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Neutron matter, neutron pairing, and neutron drops
based on chiral effective field theory interactions

Abstract

The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise know-
ledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy ele-
ments. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars
after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces.
Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-
perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral
effective field theory circumvents these problems and connects the symmetries of QCD to nuclear
interactions. It naturally and systematically includes many-nucleon forces and gives access to uncer-
tainty estimates. We use chiral interactions throughout all calculation in this thesis.
Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei.
The exact composition and properties of neutron stars is still unclear but they consistmainly of neut-
rons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner
core of neutron stars exist very high densities and thusmaybe exotic phases of matter. To investigate
whether there exists a phase transition to such phases even at moderate densities we study the chiral
condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evid-
ence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-
polarised neutron matter. With this we address the question whether there exists such a polarised
phase in neutron stars and also provide a benchmark system for latticeQCD.We find spin-polarised
neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron
stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of
interest. We calculate the pairing gaps in neutron matter and provide uncertainty estimates.
The formation of heavy elements in the early universe proceeds through the rapid neutron-capture
process. This process requires precise knowledge of the properties of very neutron-rich nuclei, which
are unstable and at present not accessible in experiments. Thus, one can explore their properties only
with theoretical calculations. Currently the only approach to the properties of all nuclei are energy-
density functionals (EDFs). All EDFs used today are based on phenomenological models and fits to
stable nuclei, which makes their predictive power for unknown (neutron-rich) nuclei unclear. De-
riving an ab initio EDF directly from the nuclear forces is an important goal of nuclear theory. A
promising approach is the optimised effective potential (OEP) method. We take a step into that
direction and calculate neutron drops within the OEP formalism. In addition to the exact-exchange
approximation we study for the first time the effect of second-order contributions and compare to
quantum Monte Carlo and other results.
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Neutronenmaterie, Neutronenpairing und Neutronentropfen
basierend auf Wechselwirkungen aus chiraler effektiver Feldtheorie

Zusammenfassung

Der Physik neutronenreicher Systeme begegnet man in der Kern- und Astrophysik mit großem In-
teresse. Präzise Kenntnisse der Eigenschaften neutronenreicher Kerne sind für das Verständnis von
der Synthese schwerer Kerne unerlässlich. Unendlich ausgedehnte Neutronenmaterie bestimmt
die Eigenschaften vonNeutronensternen, einem letzten Entwicklungszustand schwerer Sterne nach
einer Kernkollaps-Supernova. Sie bildet außerdem ein einzigartiges Theorielabor für Kernkräfte.

Die starke Wechselwirkung wird durch die Quantenchromodynamik (QCD) beschrieben. Aller-
dings ist QCD im Niederenergiebereich nicht perturbativ und derzeit lassen sich Kernkräfte nicht
direkt aus ihr herleiten. Chirale effektiveFeldtheorie umgeht dieseProblemeundverbindet die Sym-
metrien der QCD mit der Kernkraft. Sie beinhaltet auf natürliche Weise und systematisch Vielteil-
chenkräfte und bietet Möglichkeiten zu einer Unsicherheitsabschätzung. In dieser Dissertation ver-
wenden wir in allen Rechnungen chirale Wechselwirkungen.

Neutronensterne sind sehr extremeObjekte. DieDichten in ihrem Inneren übersteigen die inAtom-
kernen bei Weitem. Die genaue Zusammensetzung und Eigenschaften von Neutronensternen sind
immer noch unklar, allerdings bestehen sie zum größten Teil aus Neutronen. Man kannNeutronen-
sterne durch Berechnungen von Neutronenmaterie theoretisch erforschen. Im innersten Kern von
Neutronensternen existieren sehr hohe Dichten und daher möglicherweise exotische Phasen von
Materie. Um zu erforschen, ob es schon bei moderaten Dichten einen Phasenübergang zu solchen
Phasen gibt, untersuchen wir das chirale Kondensat in Neutronenmaterie, denOrdnungsparameter
chiraler Symmetriebrechung, und finden keinen Anhaltspunkt für einen Phasenübergang im nuk-
learen Dichtebereich. Außerdem berechnen wir das sehr extreme System Spin-polarisierter Neu-
tronenmaterie. Dadurch können wir der Frage nachgehen, ob es in Neutronensternen eine solche
polarisierte Phase gibt und bieten ein Benchmark-System für Gitter-QCD. Wir zeigen, dass Spin-
polarisierte Neutronenmaterie ein nahezu nicht wechselwirkendes Fermigas darstellt. Um die Ab-
kühlung von Neutronensternen zu verstehen ist Pairing sehr wichtig. Durch die hohen Dichten ist
vor allemTriplet-Pairing von großem Interesse. Wir berechnen die Energielücken in Neutronenma-
terie und geben dazu Unsicherheiten an.

Die Entstehung schwerer Elemente im jungen Universum erklärt sich durch den schnellen Neu-
troneneinfangsprozess. Dieser Prozess setzt präzise Kenntnisse der Eigenschaften sehr neutronen-
reicher Kerne voraus, welche instabil und experimentell nicht zugänglich sind. Daher kann man
ihre Eigenschaften nur durch theoretische Berechnungen erforschen. Derzeit besteht der einzige
Zugang zu den Eigenschaften aller Kerne aus Energiedichtefunktionalen (EDF). Alle zurzeit ver-
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wendetenEDFbasieren auf phänomenologischenModellen undFits an stabile Kerne, wodurch ihre
Vorhersagekraft für unbekannte (neutronenreiche) Kerne unklar ist. Die Herleitung eines ab initio
EDF direkt aus den Kernkräften ist ein wichtiges Ziel der theoretischen Kernphysik. Ein vielver-
sprechenderAnsatz besteht in derMethodedes optimierten effektivenPotentials (OEP).Wir schrei-
ten in diese Richtung und berechnen Neutronentropfen im OEP-Formalismus. Ergänzend zur Nä-
herung des exakten Austauschs untersuchen wir zum ersten Mal auch den Einfluss von Beiträgen
zweiter Ordnung und vergleichen unsere Berechnungen mit Quanten-Monte-Carlo-Simulationen
und anderen Ergebnissen.
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O glücklich, wer noch hoffen kann,
Aus diesem Meer des Irrtums aufzutauchen!
Was man nicht weiß, das eben brauchte man,
Und was man weiß, kann man nicht brauchen.

J. W. von Goethe, Faust, 1064ff.

1
Introduction

The discovery of the neutron in 1932 by James Chadwick [1] set the foundations of our cur-
rent understanding of atomic nuclei. Since then the description of nuclei as compound objects con-
sisting of neutrons and protons has steadily been further developed. Early semi-empirical descrip-
tions within the liquid drop model such as the Bethe-Weizsäcker mass formula in 1935 [2] have
been followed bymicroscopic models in the 1950s, which assumed nucleons to strongly interact via
short-rangemeson exchanges, following the theory byHideki Yukawa [3]. With the development of
quantum chromodynamics (QCD) the understanding of the strong interaction was brought to the
next level: Nucleons are composed of colour-charged quarks, which interact via gluon exchanges
and are confined to colour-neutral objects.
Even though the main aspects of QCD had been settled in the early 1970s, calculations with phe-
nomenological meson-exchange potentials were still widely used in the 90s in nuclear-physics and
are still used even today. The main reason for that is that QCD is non-perturbative at low momenta
whichmakes it at present impossible to directly derive nuclear forces from first principles. However,
in the beginning of the 90s StevenWeinberg laid the foundations of chiral effective field theory con-
necting the symmetries of QCD to nuclear forces [4]. This modern approach allows a systematic
description of nuclear interactions including many-nucleon forces and uncertainty estimates.
More than eight decades after the discovery of the neutron the physics of neutron-rich systems is still
of great interest and we study some of its aspects in this thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

More than 7000 atomic nuclei are expected to be bound. However, up to proton number Z =

120 only around 3000 nuclei have been studied experimentally, by a majority close to the valley
of stability [5, 6]. In particular neutron-rich nuclei in the medium- to high-mass region far from
stability are of interest in nuclear astrophysics. They are crucial for the description of heavy-element
nucleosynthesis and shed light on the theoretical description of neutron stars.

Neutron stars are the final stage of core-collapse supernovae and consist mainly of neutrons with
a small fraction of protons and electrons [7]. They have one to two times themass of our sun but typ-
ical radii of only around 10 km. Thus, in their interior exist densities even higher than in nuclei and a
neutron star can be seen as a gigantic nucleuswhich is boundby gravitation. Neutron stars can be ob-
served throughout a wide range of the electromagnetic spectrum. There exist precisemeasurements
of neutron-starmasses and in particular the relatively recent observations of two-solar-mass neutron
stars [8–10] gained great attention. These measurements rule out many models of nuclear interac-
tions that didnot support suchheavyneutron stars. While neutron-starmasses canbemeasuredwith
a relative error on the sub-per cent level, the determination of their radii is more difficult [11, 12].
The properties of neutron stars can be constrained by calculations of infinite neutron matter. The
equation of state, i.e., the energy per particle as a function of density, of neutron matter can be used
to predict the mass-radius relation of neutron stars [13, 14]. Another open question of neutron-
star physics is the composition of the neutron star’s inner core. There are speculations about phase
transitions to quark matter at nuclear densities [15]. To investigate this in detail we study the chiral
condensate, the order parameter of chiral symmetry breaking, in neutron matter.
Neutron matter is also a unique system to test nuclear forces. Among neutrons, tensor forces are
weaker and chiral many-nucleon forces are fully predicted [16]. With perturbative calculations of
neutron matter it is possible to constrain empirical nuclear models like energy-density functionals
fitted to experimental data. In this thesis we calculate the more extreme system of spin-polarised
neutron matter, which can in addition to these constraints also be used as a benchmark system for
latticeQCD.The aimof latticeQCD is to calculate nuclear systems fromfirst principles using quarks
and gluons as degrees of freedom[17]. It is currently limited to small or simple systemswith reduced
degrees of freedom. Such a system is spin-polarised neutron matter, because there are fewer non-
trivial contractions. It can also give rise to the question whether there exists a phase of polarised
matter in neutron stars.
We also address the phenomenon of pairing in neutron stars. From the rotational properties of neut-
ron stars oneexpects a superfluidphase inside the star at nucleardensities, which also affects neutron-
star cooling. We thus study the pairing gaps in neutron matter. Neutron pairing does not only play
an important role in neutron stars but also affects the properties of neutron-rich nuclei.
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The formation of elements heavier than iron cannot be explained by fusion reactions in stars,
since the binding energy per nucleon is lower for heavier nuclei. There are, nevertheless, models
to describe heavy-element nucleosynthesis. One of these is the rapid neutron-capture process (r-
process) [18]. It occurs in extremelydenseneutron-rich environments like core-collapse supernovae
or neutron-starmergers. An initial seed nucleus from the iron region rapidly captures neutrons from
its surroundings and then β decays into nuclei with higher atomic number. This process of rapid
neutron capture and β decay repeats many times until the nucleus either undergoes fission or decays
to heavy stable nuclides. For a theoretical description of the r-process and accurate calculations of
nucleosynthesis yields precise knowledge about neutron-rich nuclei along the r-process path is key.
In particular, accurate half-lives and ground-state energies are needed for r-process simulations.

The experimental access to these neutron-rich nuclei is very challenging. Neutron-rich nuclei have
extremely short lifetimes and their production is difficult. At present, experimental facilities are lim-
ited in neutron excess, see, e.g., the recent measurements along the calcium isotopic chain [19, 20].
However, there exist many facilities under construction worldwide (e.g., FAIR at the GSIHelmholtz
Centre in Darmstadt, or FRIB at the Michigan State University in East Lansing, USA) which will
access a great extent of the neutron-rich regime of the nuclear chart but will not reach the neutron
drip line of heavy elements.

Also the theoretical calculation of the properties of heavy neutron-rich nuclei is currently limited.
There exist many ab initio, so-called quasi-exact methods which are limited to light nuclei up to
mass numbers A ≲ 20. Widely used examples are the no-core shell model (NCSM) [21, 22],
Green’s function Monte Carlo (GFMC) [23], or lattice effective field theory (EFT) [24, 25]. All
these approaches are limited by computer power and memory. In the intermediate-mass region
further approximations are necessary. Near shell closures coupled-cluster (CC) calculations [26,
27] are possible. Intermediate-mass nuclei can also be calculated with the microscopic shell model
(SM) [28, 29] orwithin the in-medium similarity renormalisation group (IM-SRG) [30, 31]. Heavy
elements, especially far from closed shells, can only be calculated with energy-density functionals
(EDF). However, models like Skyrme [32] and Gogny [33] are not directly based on microscopic
nuclear interactions and have to be fitted to experimentally known nuclei. While describing, e.g., the
ground-state energies of known nuclei with a root-mean-square precision ∼ 1MeV ¹ , they make
unreliable predictions for unknown isotopes, especially on the neutron-rich side [6]. The deriva-
tion of energy-density functionals directly from nuclear interactions is an important goal of nuclear
theory [34].

In this thesiswewant to take a step in that direction. Within the optimised effective potentialmethod
(OEP) we calculate neutron drops using chiral interactions. The OEP method is similar to the
Hartree-Fock approximation and many-body perturbation theory and is widely used in quantum

¹Note that we use natural units ℏ = c = 1 throughout the whole thesis.



4 CHAPTER 1. INTRODUCTION

chemistry. It provides a path from a general energy functional to a local Kohn-Sham potential [35].
InRef. [36], Joaquín E.Drut andLucas Platter introduced theOEP to nuclear physics and calculated
neutron dropswith a benchmark interaction. Wewill go a step further by studying also second-order
contributions and using chiral interactions. Our results can be compared to quasi-exact quantum
Monte Carlo methods and used as benchmark systems to constrain empirical energy-density func-
tionals.

Thisthesis is organised as follows: In the subsequent Sectionswegive amoredetailed introduction
to the physics of neutron-rich systems, density functionals, and chiral effective field theory interac-
tions. In Chapter 2 we present calculations for infinite systems: The chiral condensate in neutron
matter, spin-polarised neutron matter, and the pairing gap in neutron matter. Chapter 3 starts with
a summary of Hartree-Fock calculations for neutron drops and provides the details about the op-
timised effective potential method. Results and details about the numerical calculations of neutron
drops are discussed in Chapter 4. We conclude in Chapter 5 and give an outlook.
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1.2 Neutron-rich systems: From nuclei to neutron stars

Over a wide range of densities neutron-rich systems gained interest in many areas of nuclear
physics. At very low densities neutronmatter exhibits universal properties due to the large neutron-
neutron scattering length. It can thus be probed in experiments with cold atoms [37]. In the region
of intermediate densities (∼0.5n0, where n0 = 0.16 fm−3 ≈ 2.7×1014 g cm−3 denotes nuclear sat-
uration density) medium-mass to heavy nuclei close to the neutron dripline are of interest. As men-
tioned above, the knowledge of key observables of these neutron-rich nuclei is crucial for nuclear
astrophysics, e.g., r-process simulations [18]. Experimental efforts into that direction are at present
and will be made at facilities worldwide, e.g., at The Radioactive Isotope Beam Factory (RIBF) at
RIKEN in Tokyo, Japan [38], as well as the Facility for Antiproton and Ion Research (FAIR) at the
GSI Helmholtz-Centre for Heavy-Ion Research in Darmstadt [39] and the Facility for Rare Isotope
Beams (FRIB) at the Michigan State University in East Lansing, USA [40], which are currently un-
der construction. In the regime of intermediate to high densities of several times nuclear saturation
density the equation of state of neutron matter governs the main properties of neutron stars [14].
Besides the energy also the understanding of pairing in neutronmatter is key to explain observations
of neutron stars like the neutrino cooling after their formation or their rotational dynamics.

1.2.1 Neutron-rich nuclei

An overview of all experimentally known nuclei is shown in Fig. 1.1. Stable nuclei are depicted in
black. On the neutron-rich side, i.e., below the stable nuclei, most nuclides are unstable with respect
to β− decay, while the neutron-deficient nuclei usually undergo β+ decays.

The lower edge of the nuclear chartmarks the neutron drip line. It is reached at a nuclidewith proton
and neutron number (Z,N)where the one-neutron separation energy

S1n = EB(Z,N − 1)− EB(Z,N) , (1.1)

becomes negative. HereEB denotes the positively defined binding energy of the nucleus. At S1n = 0
the nucleus is unstable with respect to neutron emission. Analogously one defines the proton drip
line, the upper limit of the nuclear chart.

On the neutron-deficient or proton-rich end the drip line is almost settled experimentally while the
neutron-rich side is still a terra incognita.
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Figure 1.1: Overview of the nuclear chart: Stable nuclei are indicated as black boxes. In blue we show all
nuclides where the masses are known according to the AME2012 atomic mass evaluation [41]. For nuclei
depicted in grey only other properties, e.g., half-lives are known. The yellow region is based on theoretical
predictions and these nuclei have not been observed in experiments.

Importance of neutron-rich nuclei in nucleosynthesis

Theproperties of neutron-rich nuclei have great importance for nuclear astrophysics [18]. The form-
ation of elements heavier than iron cannot be explained with fusion reactions during stellar burning
since it is energetically not favoured. However, it can be explainedwith three types of reactionmech-
anisms: The p-, s-, and r-process. The p- or proton-capture process takes place on the proton-rich
side of the nuclear chart, creating proton-rich nuclei. It only plays a minor role in nucleosynthesis.
Both the s- and r-processes involve neutron-rich nuclei but differ in their reaction time and physical
sites of occurrence. While the slow neutron-capture or s-process takes place in low- to medium-
mass stars at moderate neutron densities, the rapid neutron-capture (r-)process only occurs at very
extreme densities and temperatures. It involves nuclei close to the neutron drip line and produces
half of the heavy elements.
One of possible r-process sites are core-collapse supernovae. When a massive star reaches the end
of its lifetime and runs out of fuel it cannot stand against its own gravity and collapses. Directly after
the collapse exist extreme conditions with very high temperatures and neutron densities. Extreme
neutron-rich conditions can also be found in neutron-star mergers, which are also possible candid-
ates for r-process sites. In such environments (neutron-rich) iron nuclei (the final state of solar burn-
ing) can rapidly capture neutrons. In this way the nucleus will accumulate more and more neutrons
until its β decay rate overcomes the capture rate. After a β decay it may capture new neutrons and
this process runs along neutron-rich nuclei close to the drip line up to heavy elements like uranium
until the nucleus decays to a stable state or undergoes spontaneous fission.
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Figure 1.2: Solar system r-process abundances (black dots) for r-process nuclei with mass numbers A com-
pared to predictions from r-process simulation using nuclearmasses fromSkyrme functionals (blue line). The
grey band indicates the uncertainties stemming from different mass predictions. In the left figure the simula-
tion assumes a neutron-star merger as astrophysical site while on the right a jet-like supernova is used. See
Ref. [42] for details. Courtesy of Dirk Martin.

For simulations of the r-process precise knowledge of the nuclear masses and half-lives is of great
importance [42], see Fig. 1.2 for a prediction of solar abundances of r-process nuclei. In particular,
the masses of elements around magic numbers are critical since separation energies vary rapidly in
these areas, due to shell closures. Currently almost all r-process simulations are based on empirical
energy-density functionals and a reduction of their uncertainties will directly improve the simula-
tions.

Pairing in neutron-rich nuclei

In 1957 John Bardeen, Leon N. Cooper, and John R. Schrieffer developed the theory of electron
superconductivity, which is now referred to as BCS theory [43]. Superconductivity is explained by
the formation of Cooper pairs [44] in the presence of the attractive phonon-mediated interaction
between electrons. At critical temperatures [typically ∼ (1 − 10)K] a second-order phase trans-
ition occurs. The superconducting phase is characterised by the appearance of an energy gap Δ in
the electron spectrum around the Fermi surface. Only a year later Aage Bohr, Ben R. Mottelson,
and David Pines proposed a similar phenomenon in nuclei [45]. They found by analysing nuclear
excitation spectra that the energies of the (lowest-lying) non-collective excited states in even-even
nuclei exhibit a significant gap ∼ 1MeV. Another prominent evidence for pairing in nuclei is the
so-called odd-even staggering: The binding energy of even-Z or even-N nuclei is significantly higher
than those of neighbouring nuclideswith odd number of protons or neutrons. Nucleonswould form
Cooper pairs due to the attractive part of the nucleon-nucleon interaction. Another year laterArkady
B. Migdal applied BCS theory to nuclei [46].
Near the neutrondrip line experiments have revealed large odd-even-staggering effects for the lighter
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nuclei 18,19,20C, 28,29,30Ne, and 36,37,38Mg [47]. These effects can be attributed to pairing and in par-
ticular to the pairing anti-halo effect, which prevents the formation of one-neutron halo nuclei [48].
Also for heavier nuclei precise knowledge about odd-even staggering is important to adjust nuc-
lear physics models. In Ref. [49] mass-measurement experiments for even Z nuclei in the region
Z = 50− 82 have been performed on the neutron deficient side. Towards the proton drip line the
odd-even-staggering effects increased for neutrons and protons. Similar effects have also been seen
on the neutron-rich side but due to experimental limits by far not close to the neutron drip line. For
a more elaborate discussion of pairing in (neutron-rich) nuclei see Refs. [50, 51].

Experimental access to neutron-rich nuclei

The first identification of an atomic nucleus can be attributed to Ernest Rutherford andHansGeiger,
who concluded that the α-particle is a helium atom (at least when it has lost its charge) in 1908 [52],
even before the famous Rutherford gold foil experiments, which established the picture of a ‘minute
massive centre’ in atoms carrying positive charge [53]. In 1913 Joseph J. Thomson was the first to
identify two isotopes of the same atom. Usingmass spectroscopicmethods he identified ‘two differ-
ent types of neon’ withmass 20 and 22 [54]. The development ofmass spectrographs, mainly driven
by Francis W. Aston, led to the discovery of almost all stable nuclei by the end of the 1930s [55].
Since these discoveries more than 3000 nuclei have been identified and measured [5].
The measurement of radioactive short-lived nuclei is experimentally challenging. There are mainly
two problems originating from the short lifetime of neutron- or proton-rich nuclei: Exotic nuclei
do not exist in nature and have to be synthesised experimentally. Once produced they have to be
identified and measured before their decay. The closer one gets to the drip line on either side of the
nuclear chart the shorter lived are the nuclides.
On the proton-rich side the production is easier and the proton drip line has been established for
mostnuclei that exist onearth. This is due to the strongCoulombrepulsion that destabilises neutron-
deficient nuclei shifting the proton drip line closer to the valley of stability. For neutron-rich nuclei
the neutron drip line has not been reached experimentally for medium-mass to heavy nuclei. So far
the heaviest nucleus which was shown to be unbound is 39Mg [56].
For the production of neutron-rich nuclei target-fragmentation methods are used. A heavy, ideally
neutron-rich nucleus is bombarded with lighter nuclei at high energies. This induces fragmentation,
spallation, or fission reactions with neutron-rich nuclei as products. The setup can also be reversed
with heavy projectiles shot on lighter targets. Currently these experiments are limited in beam in-
tensities and energy. The construction of new facilities like FAIR or FRIB will help to overcome
these limits and find nuclides closer to the neutron drip line [5]. After their production the nuclei of
interest have to be separated and transported to the experimental setup. This can be done with both,
the in-flight separation [57] or the isotope separation on line (ISOL) technique [58]. The nuclides
are measured with different methods, e.g., time of flight or Penning trap [59] measurements or by
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storing them in large storage rings. For recent examples of precise measurements of neutron-rich
ions see, e.g., the works along the calcium isotopic chain [19, 20] measured at the TITAN setup at
TRIUMF in Vancouver, Canada and at ISOLTRAP/ISOLDE at CERN in Geneva, Switzerland.

1.2.2 Neutron stars

Neutron stars are very extreme, compact objects with typical masses of about (1 − 2)M⊙, with
M⊙ being the mass of our sun, but only radii of around 10 km, resulting in an average density of
∼(2− 3)n0 [7]. In their center, however, the density can even reach 8n0 [14]. Parts of this Section
are based on Ref. [7], in which more details about neutron stars can be found.

Neutron stars are aproduct of core-collapse supernovae. Stars likeour sunwithmasses up to∼10M⊙

form white dwarfs at the end of their life cycle. For progenitor stars in a mass range of about (10 −
25)M⊙ neutron stars are formed. Heavier stars will collapse into black holes.

In 1967 Jocelyn Bell, a graduate student of Antony Hewish, discovered a weak variable radio source
with an extremely stable period of 1.337 s. It turned out that this rapidly pulsating source was far out
of our solar system and was later named pulsar. Shortly after that discovery two other pulsars were
observed and the results very published in Ref. [60]. After a strong competition pulsars were identi-
fied as rotating magnetised neutron stars [61]. The magnetic moment of neutron stars is inclined to
their rotational axis. The radio emission, generated outside the star in its magnetosphere, is radiated
along themagnetic axis. Due to its rotation the pulsar appears like a lighthouse for observers at earth
explaining the regular detection of radio pulses.

Long before their discovery, and even before the discovery of the neutron by James Chadwick [1]
in 1932, Lev D. Landau postulated the existence of stars heavier than white dwarfs in 1931 [62]. He
concluded that in such stars the densities of nuclei could be reached such that a ‘gigantic nucleus’
would be formed. In 1934 Walter Baade and Fritz Zwicky were the first to predict ‘neutron stars’
consisting of ‘extremely closely packed neutrons’ as the product of supernovae [63–65].

The next step towards a better understanding of neutron stars was made by Richard C. Tolman and,
independently of him, J. Robert Oppenheimer and George Volkoff, who derived an equation for
spherical stars in hydrostatic equilibrium [66, 67]. The now called Tolman-Oppenheimer-Volkoff
(TOV) equations are formulated in the framework of general relativity and give a one-to-one cor-
respondence between the equation of state of neutron-star matter and their mass-radius relation. At
that time one already expected neutron stars to consist mainly of neutrons with a small fraction of
protons in β equilibrium (neutron β decay and proton electron capture are in equilibrium). How-
ever, since the interaction among neutrons was an unresolved problem at that time also the equation
of state of neutron(-star) matter was unknown. One expected neutrons to form a noninteracting
Fermi gas, which led to the conclusion that the maximal mass of neutron stars is around 0.7M⊙, the
Oppenheimer-Volkoff limit.
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Figure 1.3: Left: Equation of state (pressure P versus energy density E) of neutron-star matter based on per-
turbative calculations of neutronmatter expanded to small proton fractions (dark grey band) and extrapolated
to higher densities (lighter grey bands). The red, yellow, and blue line depict a stiff, intermediate, soft equation
of state, respectively. They have been chosen as representatives.
Right: Corresponding predicted mass-radius range obtained with the TOV equations. All equations of state
are chosen to support a 2M⊙ neutron star. If a heavier star is observed the soft equation of state (blue) would
be ruled out. Figure taken from Ref. [14].

This picture was changed in the late 1950s, early 1960s when one hoped to discover neutron stars by
observations. AlastairG.W.Cameron found that the nuclear interaction stiffens the equation of state
[68] allowing for heavier neutron stars up to∼2M⊙. He was also the first to point out the possible
existence of hyperons in neutron-star cores, which also gave rise to more exotic equations of state
and even speculations about a quark-matter core [69, 70].
With thehelpof theTOVequations, neutronmatter calculations canbeused to constrain theproper-
ties of neutron stars. In Fig. 1.3 the correspondence between the equation of state and amass-radius
relation is shown, based on perturbative calculations of neutron matter with chiral interactions and
a general extension to high densities [13, 14].

Internal structure of neutron stars

The current theories divide neutron stars into a thin atmosphere and four internal regions (see
Fig. 1.4): The outer and inner crust as well as the outer and inner core [7].
The outer crust, or outer envelope has a width of only around a few hundred meters and densities
up to ∼0.002n0. It consists of a crystal lattice of nuclei in the iron region, which are at the surface
surrounded by a non-degenerate and deeper into the crust by a strongly degenerate electron gas.
With increasing density the nuclei becomemore neutron rich because electron captures are induced
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Figure 1.4: Schematic structure of a neutron star. The outer crust is formed by a lattice of neutron-rich nuclei.
The corresponding density distribution functions are shown schematically in the upper plot with blue lines
for the neutron and red lines for the proton density. Deeper into the interior the neutron density increases
and the nuclei smear out as indicated in the lower plot. The background neutrons form a superfluid. In the
outer core neutrons are in β equilibrium with a small fraction of protons and electrons. The composition of
the inner core with densities of maybe severable times nuclear saturation density is not fully understood.

by the Fermi energy of the electron gas. At the transition to the inner crust neutrons start to drip out
and form a free neutron gas in the background (see also the density sketches in Fig. 1.4).
In the inner crust the densities increase up to∼0.5n0 and it has a width of around 1 km. The nuclei
become more neutron rich and the fraction of the background neutrons increases. They can be in a
superfluid state. At the crust-core boundary the nuclei disappear and neutron-richmatter is formed.
The outer core is several kilometres thick and extends up to densities ∼ 2n0. It consists mainly of
neutrons which are accompanied by a small fraction of protons (∼ 5%) and the same number of
electrons (and possibly muons) to ensure charge neutrality. This neutron-rich matter is in β equilib-
rium, i.e., the β decay of the neutrons into protons and electrons (muons) is in equilibrium with its
inverse process. The (anti)neutrinos are disregarded as they are weakly interacting and also emitted
from the star. The electrons form an almost ideal Fermi gas and the nucleons a strongly interacting
liquid. They can be in a superfluid state.
The inner core starts at densities around 2n0 and can reach up to 8n0 [14]. Its radius can be around a
few kilometres. The composition is still unclear. There are hypotheses of Lee-Wick abnormalmatter,
pion- as well as kaon-condensed matter, hyperon matter, and even quark matter. The appearance of
a new phase through a first- or second-order phase transition softens the equation of state and may
not support heavy neutron stars beyond 2M⊙ [8–10].
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Pairing and superfluidity in neutron stars

After his application of BCS theory to nuclei in 1959, Arkady B. Migdal was the first to note that
neutron superfluidity could occur in neutron stars with a gap Δ ≈ 1MeV and critical temperature
Tc ≈ 1010 K [46]. Vitaly L. Ginzburg and David A. Kirzhnits estimated a couple of years later the
pairing gap fromneutrons in a single state at neutron star densities [71, 72]. They found pairing gaps
Δ ≈ (5− 20)MeV and also discussed various consequences of superfluidity in neutron stars.

In pioneering work by Richard A.Wolf in 1966 [73] and later byMarkHoffberg et al. [74] pairing in
neutron matter was analysed in detail in BCS theory. It was found that in the inner crust of neutron
stars pairing in the 1S0 channel was present but vanished at higher densities. At around a tenth of
nuclear saturation density the pairing gap reaches it maximum of∼3MeV and drops in the density
region≲ n0. At these densities pairing in the 3P2 state is favoured, since it ismore attractive due to the
spin-orbit interaction among nucleons. Since only the total angularmomentum J is a good quantum
number, the channels 3P2 and 3F2 are coupled and can only be studied consistently together. The
3P2− 3F2 pairing gap is expected to reach its maximum around 2n0 and decreases until is vanishes
in the inner core of neutron stars. The exact value of the 3P2− 3F2 pairing gap is a topic of current
research (see Chapter 2).

In Fig. 1.5 we have plotted the phase shifts obtained from the Nijmegen partial-wave analysis [75]
for the lowest partial waves contributing to neutron matter. This gives rise to a qualitative under-
standing of the pairing gap. Positive phase shifts indicate attractive interactions. The characteristics
of the 1S0 channel with positive phase shifts at low energies clearly indicates the possibility of pairing
in that energy region. At lab energies≳ 260MeV it becomes negative implying a repulsive interac-
tion. Thus, S-wave pairs form only at low energies/densities but are inhibited from forming around
nuclear saturation density. The next candidate is the P-wave triplet since 3S1 and 1P1 are excluded
by Pauli’s principle for neutron-only systems. The phase shift in the 3P0 partial wave shows the same
characteristics as the 1S0 wave but is much smaller. This hints that 1S0 paring is favoured. In the
3P1 channel, the nuclear interaction is fully repulsive (negative phase shifts). The only candidate for
pairing is thus the 3P2 channel in which the phase shift is positive, even at high energies. In fact, it
is the most attractive T = 1 channel at lab energies Elab = 2k2F/m ≳ 160MeV. This corresponds
to Fermi momenta kF ≈ 1.4 fm−1. Due to spin-orbit interactions and tensor forces the 3P2 chan-
nel is coupled to the 3F2 channel and cannot be investigated independently. Hence, one expects a
substantial pairing effect in the 3P2− 3F2 channel at densities around and above nuclear saturation
density.

Pairing is a phenomenonwhichpredominantly occurs at theFermi surface andhasonlyminor effects
on the equation of state of neutron stars and thus on their radii. For a more detailed overview of
superfluidity of nucleons in neutron stars see, e.g., Ref. [76].
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Figure 1.5: Neutron-proton phase shifts as a function of the laboratory energy Elab = 2k2F/m based on the
Nijmegen partial-wave analysis [75] for the lowest contributing partial waves in neutronmatter: 1S0 (red line),
3P0 (blue), 3P1 (sea green), and 3P2 (green). For laboratory energies ≳ 160MeV (corresponding to kF ∼
1.4 fm−1) the 3P2 channel gives the dominant attractive contribution. Note that due to the onlyweakly broken
isospin symmetry the neutron-proton phase shift approximates that of two neutrons scattering well.

