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A fault-tolerant non-Clifford gate for the surface code

in two dimensions

Benjamin J. Brown

Fault-tolerant logic gates will consume a large proportion of the resources of a two-dimensional quantum com-
puting architecture. Here we show how to perform a fault-tolerant non-Clifford gate with the surface code;
a quantum error-correcting code now under intensive development. This alleviates the need for distillation or
higher-dimensional components to complete a universal gate set. The operation uses both local transversal
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gates and code deformations over a time that scales with the size of the qubit array. An important component
of the gate is a just-in-time decoder. These decoding algorithms allow us to draw upon the advantages of
three-dimensional models using only a two-dimensional array of live qubits. Our gate is completed using parity
checks of weight no greater than four. We therefore expect it to be amenable with near-future technology. As
the gate circumvents the need for magic-state distillation, it may reduce the resource overhead of surface-code

quantum computation considerably.

INTRODUCTION

A scalable quantum computer is expected to solve difficult problems
that are intractable with classical technology. Scaling such a machine
to a useful size will necessarily require fault-tolerant components that
protect quantum information as the data is processed (1-4). If we are
to see the realization of a quantum computer, its design must respect
the constraints of the quantum architecture that can be prepared in
the laboratory. In many cases, for instance, superconducting qubits
(5-7), this restricts us to two-dimensional architectures.

Leading candidate models for fault-tolerant quantum computa-
tion are based on the surface code (3, 8) due to its high threshold (9)
and multitude of ways of performing Clifford gates (10). Universal
quantum computation is possible if this gate set is supplemented by
a non-Clifford gate. Among the most feasible approaches to realize
a non-Clifford gate is by the use of magic-state distillation (11).
However, this is somewhat prohibitive as a large fraction of the re-
sources of a quantum computer will be expended by these protocols
(12, 13).

Here, we provide a promising alternative to magic-state distillation
with the surface code. We show that we can perform a fault-tolerant
non-Clifford gate with three overlapping copies of the surface code
that interact locally. Each of the two-dimensional arrays of live qubits
replicates a copy of the three-dimensional generalization of the surface
code over a time that scales with the size of the array. We use that
the full three-dimensional model is natively capable of performing a
controlled-controlled-phase gate (14, 15) to realize a two-dimensional
non-Clifford gate. The procedure makes essential use of just-in-time
gauge fixing, a concept recently introduced by Bombin in (16). This
enables us to recover the three-dimensional surface code model using
parity measurements of weight no greater than 4. Research on such
technology is presently under intensive development (6, 7), as these
are the minimal requirements to realize the surface code model.

The non-Clifford gate presented here circumvents fundamental
limitations of two-dimensional models (17-21) by dynamically pre-
paring a three-dimensional system using a two-dimensional array
of active qubits. In the past, there has been a significant effort to
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realize a non-Clifford gate with two-dimensional quantum error-
correcting codes (22-24). However, these proposals are unlikely to
function reliably as the size of the system diverges. It is remarked in
(16) that we should understand fault-tolerant quantum operations,
not in terms of quantum error-correcting codes but, instead, by the
processes they perform. Notably, in our scheme, error-detecting mea-
surements are realized dynamically. This is in contrast to the more
conventional approach where we make stabilizer measurements on
static quantum error—correcting codes to identify errors. The process
is well characterized by connecting the surface code with the topolog-
ical cluster-state model (9, 25); a measurement-based model with a
finite threshold error rate, below which it will function reliably at a
suitably large system size. As we will see, the cluster state offers a natu-
ral static language to characterize the dynamical quantum process us-
ing a time-independent entangled resource state.

We begin by connecting measurement-based model to the three-
dimensional surface code, and we explain how we project the non-
Clifford gate onto a two-dimensional surface. We lastly discuss the
just-in-time decoder that permits a two-dimensional implementa-
tion of the gate. Microscopic details of the system and proof of its
threshold are deferred to Materials and Methods.

RESULTS

The topological cluster state

The topological cluster-state model (25) is described in three dimen-
sions. However, we need only maintain a two-dimensional array of
its qubits at a given moment to realize the system (9). Specifically, we
destructively measure each qubit immediately after it has interacted
with its neighboring qubits that are specified by the cluster state. This
method of generating the model on the fly gives rise to a time-like
direction (see Fig. 1A).

We use the topological cluster state to realize the three-dimensional
surface code. We define the surface code on a lattice with arbitrary
geometry with one qubit on each edge (e). The model is specified by
two types of stabilizers, star and plaquette operators, denoted as A,
and By. Stabilizers specify the code states of the model, | ), such that
Ay ) = Br|y) = | y) for all code states. Star operators are associated
to the vertices, v, of the lattice such that A, = [15.5,X, where oe is the
set of vertices at the boundary of e and X, and Z, are Pauli operators
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Fig. 1. The three-dimensional surface code in spacetime. (A) The topological
cluster-state model is a three-dimensional model that propagates quantum infor-
mation over time with only a two-dimensional array of live qubits at any given
moment. We show a gray plane of live qubits that propagates in the direction of
the time arrow. (B) Gray loops show the connectivity of plaquette measurements
that returned the —1 outcome. An arbitrary state is initialized fault-tolerantly by
initializing the system with an encoded two-dimensional fixed-gauge surface code
on the gray face at the left of the image. (C) The boundary configurations of the
three copies of the surface code are required to perform a local transversal controlled-
controlled-phase gate. The first code has rough boundaries on the top and the
bottom of the lattice. The middle (right) code has rough boundaries on the left and
right (front and back) sides of the lattice. The orientation of the boundaries deter-
mines the time direction in which we can move the planes of live qubits.
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acting on e. Plaquettes lie on lattice faces f such that By = Tl.eaiZs
where df are the edges that bound f. We give details on explicit lattice
geometries that we might use in the “Lattices” section.

To connect the three-dimensional surface code with the topo-
logical cluster state (25), we consider initializing the surface code in
the +1 eigenvalue eigenstate of the logical Pauli-X operator by mea-
surement. We consider initializing all the physical qubits in the |+), =
X | +). state and then measure all the plaquette operators. Up to an
error correction step, this completes initialization. To measure a
plaquette operator By, we prepare an ancilla qubit, a, in the | +), state
and couple it to the qubits that bound f with controlled-phase gates,
i.e.,, we apply U = [eea/CZ, o with CZjx = (1 + Z; + Zi — ZiZy)/2, the
controlled-phase gate.

It is helpful to imagine placing the ancilla qubit on the face f to
measure its corresponding plaquette operator By. After this entangling
operation, measuring an ancilla qubit at face fin the Pauli-X basis will
recover the value of B;. However, we observe that if we place one ancilla
at every face fand entangle it to its corresponding edges to measure the
plaquette operator B then before any ancillas are measured, we have
the topological cluster-state model (25). Specifically, the qubits of
the surface code give the qubits of the primal lattice of the cluster state,
and the ancilla qubits lying on faces make up the qubits of its dual
lattice.

We require that the surface code lies in the +1 eigenvalue eigen-
state of its face operators. However, measuring all the dual qubits of
the cluster state projects its primal qubits into a random gauge of the
three-dimensional surface code where, up to certain constraints, all
the face measurements take random values. Henceforth, unless there
is ambiguity, we refer to the model with face operators fixed onto
their +1 eigenvalue eigenstate as the surface code; otherwise, we call it
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the random-gauge surface code. It is important to realize the fixed-
gauge surface code to perform the controlled-controlled-phase gate (15).

We use error correction to recover the surface code from the
random-gauge model (26-28). We note that the product of all the
face operators that bound a cell returns identity, i.e., [Tre a.Br = 1 where
dc is the set of faces that bound cell c. Hence, supposing that all the
measurements are made noiselessly, there must be an even parity of
measurements that return the —1 outcome about each cell. This, in
turn, constrains the plaquette operator measurements to respect loop-
like configurations on the dual lattice (see Fig. 1B). To recover the
fixed-gauge surface code, we apply a Pauli-X operator with a membrane-
like support whose boundary terminates at each component of the
loop configuration.

Further, we can initialize the surface code in an arbitrary state
fault tolerantly if, before face measurements are made, we replace
the unentangled qubits on one side of one boundary of the lattice
with an encoded surface code, for instance, the gray face shown to
the left of Fig. 1B (29). We refer to this face as the initial face. Impos-
ing that the face operators of the surface code are fixed in the +1
eigenvalue eigenstate means that no loop configurations will ter-
minate at this boundary. This method of initialization is a type of
dimension jump (30).

