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Nonlocality, Superposition, and Time in the 4+1 Formalism

Filip Strubbe

Department of Electronics and Information Systems, Ghent University, Tech Lane Ghent Science Park-Campus
A 126, 9052 Ghent, Belgium; filip.strubbe@ugent.be

Abstract: The field of quantum gravity struggles with several problems related to time, quantum
measurement, nonlocality, and realism. To address these issues, this study develops a 4+1 formalism
featuring a flat 4D spacetime evolving with a second form of time, τ, worldlines that locally conserve
momentum, and a hypersurface representing the present. As a function of τ, worldlines can spatially
readjust and influences can travel backward or forward in the time dimension along these worldlines,
offering a physical mechanism for retrocausality. Three theoretical models are presented, elucidating
how nonlocality in an EPR experiment, the arrival time problem, and superposition in a Mach–
Zehnder interferometer can be understood within this 4+1 framework. These results demonstrate
that essential quantum phenomena can be reproduced in the 4+1 formalism while upholding the
principles of realism, locality, and determinism at a fundamental level. Additionally, there is no
measurement or collapse problem, and a natural explanation for the quantum-to-classical transition
is obtained. Furthermore, observations of a 4D block universe and of the flow of time can be
simultaneously understood. With these properties, the presented 4+1 formalism lays an interesting
foundation for a quantum gravity theory based on intuitive principles and compatible with our
observation of time.

Keywords: quantum gravity; nonlocality; EPR; measurement problem; arrival time problem; problem
of time; arrow of time; superposition

1. Introduction

In the last hundred years, physics has maneuvered itself into an uncomfortable po-
sition. On the one hand, quantum mechanics and general relativity are highly successful
theories in their respective domains, having passed the stringest experimental tests. On
the other hand, there are several persisting fundamental problems when attempting to
unify general relativity with quantum mechanics. This is largely due to an incompatibility
between the notions of time in quantum mechanics and in general relativity, referred to
as the problem of time [1–3], and due to problems with how measurements happen in
quantum theory, referred to as the measurement problem [4–7]. Additionally, as a conse-
quence of bizarre features of quantum mechanics, it has become hard to understand reality
in an intuitive way. For example, EPR experiments have demonstrated that local realism
must be abandoned in any description of reality [8–15]. Here, locality is the concept that
particles are influenced only by their immediate surroundings, and realism is the notion
that there is an objective reality existing independently of observation. Both concepts seem
indispensable for such an intuitive view of reality. And lastly, there is still no satisfying
explanation for the observation of the present and of the arrow of time [16–18]. While
the quantum gravity community remains optimistic about resolving these issues within
leading theories like string theory or loop quantum gravity, this work argues that these
problems must be solved at the foundations before a satisfying theory of quantum gravity
can be constructed.

This work aims to develop a basis for a theory of quantum gravity free of the above-
mentioned foundational issues. To achieve this, a secondary form of time, τ, is added to
flat four-dimensional spacetime to produce an evolving block universe, referred to as the
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4+1 formalism (see Section 2). In this 4+1 framework, particles are exclusively described by
means of worldlines that can spatially reorient and can transmit interactions (backward and
forward in the time dimension) as a function of τ. And a hypersurface Σ representing the
present is invoked that shifts in the time dimension as a function of τ. The general concept
of adding an evolution parameter τ to 4D spacetime was first developed in Stueckelberg–
Horwitz–Piron theory [19,20] and analyzed in the works of Land [21–23]. There are also
similarities with the evolving block universe introduced by Broad [24] (see also [25]) and
the crystallizing block universe of Ellis and Rothman [26], with the difference that in this
work explicit reference is made to an evolution parameter τ.

Three case studies are presented in Section 3, illustrating how essential quantum
phenomena can be reproduced within this 4+1 formalism. Firstly, a model for an EPR
experiment is developed and simulated in Section 3.1, showing how entanglement and
nonlocality can be understood. This model is an implementation of the idea first proposed
by Costa de Beauregard of influences traveling in a zigzag way along worldlines, forward
and backward in time [27–29]. Secondly, an isotropic source with hemispherical detectors is
modeled in Section 3.2 to discuss quantum measurement and the arrival time problem. And
thirdly, a model for a Mach–Zehnder interferometer is developed in Section 3.3 to show
how superposition and wave–particle duality can be understood in the 4+1 formalism.

Section 4 discusses several intriguing features of the 4+1 formalism and how it re-
solves or circumvents the aforementioned issues. Perhaps most importantly, it shows how
quantum phenomena can be reproduced while adhering to principles of locality, determin-
ism, and realism at a fundamental level beyond ordinary 4D spacetime. This may allow
us to understand reality in a more intuitive way than is possible within the confines of
ordinary spacetime. Additionally, due to its worldline-based approach, it offers a solution
for the measurement problem, a sensible framework for particle interactions satisfying local
momentum conservation, and a natural explanation for the quantum-to-classical transition.
Furthermore, the combination of its two forms of time, namely, a time dimension t and an
evolution parameter τ, with the shifting hypersurface Σ, allows for understanding both the
observation of a 4D block universe and of the flow (and arrow) of time. Also, implications
of the interferometer model for laboratory tests of quantum gravity are discussed.

Ultimately, applying the same 4+1 principles to curved spacetime and formulating
a more comprehensive worldline-based alternative for quantum mechanics may lead to
a unified framework capable of explaining both quantum mechanical and gravitational
phenomena. In this way, the presented 4+1 formalism shows an interesting path towards a
theory of quantum gravity.

2. Theory

2.1. The 4+1 Formalism

The 4+1 formalism consists of a one-parameter family of 4D spacetimes, labeled with
the parameter τ. This parameter τ is a scalar (τ ∈ IR) that acts like a second form of time.
For each value of τ, there is an associated 4D spacetime M(τ). Symbolically, this can be
represented as an M × IR construction. It differs from a five-dimensional structure in which
there would be extra space or time coordinates. The basic concept of such a 4+1 formalism,
namely, the addition of an evolution parameter τ to 4D spacetime, was first developed by
Stueckelberg, Horwitz, and Piron [19,20]. Recent advances in the 4+1 formalism were made
by Land [21–23].

This work is restricted to flat 4D spacetimes M(τ) and introduces additional elements
(see Figure 1a,b). Each spacetime is then labeled with orthogonal coordinates (x, y, z, t) that
are properly normalized using rulers and clocks. The connection between these spacetimes
is established by considering physical entities existing in each spacetime associated with
a different value of τ. Ignoring any microscopic degrees of freedom associated with
these physical entities, each entity is characterized by a τ-dynamic event xµ(τ), where the
coordinates xµ for µ = 0, 1, 2, 3 correspond, respectively, to x, y, z, t. To produce a physically
meaningful universe, it is imposed that the invariant proper length ∆s2 = ∆x2 + ∆y2 +
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∆z2 − c2
∆t2 (with speed of light c) between any two physical events in each spacetime

varies continuously as a function of τ, satisfying limτ→τ1 ∆s2(τ) = ∆s2(τ1). Additionally,
the coordinates of each spacetime are chosen such that also the coordinate values xµ(τ) of
physical events vary continuously as a function of τ, satisfying limτ→τ1 xµ(τ) = xµ(τ1). A
preferred frame of reference is established via a set of physical events that carry the same
coordinates in each spacetime.