Cooling of neutron stars and neutrino emission

Directly after a supernova in which a neutron star is born, this star is in a hot state and opaque to
neutrinos. At this stage the star is referred to as a proto-neutron star. Only about one minute later
it becomes transparent to neutrinos and cools down by two mechanisms [77–79]: For about the
first 105 years neutrino emission from the entire star dominates. Later on the predominant cooling
process is thermal photon emission which is supported by heat diffusion from the inner layers of
the neutron star. We want to focus on neutrino cooling and discuss the most important neutrino
processes in neutron stars.
Neutrinos are produced in many processes inside neutron stars [80, 81]. Whereas the neutrinos
generated in a nearby core-collapse supernovae can be detected on earth in neutrino observatories,
the neutrino flux of the neutrinos emitted from neutron stars is too small to be detected. At the
beginning of their lifetime neutron stars have internal temperatures≳ 107 K.
Inside the core the most energetic neutrinos with energies in the order of 1K are produced in direct
Urca processes. The Urca process consists for ordinary neutron-star matter of a neutron decay and
the reverse process,

n → p + l + ν̄l , p + l → n + νl , (1.2)

where l = e, μ denotes electrons or muons, respectively. In both processes a neutrino is emitted.
The direct Urca processes can possibly operate only in the inner core where the density of protons
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and leptons is high enough [82, 83]. Assuming a non-superfluid core, one can calculate the neutron
emissivity by

Q(T, ρ) = Q0(ρ)
(

T
109 K

)k

erg cm−3 s−1 , (1.3)

where 1 erg = 10−7 J. For the direct Urca process with electrons and muons k = 6 and Q0 =

(0.1 − 3) × 1027 varies slowly with the density. Hence, the direct Urca process produces a strong
neutrino cooling. A similar process can also act in exotic neutron-star matter with hyperons or pion
and kaon condensates with comparable emissivities.

Another, weaker neutrino process cooling neutron stars is themodifiedUrca process. It can occur at
lower electron fractions than the direct Urca process and can be dominant in low-mass neutron stars
where the inner core is small or even non-existing. In this process another nucleon (N) is involved,
which is required for momentum conservation,

n + N → p + N + l + ν̄l , p + N + l → n + N + νl . (1.4)

In these regions also bremsstrahlung processes are relevant,

N + N → N + N + ν + ν̄ , (1.5)

where the neutrino can have all flavours. The emissivity of these processes can again be calculated
with Eq. (1.3) with k = 8 and Q0 ≈ 1020 − 3× 1023 and Q0 ≈ 1019 − 1020 for the modified Urca
and bremsstrahlung process, respectively.

The neutrino processes discussed above are strongly effected by neutron and proton superfluid-
ity [81, 84]. The nucleons are degenerate and they can only participate in a reaction if their energies
lie within the thermal width of the Fermi levels. When the energy drops below the critical tem-
perature pairing inhibits the nucleons from reacting and the processes are suppressed by a factor of
the form exp[−Δ(kF)/T], where Δ(kF) denotes the pairing gap at the Fermi surface. However, su-
perfluidity triggers also a new neutrino cooling process [85]. The Cooper pairing of the nucleons
produces neutrino pairs. This can be understood in the quasi-particle formalism. The annihilation
of, e.g., two quasi-neutrons (ñ) produces two neutrinos, ñ+ ñ → ν+ ν̄, where ν can have all flavours.
While this process starts at the critical temperature Tc it reaches its maximum around 0.8Tc and is
exponentially suppressed for smaller temperatures. The neutrino luminosity originating from this
process can be one to two orders of magnitude larger than that from the traditional neutrino pro-
cesses discussed above. It was found recently that in particular the rapid cooling of the neutron star
in Cassiopeia A is expected to be due to the neutrino emission from the formation and breaking of
neutron pairs in the 3P2 channel [86].
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Neutron-star observations

After the observation of the first pulsar in 1967, mentioned earlier, many more neutron stars have
been found. In our galaxy about 2000 neutron stars have been observed, which is only a tiny frac-
tion of the expected total population of 108 − 109 neutron stars. The main route to investigate the
properties of these stars follows observations in the electromagnetic spectrumbut also the detection
of neutrinos emitted during the lifetime of the proto-neutron star and of gravitational waves will
provide useful insight into the physics of neutron stars.
Pulsars emit electromagnetic waves in a wide range of wavelengths: Radio, infrared, optical, ultravi-
olet, X-, and γ-rays. However, the emissionmechanism is still poorly known. A possible explanation
is curvature radiation originating from electrons trapped in the strongmagnetic field [87]. On earth
radio, infrared, and optical waves can only be detected with very large telescopes due to the weak
emission in these channels. With space telescopes, e.g., the ‘Hubble Space Telescope’ observations
in the ultraviolet and optical regions are feasible. X- and γ-rays are also detected by space observato-
ries, e.g., the ‘X-ray Multi Mirror (XMM Newton)’ or ‘Chandra’, respectively.
As mentioned above, the magnetisation and rotational axis of neutron stars is in general misaligned,
which causes a small decrease of the rotation. The rotation is, however, very stable and also its de-
crease can be calculated precisely. Thus, one can predict the detection of pulses with high accuracy
and any small deviation caused from gravitational interaction with the companion can give inform-
ation about the mass of the neutron star. Themore compact the companion star is, the more precise
measurements are possible. In neutron-star binaries the accuracy reaches even relative errors of the
order of10−4 (seeFig. 1.6). Neutron starmasses canput constraints on their equationof state. As the
TOV equations directly relate the equation of state to a mass-radius relation one can rule out mod-
els which do not support the recently precisely measured high-mass neutron stars with M ≈ 2M⊙

(PSR-J1614-2230 [8, 9], PSR-J0348+0432 [10]).
In principle, also measurements of the radius of neutron stars could put strong constraints on the
equation of state, in particular if apart from the radius also themass of a particular neutron starwould
be known. Nevertheless, radius measurements have low accuracies at the moment since neutron
stars are so small, far away, and faint. The only access to radii at the moment is through high-order
statistical analyses combiningmanyobservations, whichpredict radii formedium-massneutron stars
around 12 ± 1 km [12]. Another promising approach to access the radius is through the measure-
ment of the moment of inertia of neutron stars which can constrain the radius while also knowing
the mass precisely [90].
Neutrinomeasurement is experimentally very challenging because of their low interaction rate with
ordinary matter. Huge experimental set-ups like the ‘Super-Kamioka Neutrino Detection Experi-
ment’ in Japan still will only be able to measure the neutrino flux emitted during a supernova and
from the proto-neutron star shortly after.
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Figure 1.6: Overview of observed neutron-star masses with 1σ uncertainties, sorted with respect to the type
of binary system the star resides in. Data taken from Refs. [88, 89].

Thefirst direct detection of gravitational waves, which stretch and compress the spacetime and have
been predicted within the framework of general relativity, gained enormous public interest in the
beginningof this year [91]. TheLIGOandVirgoCollaborationmeasuredwith the ‘AdvancedLIGO’
detectors [92] the gravitational-wave signal originating from themerger of two black holes. It is also
expected that the signal from neutron-star mergers inside our galaxy can be measured with these
detectors. The signal from such a merger would have certain characteristics, which could determine
parameters of the neutron-star equation of state [93–95].
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1.3 Energy-density functionals

The first simple energy functional in nuclear physics was introduced by Carl F. von Weiz-
säcker within the theory of the liquid drop model in 1935 [2]. Hans A. Bethe was the first to calcu-
late nuclear properties with it and it is thus often referred to as Bethe-Weizsäcker mass formula [96].
Strictly speaking it is not a functional but a function of themass numberA =

∫
d3x ρ(x), with dens-

ity ρ(x). It gives the binding energy of stable nuclei as a simple sum of five terms

EB = aV A − aS A2/3 − aC
Z(Z − 1)

A1/3
− aA

(N − Z)2

4A
+ δ(N,Z) , (1.6)

where the coefficients ai have to be fitted to selected known nuclei. The first two terms are identified
as volume (aV) and surface (aS) term. The power of A can easily be understood by the fact that
the radius of nuclei to first approximation scales ∼ 3

√
A. The Coulomb term (aC) accounts for the

electric repulsion of the protons, while the asymmetry term (aA) accounts for the different Fermi
seas of neutrons and protons. Finally, δ(N,Z) is the pairing term which is needed to explain, e.g.,
odd-even staggering.
This semi-empirical mass formula has been used very successfully but the modern approach to the
description of nuclei is more systematic through energy functionals of the density [97]. The found-
ations of density functional theory (DFT) have been led by Pierre Hohenberg and Walter Kohn in
1964.

1.3.1 Hohenberg-Kohn theorem

As an introduction to DFT we want to start stating the famous theorem by Hohenberg and Kohn,
originally developed for an interacting electron gas in an external potential v(r) [98]:

There exists a universal functional of the density,F[n(r)], independent of v(r), such that
the expression

E ≡
∫

v(r)n(r)dr+ F[n(r)] (1.7)

has as its minimum value the correct ground-state energy associated with v(r).

In the literature the universal functional F is often named the Hohenberg-Kohn functional FHK and
is of the same form for any particle number. In a more mathematical manner we can write

δE
δn(r)

= 0 (1.8)
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for the exact ground-state density n(r). Note that theHohenberg-Kohn theorem is only an existence
theorem and does not provide a way to construct the universal functional.

The proof is simple andwewant to sketch it in the following since it also provides better insights into
the theorem. Assume that we have a systemwithHamiltonianH = Hint+Vext with interaction part
Hint and external part

Vext =

∫
d3r ψ†(r)v(r)ψ(r) . (1.9)

For the ground stateΨ the density

n(r) = ⟨Ψ |ψ†(r)ψ(r)|Ψ ⟩ (1.10)

is a functional of v(r) since the Hamiltonian depends on it. We now want to prove by contradiction
that conversely v(r) is a uniquely determined functional of n(r). Thus, we assume that there exists
another potential v′(x)with corresponding ground stateΨ′ that leads to the same ground state dens-
ity n(r). In generalΨ′ ̸= Ψ since they solve different Schrödinger equations. Since the ground state
minimises the energy it follows

E′ = ⟨Ψ′ |H′|Ψ′ ⟩ < ⟨Ψ |H′|Ψ ⟩ = ⟨Ψ |H + V′
ext − Vext|Ψ ⟩

= E +

∫
d3r [v′(r)− v(r)]n(r) . (1.11)

On the other hand we can also conclude

E < E′ +

∫
d3r [v(r)− v′(r)]n(r) . (1.12)

By adding up the last two inequalities we obtain the contradiction

E + E′ < E + E′ . (1.13)

Hence, we conclude that v(r) is a unique functional of n(r) and it follows that also F is a unique
functional of the density. Note that v(r) is only unique up to a constant, which directly follows from
the proof.

Another,more constructive, proof of theHohenberg-Kohn theorem is based on a constrained search
of the ground state. It is discussed in detail in Refs. [34, 99]. Starting point is the general problem of
nuclear many-body methods to find the ground-state energy of an N-particle system with Hamilto-
nianH, i.e., theminimisation of the expectation value ⟨Ψ |H|Ψ ⟩with respect to theN-particle wave
function Ψ. This minimisation is separated into two steps: (i) Minimisation over all Ψ but under
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the constraint of a given density n(r) and (ii) minimisation over n(r) with fixed external potential
v(r).

For self-bound nuclei there is no external potential v, which makes Eq. (1.7) somewhat unclear. A
calculation of neutron drops, however, requires an external potential for the system to be bound. But
also for nuclei one can view the external potential more as a source that is varied and then set to zero
which is of interest especially in the case for orbital-dependent functionals.

From the knowledge of the existence of a universal functional there is a long path to the construction
of such a functional. A direct construction was pursued within Thomas-Fermi theory [100, 101]
(even before the Hohenberg-Kohn theorem), of which only the kinetic term is still used in some
modern functionals. Other approaches are the local density approximation (LDA) and, more soph-
isticated, the generalised gradient approximation (GGA) in which the exchange-correlation energy
of the functional solely depends on the density or on the density and its gradients, respectively [102].

Rather than taking the path of a direct construction of a functional the more successful approach is
orbital-based density functional theory. It is based on the ideas of Walter Kohn and Lu J. Sham.

1.3.2 Kohn-Sham density functional theory

Within Kohn-Sham density functional theory [103] one introduces single-particle orbitals, the
Kohn-Sham orbitals φi , that solve the Kohn-Sham eigenvalue equation

[
−∇2

2m
+ vKS(x)

]
φi(x) = εiφi(x) . (1.14)

The local Kohn-Sham potential vKS(x) is constructed in a way such that the density of N non-
interacting fermions in that system is equal to the density of N interacting fermions in an external
potential vext(x). This is illustrated for a system of 8 neutrons in a harmonic trap in Fig. 1.7. The
density of the system is then given by

ρ(x) =
N∑

i=1

|φi(x)|
2 , (1.15)

where the orbitals are summed over the lowest N states. The Kohn-Sham potential is obtained by
variation of the interaction energy with respect to the density,

vKS(x) =
δEint

δρ(x)
. (1.16)

Hence, the Kohn-Sham orbitals depend on the potential which itself depends on the density and
thus on the orbitals. Consequently, one has to solve the system self-consistently.
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Figure 1.7: Illustration of Kohn-Sham density functional theory for a system of 8 neutrons in a harmonic
trap. Left: The neutrons (blue dots) interact solely via two-body interactions (depicted as dashed lines) in a
harmonic trap vHO. Right: The external trap is transformed into the Kohn-Sham potential vKS in a way such
that the density ρ(x) of the system stays the same but the interactions between the neutrons is absent. This
figure is based on Fig. 1 of Ref. [34].

Note that the Kohn-Sham approach is not a mean-field approximation. It takes a mean-field state
as reference state, which includes correlations in its solution. These correlations could be included
fromanorganisationofmany-bodyperturbation theory, e.g., the optimised effective potential (OEP)
method, which is used in this thesis.

Details on orbital-dependent functionals

The subsequent discussion is based on the review article by Engel in Ref. [35], which discusses
orbital-basedDFT for electronic systems, and on the remarks byDrut et al. [34] for nuclear systems.
For simplicity and clarity we omit any spin or isospin degrees of freedom.

In general the energy functional is given by

E[ρ] = TKS[ρ] + Eext[ρ] + EH[ρ] + Exc[ρ] , (1.17)

with the Kohn-Sham kinetic energy

TKS[ρ] = −
N∑

i=1

∫
d3x φ†

i (x)
∇2

2m
φi(x), (1.18)

which is in general not equal to the kinetic energy of the system (since it depends on theKohn-Sham
orbitals and not on the non-local Hartree-Fock orbitals), the external-potential energy

Eext[ρ] =
∫

d3x vext(x)ρ(x) , (1.19)
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Hartree energy

EH[ρ] =
1
2

∫
d3x d3y ρ(x)V(x, x)ρ(y) , (1.20)

and exchange-correlation term Exc, which is implicitly defined via the decomposition of Eq. (1.17).
For electronic systems there is also an additional termEion stemming from the electrostatic repulsion
of the nucleus. This contribution, however, is irrelevant for the DFT formalism and is neglected.
Following Eq. (1.16) the Kohn-Sham potential can be splitted into three pieces

vKS(x) = vext(x) + vH(x) + vxc(x) , (1.21)

where the Hartree potential can be calculated explicitly

vH(x) =
∫

d3y V(x, y)ρ(y) , (1.22)

and the derivation of the exchange-correlation potential is more tedious

vxc(x) =
δExc[ρ]
δρ(x)

. (1.23)

The isolation of EH and Exc of the functional is not necessary and for nuclear applications usually
even involved. This is due to the fact that the nuclear interaction ismore complicated than the simple
Coulomb interaction in the electronic case. Combining the Hartree and exchange part enables also
to use anti-symmetrised matrix elements (see Chapter 3 for a more detailed discussion). Thus, we
have a Hartree–exchange-correlations potential

vHxc(x) ≡ vH(x) + vxc(x) =
δ

δρ(x)
(EH[ρ] + Exc[ρ]) ≡

δEHxc[ρ]
δρ(x)

. (1.24)

A self-consistent solution algorithm for orbital based DFT usually consists of two parts: A standard
Schrödinger-equation solver for the orbitals and the construction of the functional or potential.

1.3.3 Density matrix expansion and Skyrme functionals

Another direct approach to DFT based on microscopic interactions is the density matrix expansion
(DME) introduced by John W. Negele and Dominique Vautherin [104, 105]. It is based on quasi-
local expansions of the energy in terms of various densities, such that the functional derivatives for
the construction of a Kohn-Sham potential are straightforward. It was originally constructed as an
expansion of the Hartree-Fock energy using the nucleon-nucleonGmatrix treated in a local approx-
imation.
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In a nuclear physics context it was revisited for spin-saturated nuclei using non-local low-momentum
interactions inmomentum space [106]. Employing soft, low-momentum interactions avoids theG-
matrix summations. The DME applied to the Hartree-Fock energy leads to a functional similar to
Skyrme energy functionals.
Skyrme functionals are widely used in nuclear physics, in particular also for predictions of neutron-
rich nuclei [6, 107, 108]. The general form of Skyrme functionals consists of powers of various
nuclear densities, restricted to be local. For simplicity we state a Skyrme functional for symmetric
(N = Z) nuclei

ESkyrme[ρ, τ, J] =
∫

d3x
[
1
2m

τ +
3
8
t0ρ2 +

1
16

(3t1 + 5t2)ρτ +
1
64

(9t1 − 5t2)(∇ρ)2

− 3
4
W0ρ∇ · J+ 1

32
(t1 − t2)J2

]
, (1.25)

with density ρ, kinetic density τ, and the spin-orbit density J, as well as fit coefficients ti and W0.
Skyrme functionals can involve alsomore general densities, which are all expressed as sums of single-
particle orbitals. As mentioned in Ref. [6] there are still large uncertainties in Skyrme functionals.
A reduction of these was pursued using better fit technology within the UNEDF project [109, 110].
Other improvements may be achieved by modified structures of Skyrme functionals.
As mentioned above, the DME connects microscopic interactions to Skyrme-like functionals. The
coefficients are replaced by density-dependent functions. Amore detailed discussion how theDME
can improve energy functionals can be found in Ref. [34].

1.3.4 Route to ab initio nuclear energy-density functionals

In Ref. [102] Perdew andKurth described ‘Jacob’s ladder’ of CoulombDFT approximations leading
from empirical functionals to ‘the heaven of chemical accuracy’. From the lowest rung of local dens-
ity approximations via generalised gradient approximations one can climb up to orbital-based DFT
considering occupied and unoccupied orbitals.
Drut et al. transferred this idea to nuclear physics and suggested a five-rung ladder [34]:

1. Empirical Skyrme functionals fitted to properties of medium-mass to heavy nuclei.

2. Skyrme functionals enhancedbyadditional gradient anddensitydependenceswith input from
microscopic calculations.

3. Functionals with long-range-physics input from density-matrix-expanded chiral interactions
merged with Skyrme functionals refitted to experimental data or theoretical calculations.

4. Functionals entirely derived from DME applied to low-momentum chiral interactions.
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5. Full orbital-dependent DFT using chiral interactions.

This ladder is not climbed step by step: At present there are efforts at all different rungs in order
to improve nuclear energy-density functionals. In this thesis we directly address rung 5 with our
calculationswithin the frameworkof theoptimisedeffectivepotentialmethod(seeChapters 3 and4)
and also calculate benchmark systems to improve Skyrme functionals in the sense of rung 2 (see our
calculations for spin-polarised neutron matter in Chapter 2).
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1.4 Chiral effective field theory

Thederivationofreliablenuclear interactions is a long-standingproblem innuclearphys-
ics. The modern approach is chiral effective field theory (EFT), which systematically connects the
symmetriesof theunderlying theory, namelyquantumchromodynamics (QCD),withnuclear forces.
In this Section we first want to discuss the basic principles and symmetries of QCD. With these
foundations we give an introduction to chiral EFT and its current developments.

1.4.1 Introductory QCD and scales in nuclear physics

Quantum chromodynamics is the theory of the strong interaction, which binds nuclei. Its fun-
damental degrees of freedom are quarks and gluons. There exist six quark flavours in nature (see.
Table 1.1). They can be understood asmatter fields carryingmass and electric charge and interacting
via gluon exchanges, the gauge bosons of QCD. Both, quarks and gluons, carry also colour charge.
This quantity was introduced in order to explain confinement: Quarks have not been observed as
isolated particles. They are – at least at low temperatures – confined to colour-neutral particles, the
hadrons. There are three kinds of colour charge: Red (r), green (g), and blue (b). Analogously to
the additive colour mixing of light, the composition of three quarks with different colour charge is
colour neutral. In addition to these three-quark states, called baryons, exist also states namedmesons
consistingof aquark andanantiquark,which carries anti-colour, i.e., anti-red (̄r), etc.). Acolour–anti-
colour duplet is also colour neutral. In recent measurements at the Large Hadron Collider (LHC)
at CERN also a five-quark state, so-called pentaquark, was observed [111]. It consists of four quarks
and an antiquark. Furthermore, there are speculations about a four-quark (tetraquark) state [112].

In QCD the quark masses are free parameters but in nature they are fixed to the values given in
Table 1.1. For low-energy nuclear physics only the three lightest quarks are relevant: The up (u),

Table 1.1: Table of quarks and their electric charge, isospin z-projection, and approximate masses, adapted
from the Particle Data Group [113].

Flavour ( f ) symbol electric charge isospin mass (mf)
up u +2/3e +1/2 2.3+0.7

−0.5 MeV
down d −1/3e −1/2 4.8+0.5

−0.3 MeV
strange s −1/3e 0 95± 5MeV
charm c +2/3e 0 1 275± 25MeV
bottom b −1/3e 0 4 660± 30MeV

top t +2/3e 0 173 210± 510± 710MeV
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down (d), and strange (s) quark and we can neglect the heavy quarks. For details see Ref. [114], on
which also the subsequent discussion is based.

In this light-quark approximation the QCD Lagrangian takes the form

LQCD =
∑

f=u,d,s

q̄f i /Dqf − q̄f mf qf −
1
2
tr(GμνGμν)

= L0
QCD −

∑
f=u,d,s

q̄f mf qf , (1.26)

with quark fields qf and masses mf. We have used the Feynman-slash notation for the covariant de-
rivative /D ≡ γμDμ = γμ(∂μ + igAμ), where Aμ denotes the gluon field and

Ga
μν = ∂μAa

ν − ∂νAa
μ + gs f abcAb

μA
c
ν , (1.27)

the gluon-field-strength tensor with colour indices a, b, c = 1, . . . , 8 corresponding to eight gluons,
dimensionless coupling strength gs, and SU(3) structure constant f abc.

One can describe light-quark QCD approximately by massless quarks. The corresponding Lagran-
gian L0

QCD is invariant under separate unitary global transformations of the left- and right-handed
quark fields, the so-called chiral rotations: qf → Vff′,iqf′ , where Vff′,i ∈ SU(3), and i = L,R. One
can write the kinetic term of the QCD Lagrangian as∑

f=u,d,s

q̄f i /Dqf =
∑

f=u,d,s

q̄Lf i /DqLf + q̄Rf i /Dqf . (1.28)

This term then fulfils the so-called chiral symmetry SU(3)L × SU(3)R. However, chiral symmetry
is not exact. It is explicitly broken due to the small quark masses. The quark-mass term couples left-
and right-handed quarks, ∑

f=u,d,s

q̄f mf qf =
∑

f=u,d,s

q̄Rf mf qLf + h.c. . (1.29)

In addition to this explicit breaking one also finds a spontaneous symmetry breaking, even for zero
quark masses. This spontaneous symmetry breaking is reflected in the particle spectrum. If chiral
symmetry were not broken spontaneously one would expect parity doublets, i.e., particles with the
same quantumnumbers but opposite parity with the samemass. That this is not the case can be seen
fromthenucleonNwithmassmN ≈ 940MeV and its chiral partnerN∗withmN∗ ≈ 1535MeV. The
spontaneous symmetry breaking by the QCD vacuum gives rise to the chiral condensate ⟨q̄q⟩0. It is
the expectation value of a quark-antiquark pair in vacuum and can be seen as the order parameter of
spontaneous chiral symmetry breaking. It is zero if chiral symmetry is restored at high temperatures.
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The spontaneous symmetry breaking has an important consequence. According to Goldstone’s the-
orem, every generator of a spontaneously broken continuous symmetry corresponds to a massless
excitation of the vacuum, a so-called Goldstone boson [115]. In the case of chiral symmetry break-
ing the Goldstone bosons are the pions, kaons, and the eta meson. Due to the explicit symmetry
breaking by the quark masses also the Goldstone bosons carry small masses and are therefore called
pseudo-Goldstone bosons.

At low energiesQCD is non-perturbative. This is due to the strong coupling strength αs, which is
connected to the coupling constant gs and reads at one-loop order [116, 117]

αs ≡
g2s
4π

=
4π
b0

log−1 Q
ΛQCD

, (1.30)

where b0 = (33 − 2Nf)/(12π) with number of flavours Nf and ΛQCD ≈ (200 − 400)MeV is
the characteristic scale of QCD. The coupling strength is dependent on the momentum Q and is
thus often referred to as ‘running coupling’. At low momenta Q ≲ 1GeV it becomes larger than
1, which makes QCD non-perturbative in this momentum regime. Thus, we cannot calculate the
nuclear force directly from the QCD Lagrangian.

There are, however, efforts to calculate nuclear observables directly from QCD using lattice Monte-
Carlo techniques. In lattice QCD one uses a four-dimensional lattice to discretise space-time with
quarks on the vertices and gluons on the links. This, problem can then be evaluated numerically
and the results are extrapolated to infinite volume and vanishing lattice spacing. Nevertheless, lattice
QCD calculations are computationally extremely expensive and for systems involving nucleons one
presently needs to make various approximations.

Lattice QCDwas used successfully to predict themasses of the lightest hadrons, using only the pion
and kaon mass as input [118]. Physical calculations of nuclear systems are presently limited to very
light systems and will most likely be limited to A ≲ 4 in the foreseeable future [119]. However,
it could also be used to predict coupling constants for nucleon-nucleon or pion-nucleon scatter-
ing [120], which could be used to constrain nuclear forces. For a detailed review on lattice QCD
see Ref. [17].

Another approach to determine the nuclear interaction is chiral effective field theory. It is based on
the separation of scales. For a better insight we briefly want to discuss the scales in nuclear physics.

The nuclear interaction can be understood by the exchange of light mesons. The averagemass of the
pion, the lightest meson, is mπ ≈ 138MeV, which corresponds to a Compton wave length of about
λπ = 1/mπ ≈ 1.5 fm. Naïvely, one could assume that we can describe nuclear binding in terms of
a pion-energy-scale expansion. However, the binding energies of nuclei ranges about (1 − 8)MeV
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per nucleon. The binding momentum of the deuteron, which is weakly bound, is

Γd =
√

mNEB(d) ≈ 45MeV ≪ mπ , (1.31)

where EB(d) = 2.224MeV denotes the binding energy of the deuteron and mN = 938.92MeV
is the mass of the nucleon. Hence, there exists a relevant energy scale much below that of the pion
mass. This is also manifested in the S-wave neutron-proton-scattering lengths,

a(1S0) = −23.8 fm , a(3S1) = 5.4 fm ≫ 1
mπ

. (1.32)

These different scales have to be treated properly to set-up an EFT for nuclear interactions. It is
crucial that one chooses the correct energy scale, e.g., in the case of large scattering lengthswe restrict
the region of interest to momenta qmax ∼ |a(1S0)|−1 ∼ 8MeV ≪ mπ , the so called pion-less EFT
whose breakdown scale is the pion mass [121, 122]. When going to higher momenta one needs to
include pions explicitly (chiral EFT) and when considering even higher energies one may include
even heavier particles such as the delta isobar Δ(1232) in the EFT, often referred to as Δ-full chiral
EFT.

1.4.2 From effective chiral Lagrangians to interactions

Chiral effective field theory was introduced by Steven Weinberg in the early 1990s [4, 123, 124]. In
1979, however, Weinberg already described the underlying principle of effective field theories in the
following way [125]:

If one writes down the most general possible Lagrangian, including all terms consist-
ent with assumed symmetry principles, and then calculates matrix elements with this
Lagrangian to any given order of perturbation theory, the result will simply be themost
general possible S-matrix consistent with analyticity, perturbative unitarity, cluster de-
composition and the assumed symmetry principles.

Thus, to construct an effective Lagrangian we first need to specify the degrees of freedom and an
expansion scheme. In chiral EFT the degrees of freedom are pions and nucleons. One expands in
powers of a low-momentum scale over a high-momentum scale. The low-momentum scale Q is
given by typical energies of the system, i.e., Q ∼ mπ . The high-momentum or breakdown scale is
set by the energies where new physics comes into play. This is marked by heavier-meson exchanges,
of which the ρ meson is the lightest with mρ ≈ 770MeV. The breakdown scale is thus usually set
Λb ∼ 500MeV. This results in an expansion parameterQ/Λb ∼ 1/3, meaning that the uncertainty
of the interaction should be reduced by a factor of 3when going to the next order.
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Thenext step in the construction of the effective Lagrangian is the specification of a power-counting
scheme. It defines a hierarchy for the importance of terms. Most widely used is Weinberg’s power-
counting scheme based on naïve dimensional analysis. The order ν of an A-nucleon diagram, which
has L loops, C separately connected pieces, and Vi vertices of type i, is given by [4, 123, 124]:

ν = −2+ 2A − 2C + 2L +
∑

i

Vi

(
di +

1
2
ni − 2

)
, (1.33)

where ni is the number of nucleon field operators and di the number of derivatives and/or insertions
of the pion mass in the vertex i. Note that there exist also other approaches [126] and finding the
right power counting is a topic of current research.

With that we can construct an effective Lagrangian systematically order by order. The lowest, with
respect to symmetries, possible order ν is called leadingorder (LO), thenext possible next-to-leading
order (NLO), than next-to-next-to-leading order (N2LO), and so on. We state the LO and NLO
chiral Lagrangians and refer toRef. [127] for a detaileddiscussion andderivation. TheseLagrangians
describe vertices Δi = di + ni/2− 2with i = 0, 1:

L(0) =
1
2
(∂μπππ · ∂μπππ)− 1

2
m2

ππππ
2 + N†

[
i∂0 +

gA

2fπ
τττσσσ · ∇∇∇πππ − 1

4f 2π
τττ · (πππ × π̇ππ)

]
N

− CS

2
(N†N)(N†N)− CT

2
(N†σσσN)(N†σσσN) + . . . , (1.34)

L(1) = N†
[
4c1m2

π −
2c1
f 2π

m2
ππππ

2 +
c2
f 2π

π̇ππ2 +
c3
f 2π
(∂μπππ · ∂μπππ)− c4

2f 2π
εijkεabcσ iτa(∇jπb)(∇kπc)

]
N

− D
4fπ

(N†N)(N†σσστττN) · ∇∇∇πππ − E
2
(N†N)(N†τττN) · (N†τττN) + . . . , (1.35)

where πππ and N denote the pion and nucleon fields, respectively, gA is the axial coupling and fπ the
pion decay constant, σσσ/τττ denote the Pauli spin/isospin matrices. Finally, the coefficients CS, CT, ci,
E, and D are low-energy couplings, or often called low-energy constants (LECs). Note that we have
disregarded terms with more pion fields, indicated by ellipses.

All low-energy couplings in the Lagrangian are a priori unknown. They absorb high-momentum de-
grees of freedom, like heavier-meson exchanges or theΔ excitation. Through fits to low-energy scat-
tering data like the NN phase shifts or pion-nucleon scattering the high-energy physics is included
in the theory.

For the calculation of nuclear observables one needs to derive potentials from the Lagrangians. This
problemwas already studied formeson-exchange theories in the 1950s and a detailed discussion can
be found in Ref. [128]. For a more recent, condensed discussion we again refer to Ref. [127].

With the Lagrangians in Eqs. (1.34), (1.35) one can determine the nuclear interaction up to N2LO,
except for the contact NN interaction at NLO, which includes a vertex involvingL(2) [129].
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Figure 1.8: Hierarchy of nuclear forces in chiral effective field theory up to N4LO. Solid lines correspond to
nucleons, while dashed lines depict pion exchanges. The low-energy couplings are indicated in the vertices.
The dominant contribution is from nucleon-nucleon (NN) forces since they contribute already at leading
order. At third order (N2LO) three-body (3N) forces emerge and at the next order also four-body (4N) forces.
Note that the N4LO many-body forces have only been developed partially. A completely local representation
of the chiral forces is (except for the non-local spin-orbit contribution) only possible from LO to N2LO.

In Fig. 1.8 we diagrammatically show nuclear forces up to order N4LO. These diagrams should not
be understood as Feynman diagrams representing the scattering amplitude but rather as a schem-
atic visualisation of the irreducible parts of it. The LO contribution (first line) consists of two parts,
a contact and the one-pion-exchange interaction. As an example we quote the expression in mo-
mentum space here and refer to Refs. [130, 131] for the higher-order contributions:

VLO(q) = CS + CT σσσ1 · σσσ2 −
g2A
4f 2π

σσσ1 · q σσσ2 · q
q2 + m2

π
τττ1 · τττ2 , (1.36)

with the momentum transfer q = p′ − p where p and p′ are the initial and final relative momenta,
respectively, and the same couplings as in Eq. (1.34).