Embedding the non-Clifford gate in two dimensions

We can now explain how we can embed the three-dimensional sur-
face code that performs a non-Clifford gate in two dimensions. There
are several constraints the system must satisfy if we realize a controlled-
controlled-phase gate with a two-dimensional system. We first point
out that the orientation of boundaries of the topological cluster state
is important for the transmission of logical information (29). More
precisely, they constrain the temporal directions of the model. We
consider again the cluster state in terms of the three-dimensional sur-
face code. We require two types of surface code boundaries; rough
and smooth (31). If we couple ancilla to the surface code to recover
the topological cluster state as specified above, then the rough (smooth)
boundaries of the surface code give rise to the primal (dual) boundaries
of the cluster state. If we only maintain a two-dimensional array of
qubits, the plane must contain two distinct primal boundaries that
are well separated by two distinct dual boundaries to support the en-
coded information. The gray plane in Fig. 1A is suitable, for example.

Second, the boundaries of the three surface codes must be cor-
rectly configured to perform a transversal controlled-controlled-
phase gate (14, 15). Figure 1C shows the boundaries configured such
that the qubit at coordinate P = (x, y, z) of each code interacts with the
respective qubit at the same location of the other codes via transver-
sal controlled-controlled-phase gates. To perform the gate locally,
these three lattices must overlap while maintaining these boundary
conditions.

Last, if we only maintain a two-dimensional array of the three-
dimensional system, it is important that all the qubits that need to
interact with one another must be live at the same time. We show a
system that satisfies all of these constraints in Fig. 2. The figure
shows a three-dimensional spacetime diagram of two overlapping
codes moving orthogonally to one another. We omit the third code
as it can travel in parallel to one of the codes already shown. The
first code that has rough boundaries on the top and bottom of its
volume and the live plane of qubits moves right across the page. The
second code has rough boundaries on the left and right sides of its vol-
ume and moves upward in the figure. The controlled-controlled-phase
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Fig. 2. The non-Clifford gate shown in spacetime. Two codes traveling in differ-
ent temporal directions cross. The third code is omitted as it can run in parallel with
one of the two shown. Live qubits of the spacetime history are shown on light gray
planes. The transversal gate is applied in the cubic region in the middle. It will be
applied on the qubits shown at the dark gray plane where the two-dimensional
arrays of qubits are overlapping.

gate is made at the cubic region where the codes intersect. We find
that all the appropriate qubits are active at the right moment by
choosing two diagonal planes of live qubits for each code. We can
also see that the planes we choose all have two well-separated
rough and smooth boundaries within their respective volume.

We are now ready to consider an embedding of the three-dimensional
spacetime shown in Fig. 2 onto a two-dimensional manifold. We find
that one of the codes has to move with respect to the other. This can
be naturally incorporated in the procedure to generate layers of the
topological cluster state (see the “Gauge fixing” section). We consider a
point P in the spacetime diagram in the region where the controlled-
controlled-phase gate is performed such that a qubit of each of the
two models must interact. The coordinates of the locations of the two
codes change differently with time. The first code that travels upward
in the spacetime diagram has coordinates P = (x/, t'), and the other
that moves from left to right has coordinates P = (t, y) with time ¢ =
t'. We neglect the z coordinate as this is static. We imagine projecting
the three-dimensional system onto a two-dimensional plane such
that y = t' = 0; we now observe that ¢ = x". We conclude that one code
must move with respect to the other two static codes to ensure all the
qubits that must interact are local at the right moments in time. We
discuss the protocol in more detail, and we give estimates of the re-
source cost of the gate in the “Implementing the non-Clifford gate”
section.

Just-in-time gauge fixing

We use a decoder to fix the topological cluster-state model onto the
surface code using data from the ancilla qubit measurements. In the
case that there are measurement errors, we will necessarily intro-
duce small Pauli errors onto the system that will translate into Clifford
errors upon application of the transversal non-Clifford gate. Measure-
ment errors in this model take the form of strings that are detected by
measuring the defects that lie at their endpoints. A decoder must at-
tempt to close these endpoints. We can pair the defects with conven-
tional decoders for topological codes such as minimum-weight perfect
matching (3) or clustering (32). We then fix the gauge by applying a
membrane-like Pauli-X operator whose boundary is the union of both
the error and the correction.
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Fig. 3. Just-in-time gauge fixing. The spacetime diagram of an error on the dual
qubits of the topological cluster state where time travels upward. The gray area
shows the two-dimensional area of live qubits at a given moment. At the point
where an error is found on the left diagram, it is unlikely that the defects should be
paired because of their separation. We therefore defer matching the defects to a
later time after more information emerges as decoding progresses, as in the mid-
dle figure. After enough time, the most likely outcome is that the defects we found
in the left figure should be paired. The error we introduce fills the interior of the
error and the chosen correction.

Small discrepancies in the correction compared with the actual
measurement error will lead to gauge-fixing errors. Then, applying
the transversal operation to the system whose gauge has been fixed
incorrectly will introduce controlled-phase gates between pairs of
qubits of different surface codes that have been involved in the same
controlled-controlled-phase interaction. Provided that the errors that
are introduced during gauge fixing are small and are supported on a
correctable region, the errors the transversal gate will introduce are
also correctable. When we infer the values of the star operators, we
project the Clifford errors that are diagonal in the computational basis
onto Pauli-Z errors. After the projection, these errors also manifest as
strings on the three-dimensional surface code. Again, we detect the
string-like errors by measuring defects at the endpoints of the strings.
Once more, we can correct these errors with any suitable algorithm
that pairs the defects. We can therefore prove a fault-tolerance thresh-
old under the gauge-fixing procedure by showing that the errors we
introduce during gauge fixing are small in comparison to the distance
of the code.

We aim to fix the gauge of a three-dimensional model. However,
we will only maintain a two-dimensional array of live qubits. Hence,
the decoder has a limited amount of information available to make
decisions about how to pair defects. To overcome this issue, we defer
correcting pairs of defects to a later time once we have more certainty
that two defects should be matched. This leads the errors to spread
over the time during which matching is deferred (see Fig. 3). We pro-
pose a renormalization group (32) just-in-time decoder (16) that will
defer the pairing of defects such that the spread of errors is controlled.
Broadly speaking, we find that a just-in-time decoder will work if the
pairing of two defects is deferred until both defects have existed for a
time proportional to their separation in spacetime. We make this
statement precise in the “Error correction with just-in-time gauge
fixing” section and prove that it controls the spread of errors. More-
over, we discuss how the decoder is modified to find a correction
close to the boundary of the surface code.

Supposing an independent and identically distributed error model
that is characterized in terms of chunks (32), we can show that the
just-in-time decoder will not spread a connected component of the
error by more than a constant factor of the size of the component. We
further find that this spread error model can be decoded by a renor-
malization group decoder. We prove a threshold against the spread
error model using a renormalization group decoder in the “A thresh-
old theorem with a spread error” section (see Lemma 2). We then
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prove that the just-in-time decoder will give rise to spread errors with
a constant spread (see Lemma 3 in the “Just-in-time gauge fixing” sec-
tion), thus justifying the noise model. In contrast, the threshold theorem
for just-in-time decoding given by Bombin (16) uses a minimum-
weight perfect matching decoder (3).

One should worry that the just-in-time gauge-fixing process will
add errors that may decrease the logical failure rate of the system.
We argue that we can make this effect relatively benign in postpro-
cessing. The errors introduced by the just-in-time decoder are twofold.
First, it may directly introduce a logical failure by incorrectly match-
ing defects, and second, if the decoder does succeed, then it will intro-
duce large errors to the primal qubits of the system that need to be
decoded globally once the gate is complete. This will increase the
failure probability of the decoder that corrects the errors on the pri-
mal lattice.

The two problems highlighted above can be alleviated be using
the gate offline to produce high-fidelity magic states by inputting
logical Pauli-X eigenstates into the gate. These input states can be
prepared fault-tolerantly. By using the system offline, we can per-
form additional error detection diagnostics on the output state be-
fore using the magic state to complete the algorithm. Specifically,
once gauge fixing is completed, we can simulate gauge fixing again
with a high-performance global decoder, e.g., in (9), that has access to
the complete set of syndrome data and compare it with the correction
returned by the just-in-time decoder. For simplicity, we assume that
the set of errors that are correctable by the just-in-time decoder are in-
cluded in the set of correctable errors of the high-performance decoder.