Figure 1. Illustration of the 4+1 formalism used in this work. In (a), at τ = τ1, the flat 4D spacetime
M(τ1) contains worldlines in the past region from the hypersurface Σ(τ1). In the yellow region,
worldlines have largely reached a fixed, crystallized configuration. But in the light-blue region close
to Σ(τ1), there are still dynamics of worldlines as a function of τ, orchestrated using evolution laws.
In the future region with respect to Σ(τ1), there are no worldlines but only elementary physical
entities (not shown). In (b), at τ = τ2, the hypersurface Σ(τ2) has shifted into the positive time
dimension and worldlines have adjusted accordingly. A 4D spacetime M(τ2) is produced that may
differ from M(τ1), even at times t corresponding to the past region of Σ(τ1). Also, a larger part
of spacetime has become fully crystallized (yellow region). The τ-dynamics occurring close to the
crystallization front (blue region) are essential for reproducing quantum phenomena. By associating
the shifting hypersurface Σ(τ) with the present, our observation of the flow and arrow of time can
be explained. The fully crystallized region of spacetime for τ → ∞, which reflects our macroscopic
observations, corresponds to a classical 4D spacetime, as shown in (c).

Furthermore, this work describes particles solely by means of (one or multiple) τ-
dynamic worldlines rather than with wave functions or fields. A general expression for a
τ-dynamic worldline is xµ(λ, τ), where τ selects the 4D spacetime M(τ) and λ is an affine
parameter describing the worldline in that spacetime as usual. Within each spacetime, all
worldlines obey local conservation of momentum.

And finally, a hypersurface Σ(τ) is introduced in each spacetime characterized by a
constant time te(τ) = βτ in the preferred frame. Since β is a positive scalar, this hypersur-
face shifts in the positive time dimension as τ increases monotonously.

With the above assumptions, a 4+1 formalism is established with a trivial connection
between different flat spacetimes. This connection enables us to compare coordinates of
events in different spacetimes in a physically meaningful way. For all practical purposes,
one may interpret this 4+1 construction as a single, flat 4D spacetime in which the dynamics
of worldlines are described as a function of τ. This emphasizes that τ is envisioned as an
evolution parameter for a flat 4D spacetime similar to how t is the evolution parameter for
3D space in classical mechanics. Dynamics as a function of τ are referred to as “τ-dynamics”
to distinguish these from usual dynamics as a function of time t.

2.2. The Present and the Flow of Time

The hypersurface Σ(τ) is introduced for explaining our observation of the present and
of the flow of time (or the arrow of time). This hypersurface (blue surface in Figure 1a,b)
separates a past region filled with τ-dynamic worldlines from a future region in which
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worldlines are not yet formed. Since the hypersurface Σ(τ) is the only physically relevant
structure that points at specific time coordinates, it is implied that Σ(τ) corresponds to the
present in each 4D spacetime associated with a value of τ. As τ increases, Σ(τ) shifts in the
positive direction of the time dimension in order to explain the flow and the arrow of time.

Seeing τ as an external clock governing changes in 4D spacetime is relevant for making
sense of this observation of the flow of time. In contrast, when assuming that τ represents
the coordinate of yet another dimension such that all associated 4D spacetimes exist in a
single 5D block universe, one again arrives at a static configuration which apparently lacks
such ability to explain the flow of time.

Let us analyze the two regions with respect to Σ(τ) in more detail. The past region
is populated by worldlines that are τ-dynamic and can locally interact with each other.
To produce a framework consistent with our observations, it is assumed that sufficiently
far in the past from Σ(τ), worldlines become largely constrained by their evolution laws,
such that in good approximation they become fixed as a function of τ. Therefore, in the far
past (yellow region in Figure 1a), a crystallized region is obtained that can be described
in good approximation as a part of a fixed spacetime M. As τ increases and Σ(τ) shifts in
the positive time direction, worldlines grow and adjust as determined via their evolution
laws. Also, a larger part of spacetime becomes crystallized (extended yellow region in
Figure 1b). Hence, in the limit for τ → ∞, a completely crystallized spacetime is obtained
that can be described with a standard spacetime M. Figure 1c illustrates this standard
spacetime M. In the future region with respect to Σ(τ), worldlines are not yet fully formed,
but the necessary physical entities to construct worldlines are already present there. The
hypersurface Σ(τ) itself collects the end events of all worldlines from the past region that
reach it (marked with black dots in Figure 1a,b).

2.3. Observations in the 4+1 Formalism

Since standard observers, particles, and measurement devices are all made from τ-
dynamic worldlines, measurements and observations follow from interactions between
such worldlines. For example, after a primary interaction between two worldlines, there can
be a whole cascade of further interactions and τ-dynamics that ultimately cause a detector
to settle in a specific output (pointer) state. Importantly, worldlines and their τ-dynamics
cannot be directly observed. Observers can only observe the present, characterized by
the endpoints of worldlines at the hypersurface Σ(τ). To motivate this, it is assumed that
these endpoints carry physical properties (marked with black dots in Figure 1a,b) that are
relevant for the observation of the present. Since τ-dynamics cannot be observed directly,
measurements reflect (per definition) only the equilibrium configuration of worldlines,
which in turn corresponds to the fully crystallized spacetime M (as illustrated in Figure 1c).

With its two forms of time, namely, a time dimension t and an evolution parameter
τ, and its shifting hypersurface Σ(τ), the 4+1 formalism can simultaneously explain why
observations agree with 4D spacetime and with the flow of time. On the one hand, using
standard measurement tools, the coordinates (x, y, z, t) (or xµ in short) of interaction events
can be determined by an observer. Here, x, y, z are spatial coordinates that can be deter-
mined using rulers, and the value of t can be determined indirectly using a clock, which is
in this context yet another device made from τ-dynamic worldlines. Observers can map out
measured events xµ to form a 4D spacetime Mexp. As τ increases, more events are collected
and an increasing part of this 4D spacetime is gradually built up. This experimentally
obtained spacetime Mexp, pieced together from our observations, is identical to the fully
crystallized 4D spacetime M (illustrated in Figure 1c) down to experimental precision. And
it explains why our observations seem to be limited to four coordinates (x, y, z, t) such that
the second time τ becomes effectively hidden. But on the other hand, the hidden evolution
parameter τ and the shifting hypersurface Σ explain why we collect these events in a partic-
ular way. Namely, as τ increases, observations are made of the form (x(τ), y(τ), z(τ), t(τ)),
where t(τ) increases together with the time te(τ) = βτ of the hypersurface Σ(τ). This is
in agreement with our observation of the flow and of the arrow of time. Furthermore, by
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simply relabeling τ with t, the coordinates (x(τ), y(τ), z(τ)) in the preferred frame can
be interpreted as (x(t), y(t), z(t)). As such, the usual situation of classical mechanics is
retrieved in which spatial coordinates depend on an evolution parameter t.

