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Abstract
Floer Homology via Twisted Loop Spaces

Semen Kirillovich Rezchikov

This thesis proposes an improved notion of coefficient system for Lagrangian Floer
Homology which allows one to produce nontrivial invariants away from characteristic 2, even
when coherent orientations of moduli spaces of Floer trajectories do not exist. This explains a
suggestion of Witten. The invariant can be computed in examples, and the method explained
below should be extensible to other Floer-theoretic invariants. The basic idea is that the moduli
spaces of curves admit fundamental classes in homology with coefficients in the orientation lines
of the moduli spaces, and the usual construction of coherent orientations actually shows that these
fundamental classes naturally map to spaces of paths twisted with appropriate coefficient systems.
These twisted path spaces admit enough algebraic structure to make sense of Floer homology

with coefficients in these path spaces.
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Chapter 1: Introduction and Background

The purpose of this thesis is to extend the notion of a ‘coefficient system’ for Lagrangian Floer
homology such that one may study the Floer homology of non-Pin Lagrangian submanifolds away
from characteristic 2.

It has been recognized at least since Donaldson [1] that the determination of consistent signs
for counts of solutions to elliptic partial differential equations is a problem in family index the-
ory. Traditionally, following Floer [2], one attempts to construct a coherent system of orientations
of the relevant moduli spaces. While Floer unconditionally produced coherent orientations for
Hamiltonian Floer Homology, coherent orientations do not always exist in the case of Lagrangian
Floer homology. Thus to produce coherent system of orientations the literature requires a topolog-
ical condition on L; the most common such condition is that L is relatively Spin in the ambient
symplectic manifold [3], although some weaker conditions have also been explored. Relatedly,
coherent choices of orientations are not unique; for example, twisting the Morse complex of a
manifold L by a local system 1 produces coherent systems of orientations of moduli spaces of
Morse trajectories which computes the homology of L with coefficients in 77, which generally does
not agree with the homology of L.

The investigation in this thesis was prompted by a question of Witten:

Suggestion: Suppose L is a Lagrangian submanifold admitting a Spin® structure with associ-
ated complex line bundle A. Then the Floer homology of L should be defined over Z whenever L
admits a Spin© connection so that the associated connection on A is flat.

The above condition does not fit any conditions known to produce coherent orientations of
moduli spaces of pseudoholomorphic curves with boundary on L, and as far as I am aware is
based on some physical reasoning about D-branes. To make sense of this suggestion, I explain

in this thesis how one may count pseudoholomorphic curves even when coherent orientations



may not exist, by incorporating the family index theory controlling the orientations of moduli
spaces of pseudoholomorphic curves into the algebraic structures of the Floer-theoretic invariants

themselves.

1.1 Main Results

This thesis has two parts. The orientations of moduli spaces of curves are controlled by the de-
terminant lines of the associated Fredholm operators, which in turn are controlled by Pin structures
on the linear Lagrangian bundles defining the boundary conditions of the associated linear Cauchy-
Riemann operators. Chapter 2 packages the algebraic topology of Pin structures into convenient
algebraic structures which are used in the subequent chapters. Chapter 3, using the degree-zero
homology of the twisted path spaces discussed in Chapter 2, gives a construction of an integral
version of Lagrangian Floer homology for Lagrangians L satisfying a weaker condition than the
one proposed by Witten, thus answering Witten’s question in the affirmative. Finally, in Chapter 4,
using the full structure discussed in Chapter 2, we construct an integral variant of Floer homology
for any pair of oriented Lagrangians in a Liouville domain and explain how to use it to produce
lower bounds for self-intersections of Lagrangians. Below we give more detail on the approach of

Chapters 3 and 4 below, provide some example applications.

1.1.1 Floer Homology with Twisted Fundamental Groups

Consider the map

Q: H*(L,Z/2) - HY(QL,Z/2) (1.1)

which maps a chain level representative ¢ € H>(L,Z/2) to

Q(¢)(y) = p(ev(y x SH)), (1.2)

where v is a 1-chain on the based loop space QL, and ev : QL xS! — L is the evaluation map. The

second Steifel-Whitney class w»(L) thus determines a class Qw, (L) € H'(QL;Z/2) represented



by areal line bundle on QL. Consider the

Condition: The line bundle corresponding to Qw,(L) is trivial, or in other words,
(1.3)
Qw,(L) = 0.

The original observation that led to the construction of Chapter 3 was that even though there
was no canonical way to assign signs to holomorphic curves bounding RP? because RP? is not Pin,
there is a canonical procedure which assigns Gaussian integers to such holomorphic curves. In
the formalism of this thesis this observation amounts to the following: Assumption (1.3), satisfied
by L = RP?, determines a twist Z[7(L)]™ of the group ring of the fundamental group of L (see

Section 2.5), and there is an isomorphism of unital rings

€ : Z[m (RP*)]™ — Z[i] (1.4)

sending the nontrival loop on RP? to i. Section 3.6 explains how Floer theory assigns a complex
of R-modules corresponding to any augmentation to R of the twisted group ring of a Lagrangian
satisfying Assumption (1.3). This generalizes the standard construction which assigns Floer ho-
mology groups to spin Lagrangians L equipped with unitary local systems 7, which correspond to
maps

& : Z[m (D)]™ = Z[m (L)] - C.

This tool establishes lower bounds on the self-intersection numbers of exact Lagrangians which
are explicit and are stronger than those that could previously be proven. The proposition below is
proven in Section 3.6.2:

Propostion 1.1. Let L be a closed exact Lagrangian in a Liouville domain satisfying Assumption
(1.3).
If Z[ 7 (L)]™ admits an augmentation € to a field k, then the number of intersection points of

L with any transversely intersecting Lagrangian that is Hamiltonian isotopic to L is bounded from



below by

dimH,.(L,k.),

where k¢ is a certain k-local system depending on e.

We now give a concrete application of Proposition 1.1.

Example 1. Let d be an integer greater than 4. Let p be a prime number not equal to 2 such that
p = 1(mod 4), and let r be an integer greater than zero. If n = 2m + 1 then take L, = L] = L( p)*r

a connect sum of r lens spaces

L(p):=L(p,1,1,...,1) =~ > /(z/p).

Otherwise if n = 2m + 2 take L, = Lg_l x ST,
Take any manifold L; such that wy(L) # 0, but Qw,(L) = 0. Moreover, choose L so that

there exists an augmentation
€:Z[n1(L1)]"™ — k, where k is a field with chark # 0, p, (1.5
such that the local system k. associated to € by Proposition 1.1 satisfies
dimy H.(L, ke) > 1.

These constraints are satisfied, for example, by L| = RP?; see Lemma 3.11 in Section 3.6.2. Notice
that in this case, L = L; X Lj is not Pin. One can produce a Liouville domain M O L such that
L is not relatively Pin in M by enlarging 7" L via subcritical Weinstein handle attachment [4] to a
Weinstein domain M with H?>(W;Z/2) = 0. In this setting the Lagrangian Floer Homology of L is
only defined with coefficients in a ring R with char R = 2 due to the lack of a coherent orientation

of the moduli spaces of Floer trajectories. The PSS map [5], [6] then gives an isomorphism

HF(L,L;R) ~ H*(L, X L»; R) ~ H*(L;R) ® H*(L2; R). (1.6)

4



However, H*(L1; R) ~ H*(S?""!; R) is a free rank 2 R-module; thus, if L; was chosen to be RP?
then standard methods in Lagrangian Floer homology only show that the intersection of L with any
transverse Hamiltonian isotopy of itself have at least 3 -2 = 6 distinct points. However, Proposition
1.1 allows us to achieve a much better self-intersection bound, due to the following property of the

local system ke:

Propostion 1.2. Let the notation be that of Proposition 1.1.
If L = LyX Ly with Ly spin, then Z[ w1 (L)]" = Z[n(L1)]" ®zZ[71(L2)], and kege, = 7} (ke),
with €y the canonical augmentation Z|my(L;)] — Z — k and nty : Ly X Ly — L the projection.

In particular, by the Kunneth formula,

{#self intersection points of L} > dim H,(Ly, k) - dim H. (L, k).

We have chosen L and L, to satisfy the conditions of Proposition 1.2. Since dim H. (L, k¢) >
1 and dim H,.(L,, k) > r, Proposition 1.2 shows that our construction gives a family of d-dimensional
exact Lagrangians in Liouville domains for which the self-intersection bounds proven by the meth-
ods of this thesis are arbitrarily stronger than those that can be derived from the usual approach to

Lagrangian Floer Homology, in every dimension greater than 4.

The central construction of Chapter 3 is the Floer homology of the pair (Lo, L1) with coeffi-

cients in their twisted fundamental groups, which is a complex

CF(L(), Ly; ﬂliw) = CF(L(), Ly; Z[Tl’] (L())]tw ® Z[Tl’] (L])]tw), defined in (36), (17)

for defined for every pair of closed exact Lagrangians L, L in a Liouville domain satisfying As-
sumption (1.3). This complex has the structure of a complex of free (Z[x1(Lo)]™,Z[71(L1)]™)-
bimodules, and it is independent of Hamiltonian isotopy of Lg or L; in the homotopy category of
bimodules (Lemma 3.6). When L and L; are Hamiltonian isotopic, Section 3.6.1 provides a com-
parison of this complex with the corresponding Morse-theoretic complex. Section 3.6 incorporates

the augmentation € of Prop. 1.1 into the theory; the choice of augmentation allows one to construct

5



a smaller Floer complex

CF (Lo, Lo; €)

which is a complex of k-vector spaces instead of a complex of bimodules over twisted group rings.
We finally prove Propositions 1.1 and 1.2, and verify that Witten’s condition implies Assumption

(1.3), in Section 3.6.2.

1.1.2 Twisted Loop Spaces

In the same way that the existence of the augmentation € allows us to simplify the complex of
bimodules CF (L, Ll;ﬂtlw) (Eq. 1.7) to a smaller complex of k-vector spaces CF (Lo, Lo; €), the
complex CF (Lo, Ll;ntlw) should be thought of as a simplification of a larger algebraic structure
that exists even when the assumption Qw,(Lo) that is needed in Proposition 1.1 does not hold.
Just as augmentations of the ring Z[7;(Lg)] correspond to local systems on L, one should think
of augmentations of Z[m(Ly)]" as local sytems on Lo banded by the gerbe w, (L), although
we do not formalize this point of view in this thesis. From the perspective of higher algebra,
one can think of C.(QLg,Z), the Pontrjagin dg-algebra of chains on the based loop space, as a
derived version of Z[n;(Lg)]. In Section 2.5, we define dg-algebras C.(Px.L;, ) Which are
twists of the algebra C,(QL;;Z), and are a derived analog of Z[m1(L;)]™. One can think of dg-
modules over C.(QLg,Z) as “derived local systems on L(”; correspondingly, we informally think
of dg-modules over C.(Py L, Pxx) as “derived local systems on L; banded by the gerbe wo(L;)”.
From this point of view, the assumption Qw, = 0 comes about naturally as the condition that the
gerbe defined by w, (L) supports an un-derived local system. In the general case, wy(L;) may
not support any un-derived local systems; but the gerbe always supports a universal derived local
system, namely, C.(Py,L;, Pxx), and we can make sense of Floer homology with coefficients in
this universal derived local system. It is these derived local systems which are the natural local
coefficient systems for Lagrangian Floer Homology.

Thus, making the technical assumption that Ly and L; are oriented, we define in Section 4.4 a



complex

CF*(QL(),QLl;H, J)

depending on Floer data (H,J) for the Lagrangians L;, which is a iterated extension of free bi-
modules over (C.(PyxLo,P), C«(PrxL1,p)) (see Section 2.6) and is well defined up to a quasi-
isomorphism which is canonical in the homotopy category of bimodules see (Proposition 4.6).
Generalizing Proposition 1.1, in the case of Ly = L, we compare this complex with a correspond-
ing Morse theoretic complex defined in Section 4.7, which we subsequently compute in terms of
algebraic topology in Section 4.11. This computation leads to the following statement, proven in

Section 4.12:

Propostion 1.3. Let Lo be an oriented closed exact Lagrangian in a Liouville domain. Then the
minimal size s of a iterated extension of free modules (Definition A.8) that is quasi-isomorphic to
the diagonal bimodule of C..(Pyx xLo, p) is a bound from below on the number of intersection points

with Lg of any transversely intersecting Hamiltonian isotopy L1 of Ly.

We expect that this proposition admits a modified version when L is unoriented; the orien-
tation assumptions made are not essential for the arguments of this work, and are put in place
to avoid setting up some tedious homological algebra related to the grading shifts coming from
nonorientability, which interact inconveniently with the language of iterated extensions of free
modules or of twisted complexes.

We do not know if the result of Proposition 1.3 is optimal. It is natural to imagine homotopical
improvements of the proposition which could be proven by combining the ideas of this work with
the methods of Floer homotopy theory [7]. The proposition suggests an interesting question in
pure algebraic topology:

Question: What is the set of manifolds S such that for any Ly € S, the quantity s defined
in Proposition 1.3 (which only depends on the algebraic topology of L) is equal to the minimal

number of critical points of a Morse function on Lg?

Remark 1.1. Smale’s work on the existence of Morse functions with minimal numbers of critical



points shows that S contains all simply connected Pin manifolds Ly of dimension at least 6.



Chapter 2: Twisted Path Spaces

2.1 Technicalities on path spaces

Let X be a topological space, and x,y € X. The space of Moore paths in X from x to y is

PeyX ={f :[0,r] = X |r € [0,00), f(0) =x, f(r) =y};

every such f has a canonical extension to a map f : [0, ) — X by requiring that f(&) = f(r) if
& > r, and the topology on P, is the subspace topology induced by the corresponding inclusion
of P, X into the space of continuous functions C°([0, ), X). Concatenation of paths defines a

continuous composition operation, for any triple (x, y, z) € X, of the form

Axyz t PryX X Py X — P X

which is associative in the sense that for any x, y, z, w € X, the two functions

PreyX X Py X, XP,wX — PrwX

given by @y ;v 0 (x,y,; X 1) and ay,w o (1 X @y ;) are equal. The elements of $, X given by
a constant path at x of length (“r”) 0 is are units with respect to this composition, making £ , X
into the morphism space # X (x, y) of a topological category P X, the category of Moore paths on

X, with objects given by the points of X in the discrete topology.



2.2 A category of pairs of paths

Let L = (Lo, L) be a pair of manifolds equipped with a basepoint pair

vb = (y5(0),y5(1)) € Lo X L;. (2.1

We define a topological category £ L with objects some subset C C Ly X Lj, as follows. For
any object y € PL, let y(0) and y(1) refer to the corresponding points on Ly and L1, respectively.
Let (¥”,y’,y) be a general triple of objects of PL.

The morphism spaces in P L are defined to be
PLY,y) = Py, Lo X Pyayymli, (22)
and the composition map
Cyryry P PLOY",Y) X PL(Y,y) = PL(Y",y) (2.3)
is the map

Py 0),y(0) Lo X Pyr 1),y (1) L1 X Py(0),y7(0) Lo X Pyr(1),y(1y L1 =

f
Py, Lo X Pyr0),y0) Lo X Pyrny,yry L X Py iy yy L1 = Pyoyyro) Lo X Pyry iy L1
where the first isomorphism just exchanges factors, and the second map

J 1= @y(0),7(0).y77(0) X @y (1),y(1).3(1) @4

is the cartesian product of the path concatenation maps on the first two factors and the last two
factors, respectively. Figure 2.1 gives a graphical representation of the Hom spaces in L, and

Figure 2.2 gives a graphical description of composition in this category.
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y'(0  y'(1)

y(0) y(1)

Figure 2.1: The morphism space PL(y’,y) in PL.
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y'@©) y'(m) y(@©) y'(1) y'@0) y"(1)
A A A

X - v (0) ¢ ?y'(D)

Y Y Y
y'(0) y'®  y@) y(1) y(0) y(1)

Figure 2.2: Composition in P L.

Let C.(-) : Top — Ch be the functor sending a topological space to its asociated complex
of singular chains with Z-coefficients. This functor is lax monoidal; the Eilenberg-Zilber map [8]
gives rise to maps

EZ:C.(X)® Cu(Y) = Cu(X X Y) (2.5)

for every pair of topological spaces X, Y, which is natural in both variables, is an isomorphism
on homology, and has the property that for any three topological spaces X, Y, Z, the two different
natural maps

C.( X)®C.(Y)®Ci(Z) - C.(X XY X Z)

that can be constructed of the Eilenberg-Zilber map, are equal as maps of chain complexes.
Using the lax-monoidal structure of C.( - ), we obtain C.(#L), the dg-category with objects C
and morphism complexes

C.(PL)(x,y) = C.(PL(x,y))

12



and composition maps defined by composing the Eilenberg-Zilber map C.(P L(x, y))XC.(PL(y,z)) —
C.(PL(x,y) x PL(y,z))with C.(cy ;). We wish to twist this dg-category by a certain “multi-

plicative local system”; to explain this twist we must introduce some notation.

2.3 Torsors, line bundles, and local systems

Given a Z/2-torsor E over a topological space X, we can form its associated Z-local system
|E| which at x € X has stalk given by the quotient of the free abelian group on the two-element
fiber E, by the relation e = (—1)(—e), where e € E, and (—e) is the image of e under —1 € Z/2.
From a Z-local system |E| we can then form a real line bundle |E| ®z R, which comes equipped
with a canonical Riemannian metric with the property that the image of |E| in |E| ®z R is the set
of vectors of length 1. This line bundle has E as its Z/2-torsor of orientations.

Given Z/2 torsors E — X, E’ — X’, we can form the external tensor product of local systems
|E|=|E’| on X X X’. We can also form a Z/2 X Z/2-torsor E X E’ over X X X’ by taking the product
of the maps £ — X, E’ — X’; the quotient of Z/2 X Z/2 by the diagonal embedding of Z/2 is
canonically identified with Z/2, and the map E X E” — X X X’ factors through the quotient by the
diagonal Z/2 action (E X E")/(Z/2) — X x X’, which makes (E X E’)/Z/2 into a Z/2 torsor on
X X X’ via the (equal) left or right Z/2 actions. It is elementary to check that |(E X E")/(Z/2)] is

canonically isomorphic to |E| Rz |E’|.

2.4 Definition of C.(PL,p)

In this section we will define a dg-category C.(# L, p) which will be referenced repeatedly in

the rest of the paper.

Remark 2.1. Our conventions for dg-algebra are described in Appendix A. We note here that in

our conventions, the differential in a dg-category decreases degree.

The category C.(PL,p) depends on an additional datum beyond the data needed to define P L.

13



‘We thus fix

a Pin structure on the tangent spaces Ty;L;, for i = 0, 1 for every object y € Ob(PL). (2.6)

Remark 2.2. This is not the same as a Pin structure on either of the L;, as we do not require the Pin
structures chosen above to vary smoothly from point to point. In Remark 2.4 we explain how the

construction depends on the above choice and the choice of points C.