Comparing the corrections that are proposed by the high-
performance decoder and the just-in-time decoder will allow us to im-
prove the fidelity of the output states to that of the high-performance
decoder. If their results are not equivalent, then we discard the output
of the state. We denote the failure rates of the high-performance (just-
in-time) decoder Pyp(Pjr7). Both decay rapidly with system size below
threshold, but we suppose Pyp < Pjr. In the event that the decoders
disagree, we discard the state. To leading order, this occurs with likeli-
hood ~ Pjrr. In the case that the decoders agree, the state that we output
is logically incorrect with likelihood ~ Pyp. The use of a high-
performance decoder therefore improves the fidelity of the postselected
output states. The failure rate of the just-in-time decoder then only
determines the rate at which magic states should be discarded.

Assuming that the output of both the high-performance decoder
and the just-in-time decoder agree, we can then use the output of
the high-performance decoder to estimate the locations of the er-
rors spread to the surface code by just-in-time decoding. We can
compare the output of the high-performance decoder with the cor-
rection produced by the just-in-time decoder. Specifically, we know
that we introduced a membrane-like Pauli-X error whose boundary
is the union of the measurement error itself, together with the cor-
rection that was proposed by the just-in-time decoder. Given that
the low-weight correction produced by a high-performance decod-
er should approximate the locations of the measurement errors, we
know that the union of the correction operator produced by both
decoders should approximate the location of the boundary of the
Pauli error we have introduced. This information can be fed to the
decoder we use to decode the errors on the primal qubits. It can be
used to flag the qubits that are highly likely to support an error.
Bombin (16) treats these flagged qubits as erasure errors that, in
general, can support linking charges (33, 34). The proof given in the
“Error correction with just-in-time gauge fixing” section shows that
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we have a threshold without these considerations, but implementa-
tions of this protocol should use a decoder that accounts for these
effects to improve its performance. After post-selection, we then
might expect the system to perform as though it were gauge-fixed
globally with some known erasure errors (16, 35).

DISCUSSION

To summarize, we have shown how to perform a fault-tolerant
controlled-controlled-phase gate with a two-dimensional surface
code architecture, and we have proved that it has a threshold. Next,
it is important to compare the resource scaling of this scheme com-
pared with more conventional two-dimensional approaches to fault-
tolerant quantum computation, namely, surface code quantum
computation with magic-state distillation (11). This will require
blueprints that lay out how to implement the controlled-controlled-
phase gate in the laboratory, together with numerical simulations,
to find how the logical failure rate decays as a function of system size
and physical error rate. Given that gauge-fixing errors will spread
phase errors as we apply the three-qubit transversal gate, the logical
error rate of this scheme is likely to decay more slowly than approaches
using magic-state distillation where we do not rely on gauge fix-
ing. However, the spacetime volume of realizing a fault-tolerant
controlled-controlled-phase gate, ~96d° (see the “Implementing the
non-Clifford gate” section), is significantly smaller than a single dis-
tillation routine; hence, these schemes are clearly deserved of further
comparison. It is likely that the optimal choice will depend on the
error rate of the physical hardware.

It will also be interesting to compare the protocol introduced here
to that presented by Bombin (16). This two-dimensional non-Clifford
gate is based on the color code such that a transversal T = diag (1, i'?)
gate is performed over time via single-qubit rotations. This will make
for a very interesting comparison since, although decoding technology
for the color-code model (36, 37) remains lacking in comparison to
the surface code (9), the fact that the non-Clifford operation is per-
formed using single-qubit rotations instead of a weight-three gate
will mean that fewer errors will be spread during computational pro-
cesses. To begin comparing these protocols fairly, it will first be im-
portant to improve the decoding algorithms we have for the color code.

It is likely that there will be several ways to optimize the present
scheme. Although we find transversal gates via a mapping between
the color code and the surface code (14, 15) such that we arrive at
quite a specific lattice, it will be unexpected if we cannot find ways
of performing a constant-depth locality-preserving gate with other
lattices (38) for the topological cluster-state model. History has
shown that the gates a given model is able to achieve is connected
with the macroscopic properties of a system, not its microscopic details.
Developing our understanding of measurement-based quantum
computation in three dimensions by decomposing it in terms
of its topological degrees of freedom (16, 29) is likely to be a prom-
ising route toward better models of two-dimensional fault-tolerant
quantum computation.

MATERIALS AND METHODS
Lattices and mobile qubits
Here, we describe the microscopic details and dynamics of the system.
We describe the lattice and how the gauge fixing progresses. We lastly
discuss the protocol over its entire duration to estimate its resource cost.
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Lattices

In (15), the authors describe three surface codes on different three-
dimensional lattices. We give simple representations of the lattices
here that help understand the steps of gauge fixing. The first of the
three copies is well represented with the standard convention that
we described in the main text where qubits lie on the edges of a cu-
bic lattice. We refer to this as the standard surface code lattice. The
other two lattices are represented with qubits on the vertices of rhom-
bic dodecahedra in (15). We call this the alternative surface code. We
offer an alternative description of this lattice in this section.

All the qubits of the alternative surface code are unified with the
qubits of the standard surface code on the cubic lattice. We there-
fore find a straightforward way of representing the stabilizers of the
alternative code with qubits on the edges of a cubic lattice. We show
the stabilizers in Fig. 4 on a cubic lattice. To represent this model,
we bicolor the cubes, as they support different stabilizers depending on
their color (see Fig. 4A). The white primal cubes support Pauli-X “star”
operators, and the gray dual cubes support the Pauli-Z “plaquette” op-
erators. We express their support with the following equations

H X, Bc,v = H Ze
e€dc desv
e€adc

(1)

where dc is the set of edges on the boundary of cube ¢ and again, de
is the set of vertices v at the boundaries of edge e, i.e., its end points.
The operators A, and B, are, respectively, defined on primal and
dual cubes only. We also note that each vertex touches four dual
cubes; hence, there are four B, at each vertex. Further, there are
eight vertices on a cube, there are therefore eight B.,, stabilizers for
each dual cube c. There is only one A, operator for each primal cube.
We also show the stabilizers added at the smooth and rough bound-
aries in Fig. 4 (D and E, respectively). See (15) for a more detailed
discussion on the boundaries.

Last, we count the number of qubits in a single-unit cell (see
Fig. 4A) as these will make up a site in the threshold theorem given
in the “Error correction with just-in-time gauge fixing” section. As
a function of volume in the bulk of the lattice, the standard and the
alternative surface code both have three qubits per cube lying on the
edges of the lattice, so over a unit cell of eight cubes, we have 24 qubits.

A =
@&J |

Fig. 4. A lattice geometry for a surface code. (A) A unit cell is composed of four
primal cubes and four dual cubes configured as shown with primal and dual cubes
shown in white and gray, respectively. (B) A Pauli-X “star” operator supported
on a primal cube. (C) A plaquette operator supported on the corner of a dual cube.
(D) A smooth boundary stabilizer. (E) A rough boundary stabilizer.
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We also include ancilla qubits to measure the plaquette operators
of each model. In the standard surface code, we make one plaquette
measurement for each face of the lattice. There are three faces per
cube of the lattice; we therefore have 24 ancilla qubits per unit cell to
measure the faces of the cubic lattice model. For the alternative sur-
face code, we make eight measurements per dual cube of the unit cell.
We have four dual cubes per unit cell; we therefore arrive at 32 ancilla
qubits for each unit cell of the alternative surface code shown in
Fig. 4.

The discussion above concludes that we have 48 qubits in total
per unit cell of the standard surface code and 56 qubits per unit cell
of the alternative surface code. We lastly consider a unit cell of the
total system with three overlapping lattices. Each unit cell includes
one copy of the cubic lattice model and two copies of the alternative
model. We therefore find that we have 160 qubits per unit cell in
total. The unit cells at the boundary of the system can be regarded as
bulk cells with some of the qubits removed. Hence, when we ac-
count for the boundary, we can take this value as an upper bound.
Last, we note that each of these unit cells contributes two units of
distance to the system.

Gauge fixing

Having specified the lattices, we now discuss how to perform the
gauge-fixing process. Gauge fixing moves three two-dimensional surface
codes through a three-dimensional spacetime volume to reproduce
three overlapping three-dimensional surface codes over time. This motion
proceeds by repeatedly producing a thin layer of three-dimensional
surface code and then measuring some of its qubits in a product basis to
collapse the system onto a two-dimensional surface code that has been
displaced through spacetime. Gauge fixing and transversal controlled-
controlled-phase gates are applied at the intermediate step where
the system is in the state of a thin slice of three-dimensional surface
code. We show one period of the process for two lattices in Fig, 5.
Each panel of the figure shows the region in which the transversal
controlled-controlled-phase gate is conducted within the black cube.
The top figures show the progression of a lattice moving from left to
right through the region over time, and the lower figures show a lattice
moving upward through the region. Time progresses from left to right
through the panels. The columns of the diagram are synchronized.