2.4. Evolution Laws

Close to the hypersurface Σ(τ) (light-blue region in Figure 1a,b), worldlines may still
have a remaining dynamic freedom as a function of τ, orchestrated via evolution laws.
Ultimately, it is desired to develop universal evolution laws for how worldlines behave
as a function of τ that replace the standard quantum formalism. In this work, only for
the specific case studies in Section 3, evolution laws are developed. The τ-dynamics of
worldlines considered here include spatial reorientations and internal changes allowed
by local conservation of momentum in each spacetime M(τ). When τ increases and Σ(τ)
shifts forward in the time dimension, the situation in the past region of Σ(τ) changes, for
example, because the spatial lengths of worldlines increase or because of newly formed
interactions between worldlines. These new circumstances may lead to a different optimal
worldline configuration according to the evolution laws. As a result, there is a continuous
readjustment of worldlines in the past region from Σ(τ) as a function of τ imposed by the
evolution laws. They remain τ-dynamic until their evolution laws lock them into a final
configuration. Importantly, this means that changes can occur as a function of τ such that
M(τ2) differs from M(τ1) (with τ2 > τ1), even in the past region with respect to Σ(τ1). In
this way, the τ-dynamics of worldlines implement a physical mechanism for retrocausal
action in 4D spacetime.

In principle, there is no restriction for how far into the past of Σ(τ) that evolution
laws can have an influence. In the case of EPR experiments, this may amount to very
long times. However, in most cases, worldlines are expected to quickly reach a fixed
optimal configuration. For example, in a double-slit experiment, the spatial adjustments of
worldlines occur in the near field typically in the order of femtoseconds. So, overall, we
can assume that important τ-dynamics only play in a very small region of spacetime in
the past of Σ(τ), whereas the further past region quickly settles into a fixed equilibrium
configuration. The rate at which τ-dynamics occur is finite but in principle unrestricted.
This means that one may choose worldlines to reorient spatially and interactions to travel
along worldlines arbitrarily fast (or slow) as a function of τ. However, to agree with the
experimental observations of specific phenomena, such as the EPR experiment analyzed in
Section 3.1, a minimal rate of these τ-dynamics may be required.

2.5. Quantum Phenomena

Classical observations can easily be explained in the 4+1 formalism. This simply
requires prohibiting the τ-dynamics of worldlines in the past region of Σ(τ). In this case, as
Σ(τ) shifts in the positive time dimension, more of a fixed 4D spacetime is revealed. And
in such a standard spacetime, any classical effect based on locally interacting worldlines
can be explained. But quantum phenomena can in principle also be reproduced in the 4+1
formalism. For example, in a previous work, it has been demonstrated how double-slit
interference can be understood in the 4+1 formalism [30], and in Section 3, three more
quantum phenomena are analyzed. As can be expected, the τ-dynamics of worldlines are
crucial for explaining such quantum phenomena in the 4+1 formalism.

2.6. The Measurement Problem

Quantum mechanics relies on the deterministic evolution of the wave function fol-
lowed by a collapse mechanism to explain determinate outcomes of a measurement [5]. The
measurement problem refers to conflicts with relativity and with conservation of momen-
tum related to this wave function collapse [7]. The three quantum phenomena analyzed
in Section 3 demonstrate different aspects of the measurement problem. EPR experiments
(see Section 3.1) have proven that correlations between outcomes of measurements on
entangled particles cannot be explained with any theory relying on local realism [8–14]. As
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a result, EPR correlations arise seemingly instantaneously across large spatial distances
when a measurement is performed. And this is problematic because it seems to require
interactions exceeding the speed of light and because instantaneity is ill defined in relativity.
In some experimental configurations, it is not even clear if the measurement on one particle
of an entangled pair occurs before the other or oppositely, leading Bancal et al. to remark
that this “gives further weight to the idea that quantum correlations somehow arise from
outside spacetime, in the sense that no story in space and time can describe how they
occur” [9]. Hence, this suggests that something may be wrong with the standard concept
of spacetime. The isotropic emission of a particle in Section 3.2 focuses on the arrival
time problem in a quantum measurement. And issues with momentum conservation in
quantum measurements are analyzed in the Mach–Zehnder interferometer (see Section 3.3).

The developed 4+1 formalism deliberately replaces the standard quantum formalism
with a formalism based on τ-dynamic worldlines to overcome the measurement problem.
Then, worldlines and their interactions determine the outcome of each experiment, without
requiring instantaneous collapse. And, by construction, momentum is locally conserved.

2.7. Realism, Locality, and Determinism in the 4+1 Formalism

The results of quantum theory have led many physicists to believe that reality is
impossible to comprehend with common sense and that we must accept that nature is
fundamentally based on features like nonlocality, superposition, and uncertainty. This
general feeling was expressed by physicists like Heisenberg [31] and Feynman [32] and
is supported by a large majority today. However, it is important to realize that claims
about what quantum mechanics tells us about reality usually rely on tacit assumptions
like four-dimensional spacetime that may be flawed. Therefore, by changing our concept
of spacetime, it may be possible to recover intuitive concepts like realism, locality, and
determinism at a more fundamental level of reality. The 4+1 formalism developed in this
work aims to achieve this by introducing a second form of time and by relying solely on
worldlines rather than wave functions or fields.

Since the 4+1 formalism goes beyond ordinary spacetime, one must be careful with
typical definitions of realism, locality, and determinism that (tacitly) assume a standard
spacetime. To avoid such confusion, this work adopts the usual definitions of locality and
realism when assuming the perspective of ordinary 4D spacetime:

• Locality: the concept that particles, seen as objects existing in ordinary 4D spacetime,
are only influenced by their immediate surroundings and can only influence each
other by means of interactions limited by the speed of light.

• Realism: the concept that particles, seen as objects existing in ordinary 4D spacetime,
have defined properties even before measurement.

• Determinism: the concept that every event in spacetime can only be causally influ-
enced by events in its past light cone.

However, different definitions are adopted when going beyond the limiting assump-
tion of ordinary 4D spacetime, like in the presented 4+1 formalism:

• Fundamental locality: The concept that particles, at their most fundamental level, are
only influenced by their immediate surroundings. Note that here the meaning of the
term “surroundings” may go beyond the usual concept in 4D spacetime.

• Fundamental realism: the concept that particles, at their most fundamental level, have
defined properties even before measurement.

• Fundamental determinism: determinism as a function of the evolution parameter τ.

As a consequence, even if observations may appear nonlocal from the perspective
of ordinary spacetime, the underlying mechanism in the 4+1 formalism may still be fun-
damentally local. Similarly, even if realism seems hopeless from within the confines of
ordinary spacetime, there may still exist fundamental realism at a deeper level of reality.
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3. Results

The 4+1 framework presented in Section 2 relies entirely on τ-dynamic worldlines.
This means that evolution laws for these worldlines must be developed to replace the
standard quantum formalism. In this section, theoretical models are developed which
explain three key quantum phenomena in the 4+1 formalism: EPR nonlocality, the arrival
time problem, and superposition in a Mach–Zehnder interferometer.

