

VARIOUS METHODS FOR COMPUTING DOMINANT SPIN-ORBIT RESONANCE STRENGTHS IN STORAGE RINGS

J. P. Devlin*, G. H. Hoffstaetter, Cornell University, Ithaca, NY, USA

Abstract

The strength of a first-order spin-orbit resonance is defined as the amplitude of the corresponding Fourier component of the spin-precession vector. However, it is possible to obtain the resonance strength without computing the Fourier integral directly. If a resonance is sufficiently strong, then to a good approximation, one can neglect all other depolarizing effects when near the resonance. Such an approximation leads to the single resonance model (SRM), for which many aspects of spin motion are analytically solvable. In this paper, we calculate the strength of first-order resonances using various formulae derived from the SRM, utilizing spin tracking data, the direction of the invariant spin field, and jumps in the amplitude-dependent spin tune. Examples are drawn from the RHIC Blue ring.

INTRODUCTION

In accelerator physics, the "spin" of a particle refers to its normalized rest-frame spin-expectation value. This unit vector, denoted by \mathbf{S} , evolves according to the Thomas-Bargmann-Michel-Telegdi (T-BMT) equation:

$$\frac{d\mathbf{S}}{dt} = \boldsymbol{\Omega}(\mathbf{E}, \mathbf{B}, \mathbf{p}) \times \mathbf{S}, \quad (1)$$

where \mathbf{E} and \mathbf{B} are the electric and magnetic fields experienced by the particle, \mathbf{p} is the particle's momentum, and t is the time, all of which are evaluated in the laboratory frame [1–3]. It is often useful to reformulate the spin evolution as a function of the generalized machine azimuth θ [4]. The spin-precession vector can then be expressed as a function of θ and the phase-space coordinate $z \in \mathbb{R}^6$ [5]. When beams of particles are being considered, it is customary to speak of the polarization rather than of individual spin vectors. The polarization of a beam can refer to either the ensemble average of the individual spin vectors, $\mathbf{P} = \langle \mathbf{S} \rangle$, or to its magnitude, P . A field which assigns a unit vector to each pair (z, θ) such that the unit vectors satisfy the T-BMT equation along orbital trajectories is called a spin field. A spin field which is 2π -periodic in θ is known as an invariant spin field (ISF), denoted by $\mathbf{n}(z, \theta)$ [5–7]. On the closed orbit, the ISF is denoted by $\mathbf{n}_0(\theta)$, and it can be used to define an orthonormal coordinate system $(\mathbf{m}_0, \mathbf{l}_0, \mathbf{n}_0)$, where all three basis vectors satisfy the T-BMT equation on the closed orbit. Although \mathbf{m}_0 and \mathbf{l}_0 are not 2π -periodic, appropriate θ -dependent rotations around \mathbf{n}_0 lead to the 2π -periodic, orthonormal coordinate system $(\mathbf{m}, \mathbf{l}, \mathbf{n}_0)$, in which spins on the closed orbit precess uniformly at the rate ν_0 [5, 8, 9].

The spin-precession vector can be decomposed as $\mathbf{Q}(z, \theta) = \boldsymbol{\Omega}_0(\theta) + \boldsymbol{\omega}(z, \theta)$, where $\boldsymbol{\Omega}_0(\theta)$ is the spin-