Recall that the morphism spaces of $L consist of pairs of paths vy and y; in Lo and L;
with fixed endpoints; each path in the pair is equipped with a natural vector bundle y'TL; —
Domain(y;), i = 0,1 given by the pullbacks of the tangent bundle of L. The construction of the
category C..(P L, p) will involve the use of Pin structures on these vector bundles; in Appendix B.2
we introduce the notions of Pin structures at the ends of such a bundle and Pin structures relative
to the ends on such a bundle, and will use these notions and the notation introduced in that section
freely in this construction. The choice in Eq. 2.6 equips each vector bundle y;TL; with a Pin
structure at the ends. Thus, we have a pair of Z/2-torsors I1(y/TL;), i = 0,1, of Pin structures

relative to the ends on y:TL;, for each morphism in L. The unions

My:= ) 10e7L). i=01
(v0,y1)€PL(x.y)

have canonical maps to L (x, y) sending I1(y;TL;) to y;, and have a unique topology under which
these maps are local homeomorphisms and the Z/2 action is continuous, making them into Z/2-

torsors over P L(x, y). Define the local system

Pry = Mo (x, y)| ® [T (x, y)|. 2.7

Remark 2.3. While we will be careful with the notation in this section, throughout this paper, we

14



will occasionally abuse notation and write p for p, , whenever the endpoints x, y are clear from the

context.

The operation of gluing Pin structures relative to the ends (see Appendix B.2) gives maps
IT; (x, y) x I (y, z) — Ii(x, 2) (2.8)

covering the composition map c,_, , in L which, over corresponding points, is a map of (Z/2 X
g p P Cx.y.z p gp p

Z]2)]/Z]2-torsors, giving an isomorphism

i (x, y) xi(y,2)/Z/2 — ¢, Ti(x, 2) (2.9)

X2

of Z/2 torsors, and thus an isomorphism of Z-local systems

Pry B Py = Cpy Pre (2.10)

Given a space X and a Z-local system ny on X we write C.(X, nx) for the chain complex of
singular chains with coefficients in n7x. The Eilenberg-Zilber map then gives a homology equiva-
lence C.(X,nx)®C.(Y,ny) — C.(XXY,nxRny) for any pair of topological spaces X, Y equipped
with Z-local systems nx, ny. We define the dg category C.(# L, p) with objects the objects of PL

and morphism complexes

C.(PL,p)(x,y) = C.(PL(x,y), px,y)

with composition given by the Eilenberg-Zilber map followed by the map

C* (PL(X’ }’) X PL()’, Z)’ px,y ®Z py,z) = C*(PL(X’ )’) X PL(Y’ Z)’ C;y,sz,z)

ﬂ) C*(PL(X’ Z)’ px,z) .

This is associative because of the associativity property of the gluing maps for Pin structures rela-
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tive to the ends, as explained in Appendix B.2.

Remark 2.4. The above construction of C,.(# L, p) depends on the choices of Pin structures in (2.6).
Given a different choice of Pin structures resulting category C.(PL, p)’, one gets an isomorphism
of dg categories by choosing isomorphisms between the two choices of Pin structure for every
point of Ly and of L. The non-canonicity of the choice in (2.6) does not affect any of the results

of the paper.

2.5 Twisted fundamental group(oid)

Let L be a manifold with a basepoint x € L and a choice of Pin structure on 7, L. Then the

local system over Py L

pe=| | TOTL)

YEPx xL
defines a characteristic class in [P, ] = wi(Pxx) € H'(Prx,Z/2). This characteristic class can

also be computed as follows: there is an evaluation map
P, LxS =L
giving a pullback map
H*(L;Z[2) = H*(Porl X S Z[2) = H Py L Z[2) @ H ™ (Pri L 2/2);

let Q: H*(L;Z/2) — H*'(Py.L;Z/2) be the composition of the above map with the projection

to the second component.

Propostion 2.1. There is an equality of cohomology classes

[Pxx] = Qwa(L).

Proof. The monodromy p, , along aloop r : S§; — P, L correspondingtoamap A : S1XS; — L
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is trivial exactly when the coresponding bundle 71 admits a global Pin structure, which is exactly

when A*wy (L) = r*Qw, (L) = 0. O

Arguing as in Section 2.4, we can define an associative unital multiplication

¢ : Co(PrexL, P2n)®? = Co(PrxL, i) 2.11)

by concatenating Pin structures relative to the ends. (See Remark B.1 for a description of the unit
in this algebra.) This is the “twist” of the algebra of chains on the based loop space which was

mentioned in the introduction.

2.5.1 Taking Hy

If Qw, (L) = 0 then p = p,, is a trivial local system on each connected component of Py L.
In that case p is the pullback of a local system py on 7o(Py L) = 71 (L) by the map sending a path
to the connected component it lies in, and the operation of gluing Pin structures relative to the ends

actually gives an isomorphism

. *
aop - Po ®Ppo — ayPo

where « is the multiplication on the group 7o (%, L). Furthermore, ay is associative in the sense

that ag(1 X ag) = ag(ap X 1). Moreover, the map

Ho(PyxL,p) = Ho(m1(L),po) =: Z[m1(L)]"™ (2.12)

is an isomorphism of rings. The latter ring is a twisted fundamental group ring of L in the fol-
lowing sense: a choice of an identification of abelian groups Hy () (L), po) = Zr (L) gives a ring

structure on the latter group of the form

[y1lly2] = (=DHDED2D [y ]
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where y; € P, L, (-) denotes concatenation of paths, and u : 71(L) X m1(L) — Z/2 is a certain
group 2-cocycle for the group cohomology H?(m(L),Z/2). Different choices of identification
between Hy(m;(L),po) and Zr (L) cause the cocycle u to change by a coboundary.

The above construction has a categorical generalization:

Definition 2.1. Let Ho(PL,p) be the category enriched in abelian groups obtained by applying

the monoidal functor H to the morphism complexes of the category C.(PL,p).

There is a projection functor C.(PL,p) — Ho(PL,p) which acts by the identity on objects,
and on morphisms, sends zero-chains to their corresponding homology class, and sends chains of

positive dimension to zero.

2.6 Bimodule structure

For each y € C, the complex C.(PL,p)(y, yp) isaright C.(PL,p)(yp, y»)-module, and given
any element y € C.(PL,p)(y’,y), the map C.(PL,p)(y,y») = C.(PL,p)(y’, yp) given by left-
composition with y is a map of C.(PL,p)(yp, yp»)-modules. Moreover, the standard argument

proving that the fundamental groupoid of a space is a groupoid adapts to prove the elementary

Lemma 2.1. If y = (y0,v1) € C.(PL,p)(Y,y)o is a degree zero morphism given by a single
pair of paths equipped with Pin structures relative to their ends, then left-composition with vy is
a homotopy equivalence; a homotopy inverse is given by left-composition with the element y~' €
C.(PL,p)(y',y)o given by the pair (i*yg,i*y1), where i : [0,€] — [0, (] is the affine map that
reverses the parametrization of a Moore path, and the Pin structure relative to the ends on the

Moore path i*y; is given by the pullback by i of that on y;. O

We now describe a nice model for C.(PL,p)(y»,y»). Our conventions for tensor products of

dg-algebras, etc., are stated in Appendix A.

Lemma 2.2. Define

Ai = C*(pyb(l'),yb(l’)(l’i’ p))7 fori = 0’ 1 (213)
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There is a map of dg-algebras

A ® Ap = C.(PL.P) (Vb yb) (2.14)

defined as the composition of the map that flips the directionality of simplices of paths in the first
factor with the Eilenberg-Zilber map. This map is a quasi-isomorphism of dg-algebras.

Thus, composition withy € C.(PL,p)(Y’,y) gives a map of right Agp ® A| modules, and thus
a map of (Ao, A1)-bimodules. In particular, in view of Lemma 2.1, for all objects y, the bimodules

C.(PL,p)(y,yp) are quasi-isomorphic to rank 1 free (Ao, A1)-bimodules.

Remark 2.5. One can view the category C.(PL,p) as a Z/2-graded dg-category instead of a Z-
graded dg-category. Everything in Section 2 makes sense when stated with Z/2Z-graded chain
complexes with Z-graded chain complexes. For the rest of the paper, the notation C.(PL, p) will

refer to the Z/2Z-graded version of the above constructions.

Remark 2.6. The map (2.14) is a quasi-isomorphism because the Eilenberg-Zilber map is a quasi-
isomorphism. The method of acyclic models shows in fact that the Eilenberg-Zilber map is a

homotopy equivalence; this is probably also true in this setting, but we do not verify this.
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Chapter 3: Floer Homology with Twisted Fundamental Groups

In this section, we define certain Floer complexes associated to non-Pin Lagrangians that allow
us to prove Propositions 1.1 and 1.2. These will only be defined in the restricted setting of those
propositions, and they will be significantly easier to define and compute with than those complexes

needed to prove Proposition 1.3; the latter complexes are defined in Section 4.

3.1 Setup

Let (M, w, 0) be an exact symplectic manifold with convex boundary, or a Liouville domain:
namely, M is a manifold with boundary, w is a symplectic form on M, 6 is a 1-form on M satisfying
df = w, and the Liouville vector field X defined by the equation ixw = 6 points outwards on
OM. In an open neighborhood U of dM, there is a canonically-defined function 27 : U — R
characterized by the requirement that #='(1) = dM and X.h = h. Let Lo, L; be closed exact
Lagrangian submanifolds of M.

In Appendix C, we state our conventions about Floer-theoretic moduli spaces. We now make a
choice:

Choose regular Floer data (H, J) for Lo, L;. 3.1

In Appendix C.3 we recall that for every pair of time-1 Hamiltonian chords y. € C(Lo, L;; H)
from Lg to L, we have a moduli space of broken Floer trajectories MF (Y=, ¥+)-

In Appendix D.3 we review the theory of orientation lines in Lagrangian Floer theory as devel-
oped e.g. in [9], and introduce some notation. Specifically, we have, for every Hamiltonian chord

y € C(L()’LI;H),

* an orientation line 0" (y) for every integer n, which arises as the determinant line of an

Cauchy-Riemann operator of Fredholm index » on a disk with with one incoming boundary
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puncture;

« and a shift line 05(y), which arises as the determinant line of a Cauchy-Riemann operator
on a strip with one outgoing and one incoming puncture, and which is constructed so that

gluing of determinant lines of Cauchy-Riemann operators gives a canonical isomorphism

0" (y) = 0% (y) ® 0"(y). (3.2)

We now make the following choices:

Choose basepoints for Ly and L;. Choose Pin structures at tangent spaces to Lg, L
at the endpoints of all Hamiltonian chords from L to L1, as well as at the respective (3.3)

basepoints.

These choices allow us to define the category C.(#L,p) discussed in Section 2.4, where L =
(Lo, L1), and the chosen pair of basepoints define the object y,. Given any Hamiltonian chord
y € C(Lo, L1; H), we will abuse notation and let y denote the corresponding object (y(0), y(1)) of
C.(PL,p). This section will focus on the associated category Hy(? L, p) defined in Section 2.5.1.

Finally, make one last choice

For every Hamiltonian chord y € C(Lg, L1; H), choose a trivialization of the shift line

(3.4)
03 (y).

For the remainder of this section, we make an assumption:

Assume that the characteristic classes Qw,(Lg), Qw, (L) defined in Section 2.5 are zero. (3.5)
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3.2 The complex

Given the assumptions and choices of the previous section, define the free abelian group

CF(Lo, LiZIm (L)l @ Zm (L™ H D) = €D 2 ©0%() © Ho(PL.p) (. vn),
y€C(Lo,L1;H)
(3.6)

Remark 3.1. To decrease the complexity of the signs, we will incorporate many sign manipulations
into the signs implicitly introduced by commuting graded, canonically trivial lines past one another,
and by explicit degree-shifting isomorphisms of trivial lines. We describe our conventions on

graded lines in Appendix D.1.

Giveny € CF(Lg, L1;Z[n1(Lo)]™ ® Z[n1(L1)]™; H, J), we will write y,, for the component

of y in Z) ® 0°(y) ® Ho(PL.))(y, ys)-

YA u y Y Vb

Figure 3.2: The differential in the Morse complex. Thick black arrow denotes a negative gradient
flow line.

This abelian group admits a differential defined as follows. Linear gluing theory for Cauchy
Riemann operators, outlined in Appendix D.5, shows that the fiber of the orientation local sys-
tem of MF (y’,y) at a point u, where u is an index-n solution to Floer’s equation, is canonically
isomorphic to

23,5, ® 0"(Y) ® 0 (y)" ®¥, 3.7)
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where p is the abelian group of Pin structures along the boundary of u; see Appendix C.4 for the

\

significance of the Z; 195

factor. The orientation local system of a zero-dimensional manifold is
canonically trivial, so we can view an index-1 solution u to Floer’s equation, with Hamiltonian

chords y’, y at the positive and negative ends, as giving an element,
—k ’ ’
$u ey, ®0(y)®0 () ® CUPL DY, Yo (3.8)

Here we use the case k = 0. Using the gluing isomorphism and the choice made in Equation 3.4,

we have a canonical isomorphism o' (y’) ~ 05(y") ® 0°(y) = o(y). Combining this isomorphism
—F

with the projection functor C.(PL,p) — Hy(PL,p), we get that points of M (y’,y) lying on

zero-dimensional components give elements

pou € Zy 5 ®0°(y) ®0°(y)" ® Hompyprp) (¥, y)-
Given an element in y, € Z; ® 0%(y) ® Hy(PL,p))(y, y»), we can define another element
¢ %1 yy € CF(Lo, Ly Z[m1(Lo)]™ ® Z[m (L1)]™; H, J) (3.9)

by composing the tensor factors of ¢.u and y that are morphisms in Hy (P L, p), commuting the line

\V o . . . . O . . . . . .
Z, to the left, pairing the orientation line 0”(y’) with its dual, and applying the grading-shifting
isomorphism of trivial lines Z) ® Zg/a, ~ Z;,.

Thus define the operator d on CF(Lg, L1;Z[r1(Lo)]™ ® Z[71(L1)]"; H,J) to be

dy = Z Z Bl %1 Yy (3.10)
¥.y'€C(Lo.Li:H) y 3" (7 3,
ind u=1

Refer to Figure 3.1 for a graphical description of this operator. To show that this operator defines

a chain complex, we must verify the
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Lemma 3.1. The above operator defined in (3.10) satisfies
d*=0.

Proof. Letu € MF(y',y), w’ € MF(y”,y) be a pair of index 1 solutions to Floer’s equation.
Given a solution w to Floer’s equation, let D, denote the linearization of Floer’s equation or the
inhomogeneous pseudoholomorphic map equation at u; this is a Cauchy-Riemann operator with
totally real boundary conditions, and is Fredholm on an appropriate Banach space. We will call
det D, (see Eq. (C.7) in Section C.4) the determinant line of u.

The proof that the differential on the usual Floer complex for spin exact Lagrangians squares
to zero can be summarized as follows (see [9, Section II.12f]): Linear gluing theory of Cauchy-
Riemann operators with totally real Pin boundary conditions gives an isomorphism 4, ,,» : ker D, ®
ker D, ~ ker D ,4,, where u’#u is an index 2 solution to Floer’s equation constructed by gluing
u’,u via some gluing parameter. The translation action on solutions to Floer’s equation gives
canonical elements (%)W € ker D, for any solution to Floer’s equation; linear gluing theory then
shows that (%)u""(%)u is sent to an inwards-pointing vector in ker Du/#u/(%)u#u ~ T(ur#u)MF(y”, y)
by Ay Thus, using 1-dimensional moduli spaces to compare the contributions to d2, one sees
that they cancel in pairs.

This lemma follows from exactly the same argument. Indeed, given u’, u, one can consider

Gutt’ 1 Gutt € Ly 5 ® 0°(y")Y ® 0°(y) ® Hompypr.) (")

where *; is defined as in Equation (3.9) by commuting the right-most trivial line to the left, ap-
plying a grading-shifting isomorphism to the trivial lines, and simplifying the orientation lines and

Homs. Similarly, it makes sense to define

—1 —0 ’
Gu' %1 G U €Ly ® 0*(y") ® 0°(y)Y ® Hompypr.5) (¥, ¥)-
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Using the shift line we can exchange the o for an 0°; this gives the same element as ¢..u’ *; ¢..u be-
cause gluing theory is equivariant with respect to tensoring by shift lines (see (D.6), Appendix D.5).
Now the “inwards-pointing vector” in T4, MF (y”, y) orients the tangent space to M (y”,y) at

u'#u, and so gives, by linear gluing theory, an element

@2 (u'#u) € (Zg95)" ® 0*(y") ® 0°(y) ® Hompyprp) (¥, ¥),

and the argument sketched in the previous paragraph shows precisely that alu’ *q Egu = ¢ (u'#u).
So we have proven that for pairs (u/,u;);=12 lying on the boundary of a 1-dimensional moduli
space of Floer trajectories, the elements ¢.u; *| ¢.u; have opposite sign in 0°(y")V ® 0%(y) ®
Hompyprp)(y',y). Since (¢.u’ *1 ¢p.u) *1 y = £¢.u’ *1 (¢.u *1 y) with a sign independent of

u,u’,y, this shows that the contributions to the differential cancel in pairs. O

3.3 Continuation maps

Analogously to usual Floer theory, we can define continuation, and homotopies between con-

tinuation maps. First, we fix terminology.

Definition 3.1. Let C be a category linear over Z.

An ungraded chain complex of objects in a category C is an element V € Ob(C) equipped
with an operator d € Endc(V) with d?> = 0. Without qualification, an ungraded chain complex is
an ungraded chain complex of abelian groups.

A map of ungraded chain complexes (V,dy) — (W,dwy) isamap C : V — W satisfying
Cdy = dwC. These define Ch*(C), the category of ungraded chain complexes in C.

A homotopy of maps C1,Cy : (V,dy) — (W,dw) isamapin C, H : V — W, satisfying
Cy — C, = dwH — Hdy. The existence of a homotopy defines an equivalence relation on maps of
ungraded complexes in C, and the composition of maps respects this equivalence relation. Define
Ho(Ch*(Q))), the homotopy category of ungraded chain complexes of objects in C, to be the

quotient of Ch*(C) by this equivalence relation.
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We now recall a notion originally described by Conley, which gives a convenient way to state

the sense in which Floer homology is an invariant:

Definition 3.2. Given a set of ungraded chain complexes {V}scs of objects in a category C de-
pending on some auxiliary data s ranging over some set S, we say that V form a connected simple
system if there is a functor F : Grg — Ho(Ch"(C)), where Grg is the category with objects S

and one morphism between every pair of objects, and F(s) = V.