3.1. EPR Nonlocality in the 4+1 Formalism

EPR experiments demonstrate one of the most surprising features of quantum me-
chanics, namely, quantum nonlocality. Let us consider a typical EPR configuration with
polarization-entangled photon pairs represented by the singlet state [33,34]:

|Ψ〉 = 1√
2
(|H〉A|H〉B + |V〉A|V〉B) (1)

where |H〉 and |V〉 are, respectively, the horizontal and vertical polarization and subscripts
A and B refer to Alice’s and Bob’s photons. Measurements can be performed by Alice
and Bob on their respective photons in spatially separated regions. For example, they can
choose different measurement settings by rotating a polarizing beamsplitter (PBS) and
can detect if a photon passes (outcome A and B) or is deflected (outcome Ā and B̄). If
we assume that Alice measures first with PBS PA set at an orientation θA, then quantum
theory suggests that the quantum state of Bob’s photon “instantaneously” adapts to Alice’s
measurement result. If the photon passes through PBS PA such that Alice observes outcome
A, the entangled system collapses into a state where both photon A and photon B have a
polarization along θA. In the opposite case that Alice observes outcome Ā, the polarization
state of both photons collapses perpendicularly to θA. After this, when Bob decides to
measure his photon using his PBS PB with chosen orientation θB, he either observes that
the photon passes (outcome B) or is deflected (outcome B̄). Quantum theory predicts the
following probabilities for joint detection at A and B [34]:

P(A, B) = P(Ā, B̄) =
cos2(θA − θB)

2

P(A, B̄) = P(Ā, B) =
sin2(θA − θB)

2
(2)

This illustrates that the outcome of Bob’s experiment depends on the measurement
setting of Alice, no matter how far they are separated (and vice versa). This is surprising
since it seems to require an interaction going faster than light. These predictions of quantum
theory have been confirmed in various EPR experiments [9,10,15]. According to Bell’s
theorem, the obtained quantum correlations cannot be explained with any hidden variable
theory based on local realism [35]. Since also a large class of nonlocal realist theories has
been ruled out, it seems that realism is increasingly at risk [8]. Furthermore, even though
quantum nonlocality does not allow faster-than-light communication and does not violate
relativity in this sense, there is still the difficulty of understanding the measurement process
of the EPR experiment in a relativistic setting [9,36].

Next, we analyze whether one can make more sense of the EPR paradox in the 4+1
formalism.We follow up on the idea first proposed by Costa de Beauregard of influences
traveling along worldlines, back to a common interaction event at an earlier time coordi-
nate [27–29]. This results in a relaxed measurement independence, which can be exploited
to reproduce the nonlocal correlations of EPR experiments [37–39]. However, like any retro-
causal idea, also the idea of Costa de Beauregard conflicts with the causality of standard
spacetime and is in need of a second form of time. Therefore, here, the idea of influences
traveling along worldlines is embedded in the 4+1 formalism which features such a second
time τ.
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Firstly, the basic principle of the proposed EPR model in the 4+1 framework is illus-
trated in Figure 2 at three values of the evolution parameter τ. In essence, two entangled
photons described using worldlines A and B are produced in an emission event and are
traveling towards the measurement stations of Alice and Bob (see Figure 2a). When Alice
performs a measurement on photon A, depending on the chosen setting for her PBS, the
photon either passes or is deflected. As a consequence of Alice’s measurement, an influence
travels backwards in the time dimension along worldline A, to the emission event, and
then along worldline B as a function of τ (indicated by arrows in Figure 2b). In this way,
influences can travel along worldlines to past regions of spacetime and to spatially distant
regions in the present. Therefore, when Bob performs his measurement on photon B, his
outcome will depend on Alice’s outcome (see Figure 2c).

Figure 2. Illustration of an EPR experiment in the 4+1 formalism. In (a), at τ1, two entangled photon
worldlines A and B are created in an emission event. In (b), at τ2, Alice has performed a measurement
on photon A. This measurement produces a deterministic influence, which propagates along the
photon worldlines as a function of τ, from Alice to Bob, as indicated by arrows. This influence
affects both the past region of spacetime and spatially distant regions in the present. In (c), at τ3, Bob
performs a measurement on photon B. In this way, the outcome of Bob’s measurement depends on the
outcome of Alice’s measurement, even though his measurement occurs in a spatially distant region.

Next, a more detailed EPR model in the 4+1 formalism is developed, and simulation
results are shown in Figure 3. As explained in Section 2.1, a preferred frame is considered in
which at each value of τ the hypersurface Σ(τ) is characterized by a constant time te = βτ,
with positive scalar β. When assigning a unit s∗ to τ, this means that β has the unit of s/s∗.
For simplicity, we choose β = 1s/s∗. In this setting, each spacetime associated with a value
of τ may equally be identified by the time te = βτ expressed in seconds. The polarizing
beamsplitters PA and PB are positioned, respectively, at distances dPA

and dPB
from the

source S. There are four detectors in total, DA and DĀ for Alice and DB and DB̄ for Bob.
Their positions are chosen such that the total path length dtot from source to each detector is
the same: dSA = dSĀ = dSB = dSB̄ ≡ dtot. In Figure 3, dPA

=275.77 km, dPB
=381.84 km, and

dtot= 424.26 km, such that the time of flight for both photons is 1.414 ms. For six increasing
values of τ, the worldline configuration in spacetime is depicted (top) and the polarization
state along the worldlines is represented on the Poincaré sphere (bottom).

We further restrict the analysis to the case in which two entangled photons are created
corresponding to the state |H〉A|H〉B at βτ = 0 µs (see Figure 3a). On the Poincaré
sphere, both photons then correspond to the state H. The other case of an initial state
|V〉A|V〉B can be treated in an analogous way. Two local hidden variables, HVA and HVB,
which are defined as random points with a uniform distribution on the Poincaré sphere
(respectively, the blue and red crosses in Figure 3), are invoked to determine the outcome
of each experiment.
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Figure 3. Simulation result of the EPR model in the 4+1 formalism, for the case of an initial state
|H〉A|H〉B of the entangled photons A and B. At six increasing values of τ (a–f), the spacetime
configuration of worldlines is shown (top) and the polarization states along the photon worldlines
are indicated on the Poincaré sphere (bottom). In (a,b), entangled photons A and B are created and
travel, respectively, towards Alice and Bob. In (c), photon A interacts with PBS PA, inducing a change
in the polarization state across both entangled worldlines. Since hidden variable HVA (blue cross)
is located inside the circle around A on the Poincaré sphere, the polarization state of photon A is
attracted to the state Ā. In (d), both photons have collapsed to the state Ā, and photon A is deflected
towards detector DĀ. In (e), photon B interacts with PBS PB. Since hidden variable HVB (red cross) is
inside the circle around B̄, photon B is attracted to the state B on the Poincaré sphere. In (f), the final
configuration is shown when photons A and B are detected, respectively, by DĀ and DB, leading to
an outcome (Ā, B). Similar results can be obtained for the initial state |V〉A|V〉B, for different settings
of the polarizing beamsplitters, or for different choices of the hidden variables.

At βτ = 353.6 µs, the two entangled photons can be seen traveling under a 90° spatial
angle towards Alice and Bob (see Figure 3b). For each event on the photon worldlines
A and B characterized by the affine parameter λ, a polarization state P(λ) is defined by
a point on the Poincaré sphere. For simplicity, the affine parameter λ is chosen to be the
4D Cartesian distance

√

dx2 + dy2 + dz2 + (cdt)2 in the preferred frame along the photon
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worldline, starting at the interaction event near Alice and ending at the end event near Bob.
The following evolution law is proposed for the polarization state:

dP(λ)

dτ
= K

d2

dλ2 P(λ) (3)

where K is a constant determining the strength of the fundamentally local interaction. Here,
a value K = 5× 1010 s∗−1 is chosen. To visualize the polarization state in Figure 3, at certain
discrete events, circles are shown with hues corresponding to the azimuth angle, following
the HSL color system.