precession vector on the closed orbit. In complex notation, the component of $\boldsymbol{\omega}$ perpendicular to \mathbf{n}_0 is $\boldsymbol{\omega} = \boldsymbol{\omega} \cdot (\mathbf{m} + i\mathbf{l})$. The Fourier spectrum of $\boldsymbol{\omega}$ contains frequencies of the form $k_0 + \mathbf{k} \cdot \mathbf{Q}$, where $(k_0, \mathbf{k}) \in \mathbb{Z}^4$ and \mathbf{Q} is the vector of orbital tunes. When the closed-orbit spin tune ν_0 is equal to one of these frequencies, the accelerator is said to be operating on a spin-orbit resonance [5]. The resonance is said to be first-order if $\|\mathbf{k}\|_1 = 1$, and the strength of such a resonance is defined as the magnitude of the corresponding Fourier component of $\boldsymbol{\omega}$. This paper will exclusively treat first-order vertical resonances, i.e., $\mathbf{k} = (0, \pm 1, 0)$. The strength of a higher-order resonance is defined differently and thus some methods displayed herein cannot be applied to higher-order resonances [10, 11]. Knowledge of the resonance strength is useful because it allows one to use the Froissart-Stora formula to predict the depolarization caused by crossing the resonance [12]. Although the correct definition of spin-orbit resonance involves the amplitude-dependent spin tune (ADST) ν , for the two models presented in this paper, the resonance influences spin motion most strongly when $\nu_0 = k_0 + \mathbf{k} \cdot \mathbf{Q}$ [4, 5]. Therefore, the resonance condition will often be stated using ν_0 , although we emphasize that this definition is technically incorrect, and the distinction is essential when discussing rings with Siberian snakes.

LINEARIZED SPIN-ORBIT MOTION

G-Matrix

The spin of a particle at azimuth θ_0 can be described by one coordinate $\alpha_0 \in \mathbb{C}$ according to

$$\mathbf{S}(\theta_0) = \Re(\alpha_0)\mathbf{m} + \Im(\alpha_0)\mathbf{l} + \sqrt{1 - |\alpha_0|^2}\mathbf{n}_0, \quad (2)$$

where the basis vectors are evaluated at θ_0 . If the spin coordinate α and the phase-space coordinate z are small, then the spin-orbit motion can be linearized. For such linearized motion, if a trajectory has initial spin $\mathbf{S}(\theta_0) = \mathbf{n}_0(\theta_0)$, then we introduce the vector $\tilde{\mathbf{G}}(\theta; \theta_0) \in \mathbb{C}^6$ such that the spin at azimuth θ is described by the coordinate $\alpha(\theta) = \tilde{\mathbf{G}}(\theta; \theta_0) \cdot \mathbf{z}(\theta_0)$. $\tilde{\mathbf{G}}$ can be derived from the matrix $\mathbf{G} \in \mathbb{R}^{2 \times 6}$ of the SLIM formalism, which is calculated in the $(\mathbf{m}_0, \mathbf{l}_0, \mathbf{n}_0)$ basis [8, 9]. It can then be shown [4, 5] that

$$\epsilon_{\nu_0} = \frac{\sqrt{J_k}}{2\pi} \left| \tilde{\mathbf{G}}(\theta_0 + 2\pi; \theta_0) \cdot \mathbf{v}_k^{\pm} \right|, \quad (3)$$

where $\nu_0 = k_0 \pm Q_k$, Q_k is an orbital tune, ϵ_{ν_0} is the strength of the resonance with frequency ν_0 , J_k is a component of the orbital action, and \mathbf{v}_k^{\pm} is the eigenvector of the one-turn orbital transfer matrix with eigenvalue $\exp(\pm i2\pi Q_k)$. Even in rings with optics which are fully-coupled in six dimensions, Eq. (3) gives the correct resonance strengths at the

* jpd285@cornell.edu

correct orbital tunes, with no modifications necessary. The Bmad-based program Tao can calculate first-order resonance strengths using this method [13].

THE SINGLE RESONANCE MODEL

We will now describe a simple model which goes beyond linearized spin-orbit motion. If the resonances in a ring are well-isolated and ν_0 is nearly in resonance with a strong Fourier harmonic of ω , then it can be a good approximation to neglect all other Fourier harmonics [5]. Such an approximation is known as the single resonance model (SRM), and it corresponds to the rotating-wave approximation of atomic physics [14]. An analytical solution of the SRM yields the uniform invariant frame field (u-IFF) [6]

