running parameter valued in the magnitude of 1. Indeed,
many interesting results can be extracted from such treatments, and one can argue that,
due to the quantization ambiguity of LQG, the possibility of modifying the regulator and
quantum parameters in the theory exists at a fundamental level. However, it should be
noted that the quantum parameters defined in the effective models of LQG are usually
related to the Planck length, which is an astonishingly small number. It is doubtful that
the quantum parameter can be a quantity valued at the magnitude of 1. Therefore, the
most essential purpose of this work is to treat these quantum parameters seriously and
to look at the quantum corrections to the gravitational lensing effect coming from these
rigorously chosen quantum operators and whether there is any remote hope of detecting
such quantum effects via currently available experiments.

Second, many effective BH models of LQG, such as the Ashtekar–Olmedo–Singh (AOS)
and Gambini–Olmedo-Pullin (GOP) models, have yet to be tested using the gravitational
lensing effects. We would also like to explore these models in our investigation of the true
quantum impact of LQG on the gravitational lensing effects using rigorously imposed
quantum parameters.

Third, so far, most of the works discussing the gravitational lensing effects of LQG
study LQG models individually. In this paper, however, we will investigate the gravitational
lensing effect of a total of five LQG effective BH models, including the AOS model, the
GOP model, two newly proposed models satisfying general covariance (MC1) and (MC2),
and the quantum Oppenheimer–Schneider (qOS). We hope that by making comparisons of
different models of LQG, we can achieve a better understanding of the various scales of
quantum corrections in terms of the gravitational lensing effects from different effective
models of LQG, their source of origin, their impacting factors in the theory, and what
could make direct observations possible. We also hope that the same methodology can be
applied to study other observational effects of LQG in the near future, enabling a more
extensive understanding of the observational effects of the theory in regions where actual
experiments are plausible.

The structure of this work is as follows: In Section 2, we briefly introduce the defini-
tions of all five models studied, including the exact definitions and values of the quantum
parameters present in each model. In the meantime, we will also provide a quick overview
of how to compute the gravitational lensing effect using the strong field limit. Since this
topic has been covered thoroughly by many previous works such as [27,33], we will include
only the most essential steps in obtaining the deflection angle and lens observables. In
Section 3, we will first compute the quantum corrections of the deflection angle in all five
models, then calculate the lens observables, providing a comparison and analysis. In the
final section of this paper, we will summarize the main results obtained in this work and
provide additional insights into how to interpret these results.
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2. Technical Background

2.1. BH Models from Effective LQG

A simple, spherically symmetric LQG BH model starts by imposing the homogeneous
condition in the interior region of the Schwarzschild BH. Given the ADM decomposition
Σ × R of the 4-dimensional manifold M, where Σ is the spatial 3-manifold, define qab to be
the metric on Σ. After performing symmetry reduction, the canonical variables of classical
general relativity, namely the Ashtekar connection Ai

a(x) and its conjugate densitized triad
Ea

i (x) =
√

qea
i with ea

i ebi = qab, are reduced to [36]:

Ea
i τi∂a = pcτ3 sin θ

∂

∂x
+

pb

L0
τ2 sin θ

∂

∂θ
− pb

L0
τ1

∂

∂ϕ
,

Ai
aτi dxa =

c

L0
τ3 dx + bτ2 dθ − bτ1 sin θ dϕ + τ3 cos θ dϕ,

(1)

where τi is a basis of su(2) Lie algebra. The non-vanishing Poisson brackets between
canonical variables reads:

{

pb, b
}

= −Gγ,
{

c, pc

}

= 2Gγ. (2)

Under these variables, classical general relativity reduces to the Hamiltonian constrained
system of the following smeared Hamiltonian constraint:

H :=
∫

C
NC = − 1

2Gγ





(

b +
γ2

b

)

pb + 2cpc



, (3)

where N is the lapse function of the ADM decomposition.
Following similar techniques in LQC, the Hamiltonian constraint can be regular-

ized using holonomy–flux algebra to produce the effective Hamiltonian constraint, and
generally [36] the holonomy corrections of the effective Hamiltonian constraint can be
simplified by performing the following regularization:

c → sin(δcc)

δc
, b → sin(δbb)

δb
, (4)

where the quantum corrections are controlled by the quantum parameters δc and δb due to
the fundamental discreteness of LQG. Finally, the effective Hamiltonian of Loop Quantum
Schwarzschild BH can be obtained as:

Heff = − 1

2Gγ





(

sin(δbb)

δb
+

γ2δb

sin(δbb)

)

pb + 2
sin(δcc)

δc
pc



. (5)

the effective metric of the theory can in principle be obtained by solving the Hamiltonian
evolution equations.

In this paper, we focus on the static spherically symmetric spacetimes obtained from
the effective models of LQG, which in general can be described by the line element:

ds2 = −A(r)dt2 + B(r)dr2 + C(r)dΩ
2. (6)

Specifically, we consider the region outside of the BH horizon of the following five candidate
LQG black hole (BH) models:

• Ashtekar–Olmedo–Singh (AOS) model obtained by considering a quantum BH exte-
rior extension of the BH interior quantized using polymer quantization techniques
similar to LQC [37,38]:
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AAOS(r) =

(

r

rS

)2ϵ

(

1 −
(

rS
r

)1+ϵ
)(

2 + ϵ + ϵ
(

rS
r

)1+ϵ
)2(

(2 + ϵ)2 − ϵ2
(

rS
r

)1+ϵ
)

16

(

1 +
δ2

c L2
0γ2r2

S

16r4

)