We now describe the microscopic details of a single period of the
gauge-fixing process. We perform similar processes on all three sur-
face codes involved in the gate in unison. The three surface codes
only differ in the direction they move through the spacetime vol-
ume and the lattice we use to realize the surface code. Hence, we will
only focus on a single surface code, say that shown in Fig. 5A.

A period of the gauge-fixing process begins with a two-dimensional
surface code supported on the qubits shown at time ¢ to the left of
Fig. 5A, and it ends at time ¢ + 1 with a displaced surface code, shown
in the right column of the figure. It is helpful to label the subsets of
qubits of the spacetime volume that support a surface code at time
t(t + 1) with the label Q; (Qy1). The thin three-dimensional surface
code that we produce at the intermediate step is shown in the central
column of Fig. 5A at time ¢ + 1/2. We denote the qubits that support
the three-dimensional surface code at this time by OQy,1/,. The subsets
of qubits we have defined are such that Q;, O} C Q152 and the inter-
section of Q;and Qy; is nonempty.

We map the surface code at time ¢ onto the three-dimensional
surface code shown at time ¢ + 1/2 by measurement. We initialize
the qubits in the subset Qy1,\Q; in the | +) state. We then measure
all the plaquettes supported on Q,1/, that have not been measured
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A

t t+1/2

Fig. 5. Microscopic details of the gauge-fixing procedure. One period of the
gauge-fixing process for the models undergoing the controlled-controlled-phase
gate. Time progresses between the figures from the left to the right from time t to
t+ 1 via an intermediate step at time t+ 1/2. (A) The lattice above shows the code
moving from left to right through the spacetime volume of the controlled-
controlled-phase gate, marked by the black cube, and (B) the lower figures show a
code moving upward through the black cubic region. The live surface codes are
overlapping at all points in time. The figures at the left show a two-dimensional
surface code. In the middle figures, we produce a thin layer of three-dimensional
surface code by adding additional qubits and measuring the plaquette operators
that are supported on the displayed qubits. The gauge-fixing correction is made be-
fore transversal controlled-controlled-phase gates are applied. Once the controlled-
controlled-phase gates are applied, qubits are measured destructively to recover
the system at the right of the figure.

t+1

previously. Plaquettes supported entirely on Q; have already been
measured at an earlier period. It is therefore unnecessary to mea-
sure these stabilizers again.

The plaquette measurements will return random outcomes and
may include errors. We must fix the gauge of the plaquettes of the
active layer of the surface code to their +1 eigenstate. This is described
in more detail in the “Error correction with just-in-time gauge fixing”
section. For now, we assume that it is possible to accomplish this.
Once we make the gauge-fixing correction, we apply the controlled-
controlled-phase gate between the qubits of subset Qy.1/2\ Q41 of each
of the three systems involved in the gate.

We lastly recover a two-dimensional surface code on the subset
of qubits Oy, by measuring the qubits of the subset Q,12\ Q4 in
the Pauli-X basis. We use the outcomes of the destructive single-qubit
Pauli-X measurements to infer the values of the star operators of the
three-dimensional surface code. As measurement errors that occur
when we make single-qubit measurements are indistinguishable from
physical errors, the readout of the star operators of the three-dimensional
surface code is fault tolerant.

In a sense, we can consider this as a dimension jump (30) where
a two-dimensional model is incorporated into a three-dimensional
model to leverage some property of the higher-dimensional system.
In this case, we prepare a very thin slice of the three-dimensional sur-
face code model where, once all the physical operations have been
performed, we can collapse the three-dimensional model back onto
a two-dimensional model again. The latter dimensional jump where we
go from the three-dimensional surface code to its two-dimensional
counterpart has been demonstrated by Raussendorf, Bravyi, and
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Harrington (25), where they fault-tolerantly prepare a Bell pair be-
tween two surface codes using the topological cluster state.

It is worth remarking that the method we have discussed here
enables us to produce other three-dimensional structures that go
beyond foliation (38). Much research has sought to map quantum
error—correcting codes into measurement-based schemes (29, 39)
through a system called “foliation” to access favorable properties of
exotic quantum error—correcting codes. Conversely, some fault-tolerant
measurement-based schemes have been developed that are not ex-
pected to have a description in terms of a quantum error-correcting
code. Really though, we should expect that we can implement any
fault-tolerant protocol independent of the architecture that we choose
to realize our qubits. The scheme presented here gives us a way to
realize these models that are beyond foliation with a two-dimensional
array of static qubits. Given their promising thresholds (38), it may
be worth exploring the practicality of some of these higher-dimensional
models on two-dimensional architectures.

In a similar vein, we point out that the two-dimensional surface
code that is propagated by the code deformations of the alternative
lattice is described naturally on the hexagonal lattice. This lattice
has been largely dismissed because of its weight-six hexagonal sta-
bilizer terms. However, we measure its stabilizers using only weight-
three measurements, and the higher-weight stabilizers are inferred
from single-qubit measurements. Hence, it may be worth revisiting
this model as the scheme presented here offers a method of stabiliz-
er extraction that does not require measurements of weight greater
than three. Further, as no qubit supports more than four plaquette
stabilizers, the topological cluster state that realizes this surface code
has vertices that are no more than four valent. We may therefore
expect this model to have a high threshold with respect to the gate
error model.

Implementing the non-Clifford gate

We lastly describe the entire protocol which is summarized in Fig. 6
and discuss its spacetime resource cost as a function of the code
distance of the system, d. Each panel of the figure shows three ar-
rays, each of which supports a code. It may be possible to embed the
qubits of all three codes on one common array, but for visualization
purposes, we imagine three stacked arrays that can perform local
controlled-controlled-phase gates between nearby qubits on separate
arrays. Parity measurements are performed locally on each array.

The code on the lower array will move from left to right along
the page as we undergo code deformations. For a strictly local sys-
tem, we consider an extended array that we refer to as the long ar-
ray. However, as we discuss toward the end of this section, we can
reduce the size of this array by simulating a system with periodic
boundary conditions. We proceed with the discussion where the pro-
cess is strictly local. To evaluate the resource cost, we refer to a single
unit of time as a cycle. The resource cost is measured in units of
qubit cycles.

Before the gate begins, we must copy the encoded information
onto the arrays where the gate is performed. We might accomplish
this with lattice surgery (10, 40). Figure 6A shows three surface codes
that have been moved close to the edges of the arrays where the gate
will be performed. One logical qubit is copied to the far left of the
long array. Initializing the system will take time that scales like the
code distance, ~d cycles.

We might also consider using the system offline to prepare high-
fidelity magic states. With this setup, we apply the gate to three sur-
face codes initialized fault-tolerantly in an eigenstate of the Pauli-X
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Fig. 6. A two-dimensional layout for the non-Clifford gate. The progression of
the controlled-controlled-phase gate. (A) Qubits are copied onto the stacked arrays
of qubits from other surface codes using lattice surgery. (B) The thick black qubits
are passed under the other two arrays and controlled-controlled-phase gates are
applied transversally between the three arrays where the qubits overlap. (C) and
(D) show later stages in the dynamics of the gate.

operator. While this will mean that we do not need to copy informa-
tion onto the three arrays, it will still be necessary to fix the gauge of
the system such that all the plaquette operators of the initial face are
in their +1 eigenvalue eigenstate. To the best of our knowledge, this
will still take O(d) time to prepare the system such that its global
charge is vacuum.

We remark that using the protocol offline to produce magic states
may offer some advantages. For instance, as we discussed in the main
text, we can postselect high-quality output states by comparing the
result of the just-in-time decoder with a high-performance decoding
algorithm. Moreover, the required connectivity of the gate with the
rest of the system will be reduced. This is because we need only copy
the magic states out of the system, and we do not need to input arbi-
trary states into the system that may require additional routing.

Once the system is initialized, we begin performing the code de-
formations as discussed in the previous section. The code deforma-
tions move the code on the long array underneath the other two codes
(see Fig. 6B) and out the other side (see Fig. 6C). Assuming that one
step, as shown in Fig. 5, takes one cycle, moving the lower code all
the way under the other two and out the other side will take 2d units
of time. The final state of the protocol is shown in Fig. 6D.