At βτ ≡ tA = 919.24 µs, the first photon reaches the PBS PA of Alice. The interac-
tion between photon A and PBS PA imposes a condition on the polarization state at this
interaction event (replacing Equation (3) at this event), governed via:

dP(λ)

dτ
= −K∗sgn[(HVA − P(λ)) · PA](P(λ)× (PA × P(λ))) (4)

where K∗ = 1010 s∗−1 is chosen. Equation (4) ensures that the polarization state at this
event is attracted towards either state PA or state PĀ on the Poincaré sphere, with the
physical consequence that the photon is, respectively, passing through or is deflected by
the PBS. The outcome is decided by the factor −sgn[(HVA − P(λ)) · PA] in Equation (4).
If HVA is situated outside of a circle centered around PA passing through the state P(λ),
then this factor is +1 and the outcome of the interaction is A. In the opposite case that HVA

lies inside of this circle, the factor is −1 and the outcome is Ā. In Figure 3c, the latter case is
illustrated at an intermediate value βτ = tA + 35 fs during the transition from state H to
state Ā. Notice how the rest of the worldline gradually adjusts to this boundary condition
as a consequence of Equation (3).

At about βτ = tA + 100 fs, the complete worldline has aligned with the state Ā, so we
can say that both photons A and B have collapsed to the outcome of Alice. As τ increases
further, photon A is deflected by PBS PA towards detector DĀ, while photon B continues
on its path towards PBS PB. This situation around βτ = 106 µs is illustrated in Figure 3d.

At βτ ≡ tB = 1272.80 µs, photon B arrives at PBS PB and the following evolution law
is imposed at this interaction event:

dP(λ)

dτ
= −K∗sgn[(HVB − P(λ)) · PB](P(λ)× (PB × P(λ))) (5)

Since in this example the hidden variable HVB is located inside the circle centered
around PB̄ passing through PĀ, the state of photon B at the interaction event with PBS
PB is forced towards PB. In Figure 3e, the situation is shown at βτ = tB + 25 fs, halfway
through the transition of photon B towards state PB. This means that photon B passes
straight through PBS PB towards detector DB.

Finally, Figure 3f shows the situation when photon A arrives at detector DĀ and
photon B at detector DB, corresponding to an outcome (Ā, B). A similar reasoning can be
made for all other combinations of the initial state, polarizer settings, hidden variables, and
different spatial geometries.

It can be readily verified that this scheme results in the desired quantum correlations
given in Equation (2). If the initial state of photon A is |H〉A (in 50% of the cases), the
probability for an outcome A corresponds to the chance of finding the uniformly distributed
hidden variable HVA outside of a circle on the Poincaré sphere with cone angle 2θA around
state A. This chance can be calculated as

∫ π
2θA

∫ 2π
0 sin(θ)dθdφ/4π = cos2(θA). Similarly, the

chance for outcome Ā is sin2(θA). If the initial state of photon A is |V〉A (in the other 50%
of the cases), then the chances of finding A or Ā are, respectively, sin2(θA) and cos2(θA).
Together, this leads, as expected, to a 50% chance for A and 50% chance for Ā. Right after
Alice’s measurement, photon B collapses to the same state as photon A (which can have
outcome A or Ā). Assuming outcome Ā for Alice, the probability for outcome B for Bob (i.e.,
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passing through the PBS) corresponds to the chance of finding the uniformly distributed
hidden variable HVB outside of a circle with opening angle 2θĀ − 2θB = (2θA + π)− 2θB

around state B. Or similarly, this corresponds to the chance of finding HVB inside of the
circle with cone angle 2θA − 2θB around the state B̄. This chance can be calculated as
∫ 2θA−2θB

0

∫ 2π
0 sin(θ)dθdφ/4π = sin2(θA − θB). The overall probability of finding outcome

(Ā, B) must take into account the 50% chance of getting state Ā to begin with, resulting in
P(Ā, B) = sin2(θA − θB)/2, in agreement with the quantum prediction of Equation (2). For
all other combinations, the resulting correlations also agree with Equation (2).

In the simulation of Figure 3, the duration of the collapse of the polarization state of
photon B in the preferred frame is about 100 fs. This is ten orders of magnitude faster than
the time (1.6 ms) needed for light to travel between PBS PA and PBS PB and much faster
than the lower limit of around 10,000c established using EPR tests [40]. If needed, K and
K∗ can be made arbitrarily large to achieve a quasi-instantaneous collapse.

Not only does this EPR model reproduce the desired quantum correlations; it also
highlights some important features of the 4+1 formalism. Firstly, it is a fundamentally realist
model, since it is based on really existing worldlines in a τ-dynamic spacetime. Secondly,
it is fundamentally deterministic, since all interactions and dynamics are governed with
differential equations orchestrated using the evolution parameter τ. And thirdly, the
model is fundamentally local since each polarization state only depends on neighboring
polarization states or on local interactions with a PBS. So, even though EPR correlations
appear nonlocal by an observer interpreting the outcomes in ordinary spacetime, these
correlations originate from fundamentally local processes at a deeper level of reality in the
4+1 formalism.

3.2. Quantum Measurement and the Arrival Time Problem in the 4+1 Formalism

To illustrate problems with quantum measurement, the arrival time, and momentum
conservation in standard quantum theory, we consider the isotropic emission of a particle
from a point source and its detection with two opposing hemispherical screens with differ-
ent radii. For simplicity, the particle is emitted in a short pulse, resulting in a propagating
wave function in the form of a thin spherically symmetrical shell. According to quantum
theory, in good approximation, there is a 50% chance of detecting the particle on the closest
detector D1 and 50% chance on the farthest detector D2. When the wave function pulse
passes detector D1 at time t1, a partial collapse occurs in which it is decided if the particle is
detected or not. In the case of detection, all momentum is transferred to detector D1, while
an empty wave function travels further with no particular effect on detector D2. In the
opposite case, there is no effect on detector D1, but then with 100% certainty, the particle
will be measured by detector D2 at time t2.

This experiment highlights a number of problems of standard quantum theory. Firstly,
the measurement of the particle by detector D1 (with 50% chance of detection) at t1 seems
to have instantaneous consequences for the remaining, spatially separated part of the wave
function, which is seemingly in conflict with relativity. This argument was first given by
Einstein in his thought experiments called Einstein’s Boxes [41]. It led Einstein to conclude
that it may be useful to consider actual particle positions: “It seems to me that this difficulty
cannot be overcome unless the description of the process in terms of the Schrödinger wave
is supplemented by some detailed specification of the localization of the particle during
its propagation” [28]. Moreover, the collapse of the wave function at t1 is troubled by
the violation of momentum conservation, as was already argued by Einstein in 1905: “In
accordance with the assumption to be considered here, the energy of a light ray spreading
out from a point source is not continuously distributed over an increasing space but consists
of a finite number of energy quanta which are localized at points in space, which move
without dividing, and which can only be produced and absorbed as whole units” [42].
Hence, when assuming here that the isotropic wave function is associated with an isotropic
momentum distribution, this leads to a conflict with conservation of momentum in the
process of collapse when a measurement reveals the full particle momentum at detector D1
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(or at D2). Bohmian mechanics has attempted to solve this problem by adding a hidden
variable in the form of a particle position [43]. In the context of the present isotropic
wave function, such a strategy indeed works, but, as will be discussed in Section 4, in
other situations Bohmian mechanics does not offer a satisfying explanation for momentum
conservation in free space [44].