(1 + ϵ)4

,

BAOS(r) =

(

1 +
δ2

c L2
0γ2r2

S

16r4

)

(

ϵ +
(

r
rS

)1+ϵ
(2 + ϵ)

)2

(

(

r
rS

)1+ϵ
− 1

)(

(

r
rS

)1+ϵ
(2 + ϵ)2 − ϵ2

) ,

CAOS(r) = r2

(

1 +
γ2L2

0δ2
c r2

S

16r4

)

,

(7)

for r ∈ [rS, ∞), rS = 2Gm is the Schwarzschild radius, and

Loδc =
1

2

(

γ∆
2

4π2m

)1/3

, ϵ + 1 =

√

√

√

√1 + γ2

( √
∆√

2πγ2m

)2/3

, (8)

are quantum parameters depending on both the Imirzi parameter γ and the area gap
∆ = 21.17l2

p (when setting γ = 1), namely the minimum nonzero eigenvalue of the
area operator in LQG. lp is Planck length.

• The Gambini–Olmedo–Pullin (GOP) model describes the improved dynamics ob-
tained under the more general spherically symmetric reduction in the classical phase
space [8,39]:

Aα
GOP(r) =









1 − rS

r + r0
+ α

∆

4π

r4
S

(r + r0)
6
(

1 + rS
r+r0

)2









,

Bα
GOP(r) =

(

1 + δx
2(r+r0)

)2



1 − rS
r+r0

+ α ∆

4π
r4

S

(r+r0)
6
(

1+
rS

r+r0

)2





,

CGOP(r) = (r + r0)
2,

(9)

where

r0 =

(

2Gm∆

4π

)1/3

, (10)

α is a parameter with choices 0 and 1. The difference between these two choices is
verified to be negligible concerning gravitational lensing effects.

• Two newly proposed LQG BH models satisfying the minimal conditions for maintain-
ing general covariance (MC1 and MC2) are provided [16]:

AMC1(r) = 1 − 2M

r
+ ζ2

MC

M2

r2

(

1 − 2M

r

)2

,

AMC2(r) = 1 − 2M

r
,

BMC1(r) = BMC2(r) = AMC1(r)
−1,

CMC1 = CMC2 = r2,

(11)

where ζMC =

√

4
√

3πγ3l2
p

M is the quantum parameter for both models. The gravitational
lensing effect of this model has been studied recently in [40] by treating ζMC as an
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arbitrary parameter in the order ζMC ∼ 1. In our paper, we stick strictly to the original

theory, where ζMC =

√

4
√

3πγ3l2
p

M .
• The quantum Oppenheimer–Schneider (qOS) model obtained by matching the exterior

effective spacetime with the interior effective LQC-like model [11]:

AqOS(r) = 1 − 2M

r
+

ζqOS M2

r4
,

BqOS(r) = AqOS(r)
−1,

CqOS(r) = r2,

(12)

where ζqOS = 16
√

3γ3l2
p. The gravitational lensing effect of this model has also been

studied previously in [41] considering ζqOS ∼ 1. In this work, we also keep the

quantum parameter as ζqOS = 16
√

3γ3l2
p.

2.2. Gravitational Lensing from Strong Field Limit and Lens Observables

Since the quantum parameters of the above-mentioned BH models are valued at the
order of minuscule constants, such as the Planck length lp or Planck area l2

p, the quantum
correction to the gravitational lensing effect is inevitably small. Consequently, the photon
trajectories who have the closest distance to the lens during the trip near the photon ring
have the largest impact from quantum corrections. Let the closest distance to the lens
of a photon trajectory be r0, and the minimum such distance is the BH photon sphere
rm, satisfying [42,43]:

C′(rm)

C(rm)
=

A′(rm)

A(rm)
. (13)

For arbitrary theories with the line element (6), given impact parameter b, the deflection
angle α between the source and the image can be computed as [44]:

α(r0) = I(r0)− π

I(r0) = 2
∫

∞

r0

1

C

√

AB

1/u2 − A/C
dr

(14)

For r0 → rm, the gravitational lensing effect can be approximated by the strong field limit.
A general approach to obtain the strong field limit for BH whose line elements take the
form (6) is described in [27]. As an alternative to the original proposal, we consider the
variable z = 1 − r0

r introduced in [42,43], allowing for the direct conversion between z and
r. The integral can then be rewritten as:

I(r0) =
∫ 1

0
R(z, r0) f (z, r0)dz, (15)

where we have

R(z, r0) =
2r2
√

A(r)B(r)C0

r0C(r)

f (z, r0) =
1

√

A0 − A(r)C0

C(r)

,
(16)

where A0 := A(r0) and C0 := C(r0). R(z, r0) is regular for r ≥ r0 ≥ rm, while f (z, r0) is
divergent in z as z → 0, i.e., r → r0. We expand the divergent term f (z, r0) up to the second
order of z as follows:

f (z, r0) ∼ f0(z, r0) =
1

√

c1(r0)z + c2(r0)z2
, (17)
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where

c1(r0) = −r0 A′
0 +

r0 A0C′
0

C0

c2(r0) = r0

−2r0 A0C′2
0 − C2

0

(

2A′
0 + r0 A′′

0

)

+ C0

[

2r0 A′
0C′

0 + A0

(

2C′
0 + r02C′′

0

)

]

2C2
0

(18)

which captures the dominant contribution of the divergence as z → 0.
Using this expansion, the integral I(r0) can be split into a regular part IR(r0) and a

divergent part ID(r0) as follows:

I(r0) = ID(r0) + IR(r0)

ID(r0) =
∫ 1

0
R(0, rm) f0(z, r0)dz

IR(r0) =
∫ 1

0

[

R(z, r0) f (z, r0)− R(0, rm) f0(z, r0)
]

dz.

