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Abstract

The AdS/CFT correspondence provides a framework which unifies gravity, gauge theory
and geometry. Since its introduction, this remarkable correspondence has provided us
many interesting and yet somewhat surprising results. In this thesis, we have explored
three aspects of the correspondence: (i) Consistent truncations, (ii) Wrapping branes on
spindles, and (iii) Mass deformations of N' =4 SYM.

The first part of this thesis is concerned with consistent truncations associated with
wrapped brane configurations. We present constructions of consistent truncations of D =
11 supergravity and Type ITA supergravity on a 6-dimensional manifold given by S* twisted
over a Riemann surface, and they are associated with M5- and NS5-branes wrapping over
Riemann surfaces respectively. The resulting theories are both D = 5, N/ = 4 gauged
supergravity theories coupled to three vector multiplets, but the precise details of the
gauging of the two theories are different.

In the second part of the thesis, we present a novel construction of supersymmetric
AdSs5 solutions in D = 11 supergravity, which are associated with wrapping Mb-branes
over four-dimensional orbifolds. In one case, the orbifold is a spindle fibred over another
spindle, while in the other, it is a spindle fibred over a Riemann surface. We show that
the central charges of the corresponding d = 2 SCFTs calculated from the supergravity
solutions agree with field theory computations.

In the third part of the thesis, we study mass deformations of N'= 4 SYM theory that
are spatially modulated in one spatial direction and preserve some supersymmetry. We
focus on generalisations of N/ = 1* theories and show that it is possible to preserve d = 3
conformal symmetry associated with a co-dimension one interface. Holographic solutions
are constructed using D = 5 gravitational theories which arise from consistent truncations
of SO(6) gauged supergravity. For mass deformations that preserve d = 3 superconformal
symmetry, we construct a rich set of Janus solutions which are supported by spatially
dependent mass sources on either side of the interface. Limiting case of these solutions
gives rise to novel RG interface solutions with ' =4 SYM on one side of the interface and
the Leigh-Strassler SCFT on the other. Another limiting case gives rise to S-fold solutions.
Specifically, we construct new classes of AdS, x S x S% solutions of Type IIB string theory
which have non-trivial SL(2,Z) monodromy along the S* direction.
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Chapter 1

Introduction

1.1 Overview

At the microscopic level, the laws of nature are governed by quantum physics, and in
many cases of interest, the systems are strongly coupled where perturbative approximations
break down completely. Well known examples such as quantum chromodynamics and high-
temperature superconductors are notoriously hard to tackle, mainly due to the lack of a
well understood mathematical framework to study strongly coupled physics. Meanwhile,
string theory, commonly seen as the leading candidate for quantum gravity, provides an
elegant geometric framework to describe quantum field theories, and strikingly, the gravity
aspects of string theory are in fact related to the microscophic features of these strongly
coupled quantum field theories.

One of the most profound developments in the theoretical studies of string theory is the
discovery of the AdS/CFT correspondence. Since its introduction by Maldacena [8], the
AdS/CFT correspondenc{] has provided a new paradigm to understand strongly coupled
quantum field theories. This remarkable correspondence, arising from string theory, pro-
vides an exact equivalence between a particular class of quantum field theories — conformal
field theories (CFTs), and theories of gravity in an Anti-de Sitter (AdS) spacetime. More
precisely, the correspondence states that the d-dimensional conformal field theory lives on
the boundary of the corresponding AdSy,; geometry and is dynamically equivalent to the
dual string/M-theory on the AdSz,; background. Another astonishing feature is that the
AdS/CFT correspondence is an example of a strong-weak duality. If the field theory is
strongly coupled, the dual gravity theory is weakly curved and can then be approximated
by classical supergravity. For this reason, certain difficult questions within strongly cou-
pled quantum field theories become tractable and can be studied using supergravity theory
techniques.

In its original formulation [8], the correspondence establishes the remarkable equivalence
between the four-dimensional N" = 4 Super Yang-Mills (SYM) theory and the AdSs x S°
geometry of Type IIB string theory. This particular example of holographic duality is
characterised by a high degree of symmetry, which allows highly non-trivial checks of the
conjecture, such as correlation functions of BPS operators. Motivated by the successes
of this correspondence, more AdS/CFT dual pairs have been identified since then, such
as the duality between the three-dimensional superconformal ABJM theory [9] and the

"'We will use holographic duality, AdS/CFT correspondence and gauge/gravity correspondence inter-
changeably throughout the thesis.
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AdSy x ST geometry of M-theory, the duality between some four-dimensional quiver gauge
theories |10] and AdSs x S Ej5 solutions of Type IIB [11] (where SEj5 corresponds to a five-
dimensional Sasaki-Einstein manifold), and many more. Though far from fully proven, the
gravity /gauge correspondence continues to provide us new, non-trivial understanding of the
intricate relationship between gravity, gauge theory and geometry, as we shall demonstrate
in this thesis.

Supersymmetry is a framework which describes a set of transformations between bosons
and fermions, extending the Poincaré algebra to a graded Lie algebra, commonly called a
superalgebra. Supersymmetry provides profound insignts into many of the developments
of both physics and mathematics. For example, supersymmetry plays a key role in the
development of phenomenological models in particle physics, supersymmetry is a crucial
ingredient in the formulation of string/supergravity theory, and there is a deep connec-
tion between supersymmetry and geometry. The AdS/CFT correspondence is also best
understood within supersymmetric configurations, such as the aforementioned dual pairs.
In favourable circumstances, field theory observables, such as the free energy, can be com-
puted exactly using the techniques of supersymmetric localization [12], and compared with
the supergravity results to further confirm the validity of the correspondence.

Supersymmetric AdS solutions play a privileged role in the study of the gravity-gauge
correspondence, and inspire the systematic search of supersymmetric solutions of super-
gravity theories (see e.g. [13-17]). One essential feature of any supergravity theory is
that it is invariant under a set of local supersymmetry transformations. For example, the
infinitesimal supersymmetry transformations are schematically given byP|

o0g ~ e, 0 ~Ve+ Flux - €, (1.1)

where ¢ is the metric associated with the graviton, the gravitino 1 is the associated super-
partner of the graviton, and the spinor € denotes the infinitesimal parameter. Throughout
this entire thesis, we are mainly interested in bosonic solutions to the equations of mo-
tion that preserve at least one supersymmetry. These are solutions to the equations of
motion with ¢» = 0 which are also invariant under supersymmetry variations, and we
refer to them as supersymmetric solutions. These supersymmetric solutions of supergrav-
ity theories provide important insignts into many of the developments in string theory.
For example, supersymmetric compactifications provide a setting to study particle phe-
nomenology from a string theory perspective, black hole microstates are best understood
for supersymmetric black holes [18[19], and of most importance here, supersymmetric AdS
solutions are crucial tools to understand quantum field theories via the AdS/CFT corre-
spondence. Furthermore, the study of supersymmetric solutions is associated with rich
geometric structures which are of intrinsic interest to both mathematicians and physicists.

In this thesis, we will utilise the AdS/CFT correspondence and various supergravity
theories to demonstrate a number of interesting results. The rest of this introductory
chapter will be devoted to explaining some important background material. We will first
review the original conjecture by Maldacena, followed by a brief discussion on holography.
Then we will move to discuss some basic aspects of consistent truncations. Finally, we will
give a brief outline of the rest of the thesis.

2The precise form depends on the spacetime dimension and the particular theory.
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1.1.1 Maldacena’s conjecture

Many excellent reviews and lecture notes have been written on the topic of gauge/gravity
dualities, see for example [20-24]. In the following, we will provide a brief review of the
famous conjecture by Maldacena.

In its original formulation [8], the AdS/CFT correspondence establishes the remarkable
equivalence between the following theories:

e N = 4 Super Yang-Mills (SYM) theory with gauge group SU(N) and Yang-Mills
coupling gy s

e Type IIB string theory with string length I, = Vo' and string coupling g, on the
maximally supersymmetric AdSs x S° background with radius L and N units of Fi5)
RR flux on S°

The parameters of the two theories are related via
g2y =2ng,, and 2¢2,N=L*'/a". (1.2)

This duality between A" = 4 SYM and AdSs x S° is a consequence from studying the
dynamics on a stack of N parallel D3-branes in Type IIB string theory.

In the low energy limit, the dynamics of D-branes can be viewed from two different
perspectives: the open string (gsN < 1) and the closed string (gsN > 1) perspectives.
From the open string perspective (gsN < 1), D-branes are higher-dimensional extended
objects where open strings can end on. The dynamics of the open strings are described
by a supersymmetric gauge theory living on the world-volume of the D-branes, while the
closed strings decouple and propagate in the flat background. The gauge fields are open
string excitations parallel to the D-branes, while the excitations transverse to the D-branes
correspond to the scalar fields of the gauge theory. In the special case of D3-branes, the
configuration describes the four-dimensional N’ = 4 SYM living on the world-volume of the
D3-branes. From the closed string perspective (¢gsN > 1), D-branes are solitonic objects
of the low energy limit of string theory (i.e. supergravity). Hence we can consider D-
branes as gravitational sources which curve the surrounding spacetime, and closed strings
will propagate in this background. The supergravity solution of a stack of N D3-branes is
given by

dsiy = H'n, dotde” + HY?6,dr'da? | € = g2,

1 1.3
F(5):(1+*10)d130/\dx1/\de/\dx?’/\d<E) 7 ( )

where p,v =0,...,3 and 7,7 =4,...,9, and the warp factor is given by

H=1+ (5)4 , (1.4)

r

with 7% = >, (xz)2 and L* = 4mg,No/*>. The above geometry consists of two different
regions, r > L and r < L respectively. For r > L, the warp factor H is approximately
equal to one and hence the metric reduces to the ten-dimensional Minkowski metric. For
r < L, this corresponds to the near-horizon/throat region and the metric becomes

2

2 ~~
dsty ~ —

= (uda*da” + d2?) + L?dsgs = L?ds’yg, + LPdses (1.5)
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where we have defined a new coordinate 2 = L?/r. The string states near the throat region
are highly energetic, which we might have to discard since we are taking the low energy
limit. However, we should recall that the string states measured by an observer at infinity
are of low energy due to the redshift caused by the near-horizon geometry. Therefore, the
observer at infinity see two different low energy propagating modes of closed strings: the
closed strings propagating in the flat spacetime and string excitations in the near-horizon
region (i.e. the AdSs x S° spacetime).

To sumarise, the dynamics of open strings give rise to the N' = 4 SYM and the de-
coupled closed strings propagate in the flat spacetime in the open string perspective; and
in the closed string perspective, the dynamics of closed strings are described by Type I11B
fluctuations about the flat spacetime and the AdSs x S° spacetime respectively. The two
perspectives must be describing the same physics, and the closed string fluctuations in
flat spacetime are common in both descriptions. Therefore, we are left to conclude that
the open string fluctuations described by N' = 4 SYM are equivalent to the Type IIB
fluctuations on AdS5 x S°.

1.1.2 Holography

The gravity/gauge correspondence is an exact equivalence between two distinct theories.
This exact equivalence includes a map between operators in the field theory and the spec-
trum of Type IIA/B/M-theory on the corresponding dual geometry. In other words, there
is a precise map/dictionary relating operators O in the quantum field theory and dynam-
ical fields, ¢, in the bulk theory of gravity. To simplify our discussion in this section, we
will focus on scalar observables but the dictionary can be easily generalized to other types
of fields.

The operators of generic CFT are characterised by their scaling/conformal dimensions
A, which specify the transformations under dilatation. On the gravity side, we consider a
scalar field with mass m and momentum p* propagating in the AdSs spacetimd’], and the
Klein-Gordon equation is given by

256,3 (Zigaz(bp) - (m2L2 +p222) ¢p =0, (16)

where we define p* = 1, p"p”. As z — 0 (near the conformal boundary), the Klein-Gordon
equation is characterised by two independent solutions,

2\ 4-A 2\ A
o (= il 1.7
¢ <L> Gs) + <L) Gy + -0, (1.7)
where A satisfies
A(A —4) =m?L?, (1.8)

and corresponds to the scaling dimension of the operator O, dual to the bulk field ¢.
We denote ¢, as the source term which triggers deformation to the theory, meanwhile
schematically ¢(,) is related to the vacuum expectation value of the operator via

) ~tim{(7) "o} =0 (19)

3The AdSs metric is provided in ([.5)).

16



More generally, one would consider to compute the n-point correlation functions, which are
obtained by using generating functionals on the field theory side. Remarkably, the holo-
graphic correspondence proposes the following relation between the field theory generating
functional and the string partition function [25,26]:

(ef d4w¢<s>@> -z

S
string erenare

~Y

tim.0{ ()"0} =000 tim.of (£)° "0} =00

which in the low energy limit approximates to the supergravity result. This important
identification hence allows us to calculate correlation functions from a holographic point
of view, by using the on-shell supergravity action Ssugmﬁ

In the above, we have provided a schematic description of the holographic dictionary
without specifying the AdS/CFT dual pair. These results, in general, are expected to
hold for any example of interest. In chapter [5, when we discuss mass deformations of
N =4 SYM, we will provide a more precise field-operator map between N’ =4 SYM and
AdS5 X 55.

(1.10)

1.1.3 Consistent truncations

Supergravity theories in 10/11 dimensions are low-energy approximations of string/M-
theory, and the studies of these theories provide invaluable insight into the rich struc-
ture of their high-energy counterparts. However, the direct construction of solutions of
higher-dimensional supergravity theories is a difficult task. A particularly powerful frame-
work that has been developed over the years to tackle this problem is consistent Kaluza—
Klein (KK) reductions (see e.g. [30]). Schematically, these truncations reduce the higher-
dimensional equations of motion to a set of lower-dimensional equations obtainable from
a lower-dimensional supergravity theory, which are easier to solve.

We begin with the original example considered by Kaluza and Klein, which is to perform
a reduction of pure gravity in D = 5 on a circle S'. The procedure starts with expanding
the components of the five-dimensional metric as Fourier series

5 4 inz
g (. 2) = gy (@) e/t (1.11)

where we denote x to be the coordinates of the lower-dimensional spaetime, z is the co-
ordinate on the circle St of radius L. The modes with n # 0 are assoiated with massive
fields, and those with n = 0 are massless. Essentially, this procedure generates an infinite
tower of modes with masses proportional to the inverse of the radius of the circle. The
usual idea behind KK reductions is the assumption that the the radius is very small (i.e
of order the Planck length), such that we can safely discard the massive modes and retain
only the massless modes. This implies that the truncation ansatz is independent of z, and
the next step is to split the five-dimensional metric into four-dimensional fields as follow,

gun = ( . Juz ) . (1.12)

9ep Gzz

4We should note that a careful holographic renormalisation procedure is still required to correctly
calculate correlation functions and anomalies (see e.g. [27H29)]).
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From the four-dimensional viewpoint, the theory is now comprised of a metric, a gauge-
field and a scalar field. To make sure that the underlying U(1) symmetry is manifest, it is
more convenient to parametrise the line element as

ds? = e*/V3ds? + e 21V3 (dz + Ay (1.13)

where ¢ is the dilaton and A1) = Ay(z)dz™ is a U(1) gauge field, all defined on the four-
dimensional spacetime. By substituting the above ansatz into the D = 5 Einstein equation,
one would obtain a D = 4 Einstein-Maxwell-Dilaton theory. We highlight that this KK
truncation is “consistent” in the sense that any solution of the four-dimensional theory is
automatically a solution to the five-dimensional theory. The reason for this consistency is
that the massless modes being kept are independent of the circle coordinate z, while all
of the massive modes, which have dependence on z, are set to zero. This is equivalent to
saying that the truncation ansatz incorporates the U(1) symmetry of the circle and hence
is consistent. However, we should emphasise that the consistency of this truncation does
not rely on L being sufficiently small, which one might argue from an effective field theory
perspective that the massive modes decouple because they are very heavy. Following the
same logic, one can carry out a similar Kaluza—Klein truncation of D = 11 supergravity
on S' to obtain the Type ITA supergravity in D = 10 [31,32]. The truncation ansatz is
simply given by

ds?, = e 2*dst) + e (dz + C’(l))g :

(1.14)
Ay =Cs + By A (dz+ Cpy)

where the ten-dimensional line element ds?;, the dilaton ®, the RR one-form Cy and the
RR three-form Cs) are all independent of the S* coordinate z. By substituting the above
ansatz into the D = 11 equations of motion, we would be able to recover the equations of
motion for the ten-dimensional Type ITA supergravity.

From an effective theory perspective, if the compactification admits a separation of
scale, we would be able to truncate the higher-dimensional supergravity theory to a lower-
dimensional effective supergravity theory by discarding modes above the cut-off scale as
illustrated in our earlier example. However, this argument cannot be applied to AdS com-
pactifications as the scales of the external and internal manifolds are closely related (or
to say, there is no natural separation between light and heavy modes in AdS compacti-
fications), and a truncation procedure is therefore required. A consistent truncation is a
procedure to truncate the original higher-dimensional theory to a finite set of fields such
that the dependence of the higher-dimensional fields on the internal manifold factorises
out once the truncation ansatz is substituted into the equations of motion of the original
theory [33]. Here let us consider a toy modelf| with the following Lagrangian,

=1 (0¢)” + L (ON)* — lg)\ng _ Ly , (1.15)
2 2 2 2
where ¢ is a coupling constant and m is a mass term for scalar field A\. The equations of
motion are hence given by

0?0 =ghd, O*A=m’\+ %gng. (1.16)

5We are using this example to demonstrate the basic idea of a consistent truncation, but it does not
involve compactifying a theory on an internal manifold.
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It is almost immediate to see that we can always discard the scalar field ¢ (i.e. setting ¢ = 0
and keeping only \) without causing any inconsistency issue. However, it is not possible to
discard the field X in the same way because of the presence of the ¢? term. One quick way
to see why the truncation with ¢ = 0 is consistent is that it is obtained by keeping only the
singlet under the Z, symmetry of the original action (L.15]). The idea of using a symmetry
group to select the finite set of fields is a crucial step in obtaining consistent truncations,
and throughout this thesis, we will see again and again that consistent truncations rely on
the complex interplay between the symmetries of the theory and the geometrical properties
of the compactification manifold.

There are rich examples of consistent truncations in the literature, such as truncations
of D = 11 supergravity on S* and S7 down to the maximally supersymmetric SO(5) gauged
supergravity in D = 7 [34-36] and SO(8) gauged supergravity in D = 4 [37] respectively.
In the case of Type IIB supergravity, there is a consistent truncation on S down to the
maximally supersymmetric SO(6) gauged supergravity in D = 5 [38-40]. One shared
feature of these particular examples is that they all admit supersymmetric AdS vacuum
solutions, which can correspondingly be uplifted as solutions to the D = 10/11 theories
(i.e. AdS;xS* AdS,yxS™ and AdSs x S® which are in fact associated with the near-horizon
limits of M5-, M2- and D3-branes respectively). Consistent truncations are not restricted
to just maximal theories and their associated supersymmetric AdS backgrounds. We can
also consider truncations/theories with reduced supersymmetries. For example, there is a
consistent truncation of Type IIB supergravity on the homogeneous space T%! down to an
N = 4 gauged supergravity in D = 5 [41}43], which admits supersymmetric AdSs vacuum
solution corresponding to the Klebanov—Witten geometry AdSs x T [44]. Tt is also known
that one can always truncate Type IIB supergravity on SE5; and D = 11 supergravity on
SE; down to D = 5 and D = 4 minimal gauged supergravity respectively [45], with
supersymmetric vacuum solutions uplift to AdSs; x SE5 and AdS, x SFE; respectively.

The key message from these known examples is that consistent truncations of super-
gravity theories are strongly related to the existence of supersymmetric AdS backgrounds,
which leads to the conjecture by Gauntlett and Varela in [45], stating that

e “Given an AdSyy1 x M solution, after carrying out a KK reduction of the higher
dimensional supergravity theory on the internal manifold M, it is always possible to
truncate to a gauged supergravity in d 4+ 1 spacetime dimensions for which the fields
are dual to the superconformal current multiplet of the dual SCFT.”

Clearly, this conjecture is consistent with all the examples mentioned above and well extend
to all other known cases. As an example, the maximally supersymmetric AdSs x S® solution
of Type I1B, which has superisometry algebra SU(2,2|4), is dual to the N’ = 4 SYM theory
in d = 4, as discussed earlier. The superconformal current multiplet of the latter theory
includes the energy momentum tensor, SO(6) R-symmetry currents, along with scalars and
fermions. These are dual to the metric, SO(6) gauge fields along with scalar and fermionic
fields, which are precisely the field content of the maximally supersymmetric SO(6) gauged
supergravity in D = 5.

However, we shall emphasise that the existence of supersymmetric AdS backgrounds
is certainly not a requisite for the existence of a consistent truncation. There are of
course consistent truncations which are not tied to AdS backgrounds. For example, one
can truncate Type IIA supergravity on S® around the linear dilaton background, which
corresponds to the near-horizon limit of NS5-branes, to obtain the D = 7 maximal 150(4)
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gauged supergravity [36,/46,47]. Another such example is the electric 1SO(7) gauged
supergravity in D = 4 [48-50], which arise from reducing Type ITA supergravity on S°.

As mentioned at the begining, the power of consistent truncations lie in the fact that one
can study the easier lower-dimensional theories and uplift the solutions back to D = 10/11.
As an example, the D = 5 SO(6) gauged supergravity arises from reducing Type IIB
supergravity on S°, and is naturally associated with the D3-branes in Type IIB, which
makes it an ideal theory to study N' = 4 SYM from a holographic perspective. In particular,
understanding RG (renormalization group) flows induced by relevant deformations of N' =
4 SYM is an important topic, and holography provides a novel perspective to understand
this difficult problem. For example, in [51], holographic RG flow solutions, which flow
from the N/ = 4 SYM theory in the UV to the N' = 1 “Leigh-Strassler” SCFT [52] in
the IR, were constructed utilizing this SO(6) gauged supergravity, commonly known as
the FGPW solution. The FGPW solution provides a holographic realisation of RG flows
between N' = 4 SYM and the NV = 1 “Leigh-Strassler” SCFT and agrees with the field
theory result, providing further evidence for the conjectured duality.

Another important class of holographic flow solutions is the so-called Janus interface,
which we will refer to as a co-dimension one, planar, conformal interface that has the
same CFT on either side of the interface. This type of configuration can be studied
holographically [53] using supergravity theories, and rather remarkably, certain limiting
cases of these Janus solutions give rise to non-geometric backgrounds in Type IIB string
theory, which are patched together using the SL(2,7Z) symmetry, known as S-folds. In
chapters 5] [6] and [7, we will explore these flow solutions and their connections to N' = 4
SYM in greater detail.

Using the same D =5 SO(6) gauged theory, twisted field theories, arising from wrap-
ping/compactifying D3-branes/N = 4 SYM on a Riemann surface, were studied holograph-
ically in the seminal work of [54]. The construction in [54] is realised by wrapping branes
over a Riemann surface embedded in manifolds of special holonomy. More specifically, the
theory is “topologically twisted” by setting the spin connection on the wrapped cycle to
be equal to the background gauge field associated with the R-symmetry, and hence admits
covariantly constant spinors (i.e. some supersymmetry is preserved). The seminal work
of [54] has since opened up the investigation of across dimensional RG flows from both the
SCFT and the supergravity sides. In a more recent development, starting with [55], novel
solutions describing branes wrapping over a two-dimensional orbifold with quantised deficit
angles at the two poles, also known as a spindle, have been constructed using the tech-
niques of consistent truncations. These new solutions are notable because supersymmetry
is not realised with the aforementioned topological twist. In addition, while the spindle has
orbifold singularities, the uplifted 10/11-dimensional solutions can be completely regular.
In chapter [4] we will return to explore this new type of wrapped brane configuration in
greater detail.

There are clearly more such solutions of D = 10/11 supergravity theories that were/can
be constructed via the method of consistent truncations, and throughout this thesis, we will
see over and over again the power of consistent truncations in the study of the AdS/CFT
correspondence.
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1.2 Outline of thesis

The main chapters of this thesis are organised into three parts: (i) Consistent truncations,
(il) Wrapping branes on spindles, and (iii) Mass deformations of N' =4 SYM.

The first part of this thesis is concerned with consistent truncations associated with
wrapped brane configurations. Since the seminal work of [54], there are various super-
gravity constructions with branes wrapping supersymmetric cycles in manifolds of special
holonomy. In chapters [2] and [3|, we are interested in configurations associated with M5-
branes and NS5-branes wrapping over Riemann surfaces respectively, and we construct the
corresponding consistent truncations to obtain new five-dimensional supergravity theories.
We also show that the Mb5-brane truncations in chapter [2] are intimately related to the
NS5-brane truncations in chapter |3 via the Inonii-Wigner contraction.