We now proceed to define the continuation map between Floer complexes associated to differ-
ent choices of regular Floer data (Hy, Jy) and (H1,J;). Equip Z with boundary Floer data given
by (Hj,Jp) at the positive end and (Hyp, Jo) at the negative end, and choose a regular Floer da-
tum on Z compatible with these perturbation data. In Appendix C.3, we recall that for every pair
y' € C(Lo,Ly;Hy),y € C(Lg, L1;Hp) and regular perturbation datum (K, J) on Z compatible
with the boundary Floer data, there is a moduli space M (y’,y) of solutions to the inhomoge-
neous pseudoholomorphic map equation with Gromov compactification ﬂc (y’,y). Linear gluing
theory for Cauchy-Riemann opeartors shows that the fiber of the orientation local system at a point
ue MC()/_, v+), where u is an index 7 solution, is canonically isomorphic to 0" (y") ® 0°(y) ® p,
where p is the abelian group of Pin structures along the boundary of u. Thus, using the isomor-
phism 0" (y") ~ 0°(y") coming from the choice of orientation of the shift line of y’, we see that an

—cC
index O element u € M (', y) defines an element

g1 2 0°(y) ® 0° ()Y ® Hompyprp) (Y, ).

For every pair yo,y1 € C(Lo,L1;H,), and for every u as above, and any y, € Z; ® (y) ®

Ho(PL,))(y, yp), let
¢t %2y € CF(Lo, L1;Z[m1(Lo)]™ ® Z[71(L1)]™; Ho, Jo) (3.11)
be the element obtained by composing in Hy(P L, p), moving the trivial line Z;’ to to the left and
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identifying it with Z;,, and pairing off the orientation lines for y. Define a map

C : CF(Lo, Li;Z[m1(Lo)]™®Z[71(L1)]"; H1,J1) = CF(Lo, L1;Z[m1(Lo)]" ®Z[71(L1)]™; Ho, Jo),
(3.12)

depending on a choice of regular perturbation datum (K, J), by

Cy= Z Z Gt %2 Yy, G
-y €C(Lo.LiH) | 3 (v 1),
ind u=2

Given a pair of choices (Ko, Jy), (K1, J1) of perturbation data on the strip Z (See Appendix 4),
as in the previous paragraph, with corresponding maps Co, C; between Floer complexes, we will

now define maps

H:CF(Lo, L\;Z[m(Lo)™®Z[r1(L1)]™; Hy, J1) = CF (Lo, L1;Z[m1(Lo)]"™ ®Z[71(L1)]™; Ho, Jo).
(3.14)

which we will show to be homotopies between Cy, C;. To do this we invoke the following standard

Propostion 3.1. There exists a family of perturbation data (K;, J;), t € [0, 1] compatible with the
same boundary Floer data, such that att = 0 and t = 1 these perturbation data agree with the

specified perturbation data {(Ko, J1) }i=0.1, and such that the space
MH(Y+’ 7_; Z’ %7 Kl’ Jl) = UZE(O,I)MC(Y+$ '}’_; Z’ %7 Kla ']l‘)$

equipped with the topology induced from its inclusion into CO(Z, M) x (0, 1), is a disjoint union of
smooth manifolds with each connected component of dimension equal to one more than the indices

of the maps comprising the component.
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Propostion 3.2. The Gromov compactification of
—H, . _
M (7 ,7 ;Z’%aKl"Jl‘)

of ME(y*,v=,Z, B, K,, J,) is a disjoint union of topological manifolds with corners (see Appendix
C.3.1 for a definition of the latter), with the union of the codimension 1 strata of each connected

component equal to

MY,y Z,B, Ko, Jo) UME (v, y 1 Z,B,K,,J1) U
M (y* 9% 2.8, K., J;) x ME(Y°,y ™3 Hy, Jy) U

MF(Y+7 70; H05 JO) X MH(’)’O, 7_; Z9 SBa Kb JZ)

Choose perturbation data as in Proposition 3.1. Then every index —1 solution u € MH(y’, y)
lying over ¢t € (0, 1) lies on a zero-dimensional component of ﬂH(y’, y), so ker D, is zero di-
mensional and coker D, has rank 1. The standard transversality proof of Proposition 3.1 shows
that u is transversely cut out a section of a a smooth vector bundle over an open neighborhood of
t with fiber coker D,,, so the vector 0/, gives an element of (coker D,)" and thus an orientation
of det D,,. Then linear gluing theory gives us a canonical element in 0~!(y") ® o(y) ® p where p
is the abelian group of Pin structures along u. The choice of orientation of the shift line then gives

an element

puu € 0°(y") ® 0°(y) ® Hompy(pLp) (¥, ¥)
corresponding to u. We define

Hy= ), D duny (3.15)

V'eC(Lo.LisH) g™ (1 y);
ind u=1

where *; is defined as in Equation 3.11.

We now prove that the Floer complex we have defined gives a well-defined invariant:
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Lemma 3.2. C is a map of ungraded chain complexes, and H is a homotopy of maps. With this
structure, the complexes {CF (Lo, L1;Z[m1(Lo)]" ® Z[n1(L1)]";H,J)} .7y form a connected

simple system of ungraded complexes of abelian groups.

Proof. This is very similar to the proof of Lemma 3.1. To prove that C is a map of ungraded chain
complexes, one analyses 1-dimensional components of Mc(y”, y). Gluing theory shows that if
u € Mc(y”, y’) has index zero and u € MF(y’, y) has index 1, then gluing u” and u to a curve
u’#u sends the translation vector d/3ds to the outwards-pointing normal vector in Tu,#uﬂc ", y),
while if u’ € /WF()’/’ y) has index one and u € Mc (¥’,y) has index zero, then gluing these sends

0/0ds to the inwards pointing vector. These translate to the statement that

' #2 puut € 2y, ® 0°(y") ® 0°(y)" ® Hompy(prp) (¥ )

are exactly those elements in o' (y”) ® 0°(y)¥ ® Hom Ho(eLp)(Y”,y) constructed out of u'#u via
linear gluing by orienting Tu/#umc(y”, y’) using the appropriate inwards/outwards vectors, and
then subsequently inserting a trivial line on the left and applying the isomorphism of orientation
lines o!(y”) =~ 0%(y). This means in turn that curves contributing to dCy either cancel among
themselves or give the same contribution as a corresponding curve in Cdy, and similarly for the
curves contributing to dC7y. This proves that C is a map of ungraded chain complexes.

To show that H is a homotopy, one reasons analogously, by analyzing 1-dimensional compo-
nents of MH( y”,y). The claim translates into the truth of two analytic statements. The first is that
if u is an index O strip contributing to Cy or Cj, then the tangent space to MH at any strip that is
C%-close to u is canonically isomorphic to the span of d/d;, where ¢ is the coordinate of [0, 1]. So
a 1-dimensional component of MH breaking at a strip continuing to Cy and a strip contributing to
C implies that the contributions of that pair of strips to Cyp — C; cancels. The second analytic fact
is that given an index 1 Floer trajectory u# and an index —1 strip #” contributing to H, if one can glue
u’ and u to a curve u’#u then the translation vector field in ker D,, is sent to an outwards pointing

vector field, while if one can glue u#u’, then the translation vector field in ker D, is sent to an
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inwards-pointing vector field. The key point is that the image of the translation vector fields for u
and for u’ under the linearization of the gluing map point in opposite directions near the boundary.

Abbreviate CF (Lo, L1; Z[m(Lo)]™" ® Z[x1(L1)]™; H,J) to Ce(H, J). To finish the proof one
must show that given three regular Floer data (H,J);=.12 the composition of continuations C :
C.(Hy,J3) — Co(Hy,Jy) and C’" : Co(Hy,J1) — Co(Hp, Jo) is homotopic to some continuation
C : Co(H,J3) — Cu.(Hp,J1). This follows again from gluing and compactness of all moduli
spaces contributing to C,C’: there is a sufficiently small € > 0 so that the perturbation datum
on Z coming from gluing (K, J;) and (Ky, Jyo) with gluing parameter € is regular, and has zero
dimensional moduli spaces in bijection with terms in y + C’ o C. Using the glued perturbation

datum defines the desired C”. m|

3.4 Reduction to Morse theory

3.4.1 A Morse-theoretic analog of the Floer complex

We can imitate the construction of Section 3.2 in Morse theory. In Appendix E we recall basic
language and theorems in Morse theory. In particular, given a Morse-Smale pair of metric g and
Morse function f, and a pair of critical points p,q € Crit(f), we write HM (p,q; f,g) for the
compactified moduli space of Morse trajectories from p to g following the downwards gradient
flow of f. So, to define the “Morse version” of the complex (3.6) for the manifold L, we need to

make the following choices:

Choose a Morse-Smale pair of function and metric ( f, g) on the manifold L. (3.16)

Choose a base point b € L.
(3.17)
For every point p € Ly, choose a Pin structure on 7, L.
The choice made in (3.17) lets us define the categories C.(PL,p) and Hy(PL, P) as in Section
2.4 for L = (Lo, Lo), with objects Crit(f)Lb. In Appendix E.1 we recall that orientations in Morse

theory involves choices of trivialization of the orientation lines o(7}) of the positive eigenspaces
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of the Hessian at critical points p. Define the graded vector space

CM(Lo, ZImi (Lo)]™ @ Z[mi (Lo)™: f,8) = D) ZL®o(T;) ® Hy(PLp)(p.b). (3.18)
peCrit(f)

Definition 3.3. Giveny € CM (Lo, Z[m1(Lo)]"™ ®Z[m1(Lo)]""; f, g), let v, denote its component

in ZZ ® o(T;) ® Ho(PL,p))(p, b). Define the grading of y,, to be the index of p.

We define an operator d acting on CM (Lg, Z|71 (L))" ® Z[m1(Lo)]™; f, g) making it into a

chain complex. Standard orientation theory for Morse moduli spaces shows that
M . 7V - —\V
D(M (p’q’fag))_Za/at®0(Tp)®0(Tq) .

Definition 3.4. Let I1; L be the topological category of Moore paths on L defined in Section 2.1.
Note that morphisms in this category are single paths, not pairs of paths on L. Define C,(I1; L)
to be the dg category obtained by applying the monoidal functor of singular chains to IT; L.
Write ZIT;(Lo) for the category obtained by applying the monoidal functor Hy from chain
complexes to abelian groups to C,(I1;Lg); thus morphisms in ZI1;(Lg) are formal Z-linear com-

binations of elements in the fundamental groupoid of L.

Definition 3.5. Define the functors

A: C.(II}Ly) — C.(PL,p) (3.19)

A TI(Log) — Ho(PL,p) (3.20)

by defining them on simplicies {y,}sea of paths from p to g, as follows. Given such a simplex,
choose a continuous family p; of Pin structures relative to the ends on v,; this defines a corre-

sponding continuous family p;! of Pin structures relative to the ends on the inverse paths y;' by
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the condition that under the affine map
i:[0,¢] — [0,¢]
with i(f) = (€ — t), one has i*py = p;'. The functor
A: C.(II1Ly) — C.(PL,p) (3.21)

then sends the simplex of paths {y;}ea to the element of C.(PL,p)(p, g) represented by the sim-
plex of pairs of inverse paths {y;,y;!}sea from ¢ — p, p — ¢, equipped with the Pin structures
relative to the ends {(py, p;')}sea. Because the elements of the local system p come from a tensor
product of local systems associated to isomorphism classes of Pin structures on paths relative to

the ends, this element does not depend on the choice of p. The functor
AT (Lo) — Ho(PL,p)

is the functor induced by applying Hy to the functor defined in (3.21)

—M
Then given a Morse trajectory u € M (p, g) of index difference equal to 1, let
¢t € Ly 5, ® 0(T,) ® 0(T;)" @ Hy(PL,p)) (g, b)

be the tensor product of the canonical trivialization of the orientation line of a zero-dimensional
manifold with the image under A of the path traced by u viewed as a morphism in IT; (Lg). Given

Yp € Z),f ® o(T,) ® Hy(PL,p))(p, b), we can then make sense of
¢*u *1 )/p € Z\q/ ® O(Tq_) ® HO(PLa p))(q, b)

where # is defined as in Equation 3.9 by replacing the the Floer orientation lines with the corre-
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sponding Morse orientation lines. We then define an operator

d:CM(Lo,Z[7\(Lo)]"™ ® Z[m1(Lo)]™; f.g) = CM (Lo, Z[71(Lo)]"™ ® Z[m(Lo)]™; f. g)

dy = Z Z Gult %1 Yp.

/ —M
D R

Refer to Figure 3.2 for a graphical description of this operator. We have

Lemma 3.3. The operator d makes CM (Lo, Z[r1(Lo)]"™ & Z[x1(Lo)]™; f, g) into a chain com-

plex. O

This can be proven by analogy to the proof of Lemma 3.1; moreover, one can define continua-
tion maps and homotopies and show that these Morse complexes form a connected simple system
of chain complexes. We do not provide these definitions here, and leave them to the interested
reader. Instead, in Section 4.7, we define a derived version of the complex defined in this section,
and write out the chain maps and homotopies explicitly. In the next section, we give a direct com-
parison between this Morse complex and an an associated Floer complex; this comparison will

prove Lemma 3.3 as a corollary.

3.4.2 Floer-Morse Comparison

Floer’s original method of comparison between Lagrangian Homology and Morse theory used

the following lemma

Lemma 3.4 ([10], Theorem 2). Let L C T*L be a compact manifold, thought of as a Lagrangian
submanifold of the symplectic manifold T* L. Choose a sufficiently C?-small function H on L that
is Morse-Smale with respect to a Riemannian metric g on L. Let H denote the constant function
on the interval [0, 1] with value H. For every critical point x € Crit(H), let y, denote the constant

path [0,1] — x € T*L. Then there exists a J such that (H,J) is a regular Floer datum for (L, L),
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and such that the map
ME(ye,yy) 3u e (0 u(t+0i) = u(t +1i)) € MM (x,y))

is a homeomorphism for every pair of critical points x,y € Crit(H). These bijections fit together

to give stratum-preserving homeomorphisms
—F —M
M (Yxyy) = M (x, ).

Remark 3.2. Floer proved a slightly different lemma, and did not make any assumptions about the

Morse-Smale-ness of H , but the above follows immediately from his proof.

This lemma was further extended by many people, for example, in the work of Fukaya-Oh on
higher-genus curves in the cotangent bundle [11]. By using this lemma, we prove the Floer-Morse

comparison result for the complexes that we have just defined:

Lemma 3.5. Let Ly be an exact Lagrangian submanifold of a Liouville domain with Qw,(Lg) = 0.
Given the choices in (3.16), (3.17), there exist regular Floer data H, ffor (Lo, Lo), choices as in
Eq. 3.3, 3.4, and a map

Y : CF(Lo, Lo; Z[m1(Lo)]™ ® Z[71(Lo)|™; H, J) —
(3.22)

CM (Lo, Z[mi(Lo)]™ ® Z[71(Lo)]™; f, 8)-
which is an isomorphism of abelian groups that commutes with the differentials on both sides.

Proof. Let (H, g) be a Morse-Smale pair on L = Ly, and let U C T*L be a Weinstein neighbor-
hood of L ¢ M. Write 7 : T*L — L for the projection map. Choose a H on M that agrees
with 7*H on U, and a r-dependent family of almost complex structures J on M which extends the
restriction to U of the family J arising in the statement of Lemma 3.4. Then for a sufficiently small
H, the image L’ of L under the time-1 flow of H still lies in U. The solutions to the inhomogeneous

pseudoholomorphic map equation for the Floer datum (H, J) are bijection with pseudoholomor-
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phic strips with boudary on L U L’. since U is an exact symplectic manifold with contact type
boundary, Lemma 71.7.5 of [9] shows that all such strips lie in U, and thus come from solutions
to the inhomogeneous map equations with target U C T*L with respect to the Floer datum (H, J).

Thus the pair H, J is regular, and Lemma 3.4 actually gives stratum-preserving homeomorphisms
M (v, vy H,J) > M (x,y:H, g).

The Floer data (H, J) described above are those in the proposition. We make the choice in Eq.
3.3 by choosing the same Pin structures on both endpoints of the (constant) Hamiltonian chord,
and we make the choice in Eq. 3.4 arbitrarily.

With these choices, there is an isomorphism (see, for example, Remark 6.1 of [12])

0" (y,) = o(Ty) (3.23)

for each critical point x € Crit(f). Thus, the isomorphism 0°(y,) =~ 0™ coming from the
trivialization of the shift line, together with the above isomorphism, and the identifications Z\y’x =
Z\, define Y as a map of abelian groups.

It remains to check that Y commutes with the differential. The bijection between Floer strips
and Morse trajectories gives a bijection between terms, and it suffices to check that the signs agree.
Now, as for the Morse trajectories in Section 3.6.1, the abelian groups p of Pin structures along the
boundaries of the Floer strips contributing to the Floer differential are all canonically isomorphic
to Z. The usual comparison between Floer and Morse signs, together with the equivariance of the

gluing isomorphism with respect to the shift line (see Eq. D.6), shows that the Floer signs agree

with the Morse signs.
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3.5 Module structures

Recall that in Section 2.6 we explain how C.(PL,p)(y, yp) is a right Agp ® Aj module via a
map

A ® Ap — C.(PL.P) (Vb yb)-

Applying Hy to this map shows that Hom (1 p)(y, yp) is a free right Hy(Ag)°? ® Hy(A) module.

Since

Ho(A;) = Z[m (L)]™ fori =0, 1, (3.24)

this is the same as a (Z[71(Lo)]™, Z[71(L1)]"™) bimodule, and left composition with a morphism
in Homp,pr p)(y’, y) is a map of bimodules.
The complexes

CF(Lo, Li; Z[m1(Lo)]™ ® Z[m (L1)]™; H, J)

and

CM (Lo, Z[71(Lo)]" ® Z[m1 (Lo)]™; f, 8)

are direct sums of tensor products of free rank 1 abelian groups, i.e. “lines”, with Hom spaces in
Hy(PL,p), and the differentials, homotopies, and continuation maps are defined as tensor prod-
ucts of isomorphisms of these lines with left compositions with morphisms in Hy(PL,p). This

immediately implies the following

Lemma 3.6. The complexes

{CF(Lo, Li;Z[m1(Lo)]" @ Z[m1 (L)]™ H, ) }r,s

indexed by regular Floer data (H,J) form a connected simple system of ungraded complexes of
(Ho(Ap), Hy(Ay))-bimodules.

The complexes

{CM (Lo, Z[m1(Lo)]™ ® Z[m1(Lo)1™; £, 8)} f.g
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indexed by Morse-Smale pairs (f, g) form a connected simple system of complexes of (Hy(Ao), Hy(A1))-
bimodules.

The isomorphism in Lemma 3.5 is an isomorphism of (Hy(Ao), Hy(A1))-bimodules.