(19)

As a result, the deflection angle can be computed in terms of the impact parameter b as follows:

α(b) = −a ln

(

b

bm
− 1

)

+ u +O
[

(b − bm) ln(b − bm)
]

, (20)

where:

a ≡ R(0, rm)

2
√

c2(rm)
,

u ≡ a ln δ + IR(r0)− π,

δ ≡ r2
m

(

C′′(rm)

C(rm)
− A′′(rm)

A(rm)

)

.

(21)

Despite the dependence of the impact factor b in α(b), using the factors a and u, several
b-independent lens observables can also be extracted [27,33,40]:

• The angle θ∞ of the innermost image. The angle θ is defined as the observed angle
between the lens BH and the image of the source as being observed after deflection
via the lens. Since the photon trajectory can go around the lens multiple times before
finally reaching the observer, there can be a total of n images of the source. n is not
bounded, since the deflection angle is unbounded for b → bm. Therefore, a limit

θ∞ ≈ bm
DOL

can be obtained by taking n → ∞, where DOL is the distance between the
lens BH and the observer.

• The angular separation s between the outermost image and the innermost image (the
lower bound of the series of images as n →, since these images are unlikely to be
distinguishable):

s := θ1 − θ∞ ∼ θ∞e
u−2π

a . (22)

• The quotient µ of the flux of the outermost relativistic image to that of all other
relativistic images:

µ ∼

(

e
4π
a − 1

)(

e
2π
a + e

u
a

)

e
4π
a + e

2π
a + e

u
a

(23)

• The time delay ∆Tn,m between the n-th and m-th relativistic images. Particularly, for
spherically symmetrical BH [44]:

∆T2,1

θ∞

=
DOL

c
, (24)

where c is the speed of light.
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These b-independent lens observables are only dependent on the quantum parameter
of the theory, thus serving as an ideal testing ground for studying the quantum correction
of the gravitational lensing effect from LQG.

2.3. Exact Values of the Quantum Parameters

In this paper, we use the values of the quantum parameter in all BH models of
LQG as they were originally constructed to capture the precise impact of the quantum
effects. For all of the results we obtained, we set c = 1, G = 1, and we also rescale
the radial direction such that M = 1, and the Schwarzschild radius of the center BH
is always Rs = 2M = 2. This rescaling also impacts the quantum parameters due to
their dependence on lp or ∆, based on the actual mass of the center black hole, which
varies for different cases. In this work, we choose SgrA* and M87* to study the quantum
effects. For the case of SgrA* [45], by choosing its mass to be mSgrA∗ = 4.3 × 106 M⊙, its

Schwarzschild radius in international units as rs,SgrA∗ = 1.27034 × 1010 m and its distance
to the observer to be DOL = 8.35 kpc, the value of the Planck length after the rescaling
equals lp,SgrA∗ = 2

rs,SgrA∗ × 1.61623 × 10−35 = 2.54456 × 10−45 and ∆SgrA∗ = 21.17l2
p,SgrA∗ =

1.37072× 10−88. For the case of M87* [46], by choosing its mass to be mM87∗ = 6.5× 109 M⊙,
its Schwarzschild radius in international units as rs,M87∗ = 1.92028× 1013 m, and its distance
to the observer to be DOL = 16.8 Mpc, the Planck length after the rescaling equals lp,M87∗ =

2
rs,M87∗

× 1.61623 ∗ 10−35 = 1.68333 × 10−48 and ∆M87∗ = 21.17l2
p,M87∗ = 5.99871 × 10−95.

Here, we provide a collection of the exact values of quantum parameters we use for
all five models mentioned above:

• AOS model: ∆SgrA∗ = 21.17l2
p,SgrA∗ = 1.37072 × 10−88, ∆M87∗ = 21.17l2

p,M87∗ =

5.99871 × 10−95.
• GOP model: ∆SgrA∗ = 21.17l2

p,SgrA∗ = 1.37072 × 10−88, ∆M87∗ = 21.17l2
p,M87∗ =

5.99871 × 10−95.
• MC1 and MC2 models: ζMC,SgrA∗ =

√

4
√

3πγ3l2
p,SgrA∗ = 1.18713× 10−44, ζMC,M87∗ =

√

4
√

3πγ3l2
p,M87∗ = 7.85333 × 10−48.

• qOS model: ζqOS,SgrA∗ = 1.79435 × 10−88, ζqOS,M87∗ = 7.85268 × 10−95.

3. Main Results

3.1. Deflecting Angle α

In this subsection, we show the quantum corrections of BH models of LQG on the
gravitational lensing effect by computing the deflection angle versus the impact parameter
b. Using Equation (14), the deflection angle can be computed.

Figure 1 shows the results for the deflection angle with respect to the impact factor b.
Since the quantum parameters we use for all models are extremely small, all of the results
for the deflection angles are very close to the Schwarzschild case:

αSch ≈ −Log[0.19245b − 1]− 0.40023, (25)

for M = 1. The difference can not be shown in Figure 1 as the curve for each model
overlaps. To characterize the quantum effects of different models, we consider both the
exact difference Dα and relative difference Rα between the deflection angle αLQG of each
LQG BH model and αSch of the Schwarzschild BH:

Dα(b) := αLQG(b)− αSch(b),

Rα(b) :=
αLQG(b)− αSch(b)

αSch(b)
.