The above discussion explains that the three arrays will be occu-
pied for 3d cycles. Each array will support a code that will consist of
~d x d unit cubes that collectively can produce a thin slice of the
three-dimensional surface code. Arrays of unit cubes are shown in
Fig. 5 at time ¢ + 1/2. The long array must be able to support unit
cubes in 3d x d locations. We include the idle qubits of the long array
in the resource cost over the entire protocol. We count the qubits of
each unit cube we need to realize each of the three-dimensional sur-
face codes, including an ancilla qubit for each plaquette measure-
ment we make on a given unit cube. We note that we have chosen
the term “unit cube” here, as distinct from the “unit cell” that was
defined in the “Lattices” section. The unit cell is a single element of
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a translationally invariant lattice that we use in the “Error correc-
tion with just-in-time gauge fixing” section. A unit cube, as defined
here, contributes one unit of distance to the system in both the spa-
tial and temporal directions.

We consider two different lattices that have been discussed in the
“Lattices” section: the standard surface code and the surface code on
the alternative lattice that we show in Fig. 4. Both lattices include qubits
lying on the edges of a standard cubic lattice. There are 12 edges on
the boundary of each unit cube, but as we see in Fig. 5, the unit cubes
are such that there are ~d x d edges that are shared between two
cubes, as well as ~d x d faces, each consisting of four edges, that are
shared between pairs of cubes. We therefore find seven qubits per
unit cube lying on the edges of the cubic lattice.

We also assume that there is a single qubit for each plaquette
measurement needed to produce the lattices shown in Fig. 5 at time
t + 1/2. For the standard lattice surface code, there are six plaquette
measurements associate to each unit cube, one for each of its faces.
However, as shown in Fig. 5 at time t, two of the faces have already
been measured during an earlier cycle. Further, two-face measure-
ments of each unit cube are shared with other unit cubes; we there-
fore count three measurement ancilla qubits per unit cube for the
standard surface code. In total, including the qubits on the edges of
the lattice, we find 10 qubits per unit cell of the standard lattice sur-
face code. A similar analysis finds that we need to perform four
plaquette measurements per unit cube to produce a slice of the al-
ternative surface code at time ¢ + 1/2. The alternative surface code
thus includes 11 qubits per unit cell.

To conserve resources, we assume that the two stationary qubit
arrays support the two alternative lattice surface codes. Each of these
arrays therefore requires 11d” qubits to produce d x d unit cells. Sim-
ilarly, the resource cost of 3d” unit cells of the conventional cubic
lattice surface code on the long array uses 10 - 3d* qubits. In total, all
three arrays support ~[30 + 2 - 11]d* = 52d* qubits. Assuming that
the full protocol is completed in 3d cycles, we arrive at a total re-
source cost of 1564° physical qubit cycles for a single implementation
of the gate.

The conservative estimate given above assumes that 10 - 2d x d
qubits are idle for 3d units of time. We would obtain a resource
saving of 60d° qubsit cycles by making use of these idle qubits or al-
tering the protocol such that they are not needed. An easy way to
achieve this is by simulating periodic boundary conditions on the
long array. We can achieve the same protocol by replacing the long
array with a d x d array with cylindrical boundary conditions such
that all three arrays have a size ~d x d unit cells.

Periodic boundary conditions are easily achieved given a distrib-
uted architecture (41), where we are not constrained to strictly local
interactions. One could also imagine approximating periodic bound-
ary conditions with a strictly local system using a line of L gates that
share one very long array. The very long array has size (L + 2)d x d
and supports L disjoint d x d surface codes. All L gates proceed in
parallel where all L codes move synchronously along the very long
array. In both cases, in the latter where L diverges, we arrive at a re-
source cost of ~96d° qubit cycles per controlled-controlled-phase
operation. Over the course of the gate, we must perform ~3d°
controlled-controlled phase gates.

At this stage, one might be willing to make speculations on how
the resource cost of the gate proposed here compares with well-studied
magic-state distillation protocols. Let us take a recent example (12)
where a magic-state distillation protocol is proposed that occupies
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12d’" x 6d’ qubits over 5.5d" cycles, giving a total resource cost ap-
proaching ~400d"> qubit cycles. We deliberately choose to quantify
the qubit cycles of this example with units of ' instead of d°. This
is because, without numerical simulations, we cannot accurately cal-
culate how the failure rate of the gate presented in this work decays
with d as compared with d'.

Optimistically, we might hope that the logical failure rates of both
protocols decay comparably in distance. In which case, we might com-
pare resources whereby d ~ d’, and we find that the gate presented
here can outperform magic-state distillation using a small fraction of
the resources. In practice, gauge fixing will introduce additional errors
while the controlled-controlled-phase gate proceeds. In contrast, a
magic-state distillation procotol that uses only logical Clifford oper-
ations will not experience gauge-fixing errors. Hence, we should ex-
pect that d > d’ to obtain comparable logical failure rates. Presently,
little work has been done to calculate the logical failure rate of gates
that make use of gauge fixing. The extent of this problem will be
very sensitive to the error rate of the plaquette measurements. In
principle, errors introduced by gauge fixing are of a different nature
to errors introduced by the environment. As we have discussed in
the main text, an appropriately chosen decoder might be able to
mitigate the errors introduced by gauge fixing.

Another reason one should anticipate that we should choose d >
d’ is that the application of noisy controlled-controlled-phase gates
on the physical qubits will introduce additional errors to the system.
Of course, the noise introduced by these entangling gates depends
on the implementation of these gates. For the discussion here, it is
simpler to remain agnostic about the physical implementation of the
logical gate. Further work needs to be done to determine the magni-
tude of these sources of noise.

Error correction with just-in-time gauge fixing

Here, we prove that the non-Clifford operation will perform arbi-
trarily well as we scale the size of the system, provided that the physical
error rate on the qubits is suitably low. We outline an error correction
procedure as we undergo the controlled-controlled-phase operation.
The argument requires two main components. We require a just-in-
time decoder that controls the spread of an error during the gauge
fixing. We then show that the spread errors are sufficiently small that
we can correct them at a later stage. We first show that we can decode
a spread error model globally during postprocessing using a renormal-
ization group decoder before arguing that the error model is justified
by the just-in-time decoder.

Notation and terminology

We suppose a local error model acting on the qubits of the space-
time of the non-Clifford process. For suitably low error rate, we can
characterize the errors as occurring in small, local, well-separated
regions (32). The just-in-time gauge-fixing decoder will spread this
error. Given that the spread is controlled, we can show that a global
renormalization group decoder will correct the errors that remain
after the gauge-fixing process. Our argument follows a similar ap-
proach to that presented in (32). Hence, we will adopt several defi-
nitions and results presented in (32). We will also keep our notation
consistent with this work where possible.

We divide the system into sites: small local groups of qubits spec-
ified on a cubic lattice. We consider an independent and identically
distributed error model where a Pauli error occurs on a site with prob-
ability po. We say that a site has experienced an error if one or more
of the qubits has experienced an error. Given a constant number of
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qubits per site, N, then, the likelihood a site experiences an error py =
1 - (1 —&)"Vis constant where each qubit of the system experiences an
error with constant probability e. We consider a Pauli error E drawn
from the probability distribution described by the noise model. We
will frequently abuse notation by using E to denote both a Pauli op-
erator and the set of sites that support E.

The syndrome of an error E is denoted as 6(E). It denotes the set
of defects caused by E. We say that a subset of defects of a syndrome
can be neutralized if a Pauli operator can be applied such that all the
defects are neutralized without adding any new defects. We may also
say that any such subset of the syndrome is neutral.

Defects lie at locations, or sites, u = (uy, Uy, t) in 2 + 1-dimensional
spacetime. The separation between two sites is measured using the €.,
metric where the distance between sites © and v, denoted as | u — v|, is
such that |u —v|=max (|uy— vi|, |, — v, [, 4= v¢|). We will be
interested in regions of spacetime that contain a collection of points M.
The diameter of M is equal to max,yep | u—v |. We say that a subset
of points M is r-connected if and only if M cannot be separated into
two disjoint proper subsets separated by a distance more than r. The
§-neighborhood is the subset of sites that lie up to a distance § from
a region p together with the sites enclosed within region p itself.
Given that we have a local model in spacetime, defects appear on
sites within the one neighborhood of the sites of the error E. The
following argument relies heavily on the notion of a chunk at a given
length scale Q.

Definition 1 (Chunk). Let E be a fixed error. A level-0 chunk is
an error at a single site u € E. A nonempty subset of E is called a
level-n chunk if it is the disjoint union of two level-(n — 1) chunks
with diameter <Q"/2.

