
VARIOUS METHODS FOR COMPUTING DOMINANT SPIN-ORBIT
RESONANCE STRENGTHS IN STORAGE RINGS

J. P. Devlin∗, G. H. Hoffstaetter, Cornell University, Ithaca, NY, USA

Abstract
The strength of a first-order spin-orbit resonance is defined

as the amplitude of the corresponding Fourier component
of the spin-precession vector. However, it is possible to
obtain the resonance strength without computing the Fourier
integral directly. If a resonance is sufficiently strong, then to
a good approximation, one can neglect all other depolarizing
effects when near the resonance. Such an approximation
leads to the single resonance model (SRM), for which many
aspects of spin motion are analytically solvable. In this
paper, we calculate the strength of first-order resonances
using various formulae derived from the SRM, utilizing spin
tracking data, the direction of the invariant spin field, and
jumps in the amplitude-dependent spin tune. Examples are
drawn from the RHIC Blue ring.

INTRODUCTION
In accelerator physics, the "spin" of a particle refers to its

normalized rest-frame spin-expectation value. This unit
vector, denoted by 𝑺, evolves according to the Thomas-
Bargmann-Michel-Telegdi (T-BMT) equation:

d𝑺
d𝑡

= 𝛀(𝑬, 𝑩, 𝒑) × 𝑺, (1)

where 𝑬 and 𝑩 are the electric and magnetic fields experi-
enced by the particle, 𝒑 is the particle’s momentum, and 𝑡 is
the time, all of which are evaluated in the laboratory frame
[1–3]. It is often useful to reformulate the spin evolution as
a function of the generalized machine azimuth 𝜃 [4]. The
spin-precession vector can then be expressed as a function of
𝜃 and the phase-space coordinate 𝒛 ∈ R6 [5]. When beams
of particles are being considered, it is customary to speak
of the polarization rather than of individual spin vectors.
The polarization of a beam can refer to either the ensemble
average of the individual spin vectors, 𝑷 = ⟨𝑺⟩, or to its
magnitude, 𝑃. A field which assigns a unit vector to each
pair (𝒛, 𝜃) such that the unit vectors satisfy the T-BMT equa-
tion along orbital trajectories is called a spin field. A spin
field which is 2𝜋-periodic in 𝜃 is known as an invariant spin
field (ISF), denoted by 𝒏(𝒛, 𝜃) [5–7]. On the closed orbit,
the ISF is denoted by 𝒏0 (𝜃), and it can be used to define
an orthonormal coordinate system (𝒎0, 𝒍0, 𝒏0), where all
three basis vectors satisfy the T-BMT equation on the closed
orbit. Although 𝒎0 and 𝒍0 are not 2𝜋-periodic, appropriate
𝜃-dependent rotations around 𝒏0 lead to the 2𝜋-periodic,
orthonormal coordinate system (𝒎, 𝒍, 𝒏0), in which spins
on the closed orbit precess uniformly at the rate 𝜈0 [5, 8, 9].

The spin-precession vector can be decomposed as
𝛀(𝒛, 𝜃) = 𝛀0 (𝜃) + 𝝎(𝒛, 𝜃), where 𝛀0 (𝜃) is the spin-
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precession vector on the closed orbit. In complex notation,
the component of 𝝎 perpendicular to 𝒏0 is 𝜔 = 𝝎 · (𝒎 + 𝑖𝒍).
The Fourier spectrum of 𝜔 contains frequencies of the form
𝑘0 + 𝒌 ·𝑸, where (𝑘0, 𝒌) ∈ Z4 and 𝑸 is the vector of orbital
tunes. When the closed-orbit spin tune 𝜈0 is equal to one
of these frequencies, the accelerator is said to be operating
on a spin-orbit resonance [5]. The resonance is said to be
first-order if ∥𝒌∥1 = 1, and the strength of such a resonance
is defined as the magnitude of the corresponding Fourier
component of 𝜔. This paper will exclusively treat first-order
vertical resonances, i.e., 𝒌 = (0,±1, 0). The strength of a
higher-order resonance is defined differently and thus some
methods displayed herein cannot be applied to higher-order
resonances [10, 11]. Knowledge of the resonance strength
is useful because it allows one to use the Froissart-Stora for-
mula to predict the depolarization caused by crossing the res-
onance [12]. Although the correct definition of spin-orbit res-
onance involves the amplitude-dependent spin tune (ADST)
𝜈, for the two models presented in this paper, the resonance
influences spin motion most strongly when 𝜈0 = 𝑘0 + 𝒌 · 𝑸
[4, 5]. Therefore, the resonance condition will often be
stated using 𝜈0, although we emphasize that this definition
is technically incorrect, and the distinction is essential when
discussing rings with Siberian snakes.