(26)

Moreover, for the deflecting angle, we consider the case where the impact factor is very near
to the innermost possible impact factor bm = 5.19615 for Schwarzschild BH. A Log10-Log10
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graph (Figure 2) can be produced in this region by defining the relative difference Rb of the
impact factor as b to bm:

Rb :=
b − bm

bm
. (27)

4 5 6 7 8 9 10

0

2

4

6

8

10

Figure 1. Deflection angle α with respect to impact factor b. All of the models investigated in this

paper share the same curve with Schwarzschild BH.
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Figure 2. Log10-Log10 graph of the exact difference Dα and relative difference Rα of the deflec-

tion angle α between LQG BH models and Schwarzschild BH versus the relative distance Rb to

Schwarzschild bm. All results are obtained using input data from SgrA∗. (a,d) shows the results for

all five models, where red dots instead of curves depict results corresponding to the MC1 model

because of the overlap with the qOS model. In (b,c,e,f), the five models are further divided into two

groups based on the values of their results.

Figure 2 shows the exact difference Dα and relative difference Rα of the deflection
angle α between LQG BH models and Schwarzschild BH versus the relative distance Rb to
Schwarzschild bm. All results are obtained using input data from SgrA∗.

Several facts can be read from this figure, as follows: First, despite the overall minor
quantum corrections obtained, the five models can be split into two distinct groups using
their values of Rα and Dα; both AOS and GOP models are put into group I due to their
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relatively large quantum corrections to α, while the other three models, namely MC1, MC2
and qOS models, all have minor quantum corrections to α. Second, the results for the qOS
and MC1 models are very similar, making them almost indistinguishable in Figure 2. This
shows that both models are closely related, at least in the region outside the photon ring.

Interestingly, the quantum correction of the deflection angles of models AOS, MC1,
and qOS increases much faster than the models GOP and MC2, as Rb → 0. A careful look
into the theories indicates that the quantum correction of A(r) of all former three models is
significantly larger, as b → bm. At the same time, AMC2(r) = ASch(r) and AGOP(r) has only
minimal quantum corrections compared to BGOP(r). Recall from (13) that the location of the
photon sphere is impacted by both A(r) and C(r), which suggests that the patterns of these
results might be related to the specific way in which the metric tensor is quantum-corrected.
In particular, large changes in A(r) might lead to the minimal impacting factor of the model
deviating from the Schwarzschild BH. As a result, since Rb is defined by computing the
relative difference of b over the Schwarzschild minimal impacting factor bm,Sch, b → bm

does not apply to both the Schwarzschild BH and the LQG model at the same time. This
can further boost the difference in deflecting angle α.

To further investigate this finding, we plot the relative difference of AAOS(r), AMC1(r)
and AqOS(r) versus Rb, as well as the relative difference of BGOP and BMC2 versus Rb in
Figure 3. Since the relative difference of the deflection angle and the relative difference of
metric components both reflect on the level of quantum correction, we further define the
following magnification rate Z:

Z := Rα/Rg, (28)

where:

Rg :=







A(r)−ASch(r)
ASch(r)

For AOS, MC1, qOS,
B(r)−BSch(r)

BSch(r)
For GOP, MC2.

(29)

Figure 3 shows the relation between the quantum corrections of metric and the quan-
tum corrections of deflection angle α. Figure 3a shows the relative difference in the metric
for all five models. When comparing the results in Figure 3a with Figure 2d, it is straight-
forward to see that the relative quantum corrections of the metric are significantly smaller
than the quantum corrections of the relative deflection angle α for the models AOS, MC1,
and qOS. For the GOS and MC2 models, however, the difference is not apparent.
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Figure 3. The relation between the quantum corrections of metric and the quantum corrections of

deflection angle α. (a): Relative difference in the metric for all five models. (b) The magnification rate

Z for the AOS model, indicating the quantum effect is magnified significantly by the deflection angle

compared to the metric’s quantum correction. (c) The magnification rate Z for the GOP model. No

magnification is observed.

The same conclusion is further supported by Figure 3b,c. Figure 3b shows the magnifi-
cation rate Z versus Rb in the AOS model. As Rb goes to 0, i.e., when b → bm,Sch, Z becomes
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increasingly larger, reaching 107. This suggests that in this region, the relative quantum
correction on the deflection angle is much higher than the relative quantum correction of
the metric, significantly boosting the detectability of the theory in this region. Figure 3c
shows the magnification rate Z versus Rb in the GOP model. In contrast to Figure 3b, as Rb

goes to 0, Z becomes stable at around Z = 0.5. This suggests that in the GOP model, the
relative quantum correction on the deflection angle is not boosted when compared to the
relative quantum correction of the metric.

3.2. Lensing Observables

Despite all the quantum corrections we have obtained, linking any real physical
observations to these quantum effects is still challenging. This is because the deflection
angle α is not invariant to the change in b, which can vary drastically for actual individual
sources. Moreover, since the impact of quantum effects occurs only when b → bm,Sch, it is
unlikely that any effects in this region will be straightforwardly observable.

Therefore, to detect quantum gravitational corrections from gravitational lensing
effects, we turn to computing the quantum effects of lens observables. These observables
are directly detectable by observations and only depend on the quantum parameter of
each specific model. Therefore, these observables could offer us a direct link between the
quantum effects and direct observations.

Tables 1 and 2 show the observables of SgrA∗ and M87∗. Each table contains three
data sections, corresponding to θ∞, s, and µm, respectively. Within each section, both the
exact value of observables and their relative difference to their Schwarzschild counterparts
are included. “Sch” stands for Schwarzschild BH, for which all the relative differences
read 0.