Secondly, by choosing the two detectors at different distances from the source, ad-
ditional problems with time are highlighted. The so-called arrival time problem is a
fundamental problem in quantum mechanics of defining the time that a particle is detected
at a known position [45–47]. And there are also other conceptual issues related to partial
collapse at t1 and the resulting empty or full wave functions [44,48]. For example, the
fact that the wave function can interact with detector D1 without setting it off, or that
the continuing wave function then always leads to detection at D2, is hard to grasp in
standard quantum mechanics. Again, this becomes much easier when assuming that there
is a hidden property pointing to a specific particle location.

Within the 4+1 formalism, we can propose a simple model for the same experiment
(see Figure 4). Here, it is assumed that a single worldline carrying all the momentum
of the particle is emitted in a random direction (see Figure 4a). This worldline keeps its
initial spatial orientation but simply grows as Σ(τ) shifts in the positive time dimension.
Considering the simplicity of this model, no further evolution laws are needed. At τ2,
it becomes very clear that a measurement via detector D1 only occurs if the worldline
interacts directly with this detector (see Figure 4b). If not, the worldline continues until
it unavoidably interacts with detector D2 (see Figure 4c). As a result, this simple model
reproduces the expectation from quantum mechanics. In addition, it highlights the ad-
vantage of using worldlines in the 4+1 formalism for avoiding problems with quantum
measurement. Namely, by relying on a single worldline that determines the outcome of the
experiment, there is no measurement, collapse, or arrival time problem. And by insisting
that this worldline is a geodesic between key interaction events, there is no conflict with
conservation of momentum.

Figure 4. Illustration of a point source with two detectors in the 4+1 formalism (only a 2D spatial
slice is shown). In (a), at τ = τ1, a particle worldline carrying all momentum is created in an emission
event, moving in a random spatial direction. In (b), at τ = τ2, measurement by detector D1 only
happens upon direct interaction between the particle worldline and the detector. Here, the particle
worldline passes by without being detected. In (c), at τ = τ3, the particle worldline interacts with a
particular detector worldline, setting off detector D2.

3.3. Interference, Wave–Particle Duality, and Superposition in the 4+1 Formalism

The quantum superposition of a particle is yet another key feature of quantum me-
chanics, with relevance to planned tests of quantum gravity in the laboratory. Here, a
standard interferometry setup (Mach–Zehnder-type) with 50/50 beamsplitters is consid-
ered in which a photon is brought in a spatial superposition. We begin by repeating the
standard quantum treatment of such interferometer. At the input of the interferometer, we
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consider the state |Ψ〉 representing the polarization state of the incident photon. The two
beamsplitters BS1 and BS2 are represented in the Jones matrix formalism by [49]:

BS1 = BS2 =
1√
2

[

−1 1
1 1

]

(6)

Hence, the quantum state after BS1 is given by:

|Ψ1〉 = (− 1√
2
|A〉+ 1√

2
|B〉)|Ψ〉 (7)

where |A〉 represents the spatial state of branch A after reflection under a 90° spatial angle,
|B〉 represents branch B after transmission, and |Ψ〉 still captures the polarization state.
Furthermore, in branch A, an excess path length can be introduced, which adds a phase ǫ

to this path. As a result, the state becomes:

|Ψ2〉 = (− 1√
2

eiǫ|A〉+ 1√
2
|B〉)|Ψ〉 (8)

From Equation (8), we find, as expected, that the probability of measuring the photon
in branch A or B (if a detector was placed there) is given by:

QA =
1
2

(9)

QB =
1
2

After BS2, the state can be rewritten in terms of the output ports |C〉 and |D〉:

|Ψ3〉 = (−1
2

eiǫ|Ψ〉+ 1
2
|Ψ〉)|C〉+ (−1

2
eiǫ|Ψ〉 − 1

2
|Ψ〉)|D〉 (10)

Detectors D1 and D2 only detect the component of the total state, respectively, in
branches C and D. The quantum states arriving at these detectors are then given by:

|ΨC〉 = −1
2

eiǫ|Ψ〉+ 1
2
|Ψ〉 (11)

|ΨD〉 = −1
2

eiǫ|Ψ〉 − 1
2
|Ψ〉

Finally, this leads to the following expectation values at the detectors:

QC =
1
2
− 1

2
cos(ǫ) (12)

QD =
1
2
+

1
2

cos(ǫ)

Two remarks can be made about this standard quantum result that are relevant for
further analysis. Firstly, the probability of measuring a photon at one of the detectors (D1
or D2) depends on both branches of the interferometer. This follows from the presence of
ǫ in Equation (12). And it reveals an interference effect or wave-like behavior. Yet, each
individual photon is only detected by one of both detectors, demonstrating particle-like
behavior. This constitutes the well-known wave–particle duality. Secondly, quantum theory
does not specify along which branch a particle actually travels but assumes instead that the
particle ends up in a superposition of going either way. At present, it is not understood
what the gravitational effect is of a particle in such a spatial superposition, since this
requires a theory of quantum gravity. For example, it is not known from any experiment if
the gravitational field also ends up in a superposition (if such a thing is possible) or if it
behaves in some kind of classical way.
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Next, a model for the Mach–Zehnder interferometer is developed within the 4+1
formalism (see Figure 5). The interferometer setup is, for simplicity, chosen stationary in the
preferred frame. Similar as for the EPR experiment, Σ(τ) identifies a single time coordinate
te = βτ for each value of τ.

Figure 5. Illustration of a Mach–Zehnder interferometer in the 4+1 formalism. In (a), all beamsplitters,
mirrors, and detectors are shown (only the phase delay element is not drawn). Each incident photon
consists of a bundle of N particle worldlines. After passing beamsplitter BS1, these worldlines split
up into branches A and B. Only one branch contains the momentum-carrying worldline (magenta);
the other branch does not carry momentum (green). In (b), the particle worldlines reflect at mirrors
M1 and M2, but only the momentum worldline in the magenta channel transfers recoil momentum
to M2. In (c), the particle worldlines interact with beamsplitter BS2 and split up into channels
C and D. The momentum worldline determines which detector clicks. Spatial reorganization of
worldlines is determined via evolution laws in a fundamentally local and deterministic way as a
function of τ. Only one branch of the interferometer actually gravitates, so there is no superposition
of gravitating configurations.

Before entering the interferometer, each incident photon is modeled as a bundle of N
(a large number) worldlines (null geodesics) called particle worldlines, labeled with index
i = 1 : N. Only one worldline (for which i = p), referred to as the momentum worldline,
carries the energy and momentum of the photon. Each worldline of this incident bundle
is further characterized by the same polarization and phase. As the evolution parameter
τ increases, the hypersurface Σ(τ) shifts forward in the time dimension. Consequently,
worldlines belonging to all optical components of the interferometer and particle worldlines
of the photon, which have their endpoints on the hypersurface Σ(τ), are growing.

Once the particle worldlines enter the interferometer, there are a number of optical
elements with which these worldlines can interact, identifying key interaction events of
the form (x, y, z, t). For example, e1 represents the interaction event with BS1, e2 and e3
are interaction events with the mirrors, respectively, in branches A and B, and e4 is the
interaction event with BS2. Between key interaction events, worldlines are assumed to be
straight (null geodesics). Each worldline can follow either branch A or B between BS1 and
BS2 and either branch C or D after BS2. Next, we elaborate how the N worldlines are split
up along these possible paths.