3.6 Augmentations and the proof of propositions

The results of the previous three sections need to be slightly generalized to prove Propositions
1.1, and 1.2, as we have not yet made use of the augmentations mentioned in the statements of
those propositions. In this section we prove both propositions. Let L = Ly be a closed exact

Lagrangian in Liouville domain, and let

€ : Z[m(Lo)]™ — Endz(M)

make the Z-module M into a module over the twisted group ring, e.g. let € be an augmentation to
some field k, or a ring map to some ring R.

Abusing notation, we write

A Z[m1(Lo)] = (Z[7m1(Lo)]™)P ® Z[ 71 (Lo)]™

for the restriction of A : ZIT;(Ly)* — Ho(PL,p) (see Definition 3.5) to the automorphisms of the
basepoint b.
Definition 3.6. Using the notation of the previous two paragraphs, we define M. to be the Z-local

system on L induced by the composition € o A.

3.6.1 Modification of complexes

The complexes CF (Lo, Lo; Z[m1(Lo)]™ ®Z[m1(Lo)]™), CM (Lo, Z[71(Lo)]™ ®Z[m1(Lo)]™)

are naturally right modules over A := Homp,prp)(Yb, y5) = Z[71(Lo)]"" @ Z[71(Lo)]"", and the
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action of the differentials d commutes with the module structure, in the sense that

d(ya) = (dy)a

for any v in the appropriate complex and a € Homp,pr p) (Y5, y»). We then define

CF (Lo, Lo;e;H,J) := CF (Lo, Lo; Z[ 71 (Lo)]™ ® Z[m1(Lo)]™; H,J) ®4 M,

CM(Lose€; f,8) = CM (Lo, Z[m1(Lo)]™ @ Z[m1(Lo)]™; f. &) ®a M,

where M is thought of as a left A-module via e. An immediate corollary of the previous sections

is that

Lemma 3.7. Extend the operators d, C, H to

CF(Lo, Lose; H,J),CM(Los€; f,8) (3.25)

viad =d®s1,C =C®s1,H=H®u 1. With this structure, the vector spaces in (3.25) form a
connected simple system of ungraded chain complexes.
We now proceed with the computation of CM (Lg; €; f, g):

Lemma 3.8. The complex CM (Lo, €; f, g) computes the Morse homology of M.

Proof. First, for every critical point p € Crit(f), we have a canonical isomorphism between the
vector space Homp,prp) (P, b) ®4 M and (M,),. Indeed, since M, is defined using A, which is

part of the functor A defined in Section , one has a canonical isomorphism

HOmHO(gDL,p) (p, b) Qs M = HO””ZHI(LO) (p, b) ®H0mZH](L0) M = (Me)p (3.26)

where the right-most equality holds essentially by definition.
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The above isomorphism extends to an isomorphism of graded vector spaces from CM (Lo, €; f, g)
to the usual Morse complex of the local system M, [13, Section 2.7] by taking the sum of the maps
in (3.26) over all p € Crit(f). It is immediate that this isomorphism intertwines the terms of the
differentials: one has to simply check that the signs are identical. A clean way to see this is to
use the fact that differential on CM (Lo, €; f, g) is defined using the functor A; using this one can
remove any mention of Pin structures from the definition of CM (Lo, €; f, g), after which the sign

comparison is tautological. m. m|

3.6.2 Proof of Propositions

Proof of Prop. 1.1. We write L for the Lagrangian in the proposition. A transversely intersecting
Hamiltonian isotopy of Ly comes from a time-dependent Hamiltonian H,. By Proposition C.2, this
is the Hamiltonian part of a regular Floer datum (H, J) for the pair of Lagrangians L = (Lo, Lo).
The complex CF(Lg, Lo; €; H,J) is, by construction, a vector space over k of dimension equal
to the number of intersection points of Ly with its image under the flow of H,. The combina-
tion of Lemma 3.7 and Lemma 3.8 then show that the above complex is quasi-isomorphic to
CM(Lg;e€; f,g) for some Morse-Smale pair (f, g). Lemma 3.8 then shows that this latter com-

plex is a complex computing the homology of k.. Thus we have the inequality

dimy CF(Lg, Lo;e; H,J) > dimy H.(L, k¢).

O

Proof of Prop. 1.2. When L = Lo x L with L; spin, we have that w, (L) is the pullback of w,(Lg)
by the projection to the first factor, and thus Z[7;(L)]" = Z[71(Lo)]"™ ® Z[n1(L1)]. The claim
about kg, then follows from the compatibility of the map A : Z[7;(L)] — (Z[x1(L)]")°? ®

Z[m1(L)]"™ with the above tensor decomposition. O

Now, we verify that the condition proposed by Witten implies Assumption (1.3):
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Lemma 3.9. Let L be a Spin® manifold admitting a Spin© connection such that the connection on

the complex line bundle A associated to the Spin¢ structure is flat. Then Qw,(L) = 0.

Proof. For a reference on Spin¢ structures and the definition of the line bundle A, see [14, Ap-
pendix D]. The complex line bundle A admits a flat connection if and only if the its first chern class
c1(A) is a torsion class. But ¢{(1) = wp(L) mod 2; this follows, for example, from the argument
proving that a manifold is Spin¢ if and only if its second Steifel-Whitney class is the reduction of
an integral class [14, Theorem D.2]. So Witten’s condition implies that w, (L) is the reduction of

a torsion integral class. However, there is a commutative diagram

HX(L,Z) — 23 H'(QL,7)

2 |

HX(L,Z/2) —23 HY(QL,Z/2).

Here the vertical arrows are reduction of coefficients modulo 2, and the map Q is defined like
Q by evaluating elements of H>(L,Z) on 2-cycles coming from 1-cycles in QL. But H'(QL,Z)
is torsion-free by the universal coefficient theorem; so Qc1(1) = 0, and so Qw,(L) = 0 by the

commutativity of the diagram. O
We give an interesting example of a manifold satisfying Witten’s condition:

Lemma 3.10. Let L be an Enriques surface. Then L is Spin¢ but not Spin and wy(L) is the

reduction of a torsion integral class.

Proof. By definition, L is a complex manifold and so is orientable. Moreover, Enriques surfaces
satisfy

H'(L,0)=H?*(L,0)=0

where O denotes the holomorphic structure sheaf of L. The long exact sequence of sheaf coho-

mology applied to the exponential exact sequence

0—-Z—->0—-O0"
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shows that the Picard group of L agrees with H?(L,Z). One of the characteristic properties of
an Enriques surface is that the canonical bundle K; is a non-trivial square root of the trivial line
bundle; since the Picard group agrees with cohomology, this means c,(Ky) # 0 but is 2-torsion.
One has

wo(TL) =ci(TL) mod2=rc;(K;) mod?2

so wy(TL) is the reduction of a torsion integral class, and in particular L is Spin¢ by [14, Corol-
lary D.4]. It is classical that L is not spin; for example, this can be seen by showing that the
signature of the intersection form on L is —8, which is not divisible by 16, contradicting Rokhlin’s

theorem on the signatures of Spin manifolds. O
Finally, we prove the small lemma about RP? used in the introduction:

Lemma 3.11. Let p # 2 be a prime number such that p = 1(mod4). RP? is a manifold such that
wa (RP?) # 0, but Qw,(RP?) = 0. Moreover, there exists an augmentation € : Z[n(L)]"" — k,
where k is an algebraically closed field with char k = p, with the local system k. associated to €

by Proposition 1.1 having the property that dimy H.(L, k¢) > 1.

Proof. Writing H*(RP?,Z/2) = (Z/2)[a]/a>, the k-th Steifel-Whitney class of RP? is the degree
k-coefficient of (1 + a)3, see Milnor-Stasheff [15]. As in the proof of Lemma 3.9, there is a

commutative diagram
HX(RP%,Z) —=2 5 HY(QRP?,7Z)

I I
H2(RP2,Z/2) —25 H'(QRP?,Z/2).
The universal coefficient theorem shows that H' (QRP?, Z) is torsion-free; since H>(RP?,Z) = Z/2
this implies that Q is the zero map. But w,(RP?), which lives in the bottom-left corner of the
commutative diagram, lifts to H>(RP?,Z), and thus Qw, (RP?) must be zero.
One has manifest isomorphisms Z[7;(RP?)] =~ Z[Z/2] = Z[x]/(x*> — 1); using the cocycle
description of the twisted fundamental group given in Section 2.5, one computes that the nontriv-

iality of w,(RP?) introduces a sign, and so Z[7;(RP?)]™ =~ Z[i] := Z[x]/(x*> + 1). There are
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exactly two nonzero homomorphisms € from this ring to any field k of characteristic not equal to
two, and two nonisomorphic k-local systems k. over RP?, which can be checked to correspond via
the map € — k. (Definition 3.6): one is the tensor product of the other with the orientation local
system of RP?. The homology of both local systems is rank 2 over k by explicit computation using

the standard cell structure on RP?. Either local system suffices to prove the theorem. O
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Chapter 4: The Floer complex with Loop Space Coefficients

In this section we set up the Floer complex CF,.(QLy, QL;H,J), a derived analog of the
complex CF (L, L1;Z[r(Lo)|" ®Z[n1(L1)]"; H, J) defined in Section 3.2. We begin in Section
4.1 by stating the assumptions and choices needed to define the Floer complex. We then describe,
in Sections 4.2 and 4.3, how to relate the fundamental cycles of higher-dimensional moduli spaces
of Floer trajectories to the category C.(#PL,p). Finally, in Section 4.4 we define the complex.
We conclude by describing the algebraic properties of the complex in Section 4.5, and prove the

invariance properties of the complex in Section 4.6.

4.1 Assumptions and Choices

As before in Section 3.1, we have (M, w, 8) a Liouville domain, containing a pair Lo, L; of
closed exact Lagrangian submanifolds. We now make an assumption, which will hold throughout

the rest of the paper:

Assume that Lo, L; are oriented. 4.1

We emphasize that we do not make Assumption 3.5 in this section.

The Assumption (4.1) is not essential, but it allows us to avoid developing some straightfor-
ward but non-standard homological algebra for discussing the resulting algebraic structures. We
expect appropriate of the results in the next three sections to hold without Assumption (4.1). Un-
fortunately, Assumption (4.1) prevents us from recovering the results of Section 3 from the more
general construction presented in this section.

We now make several choices: namely, we choose regular Floer data as in (3.1) and Pin struc-

tures as in (3.3). We do not need to make the choice in equation 3.4 due to the standing assumption
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in (4.1).

4.2 Choosing compatible collections of fundamental cycles

In this section we will describe a technique for choosing compatible collections of fundamental
cycles for Floer theoretic moduli spaces. As in the rest of the paper, we use singular homology as
our homology theory, and denote the singular chains on a space X by C.(X). Given local systems

Fx, Fy on spaces X, Y, we let

EZ: C(X;Fx) ® Cu(Y; Fy) = C.(X XY; Fx ® Fy) (4.2)

denote the associated Eilenberg-Zilber map.

We review the definition and basic properties of topological manifolds with corners in Ap-
pendix C.3.1. If X is a manifold, or a topological manifold with corners, then we write ox for
the orientation local system of X. If X and Y are topological manifolds with corners, we have a
product isomorphism of local systems 0x ® oy ~ oxxy on X X Y. If Y € dX is a codimension zero
submanifold of the boundary of a topological manifolds with boundary X, then there is a canonical
boundary isomorphism oy ~ oy of local systems on Y described in Eq. C.6 in Appendix C.3.1.

Lety_,y:+ € C(Lo, L1; H) be a pair of Hamiltonian chords from L to L;. The moduli space of
broken Floer trajectories MF()/_, v4+), reviewed in Appendix C.3 and Appendix C.4, is a topolog-
ical manifold with corners that has a recursive decomposition of its boundary strata into products
of other Floer theoretic moduli spaces (see Eq. C.5). One would like to choose collections of fun-
damental cycles for the MF (y-,7v+) as the y. vary, so that the fundamental cycles satisfy relations

corresponding to these recursive decompositions. The key property of the moduli spaces is that

—F —F —F —F
PM vy = ) M oy x M (vo.7) x M (y1,74)

70,¥1€C (Lo,L1)
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which is also equal to

(3'HF(7—,71)) x M (y1,70) = M. (7-,70) X (31MF(70,7+))

Writing o, for 0F (yy)’ it is easy to check that the diagram
vy

Dy_ 1y ® Dygy @ Dy y, 7 Dy_yo ® Dy y,

l l (4.3)

Dy ) ®Dyy, — > Dy,

where each map is an application of the composition of a product isomorphism and a boundary
. —F
isomorphsm of orientation lines, commutes up o a sign of (—1)4mM -y0)+1

Let EZ denote the composition

I —F —F —F
EZ : C.(M (72,7035 0y_y) ® Ca(M (70, ¥4+): 0yp5,) — Co(M (v=,v4)3i05_5,) 4.4)

of the Eilenberg-Zilber map on orientation lines composed with product and boundary isomor-
phisms of orientation lines. Assume that we have chosen fundamental cycles for every factor in
the decomposition of aZMF (y-,7+), as well as fundamental cycles for each factor in the decom-
position of 01MF (7, v+) which bound the (EZ-images of the) fundamental cycles of the factors
in 82MF()/_, v+). Then the sign in the diagram in Eq. (4.3) cancels with the sign in coming from
the Leibniz rule, making the EZ-image of the product of the fundamental cycles of the terms in
BIHF()/_, v+) a cycle supported on the boundary of HF()/_, v+) and representing the fundamen-
tal class of its boundary. So we can choose a fundamental cycle for MF (Y-, ys+) that bounds this
boundary-supported cycle.

Thus, by first choosing fundamental cycles for those moduli spaces which lack boundary and
then repeatedly applying the argument in the previous paragraph to construct fundamental cycles
for those moduli spaces for which fundamental cycles for its boundary components have already

been chosen, one proves the

45



—F —F
Lemma 4.1. There exists a simultaneous choice of fundamental cycles [M= (y-,y")] for M (y_,v*)

forall y. € C(Ly, L) such that the fundamental cycles satisfy the relation

M (ydl= Y. EZUM (vl @ M (o.y0)D. (4.5)
Y0€C (Lo,L1)

4.3 The natural home of the fundamental classes

Once we have made all the choices and assumptions described in Section 4.1, every Hamil-
tonian chord y € C(Lo, L}) is Z/27Z-graded by the standard grading theory for Lagrangian Floer
homology, as reviewed in Appendix E.2. We write |y| € Z/2Z for the grading of y. Moreover, we

can write

o(y) =0"(y) (4.6)

with 0" (y) the orientation line of y (see Appendix D.3) and n € Z with parity equal to the grading
of y; the orientation lines for all these choices of n are canonically isomorphic under (D.5). For any
y" € C(Lo, L), the space MF(y’, y) is a disjoint union of topological manifolds with boundary,
and we can write Mﬁ (y’,y) for the union of those components which are n-dimensional. The
moduli space M,f (¥, y) is potentially nonempty for those n which have the opposite parity as the
parity of |y| —|yl.

We can use the choices made in Section 4.1 to define the category C.(PL, p) for L = (Lo, L).
By parametrizing the boundaries of Floer trajectories u using the metrics on (u|rx;y)*7T L; induced

by the choice of Floer data, one gets canonical evaluation maps

ML, y) = PL(Y,y)
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which extend to the Gromov-Floer bordification

¢ : M:(y’,y) — PL(Y,y).

Abusing notation, we let p denote the local system on M,[Z (¥, y) that is the pullback of the local
system of Pin structures p (see Eq. 2.7 in Section 2.4) by ¢.

Then, as in Section 3.2, the linear gluing theory for Cauchy-Riemann operators gives a topo-
logical description of the orientation lines of Floer mduli spaces (3.7), allowing us to view the

—F . . . . . .
fundamental class for M,, (y, y") with coefficients in the orientation line as an element of

—F
Zz’)//as ® O(y—) ® 0()’+)V ® Hn(Mn (y,a y)’ p)

By the definition of ¢, we have a chain map

by 1 C.OML (¥, 3).9) = C.(PL.P) (Y, ).

—F
Thus we can view a fundamental chain of M (y’,y) as giving an element

6. IM (¥, y)] € Zy15s®0(y-) @ 0(y4)" ® C.(PL,P)(Y, ). (4.7)

4.4 The complex

Define

CF.(QL.QLIH.J) = (D Z)®0(y) ® C.(PL.P) (3. p)- (4.8)
yeC(Lo.L1)

where Zyv, is just the dual to a trivial line with index y, with o(y) defined as as in (4.6). The Floer

complex will be a Z/2Z-graded complex with the grading defined by

Definition 4.1. For y € Z; R0(y)QC.(PL,p)(y,yp), let |y| denote the dimension of the singular
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chain underlying y, and let ind y denote the index of y, which is only defined mod 2. We define

degy = [yl = |yl. 4.9)

Remark 4.1. While the distinction between homological and cohomological gradings is meaning-
less for a Z/27Z-graded complex, in certain cases one can use gradings in Floer homology to lift
this Z/2Z-grading to a Z/2 fZ grading for some f > 1, and then using the definition of grading

given above will make the differential decrease degree.

Choose compatible choices of fundamental chains for the moduli spaces ﬂF( y’,y) as in Sec-
tion 4.2.

The differential d on the Floer complex CF.(QLg,QL1; H,J) is defined as in the simpler
setting of Section 3.2, but using all moduli spaces of Floer trajectories instead of just the zero-
dimensional ones, and incorporating the natural singular boundary map on the complex. Explicitly,

we define

—F ,
Zy ®0(y) 8 Cu(PL,p)(y,yp) 3y = dy = (D)May + (=DM X" X o [M ()] #1y
y'€C(Lo,L1) k
(4.10)
where dy € Z}’ ® o(y) ® C.(PL,p)(y,yp) is just the application of the boundary operator to

the third factor of the tensor product, and the binary operation *; (see Figure 3.1 for a graphical

illustration) outputs elements

6. M (Y, )] 51y € Y, ® 0(y) ® Cu(PL,P) (Vs ¥5) (@.11)

—F
and is defined, as in (3.9), by taking the element ¢.[M, (y',y)] € Zza//as ® 0o(y) ® 0o(y)' ®

C.(PL,p)(y’,y), composing in C.(PL,p) with v, and rearranging the various orientation lines

via the isomorphism

Zy1ps®0()®@0()" ®Zy ®0(y) = Zy ®Zy,5. @ 0(y) @ 0(y)" ®0(y) = Zy ® 0(y)
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where the last isomorphism uses the isomorphism o(y)" ® o(y) =~ Z and the grading-shifting

isomorphism Z, ® Z

v o .
005 = Zy, of 1-dimensional vector spaces.