The convergence of the chiral two-nucleon forces has been studied by analysing, e.g., the neutron-
proton phase shifts [127]. It was found that the long-range part of the chiral forces exhibits in vari-
ous cases an unnatural convergence pattern. The sub-leading contributions had a larger effect than
expected. This could be traced back to large low-energy constants c3 and c4. These occur first in the
N2LO two- and three-nucleon forces. The largest effect has its origin in the delta isobar Δ(1232).
The corresponding excitation energyΔ = mΔ −mN ≈ 293MeV is lower than the breakdown scale
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Figure 1.9: Sub-leading 3N topologies at N3LO. The red ellipses indicate pion loops. In addition there exist
relativistic 1/mN corrections. Note that the 1π-exchange–contact topology vanishes at this order. The figure
was taken from Ref. [142] and coloured.

of the theory and is known to play an important role in nuclear physics [130]. Schematically the
absorption of the Δ excitation into the couplings c3 and c4 can be understood as:

Δ → c3, c4 (1.37)

One expects that including Δs explicitly in the effective theory leads to a better convergence pattern
compared to a Δ-less theory. This is due to the shifting of effects from large long-range parts by one
order. Even though such a theory is not well established yet, the effects of deltas on the couplings ci
were studied by Krebs et al. [132].

1.4.3 Many-body forces

In chiral EFT also many-nucleon forces emerge naturally, as depicted in Fig. 1.8. They are a result
of nucleons being composite particles with finite size. It can be understood in a simple picture: In
presence of other nucleons they can be deformed. This leads to a modified interaction among the
nucleons. These modifications are manifested in a residual many-nucleon force when the nucleons
are treated as point-like particles. Since the nuclear interaction has a short range it becomes clear
that many-nucleon forces are only relevant at sufficiently high densities. One can also conclude that
many-body forces have to be repulsive – at least at high densities – as otherwise nuclei would col-
lapse [16].

According to thepower counting (1.33) it is clear thatNNforces aremost important since theyoccur
already at LO (ν = 0). Formally, the leading three-nucleon interaction appears at ν = 2, i.e., NLO.
However, those contributions vanish and thus, three-nucleon forces occur first at N2LO [133]. Sim-
ilarly, onewould expect the leading four-nucleon forces already atNLO(ν = 2) but through unitary
transformation one can show that these contributions vanish. In fact, the leading four-nucleon forces
appear at N3LO [134, 135]. Nevertheless, 3N forces play an important role in nuclear physics and
they are crucial to predict the properties of nuclei, see e.g., Refs. [19, 28, 136–138] and nuclear mat-
ter [139–141].
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Figure 1.10: Leading 4N forces at N3LO. The nomenclature follows Ref. [134]. Only the diagrams a, c, e, f,
k, l, and n have non-vanishing contributions, highlighted with the shading.

We briefly want to discuss the individual contributions from 3N and 4N forces up to N3LO, as they
are included in our calculation presented in Chapter 2. The leading 3N forces at N2LO consists of
three diagrams, depicted in Fig. 1.8: The two-pion-exchange, one-pion–contact, and three-nucleon–
contact term. The first depends on the low-energy couplings c1, c3, and c4 which are predicted from
theNNsector [see Eq. (1.35)]. The latter twodepend on the couplings cD and cE, respectively, which
have to be fitted to three-body data. However, due to Pauli’s principle they do not give contributions
in neutron-only systems [139].
AtN3LOone can group the 3Nterms into 5 topologies, whichwe show schematically in Fig. 1.9. The
long-range part is grouped into the 1π-exchange, 2π-1π-exchange, and the π-ring topologies [142].
The shorter-range contributions are the 1π-exchange–contact and the 2π-exchange–contact topolo-
gies as well as the relativistic 1/mN corrections [143]. One can show that the 1π-exchange–contact
topology vanishes at this order. The long-range parts only include lowest-order pion-nucleon ver-
tices and thus only depend on the constants gA and fπ , while the 2π-exchange–contact term depends
on the LO coupling CT and the relativistic corrections also on CS. Hence, no new low-energy coup-
lings appear at this order and it is fully predicted from the NN sector.
The leading 4N interactions have been derived inRefs. [134, 135]. We show all diagrams in Fig. 1.10.
All non-vanishing terms are indicatedby the shaded regions. The long-range terms are parameter free
and the short-range terms k, l, and n depend only on theNN couplingCT. Thus, also the leading 4N
forces are fully predicted.

1.4.4 Regularisation schemes and local interactions

Chiral interactions lead to divergences in the high-energy (ultraviolet) regime when plugged into
the Lippmann-Schwinger equation. These divergences are an intrinsic feature of chiral EFT [144].
A widely used approach to circumvent this problem is the introduction of an ultraviolet cutoff. The
potential is then renormalised through the fits of the low-energy couplings to scattering data. How-
ever, this introduces cutoff artefacts in chiral potentials leading to cutoff dependences of the calcu-
lated nuclear observables. In a renormalisable theory one could take the cutoff large with only small
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cutoff dependence, smaller than the error originating from the truncation in the EFT expansion. In
chiral EFT with Weinberg power counting, however, at present cutoffs are of the order of the break-
down scale Λb.

Traditional chiral interactions have been formulated inmomentum space [145–148], which is a nat-
ural choice as the chiral expansion is in powers of momentum scales. The most-widely used N3LO
potential in nuclear structure calculations has been derived by Entem and Machleidt [145]. They
employed a cutoff Λ = 500MeV and we refer to it as EM 500MeV in the following. There also ex-
ists a version of that potential with a cutoff Λ = 600MeV [146]. Epelbaum, Glöckle, and Meißner
derivedmultipleN2LO[147] andN3LO[148] potentials with a cutoff rangeΛ = (450−600)MeV
and used a different approach in the regularisation. They introduced additionally a regularisation
of the spectral function of the sub-leading two-pion-exchange [149]. This makes the choice of the
regulator function more flexible [144]. For this spectral-function regularisation they used Λ̃ =

(500− 700)MeV. We refer to these potentials as EGM Λ/Λ̃.

These rather low cutoffs limit the applicability of chiral interactions but with higher cutoffs the po-
tentials are not renormalisable. Nuclear saturation density n0 corresponds for isospin-symmetric
systems to Fermi momenta kF ≈ 1.35 fm−1 ∼ 270MeV and for neutron-only systems even to
kF ≈ 1.7 fm−1 ∼ 340MeV. Going to higher densities may not be in the range of these low-cutoff
interactions. A larger range of applicability of chiral forces would thus be appealing.

A way to reduce cutoff artefacts originating from long-range pion exchanges was found in the devel-
opment of local chiral coordinate-space interactions for quantum Monte Carlo calculations [150–
152]. Locality means that the potential only depends on the particle separation r = r1 − r2.
When Fourier transforming the traditional momentum-space potentials into coordinate space there
exist two sources of non-locality: Terms emerging from the regulator functions and genuine non-
localities. In the contact interactions beyond LO arise dependences on the momentum transfer in
the exchange channel k = (p′ + p)/2. Also parts of the pion-exchanges at N3LO and beyond are
k dependent. The Fourier transform of these terms leads to these genuine non-localities, in contrast
to the direct momentum transfers q = p′ − p, which are local.

The first non-locality can easily be circumvented by the use of different regulator functions or reg-
ulating the potential directly in coordinate space. Instead of regulator functions of the form f(p) =
exp[−(p/Λ)2n] one uses flong(r) = 1 − exp[−(r/R0)

m] for the long-range terms of the interaction.
Now R0 plays the role of the cutoff, suppressing contributions at r < R0 [152]. These short-range
components of the pion-exchange cause convergence problems in the chiral expansion [153]. In ad-
dition a spectral-function regularisation is used as in themomentum-space interactions. To avoid the
genuine non-localities one can choose a different basis of short-range operators. This can be done
for all contributions up to N2LO– except for the spin-orbit terms, which depend on q × p. For a
detailed discussion see Ref. [152]. As comparison to the momentum-space expressions (1.36) we
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quote the LO potential in coordinate space (where we neglect the isospin-breaking terms),

VLO(r) = (CS + CT σσσ1 · σσσ2)δ(3)(r)

+
m3

π

12π
g2A
4f 2π

e−mπ r

mπr

[
σσσ1 · σσσ2 +

(
1+

3
mπr

+
3

(mπr)2

)
S12(̂r)

]
τττ1 · τττ2 , (1.38)

with the tensor operator S12(̂r) ≡ 3 σσσ1 · r̂ σσσ2 · r̂− σσσ1 · σσσ2.
In the local interactions derived inRefs. [150, 151] a cutoff rangeR0 = (0.8−1.2) fmwas employed,
roughly corresponding to energies (600 − 400)MeV. The long-range parts of these interactions
show less cutoff artefacts than the non-local potentials. The spectral-function-regularisation cutoff
was also varied Λ̃ = (1.0− 1.4)GeV and only minor effects were observed.
Even though fully-local chiral interactions can only be derived up to N2LO, one can use the idea
of local regularisation for higher-order potentials. This was pointed out in Ref. [144], in which
Epelbaum, Krebs, and Meißner developed semi-local interactions. In these the long-range pion ex-
changes are regulated locally, while the short-range terms are regulated in the standard procedure
in momentum space. The momentum-space cutoff is chosen as Λ = 2R−1

0 . In practice the local
regulator function discussed above is Fourier transformed to momentum space and then applied to
the long-range terms. Using this regularisation scheme also avoids the additional spectral-function
regularisation. This also makes the inclusion of 3N forces at N3LO and beyond [132, 154] more
consistent as they are derived only for infinite Λ̃.
Similarly to the local interactions, semi-local potentials with cutoffs in coordinate spaceR0 = (0.8−
1.2) fm corresponding tomomentumspace cutoffsΛ ≈ (500−330)MeVhavebeenderived. These
potentials show significantly less cutoff artefacts and a more systematic convergence pattern.
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2
Infinite neutron-rich systems

The physics of neutron matter spans a wide density range. At low densities it exhibits univer-
sal properties due to the large neutron-neutron scattering length [155–157]. At intermediate density
regions it is relevant for neutron-rich nuclei and at very high densities the physics of neutron stars
is strongly determined by neutron-matter properties. Neutron matter also provides a unique labor-
atory to test nuclear forces because all low-energy couplings appearing in the many-body forces are
predicted from the NN sector.
Neutron-matter calculations can be used to constrain the properties of neutron stars by predicting
a range for allowed mass-radius relations [13, 14] (see Fig. 1.3). For that an extension to higher
densities and an extrapolation to neutron-star matter with a small proton fraction is necessary. Such
an extrapolation can be done with a quasi-parabolic expansion, which has been confirmed by actual
asymmetric-nuclear-matter calculations [141, 158, 159].
At low densities (n ≲ n0/10) neutron matter has been studied with chiral effective field theory
interactions using lattice simulations [24]. At nuclear densities there exist calculations in the in-
medium chiral perturbation theory approach [160, 161], where the low-energy couplings have to be
adjusted to empirical saturation properties. Other approaches used renormalisation group (RG) or
similarityRG techniques [162, 163] to evolve chiral interactions to lowmomenta in order to perform
perturbative calculations [139, 164–166]. A non-perturbative approach based on chiral interactions
to calculate neutron matter is using Green’s functions and can be found in Refs. [159, 167].

35
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Figure2.1:Neutron-matter energyper particle as a functionof density includingNN,3N, and4Ninteractions
up to N3LO. The overlapping bands correspond to different NN potentials [145, 146, 148] and include un-
certainty estimates due to themany-body calculation, the low-energy couplings ci , and by varying the 3N/4N
cutoffs (see Refs. [140, 168]). For comparison we also show results at low densities (see also the inset) from
NLO lattice [24] and Quantum Monte Carlo (QMC) simulations [173], and at nuclear densities from vari-
ational (APR, the different points are with or without boost corrections) [174] and auxiliary field diffusion
Monte Carlo (AFDMC) [175] based on adjusted nuclear force models.

We have studied neutron matter using chiral effective field theory interactions including all many-
body forces up to N3LO in a perturbative approach together with Ingo Tews and Kai Hebeler in
Refs. [140, 168–170]. We show the main result for the equation of state of neutron matter using the
traditional non-local interactions [145–148] in Fig. 2.1. The perturbative calculations are feasible
due to effective-range effects weakening NN forces at higher densities [156] together with weaker
tensor forces among neutrons and limited phase space due to Pauli blocking [171]. They have been
confirmed by Quantum Monte Carlo (QMC) calculations with local chiral interactions [150–152,
172].
In this Chapter we want to study the properties of neutron matter further and calculate also other
observables than the equation of state of neutron matter. In Section 2.1 we investigate the nuclear
phase diagram and present calculations of the chiral condensate in neutronmatter. In Section 2.2 we
study the properties of spin-polarised neutronmatter. This extreme system shows that the physics of
neutron matter is similar to a unitary gas and we can use it to restrict energy-density functionals. In
the last Section we investigate the pairing gap in neutron matter, which is important for the physics
of neutron star crusts and outer cores as well as neutron-rich nuclei.



2.1. THE CHIRAL CONDENSATE IN NEUTRON MATTER 37

2.1 The chiral condensate in neutronmatter

The chiral condensate is the order parameter of spontaneous chiral symmetry breaking. In this
Sectionwepresent a calculation of the chiral condensate in neutronmatter at zero temperature based
onnon-local chiral interactions. This projectwas carried out togetherwith IngoTews, Bengt Friman,
Kai Hebeler, and Achim Schwenk. Parts of it were already presented in Ref. [170] while it was com-
pleted throughout the work on this thesis. The results have been published in Ref. [176].

2.1.1 Introduction

The understanding of the phase diagram of matter is a current frontier in nuclear phys-
ics. At high temperatures and vanishing net baryon density, the properties of strongly interacting
matter have been studied in first-principle lattice QCD calculations. It is found that at a temper-
ature of 154 ± 9MeV matter exhibits a chiral and deconfinement crossover transition from the
low-temperature hadronic phase, where chiral symmetry is spontaneously broken, to the chirally
symmetric high-temperature phase, the quark-gluon plasma [177]. An order parameter for charac-
terising this transition is the chiral condensate. [178–180].

At zero baryon density the phase diagram of QCD can be calculated using, e.g., perturbative or lat-
tice QCD approaches. However, at finite densities this is not possible due to the running coupling
of QCD and the fermion sign problem. As discussed in Section 1.2, the matter in neutron stars can
reach several times nuclear saturation density and there have been speculations about exotic phases
thatmay appear in the inner core of neutron stars. Furthermore, there are speculations about the oc-
currence of such exotic phases even below nuclear saturation density n0, see, e.g., Fig. 1 in Ref. [15].
The observations of neutron stars withmasses around 2M⊙ [8–10], however, put such exotic phases
into question because they tend to soften equations of state, which do not support such heavy neut-
ron stars. We study the chiral condensate in neutronmatter at nuclear densities to further investigate
the possibility of such phase transitions.

The chiral condensate can be obtained from the energy using the Hellman-Feynman theorem [161,
179, 181],

⟨q̄q⟩n − ⟨q̄q⟩0 = n
∂

∂mq

[
Efree(mq, kF)

N
+

Eint(mq, kF)
N

]
, (2.1)

where ⟨q̄q⟩n and ⟨q̄q⟩0 are the chiral condensates at finite baryon density n = k3F/(3π2) (with Fermi
momentum kF) and in vacuum, respectively. Moreover, Efree/N = mN + 3k2F/(10mN) is the energy
per particle of a system consisting of N non-interacting degenerate neutrons in the non-relativistic
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limit,Eint is the corresponding interaction energy,mq denotes the averageof theu anddquarkmasses,
q̄q = ūu + d̄d, and mN is the nucleon mass.

Thecontribution from thenucleonmass to the chiral condensate is proportional to the pion-nucleon
sigma term σπN, which accounts for the scalar quark density in the nucleon [179, 182]

σπN = ⟨N |mqq̄q|N ⟩ = mq
∂mN

∂mq
. (2.2)

Here |N ⟩ represents the state of a nucleon at rest. The value of the pion-nucleon sigma term has
been determined within different frameworks [182–186]. As a baseline we use the value σπN ≈
50MeV [161]. More recent high-precision determinations from Roy-Steiner equations suggest a
value σπN = (59.1 ± 3.5)MeV [187]. The chiral condensate in neutron matter relative to the
vacuum is then given by [179]

⟨q̄q⟩n
⟨q̄q⟩0

= 1− n
f 2π

σπN

m2
π

(
1− 3k2F

10m2
N
+ . . .

)
− n

f 2π

∂

∂m2
π

Eint(mπ, kF)
N

, (2.3)

where we have used the Gell-Mann–Oakes–Renner relation mq⟨q̄q⟩0 = −f 2π m2
π .

The leading contribution (proportional to σπN) to the chiral condensate (2.3) stems from the quark-
or pion-mass dependence of the nucleonmass, appearing in the energy of the free Fermi gasEfree/N.
By extrapolating this linear density dependence, one finds restoration of chiral symmetry at a density
around (2.5 − 3)n0 [179, 181]. At the density ranges where chiral effective field theory is applic-
able (n ≲ 0.2 fm−3) the correction from the kinetic-energy contribution to Efree/N gives only a
4% correction relative to the leading term. Higher-order contributions from relativistic corrections,
indicated by the ellipses in Eq. (2.3), are negligible at these densities. The next term 9k4F/56m4

N is
only a 0.3% correction. While the first correction to the chiral condensate, proportional to σπN, in
Eq. (2.3) is a consequence of the finite nucleon density, the long-range contributions from Eint can
be attributed to the modification of the scalar pion density Δns

π = n ∂(Eint/N)/∂mπ due to the
interactions between nucleons (cf. Ref. [188]).

2.1.2 Calculational details

Based on our calculations for neutron matter [140, 168, 170] (see also Fig. 2.1) we calculate the in-
teraction dependence of the chiral condensate. The pion-mass dependence of nuclear forces arises
from two sources: First, due to the explicitmπ dependences in the long-range pion-exchange interac-
tions, and second, implicitly, due to the quark-mass dependence of the pion-nucleon coupling gA, the
pion decay constant fπ , as well as the leading NN contact interactions CS and CT, and higher-order
pion-nucleon and short-range NN and 3N contact interactions.

We calculate the explicit mπ dependence of nuclear forces by varying the value of the pion mass
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in the pion-exchange NN, 3N, and 4N interactions. At the NN level, we use the N3LO potentials
of Epelbaum, Glöckle, and Meißner (EGM) [147, 148] with cutoffs 450/500 and 450/700MeV
(and their N2LO versions to study the order-by-order convergence). With these NN interactions
neutron matter is perturbative at the densities considered here [140, 168]. Note that we cannot use
the EM 500MeV potential [145, 146], which was also used for our neutron-matter calculations,
because mπ cannot be changed in the potential routines provided by the authors.
We vary mπ by 0.5% in the corresponding potential routines using a C++ code for neutron matter
developed by Kai Hebeler. In practice this is done by a variation of 10% in the origial routines and
a rescaling in our code. We found to good approximation a linear scaling with the pion mass in this
region. A direct variation of mπ by 0.5%would be within the numerical uncertainty of the potential
routines. The derivative of the interaction energy with respect to m2

π in Eq. (2.3) is then computed
numerically for different densities.
We also estimate the impact of the quark-mass dependence of gA and fπ using the results ofRefs. [189,
190]. In a perturbative calculation, the interaction energy per particle Eint/N is a polynomial in gA

and in 1/fπ . Consider a term in this polynomial, in which gA enters with the power α, [Eint/N]α. For
the corresponding contribution to the chiral condensate, due to the pion-mass dependence of gA, we
thus have at saturation density

− n
f 2π

∂

∂m2
π

[
Eint

N

]
α
= − n

f 2π

∂gA

∂m2
π

α
gA

[
Eint

N

]
α

≈ −(4.4− 5.7)× 10−4 MeV−1 α
[
Eint

N

]
α
. (2.4)

Here, we have used the range for ∂gA/∂m2
π from Ref. [190]. Similarly, an interaction term, in which

1/fπ enters with the power β, [Eint/N]β, leads to a contribution to the chiral condensate

− n
f 2π

∂

∂m2
π

[
Eint

N

]
β
= − n

f 2π

∂fπ
∂m2

π

∂

∂fπ

[
Eint

N

]
β

≈ (2.6− 5.0)× 10−4 MeV−1 β
[
Eint

N

]
β
, (2.5)

using ∂fπ/∂m2
π from Ref. [190]. The uncertainty is larger in this case because of the c3 and c4 un-

certainties, which are taken as in the N3LO calculations of neutron matter [140, 168] (see also Ap-
pendix A).
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2.1.3 Results

We show the final results including all explicit pion-mass dependences in Fig. 2.2. The leading term
σπN is shown as a black dashed line. In the left Figure we show the chiral condensate in neutron
matter at N3LO, based on the two N3LO NN potentials and including 3N and 4N interactions to
N3LO. The calculations include all interactions at the Hartree-Fock level plus N3LO NN and N2LO
3N interactions to second order and including particle-particle/hole-hole third-order contributions,
using a free or a Hartree-Fock single-particle spectrum, as in our calculations of the neutron-matter
equation of state [140, 168]. The bands include the uncertainties of the many-body calculation (i.e.,
using a free and aHartree-Fock single-particle spectrum), of the ci couplings of 3N forces, and those
resulting from the 3N/4N cutoff variation (see Refs. [140, 168] for details). The width of the bands
are dominated by the uncertainties of the c3 coupling and by the sensitivity of the many-body calcu-
lation on the single-particle spectrum used.

We find that the density dependence of the chiral condensate is dominated by the leading σπN term
and therefore the chiral condensate decreases almost linearly with increasing density. With this al-
most linear appearance in the density regions shown it is apparent that the relativistic corrections
to the leading term neglected in Eq. (2.3) are not relevant in this density regime. The interaction
contributions lead to a positive correction, thus impeding the restoration of chiral symmetry with
increasing density. Consequently, for moderate densities, below say n = 0.3 fm−3, which is below
the linear extrapolation n = (2.5 − 3)n0, a chiral phase transition seems unlikely in neutron mat-
ter. However, we note that, based on calculations of the type presented here, where only the broken
symmetry phase is considered, we cannot exclude the possibility of a first-order transition, where the
order parameter changes discontinuously. If the transition occurs below n = 0.3 fm−3, this would
have to be a relatively strong first-order transition.

The results for the chiral condensate in neutron matter based on the two EGM 450/500MeV and
450/700MeVN3LOpotentials are in very good agreement within the uncertainty bands in Fig. 2.2.
At nuclear saturation density, ⟨q̄q⟩n/⟨q̄q⟩0 lies in the range (67.3 − 69.8)% and (67.8 − 69.5)%,
respectively. In comparison, the uncertainty of the leading σπN term is much larger. Using ΔσπN =

8MeV [182], we find an uncertainty on the order of 10% at n = 0.2 fm−3.

The order-by-order convergence of the chiral EFT calculation for the chiral condensate is shown
in the right panel of Fig. 2.2. Going from N2LO to N3LO, the enhancement of the condensate is
weakly reduced and thewidth of the uncertainty band is reduced by roughly a factor of two. A similar
reduction of the bands was found in our N3LO calculation of the equation of state [140, 168].

The results mentioned above were achieved only with a variation of the explicit pion-mass depend-
ence of the nuclear forces. We now want to take a closer look into the implicit mπ dependence
through the coupling constants. For the leading-order one-pion-exchange NN interaction, which
is proportional to g2A/f 2π and contributes∼10MeV per particle at n0, the terms (2.4) and (2.5) give
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Figure 2.2: Chiral condensate ⟨q̄q⟩n in neutron matter relative to vacuum ⟨q̄q⟩0 as a function of density. The
dashed line is the leading pion-nucleon sigma-term contribution.
Left: The interaction contributions are obtained from the N3LO neutron-matter calculation of Refs. [140,
168], based on the EGM 450/500MeV and 450/700MeV N3LO NN potentials plus 3N and 4N interac-
tions to N3LO, by varying the pion mass around the physical value. As in Refs. [140, 168], the bands for each
NN potential include uncertainties of the many-body calculation, of the ci couplings of 3N forces, and those
resulting from the 3N/4N cutoff variation.
Right: Comparison of calculations at N2LO (grey) and N3LO (purple) using the same interactions and un-
certainty estimates as in the left figure.

a contribution to the chiral condensate ranging from −0.006 to +0.001. The leading N2LO two-
pion-exchange 3N forces also provide ∼ 10MeV per particle at n0. These terms are proportional
to g2A/f 4π and the corresponding contribution to the chiral condensate lies in the range −0.001 to
+0.011. Combined, these corrections amount to at most a 25% increase of the uncertainty band in
Fig. 2.2.

We expect the contributions from the shorter-range interactions absorbed in the low-energy coup-
lings to start at a similar level. However, the extrapolation of theirmπ dependence from lattice QCD
results at heavier pion masses to the physical point is uncertain. This will be improved in the future
once latticeQCD results forNN and 3N interactions for physical pionmasses will become available.
Hence, we expect the estimated effects beyond the explicit mπ dependence to be small compared to
the band in Fig. 2.2. This justifies our approach of not including these contributions in our calcula-
tions.

The individual interaction contributions to the chiral condensate are shown in Fig. 2.3. In the upper
row, the Hartree-Fock N3LO NN, N2LO 3N, and N3LO 3N and 4N results are given. In the lower
row, second-order and particle-particle/hole-hole third-order contributions beyond Hartree-Fock
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Figure 2.3: Individual interaction contributions to the chiral condensate in neutron matter as a function of
density for the two N3LO NN potentials of Fig. 2.2. The upper row gives the NN, the N2LO 3N, and the
N3LO 3N and 4N Hartree-Fock contributions. In the lower row, second-order and particle-particle/hole-
hole third-order contributions beyond Hartree-Fock are shown, where the N2LO 3N forces are included as
density-dependent two-body interactions. The various contributions are illustrated diagrammatically and the
E(2,3)i nomenclature follows Ref. [168]. The Hartree-Fock 3N- and 4N-force contributions include uncer-
tainty estimates from the 3N/4N cutoff variation and from the ci couplings of 3N forces. The higher-order
bands also include uncertainties in the many-body calculation.

are shown, grouped into the different correlations where N2LO 3N forces are included as density-
dependent two-body interactions. This follows the notation of Ref. [168]. Themost important con-
tributions are the NN and 3N Hartree-Fock terms as well as higher-order correlation effects due to
NN interactions. The latter are sensitive to the single-particle spectrum used. This is because the
Hartree-Fock single-particle energies depend on the pion mass, so that the derivative with respect
tom2

π yields additional contributions. For theHartree-Fock spectrum, theNN correlation contribu-
tions are thenonly abouthalf as large as for the free spectrum. For theNN-3Nand3N-3Ncorrelation
contributions, we find a similar sensitivity, but they are relatively small.

As shown in Fig. 2.3, at nuclear saturation density the NN Hartree-Fock contribution of the EGM
450/500MeV potential is by a factor two smaller than that of the EGM 450/700MeV potential.
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Figure 2.4: Sums of the NN-only and the total interaction contributions to the chiral condensate in neutron
matter as a function of density. The bands are based on Fig. 2.3 and include the various uncertainty estimates.

However, for the higher-order correlations the situation is reversed, so that the sum of the Hartree-
Fock and higher-order NN contributions of the two NN potentials are in very good agreement, as
shown in the left panel of Fig. 2.4. The total interaction contribution, including 3N and 4N forces,
is shown in the right panel of Fig. 2.4 and yields a 6± 2% enhancement of the chiral condensate at
saturation density. We again find a very good agreementwithin the uncertainty bands of the twoNN
potentials.

We note that the increase of the chiral condensate due to interactions corresponds to a decrease of
the scalar pion density in the interacting system. While the iterated NN one-pion-exchange interac-
tion yields an enhancement of the scalar pion density [188], the interference between the one-pion-
exchange and shorter-range NN parts induces the opposite effect. Thus, the sign of the interaction
contribution to the chiral condensate is governedby a competitionbetween these two contributions.

Comparison with other results

Our results agree with those of Kaiser and Weise [191], who calculated the interaction corrections
to the chiral condensate in chiral perturbation theory with explicit Δ’s including one- and two-pion
exchange contributions up to three-loop order in the energy density. This leads to a ∼ 5% contri-
bution at n0. Extrapolating their results to higher densities, chiral symmetry restoration is found at
∼ 3n0. The chiral condensate in neutron matter was also calculated to NLO by Lacour et al. [192]
using in-medium chiral perturbation theory [193]. They found only small interaction corrections,
which reduce the chiral condensate at this level, inconsistent with our results. Lacour et al. also cal-
culated the chiral condensate for the u and d quarks separately and showed that the condensate for
the u quarks is larger than for the d quarks by ∼ 7% at n = 0.2 fm−3. This difference is however
smaller than the uncertainty from the σπN term.

Finally, Kaiser et al. [160] also computed the interaction corrections to the chiral condensate in sym-
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metric nuclear matter in the same scheme. Both in neutron and symmetric matter, they find a strong
enhancement of the condensate owing to correlation diagrams involving the excitation of the Δ. In
our work, the corresponding contribution is included mainly through 3N interactions. On a qualit-
ative level, our results agree with those of Refs. [160, 180]. However, the various interaction contri-
butions and themagnitude of the enhancement seem rather different. Thismay be due to differences
in the calculational schemes, but also due to differences in the system considered (neutron matter
versus symmetric nuclear matter). With a consistent study of symmetric matter a direct comparison
could be made.

2.1.4 Conclusions

In summary, we find that nuclear interactions impede the restoration of chiral symmetry in neutron
matter at zero temperature. The net effect of interactions remains below 10% for n ≲ 0.2 fm−3, but
grows with increasing density. The dominant source of uncertainty is the σπN term. We conclude
that for moderate densities, say n ≲ 0.3 fm−3, a chiral phase transition in neutron-richmatter there-
fore seems unlikely, although we cannot exclude a strong first-order transition. For the densities
considered here, we find a good convergence of the chiral condensate fromN2LO toN3LO in chiral
EFT. Clearly it would be very interesting to calculate the chiral condensate also for higher densities.
While a systematic calculation in chiral effective field theory is difficult at densitiesmuch higher than
n = 0.2 fm−3, astrophysical observations shed light on matter at high densities and at present there
are no indications of quark matter in neutron stars (see Refs. [13, 14, 88, 161] for the equation of
state).
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2.2 Spin-polarised neutronmatter

Spin-polarised neutron matter is an extreme system which, however, can be used to constrain
other nuclear models and calculations. In this project, which was worked out in collaboration with
KaiHebeler andAchimSchwenk,wehave studied the energyperparticle to constrain energy-density
functionals and we also investigated the pion-mass dependence of spin-polarised neutron matter in
order to provide a benchmark system for latticeQCD.The results have been published in Ref. [194].

2.2.1 Introduction

Asmentioned in the introductory remarks of thisChapter, neutronmatter exhibits properties similar
to a unitary Fermi gas, which is a consequence of the large neutron-neutron scattering length [155–
157]. Theenergyof neutronmatter is at nuclear densities approximately0.4 times the energyof a free
Fermi gas [195]. These benchmark results, combined with the possibility to simulate low-density
neutronmatter with ultra-cold atoms near a Feshbach resonance [196], have lead to the inclusion of
ab initio results for neutron matter into modern energy-density functionals for nuclei [197, 198].

We study the properties of spin-polarised neutron matter at N3LO in chiral effective field theory,
including consistently NN, 3N, and 4N interactions, based on our calculations of unpolarised mat-
ter [140, 168]. Spin-polarised neutron matter may exist in very strong magnetic fields as they occur
in the interior of magnetars (see Section 1.2). For a unitary Fermi gas, the spin-polarised system
is an almost non-interacting gas, so we ask the question to which densities spin-polarised neutrons
behave like a weakly interacting Fermi gas? The answer is simple at low densities relevant to ultra-
cold atoms: Due to Pauli’s principle polarised neutrons cannot interact through S-wave interactions,
which are the dominant contribution to the nuclear force. P-wave interactions between neutrons
are weaker andmany-body forces are suppressed by a power of the density, which explains an almost
non-interacting behaviour. However, we find the surprising result that the energy of spin-polarised
neutrons is close to a non-interacting system at least up to nuclear saturation density n0, which is well
beyond the large S-wave scattering-length regime n ≲ n0/100.

The physics of spin-polarised neutron matter is interesting, because it can provide an additional an-
chor point for energy-density functionals. To this end, we explore how our results compare with
state-of-the-art functionals. In addition, spin-polarised matter is ferromagnetic, so that its energy
compared to the spin-symmetric system determines whether a ferromagnetic transition in neutron
stars is possible [199, 200]. Finally, due to the reduced spin/isospin degrees of freedom there are
fewer non-trivial contractions for spin-polarised neutrons, so that the determination of this system
is easier in lattice QCD than spin-symmetric nucleonic matter [201]. Therefore, we also study how
our results depend on the pion mass and provide predictions that can be tested and refined with lat-
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tice QCD, which is due to computational constraints currently limited to heavier (unphysical) pion
masses.
Spin-polarised neutron matter has been studied before, e.g., in Refs. [199, 200, 202, 203], however
withNN interactions only, andwithout a focus on the subnuclear density region and the comparison
to a weakly interacting Fermi gas.