By comparing the data computed, it appears that the angular lens observables θ∞ ob-
tained from SgrA∗ have larger quantum corrections than from M87∗. For the AOS model
where the most significant relative quantum corrections are obtained, the value from SgrA∗ is
typically around 100 times larger than from M87∗. Also, the time delay for M87∗ is 10 times
larger than SgrA∗ for the AOS model. This indicates that the quantum effects generated by
the BH models of LQG can be very sensitive to the characteristics of the center BH.

Also, as can be seen from both Tables 1 and 2, AOS model has the largest quantum
corrections of θ∞ and s, while the GOP model has the largest quantum correction of µm. The
quantum corrections generated by models MC1, MC2, and qOS are significantly smaller,
making them even harder to detect. The relative difference of θ∞ is 0 for the MC2 model,
due to the fact that it shares the exact same A(r) and C(r) as Schwarzschild BH. Its only
quantum effect comes from B(r).

Table 1. Observables of SgrA∗.

Type Sch AOS GOP MC1 MC2 qOS

θ∞ (µarcsec) 26.42 26.42 26.42 26.42 26.42 26.42

θ∞−θ∞,Sch
θ∞,Sch

0 −2.0155 × 10−31 −1.29278 × 10−91 −2.60978 × 10−90 0 −3.32287 × 10−90

s (µarcsec) 0.03306 0.03306 0.03306 0.03306 0.03306 0.03306

s−s,Sch
s,Sch

0 4.12221 × 10−30 3.20814 × 10−30 −4.08044 × 10−89 −1.88176 × 10−89 5.31267 × 10−89

µm = 2.5Log10µ 6.82121 6.82121 6.82121 6.82121 6.82121 6.82121

µm−µm,Sch
µm,Sch

0 −3.10219 × 10−31 −4.6598 × 10−31 5.22227 × 10−90 2.61119 × 10−90 −9.97707 × 10−90

∆T2,1(s) 691.72 691.72 691.72 691.72 691.72 691.72

∆T2,1 − ∆T
(Sch)
2,1

0 −1.39416 × 10−28 8.94242 × 10−89 −1.80524 × 10−87 0 −2.2985 × 10−87
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Table 2. Observables of M87∗.

Type Sch AOS GOP MC1 MC2 qOS

θ∞ (µarcsec) 19.8509 19.8509 19.8509 19.8509 19.8509 19.8509

θ∞−θ∞,Sch
θ∞,Sch

0 −1.53022 × 10−33 −5.65763 × 10−98 −1.14213 × 10−96 0 −1.4542 × 10−96

s (µarcsec) 0.02484 0.02484 0.02484 0.02484 0.02484 0.02484

s−s,Sch
s,Sch

0 3.12968 × 10−32 2.4357 × 10−32 −1.78574 × 10−95 −8.23521 × 10−96 2.325 × 10−95

µm = 2.5Log10µ 6.82121 6.82121 6.82121 6.82121 6.82121 6.82121

µm−µm,Sch
µm,Sch

0 −2.35526 × 10−33 −3.53783 × 10−33 2.28544 × 10−96 1.14274 × 10−96 −4.3663 × 10−96

∆T2,1(s) 1.0456 × 106 1.0456 × 106 1.0456 × 106 1.0456 × 106 1.0456 × 106 1.0456 × 106

∆T2,1 − ∆T
(Sch)
2,1

0 −1.60003 × 10−27 −5.91575 × 10−92 −1.19424 × 10−90 0 −1.52055 × 10−90

4. Discussion

In this work, we have studied the quantum corrections to the gravitational lensing
effect induced by five different LQG black hole models, where the quantum parameter
is obtained, authentic to the original theories for all cases. Using the strong-field-limit
method, we successfully computed the deflection angles, as well as lens observables from
these models. We have made the following three key discoveries:

• We discovered that although the quantum effects are very small for all five models,
their actual value can vary enormously; the impacts of quantum corrections of the AOS
and GOP models are much higher than the impact generated by MC1, MC2, and qOS,
forming two different groups of theories based the scale of quantum effects generated
by each model. This might indicate the underlying connections and differences among
different effective LQG models.

• The quantum corrections of the deflection angles are roughly in the same order as
the quantum corrections of the metric tensor. Meanwhile, the ratio between the
quantum corrections of the deflection angle and the quantum corrections of the metric
is shown to increase drastically for the AOS, MC1, and qOS models, with the impacting
parameter b being very close to the minimal impacting factor bm for Schwarzschild BH.
It remains to be discovered whether such a drastic increase can have real observable
effects, which can help with the detection of quantum effects from these models.

• Angular lens observables obtained from SgrA∗ have larger quantum corrections than
from M87∗, while the time delay coming from M87∗ is larger than SgrA∗. For the
AOS model where the most significant relative quantum corrections are observed, the
value for angular observables θ∞, s, µs from SgrA∗ is typically around 100 times larger
than that from M87∗, while the time delay corrections from M87∗ are 10 times larger
than SgrA∗. This indicates that the center BH with different properties can have very
different quantum corrections to the gravitational lensing effects.

In this work, we have explored five different models of LQG BH and compared the
quantum corrections to the gravitational lensing effect coming from these models. Using
the magnitude of the produced quantum corrections as a criterion, the AOS model stands
out, with all four observables being relatively large among the models we investigated. It
should be noted, however, that this work aims mainly to provide a starting point towards
seriously investigating the observable quantum effects of LQG BH gravitational lensing,
motivating us to strictly impose the quantum parameters and study various specific LQG
BH models. Since LQG remains largely a theory with many open topics, we have not
attempted to determine the best candidate model in this work. The comparisons we made
among different models were purely drawn to see how rigorously imposed quantum
parameters can affect the behavior of these theories near the BH photon ring.