In the second part of the thesis, we will present in chapter 4| a novel construction
of supersymmetric AdSs solutions in M-theory, which are associated with wrapping M5-
branes over four-dimensional orbifolds. It is important to highlight that the supersymmetry
of these solutions is not realised with the usual topological twist. These new solutions are
holographically dual to d = 2, N = (0,2) SCFTs, and we show that the central charges of
the d = 2 SCFTs calculated from the gravity solutions agree with field theory computations
using anomaly polynomials and the c-extremization procedure.

In the third part of the thesis, we turn to study mass deformations of NV = 4 SYM.
Mass deformations of N' = 4 SYM theory that preserve some supersymmetry have been
extensively studied and are associated with interesting features under RG flow. However,
most of these studies consider only the case of homogeneous mass deformations. Our goal is
to explore, within a holographic setting, spatially modulated mass deformations. In chapter
b, we will study mass deformations of N' = 4 SYM theory that are spatially modulated
in one of the three spatial dimensions and preserve some supersymmetry. We focus on
generalisations of ' = 1* theories (i.e. deforming N’ = 4 SYM by adding mass terms
to the chiral multiplets) and demonstrate that one can preserve 3-dimensional conformal
symmetry associated with a co-dimension one interface. For mass deformations preserving
3-dimensional superconformal symmetry, we will construct a rich set of holographic Janus
interface solutions of N' =4 SYM theory.

In chapter [6] we focus on studying one particularly interesting limiting case of these
solutions, which gives rise to the so-called RG interface solutions. Schematically, an RG
interface separates two distinct conformal field theories CFTyy and CFT g, with CFT g
arising as the IR limit from perturbing CFTyy by a relevant operator. By taking appro-
priate limits of the Janus solutions, we construct novel RG interface solutions with N' = 4
SYM on one side of the interface and the Leigh-Strassler SCFT on the other. In chapter
[7, we will study another limiting case of Janus solutions, which gives rise to the so-called
S-fold solutions. Specifically, we construct infinite new classes of AdSy x S* x S% solutions of
Type IIB string theory which have non-trivial SL(2,Z) monodromy along the S! direction.
These solutions are supersymmetric and dual to 3-dimensional N' = 1 SCFTs, and arise
as limiting cases of the aforementioned Janus solutions of N' = 4 SYM theory which are
supported both by a different value of the coupling constant on either side of the interface,
as well as by mass deformations. Our construction goes beyond the usual linear dilaton
setup, which upon uplift to Type IIB can be compactified along the radial direction via
the SL(2,Z) duality transformation to form S-fold solutions. The key new feature of our
solutions is that the dilaton is now “linear plus periodic” along the radial coordinate, such
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that the metric is no longer invariant under translations in the radial direction, and our
solutions can still be uplifted to Type IIB to form S-fold solutions.

Finally, we conclude this thesis with a few remarks in chapter [§] followed by the ap-
pendices and the bibliography.
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Part 11 :

Consistent truncations
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Chapter 2

M5-branes wrapped on Riemann
surfaces

2.1 Introduction

The basic AdS/CFT examples arise from studying supergravity solutions describing planar
branes in the “near-horizon limit”. The D = 11 supergravity admits supersymmetric so-
lutions corresponding to N co-incident membranes (M2-branes) and co-incident fivebranes
(Mb5-branes), and in the near-horizon limit the metrics become AdS; x ST and AdS; x S*
respectively. Similarly, the D = 10 Type ITA and IIB theories admit supersymmetric so-
lution corresponding to N co-incident Dp-branes and NS5-branes, and in the special case
of D3-branes, the metric becomes AdSs x S® in the near-horizon limit.

Beyond these well-known planar brane backgrounds, one particularly important class of
supergravity solutions is realised by wrapping branes over compact supersymmetric cycles
in manifolds of special holonomy. In these constructions of wrapped brane solutions, a
dominant paradigm for preserving supersymmetry has been the so-called topological twist.
Schematically, the Killing spinor equation on the worldvolume of a brane wrapped on a
cycle X is (d +w() — A(l)) € = 0, with w(;) the spin connection on ¥ and Ay the gauge
field that couples to the R-symmetry current. This equation, in general, does not admit
covariantly constant spinors, in which case supersymmetry is broken. An elegant solution
to this, as pioneered in [56,57], is to set the gauge field to be equal to the spin connection
on the cycle ¥ — the “twist”, such that the Killing spinor equation admits covariantly
constant spinors.

From a more geometrical point of view, the spin connection w(;) encodes the informa-
tion about the tangent bundle to ¥ (which we denote as T'(3)). Meanwhile, the gauge
connection one-form Ay is coupled to the R-symmetry of the brane’s worldvolume the-
ory and is associated with the structure of the normal bundle to ¥ (which we denote as
N(X)). Here we use Mb5-brane as an example, the field theory living on the fivebrane
with world-volume R C R has an internal SO(5) R-symmetry, which comes from
the five flat transverse directions to the fivebrane. Now consider compactifying the RS
worldvolume into R'3 x ¥, (i.e. wrapping M5-brane on a two-cycle 3). If we decompose
SO(5) — SO(2) x SO(3) and choose the SO(2) gauge-fields to be equal to the SO(2) spin
connection on Y, then again we can have covariantly constant spinors on >y preserving
supersymmetry. Geometrically, the identification of the SO(2) C SO(5) gauge fields with
the spin connection on ¥, corresponds to the structure of the normal bundle of a Kéahler
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2-cycle. The total space My, where the 2-cycle Y5 is embedded inside, is a non-compact
Calabi-Yau two-fold, since adding up the first chern class of T'(3;) with the first chern
class of N(X2) gives the first chern class of M, which is vanishing due to topological twist.
We highlight that the total space must be non-compact, such that the dual field theory
living on these wrapped brane configurations decouples from gravity. It should also be em-
phasised that we are not restricted to just wrapping branes over cycles inside Calabi-Yau
manifolds. Branes wrapping calibrated cycles in different special holonomy manifolds have
been studied, and for a comprehensive review, see [58].

These wrapped brane configurations can be well described within the AdS/CFT cor-
respondence. The corresponding supergravity solutions have on one side an asymptotic
boundary of the form AdSy.1 x M, where M is a compact internal manifold, which de-
scribes the dual SCF'T in the UV. On the other side, they have near-horizon geometries
of the schematic form AdSg.; x ¥ x M, which describe the SCFTs in the IR obtained
by compactifying the UV SCFT on ¥ with a topological twist. These solutions provide a
holographic realisation of RG flows interpolating between non-trivial UV and IR SCFTs,
and hence lead to important insights into the structure of strongly coupled SCFTs.

Since the seminal work of [54], there are various supergravity constructions which are
associated with M2/M5/Dp/NS5-branes wrapping supersymmetric cycles in manifolds of
special holonomy [59-74]. Here in this chapter, we are interested in the half maximally
supersymmetric Maldacena-Ntfiez AdSs x H? /T x S* solution [54], where H? /T is a compact
Riemann surface with genus greater than one, and the solution is holographically dual to
N =2 SCFT in four-dimensional spacetime. The S* factor is non-trivially fibred over the
H?/T factor and the solution describes the near-horizon limit of M5-branes wrapping over
an H?/T" factor, embedded inside a Calabi-Yau two-fold. Alternatively, the dual d = 4,
N = 2 SCFT can be obtained by starting with the d = 6, N' = (0,2) SCFT, which is
holographically dual to the maximally supersymmetric AdS; x S* solution, compactifying
on H?/T with a topological twist in order to preserve d = 4, N' = 2 supersymmetry and
then flowing to the IR.

Associated with this supersymmetric solution, one should be able to compactify D = 11
supergravity on H?/T" x S* and truncate to the half-maximal Romans’ SU(2) x U(1) gauged
supergravity in D = 5. In fact, this result, at the level of the bosonic fields, was already ob-
tained in [75]. Here in this chapter, we will show that one can fully extend this truncation
toa D =5, N =4 gauged supergravity coupled to three vector multiplets. We will carry
out the consistent Kaluza—Klein (KK) truncation from D = 11, first by reducing on S* to
D = 7 maximal gauged supergravity and then further reducing on the H?/T" factor. The
resulting D = 5 gauged supergravity contains the RG flow solution described above, which
was first constructed in [54] and is associated with the A" = (0,2) SCFT in d = 6 compact-
ified on H?/T" and flowing to an N' = 2 SCFT in d = 4. Furthermore, we show that one
can also carry out a similar consistent KK truncation of D = 11 supergravity on 3, x S*,
where Yy = 5% R? (or a quotient thereof). For these cases, there is not a corresponding
supersymmetric AdSs vacuum solution, which is certainly not a requisite for the existence
of a consistent KK truncation, but the truncations still have a natural holographic inter-
pretation. Indeed they incorporate the RG flows associated with compactifying the d = 6,
N = (0,2) SCFT on S? or R?, with a topological twist which preserves d = 4, N' = 2
supersymmetry, and then flowing to the IR [54]. Unlike the H? case, these theories do not
flow to SCF'Ts in the IR.

More specifically, we will show that the consistent KK truncation of D = 11 supergrav-
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ity on Xy x S* leads to an D = 5, N = 4 gauged supergravity with three vector multiplets
and the gauging lying in an SO(2) x SE(3) C SO(5, 3) subgroup of the SO(1,1) x SO(5, 3)
global symmetry group of the ungauged theory. One motivation for our work came from
the consideration that the resulting N/ = 4 gauged supergravity could have additional su-
persymmetric AdSs vacua and corresponding flows between them. Indeed, such scenarios
in N = 4 gauged supergravity were studied from a bottom up perspective in [76] and thus
it is of great interest to investigate which of these scenarios can be realised in a top down
setting. Using the results of [76], we will show that the only half maximally supersymmet-
ric AdSs vacuum solution of the D = 5, N/ = 4 gauged supergravity theory that we obtain
is the one which uplifts to the AdSs x H?/T" x S* solution of [54]. We find that the D = 5,
N = 4 theory admits two non-supersymmetric AdSs x S? x S* solutions, one of which was
first found in [77], while the other one is new. However, both of them have scalar modes
which violate the BF bound and hence are unstable.

The plan of the rest of the chapter is as follows. In section we briefly review the
D = 7 maximal gauged supergravity and how any bosonic solution can be uplifted to
D = 11. In section [2.3] we discuss the consistent KK truncation of D = 7 maximal gauged
supergravity on Y, and in section we show, at the level of the bosonic fields, that the
resulting D = 5 theory indeed exhibits A/ = 4 supersymmetry. Section discusses some
subtruncations and section discusses some solutions, including the new and unstable
AdSs x S? x 8% solution. We conclude with a few remarks in section and collect some
useful results in the appendices.

2.2 D =7 maximal SO(5) gauged supergravity

The D = 7 maximal SO(5) gauged supergravity has 32 real supercharges. The bosonic
field content of the theory is comprised of a metric, SO(5) Yang-Mills gauge fields Aﬁy
i,7 = 1,...,5 transforming in the 10 of SO(5), three-forms 553) transforming in the 5
of SO(5), and fourteen scalar fields given by a symmetric unimodular matrix 7% that
parametrises the coset SL(5,R)/SO(5). Following the notations of |36, the Lagrangian
for the bosonic fields is given by

1 1 y 1 ‘ .
Lz = Rvol; — ZTi;l*DTjk AT ' DTy — ~T ' T wFy) A Flg) — 5135 %503 A Sy,

1 2)
1 i i 1 i J172 J374 1
-+ 55(3) VAN DS(S) — @eij1j2j3j4 5(3) VAN F(2) VAN F(2) + 59(7) — ‘/V0177

(2.1)

with covariant derivatives
DT = dTi; + gAR Ty + 9 AL T
i i ij J
ij ij ik kj
F(Q) = dA(l) + gA(l) AN A(l) s

where ¢ is the coupling constant. The scalar potential is given by

V= %gQ (2Tr(T2) - (TrT)2> , (2.3)
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and )7y denotes the Chern-Simons terms for the Yang-Mills fields, which has the property
that its variation with respect to Azjl) gives

00y = J0” oy N E™ AFG A SAG). (2.4)
An explicit expression of §(7) can be found in [78].

Any solution to the D = 7 maximal SO(5) gauged theory lifts to a solution of D = 11
supergravity, and the uplift formulae are provided in [34-36]. Following the notations
of [36], the D = 11 metric and the four-form field strength are given by

1 . )
ds?, = A'Y3ds? + g—QA*/W;;lDwDM : (2.5)
and
1 1 —-2,41 12 is5 6 —1 iz i3 i4risg g
Fu = 1 €in-i —EUA ptDu A A Dp + ?A F(z) A Du'® AN Du*T* i 26
| 2.6
4 - 1M iom ,,m M % % i5 % j 1 7 %
+EA 2T DT ™ " A D' A Dyt A D] —= Tjer Sigy i/ +§S(3)/\Du :
with its eleven-dimensional Hodge dual given by
1 . , 1 g
*Fay = —gUe(r) — ETf*?DT“‘uk A Dy + Q—QQT@-Eng?l*?F(g) A Dyt A Dyl
2.7)
1 — 7 j 1 — m (
+EA 17—%3‘5(3)#] N W(4) - G_Q?’A 161;’111213*75(3)Tim7}kuk A\ Dull A l)/ljl2 N DulS s
where ;! are the embedding coordinates on S* satisfying p‘y’ = 1, and
A =Ty, Dy =dp'+gAq’, U= 2T;Typ'n* — AT (2.8)

The AdS7 vacuum solution with Al({) = @ = 0 and Tj; = ¢;; preserves all of the thirty-
two real supercharges and uplifts to the maximally supersymmetric AdS; x S* solution,
which describes the near-horizon limit of a stack of M5-branes. In the seminal work of [54],
two different supersymmetric AdSs x H? were constructed which uplift to AdSs x H? x S4
solutions in D = 11, with a warped product metric and the S* non-trivially fibred over
the H? space. The fibration structure are different in the two solutions of [54] and they
either preserve 16 or 8 real supercharges (i.e. 1/2-BPS or 1/4-BPS). In both cases, the H?
factor can be replaced with an arbitrary quotient H?/T', while preserving supersymmetry,
and the case we are interested in is when I is a Fuchsian subgroup such that H?/T is is a
compact Riemann surface with genus greater than one. These solutions are dual to N = 2
or N' = 1 superconformal field theories in four-dimensional spactime respectively, which
arise from wrapping the M5-branes on a Riemann surface that is embedded in a Calabi—
Yau two-fold or three-fold respectively. In this chapter, it is the 1/2-BPS solution that is
of interest. Specifically, we will use the fibration structure of this 1/2-BPS solution, which
incorporates the topological twist condition, to construct a consistent KK truncation of
D = 7 maximal gauged supergravity on H? as well as on S? and R?. We note that it is only
in the H? case that the resulting D = 5 theory admits a supersymmetric AdSs vacuum
solution, which corresponds to the 1/2-BPS solution in [54]. For the S? case, there are two
non-supersymmetric AdSs solutions which we will discuss in section [2.6]
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2.3 Consistent truncation

2.3.1 Truncation ansatz

The ansatz for the D = 7 metric is given by
ds2 = e *%ds? + %ds* (%), (2.9)

where ¢ is a scalar field defined on the five-dimensional spacetime. We introduce an
orthonormal frame for the two-dimensional metric, which we denote ds?(X,) = e%e?, sat-
isfying the torsion-free condition de® + @% A & = 0, with a,b = 1,2. We normalise this
metric such that Rg) = 1g%0y, with [ = 1,0, —1 for ¥y = S?,R? or H? respectively. We
also denote vol(Xy) = &' Ae2. The next step is to decompose the D = 7 SO(5) gauge fields
via SO(5) — SO(2) x SO(3) and write

1
Al = f’ab +e"Ay),
A((zfs — _A?la) — wlaéa o 77Z)20¢Eabéb7 (210)
af _ pap
A(l) - A(l) ’

with a,b = 1,2 and o, = 3,4,5. Crucially, this truncation ansatz incorporates the
spin connection @ of ¥, in the expression for A% which allows one to study M5-branes
wrapping Riemann surfaces with the so-called “topological twist”, such that d = 4, N’ = 2
supersymmetry is preserved on the non-compact part of the M5-brane worldvolume. The
ansatz introduces an SO(2) one-form Ay, SO(3) one-forms A?‘lﬁ) transforming in
the (1,3) of SO(2) x SO(3), and six scalar fields ¢*® = (1% 1)?®), transforming as (2, 3),

all defined on the five-dimensional spacetime. For the scalar fields, we take
T =e 6%, T =0, T =T, (2.11)

The decomposition of the original scalar coset SL(5)/SO(5) introduces a D = 5 scalar
field A\ as well as another five scalar fields in the symmetric, unimodular matrix 7%
parametrising the coset SL(3)/SO(3). The D = 7 three-forms are taken to be

Sty =K (12) ANet — e K (22) Neév,

e (2.12)
5(3) = h(3) + X(l) A VOI(EQ) ,

giving rise to an SO(2) doublet of two-forms K, = (K, K)) transforming as (2,1), a
triplet of three-forms hfy) transforming as (1, 3) and a triplet of one-forms X(1) transforming
as (1, 3), all defined on the five-dimensional spacetime. Finally, for later convenience in this
chapter, the indices on the D = 5 fields, instead of taking the indices a, 3,7, ... € {3,4, 5},

will take

a,B,7,...€{1,2,3}. (2.13)

We can substitute this ansatz into the D = 7 equations of motion of the maximal
theory to carry out the truncation. After some tedious calculation, we have shown that
they are equivalent to a set of D = 5 unconstrained equations of motion, which establishes
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that the consistency of our KK truncation. Some details of this calculation are presented
in appendix [A| and the final D = 5 equations of motion are provided in — and
—. Moreover, these D = 5 equations of motion can be derived systematically
from a five-form Lagrangian given by

L = Rvols + LM 4 L7 4 Ll (2.14)

where R is the Ricci scalar of the D = 5 metric and the remaining kinetic energy terms
are

LF™ = — 30%dg A dp — 30%xd\ A d)\ — —7' D75, A DT,

aB ‘yp
1 —6A— a a
— —612)\+4¢*F(2) N F(Q) — € 62 2¢*K(2) A\ K(Q)
2 (2.15)
o 1_1678)\%»4(;57' 7— *Fa’}’ A F(Bgﬁ 2)\76457;%1*131/}(1& A Dwaﬂ

TN N 1 a
= 58 Tasexly Axy — g€ Tasrhiy NG

The potential terms are

Epot =g { 12)\ 16¢<l w2)2 o 678)\716¢>6ab€cd(wa7-flwc)(waflwd)
(14— OTY) - T ) (2.16)
+ %e“ld’ (*MTYT)? — 2 Tr(T?) + de” P TxT) }vols,

where 10?2 = 1)*)* and the topological term is given by

1 a (e N} 1 a a (87
= EﬁabK@) AN (DK{JQ) — glbb h(3)) + EEQ’B’YK(Q) AN Dw v A F d

top
£ 2)

1 « « ab, ) acx 17b 1 « «
hitsy A (DX{y + 29€™0" Kiy)) + o-x{i) A D)

Ty 29

_ L ay(L = P hisy N Fly) — €apy (e hig) A F,
o Caby (3) (2) aBy (3) ) (2.17)
]' 1 [0 a, a )

~ 5gcar Xy NES A Fay — Jcamilsy A DY # N Dy

1 a a af 1 ab, |« af af
- 5(1/; DY*?) A3y A Foy + Z(e "W DY) A FGY A FG)

1
7 pop af (b0 bg ay By
+2lF(2)/\F(2)/\A( g( VDY) N F, )/\F()

In all of our expressions, we have used the following definitions of field strengths and
covariant derivatives:

Foy=dAy), Fy =dAY +gAQ NAY, Dx(y = dxy + 9A% AX{
Dy = dip™ + gAgﬁW + gA@Et . DTop = dTaﬁ + gAaf)T%g +9A ) Toy (218)
a a ab b a cx aﬂ B
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2.3.2 Field redefinitions

In order to make contact with the canonical language of D = 5, N = 4 supergravity, it is
both necessary and convenient to make a number of field redefinitions. We first define

A = €apr A} (2.19)

(1)’

: ) 1
with the field strength for A‘()‘l) given by Gy = dAf‘l) — §gea5ﬂ,Afl) A AZl)' We next re-
place the one-form X(1) with a one-form ,Qf((f) and three Stueckelberg scalar fields £, both
transforming under SO(3) in the fundamental representation, via

X0y = DE + g + €ap DY (2.20)

with D& = d&~ — geagﬁ,Afl)@. Furthermore, the field redefinition introduces a new gauge
invariance, with non-compact group, in which §§* = A%(x) and 5&%{{3 = —g 'DA®, leaving
X(1) invariant. This could be used to eliminate the scalar fields £¢ if desired. If we substitute
this into the equation of motion , we obtain

*h?g) = 674)\*8¢’7;*61 (G(ﬁ2) + 2€abwalBK€2) + (Eﬁ’ypé’y + waﬁwap) F(p2)) , (221)
where we have defined the two-form
G?z) = ngz%(‘f) — ZF(QZ) , (2.22)

with Dszf(cl“) = d,ng(‘.f) — gea/gVA(ﬂl) A 0‘27&) We note that this expression/redefinition for h%)
is invariant under the new non-compact gauging just mentioned. In order to facilitate the
identification with D = 5, N/ = 4 gauged supergravity, it is useful to notice that we can
write

Gy = d(5) — 1A — geamy A’ A (&) — LA} — 5604/3714'(81) ANAL - (2.23)

We also redefine the two-forms K (az) via

a 1 (0% (0%
Ky =— EeabngQ) + e Fy (2.24)

and finally we redefine the two scalar fields ¢, A via
p3=3p—A, T=e O (2.25)

With these field redefinitions, we find that the D = 5 equations of motion given in
(A.10)-(A.11)) and (A.14])-(A.20)) can be obtained from the following Lagrangian

L =Rvoly + L5 + £ + £V + LT, (2.26)

with the scalar kinetic terms given by

1
L% = =38 2%dX A dE — 3xdps A dps — 17;—; 2 DTy A DT 2:27)

1
— e BT A DY — Se T Topax(y A Xy
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with X(1) now given by (2.20]). The potential terms for the scalar fields are the same as in
(2.16) and can be written in terms of the new fields as

Epot :g2{24 (_674¢3€ab€cd(wa7'71¢c)(waflwd> . 672503 (1/}7'71,(#))

+x72 <_%ef’“’3(l — %)’ — e P (UTY) + eQ“"S[%(TrT )’ - Tr(TQ)]) (2.28)

+ 2% (e (1 4+ ¢%) + e #TeT) }vols,

and we note that the scalar potential is independent of the scalar fields £“. The kinetic
terms for the vectors are given by

1
LV = —52 4*F(2) N F(Q)
1
_ 522{6729037;61*G?2) A Gé) + 2\/5672W37;751¢GB*G?2) A Ly
— 22T (€pypl” + 0PN ) x Gy A F)
— 2v2 (e 2P T (€qapl” + VM) +9°) Ly A F,
+ (29 Tap + 200 + €73 (" + ) Tt (€0sr€T +9W0)) % E ) A FG)

Yp

4 (2672903wa047'0761wb,8 + 5ab) *L‘(l2) A Ll(jz)} . (229)

Finally, the topological terms are simplified to just

1 a (0% [e3
LT — geabL(Q) /\ DLI()2) - (2) /\ F(Z) /\ A(l) . (230)

2.4 Supersymmetry

2.4.1 D =5, N =4 gauged supergravity

In this section, we will first provide a summary of the general structure of N’ = 4 gauged
supergravity in D = 5, coupled to n = 3 vector multiplets, and we follow mostly the
conventions of [79] (which generalised the results in [80]).

The ungauged theory [81] has a global symmetry group given by SO(1,1) x SO(5,n =
3). The bosonic field content consists of a metric, 6 + n = 9 Abelian vector fields and
1 + 5n = 16 scalar fields. The nine vector fields can be written as A[()l) and Af‘f), with
M =1,...,8, which transform as a scalar and vector with respect to SO(5, 3), respectively.
The scalar manifold is given by SO(1,1)xSO(5,3)/(SO(5)xSO(3)), with the SO(1, 1) part
described by a real scalar field ¥, while we parametrise the coset SO(5,3)/(SO(5) x SO(3))
by the 8 x 8 matrix V4 ;. The matrix V4, is an element of SO(5,3) satisfying

Vigy =n, (2.31)

where 7 is the invariant metric tensor of SO(5,3). Global SO(5, 3) transformations act on
the right, while the local compensating SO(5) x SO(3) transformations act on the left via

V= h(z)Vg, g€S0(5,3), heSO(5)xSO@3). (2.32)
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The coset can also be parametrised by a symmetric positive definite matrix M,y defined

by
Muyn = (VTV)MN, (2.33)

with M,y an element of SO(5,3). We can raise indices using 7 and in particular the
inverse, which we denote by MM¥ is given by

,1)MN .