$$\begin{aligned} \mathbf{u}_1(\theta) &= \frac{\text{sgn}(\delta)}{\Lambda} \begin{pmatrix} |\delta| \cos^2 \Phi + \Lambda \sin^2 \Phi \\ (|\delta| - \Lambda) \sin \Phi \cos \Phi \\ -\epsilon_\kappa \cos \Phi \end{pmatrix} \\ \mathbf{u}_2(\theta) &= \frac{\text{sgn}(\delta)}{\Lambda} \begin{pmatrix} (|\delta| - \Lambda) \sin \Phi \cos \Phi \\ \Lambda \cos^2 \Phi + |\delta| \sin^2 \Phi \\ -\epsilon_\kappa \sin \Phi \end{pmatrix} \\ \mathbf{n}(\theta) &= \frac{\text{sgn}(\delta)}{\Lambda} \begin{pmatrix} \epsilon_\kappa \cos \Phi \\ \epsilon_\kappa \sin \Phi \\ \delta \end{pmatrix}. \end{aligned} \quad (4)$$

The components are written in the $(\mathbf{m}, \mathbf{l}, \mathbf{n}_0)$ basis, and we define $\delta = \nu_0 - \kappa$, $\Lambda = \sqrt{\delta^2 + \epsilon_\kappa^2}$, and $\Phi = \kappa\theta + \Phi_0$, where $\kappa = k_0 + \mathbf{k} \cdot \mathbf{Q}$ is the resonance frequency and Φ_0 is an arbitrary phase [5, 15]. The phase-space dependence is given by the dependence of ϵ_κ on the action variables and Φ on the angle variables. As defined, the SRM can treat resonances of arbitrary order, although the approximations leading to the SRM are usually only valid for first-order vertical resonances.

Tracking

Assume a particle has initial spin $\mathbf{S}(0) = \mathbf{n}_0(0)$. The spin action $J_S = \mathbf{S} \cdot \mathbf{n}$ is constant at fixed energy because \mathbf{S} and \mathbf{n} obey the same T-BMT equation [5]. Additionally, spin motion in the u-IFF is a uniform precession about \mathbf{n} with frequency ν [6]. We can therefore write any spin in the form

$$\mathbf{S}(\theta) = J_S \mathbf{n} + \sqrt{1 - J_S^2} [\cos(\nu\theta + \phi_0) \mathbf{u}_1 + \sin(\nu\theta + \phi_0) \mathbf{u}_2] \quad (5)$$

for some phase ϕ_0 , where we have suppressed the dependence of the basis vectors on θ for brevity. According to the initial condition, $J_S = |\delta|/\Lambda$. Using the vectors from Eq. (4),

$$\mathbf{S}(\theta) \cdot \mathbf{n}_0(\theta) = \frac{\delta^2}{\Lambda^2} - \text{sgn}(\delta) \frac{\epsilon_\kappa^2}{\Lambda^2} \cos(\nu\theta + \phi_0 - \Phi). \quad (6)$$

Hence,

$$\langle \mathbf{S} \cdot \mathbf{n}_0 \rangle = \frac{\delta^2}{\Lambda^2}, \quad (7)$$

where the angular brackets indicate an average over Φ . In perfectly-flat rings without solenoids, \mathbf{n}_0 is vertical. We will

thus use \mathbf{n}_0 and \mathbf{e}_y interchangeably for the rest of this paper, where \mathbf{e}_y is a vertical unit vector. Therefore,

$$\epsilon_\kappa = |\delta| \sqrt{\frac{1 - \langle S_y \rangle}{\langle S_y \rangle}}. \quad (8)$$

Opening Angle

One measure of the strength of a depolarizing resonance is the tilt of \mathbf{n} from \mathbf{n}_0 , which can be quantified by the opening angle between \mathbf{n} and \mathbf{n}_0 . In the SRM, $\mathbf{n} \cdot \mathbf{n}_0 = |\delta|/\Lambda$ is constant at fixed energy. Therefore, if we know $\mathbf{n}(\theta)$ for some θ , we can calculate the resonance strength as

$$\epsilon_\kappa = |\delta| \sqrt{\frac{1 - n_y^2}{n_y^2}}. \quad (9)$$

Some methods for calculating the ISF in a ring include stroboscopic averaging, adiabatic anti-damping, normal form analysis, and SODOM-2 [16–18]. We will use stroboscopic averaging, which is built into Bmad through the `spin_stroboscope` program.