We express errors in terms of their chunk decomposition. We
define E,, as the subset of sites that are members of a level-n chunk
such that

E=E 2 E 22 E, )
where m is the smallest integer such that E,,;; = @. We then define
subsets F; = E\Ej;; such that we can obtain the chunk decomposi-
tion of E, namely

E = FpuF U - UF, (3)

A level-m error is defined by the smallest value of m such that
Enii=0@.

Expressing an error in terms of its chunk decomposition enables
Bravyi and Haah (32) to prove that a renormalization group decod-
er will decode any level-m error with a sufficiently large system. The
proof relies on the following lemma.

Lemma 1. Let Q > 6 and M be any Q"-connected component of
F,. Then, M has a diameter at most Q" and is separated from other
errors E,\M by a distance greater than Q"*'/3.

The proof is given in (32) (see proposition 7). We note also that
all the defects created by a Q"-connected component of F, lying
in the one neighborhood of the connected component are neutral.
With this result, it is then possible to show that a renormalization
group decoder that finds and neutralizes neutral 2°-connected com-
ponents at sequentially increasing length scales p will successfully
correct an error, provided that Q" is much smaller than the size of
the system. A threshold is then obtained using that for a sufficiently
low error rate, the likelihood that a level-m + 1 chunk will occur is

80of 13

€202 ‘2T JBquieoe Uo Uo10JyduAS-Usuoine [3 seyosined Buniyis e 610°sous 10s'Mmm//sdny WwoJ) pepeojumod



SCIENCE ADVANCES | RESEARCH ARTICLE

vanishingly small. The renormalization group decoder is defined as
follows.

Definition 2 (Renormalization-group decoder). The renormaliza-
tion group decoder takes a syndrome o(E) as input and sequentially
calls the level-p error correction subroutine ERROR CORRECT(p)
and applies the Pauli operator returned from the subroutine for p =
0,1, ..., mwith m ~ log L.

The subroutine ERROR CORRECT (p) returns correction oper-
ators for neutral 2°-connected subsets of the syndrome. If the syn-
drome has not been neutralized after ERROR CORRECT(m) has
been called, then the decoder reports failure.

A threshold theorem with a spread error

In the following section, we will show that the just-in-time gauge-
fixing process will spread each disjoint Q’-connected component of
F; such that the linear size of the area it occupies will not increase by
more than a constant factor s > 1. Once the error is spread during
the gauge-fixing process, we must show that the error remains cor-
rectable. Here, we show that the spread error model can be corrected
globally with the renormalization group decoder. We first define a
level-m spread error.

Definition 3 (Spread errors). Take a level-m error E drawn from
an independent and identically distributed noise model with a chunk
decomposition as in Eq. 3. The spread error takes every Q’-connected
component F;, S F; for all j and spreads it such that this component
of the error, together with the defects it produces, are supported with-
in a container Cjq centered at Fj, with diameter at most sQ.

We use the term “container” so that we do not confuse them with
boxes used in the following section, although containers and boxes
both perform similar tasks in the proof.

In the proof given in (32) the authors make use of Lemma 1 to
show that the renormalization group decoder will not introduce a
logical failure. This is assured given that all the errors are small and
well separated in a way that is made precise by Lemma 1. With the
errors of the spread error model now supported in containers as much
as a factor s larger than the initial connected components of the error,
the connected components are now much closer together and, in
some cases, overlap with one another. We have to check that the
noise will not introduce a logical failure, given sufficiently low-noise
parameters. We will argue that we can still find a threshold error rate,
provided that (s + 2)Q™ is suitably small compared with the system
size. The following definition will be helpful.

Definition 4 (Tethered). Consider errors supported within spread
containers C;, and Cyp with j < k. We say that the error in container
Cj. is tethered to the error in a different container Cyp if the two
containers are separated by a distance no greater than A; where A; =
[r(s + 2) + 2]Q’. We say that Cjq is untethered if it is not tethered to
any containers Cy g for k > j.

We include an r term to parameterize the separation we wish to
maintain between untethered containers compared to the diameter
of the containers. This should be of the order of the factor by which
renormalization group decoder increases its search at each level. We
defined the renormalization group decoder to search for 2°-connected
components at level p, so we can take r > 2.

Fact 1. Let Q > 3[r(s + 2) + s + 1]. Two distinct containers of the
same size, Cj, and C;p, are not tethered.

Proof. Errors Fjq, Fig € F; at the center of spread errors con-
tained in containers C;, and Cjg are separated by more than Q’ "3
(Lemma 1). After expansion, the boundaries of Cj, and C;p are sepa-
rated by a distance greater than Q’*'/3 — (s — 1)Q’. We have Aj <
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Q' Y3 - (s— 1)@ for Q= 3[r(s + 2) + s + 1]. Therefore, two boxes
of the same size are not tethered for Q > 3[r(s + 2) + s + 1].

The constant expansion of the diameter of the errors means that
some large errors expand such that smaller errors are not locally
corrected. Instead, they become tethered to the larger errors that
may cause the renormalization group decoder to become confused.
We will show that the small errors that are tethered to larger ones
are dealt with at larger length scales as tethering remains close to the
boundary of the larger containers with respect to the length scale of
the larger container. We illustrate this idea in Fig. 7.

We will say that a decoder is successful if it returns a correction
operator that is equivalent to the error operator up to an element of
the stabilizer group. Given that the logical operators of the model of
interest are supported on containers with diameter no smaller than
L, we say that a decoder is successful if an error and its correction is
supported on a collection of well-separated containers where each
container is smaller than L/3. It will be helpful to define fattened
containers C j,o that enclose the Q’-neighborhood of Cj,. The fat-
tened containers have diameter D; < (s + 2)Q’. We also define the
correction operator R(p), which is the product of the correction op-
erators returned by ERROR CORRECT(p) for all levels up to level
p- We are now ready to proceed with the proof.

Lemma 2. Take Q > 3[r(s +2) + s + 1]. The renormalization group
decoder will successfully decode a level-m error with constant spread
factor s > 1 provided D, < L/3.

Proof. We follow the progression of the renormalization group
decoder inductively to show that the correction is supported on the
union of containers C o We will prove that the renormalization group
decoder satisfies the following conditions at each level p.

1) The correction operator R(p) returned at level p is supported
on the union of fattened containers C .

2) For the smallest integer [ > 0 such that Ql > 2P, modulo stabi-
lizers, the error R(p)E is supported within a Q"-neighborhood of an
error contained in a container Cy, for any k such that its diameter
is at least sQl.

3) The restriction of E and the level-p correction operator R(p) is
the same up to stabilizers on fattened containers C jo of diameter
Dj < 2 for untethered containers Cj.

A B C
. Cipe Cy

=
[=]

[ . Eﬂ ——
[ EE

Fig. 7. Error correction with just-in-time gauge fixing. Not to scale. The diagram
sketches the proof of a threshold for the controlled-controlled-phase gate. (A) An
error described by the chunk decomposition acting on the qubits included on the
spacetime of the controlled-controlled-phase gate. See Lemma 1. The image shows
connected components of the error contained within black boxes. Errors are shown
at two length scales. One error at the larger length scale is shown to the top right
of the image. (B) After just-in-time gauge fixing is applied, errors are spread by a
constant factor of the size of the connected components. This is shown by the gray
regions around each of the initial black errors. (C) Given a sufficiently large Q, the
spread is not problematic since smaller untethered spread errors are far away from
other components of equal or greater size. They are therefore easily dealt with by
the renormalization group decoder. Small components of the error that lie close to
a larger error will be neutralized with the larger error close to its boundary.
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We prove the case for p = 0. By definition, errors are supported
on containers Cjg; therefore, I-connected components of the syn-
drome contained within C; are supported on of jo- This verifies
condition 1. Condition 2 holds by definition as follows. Since Q" > 1,
tethered containers Coo of size no greater than s are separated from
at least one container Cjp for j > 1 by a distance no more than Ag;
otherwise, it is untethered. This verifies that all tethered containers
Co,o lie entirely within the Q-neighborhood of some container C;
since s + Ag < Q. The containers C;p that tether the errors in con-
tainers Cy are necessarily such that j > 0 by Fact 1. This verifies
Condition 2 as we have shown that containers Cy, are only tethered
to containers with diameter at least sQ. Condition 3 is trivial for p =
0 since all containers have diameter larger than 1.

We now suppose that the above conditions are true for p to show that
the conditions hold at p + 1. We consider ERROR CORRECT(p + 1).
We are interested in containers C;, such that the diameter of its fattened
counterpart 1s such that 2° < D; < 2P*. We first find the smallest integer
1such that Q' > 2°*1. Since D;= (s +2)Q <2°*!, wehavel>j + 1. There
are two possible outcomes dependmg on whether C; , is tethered or not.
We deal with each case separately.