MMN = pMPRNQ M b = (M (2.34)

In the following, we work in a basis in which 7 is not diagonal, but instead given by

0 0 1y
n=|0 -1, 0. (2.35)
1; 0 0

In order to work in a basis in which 7 is diagonal with the first five entries equal to —1 and
the last three entries equal to +1, as in [79], we can perform a similarity transformation
using the following matrix

U 0 U L (001
U=| 0 1, 0], with U=—{0 1 0], (2.36)
U 0 U V2\1 0 0

which satisfies U = UT = U~! and detf = 1. In the expression for the scalar potential in
the gauged theory, given below, we will need the following antisymmetric tensor

Moty onts = €myoms U V)" o (U V)0 (2.37)

with the indices myq, ..., ms running from 1 to 5.

The general D =5, N' = 4 gauged theory [79] is specified by a set of embedding tensors
fune = fiune), Eunv = §uny and &y These specify the gauge group in SO(1,1) x
SO(5,3) and assign specific vector fields to the generators of the gauge group. The covariant
derivative is given byf]

1
Dy,=V, - 29 (AN far Y twp + A(()1)quPtNP + A?{)MgNtMN + Ag)ufMto) o (2.38)

where )y = t;pn] are the generators for SO(5, 3), ¢y is the generator for SO(1, 1), we have
again raised indices using 77 and V, is the Levi-Civita connection. To ensure closure of the
gauge algebra, the embedding tensors must satisfy the following algebraic constraints

3frpen fra™ = 2funelq s Em®fone = Euénp — EnEpn

M =0, Eune¥ =0, funpt’ =0. (2.39)

Associated with the vector fields A(()l) and Aé‘{f), we need to introduce two-form gauge
fields B2y and B(g)as. In the ungauged theory, these appear on-shell as the Hodge duals of
the fields strengths of the vectors. In the gauged theory the two-forms are introduced as

'Here the terms involving the generators differ by a factor two with the analogous expression in [79].
However, the explicit expression for the generators that we use in (2.50]) below, also differ by a factor of
two implying that our covariant derivative is the same as |79].
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off-shell degrees of freedom, but the equations of motion ensure that the suitably defined
covariant field strengths are still Hodge dual. In particular, the two-forms appear in the
covariant field strengths for the vector fields, 7-[(()2) and Hé\g), via

1 1 1
M _ g AM M 4N P M 40 P M . 4P
Hig) =dAp) — §ngP Any NAwy — 59& Ay N Ay + 59513«4(1) A Any
1 1
+ §Q§MNB(2)N - §g§MB(2)o ; (2.40)
1 M L ou
Hizy = A + 598 AR N ALy + 598 By -

The equations of motion are invariant under gauge transformations, with spacetime de-
pendent parameters (A%, AM). In addition there are gauge transformations parametrised
by the spacetime dependent one-forms (Z(1)0, Z1yar) that just act on the one-forms and
two-forms. In particular, acting on these fields we have

1 _ 1 _
5v4?14) = DAM — §9§MN:(1)N + §9§M:(1)0,

1 M’_‘
6By = D2y — 2H{ny A — 2H ) u A’
6By = D=(1y0 — 2H@mAY .

Using the canonical ' = 4 language of [79) E|, the Lagrangian for the bosonic sector of
the theory can be written as

Lp—y = Rvols + LY, + L + L3y + Lhry - (2.42)
The scalar kinetic energy terms are given by

1
L3, = —32xd% A dS + S*DMasn A DMMN (2.43)

and the scalar potential is given by

. | L1 | 1
Ll == 50 {fMprQRsE ? (EMMQMNRMPS — MM gnMQnNRnPS>
1
+Z£MN£PQE4(MMPMNQ . UMP’UNQ) + fMé-NZfZMMN
1
—i-g\/éfMNpéQRZMMNPQR} vols . (2.44)

The kinetic terms for the vectors, which also involve two-form contributions via ([2.40)), are
given by
LYy = =X M) A Hiyy — D2 M+ Hig) A Hy - (2.45)

In order to present the topological part of the Lagrangian in (2.42)), it is convenient to in-
troduce the calligraphic index M = (0, M) which allows us to group the 9 vector fields and

ZNote that we have multiplied the Lagrangian in [79] by a factor of two.
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9 two-forms into the A{‘f‘) and Bz, each transforming in the fundamental representation
of SO(1,1) x SO(5,3). In the conventions of this paper[]we have

1
LY == —=gZ"NBuy A DBy — V292N By A darpo AT A dAC

V2
V2
3

1
+ —=gdanp X o AN N AC N AR N dAT

Nﬁ
\/_g 2dpnr X oM Xgr TAY AN ASANARNASAN AT (2.46)

2
PZMNBu A dpypo AT A X QAR N AS + %dMNpAM AdAN A dAP

10

Here the symmetric tensor dyp = damarp) has non-zero components

doymn = dyrony = dyrvo = Nuw (2-47)

the antisymmetric tensor ZMN — ZIMNT hag components
My _ Loun oM mo _ Loy
and the only non-zero components of X vn” are given by

1
Xun" = =fun" - 577MN§P +0héns Xuo’ =8&u, Xou™ = —En™. (2.49)

2.4.2 Scalar manifold

We take the generators of SO(5,3) to be given by the 8 x 8 matricesﬁ
(tan) B = OnneN — Snmus (2.50)

with invariant metric tensor 7, non-diagonal, as given in . In order to parametrise the
coset SO(5,3)/(SO(5) x SO(3)), we exponentiate a solvable subalgebra of the Lie algebra.
Following [82], the three non-compact Cartan generators H® and the twelve positive root
generators are given byﬂ

H' =V2tis, H?=V2ty, H>=2tsy,
T'=—tys, T?=—tss, T°=—tgr, T'=tp, T° =tz, T®=ty, (2.51)
T7 = _t14> T8 = _t247 T9 = _t34> TlO = _t157 Tll = _t257 le = _t35 .

We note that Tr(T*(77)") = 26" and Tr(H™H"™) = 46™" with H™ = (H™)T.

3In an orthonormal frame, we take €gia34 = +1 so that € = vols. We assume that [79] have taken
€01234 = —1 and then the expression for the topological term given here agrees with that in [79] up to an
overall factor of 2.

“Note that this differs by a factor of two compared with |79] as mentioned in footnote |1

5To compare with (3.31) of [82] we should make the identifications (7%,72,T3) = (E12, E13, Eo?),
(T4, T5,T%) = (V2 VI3 v23) (T, T8, T°) = (U}, U, U}) and (T°, T, T1?) = (UQ,UQ,UQ)
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To make contact with the scalar fields in the reduced D = 5 theory, we first need an
explicit embedding of the coset SL(3)/SO(3) inside SO(5,3)/(SO(5) x SO(3)). This can
be achieved by defining

AL =H2—H', #P=H*—H2, E'=T7T', &=73% =17, (2.52)

as well as 3 = —(H'+ H*+ H?) which commutes with all five of the generators in ([2.52)).
By introducing six scalar fields ¢; and a;, we can consider the coset element

1 = a2 :
4 1 2 3
V(S) — e\/ﬁ@ ealg 6(128 eagg ,

cHyT 00 (2.53)
- 0 ]12><2 0 )
0 0 eV

where the 3 x 3 matrix V' parametrises the coset SL(3)/SO(3) in a standard upper trian-
gular gauge (see appendix [A.5)):

e?t  e¥la; e (ajas + az)
Ve[ 0 emo  ermog, . (2.54)
0 0 e 2

Moreover, we can identify the scalar fields in the 3 x 3 matrix 7% in the reduced theory
via

T8 = (VTV)os. (2.55)

As already anticipated in (2.25)), we next note that the scalar field X, that parametrises
SO(1,1) in the N' = 4 theory and the scalar field @3 can be identified with the scalar fields
¢, A in the reduced theory via

03 =30 — A\, N =e @3N, (2.56)

Now we define the coset element, V, which parametrises SO(5,3)/(SO(5) x SO(3)) and

includes the remaining scalar fields £* and ¥** via
V _ V(S)6(&-3_,¢alwa2)T46_(€2+¢a3wa1)T56(51_1/}027/}&3)7"6

. eﬁw11T7e\/§,¢,12T8 eﬂw13T9e\/§w21T10 6\/§¢22T11 e\/inSTlQ . (257)

2.4.3 The embedding tensor

We claim that the reduced D = 5 theory is an N' = 4 gauged supergravity with gauge
group SO(2) x SE(3) C SO(5,3), where SE(3) is the three-dimensional special Euclidean
group. The compact SO(2) x SO(3) subgroup is generated by

go =145, @1 =1tsr —tog, @Go=—(tss —tis), O3 =tee —ti7, (2.58)

with [ga, 93] = €as,8,, and the additional non-compact generators in SE(3) are given by
g4 =123, @5=—tl1z, 06 =ti2. (2.59)
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The components of the embedding tensor are specified byﬁ

=0, F=-v2,

2.60
fist = foos = fzrs = V2, fors = V2, ( )

along with the fact that fanp = fiune]s ENP = ¢INPI and the remaining components are
all zero. With this specific embedding tensor, we can identify the remaining gauge fields
and two-forms of the N’ = 4 theory with those of the reduced theory via

1

1
M=o __ « « M=5+a __ «
A(l) ) A(l) - E(”Qf(l) - lA(l)) ) ‘A(l) = _E (1) » (261>

with a = 1,2,3 (and recalling (2.13))) as well as

0o _
Ay =

1 1
4 2 5 1

In particular, the covariant two-form field strengths of the N’ = 4 theory given in ([2.40)
are related to those of the reduced theory via
1 M 1 « a [e}

F Hip) = E(G(g),L(z), —F(Q)) , (2.63)

and the covariant derivative in ([2.38)) is given by
Dy =V,+g(Augo+ Ao+ Algo + Ags + A, 04 + A 95 + ) 06) - (2.64)

With the above identifications of the fields and the embedding tensor, we have shown
that the Lagrangian of the D = 5 theory given in ([2.26])-(2.30)) is equivalent to the canonical
N = 4 Lagrangian given in ([2.42)-(2.46)). We have presented a few details of this calculation

in appendix [A.5]

2.5 Consistent subtruncations

2.5.1 Romans’ D =5 SU(2) x U(1) supergravity theory

When [ = —1 (i.e. Xy = H?), we can recover the Romans’ D = 5 SU(2) x U(1) gauged
supergravity theory, maintaining half maximal supersymmetry (i.e. sixteen real super-
charges). The fact that this must be possible immediately follows from the Gauntlett-
Varela conjecture [45]. Specifically, we take

l=-1, \=3¢, (2.65)

and set all of the remaining scalar fields to their trivial values 7,3 = dap, ¥** = 0. We
keep the two-forms and package them into a complex two-form via

Co) = Ky + iKY} (2.66)

61f we use (2.36) to move to a basis in which ny/n is diagonal, then the independent components are
%iven by fizs = —5(3+1), fors = (3 —1), fias = faze = —f13r = —3(1+ 1) and fi7s = —fags = f3e7 =
s(1=1).
5 (
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Finally, we set X(1) =0 and impose the following

1
*his) = 56_20‘;56&57}7@?. (2.67)

The field content is now comprised of a metric, a scalar field ¢, SO(2) x SO(3) ~ U(1) X
SU(2) gauge fields Ay, A?‘g and a complex two-form C(9) which is charged under the U(1)
gauge field. The truncated equations of motion are given in (A.21)),(A.22)) and are precisely

that of Romans’ theory [83| arising from the Lagrangian

1 L o o
LRomans — Ryols — 300%dg A dgp — §e4o¢*F(2) N Flg) — 5¢ 20¢*F(2§5 A F(2)B

—_ 1 — —_
— 6_20¢>X<C(2) VAN C(Q) + % (C(g) A DC(Q) — C(g) A DC(Q)) (2.68)

+ g (4719 4 2%)vol; — —Fé‘)ﬁ A Fé‘)ﬁ NAgy,

| —

and DCy) = dC) — igAny N Cr2). We note that this Lagrangian can also be obtained by
directly substituting the ansatz into the D = 5 Lagrangian.

Furthermore, we can truncate Romans’ theory to D = 5 minimal gauged supergravity.
This can be achieved by imposing €% = 21/3, setting the two-forms to zero, Ci2) = 0, and
keeping a single U(1) gauge field in the diagonal of U(1) x SU(2) via F(122) = 2F() and
F(223) =F (321) = 0. The resulting equations of motion for D = 5 minimal gauged supergravity
can be derived from the following Lagrangian

LM = Rvols — 3+ 23« Fay A Floy + 3 - 2/% g?vols — 4F ) A Floy A Ay - (2.69)

It is worth emphasising that these two subtruncations cannot exist when [ = 1,0, (i.e.
Yo = S§% R?). If they did exist, then the supersymmetric solution of these theories would
necessarily be associated with a supersymmetric AdSs vacuum solution of the D = 5,
N = 4 gauged supergravity theory.

2.5.2 Various invariant sectors

There are various additional truncations, for all cases [ = 0,+£1, that arise from keeping
sectors invariant under various subgroups of SO(2) x SO(3).

SO(3) invariant sector

A simple truncation is to keep only the fields that transform as singlets under SO(3).
Setting hfy) = Xy = ™ = A = 0 and T = 6% in the D = 5 equations of motion
(A.10)-(A.11)) and (A.14)-(A.20) leads to a consistent set of equations of motion. The fields
kept in this truncation consist of the metric as well as

¢, Ay, Kl . (2.70)

It is consistent with the equations of motion to further set the two-forms to zero K (&) = 0.
We note that this truncation cannot be further truncated to minimal gauged supergravity.
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SO(2) € SO(3) invariant sector

We can slightly extend the truncation just considered, by keeping fields that are invariant
under a subgroup SO(2) C SO(3). More specifically, we consider an SO(3) triplet, with
index a = 1,2, 3 to decompose into a doublet and a singlet of SO(2), with indices v = 1,2
and o = 3, respectively. The fields that are kept in this truncation are the metric and

O, X, Awy, Kiyy , Tap = diag(e”, e, €)™ L AR x{hy » his) - (2.71)

SO(2) invariant sector

We can also consider the truncation that keeps the fields that are invariant under the
explicit SO(2) factor in SO(2) x SO(3). The fields that are kept in this truncation are the
metric and

¢, N, Tag s Ay A (3 - (2.72)

2.5.3 Diagonal SO(2)p invariant sector

The final subtruncation we consider, again for all cases [ = 0,+1, keeps the sector that
is invariant under an SO(2)p diagonal subgroup of SO(2) x SO(2) C SO(2) x SO(3),
where SO(2) C SO(3) was defined in the previous subsection. Specifically, the reduced
theory is an D = 5, N/ = 2 gauged supergravity coupled to two vector multiplets, with the
two scalar fields parametrising the very special real manifold SO(1,1) x SO(1,1), and a
single hypermultiplet, with the four scalar fields parametrising the quaternionic manifold
SU(2,1)/S[U(2) x U(1)]. Furthermore, the gauging is only present in the hypermultiplet
sector. In the following, we will demonstrate how to obtain this reduced theory. However,
we will omit the details of the explicit matching with A/ = 2 gauged supergravity and refer
readers to [1].

In restricting to the SO(2)p invariant sector, we should set ¥* = K (2 = 0in but
we can now keep two additional scalar modes in the ¢** sector with o = 1, 2, specifically,

2= @), = o -y (2.73)
This can be achieved by imposing
P = —ea” (2.74)
and keeping the fields
¢, A, Tap = diag(e”, e’ e "), 2" Any ,A%IQ) ,X?l) , h‘??,) , (2.75)

as well as the metric. Note that using (2.74) we have 2! = ¢!, 22 = 92!, Moreover, the
covariant derivative acting on z* and the field strengths are now given by

F(Q) = dA(l) , F12 = dAll) , Dz'=dz"+ geab(—A%f) + A(l))zb, (276)

and we note that z% which is a singlet with respect to the diagonal SO(2), is a doublet of
the anti-diagonal SO(2). It is a straightforward exercise to show that this is a consistent

truncation of the D = 5 equations of motion in (A.10)-(A.11)) and (A.14)-(A.20).
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We can redefine X:(g1) and h?g) into { and 23y in the following way,

X?l) = d& + g9) — 2e2° D2’

277
*hi(Sg) = 674)\78¢>+2wG(2) ’ ( )

where

and one can easily check that these redefinitions are consistent with the reduced equations
of motion. We also replace the three scalar fields {¢, A\, w} with {3, Q, ¢} defined as

1
S=e @B Q=¥ =\ =30 — S (2.79)

After substituting these redefinitions into the equations of motion, we find that the equa-
tions of motion can be derived from the following Lagrangian

L = Rvol; — %E“‘*F@) A Flg) — %ZQQZ*F(IQQ) A Fi — %229—2*0(2) NG

— 357 % dEN A dE — Q7 dQ A dQ — Ay A F5 A Gy

— 2xdp N dp — %(34@*(0&’ + 9.1y — 262" D2") A (d€ + 91y — 2€,a2°D2?) 2.50)
—2e*%Dz" A Dz" '
+ Q2820?03 — %e‘l‘”(l —2272%)% — 221?00 (272%)?
- %(34“094 + 4057 4 2e27Q% + 22037 — 2e*2(1 — Q¥?)?22}vols,

and it was shown in [1] that this resulting D = 5 theory exhibits N' = 2 supersymmetry.

2.6 Some solutions of the D =5 theory

2.6.1 Maximally supersymmetric AdS; vacuum

The maximally supersymmetric AdS5 vacuum solution is obtained by setting | = —1,
taking
=2 =2 (2.81)

with all other fields set to their trivial values, and the AdSs radius squared L? is given by
G?L* =23 (2.82)

By uplifting this solution to D = 7 and then to D = 11, it is straightforward to see that
this is the same 1/2-BPS AdSs solution, constructed in [54], which is associated with M5-
branes wrapping a Riemann surface embedded inside a Calabi-Yau two-fold. The presence
of the spin connection @® of the Riemann surface in (2.10]) corresponds to the topological
twist associated with the fibration structure of such wrapped Mb5-brane solutions.
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2.6.2 Non-supersymmetric AdS; vacua

When [ = +1, there are additional non-supersymmetric AdSs solutions. The first solution
was found in [77] and is given by

1
% = 3215+ 59V13)YP | e =3 4 V13, (2.83)
with all other fields set to their trivial values, and the AdSs radius squared L? is given by

¢’L?* = W(_% + 13V13)/3. (2.84)
It has been shown in |77] that the linearised perturbations in the ¢, A sector give rise to
modes that violate the BF bound, and hence this AdSs solution is unstable.

The second solution, which is new, is found by numerically solving the equations of
motion. It is a solution which lies within the SO(2)p truncation (2.5.3) and again has

[ = +1 with

¢ ~ 0.00721714, A~ 0.246758, w ~ —0.107101,

aa 272 (2.85)
2%2% ~0.262789, ¢g°L° ~ 1.26882.

Since z” is non-zero, the solution spontaneously breaks the anti-diagonal SO(2) gauge
group (see (2.76))). By examining the linearised scalar perturbations of ¢, A\, w, 2% within
the SO(2)p truncation, we find that the five modes with mass squared, m?, are given by

m2L* ~ 30.4342, 22.7531, 9.44854, —6.92312, (2.86)

as well as zero (associated with the phase of z*). Clearly, there is a mode which violates
the BF bound m2L? > —4 and hence this solution is also unstable.

2.6.3 Some supersymmetric AdS; and AdS; solutions

There are a number of interesting solutions of Romans’ theory that can be uplifted to
D = 11 using our consistent truncation procedure. From a dual field theory perspective,
the D = 11 solutions describe RG flows of the N' = 2 SCFT in d = 4 that is associated
with Mb-branes wrapping a two-dimensional hyperbolic spaceﬂ embedded in a Calabi-Yau
two-fold, H? C CY5.

We start with the supersymmetric black hole solution, numerically constructed in [63],
that flows from the supersymmetric AdSs vacuum in the UV to a supersymmetric AdS, x H?
solution in the IR. The uplifted D = 11 solution [75] describes the RG flow of the d = 4,
N = 2 SCFT after being wrapped on H?® with a topological twist that preserves two of
the eight Poincaré supersymmetries. In the IR, one obtains a supersymmetric conformal
quantum mechanics dual to the AdSy x H? x H? x S* solution (warped and fibred). This
D =11 AdSs solution is the one found in [64] associated with M5-branes wrapping (H? C
CY,) x (H? C CY3).

There is also supersymmetric black string solution of Romans’ theory, numerically
constructed in [54], that flows from the supersymmetric AdSs vacuum in the UV to an

"As already mentioned, we can also take discrete quotients of the H2. Similarly, we can take quotients
of the H?, H?, S? and R? factors that appear in the discussion below.
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AdS3 x H? solution in the IR. The uplifted D = 11 solution [75] describes the RG flow of
the d = 4, N = 2 SCFT after being placed on H? with a topological twist that preserves,
from a d = 2 point of view, N' = (2,2) of the eight Poincaré supersymmetries. In the
far IR, one obtains a d = 2, N' = (2,2) SCFT dual to the AdS; x H? x H? x S* solution
(warped and fibred). This D = 11 AdSj; solution is the one found in [64] associated with
M5-branes wrapping (H? C CY3) x (H? C CY3).

Finally, in an interesting recent development [55,84], novel solutions describing branes
wrapping on the weighted projective space = WCIP’[lnﬂm], also known as a spindle, have
been constructed. In particular, there are supersymmetric AdS3 x  solutions of minimal
gauged supergravity [55] and Romans’ theory [85], and the notable feature of these solutions
is that supersymmetry is not realised with the usual topological twist on . Using the uplift
formulae , the D = 11 solution has the form AdS; x x H?/T' x S*, describing the
near-horizon limit of M5-branes wrapped on a four-dimensional orbifold — x H?/T", and
is holographically dual to d = 2, N' = (0,2) SCFT. We will provide a more thorough
discussion on spindles in chapter []

2.7 Discussion

In this chapter, we have presented a new construction of consistent truncation of D = 11
supergravity on ¥y x S* where Yo = 52, R? or H?, or a quotient thereof. We have shown that
the resulting D = 5 theory is an N = 4 gauged supergravity theory coupled to three vector
multiplets, and it is only in the H? case that the resulting D = 5, N' = 4 theory can admit
the 1/2-BPS supersymmetric AdSs solution, which uplifts to the AdSs x H? x S* solution
of [54] that is dual to N' = 2 SCFTs in four-dimensional spacetime. We have also explored
the possibility of whether there are additional AdS; vacuum solutions in the reduced theory,
and we have found that the theory admits two additional non-supersymmetric solutions
which uplift to AdSs x S? x S* solutions of D = 11 supergravity, both of which are BF-
unstable. It would be of interest to complete this exploration, using the recently developed
approach of [86], and investigate more generally other types of solutions of D =5, N' =4
gauged supergravity theory.

This work can be viewed as a natural extension of the consistent KK truncation of
D = 11 supergravity on X3 x S* down to an N = 2 gauged supergravity in D = 4, where
S3 R3 or B3 = H? (or a quotient thereof) which was presented in [87]. In their work,
the fibration structure of the S* over X3 is associated with wrapping M5-branes on a Slag
3-cycle X3 embedded inside Calabi-Yau three-fold. It is clear, from the Gauntlett-Varela
conjecture [45] and all these various truncation examples [87-90], that for each of the
different configurations of M5-branes wrapping on different calibrated cycles ¥ studied
in [62,64], there will be an associated consistent KK truncation on % x S* and it would
be of great interest to work out the details. It would also be interesting to examine and
generalise our result using the mathematical tools from generalised geometry along the
lines discussed in [39,89-92]. In particular, this should provide a succinct and systematic
way of determining the specific lower-dimensional gauged supergravity theory that should
arise from higher-dimensional compactifications.
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Chapter 3

NS5-branes wrapped on Riemann
surfaces

3.1 Introduction

Many of the examples of the gravity/gauge correspondence we have discussed are realised
with brane systems whose near-horizon limits give rise to AdS spacetimes. As a result,
the dual field theories of these systems are conformal, such as the widely celebrated corre-
spondence, associated with D3-branes, between N' = 4 SYM and the AdSs x S° geometry.
In general, the principle of the gravity/gauge correspondence is not limited to just AdS
spacetimes and their corresponding dual conformal field theories. In fact, the Dp- and NS5-
branes in Type IIA /B are prime examples to demonstrate holographic dualities beyond the
AdS/CFT correspondence.

In this chapter, we are mostly interested in configurations involving NS5-branes, which
are common in both Type ITA and IIB. More specifically, we consider a stack of NS5-branes
with the string coupling taken to be zero (i.e. g; — 0). In this limit with o/ fixed, the bulk
modes which interact with the NS5 brane via the string coupling would decouple. Hence
we are left with a six dimensional, non-gravitational theory with sixteen supercharges and
a mass scale set by o [93], which is commonly known as the little string theory. For more
details of the subject, we refer readers to [93,94]. What is important here is that little
string theory admits a holographic description. Along the lines of the gravity /gauge corre-
spondence, the vacuum of string theory which asymptote at weak coupling to the D = 10
linear dilaton background, associated with the planar NS5-brane solution, is holographi-
cally dual to the d = 6 little string theory [95]. This holographic duality provides a way to
study some of the observables in this mysterious six-dimensional theory, and is also vital
to our discussion in this chapter.