LINEARIZED SPIN-ORBIT MOTION
G-Matrix

The spin of a particle at azimuth 𝜃0 can be described by
one coordinate 𝛼0 ∈ C according to

𝑺(𝜃0) = ℜ(𝛼0)𝒎 + ℑ(𝛼0) 𝒍 +
√︁

1 − |𝛼0 |2𝒏0, (2)

where the basis vectors are evaluated at 𝜃0. If the spin
coordinate 𝛼 and the phase-space coordinate 𝒛 are small,
then the spin-orbit motion can be linearized. For such
linearized motion, if a trajectory has initial spin 𝑺(𝜃0) =

𝒏0 (𝜃0), then we introduce the vector 𝑮̃ (𝜃; 𝜃0) ∈ C6 such
that the spin at azimuth 𝜃 is described by the coordinate
𝛼(𝜃) = 𝑮̃ (𝜃; 𝜃0) · 𝒛(𝜃0). 𝑮̃ can be derived from the matrix
G ∈ R2×6 of the SLIM formalism, which is calculated in the
(𝒎0, 𝒍0, 𝒏0) basis [8, 9]. It can then be shown [4, 5] that

𝜖𝜈0 =

√
𝐽𝑘

2𝜋

���𝑮̃ (𝜃0 + 2𝜋; 𝜃0) · 𝒗±𝑘
���, (3)

where 𝜈0 = 𝑘0 ±𝑄𝑘 , 𝑄𝑘 is an orbital tune, 𝜖𝜈0 is the strength
of the resonance with frequency 𝜈0, 𝐽𝑘 is a component of
the orbital action, and 𝒗±

𝑘
is the eigenvector of the one-turn

orbital transfer matrix with eigenvalue exp(±𝑖2𝜋𝑄𝑘). Even
in rings with optics which are fully-coupled in six dimen-
sions, Eq. (3) gives the correct resonance strengths at the
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correct orbital tunes, with no modifications necessary. The
Bmad-based program Tao can calculate first-order resonance
strengths using this method [13].

THE SINGLE RESONANCE MODEL
We will now describe a simple model which goes beyond

linearized spin-orbit motion. If the resonances in a ring are
well-isolated and 𝜈0 is nearly in resonance with a strong
Fourier harmonic of 𝜔, then it can be a good approximation
to neglect all other Fourier harmonics [5]. Such an approxi-
mation is known as the single resonance model (SRM), and
it corresponds to the rotating-wave approximation of atomic
physics [14]. An analytical solution of the SRM yields the
uniform invariant frame field (u-IFF) [6]

𝒖1 (𝜃) =
sgn(𝛿)
Λ

©­«
|𝛿 | cos2 Φ + Λ sin2 Φ
( |𝛿 | − Λ) sinΦ cosΦ

−𝜖𝜅 cosΦ

ª®¬
𝒖2 (𝜃) =

sgn(𝛿)
Λ

©­«
( |𝛿 | − Λ) sinΦ cosΦ
Λ cos2 Φ + |𝛿 | sin2 Φ

−𝜖𝜅 sinΦ

ª®¬
𝒏(𝜃) = sgn(𝛿)

Λ

©­«
𝜖𝜅 cosΦ
𝜖𝜅 sinΦ

𝛿

ª®¬ . (4)

The components are written in the (𝒎, 𝒍, 𝒏0) basis, and we
define 𝛿 = 𝜈0 − 𝜅, Λ =

√︁
𝛿2 + 𝜖2

𝜅 , and Φ = 𝜅𝜃 + Φ0, where
𝜅 = 𝑘0 + 𝒌 · 𝑸 is the resonance frequency and Φ0 is an
arbitrary phase [5, 15]. The phase-space dependence is
given by the dependence of 𝜖𝜅 on the action variables and
Φ on the angle variables. As defined, the SRM can treat
resonances of arbitrary order, although the approximations
leading to the SRM are usually only valid for first-order
vertical resonances.