Propostion 4.1. The operator d is a differential, i.e.
d*=0.
Proof. Since 8%y = 0 it suffices to check that

(~D)PHIEG (6 (M, (v )] #17) = — (—D)PFIHLG (AL (v, 3)] 1 dy

= D M (57, )] 1 (8 IMG ()] ).

i+j+1=k

(4.12)

Applying the Leibniz rule to the left hand side of (4.12) gives two terms; the second term, which is
—F
of the form (¢.[M, (¥, y)] - dy) picks up a (—=1)* from the Koszul sign coming from commuting
—F
the differential with ¢.[M, (y”,y)], giving exactly the first term on the right hand side of (4.12).

The first term after applying the Leibniz rule to the left hand side of (4.12) is

o ~F o
(=DPFE @, M (7, ) Try) = (=PRI (6 (MG (57 3) 164 IM; (7, ) D1).
i+j+1=k
(4.13)
The trivialization (up to a choice of Pin structure) of the orientation line of (m[ﬂf(y”, y)] #

6. M (5, )]),

Z3 155, ® Ly 135, ® 0(Y") @ 0(y)Y @ 0()') ® 0(y)

(where 0/0s is the vector corresponding to translation in the s direction in the MIF moduli space,
while d/0ds, is the vector corresponding to translation in the s direction in the Mf moduli space),

differs from the product orientation of

Zy55, ®0(¥") ®0(¥) ®Zy 5. ®0(Y) @ 0(y)
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by (=1)’; thus

(=DPNE (6, M (67,301 1 6l ()] %1 7) =

o o (4.14)
(=D (6 TR (37, 3)] %1 (0 MG (5, 3)] 51 7))

which is what appears on the right hand side of (4.12), thus confirming the proposition. O

4.5 The Floer complex as a bimodule

The Floer complex that we have defined is substantially “larger” than the usual complex defin-
ing Lagrangian Floer homology for exact Lagrangian submanifolds; however, this is compensated
by the existence of extra algebraic structures that act on this Floer complex.

First, note that CF.(QLo, QL; H,J) is a right module over the algebra C.(PL,p)(yp, y»); an
element y, € C.(PL,p)(y»,yp) acts on the Floer complex by the tensor product of 1 € End (Z; ®
o(y)) and of right-composition with y, in C.(PL,p). Lemma 2.2 states that left-composition
with a morphism in C.(PL,p) commutes with this action. Moreover the pieces Z;’ ®o(y) ®
C.(PL,p)(y,yp) of the Floer complex, with the differential given by 0 as in (4.10), are dg-modules
over C.(PL,p)(yp, yp). Since the differential on the Floer complex is given by a signed sum of the
map 9 and left-compositions by morphisms in C.(# L, p), the previous two statements combine to

prove

Lemma 4.2. The structure of CF.(QLy, QL1; H,J) as a right module over C.(PL,p)(yp, yp) de-
scribed in the above paragraph makes CF.(Q2Lo, QL1; H, J) into a right dg-module over C.(PL,p)(yp, Vb).
In particular, via composition with the algebra morphism in (2.14), CF.(QLo, QL1; H,J) is natu-

rally a (Ao, Ay)-bimodule. O

In fact, something stronger is true. In Appendix A we recall the notion of a iterated extension

of free bimodules.

Lemma 4.3. The complex CF.(QLgy, QLy; H,J) with the bimodule structure of Lemma 4.2 is an

iterated extension of free bimodules.
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Proof. The R-filtration on CF.(QLgy, QL; H,J) needed to define the structure of an iterated ex-

tension is the action filtration: we say that

CF.QLo,QLH, N == D Z)®0(y) ® C.(PL.P)(y. ),

y€C(Lo,Ly)
Ay)<t

where A is the symplectic action, the function on paths in M which has Floer’s equation as a

gradient flow. In our conventions we can take

Aly) = / V40 — Ht, y(1))dt — e, (0(1) + iz, (30) 4.15)

where 6 is the primitive of the symplectic form on our Liouville domain, and Az, is a primitive of
the restriction of 6 to the exact Lagrangian Ly.
The Floer trajectories contributing to the differential decrease this quantity and so this is a

subcomplex, and indeed a sub-bimodule. The subquotients are just the bimodules

which are quasi-isomorphic to free bimodules by Lemma 2.2. O

4.6 Invariance of the Floer complex

In this section we construct continuation maps for the Floer complex defined in Equation 4.8.

4.6.1 The continuation map

Suppose that a pair of regular Floer data (Hy, Jo), (H1,J1) has been specified for which the
auxiliary choices in Section 4.1 have been made. Equip Z with boundary Floer data given by
(Hy,J1) at the positive end and (Hy, Jy) at the negative end, and choose a regular perturbation

datum on Z compatible with these boundary Floer data.
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In Appendix C.3, we recall that for every pair y' € C(Lg, L1;Hyp),y € C(Loy,L1;H;) and
regular perturbation datum (K, J) on Z compatible with the boundary Floer data, there is a mod-
uli space M€ (y’,y) of “continuation” solutions to the inhomogeneous pseudoholomorphic map

—C
equation with Gromov compactification M (y’, y). This moduli space admits a map
€/ ’
¢ M (y,y) = PL.y)

that parametrizes boundaries of broken solutions to the inhomogeneous pseudoholomorphic map
equation by their lengths in the 7-dependent metrics on M induced by the perturbation data.
Exactly as in Section 4.3, we write p for the pullback of the local system of Pin structures by

¢; linear gluing theory then gives an invariant isomorphism of local systems

~ / \%
D/Vc(y',y) ~o(y)®o0(y)' ®p.

—C
Therefore, a fundamental chain for M, (y’,y), the union of the k-dimensional components of

—cC
M (y',y), gives an element

6 M (Y. 0] € 0(y) ®0(ys)" ® Cu(PL. )Y, ). (4.16)

—C
Using the argument in Section 4.2, choose fundamental chains for the moduli spaces M (y’, y)
extending the choices of fundamental chains for the Floer moduli spaces of the boundary Floer
data.

Define a continuation map
C: CF*(QL(),QLl;Hl,Jl) — CF*(QL(), QLl;H(),]())
via, for y € C(Lo, L1; Hy,J1),

Zy ®0(y) ® C.(PL.D)(y,yp) 27 = Cy € Zj, ® 0(y) ® Cu(PL, ) (¥, y»)
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and

Cy= Z Cry,

k>0

Cy= > DM G0 =y (4.17)

y’EC(L(),L1;H0,J0)
Here, the product #; is defined as in (3.11), by composition in C.(PL,p), evaluation o(y)" ®
o(y) — Z, and simply identifying Z, with Z;{, as trivial lines after commuting Z, through to the

left.

Propostion 4.2. The continuation map is a chain map, i.e.
dCy = Cdy. (4.18)
Proof. We analyze the left hand side of (4.18) by applying the Leibniz rule to the term

(=D My (v 3)] %2 7). (4.19)

When commuting the 9 over to the y, we pick up a sign of (—1)¥, thus getting the expression
—C

(=1)PHEg My (', y)] *2 v which also appears on the right hand side of (4.18). Analyzing the

first term the Leibniz expansion of (4.19) we get two kinds of terms corresponding to the two kinds

of boundary strata of ﬂc. Half of the terms take the form
(DM@ IME] 52 ¢ [IMFT]) 51y (4.20)

where the induced orientation (up to a choice of Pin structure) of the orientation line associated to
(¢ IME] %2 6. [MLT)

23,5, ®@0(y") ®0(y) ®0(y) ®0(y),
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differs from the product orientation of
o(y")®o(y)' ®Zy,5,®0(y) ®0(y)”
by (=1)" with i = dego(y”) + dego(y")". Therefore,
(“DPN (B IME] w2 6. IME]) 1y = (D (6. IME] s (@ [MET 51 9)). (421)

and where the right hand side is exactly a term appearing in the right hand side of (4.18). Thus we
have found the terms on the right hand side of (4.18) on the left hand side; it suffices to show that
the remaining terms on the left hand side cancel. A calculation keeping track of orientation lines

shows that the remaining term in the Leibniz expansion of (4.19) is

— (DG MG ()] #1 (B IMG (V3] %2 %) (4.22)

where the minus sign comes from the fact the vector —d/ds corresponds to an outwards-pointing
vector on the moduli Mg where d/ds is the translation in the s direction in the linearized Fred-
holm problem defining /\F;(ifE (y”,¥"). The terms in (4.22) cancel the terms of dCy coming from

contributions of Floer moduli spaces to d, proving the proposition. O

4.6.2 Homotopy of continuation maps

Given two different choices (K, Jo), (K1, J1) used to define two different continuation maps
Co,Cy : CF*(QLo,QL1;Hy,J1) — CF*(QLo, QL1; Ho, Jo)
we define a map

H: CF*(QLQ,QLI;Hl,Jl) — CF*(.QLQ,QLI;H(),J())
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which will be a homotopy between the continuation maps.

Choose a 1-parameter family of perturbation data (K;, J;) on Z as in Proposition 3.1 to define
the moduli spaces MH()/J’,)/‘) = MH()/J’,)/‘;Z, B, K;,J;) as in Proposition 3.2. Using the
argument in Section 4.2, choose fundamental cycles for the components of /VH (y*,y") that are
compatible with the previously made choices of fundamental cycles for the boundary strata of
HH()/*, v~), which are described in Proposition 3.2.

Define the following homotopy between Cj, the continuation map associated to (Kjy, Jo), and

C1, the continuation map associated to (K1, J1):

— _H —_—
CPLPG )2y Hy= 3 DM M0y )y
y*€C(Ho.Jo)

Here, the operation *; is defined as in (4.17). We make sense of the element

6. IM 1(y*.y7) € 0(y") @0(y)Y & Cu(PL.D) (" 7") (4.23)

as follows: the standard transversality arguments for parametrized moduli spaces (which prove
Prop. 3.1) also show that at a point u € M (y*,y”) lying over ¢t € [0, 1], the orientation line
of the tangent space at u of the ambient moduli space is a tensor product of the orientation line

o(T;[0, 1]) with the determinant line of the linearized operator for the Floer equation defining
—C
u GM (7+a7_§Z’ %7Kta‘]t); (424)

we then trivialize the orientation local system o(7;[0, 1]) by choosing d/0; to be the positive
orientation, and use linear gluing theory to conclude that determinant line of this (possibly not

surjective) linearized operator is canonically isomorphic to 0(y*) ® o(y~)" ® p as required.

Propostion 4.3. The map H defined above is a homotopy between the continuation maps Cy and
Cy, Le.
dHy + Hdy = Coy — Cyv. (4.25)
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M

—H
Figure 4.1: The codimension 1 components of the boundary of M .

—H
Proof. The components of the moduli space M have codimension 1 boundary components that
break up into the four types displayed in Figure 4.1, and the identity is verified by checking signs
—H —H
for each type. Thus, we write M, for the union of the k-dimensional components of M , and

consider the Leibniz expansion of

(=P (=)D, [Mi] 527 (4.26)

for k£ > 0, which appears in the expansion of dHy. A quick check with outwards pointing vectors
shows that the ﬂc components of the boundary of MH (see Fig. 4.1) contribute exactly (Co)xy —
(C1)ry. Thus, we have identified the right hand side of (4.25) as a subset of the terms in the left
hand side, and it remains to demonstrate that the rest of the terms on the left hand side cancel.

When we commute the 0 in (4.26) through to y, we pick up a Koszul sign of (—1)¥*! giving
us a total sign of (—1)°, which is the opposite of the sign (—1)Y#*! carried by the corresponding
term contributing to Hdy. So these types of terms cancel.

Finally, the remaining contributions of the boundary of MH to (4.26), which take the schematic
form MIH M]F v, MlF Mji v as in Figure 4.1. We will will argue that these terms cancel with the
contributions of Floer moduli spaces to d in the expansion of dHy and Hdy. Indeed, the sign
carried by the term of the form MlHMfy in Hdy is (=1)PH+bI(=1)! with the (=1)" comes
from commuting the extra trivial line hidden by the grading-shifting isomorphism through the

—H .
orientation lines of M; . The sign carried by the term of the form MlF Mf] y in dHy is (—=1)P1++Dbl
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because there is no extra commutation of lines coming from an grading-shifting isomorphism;
however, when comparing this term with the corresponding term in the Leibniz expansion of (4.26)
one picks up an extra sign (—1)’ because during the Leibniz expansion one has to commute the
0/ 0, of the base parameter space [0, 1]; of the parametrized moduli space Mllq through the M,F to
be able to compare orientations. Thus both terms carry a total sign of (—1)"*/ which is the opposite
of the opposite of the sign (—1)¥*! = (=1)™*/*! in (4.26), and so these types of terms cancel in the

left hand side of (4.25) as well. O
Propostion 4.4. Let (H;, J;), i =0, 1,2 be a triplet of regular Floer data, and let Cy, C| be choices
of continuation maps

Ci: CF*(QLo, QL3 H;, J;)) = CF*(QLo, QL1; Hip1, Jj41).
Then there is a choice of data defining a continuation map

C: CF*(.Q.L(),.Q.Ll;Ho,Jo) - CF*(QL(), QLl;Hz,Jz)

such that C,Cy is homotopic to C.

Proof. There are only a finite number of Hamiltonian chords for each of the choices of Floer
data (H;, J;); thus, the gluing theorem says that there exists an € > 0 such that for every triplet

yvi € C(H;, J;),i=0,1,2, the parametrized moduli space

—C —C
| | M 02 y)#M (31, 50)
te[0,¢]

is a disjoint union of topological manifolds with corners. It admits a map to [0, €] by definition,
and this map is continuous; the inverse images of 0 and € are codimension 1 strata, where the
inverse image of € is M (y3, yo) for a perturbation datum defining a continuation map C. The

remaining codimension 1 strata are products of similar parametrized moduli spaces with moduli
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spaces of solutions to Floer’s equation with Floer data (H3,J>) or (Hop, Jyp). This moduli space
—H
defines a homotopy between C and C;Cj exactly in the same way that the moduli space M

defines a homotopy between Cy and C;. O

Propostion 4.5. The continuation map
C: CF*(QLQ, QLI;H, J) e CF*(QLO, QLl;H, J)

is homotopic to the identity.

Proof. We can simply choose H, J as the data defining our continuation map; this is manifestly
regular. The zero-dimensional moduli spaces make Cp = id. By filtering the complex by the
energy of y we see that C gives the identity page on the E| page of a convergent spectral sequence,

and thus must be homotopic to the identity. O

Corollary 4.1. The complex CF*(QLo,QL1;H,J) is independent of (H,J) up to a homotopy

equivalence which is canonical in the homotopy category of chain complexes.

Since the Floer complex is generally infinite rank over Z even homologically, the above does

not seem so useful. However, as in Section 3.5, more is true:

Propostion 4.6. The maps C and H are morphisms of (C.(QLg,p), C«(QL1, p))-bimodules. Thus,
the Floer complex CF*(QLy,QLy; H,J) is independent of (H,J) up to a quasi-isomorphism of

bimodules which is canonical in the homotopy category of (C.(QLg, p), C.(QL1,p))-bimodules.

Proof. We refer to Appendix A for the definition of morphisms of bimodules and the associated
homotopy category. The statement of the proposition follows from the combination of Propositions
4.2,4.3,4.4, and 4.5, with the claim that the maps C and H are bimodule morphisms; but C and
H are both defined as a sum of tensor products of morphisms of lines and left-compositions in

C.(PL,p), which by Lemma 2.2 implies the claim. O
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4.7 The Morse complex with Loop Space Coefficients

To calculate the complex defined in Section 4.4 when Ly = L, we define an analogous Morse-
theoretic complex. In Section 4.8 we explain how to relate Morse-theoretic moduli spaces to
the categories C.(PL,p) for L = (Lg, Ly), and in Section 4.9 we define the Morse complex
CM.(QLy; f, g) and state its invariance properties. Finally in Section 4.10 we compare the Floer

complex to the Morse-theoretic complex defined in this section.

4.8 Fundamental chains in Morse theory

In Appendix E, we review definitions of moduli spaces related to Morse theory:

—M
* M (p,q; f,g) (Prop. E.1), the moduli space of broken downwards gradient trajectory for

a Morse function f;

—MC
* M (p,q; fi,g) (Prop. E.2), a compactification of the moduli space of downards gradient
trajectories for a time-dependent interpolation f; between a pair of Morse functions fy, f;

and

—H —MC
* M (p,q; fss, g) (Prop. E.3), acompactification of the parametrized moduli space M (p, ¢; f5.r, 8)
with parameter s € [0, 1], associated to a homotopy f; ; between a pair of interpolations f;, f/

between a pair of Morse functions fy, f.

For any one of these moduli spaces, which we will denote generically in the next two paragraphs
by W, there isamap ¢ : W — PL(p, q) defined by sending a broken gradient trajectory to a pair
of paths between p and g going in opposite directions and parametrized by length with respect
to the auxiliary metric g used in the definition of W. As in Section 3.6.1, one can define a map
. : C.(W,Z) — C.(PL,p)(p,q) defined as the composition A o C.(¢), where A is the functor
defined in Definition 3.5.

In Appendix E.1, we review how to orient the moduli spaces defined in Appendix E; to do

so one must chooseorientations of o(7),; f), the orientation lines of the negative eigenspaces of
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the Hessians of f at critical points p € Crit(f). Orienting a space trivializes its orientation local
system, so the map ¢ defined in the previous paragraph allows us to evaluate fundamental classes

for the moduli spaces W to elements
¢ MY (p,q; f.8)] €235, ® 0(T,; f) ® deto(T; £)' ® C.(PL,P) (P, 9),

0 IMY(p.q: f1.9)] € 0(T,: fo) ® deto (T, /i)' @ C(PL.P)(p.9),
¢« IM" (D, q; fi.1,8)] € (T, fo) ® deto(T; /1) ® C(PL,P) (P, ).

Henceforth, we will drop the f; from the notation, as the relevant Morse functions will be clear

from the context.

4.9 The (Morse) complex

Let Ly be an oriented manifold. Make choices an in Section 3.6.1 and Equations 3.16, 3.17.
Use the choice of Pin structures in (3.17) to define a category C.(PL,p) (see Section 2.4) for

L = (Ly, Lg). Define an abelian group

CM.(QLo: f.8) = D Z)®o(T,)® C.(PL.P)(p.b).
peCrit(f)

Definition 4.2. Given y € ZZ ® o(T,) ® C.(PL,p)(p,b) let |y| denote the dimension of the

singular chain underlying vy, and let |p| denote the index of the critical point p.

Define degy = |y| — |pl.

This definition makes CM.(QLo; f,g) into a Z-graded abelian group; this convention will
make the differential we now introduce decrease degree.