In chapter [2, we have discussed AdS solutions which arise from wrapping M5-branes
on compact supersymmetric cycles. The same topological twist idea can also be applied to
configurations associated with wrapped NS5-branes, which should correspond to probing
lower-dimensional SYM theories that arise from compactifying the d = 6 little string theory
on these cycles. Holographically speaking, one would be seeking to construct supergravity
solutions which correspond to NS5-branes wrapping supersymmetric cycles in manifolds of
special holonomy. Such example was first constructed in [59] by wrapping NS5-branes on
S? C O3, which provides a gravity dual description of topological twisted A/ =1 SYM in
d = 4. Applying the same twisting idea, supergravity solutions corresponding to wrapped
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NS5-branes with worldvolumes R'? x (52 C CY3) and R x (8% C CY3) were constructed
in [96,97] and [98] respectively. From the dual field theory perspective, these solutions
describe SYM theories arising as the IR limit of the little string theory compactified on
supersymmetric cycles with a topological twist.

The existence of these wrapped NS5-brane solutions [96-98] suggests that one can trun-
cate Type ITA supergravity around them to obtain lower-dimensional gauged supergravity
theories. In [2], we answered this in the affirmative by presenting new consistent KK
truncations of D = 10 Type ITA supergravity on (i) Xy x S%, where ¥y = S? R?, H? or
a quotient thereof, to a N' = 4 gauged supergravity theory in D = 5, and (ii) 33 x S3,
where Y3 = S3, R3, H? or a quotient thereof, to a N' = 2 gauged supergravity theory
in D = 4, at the level of the bosonic fields. The S® factor common to both truncations
corresponds to the aforementioned S truncation of Type IIA supergravity to the D = 7
maximal 750(4) gauged supergravity, and this D = 7 theory admits a “vacuum” solution
that uplifts to the NS5-brane near-horizon, linear dilaton solution. The further truncations
on a Slag/Kéhler 2-cycle 35 and Slag 3-cycle X3, which are embedded inside Calabi—Yau
two- and three-fold respectively, correspond to the worldvolume of NS5-branes wrapping
on these supersymmetric cycles. For ¥y = S? and X3 = S3, the resulting D = 5 and D = 4
theories admit supersymmetric solutions, which uplift to R x R x S? x S3 [96,/97] and
RM x R x §3 x 53 [98] solutions of Type ITA respectively, describing the near-horizon limit
of NS5-branes wrapping on these cycles.

To carry out truncations (i) and (ii), the straightforward method would be to first reduce
the D = 10 Type ITA theory on S* to obtain the maximal 1.SO(4) gauged supergravity
in D = 7, and then further reducing on a Slag/Kéhler 2-cycle ¥ to obtain the D = 5
theory, or on a Slag 3-cycle X3 to obtain the D = 4 theory. Instead, we show that the
KK truncations can be carried out by performing Inénii-Wigner (IW) contractions directly
on the D = 5 and D = 4 theories obtained from Mb5-branes wrapping s and 3. In
terms of the eleven-dimensional supergravity theory where the M5-branes live, the IW
contraction corresponds to the group contraction which takes S* — S% x R, where S* is
the internal 4-sphere of Mb5-branes. The opening of an isometry direction along R allows
for the consistent truncation of the eleven-dimensional theory to the Type ITA theory, as
well as the interpretation of M5-branes becoming NS5-branes. This contraction procedure
was realised in [47] as a consistent transition from the D = 7 maximal SO(5) gauged
supergravity theory to the D = 7 maximal 1SO(4) gauged supergravity theory. Our
consistent truncation procedure is summarised in figure |3.1.

The key message from figure is that by virtue of the consistency of the IW contrac-
tion, once the supergravity theory describing Mb5-branes wrapping on a supersymmetric
cycle is known, the supergravity theory describing NS5-branes wrapping on the same cycle
can be obtained accordingly. To be concrete, we first describe our procedure for trun-
cation (i). We begin from the consistent KK truncation in D = 11, first by reducing
on S? to the D = 7 maximal SO(5) gauged supergravity and then further reducing on
the Riemann surface Xy. The resulting theory of this truncation is a D = 5, N' = 4
(i.e. sixteen real supercharges) gauged supergravity coupled to three vector multiplets
with gauge group SO(2) x 1SO(3), corresponding to the consistent truncation associated
with M5-branes wrapping a Riemann surface described in chapter Here, at the five-
dimensional level, we perform the IW contraction given in [47] to obtain a new D = 5,
N = 4 gauged supergravity theory coupled to three vector multiplets with scalar manifold
SO(1,1) x SO(5,3)/(SO(5) x SO(3)). The scalar manifold of this new D = 5 theory is
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1 .
D =11 SUGRA 5 reduction o 1TA SUGRA

Ch S

IW contraction D =7 150(4) SUGRA

22, 23 i27 23
D =5 N =4 SUGRA [ljs9), IW contraction. D =5, N =4 SUGRA,
D=4, N =2 SUGRA &7 D=4 N =2SUGRA

Figure 3.1: The possible routes of truncation. The IW contraction can be performed at
any of the specified points, but it is computationally easiest at the 4/5-dimensional level.

exactly the same as the D = 5 theory in [1,[89] as outlined in chapter . However, this
should not come as a surprise since the IW contraction procedure keeps the same number
of degrees of freedom. Along with the stringent condition set by D = 5, N' = 4 supersym-
metry, this guarantees that the scalar manifold must remain the same. The gauge group
of the reduced D =5 theory is SO(2) x G a0, when Xy = R2/T", and SO(2) x Gag,, when
¥y = S%/T or H?/T, where G awe. and G o - are two, five-dimensional matrix groups whose
Lie algebras are listed in [99]. The groups GAé?% and GA%18 are isomorphic to SO(2) x5, R*,
where the action of the semi-direct product depends on the curvature of the Riemann sur-
face Ys. As a consequence of the appearance of these unconventional gauge groups, the
precise details of the gauging, such as the embedding tensors, as well as the vacuum struc-
ture of the theory, are completely different from that of |1,[89]. The method for truncation
(ii) proceeds analogously. We first truncate the D = 7 maximal SO(5) gauged supergravity
on a Slag 3-cycle X3 as described in [87] to obtain a D = 4, N' = 2 gauged supergravity
coupled to a single vector multiplet and two hypermultiplets with gauge group U(1) x R™.
Then, at the four-dimensional level, we perform the same IW contraction and obtain a new
D = 4, N = 2 gauged supergravity theory coupled to one vector multiplet and two hyper-
multiplets with scalar manifold SU(1,1)/U(1) x G2)/SO(4) and gauge group R* x R*
|I|. Similar to the D = 5 case, the scalar manifold of this new D = 4 theory is exactly the
same as the reduced D = 4 theory in [87], but the precise details of the gauging and the
vacuum structure of the two theories are completely different.

In the following, we will focus only on discussing the consistent truncation on Y, and
for the truncation on X3, the IW contraction is carried out in a very similar way to the
Yo case and we refer readers to 2| for the details. The plan of the rest of the chapter is

For ¥3 = S3, truncation (ii) corresponds to a consistent KK truncation of Type IIA theory on
S3 x S§3. We note that the resulting D = 4, N' = 2 theory is not related to the D = 4, A" = 4 Freedman-
Schwarz model [100] which can also be obtained from reducing Type ITA on S? x 2 [101] (for more details
see [101,/102]), as the precise details of the two truncation procedures are different.
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as follows. In section , we review how the D = 7 maximal SO(5) gauged supergravity
relates to the S® reduction of Type ITA to the maximal I50(4) theory through the TW
contraction. Following this, in section 3.3, we discuss the consistent KK truncation of the
ISO(4) gauged supergravity on ¥ and section [3.4|demonstrates, at the level of the bosonic
fields, that the reduced D = 5 theory is indeed an N’ = 4 gauged supergravity theory. In
section [3.5], we reproduce some known solutions of the D = 5 theory. We conclude with a
few final remarks in section [3.6] and collect some useful results in the appendices.

3.2 D =7 maximal /50(4) gauged supergravity

In chapter , we discussed some aspects of the D = 7 maximal SO(5) gauged supergravity
and its association with M5-branes. In D = 7, maximal supergravity theory (i.e. thirty-two
real superchagres) is not restricted to only the SO(5) gauge group. It is possible to consider
gauge groups such as 1SO(4) and SO(3,2), and we refer readers to [103] for a general
discussion. Here we are interested in the analogous wrapped brane story involving NS5-
branes, and the natural setting for this is the D = 7 maximal 1.SO(4) gauged supergravity
theory. For clarity, we will denote the fields of the 1.S50(4) theory with tildes to distinguish
them from those of the SO(5) theory.

The D =7 1S0O(4) gauged supergravity can either be obtained by performing a Pauli
reduction of Type ITA supergravity on S®P| interpreted as the internal 3-sphere of a stack
of NS5-branes [36L/46], or by taking an IW contraction of the D = 7 maximal SO(5) theory
which brings the SO(5) gauge group to ISO(4) [47]. The IW contraction procedure, as
outlined in [47], involves decomposing the SO(5) vector indices in a 4 + 1 split, then
rescaling all the fields by a contraction parameter k which is set to zero at the end such
that the gauge group becomes IS0(4). The decomposition and rescaling of the bosonic
fields of the SO(5) theory is given by

g=kg, Ay =kKA1 A =kTALY, Sk =k"'Ss. SE =kSj,

S s S —K3VA(T7)A . (3.1)
i —k3§>1/4(1~”%)A o1 4+ kgffl/‘lTCD%C%D » Gmn = Gmn s

with A, B € {1,...,4}. Compared to [47], our 5 index is their 0"} index. We note that

there is an error in the (0,0) component (i.e. our (5,5) component) of the decomposition

of the scalar coset Tj; given in [47], which rendered det T" # 1. We have fixed this issue in
B).

After substituting into the equations of motion of the SO(5) gauged supergravity
and taking the singular limit k& — 0, one obtains the D = 7 maximal /SO(4) gauged
supergravity, whose equations of motion are provided in appendix B.I} In terms of the
D =11 and the D = 10 Type ITA theories, the IW contraction corresponds to taking the
S* on which D = 11 supergravity is reduced on, and turning it into S x R, with R now
an isometry direction. To see this, let u’, i € {1,...,5}, be the embedding coordinates
of S* in R® satisfying py’ = 1. The IW contraction in (3.1)), now interpreted as a set of
singular rescalings of the metric and 4-form flux in D = 11 supergravity, comes with an
additional rescaling of the embedding coordinates p¢ [47]. We now split x¢ into p# and p®

2The existence of a consistent KK truncation of Type IIA supergravity on S® leading to D = 7, 1SO(4)
gauged supergravity was first suggested in [104].
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with A € {1,...,4}, and then rescale

=t =k (3.2)
In the singular limit & — 0, the S* constraint equation becomes

At =1, (3.3)

with /1% unconstrained. This results in a degeneration of the topology from S* into S? x R,
with ji* parameterising the S® and i® parameterising R.

The bosonic field content of the I.SO(4) gauged theory consists of a metric, SO(4) Yang-
Mills gauge fields flé’)g transforming in the 6 of SO(4), four 1-forms A(1) transforming in

the 4 of SO(4), 3-forms S’(Ag) transforming in the 4 of SO(4), a 3-form S(3) transforming in

the 1 of SO(4), four scalar fields 7 transforming in the 4 of SO(4), and ten scalar fields
given by ® and a symmetric unimodular matrix 748 parametrising the coset manifold

SL(4,R)/SO(4). By defining the Yang-Mills field strength
Fop = dAGY + GANS N AGY, (3.4)
the covariant derivatives
A‘?S = dA5A + gAAB A(1) ,
DTyp = dlap + GAN Tes + §AGS Tac
Dt = dit + gTBA(l) )

(3.5)

the following useful combinations of fundamental fields

Gy = Sy — 75

Gy = DAY + 7P FG;, (3.6)
Gy - DF — g,

and making use of (B.5)) to integrate 5(3) as

1 _ . 1. - . .
S = By + geancn (P4 A AGE - JaAS AAGEAAED) . )

the overall Lagrangian for the bosonic sector is given by
Liry = Rvoly = 2-@%5db A db — (T T5hi DT A DT,
— %@ MTap*G () NGy — ié—l/zfgéT];D*F@) NEGP
- %q’?’/ iGN GG - ; HSs) A Sa) %‘1’1/ TapiGiy ANGE (38)
= Vil + 52 DSy A 5y + 3y £ Sy 1 AT + 20
21~ eABCDS A DA?lB A F(Q) + iEABCDg(g) N F(Q)B A A?lc) A 121?11; ;
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with the scalar potential given by
V= 2~2q>1/2 <2Tr(T2) (TrT)2> , (3.9)

and Q(7) denotes the Chern-Simons terms depending on A{‘l? and fl?ﬁ, which will not
be important for our discussion in this chapter. There is a consistent truncation of this
maximal theory to a half-maximal SO(4) gauged theory (i.e. sixteen real supercharges)
obtained by setting

=0, A})=0, S4=0, (3.10)

where the removal of the fl?f; fields breaks the 1.SO(4) gauge group to SO(4), and we
will call this the half-maximal truncation throughout this chapter. In the context of
the Type ITA theory, the half-maximal truncation corresponds to the removal of the Ra-
mond—Ramond sector.

Any solution to the D = 7 maximal 1SO(4) theory lifts to a solution of D = 10 Type
ITA supergravity, and the uphft formulae are provided in [36,46]. Most notably, the linear
dilaton solution with A S = 0 and TAB = 04p preserves sixteen real supercharges
and uplifts to the supersymmetric D = 10 solution, which describes the near-horizon limit
of a stack of NS5-branes. Similar to the M5-brane case, supersymmetric solutions corre-
sponding to NS5-branes wrapping calibrated cycles, like an S? in C'Y5 and an S? in CY5,
were constructed in [96}97] and [98] respectively. The uplift of these solutions to Type ITA
supergravity are holographically dual to compactifying the little string theory on supersym-
metric cycles with a topological twist, and the geometry of the solutions has the internal
3-sphere S? non-trivially fibred over the cycles. These supergravity solutions motivated
our construction of the corresponding consistent truncations of the D = 7 ISO(4) theory
on the calibrated cycles. By virtue of the consistency of the IW contraction, we can obtain
such consistent KK truncations by directly applying to the corresponding truncations
associated with M5-branes wrapping on the appropriate supersymmetric cycles, as we will
demonstrate explicitly in the upcoming sections.

3.3 Consistent truncation

3.3.1 Truncation ansatz

The analogous ansatz for NS5-branes wrapped on Riemann surfaces is the following. The
D = T metric is given by

ds? =e 4¢ds5 + eﬁd’dSZ(ig) : (3.11)
We introduce orthonormal frames {¢™;m € {0,...,4}} and {€%a € {1,2}} for both ds?
and ds? (22) respectively, and let ©™ and @° ", be the corresponding spin connections. The
metric of the Riemann surface Y, satlsﬁes Ray = 1G04 with [ = 1,0, —1 for ¥y = 5% R?

or H? respectively. The fields are decomposed via SO(4) — SO(2 )1 x SO(2),, where the
SO(4) vector indices decompose accordingly as i = (a, «), with a € {1,2} and « € {3,4}.

47



The 150(4) gauge fields are taken to be

~ 1 - ab 5

Ay = 6" + Ay,

A((zfs _ _A?la) _ Izlaéa . Eaqu2agb7

JP — h iy (3.12)

Similar to the M5-brane truncation discussed in chapter [2] the ansatz again incorporates
the spin connection @ in the expression for fl‘g’), which corresponds to the topological
twist condition that ensures the preservation of supersymmetry on the non-compact part
of the NS5-brane worldvolume. For the three-forms, we take

Sty = Ky N " — Ky NE,
Sty = hiy) + Xy A vol(Xa), (3.13)
Sty = Hiz) + Xy A vol(s).

For the scalars parametrising the coset SL(4,R)/SO(4) and the scalars 74, we take

7'=0, T"=7",

Tab _ 676;\§ab, Taa _ O, Taﬁ _ 665\7-01,8 : <314>
where the symmetric, unimodular matrix 7*# parametrises the coset SL(2,R)/SO(2), all
defined in the five-dimensional spacetime. Moreover, we will call these D = 5 fields the
NS5 fields, which are distinguished notationally from the M5 fields by a tilde.

Clearly, we can substitute the ansatz directly into the D = 7 equations of motion to
obtain a D = 5 theory. However, as explained earlier, it is quicker, and perhaps more
instructive to utilise the IW contraction that connects the SO(5) and IS0O(4) theories. To
achieve this, we must identify the NS5 fields in terms of the M5 fields presented in chapter
via the IW contraction procedure outlined in (3.1).

Making use of , we arrive the following identification between the M5 and NS5
fields

_ ~ 2 ~
g=Kg, e =k, =k 6=5+logh, v =i,

_ | | . .
PP =T, A=\ — 57 los®+ Slogk, TP = |108po/ 1220 e
To5 _ _k,5/3(i)5/12€25\(7‘7~;)a’ 755 _ 1,20/3 @)—5/66—4?\ I &)5/1262X%7~%> (3.15)
Ay =k Aw, AY =k2PAny, AR =KV, Xty =KX

5 Y a 31-a a a 5 4T
Xy = Xy, Kby =k Ky, hiyy =khiy, D=k "Heg.

We now substitute (3.15)) into the D = 5 equations of motion obtained from the con-
sistent truncation associated with wrapping Mb-branes on a Riemann surface, recorded
in appendix [A] to obtain a new set of D = 5 equations after taking k — 0. This new
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set of D = 5 equations of motion is recorded in appendix To present the five-form
Lagrangian that encodes the equations of motion, we define the following SO(2) x SO(2)

covariant derivatives

Dhiy = dhiy + Geap Ay Ay,

DV, = dV§) + Geap Ay A V)

D)Z?l) = dx(y + geaﬁj(l) A X?l) ,

Dy = di™ + Gead™ Aqr) + Geapth™ Aqy

DTap = dTas + Geéar TrpAq) + Gepy Tar Ay
D7 = d7* + Jeas Ag),

DI = 4 + e, WA .

the field strengths R ~ ~ N
F(z) = dA(l) , f(g) = d-A(l) )

the following combinations of our fundamental fields
Gy = (The)® = (T7) H),
Ty = DVE) + €77 F
oy = (Txw)* = (T7)" Xqy,
P((Ji) = D\Da _ gwqx)¢aa _"_ %QDVI/}(ZOL ,
Q=D+ 4V,
R(l = ql[l + f_ad}aa7
and integrate (B.21)) and (B.23) to write
. . 1 - . 1 - .
H) = dle) + A0 A + 540 A Foy
X(l) = dé + eaﬁqﬂaaﬁijaﬂ + f]l}i(l) .
The five-form Lagrangian is then given by
Lis) = Rvols + LI + L7 + L,
where R is the Ricci scalar of the D = 5 metric, the remaining kinetic terms are
, - - o~ o~ B~ o~ -
L5} = —303d) A dj — 36RAA N dA — 7 O7*3dP N dD

1o o~ o~ =~ -~ ~ c .~ .

= 5 Tos T %D Toy A DT — @712 T 15Dy A Dy
F A—64~ Da pa 1~ A Ao ~

— OYIPNTORPG) A PGy — SO sk Q) A QY
a1 195 v Lei/a 651267 1550 =8

= 5@ eT RN ) A X — @V LIS A 5
li i agiiiem o la_im agi15es . 5

_ 5(1) 1/264¢+12)‘*F(2) N F(g) — 5@ 1/2€4¢ 12/\*./—"(2) AN F(Z)

1 B3/4 4¢~>—6?\7'~ -1z Ja 78 F1/4 —6A—24% 1ra Ta
— éq) e of *J(2) A J(Q) — q) e *K(2) AN K(2)

L=y g5- 7 3 L2140 6348851+ Fa =B
— S &7 Rl A Hiy) — 5@ [T RGN G -
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The potential terms are
£y = =g {7 (FAWT) =20+ 9%+ AET 1)+ 3R
+ %5}51/2@4@3 (2@12:\Tr(7~'2) — 6125‘(Tr7')2 — 4Tr7')

4 U2 120160 abeed ((fagr-1 ey (b T 1d) (3.22)

+ 2@3/4 —6A— 16(;5 ab Cd(@baT_ ,¢ )Rbéd
+ %é—1/2€125\—16¢~>(l _ @2}2)2} V~Ol5 :

where 12 = ¢**)%@ and R? = R*R*, and the topological terms are given by
LR = geabK(g) N DKy + 2eq, RO Kly) A Hizy + 2eat)™ Ky A (TG 3)”

2 M, J,ac 7 r-a 2 Da ra T
+ EEQIBDw A J(%) AN K(Q) + jP(l) AN K(Q) VAN .F( QQ(D ( 0'(1)) AN H(3)

2 - - -
— ZeapRODY™ A Q(l) A Hey + R*Fo) A He) + 5z (l — wZ)eaﬂQ‘{l) A Qfl) N Hs)

g
Lm e o e 1
+ 7D ow)*) AT G —Eeaﬁ(’f 1) A Jigy A Flay
2 .- L o
TG (DW N+ gl = )T + Gea RO )
1 - 1 .
+§(T @) A QY geabR“DRb/\}" ) A Fo)

1 - - 2 ey -
o 8 = ~ aa Db B
+ 552 s AN Oy A (d~ + glA(l)) A o)+ Zantast™ Py A Ty N )

2 a1y, 7,00 TJa n l Ao Jo n 1 Taa, TaB Ao 7 n
= SRUDY A Sy N Floy 2@ A iy A Bl = 260 QG) A TGy A Pl

1 . 1
—Eeab%wmwbﬂc}( A Ty A Fea) geabeaﬁeww OO N Ty N Ty (3.23)

Any solution of the equations of motion in can be uplifted to D = 10 Type ITA
supergravity. This can be done by first using - to uplift to the 1SO(4) gauged
theory in D = 7, then using the uplift formulae in [47] which connect the 1.50(4) gauged
supergravity and the D = 10 Type ITA theory.

3.3.2 Field redefinitions

In order to make contact with the canonical language of D = 5, N' = 4 gauged supergravity,
it is again convenient to make some field redefinitions. We first replace ('T amy)* by

introducing two one-forms sz 0 and two Stueckelberg scalar fields £,
(T'60))" = DE* + o/, — 7 DZ + G=V) — eap (;Z“%a’@gl) + 21?2“[)1;‘“3) . (3.24)

where - 3 o - .
DE™ = dE™ + e’ Ay, DE=d=+ glAgyy, (3.25)



and we note that the SO(2) gauge symmetry is non-linearly realised by =. Substituting

this into (B.22), we deduce that
ALY = D) — leay DV — 1DF A Ay + €0, € Froy + 2 Ky, (3.26)
+ 20" R Fo) + gy " 0% Ty + EJ)

where

Dﬂf}f) = dﬁi(cf) + Geap Ay A 42;([13) —1Ag A @?1) ; (3.27)
and we note again that the SO(2) gauge symmetry is non-linearly realised by szf(‘i‘) We
also need to dualise H(3). There are two ways to achieve this, the first way is to integrate

(B.28)) directly, and the second way, which is easier and perhaps more intuitive, is to add
the following term

,Cdual @ A (d]:f(g,) — .7}(2) A F(Q)) , (3.28)

to the original Lagranglan with %’ introduced as a Lagrange multiplier to enforce the
Bianchi identity dH ]:( )/\F (2)- Treating H 3y now as a fundamental field, the variation
of the total Lagranglan L+ L’d“al with respect to Hs) gives rise to
18¢ Jo 1~~o< 1~a~;* 1':*~~a
O~ *H —d,% Q)/\ A+ D — —7°D= — —EDT
g g

g (3.29)

l ~ ~
a B
+ 2§€aﬁQ(1) A\ Q(l) s

which we will substitute back into the total Lagrangian 5(5) —|—£?5u)al. Finally, it is convenient

+ QGGbRaK&) + RQﬁ(z)

to redefine the two-forms K, (5 Via

1 - . -
EeabLl(’Z) + R Fa) + €apeapt T3y, - (3.30)
Making use of the above field redefinitions, the kinetic terms for the vectors can be rewritten
as

Ky = -

1% 124 1237 & 1/4,—-67—24% fra -

1-
2
1= 1~ b-6A—15 7 7

§q) 1/2 46~ 12,\*]_—(2) /\]_- _ 5@3/464%&7;61*&](%) A Jé) (3.31)
1

N . N 1= 10s Gnsbite Ao« A
+ 2(1) *H(g) A H(g) + 5(1)1/466>\+8¢7;B1*G (3) A Gﬁg

We note that the positive signs in the E[ (3) and G"“ terms do not indicate the presence of
ghost terms, as when we consider the dualised ﬁelds and - which encodes the
true fundamental degrees of freedom, we obtain a sign ﬂlp from applying the Hodge star
twice. The topological terms are simplified to

1 . gl ~ - - .
£T 2g€abL(2) VAN DLI(Jz) - %Eaﬁ‘/(oll) N ‘/(If) A A(l) N F(Q)
— €ap (Dgf;?) —~ lemJ&)> AVE A F’z)
T 7 ~a Jo ! 1 Fa Ao (332)
— oy AN A (%’(1) -7 {%) ~eas Q) geaﬁdT } + 56 Q<1>>

]_ ~a =~ ~ ~ l ~a ~ ~ ~
+ EGQIB <l7’ + €a7577> Floy N Fay A Q(l) — geang A Q/(Bl) NAqy N Fy .
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Up to total derivatives, we can rewrite the topological terms as

[T Qiggabz;g) N DLl — LewsVily AV A Ay P (3.33)
~ €ap (d [»Qf(% - leaﬁff(f)] + Gear Ay A [WH) - lew‘N/ﬁ)} + gV A fl(l)) AV A Fiey
oy iy (B = 7 [ — leas )y = poeapde”] + L7 0E - 200V + 2600 )

(1) 7 e ) T gg"al 25 OREA
which, as we will show in the next section, is the form in which the N' = 4 supersymmetry
is manifest.