2.2.2 Calculational details

We calculate the energy per particle of spin-polarised matter in the Hartree-Fock approximation us-
ing the non-local chiral forces, as for our unpolarised-matter calculations [140, 168]. We also include
many-body correlations forNN forces up to second order inmany-body perturbation theory, as well
as particle-particle/hole-hole diagrams to third order (see Ref. [139]). We expect this approxima-
tion to be reliable since we found only small contributions from 3N forces at second and third order
in perturbation theory in spin-symmetric neutronmatter [139]. This has also been verified bymore
recent calculations of neutron matter, which take the second- and third-order contributions of the
sub-leading 3N forces into account [141, 159]. In the polarised case we expect even smaller contri-
butions due to the enhanced Pauli-blocking effects.
The Hartree-Fock energy is given for an A-body interaction by

E(1)
AN

N
=

1
n
1
A!

∫
d3k1
(2π)3

· · · d
3kA

(2π)3
f 2R (k1, . . . , kA)θk1 · · · θkA⟨ 1 · · ·A |AA

∑
all perm.

VAN| 1 · · ·A ⟩

=
1
n

∫
d3k1
(2π)3

· · · d
3kA

(2π)3
f 2R (k1, . . . , kA)θk1 · · · θkA⟨VAN⟩ , (2.6)

where we use the short-hand notation i ≡ (ki ↑) in the bra and ket states, with the arrow indicating
that only one spin species is considered. Further,AA denotes theA-body anti-symmetriser and θki =

θ(kF − ki) is the Fermi-Dirac distribution function at zero temperature. We use a fully symmetric
regulator function with respect to the exchange of particle momenta according to Refs. [139, 140,
168],

fR(k1, . . . , kA) = exp
[
−
(∑A

i=1 k
2
i −

∑A
i,j ki · kj

AΛ2

)nexp]
, (2.7)

with nexp = 4 and 3N/4N cutoff Λ = (2.0− 2.5) fm−1, which is varied in order to probe the cutoff
dependence of our calculation.
The energy contributions from 3N and 4N forces up to N3LO [133–135, 142, 143] are calculated
according to Eq. (2.6), where we have evaluated the spin by hand and used numerical integration
methods of WolframMathematica for the momentum integrations. Note that due to the polar-
isation one cannot use spherical symmetry and has to perform all angular integrals explicitly.
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In addition to the 3N and 4N topologies that do not contribute to the neutron-matter energy (see
Refs. [139, 168]) for the spin-polarised system also the 3N N3LO two-pion-exchange–contact to-
pology vanishes, as a consequence of the Pauli principle excluding all leading-order NN contacts CS

and CT. Further, the 4N N3LO diagrams V e and V f (according to the nomenclature in Fig. 1.10) do
not contribute in polarised matter. The CS/CT dependence of the N3LO 3N relativistic-corrections
interaction is negligible and results only in energy differences at the 1 keV level at saturation density.
Thus, themany-body forces essentially depend only on the low-energy couplings c1 and c3, which are
chosen according toRefs. [132, 204]: c1 = −(0.75−1.13)GeV−1 and c3 = −(4.77−5.51)GeV−1

as in Refs. [140, 168] (see also Appendix A).

As for our unpolarised-matter calculations, we use the N3LONNpotential of Entem andMachleidt
(EM) with a cutoff 500MeV [145, 146], and the potentials developed by Epelbaum, Glöckle, and
Meißner (EGM) with cutoffs Λ/Λ̃ = 450/500 and 450/700MeV [148]. These potentials were
found to be perturbative in neutron matter [140, 150, 151, 168]. Spin-polarised matter is expec-
ted to converge even faster, because S-wave interactions among polarised neutrons vanish, P-wave
interactions are weaker, and Pauli blocking becomes evenmore effective due to the larger Fermimo-
mentum for a given density compared to spin-symmetric matter.

The NN contribution is calculated using a C++ code, which is based on the code used for the un-
polarised matter calculations [140, 168], which also allows a calculation beyond the Hartree-Fock
level. The second-order contribution to the energy per particle is given by

E(2)
NN

N
=

1
4

[ 4∏
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]
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where θ̄k = 1 − θk. Taking a free or a Hartree-Fock spectrum for the single-particle energies εk
changes the results only at the 10 keV level. This indicates that the many-body calculation is very
well converged, and in the following results are given with a free spectrum. In order to simplify the
numerical calculations, we average over the angles of initial and final relative momenta k and k′:∫

dk̂dk̂′
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whereVSll′J denote the neutron-neutron partial-wavematrix elements andCJ̃J
ll′ is the sum of Clebsch-

Gordan coefficients C l3m3
l1m1l2m2

CJ̃J
ll′ =

∑
M

CJM
l′(M−1)11C

JM
l(M−1)11C

J̃M
l(M−1)11C

J̃M
l′(M−1)11 . (2.10)
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Figure 2.5: Energy of spin-polarised neutron matter as a function of density. The solid (yellow) line is the
energy of a free Fermi gas (FG).
Left: The different bands correspond to the N3LO EM/EGM NN potentials and including 3N and 4N in-
teractions up to N3LO. The bands provide an estimate of the uncertainty in 3N forces and in the many-body
calculation (see text for details). The inset shows the relative size of the interaction contributions.
Right: Comparison of the N2LO to N3LO EGM potentials including the many-nucleon interactions up to
that order.

Details on the partial-wave decomposition and this approximation can be found in Appendix B.
The angular-averaging approximation has been demonstrated to be reliable for spin-symmetric mat-
ter [139] and only affects the small contributions beyond Hartree-Fock.

2.2.3 Results and discussions

We show as our central result the energy per particle of spin-polarised neutronmatter as a function of
density in Fig. 2.5. Compared to the non-interacting system (yellow line)we find that spin-polarised
neutrons behave almost as a free Fermi gas. The interaction effects provide less than 10% corrections
at n0 (see the inset). The largest dependence of our calculations is on the NN interaction used. The
EM 500MeV potential (green band) leads to weakly repulsive interactions with E/N ≈ 60MeV at
n0, compared to 55.7MeV for a free Fermi gas. Using the EGM 450/500 (red) and 450/700MeV
(blue) potentials results in even weaker interactions with E/N ≈ 57MeV and≈ 55MeV, respect-
ively. Because n0 for polarised matter corresponds to a high Fermi momentum of 2.1 fm−1, these
small differences are due to the range in NN scattering predictions at these higher momenta (cor-
responding to laboratory energies of ∼ 350MeV). The bands include the 3N/4N cutoff variation,
ci range, and the difference between second- and third-order contributions on the NN level, as dis-
cussed above.
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Thedependenceon theNN interaction can alsobe seen in the right panel of Fig. 2.5, wherewe showa
comparisonof aN2LOandN3LOcalculation. As there does not exist anN2LOEMpotentialweonly
compare the EGM interactions. Note that the N2LO band (grey) results from the combination of
the twodifferent cutoffs and their different curvature leads to thebulbous appearance at intermediate
densities. We attribute this effect to the poor description of the scattering phase shifts in the P-wave
channels.

At very low densities, we can also compare our results to the dilute-gas expansion [205]

E
N

=
k2F
2mN

{
3
5
+ (g − 1)

[
2
3π

(kFaS) +
4

35π2 (11− 2 ln 2)(kFaS)
2 +

1
10π

(kFrS)(kFaS)
2

+ [0.076+ 0.057(g − 3)](kFaS)
3
]
+ (g + 1)

1
5π

(kFaP)
3

+ (g − 1)(g − 2)
16
27π3 (4π − 3

√
3)(kFa4S) ln(kFaS) + . . .

}
, (2.11)

where aS and rS are the S-wave scattering length and effective range, respectively, and aP denotes the
P-wave scattering length. For spin-polarised neutrons the spin degeneracy is g = 1 and we have

E
N

=
k2F
2mN

[
3
5
+

2
5π

(kFaP)
3 +O(k5F)

]
. (2.12)

The first non-vanishing interaction contribution is thus at k5F from the P-wave scattering length, or
the P-wave scattering volume a3P. We have fitted the P-wave scattering length for kF < 0.3 fm−1)
to our equation of state and obtain a range aP = (0.50 − 0.52) fm depending on the NN interac-
tion used. This is consistent with aP = (0.44 − 0.47) fm from the different NN interactions with
small corrections due to Pauli blocking that render the P-wave scattering length more repulsive in
the medium.

Figure 2.6 shows the individual interaction contributions. All energies are small compared to the
spin-symmetric system [140, 168]. The left panel shows the NN contributions for the three N3LO
potentials. Thedifferent behaviour canbe tracedback todifferent predictions for the scatteringphase
shifts. The EM 500MeV potential gives a net repulsive contribution, with E/N ≈ 3.1MeV at n0
(5.6% relative to EFG). Up to densities n ≲ 0.1 fm−3 the EGM 450/500 and 450/700MeV po-
tentials are in good agreement and provide only E/N ≈ −0.5MeV at n = 0.08 fm−3, and then
start to differ. The middle panel of Fig. 2.6 shows the contributions from the leading N2LO 3N
forces. The 3N interactions are, as in the spin-symmetric case, repulsive but with much smaller en-
ergies in the range (0.8 − 1.9)MeV at n0. In the right panel, we show all contributions from the
N3LO many-body forces. The dominant contributions are from two-pion-exchange 3N forces with
energies −(0.9 − 1.6)MeV at n0. This is almost as large as the leading contribution of the two-
pion-exchange topology, and shows that one is pushing the chiral effective field theory expansion
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Figure 2.6: Interaction contributions to the energy of spin-polarised neutron matter as a function of density.
The left panel shows theNN contributions for the threeNNpotentials. Thewidth of the bands is given by the
difference between second- and third-order contributions in themany-body calculation. The dashed lines are
the Hartree-Fock energies. The middle panel shows the contribution from N2LO 3N forces, where the band
corresponds to the range of ci couplings used and the 3N cutoff variation Λ = (2.0 − 2.5) fm−1. The right
panel gives the different N3LO 3Nand 4Ncontributions, with corresponding ci and cutoff variations. The 4N
contributions overlap with the relativistic-corrections 3N energies.

to the limits. However, all these 3N contributions are still small. In addition, there are repulsive
contributions from pion-ring 3N forces, which contribute (1.1 − 2.1)MeV at n0 and counteract
these. Finally, there are small repulsive contributions from the two-pion–one-pion-exchange 3N to-
pology of 0.1 − 0.2MeV at n0, small attractive contributions from the relativistic-corrections 3N
topology, while three-pion-exchange 4N interactions contribute only−0.1MeV at n0. In total, the
3N+4N contributions provide a net repulsion of E/N = (1.0− 2.2)MeV at n0. While it is known
that P-wave interactions are weak it is remarkable that even contributions from many-body forces
are small.

By comparing our results with the corresponding energy range for spin-symmetric matter, E/N ≈
14 − 21MeV at n0 (see Fig. 2.1) versus (55 − 61)MeV for polarised matter, it is clear that a phase
transition to the ferromagnetic state is not possible for n ≲ n0. Further, we expect the energy of
spin-polarised neutrons at higher densities to lie above the free Fermi gas due to repulsive 3N forces
(see also Fig. 2.6). Assuming the energy of spin-polarised neutrons remains close to a free Fermi gas
also for higher densities, we can use the general equation of state constraints of Ref. [14] to provide
constraints for the onset of a possible ferromagnetic phase transition. Taking the three representat-
ive equations of state (see Fig. 1.3), a phase transition to a ferromagnetic state may be possible for
n/n0 ≳ 6.1, 3.4, and 2.3 for the soft, intermediate, and stiff equations of state, respectively. At these
densities the energy of the free Fermi gas is lower than that predicted by the representative equations
of state. Note that ifmoremassive neutron stars are discovered, e.g., with 2.4M⊙, the soft case is ruled
out [14].
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Figure 2.7: Energy of spin-polarised neutron matter from Fig. 2.5 compared to various energy-density func-
tionals (see text) following Ref. [207].

Constraints for energy-density functionals

In Fig. 2.7 we compare our results with predictions based on state-of-the-art energy-density func-
tionals (for early work on polarised neutronmatter with Skyrme functionals see Ref. [206]), follow-
ing Ref. [207]: SIII [208], SGII [209], SkM* [210], SLy4 and SLy5 [211], SkO and SkO’ [212],
BSk9 [213], as well as SAMi [32] and using the Gogny D1N interaction [33]. At low densities
n ≲ 0.01 fm−3 all functionals agree with a free Fermi gas. However, at higher densities we find
significant deviations. In best agreement with our calculations are the functionals SIII, SkO, SGII,
SkM*, andSLy5, whereas the latter two reproduce the freeFermi gas and the former provide small re-
pulsive contributions. The predictions of the functionals SLy4, SAMi, BSk9, and SkO’ differ signific-
antly from ourN3LObands. Therefore, it will be interesting to use our results as additional neutron-
matter constraint for modern functionals. Note that the above discussion of a possible transition to
a ferromagnetic state is different to the spin instabilities caused by the polarised system to decrease
unphysically in energy, as for the SkO’ case, predicting a ferromagnetic state at sub-nuclear densities.

Variation of the pion mass for lattice QCD

For comparison with lattice QCD simulations, we also vary the pion mass in NN, 3N, and 4N in-
teractions. For this estimate we only take into account the explicit pion exchanges and do not vary
the pion mass implicitly in the coupling constants, as we have done for the calculation of the chiral
condensate in Section 2.1. This explicit pion-mass dependence is expected to be the dominant con-
tribution in spin-symmetric neutronmatter [176, 191, 192]. We emphasise, however, that for a high-
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Figure 2.8: Energy of spin-polarised neutron matter as a function of density for the N3LO EGM potentials
using different pion masses. The energy of the free Fermi gas is shown for comparison in the physical limit.

precision comparison, one would need to include this mπ dependence of the low-energy couplings.
As mentioned in the previous Section, the pion mass variation can only be done for the EGM po-
tentials.

In Fig. 2.8 we show the energy of polarised neutron matter for the potentials EGM 450/500 (left)
and 450/700MeV (right) for pion masses mπ = 100, 138, 180MeV as grey, coloured, and black
bands, respectively. For comparison we also show the energy of the non-interacting system in the
physical limit. For both potentials we observe a similar behaviour: While higher pionmasses lead to
more attractive interactions lowering the total energy over thewhole density region considered here,
the picture is different for lower pion masses. At low and intermediate densities we find an increase
of the total energy and a change of sign in the interaction energy in the higher-density regime.

We also study the dependence of the energy of the free Fermi gas, EFG/N = 3k2F/(10mN), on mπ .
This is a result of the change of the nucleon mass with the pion mass. It varies as [190]

mN(mπ) = m0 − 4c1m2
π −

3g2A
32πf 2π

m3
π +O(m4

π) , (2.13)

where m0 is the nucleon mass in the chiral limit and c1 is the same low-energy coupling that enters
NN and 3N forces at N2LO.We consistently also do not include the implicit pion-mass dependence
of the coupling-constants in these estimates. For c1 we use the same range as above, as in the 3N
forces. Using the physical values of mN, mπ , gA, and fπ we can extract m0 for the employed c1 range.
This range is consistent with the choice of the pion-nucleon sigma term σπN ≈ 50MeV as chosen in
the previous Section. This leads to the yellow band in Fig. 2.9 at n0/2 and corresponds to the range



2.2. SPIN-POLARISED NEUTRON MATTER 53

Figure 2.9: Dependence of the energy of spin-polarised neutron matter on the pion mass. The yellow band
indicates the energy of a free Fermi gas. The red/blue bands correspond to the EGMNNpotentials, including
3N and 4N interactions, at the same many-body calculational level as the results in Fig 2.5.

of the pion-nucleon sigma term σπN = (34.9− 63.9)MeV (see Section 2.1 for details).
In Fig. 2.9 we show a systematic variation of the pion mass at fixed density n = n0/2. As in Fig. 2.8,
we find that including interactions gives a very similar mπ dependence, but away from the physical
pion mass, the energy starts to deviate more from the free Fermi gas. As in spin-symmetric matter,
the interaction contributions also increase the chiral condensate, as determined from the slope in
mπ .

2.2.4 Conclusions

We have presented a complete N3LO calculation of spin-polarised neutron matter, where the dom-
inant uncertainty is due to the NN potential used, as well as due to the uncertainty in 3N forces.
The uncertainty from the many-body calculation is very small (shown by the bands in the left panel
of Fig. 2.6). Our results show that the energy of spin-polarised neutrons is remarkably close to a
non-interacting system. This shows that the physics of neutronmatter is similar to a unitary gas well
beyond the scattering-length regime. Moreover, our results provide constraints for energy-density
functionals of nuclei and show that a phase transition to a ferromagnetic state is not possible for
n ≲ n0. Finally, our predictions can be tested and refined with lattice QCD calculations of spin-
polarised neutrons in a box.
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2.3 The pairing gap in neutronmatter

Pairing is a central phenomenon in awide rangeofnuclear systems, fromnuclei to nuc-
lear matter. It is crucial to understand phenomena like the neutrino cooling mechanism and the
rotational dynamics of neutron stars [77, 214], the shell structure and energies of neutron-rich nuc-
lei [49], or the β decay of the two-neutron halo 11Li [215]. In this project we studied in collaboration
with ChristianDrischler, Kai Hebeler, and Achim Schwenk the pairing gap in neutronmatter at zero
temperature in the BCS approximation in the spin singlet 1S0 and triplet 3P2−3F2 [216].

2.3.1 Derivation of the gap equation

We briefly want to derive the gap equation in BCS theory. This derivation is done for a system of
unpolarised spin-1/2 particles interacting via a two-body potential. It is based onRef. [76]. Another
derivation can be found in Ref. [217] using theGorkov approach to superfluidity, see also Ref. [218]
for a derivation based on Weinberg eigenvalues.
The ground state of a superfluid system, i.e., the BCS wave function is of the form

| ψBCS ⟩ =
∏
k

(uk + vka†k↑a
†
−k↓)| 0 ⟩ , (2.14)

with creation operators a†kα, which creates a particle withmomentum k and spin projection α =↑, ↓.
It describes pairing of particles with opposite spin and momentum (spin singlet). Since the BCS
wave function is normalised, the coefficients uk and vk have to fulfil the condition u2k + v2k = 1 and
can be chosen to be positive without loss of generality. The squares of these coefficients represent
the probability of a Cooper-pair state to be occupied (v) or unoccupied (u).
Note that | ψBCS ⟩ is not an eigenstate of the particle number N̂ =

∑
k,α a†kαakα. Thus, one usually

works in the grand canonical ensemble with fixed average particle number

⟨N̂⟩ ≡ ⟨ ψBCS |
∑
k

(a†k↑ak↑ + a†k↓ak↓)| ψBCS ⟩ = 2
∑
k

v2k . (2.15)

In order to get the pairing gap in the BCS approximation of a system with Hamiltonian Ĥ we need
its expectation value with respect to the BCS wave function. In this expression occur factors of the
form u2kv2k, which correspond to the Hartree-Fock contribution, rather than to genuine pairing ef-
fects. They are neglected:

⟨Ĥ − μN̂⟩ = 2
∑
k

ξ(k)v2k +
∑
k,α,α′
k′,β,β′

⟨ kα−kα′ |V̂| k′β−kβ′ ⟩ukvkuk′vk′ , (2.16)
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where μ = ε(kF) denotes the chemical potential and ξ(k) = ε(k) − μ is the kinetic energy relative
to the Fermi surface; ε(k) denotes the single-particle energy with momentum k, which is given, e.g.,
in a free spectrum as ε(k) = k2/(2m) with neutron mass m. Furthermore, ⟨ kα−kα′ |V̂| k′β−kβ′ ⟩
is the interaction matrix element for particles with opposite spin α, α′/ β, β′ and momentum k, k′ in
the final and initial state, respectively. The BCS gap equation is then obtained by the minimisation
of Eq. (2.16) under the constraint of normalisation. It reads in its self-consistent formulation

Δαα′(k) = −
∑
k′,β,β′

⟨ kα−kα′ |V̂| k′β−kβ′ ⟩
Δββ′(k′)
2E(k′)

, (2.17)

where the gap itself is defined via

Δαα′(k) = −
∑
k′,β,β′

⟨ kα−kα′ |V̂| k′β−kβ′ ⟩uk′vk′ , (2.18)

and E(k) =
√

ξ2(k) + 1
2 tr

[
Δ(k)Δ†(k)

]
is the excitation energy of a quasiparticle, where tr denotes

the trace in spin space.

Contributions beyond the BCS approximation

TheBCSapproximation is not exact. There are important contributions originating from in-medium
effects. The full pairing interaction Vpairing consists in addition to the standard nuclear interaction
VNN, which is used in the BCS approximation, of induced interactions Vinduced [219, 220]. This in-
duced interaction corresponds to a process where one fermion polarises the medium and a second
fermion is influenced by this polarisation. The resulting interaction is analogous to the phonon-
induced attraction causing the pairing of electrons in metallic superconductors. In Ref. [219] this
effect was studied in a dilute Fermi gas of spin-1/2 particles. In this limit the BCS gap function in
the 1S0 channel takes the form

ΔBCS(kF) =
8εF
e2

exp
(

π
2kFaS

)
, (2.19)

where aS is the S-wave scattering length. In Ref. [219] was found that the inclusion of induced inter-
actions reduces the gap

Δ(kF) = (4e)−
1
3ΔBCS(kF) , (2.20)

corresponding to a numerical factor of∼2.2. This indicates that the contribution of effects beyond
the BCS approximation is substantial and should be investigated. The inclusion of these effects at
higher densities is, however, a non-trivial problem. A step into that direction was taken, e.g., recently
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in Ref. [221] within the framework of the self-consistent Green’s function method and Fermi liquid
theory.
In this project we limit ourselves to the BCS approximation with a focus on the effects of different
interactions and appropriate uncertainty estimates.

Partial-wave decomposition

The solution of Eq. (2.17) in partial waves requires a decomposition. Following, e.g., Refs. [222–
224], one decomposes the gap matrix

Δαα′(k) =
∑
l,S,J,M

√
8π

2J + 1
ΔJM

lS (k)
[
GJM

lS (k̂)
]
αα′ , (2.21)

and the potential

⟨ kα−kα′ |V| k′β−k′β′ ⟩ = (4π)2
∑

l,l′,S,J,M

il
′−l[GJM

lS (k̂)
]
αα′
[
GJM

l′S(k̂
′)
]∗
ββ′V

J(M)
ll′S (k, k′) , (2.22)

in terms of the coefficients

[
GJM

lS (k̂)
]
αα′ =

∑
m,mS

CS mS
1/2 α 1/2 α′C

JM
lm SmS

Ym
l (k̂) , (2.23)

where ΔJM
lS (k) and VJ(M)

ll′S (k, k′) denote the gap and potential in partial waves, respectively. Note that
the factor

√
8π/(2J + 1) in Eq. (2.21) is kept for simplifications later on. Inserting the expression

for the gap (2.21) and the potential (2.22) in the gap equation (2.17) reads

∑
l,S,J,M

ΔJM
lS (k)√
2J + 1

[
GJM

lS (k̂)
]
αα′ = −(4π)2

∫
dk′ k′2

(2π)3
∑

l,l′,J,M,S
l′′,J′,M′,S′

il
′−l[GJM

lS (k̂)
]
αα′

× VJ(M)
ll′S (k, k′)

ΔJ′M′

l′′S′ (k
′)√

2J′ + 1

×
∫

dk̂′
∑

β,β′
[
GJM

l′S(k̂
′)
]∗
ββ′
[
GJ′M′

l′′S′ (k̂
′)
]
ββ′

2
√

ξ2(k′) + 1
2 tr

[
Δ(k′)Δ†(k′)

] . (2.24)

The angular integration is tedious because the denominator is angle dependent. By angle-averaging
the denominator one can simplify the expression above tremendously:

⟨1
2
tr
[
Δ(k)Δ†(k)

]⟩
k̂
=

1
2

∫
dk̂
4π

tr
[
Δ(k)Δ†(k)

]
=

∑
l,S,J

|ΔJ
lS(k

′)|2 ≡ D2(k) , (2.25)
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where we summed over all M states. The angular integration in the numerator can then be carried
out explicitly, which we also used in the last step of the previous equation,∫

dk̂
∑
β,β′

[
GJM

l′S(k̂
′)
]∗
ββ′
[
GJ′M′

l′′S′ (k̂
′)
]
ββ′ = δl,l′δM,M′δJ,J′δS,S′ . (2.26)

Note that due to the choice of normalisation in Eq. (2.25) no additional pre-factor occurs. Mul-
tiplying Eq. (2.24) with

[
GJM

lS (k̂)
]
αα′ and integrating over k̂ leads to the gap equation in partial-wave

decomposition

ΔJ
lS(k) = −

∫ ∞

0

dk′ k′2

π

∑
l′

il′−lVJ
ll′S(k, k

′)ΔJ
l′S(k

′)√
ξ2(k′) +

∑
l̃,S̃,̃J |Δ

J̃
l̃S̃
(k′)|2

, (2.27)

with l′ = l for the spin singlet and l′ = l, |l± 2| for the coupled triplet states. Note that the solution
of the gap in one channel is in general coupled to any other cannel due to the sum over all gaps in
the denominator. However, we assume that pairing in the given channel minimises the energy such
that other gaps can appear only in different density regions and solve the gap equation for fixed spin
and total angular momentum. This approach, including the angle averaging in Eq. (2.25), is taken
in most other calculations, including the recent works in Refs. [225, 226]. For simplicity we drop
the indices S and J and denote the components of the gap by Δl. The total gap function is given by
Δ(k) =

√∑
l Δ

2
l (k) and evaluated at the Fermi surface.

2.3.2 Solving the gap equation

Since the gap equation (2.27) is a set of non-linear coupled equations one has to solve it with an
iterative algorithm until a self-consistent solution is obtained. In previous attempts to solve the gap
equation, in particular in the triplet channel, it was found that a simple algorithmwhich uses the bare
output of a previous iteration as input for the next iterative step fails [227]. Such an algorithm for
the m-th iteration,

ΔΔΔ(m)
out = I

[
ΔΔΔ(m)

in
]
, with ΔΔΔ(m+1)

in = ΔΔΔ(m)
out , (2.28)

where I[ · ] is the update instruction, i.e., the right-hand side of Eq. (2.27), tends to terminate at the
(mathematically also valid) trivial solution Δ = 0, especially if the nontrivial solution is small. As
the gap is a function of themomentum, any numerical approach requires a discretisation. In practice
we use a Gauß mesh with Np points and construct a gap vector ΔΔΔ with components Δl(kn), where
l = 1, 3 for the triplet and l = 0 for the singlet case and n = 1, . . . ,Np. This mesh has to be chosen
carefully because of the structure of the integrand in Eq. (2.27). If the total gap is small this integrand
peaks around the Fermi surface resulting in a quasi-singularity. We use a combination ofmultiple in-
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tegration meshes, concentrated around the peak position. This peak makes the solution also very
sensitive to variations of Δ(kF), leading to the convergence problems of the naïve self-consistent
solution algorithm, discussed above.

These convergence issues have been studied extensively in the past andmethods avoiding these have
been developed. Khodel et al. [224] quasi-linearised the problem, Krotscheck [228] applied a full
linearisation. Another approach is the instability analysis based on in-medium Weinberg eigenval-
ues [226, 229, 230], which is, however, only approximative. In the next Section we revise the basic
concepts of ‘Khodel’s method’ and compare it to a new method which solves the problem by direct
iteration with a modification of the iterative algorithm of Broyden [231], which is straightforward
to implement.

At this point we briefly want to specify the above-mentioned term ‘convergence’, since it is central in
the numerical algorithms discussed. An iterative algorithm is stable if the norm of the difference,

F(m) = ΔΔΔ(m)
out −ΔΔΔ(m)

in , (2.29)

decreases. Here ΔΔΔ(m)
out is the output in the m-th step where ΔΔΔ(m)

in was used as input. Final conver-
gence is achieved if |F(m)| = 0 although in practice a small finite threshold is used. After achieving
convergence we check the condition by 5 to 10 additional iterative steps.

Khodel’s method

We first want to review Khodel’s method [224, 232], which is widely used to improve the conver-
gence significantly. It is based on a reformulation of the gap equation (2.27) which avoids its quasi-
singularity. One writes the potential Vll′(k, k′) in a separable part,

φll′(k) =
Vll′(k, kF)

vll′
, φT

ll′(k
′) =

Vll′(kF, k′)
vll′

, (2.30)

where the definition vll′ ≡ Vll′(kF, kF) ̸= 0 normalises φll′(kF) = φT
ll′(kF) ≡ 1, and a remainder

Wll′(k, k′) ≡ Vll′(k, k′)− vll′φll′(k)φ
T
ll′(k

′) , (2.31)

which vanishes when at least one argument is at the Fermi surface. This property is key to remove
the peak. By inserting Wll′(k, k′) into the gap equation (2.27) we obtain

Δl(k) +
∑

l′
il
′−l

∫
dk′ k′2

π
Wll′(k, k′)

Δl′(k′)√
ξ2(k′) + Δ2(k′)

=
∑

l′
Dll′φll′(k) , (2.32)
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where the coefficients are defined as

Dll′ = −il
′−lvll′

∫
dk k2

π
φT

ll′(k)Δl′(k)√
ξ2(k) + Δ2(k)

. (2.33)

With that, the partial gaps Δl in Eq. (2.32) can be represented as linear combinations of shape func-
tions χ l1l2

l (k)

Δl(k) =
∑
l1,l2

Dl1l2 χ
l1l2
l (k) , (2.34)

which finally leads to an equation for the momentum dependence of the partial gaps

χ l1l2
l (k) +

∑
l′

il
′−l

∫
dk′ k′2

π
Wll′(k, k′)

χ l1l2
l′ (k′)√

ξ2(k′) + Δ2(k′)
= δll1φl1l2(k) . (2.35)

This equation can be assumed as (quasi-)linear by, e.g., holding Δ(k) constant. The reason for that
is the construction of Wll′ . As it vanishes if either argument is at the Fermi surface, the integral is
mainly determined in momentum regions where ξ2(k) dominates Δ2(k). Thus, the solution of the
shape functions only weakly depends on Δ(k), motivating the approximation by a constant. With
that, the iterative convergence is accelerated and it is almost independent of the magnitude of the
gap.

The solution algorithm consists of three steps [224]: As initial condition we set Δ(k) to a small
constant value, e.g., 1 keV. (i)With the gap vector from the previous iteration we solve Eq. (2.35) for
the shape functions χ l1l2

l (k) using the method of matrix inversion. (ii) The coefficients Dll′ are then
calculated with Eqs. (2.33) and (2.34) using a non-linear solver, in particular the Newton-Raphson
method. (iii) In the last step thepartial gapsΔl(k) areupdatedwith thenewDll′ and χ l1l2

l (k) according
to Eq. (2.34). Note that, since χ l1l2

l (kF) = δll1 for all l2, the gap at the Fermi momentum is just
Δl(kF) =

∑
l2 Dll2 . These steps are repeated until we reach convergence as discussed earlier.

Modified direct-iteration method

As confirmation and alternative we solve the gap equation with a new direct-iterationmethod based
on a modified version [231] of Broyden’s method for general non-linear equations, developed in
Ref. [233]. This method to solve the gap equation was mainly derived by Christian Drischler and
we briefly want to discuss it here. It uses as input for in the m-th iteration step not only the result
obtained in the previous step but rather all other previous solutions, weighted appropriately. It is
widely used in quantum chemistry and was introduced to nuclear physics in Ref. [234].
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Figure 2.10: Comparison of the energy gaps in the 1S0 (left) and 3P2− 3F2 (right panel) channel obtained
usingKhodel’s (red) and via themodified direct-iterationmethod (blue dashed)with theN3LONNpotential
EM 500MeV. As reference we also show results (black dots) from Refs. [226, 235] obtained with Khodel’s
method. Both algorithms are in excellent agreement with each other (with differences on the∼ 10 eV level)
and the reference calculations.

The update procedure for the gap vector after the m-th iteration is as follows

ΔΔΔ(m+1)
in = ΔΔΔ(m)

in + αF(m) −
m−1∑
n=1

wnγmnu
(n) , (2.36)

where

γmn =
m−1∑
k=1

ckmβkn , βkn = (Iw2
0 + a)−1

kn , (2.37)

ckm = wkδF(k)†F(m) , akn = wkwnδF(n)†δF(k) . (2.38)

Here, I denotes the identity matrix and

u(n) = α δF(n) + δΔΔΔ(n) , δΔΔΔ(n) =
ΔΔΔ(n+1)

in −ΔΔΔ(n)
in

|F(n+1) − F(n)|
, δF(n) =

F(n+1) − F(n)

|F(n+1) − F(n)|
, (2.39)

where δF(n)†δF(n) = 1 is normalised. In the m-th iteration step one has to store ΔΔΔ(m)
in and F(m) as

well as all u(m) and δF(m) of the previous iterations. For efficiency one should also store the (m− 1)-
by-(m − 1) matrix with the entries akn. Note that this update procedure (2.36) includes simple
mixing, however, the additional term favours accelerated convergence since it allows larger damping
factors. In the first step one needs to guessΔΔΔ(1)

in , α, and the weights wm. While w0 = 0.01 should be
small [231] we use w(m−1) = 1 in the higher iterations similar to Ref. [234].

InFig. 2.10we showabenchmark calculation for the two solution algorithmsdiscussed above. We in-
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dependently calculate the 1S0 and 3P2−3F2 gapswith both algorithms using the chiralN3LOnucleon-
nucleon potential EM 500MeV [145, 146]. Both methods are in excellent agreement, with devi-
ations only on the 10 eV level. We also find a very good agreement with previous calculations using
Khodel’s method byHebeler et al. [235] in the singlet case and in the triplet channel with Srinivas et
al. [226], especially in the computationally-involved region where the gap closes.

