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DISCUSSION

BerMaN: [ would like to ask with what accuracy must you
measure the process pu-p—pp-+p in order to see a difference
between the F = 0 and F =1 substates?

. +0.4 -

DzreLepov: The cross-section o, 4, = (1.7-¢]5) x 107"
cm? found by us is in a satisfactory agreement with the value
3x10-1* c¢cm?* which was theoretically calculated by Cohen et
al. However, the value 3 X107 cm?® is calculated without
considering the hyperfine structure of the mesonic atom pu.
If the scattering lengths a, = +5 and a, = —11, determined
by Cohen for symmetrical and antisymmetrical state of the pp+p

system, are used, the calculated cross-section in the F =0
state will be about 20 times less than the experimental one.
The difficulty is that at present it is impossible to prove theoreti-
cally what is the right choice of values for the lengths mentioned.
For example, if in the case of a, = 5 we assume that a, = +3
or —30, the theoretical cross-section for F =0 will be in a
good agreement with the experimental value. Thus, to obtain
more definite conclusions about the agreement of the experi-
mental data with the theory, one must have more precise data
on the scattering lengths. [ think that a further increase of the
precision of the experiment will be necessary.
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In a preceding work '’ we have shown that the total
cross-section for positron-electron annihilation into
photons, taking into account terms up to e order,
can be written in the form

or=0o(1+d7),

where o, is the Born approximation. As the total
energy E goes to infinity the leading term of d is
proportional to (a/n) In® (2E/m), and it has been

shown that this term comes from soft photon emission.

This result can be generalized. 1In fact it is known *

that the contribution of soft photon emission to a
process in which charged particles are emitted
(absorbed) can be factorized in the matrix element,

and this is true for every order of the S matrix
expansion.

Those contributions can be summed up and, follow-
ing a line of thought similar to that of Eriksson %,
we get for the probability density of the process
described by the matrix element M, accompanied by
the emission of any number of soft photons with
total energy <AE<m (in a particular reference
system):
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and A is the usual fictitious mass of the photon. In
the limit as A tends to zero A4 diverges logarithmically:

A
A =A(p;, pp)—cln—
m
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P = X(pigi—Pj€;)—&;p;

The other symbols are those of Eriksson. |M|* con-
tains all the radiative corrections due to virtual
photons. The first three factors of Eq. (1) origin-
ate from soft photon emission. Of these factors
exp (Re 4,) is the only one which may contain
terms proportional to oln®(g?/m?®). 1In particular
for positron-electron annihilation one obtains

20, 2E
Red, ~ —In” —. (2)
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For elastic scattering in an external field we have:
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It is interesting to observe that Eq. (2) is independent
of angles. This angular independence can be easily
understood observing that in positron-electron annihi-
lation soft photons are emitted only from the incoming
particles.

The problem whether terms of the form « In? (¢*/m?)
show up in the expansion of P(4E) will depend on the
behaviour of |[M|*e¢” ™4™ in Eq. (1). First of all
it can be easily shown that this term does not contain
infra-red divergences as A—0. In fact they can be
eliminated term by term in the expansion of |M|* and
exp [—c In (4/m)] in powers of o; we put then

|M|2 =cln(A/m) __ IM IZ-X(P, , pf)

where |M,|* represents the first Born approximation.
The discussion now is limited to the behaviour of
X as a power series of «. In order to avoid for the

moment the difficulty arising from the unsolved
problem of the convergence of this series we will
assume that all that is said is valid up to a certain
approximation in «" ; in other words, a finite number
of terms of the expansion is taken into account every-
where.

On the assumption, according to Eriksson and
Petermann ***), that for high momentum transfer
the P(4E) expansion (in the c.m. system) does not
contain o In? (g*/m*) terms, the behaviour of X will
be such as to compensate the o In®(¢%/m*) which
comes from exp(Re 4;). This is confirmed by
explicit calculations available for elastic scattering and
also for inelastic processes at large angles in ¢.m.