Let us first analyze the case just after interaction with beamsplitter BS1, when the
endpoints of the photon worldlines are situated just after BS1 (see Figure 5a). At each
value of τ, quantum mechanics provides two quantum measures MA and MB, respectively,
at the endpoints of paths A and B on the hypersurface Σ(τ), which are proportional to
the probabilities QA and QB of finding the particle, respectively, along paths A or B (see
Equation (9)). In this simple geometry, these quantum measures can be established in a
deterministic and local way along null geodesics following the path integral formalism.
In the 4+1 framework, we are allowed to propagate this information backwards in time,
respectively, along paths A and B in a fundamentally local way as a function of τ. We
further assume that this information is transferred much faster as a function of τ compared
to other relevant τ-dynamics. As a result, MA and MB become available information at the
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past interaction event e1 almost immediately after the interaction with BS1 as a function
of τ. Hence, at the interaction event e1, there is enough information to spatially separate
the N worldlines into two groups (along path A or path B) in a fundamentally local and
deterministic way according to the following evolution law:

dNA

dτ
= −dNB

dτ
= ξ

( MA

NA
− MB

NB

)

(13)

Here, for simplicity, NA and NB are modeled as continuous variables representing
approximately the discrete numbers of worldlines aligned, respectively, along the paths
A and B. The initial numbers of worldlines just after the interaction event are assumed to
correspond to the numbers of incident worldlines traveling in the same direction before the
interaction, i.e., NA(τe1) = 0 and NB(τe1) = N. Equation (13) implies that worldlines grad-
ually shift between channels A and B as a function of τ, until equilibrium is reached. The
τ-interval in which this reorganization occurs is set by the constant ξ, and this parameter is
chosen sufficiently large that the reorganization occurs before any significant shift of Σ(τ)
has occurred. Equation (13) leads to an equilibrium governed by:

MA

NA
=

MB

NB
(14)

or equivalently, using the proportionality between MA and QA and between MB and QB

(with same proportionality constant):

NA

NB
=

QA

QB
(15)

Therefore, the fractions of worldlines taking paths A or B become equal to the fractions
of the corresponding quantum expectation values from Equation (7).

If we assume that particle worldlines are randomly assigned to the two groups along
branches A and B, then the probability that the momentum worldline labeled with index
i = p travels along branch A or B is also proportional to the number of worldlines in
these respective channels and thus also proportional to the quantum expectation value of
each channel. Since only the momentum worldline can interact with a detector and set it
off, this means that the chance of detecting the photon in channel A or B agrees with the
quantum prediction. An important difference with the standard quantum description is
that here a clear decision is made along which branch of the interferometer the particle
momentum travels. If the momentum worldline follows branch A, a reflection occurs and
the associated recoil momentum is transferred to the beamsplitter BS1. In the other case that
the momentum worldline follows branch B (transmission), no momentum is transferred
to BS1.

At larger values of τ but still before interacting with BS2, the two bundles along paths
A and B interact with optical systems (mirrors and an optical element that introduces a
phase delay) (see Figure 5b). This produces new interaction events without affecting the
number of particle worldlines in branches A and B. Only the mirror that interacts with the
momentum worldline actually receives a momentum recoil.

Next, we analyze what happens after interaction with beamsplitter BS2 (see Figure 5c).
Similar reasoning as was made for branches A and B is followed here for branches C and D,
leading to the following evolution law:

dNC

dτ
= −dND

dτ
= ξ

( MC

NC
− MD

ND

)

(16)
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with quantum measures MC and MD being proportional, respectively, to QC and QD from
Equation (12) (with same proportionality constant). Hence, Equation (16) leads to the
following equilibrium:

NC

ND
=

QC

QD
(17)

Similar as explained above, this leads to an outcome of the Mach–Zehnder experiment
in agreement with quantum mechanics. The momentum recoil with BS2 at the interaction
event e4 is determined by the chosen path of the momentum worldline. In the case that a
reflection of the momentum worldline occurs, momentum is transferred to BS2. Otherwise,
no momentum is transferred.

The above model for the Mach–Zehnder interferometer highlights some interesting
features of the 4+1 formalism. Firstly, it shows how worldlines can be spatially arranged
as a function of τ in a fundamentally local and deterministic way in order to reproduce
quantum interference. Secondly, it shows how momentum transfer can be concentrated at
local interaction events between the momentum worldline of the photon and worldlines
of the interferometer, while in between interaction events the momentum worldline is a
null geodesic that preserves momentum. Thirdly, it sheds light on wave–particle duality
and superposition. Even though the model relies on many particle worldlines that pass
along both branches A and B and that codetermine the output of the interferometer, only
one of these worldlines actually carries the energy and momentum of the photon and
can set off a detector. Therefore, here, a photon is envisioned as an ensemble of many
worldlines that enable its wave-like features, but with only a single momentum-carrying
worldline that enables its particle-like features. Whereas the standard concept of quantum
superposition states that the photon ends up in a superposition of going either via branch
A or via branch B, in the 4+1 formalism, one can say that some constituent worldlines of
the photon do travel both ways but that the momentum-carrying worldline only takes a
single path through the interferometer. In Section 4, further consequences for laboratory
tests of quantum gravity are discussed.

4. Discussion

The theoretical models in Section 3 illustrate how EPR nonlocality, quantum mea-
surement and the arrival time problem, and superposition can be understood in the 4+1
formalism. Furthermore, these models highlight several key features of the 4+1 formalism.

Firstly, the fact that the 4+1 formalism relies on worldlines rather than on wave func-
tions or fields offers a number of advantages. By allowing only worldlines to set off
detectors by means of local interactions, there is no measurement problem or arrival time
problem. This has been emphasized in the model in Section 3.2. Local conservation of
momentum is guaranteed by restricting momentum transfer to local interaction events
between worldlines and by insisting on straight worldlines between interaction events, as
is stressed in the interferometer model in Section 3.3. It is interesting to compare this with
Bohmian mechanics [43]. Since Bohmian mechanics relies on particle trajectories in stan-
dard spacetime, it can also explain determinate outcomes. However, Bohmian mechanics
is explicitly nonlocal, and its particle trajectories seem to violate local momentum conser-
vation, for example, in the case of wiggling trajectories in a double-slit experiment [50]
or in an interferometer with a removed second beamsplitter [51]. Another advantage of
the chosen worldline-based approach is that it provides a straightforward explanation of
the quantum-to-classical transition—the problem of where the boundary lies between the
microscopic quantum world and the macroscopic classical world [4]. This is because the
4+1 framework is essentially a classical construction without quantum superpositions or
Schrödinger cats at a fundamental level. Here, observations are the result of interactions
between classical worldlines. There may be dynamics in the configuration of worldlines as
a function of τ, but per definition our observations only capture the crystallized, classical
configuration of worldlines that has reached an equilibrium. This explains our observation
of a classical world. Hence, it is only the correlations between classical observations that
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may reveal a typical quantum character when analyzed from within ordinary spacetime.
Note that the classical nature of the 4+1 formalism does not necessarily imply that reality
must be classical altogether. Ultimately, more fundamental, discrete building blocks of
τ-dynamic worldlines at the Planck scale may be required.