The quantum impacts we obtained in this work are extremely small due to the quan-
tum parameters valued at the Planck scale. However, noting that the largest quantum
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corrections we obtained are at the order of ∼10−30, possibilities still exist to amplify the
quantum effects of LQG BH gravitational lensing:

• Based on our research in this work, we discovered that the characteristics of the lens
object play an essential role in the gravitational lensing effect. Comparing the results
obtained for SgrA* and M87*, the relative differences of the lens observables to the
observables for Scharzschild BH are at least 100 times larger for SgrA* than M87*.
This result suggests that by discovering new lens objects, it is possible to make the
quantum effect larger on the observables, possibly even larger by orders of magnitude,
making them much easier to detect.

• The remaining quantization ambiguities might also make the actual quantum effects
larger. For example, during the discretization phase of LQG quantization, the mini-
mum spacing of lattices is usually associated with the area gap, which is chosen to
be the minimum nonzero eigenvalue of the area operator in Loop Quantum Gravity.
This treatment provides the smallest such area gaps in the theory. However, it is not
necessarily the only choice of the lattice spacing, which could contribute to larger
quantum parameters of the model and thus render its quantum effects larger.

• New models from LQG. So far, the works on studying the gravitational lens effects
of LQG models have only explored some effective models of the symmetry-reduced
theory of LQG. In this work, we have shown that the quantum effects of different
BH models of LQG can be extremely different. Thus, it is possible that some future
models, such as the effective models of full canonical LQG and spin foam models
which both contain additional quantum corrections, can produce different results than
the effective models we studied.

• Studying the gravitational lensing effects of time-like particles, which have also be-
come possible in recent years [47]. The behavior of the gravitational lensing of these
particles can be different from photon gravitational lensing, thus providing alterna-
tives to study the quantum effects of the theory.

In order for the quantum effects to be truly detectable, it is crucial that we discuss
the current observational limits regarding BH gravitational lensing. In this work, we have
mainly explored two types of lens observables, namely angular observables and time
delay, for quasars specifically. The technical limits of these two types of observations
are quite different. While both observations rely on the telescope to identify the lensing
events, the measuring of angular observables is directly limited by the resolution of the
telescope. This creates a major obstacle, due to the randomness involved in the lensing
images and the resolution limit of the telescope. On the other hand, once the quasar lens
event is pinpointed, the measuring of the time delay is mainly restricted by the photometric
accuracy of the telescope [48], namely the ability of the telescope to track the rate at
which its apparent magnitude changes; this could serve as a potential measurement of the
gravitational lensing effect. Nevertheless, the technology to clearly observe the vicinity of
the BH in great detail is still beyond reach, and the best current accuracy for measuring the
time delay of gravitational lensing induced by galaxies can only achieve several percent.
Therefore, due to the extremely small quantum corrections we obtained, it is clear that the
exact quantum corrections computed in this paper are unlikely to be directly observable.

In the future, we will continue probing the possibility of testing LQG by strictly
imposing the parameters and conditions as they were initially proposed and then by
extensively searching its quantum corrections in the classical and semi-classical region,
specifically looking for signs that indicate the quantum effect of LQG can be significantly
magnified and even observed. We believe that only through the overlap of multiple such
results will their actual observation eventually become possible, so that a quantum theory
of gravity can truly be tested.



Universe 2024, 10, 421 13 of 14

Author Contributions: Conceptualization, H.L. and X.Z.; methodology, H.L. and X.Z.; Computation,

H.L.; validation, H.L. and X.Z.; writing—original draft preparation, H.L.; writing—review and

editing, X.Z.; supervision, X.Z.; funding acquisition, X.Z. All authors have read and agreed to the

published version of the manuscript.

Funding: This work is supported by National Natural Science Foundation of China (NSFC) with

Grants No. 12275087.

Data Availability Statement: This is a theoretical paper and hence no assoiciated data need to

be deposited.

Conflicts of Interest: There is no conflict of interest.

References

1. Thiemann, T. Modern Canonical Quantum General Relativity. In Cambridge Monographs on Mathematical Physics; Cambridge

University Press: Cambridge, UK, 2007.

2. Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory.

In Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2014; Volume 11.

3. Ashtekar, A.; Pullin, J. (Eds.) Loop Quantum Gravity: The First 30 Years, Vol. 4 of 100 Years of General Relativity; World Scientific:

Singpore, 2017.

4. Ashtekar, A.; Singh, P. Loop Quantum Cosmology: A Status Report. Class. Quant. Grav. 2011, 28, 213001. [CrossRef]

5. Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the big bang. Phys. Rev. Lett. 2006, 96, 141301. [CrossRef] [PubMed]

6. Modesto, L. Loop quantum black hole. Class. Quant. Grav. 2006, 23, 5587–5602. [CrossRef]

7. Ashtekar, A.; Olmedo, J.; Singh, P. Quantum Transfiguration of Kruskal Black Holes. Phys. Rev. Lett. 2018, 121, 241301. [CrossRef]

8. Gambini, R.; Olmedo, J.; Pullin, J. Spherically symmetric loop quantum gravity: Analysis of improved dynamics. Class. Quant.