—M
Choose compatible fundamental chains for M (p, q; f,g), over p,q € Critf, as in Section
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4.2. We define the differential (see Figure 3.2) via

Zy ® o(T;) ® C.(PL,p)(q,b) > y = dy € CM.(QLo; [, )

dy = (~D4ay+ (=D SN 6. M (p.)] 1y

peCrit(f) k

(4.27)

where dy € Z\q/ ® o(T,) ® C.(PL,Pp)(q, b) is just the application of the boundary operator to the
third factor of the tensor product, and # is defined as in (4.11) by commuting the trivial line ZZ to
the left, applying a grading-shifting isomorphism, and canceling orientation lines.

Suppose that we are given a pair of Morse functions fy, f that are both Morse-Smale with
respect to a Riemannian metric g, together with choices of Pin structures (3.17) for both Morse

—C
functions. Choose data f; as needed in Prop. E.2 to define M . Define a continuation map
C : CM.(QLo; f1,8) — CM.(QL; fo, 8),

by fixing

C')/ = Z Ck’)/, for')/ (S Z;/ ® O(Tq_) ® C*(PL7 p)(qa yb)
k>0

where

Coy= > D .M (p.@)l =2 7.

peCrit(f)

Here *; is defined as in Equation 4.17 by moving the trivial line to the left and canceling orientation
lines.
Given a given two choices of data f;, f; used to define continuation maps C, C’ as above, choose

—H
data f;; as needed in Prop E.3 to define M , and define a homotopy

H:CM.(QLo: fi,8) — CM.(QLo; fo, )
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between the continuation maps by

—H
Z) ®o(T;) ® C.(PL,P)(q.b) 3y = Hy = > (D6 [M (p,q; fiir )] %2 7.
yeCrit(f")

The sign computations needed to verify the following proposition are exactly identical to those
in the section on the Floer complex, and we will omit them.
Propostion 4.7. We have that d* = 0, and that C is a chain map and H is a homotopy.
Remark 4.2. One can show that the composition of two continuation maps is a continuation map,

by an analogous parametrized moduli space argument as in the section on the Floer complex, and

that the continuation maps
CM.(QLg; f,g) — CM.(QLo; f, 8)

are homotopic to the identity. Of course, this also follows from the Morse-Floer comparison in

Section 4.10 and the results of Section 4.

Remark 4.3. Suitable modifications of the arguments and results of Sections ?? and Prop. 4.6 all
apply here: CM.(QLy; f, g) is an iterated extension of free (C.(QLg, p), C.(QLg,p)) bimodules
and the maps C, H are compatible with this bimodule structure, making CM..(QLy; f, g) indepen-
dent of the pair (f, g) up to quasi-isomorphism of bimodules that is canonical in the homotopy

category of bimodules.

4.10 Morse-Floer-comparison

Propostion 4.8. Let Ly be an oriented exact Lagrangian submanifold of a Liouville domain.
Given the choices in (3.16), (3.17), there exist regular Floer data H, ffor (Lo, Lo), choices as

in Section 4.1, and an isomorphism

Y : CF(QLy,QLy;H,J) — CM(QLo; f,2)
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of Z/2-graded iterated extensions of free C.(PL,p)(yp, yp)-modules.

Proof. This follows from the same argument as in the proof of Lemma 3.5. We make the choices
of Floer data H,J and auxiliary choice of Pin structures (3.3) as in the proof of that Lemma. As
in that lemma, there is an identification of critical points for f with Hamiltonian chords of H, and
under this identification, the Z/2-graded abelian groups CF(QLo, QLy; H,J), CM(QLo; f, g), are
equal, so Y is the identity map. The structures of the complexes as modules over C.(PL, ) (yp, Vp)
are also equal; Lemma 3.4 gives a bijection between the terms in the respective differentials, and

the signs agree by the same argument as in Lemma 3.5. m|

4.11 Computing the Morse Complex

In this section, we compute CM..(QL; f, g) in terms of algebraic topology. Using a Morse-
to-simplicial comparison, we will show that this complex is isomorphic, as a dg-bimodule, to the
diagonal bimodule of Ay, := C.(Pp L, Pp»). The argument in this section is similar in spirit to the
work of Barraud-Cornea, “Lagrangian Intersections and the Serre Spectral Sequence” [16], and
we will similarly use a moduli space considered by Barraud-Cornea (loc. cit.) and Hutchings-Lee

[17].

4.11.1 A well-known moduli space

It is well-known that Morse function on a manifold gives a CW structure on the manifold, with
the open cells given by the (un)stable manifolds of the critical points. The proof of this statement
requires the description of closed cells for this CW structure, which can be constructed by a certain
compactification of the (un)-stable manifolds of the Morse function, which we describe in this
section. A careful treatment of a smooth manifold-with-corners structure on the moduli space
described in the subsequent definition is given in [18], and a more recent, self-contained treatment

can be found in [19].
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Definition 4.3. Let f be a Morse function on a closed manifold L with a unique maximum m, and
let x be a critical point of f. Choose a metric g that is Morse-Smale with respect to f. A broken
negative gradient trajectory v of f can naturally be thought of as a subset Iy of L. The blow-up of

the stable manifold of x is a space

M(x) = M (m.xs f.8) X [F(x), f(m)]/~

where ~ is the equivalence relation which identifies pairs (v, t), (v',¢’) of a (possibly broken) neg-
ative gradient trajectories v,V of f and number ¢,#’ of f if t = ¢ and I, N f~1((=0c0,1)) =

Ly 0 f7 (=00, 1)).

Remark 4.4. In [16], the Morse function f are required to have unique minima, and the blow-
up of the unstable manifold is defined up instead (see Section 2.4.6 of [16]). Similarly, in [18],
Definition 5, the “completed unstable manifold” is defined and is proven to be a smooth manifold
with corners in Theorem 1 of [18]. However, in our conventions for Morse theory, the Morse
differential increases the value of the Morse function at a critical point. There is no analytical

difference between the two conventions.

For the remainder of this section we suppress the background choice of Morse-Smale pair f, g.
The evaluation map

—M
M (m,x) x [f(x), f(m)] - M
(v,0) > Ty 0 f7(0)
evaluating a broken Morse trajectory at a level set of f then factors through M (x), giving a map
Ay M(x) — L. (4.28)
Up to the modification of conventions in Remark 4.4, it is proven in [16] that
Lemma 4.4 ([16], Lemma 2.15). The space M(x) is a topological disk of dimension dim L —ind x.
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Its boundary has a decomposition
— — —M
M(x) = Uyecrie ) M(y) x M (y,x),

— —M —
and the map A, restricted to M(y) x M (y,x) is equal to projection to M(y) followed by A,.

In particular, the maps {Ax}xecrit(r) give a CW decomposition of L.

For any critical point x of f, let o(7;") be the orientation line of the positive eigenspace of the
Hessian of f at x; this agrees with the orientation line of M(x), which compactifies the stable

manifold of x. Because L is oriented, there is an isomorphism
o(T) = o(T)Y (4.29)

for every critical point p, and we will use o(7T;)" to orient K/(\(x). Thus, for every pair x,y €

Crit(f), there is an isomorphism of orientation lines

o(T}) ®Zy 5, ® o(Ty) ® o(T;)" = o(TY) (4.30)

\

8/0s to the left hand side and removes it via a

where one multiplies by (—1), commutes the Z
grading-shifting isomorphism, and then applies (4.29) twice and cancels the two orientation lines
at y. (The multiplication by (—1) comes from the fact that this is a moduli space of downwards

Morse flows, but we orient it with a vector that points up the flow.) Define the map

EZ: (C.OM(),2) @ 0(T})) ® (C.OM" (,0),2) 823, ® o(Ty) ® o(T;)"))

- C,(M(x),Z) ® o(TF) (4.31)

as the tensor product of the Eilenberg-Zilber map on the singular chain complexes by map of
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singular chains induced by the inclusion
— —M — —
M) X M- (y,x) = IM(x) = M(x) (4.32)

and the isomorphism (4.30) on orientation lines. Orientation theory for Morse moduli spaces,
reviewed in Appendix E.1, gives an identification of the two tensor factors in the domain of EZ
with the complexes of singular chains on M (y) and MM (v, x) with coefficients in the orientation
lines of the respective moduli spaces. Moreover, due to the multiplication by (—1), the map EZ is
the same map, under this identification, as the composition of the Kunneth map on orientation lines
followed by the product and boundary isomorphisms of orientation lines induced by the inclusion
into the boundary (4.32).

Thus, we are in the setting of Section 4.2, and the argument of that section shows that

—M
Lemma 4.5. Given a compatible system of fundamental chains for the moduli spaces M (x,y))
in the sense of Section 4.2, we can extend this system to a compatible system of fundamental chains

[/T/(\(x)] € C, (/i/(\(x), Z) ® o(T}), in the sense that these chains satisfy the identity
JIMW] = > EZ(M»] @ [M" (y.]) (4.33)
y

where EZ is the map defined in (4.31).

4.11.2 A convenient model for the diagonal bimodule

Write P L for the space of Moore paths with starting point at » € L, and write P, , L for the

space of Moore paths with endpoint at : namely,

Php s i= U Pbxs

xeL

P*,b = U Px,ba

xX€eL
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topologized with subspace topology under the inclusion into C%( [0, c0), L). We will call the point
x in the above disjoint union the marked point of a Moore path in P, , or Py p.

There are evaluation maps

ev:PpL = L,andev:P.,L — L, (4.34)

sending a Moore path to its marked point, and there is a fibration 7 : Py, L X P.pL — L given
by the fiber product of the evaluation maps. This the total space of this fibration is the domain of
amap € : Pp.L X P — PppL which fiberwise is the concatenation of paths at their marked
points, and by “splitting a Moore path at its midpoint”, one can construct a homotopy inverse,

proving the
Lemma 4.6. The map € is a weak equivalence.

Write p for the pullback by € the local system p, . over $; , L defined in Section 2.5. We can
then consider the chain complex C.(Pp L X1 PspL;p). This is an (Az, Ar)-bimodule, via the

map on singular chain complexes induced by concatenation of paths at b

pb,bL X (Pb,*L X[ P*,bL) X PppLl — Pby*L X1 PspL

together with concatenation of Pin structures over the paths. The map € is a map of topological
monoids which is an equivalence of underlying spaces, and since p is pulled back from p, . in
a way that is compatible with the isomorphisms covering the left and right topological monoid

structures of the underlying spaces over Py ;, L, this proves the

Lemma 4.7. The map

€ : C, (Pb,*L XL P*,bLa p) - C*(Pb,bLa pb,b)

is a quasi-isomorphism of bimodules from its domain to the diagonal bimodule of A;. O
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We will view this quasi-isomorphism of bimodules as a map of right modules over Azp ® AL

via the equivalence between bimodules and right modules described in Section 2.6.

4.11.3 The computation, continued

Now, by definition, every point r € M (x) corresponds to a Moore path y, € $,.L, and
structure maps A, factor through the map r — 7, (see Equation 4.28). Writing i*y, with for the

inverse of the Moore path y,, we get a map
M) 3 r > 9, = (y,.0%y,) € ProL X1 PoxL. (4.35)

As in the definition of the functor A (Def. 3.5), there is a canonical section of p over y,, and as in

Section 4.8 we can use this to define a chain map

¢ : Cl(M(x)) ® 0(T}}) = Cu(PruL X1 P D) @ 0(Ty). (4.36)

We now define a map
F:CM.(QL; f,8) = C(PpL Xr PepL,p). (4.37)
Let p be a critical point of f. Consider an element
y€Z, ®o(T,) ® C.(PL,p)(p.b) C CM.(QL; f,g). (4.38)

We define
F(y) = (=D"E(¢:[M(p)] *17) (4.39)

where *; is defined analogously as in Equation 4.17: one commutes the trivial line that is part of y
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through the line o(7), )V, which has degree ind p, and applies the concatenation operation
Ci(Pp L X1 Pipip) @ Co(PL,P)(p,b) = Cu(Pp L X1 PipL,p) (4.40)

pairs off the o(T},) and o(T];’ ) using (4.29), and removes the extraneous trivial line.

Note that the map ¥ cannot (yet!) be a chain map because it does not even preserve de-
gree. However, as in Section 2.6, the map ¥ commutes with the right-module structure on
CM.(QL; f, g) because of Lemma 2.2. We now show that ¥ commutes with the differentials

up to a global sign

Lemma 4.8. The map ¥ satisfies
Fd=(-)"dF.

Proof. The dimension of M\(p) is n — ind p. Thus when we commute the boundary operator
on C,(Py.L X, P.,L,p) through a copy of ¢.(M(p)) we pick up a sign of (=1)"~? which
together with the sign in the first term on the differential (4.27)on C M. (QQL; f, g) gives a total sign
of (—1)". Similarly, the (—1) in the map (4.30) together the commutation of the trivial line through
o(T;) ® Zy 165 ® o(T,) ® o(T; )Y, combined with the sign in second term in the differential on

CM.(QL; f, g), again give a total sign (—1)".

O

Thus, after shifting the Morse complex, thought of as a dg-module, up by degree n, we get that

¥ defines a map of dg-modules.
Lemma 4.9. The resulting map F is a quasi-isomorphism.

Proof. Equip CM.(QL; f,g) with the filtration given by dim L — indx for x € Critf, and the
target with the filtration coming from the filtration on P, L X P} L pulled back by the filtration on
C.(L) induced by the CW filtration of L coming from the blown-up stable manifolds. With these

filtrations, ¥ is a map of filtered complexes. It is an isomorphism on the E; page, which on both
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sides is just

B Hy(Porl x PepLip @ HM(x). (4.41)
xeCrit f,q>0

So it is an equivalence. O

Combining the two lemmata of this section, we have proved the

Propostion 4.9. When defined, the complex
CM(QLo; f,8)[n]
is quasi-isomorphic as a bimodule to the diagonal bimodule of C.(QLy, p).

4.12 Proof of Proposition 1.3

Proof. Let Ly be a transversely intersecting Hamiltonian isotopy of L obtained from the time-
dependent hamiltonian H. By Lemma C.2, there exists a J so that (H,J) is a regular Floer datum.
Making the choices as in Section 4.1, we can define CF(QLy, QL; H,J), which is an iterated
extension of free bimodules of size equal to the number of intersection points of Ly and L; (see
Sec. 2.6). By Propositions 4.6 and 4.8, it is quasi-isomorphic as a (C.(QLg, p), (C.(QLy,p)) to
CM(QLy; f, g) for some Morse-Smale pair ( f, g). The latter bimodule is quasi-isomorphic to the
diagonal bimodule by Proposition 4.9 . The quantity in the proposition is by definition a lower

bound on the size of CF(QLo, QLy; H,J). m|
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Appendix A: Conventions in dg-algebra

In this section we describe our conventions on dg-algebras, dg-modules, and iterated exten-
sions of free modules.
For this section, k is a natural number. Write S for Z/2kZ and write | - | : S — Z/2Z for the

projection. Let R be a commutative ring.

Definition A.1. An S-graded R-module is an R-module M equipped with a decomposition M =
®;es My, where M denotes the part of degree s. We say m € M is homogeneous if it lies in one of
the M. The R-module of R-linear homomorphisms Hompg (M, N) between a pair of R-modules
M, N is S-graded: an endomorphism E has degree s if E maps My to Ny forall s € S.

An S-graded R-chain complex is an S-graded R-module M equipped with an endomorphism
d : M — M of degree —1, called the differential, such that d>=0. A map of chain complexes
is a map of S-graded R-modules of degree zero which commutes with the differential. In the
rest of this section, we will call an S-graded R-chain complex a chain complex. A morphism of
chain complexes is an element f € Homg(M, N); the set of morphisms is a chain complex, with
(df)(m) = d(f(m)) = (=1)!"| f (dm).

There are obvious notions of a subcomplex, a quotient complex, and of a direct sum of com-
plexes; in the latter, the degree of a ® b is defined only if a and b are homogeneous of equal degree,
in which case it is the degree of a.

The tensor product M @ N of two chain complexes M, N, is the R-module M ®g N, with the
grading characterized by the property that if m € M;,n € Ny, thenm @ n € (M ® N)g4s, and
the differential d characterized by the property that d(m ® n) = dm ® n + (=1)"!m ® dn. This
makes chain complexes into a symmetric monoidal category using the usual Koszul sign rule for

the braiding.
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A S-graded dg-algebra over R is a S-graded R-chain complex A equipped with a map of chain
complexes A — A, (a,b) — a -4 b which satisfies the obvious associativity relation for an
associative product. We will call an S-graded dg-algebra over R a dg-algebra for the remainder of
this section. Notice that if we forget the differential and the grading, then A is an R-algebra. We
will write a -4 b = ab whenever the context is clear.

A dg-category is a category enriched in chain complexes; thus dg-algebras are dg-categories
with one object.

A right module M over a dg-algebra A is a chain complex M equipped with a map of chain
complexes M ® A — M, m ® a — ma which makes M into a right A-module over the R-algebra
A. Similarly, a left module M over a dg-algebra A is a chain complex M equipped with a map
of chain complexes A ® M — M, a ® m — am, which makes M into a left A-module over the
R-algebra A. A map, or a morphism, of right modules is a map or morphism ¢ of chain complexes
which commutes with multiplication in the obvious way, i.e. ¢(ma) = ¢(m)a; the morphisms
between two right modules naturally form a chain complex.

There are obvious notions of a submodule, of a quotient module, and of a direct sum of mod-

ules. A free module over A is a module isomorphic to A thought of as an A-module.

Definition A.2. A homotopy between two maps of chain complexes fy, fi : M — N is an element
f € Homg(M,N); with df = fy — fi. Chain complexes under composition of maps form a
category, and the existence of a homotopy betwen a pair of maps is an equivalence relation on this
category; the quotient by this equivalence relation is the homotopy category of S-graded R-chain
complexes.

Similarly, a homotopy between two maps fo, f1 : M — N of right modules over a dg-algebra
A is a degree 1 morphism of modules with df = fy — fi, and the homotopy category of right
A-modules is the quotient of the category of maps of right A-modules by the equivalence relation

given by the existence of a homotopy.

Definition A.3. Taking cohomology with respect to d defines a functor from the category of chain

complexes and maps between them to the category of S-graded R-modules.
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A quasi-isomorphism of chain complexes is a map of chain complexes inducing an isomor-
phism on cohomology; a quasi-isomorphism of right A-modules is a map of A-modules which is

a quasi-isomorphism of the underlying chain complexes.

Definition A.4. The tensor product of two dg-algebras A, B is, as a chain complex, the tensor
product of chain complexes, with the multiplication characterized by the property that fora,a’ € A,

b, b’ € B all of pure degree, we have that

(@ ®b)(aob)=(-)Pllaa) (b'b).

Definition A.5. Given a dg-algebra A, the opposite dg-algebra A°?P is the dg algebra with the
same underlying chain complex as A, but with a - gor b = (=1)19°lp .4 a for elements a, b € A of
pure degree.

There is a bijection between right modules M over A and left modules M°? over A°?: one sets

the underlying chain complex of M°? to the be that of M, and one defines am = (=1)"!l¢l (am).