From these benchmark calculations we can conclude that bothmethods are competitive. All the fol-
lowing calculations have been donewith bothmethods andwe brieflywant to revise their distinctive
features: Themodified direct-iterationmethod is straightforward to implement and does not require
approximations like linearisation. Its computational runtime per iteration is faster but needs typic-
ally 2−3 timesmore steps thanKhodel’smethod. In rare cases themodified direct-iterationmethod
leads to apparent discontinuities in the gap function. However, those could be recovered by fine
tuning the damping factors α. Khodel’s method, on the other hand, is by construction unstable if
Vll′(k, k) is close to zero. This could be avoided by using a modified version, discussed in Ref. [232].

2.3.3 Calculational details: NN potentials, 3N forces, uncertainty estimates

We calculate the pairing gap in neutron matter in the spin singlet 1S0 and triplet 3P2− 3F2, which
are the relevant channels for pairing in neutron stars, as discussed in Section 1.2. For our calcula-
tions we use all three different kinds of chiral NN forces mentioned in Section 1.4: Local (up to
N2LO) [150, 151], semi-local (up to N4LO) [144], and non-local (at N3LO) [145–148] interac-
tions. We also study the influence of leading (N2LO) and sub-leading (N3LO) three-body forces on
the gap equation. However, so far the inclusion 3N forces in a (semi-)locally regularised scheme is
not feasible since the correspondingmatrix elements have not been fully calculated, yet, but theywill
be available in the near future. We thus restrict ourselves for the inclusion of 3N forces to the tradi-
tional non-local interactions, which were also used in our calculations of polarised neutron matter
(see previous Section). None of the interactions are evolvedwith renormalisation-group techniques.

Inclusion of 3N forces

The gap equation and its solution discussed above is formulated for two-body interactions only. We
thus include 3N forces as normal-ordered, density dependent NN interactions, which also allows us
to include correlations. Normal ordering with respect to a reference state is a widely used technique
in nuclear physics [139, 141, 159, 167, 236, 237]. One particle is summed over all occupied states
for the Fermi surface at zero temperature[13, 236], i.e.,

V as
3N = trσ3

∫
d3k3
(2π)3

A123V3N θk3

∣∣∣∣
nnn

, (2.40)
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with the theta functionθk = θ (kF − |k|) and theFermimomentumkF. The initial anti-symmetrised
3N forcesA123V3N are regularised with the non-local regulator of Eq. (2.7).

In previous calculations of the energy gap [139, 225, 226, 238] the effects of 3N forces have already
been studied. However, those calculations were limited to the leading (N2LO) 3N forces since the
normal ordering was done on the operatorial level, which is not feasible for the sub-leading 3N
forces with their rich structure. In our calculations we make use of recent developments, mainly
by Kai Hebeler and Christian Drischler [141, 239] and evaluate the effective NN potentials (2.40)
based on the partial-wave-decomposed matrix elements of the 3N forces rather than their analytic
operator structure. With this method the only limiting factor is the availability of the partial-wave-
decomposed 3N matrix elements, currently only for the non-local chiral interactions up to
N3LO [239]. Note that these matrix elements are truncated at two- and three-body momenta of
J = 6 and J = 9/2, respectively, which was shown to be sufficient for nucleonic-matter calcula-
tions [141, 239]. The effective NN potential (2.40) depends in general on the total momentum P
of the two remaining particles in contrast to a Galilean-invariant NN interaction. In the BCS limit,
however, the particles are assumed to be back-to-back at the Fermi surface and consequentlyP = 0.
For details of the normal-ordering process and the 3N matrix elements see Refs. [141, 159, 239].

The total interaction used in our calculations writes

V as
NN+3N = V as

NN + ζ V as
3N , (2.41)

where ζ is a combinatorial or symmetry factor depending on the type of quantity of interest [139].
For the solution of the gap equation we have ζ = 1, similar to nuclear-matter calculations beyond
the Hartree-Fock approximation. Note that this is consistent with Refs. [139, 226] and we discuss
the derivation below.

Single-particle spectrum

The energy denominator of the gap equation (2.27) depends on the single-particle spectrum ε(k).
In our calculations of the gap we use both, a free spectrum and also take into account self-energy
corrections caused by the interaction by employing a Hartree-Fock spectrum

ε(k) =
k2

2m
+ Σ(1)(k) , (2.42)

where Σ(1)(k) is the spin-averaged self-energy at first order [139],

Σ(1)(k1) =
1
2π

∫
dk2 k22 d cos θk1,k2 nk2

∑
l,S,J

(2J + 1)⟨ k12/2 |VJ
llS| k12/2 ⟩

[
1− (−1)l+S+1], (2.43)
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with k12 = |k1 − k2|. Note that the combinatorial factor used to evaluate Eq. (2.43), ζ = 1/2, also
agrees with Refs. [139, 141, 226].

The effective neutron mass m⋆ at the Fermi surface is a measure of how the interaction affects the
single-particle energy. It is given by

m⋆(kF)
m

=

(
m
k
dε(k)
dk

)−1 ∣∣∣∣
k=kF

. (2.44)

Our calculations of the effective masses are based on the Hartree-Fock energies. In Ref. [139] it
was found that including contributions beyond the Hartree-Fock level gives higher effective masses
m⋆/m > 1 indensity regionsbelowandaroundnuclear saturationdensity. Effectivemassesm⋆/m <

1 lead to a suppression of the energy gap while larger m⋆/m > 1 cause an amplification as can be
seen in the results section.

Normal-ordering symmetry factors

We briefly discuss how one obtains the symmetry factors for the energy gap Δ and self energy Σ.
Consider a Hamiltonian of the form

Ĥ = T̂ + V̂NN + V̂3N , (2.45)

with kinetic energy T̂ andNN/3N interaction V̂NN/3N. With the help ofWick’s theorem one can re-
write theHamiltonian in an equivalent form by normal-ordering all operators with respect to a given
reference state. For our pairing calculations it is convenient to choose the BCS state as reference. We
can rewrite the interactions in terms of anti-symmetrised matrix elements,

V̂NN =
1
4

∑
i,j,k,l

⟨ ij |V as
NN| kl ⟩â

†
i â

†
j âkâl , (2.46)

V̂3N =
1
36

∑
i,j,k,l,m,n

⟨ ijk |V as
3N| lmn ⟩â†i â†j â†kâlâmân , (2.47)

where the summation indices collect the single-particle quantum numbers. It is worth noticing that,
applying Wick’s theorem with respect to a BCS reference state, both normal contractions (connect-
ing a creation operator with an annihilation operator) and anomalous contractions (connecting two
creation or two annihilation operators) contribute. For the normal self energy Σ the relevant con-
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tractions are of the form

1
4

∑
i,j,k,l

⟨ ij |V as
NN| kl ⟩â

†
i â

†
j âlâk , (2.48)

1
36

∑
i,j,k,l,m,n

⟨ ijk |V as
3N| lmn ⟩â†i â†j â†kânâmâl , (2.49)

while for the energy gap Δ the relevant contractions take the form

1
4

∑
i,j,k,l

⟨ ij |V as
NN| kl ⟩â

†
i â

†
j âlâk , (2.50)

1
36

∑
i,j,k,l,m,n

⟨ ijk |V as
3N| lmn ⟩â†i â†j â†kânâmâl . (2.51)

Since the interaction operators are represented in terms of anti-symmetrisedmatrix elements all dif-
ferent possible choices of picking creation or annihilation operators are equivalent and just lead to
combinatoric factors. In order to determine ζ it is thus necessary to determine the number of dif-
ferent contractions cN for Eqs. (2.48) to (2.51). We obtain: cN = 4 for Eq. (2.48), cN = 18 for
Eq. (2.49), cN = 1 for Eq. (2.50) and cN = 9 for Eq. (2.51). Combining these combinatoric factors
with the pre-factors 1/4 and 1/36 of the NN and 3N interactions we directly obtain ζ = 1/2 for
the self energy Σ and ζ = 1 for gap Δ. We also note that in the present work we approximate the
normal contractions in Eq. (2.51) by their contributions in normal systems. It has been shown in
Ref. [167] that the inclusion of correlations in the reference state has only very small effects on the
matrix elements of the normal ordered 3N interactions for nuclear-matter calculations. In addition
to contributions fromnormal contractions in Eq. (2.51)we also obtain non-vanishing contributions
from multiple anomalous contractions. However, these contributions are small since such terms
only include contributions from momenta around the Fermi surface.

Uncertainty estimates

In our calculations for neutron matter based on the traditional non-local chiral interactions (see
Fig. 2.1) we used on the NN level a variation of the cutoff in the regulator as an uncertainty estim-
ate, i.e., using different NN potentials at the same order. With the development of the semi-local
interactions a new uncertainty estimate has been suggested [131, 144].

This estimation is directly based on the principles of chiral effective field theory: The expansion in
powers of a low momentum scale, the relevant energy scale Q or pion mass mπ , over a high mo-
mentum scale, the cutoff Λ. One naïvely expects a reduction of the uncertainty by a factor of Q ≈
mπ/Λ when going to the next order of the chiral expansion. The uncertainty is defined as the dif-
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ference of the observable calculated at a specific order and at the previous order, multiplied with an
appropriate power ofQ. In our calculations of the energy gap these differences at chiral order ν read

dΔ(ν) =


Δ(0) for ν = 0 ,

Δ(2) − Δ(0) for ν = 2 , and

Δ(ν) − Δ(ν−1) for ν ⩾ 3 .

(2.52)

These are weighted with Qν(kF), ν = 0, 2, 3, . . ., where

Q(kF) = max
(

kF
Λ
,
mπ

Λ

)
, (2.53)

with typical momentum cutoff scale

Λ =


600MeV for R0 = 0.8, 0.9, 1.0 fm ,

500MeV for R0 = 1.1 fm , and

400MeV for R0 = 1.2 fm ,

(2.54)

which correlateswith the local cutoff in the regulator of theNNforces. According toRefs. [131, 144],
the theoretical uncertainty originating from the chiral expansion for the total gap at chiral order ν is
given by

δΔ(ν) =

0 for ν = 0, 2, and

max
3⩽n⩽ν

(
Qν+1−n|dΔ(n)|

)
for ν ⩾ 3 .

(2.55)

Note that this is amodified estimation relative toRefs. [131, 144, 240]: Weneglect LOcontributions
(ν = 0) to the higher-order uncertainties (ν ⩾ 2). Typically, LO potentials do not reproduce
scattering phase shifts [131, 144] well, particularly not in the coupled 3P2− 3F2 channel which is
solely represented by the long-range one-pion exchange. Thus, the uncertainty estimation would be
dominated by dΔ(0) and would lose its predictive power. Hence, we neglect this term.

In Refs. [131, 144, 240] an additional term which assures that the next order always lies within the
uncertainty band of the previous order was introduced. We also do not account for this term since it
makes the uncertainty estimate more unnatural and less predictive. The reader can easily extend the
provided uncertainty bands to all higher orders.

Note that this estimation of the chiral uncertainty is in principle only valid for a calculation which
includes alsomany-nucleon forces. For inconsistent calculationswithNNforces only this estimation
could unnaturally increase the uncertainty band [240]. We do not find such effects.

In our calculations with 3N forces using the traditional non-local interactions we cannot use this un-
certainty estimate due to the lack of potentials with consistent cutoffs at all previous orders. How-
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ever, we account for uncertainties in the 3N forces by varying the 3N couplings c1, c3 and cutoff
Λ3N = (2.0− 2.5) fm−1 as well as the single-particle spectrum with NN and corresponding effect-
ive NN forces. Similarly to our previous matter calculations we use the recommended ci values of
Ref. [132], and take for calculations with N2LO 3N forces the ranges c1 = −(0.37− 0.73)GeV−1,
c3 = −(2.71 − 3.38)GeV−1 and with N3LO 3N forces c1 = −(0.75 − 1.13)GeV−1, c3 =

−(4.77 − 5.51)GeV−1. The N3LO 3N contributions shift c1, c3 and depend additionally on the
LO NN low-energy constants which we consider consistently to the NN potentials. We quote their
values in Appendix A.

2.3.4 Results and discussions

The pairing gap in the singlet 1S0 channel

In Fig. 2.11 we show the results for the pairing gap as a function of the Fermi momentum in the spin
singlet 1S0 for the local chiral interactions with cutoffs R0 = 0.9, 1.0, 1.1, and 1.2 fm from row 1
to 4, respectively. The calculations at LO (blue), NLO (green), and N2LO (orange) are depicted
with solid lines. We attach uncertainty estimates to the N2LO result as discussed above, depicted
with a semi-transparent band limited by dashed lines. In the NLO and N2LO potential the spectral-
function was regularised with a cutoff Λ̃ = 1000MeV. In the first column we present results ob-
tained with a free spectrum while in the second column a Hartree-Fock spectrum was used. In the
last columnwe also show the calculation for the effectivemass (2.44) corresponding to theHartree-
Fock spectrum. Note that we do not present calculations for the cutoff R0 = 0.8 fm, corresponding
to the highest momentum-space cutoff, since there does not exist such a NLO potential and also at
N2LO there seem to be deficiencies leading to a finite energy gap at kF = 0 in the 1S0 channel.

We find that theNLO andN2LOpotentials agree up tomomenta kF ≈ (0.6−0.8) fm−1 depending
slightly on the regulator, while the best agreement is found for the highest cutoff. This agreement
was also expected since the pairing gap is mainly determined by the phase shifts at low momenta.
In Eq. (2.19) it was shown that the gap depends only on the S-wave scattering length, which is de-
termined by the phase shifts. Both potentials describe the phase shifts appropriately well in the low-
energy regions, while there are deficiencies at leading order [151]. This obviously motivates our
modification to the error estimate, which does not take the LO results into account.

Using a Hartree-Fock spectrum weakly suppresses the energy gap due to the small effective masses
m⋆/m < 1. This is not the case for the LO potentials with cutoffs R0 ⩾ 1.1 fm, where the effective
masses are large at high momenta. At N2LO we find the gap’s maximum at kF ≈ (0.8 − 0.9) fm−1

withΔ ≈ (3.05−3.15)MeV andΔ ≈ (2.65−2.85)MeV for the free andHartree-Fock spectrum,
respectively, including the uncertainty estimates. Employing a free spectrum the pairing gap closure
is found around kF = (1.6 − 1.7) fm−1 where the lower bound corresponds to the lower cutoffs.
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Figure2.11: Energy gap in the 1S0 channel for the localNNpotentialswith cutoffsR0 = (0.9−1.2) fm (rows)
up toN2LO in a free (left) and in aHartree-Fock spectrum (centre column). In the third columnwe show the
effective masses at the Fermi surface corresponding to the Hartree-Fock spectrum. The uncertainty estimates
discussed in the text are given by the coloured bands limited by dashed lines while the actual calculations are
depicted by the solid lines. Note that we do not show uncertainties at LO and NLO.
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Due to the suppressionwhen using aHartree-Fock spectrum the gap closes already at kF ≈ 1.5 fm−1

for the lower cutoffs but at similar values as with the free spectrum for R0 = 1.2 fm.
In Fig. 2.12 we again show results for the singlet 1S0 gap but with semi-local interactions up toN4LO.
We use the same colour code as in Fig. 2.11 with the results at N3LO and N4LO in red and purple,
respectively. As for N2LO we also attach uncertainty-estimate bands to the latter two. Again we do
not show results for the potential with lowest cutoff R0 = 0.8 fm since it is less perturbative.
As for the local interactions we find good agreement for the interactions at orders beyond NLO up
to Fermi momenta around kF ≈ 0.7 fm−1. For the calculations at N3LO and N4LO we find very
good agreement throughout the wholemomentum range, except formaybe the smallest cutoffR0 =

0.9 fm, where we find a deviation of about 0.1MeV at the maximum. This can also be explained
by the excellent description of the phase shifts at these densities [131, 144]. Note that we show the
uncertainty bands only in the physical region of positive gaps.
For the free spectrum we find maximum values Δ ≈ (2.9− 3.1)MeV at kF ≈ (0.80− 0.85) fm−1

for the N3LO/N4LO potentials. The gap closure is found always around kF ≈ 1.5 fm−1 while the
uncertainty estimate for R0 = 1.2 fm suggests a range kF = (1.35 − 1.7) fm−1. When using a
Hartree-Fock spectrumwe also find a small suppressionof the gapwithmaximal valuesΔ ≈ (2.80−
2.95)MeV around the same momenta as for the free spectrum. This suppression can also be seen
in the effective masses which are always below 1 in these momentum ranges. For the gap closure we
also find similar results with both the free and Hartree-Fock spectrum. It is worth noticing that the
N4LO result lies for cutoffs R0 ⩾ 1.0 fm always in the uncertainty band of the N3LO calculation,
which thus could be interpreted as a reliable uncertainty estimate. Note however, that there are still
deficiencieswith the uncertainty estimation: Theuncertainty band attached to theN2LOcalculation
is too narrow and when the calculations at different orders intersect at some point, e.g., in the right
flank of the calculation with the Hartree-Fock spectrum and R0 = 1.1 fm, the uncertainty estimate
shrinks to zero.
When comparing the local and semi-local interactionswe find very similar results for the free spectra
but larger suppression effects in the local interactions when using a Hartree-Fock spectrum, which
is also reflected by the smaller effective masses for the local interactions. However, one should keep
in mind that the local interactions are only at N2LO while the semi-local forces are calculated up to
N4LO.
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Figure 2.12: Energy gap in the 1S0 channel for the semi-local NN potentials with cutoffs R0 = (0.9 −
1.2) fm (rows) up to N4LO in a free (left) and in a Hartree-Fock spectrum (centre column). In the third
column we show the effective masses at the Fermi surface corresponding to the Hartree-Fock spectrum. The
scheme is the same as in Fig. 2.11.
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The pairing gap in the triplet 3P2−3F2 channel

Weshow inFig. 2.13 results for thepairinggap in the 3P2−3F2 channel using the same local interactions
as for the singlet in Fig. 2.11. Note that the scale, however, is different and the pairing gaps in the
triplet channels are much smaller.
For all cutoffs the energy gap opens at kF ≈ 1.0 fm−1, consistently predicted by theNLO andN2LO
calculation. Note that at leading order the only contributions to the 3P2 partial wave are from the
regulator function and the long-range one-pion exchange interaction, which does not reproduce the
3P2 phase shifts. Given the strong cutoff dependence of the LO calculations we attribute these effects
mainly to the regulator.
With a free spectrum we find for the NLO and N2LO calculations similar predictions up to kF =

(1.35 − 1.5) fm−1 with larger ranges for the smaller cutoffs. At N2LO the maximal gap is reached
at momenta kF ≈ (1.85 − 2.0) fm−1 and takes values Δ ≈ (0.25 − 0.4)MeV with uncertainty
estimate range δΔ = (0.05 − 0.65)MeV. These values may not correspond to the actual physical
maximum since at these high densities the chiral interactions lose their predictive power, which can
also be seen by the strong cutoff dependence with much smaller values at the high coordinate-space
cutoffs corresponding to low momentum-space values. Note that phase-shift equivalent potentials
can be trusted only up to the Fermi momentum corresponding to the maximal laboratory energy at
which the phase shifts are reproduced [227]. For usual fits up to 350MeV this corresponds to kF ≈
2.1 fm−1. The uncertainties in these density regimes are also reflected in the expansion parameter
Q(kF), defined in Eq. (2.53). At kF = 2.0 fm−1 it takes the values

Q(2.0 fm−1) =


0.66 for R0 = 0.8, 0.9, 1.0 fm ,

0.79 for R0 = 1.1 fm , and

0.99 for R0 = 1.2 fm ,

(2.56)

which puts the efficiency of the chiral expansion into question at these high densities.
When using a Hartree-Fock spectrum we obtain much smaller pairing gaps. This suppression can
also be seen in the small effectivemassesm⋆/m < 1, especially for the smaller-cutoff potentials. The
maximal gap is shifted to smaller momenta kF ≈ (1.75 − 1.85) fm−1 with values Δ ≈ (0.05 −
0.15)MeVwith the largest values now corresponding to the largest cutoffs R0.
Figure 2.14 shows our results for the pairing gap in the triplet 3P2− 3F2 using the same semi-local
interactions as in Fig. 2.12. We do not show a curve for LO interactions since it is always zero. We
attribute this effect to their poor description of the phase shifts in this channel. Note that due to the
piecewise definition of the uncertainty estimate (2.55) the uncertainty bands are not always smooth,
e.g., in the N3LO calculation with R0 = 0.9 fm and a free spectrum.
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Figure 2.13: Energy gap in the 3P2−3F2 channel for the local NN potentials as in Fig. 2.11.
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Figure 2.14: Energy gap in the 3P2−3F2 channel for the semi-local NN potentials as in Fig. 2.12.
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For the semi-local potentials we find a much weaker dependence on the single-particle spectrum as
for the local forces. Thismay also be seen in the effectivemasses, which aremuch closer to one for the
semi-local potentials. Still there are small differences: With a free spectrumwe find almost identical
results for the N3LO and N4LO interactions up to kF ≈ 1.55 fm−1 while with the Hartree-Fock
spectrum we find only up to around kF ≈ (1.4 − 1.45) fm−1 the same values and for the smalles-
cutoff potential withR0 = 0.9 fm this range is even smaller. This can be explained by comparing the
predictions for the effective masses, which start to deviate at similar momenta.
The semi-local N4LO interactions predict the gap’s maximum independent of the spectrum around
kF ≈ (1.65−1.95) fm−1, similarly to the local interactions. It takes valuesΔ ≈ (0.20−0.35)MeV
with a free spectrum and around 0.05MeV smaller when using a Hartree-Fock spectrum. This is a
similar range as predicted from the local interactions. Again, we want to mention that this may not
be the physical maximum but may be explained from regulator effects.
Up to Fermi momenta kF ∼ 2.0 fm−1 the energy gaps obtained with the N4LO potential lies always
within the uncertainty range of theN3LO calculation. From that wemay conclude that higher-order
potentials would lead to similar results. Given the fact that the results vary in good parts strongly
when going from N2LO to N3LO, it is apparent that for an observable like the triplet-pairing gap,
sensitive to only one higher partial wave, sophisticated high-order chiral interactions are crucial.

Including 3N interactions

We also study the influence of 3N forces on the pairing gap but, as mentioned earlier, to be consist-
ent we use the traditional non-local chiral interactions by Entem and Machleidt (EM) with cutoff
500MeV [145, 146] and Epelbaum, Glöckle, and Meißner (EGM) with cutoff combinations
450/500 and 450/700MeV [148]. We show results for both leading and sub-leading 3N forces
with the ci ranges discussed above.
In Fig. 2.15 we show the results for the pairing gap in the singlet 1S0. The NN-only calculation is
depicted as a solid line. When including 3N forces we show uncertainty bands limited by dashed
lines in grey for leading 3N forces only and in sea green when using also N3LO 3N interactions.
On the NN level we find the maximal gap at kF ≈ (0.80 − 0.85) fm−1 with values around Δ ≈
3.0MeV for the free and Δ ≈ (2.7 − 2.9)MeV with a Hartree-Fock spectrum. The gap closes
around kF ≈ 1.5 fm−1 with the free and slightly below with a Hartree-Fock spectrum. These values
are in good agreement with the calculations based on the local and semi-local interactions. This does
not come as a surprise, given that the potentials reproduce the phase shifts well.
The inclusion of 3N forces lowers the pairing gap at momenta kF ≳ 0.6 fm−1 and shifts the closure
to lower kF ≈ (1.3− 1.4) fm−1. The maximum is reduced by about 0.2MeV but its position stays
almost unchanged. This was expected since the 3N interactions are repulsive in this channel. For
the EGM potentials we find about the same effects for the leading and sub-leading 3N interactions.
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Figure 2.15: Pairing gap in the 1S0 channel using a free (left column) and a Hartree-Fock spectrum
(centre) for the non-local N3LO NN potentials EM 500MeV (first row), EGM 450/500MeV (second) and
EGM 450/700MeV (third). The third column depicts the effective mass in a Hartree-Fock spectrum. The
NN-only results are shown by the black-solid lines. The uncertainty bands for N2LO and N3LO are determ-
ined by variations of the 3N couplings c1, c3 and cutoff Λ3N as discussed in the text.

For the EM potential the N3LO 3N forces lead to slightly lower gaps which might be explained by
the two-pion-exchange–contact topology at this order, which depends on the NN coupling CT and
is much stronger for the EMpotential than for the EGM interactions [140]. Also with 3N forces the
dependence on the single-particle spectrum is almost negligible, which can also be seen from the
effective masses which only slightly vary when including 3N forces.

Thepairinggap in the coupled triplet channel 3P2−3F2 is shown inFig. 2.16using the same interactions
and colour scheme as in Fig. 2.15.

Up to kF ≈ 1.3 fm−1 all three potentials lead to similar results on the NN level when using a free
spectrum with Δ ≈ 0.05MeV. The EGM 450/500MeV interaction reaches a maximum already
at kF = 1.4 fm−1 while the EGM 450/700MeV peaks at kF ≈ 1.65 fm−1 and the EM potential
not before kF = 2.2 fm−1. This different behaviour is attributed to the smaller cutoff in the EGM
potentials and their poor description of the phase shifts at high energies in comparison to the EM
potential.

Due to the larger densities at which the 3P2−3F2 paring gap opens also 3N forces play amore domin-
ant role. This is valid for both, pairing gaps and the effective masses. For the two EGMpotentials we
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Figure 2.16: Pairing gap in the 3P2− 3F2 channel obtained with non-local chiral N3LO interactions. See
Fig. 2.15 and the text for details.

find that the energy gaps are enlarged with 3N forces at N2LO and even more at N3LO. Also their
maxima are shifted to higher Fermi momenta. We trace this back to attractive components of the, in
total repulsive, 3N force in this channel. When using the EMpotential the picture is slightly changed
with still attractive leading 3N forces but almost negligible repulsive 3N interactions with the sub-
leading3Nforces. Weagain attribute this to thedifferent contribution in the two-pion–contact topo-
logy. For the EMpotential we also find amuch stronger dependence on the single-particle spectrum
already on the NN level with strong suppression of the gap with a Hartree-Fock spectrum, which is
reflected in the relatively small effective masses. Also the N3LO 3N forces are strongly affected by
the spectrum with now positive contributions for the energy gap at high momenta kF ≳ 1.7 fm−1.

Note that, given the repulsive effects of sub-leading 3N forces for the EMpotentials, we have investi-
gated also other channels to find out if the 3P2−3F2 channel is still the dominant attractive interaction
at the highermomenta kF ≳ 1.3 fm−1. In fact, it is still the largest contribution andwe conclude that
3N forces do not change the channel in which pairing is expected.

In conclusion we found substantial effects from 3N forces which may even more than double the
3P2− 3F2 pairing gap. It is thus worthwhile investigating 3N forces with the newer semi-local and
local forces. In particular the rich structure of the sub-leading 3N interactions can play an important
role in that density region.
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2.3.5 Conclusions

In summary, we made three advances within this project: (i) We have developed an independent
method to solve the BCS gap equation, which does not require the introduction of an auxiliary po-
tential and is straightforward to implement. (ii)Weprovide uncertainty estimates basedon the chiral
expansion and (iii) have studied the effect of sub-leading 3N forces.
In the 1S0 channel the predictions of the interactions at highest chiral order agree for all cutoffs and
in the entire density range. We find the maximum of the 1S0 pairing around kF = (0.8− 0.9) fm−1

with Δmax = (2.9 − 3.3)MeV for a free single-particle spectrum and when including self-energy
corrections in a Hartree-Fock spectrum suppressions of∼0.3MeV. The inclusion of 3N forces also
leads to a small suppression but their effect is in general small.
In the triplet channel 3P2−3F2 the global picture is less clear. For all potentials studied we find that
the gap opens around kF ≈ (0.9 − 1.0) fm−1 and for the highest-chiral-order potentials we find a
maximum of the 3P2−3F2 gap in the region kF = (1.7− 1.9) fm−1 with Δmax < 0.4MeV. At these
densities one pushes the chiral expansion to its limits and we find a strong scheme dependence. The
inclusion of leading and sub-leading 3N forces can have a substantial attractive effect but should be
studied further in the semi-local or local framework.
The inclusion of effects beyond the BCS approximation should be pursued in the future. For that the
use of consistently evolved NN and 3N interactions via the similarity renormalisation group [166]
is of great interest. These interactions are expected to exhibit a bettermany-body convergence in the
expansion of the pairing interaction.



3
Towards ab initio energy-density functionals

ConnectingnuclearHamiltonianstoenergy-densityfunctionals is amajor goal of nuc-
lear theory. As discussed in Chapter 1, a promising step into the direction of ab initioDFT is orbital-
based density functional theory and in particular the optimised effective potential (OEP) method.
It provides a path from a general energy functional to a local Kohn-Sham potential [35].
TheOEPmethod is similar to theHartree-Fock approximation andmany-body perturbation theory.
In fact, the functional in the exchange-only approximation of the OEP method is the Hartree-Fock
energy but the single-particle orbitals are exchanged by the Kohn-Sham orbitals such that the ex-
change term is transformed into a local potential. However, when we include correlations beyond
Hartree-Fock, e.g., from second-order perturbation theory the picture is not as simple.
In thisChapterwe start with a short reviewofHartree-Fock andmany-body perturbation theory and
then discuss the details of the OEPmethod and the differences to Hartree-Fock. We further discuss
the inclusion of correlations. Calculational details and results are presented in the nextChapter. This
project was worked out in collaboration with Kai Hebeler and Achim Schwenk.
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3.1 Hartree-Fock andmany-body perturbation theory

As introduction and benchmark systemwe recapitulate theHartree-Fock approximation and
many-body perturbation theory. It is the simplest approach to solve the problem of finding the
ground-state energy Egs of a given A-particle Hamiltonian ĤA by minimising over all normalised
anti-symmetric A-body wave functions ψ

Egs = min
ψ
⟨ ψ |ĤA| ψ ⟩ . (3.1)

In theHartree-Fock approximationweminimize the energyoverwavefunctions ψHF which are single
Slater determinants of orbitals φi

| ψHF ⟩ = | φ1 · · · φA ⟩a . (3.2)

3.1.1 Derivation of the Hartree-Fock equations

Consider a many-body system in an external potential Vext with the Hamiltonian Ĥ = Ĥ0 + ĤI,

Ĥ0 =
∑

α

∫
d3x ψ̂†

α(x)
[
−∇2

2m
+ Vext(x)

]
ψ̂α(x) , (3.3)

ĤI =
1
2

∑
α,β,α′,β′

∫
d3x d3y ψ̂†

α(x)ψ̂
†
β(y)⟨ αβ |V(x, y)| α

′β′ ⟩ψ̂β′(y)ψ̂α′(x) , (3.4)

where the greek indices collect the internal degrees of freedom, spin and isospin α ≡ (ms,mt), and
the states ψ are defined as

ψ̂α(x) =
kmax∑
i=1

φiα(x)âiα , (3.5)

ψ̂†
α(x) =

kmax∑
i=1

φ†
iα(x)â

†
iα , (3.6)

where we have introduced a truncation of the basis states kmax.



3.1. HARTREE-FOCK AND MANY-BODY PERTURBATION THEORY 79

The Hartree-Fock energy is then given by

⟨ ψHF |Ĥ| ψHF ⟩ =
∑

α

Nα∑
i=1

∫
d3x φ†

iα(x)
[
−∇2

2m
+ Vext(x)

]
φiα(x)

+
1
2

∑
α,β

Nα∑
i=1

Nβ∑
j=1

∫
d3x d3y φ†

iα(x)φ
†
jβ(y)⟨ αβ |V(x, y)| αβ ⟩φiα(x)φjβ(y)

− 1
2

∑
α,β

Nα∑
i=1

Nβ∑
j=1

∫
d3x d3y φ†

iα(x)φ
†
jβ(y)⟨ αβ |V(x, y)| βα ⟩φjβ(x)φiα(y) , (3.7)

where the sums are over occupied states onlywith
∑

α Nα = A. Weminimise the energy by variation
with respect to φiα using the single-particle energies εiα as Lagrangemultipliers to ensure normalised
orbitals:

δ
δφ†

iα(x)

[
⟨ ψHF |Ĥ| ψHF ⟩ −

∑
β

Nβ∑
j=1

εjβ
∫

d3y |φjβ(y)|
2
]
= 0 , (3.8)

which leads to the Hartree-Fock equations in coordinate space[
−∇2

2m
+ Vext(x)

]
φiα(x)

+
∑

β

Nβ∑
j=1

∫
d3y φ†

jβ(y)
[
⟨ αβ |V(x, y)| αβ ⟩φiα(x)φjβ(y)− ⟨ αβ |V(x, y)| βα ⟩φjβ(x)φiα(y)

]
= εiαφiα(x) . (3.9)

One defines the direct or Hartree potential,

Vα
H(x) ≡

∑
β

Nβ∑
j=1

∫
d3y ⟨ αβ |V(x, y)| αβ ⟩φ†

jβ(y)φjβ(y)

=
∑

β

∫
d3y ⟨ αβ |V(x, y)| αβ ⟩ρβ(y) , (3.10)

and exchange or Fock potential,

Vα
F(x, y) ≡ −

∑
β

Nβ∑
j=1

⟨ αβ |V(x, y)| βα ⟩φ†
jβ(y)φjβ(x)

= −
∑

β

⟨ αβ |V(x, y)| βα ⟩ρβ(x, y) , (3.11)
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where we have introduced the spin/isospin densities

ρβ(x) =
Nβ∑
j=1

φ†
jβ(x)φjβ(x) , (3.12)

ρβ(x, y) =
Nβ∑
j=1

φ†
jβ(y)φjβ(x) . (3.13)

With the definitions above we can rewrite Eq. (3.9) into a non-local Schrödinger-like equation[
−∇2

2m
+ Vext(x) + Vα

H(x)
]
φiα(x) +

∫
d3y Vα

F(x, y)φiα(y) = εiαφiα(x) . (3.14)

Both, the Hartree and the Fock potential, depend on the solution of the orbitals φiα. Thus, the
Hartree-Fockequations forma set ofA coupledequations andonehas to solve themself-consistently.