It then remains to examine the situation at low
momentum transfer for elastic scattering and for
forward inelastic processes. In these cases X tends
to a constant (at least the first terms of its expansion
in powers of ). For elastic scattering Re 4, does
not contain « In®(¢?/m?) terms, and so the cross-
section also does not have contributions of this type.
The problem of inelastic scattering is of particular
interest for processes such as positron-electron annihi-
lation into photons, where the forward differential
cross-section is finite. In this case, Eq. (2) being
independent of the kinematical situation, one can
write for the forward differential cross-section at high

energy:
AE\® 22, ,2E
do,— < i ) er  mdog, . (5)

It is possible to generalize this result also to the case
m<AE<E. In particular if one assumes that the
contribution from hard photon emission introduces
powers less than o In* (E/m) (this can be verified up
to the e® order), by integration of Eq. (5) over AE
one obtains

. 2a 2E
do'—en In® mdog,, (6)

where daif is the cross-section for inelastic forward
annihilation (the forward photon has any energy).

Consider now that in Eq. (6) the correction to
day, is positive and that for non-forward annihilation
the terms of the series will have only an o In (E/m)
dependence.
that the perturbation expansion of X is convergent

It is then of some interest to assume
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and that in the high-energy limit only the higher
powers of In (£/m) contribute appreciably to the sum
of the expansion. In this case one can give an upper
limit to the asymptotic total cross-section for annihila-
tion in photons:

2a 2E

op— < ex oy (7)
If the above assumption is not valid, then Eq. (7)
refers to the expansion in powers of «, where only a
finite number of terms is taken into account.

LIST OF REFERENCES

RAEE I e

G.

J. M.

K. E. Eriksson: Nuovo Cimento, /9, 1044 (1961).
K. E.

K. E.

Eriksson: preprint.

Andreassi, P. Budini, G. Furlan: Phys. Rev. Letters, 8, 184 (1962).
Jauch and F. Rohrlich: Theory of photons and electrons, p. 390.

Eriksson and A. Petermann: Phys. Rev. Letters, 5, 444 (1960).

DISCUSSION

KALLEN: [ always feel somewhat dizzy when [ hear argu-
ments of this kind and I would just like to ask you a few ques-
tions. | quite understand what happens when you limit yourself
to the first two or three or four terms in the expansion. This
is what is most interesting from the experimental point of view.
However, you don’t stop there, but you go further and sum
the series over all n’s. Now, it is believed by several people,
including myself, that this series really is divergent. You pick
out here what is supposed to be the most important contribution
of each term, and that seems to form a convergent series. Would
you say that your argument here * proves” the convergence
of the series?

Bupint: Oh well, no... I do suppose that it is convergent.

KALLEN: [ could possibly write one or two formulae, which [
hope clarify the situation a little. Of course, I emphasize from
the beginning that no one really knows what is going on here
in the high E high » limit, but, just for the sake of argument,
let us suppose that the real series looks the following way:

e} n

Y a"[n I+ (n E) :|

n=0 n '
Just suppose that is how the series looks. Of course, if you
take a given term (that is a fixed value of n) and ask what is
going to happen in the high E limit you will pick out the (In £)*/n!
term and you will get a convergent series. Apart from a couple
of 2’s and «’s it is just the series that you have given before.
However, the series is really divergent, and the asymptotic
sum you get has nothing to do with the real sum. You can make
another example which is slightly less drastic, namely if you
consider the following series:
o0 o\
)y a"[l +(ln £) :|

n!

n=0

Again, considering this for fixed values of »n and large E’s you
will pick out the same series as before. In reality the convergence
of this series is determined by the parameter a and for the high n
fixed E limit the important thing is the first term. You would
rather expect the whole sum to be proportional to 1/(1—a)
instead of what you found, which is roughly E#InE_ Please,
do not misunderstand me. I am not saying that electrodynamics
looks like this or looks like that, but I think this example,
especially the last one, where you are really operating on a
convergent series, shows that these arguments are extremely
tricky. One must be careful. Even if it is clear what happens in
the first few terms with fixed # and high E, it is very dangerous
to go further and sum the series in this way. It may be right,
but it’s dangerous.

Bupini: T agree with Prof. Killén’s argument. But there is
one consideration that one has to bear in mind, namely, it looks
as if the contribution which can be summed comes from soft
photons, which can be treated quite generally with not very difficult
mathematical methods, so one can easily take into account the
general term in that case.

SALECKER: | would propose to transfer these considerations
to the Compton effect. For example, in the forward direction
the double Compton effect vanishes exactly. So in that case
we are free from the energy-resolution limit and free from the
complications coming from the infra-red terms.

Bubpint: The Compton effect is very similar to the case of
electron scattering in an external field. Again you have an
angular dependence of Re 4, and again you have the In®> E
terms cancelled, so in the Compton effect you have the “ regular
behaviour .