Remark A.1. Maps, morphisms, etc. of left modules are defined such that they naturally give the
already-defined notion for the corresponding right modules; this introduces certain Koszul signs

into the theory of left modules over a dg-algebra, which we will not write out explicitly.

Definition A.6. The shift M|[k] of a right module M over a dg-algebra A is the right A-module
obtained by redefining the degree of a degree s element of M to be s + k, and the differential is
multiplied by (—1).

The shift M k] of a left module M over a dg-algebra A is defined as (M°P[k])°P.

Definition A.7. Given two dg-algebras A, B, we define an (A, B)-bimodule to be a chain complex
equipped simultaneously with the structure of a left A-module and a right B-module, which com-
mute in the sense that (am)b = a(mb) fora € A,m € M,b € B. The sign in Def. A.4 gives a
bijection between (A, B)-bimodules, right A°” ® B modules, and left A ® B°? module.

The multiplication on A makes A into an (A, A)-bimodule called the diagonal bimodule. For

most of this paper we will think of the diagonal bimodule as a right A°”? ® A-module.
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Definition A.8. Suppose we are given a right module M over a dg-algebra A admitting an R-
filtration by submodules M=" c M for r € R, write M <" for the smallest submodule containing
all M=l for ¢ < r; this makes sense because the set-theoretic intersection of submodules is a
submodule.

A iterated extension of free modules is an M as above with the property that the A-modules
M="/M<" are quasi-isomorphic as right A-modules to direct sums of shifts of A considered as a
right A-module, i.e.

M="|M~" ~ & A[b]

for some cardinals a, and some integers b;; and more over that the quotients M="/M <" are nonzero
for only finitely many r, and when they are nonzero the cardinals a, are finite.

The size of an iterated extension of free modules M is

S

MSV/M<V¢0

Maps and quasi-isomorphisms of iterated extensions of free modules are simply maps and
quasi-isomorphisms of the underlying A-modules.
A interated extension of free (A, B)-bimodules is an iterated extension of free modules over

A°? ® B.

Remark A.2. What we call an iterated extension of free modules is quasi-isomorphic to the usual
notion of a twisted complex, where one requires that the subquotients M="/M~" are equal to
direct sums of shifts of A; with that change, the category of twisted complexes can be described
very explicitly. In particular, an iterated extension of free modules of size s is quasi-isomorphic to
a twisted complex made of s underlying free modules. The paper [20] used the notion of a twisted
complex to give an explicit dg-model for derived categories with a finite number of generators.
Section I of [9] gives a nice introduction to the machinery of Z-graded twisted complexes in the
A setting.

The differential in our dg-algebras decreases degree, which means that our conventions dis-
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agree with the above two sources, but there should be no trouble converting between the conven-
tions. Our basic conventions agree with those in the Stacks project [Stacks, Chapter 09JD]. Our
notion of a an iterated extension of free modules is equivalent to that of [9] when § = Z after
only remembering the ordering of the nonzero sub-quotients of the R-filtration, and replacing the
condition M="/M~" is quasi-isomorphic to A by the condition that it is equal to A. We use quasi-
isomorphism primarily because in Lemma 2.2, the map in (2.14) is only a quasi-isomorphism

rather than an equality, of chain complexes; see also Remark 2.6.
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Appendix B: Pin groups and Pin structures

In this section we clarify what we mean when we discuss Pin structures, because there are
several conventions in the literature. In particular, in Appendix B.2 we explain the language of

relative Pin structures that is used throughout the text in.

B.1 Pin structures

The Lie group Spin(n) is the universal cover of the Lie group SO (n). The Lie group O(n) D
SO(n) is not connected, so there is not a unique group structure on its universal cover. The Lie
group Pin(n) is characterized by the property that it admits a map of Lie groups 7 : Pin(n) —
O (n) which is a universal cover on each component of O(n), such that the inverse image under 7
of the group generated by a reflection in O(n) is isomorphic to Z/4Z. An explicit description of
the map 7 is given in Appendix B.1

Given a real vector bundle £ — B over a topological space B with a Riemannian metric on E,
we can form the frame bundle of E, O(E) — B, which is a principal O(n)-bundle over B. We say
that a Pin structure on E is a principal Pin(n)-bundle P(E) — B which admits a map over B to
O (E) that respects the Pin(n)/O (n) torsor structures on both sides. A map of Pin structures on E,
is a map of principal Pin(n)-bundles over B, P(E) — P’(E), over O(E).

Propostion B.1 ([21], Lemma 1.3, Remark on p. 184). Suppose that B is paracompact Hausdorff
and has the homotopy type of a CW complex. Then bundle E admits a Pin structure iff wo(E) = 0.
If E admits a Pin structure, then the set of Pin structures on E up to isomorphsim is a torsor over

H'(B,Z/27).

The group Pin Our definition of Pin(n) agrees with that of Pin*(n) in [21].

Let V be a real vector space with a positive-definite inner product (-, -). Let Cli f f*(V) be the
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universal associative R-algebra generated by V satisfying the relation
vw+wy =2(v,w).

Let Pin(V) c Clif f*(V) be the multiplicative submonoid generated by the unit sphere in V; this

is, in fact, a Lie group. An element x € Pin(V) acts on V via
V= —XVX;

this action preserves the norm on V, and so gives a homomorphism 7 : Pin(V) — O(V), which is

the covering map in B.1.

B.2 Relative Pin structures

Let £ > 0 and E — [0, (] be a Riemannian bundle equipped with a pair of Pin structures py,
pron Ey — 0, E; — ¢, respectively; we say that E is a bundle equipped with Pin structures at the
ends. A Pin structure relative to the ends on E is a choice of Pin structure p on E together with
a pair of isomorphisms of pin structures /lg : plg, — Po, /lll3 : Ple, = P1. An isomorphism of Pin
structures relative to the ends on E is an isomorphism of Pin structures ¢ : p — p’ such that for
k=0,1, Ay ¢ = Ap.

Propostion B.2. Let E be a bundle equipped with Pin structures at the ends. The set of Pin struc-

tures relative to the ends on E up to isomorphism is a Z/2-torsor.

Proof. An isomorphism of Pin structures pp — p;, which always exists, gives a map 7 from Pin
structures relative to the ends on E to Pin structures on a certain vector bundle E on a circle. This
map sends isomorphic Pin structures relative to the ends on E to isomorphic Pin structures on that
vector bundle. The isomorphism classes of the second kind are a torsor over H' (S!,Z/2) = Z/2; so
it suffices to check that 7 is a bijection on isomorphism classes. Surjectivity is straightforward, and

injectivity follows from the fact that any isomorphism of Pin structures on a vector bundle E over
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S!, where one already has another specified isomorphism A between the Pin structures restricted to
E|o, gives rise via a gauge transformation to another isomorphism between the Pin structures that

is equal to A at E|o. O

Definition B.1. If £ — [0, £] is a bundle with Pin structures at the ends, let
I1(E) (B.1)

denote the set of isomorphism classes of Pin structures relative to the ends on E.

Given a pair of Riemannian vector bundles £ — [0,¢], E* — [0,{’] equipped with Pin
structures at the ends pf , pf k=01, together with identifications of Riemannian vector spaces
E|¢; = E|, and an identification of the corresponding Pin structures at the ends vl = pE'|o, one
can glue the vector bundles to get a vector bundle E#E’ — [0, € + '] equipped with pin structures

at the ends given by pg, pf ", and one has a corresponding operation
gep - II(E) XTI(E") — TI(E#E'). (B.2)

Given a third bundle E” — [0, ¢”] equipped with Pin structures at the ends pg", pf", and an

identification pf' — pE”(, one has that
E#E'#E" .= (EH#E')#E" = E#(E'#E") (B.3)
and the two possible gluing maps
II(E) x II(E") X II(E"”) — II(E#E'#E") (B.4)

given by

gE#E',E” [e) (gE,E' X 1)’ and gE,E'#E” [e) (1 X gE',E")a (BS)

are equal.
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Remark B.1. The notion of Pin structure relative to the ends on E — [0, £] can be extended to the
case when ¢ = 0. In that case, Eg = E; and we require that the pin structures pg and p; on Ey and
E| respectively satisfy po = p;. In this case we define [1(E) = Z/2; the element 0 € Z/2 is the pin
structure p = pgp = p; on E, and the element 1 is a “formal inverse” of that pin structure. Clearly

I1(E) is still a Z/2-torsor; moreover, given another bundle E’ — [0, £’], there are gluing maps

II(E) X II(E") — II(E"),

II(E') x TI(E) — TI(E),

defined using the action of I1(E) = Z/2 on II(E’), and these satisfy the associativity axioms with
the previously defined gluing maps.

This special case is defined so as to make sense of the dg-algebras C.(Px L, Pxx) (2.11) and
C.(PL,p)(yp,yp)(2.14); in particular, the unit in C..(Px L, Pxy) is the “Pin structure” over the

constant loop at the basepoint corresponding to 0 € Z/2 = T1(TL).

81



Appendix C: Technical conventions for Floer theory

In this appendix we describe our conventions for the equations and moduli spaces of La-

grangian Floer homology.
Let (M, w, 0) be a Liouville domain containing a pair of closed exact Lagrangian submanifolds
Lo, L1, as in Section 4. Let J be the set of w-compatible almost-complex structures on M which,

in some neighborhood of dM, are X-invariant and satisfy dh o J = 6.

C.1 Riemann surfaces

All Riemann surfaces will be (possibly punctured) Riemann surfaces with boundary.
Our standard coordinate on C is z = s + it.

Define the following Riemann surfaces:

D ={zeC:|z><1}
Z =Rx]|[0,1]
Z* =R*x[0,1]

H :={z € C|lm(z) = 0}.

Remark C.1. Sometimes in this paper H will also denote a Hamiltonian perturbation term; the

meaning of the symbol should be clear from the context.

Definition C.1. A boundary-marked Riemann surface is a triplet (f , 2", X7), where S is a a Rie-
mann surface with boundary 4S8 and >*, X~ are non-intersecting finite subsets of dS. We will call
the sets X+, X~ the outgoing and incoming points, respectively.

A boundary-marked Riemann surface canonically defines a Riemann surface S := S\ (Z*UX").
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We will denote the boundary-marked Riemann surface by X, supressing additional notation.

We give the Riemann surfaces Z and Z* the structure of boundary-marked Riemann surfaces
by compactifying them by adding the points at s = +co. We think of the point at s = 400 as X*, and
the point at s = —oo as X~, whenever those points were added to the compactification. Similarly
we give H the structure of a boundary-marked Riemann surface by adding on the point at infinity

and choosing it as X~

Definition C.2. A choice of strip-like ends for a boundary-marked Riemann surface S is, for every
{ € £*, a proper holomorphic embedding €; : Z* — § such that 621 (0%) = R* x {0, 1}, with the

images of €, pairwise disjoint, and such that lim,_, ;e €/(s,-) = £.

C.2 Floer data

Let J be the set of almost complex structures compatible with M, and let H be the space of

smooth functions of M which are zero on a neighborhood of dM.

Definition C.3. A Floer datum for the pair (Lo, L) is a pair
(H,J) € C=([0, 1], H) x C([0,1], T)

such that under the time-1 flow of the Hamiltonian H, L intersects L transversely.
Definition C.4. A boundary-marked Riemann surface equipped with boundary Floer data is

* aboundary-marked Riemann surface S equipped with a choice of strip-like end ¢, : Z* — S

for every end £ € X* of §

* an assignment of a closed exact Lagrangian submanifold L; for each boundary component

(8S); of 85,

* For every end { € X%, a choice of Floer data (H, J;) for the pair of Lagrangians (L, L}),
with L] the Lagrangian assigned to the connected component of dS) containing €, (x, ).

We will denote a choice of boundary Floer data ({L;}icx,(as), {(Hz, J7)}, {€}} by B.
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Perturbation data

Let X; be the vector field corresponding to the Hamiltonian flow of H(¢) on M, namely, the

one satisfying the condition

w(X;,+) =dH. (C.D
Let C(Lg, L1; H) be the finite set of time-1-trajectories of X, from Lg to L;.

Definition C.5. A perturbation datum for a boundary-marked Riemann surface equipped with

boundary Floer data is a pair

(K,J) € QUS, H) x C™(S, T)

such that:

* for each component ;S of 9§ with corresponding Lagrangian submanifold L;, we have that

K(T0;S)|1, = 0; and also such that

* the perturbation datum is compatible with the boundary Floer data, in the sense that

EZK = H;(t)dt, and

J(€s(s,1)) = J(2) forevery £ € X.

We denote by Y € Q! (S, C*(TM)) the vector valued one form obtained from K by considering

the Hamiltonian flows of the corresponding Hamiltonians.
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C.3 Floer moduli spaces

For any y. € C(Lg, L; H) we can consider the set of solutions to Floer’s equation

osu + J(t,u)(Ou — X(t,u)) =0;
ME(y_,yss HoJ) =3 u e C°(Z, M) u(s,i) € L,i =0, 1 . (C.2)

(u(s,)) == 7()

In the above equation, the notation

(u(s,) == 7= ().

means that the function u(s, -) converges exponentially fast to y*(-) in a local chart on M near y=*.
We topologize MF (v, v+; H,J) with the topology of uniform convergence.

The moduli space MF (y+,v-; H,J) admits a continuous R action given by translation in the s
coordinate; let M¥ (y,,y_;H,J) := MF (v+,7y-; H,J)/R. We will omit H and J from the notation
when the dependence on them is clear from the context.

Given a boundary-marked Riemann surface X equipped with boundary Floer data B := ({L;}, {(H¢, J¢)}
and perturbation data (K, J), then for any collection {y;} with y, € C(L,, L;V; H) we can consider

the set of solutions to the inhomogeneous pseudoholomorphic map equation

(Du-Y))' =0,
ME{yeh 2. B,K,J) =4 ue C¥(Z, M) u(8,C) C Li; (C.3)

e
Voes=u(es(s, ) T ye (o)

which is topologized in the topology of uniform convergence.

Remark C.2. A choice of Floer data (H, J) for (Lo, L) equips Z with a perturbation datum given
by the Floer datum itself, denoted by (H, J)¥. In that setting the inhomogeneous pseudoholomor-

phic map equation reduces to Floer’s equation, and (C.3) reduces to (C.2).
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Definition C.6. A stratified topological space T is a topological space T together with a collection
of closed subspaces 0'T > d™*!T fori > 0 and 8°T = T, called the strata of T. The open strata of
the space are then the subspaces 0. T := 4'T \ 9"*!T for i > 0. The index labels the codimension of

the stratum.

The Gromov-Floer bordifications
—F —C
M (’Y+7’)/—;H’J)’M (Y+’7—;2a%7K’J) (C4)
are stratified topological spaces which contain
M (y4,y- H, ), ME (y4,y-3 2, B, K, J)

as codimension 0 open strata, respectively. Suppressing the Floer data and perturbation data from

the notation, these satisfy

—F —F —F
IM (y-,ys) = U M (v 70) X M (70, ¥4); (C.5)
¥0€C(Lo.L1)

and if £ = Z with boundary Lagrangians L, L1,

—C —F —C —C —F
IM (v = | M oy x M (y0,72) UM (-, 70) X M (v0,7+)
Y0€C (Lo.L1)

and if £ = H with boundary Lagrangian L, then

M rn= | Mo x M (b,

Y0€C(Lo,L1)

C.3.1 Some topological preliminaries

Let X be a topological n-manifold. Then X carries an orientation sheaf vy, which is a Z-local

system with stalk at p given by H, (X, X \ p). If X is closed, then there is a fundamental class [ X]
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in

H,(X,0y)

which is a generator for this group. It is a convenient fact that for the dual

oy := Hom(vx,Z)

we have a canonical isomorphism oy, =~ oy of local systems, and moreover when we equip oy with
the Z/2-grading given by the dimension of X, then this is an isomorphism of Z/2-graded local
systems. In the rest of the paper we use oy instead of oy, everywhere.

Let X be a topological n-manifold with boundary dX; namely a second countable Haussdorff
topological space locally modeled on R.o x R*~!. Let j : X — X be the inclusion of the interior.

Then there there is a natural sheaf on X given by

Dg := j.Dy, the orientation sheaf of X

which is also a Z-local system. There is an identification

Oxlox =~ 0y% (C.6)

which arises, in a local chart near p € 0X, from the isomorphism

H,(R",R"\ 0) = H (R,R\0) ® H,_;(R"",R""\0) ~Z® H, | (R"",R"""\ 0)

coming from the Kunneth formula and the trivialization of the orientation of R coming from tak-
ing a tangent vector pointed in the negative direction. The identification gives rise to the usual

boundary map

Hn(X, 6X, Dx) - H,,_l(aX, Dag).
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The domain of this map is generated by the relative fundamental class [X], and this map takes [X]

to [0X].

Definition C.7. A topological manifold with corners of dimension n is a second-countable Haus-
dorff stratified topological space X such that each point has a neighborhood equipped with a home-
omorphism to an open subset of A, := [0, 00)* x R"“¥ for some 7, k, where the homeomorphism
takes the stratification on X to the standard stratification on A, x. Thus 6(’)‘X is a topological mani-

fold of dimension n — k if k < n and is empty otherwise.

Notice that every topological n- manifold with corners X is a topological n-manifold with

boundary, and has a fundamental class in H,, (X, 0X; 0;/2).

C.4 Regularity

Fixing 2 < p < oo, one considers the Banach manifold Bg of maps u : § — M which are
locally W!» and converge to some {y¢} on the strip like ends with exponential speed in the C !
norm. There is a Banach vector bundle &g with fibre at u given by L? (S, Q%S ® u*TM), and
the quantity appearing in the inhomogeneous pseudoholomorphic map equation, (du — ¥)%!, can
be seen as a section of this bundle; thus the zero-set of the section is set of solutions that we are
interested in, since any solutions lie in the image of C*(Z, M) by elliptic regularity. At a zero u
of the section, we have a Cauchy Riemann problem D, : (TBs), = WP (S,u*TM,Uu*TL;) —
LP(S, Q%S ® u*TM) which is the linearization of (du — Y)%! (see e.g. [9, Section II.8h]). Given

a Fredholm operator D, we write
det D, = (AP coker D,)" ® AP ker D, (C.7)

for its determinant line. At any zero u of the section, by elliptic regularity results, the kernel and
cokernel of D, are both finite dimensional and independent of p, and thus the determinant lines
of the linearizations patch together to a canonical line bundle with a canonical associated Z-local

system D ME (y4,y_:5.%8 K,J) OVEr ME(yve,v_; 2, B, K, J) called the determinant local system.
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We say that a solution u to the inhomogeneous pseudoholomorphic map equation is regular if

the linearized operator D, is surjective; we say that a perturbation datum for S is regular if every
solution to the inhomogeneous pseudoholomorhic map equation for that perturbation datum is
regular. The following fact asserting the existence of enough regular perturbation data is standard
[9]:
Propostion C.1. Regular perturbation data exist for any pair of closed exact Lagrangians in an
exact symplectic manifold with convex boundary. In the same setting, given a boundary-marked
Riemann surface equipped with regular boundary Floer data, a regular perturbation datum for
this boundary-marked Riemann surface exists. O

Moreover,

Propostion C.2. Given a pair of closed exact Lagrangians Ly, L in a Liouville domain M and
a time-dependent Hamiltonian H € C®([0,1] x M), if the image of Ly under the time-1 flow
of H intersects L transversely, then H is the Hamiltonian part of a regular Floer datum for the
Lagrangians. O

Finally, it is known that
Propostion C.3. Let (X, B, K, J) be a choice of boundary marked Riemann surface equipped with
regular boundary Floer data and regular perturbation data. Then every connected component of
Mc()q, v_; 2,8, K, J), with the induced stratification, is a topological manifold with corners.