If Cjo is tethered then it lies at most A; from another container
Cyp of dlameter sQ with k > j by Fact 1. leen that C; o has a diam-
eter no greater than Dj, we find that the error supported on Cj is
supported entirely wrthln the (D;j + Aj)-neighborhood of Cyp. Ex-
panding this expression, we have that D; + A; < Q" for Q> [(s +
2) + r(s + 2) + 2]. This confirms condltron 2 for error correction at
level p + 1.

In the case that C;, is untethered, the fattened container C; o
which is Dj-connected, is separated from all other containers that
support uncorrected errors C g with D > D; by a distance greater
than A; - 2Q’ = (s + 2)Q’ by the definition of an untethered container.
Given that D;> 2P we have that r(s + 2)Q’ > 2°*! for r = 2 at the level-
(p+1)error correctron subroutine. Therefore, ERROR CORRECT(p + 1)
will not find any components of E outside of the container Cj,.
Hence, a correction will be returned entirely on C, verifying
condition 3.

We lastly consider the support of the correction operator. If the
error is tethered, then the correction returned for Cj, lies on some
container Cyp with k > j to which it is tethered. In the case of
untethered errors, the correction for each connected component
supported on Cjg, and the correction for the smaller components
tethered to it, is supported on its respective container C ;. This ver-
ifies condition 1.

The argument given above says that all errors are corrected on
well-separated containers that are much smaller than the size of the
system provided D,, < L/3. Given that there are no level-m + 1 errors,
all the errors supported on containers of size D, will be untethered
and therefore corrected at the largest length scale. Therefore, we
bound the failure probability by predicting the probability that an
error of size Q™! occurs. Bravyi and Haah (32) gives a formula stat-
ing that the likelihood that a level-m chunk occursonan L x L x L
lattice is

< L’(3Q)°(3Qpy)™" “@

Demanding that (s + 2)Q™ < L/3, we find m = [log(L/3) — log(s +
2)]/log Q = log L/log Q; we find the logical failure rate decays ex-
ponentially in L provided (3Q)%po < 1. This demonstrates a thresh-
old for py < (3Q)_6. Taking Q = 87 using s = 8 and r = 2, and we have
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that the number of qubits per site is N = 160 from the “Lattices”
section, we obtain a lower bound on the threshold error rate of
e~10""

Just-in-time gauge fixing

We use a just-in-time decoder (16) to fix the gauge of each topolog-
ical cluster state onto a copy of the surface code. We can deal with
each of the three codes separately since the three codes are yet to
interact. We suppose that we draw an error from the independent
and identically distributed noise model that acts on the spacetime
that is represented by the sites of the topological cluster state (see
the “Lattices and mobile qubits” section for the definition of a site of
the models of interest). Note that more than one defect can lie at a
given site since each site supports several stabilizers. We also assume
that the state of the two-dimensional surface code on the initial face
is such that the plaquette operators are in their +1 eigenstate, although
small errors may have been introduced to the qubits on the primal
qubits of the initial face of the system. We defined the initial face in
the main text (see Fig. 1B). We justify this assumption by showing
how we fix the gauge of the two-dimensional input system in the
“Gauge prefixing” section.

We briefly review the gauge fixing problem that we already sum-
marized in the main text. Face measurements that we obtain by
measuring the dual qubits of the topological cluster state return
random outcomes. However, because of the constraints among the
stabilizers, these random outcomes are constrained to form loops if
the system does not experience noise. To fix the gauge of the system,
we need only find a Pauli operator that restores the plaquettes to
their +1 eigenstate. This correction can be obtained trivially by find-
ing a Pauli operator that will move the loops to any smooth bound-
ary that is far away from the initial face. Because the plaquettes at
this boundary are initialized in the +1 eigenstate, we cannot termi-
nate loops here. However, any other boundary is suitable. With the
two-dimensional setup we have, it is perhaps a natural choice to
move the loops toward the terminal face. The correction will fill the
interior of the loop. Ensuring that the initial face is fixed means that
the correction for the gauge-fixing process is unique. Otherwise,
there can be two topologically distinct corrections from the gauge-
fixing process that can lead to a logical fault.

In the case that errors occur when we measure the dual qubits,
strings will appear in incorrect locations. Given that in the noiseless
case the loops should be continuous, we can identify errors by find-
ing the locations where strings terminate. We refer to the endpoint
of a broken string as a defect. Defects appear in pairs at the two
endpoints of a given string. Alternatively, single defects can be cre-
ated at a smooth boundary. We attempt to fix the gauge where the
errors occur by pairing local defects to close the loops, or we move
single defects to smooth boundaries to correct them. We then cor-
rect the gauge according to the corrected loop. However, given that
the correction may not be in the location of the error that caused the
defects, the operator we apply to fix the gauge will introduce bit-flip
errors to the surface code. Up to stabilizers, the error we apply
during the gauge-fixing procedure will be equivalent to an error
that fills the interior of the closed loop created by the measurement
error and the correction. These errors are problematic after the trans-
versal non-Clifford gate is applied. However, provided that these er-
rors are sufficiently small, we can correct them at a later stage of the
error correction process.

Correcting broken loops becomes more difficult still when we only
maintain a two-dimensional layer of the three-dimensional system as
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it will frequently be the case that a single defect will appear that should
be paired to another that appears later in the spacetime but has not
yet been realized. Hence, we will propagate defects over time before
we make a decision on how to pair it. This deferral will cause the
loop to extend over the time direction of the system, and this, in
turn, will cause gauge-fixing errors to spread like the distance the
defects are deferred. However, if we can make the decision to pair
defects suitably quickly, we find that the errors we introduce during
gauge fixing are not unmanageable. Here, we propose a just-in-time
decoder that we can prove will not uncontrollably extend the size of
an error. We assume that the error model will respect the chunk
decomposition described above (see Eq. 3). We find that the just-in-
time decoder will spread each error chunk by a constant factor of its
initial size. We give some more notation to describe the error model
before defining the just-in-time decoder and justifying that it will
give rise to small errors at a suitably low error rate.

We remember that the chunk decomposition of the error E = F;
UF, U ... UF, is such that a Q’-connected component of F; has a
dlameter no greater than Q’ and is separated from all other errors in
E; (see Eq. 2) by more than Q/*1/3. We define the syndrome of the
error 6(E), i.e., the defects that appear because of error E. We also
have that the error supported on Fjg, together with its syndrome, is
contained in a box B;, of diameter at most Q' + 2 to include syn-
dromes that lie at the boundary of a given error where Fjq is a Q;-
connected component of F;.

We denote defects, i.e., elements of 6(E) with coordinates u ac-
cording to their site. A given defect at u has a time coordinate ;. We
denote the separation between two defects 1 and v in spacetime by
|u — v| according to the €., metric. At a given time t, which pro-
gresses as we prepare more of the topological cluster state, we are
only aware of all defects u that have already been realized such that
u; < t. We neutralize the defects of the syndrome once we arrive at
a time where it becomes permissible to pair them; otherwise, we
defer their pairing to a later time. Deferral means leaving a defect in
the current time slice of the spacetime by extending the string onto
the current time without changing the spatial coordinate of the de-
fect. When we decide to pair two defects, we join them by complet-
ing a loop along a direct path on the available live qubits. In both
cases, we fix the gauge according to the strings we have proposed
with the correction or deferral. We are now ready to define the just-
in-time decoder that will accurately correct pairs of defects given
only knowledge about defects u where u; < t.

Definition 5 (Just-in-time decoder). The just-in-time decoder,
JUST IN TIME(#), is applied at each time interval. It will neutralize
pairs of defects u and v if and only if both defects have been deferred
for a time 8¢ > |u — v|. It will pair a single defect u to a smooth
boundary only if u has been deferred for a time equal to its separa-
tion from the boundary.