Tracking
Assume a particle has initial spin 𝑺(0) = 𝒏0 (0). The spin

action 𝐽𝑆 = 𝑺 · 𝒏 is constant at fixed energy because 𝑺 and
𝒏 obey the same T-BMT equation [5]. Additionally, spin
motion in the u-IFF is a uniform precession about 𝒏 with
frequency 𝜈 [6]. We can therefore write any spin in the form

𝑺(𝜃) = 𝐽𝑆𝒏 +
√︃

1 − 𝐽2
𝑆
[cos(𝜈𝜃 + 𝜙0)𝒖1 + sin(𝜈𝜃 + 𝜙0)𝒖2]

(5)
for some phase 𝜙0, where we have suppressed the depen-
dence of the basis vectors on 𝜃 for brevity. According to
the initial condition, 𝐽𝑆 = |𝛿 |/Λ. Using the vectors from
Eq. (4),

𝑺(𝜃) · 𝒏0 (𝜃) =
𝛿2

Λ2 − sgn(𝛿) 𝜖
2
𝜅

Λ2 cos(𝜈𝜃 + 𝜙0 −Φ). (6)

Hence,

⟨𝑺 · 𝒏0⟩ =
𝛿2

Λ2 , (7)

where the angular brackets indicate an average over Φ. In
perfectly-flat rings without solenoids, 𝒏0 is vertical. We will

thus use 𝒏0 and 𝒆𝑦 interchangeably for the rest of this paper,
where 𝒆𝑦 is a vertical unit vector. Therefore,

𝜖𝜅 = |𝛿 |

√√
1 −

〈
𝑆𝑦

〉〈
𝑆𝑦

〉 . (8)

Opening Angle
One measure of the strength of a depolarizing resonance is

the tilt of 𝒏 from 𝒏0, which can be quantified by the opening
angle between 𝒏 and 𝒏0. In the SRM, 𝒏 · 𝒏0 = |𝛿 |/Λ is
constant at fixed energy. Therefore, if we know 𝒏(𝜃) for
some 𝜃, we can calculate the resonance strength as

𝜖𝜅 = |𝛿 |

√︄
1 − 𝑛2

𝑦

𝑛2
𝑦

. (9)

Some methods for calculating the ISF in a ring include stro-
boscopic averaging, adiabatic anti-damping, normal form
analysis, and SODOM-2 [16–18]. We will use strobo-
scopic averaging, which is built into Bmad through the
spin_stroboscope program.

Spin-Tune Jump
The ADST is not unique: if 𝜈 is an ADST, then ±𝜈 + 𝑘0 +

𝒌 · 𝑸 is also an ADST [5, 6]. To uniquely define the order
of a resonance, it is necessary to use the preferred ADST
(p-ADST), which is defined as the ADST which reduces to
𝜈0 on the closed orbit. In the SRM, the p-ADST is

𝜈 = sgn(𝛿)Λ + 𝜅. (10)

There is a discontinuity in 𝜈 at 𝜈0 = 𝜅, where it jumps from
𝜈(𝛿 = 0−) = 𝜅 − 𝜖𝜅 to 𝜈(𝛿 = 0+) = 𝜅 + 𝜖𝜅 [5]. This disconti-
nuity is also observed in realistic rings with many resonances.
Therefore, we can calculate the resonance strength by halv-
ing the spin tune jump across the resonance frequency. The
ADST can be calculated by averaging the spin phase advance
in a periodic coordinate system with 𝒏 as one of the basis
vectors, which is implemented in spin_stroboscope [4].
However, we will instead extract the ADST from Fourier
analysis of the spin motion because it does not require prior
calculation of the ISF. This method relies on the fact that
the Fast Fourier Transform (FFT) of the turn-by-turn spin
vector contains frequencies of the form ±𝜈 + 𝑘0 + 𝒌 · 𝑸 [6].

Spin-Flipping Frequency
The SRM is solved by transforming the T-BMT equation

into the resonance precession frame (RPF), which is equiv-
alent to the (𝒎, 𝒍, 𝒏0) frame rotated around 𝒏0 by an angle
−Φ [15]. In this frame, 𝛀 = (𝜖𝜅 , 0, 𝛿) and we will denote
the spin vector by 𝑺 = (𝑆1, 𝑆2, 𝑆3). The T-BMT equation is
then easily uncoupled to give 𝑆3 (𝜃) = 𝐴 cos(Λ𝜃 + 𝜙0) + 𝐵,
where 𝐴, 𝐵, and 𝜙0 are determined by the initial conditions.
As the RPF is rotating around 𝒏0, 𝑆3 = 𝑺 · 𝒏0. Hence, in the
SRM, 𝑆𝑦 oscillates with frequency Λ. In a ring with other
resonances, the oscillation frequency should be closest to the
SRM prediction when 𝜈0 = 𝜅, and the predicted frequency
is 𝜖𝜅 .