Spin-Tune Jump

The ADST is not unique: if ν is an ADST, then $\pm\nu + k_0 + \mathbf{k} \cdot \mathbf{Q}$ is also an ADST [5, 6]. To uniquely define the order of a resonance, it is necessary to use the preferred ADST (p-ADST), which is defined as the ADST which reduces to ν_0 on the closed orbit. In the SRM, the p-ADST is

$$\nu = \text{sgn}(\delta)\Lambda + \kappa. \quad (10)$$

There is a discontinuity in ν at $\nu_0 = \kappa$, where it jumps from $\nu(\delta = 0^-) = \kappa - \epsilon_\kappa$ to $\nu(\delta = 0^+) = \kappa + \epsilon_\kappa$ [5]. This discontinuity is also observed in realistic rings with many resonances. Therefore, we can calculate the resonance strength by halving the spin tune jump across the resonance frequency. The ADST can be calculated by averaging the spin phase advance in a periodic coordinate system with \mathbf{n} as one of the basis vectors, which is implemented in `spin_stroboscope` [4]. However, we will instead extract the ADST from Fourier analysis of the spin motion because it does not require prior calculation of the ISF. This method relies on the fact that the Fast Fourier Transform (FFT) of the turn-by-turn spin vector contains frequencies of the form $\pm\nu + k_0 + \mathbf{k} \cdot \mathbf{Q}$ [6].

Spin-Flipping Frequency

The SRM is solved by transforming the T-BMT equation into the resonance precession frame (RPF), which is equivalent to the $(\mathbf{m}, \mathbf{l}, \mathbf{n}_0)$ frame rotated around \mathbf{n}_0 by an angle $-\Phi$ [15]. In this frame, $\mathbf{\Omega} = (\epsilon_\kappa, 0, \delta)$ and we will denote the spin vector by $\mathbf{S} = (S_1, S_2, S_3)$. The T-BMT equation is then easily uncoupled to give $S_3(\theta) = A \cos(\Lambda\theta + \phi_0) + B$, where A , B , and ϕ_0 are determined by the initial conditions. As the RPF is rotating around \mathbf{n}_0 , $S_3 = \mathbf{S} \cdot \mathbf{n}_0$. Hence, in the SRM, S_y oscillates with frequency Λ . In a ring with other resonances, the oscillation frequency should be closest to the SRM prediction when $\nu_0 = \kappa$, and the predicted frequency is ϵ_κ .

Table 1: Resonance Strengths Calculated Using Various Methods, in Units of 10^{-3}

κ	G-Matrix	Tracking	Opening Angle	Spin-Tune Jump	Spin-Flipping Frequency
$393 + Q_y$	6.795	6.779	6.796	6.881	6.799
$411 - Q_y$	6.040	6.034	6.042	6.099	5.999
$231 + Q_y$	4.998	4.990	5.000	5.099	5.000
$255 - Q_y$	3.177	3.165	3.178	3.300	3.200
$492 - Q_y$	2.715	2.706	2.714	2.900	2.700

METHODS

To demonstrate these ideas, protons were tracked through the RHIC Blue ring with the Siberian snakes turned off using the Bmad-based `long_term_tracking` program. The spin was initially vertical and the phase-space position was initially $(x, p_x, y, p_y, z, p_z) = (0, 0, 10^{-5} \text{ m}, 0, 0, 0)$. We analyzed the 5 strongest spin-orbit resonances as determined by Tao: $\kappa \in \{393+Q_y, 411-Q_y, 231+Q_y, 255-Q_y, 492-Q_y\}$.

G-Matrix

For a first-order resonance, $\epsilon_\kappa \propto \sqrt{J}$, where J is the orbital action. Tao outputs a "normalized" resonance strength, ϵ_κ/\sqrt{J} . To aid comparison, we calculated \sqrt{J} at the IR6 waist according to the equation $\sqrt{2J\beta^*} = y_0$, where y_0 is the initial y -position.