3.1.2 Solution of the Hartree-Fock equations

In the following we assume the external trap to be a 3d-harmonic-oscillator potential

Vext(x) ≡ VHO(x) =
1
2
m2ω2x2 . (3.15)

For the self-consistent solution of theHartree-Fock equationswework in a harmonic oscillator basis,
i.e., the eigenbasis of the external potential, in order to reduce the calculation to a simple eigenvalue
problem. Hence, we introduce the basis states

φ0
aα =

u0nala(x)
x

Yma
la (̂x)χα , with

[
−∇2

2m
+ Vext(x)

]
φ0

aα(x) = ε0aαφ
0
aα(x) , (3.16)

with collective index a ≡ (na, la,ma), spin function χα, n = 2k + l, and radial wavefunction

u0nl(x) =

√√√√√
ω3

π ωl2k+l+2k!

(2k + 2l + 1)!!
xl exp

(
−1
2
ωx2

)
Ll+ 1

2
k (ωx2) . (3.17)

We expand the orbitals φiα = unili(x)/xY
mi
li (̂x) with collective index i as above in terms of the free-

harmonic-oscillator orbitals φ0

φiα(x) = φ(ni,li,mi)α(x) =
∑
na

anina,αφ
0
(na,li,mi)α(x) ≡

∑
a

aia,αφ0
aα(x) , (3.18)
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wherewe have introduced the expansion coefficients aia,α ≡ anina,αδli,laδmi,ma for simplicity. With this
expansion we can cast Eq. (3.14) into

∑
a

aia,αε0aαφ
0
aα(x) +

∑
a

aia,α

[
Vα
H(x)φ

0
aα(x) +

∫
d3y Vα

F(x, y)φ
0
aα(y)

]
= εiα

∑
a

aia,αφ0
aα(x) .

(3.19)

Multiplying with φ0†
bα(x) and integrating over x gives

0 = aib,αε0bα − εiαaib,α +

∫
d3x φ0†

bα(x)
∑

a

aia,α

[
Vα
H(x)φ

0
aα(x) +

∫
d3y Vα

F(x, y)φ
0
aα(y)

]
= aib,αε0bα − εiαaib,α +

∑
a

aia,α
(
Iab,αH + Iab,αF

)
, (3.20)

with the Hartree term,

Iab,αH =
∑

β

Nβ∑
j=1

∫
d3x d3y φ0†

bα(x)φ
†
jβ(y)⟨ αβ |V(x, y)| αβ ⟩φ0

aα(x)φjβ(y)

=
∑

β

Nβ∑
j=1

∑
c,d

a†jc,βajd,β

∫
d3x d3y φ0†

bα(x)φ
0†
cβ (y)⟨ αβ |V(x, y)| αβ ⟩φ0

aα(x)φ
0
dβ(y)

=
∑

β

∑
c,d

ρcd,β

∫
d3x d3y φ0†

bα(x)φ
0†
cβ (y)⟨ αβ |V(x, y)| αβ ⟩φ0

aα(x)φ
0
dβ(y) , (3.21)

and Fock term,

Iab,αF = −
∑

β

Nβ∑
j=1

∫
d3x d3y φ0†

bα(x)φ
†
jβ(y)⟨ αβ |V(x, y)| βα ⟩φjβ(x)φ

0
aα(y)

= −
∑

β

Nβ∑
j=1

∑
c,d

a†jc,βajd,β

∫
d3x d3y φ0†

bα(x)φ
0†
cβ (y)⟨ αβ |V(x, y)| βα ⟩φ0

dβ(x)φ
0
aα(y)

= −
∑

β

∑
c,d

ρcd,β

∫
d3x d3y φ0†

bα(x)φ
0†
cβ (y)⟨ αβ |V(x, y)| βα ⟩φ0

dβ(x)φ
0
aα(y) . (3.22)

Here we have introduced the harmonic-oscillator density matrix

ρcd,α =

Nα∑
j=1

a†jc,αajd,α . (3.23)



82 CHAPTER 3. TOWARDS AB INITIO ENERGY-DENSITY FUNCTIONALS

Equation (3.20) canbe read as an eigenvalue equation for the i-th eigenvector aiα = (ai1,α, ai2,α, . . .)
T

and eigenvalue εiα ∑
a

aia,αMab,α = εiαaib,α ⇔ Mαaiα = εiαaiα , (3.24)

with the matrix

Mab,α = δabε0bα + Iab,αH + Iab,αF . (3.25)

We solve this equation for the expansion coefficients and energies with standard linear-algebra al-
gorithms. The Hartree-Fock energy is then calculated using Eq. (3.7).

3.1.3 Details of the Hartree-Fock solution

In practice, we use anti-symmetrised matrix elements in a jj-coupled single-particle harmonic-
oscillator basis with neutron-proton formalism. Therefore, we have basis states

| nanb
[
(las)ja(lbs)jb

]
JM tmtatmtb ⟩ =

∑
mja ,mjb

CJM
jamja jbmjb

| na (las)jamja tmta ⟩| nb (lbs)jbmjb tmtb ⟩ ,

(3.26)

with Clebsch-Gordan coefficients C l3m3
l1m1l2m2

and

| n (ls)jmj tmt ⟩ =
∑
m,ms

C jmj
lmsms

| n lm sms tmt ⟩ , (3.27)

with spin s = 1/2, isospin t = 1/2 and isospin projection mt = −1/2 for neutrons and mt = 1/2
for protons. In order to use those matrix elements in our calculation we need to decouple, i.e., sum
over the total single-particle angular momentum j,

| n lm sms tmt ⟩ =
∑
j,mj

C jmj
lmsms

| n (ls)jmj tmt ⟩ , (3.28)

and

| na (las)jamja tmta ⟩| nb(lbs)jbmjb tmtb ⟩ =
∑
J,M

CJM
jamja jbmjb

| nanb [(las)ja(lbs)jb]JM tmta tmtb ⟩ . (3.29)

Since the matrix elements are independent of the total-angular-momentum projection M we drop
the index from now. However, we have to ensure that M in the bra and in the ket state are equal. For
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simplicity and clarity we further drop the indices s and t. We thus get

| na lama msamta ⟩| nb lbmb msbmtb ⟩ =
∑
J,ja,jb

CJ(ma+msa+mb+msb )

ja(ma+msa )jb(mb+msb )
C ja(ma+msa )

lamasmsa
C jb(mb+msb )

lbmbsmsb

× | nalajamta nblbjbmtb J ⟩ . (3.30)

For an arbitrary matrix element we have∫
d3x d3y φ0†

aα(x)φ
0†
bβ(y)⟨ αβ |V(x, y)| γδ ⟩φ

0
cγ(x)φ

0
dδ(y)

=
∑

J,ja,jb,jc,jd

C
J(ma+msα+mb+msβ )

ja(ma+msα )jb(mb+msβ )
CJ(mc+msγ+md+msδ )

jc(mc+msγ )jd(md+msδ )
C ja(ma+msα )

lamasmsα
C

jb(mb+msβ )

lbmbsmsβ
C jc(mc+msγ )

lcmcsmsγ
C jd(md+msδ )

ldmdsmsδ

× δma+msα+mb+msβ ,mc+msγ+md+msδ
⟨ nalajamtα nblbjbmtβ J |V| nclcjcmtγ ndldjdmtδ J ⟩ . (3.31)

This leads to the following expressions for the Hartree and Fock term

Iab,αH =
∑

β

∑
c,d

ρcd,β

∑
J,jb,jc,ja,jd

C
J(mb+msα+mc+msβ )

jb(mb+msα )jc(mc+msβ )
C

J(ma+msα+md+msβ )

ja(ma+msα )jd(md+msβ )

× C jb(mb+msα )
lbmbsmsα

C
jc(mc+msβ )

lcmcsmsβ
C ja(ma+msα )

lamasmsα
C

jd(md+msβ )

ldmdsmsβ

× ⟨ nblbjbmtα nclcjcmtβ J |V| nalajamtα ndldjdmtβ J ⟩ , (3.32)

Iab,αF = −
∑

β

∑
c,d

ρcd,β

∑
J,jb,jc,ja,jd

C
J(mb+msα+mc+msβ )

jb(mb+msα )jc(mc+msβ )
C

J(md+msβ+ma+msα )

jd(md+msβ )ja(ma+msα )

× C jb(mb+msα )
lbmbsmsα

C
jc(mc+msβ )

lcmcsmsβ
C

jd(md+msβ )

ldmdsmsβ
C ja(ma+msα )

lamasmsα

× ⟨ nblbjbmtα nclcjcmtβ J |V| ndldjdmtβ nalajamtα J ⟩ , (3.33)

where the M delta function from Eq. (3.31) is automatically ensured by the expansion coefficients,
which imply ma = mb and mc = md. For anti-symmetrised matrix elements we have

⟨ nalajamta nblbjbmtb J |Vas| nclcjcmtc ndldjdmtd J ⟩ (3.34)

= ⟨ nalajamta nblbjbmtb J |V(1+ P12)| nclcjcmtc ndldjdmtd J ⟩

= ⟨ nalajamta nblbjbmtb J |V| nclcjcmtc ndldjdmtd J ⟩+ ⟨ nalajamta nblbjbmtb J |V| ndldjdmtd nclcjcmtc J ⟩ ,
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and thus we can can combine the Hartree and Fock term to

Iab,αHF =
∑

β

∑
c,d

ρcd,β

∑
J,jb,jc,ja,jd

C
J(mb+msα+mc+msβ )

jb(mb+msα )jc(mc+msβ )
C

J(ma+msα+md+msβ )

ja(ma+msα )jd(md+msβ )

× C jb(mb+msα )
lbmbsmsα

C
jc(mc+msβ )

lcmcsmsβ
C ja(ma+msα )

lamasmsα
C

jd(md+msβ )

ldmdsmsβ

× ⟨ nblbjbmtα nclcjcmtβ J |Vas| nalajamtα ndldjdmtβ J ⟩ , (3.35)

where theminus sign of the Fock term is incorporated due to the exchange of indices in theClebsch-
Gordan coefficients.

For closed-shell systems, i.e., A = 2, 8, 20, 40, . . ., we can also work in an ls-coupled single-particle
basis to avoid decoupling of thematrix elements. Theexpansion coefficients and single-particle ener-
gies are independent of the total angular momentum projectionmj. We can thus work in a restricted
basis with index a ≡ (n, l, j). The density matrix then becomes

ρab,mt
=

occ.∑
c

(2j + 1)a†ac,mt
abc,mt , (3.36)

where the factor (2j+ 1) originates from them degeneracy in the basis states (na, l, j). TheHartree-
Fock term then writes

Iab,mt
HF =

∑
m′

t

∑
c,d

ρcd,m′
t

1
(2ja + 1)(2jc + 1)

∑
mja ,mjc

∑
J,M

CJM
jamja jcmjc

CJM
jamja jcmjc

× ⟨ nblajamt nclcjcm′
t J |Vas| nalajamt ndlcjcm′

t J ⟩

=
∑
m′

t

∑
c,d

ρcd,m′
t

(2J + 1)
(2ja + 1)(2jc + 1)

∑
J

⟨ nblajamt nclcjcm′
t J |Vas| nalajamt ndlcjcm′

t J ⟩ , (3.37)

where we have used the completeness of the Clebsch-Gordan coefficients and that the matrix ele-
ments are independent of the total angular momentum projection M.

3.1.4 Second-order contribution to the Hartree-Fock energy

As mentioned above, the many-body states of the Hartree-Fock approximation are single Slater de-
terminants, i.e., independent particle states. Thus, they are not capable of describing correlations. As
seen inChapter 2 for neutronmatter, there are large contributions originating from correlations. We
thus calculate also contributions at second order in many-body perturbation theory.
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In the ls-coupled single-particle basis the energy contribution is

E(2) =
1
4

∑
mti ,mtj ,mta ,mtb

∑
i,j,a,b

θimti
θjmtj

θ̄amta
θ̄bmtb

∣∣(imti jmtj|V|amtabmtb)− (imti jmtj|V|bmtbamta)
∣∣2

εimti
+ εjmtj

− εamta
− εbmtb

=
1
4

∑
mti ,mtj ,mta ,mtb

∑
i,j,a,b

θimti
θjmtj

θ̄amta
θ̄bmtb

∣∣(imti jmtj|Vas|amtabmtb)
∣∣2

εimti
+ εjmtj

− εamta
− εbmtb

, (3.38)

with collective indices i = (ni, li, ji,mi) and where we have defined the matrix elements

(imti jmtj|Vas|amtabmtb) =

∫
d3x d3y φ†

imti
(x)φ†

jmtj
(y)Vas(x− y)φamta

(x)φbmtb
(y)

= (amtabmtb|Vas|imti jmtj
)

= (jmtj imti|Vas|bmtbamta
)
, (3.39)

and occupation-number functions

θimt = θ(εF,mt − εimt) =

1 for εimt ⩽ εF,mt ,

0 else,
(3.40)

θ̄amt = 1 − θamt . For clarity we denote particles with indices a, b, . . . and holes with i, j, . . .. We
expand the matrix elements in the free orbitals,

(imti jmtj|Vas|amtabmtb) =
∑

n′i ,n′j ,n′a,n′b

a†nin′i ,mti
a†njn′j ,mtj

anan′a,mta
anbn′b,mtb

⟨ i′mti j
′mtj |Vas| a′mtab

′mtb ⟩ , (3.41)

where i′ indicates (n′i, lis jimji)matrix elements with respect to the free orbitals,

⟨ i′mti j
′mtj |Vas| a′mtab

′mtb ⟩ =
∫

d3x d3y φ0†
imti

(x)φ0†
jmtj

(y)Vas(x− y)φ0
amta

(x)φ0
bmtb

(y) . (3.42)

This expansion and jj coupling leads to the following expression for the second-order energy

E(2) =
1
4

∑
mti ,mtj ,mta ,mtb

∑
i,j,a,b

θimti
θjmtj

θ̄amta
θ̄bmtb

εimti
+ εjmtj

− εamta
− εbmtb

×

[ ∑
n′i ,n′j ,n′a,n′b,J,M

a†nin′i ,mta
a†njn′j ,mtb

anan′a,mtc
anbn′b,mtb

CJM
jimji jjmjj

CJM
jamja jbmjb

× ⟨ n′i lijimti n
′
j ljjjmtj J |Vas| n′alajamta n

′
blbjbmtb J ⟩

]2

. (3.43)
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Since θimt and εimt are independent of mji we can simplify the expression above as follows, where we
redefine the collective index without the total-angular-momentum projection mj: i = (ni, li, ji)

E(2) =
1
4

∑
mti ,mtj ,mta ,mtb

∑
i,j,a,b

θimti
θjmtj

θ̄amta
θ̄bmtb

εimti
+ εjmtj

− εamta
− εbmtb

×
∑

n′i ,n′j ,n′a,n′b,J,M
n′′i ,n′′j ,n′′a ,n′′b ,J

′,M′

a†nin′i ,mti
a†njn′j ,mtj

anan′a,mta
anbn′b,mtb

a†nin′′i ,mti
a†njn′′j ,mtj

anan′′a ,mta
anbn′′b ,mtb

×
∑

mji ,mjj ,mja ,mjb

CJM
jimji jjmjj

CJM
jamja jbmjb

CJ′M′

jimji jjmjj
CJ′M′

jamja jbmjb

× ⟨ n′i lijimti n
′
j ljjjmtj J |Vas| n′alajamta n

′
blbjbmtb J ⟩

× ⟨ n′′i lijimti n
′′
j ljjjmtj J

′ |Vas| n′′a lajamta n
′′
b lbjbmtb J

′ ⟩

=
1
4

∑
mti ,mtj ,mta ,mtb

∑
i,j,a,b

θimti
θjmtj

θ̄amta
θ̄bmtb

εimti
+ εjmtj

− εamta
− εbmtb

∑
J

(2J + 1)

×
∑

n′i ,n′j ,n′a,n′b
n′′i ,n′′j ,n′′a ,n′′b

a†nin′i ,mti
a†njn′j ,mtj

anan′a,mta
anbn′b,mtb

a†nin′′i ,mti
a†njn′′j ,mtj

anan′′a ,mta
anbn′′b ,mtb

× ⟨ n′i lijimti n
′
j ljjjmtj J |Vas| n′alajamta n

′
blbjbmtb J ⟩⟨ n′′i lijimti n

′′
j ljjjmtj J |Vas| n′′a lajamta n

′′
b lbjbmtb J ⟩

=
1
4

∑
mti ,mtj ,mta ,mtb

∑
i,j,a,b

θimti
θjmtj

θ̄amta
θ̄bmtb

εimti
+ εjmtj

− εamta
− εbmtb

∑
J

(2J + 1) (3.44)

×
[ ∑

n′i ,n′j ,n′a,n′b

a†nin′i ,mti
a†njn′j ,mtj

anan′a,mta
anbn′b,mtb

⟨ n′i lijimti n
′
j ljjjmtj J |Vas| n′alajamta n

′
blbjbmtb J ⟩

]2
.
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3.2 The optimised effective potential method

In contrast to the Hartree-Fock approach, the optimised effective potential (OEP) method
transforms the exchange or Fock term to a localmultiplicative potential using a functional derivative.
Thus, it involves an additional step in the solution algorithm. In this Section we will first derive the
OEP integral equation in the exchange-only approximation. We then discuss the algorithm to solve
this equation. We follow the discussions by Engel in Ref. [35] and Drut et al. [34].

3.2.1 Derivation of the OEP equation

The optimised effective potential consists of two parts: Hartree and exchange correlations. The
Hartree or direct potential vH, corresponding to the Hartree term in Eq. (3.21) is already a multi-
plicative potential,

vH(x) =
∫

d3x′ ρ(x′)V(x, x′) . (3.45)

Thus, the term of interest is the exchange-correlation potential, denoted vxc. Since we will use anti-
symmetrised nuclear matrix elements in our calculation we will not (and in fact cannot) separate
Hartree and exchange part in the derivation of the OEP equation. Note however, that for the inclu-
sion of correlations the separation of exchange and correlations part is crucial, which is discussed in
the next Section. Thus, wewant to derive vHxc = vH+vxc rather than vxc only. As in the previous Sec-
tion, we use a general basis with quantum numbers (k, α), where the greek index collects all internal
degrees of freedom like spin and/or isospin.

vHxc,α(x) =
δEHxc[ρ]
δρα(x)

. (3.46)

In order to evaluate the derivatives we apply the chain rule of functional differentiation

δEHxc[φkα, εkα]
δρα(x)

=
∑

k

∫
d3x′

[
δEHxc

δφkα(x′)
δφkα(x

′)

δρα(x)
+

δEHxc

δφ†
kα(x′)

δφ†
kα(x

′)

δρα(x)
+

∂EHxc

∂εkα
δεkα

δρα(x′)

]
=

∑
k

∫
d3x′ d3x′′

[
δEHxc

δφkα(x′)
δφkα(x

′)

δvKS,α(x′′)
δvKS,α(x′′)
δρα(x)

+ c.c.

+
∂EHxc

∂εkα
δεkα

δvKS,α(x′′)
δvKS,α(x′′)
δρα(x)

]
. (3.47)

Note that we allow for complex orbitals to keep the derivation as general as possible.
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In principle we would also have a term accounting for the occupation-number dependence,

∂EHxc

∂θkα

δθkα

δvKS,α(x′′)
δvKS,α(x′′)
δρα(x)

. (3.48)

However, in the Kohn-Sham framework the occupation number, θkα ≡ Θ(εF,α − εkα), is always a
Heaviside function and we obtain [241]

δθkα

δvKS,α(x)
=

∂Θ(εF,α − εkα)
∂εF,α

δεF,α
δvKS,α(x)

+
∂Θ(εF,α − εkα)

∂εkα
δεkα

δvKS,α(x)

= δ(1)(εF,α − εkα)
[
|φF,α(x)|

2 − |φkα(x)|
2] = 0 , (3.49)

where the Fermi energy εF,α and orbital φF,α correspond to the highest occupied state. For the cal-
culation of the functional derivatives of the single-particle energies with respect to the Kohn-Sham
potential see below. Hence, we can neglect these terms.

Following first-order perturbation theory we can evaluate the functional derivative with respect to
infinitesimal variations of δvKS,α¹:

δεkα[δvKS,α] =
∫

d3x φ†
kα(x)δvKS,α(x)φkα(x) , (3.50)

δφkα(x) =
∑
l ̸=k

∫
d3x′

φ†
lα(x

′)δvKS,α(x′)φkα(x
′)

εkα − εlα
φlα(x) , (3.51)

δφ†
kα(x) =

∑
l ̸=k

∫
d3x′

φ†
kα(x

′)δvKS,α(x′)φlα(x
′)

εkα − εlα
φ†

lα(x) , (3.52)

from which directly follows

δεkα
δvKS,α(x)

= φ†
kα(x)φkα(x) , (3.53)

δφkα(x)
δvKS,α(x′)

=
∑
l ̸=k

φlα(x)φ
†
lα(x

′)

εkα − εlα
φkα(x

′) = −Gkα(x, x′)φkα(x
′) , (3.54)

δφ†
kα(x)

δvKS,α(x′)
= φ†

kα(x
′)
∑
l̸=k

φlα(x
′)φ†

lα(x)
εkα − εlα

= −φ†
kα(x

′)Gkα(x′, x) , (3.55)

¹For a Hamiltonian H = H0 + λvKS,α the eigenvalues εk and eigenvectors | k ⟩ are given by

εi = ε(0)k + ⟨ k(0) |λvKS,α| k(0) ⟩+ . . . ,

| k ⟩ = | k(0) ⟩+
∑
l̸=k

⟨ l(0) |λvKS,α| k(0) ⟩
ε(0)k − ε(0)l

| l(0) ⟩+ . . . ,

where ε(0)k and | k(0) ⟩ are the eigenvalues and eigenvectors of the unperturbed Hamiltonian H0, respectively.
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with the propagator

Gkα(x, x′) =
∑
l ̸=k

φ†
lα(x

′)φlα(x)
εlα − εkα

. (3.56)

The single-particle energies correspond to the Kohn-Sham energies εiα, since in our ansatz H0 =

HKS is the unperturbed Hamiltonian. For the evaluation of Eq. (3.47) we further need to evaluate
δvKS/δρ, which we can do via its inverse:

δρα(x)
δvKS,α(x′)

=
∑

k

θkα
δ[φkα(x)φ

†
kα(x)]

δvKS,α(x′)

= −
∑

k

θkαφ†
kα(x)Gkα(x, x′)φkα(x

′) + c.c.

≡ χα(x, x
′) , (3.57)

where χα is the static response function of the Kohn-Sham system.
By inserting these relations into the right-hand side of Eq. (3.47), multiplying the equation by
χα(x, x

′), and integrating over xwe obtain an expression for δEHxc/δvKS,α, the OEP equation,∫
d3x′ vHxc,α(x′)χα(x

′, x) = ΛHxc,α(x) , (3.58)

with

ΛHxc,α(x) =
∑

k

{
−
∫

d3x′
[

δEHxc

δφkα(x′)
Gkα(x′, x)φkα(x) + c.c.

]
+ |φkα(x)|

2∂EHxc

∂εkα

}
=

∑
k

{
−
∫

d3x′
[
φ†

kα(x
′)uHxc

kα (x′)Gkα(x′, x)φkα(x) + c.c.
]
+ |φkα(x)|

2∂EHxc

∂εkα

}
, (3.59)

and
uHxc
kα (x) =

1
φ†

kα(x)
δEHxc

δφkα(x)
. (3.60)

In terms of the orbital shifts,

ψ†
kα(x) =

∫
d3x′ φ†

kα(x
′)
[
uHxc
kα (x′)− θkαvHxc,α(x′)

]
Gkα(x′, x)

=
∑
l̸=k

∫
d3x′

φ†
kα(x

′)
[
uHxc
kα (x′)− θkαvHxc,α(x′)

]
φlα(x

′)φ†
lα(x)

εlα − εkα
, (3.61)
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we can compactly write the OEP equation in the form

∑
k

[
ψ†

kα(x)φkα(x) + c.c.
]
=

∑
k

|φkα(x)|
2∂EHxc

∂εkα
. (3.62)

TheOEP equation is linear in E, so that one can treat each component of E individually. We want to
take a closer look at the orbital shifts. It is of the formof first-order perturbation theorywith perturb-
ations uHxc

kα (x′)−θkαvHxc,α(x′). Hence, ψ†
kα describes the first-order change of theKohn-Shamorbital

φ†
kα when theKohn-Shampotential is replaced by uHxc

kα . TheOEP equation thus states that first-order
perturbations of theKohn-Shampotential do not change the density. Furthermore, wewant tomen-
tion that the orbital shifts are orthogonal to the Kohn-Sham orbitals, i.e.,

∫
d3x ψ†

kα(x)φkα(x), which
is clear from their definition [242].

Special case: The exact-exchange functional

The exact-exchange functional Ex [243, 244] is one of the most simple functionals of DFT and is
defined as the Fock expression in Eq. (3.7)

Ex ≡ −1
2

∑
α,β

∑
k,l

θkαθlβ

∫
d3x d3y φ†

kα(x)φ
†
lβ(y)⟨ αβ |V(x, y)| βα ⟩φlβ(x)φkα(y) . (3.63)

Note that this is not equal to the Fock energy in Hartree-Fock theory since the orbitals satisfy the
Kohn-Sham equation but not the Hartree-Fock equations. The difference, as well as the difference
between Kohn-Sham kinetic energy and full kinetic energy, is accounted for in Ec ≡ EHxc − EHx.
The expression above is in fact an (implicit) functional of the density since the Kohn-Sham orbitals
are uniquely determined by the density. The Hohenberg-Kohn theorem guarantees that the density
uniquely determines the Kohn-Sham potential vKS which itself determines the orbitals φkα.
The functional derivative of the exchange functional with respect to the orbitals is

δEx

δφ†
kα(x)

= −θkα

∑
β

∑
l

θlβφlβ(x)
∫

d3y φ†
lβ(y)⟨ αβ |V(x, y)| βα ⟩φkα(y) , (3.64)

and since Ex does not explicitly depend on the single-particle energies it follows ∂EHx/∂εkα = 0.
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Details on the OEP equation

From the OEP integral equation (3.59) one can derive an important consistency criterion for the
exchange-correlation energy [245]. We integrate over x′, use the projectionproperty ofGreen’s func-
tions, ∫

d3x φ†
kα(x)Gkα(x, x′) = 0 =

∫
d3x′ Gkα(x, x′)φkα(x

′) , (3.65)

and get for the left-hand side∫
d3x d3x′ vHxc,α(x′)χα(x

′, x) = −
∑

k

θkα

∫
d3x d3x′ vHxc,α(x′)

[
φ†

kα(x
′)Gkα(x′, x)φkα(x) + c.c.

]
= 0 , (3.66)

and the right-hand side∫
d3x ΛHxc,α(x) = −

∑
k

∫
d3x d3x′ φ†

kα(x
′)uHxc

kα (x′)Gkα(x′, x)φkα(x) + c.c. + |φkα(x)|
2∂EHxc

∂εkα

= −
∑

k

∂EHxc

∂εkα
. (3.67)

Hence, we have derived a sum rule for any EHxc:∑
k

∂EHxc

∂εkα
= 0 . (3.68)

For the exchange-only potential this is obviously fulfilled, since Ex does not depend explicitly on the
single-particle energies.

3.2.2 Solution of the OEP equation

In principle, there are many ways to solve the OEP equation. We follow, similarly to Drut and Plat-
ter [36], an iterative algorithm originally developed by Stephan Kümmel and John P. Perdew [246,
247].

Starting point for this iterative solution is a differential equation for the orbital shifts ψ†
kα. Using the

Kohn-Sham equation,

HKS,α(x)φkα(x) ≡
[
−∇2

2m
+ vKS,α(x)

]
φkα(x) = εkαφkα(x) , (3.69)
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Figure 3.1: Schematic view of the algorithm to solve the OEP equations using the method developed by
Kümmel and Perdew in Ref. [246].

we can show

[HKS,α(x)− εkα]ψ†
kα(x) =

∑
l̸=k

∫
d3x′

φ†
kα(x

′)
[
uHxc
kα (x′)− θkαvHxc,α(x′)

]
φlα(x

′)
[
HKS,α(x)− εkα

]
φ†

lα(x)
εlα − εkα

=
∑

l

∫
d3x′ φ†

kα(x
′)
[
uHxc
kα (x′)− θkαvHxc,α(x′)

]
φlα(x

′)φ†
lα(x)

−
∫
d3x′ φ†

kα(x
′)
[
uHxc
kα (x′)− θkαvHxc,α(x′)

]
φkα(x

′)φ†
kα(x) , (3.70)

which gives finally

[
HKS,α(x)− εkα

]
ψ†

kα(x) =
[
uHxc
kα (x)− θkαvHxc,α(x)− ūHxc

kα + v̄Hxc
kα

]
φ†

kα(x) , (3.71)

where we have used the definitions

ūHxc
kα =

∫
d3x′φ†

kα(x
′)uHxc

kα (x′)φkα(x
′) , (3.72)

v̄Hxc
kα =

∫
d3x′ φ†

kα(x
′)θkαvHxc,α(x′)φkα(x

′) . (3.73)

In the last step we have used the completeness relation of the Kohn-Sham orbitals:∑
l

φ†
lα(x)φlα(x

′) = δ(3)(x− x′) . (3.74)

The solution algorithm consists of three steps, which are schematically shown in Fig. 3.1.
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Initialisations

As initial condition we make a guess for the orbitals φkα, e.g., free harmonic-oscillator or Hartree-
Fock orbitals. With these orbitals we calculate the corresponding uHxc

kα . Finally, we need a guess for
the OEP vHxc,α and for simplicity set it to zero.

First step: Solving the Kohn-Sham equation

With the (new) OEP we can solve the Kohn-Sham equation (3.69) for the orbitals and energies
using the same linear-algebra algorithms as in the Hartree-Fock calculation: We expand the orbitals
in terms of the free orbitals φ0

jα

φiα(x) =
∑

j

aij,αφ0
jα(x) , (3.75)

which fulfil [
−∇2

2m
+ vext,α(x)

]
φ0

kα(x) = ε0kαφ
0
kα(x) . (3.76)

Hence, following the derivation of theHartree-Fock equations, the equation for the expansion coef-
ficients aij,α reads:

aik,αε0kα +
∑

j

θjαaij,α

∫
d3x vHxc,α(x)φ0

jα(x)φ
0
kα(x) = εiαaik,α , (3.77)

where we need the matrix

MHxc
jk,α =

∫
d3x vHxc,α(x)φ0

jα(x)φ
0
kα(x) . (3.78)

This step is skipped in the first iteration, since we do not make a reasonable choice for the OEP.

Second step: Determine the orbital shifts

We use the OEP and in the last step obtained orbitals to solve Eq. (3.71) for the orbital shifts ψ†
kα. In

practice, one also expands the orbital in some basis, e.g., the harmonic-oscillator orbitals,

ψ†
kα(x) =

∑
l

b†kl,αφ
0†
lα (x) , (3.79)

and solves a system of linear equations of the form

Mαb†kα = ckα , (3.80)
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where bk is a vector collecting the expansion coefficients of the orbital shifts; M and ck contain the
left- and right-hand side of the orbital-shift equation, respectively:

Mkl,mt = ε0kαδkl +

∫
d3x φ0

kα(x)vHxc,α(x)φ0†
lα (x)− εkαδkl , (3.81)

cki,α =
∑

m

[∫
d3x φ0

iα(x)
[
uHxc
kα (x)− θkαvHxc,α(x)

]
φ†0

mα(x)− (ūHxc
kα − v̄Hxc

kα )δim

]
a†km,α . (3.82)

Weneed an expression foruHxc
kα but thedivisionby theorbitalsmight beproblematic. However, in the

numerical calculation it only appearswith a factorofφ†
kα such thatwedefine ũHxc

kα (x) ≡ φ†
kα(x)u

Hxc
kα (x).