15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-TUPC55

1130

MC1.A24 Accelerators and Storage Rings, Other

TUPC55

TUPC: Tuesday Poster Session: TUPC

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Table 1: Resonance Strengths Calculated Using Various Methods, in Units of 10−3

𝜿 G-Matrix Tracking Opening Angle Spin-Tune Jump Spin-Flipping Frequency
393 +𝑄𝑦 6.795 6.779 6.796 6.881 6.799
411 −𝑄𝑦 6.040 6.034 6.042 6.099 5.999
231 +𝑄𝑦 4.998 4.990 5.000 5.099 5.000
255 −𝑄𝑦 3.177 3.165 3.178 3.300 3.200
492 −𝑄𝑦 2.715 2.706 2.714 2.900 2.700

METHODS
To demonstrate these ideas, protons were tracked through

the RHIC Blue ring with the Siberian snakes turned off us-
ing the Bmad-based long_term_tracking program. The
spin was initially vertical and the phase-space position was
initially (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦 , 𝑧, 𝑝𝑧) = (0, 0, 10−5 m, 0, 0, 0). We an-
alyzed the 5 strongest spin-orbit resonances as determined by
Tao: 𝜅 ∈ {393+𝑄𝑦 , 411−𝑄𝑦 , 231+𝑄𝑦 , 255−𝑄𝑦 , 492−𝑄𝑦}.

G-Matrix
For a first-order resonance, 𝜖𝜅 ∝

√
𝐽, where 𝐽 is the or-

bital action. Tao outputs a "normalized" resonance strength,
𝜖𝜅/

√
𝐽. To aid comparison, we calculated

√
𝐽 at the IR6

waist according to the equation
√︁

2𝐽𝛽∗ = 𝑦0, where 𝑦0 is the
initial 𝑦-position.

Tracking
We tracked one particle through 500 turns using third-

order MAP tracking. For the 𝜅 = 𝑘0 − 𝑄𝑦 resonances, we
varied 𝛿 between −0.1 and 0.1, with a step size of 0.01.
Then, we averaged 𝑆𝑦 over all 500 turns and calculated 𝜖𝜅
according to Eq. (8). The point 𝛿 = 0 is excluded because
Eq. (8) cannot be applied at this point. Finally, we averaged
𝜖𝜅 over 𝛿 in case any specific point gave a poor result due
to other effects in the lattice. However, we did not find
any cases in which averaging was significantly better than
simply choosing one point very near the resonance. For
the 𝜅 = 𝑘0 + 𝑄𝑦 resonances, the procedure was identical
except that 𝛿 was instead varied between −0.08 and 0.1. The
range of 𝛿 is smaller here because we found that, for these
resonances, the accuracy of Eq. (8) decreased rapidly when
𝛿 < −0.08.

Opening Angle
We calculated 𝑛𝑦 using the scatter-minimization variant of

stroboscopic averaging found in spin_stroboscope [19].
The averaging was performed over 200 turns, with a toler-
ance of 10−6. The range of energies was the same used for
the tracking in the previous section. We then calculated 𝜖𝜅
according to Eq. (9) and averaged over 𝛿.

Spin-Tune Jump
We tracked one particle through 104 turns using BMAD

tracking. For all resonances, 𝛿 was varied between −0.01
and 0.01, with a step size of 0.001. The point 𝛿 = 0 is
excluded because an ADST cannot be defined on resonance

−0.01

−0.005

0

0.005

0.01

−0.01 −0.005 0 0.005 0.01

Simulation
SRM

ν
−
κ

δ

Figure 1: Spin-tune jump across the 𝜅 = 393+𝑄𝑦 resonance
in the RHIC Blue ring.

[5]. The ADST was determined using an FFT of the turn-
by-turn 𝑆𝑥 . The ADST was taken to be the frequency of the
strongest peak, ignoring peaks at frequencies of the form
𝑘0 + 𝒌 · 𝑸. For some energies, an integer and/or an integer
multiple of the orbital tunes was added to the ADST in
order to form the p-ADST. The resonance strength was then
determined by halving the difference of the ADST between
𝛿 = 0.001 and 𝛿 = −0.001. Figure 1 shows a characteristic
spin-tune jump in RHIC. For comparison, Fig. 1 also shows
the ADST in an SRM with the same resonance strength.

Spin-Flipping Frequency
We tracked one particle through 104 turns at 𝛿 = 0 using

BMAD tracking. The resonance strength was taken to be the
frequency of the strongest peak in an FFT of 𝑆𝑦 .

CONCLUSION
Although there are many spin-orbit resonances in the

RHIC Blue ring, we found that the SRM approximates spin
motion quite well if 𝜈0 is close to a strong first-order spin-
orbit resonance condition. Table 1 gives the resonance
strengths calculated using each aforementioned method.
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