3.4 Supersymmetry

For discussion of the general structure of N' = 4 gauged supergravity in D = 5, we refer
readers back to section [2.4.1] In this section, we will provide the required ingredients to
demonstrate that our D = 5 theory indeed exhibits N' = 4 supersymmetry.

3.4.1 Scalar manifold

We take the same set of generators of SO(5,3) presented in section to parametrise
the coset SO(5,3)/(SO(5) x SO(3)). To make contact with the scalar fields in the reduced
theory, we would first need an explicit embedding of the coset SL(2,R)/SO(2) inside
SO(5,3)/(SO(5) x SO(3)). This can be achieved by defining

H=H—-H' £=T". (3.34)
In addition, we define H = —H' — H? which commutes with the above two generators.
We introduce three scalar fields {¢1, @2, p} to form the following coset representative
eV 0 0 0 0
S 0 10 0 0
Vi) = eva¥ T vaeetlent = 0 01, 0 0], (3.35)
0 0 0 eV 0
0 0 0 0 1
where the 2 x 2 matrix V' parametrises the coset SL(2,R)/SO(2) in the standard upper
triangular gauge
- €<p1 e‘Plp
V= ( 0 o > . (3.36)

We can identify the scalar fields in the 2 x 2 matrix 7,4 in the reduced theory as

201 201
Tapg = (VIV)ag = ( o e > . (3.37)

62901p e~ 2¢1 4 62<P1p2

Collecting our results, the exact parametrisation of the coset SO(5,3)/(SO(5) x SO(3)) is
given by

V _ V(S)6%903]{3eT3T2€T4T36(5_¢13¢14_¢23w24)T4
) 6(54‘1‘[‘1’1+R1W13+[‘1’2+RQ]¢23)T56(—fg‘f‘[‘l’l+R1W14+[‘1’2+R2]T/’Q4)T6 (338)

. e\/iw13T7 eﬁ¢l4T8 e*\/i\llng e\/i¢23T10 e\/ﬁw24T11 e*\/E\I/Qle
Y
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where we identify ¢y and 3 as

1
pr =30+ log .

3 (3.39)
Y3 = 3)\—3¢+§10g61>.

The remaining SO(1,1) part of the scalar manifold is described by a real scalar field X,

¥ = pl/8em93A (3.40)

3.4.2 Gauge group

In this section, we will demonstrate that the gauge group of the reduced D = 5 theory
is SO(2) x (SO(2) xx, RY), where the action of the semi-direct product depends on the
curvature of the Riemann surface ¥y. Specifically, it is SO(2) x G awo when [ = 0, and

SO(2) x G 4o o when [ = =£1, where G 100 and G 49 = are two five-dimensional matrix Lie

groups with Lie algebras AL, and A3 ¢ respectively.

The compact SO(2) subgroup of the gauge group is generated byE|

9o = t45 ) (341)

which is associated with the gauge field Ay, and the non-compact part of the gauge group,
SO(2) xx, R, is generated by

g1 = —taz, @Go=1t13, @3=—t3, @Ga= —l37, @5 =tos—li7r+Iti2, (3.42)

which are associated with the one-forms &7, V(§, and A respectively (see (B.46)). We
note that the one-form %, does not participate in the gauging. The generators in (3.42)
satisfy the following commutation relations

91,05] = =92, [92:05] =91, [03,05) = =g — 94, [94,05] = —lg2+93. (3.43)

Rather remarkably, the algebra associated to [ = 0 is not isomorphic to that associated to
[ = 4+1. These two distinct algebras belong to two different families of five-dimensional real
Lie algebras, namely A%, and Af 5, which are listed and discussed in [99]. The subscripts
m and n in AP = denote the dimension of the Lie algebra and the n-th algebra on the list
of [99] respectively, and the superscript p in A7,  denotes the continuous parameter(s) on
which the algebra can depend on. Specifically, when [ = 0, the algebra is described by

AL, and its minimal matrix group representation is given by [103] H

cosf sinf x, w3
—sinf cosf x9 x4

Mage =1 0 1 0]’
0 0 0 1

(3.44)

3The explicit representation of the generators of SO(5,3) can be found in section
4The minimal matrix group representation of A?ff - 1s in general a 5 X 5 matrix, however the minimal

representation is reduced to a 4 x 4 matrix when p = ¢ [105].
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while the algebras for the I = %1 cases are described by A2 4 and their minimal matrix
group representations are given by |105]

cosf sinf x; x3
| —sinf cosO xy x4
M= 0o o 1 -] (345)

0 0 0 1

where 0, x1, x9, x3, x4 are real parameters. The explicit representation of these generators
3.42)) can be found in appendix , which after exponentiation recovers both and
3.45]).

To understand the structure of the gauge group, let’s focus on [ = 0, and consider two
of its elements

cos) sinf w1 x3 cos¢ sing Y1 ys
| —sinf cosO xy w4 | —sing cos¢ y» Y

My = 0 o 1 of M= 0 0 1 0f" (3.46)
0 0 0 1 0 0 0 1

The composition M3 = M; M, sends

cosf sinf cosf sind
O 0+¢, zizt ROy, RO)= (— sin 6 cos@) (— sinf cosf

) . (3.47)

where i € {1,2,3,4}. From this simple calculation, we observe that this group is isomorphic
to SO(2) x RY. When [ = 41, the above map becomes a bit more complicated, but the
overall SO(2) x R* structure remains the same. Putting it all together, we conclude that
the gauge group of our reduced D =5 theory is SO(2) x (SO(2) x5, R?Y).

3.4.3 The embedding tensor

The components of the embedding tensor are specified by
=0, " =-v2,
firs =V2, fas=—V2, fos=—-V2l,
with the remaining components equal to zero, and satisfy the algebraic constraints given

in (2.39). With (3.48), we can identify the gauge fields and two-forms of the canonical
N = 4 theory with those of the reduced theory via

1

(3.48)

and
1 1
1 3 4 2 4 3
Aw = 7 (1) — V) Al = 7 (o) + V1))
1 l 1 1
_ (67 x B ju [anieh g} oo
A?n = _E (%)(1) -7 [527(1) - lfaﬁvu) - %EaﬁdTﬁ + @TQ‘L — =V + 55 Q(1)) 5
1 1
84 :—L2 ’ 65 :__Ll ’
(2) q (2) ©) g (2)
Ay =Ly = Ly e Ly (3.50)
(1)__\/5 1) (1)_\/5(1)’ (1)_\/5 (1) :
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and the remaining components of Aé\f) and Bg\g) are all zero. For completeness, the corre-
sponding covariant 2-form field strengths are given by

1

and
1
Hiy = 5 (A9 = W] + 94w A [y + V] + 90V A A)
1
2 4 3 3 4 4
Hiy =75 (d [y + V] = gAmy A [y = VL] + glVE A Agy)
1 @ o l 1 — —_ _ « 1 o o
H?2) — __2d <@(1) — T |:,Q{(1) — leaﬁv(% — %eaﬁdT'B + Z7-2d: — =T V(l) + 55 Q(l))
1 o a 1 &
i [427(1) l€a6v(§})] AV + 2\/§gl€aﬁv(1) A V(/f) ’
1 1
4 1 5 _ 2
Hey = Zloy, Hey = Fho:
H __ L pys HTy = L pys HE L r 3.52
o=~ /PN e = pPV, e = ale) (3.52)

With the above identifications, we conclude that the Lagrangian of our D = 5 theory is
equivalent to the canonical Lagrangian of D = 5, N' = 4 gauged supergravity. We have
presented a few details of this calculation in appendix [B.4!

3.5 Some solutions of the D =5 theory

In this section, we reproduce the one-parameter family of 1/4-BPS solutions reported
in [96,97] corresponding to a stack of NS5-branes wrapping on an S? or H? (ie. | = +1
or | = —1). The solutions with an S? describe pure N’ = 2 super Yang-Mills theory in
d = 4 arising as the IR limit of the little string theory compactified on S? c CY, with
a topological twist, while the dual field theory description of the solutions with an H? is
unclear. From the five-dimensional perspective, the solutions lie in the sector where the
only fields are the metric, ¢, A, and ®. The five-dimensional metric is given by

dsi = gizie 3(@20g%) [ds*(R"Y?) + g*e**d2?] (3.53)
where z is the radial coordinate, and the function z(z) is defined as

1(1 + ce210°%)

—2z
—1—
‘ 29°z

(3.54)

Here c is a real integration constant that, for [ = 1, parameterises the different flows from
the UV to the IR. The values of the scalar fields are

5 = gPre @A) )\ = —g R (3.55)
The above solutions can easily be uplifted back to D = 10 using our KK truncation

procedure, and the explicit ten-dimensional uplift can be found in [96}97].
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For | = 0, we report the following domain wall solution
2
=D dsd = 2ds’(RYP) + dr?, (3.56)

with A = 0 and log® = —12¢. This corresponds to the near-horizon limit of a stack of
NS5-branes (i.e. linear dilaton solution when uplifted to D = 10).

3.6 Discussion

In this chapter and [2], we have presented two consistent Kaluza—Klein truncations of
D = 10 Type IIA supergravity on (i) 35 x S, where 3y = 52, R? H? or a quotient thereof,
and (i) X3 x 3, where ¥3 = S3, R3, H? or a quotient thereof, at the level of the bosonic
fields. Instead of directly truncating the ten-dimensional theory on the corresponding
supersymmetric cycles to obtain the lower-dimensional theories, we showed that they can
be carried out starting from the reduced D = 5 and D = 4 theories associated with
Mb5-branes wrapping on the appropriate supersymmetric cycles using a group contraction
procedure, known as the Inoni-Wigner contraction. The two new theories can be viewed
as “cousins” of the five- and four-dimensional theories corresponding to the truncations
associated with M5-branes wrapping 5 [1,/89] and X3 [87], in the sense that they possess
the same amount of supersymmetry and field content, but as we have shown in this chapter,
the precise details of the gauging and the vacuum structures of the theories are entirely
different.

There are more examples of wrapped NS5-brane truncations that can be obtained using
our method. From the catalogue of wrapped M5-brane solutions listed in [58], we observe
that it is possible to obtain wrapped NS5-brane truncations on: (1) ¥y x 3, a product
of two Riemann surfaces embedded inside two C'Y, spaces E]; (2) 3y x X3 with ¥y and X3
a Riemann surface and a Slag 3-cycle embedded inside a C'Y, and C'Yj respectively; (3) a
Kéhler 4-cycle embedded inside a C'Y3. IW contractions are clearly not limited to just the
SO(5) and 150(4) gauged supergravity theories in D = 7. For example, [48-50] obtained
the “cousins” of the SO(8) gauged N' = 8 supergravity theories in D = 4 with gauge
groups ISO(7), interpreted as the IW contraction of the original SO(8) gauge group, as
well as SO(p,q) with p + ¢ = 8. It is well-known that the SO(8) gauged supergravity
in D = 4 can be obtained by a consistent KK truncation of D = 11 supergravity on
S7, as demonstrated in [37]. By interpreting the S7 as the internal 7-sphere of a stack
of M2-branes, the SO(8) gauged supergravity can be seen as the natural arena to study
wrapped M2-brane solutions/truncations. As such, the existence of the contracted 1.S50(7)
gauged theory suggests that the IW contractions can be used to relate wrapped D2-brane
truncations from the corresponding wrapped M2-brane truncations in a similar way to the
relation between wrapped NS5-brane and Mb5-brane truncations. These correspondences
between the M2 and D2 truncations are purely within M-theory and its direct Type ITA
descendent, but can be seen to be related to the consistent truncation of massive ITA on
a 6-sphere S% which yields the dyonic ISO(7) gauged supergravity in D = 4 [106]. By
setting the Romans mass to zero, the dyonic theory becomes the electric ISO(7) theory
described in [48].

Finally, the consistency of the IW contraction procedure also opens up the question of
which lower-dimensional gauged supergravity theories can be related via the IW contraction

5The wrapped M5-brane truncation on a product of two Riemann surfaces was constructed in [88].
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(or potentially other such group-theoretic procedures), and whether such relations are
actually contingent on there being a higher-dimensional origin, as there is in our case
transiting from M-theory to Type IIA with M5-branes becoming NS5-branes. Again, this
can perhaps be answered more systematically using the abstract language of generalised
geometry along the lines discussed in [39,89-91.107].
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Chapter 4

Mb5-branes wrapped on
four-dimensional orbifolds

4.1 Introduction

The first examples of the AdS/CFT correspondence involved the near-horizon limits of M2,
M5 and D3-branes in flat spacetime [§]. Following [54], it was realised that there is a rich
landscape of examples which can obtained by considering branes wrapping compact super-
symmetric cycles in manifolds of special holonomy. In these constructions, supersymmetry
is preserved by a partial topological twist on the world-volume of the brane, as discussed
in previous chapters.

In a more recent development, starting with [55], it has been realised that there are more
general constructions in which branes can wrap over a two-dimensional orbifold with quan-
tised deficit angles at the two poles, also known as a spindle. The first examples considered
D3-branes wrapping spindles [55], and constructions involving M2-branes, M5-branes and
D4-branes have also been made [84]85,|108-114]. These new AdS/CFT examples, which
have been studied from both a gravity and a field theory point of view, have a number of
interesting features. All the known constructions have utilised a spindle with an azimuthal
symmetry. It has recently been shown that there are only two possibilities for preserving
supersymmetry, called the “twist” class and the “anti-twist” class |112], which are deter-
mined by the amount of magnetic R-symmetry flux threading the spindle. The twist case
is in the same topological class as the standard topological twist, and it differs in the sense
that the Killing spinors in the supergravity solutions are not constant on the spindle. The
anti-twist case is more novel and is specific to wrapping branes on a spindle.

In the case of wrapping M5-branes and D3-branes on spindles, assuming that the theory
flows to a SCF'T in the IR, one can extract the central charge of the d = 4 or d = 2
SCFT using a-maximisation [115] or c-extremisation [116] respectively. One obtains the
anomaly polynomial of the reduced theory by suitably integrating the anomaly polynomial
of the parent theory. One novel feature is that the azimuthal symmetry gives rise to a
global symmetry of the reduced theory and this needs to be properly taken into account
in deriving the anomaly polynomial as discussed in [55], extending the results in [117].
Another interesting aspect of wrapping branes one spindles is that in some cases, involving
D3-branes and M2-branes, the corresponding supergravity solutions in D = 10 and D = 11
are completely regular. In cases involving M5-branes, orbifold singularities remain in the
D = 11 solutions, but the exact agreement with field theory calculations strongly suggest
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that these are indeed new, genuine examples of AdS/CFT dual pairs. With that being said,
it is still an outstanding issue to determine precisely how these orbifold singularities should
be treated. Finally, we also highlight that accelerating black hole solutions in D = 4 have
been given a new interpretation as RG flows associated with compactifying M2-branes on
spindles in [84]118,[119].

Given these new developments, it is natural to ask if there can be constructions involv-
ing branes wrapping over higher-dimensional orbifolds. In this chapter, we present new
supersymmetric AdSs solutions of D = 11 supergravity which describe M5-branes wrap-
ping over a particular class of four-dimensional orbifolds M}, and these new solutions are
holographically dual to d = 2, N' = (0,2) SCFTs. The most novel construction is when
My = 1 X o, which consists of a two-dimensional spindle 5 that is non-trivially fibred
over another two-dimensional spindle ;. We also consider another construction]] when
M, = 33 x 5, consisting of the spindle 5 fibred over a Riemann surface ¥; with genus
g>1

We construct these new D = 11 supergravity solutions using the powerful techniques of
consistent truncations. Recall that there is a consistent truncation of D = 11 supergravity
on S§* down to D = 7 maximal SO(5) gauged supergravity [34}35], which we discussed in
chapter 2l In this chapter, we will present a new consistent truncation of D = 7 gauged
supergravity on a spindle 5 down to D = 5 minimal gauged supergravity. The construction
is based on the supersymmetric AdSsx 5 solution of D = 7 gauged supergravity associated
with Mb-branes wrapping the spindle o in the twist class [109]. This supersymmetric
AdSj5 solution is holographically dual to an d = 4, N'= 1 SCFT and hence, based on the
conjecture of [45], such a consistent truncation from D = 7 to D = 5 on 5 is expected
to exist. As we will show, this is indeed the case, and a particularly interesting feature
is that a specific gauge choice is required to construct the truncation ansatz. We also
demonstrate that the Killing spinor equations of the D = 7 theory reduce to those of the
D = 5 theory. This shows that any supersymmetric solution of D = 5 minimal gauged
supergravity can be uplifted on 5 and then on S* to to obtain supersymmetric solutions
of D = 11 supergravity.

With this new consistent truncation in hand, we can immediately uplift the recently
discovered supersymmetric AdSs x 1 solution of D = 5 minimal gauged supergravity [55],
which is in the anti-twist class, to obtain a new supersymmetric AdSs x 11X 5 solution of
D = 7 gauged supergravity that describes M5-branes wrapping over the four-dimensional
orbifold My = 1 X 5. In a similar fashion, we also uplift the known supersymmetric
AdSs x ¥4 solution of D = 5 minimal gauged supergravity [70,|120], which is a standard
topological twist construction, and then uplift to obtain new supersymmetric AdSs x> x
solution describing M5-branes wrapping the four-dimensional orbifold M, = ¥; x 5. In
both cases, we calculate the central charges from the supergravity solutions and show
that they agree precisely with field theory calculations using anomaly polynomials and the
c-extremisation procedure.

The plan of the rest of the chapter is as follows. In section 4.2 we first provide a
brief review of the U(1)? truncation of the D = 7 maximal theory and the supersymmetric
AdS5 x 9 solution within this truncation, then we discuss the consistent KK truncation
of D = 7 maximal gauged supergravity on 5. In sections and we present two new
classes of wrapped Mb5-brane solutions, AdSsx X o and AdSsx X, x  respectively, and

1Our construction differs from the AdSs x  x X solutions discussed in [85}/112] which involves a direct
product of a spindle and Riemann surface (analogous solutions for D4-branes were considered in [111]).
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discuss some aspects of these solutions. In section 4.5, we calculate the central charges of
the dual SCFTs using field theory arguments. We conclude with a few remarks in section
[4.6] and collect some useful results in the appendices.

4.2 Consistent truncation on a spindle

In this section, we will show that there is a consistent KK truncation of D = 7 maximal
SO(5) gauged supergravityﬂ on a spindle, 5, down to D = 5 minimal gauged supergravity.
The starting point is the supersymmetric AdSs x o solution of [109] which, after uplifting
on an S*, is dual to a d = 4, N' = 1 SCFT. Consistent with the Gauntlett-Varela conjecture
[45] and the results of [89], this truncation is expected to exist. The solution of |[109] resides
in a U(1)? sub-truncation of the D = 7 maximal theory and it turns out that the consistent
truncation that we are after can be formulated in this sub-truncation as well.

We begin with the bosonic sector of D = 7 maximal gauged supergravity truncated to
the U(1)* € SO(5) sector. Specifically, we consider [SU(2) x SU(2)]/Zy = SO(4) C SO(5)
and then take the two U(1)’s via [U(1) C SU(2)]?. In this sub-truncation, the bosonic field
content is comprised of the D = 7 metric, two U(1) gauge fields, two scalar fields and a
three-form. The Lagrangian is given by

Lin) = (R = V)voly — 6krdA; A dAy — 657d)g A dAy — 857dMy A dg
— %64)‘1*7F(122) A F(12) — %(24)‘2*7}7(32% A Fé) — %e4A14A2*7S€’3) A SE’S) (4.1)
b 5Ty N STy — STy A FE A B+ AR N EE A F A,
where the potential is given by

V = 16—8()\1+)\2) o 462()\1+/\2) - 26—2(2/\1-‘1-)\2) - 26—2()\1+2)\2) ] (42)

In appendx [C.I], we explain how this sub-truncation can be obtained from the maximal
theory (after setting g = 1) as well as comparing with [121], and in appendix [C.2| we
discuss the supersymmetry variations of D = 7 gauged supergravity which are rife with
typos/inconsistencies in the literature.

4.2.1 Supersymmetric AdS; X -, solution

We first recall that the D = 7 U(1)? theory admits the supersymmetric AdSs X 5 solution
foundﬂ in [109]. After uplifting on an S, the solution is holographically dual to an N/ =1
SCFT in four-dimensional spacetime. The D = 7 solution is given by

ds? = (yP)1/5 [dSQAds5 + d5222} )

P 2/5 4.3
gy, o= W o
he b

12 @1 34 _
An =340, An =

2In chapter [2, we discussed some aspects of the D = 7 maximal SO(5) gauged supergravity and its
association with M5-branes.

3In comparing with [109], we have to identify X; = e?* and A;, Ay with Ag), A‘z’f).
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with vanishing three-form, Sé) = 0, where the metric on AdSs has unit radius, and

Q

Y ik
p

4Q

is the metric on the spindle 5. The solution is specified by two real parameters ¢, ¢ and
h;, P and @ are functions of y given by

ds3, = —=dy* + —=d¢” (4.4)

hi(y) = v* + a4,

P(y) = hi(y)he(y) = (92 + Ch) (92 + QQ) ) (4.5)
Qly) = -y’ + }lp(y) = -y’ + i(y2 +q) (V¥ + ¢2) -

The Killing spinor carries charge 1/2 with respect to the gauge field A}, +A{, associated
with an R-symmetry of the d = 6, N' = (0,2) SCFT dual to the vacuum AdS; x S* solution.
It was shown in [109] (see also [112]) that under the specific gauge choice in which the above
AdS5 x5 solution is presented, the Killing spinor has an overall phase e'?/4. If we carry
out separate gauge transformations on the two gauge fields A2 — A2 + c;dg, A3 —
A% 4+ cydep, then the phase of the Killing spinor gets shifted via e’/4 — ell+2(cite)lo/4
Rather interestingly, as we will demonstrate below, in order to construct the consistent
KK truncation, we need to utilise a specific gauge choice associated with ¢; = ¢ = —1.

To ensure that o is a spindle specified by two relatively prime integers n. and with
suitably quantised magnetic fluxes through the spindle, fixed by two integers pq, po, it is
necessary to restrict the two-parameters qi, g2 [109]. These solutions are necessarily within
the “twist” class [112] with

P1+p2=n_ +ng. (4.6)
Specifically, we take

0 = 3pips(5n_ —mny +s)(5ny —n_+5s)(p1 —2ps —s) (p1 +p2 +5)?
L=
4(n_—p1)* (n- — p2)?[s + 2(p1 + p2)]*

Y
42 = C]1|pl<_>p2 5

where

sE\/7(pf+p§)+2p1p2—6(n2_+n1). (4.7)

Explicit expressions for the four roots of the quartic polynomial Q(y) were given in [109]
and we take y to lie within the two middle roots y € [yo, y3] where

3pip2 (bng —n_ +s)(s+p1 +p2)
2(n- —p1)(n- —pa)[s +2(p1 +p2)]*’ (4.8)

y3 = y2|n+<—>n, :

Y2 =

Finally, we take ¢ to be a periodic coordinate with period A¢

A¢ _ [s— (it pa)lls+2p +p2)] (4.9)

27 I9n_ny (n_ —ny)
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This ensures that at the poles y = y9, y3 there are Z,,, orbifold singularities, with conical
deficit angles given by 27(1 — i) respectively. The quantised fluxes are then given by

1 1
— dAl - _n dA34 -2 (4.10)
w n_n4 o n_n4

with p; € Z. Thus A12 and A34 are Connection one-forms on line bundles O(p;) and
O(py) over o, respectlvely, and, us1ng , the R-symmetry gauge field A(1) + A?f) is a
connection on O(n_ + n, ), associated Wlth the twist class as noted above. In order to get
a well defined solution, one should take n_ > n, > 0 and p; < 0 or p; > n_ + ny and
henceﬂ in particular, pyps < 0.