Moreover the determinant local system on the open stratum of each connected component
extends to the entire connected component and is canonically isomorphic to the corresponding
orientation sheaf of that component. In particular, if (£,B,K,J) = (H, J)* (see Remark C.2),

then there is a canonical isomorphism

D/WF(w,y-;H,J) = Rojas ® OMF (y,.y:H.0)>

due to the definition of MF as the quotient of M (Z,B,K,J) = MF(H, J) by the translation

R-action (see Appendix D.1 for our conventions about determinant lines of quotients). 0O
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Appendix D: Orientation lines

D.1 Conventions on orientations

Given a vector space V we have the associated determinant line detV = APV,

Given an exact sequence of vector spaces

0=V -V-sV'50

there is a canonical (up to a multiplicative action of the positive real numbers) isomorphism of
determinant lines

detV ~ detV’ @ detV”’

arising from a choice of decomposition V =~ V' & V" coming from a choice of section V" — V.

This gives a canonical isomorphism of associated orientation groups

|det V| ~ |detV'| ®z | det V”|.

There is also an isomorphism

detVV ®@detV - R

given by evaluation, which induces an isomorphism of orientation groups

|detVY| ® |detV| — Z.
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Given a pair of vector spaces V, V', we have an isomorphism

VxV =V ' xV

but the associated isomorphism of determinant lines

detV ®@detV’ ~detV’ ® detV
differs from the standard braiding in the tensor category of vector spaces by a sign (—1)dimVdimV’,
In other words, if we equip an orientation group | det V| with the Z/2 = {+1} grading (-1)4™V,
then the associated isomorphim of orientation groups becomes the braiding in the tensor category
of free rank 1 abelian supergroups. An important point to keep in mind is that isomorphisms
like [(v)V]| ® |detV| =~ |detV] or [R,,| ® |[Rg,| = |R| do nor respect the mod-2 grading of these
orientation groups, altough they are well defined isomorphisms of groups. We will thus call them
grading-shifting isomorphisms of orientation groups. They will be necessary in the definition of

the Floer complexes of this paper.

D.2 Some recollections on the topology of the Lagrangian Grassmannian

Let W be a symplectic vector space, and let LGr(W) be the space of (unoriented) Lagrangian
subspaces of W. We introduce in this paragraph a certain fiber bundle m over LGr(W).

There are canonical cohomology classes

u e H'(LGr(W),Z), the Maslov class, and
(D.1)

wy € H*(LGr(W),Z/2), the second Steifel-Whitney class,

which define isomorphisms 71 (LGr(W)) =~ Z and m,(LGr(W)) ~ Z/2, respectively. We write

LGr(n) := LGr(C").
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We have the fiber sequences
Z/2 — Pin(n) — O(n) — BZ/2 — BPin(n) — BO(n)

and

O(n) » U(n) —» LGr(n) — BO(n)

the fiber product

LGr(n) := BPin(n) Xpo(n LGr(n) (D.2)

is a BZ/2-fibration over LGr(n). The map m — LGr(n) is an isomorphism on 7y for k # 2;
however, ﬂz(m) = 0. Thus, the based loop space of m has Z connected components
indexed by the Maslov class, and each connected component is simply connected.

By construction, picking a Pin structure on L € LGr(n) is equivalent to choosing a lift of L to

LGr(n).

D.3 Definitions of orientation lines

Let (E , 7\\2) be a pair of elements of Lm) so that the corresponding pair of Lagrangian
subspaces (A1, Ay) in LGr(W) intersect transversely. The construction in the previous section
shows that every component of the space 7)7\17\; of paths from //\\1 to 7\\2, is simply connected. For
any element y € P, A, with image vy in the space of paths in the Lagrangian Grassmannian, we
can construct a Cauchy-Riemann problem as follows: let S = H, E = H X W, y be a nondecreasing
smooth function R — [0, 1] with ¢(s) = 0 for s << 0, ¥ (s) = 1 for s >> 1; Ay = y(¥(s)), the
connection is the trivial connection; the strip-like end is just the unique conformal parameterization
of the complement to a large semicircle in the upper half plane, the limiting bundle E is also trivial
with ¢ the identity and the remaining limiting data are the only ones possible for this setup. The
resulting Fredholm operators D have a locally constant index ind(D) € Z and give rise to a
determinant line det D — P+ +; the indices bijectively label the connected components of 7)7\17\;

AN
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by integers, and the determinant lines are trivial on each component because each component is
simply connected. Let SD/”T = be the component of Pf\T 5 corresponding to the index n Fredholm
1,432 ’

operators. Let det"(ZX\l ,7\;) denote the (trivializable) determinant line bundle detDlPﬁ‘l,A}’ and
let 0"(//\\1 , //\;) denote the free abelian group corresponding to the Z/2-torsor of orientations of
det” (A1, Aa).

There is a slight generalization of this construction which must be used to describe the Floer
complex. Namely, suppose we are given a limiting datum: a Hermitian vector bundle E/ — [0, 1]
with symplectic form wg- and complex structure Jg-, a as well as a symplectic connection Vg and
a pair of of Lagrangian subspaces A%, c E’|o, A]li, C E’|1, such that the Vg parallel transport of
AOE, to E’|; is transverse to Ag/|;. Moreover, assume that this limiting datum is equipped with a
Pin structure, namely, assume that Al}i‘/ have given Pin structures for k = 0, 1, corresponding to
lifts Xf; of Ag, to L/@*(E ’|x). Then we can define an analog of the orientation line by trivializing
E’ using Vg, viewing this as a new limiting datum on a trivial bundle W x [0, 1] — [0, 1] with
trivial connection (for definiteness, choose W = E’|); extending this trivial bundle to H with the
same strip-like end and trivial connection, and choosing boundary conditions by choosing a path
between the images of X’; in W under this trivialization, all as in the previous paragraph. This
procedure is discussed in more detail in [9, Section II.11.1]. The space of limiting data retracts

onto the space of pairs of Lagrangian subspaces (A2, A]li,) equipped with Pin structures, and the

determinant line of the operator D defined by a limiting datum equipped with a Pin structure is

canonically isomorphic to 0*¢P (/’\—O\,, KE) for the corresponding pair (X(T,, /I\E).

A Hamiltonian chord y for a Floer datum gives a limiting datum equipped with a Pin structure;
let the corresponding pair of Lagrangian subspace equipped with Pin structures be (//\B,, 1/\;), and
call

0"(y) = 0"(A1, As) (D.3)

the orientation line of y of index n.
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D.4 Shift line

Finally, there is the shift line, which is the determinant line of a certain family of index 1
Cauchy-Riemann problems on Z. Given a limiting datum, define a Hermitian bundle over Z by the
pullback via projection to the second coordinate of the bundle E” — [0, 1] given by the limiting
datum, and equip it with the pullback connection. Choose Lagrangian boundary conditions by
choosing the constant Lagrangian boundary condition on R x {1}, so it is just AL,, and choose

J—

the projection to the Lagrangian grassmannian of any loop from AOE, to itself, composed with ¢,
as the boundary condition for R x {0}, such that the associated Fredholm operator has index 1.
The determinant lines of these operators naturally form a bundle over a connected component of
QZTG\r(E’|0) based at X(T, ; this space is simply connected and so the line bundle is trivializable.
The free abelian group corresponding to the torsor of orientations of this line bundle is the shift

line associated to the limiting datum. If the limiting datum arises from a Hamiltonian chord y of a

Floer datum equipped with Pin structures as in (3.3), then we will denote this line by 03(y).

D.5 The essential trick

Suppose that we are given a Cauchy-Riemann problem arising as the linearization of the pseu-
doholomorphic map equation at a map u, with the target a manifold of dimension 2n, and the
domain a Riemann surface equipped with boundary Floer data and perturbation data, such that
u is asymptoting to Hamiltonian chords {y,} at each of the ends ¢ of the Riemann surface, and
the chords are equipped with Pin structures as in (3.3). Then it makes sense to apply the gluing
theorem to D, and ®;cs+ 0"¢ (y), where the n; are arbitrary integers. If the Lagrangian boundary
conditions of the pseudoholomorphic map u are equipped with Pin structures relative to the given
Pin structures on {y,}, then the standard argument giving coherent orientations in Lagrangian Floer

theory shows, if there was exactly one incoming point with asymptotic Hamiltonian chord y_, then
of1(y-) = | det D, | (X) ®cex+0™ (v7) (D.4)
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where f| = indD, + Y ;c5+ ng. The argument for this described in [9, Section IL.11.13]. Assume
that the underlying Riemann surface S of u has only one boundary component. If there are no
incoming points, then, writing Ag for the linear Lagrangian subspace associated to some fixed

non-marked boundary point p of X, we have

AP (Ag) = | det Dy| (X) @exr0™ (vo),

if we choose ng such that 3, n; = n—indD,; because then the glued Cauchy Riemann problem on
the disk has Maslov index » and a Pin structure along its boundary, and the space of such Cauchy-
Riemann problems is simply connected and contains the one with the constant boundary condition
at u(p), for which a standard computation (e.g. [9, Lemma II.11.7]) shows that this Cauchy-
Riemann problem gives rise to a surjective Fredholm operator with kernel isomorphic to the vector
space Ag via the evaluation map. The Pin structure along the boundary of u usually comes from
choices of global Pin structures on various Lagrangians. The essential idea of this paper is that one
can do away with global Pin structures, and instead build all possible local choices of Pin structures
into the algebra of Floer theory.

Now, in the above setting, the gluing theorem also gives canonical isomorphisms

" (ye) = 0% (yo) ® 0™ (y7)
and thus canonical isomorphisms
0" (yg) = 0" (y) (D.5)

since the tensor square of a line is canonically trivial. The proof of the isomorphism in (D.4) also
shows when the underlying Riemann surface is Z, we have that given a trivialization of the shift

lines 05 (y_) and 03(y.), the isomorphism (D.4) is equivariant under the canonical isomorphisms

D.6
o (y2) = 0T (), o™ (yy) = 0" () 0.6
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However, the isomorphims of the previous discussion are proven using a choice of Pin structure
relative to the ends on the boundary conditions of the pseudoholomorphic map; the isomorphisms
are changed by a sign by changing the Pin structures on any boundary component. Thus, suppose
the Riemann surface under consideration is Z. Write IT = |[II(T L|rx{0})| ® |TI(T L|rx(1})| for the
tensor product of lines associated to choices of Pin structure along the Lagrangian bundles on each
boundary component of the Cauchy-Riemann problem. If the Hamiltonian chords at the input and

output are y_ and y,, one has an invariant isomorphism

o' (y_) ~ |detD,| ® o7 Pu(y ) @ p (D.7)

which does not depend on a choice of Pin structure along the boundary of the pseudoholomorphic

curve. Similarly, if the Riemann surface is H with the end as an input, then the isomorphism is

AP (Ag) = | det D, | ® 0" M Pu(y,) @ [II(TL|ow)|. (D.8)
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Appendix E: Technical setup for Morse theory

Let f be a Morse function on a manifold L. Let |p| denote the index of a critical point p of f

and let Crit( f) denote the set of critical points of f. Then the following facts are standard:

Propostion E.1. There exists a nonempty Banach manifold of smooth metrics on L and a comeagre
set of metrics in this manifold such that for any such metric g, f is Morse-Smale, and therefore,
for any pair p and q of critical points of f, the set

M ~ 00 d'}7 . ~ . ~

MZ(p.q; f.8) ={7 € CTR,M); - ==V f; lim 7(s) = p: lim y(s) = q}
topologized with the subspace topology under the inclusion into Moore paths on L given by sending
a Morse trajectory to the corresponding path parametrized by length, is a topological manifold of
dimension |p| — |q|, and the quotient by the (continuous, fixed point free) R action on this set

MM (p,qg; f,g) = MM (p,q; f,g)/R is the open stratum of a topological manifold with corners

—M
M (p.g; f.8) = MM (q0, 413 £.8) X ... x MM (g1, qivts £,0) X ... x MM (g1, g1 £ 0).
k>1

Propostion E.2. Choose a smooth function ¢ : R — [0, 1] such that ¢ is nondecreasing and
has ¢(s) = 0 for s << 0 and ¢(s) = 1 for s >> 0. Simiarly, given fy, fi € C*(L) Morse-
Smale with respect to a metric g, there exists a nonempty Banach manifold of functions f; €
C*([0,1],C>™(L)) agreeing with fy and fi at the ends of the interval, together with a comeagre
subset of this manifold, such that for any f; in this subset,

dy

MM (p,q; fi.8) = {7 € C*(R, M); —

==Visn: lim y(s) = p; lim y(s) =q}  (E.I)
§—>—00 §—>+00

97



topologized with the subspace topology under its inclusion into Moore paths on L given by asso-
ciating to a gradient trajectory the corresponding path parametrized by length, is a topological
manifold of dimension |p| — |q| for all p € Crit(fy), g € Crit(f1), and its compactification is a

topological manifold with corners with codimension 1 strata of the form

—M , —MC , —MC , —M ,
M (p.p's fo.8) x M (P, q: fo.8). M (p.q"s fr.8) x M (p.q".q: f1,8)-

Propostion E.3. Finally, given any pair of f;, f/ as in Proposition E.2 above, with asymptotics
(f)i=n = (f)i=y = fy for n = 0,1, there exists a function f;;, € C*([0, l]il,C""(M)) agreeing

with f; for s = 0 and with f{ for s = 1, and such that fso = fo = 3, fs.1 = f1 = f|, where moreover,

the set

—H —MC
M (P, q; fs1:8) = Usefo.yM (P, G f5.1,8)

topologized with the weakest topology making the projection to s continuous and making all the
—MC
subsets M (p, q; fs.1, &) into subspaces, is a topological manifold with corners, with codimen-

sion 1 strata given by

—MC —MC ,

M (p.q: fi.8). M (p.q: f/.8),
-—M ’ -—H ’

M (p.p"s fo.8) x M (P, q: fs158),

—H —M
M (p.q"; fs0.8) XM (4, q; f1.8)-

E.1 Orienting Morse-theoretic moduli spaces

Unlike in Floer homology, orienting Morse-theoretic moduli spaces is straightforward. Indeed,
the moduli space MM (p,q; f,g) recalled in Prop. E.1 is just the fiber product of the interior
of the unstable manifold W"(p) of p, and the stable manifold W*(q) of g, along their respective
inclusion maps to L. The map MM (p,q; f,g) — L coming from this description as a fiber product
can be taken to be the map ¥ +— ¥(0). The stable and unstable manifolds have parallelizable

tangent bundles: parallel transport with respect to g along gradient trajectories gives canonical
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isomorphisms

TW (p) =T, x W*(p),
TW*(q) =T, x W(q),

where Tl;—' is the eigenspace of the Hessian of f at p of the corresponding sign (see Figure E.1). We
write o(Tpi) for the orientation lines of these eigenspaces; trivializations of these lines biject with
orientations of the corresponding (un)stable manifolds. By the characterization of MM (p,q; f,8)
as a fiber product, the orientation line if a point y € MM (p,q; f,g) is canonically isomorphic to
o(T,)®o(T;)®det TL;Z(O). Now there is also a canonical isomorphism o(7, )" = o(T;)®detTL,.
Along each fiber of MM (p,q; f,g) over ﬂM( P-q; f,g), the bundle det Ly(q) is canonically triv-
ialized by parallel transport. Thus, the orientation local system of MM (P, q; fi» &) canonically

isomorphic to the trivial local system with fiber o(T,) ® o(T}; )V, and the orientation local system

of MM (p, q; f, g) is canonically isomorphic to the trivial local system with fiber
Zg/al ®o(T,) ®o(T,)".
Similarly, there is a canonical trivialization

N ~ o(T;)) ® (o(T;) )", (E.2)

—MC
M (p.q:fi.8)

where o(T")/i is the determinant of the negative eigenspace of the Hessian of f; at r € Crit(f;).
Finally, the standard description of orientation lines of parametrized moduli spaces means that
fixing a choice of orientation of the parameter space [0, 1], gives an isomorphism between the ori-
entation line of the tangent space to u € MH( D, q; fs.1, ) (with notation f, as in Prop. E.3) with
the orientation line of the linearization of the perturbed Morse equation (E.1) satisfied by u, which
is in turn canonically isomorphic to det Df;o ® (detDi‘)V. (See also, for example, the discussion

after Prop. 3.2.) We orient the parameter space [0, 1] by requiring that d/ds is positively oriented.
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E.2 A very brief review of gradings

Usually, the Floer complex CF (Lo, Ly) is not graded. We briefly recall the theory of gradings
on symplectic manifolds [22]. We use this in Section 4.3 to grade Hamiltonian chords, and later in
Section 4.4 to grade the Floer complex.

A symplectic manifold M has a bundle LGr(M) of Lagrangian Grassmannians. A Z/n’Z grad-
ing (forn =2,3..., 00 where for n = co we setZ/ocoZ := Z) on M is a fiber bundle LGr' (M) — M
with connected fibers, equipped with a bundle map LG+’ (M) — LGr(M) which is an n-fold cov-
ering space on each fiber. Thus, for example, every symplectic manifold has a Z/27Z grading given
by the bundle of oriented Lagrangian suspaces of the tangent bundle. Given a choice of grading
LGr' (M) on M, a grading on the Lagrangian L C M with respect to the chosen grading on M is a
lift of the classifying map of the Lagrangian L — LGr(M) to LGr'(M). Given two Lagrangians
that are graded with respect to a Z/n’Z-grading on a symplectic manifold M, one can define a Z/n’Z
grading on the Hamiltonian chords between the two Lagranians, and the indices of the pseudo-
holomorphic curves between these two chords will respect the gradings, in the sense that the index
of any such curve modulo n will be equal to the difference of the gradings of the chords at its

endpoints.
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Wi(p) =T,

Y

Wh(p) =T,

| Wi(q) =T

Figure E.1: An illustration of how Morse-theoretic moduli spaces are oriented.
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