The definition we give captures a broad range of just-in-time
decoders that could be implemented a number of ways. We could,
for instance, consider clustering decoders (32) or possibly more so-
phisticated decoders based on minimum-weight perfect matching (3)
to implement the decoder. A greedy decoder would suffice. Here, we
only need a simple rule to demonstrate a threshold within the coarse-
grained picture of the chunk decomposition. We also remark that we
might be able to find better decoders that do not satisfy the conditions
of the just-in-time decoder proposed here. We make no attempt to
optimize this; the goal here is only to prove the existence of a thresh-
old using the simplest possible terms.
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Before we show that the just-in-time decoder will introduce a spread
error with a constant spread factor s, we first consider how the decoder
performs if we consider only a single Q’-connected component of the
error Fj, S Fj. We first consider the Q’-connected component of the
error well isolated in the bulk of the lattice, and then we consider how
it is corrected close to the boundary. ‘

Fact 2. The correction of an isolated Q’-connected component
of the error, Fjq, that lies more than 2(QJ + 2) from the boundary is
supported on the (Q +1)- -neighborhood of B; . No defect will exist
for a time longer than &8t ~ 2(Q’ + 1).

Proof. Consider two defects u, v contained in B;, at extremal
points. These defects have separation at most Q' + 2. Let us say that

| — v¢| = Q + 2 with u; > v,. The defect v will be deferred for a
time 2(Q’ + 2) before it is paired a distance Q’ + 1 from Bjq in the
temporal direction. This correction is supported on the (Q/ + 1)-
neighborhood of B; . All defects of this component of the error will
be paired before it is permissible to pair them to the boundary.

By this consideration, we obtain a constant spread parameter ~3
for boxes in the bulk of the model. We next consider the correction
close to a smooth boundary. We find that this will have a larger
spread parameter. 4

Fact 3. The correction of an isolated Q’-connected component
of the error, F;,, produced by the just-in-time decoder is supported
on the 3(Q’ + 2)- -neighborhood of Bj, if B lies within 2(Q’ + 2)
of a smooth boundary. All defects w111 be neutralized after a time at
most 3(Q’ +2). '

Proof. A defect ulies at most 3(Q’ + 2) from the boundary. In the
worst case, all defects will be paired to the boundary after a time at
most 3(Q’ + 2). Considering a defect at an extremal location, then,
the just-in-time decoder may defer the correction of a defect beyond
Bj, at most 3(Q +2) in the temporal direction.

The above fact allows us to upper bound the spread factor to s = 8.
So far, we have only considered how the just-in-time decoder deals with
well-isolated Q’-connected components of the error. We find that, for
sufficiently large Q, all errors are well isolated in a more precise sense.
This is captured by the following lemma. We find, given that any defect
supported on a box B;, will be paired with another defect in the same
box or to a nearby smooth boundary after a time at most 3(Q’ + 2), it will
never be permissible to pair defects contained in different boxes before
they are terminated. In effect, all boxes are transparent to one another.
This justifies the spread error model used in the previous section.

Lemma 3. Take a chunk decomposition with Q > 33. The just-in-
time decoder will pair all defects supported on Bj,, within the 3(Q) +
2)-neighborhood of Bj to either another defect in Bjq or to the
boundary.

Proof. By Facts 2 and 3, we have that all the defects of isolated boxes
Bj, are paired to another defect in B;, or to a nearby smooth boundary
at most 2(Q’ + 2) from B;, after a time no more than 3(Q +2).

We may worry that the just-in-time decoder may pair defects
within disjoint boxes if they are too close together. We consider the
permissibility of pairing u contained within B;, to v contained in
Bip. For Q > 33, we find that such a pairing will never be permissi-
ble before all defects are paired locally within their isolated boxes. We
suppose that, without loss of generality, the diameter of B; is less than
or equal to the diameter of By g. Given that B; is separated from By
by a distance greater than Q’*'/3 - 2, it will not be permissible to
pair u with v within the lifetime of u before it is paired to a boundary
or another defect in Bj, provided 3(Q’ +2) < @/ *1/3 — 2. This is sat-
isfied for all j > 0 for Q > 33.
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This Lemma therefore justifies our spread factor s = 8 used in the

previous section.

Gauge prefixing

Last, we assumed that we can reliably prepare the plaquette opera-
tors on the initial face of the two-dimensional surface code in their
+1 eigenstate. We can tolerate small errors on the edges of the ini-
tialized surface code, but a single measurement error made on a
plaquette can cause a critical error with the just-in-time decoder as
it may never be paired with another defect. This will lead to a large
error occurring during gauge fixing (see Fig. 8A). It is therefore im-
portant to identify any measurement errors on the face measure-
ments of the initial face before the gauge fixing begins. We achieve
this by prefixing the plaquettes of the initial face of the topological
cluster state before the controlled-controlled-phase gate begins. We
run the system over a time that scales with the code distance before
we commence the controlled-controlled-phase gate procedure. In
doing so, we can identify measurement errors that may occur on the
dual qubits on the initial face of the topological cluster state using
measurement data collected before we conduct the non-Clifford
operation. Figure 8B shows the idea; the figure shows that measure-
ment errors can be determined by looking at syndrome data on both
sides of a plaquette on the initial face. We need only look at one side,
namely, the side of the initial face before just-in-time gauge fixing
takes place.

Since we need only determine which face operators have experi-
enced measurement errors, and we do not need to actively correct
the random gauge, gauge prefixing is accomplished globally using a
renormalization group decoder on the three-dimensional syndrome
data of the spacetime before the controlled-controlled-phase gate is
performed. A threshold can be proved by adapting the threshold the-
orem for topological codes given in (32). Measurement errors close
to the initial face before the controlled-controlled-phase gate takes
place can then be identified easily by the decoder. We determine
which plaquettes of the initial face have experienced errors by finding
defects that should be paired to the initial face in the gauge-prefixing
operation. Small errors in the global gauge-prefixing procedure can
be contained within the boxes that contain the error syndrome.
Hence, the errors that remain after the gauge-prefixing procedure
are confined within small boxes, which respect the distribution we
used to prove the threshold using the just-in-time decoder. Hence,
we justify our error model used to bound the spread factor using
just-in-time gauge fixing, even in the presence of initialization

Fig. 8. Fixing the gauge of the two-dimensional surface code. (A) A single mea-
surement error on a face at the beginning of the controlled-controlled-phase gate
will introduce a defect that may not be paired for a time that scales like the size of
the system; this may introduce a macroscopic error after gauge fixing. (B) We can
determine where errors have occurred on the plaquettes of the initial face by look-
ing at the defects before we begin the controlled-controlled-phase gate. (C) We
decode, or prefix the initial face, before we begin the controlled-controlled-phase
gate to determine the locations of measurement errors on the initial face.
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errors caused by gauge prefixing. We show an error together with its
syndrome in Fig. 8C. The goal is only to estimate the plaquettes that
have experienced measurement errors on the gray face at the top of
the figure. This fixes the plaquettes of the initial face as we have as-
sumed throughout our analysis.

We remark that the proposal given in (16) avoids the use of gauge
prefixing by orienting boundaries such that the boundary that is
analogous to the initial face of the color code is created over a long
time. This orientation allows for single defects created at the initial
face to be corrected by moving them back to the initial face at a later
time, or onto some other suitable boundary. In contrast, here, we
have imagined that an initial face is produced at a single instant of
time. Further work may show that we can apply the idea of Bombin
to the surface code implementation of a controlled-controlled-phase
gate presented here by reorienting the gate in spacetime. Such an
adaptation will also require a modification of the just-in-time de-
coder to ensure that defects created at the initial face are paired to
an appropriate boundary in a timely manner.

Conversely, gauge prefixing can be adapted for the proposal in (16).
In this work, color codes are entangled with a transversal controlled-
phase gate. The transversal gate is applied to a two-dimensional sup-
port on boundaries of the two color codes undergoing this operation.
Let us call this boundary the entangling boundary, where the initial face
of the second code lies on the entangling boundary. Let us briefly sum-
marize how we can prefix the gauge of the initial face of the second of
the two color codes by error-correcting the first.

We note that the entangling operation allows us to use the eigen-
values of the error detection measurements at the boundary of the
first code to infer the values of the face operators at the initial face of
the second code. Small errors may cause us to incorrectly read the
eigenvalues of the cells of the first code. This will lead us to infer the
wrong eigenvalues of the face operators of the initial face of the sec-
ond code. However, error correction on the first code ensures that
its entangling boundary is charge neutral, i.e., it has an even parity
of string-like errors terminate at this boundary. If the first code is
charge neutral at its entangling boundary, then errors in the eigen-
values of the face operators of the initial face of the second color
code are necessarily created in locally correctable configurations. This
means that they can be corrected without pairing any defects onto
the initial face. This observation circumvents the need to orient the
color code in a special configuration in spacetime. Relaxing this con-
straint may be of practical benefit. Moreover, the observation may
allow us to remove certain rules that the decoder must otherwise re-
spect to ensure defects are paired to the initial face as required. This
may lead to improvements in the performance of the decoder.
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