After uplifting on S*, one obtain a supersymmetric AdSs solution to D = 11 super-
gravity dual to a d = 4, N’ = 1 SCFT, as discussed in [112]. The corresponding central
charge calculated from the supergravity solution is given by [112]

3 2.2
Pip; (s +p1+p2) N9 (4.11)
8n_ny (n- —p1) (p2 —n-)[s +2(p1 + p2)]

Qaq =

where N is the quantised four-form flux though the S* and is associated with the number
of M5-branes wrapping the spindle ».

4.2.2 Consistent truncation

We can use the AdS5 x 5 solution given in (4.3)-(4.5)) as a guide to construct a consistent
truncation ansatz on . For the D = 7 metric, we take

2
dy += ¢ (dcb — %Aa))

where ds? is the line element for the D = 5 metric and A is the D = 5 gauge field.
Furthermore, the D = 7 gauge fields and the three-form are decomposed in the following

way
12 _ (@ 4

4
A% = (Z—Z - 1) (d¢ - §A(1)> , (4.13)

2y 4yQ 4
S?g) = —?*5F(2) + by (dqb — gA(1)> AN F(z) ,

ds? = (yP)'/® |ds? + (4.12)

4Q

with the scalar fields unchanged from how they are in the AdSs x 5 solution,

o2 — (?JP)2/5
h,

(4.14)

4Setting q1 = g2 in the local solutions (4.3)-(4.5]) gives rise to local solutions in D = 7 minimal gauged
supergravity. However, the condition p;ps < 0 shows that there are no spindle solutions in this sector with

b1 = p2.
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We substitute the above ansatz into the D = 7 equations of motion, and we obtain

2 1
R;w = _4g;w + § upFl,p - §g;wFp0Fpa )
) (4.15)
desFio) = =g ko) Ny,

with €g1934 = +1. These are precisely the equations of motion for D = 5 minimal gauged
supergravity [122] in the same conventionﬂ as used in [55].

A couple of comments are in order. Firstly, as expected, the suitably normalised D = 5
gauge field A(;y appears in the ansatz in a manner that is associated with gauging constant
shifts of the ¢ coordinate: d¢ — d¢ — %A(l). Interestingly, we find that this needs to be
done using the specific gauge ChOiCGﬂ for the gauge fields A%f), A:()’f) that was mentioned just
below . It would be nice to have a better understanding of this.

Second, the consistent truncation is a local construction and is valid for any choice of
the constants q1,q2. We are interested in restricting them as we discussed in the previous
subsection in order that y, ¢ parameterise a spindle with suitably quantised magnetic flux.
However, the consistent truncation can also be used for other values of the g; including the
non-compact half spindle solutions discussed in e.g. [123}|124].

We can also analyse the consistent truncation at the level of the Killing spinors. Specif-
ically, in appendix we construct an ansatz for the D = 7 Killing spinors and show
that this leads to the following Killing spinor equations for bosonic configurations of the
resulting D = 5 theory

1 .
va - §ﬁa - iAoz - é (ﬁaﬁp - 455&0) Fﬁp e=0. (416)

with fg1234 = —t. This is precisely the Killing spinor equationﬂ for a bosonic configuration
of D =5 gauged supergravity satisfying the equations of motion in the conventions
of [55]. This shows that any supersymmetric bosonic solution of D = 5 minimal gauged
supergravity will give rise to a supersymmetric solution of D = 7 maximal gauged super-
gravity by uplifting on 5 via —. We also note that the integrability conditions
for the Killing spinor equations discussed in [125] provide an indirect way to obtain the
D =5 equations of motion in (4.15]).

4.3 Supersymmetric AdS; x 1 X 5 solutions

The D = 5 minimal gauged supergravity admits a supersymmetric AdSs3 x ;1 solution,
where ; is a spindle [55]. In contrast to the spindle solution discussed in the last section,
which is in the twist class of [112], this D = 5 solution is in the anti-twist class. Using the

5In particular the D = 5 supersymmetry parameters have R-charge 1 with respect to the gauge-field
A(1). This is in contrast to charge 1/2 as in the normalisation of the gauge field used in [112] and also in
the D = 7 theory c.f. the comment below (4.5).

60f course we can change the ansatz in by carrying out gauge transformations A%f) — A%IQ) +a;do,
A‘z’f) — AP} +a2d¢ and this of course leads to the same set of equations in (though giving a different
phase for the Killing spinor).

"We note that in the conventions of [55] the D = 5 supersymmetry parameters have R-charge 1 with
respect to the gauge-field A(;). This is in contrast to charge 1/2 as in the normalisation of the gauge field
used in the D = 5 conventions of [112] and also in the D = 7 theory, c.f. the comment below .
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consistent truncation results —, we can now uplift this solution on the spindle

5 to obtain a new supersymmetric AdS3 X 1 X 5 solution of D = 7 maximal gauged
supergravity with 5 non-trivially fibred over ;. This new solution is holographically dual
to a d =2 SCFT with N = (0, 2) supersymmetry.

4.3.1 Uplifting D=5to D=7
The supersymmetric AdSs x 1 solution of [55] is given by

4x 1 a
ds? = ?ds,%xd& + d321 . Agy = 1 (1 — ;) diy, (4.17)

where the metric on AdSs; has unit radius, and

x f
ds* = 4.18
a7 3622 (4.18)
is the metric on the spindle 1, and f is a function of x given by
f(z) = 42® — 92* + 6ax — a?, (4.19)

with a a real constant. To ensure that 1 is indeed a spindle, specified by two coprime
integers my (m_ > my), and with suitably quantised magnetic flux, one takes ¢ to be
periodic with period A and suitably restricts the parameter a,

(m- —my)*(2m- + my)?*(m- + 2my )

Am= 4 momy i) (4.20)
2(m? +m_my +m?) '

2
3m_my(m_ +my) "

At =

One then takes the two smallest roots of the cubic f, which are given by

(m— —my)*(m_ +2m,)*

€Ty = )
4(m? +m_my +m2)? (4.21)

(m- —my)*(2m_ +my)°

2 4(m% +m_my +m%)?

The magnetic flux through the spindle is then given byﬂ

1 m_ —m

— F(g) = — = (4.22)

2m 2m_my

where Floy = dA(;). This implies that 2A(1) is a connection one-form on the line bundle

O(m_ — m+) over the spindle ; and hence we are in the anti-twist class as noted above.
Using the reduction ansatz given in (4.12))-(4.14)), we can now write down the AdS; x

1 X 9 solution of D = 7 gauged supergravity. The D = 7 metric is given by

4 9 9
ds? = (yP)1/5§ [dsidsg + Hdx 16{3 ¢ 4+ — o g)d 2 ( |
4.23
Q 1
+@ﬁ“¢—§@—‘wwﬁ

8The extra factor of 2 in the denominator as compared with (4.10)) is due to the fact that the D =5
gauge field is normalised so that the supersymmetry parameters have charge 1 instead of 1/2, as noted in
footnote [7}
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while the remaining fields are given by
1 a
A2 — () (g —= (1= d
) <h1 ¢ 3 ( {I?) ¢ ’
1 a
A = (L dp— - (1-2)d
) (hg (b 3 ( .T) 1/1 ’

h 0 (4.24)
5 ay ay
1(A
5(3) o7 —— VO ( dS3) 3x2h1h ——dz A dw A d¢,
o2 — (yP)*°
hi

Recall that f = f(x) while Q, P, h; are all functions of y. We note that the four-dimensional
internal space metric in has two Killing vectors 04 and 0.

Clearly the internal space has the form of the spindle o, parametrised by (y, ¢), fi-
bred over the spindle 1, parametrised by (z,v). To ensure that this fibration is well
deﬁned (in the orbifold sense), we require that the one-form determining the fibration,

= A 5 (dgb — 3 (1 — —) d¢) is globally defined. This requires that

1 t

— | dn=
2r ) | ' m_m,

tel. (4.25)

But since dn = Z ¢§F( 2), using (4.9) and (4.22) we immediately deduce that we need to

impose the following condition on the two sets of spindle quantum numbers m4., n4 as well

as the p; satisfying (4.6]):

n_ng (n_ —ny)
s — (1 +p2)][s +2(p1 + p2)]

This condition ensures that away from the poles on the 5 fibre the space ;X 5 is smooth,
including at the poles of the ; spindle base. Indeed at constant value of y # ys, y3, (4.25))
implies that the total space parametrised by the 1 base and the circle parametrised by ¢
will be a Lens space (see appendix A of [84]). However, there are orbifold singularities as-
sociated with the two poles of the 5 fibre, when y = ¥, y3. The resulting four-dimensional
space M, is then a spindly version of a Hirzebruch surface. We may describe this more
globally by starting with the base spindle ;| = W(CIP’[m .my)» together with the U(1) orbi-
bundle O(t) over it (with e?7¢/A% the fibre coordinate), where by definition the first Chern
class is given by (4.25)). One then uses the transition functions for this bundle to fibre

9 = W(CIP’%TL’M] over ¥y, with U(1) acting on the fibres 5 by rotation, fixing the poles.ﬂ
Notice here that the twisting parameter ¢ € Z can in principle be arbitrary, but that for
the particular solutions we have constructed this is fixed in terms of other parameters via
(4.26]). This is likely to be an artefact of the particular ansatz we have taken for the solu-
tions, via a double uplift /consistent truncation. We also note that the resulting space M,
is naturally a toric complex orbifold, and as such can also be described by a gauged linear
sigma model (GLSM). Specifically, M, may be realized as the vacuum moduli space of a
U(1)? theory with 4 complex fields of charges (0, —t,m_,m,) and (n.,n_,0,0).

t=—6(m_ — m+)[ Sy (4.26)

9Here one should also be careful to use an appropriate local model for the fibration near to the two
poles of the base 1, as described in detail in [112]. Specifically, near such a pole of 1, My is modelled as
a Zpm, quotient of C x o, where Z,,, acts on both factors in this product.
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We will not attempt to find the general solution to here since, as we will see
in the next section, additional conditions are required for regularity when uplifting to
D = 11. Nevertheless, we can use the results of [109] to show that such solutions do exist.
Specifically, we recall the generating formula provided in [109],

N — Ny k
s ). (4.27)

Here k € Z>o, and we have defined 5, = 2 £ v/3. One can verify that for any ny and
k € Zso, we have p; € Z and crucially also s € Z, where s is defined in (4.7)). Since

the expression multiplying (m_ — m.) on the right hand side of (4.26) is rational, we can
always choose the integer (m_ — m) such that t € Z.

n_+ny 3n_ —ny
4

p1= -

5 (8% + B%)

4.3.2 Uplifting to D =11
Uplifting the D = 7 solution to D = 11 using [36] (see appendix |C.1]), we find that the

eleven-dimensional metric is given by

Aty = AV3ds? o A2 (P du 4 e dw? + wi(dy — Af)? o
+ e dwf + wi(da — AY)?))

where
A = e eyt 4222 (4.29)

Here Ay; = 27 and (wg, w1, we), satisfying w3 +w} + w3 = 1 and parametrising a quadrant
of an S?, together parametrise an S*. We can take, for example,

wy =siné, w; =cosfcosf, wy=cos&sinb, (4.30)

with —7/2 < £ < 7/2,0< 0 < /2.

Uplifting the AdS; x 1 X 5 solution —, we see that the eight-dimensional
internal space is an S* fibration over | X 5. More precisely, here one can regard S* C
R@Ca C, with wy a coordinate on the first factor, and (w;, x;) being polar coordinates on
the two copies of C, i = 1, 2. The two factors of C are then fibred over the seven-dimensional
spacetime via the U(1) gauge fields A%f), A?f), respectively. As such, this fibration is well-
defined only if the periods of the corresponding gauge field fluxes F(122) =dAR), Fé‘% = dA?’f)
are appropriately quantised through two-cycles in the base AdS3 x M,. We note that
already implies that this is the case for a copy of the fibre 4 of M}, and indeed this defines
the twisting parameters p; € Z, i = 1,2. We next define the two-cycles S, = {y = y.},
a = 2,3, to be the two sections defined by the two poles of the fibre 5. From (4.24)), we

then compute
L/ Fg = (q_ _ 1) (_%u)
21 Js, ha(y2) 3 2m_m,

_ pit[pr +p2 + 6(ny — p1) — s
6m_myn_ny(n_ —ny)

(4.31)

?
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where we have used , the results of section and t € Z was defined in (4.26)).
Now y = y, is the Z,,, orbifold singularity of the fibre spindle 5 = W(CIP’[lnﬂM], while each
S, = 1= WCIP’[lm_mJF] for a = 2,3 is a copy of the base spindle. The flux number in
(4.31]) should then be an integer multiple of 1/lem{m_,my,n,}. On the other hand t € Z
is determined by .

We may write down a family of solutions to these integrality constraints as follows. We
introduce

t=6n_ny(n- —ny)u, (4.32)
where u € Z is an arbitrary integer. Then the condition (4.26) reads

m_ —my = —[s — (p1 +p2)l[s +2(p1 + p2)] u. (4.33)

For the family , recall that s € Z, and the right hand side of is manifestly
an integer, as required, and moreover may be regarded as fixing m_ — m_ in terms of the
arbitrary integers n., k,u € Z. It is then immediate from the expression in that this
flux number is an integer multiple of 1/m_m..

One can then verify that the flux numbers for both F (122) and F; (32% over the remaining two-

cycles in M, are automatically quantised appropriately. For example, the flux of F(122) /27
through S3 = {y = y3} may be computed, with the expression found to be consistent with
the homology relation Ss — Sy = —-— 5 € Hy(My,R). On the other hand, the fluxes of

m_m4

F(SQ% are given by the same expressions as for F (122), but with p; and py exchanged, where
recall the latter are constrained to obey p; + ps =n_ + ny.
Now we recall that the R-symmetry gauge field flux is Fé‘) = F(122) +F (32%. A computation

then gives

Y SRR RS T
n 6n_ny(n_ —ny) m_m.

4.34
1 t n m_ —my ( )
 nymomg m_my
and similarly we find
1 1 t _ -
— [ Ff=— e (4.35)
27 Js, n_m_my m_m.

Again, via the homology relation S35 — Sy = mfm+
confirm

2, the above equations immediately

1 1
FE = - 4 = — 4.36
/2 @~ n., /201( 2) ( )

consistent with (4.10)). Recall that the S* bundle over M, is twisted via embedding S* C
R @ C @ C, where the gauge fields A%f), A?f) fibre the two copies of C, respectively. If the

total space of the corresponding C? = C® C bundle over M, were Calabi-Yau, the fluxes in

(4.34)), (4.35) would agree with the first Chern class ¢;(My) of My, integrated through the
two sections S,. At the section Sy = W(CIP’[lm_’mH, the tangent bundle of M, splits into a
direct sum, where the complex tangent bundle to the section is simply O(m_ + m. ), with
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Chern number TZ);;}ZT, while the normal bundle is O(—t), with Chern number —n+mt7m+.
Notice here that the normal direction is a Z,,, singularity, hence the extra factor of n. One
can see precisely this structure in (4.34)), except we have m_ — m rather than m_ +m,.
Similar remarks apply to the section S3, where the normal bundle is instead O(t), which
is a Z,_ singularity. Because of this, the total space of the C? bundle is not Calabi-Yau,
but only due to the relative minus sign in the m_ — m_ terms in , . This may
have been anticipated, since the original twist over the ; spindle is an anti-twist, which
is reflected in the above formulae.

Having ensured that the D = 11 spacetime is a well-defined orbifold, we now turn to the
four-form flux. There are two natural four-cycles: fixing a point on the base My = X 5
we obtain a copy of the fibre S%. On the other hand, if we fix either the north or south
pole section wy = +1 of S*, we obtain copies of the base My = ;X 4. The four-form flux
of the D = 11 solution consists of several terms which can be found in appendix [C.1] and
here in the main text we focus on the terms which are relevant for quantising the four-form
flux through the above cycles. Specifically, we have

wyLw
Fuay = = - 2UAdwy A duwy A (dxa — A) A (dxe — A
0 . (4.37)
where
U= (6—8)\1—8)\2 o 26—2>\1—4>\2 _ 26_4>\1_2>‘2) w?)
(4.38)

_ (6—2)\1—4>\2 + 262/\1+2/\2) w% _ (6—4)\1—2>\2 + 262/\1+2/\2) wg ’
and we note that the last term in Fiy) in (4.37)) arises from a D = 7 contribution involving
*75(53) which contains the D = 5 field strength F{y).

To carry out flux quantisation, we first rescale the metric by L? and the four-from by L3,
We can then integrate the first term in (4.37) on the S* at a fixed point on My = | X

and find

1 L3
W S4 F(4) — 71'_61?; = ]\/v7 (439)

where N is interpreted as the number of M5-branes wrapping My = | x 5. We can also
integrate the four-form flux along the orbifold four-cycle My in the D = 7 solution.
Representatives Mj for this cycle (with opposite orientation) are obtained at the north or
south pole of the S* fibre wy = 1 and we find

1 m— —my P1P2
— Fy==+ N . 4.40
(27ml,)? /Mf ) m-m4 n-ny(2(n_ +ny)+s) (4.40)

Since the total D = 11 spacetime has orbifold singularities, it is not clear what the precise
quantisation condition should be imposed on this flux. For the family of solutions we have
discussed, with p; given by , the expression is rational but not in general
integer. Of course, by choosing N appropriately, it can be made integer.

Finally, we calculate the central charge of the dual d = 2, N' = (0,2) SCFT. The
D = 7 Newton’s constant is given by (G 7))t = N?/(67?) (see, for example, appendix A.3
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of [112]). We then obtain the D = 3 Newton’s constant by reducing the D = 7 theory on
M4 = 1 X 9 to get

1
(Ga) ™' = (Gm)l/dﬂcdwdydd) (Ey>

= (G )1Awa o (43— 45) A0

(4.41)

Therefore, the d = 2 central charge ¢ = (3/2)(G3)) " can be written as

4 _ 3
c= (n; m.) o~ 4d (4.42)
3m_my(m2 +m_my +m?)

where a4q is given in (4.11]).

4.4 Supersymmetric AdS; X X3 X 3 solutions

Minimal D = 5 gauged supergravity also admits a supersymmetric AdS3 x Hy solution,
where Hs is a two-dimensional hyperbolic space with constant curvature metric. After
taking a discrete quotient, we get a supersymmetric AdS3 x ¥ solution, where ¥, is a
Riemann surface with genus g > 1. This is the standard topological twist solution, which
arises as the near-horizon limit of a black string solution [70,/120] and is dual to a d = 2
SCFT with N/ = (0, 2) supersymmetry. .

Using our consistent truncation results —, we can also uplift this solution on
the spindle 5 to obtain a new supersymmetric AdSs x X3 X 5 solution of D = 7 gauged
gravity with o non-trivially fibred over ;. The D = 7 metric is given by

A(yP)'/° 3 9 9 2 1\
ds2 = AP ds*(AdSs) + ~ds*(3,) + Yy + 15 Q ¢— - : (4.43)
4 16Q)
Here ds*(%,) is normalised such that the Ricci scalar is R(3,) = —2 and w is the Levi-
Civita connection one-form satisfying dw = —vol(X,). Thus the volume of the Riemann

surface is fzg vol(3y) = 47(g — 1). The remaining fields take the form

2
= (2 1) (a0-20).
(1) (o 3)
ha (4.44)

8y 29Q)
5 [ — N ——
Sl = 27V01(Ad83) T do A vol(%,),
e2Ni — (yP)2/5
h,

Notice that the spindle  is non-trivially fibred over ¥;. To ensure that this fibration is
well-defined (in the orbifold sense), we demand that the one-form determining the fibration,

n= i:;(dgzﬁ 2w), is globally defined. This requires that
1
— dn=t, teZ 4.4
5 | dn=t, 1€, (4.45)
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and hence we need to impose the quantisation condition relating the spindle quantum
numbers with the genus:

n_ny (n_—n.)
(s~ (1 + p2)] [+ 2001 + p2)]

The global discussion of the resulting space My = ¥; x 4 is very similar to that in
the previous section. Specifically, one begins with the complex line bundle O(t) over the
Riemann surface ¥, and then uses the U(1) transition function for this bundle to construct
the associated  fibration over X, with U(1) acting on o by azimuthal rotations around
the poles. The resulting space is then a spindly version of a rationally ruled surface,
replacing the CP* fibres by 5 = WCIP[In_mH.

The twisting parameter t € Z is constrained to satisfy (4.46|), and one can solve this as
in the previous section by first writing

t=12(g—1)

€. (4.46)

t=12n_n,(n_ —ny)u, (4.47)

with v € Z arbitrary, and then imposing that the fibre data for 5 is given by the family
of solutions in (4.27). One then chooses the genus g to be

g=1+[s—(pr+p2)][s+2(p1+ p2)lu, (4.48)

where the right hand side is now manifestly an integer. This family of solutions is then
specified by ny, k, u € Z, where recall that for this family also s € Z.

We can now uplift on S* to obtain a D = 11 solution exactly as in the previous section.
There are again two sections S, = {y = y,} = ¥,, a = 2,3, and we compute

1 4 t 6 — —
[ = (o) je-y = it A mp)m e )
21 Js, ha(y2) 3 6n_ny(n- —ny)

similarly to (4.31). Substituting for ¢t € Z using (4.47)), this flux number is an integer

for the family of solutions described above. The remaining flux numbers for F(122), (32%

are similarly integer. However, a key difference with the ; x 4 solutions in the previous
section is that the C? fibration over My = X X 5 is now a Calabi-Yau four-fold. Essentially,
this is because we have doubly uplifted two twist solutions. To see this, we compute the
R-symmetry fluxes

1 1 1 1
g/&Fg) = —Et—Q(g—l), %LBF(g) = Et—Q(g—l). (4.50)
On the other hand, these expressions are precisely ¢;(My) integrated over the cycles Sy,
Ss, respectively, where recall that fzg c1(TEy) = —2(g — 1), and the normal bundles of the
cycles are respectively O(—t) and O(t). This shows that the C? bundle over M, has zero
first Chern class, making the total space a Calabi-Yau four-fold.

We normalise the solution so that there are N units of quantised four-form flux through
the S* fibre. There is then also the flux through the four-cycles M;" =2 Yy X o at the
north and south pole sections wy = £1 of the S*, where we compute

1 P1p2
—_— Fy=7F2(g—-1
(2ml,)? /Mf (= F2e )n_n+(2(n_ +n4)+s)

(4.51)
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As discussed in the previous section, this is generally rational for the above family, and by
choosing N appropriately one can ensure that the fluxes are integer.
Finally, the central charge of the d = 2, N' = (0,2) SCFT in the large N limit is found
to be
32

c= g(g — Dayg, (4.52)

where ay4q is given in (4.11)). This result for the central charge is in perfect agreement with
the general field theory result of [126] for general d = 4, N' = 1 SCFTs compactified on a
Riemann surface with a topological twist.

4.5 Field theory

We can calculate the central charges of the d = 2, N' = (0,2) SCFTs dual to the AdSs
solutions discussed in the last two sections using field theory arguments in a two step
process. We begin with the d = 6, N' = (0,2) SCFT living on the world volume of a stack
of N Mb5-branes. We compactify this d = 6 SCF'T on a spindle 5 with magnetic fluxes
in the twist class to obtain a d = 4, N' = 1 SCFT. From the results of [109], based on
studying the Mb5-brane anomaly polynomial and using a-maximisation, the central charge
of the d =4 SCFT in the large N limit is given by

3 2,2
_ P1P2(p1 + p2 + S) 2N3 : (4‘53)
8n_ni(n_ —p1)(p2 —n-)(s + 2(p1 + p2))

which is in exact agreement with the supergravity result .

Now we consider compactifying this d = 4, A/ = 1 SCFT on the spindle 1, specified
by co-prime integers m,m_ and with the magnetic flux in the anti-twist class, to get a
d=2, N =(0,2) SCFT. Using the results of [55], based on the anomaly polynomial of a
general d = 4, N' =1 SCFT, the central charge of the d = 2 SCFT in the large N limit is
given by

Q44

4 — 3
c= (n;a m+) 5 4d (454)
3m_my(m? +m_my +m?)

which is in exact agreement with the supergravity result . We can also carry out a
similar analysis after compactifying the d = 4, N' =1 SCFT on a Riemann surface ¥, with
a topological twist. In fact, this is an example of a “universal twist” and we can use the
results of |126] to obtain the central charge in the large N limit

32
= €<g — 1)&40{, (455)

which is again in exact agreement with the supergravity result .