Grav. 2020, 37, 205012. [CrossRef]

9. Kelly, J.G.; Santacruz, R.; Wilson-Ewing, E. Effective loop quantum gravity framework for vacuum spherically symmetric

spacetimes. Phys. Rev. D 2020, 102, 106024. [CrossRef]

10. Han, M.; Liu, H. Improved effective dynamics of loop-quantum-gravity black hole and Nariai limit. Class. Quant. Grav. 2022,

39, 035011. [CrossRef]

11. Lewandowski, J.; Ma, Y.; Yang, J.; Zhang, C. Quantum Oppenheimer-Snyder and Swiss Cheese Models. Phys. Rev. Lett. 2023,

130, 101501. [CrossRef]

12. Liu, Y.; Feng, Z.; Zhang, X. Solar system constraints of a polymer black hole in loop quantum gravity. Phys. Rev. D 2022,

105, 084068. [CrossRef]

13. Lin, J.; Zhang, X. Effective four-dimensional loop quantum black hole with a cosmological constant. Phys. Rev. D 2024, 110, 026002.

[CrossRef]

14. Zhang, X. Loop Quantum Black Hole. Universe 2023, 9, 313. [CrossRef]

15. Giesel, K.; Liu, H.; Rullit, E.; Singh, P.; Weigl, S.A. Embedding generalized LTB models in polymerized spherically symmetric

spacetimes. arXiv 2023, arXiv:2308.10949.

16. Zhang, C.; Lewandowski, J.; Ma, Y.; Yang, J. Black Holes and Covariance in Effective Quantum Gravity. arXiv 2024, arXiv:2407.10168.

17. Bojowald, M.; Brahma, S.; Reyes, J.D. Covariance in models of loop quantum gravity: Spherical symmetry. Phys. Rev. D 2015,

92, 045043. [CrossRef]

18. Moulin, F.; Martineau, K.; Grain, J.; Barrau, A. Quantum fields in the background spacetime of a polymeric loop black hole. Class.

Quant. Grav. 2019, 36, 125003. [CrossRef]

19. del Corral, D.; Olmedo, J. Breaking of isospectrality of quasinormal modes in nonrotating loop quantum gravity black holes. Phys.

Rev. D 2022, 105, 064053. [CrossRef]

20. Brahma, S.; Chen, C.-Y.; Yeom, D.-h. Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating

Black Holes. Phys. Rev. Lett. 2021, 126, 181301. [CrossRef]

21. Barrau, A.; Cailleteau, T.; Cao, X.; Diaz-Polo, J.; Grain, J. Probing Loop Quantum Gravity with Evaporating Black Holes. Phys.

Rev. Lett. 2011, 107, 251301. [CrossRef]

22. Gambini, R.; Pullin, J. Hawking radiation from a spherical loop quantum gravity black hole. Class. Quant. Grav. 2014, 31, 115003.

[CrossRef]

23. Ashtekar, A. Black Hole evaporation: A Perspective from Loop Quantum Gravity. Universe 2020, 6, 21. [CrossRef]

24. Arbey, A.; Auffinger, J.; Geiller, M.; Livine, E.R.; Sartini, F. Hawking radiation by spherically-symmetric static black holes for all

spins: Teukolsky equations and potentials. Phys. Rev. D 2021, 103, 104010. [CrossRef]

25. Virbhadra, K.S.; Ellis, G.F.R. Schwarzschild black hole lensing. Phys. Rev. D 2000, 62, 084003. [CrossRef]

26. Bozza, V.; Capozziello, S.; Iovane, G.; Scarpetta, G. Strong field limit of black hole gravitational lensing. Gen. Rel. Grav. 2001, 33,

1535–1548. [CrossRef]

27. Bozza, V. Gravitational lensing in the strong field limit. Phys. Rev. D 2002, 66, 103001. [CrossRef]

28. Virbhadra, K.S. Relativistic images of Schwarzschild black hole lensing. Phys. Rev. D 2009, 79, 083004. [CrossRef]

http://doi.org/10.1088/0264-9381/28/21/213001
http://dx.doi.org/10.1103/PhysRevLett.96.141301
http://www.ncbi.nlm.nih.gov/pubmed/16712061
http://dx.doi.org/10.1088/0264-9381/23/18/006
http://dx.doi.org/10.1103/PhysRevLett.121.241301
http://dx.doi.org/10.1088/1361-6382/aba842
http://dx.doi.org/10.1103/PhysRevD.102.106024
http://dx.doi.org/10.1088/1361-6382/ac44a0
http://dx.doi.org/10.1103/PhysRevLett.130.101501
http://dx.doi.org/10.1103/PhysRevD.105.084068
http://dx.doi.org/10.1103/PhysRevD.110.026002
http://dx.doi.org/10.3390/universe9070313
http://dx.doi.org/10.1103/PhysRevD.92.045043
http://dx.doi.org/10.1088/1361-6382/ab207c
http://dx.doi.org/10.1103/PhysRevD.105.064053
http://dx.doi.org/10.1103/PhysRevLett.126.181301
http://dx.doi.org/10.1103/PhysRevLett.107.251301
http://dx.doi.org/10.1088/0264-9381/31/11/115003
http://dx.doi.org/10.3390/universe6020021
http://dx.doi.org/10.1103/PhysRevD.103.104010
http://dx.doi.org/10.1103/PhysRevD.62.084003
http://dx.doi.org/10.1023/A:1012292927358
http://dx.doi.org/10.1103/PhysRevD.66.103001
http://dx.doi.org/10.1103/PhysRevD.79.083004


Universe 2024, 10, 421 14 of 14

29. Tsukamoto, N. Strong deflection limit analysis and gravitational lensing of an Ellis wormhole. Phys. Rev. D 2016, 94, 124001.