Tracking

We tracked one particle through 500 turns using third-order MAP tracking. For the $\kappa = k_0 - Q_y$ resonances, we varied δ between -0.1 and 0.1 , with a step size of 0.01 . Then, we averaged S_y over all 500 turns and calculated ϵ_κ according to Eq. (8). The point $\delta = 0$ is excluded because Eq. (8) cannot be applied at this point. Finally, we averaged ϵ_κ over δ in case any specific point gave a poor result due to other effects in the lattice. However, we did not find any cases in which averaging was significantly better than simply choosing one point very near the resonance. For the $\kappa = k_0 + Q_y$ resonances, the procedure was identical except that δ was instead varied between -0.08 and 0.1 . The range of δ is smaller here because we found that, for these resonances, the accuracy of Eq. (8) decreased rapidly when $\delta < -0.08$.

Opening Angle

We calculated n_y using the scatter-minimization variant of stroboscopic averaging found in `spin_stroboscope` [19]. The averaging was performed over 200 turns, with a tolerance of 10^{-6} . The range of energies was the same used for the tracking in the previous section. We then calculated ϵ_κ according to Eq. (9) and averaged over δ .

Spin-Tune Jump

We tracked one particle through 10^4 turns using BMAD tracking. For all resonances, δ was varied between -0.01 and 0.01 , with a step size of 0.001 . The point $\delta = 0$ is excluded because an ADST cannot be defined on resonance

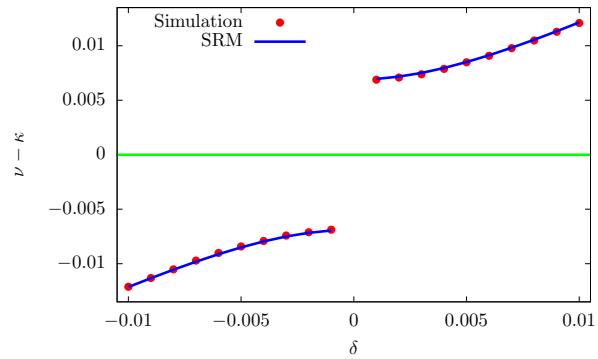


Figure 1: Spin-tune jump across the $\kappa = 393 + Q_y$ resonance in the RHIC Blue ring.

[5]. The ADST was determined using an FFT of the turn-by-turn S_x . The ADST was taken to be the frequency of the strongest peak, ignoring peaks at frequencies of the form $k_0 + \mathbf{k} \cdot \mathbf{Q}$. For some energies, an integer and/or an integer multiple of the orbital tunes was added to the ADST in order to form the p-ADST. The resonance strength was then determined by halving the difference of the ADST between $\delta = 0.001$ and $\delta = -0.001$. Figure 1 shows a characteristic spin-tune jump in RHIC. For comparison, Fig. 1 also shows the ADST in an SRM with the same resonance strength.

Spin-Flipping Frequency

We tracked one particle through 10^4 turns at $\delta = 0$ using BMAD tracking. The resonance strength was taken to be the frequency of the strongest peak in an FFT of S_y .

CONCLUSION

Although there are many spin-orbit resonances in the RHIC Blue ring, we found that the SRM approximates spin motion quite well if v_0 is close to a strong first-order spin-orbit resonance condition. Table 1 gives the resonance strengths calculated using each aforementioned method.

ACKNOWLEDGEMENTS

The authors gratefully thank E. Hamwi and D. P. Barber for many helpful discussions, including the latter's close reading of the manuscript. This work was supported by the DOE under No. DEAC0298-CH10886, DE SC-0024287, and DE-SC0018008.

REFERENCES

[1] J. D. Jackson, *Classical Electrodynamics*, 3rd ed. Wiley, 1999.