It is also possible to derive these field theory results in a one-step process, by directly
reducing the M5-brane anomaly polynomial on the orbifold four-cycles. For example, in
compactifying the d = 6, N' = (0,2) theory on 1 x 5, we would need to take into account
that the R-symmetry of the d = 2 SCFT arises from a mixture of an R-symmetry of the
parent d = 6 SCFT and the U(1) x U(1) global symmetry arising from the isometries
of 1 x 9. In appendix [C.3] we carry out this analysis, which generalises the results
of [55,/109] on individual spindles. While the final answer is identical, we have included
some details because such an analysis would be needed in compactfying the d = 6 theory
on more general orbifolds.

C
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4.6 Discussion

In this chapter, we have presented two new families of AdS3 solutions of D = 11 super-
gravity, which describe M5-branes wrapping on four-dimensional orbifolds M,. In both
cases, M, takes the form of a spindle 5 fibred over another two-dimensional space: either
another spindle ;, or a smooth Riemann surface ¥, of genus g > 1. These solutions
are holographically dual to d = 2, N = (0,2) SCFTs, and a computation of the central
charges of these theories using anomaly polynomials perfectly matches the supergravity re-
sults. In the case of My = X3 X o, the solution can be naturally interpreted as M5-branes
wrapping an orbifold four-cycle, which is holomorphically embedded inside a Calabi-Yau
four-fold, generalising [62,72]. Such an interpretation is not available for the solution with
M, = 1 X o, and this feature, which is common for all of the known spindle solutions in
the anti-twist class, deserves a much better understanding.

A key ingredient in our construction is a new consistent KK truncation of D = 7
gauged supergravity on a spindle down to D = 5 minimal gauged supergravity. The new
solutions have then been obtained by a double uplifting procedure, starting with AdS3 x
or AdS3 x X, solutions of D = 5 minimal gauged supergravity, respectively, uplifting to
D =Ton 4, and then uplifting on S* to D = 11. This consistent truncation is local in
the supergravity fields, hence the analysis we have done here will also go through for the
(singular) half-spindle solutions studied in |123,124]. More generally, analogous consistent
truncations can also be carried out for other known AdS;.; x  solutions, such as [111],
leading to new AdS; X 1 X 5 solutions which should correspond to wrapping D4-branes
on 11X o

The structure of the D = 7 solutions with M, = | X 5 is rather remarkable: the
solutions are of cohomogeneity two, with the various supergravity fields depending non-
trivially on the two coordinates x and y, and they also exhibit a remarkable separation
of variables. Such a separation of variables in solutions to the Einstein equations is often
associated with the existence of a Killing (or Killing-Yano) tensor, and it would be inter-
esting to further investigate this perspective. In fact, it would have been extremely difficult
to find the D = 7 solutions directly, without any prior understanding of how to separate
variables in such manner, and there may be similar classes of solutions generalizing those
we have found here. We also note that the corresponding uplifted D = 11 AdSj3 solutions
are different to those constructed in [127]. This naturally begs the question of how the new
solutions fit into a G-structure classification, extending [128].

Both families of supergravity solutions depend on a number of integer parameters,
and we expect there to be more general solutions of this type. For example, one might
anticipate solutions with My = | x o, with arbitrary spindle data m4, n4, for 1,

9, respectively, with an arbitrary twisting parameter ¢ € Z describing the fibration, and
where the S* C R @ C? fibration is specified by two further integer Chern numbers. This
is a seven-parameter family, while the solutions we have found have only five-parameters
(presumably due to the particular way we have constructed them as a double uplift). The
larger conjectured family would also include smooth My: setting my = 1 = ng gives
Hirzebruch surfaces My = .

The results we have presented open the door for potentially many more new orbifold
solutions. This raises a key question that we have left open in this chapter: what is the
appropriate four-form flux quantisation condition in M-theory when the D = 11 spacetime
has orbifold singularities? One approach to this would be to resolve (at least topologically)
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the singularities, quantise the flux on this smooth resolution, and then take the singular
limit. This would lead to rationally quantised flux, and we have shown that it is always
possible to impose such condition for our solutions by appropriately choosing the spindle
parameters, but the precise quantisation condition required remains unclear. We leave
this, and many of the other interesting questions raised above, for future work.
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Part 1V :
Mass deformations of N =4 SYM
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Chapter 5

Supersymmetric mass deformations
of N =4 SYM

5.1 Introduction

Mass deformations of ' = 4 d = 4 SYM theory that preserve some supersymmetry
have been extensively studied and are associated with very rich dynamical features under
RG flow (see e.g. [51}52,/129-137]). However, most of these studies consider only the
case of homogeneous mass deformations. In this chapter, we will explore inhomogeneous
mass deformations of N' = 4 SYM theory which are spatially modulated in one of the
three spatial directions and still preserve some residual supersymmetry. A particularly
interesting sub-class of such deformations also preserve conformal symmetry with respect
to the remaining three spacetime dimensions and describe co-dimension one superconformal
interfaces.

Our investigations are somewhat analogous to those which have been carried out in the
context of ABJM theory. It is known that the homogeneous (i.e. spatially independent)
mass deformations of ABJM theory [138|139] can be generalised to mass deformations
that depend on one of the two spatial coordinates and still preserve 1/2 of the supersym-
metry [140]. Further generalisations, preserving less supersymmetry, were subsequently
investigated in [141]. Holographic descriptions of such deformations, preserving 1/4 of the
supersymmetry of D = 11 supergravity, were first constructed in [142] using the so-called
Q-lattice construction [143]. The results of [142] included novel solutions that are holo-
graphically dual to boomerang RG flows which flow from ABJM theory in the UV back to
ABJM theory in the IR. The Q-lattice construction of [142] was substantially generalised
in [144], where it was shown that there is a novel class of D = 11 supergravity solutions,
again preserving 1/4 of the supersymmetry, which can be obtained by simply solving the
Helmholtz equation on a complex plane. In addition to presenting a new set of solutions
describing boomerang RG flows, the construction of [144] also included the Janus solutions
of [145]. Finite temperature generalisations, using the Q-lattice construction, have been
discussed in [146}/147].

Before continuing our discussion, we note that there are various usages of the term
“Janus” in the literature. In this chapter, we will refer it to a co-dimension one, planar,
conformal interface that has the same CEFT on either side of the interface (or the same
up to a discrete parity symmetry). This includes the rich set of examples associated
with /' = 4 SYM theory which are obtained by varying the coupling constant and theta
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angle as in [53,/148-156]. For these Janus configurations, the CFT is being deformed
by exactly marginal operators away from the interface, and in some cases there are also
additional sources for relevant operators located on the interface itself. For the Janus
solutions of D = 11 supergravity considered in [145], the ABJM theory is deformed by
relevant operators located on the interface, while for those considered in [144}|157], the
ABJM theory is deformed by relevant scalar operators that have spatial dependence away
from the interface (see also |158]).

In this chapter, we will show that there are new supersymmetric Janus configurations of
N = 4 SYM theory which arise from spatially modulated fermion and boson mass deforma-
tions but with the same coupling constant and theta angle on either side of the interface.
In addition to these Janus solutions, we will also construct novel supergravity solutions
dual to conformally invariant, co-dimension one interfaces, separating two different CFTs.
In these configurations, the two CF'T's are related by the standard Poincaré invariant renor-
malisation group (RG) flow, hence we refer them as “RG interfaces” (see [159,/160]) and
they will be further discussed in chapter [6]

To determine which spatially modulated mass deformations of N'= 4 SYM theory can
preserve supersymmetry, we employ the background field method of Festuccia and Seiberg
[161] (for theories with less supersymmetry, one might consider the simpler approach of
[162]). Asin [163], we first couple the N' = 4 SYM theory to off-shell conformal supergravity
and then take the Planck mass to infinity, such that the fields in the supergravity multiplet
become non-dynamical. In this limit, we are left with an N/ = 4 supersymmetric field
theory coupled to a set of non-dynamical supergravity fields, which are now viewed as
background couplings. The background couplings which preserve supersymmetry can then
be determined by analysing the supersymmetry transformations of the field theory coupled
to the off-shell supergravity theory.

We will focus our investigations on generalising the class of homogeneous mass defor-
mations known as the N/ = 1* theories. Recall that the field content of N' = 4 SYM,
in terms of an N/ = 1 language, consists of a vector multiplet coupled to three chiral
multiplets ®,. Deforming the theory by adding to the superpotential a term of the form
AW ~ Zi:l myTr ®,P,, where m, are constant, complex mass parameters, defines the
class of N/ = 1* theories. Three cases of particular interest are (i) the “one mass model”
with m; = mgy = 0, (ii) the “equal mass model”, with m; = my = mg, and (iii) the N’ = 2*
theory with m; = ms and mgz = 0.

We will show that all of these A" = 1* theories can be generalised such that the mass
parameters depend on one of the three spatial coordinates while preserving N' = 1 Poincaré
supersymmetry with respect to the remaining d = 3 spacetime dimensions. For the case of
the N' = 2* theory, there is an enhancement to N’ = 2 Poincaré supersymmetry in d = 3.
Furthermore, it is possible to suitably choose the mass parameters such that the N’ = 1
Poincaré supersymmetry is enhanced to an N =1 or N/ = 2 superconformal symmetry in
d = 3, respectively. This latter class of deformations defines a class of Janus configurations
of N' =4 SYM theory, which have the novel feature that the coupling constant and the
theta angle take the same value on either side of the interface, in contrast to previously
constructed Janus configurations of ' = 4 SYM in the literature. It is important to em-
phasise that our field theory results concerning supersymmetric Janus configurations of
N =4 SYM with constant coupling across the interface are complementary to the classi-
fication results carried out in |151], for which it was assumed that the coupling constant
varies across the interface and that any additional deformations are proportional to the
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spatial derivative of the coupling constant.

The deformations we are considering here can also be studied holographically by con-
structing solutions of Type 1B supergravity. A convenient and economic way to construct
such solutions is to first construct them within the D = 5 maximal SO(6) gauged super-
gravity |164-166] and then uplift them to D = 10 using [39,/40]. For the deformations
we consider here, we can utilise the consistent truncations of D = 5 maximal gauged su-
pergravity discussed in [167,/168], which is comprised of the D = 5 metric and a number
of scalar fields. Specifically, there is a corresponding consistent truncation model which is
suitable for studying the mass deformations for each of the three N’ = 1* theories mentioned
above.

We will first derive the BPS equations that are relevant for spatially modulated mass
deformations of NV = 4 SYM theory that preserve 1SO(1,2) symmetry. In this case, the
BPS equations are partial differential equations in two variables. For this class of solutions,
we will carry out a detailed analysis of the holographic renormalisation procedure, which
allows us to obtain detailed information on the sources and expectation values of various
operators. In order to have a supersymmetric renormalisation scheme, there is a set of
finite counterterms which one needs to introduce. By demanding that the energy density of
these BPS configurations is a total spatial derivative, thus leading to vanishing total energy,
imposes some constraints on these counterterms (which can be viewed as a complementary
approach to the “Bogomol’'nyi trick” used in [167-169]). However, determining the full set
of conditions required for a supersymmetric scheme is left to future work.

We will then focus on the BPS equations for the special subclass of solutions associated
with Janus configurations. By writing the D = 5 metric ansatz foliated by AdSy slices,
the BPS equations become a set of ODEs which we numerically solve for each of the
three consistent truncations. For each of the three models, we find supersymmetric Janus
solutions which approach the N'= 4 SYM AdSs vacuum on either side of the interface. We
also find solutions which approach the AdSs vacuum on one side and are singular on the
other, as well as solutions that are singular on both sides, whose physical interpretation
remains unclear.

Additionally, for the one mass model, we find new types of solutions which will be
further explored and discussed in chapter [6] Recall that homogeneous mass deformations
in the one mass model induce a Poincaré invariant RG flow to the Leigh-Strassler (LS)
fixed point [52]. From the gravity side, within the truncation we consider for the one-mass
model, in addition to the A" = 4 SYM AdS5 vacuum solution, there are two additional
AdSs solutions, related by a Z, symmetry, which we will denote LS*, and each of these two
fixed points is dual to the LS fixed point. Here we will construct novel solutions that are
dual to superconformal RG interfaces, approaching the N' =4 SYM AdSj5 solution on one
side and one of the two LS AdS5 solutions on the other. We will also construct solutions
that approach LS AdSs on one side of the interface and LS~ AdSs on the other, giving
rise to Janus solutions of the Leigh-Strassler SCF'T.

We also find a particularly interesting new feature for the equal mass model. This model
is the most complicated one to analyse since it consists of four real scalar fields instead of
three. Furthermore, one of the scalar fields is the dilaton dual to the coupling constant of
N = 4 SYM. While there are certainly rich Janus solutions for which the coupling constant
is different on either side of the interface, we focus our attention on solutions where it has
the same value. Within this four-scalar model, we find a novel class of Janus solutions
that, rather surprisingly, approach a solution which is periodic in a bulk coordinate. By
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compactifying this coordinate, one then obtains a supersymmetric AdS,; x S solution.
After uplifting on S° to Type IIB, this gives rise to a new supersymmetric AdSy x St x S°
solution which will be further explored in chapter [7]

The plan of the rest of the chapter is as follows. In section we determine the
conditions for spatially modulated mass deformations of N' = 4 SYM theory to preserve
supersymmetry. In section[5.3] we introduce the supergravity truncation of D = 5 maximal
SO(6) gauged supergravity [167,/168] which couples the D = 5 metric to ten scalar fields,
as well as three further truncations that are relevant for studying the three classes of
N = 1* theories. In sections [5.4] and [5.5, we will present the BPS equations relevant for
spatially modulated mass deformations which preserve d = 3 Poincaré and superconformal
invariance. In section [5.6] we present and discuss various new supergravity solutions,
including the new Janus solutions as well as the solutions dual to superconformal RG
interfaces involving the LS fixed point for the one mass model and the novel AdS, x S*
solution for the equal mass model. We conclude this chapter with some discussion in
section [5.7] and collect some useful results in the appendices, including the derivation of
the BPS equations and some details of the holographic renormalisation procedure used to
calculate expectation values of various operators.

5.2 Supersymmetric mass deformations

5.2.1 Background field method

Before continuing to discuss how one can systematically deform A" = 4 SYM while pre-
serving some supersymmetry, we should first provide a brief review of the background field
method, used by Festuccia and Seiberg [161] to study supersymmetric field theories on
curved backgrounds.

Their idea is to first couple the flat spacetime supersymmetric field theory to an off-
shell supergravity theory. Recall that the supergravity multiplet is typically comprised
of the metric g,,, the gravitino v, and some auxiliary fields. Then we take a rigid limit
where the Planck mass is sent to infinity (or equivalently the Newton’s constant is sent to
zero), such that the metric is sent to a fixed background metric and the auxiliary fields are
also sent to fixed background values. Now we demand that the background configuration,
which is bosonic (i.e. ¢, = 0), preserves some supersymmetry, and this can be achieved by
requiring the supersymmetry variations of the gravitino (and in general all other fermions
in the supergravity multiplet) to vanish in the rigid limit,

S, =0, (5.1)

leading to a set of first order Killing spinor equations, which are the local condition for
preserving supersymmetry on a curved background. Specifically, we are interested in back-
ground configurations (i.e. metrics, auxiliary fields and all other bosonic fields in the super-
gravity multiplet) which can support to admit non-trivial solutions. Once equipped
with a solution of on a background configuration, we can determine the supersym-
metry transformations of the matter fields and the Lagrangian of the supersymmetric field
theory on this background from the coupled, off-shell supergravity theory by taking the
rigid limit.

This procedure by Festuccia and Seiberg provides a powerful, systematic treatment of
rigid supersymmetric field theories on curved backgrounds. In the next section, we will
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deploy the same technology to study supersymmetric deformations of N' = 4 SYM by
coupling it to off-shell conformal supergravity.

5.2.2 Coupling to off-shell conformal supergravity

The coupling of N/ = 4 SYM to off-shell conformal supergravity [170] was investigated
in [171H173]. In [163], it was highlighted that this setup can be utilised to study supersym-
metric deformations of N' =4 SYM. As an application, supersymmetric deformations of
N =4 SYM, including some known Janus configurations with non-trivial, spatially depen-
dent profiles for the coupling constant g and theta angle 0, were discussed in [163] using
this off-shell conformal supergravity formalism. In this section, we will employ the same
formalism to study a new class of spatially dependent mass deformations which generalise
the N/ = 1* homogeneous mass deformations.

The possible bosonic deformations of N' = 4 SYM are parametrised by the bosonic aux-
iliary fields of the four-dimensional off shell conformal supergravity theory, which transform
in the representations of SU(4)r (i.e. the global R-symmetry group of the undeformed the-
ory). The deformations transforming in the 1 of SU(4)y are associated with placing N' = 4
SYM on a curved manifold, as well as spatially dependent gauge coupling g and theta angle
f which can be recasted as the complexified gauge coupling parameter 7 = % + z";—’;. In
addition, there are deformations F;; transforming in the 10 of SU(4)g, DY}, transforming
in the 20 of SU(4)g, as well as one-forms V/ ; and two-forms T}/, transforming in the 15
and 6 of SU(4)g respectively. In this chapter, we will focus on spatially modulated mass
deformations of the bosonic and fermionic fields involving only E;; and D%, hence we will
set

Vuij — 0,
TS =0, (5.2)

T = constant .

In general, the components of E;; and D%y, are both complex and satisfy

Ey; = Eji,
DYy =—-D"y=—-D",
(Dklij)* _ Dz‘jkl _ 1€ijmn€klqupqmm (5‘3>
DY =0,

with i, 7,---=1,...,4.

To see how these background fields couple to N' = 4 SYM, we first recall that the field
content of N =4 SYM consists of gauge fields A, fermions 1);, both transforming in the
4 of SU(4)g, and bosons ¢, satisfying (¢")* = ¢;; = 1€;¢", transforming in the 6 of
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SU(4)g. The deformed action, in flat spacetime, is given by'[]

1 Y 0 L, 1 o _ .
5= /d4y Tr( B @F"”Fu 3972 L A §DM¢JDM¢U — "Dyt

. I 1 .

— 99ii (V" V] — g9 [, ] + 592[¢”, dinl[¢", duil

1 1, A RN
+ 50 (Mg)” e + 5V (My); 97 + i (My) T

2 — \kl i 2 i ;
— 39 (My)" ¢ [pux, Ps1] — 39 (M), ¢i0™, Wl]) :
The first two lines of (5.4) are just the undeformed action of N' = 4 SYM with F},, =
A, — 0, A, + AL A, Do = 0,9 + [A,, ¢] and D" = 94" + [A,, ¥']. The third
and fourth lines of ([5.4)) represent the terms responsible for the mass deformations, with
the mass matrices for the bosons and fermions given by

(My)” = §Djk:l — E(S[ k00 (E™ By )
1 e
(Mtz))ij = —§Eij, (Mw) T= —§E] ) (5.5)

and EY = (E;;)*. In general, these deformations E;; and D%, can have arbitrary de-
pendence on the the spacetime coordinates. The supersymmetry transformations of the
matter fields for this deformed theory are given byE|

0A, = g (7,0 + &)
) 1 ) - _ . -
09" = =5 Fun™ e — 2D, 67" e; + EY e —29[67, dyule” — 20", (5.6)

S = 2¢liypd] — ¢likle
The spinors € and 1’ parametrise the possible Poincaré supersymmetries and superconfor-

mal symmetries respectively. Preservation of some supersymmetries will only be possible
if there are solutions to the following equations

O = Eijﬁj y
1 ijlm m ij 1 i j] 1 *ml(;[i 4]
0= —55 @,JE;CW €m + D k€ + §EklE € — éEmlE L€
1

e 1 ..
. gEmlEm[ldi]el . EGZﬂmEklnm ’

0 =20, —v.n",

(5.7)

'We emphasise that a “mostly plus” (—, +, +, +) convention for the metric is used in this section, and
this is in contrast with the later usage of a “mostly minus” convention when we construct supergravity
solutions.

2Note that we mostly follow the conventions and notation of [171,/172]. Thus, 9 is a chiral spinor
satisfying y51" = +4¢ transforming in the 4 of SU(4). The conjugate spinor, v;, defined by ; = B(¢%)*
(in contrast to the notation used in [163]) where B~1v, B = ~, has the opposite chirality, v51); = —1);, and
transforms in the 4 of SU(4). Note that we have changed the sign of (My),; in compared with [163],
in agreement with eq. (10) of [171].

3Note that €', ' both transform in the 4 of SU(4) and satisfy the chirality conditions vse! = +¢,
vsn* = —n'. The conjugate spinors ¢;, n; transform in the 4 of SU(4) with vs¢; = —e;, 51 = +1;. We
note that can be obtained from eq. (5) of [171].
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which arise from the supersymmetry variations of the gravitino and the auxiliary fields in
the off-shell conformal supergravity multiplet, and can be found in [170]. We note that a
complete basis of solutions to the last line of (5.7) is given by

€ = constant, n'=0,

i Lo i (5.8)
€ = Ey Yun', 1M = constant.

In the following, when we refer to solutions to these background equations in with a
given €', we mean solutions as in the first line of , which are the Poincaré supersym-
metries. When referring to a solution with a given n’, we mean a solution as in the second
line of , which are the superconformal symmetries.

It is important to emphasise that we do not attempt to find the most general solution
to . Our main goal here is to focus on generalising some known homogeneous (i.e.
spatially independent) mass deformations that can be studied holographically within the
known truncations of D = 5 maximal SO(6) gauged supergravity. Specifically, we will
consider the homogeneous N/ = 1* deformations and allow for an additional dependence
on one of the three spatial coordinates.

To cast the N/ = 1* deformations in the present formalism, we recall that the field
content of N' =4 SYM, when written in terms of the N' = 1 language, is comprised of a
vector multiplet that includes the gauge-field and the gaugino, and three chiral superfields
®, transforming in the 3 of SU(3) in the decomposition SU(3) x U(1) C SU(4)g. The
N = 1* homogeneous mass deformations can be obtained by adding to the superpotential
the following term

3
AW ~ > " mgTr @, (5.9)

a=1

with m, complex. This deformation in gives rise to masses for the bosons and fermions
in the three chiral multiplets, but there is no mass deformation for the gaugino in the vector
multiplet. Under the present formalism, these NV = 1* deformations are associated with
fermion mass deformations of the form

E;j = diag(my, ma, m3,0), (5.10)

and together with boson mass deformations parametrised by both £;; and specific compo-
nents of DY, which we will describe below.

Our goal is to generalise the A/ = 1* deformations by allowing m, to depend on one
of the three spatial coordinates (i.e. m, = m,(y)). We first analyse the general case with
distinct, non-vanishing mass terms m,, before moving on to discuss some subclasses which
are of relevance in this chapter. From the first line of , it is clear that one can preserve
N = 1 Poincaré supersymmetry of the form

e=(0,0,0,¢€"). (5.11)

In the homogeneous case, with m, constant, we notice that the middle equation of ([5.7)
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can be satisfied by choosing
D"y = D%y = — (Ima|*+|ms|*—2|m4|?) ,
Dy =D%5 = (|m3|2—|—|m1|2—2|m2|2) ) (5.12)

D3434 = D1212 = (|m1]2+\m2|2—2\m3\2) .

olmelmel-

If we allow spatially modulated deformations m, = m,(y), taking i =1, j =2 and k = 3
in (5.7) as an example, the spinor ¢* would need to satisfy

1
.Dl2 3464 - anmgyyal = 0, (513)

where ¢, is the spinor conjugate to €! with ¢, = B(e')*. This can be solved by imposing
the following projection condition on the Poincaré supersymmetry parameters

Vey =€t (5.14)

where o is a real constant. In fact, we find that all components of (5.7]) are satisfied by
taking

* 1 [led
D" 34 = (D34 12) = 56 8ym3>

1 .
D* 1, = (D" )" = §€waym17 (5.15)

* 1 e
D gy = (D24 31)" = 5‘3 dymy,

as well as keeping , with all other components set to zero.

The projection condition breaks half of the Poincaré supersymmetry of the NV =
1* theories, which leaves us with two Poincaré supercharges. Since the deformations only
depend on one of the three spatial dimensions, we must have preserved Poincaré invariance
in the remaining d = 3 spacetime dimensions. Therefore, the above deformations preserve
N = 1 Poincaré supersymmetry in d = 3. For special choices of m,(y), we can further
preserve N/ = 1 superconformal symmetry in d = 3. To demonstrate this, we take

' =(0,0,0,n%). (5.16)
Then again by considering, for example, i =1, j = 2 and k£ = 3 in (5.7]), we can show that
the spinor n* has to satisfy

1 1
(ma + Symi)ne = Symie'y"n'" (5.17)

This can be solved by imposing the following projection condition

Yy = —ent. (5.18)
and choosing
A
My = — 5.19
y (5.19)



for arbitrary complex constants A,. Clearly, these mass source terms are singular at y = 0,
which is the location of a co-dimension one interface. It is important to point out that we
are free to choose different mass sources on either side of the interface and still preserve
superconformal symmetry, by taking

Aa
me=—, fory>0, (5.20)
Y
and
m,=—, fory<0, (5.21)
Y

where )\, and ), are independent complex constants. We will see that such source terms
also arise in the supergravity solutions which we will present later in this chapter.
Let us now consider three special cases which we will focus on later in this chapter.