[CrossRef]

30. Tsukamoto, N. Affine perturbation series of the deflection angle of a ray near the photon sphere of a Reissner-Nordström black

hole. Phys. Rev. D 2022, 106, 084025. [CrossRef]

31. Tsukamoto, N. Gravitational lensing by using the 0th order of affine perturbation series of the deflection angle of a ray near a

photon sphere. Eur. Phys. J. C 2023, 83, 284. [CrossRef]

32. Sahu, S.; Lochan, K.; Narasimha, D. Gravitational lensing by self-dual black holes in loop quantum gravity. Phys. Rev. D 2015,

91, 063001. [CrossRef]

33. Fu, Q.-M.; Zhang, X. Gravitational lensing by a black hole in effective loop quantum gravity. Phys. Rev. D 2022, 105, 064020.

[CrossRef]

34. Kumar, J.; Islam, S.U.; Ghosh, S.G. Strong gravitational lensing by loop quantum gravity motivated rotating black holes and EHT

observations. Eur. Phys. J. C 2023, 83, 1014. [CrossRef]

35. Junior, E.L.B.; Lobo, F.S.N.; Rodrigues, M.E.; Vieira, H.A. Gravitational lens effect of a holonomy corrected Schwarzschild black

hole. Phys. Rev. D 2024, 109, 024004. [CrossRef]

36. Ashtekar, A.; Bojowald, M. Quantum geometry and the Schwarzschild singularity. Class. Quant. Grav. 2006, 23, 391–411. [CrossRef]

37. Ashtekar, A.; Olmedo, J.; Singh, P. Quantum extension of the Kruskal spacetime. Phys. Rev. D 2018, 98, 126003. [CrossRef]

38. Ashtekar, A.; Olmedo, J. Properties of a recent quantum extension of the Kruskal geometry. Int. J. Mod. Phys. D 2020, 29, 2050076.

[CrossRef]

39. Gambini, R.; Olmedo, J.; Pullin, J. Loop Quantum Black Hole Extensions Within the Improved Dynamics. Front. Astron. Space Sci.

2021, 8, 74. [CrossRef]

40. Liu, H.; Lai, M.-Y.; Pan, X.-Y.; Huang, H.; Zou, D.-C. Gravitational lensing effect of black holes in effective quantum gravity. arXiv

2024, arXiv:2408.11603.

41. Zhao, L.; Tang, M.; Xu, Z. The Lensing Effect of Quantum-Corrected Black Hole and Parameter Constraints from EHT Observations.

arXiv 2024, arXiv:2403.18606. [CrossRef]

42. Tsukamoto, N. Deflection angle in the strong deflection limit in a general asymptotically flat, static, spherically symmetric

spacetime. Phys. Rev. D 2017, 95, 064035. [CrossRef]

43. Tsukamoto, N.; Gong, Y. Retrolensing by a charged black hole. Phys. Rev. D 2017, 95, 064034. [CrossRef]

44. Bozza, V.; Mancini, L. Time delay in black hole gravitational lensing as a distance estimator. Gen. Rel. Grav. 2004, 36, 435–450.

[CrossRef]

45. Do, T.; Witzel, G.; Gautam, A.K.;Chen, Z.; Ghez, A.M.; Morris, M.R.; Becklin, E.E.; Ciurlo, A.; Hosek, M.; Martinez, G.D.; et al.

Unprecedented variability of Sgr A* in NIR. arXiv 2019, arXiv:1908.01777.

46. Akiyama, K. et al. [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. I. The Shadow of the

Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1.

47. Liu, X.; Jia, J.; Yang, N. Gravitational lensing of massive particles in Schwarzschild gravity. Class. Quant. Grav. 2016, 33, 175014.

[CrossRef]

48. Birrer, S.; Millon, M.; Sluse, D.; Shajib, A.J.; Courbin, F.; Erickson, S.; Koopmans, L.V.E.; Suyu, S.H.; Treu, T. Time-Delay

Cosmography: Measuring the Hubble Constant and Other Cosmological Parameters with Strong Gravitational Lensing. Space Sci.

Rev. 2024, 220, 48. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevD.94.124001
http://dx.doi.org/10.1103/PhysRevD.106.084025
http://dx.doi.org/10.1140/epjc/s10052-023-11419-9
http://dx.doi.org/10.1103/PhysRevD.91.063001
http://dx.doi.org/10.1103/PhysRevD.105.064020
http://dx.doi.org/10.1140/epjc/s10052-023-12205-3
http://dx.doi.org/10.1103/PhysRevD.109.024004
http://dx.doi.org/10.1088/0264-9381/23/2/008
http://dx.doi.org/10.1103/PhysRevD.98.126003
http://dx.doi.org/10.1142/S0218271820500765
http://dx.doi.org/10.3389/fspas.2021.647241
http://dx.doi.org/10.1140/epjc/s10052-024-13342-z
http://dx.doi.org/10.1103/PhysRevD.95.064035
http://dx.doi.org/10.1103/PhysRevD.95.064034
http://dx.doi.org/10.1023/B:GERG.0000010486.58026.4f
http://dx.doi.org/10.1088/0264-9381/33/17/175014
http://dx.doi.org/10.1007/s11214-024-01079-w

	Introduction
	Technical Background
	BH Models from Effective LQG
	Gravitational Lensing from Strong Field Limit and Lens Observables
	Exact Values of the Quantum Parameters

	Main Results
	Deflecting Angle 
	Lensing Observables

	Discussion
	References