In practice we calculate the expression (in the exact-exchange approximation)

uHx
klα ≡

∫
d3x ũHx

kα (x)φ
0
lα(x)

=
∑

i

a†ki,α

∫
d3x φ0†

iα (x)θkα

∑
j,β

θjβ

∫
d3x′ φ†

jβ(x
′)Vas(x− x′)φjβ(x

′)φ0
lα(x)

= θkα

∑
i

a†ki,αI
il,α
HF , (3.83)

with the Hartree-Fock term as in Eq. (3.37).
As mentioned in Ref. [246] the orbital-shift equation (3.71) is singular. When adding the Kohn-
Sham orbitals φkα multiplied by an arbitrary constant to the orbital shifts ψ†

kα one obtains a new solu-
tion. Nevertheless, one can solve the equation due to two facts: (i) It is clear from the definition
of the orbital shifts that the relevant solution must be orthogonal to the Kohn-Sham orbitals. (ii)
Since the right-hand side of Eq. (3.71) is orthogonal to the Kohn-Sham orbitals φkα one can use the
conjugate-gradient method [248], as suggested by Kümmel and Perdew.
We found a simpler approach by using the Moore–Penrose pseudo inverse of the matrix Mα, de-
noted M+

α . The minimal solution (with respect to the Euclidian norm) of the system of linear equa-
tions (3.80) is then given by

b†kα = M+
α ckα . (3.84)

Since the ‘correct’ orbital shifts are orthogonal to the orbitals this will always give the intended solu-
tion. As the Moore–Penrose pseudo inverse is a standard algorithm in linear algebra libraries this
method is easier and more straightforward to implement and numerically more stable.
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Third step: Update the OEP

The new OEP is obtained using a method by Kümmel and Perdew [246, 247]. For the update pro-
cedure,

v(new)Hxc,α(x) = v(old)Hxc,α(x) + cSSα(x) , (3.85)

we make use of the OEP equation (3.62) via the definition of

Sα(x) ≡
∑

k

[
ψ†

kα(x)φkα(x) + c.c. − |φkα(x)|
2∂EHxc

∂εkα

]
. (3.86)

The positive constant cS has to be chosen by trial and error. Larger values lead to faster convergence
but with too large values the algorithm does not converge. If the algorithm converges the solution is
independent of cS. We discuss the role of cS more detailed in the following but let us first motivate
that the update procedure indeedmakes sense. If the newOEP solves theOEP equation, Sα vanishes
and we reach convergence. On the other hand Sα is an indicator for the error of the OEP and it is
thus straightforward to use it to construct the new OEP.
The new vHxc,α is then reinserted into the Kohn-Sham equation and the self-consistency cycle is star-
ted over until convergence in the energies is reached. In practice however, the iteration algorithm is
slightly modified to speed up convergence: Steps two and three are repeated multiple times within
one iteration cycle without updating the Kohn-Sham orbitals. The benefit of this modification is
that we only need to calculate the numerically costly uHxc

kα once before each sub-iteration cycle. With
only 5 to 10 sub-iterations we can reduce the number of iterations by up to a factor of 5.
We determine Sα by expanding ψ†

kα and φkα in terms of the free orbitals as in the previous step, which
gives

Sij,α ≡
∫

d3x φ0†
iα (x)S̃α(x)φ0

jα(x)

=

∫
d3x φ0†

iα (x)
∑

k

[
ψ†

kα(x)φkα(x) + c.c. −
∣∣φkα(x)

∣∣2∂EHxc

∂εkα

]
φ0

jα(x)

=
∑

k

∑
l,m

[
b†kl,αakm,α + c.c. − a†kl,αakm,α

∂EHxc

∂εkα

] ∫
d3x φ0†

iα (x)φ
0†
lα (x)φ

0
mα(x)φ

0
jα(x) , (3.87)
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where the integral can be simplified by∫
d3x φ0†

iα (x)φ
0†
lα (x)φ

0
mα(x)φ

0
jα(x)

=

∫
dx x2

u0†nili(x)
x

u0†nlll(x)
x

u0nmlm(x)
x

u0njlj(x)
x

∫
dx̂Y lis†

jimi (̂x)Y
lls†
jlml
(̂x)Y lms

jmmm
(̂x)Y ljs

jjmj (̂x)

=

∫
dx

1
x2

u0†nili(x)u
0†
nlll(x)u

0
nmlm(x)u

0
njlj(x)

×
∑

L

(−1)ji+mi+jl+jm+mm+jj+1

{
li ll L
jl ji 1

2

}{
lm lj L
jj jm 1

2

}
CL0

li0ll0C
L0
lm0lj0C

L(ml−mi)
ji(−mi)jlml

CL(mj−mm)

lm(−mm)ljmj

×
√
(2ji + 1)(2jl + 1)(2jm + 1)(2jj + 1)(2li + 1)(2ll + 1)(2lm + 1)(2lj + 1)

4π(2L + 1)
, (3.88)

with tensor spherical harmonics

Y ls
jm(̂x) =

∑
ml,ms

C jm
lmlsms

Yml
l (̂x)χs,ms

, (3.89)

and where we have used [249, p. 206]:

Y l1 1
2

j1m1 (̂x)Y
l2 1

2
j2m2 (̂x) =

∑
L,M

(−1)j1+m1+j2+L+ 1
2

{
l1 l2 L
j2 j1 1

2

}

×

√
(2j1 + 1)(2j2 + 1)(2l1 + 1)(2l2 + 1)

4π(2L + 1)
CL0

l10l20C
LM
j1(−m1)j2m2

YM
L (̂x) . (3.90)

We now want to come back to the role of the constant cS. For deeper insights we briefly want to
review the direct update procedure for the OEPwhich was widely used before Kümmel and Perdew
introduced their algorithm.

To obtain an expression for vHxc,α one solves the orbital-shift equation (3.71) for

vKS,α(x)ψ†
kα(x) =

[
uHxc
kα (x)− θkαvHxc,α(x)− ūHxc

kα + v̄Hxc
kα

]
φ†

kα(x) +
[
∇2

2m
+ εkα

]
ψ†

kα(x) , (3.91)

plugs it into the OEP equation (3.62) multiplied by vKS,α,

∑
k

{[
uHxc
kα (x)− θkαvHxc,α(x)− ūHxc

kα + v̄Hxc
kα

]
|φkα(x)|

2 +

(
∇2

2m
+ εkα

)
ψ†

kα(x)φkα(x) + c.c.
}

=
∑

k

∣∣φkα(x)
∣∣2∂EHxc

∂εkα
vKS,α(x) , (3.92)
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and solves for the OEP

vHxc,α(x) =
1

2ρα(x)

∑
k

{[
uHxc
kα (x)− ūHxc

kα + v̄Hxc
kα

]
|φkα(x)|

2 +

(
∇2

2m
+ εkα

)
ψ†

kα(x)φkα(x) + c.c.

− ∂EHxc

∂εkα
vKS,α(x)|φkα(x)|

2
}
. (3.93)

This also shows that the OEP can be expressed explicitly in terms of the (occupied) Kohn-Sham
orbitals and the orbital shifts. And one also sees that for finite systems the division by the density
can be numerically cumbersome since it goes to zero for large distances x.
In order to understandKümmel’s and Perdew’s update procedure we solve the orbital-shift equation
for [∇2/(2m) + εkα]ψ†

kα, insert it into Eq. (3.93), and obtain

vHxc,α(x) = vHxc,α(x) +
vKS,α(x)
2ρα(x)

Sα(x) , (3.94)

which obviously is an identity if theOEPequation is fulfilled aswe inserted the orbital-shift equation
into itself and Sα = 0. During an iterative solution process, where one only has approximations of
the orbitals and the orbital shifts, the second term on the right-hand side is nonzero and rather is an
error term. Since Sα contains all the information of the OEP equation it is most important. For a
better approximation of the OEP we rather have to subtract this error term

v(new)Hxc,α(x) = v(old)Hxc,α(x)−
v(old)Hxc,α(x)
2ρα(x)

Sα(x) , (3.95)

where one also replaces the full Kohn-Sham potential by the OEP vHxc,α for stability reasons (see
Ref [247] for details). One could also use the the iteration procedure above rather than Eq. (3.85).
However, this still involves a division by the density and it is easier to approximate the term
−vHxc,α/(2ρ) by the constant cS. As mentioned earlier, it has to be chosen by trial and error but
we found our calculations to be pretty robust in a range cS = (10− 30)MeV fm3.

3.2.3 The Krieger–Li–Iafrate Approximation

Before we discuss the details of OEP solution and the inclusion of correlations we want to discuss
the approximation by Joseph B. Krieger, Yan Li, and Gerald J. Iafrate (KLI) [250, 251]. It has been
found in the exchange-only case for Coulomb systems to be quite accurate.

The presence of the Green’s function in the left- and right-hand side of OEP equation (3.58), i.e.,
in the response function χα and the inhomogeneity ΛHxc,α, is a source of inefficiency. It depends
on the complete Kohn-Sham spectrum (and not only the occupied states). The KLI approxima-
tion expounds a way to avoid this evaluation. It is based on a closure approximation for the Green’s
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function: The energy difference in the denominator is replaced by an averaged difference,

Gkα(x, x′) ≈
∑
l̸=k

φ†
lα(x

′)φlα(x)
Δε̄

=
1
Δε̄

[
δ(3)(x− x′)− φ†

kα(x
′)φkα(x)

]
. (3.96)

We insert this expression into the OEP integral equation (3.58) and obtain for the left-hand side∫
d3x′ vHxc,α(x′)χα(x

′, x) = −
∑

k

∫
d3x′ vHxc,α(x′)θkαφ†

kα(x
′)Gkα(x′, x)φkα(x) + c.c.

KLI
≈ − 2

Δε̄
vHxc,α(x)ρα(x)

+
1
Δε̄

∑
k

∫
d3x′

[
vHxc,α(x′)θkα|φkα(x

′)|2|φkα(x)|
2 + c.c.

]
, (3.97)

and for the right-hand side

ΛHxc,α(x) =
∑

k

{
−
∫

d3x′
[
φ†

kα(x
′)uHxc

kα (x′)Gkα(x′, x)φkα(x) + c.c.
]
+ |φkα(x)|

2∂EHxc

∂εkα

}
KLI
≈ − 1

Δε̄

∑
k

[
φ†

kα(x)u
Hxc
kα (x)φkα(x) + c.c.

]
+

1
Δε̄

∑
k

|φkα(x)|
2
∫

d3x′
[
φ†

kα(x
′)uHxc

kα (x′)φkα(x
′) + c.c.

]
+
∑

k

|φkα(x)|
2∂EHxc

∂εkα
, (3.98)

which solved for the OEP gives

vHxc,α(x) =
1

2ρα(x)

∑
k

{
δEHxc

δφkα(x)
φkα(x) + c.c. + |φkα(x)|

2
[
Δvkα − Δε̄

∂EHxc

∂εkα

]}
, (3.99)

with

Δvkα =

∫
d3x′

[
θkα|φkα(x

′)|2vHxc,α(x′)−
δEHxc

δφkα(x′)
φkα(x

′)

]
+ c.c. . (3.100)

Note that the energy average only appears in front of the derivatives ofEHxc with respect to the single-
particle energies, introducing a new energy scale. If the energy does not explicitly depend on εkα, e.g.,
in the exact-exchange approximation, the KLI approximation becomes unambiguous. However, in
the KLI approximation one always neglects this term to be consistent with the closure approxima-
tion. The effect of neglecting this term, especially when including correlations, has to be investigated
indetail. ForCoulomb systems it has been found for the relativistic exchange that this approximation
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is excellent [245]. The OEP in the KLI approximation is thus given by

vKLIHxc,α(x) =
1

2ρα(x)

∑
k

{
δEHxc

δφkα(x)
φkα(x) + c.c. + |φkα(x)|

2ΔvKLIkα

}
=

1
2ρα(x)

∑
k

|φkα(x)|
2[uHxc

kα (x) + v̄KLI,Hxc
kα − ūHxc

kα + c.c.
]
, (3.101)

with the same definitions for u, ū, and v̄ as above. As vKLIHxc,α appears on the right-hand side through
the definition of ΔvKLIkα we have not found a solution, yet. However, we can iterate Eq. (3.101) in a
self-consistency loop until we reach convergence.

Comparing theKLI approximation to Eq. (3.93), with the orbital shifts ψ†
kα = 0 set to zero, indicates

it to be some sort of mean-field approximation for the full OEP [251, 252].

The results obtained in the KLI approximation will always be above the full OEP result, since the
OEP energy is a minimum for local potentials. For the energy of Coulomb systems it was found that
the difference between the KLI and full OEP result was systematically around 1/3 of the difference
between OEP and Hartree-Fock [34].

Since we use nuclearmatrix elements in a harmonic-oscillator basis and cannot divide by the density
we need to derive a similar solution algorithm by Kümmel and Perdew: If one adds and subtracts
θkαvKLIHxc,α(x) to the summand in Eq. (3.101) one obtains a similar update expression as in Eq. (3.94)

vKLIHxc,α(x) = vKLIHxc,α(x) +
1

2ρα(x)

∑
k

|φkα(x)|
2[uHxc

kα (x)− θkαvKLIHxc,α(x) + v̄KLI,Hxc
kα − ūHxc

kα + c.c.
]
.

(3.102)

We further define the quantity

η†kα(x) = φ†
kα(x)

[
uHxc
kα (x)− θkαvKLIHxc,α(x) + v̄KLI,Hxc

kα − ūHxc
kα

]
, (3.103)

and expand it in harmonic-oscillator orbitals

η†kα(x) =
∑

l

e†kl,αφ
0†
lα . (3.104)

For the calculation of the expansion coefficients e†kl,α we do not need to solve a system of linear equa-
tions as in the full OEP solution. They are straightforwardly given by

e†km,α =
∫

d3x η†kα(x)φ
0
mα(x) (3.105)

=
∑

l

a†kl,α

{∫
d3x φ0†

lα (x)
[
uHxc
kα (x)− θkαvKLIHxc,α(x)

]
φ0

mα(x) + δlm(v̄KLI,Hxc
kα − ūHxc

kα )

}
.
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With that definition we introduce

Tα(x) =
∑

k

φkα(x)η
†
kα(x) + c.c. , (3.106)

and rewrite Eq. (3.102) as follows

vKLIHxc,α(x) = vKLIHxc,α(x) +
1

2ρα(x)
Tα(x) . (3.107)

Similarly to Kümmel and Perdew we approximate the density with a constant cT and use the update
procedure

vKLI,(new)Hxc,α (x) = vKLI,(old)Hxc,α (x)− cTTα(x) . (3.108)
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3.3 Including correlations at second order

As seen inChapter2formatter, contributions beyond theHartree-Fock level play an important
role in nuclear physics. Due to the similarities of Hartree-Fock and the exact-exchange functional
one can conclude that correlations are crucial here as well. In the following we first want to derive
an exact formula for EHxc using many-body perturbation theory and then study the contributions at
second order in detail. This Section follows the discussion of Ref. [35], where more details can be
found.

3.3.1 Derivation of an exact expression for EHxc

For this derivationwe start with theKohn-ShamHamiltonian as the unperturbed system. Assuming
the Kohn-Sham potential is known, this Hamiltonian reads

ĤKS =
∑

α

ĤKS,α = T̂ +
∑

α

∫
d3x ρ̂α(x)vKS,α(x) , (3.109)

with ground-state energy EKS and ground state |ΦKS ⟩, written as a slater determinant in second
quantisation,

|ΦKS ⟩ =
∏

εkα⩽εF

â†kα| 0 ⟩ . (3.110)

Here âkα and â†kα denote the annihilation and creation operator for the single-particle states φkα, re-
spectively, and | 0 ⟩ the Kohn-Sham vacuum, i.e., âkα| 0 ⟩ = 0. The Kohn-Sham energy and density
(being equal to the density of the interacting system by construction) read

EKS = TKS +
∑

α

∫
d3x ρα(x)vKS,α(x) =

∑
k,α

θkαεkα , (3.111)

ρα(x) = ⟨ΦKS |ρ̂α(x)|ΦKS ⟩ =
∑

k

θkα|φkα(x)|
2 . (3.112)

From the Kohn-ShamHamiltonian we also obtain the explicit form of the field operator in theHeis-
enberg picture,

ψ̂KS,α(x, t) = exp(iĤKS,αt)ψ̂α exp(−iĤKS,αt) =
∑

k

âkαφkα(x)e
−iεkαt , (3.113)

from which we can evaluate the Kohn-Sham Green’s function,
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Gα(x, t; x′, t′) = iθ(t′ − t)
∑
εkα⩽εF

φkα(x)φ
†
kα(x

′)e−iεkα(t−t′)

− iθ(t − t′)
∑
εkα>εF

φkα(x)φ
†
kα(x

′)e−iεkα(t−t′) . (3.114)

As mentioned above, we want to take ĤKS as reference and decompose the full Hamiltonian of the
interacting system Ĥ = T̂ + V̂ + V̂ext into ĤKS and a remainder (perturbation) Ĥ1. Thus, Ĥ1 com-
pensates for the interaction parts which are not present in the Kohn-Sham Hamiltonian, i.e.,

Ĥ1 = V̂ −
∑

α

∫
d3x ρ̂α(x)vHxc,α(x) , (3.115)

where vHxc,α = vKS,α − vext, as in the previous Section.

Following the standard derivations of many-body perturbation theory one finally obtains an expres-
sion for the full Hartree-exchange-correlation energy, including correlations

EHxc = E1 +
∑

α

∫
d3x ρα(x)vHxc,α(x)

= −1
2

∑
α,β

∫
d3x d3y ⟨ΦKS |ψ̂

†
α(x)ψ̂

†
β(y)V̂(x, y)ψ̂β(y)ψ̂α(x)|ΦKS ⟩

+ lim
ε→0

∞∑
n=0

(−i)n

(n + 1)!

∫ ∞

−∞
dt1 · · · dtn e−ε(|t1|+...+|tn|)

× : ⟨ΦKS |T[Ĥ1,I(0)Ĥ1,I(t1) · · · Ĥ1,I(tn)]|ΦKS ⟩ : , (3.116)

where the : correspond to summing only over connected diagrams according to Wick’s theorem.
Note that the first term is the first-order contribution corresponding to the exchange-only energy
(3.63). The second term corresponds to the correlation energy Ec, for which we need the Green’s
function (3.114) and vHxc. Thus, the correlation energy depends on φkα, εkα and vHxc. The depend-
ence on vHxc shows that Ec is a non-linear functional – it depends on its own functional derivative.

There are two ways to solve this problem: Either one solves the non-linear equation directly or one
tries to linearise it first. Since the first is a highly non-trivial task we pursue the latter strategy [243].

3.3.2 The correlation energy at second order

The linearisation of the OEP equation based on Eq. (3.116) motivates an expansion in interaction
vertices (in Coulomb systems that corresponds to an expansion in powers of the coupling e2). The
first order is the exchange-only energy and all higher terms contribute to Ec. Thus, we decompose
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the energy and the potential as follows

EHxc = EHx + E(2)
c + . . . , (3.117)

vHxc,α(x) = vHx,α(x) + v(2)c,α (x) + . . . . (3.118)

Inserting these series into the OEP equation (3.58) leads to a power series with respect to the po-
tential vertex on both the left- and right-hand side. At the lowest order, i.e., terms containing only
one potential matrix element, the left-hand side contains only vHx and the right-hand side is solely
determined by the functional derivative of EHx with respect to the orbitals. Hence, we end up with
only the OEP equations in the exact-exchange approximation. At second order, however, the non-
linearity shows up for the first time. Considering terms where the potential matrix elements appear
twice, we find that the second-order correlation functional is given by two terms

E(2)
c = EMBPT(2)

c + EΔHF
c . (3.119)

The first contribution is given by the second-order many-body perturbation theory expression as in
Eq. (3.38) with the Hartree-Fock orbitals and energies replaced by the Kohn-Sham orbitals and en-
ergies. The second term accounts for the systematic error using the Kohn-Sham Hamiltonian in the
perturbative expansion rather than the commonly used reference – the Hartree-Fock Hamiltonian.
At lowest order this difference is given by

EΔHF
c =

∑
σ,α

∑
i,a

θiσ θ̄aα

εiσ − εaα

∣∣∣∣∫ d3x φ†
iσ(x)vHx,α(x)φaα(x)−

∑
j,τ

θjτ(iσ jτ|V|jτ aα)
∣∣∣∣2 , (3.120)

where the matrix element ( ·|V| · ) is defined as in Eq. (3.39). As the OEP energy is always higher
than the Hartree-Fock energy this contribution is always negative.

In order to use the correlation-energy functional (3.119) in a self-consistent solution of the OEP
equation, as discussed in the previous Section, we need to evaluate the functional derivative with
respect to the density to obtain the correlation part of the potential,

v(2)c,α (x) =
δE(2)

c [φkα, εkα, vHx,α]

δρα(x)
. (3.121)

The first term EMBPT(2)
c does not depend on vHx and the evaluation is straightforward. We discuss

the details below. The second term, however, depends on the Hartree-exchange potential explicitly
and thus involves not only derivatives with respect to the orbitals and energies when using the chain
rule of functional differentiation in Eq. (3.47) but also with respect to the potential. Though fun-
damentally not different from the other differentiations, this calculation is rather cumbersome in-
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cluding also differentiations of the response function and inhomogeneity of the OEP equation. For
Coulomb systems the total contribution of EΔHF

c was found to be rather small and also for nuclear
systems we find only little difference between the Hartree-Fock and OEP result, as can be seen in
the next Chapter. The uncertainties of the second-order MBPT result are, especially for unevolved
nuclear forces, larger than this difference. We thus neglect EΔHF

c in these first explorations.

Functional derivatives of the correlation energy

According to many-body perturbation theory the correlations contribution writes [see Eq. (3.38)]

Ec[φ, ε, θ] =
1
4

∑
αi,αj,αa,αb

∑
i,j,a,b

θiαiθjαj θ̄aαa θ̄bαb

∣∣(iαijαj|V|aαabαb)− (iαijαj|V|bαbaαa)
∣∣2

εiαi + εjαj − εaαa − εbαb

=
1
2

∑
αi,αj,αa,αb

∑
i,j,a,b

θiαiθjαj θ̄aαa θ̄bαb

εiαi + εjαj − εaαa − εbαb

× (iαijαj|V|aαabαb)
[
(aαabαb|V|iαijαj)− (bαbaαa|V|jαjiαi)

]
, (3.122)

where thematrix elements are defined as in Eq. (3.41). Accordingly to the case without correlations,
the orbital shifts are given by

ψ†
kα(x) =

∫
d3x′ φ†

kα(x
′)
[
uHx
kα (x

′) + uckα(x
′)− θkαvHxc,α(x′)

]
Gkmt(x

′, x)

=
∑
l̸=k

∫
d3x′

φ†
kα(x

′)
[
uHx
kα (x′) + uckα(x′)− θkαvHxc,α(x′)

]
φlα(x

′)φ†
lα(x)

εlα − εkα
, (3.123)

and the orbital-shift equation now reads

[
HKS,α(x)− εkα

]
ψ†

kα(x) =
[
uHx
kα (x) + uckα(x)− θkαvHxc,α(x)− ūHx

kα − ūckα + v̄Hxc
kα

]
φ†

kα(x) , (3.124)

where we calculate the u-functions

uHx/c
kα (x) =

1
φ†

kα(x)
δEHx/c

δφkα(x)
, (3.125)

using

δ(aαabαb|V|cαcdαd)

δφkα(x)
= δckδααc

∫
d3x′ φ†

aαa
(x)φ†

bαb
(x′)V(x− x′)φdαd

(x′)

+ δdkδααd

∫
d3x′ φ†

bαb
(x)φ†

aαa
(x′)V(x− x′)φcαc

(x′) , (3.126)

and find for the correlation term
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uckα(x) =
1
2

1
φ†

kα(x)

∑
αi,αj,αa,αb

∑
i,j,a,b

θiαiθjαj θ̄aαa θ̄bαb

×
(aαabαb|V|iαijαj)− (aαabαb|V|jαjiαi)

εiαi + εjαj − εaαa − εbαb

×
[
δkaδααa

∫
d3x′ φ†

iαi
(x)φ†

jαj
(x′)V(x− x′)φbαb

(x′)

+ δkbδααb

∫
d3x′ φ†

jαj
(x)φ†

iαi
(x′)V(x− x′)φaαa

(x′)
]

+
1
2

1
φ†

kα(x)

∑
αi,αj,αa,αb

∑
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∫
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=
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(x)φ†

bαb
(x′)Vas(x− x′)φjαj

(x′) . (3.127)

The Hartree-exchange term uHx
kα is given as in the exact-exchange approximation, Eq. (3.64). Except

for theta function θkα it is independent of the quantum numbers (k, α). In contrast, uckα has a non-
trivial dependence on the orbital quantum numbers. Furthermore, in the orbital-shift equation we
also get a non-vanishing term∂Ec/∂εkα since the correlation energy explicitly depends on the single-
particle energies:

∑
k

[
ψ†

kα(x)φkα(x) + c.c.
]
=

∑
k

φ†
kα(x)φkα(x)

∂Ec

∂εkα
. (3.128)
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For the derivative on the right hand side we obtain

∂Ec

∂εkα
= −1

4

∑
αi,αj,αa,αb

∑
i,j,a,b

θiαiθjαj θ̄aαa θ̄bαb(δkiδααi + δkjδααj − δkaδααa − δkbδααb)

×
∣∣(iαijαj|Vas|aαabαb)

∣∣2
(εiαi + εjαj − εaαa − εbαb)

2 . (3.129)

From this equation we can easily verify the consistency criterion for the energy functional, which
was derived in Eq. (3.68):

∑
k,α

∂Ec

∂εkα
= 0 . (3.130)

Details on the second-order calculation

The solution algorithm is the same as discussed above. However, in addition to the exact-exchange
term(3.83)weneed to calculateuckα. In practiceweonly need ũckα ≡ φ†

kαu
c
k,α in termsof theharmonic-

oscillator basis:

ũckl,α ≡
∫

d3x ũckα(x)φ
0
lα(x)

=
1
2
θkσ

∑
αj,αa,αb

∑
j,a,b

θjαj θ̄aαa θ̄bαb

εkα + εjαj − εaαa − εbαb

Akjab,ααjαaαbM
lα
baj,αbαaαj

+
1
2
θ̄kα

∑
αi,αj,αb

∑
i,j,b

θiαiθjαj θ̄bαb

εiαi + εjαj − εkα − εbαb

Bkbij,ααbαiαjM
lα
jib,αjαiαb

, (3.131)

where we have defined

Mdαd
abc,αaαbαc

≡
∑

n′a,n′b,n
′
c

a†nan′a,αa
a†nbn′b,αb

ancn′c,αc⟨ a′αab′αb |Vas| c′αcdαd ⟩ , (3.132)

and

Akjab,ααjαaαb ≡
∑
n′b

anbn′b,αbM
b′αb
kja,ααjαa

, (3.133)

Bkbij,ααbαiαj ≡
∑
n′j

anjn′j ,αjM
j′αj
kbi,ααbαi

. (3.134)

With this we conclude the discussion of the formalism and present numerical details and calcu-
lations for neutron drops in the next Chapter.



4
Finite neutron-rich systems

Neutron drops are a unique laboratory to test and improve empirical energy-density func-
tionals and to develop ab initio functionals. Empirical functionals have to be fitted to data but on
the neutron-rich side there are weaker constraints from experiments. One approach to improve
the functional’s predictions on the neutron-rich side are fits to infinite neutron matter (see, e.g.,
Ref. [253]). Such fits to infinite systems, however, may only improve the bulk properties of the
functional and cannot constrain, e.g., gradient terms. A more straightforward approach would be
fits to neutron drops (for recent calculations using quasi-exact methods see, e.g., Refs. [172, 254,
255]). As neutron-only systems are unbound one calculates neutron drops in external traps, typic-
ally harmonic-oscillator or Wood-Saxon potentials. Such calculations can then be used to calibrate
energy-density functionals [254] or as input for fits.
For the construction of non-empirical functionals neutron drops in external potentials are
ideal [256]. Theexternal potential plays a central role in theHohenberg-Kohn theoremas the unique
energy-density functional is independent of it (see. Section 1.3). By varying the external potential
one can probe the functional. This makes neutron drops preferred to self-bound nuclei, which also
feature problems with symmetry breaking [257].
In this Chapter we present calculations for neutron drops usingmany-body perturbation theory and
the optimised effective potential method (see Chapter 3). We start with calculational details and
benchmark studies and then show results obtained with local chiral interactions.
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4.1 Calculational details, approximations, and benchmarks

Starting point for our studies of neutron drops are the calculations by Drut and Platter in
Ref. [36]. They calculated neutron drops in a harmonic-oscillator potential using the exact-exchange
(EEX) approximationof theOEPmethod. Thesewere the first calculations in nuclear physicswithin
thismethod and they compared their results toHartree-Fock (HF) calculations finding a remarkable
agreement. Their calculations were done in a cartesian harmonic-oscillator basis using the trap fre-
quency also for the basis, such that it forms an eigenbasis of the non-interacting system.
Drut and Platter used a simple toy model for the interaction among the neutrons: The Minnesota
interaction. It is a soft local NN-only interaction consisting of three Gaussians [258]. In coordinate
space it takes the form

V(r, r′) =
1
2

[
VR(r) +

1
2
(1+ Pσ)Vt(r) +

1
2
(1− Pσ)Vs(r)

]
(1+ Pr)δ(3)(r− r′) , (4.1)

with spin-exchange operatorPσ =
1
2(1+ σσσ1 · σσσ2), coordinate-space exchange operatorPr, and the

functions Vi(r) = V0i exp(−κir2), where i = R, t, s and the coefficients Vi0 and κi are chosen to
reproduce the scattering length and effective-range parameters of NN scattering. We list their values
in Appendix C. The simple form of the Minnesota interaction makes it easy to implement and is
on the other hand semi-realistic with reasonable results for the binding energies of light nuclei. It
was also used in test calculations of the density-matrix expansion (DME) in Ref. [256] because its
softness somewhat imitates renormalisation-group-evolved potentials, which are ideal to use in the
DME [34].
We also performed calculations in a cartesian basis and could reproduce the results of Ref. [36]. An
advantage of a cartesian basis is that one can calculate arbitrary particle numbers and spin states.
However, it is computationally expensive, especially when using more advanced potentials and also
including correlations at second order. As theMinnesota potential has no spin-orbit or tensor terms
one can perform the calculations mainly in one direction only and easily extend it to three dimen-
sions. This is not possible for chiral interactions, whichmakes the use of a cartesian basismuchmore
expensive for these interactions. We thus work in a spherical basis, in which we can make use of the
symmetries of the system. However, this limits us to spherical closed-shell systems with neutron
numbers N = 2, 8, 20, . . . and symmetric spin distributions.
The numerical calculations are performed in aC++ code that allowsHartree-Fock and second-order
many-body-perturbation-theory calculations aswell as calculations in the exact-exchange approxim-
ation of the OEP method with and without correlations at second order. The inclusion of correla-
tions, however, is limited to the approximations discussed below. Main output observable is the total
energyE and the individual contributions to it (kinetic energyEkin, external energy from the trapEext,
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and the interaction contributions EHF, E(2) or EHx, Ec). We also can calculate the root-mean-square
(rms) radius

√
⟨r2⟩with

⟨r2⟩ = 1
N

∫
d3r r2ρ(r) , (4.2)

and the density profile ρ(r).

4.1.1 Matrix-elements in single-particle basis

The derivations in Chapter 3 make use of an expansion of the orbitals in single-particle harmonic-
oscillator states. The calculations thus require the potential matrix elements in the corresponding
harmonic-oscillator single-particle basis. Nuclear interactions, however, are usually formulated in a
relative basis, either in momentum or coordinate space. A widely used method to transform the rel-
ative potential matrix elements in a single-particle basis is the Talmi-Moshinsky transformation and
corresponding harmonic-oscillator brackets. For details on this transformation see, e.g., Ref. [259].
We use a Fortran code provided by Morten Hjorth-Jensen with modifications from Johannes Si-
monis to transform the matrix elements given in a relative momentum-space basis into a single-
particle harmonic-oscillator basis. It requires partial-wave decomposed matrix elements in momen-
tum space as input. We thus first Fourier transform the Minnesota and local chiral interactions and
decompose them into partial waves. For details on the partial-wave decomposition of theMinnesota
potential see Appendix C and for the local chiral interactions see Ref. [152]. The integrals in the
Fourier transformation are performed in a C++ routine using the adaptive integration algorithm
QAGof the GNUScientific Library (GSL) [260]. The local chiral interactions are provided by Ingo
Tews and have been tested in neutron-matter calculations [150, 151]. We have tested the partial-
wave-decomposed matrix elements of the Minnesota potential in Faddeev calculations of 3H and
3,4He and found good agreement with Ref. [258].

4.1.2 Model space truncation and approximations

In the numerical calculations the expansion of the orbitals in harmonic-oscillator states needs to be
truncated. The limit emax ⩾ 2k + l assures a truncation at shell closures. Here, k denotes the radial
quantum number and l the angular momentum of the shells included in the model space. Due to
runtime (and memory) constraints we are limited to emax ⩽ 10. In the cartesian calculations Drut
andPlatter found reasonable convergence on theHartree-Fock/ exact-exchange level atmodel-space
sizes of Nmax = k3max,x = 216, where kmax,x is the truncation of the one-dimensional harmonic-
oscillator basis. These 216 basis states are reached in a spherical basis at emax = 7, which corresponds
to 240 single-particle states. However, due to the different symmetries a direct comparison may not
be possible.
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We have studied the KLI approximation, discussed in Section 3.2.3, which is widely used in
quantum chemistry. For small model spaces we find a good agreement with the exact-exchange res-
ults obtained without the KLI approximation. However, it requires more iterative steps in the solu-
tion algorithm and in our calculations of, e.g., 8 neutrons in an ℏω = 10MeV trap we do not obtain
converged results for emax ≳ 5. This comes as a result of the solution algorithm used for the KLI
approximation. As discussed in Section 3.2.3, we cannot evaluate Eq. (3.101) directly, when using
nuclearmatrix elements expanded in some basis because it involves a division by the density ρ(x). In
quantum chemistry the interaction is much simpler and one does not need this expansion and can
thus easily evaluate Eq. (3.101). When using the solution algorithmdeveloped in Sec. 3.2.3, which is
based on the standard algorithm by Kümmel and Perdew, we cannot perform the sub-iteration loop,
iterating the OEP with the same orbitals (see Fig. 3.1). This sub-iteration, however, stabilises and
speeds up the convergence of the solution algorithm. We thus conclude that the KLI approximation
does not bring any benefits for nuclear systems – at least with the current solution algorithm and
implementation.
When including correlations at second order we observe convergence problems in the solution al-
gorithm. To avoid these problems we make two approximations: We (i) limit the solution for the
orbital shifts to occupied orbitals and (ii) neglect the derivatives with respect to the single-particle
energies in the update of thematrix Sα in Eq. (3.86). The latter is standard within the KLI approxim-
ation. Whenwe do not limit the second step ofOEP iteration to occupied orbitals (which is exact in
the first-order exact-exchange approximation) we find very unnatural mixture of the single-particle
levels leading to the non-convergent behaviour.