Secondly, the 4+1 formalism relies on two forms of time (a time dimension t and an
external evolution parameter τ) and on a shifting hypersurface Σ(τ). As explained in
Sections 2.2 and 2.3, this construction allows observers to map out measured events in a
standard 4D spacetime, as is desired from relativity. But it also explains our observation
of the present and of the flow of time. This follows directly from the assumption that our
observation of the present is physically linked to the hypersurface Σ(τ) at the interface
between a disordered future region and a crystallizing past region. Notice that this may
point to a form of criticality, namely that some of the most interesting phenomena happen at
a boundary between chaos (the future region of spacetime) and order (the past, crystallized
region of spacetime). Many theories have been developed that add spatial and/or time
dimensions to 4D spacetime, such as string theory, brane worlds, and other multidimen-
sional theories [52–55]. Some of these theories aim to solve the hierarchy problem, to merge
quantum theory with gravity, to find a theory of everything, or to explain dark matter.
However, a general problem with these theories is the lack of direct experimental evidence
for extra dimensions [56,57]. As a result, much effort must be made to make these dimen-
sions invisible for our observations. For example, the extra dimensions must be rolled up
tightly or compactified, or particles must be confined to four-dimensional hypersurfaces
within a larger-dimensional space. However, the 4+1 formalism does not suffer from this
problem. In fact, it is argued that the extra form of time is necessary for explaining our
observation of the flow of time. Also, many retrocausal theories (or future-input-dependent
theories) within four-dimensional spacetime have been developed [29,38,39,58,59]. For
example, it is known that relaxing measurement independence (and thus allowing future-
input-dependence) is a powerful means of explaining EPR correlations [37–39]. However,
a major problem with such theories is that retrocausality (or future-input-dependence) is
incompatible with the causal structure of standard spacetime and leads to paradoxes [60].
To make such theories viable, one must explain how retrocausality really works. For exam-
ple, to avoid paradoxes when considering the concept of influences traveling backwards
in time, it seems that a second form of time is needed to distinguish different phenomena
occurring at the same spacetime coordinates. The 4+1 formalism precisely does this: it
explains in a fundamentally deterministic way how retrocausal phenomena may occur.

And thirdly, an important message of this work is that in the 4+1 formalism, the
concepts of realism, locality, and determinism can be rescued at a more fundamental level
of reality, whereas this is certainly hopeless within ordinary spacetime. This is relevant
when valuing an intuitive, single-world view of reality. All models in Section 3 rely on
fundamentally realist and fundamentally local interactions between or along worldlines
occurring in a deterministic way as a function of τ. The most striking example of this is the
EPR model in Section 3.1. This model shows how EPR nonlocality can be understood in a
fundamentally realist, local, and deterministic way, in the spirit of Costa de Beauregard’s
zigzag action along worldlines. And the interferometer model in Section 3.3 highlights
how wave–particle duality and superposition can be understood by imagining each photon
as a bundle of τ-dynamic worldlines of which only one triggers the detector. It is then
only from the limited perspective of a standard observer, who interprets quantum results
in standard four-dimensional spacetime, that the correlations between measured events
require concepts like nonlocality, collapse, or superposition.

In future work, a more ambitious program for replacing the standard quantum formal-
ism with a formalism of τ-dynamic worldlines can be undertaken. The three case studies
in Section 3 only give a rough idea of what such a theory may look like. In this aspect, the
present work shares the view of several physicists, like Einstein, de Broglie, Schrödinger,
Penrose, ’t Hooft, Weinberg, Smolin, and Hossenfelder, that quantum theory may ultimately
need to be replaced by a different theory. For example, ’t Hooft says: “What the Schrödinger
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equation is describing is not exactly what is happening; it merely describes the tip of a
gigantic iceberg, in which most processes happen far beneath the waterline” [61]. Weinberg
writes: “On the other hand, the problems of understanding measurement in the present
form of quantum mechanics may be warning us that the theory needs modification” [62].
Smolin states: “Quantum weirdness isn’t real—We’ve just got space and time all wrong”
and “To solve all these issues, we need to wipe the slate clean, go back to the first principles
of quantum theory and general relativity, decide which are necessary and which are open
to question, and see what new principles we might need” [63]. And lastly, Penrose points
out: “My own view is that to understand quantum non-locality we shall require a radically
new theory. This new theory will not just be a slight modification to quantum mechanics
but something as different from standard quantum mechanics as General Relativity is
different from Newtonian Gravity. It would have to be something which has a completely
different conceptual framework. In this picture, quantum non-locality would be built
into the theory” [64]. The theory presented in this work aims to achieve precisely what
is suggested by many of these physicists: to physically explain what happens “below the
surface” in a measurement by relaxing assumptions about spacetime and by replacing the
quantum formalism.

The 4+1 formalism developed in this work is restricted to flat 4D spacetime. A logical
further trajectory is to explore a similar 4+1 formalism based on curved 4D spacetimes
that satisfy the Einstein field equations. A good way to summarize such an extended 4+1
concept is through the following modification of the Einstein field equations:

Gµν(τ) =
8πG

c4 Tµν(τ) (18)

where G is the gravitational constant and c the speed of light and where the appearance of τ

emphasizes that the energy–stress tensor Tµν and the spacetime curvature expressed by Gµν

become τ-dependent objects. Establishing a connection between these curved spacetimes is
much more challenging but may be realized, for example, with the procedures developed
by Land [21–23]. Additionally, a more advanced evolution law for the hypersurface
Σ(τ) in curved spacetime is needed, and worldlines must be geodesics between local
interaction events in order to satisfy conservation of momentum. Furthermore, the above-
mentioned worldline-based replacement for quantum theory should be extended towards
curved spacetime. Together, such a generalized 4+1 formalism could enable a unified
understanding of gravitational observations aligned with general relativity, quantum
phenomena, and the passage of time, forming a compelling foundation for a theory of
quantum gravity. Returning to the problem of time mentioned in the Introduction, it is
not unexpected that a modification of the concept of time plays a pivotal role in achieving
this unification.

There are also implications of the presented 4+1 formalism for laboratory tests of
quantum gravity [65,66]. The interferometer model in Section 3.3 shows that there is only
one classical, momentum-carrying worldline in each spacetime corresponding to a value
of τ. This means that one may expect that the gravitational effect of the particle in the
interferometer is also restricted to just one branch of the interferometer. And according
to Equation (18), the gravitational effect of this branch is essentially classical. As a con-
sequence, in low-energy, table-top tests of quantum gravity consisting, for example, of
two gravitationally coupled interferometers, no gravitationally induced entanglement is
expected. This is in contrast with the prevailing view that, if the considered particles end
up in a superposition, the gravitational field must also end up in a superposition, resulting
in gravitationally induced entanglement.

5. Conclusions

This work presents a 4+1 formalism aimed at addressing fundamental issues in quan-
tum gravity. It incorporates a flat 4D spacetime evolving with τ, a hypersurface Σ(τ), and
τ-dynamic worldlines. Within this framework, a model for an EPR experiment is developed
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elucidating quantum nonlocality in the 4+1 formalism. The quantum measurement and
arrival time problems are analyzed by considering an isotropic source and hemispheri-
cal detectors. And a model for a Mach–Zehnder interferometer is developed to clarify
particle–wave duality and superposition. These results showcase intriguing aspects of the
4+1 formalism. It can reproduce essential quantum phenomena without suffering from the
measurement problem, satisfies local conservation of momentum, and offers an explanation
for the quantum-to-classical transition. By relying on two forms of time and a shifting
hypersurface, it enables us to simultaneously understand observations of a 4D spacetime
and of the flow of time. And it upholds principles like locality, realism, and determinism
at a fundamental level. With these properties, the 4+1 formalism produces an intuitive,
single-world view of reality and forms an intriguing basis for a theory of quantum gravity.
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