[2] V. Bargmann, L. Michel, and V. L. Telegdi, “Precession of the polarization of particles moving in a homogeneous electromagnetic field,” *Phys. Rev. Lett.*, vol. 2, pp. 435–436, 1959. doi:10.1103/PhysRevLett.2.435

[3] L. H. Thomas, “The kinematics of an electron with an axis,” *Phil. Mag. Ser. 7*, vol. 3, no. 13, pp. 1–22, 1927. doi:10.1080/14786440108564170

[4] M. Vogt, “Bounds on the maximum attainable equilibrium spin polarization of protons at high energy in HERA,” Ph.D. dissertation, Universität Hamburg, 2000.

[5] G. H. Hoffstaetter, *High-Energy Polarized Proton Beams, A Modern View*. Springer New York, 2006.

[6] D. P. Barber, J. A. Ellison, and K. Heinemann, “Quasiperiodic spin-orbit motion and spin tunes in storage rings,” *Phys. Rev. ST Accel. Beams*, vol. 7, p. 124 002, 2004. doi:10.1103/PhysRevSTAB.7.124002

[7] Y. S. Derbenev and A. M. Kondratenko, “Diffusion of particle spins in storage rings,” *Sov. Phys. JETP*, vol. 35, no. 2, pp. 230–236, 1972.

[8] D. P. Barber and G. Ripken, “Section 2.7.8, computing algorithms and spin matching,” in *Handbook of Accelerator Physics and Engineering*, 1st ed., 2006.

[9] D. P. Barber and G. Ripken, “Section 2.6.7, computing algorithms for e^-/e^+ polarization in storage rings,” in *Handbook of Accelerator Physics and Engineering*, 3rd ed., 2023.

[10] G. H. Hoffstaetter and M. Vogt, “Strength of higher-order spin-orbit resonances,” *Phys. Rev. E*, vol. 70, p. 056 501, 2004. doi:10.1103/PhysRevE.70.056501

[11] E. Hamwi and G. H. Hoffstaetter, “Higher-order spin depolarization analysis,” in *Proc. IPAC’23*, Venice, Italy, 2023, pp. 3133–3135. doi:10.18429/JACoW-IPAC2023-WEPL014

[12] M. Froissart and R. Stora, “Depolarisation d’un faisceau de protons polarisés dans un synchrotron,” *Nucl. Instrum. Meth.*, vol. 7, no. 3, pp. 297–305, 1960. doi:10.1016/0029-554X(60)90033-1

[13] D. Sagan, “Bmad: A relativistic charged particle simulation library,” *Nucl. Instrum. Meth.*, vol. A558, no. 1, pp. 356–359, 2006. doi:10.1016/j.nima.2005.11.001

[14] I. I. Rabi, N. F. Ramsey, and J. Schwinger, “Use of rotating coordinates in magnetic resonance problems,” *Rev. Mod. Phys.*, vol. 26, pp. 167–171, 1954. doi:10.1103/RevModPhys.26.167

[15] S. R. Mane, “Exact solution of the Derbenev-Kondratenko \hat{n} axis for a model with one resonance,” Fermilab, Tech. Rep. TM-1515, 1988.

[16] K. Heinemann and G. H. Hoffstätter, “Tracking algorithm for the stable spin polarization field in storage rings using stroboscopic averaging,” *Phys. Rev. E*, vol. 54, pp. 4240–4255, 1996. doi:10.1103/PhysRevE.54.4240

[17] G. H. Hoffstaetter, M. Vogt, and D. P. Barber, “Higher-order effects in polarized proton dynamics,” *Phys. Rev. ST Accel. Beams*, vol. 2, p. 114 001, 1999. doi:10.1103/PhysRevSTAB.2.114001

[18] K. Yokoya, “An algorithm for calculating the spin tune in circular accelerators,” DESY, Tech. Rep. 99-006, 1999.

[19] D. Sagan, “A Superconvergent Algorithm for Invariant Spin Field Stroboscopic Calculations,” in *Proc. IPAC’18*, Vancouver, Canada, Apr.-May 2018, pp. 145–148. doi:10.18429/JACoW-IPAC2018-MOPMF028