4.1.3 Benchmark calculations

In order to test the calculational routineswemake benchmark calculationswith theMinnesota inter-
action for 8 neutrons in a trap with frequency ℏω = 10MeV and compare it to the cartesian calcula-
tions of Ref. [36]. In Fig. 4.1 we show results for the total energy (left) and the radius (right) versus
basis truncation emax. While Drut and Platter found differences of the exact-exchange (dashed or-
ange line) andHartree-Fock (solid orange line) result of the order of∼10 keV, we find a remarkable
agreement of bothmethods (filled blue and open red circles, respectively) for all emax, and converged
results in agreement with Drut and Platter at emax = 7. We further agree with Hartree-Fock calcula-
tions of Ref. [256] (black dots). The very small deviations may be traced back to the only one-digit
precision given in this Reference. Within Ref. [256] also no-core full-configuration (NCFC) cal-
culations were performed, which we show as a solid black line with uncertainty estimates as shaded
region. These non-perturbative results are assumed to be quasi exact. At first order (HF and EXX)
the converged results for the energy are about 4MeV off from theNCFC calculations but the results
for the radius lies within the NCFC uncertainty band.
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Figure 4.1: Total energy (left) and radius (right) of 8 neutrons in a harmonic-oscillator potential with
ℏω = 10MeV as a function of the model-space size emax employing the Minnesota interaction. We show
our calculations in many-body perturbation theory (blue) at Hartree-Fock level (filled circles) and second
order (filled squares) and using the OEP (red) in the exact-exchange approximation (open circles) and with
correlations at second order (open squares). For comparisonwe also showHartree-Fock (black dots) and no-
core full-configuration (solid black line with uncertainty estimate as grey band) calculations from Ref. [256]
and theHartree-Fock (solid orange line) and exact-exchange (dashed orange line) calculations fromRef. [36],
which were obtained in a cartesian basis.

The inclusion of correlations at second order (squares) changes the convergence pattern of the en-
ergy. The calculations in many-body perturbation theory (blue) do not plateau within the model
spaces investigated and the results are also still far off (> 2MeV) from the NCFC calculation. This
comes as a surprise as theMinnesota potential is very soft and one expects good perturbative conver-
gence for such interactions [162]. Including correlations to the exact-exchange approximation (red)
seems to be systematicallyworse than the second-ordermany-body perturbation-theory calculation,
even though the orbitals are variedwithin thismethod. This can also be seen in the calculation of the
radius which ismore sensitive to the orbitals. However, the effect ismuch smaller for this observable
and seems to improve with emax.

To study these effects further we also performed calculations with larger trap frequency
ℏω = 20MeV. The results are shown in Fig. 4.2. At first order we still find for emax ≳ 7 remarkable
agreement with Drut and Platter and within the numerical precision with the Hartree-Fock calcu-
lations of Ref. [256]. The second-order results show a very unnatural pattern and are clearly not
converged. Note that due to runtime constraints we could not perform second-order OEP calcula-
tions for emax = 10. These involve a calculation of the second-order energy in every iterative step and
are thus computationally much more expensive than many-body perturbation theory. These much
more pronounced effects might be caused by higher densities in this more compressed system.
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Figure 4.2: Total energy (left) and radius (right) of 8 neutrons in a harmonic-oscillator potential with
ℏω = 20MeV as a function of the model-space size emax employing the Minnesota interaction. See Fig. 4.1
for details.

Figure 4.3: Density profile of 8 neutrons in a harmonic-oscillator potential with ℏω = 10MeV (left) and
ℏω = 20MeV (right). We compare our spherical Hartree-Fock calculations (blue lines) to the cartesian
Hartree-Fock calculations (orange symbols) of Ref. [36] at various model-space sizes emax and Nmax, respect-
ively. Note that both the Hartree-Fock and exact-exchange approximation lead to almost identical density
profiles for the spherical and cartesian bases. This also holds when including correlations at second order to
the exact-exchange approximation (see solid red line obtained at emax = 10). As reference we show results
obtainedwith the no-core full-configuration calculation of Ref. [256] with uncertainty estimates (grey band).
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In Fig. 4.3 we show the density profiles for both trap frequencies at different emax. At ℏω = 10MeV
we can compare to the cartesian calculations of Ref. [36] (orange symbols) and theNCFC results of
Ref. [256] (grey band). For claritywe do not show results for bothHartree-Fock and exact-exchange
as the density profiles are almost exactly identical. This is still truewhen including correlationswhich
we indicate by showing results at emax = 10 (red line), which lie almost on top of the first-order
results (solid blue line). Comparing the cartesian to the spherical calculations at different basis sizes
is only possible at the converged level, i.e., for Nmax ⩾ 125 and emax ⩾ 7. The small deviations from
the NCFC results observed in the radius calculations are also reflected in the density profile with
slightly larger central densities for the NCFC calculations, resulting in a smaller rms radius.
For trap frequency ℏω = 20MeV we find much higher central densities around and slightly above
nuclear saturation density. Note that to our knowledge there do not exist published results against
which we could benchmark this density profile. Perturbative calculations of neutron matter up to
ρ = 0.2 fm−3, however, showed a systematic convergence pattern. And the second-order contri-
butions were of the order of 1MeV per nucleon at nuclear saturation density compared to the total
energy of∼12MeV per nucleon.
We could not resolve the issue of the unnatural convergence pattern for theMinnesota interaction in
the second-order calculations but we find no such behaviour for the local chiral interactions, which
we discuss in the next Section.
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4.2 Neutron drops based on local chiral interactions

We have calculated neutron drops in a harmonic-oscillator potential using local chiral inter-
actions with cutoffs R0 = 1.0 and 1.2 fm and cutoff Λ̃ = 1000MeV in the regularisation of the
spectral function in the two-pion exchanges at NLO. These potentials have also been employed in
neutron drop calculations of Ref. [172] using the quasi-exact auxiliary-field diffusion Monte Carlo
(AFDMC) method. In Figs. 4.4 and 4.5 we show the total energy (first row), rms radius (centre),
and density profile (bottom) of 8 neutrons in a trap with frequency ℏω = 10MeV for model space
sizes emax = 2 − 10. From left to right we show calculations at LO, NLO, and N2LO, respectively.
As in the benchmark calculations, we compare the Hartree-Fock (filled blue circles/ lines) to the
exact-exchange approximation of theOEPmethod (open red circles/ lines). The second-order con-
tributions are depicted as squares: Filled blue for many-body perturbation theory and open red for
the OEP method. As reference we show the AFDMC results as black line with its calculational un-
certainty as grey band. Note that due to runtime constraintswedid not obtain fully converged results
in the largest model spaces (emax = 10) for the second-order contributions to the exact-exchange
approximation for some potentials. With emax the runtime of each iterative step of the OEP solution
algorithm increases and also more iterations are needed to achieve convergence.
As a general trend we find very natural convergence patterns of the second-order calculations for
both cutoffs at all chiral orders when compared to the Minnesota interaction. We also find that the
potential with the lower coordinate-space cutoff R0 = 1.0 fm is less perturbative with our results
more off from the AFDMC calculations and a slower second-order convergence with respect to the
model-space size. This matches our expectations as the low coordinate-space cutoff corresponds to
higher momentum-space cutoffs. This was also seen in calculations of neutron matter [150–152,
172] where many-body perturbation theory was benchmarked to AFDMC simulations.
For both cutoffs the LO calculations show the worst convergence pattern which may be traced back
to higher central densities reflected in smaller radii. This may be a result of stronger S-wave attrac-
tion at this order. Even at large emax we find strong changes in the orbitals, which can be seen in the
density profile. For the LO potentials we also find large orbital changes in the second-order OEP
calculations. For R0 = 1.2 fm this can be seen at emax = 10 in the radius with ∼ 0.1 fm differ-
ence between the exact-exchange or Hartree-Fock and the second-order OEP results and also in the
density profile where the orbital variation at second order leads to an increase of the central density
of∼0.015 fm−3.
Similarly to the benchmark calculations with the Minnesota interaction we find at first order for
the NLO and N2LO potentials converged results for emax ≳ 6. This holds for the energy and the
radius and we find only minor changes in the density at low r. Including second-order contribu-
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Figure 4.4: Energy (top row), radius (centre), and density profile (bottom) for different model-space sizes
emax for 8 neutrons in a harmonic-oscillator trap with ℏω = 10MeV obtained with local chiral interactions
with R0 = 1.0 fm and SFR cutoff Λ̃ = 1000MeV. From left to right column we show LO, NLO, and N2LO
results, respectively.



116 CHAPTER 4. FINITE NEUTRON-RICH SYSTEMS

Figure 4.5: Energy (top row), radius (centre), and density profile (bottom) for different model-space sizes
emax for 8 neutrons in a harmonic-oscillator trap with ℏω = 10MeV obtained with local chiral interactions
with R0 = 1.2 fm and SFR cutoff Λ̃ = 1000MeV. From left to right column we show LO, NLO, and N2LO
results, respectively.
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Figure 4.6: Total energy (left) and radius (right) of 8 neutrons in a harmonic-oscillator potential with ℏω =
20MeV as a function of the model-space size emax employing the local chiral N2LO interaction with R0 =
1.2 fm. See Fig. 4.5 and text for details.

tions changes the picture. We did not obtain full-converged results in any potential. The best in
this sense might be the N2LO R0 = 1.2 fm potential, where we would assume converged energies
around emax = 12 when naïvely following the trend. This would also agree nicely with the AFDMC
calculation. A way to improve the convergence would be through the use of renormalisation-group
techniques to evolve the potentials to lowermomenta, whichwould improve the convergence [162].
This would in particular be relevant when calculating larger systems.
For the NLO andN2LO potentials we also find only small variations in the orbitals, when including
second-order correlations in the OEP calculations. The radii and central densities slightly decrease
at large emax and for the energieswe systematically find smaller second-order contributions than from
many-body perturbation theory for all emax ≥ 3. Thismight be an indication that the approximation
of varying only the occupied orbitals is not sufficient and one needs to develop another method to
circumvent the convergence problems, discussed in the previous Section.
Note that for a consistent calculation at N2LO one would also need to include leading 3N forces,
which our formalism and code is currently not capable of. The inclusion of 3N forces would be a
natural next step and can either be done directly by extending the formalism of Chapter 3 or indir-
ectly via normal-ordered 3N forces, where the Hartree-Fock state could be used as reference in a
first-order approximation.

Wehave also calculated the system of 8 neutrons in a trap with ℏω = 20MeV using theN2LO
potentialwithR0 = 1.2 fm. We showthe total energy and radius inFig. 4.6using the samedefinitions
as in the previous Figures. At this trap frequencywe do not have results from anAFDMCcalculation
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Figure 4.7: Total energy (left) and radius (right) of 20 neutrons in a harmonic-oscillator potential with ℏω =
10MeV as a function of the model-space size emax employing the local chiral N2LO interaction with R0 =
1.2 fm. See Fig. 4.5 and text for details.

as reference. When comparing the second-order curves with those obtained with the Minnesota
potential (see Fig. 4.2) we observe a completely different picture. With the chiral interaction the
convergence pattern appears much more natural, even though the calculations are not converged
with respect to themodel-space size. The general trends of the results agree with those obtained in a
trap with ℏω = 10MeV.
When calculating larger systems the model-space limitations become more apparent. We show in
Fig. 4.7 calculations of 20 neutrons in a trap with ℏω = 10MeV using the same N2LO R0 =

1.2 fm interaction. Especially the radius seems not to be converged, even at first order. We also
find minor changes in the energy when going from emax = 9 to 10. For such systems clearly using
a renormalisation-group evolved potential would be more efficient and could speed up the conver-
gence.

In summary we state our main findings and conclusions: The calculations of neutron drops
with theMinnesota and the chiral interactions confirmtheexcellent agreementof the exact-exchange
approximation of OEP and Hartree-Fock. However, we have found that the energies obtained in
the second-order OEP calculations are systematically worse than those from second-order many-
body perturbation theory. This was not expected but might be caused by the approximations made.
Further studies avoiding these approximations may resolve these issues.
The convergence with respect to the model-space size might be addressed using renormalisation-
group-evolved interactions and for a consistent and more realistic calculation the inclusion of 3N
forces should be pursued.
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The next steps towards the construction of an ab initio energy-density functional should be twofold:
One can use our calculations to constrain empirical functionals, similarly to our approach in spin-
polarised neutronmatter (see Section 2.2), and one should extend the calculations to other systems.
The inclusion of protons is straightforward in the OEP method by extending the spin degrees of
freedom to isospin. With that a calculation of actual nuclei should be possible when one (gradually)
switches off the external potential. However, due to larger tensor forces and fewer Pauli blocking
effects in systems with neutrons and protons we expect worse convergence behaviours. Thus, using
renormalisation-group evolved potentials will be key. From a computationally point of view one
should also further optimise the OEP algorithm and code to go to larger model spaces or even use
a cartesian basis in order to calculate also non-spherical systems. One approach could be the use of
Broyden’smethod, whichwe applied in the calculations of the pairing gap (see Section 2.3). Another
excitingdirection couldbe comparisonswith results fromthedensity-matrix expansion,which is also
structurally easier for local interactions [256].



120 CHAPTER 4. FINITE NEUTRON-RICH SYSTEMS



5
Conclusions

In this thesis we have studied a range of phenomena of finite and infinite neutron-rich systems.
We first addressed the physics of neutron stars by studying the chiral condensate in neutron matter,
spin-polarised neutron matter, and the pairing gap in neutron matter. In the second part we focused
on finite systems by taking a step towards the development of ab initio energy-density functionals.
In particular, we calculated neutron drops within the optimised effective potential (OEP) method.
To studywhether there exists a phase transition in neutron stars to exotic phases at nuclear densities,
we have calculated the chiral condensate in neutronmatter. Our perturbative calculations using non-
local chiral interactions up toN3LO including all many-body forces show that the interaction among
neutrons impedes the restorationof chiral symmetry. Wedonot expect a phase transition at densities
n ≲ 0.3 fm−3. The uncertainties are, however, dominated by the pion-nucleon sigma term σπN,
which accounts for the quark-mass dependences of the nucleon mass.
Spin-polarised neutron matter is an extreme system which we found to behave almost like a non-
interacting Fermi gas up to nuclear saturation density. We have performed perturbative calculations
consistently up toN3LO, taking into accountmany-body forces at theHartree-Fock level. We found
very small contributions from leading and, in particular, sub-leading 3Nforces. With the assumption
that spin-polarised neutronmatter behaves like a free Fermi gas even at higher densities, we have pre-
dicted the densities at which such a polarised phase could appear in neutron stars. We also compared
our calculations of spin-polarised neutronmatter to predictions fromenergy-density functionals and
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found good agreementwith theGognyD1N interaction aswell as the Skyrme functionals SGII, SIII,
SkM∗, SkO, and Sly5. It will be interesting to use our results as additional neutron-matter constraint
for modern functionals. Spin-polarised matter can also be used as a benchmark system for lattice
QCD. For that we have varied the pion mass in our calculations, which makes it easier to calculate
the system in lattice QCD and provide results in a range mπ = (100− 180)MeV.
We have also studied the pairing gap in neutronmatter in the BCS approximation in the 1S0 and 3P2−
3F2 channel using two independent solution algorithms: A new modified direct-iteration method
and the so-called Khodelmethod. On theNN level, using local and semi-local chiral interactions we
found similar results for the 1S0 pairing gap and also at lowermomenta in the triplet channel 3P2−3F2

for the highest chiral-order potentials (N2LO for local andN4LO for semi-local potentials). We also
provided an uncertainty estimate that gives a confidence level at which especially the highest-order
calculations may be trusted. The inclusion of many-body forces, at present limited to the traditional
non-local interactions, up to N3LO decreased the 1S0 pairing gap to a small extent. In the 3P2−3F2

channel the picture is not as clear, with different predictions for the NN potentials used, especially
at high densities. Further investigations with non-local and (semi-)local many-body forces will shed
light towards a better understanding of triplet pairing in neutron matter.
Current nuclear energy-density functionals are based on empirical parametrisation and fits to stable
nuclei. The construction of an ab initio functional directly connected to the nuclear interaction is an
important goal of nuclear physics. A promising approach is the use of orbital-dependent functionals
within the framework of Kohn-Sham theory. We pursued the method of optimised effective poten-
tials. For that we have developed the inclusion of second-order correlations to the exact-exchange
approximation and the use of chiral interactions in a spherical harmonic-oscillator basis.
In our calculations of neutron drops in external harmonic-oscillator traps using local chiral interac-
tions on the NN level we confirmed that the first-order exact-exchange approximation of the OEP
method gives almost identical results as the Hartree-Fock approximation. At second order we were
limited to approximations, making the results obtained within the OEP formalism not competitive
with second-ordermany-body perturbation-theory calculations. We also studied theKLI approxim-
ation, which is widely used in quantum chemistry and found good agreement at small model spaces
but no benefits for a nuclear-physics calculation. In the future further studies on how to include the
second-order correlations into the OEP method are crucial for the derivation of an ab initio energy-
density functional within this framework. Also the inclusion of low-momentum interactions using
renormalisation-group techniques and the inclusion of 3N forces will be exciting topics.
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A
Numerical details

The numerical values of constants and low-energy couplings used throughout this thesis are
summarised in this Appendix.

Table A.1: Values of physical constant used in the numerical calculations.

Constant symbol numerical value
nucleon mass mN 938.92MeV
average pion mass mπ 138.04MeV
pion decay constant fπ 92.4MeV
axial coupling constant gA 1.29
conversion factor ℏc 197.327MeV fm

Table A.2: Low-energy couplings appearing in the NN sector 3N forces of the non-local chiral interactions
used in the calculations of neutron matter.

NN potential CS [fm2] CT [fm2] c1 [GeV−1] c3 [GeV−1]

N3LO EM 500MeV [145, 146] −4.19 −0.45 −0.81 −3.20
N3LO EGM 450/500MeV [148] −4.71 −0.24 −0.81 −3.40
N3LO EGM 450/700MeV [148] 3.90 0.22 −0.81 −3.40
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Table A.3: Values of couplings c1, c3 recommended for 3N calculations at order N2LO/N3LO from Krebs,
Gasparyan, and Epelbaum (KGE, Ref. [132]), and the range adopted in the calculation of neutron matter of
this thesis.

NN potential c1 [GeV−1] c3 [GeV−1]

N2LO KGE [132] −(0.26− 0.58) −(2.80− 3.14)
N2LO KGE (recommended) [132] −(0.37− 0.73) −(2.71− 3.38)
N3LO KGE [132] −(0.75− 1.13) −(4.77− 5.51)
N2LO this work −(0.37− 0.81) −(2.71− 3.40)
N3LO this work −(0.75− 1.13) −(4.77− 5.51)

.



B
Details on the polarised-neutron-matter calculation

In this Appendixwe give details about the partial-wave decomposition of theNN interactions and
the angle-averaging used in the calculation of spin-polarised neutron matter.

For a general two-body state with relative momentum k, spin S and spin-projection mS,

| kSmS ⟩ =
∑
l,ml

(4π)ilYml†
l (k̂)| k ⟩| lmlSmS ⟩ (B.1)

one decomposes the NN interaction VNN

⟨ kSmS |VNN(1−P12)| kSmS ⟩ =
∑

l,l′,ml,m′
l

J,mJ

(4π)2il−l′CJmJ
l′m′

l SmS
CJmJ

lmlSmS
Ym′

l
l′ (̂k)Y

ml†
l (̂k)

× ⟨ k |VJSll′
NN | k ⟩

[
1− (−1)l+S+1]. (B.2)

In spin-polarised neutron matter with, e.g., S = mS = 1, the anti-symmetry of the wave function
requires l = 1, 3, 5, . . .. Thus, we obtain
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⟨ k11 |VNN(1− P12)| k11 ⟩ ≡
∫

dk̂⟨ k11 |Vnn(1− P12)| k11 ⟩

=

∫
dk̂

∑
l,l′,ml,m′

l
J,mJ

(4π)2il−l′CJmJ
l′m′

l 11
CJmJ

lml11Y
m′

l
l′ (k̂)Y

ml†
l (k̂)⟨ k |VJ1ll′

NN | k ⟩[(1− (−1)]

=
∑
l,J

2(4π)2
2J + 1

3
⟨ k |VJ1ll

NN| k ⟩ , (B.3)

where we used the orthogonality of the Clebsch-Gordan coefficients and the spherical harmonics
and summed over mJ.

At second order the matrix elements are decomposed as follows

∣∣⟨ k′Sm′
S |VNN(1− P12)| kSmS ⟩

∣∣2
=

∑
l,l′ ,̃l,̃l′,J,̃J

ml,m′
l ,m̃l,m̃′

l ,mJ,m̃J

(4π)4il−l′+̃l−̃l′CJmJ
l′m′

l SmS
CJmJ

lmlSmS
C J̃m̃J

l̃′m̃′
l Sm̃S

C J̃m̃J

l̃m̃lSm̃S
Ym′

l
l′ (k̂)Y

ml†
l (k̂′)Ym̃′

l
l̃′
(k̂′)Ym̃l†

l̃
(k̂)

× ⟨ k |VJSll′
NN | k′ ⟩⟨ k′ |V

J̃S̃l̃l′
NN | k ⟩

[
1− (−1)l+S+1][1− (−1)l̃+S+1]. (B.4)

And for spin-polarised neutron matter we obtain

∣∣⟨ k′11 |Vnn(1− P12)| k11 ⟩
∣∣2 = ∣∣⟨ k′11 |VNN(1− P12)| k11 ⟩

∣∣2
=

∑
l,l′ ,̃l,̃l′,J,̃J

ml,m′
l ,m̃l,m̃′

l ,mJ,m̃J

4(4π)4il−l′+̃l−̃l′CJmJ
l′m′

l 11
CJmJ

lml11C
J̃m̃J

l̃′m̃′
l 11
C J̃m̃J

l̃m̃l11

× Ym′
l

l′ (k̂)Y
ml†
l (k̂′)Ym̃′

l
l̃′
(k̂′)Ym̃l†

l̃
(k̂)⟨ k |VJ1ll′

NN | k′ ⟩⟨ k′ |V
J̃1̃l̃l′
NN | k ⟩

=
∑
l,l′ ,̃l,̃l′

J,̃J,mJ,m̃J

4(4π)4il−l′+̃l−̃l′CJmJ
l′(mJ−1)11C

JmJ
l(mJ−1)11C

J̃m̃J

l̃′(m̃J−1)11
C J̃m̃J

l̃(m̃J−1)11

× YmJ−1
l′ (k̂)YmJ−1†

l (k̂′)Ym̃J−1
l̃′

(k̂′)Ym̃J−1†
l̃

(̂k)⟨ k |VJ1l′l
NN | k′ ⟩⟨ k′ |V

J̃1̃l′̃l
NN | k ⟩ . (B.5)

We average over all angles,∫
dk̂dk̂′

(4π)2
∣∣⟨ k′11 |VNN(1− P12)| k11 ⟩

∣∣2 = ∑
l,l′,J,̃J,mJ

4(4π)2CJmJ
l′(mJ−1)11C

JmJ
l(mJ−1)11C

J̃mJ
l(mJ−1)11C

J̃mJ
l′(mJ−1)11

× ⟨ k |VJ1l′l
NN | k′ ⟩⟨ k′ |V

J̃1ll′
NN | k ⟩ ,

=
∑
l,l′,J,̃J

4(4π)2CJ̃J
ll′⟨ k |V

J1l′l
nn | k′ ⟩⟨ k′ |VJ̃1ll′

nn | k ⟩ , (B.6)
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where we used the orthogonality of the Clebsch-Gordan coefficients and the spherical harmonics
and performed the mJ sum implicitly, using the defintion

CJ̃J
ll′ =

∑
mJ

CJmJ
l′(mJ−1)11C

JmJ
l(mJ−1)11C

J̃mJ
l(mJ−1)11C

J̃mJ
l′(mJ−1)11 . (B.7)

Without angle averaging one can rewrite Eq. (B.5) using the (anti-)symmetry and the following re-
lation for spherical harmonics [249, p. 144]

Yml
l (k̂)Y

m′
l

l′ (k̂) =
∑
L,M

√
(2l + 1)(2l′ + 1)

4π(2L + 1)
CL0

l0l′0CLM
lmll′m′

l
YM

L (k̂) . (B.8)

With that we obtain

∣∣⟨ k′11 |VNN(1− P12)| k11 ⟩
∣∣2

=
∑
l,l′ ,̃l,̃l′

J,̃J,mJ,m̃J
L,L′,M,M′

4(4π)4il−l′+̃l−̃l′CJmJ
l′(mJ−1)11C

JmJ
l(mJ−1)11C

J̃m̃J

l̃′(m̃J−1)11
C J̃m̃J

l̃(m̃J−1)11
⟨ k |VJ1l′l

NN | k′ ⟩⟨ k′ |V
J̃1̃l′̃l
NN | k ⟩

× (−1)m̃J−1

√
(2l′ + 1)(2̃l + 1)

4π(2L + 1)
CL0

l′0̃l0C
LM
l′(mJ−1)̃l(1−m̃J)

YM
L (k̂)

× (−1)mJ−1

√
(2l + 1)(2̃l′ + 1)
4π(2L′ + 1)

CL′0
l0̃l′0C

L′M′

l(1−mJ )̃l′(m̃J−1)Y
M′

L′ (k̂
′)

=
∑
l,l′ ,̃l,̃l′

J,̃J,L,L′

4(4π)3il−l′+̃l−̃l′

√
(2l′ + 1)(2̃l + 1)(2l + 1)(2̃l′ + 1)

(2L + 1)(2L′ + 1)
CL0

l′0̃l0C
L′0
l0̃l′0⟨ k |V

J1l′l
NN | k′ ⟩⟨ k′ |V

J̃1̃l′̃l
NN | k ⟩

×
∑
mJ,m̃J

CJmJ
l′(mJ−1)11C

JmJ
l(mJ−1)11C

J̃m̃J

l̃′(m̃J−1)11
C J̃m̃J

l̃(m̃J−1)11
CL(mJ−m̃J)

l′(mJ−1)̃l(1−m̃J)
CL′(m̃J−mJ)

l(1−mJ )̃l′(m̃J−1)
Ym̃J−mJ †

L (k̂)Ym̃J−mJ
L′ (k̂′) .

(B.9)

We can rewrite the expression above into the angle-averaged equation (B.6) by restricting L = L′ =

0. This implies mJ = m̃J and l = l̃′, l′ = l̃ and we write

∣∣⟨ k′11 |VNN(1− P12)| k11 ⟩
∣∣2

≈ 4(4π)2
∑
l,l′,J,̃J

(2l′ + 1)(2l + 1)C00
l′0l′0C00

l0l0⟨ k |VJ1l′l
nn | k′ ⟩⟨ k′ |VJ̃1ll′

nn | k ⟩

×
∑
mJ

CJmJ
l′(mJ−1)11C

JmJ
l(mJ−1)11C

J̃mJ
l(mJ−1)11C

J̃mJ
l′(mJ−1)11C

00
l′(mJ−1)l′(1−mJ)

C00
l(1−mJ)l(mJ−1) . (B.10)
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Using C00
lml−m = (−1)l−m1/

√
2l + 1 leads to∑

l,l′,J,̃J

4(4π)2⟨ k |VJ1l′l
nn | k′ ⟩⟨ k′ |VJ̃1ll′

nn | k ⟩
∑
mJ

CJmJ
l′(mJ−1)11C

JmJ
l(mJ−1)11C

J̃mJ
l(mJ−1)11C

J̃mJ
l′(mJ−1)11 , (B.11)

which verifies Eq. (B.6).



C
Partial-wave decomposition
of theMinnesota interaction

The Minnesota interaction is a local nucleon-nucleon potential of the form

V(r, r′) =
1
2
[
VR(r) +

1
2
(1+ Pσ)Vt(r) +

1
2
(1−Pσ)Vs(r)

]
(1+ Pr)δ(3)(r− r′) , (C.1)

with spin-exchange operatorPσ =
1
2(1+ σσσ1 · σσσ2), coordinate-space exchange operatorPr, and the

functions

Vi(r) = V0i exp(−κir2) , (C.2)

where i = R, t, s and the coefficients Vi0 and κi are given in Table C.1.

Table C.1: Coefficients of the Minnesota interaction according to Ref. [258].

i R t s
V0i 200.0MeV −178.0MeV −91.85MeV
κi 1.487 fm−2 0.639 fm−2 0.465 fm−2
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Using σσσ1 · σσσ2 = 2S(S + 1)− 3, since

S2 = (s1 + s2)2 = s21 + s22 + 2s1 · s2 =
3
4
+

3
4
+

1
2
σσσ1 · σσσ2 , (C.3)

we can write

VS(r)(1+ Pr)δ(3)(r− r′) = ⟨ SM′
S |V(r)(1+ Pr)δ(3)(r− r′)| SMS ⟩

=
1
2
[
VR(r) + S Vt(r) + (1− S)Vs(r)

]
(1+ Pr)δ(3)(r− r′) , (C.4)

where we have introduced V(r) via V(r, r′) = V(r)(1+ Pr)δ(3)(r− r′).

We Fourier transform the potential into momentum space:

⟨ k′SM′
S |V| kSMS ⟩ =

∫
d3r d3r′ ⟨ SM′

S |⟨ k′ | r′ ⟩V(r, r′)⟨ r | k ⟩| SMS ⟩

=

∫
d3r (⟨ k′ | r ⟩+ ⟨ k′ | − r ⟩)VS(r)⟨ r | k ⟩

=

∫
d3r 4π

∑
L′,M′

L

i−L′ jL′(k′r)Y
M′

L
L′ (k̂

′)
[
YM′

L†
L′ (̂r) + YM′

L†
L′ (−r̂)

]
VS(r)

× 4π
∑
L,ML

iLjL(kr)YML†
L (k̂)YML

L (̂r)

= (4π)2
∑

L,L′,ML,M′
L

iL−L′
∫

d̂r YM′
L†

L′ (̂r)YML
L (̂r)

×
∫

r2dr jL′(k′r)jL(kr)Y
M′

L
L′ (k̂

′)YML†
L (k̂)

[
1+ (−1)L

′]
VS(r)

= (4π)2
∑
L,ML

[
1+ (−1)L

] ∫
r2dr jL(k′r)jL(kr)YML

L (k̂′)YML†
L (k̂)VS(r) , (C.5)

where we have used in the first step that Prδ(3)(r − r′) = δ(3)(r + r′). On the other hand we can
write

⟨ k′SM′
S |V| kSMS ⟩

=
∑

L,L′,ML,M′
L

⟨ SM′
S |⟨ k′ | L′M′

L ⟩⟨ L′M′
L |V| LML ⟩⟨ LML | k ⟩| SMS ⟩

=
∑

L,L′,ML,M′
L

YM′
L

L′ (k̂
′)YML†

L (k̂)⟨ L′,M′
LSM

′
S |⟨ k′ |V| k ⟩| LMLSMS ⟩

=
∑
J,M

∑
L,L′,ML,M′

L

YM′
L

L′ (k̂
′)YML†

L (k̂)CJM
L′M′

LSM
′
S
CJM

LMLSMS
⟨ (L′S)JM |⟨ k′ |V| k ⟩| (LS)JM ⟩ . (C.6)



135

Thus,

VJ(M)
LL′S(k, k

′) =
∑
ML,M′

L
MS,M′

S

∫
dk̂ dk̂′ YM′

L†
L′ (k̂′)YML

L (k̂)CJM
L′M′

LSM
′
S
CJM

LMLSMS
⟨ SM′

S |⟨ k′ |V| k ⟩| SMS ⟩ . (C.7)

Plugging in Eq. (C.5) we obtain the Minnesota interaction in partial-wave decomposition:

VJ(M)
LL′S(k, k

′) = (4π)2
∑
ML,M′

L
MS,M′

S

∑
L′′,M′′

L

[
1+ (−1)L

′′] ∫
dk̂ dk̂′ YM′

L†
L′ (k̂′)YML

L (k̂)CJM
L′M′

LSM
′
S
CJM

LMLSMS

×
∫

r2dr jL′′(k′r)jL′′(kr)Y
M′′

L
L′′ (k̂

′)YM′′
L †

L′′ (k̂)VS(r)

= (4π)2δLL′
[
1+ (−1)L

] ∑
ML,MS

CJM
LMLSMS

CJM
LMLSMS

∫
r2dr jL(k′r)jL(kr)VS(r)

= (4π)2δLL′
[
1+ (−1)L

] ∫
r2dr jL(k′r)jL(kr)VS(r) . (C.8)
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