5.2.3 N = 1* one mass model

For this model, we assume that only one of the mass terms is non-zero, say ms. We
therefore consider a fermion mass matrix F;; of the form

E = diag(0,0,m,0). (5.22)

In the standard homogeneous case where m is independent of y, we can preserve d = 4,
N =1 supersymmetry of the form (5.11)) by turning on the boson mass matrix

1
D y = D* 3 = —|m|?>, mnosum on a € {1,2},

12 (5.23)
D12 19 = D34 3 = _6|m|2

These homogeneous deformations preserve a global SU(2) x U(1)g symmetry. To see
this, we have to decompose SU(3) x U(1); C SU(4)g with the SU(3) acting on each of
the indices 4,5 € {1,2,3} in the fermion mass matrix E;;. We then further decompose
SU(2) x U(1)y € SU(3) to find that the global symmetry preserving consists of this
SU(2) factor as well as a diagonal subgroup U(1)g C U(1); x U(1),. Notice that the spinor
(5.11)) parametrising the N/ = 1 Poincaré supersymmetry is charged under this U(1)g, so
it is in fact an R-symmetry of the N/ = 1* theory.

When m = m(y), we can preserve N' = 1 Poincaré supersymmetry in d = 3 satisfying
the projection condition in (5.14)) with

1.
D12 34 — (D34 12)* = §€Zaaym . (524)

We note that when m = m(y), the U(1)g R-symmetry of the " = 1* theory is broken and
we are left with an SU(2) global symmetry. If we choose m = 3, we can further preserve

N = 1 superconformal symmetry in d = 3.
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5.2.4 N = 1* equal-mass model

For this model, we assume m; = my = ms so that the fermion mass matrix F;; takes the
form
E;; = diag(m, m,m,0). (5.25)

In the homogeneous case where m is independent of y, we preserve N' = 1 supersymmetry
in d = 4 of the form by taking DY ;; = 0. By again considering the decomposition
SU(3) x U(1) C SU(4)r with the SU(3) acting on each of the indices 4,j € {1,2,3} in
E;;, we can see that these homogeneous mass deformations maintain an SO(3) C SU(3)
global symmetry of the undeformed N’ = 4 SYM theory.

When m = m(y), we can preserve N’ = 1 Poincaré supersymmetry in d = 3 satisfying
the projection condition in ([5.14) with

D™ gy =D 5 =0,
L1 1 . (5.26)
Des vy = (D ag)’ = Zeo‘me%qﬁD“ﬁM = 550“5“/ewaym,

where a, 3,7, ... € {1,2,3}. We note that the spatially dependent deformations retain the

SO(3) global symmetry of the homogeneous case. If we choose m = 2, we can further

preserve d = 3, N’ = 1 superconformal symmetry.

5.2.5 N =2* model

For this model, we assume that one of the masses is zero, say ms = 0, and the remaining
two terms are equal m; = my. Thus, the fermion mass matrix F;; is given by

E;; = diag(m,m,0,0). (5.27)

We first consider the homogeneous case where m is independent of y. By taking

1
D'y = D¥y = éfm‘z ’

1 (5.28)
D, = —E|m|2, no sum on « € {1,2} or p € {3,4},
we find that there is an enhancement to A/ = 2 supersymmetry of the form
e=(0,0,6%¢"). (5.29)

These deformations preserve an SU(2)g x U(1) C SU(4)g global symmetry with SU(2)r
as the R-symmetry. To see this, we can decompose SU(2); x SU(2), x U(1) C SU(4)r
with SU(2); and SU(2), acting on the indices 7,5 € {1,2} and 4,5 € {3,4} respectively.
Then SU(2)g is SU(2)2, and clearly rotates the N' = 2 supersymmetry parameters in
(5.29). The U(1) C SU(2); symmetry acts as an SO(2) rotation along the 1, 2-directions
and leaves unchanged.

There can also be an enhancement of supersymmetry when m =
modulated. From (5.7) with (i,7) = (1,p), with p € {3,4}, and k
following condition

m(y) is spatially
= 2, we find the

1
igpq(()ymvyeq + D%, =0, (5.30)
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and ¢ € {3,4}. To solve this, we can consider a general projection condition of the form
Vep = Mpge?, (5.31)

where M, is some constant 2 X 2 matrix. The consistency with the complex conjugate of
this condition requires that M must satisfy MPIM,, = 6F. If we define

MP . = ePIM,, (5.32)
then (5.30) implies
1 -
DY 3 = —50,mil" . (5.33)

The tracelessness condition for D in requires that M is traceless (and therefore M is
symmetric). M is therefore a traceless matrix in U(2). The remaining components of D
can then be inferred from .

Note that the choice of the matrix M breaks the SU(2)r R-symmetry of the homoge-
neous deformations down to a U(1)g. This is expected since the spatially modulated solu-
tion preserves N' = 2 Poincaré supersymmetry in d = 3 and so we expect an SO(2) = U(1)
R-symmetry. The overall global symmetry is U(1)g x U(1). If we choose m = 2, we can
further preserve N' = 2 superconformal symmetry in d = 3 with

n = (07 07 73, 774) ) (534)

and
Vi = —Mpgn? . (5.35)

5.3 Supergravity truncations

To study spatially dependent mass deformations of A = 4 SYM using holographic tech-
niques, we would like to construct suitable solutions of Type IIB supergravity [174,175]. A
convenient and economic way to do this is to construct solutions of the maximally super-
symmetric SO(6) gauged supergravity in D = 5 and then uplift the solutions to D = 10
using the results of [39,40]. The D = 5 maximal SO(6) gauged supergravity has 42 scalar
fields, parametrising the scalar manifold Eg)/USp(8), which transform in the irreps 1+1,
10+10 and 20’ of SO(6). However, this is still rather unmanageable and so naturally one
would like to find simpler consistent truncations of this complicated D = 5 theory.

For general constant, complex mass parameters m,, associated with the N = 1* the-
ories, there is a corresponding consistent truncation of the maximal theory that can be
utilised, as discussed in [168], and can also be used when m, = m,(y). Specifically, one
keeps the fields of SO(6) gauged supergravity which are invariant under a (Z;)* symme-
try of the SO(6) x SL(2,R) symmetry of the theory. This leads to an D = 5, N = 2
gauged supergravity theory coupled to two vector multiplets and four hypermultiplets.
This supergravity theory contains eighteen scalar fields which parametrise the coset

SO(4,4)
SO(4) x SO(4) "

Mlg = SO(L 1) X SO(L 1) X (536)
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Schematically, these eighteen scalar fields are dual to the following operators in N' = 4
SYM theory:

A=4: ¢, ¢ < TrF,F", TrF,xF",

A=3: ¢; < Tr(xsx; +cubicin Z;), i=1,2,3,
¢y < Tr(AX+cubicin Z;) ,

A=2: o <+ Tr(Z7), i=1,2,3, (5.37)
B & Tr(|Z4)P+ 2P -2|Z5))
By & Tr(|Zif—|2)%) .

Here ¢, ¢ are real and arise from the 1+1 irreps of SO(6) mentioned above. The scalar
fields ¢;, ¢4 are complex and arise from the 10410 irreps. The three complex scalar fields
a; and the two real scalars 3, B2 which parametrise the SO(1,1) x SO(1,1) factors in the
scalar manifold Mg, arise from the 20’ irrepﬁ For the N' = 4 SYM operators appearing
on the right hand side of , when written in terms of N' = 1 language, we note that Z;
and yx; are the bosonic and fermionic components of the chiral superfields ®; while A is the
gaugino of the vector multiplet. We note that the supergravity modes do not capture the
Konishi operator Tr(]|Z;|*+|Z2|*+|Z3|*). Having source terms for the three complex scalar
fields ¢; with + = 1,2,3 are dual to deforming N = 4 SYM by the three fermion masses
mg given in . By allowing spatially dependent sources for these ¢; as well as suitable
source terms for «y, 1 and (o, we can study spatially dependent mass deformations with
arbitrary complex m,(y) via holographic techniques. As far as we are aware, this D = 5,
N = 2 gauged supergravity theory has not been explicitly constructed in the literature.

If we restrict to deformations for which the mass parameters m,(y) are all real, we can
further simplify the above model. As discussed in [168], we can further truncate the above
gauged supergravity theory to just keep the metric and ten scalar fields which parametrise
the following coset

4
My = SO(1,1) x SO(1, 1) x {M} | (5.38)
U(1)

This is achieved by truncating the D = 5, N' = 2 gauged supergravity theory using an
additional Z, symmetry, which lies in a [O(6) x SL*(2,R)] /Zy subgroup, which is the
actual symmetry group of N' = 8 gauged supergravity |[180]. We note that this truncation
does not result a supergravity theory in D = 5. Nevertheless, this truncation can still be
used to obtain supersymmetric solutions of SO(6) gauged supergravity and hence Type
IIB supergravity. The ten real scalar fields consist of ¢, ¢;, ¢4, o; and Sy, B2, which are
all now real and dual to the obvious Hermitian generalisations of the operators given in

. In particular, we will refer to ¢ as the “dilaton”.
As already noted above, the two scalar fields f;, 5 parametrise the SO(1,1) x SO(1, 1)
factor in Myy. The remaining eight scalar fields of this truncation, parametrising the coset

4We note that B, 3, are the two real scalar fields that appear in the N' = 2 gauged supergravity
model coupled to two vector multiplets [176], commonly known as the STU model. If we supplement the
STU model with complex ¢;, ¢4, we can obtain the so-called charged cloud truncation considered in [177].
The scalars in this truncation parametrise the coset SO(1,1) x SO(1,1) x [SU(1,1)/U(1)]*, but it is a
different set of scalar fields of SO(6) gauged supergravity than those kept in . It is also different
to the truncation of [178l[179], which has scalars parametrising the same coset, but does not contain any
scalars in the 10 of SO(6) which are dual to fermion mass deformations.
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[SU(1,1)/U(1)]", can be packaged into four complex scalar fields z* via

1 ‘ : . ]
2! = tanh §(a1+a2+0z3+g0—w51—Z¢2—2¢3+Z¢4) ;
, 1 RN
2* = tanh é(al—a2+a3—90—Z¢1+Z¢2—Z¢3—Z¢4) ;

- . (5.39)

2% = tanh §(a1+a2—a3—<p—i¢1—i¢2+i¢3—i¢4) ;
:1 z

24 = tanh 5(0&1 — Qg — Q3 + Y — Zgbl + Z(bg + ’l¢3 + Z(]§4)

The gravity-scalar part of the Lagrangian is given by

L= —iR +3(081)% + (0B) + %’CABauZAa“EB - P, (5.40)

where P is the scalar potential and K is the Kéahler potential given by

4
K== log(1—z"z"). (5.41)
A=1
The scalar potential can be derived from a holomorphic superpotential-like term
1
W = 36251”52 (1 42022 2t 2t 2228 4 22 4 B z1222324)

1

+ze261—252 (1 —2'22 4+ 2'2% — 212% — 222° + 2%2% — 282 4 21272524 (5.42)

1
et (1 B N 2122232’4) ,
via

1, [1 — 1 - 8.
P = ge’c 508 WO W + 505, W05,W + KPAN JWV WV — VW (5.43)

where KB4 is the inverse of the Kéhler metric K 45 and the Kahler covariant derivative is
defined via VW = 04 W + O4KWWV.

The ten-scalar model is invariant under Zs x Sy discrete symmetries which, importantly,
leave W invariant. First, it is invariant under the Z, symmetry

2 — —ZA; & {0 a0} = —{ i, da, i, 0} (5.44)

Second, it is invariant under an S3 permutation symmetry which acts on (—2%, —23,2%) as

well as 31, B2 and is generated by two elements:

{ZSH_ZA & P14 03,01 & az), 51%_%(51"‘52)7 52%%(52_351)7

(5.45)
(o -2 & dro a1 ), B— —f.
There is also an invariance under the interchange of pairs of the z4:
Zl & 247 _22 & _23 ) ~ (¢27 ¢3) — _(¢27 ¢3) ) (Ofg, Oég) — _(OQ? @3) )
Zl A _22) _23 A 247 <~ (¢17¢3) - _(¢17¢3)7 (Oél,Oég> — —(011,043) ) (546>
2o =2 =P et e (0102) & —(d1,¢2), (a1,a) = —(a1,a0).
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Together ([5.44)-(5.46|) generate Zs x S, as observed in [181]. We also note that (5.45)),
(5.46)) are discrete subgroups of the SO(6) R-symmetry while (5.44)) is part of the SL(2,R)

symmetry of D = 5 gauged supergravity. The D = 5 theory is also invariant under shifts
of the dilaton

p—+ptec. (5.47)

We note that this shift symmetry is generated by the following holomorphic Killing vector

4
EEEUINED o (5.4
where s(A) =0 for A =1,4 and s(A) =1 for A = 2,3. Moreover, we define
K =K +logW +1logW, (5.49)
and we have
404K +140:K = 0. (5.50)
The corresponding moment map u = (24, z4) is given by
.4 _
= —% ;(—1)“1“)% . (5.51)

In terms of the fields given in (5.39)), the moment map depends only on ¢;, ¢, and takes
the following form

p= % [tan(—¢1 — @2 — @3 + ¢a) — tan(—é1 + g2 — @3 — ¢u) (5.52)
—tan(—¢1 — @2 + ¢3 — @) + tan(—¢1 + 2 + ¢z + ¢u)] .

Using the conventions of |168] (also see appendix , a solution to the equations
of motion of this ten-scalar model is supersymmetric provided that one can find a pair
of symplectic Majorana spinors (g1,&5) with g9 = —iyte? satisfying the following Killing
spinor equations

1 —
Viuer + Auer — ée’C/QW’yuez =0,

1 5 —
7“8“2“51 + §6K/2]CBA (VBW) gg =10 y

1 N (5.53)
379,511 + Ze’C/z (05, W) e2 =0,
Y OuP2e1 + ieK/Q (05, W) 2 =0,
where
A, = —i 04K, — 05K0,2"] (5.54)

There are various consistent sub-truncations of the ten-scalar model which were also
discussed in [168], and we summarise these results in figure[5.1] In this chapter, we focus on
the three sub-truncations which can be used for real, spatially dependent mass deformations
associated with each of the three cases considered in section (5.2l
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10-scalar truncation

29 = —24, f2=0

T-scalar truncation
SO(2) invariant
&1 = ¢2, @3, D

ar =az, az, ¢, fi

6-scalar truncation 5-scalar truncation N = 1* equal-mass truncation
U(1) x U(1) invariant SU(2) invariant SO(3) invariant

01 = g2, p3 = —P4 3, G4 b1 = 2 = ¢3, P4

a1 = ag, asz, @, f1 as, ¢, B Q=g =as, @

21 =~z 21 = 22

21 =23, 22 =0 _
1 3 =2 23 = Z3 = 22, -
2o = 7

22 =2 B1=0
4-scalar truncation 3-scalar truncation 2-scalar truncation
-SC. fruncat ) A TN - -SC: cat
N = 2* truncation SU(2) x U(1) invariant 50(3) x SO(;) invariant N=1 one mass/truncatlon SU(3) invariant
Iy o 3 T . b1 =2 = 3 = —Py @3, a3, 1 ~
01 =¢2, 01 =z, B b3 = —¢4, a3, 0, 1 0 = s — Qe 0 contains LS point b1,
contains N/ = 2 S-fold 1= 3 R contains A =1 S-fold
contains N = 4 S-fold

Figure 5.1: Various sub-truncations of the ten-scalar model. In this chapter, we focus on
the N/ = 1* equal mass truncation, the A/ = 1* one mass truncation and the N' = 2*
truncation. In chapter [7] we will make use of the other sub-truncations when discussing
various S-fold constructions.

5.3.1 N = 1* one mass model

This model is obtained by taking the limit where two of the masses vanish, which we take
to be m; = mo = 0 as discussed in section [5.2.3|and mg is real. Starting with the ten-scalar
model , we must have source terms for ¢3 and as. It turns out to be consistent to
set o1 = o = a1 = ap = ¢ = ¢4 = [ = 0, which is equivalent to setting

d=2r=-2=-2and =0, (5.55)

with
z' = tanh B(ag - i¢3):| . (5.56)

This truncation results in a three-scalar model with scalar fields 2!, and 3;, which we will
use to construct supersymmetric Janus solutions later. The discrete symmetries reduce to
just the Z, symmetry generated by z! — —z*.

One important feature of this three-scalar model is that in addition to the maximally
supersymmetric AdSs vacuum solution with vanishing scalars, dual to N'= 4 SYM theory,
there are two additional AdSs; vacuum solutions, labelled as LS*. These two AdS5 vacuum

solutions are related by the Zy symmetry (5.44) and given by

: 1 - 3
2 =£i(2-V3), Bi= —zlog(2), L=l (5.57)
where L is the radius of the AdSs spacetime for both LS* solutions. When uplifted to Type
IIB, these AdSs fixed point solutions preserve SU(2) x U(1)g global symmetry and are
each holographically dual to the d = 4, ' =1 SCFT found by Leigh and Strassler in [52].
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By examining the linearised fluctuations of the scalar fields around the LS* vacua, we find
that as is dual to an irrelevant operator (’)ﬁ;ﬂﬁ with conformal dimension A = 2 + /7.
The linearised modes involving ¢3 and (B, mix, and after diagonalisation we find modes
which are dual to one relevant operator and one irrelevant operator in the LS SCFT,
which we label Oifﬂl;”ﬁ and Oi’zg’;ﬁ with conformal dimensions A = 1 + /7 ~ 3.6 and
A =3+ /7 ~ 5.6, respectively.

Note that when we set a3 = 0, we obtain a gravitational model with two real scalar
fields, which is the same model used to construct the homogeneous RG flows associated with
the N' = 1* one mass model. These holographic RG flows, which preserve SU(2) x U(1)g
global symmetry, flow from the N = 4 fixed point in the UV to the Leigh-Strassler fixed
point [52] in the IR and were constructed in [51] and uplifted to Type IIB in [180]. This
gravity-scalar model, with a.g = 0, preserves the SU(2) x U(1)g global symmetryﬂ and since
the U(1)g is broken when the mass deformations are spatially modulated as discussed in
section [5.2.3] hence this two-scalar model cannot be used for our purpose.

5.3.2 N = 1* equal-mass model

For this model, we have m; = mo = m3 = m as discussed in section [5.2.4] and we are
considering m to be real. Thus, we must have ¢ = ¢9 = ¢3 as well as oy = s = a3 and
both non-zero, associated with the sources for the boson and fermion mass deformations.
It turns out to be inconsistent to further set the gaugino condensate ¢4 or the dilaton ¢
to zero. However, it is consistent to set 8; = 2 = 0. Or equivalently, we can set

A=—=—-22 and Bi=p=0, (5.58)

in the ten-scalar model (5.38)), leading to a four-scalar model, parametrised by (2!, 2%) with

2! = tanh B(Sal + @ —13¢1 + i¢4)1 ,
) (5.59)
2% = tanh {5(041 — @ —ip — i¢4)} )

The discrete symmetries reduce to the symmetry generated by (z!,2?) — —(z!,2?), and
this truncation is invariant under shifts of the dilaton (5.47)). The K&hler potential ([5.41)

is now given by
K = —log(1 — z'z") — 3log(1 — 2*7?), (5.60)

and an explicit expression for the potential P can be found in (3.8) of [137].

We note that this four-scalar model can be further truncated to give a theory with two
real scalar fields by setting ay = ¢ = 0. The resulting theory keeps ¢;, associated with
real SO(3) C SU(3)g invariant fermion masses, and the gaugino condensate field ¢4. This
two-scalar model is the same model as that used by GPPZ [131] to construct RG flows

5We note that if one keeps an SU(2) x U(1) C SU(3) C SO(6) invariant sector of SO(6) gauged
supergravity, one obtains a D = 5, N’ = 2 supergravity coupled to one vector multiplet and one hyper-
multiplet [180]. The five scalar fields parametrise the coset SO(1,1) x SU(2,1)/[SU(2) x U(1)]. With
B2 as the SO(1,1) factor, the remaining coset is obtained by supplementing ¢3 with a complex partuner,
associated with a complex fermion mass, and two more scalars ¢, ¢ dual to operators as in .
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associated with homogeneous SO(3) invariant mass deformations (and uplifted to Type
IIB in [135}136] extending the result in [180]).

For the equal mass model, with spatially dependent complex masses, there is an alter-
native consistent truncation that can be utilised. By keeping an SO(3) C SU(3) C SO(6)
invariant sector of maximal SO(6) gauged supergravity, one can obtain a D = 5 N = 2
supergravity coupled to two hypermultiplets [180},182]. The eight scalar fields of this theory
parametrise the following quaternionic-Kéahler manifold

Gaz)

Msow) = 5oy = sU@) (5:61)

This eight scalar model can be viewed as an extension to the above four-scalar model, by
simply adding a complex partner to each of the four real scalars aq, @, ¢1, ¢4. Although we
will not utilise this truncation in this chapter, it is a natural arena for further investigations
of spatially dependent complex mass deformations for the equal mass model.

5.3.3 N =2* model

This model is obtained by setting two of the masses to be equal and one to be zero.
Specifically, we take real m; = my # 0 and ms = 0, as discussed in section [5.2.5] To
study this case, we can consistently set ¢ = ¢o, oy = @y and ; # 0, while setting
a3 = ¢3 = ¢y = ¢ = B = 0 in the ten-scalar model. Or equivalently, we can set

Pd=22 P==p5=0. (5.62)
with
2! = tanh [y —i¢y] , (5.63)

leading to a three-scalar model, parametrised by z! and 3;. This model is invariant under
the discrete symmetry generated by 2! — —z1.

Note that if we set a; = 0, we obtain a gravitational model with two real scalar fields
which is the same model used to construct the holographic RG flows associated with the
homogeneous N' = 2* deformations in [183]. These RG flows preserve SU(2)g x U(1)
global symmetry. This two-scalar model cannot be utilised to study spatially modulated
mass deformations, since, as discussed in section [5.2.5] the spatial dependence breaks
SU(2)r x U(1) down to U(1)g x U(1).

5.4 Supersymmetric mass deformations with 150(1,2)
symmetry

In this section, we will discuss the BPS equations which are associated with supersymmetric
mass deformations preserving 1SO(1,2) symmetry. In appendix [D.2] we will provide a
detailed analysis of the holographic renormalisation procedure for this class of solutions,
which will be useful in future studies of these solutions as well as when we discuss physical
properties of supersymmetric Janus solutions, which arise as a special sub-class. We leave
most of the technical details in appendix [D.2] but highlight here that there are a number
of interesting issues, including a large number of possible finite counterterms, subtleties
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in obtaining a supersymmetric renormalisation scheme and interesting source terms which
appear in the conformal anomaly.

Within the ten-scalar truncation discussed in section [5.3] we consider the following
ansatz

ds? = 2 (dt* — dy? — dy3) — e*Vda? — N%dr?, (5.64)

where A, V, N and the scalar fields z#, (1, 3, are all functions of (z,7) only. This ansatz
preserves an [SO(1,2) symmetry associated with the three coordinates ¢, y;, y2. The coor-
dinates r, x, together, parametrise both the remaining field theory direction, upon which
the mass deformations depend, as well as the holographic radial coordinate. There is some
residual gauge freedom in this ansatz, associated with reparametrising (r, x) and in practice
we will find it convenient to fix this in different ways.

In appendix [D.1], we derive the associated set of BPS equations. We define the following
orthonormal frame

(2, ¢!, €% 3, ety = (edt, etdyy, e dys, eV dx, Ndr) . (5.65)

Note that the supersymmetry transformations are parametrised by a pair of symplectic
Majorana spinors €; and e5. We find that the Killing spinors are independent of ¢, vy, 3o
and satisfy the following projection condition

V%6 = —inke (5.66)
with x = 41, which implies v"%¢, = ikey as a result of the Majorana condition e, = —ivyie},
as well as

vle, = eey, (5.67)

where € is a function of (z,7). We note that that we also have €} = ie~%e¢;. The associated
system of BPS equations are then given by

e VO, A+ikN"19,A — Z?e’cﬂeig)/\/ =0,
—e V0,6 — kN0 V + 2ie”V A, + geK/QRe(e’ZfW) =0, (5.68)
—N719.6+KkNteVO,N+2iN1A, + %e’cﬂlm(e_’fW) =0,
where we recall the definition of A, given in (5.54), and

. 1 = _
iKe's (e*Vax + i/fN’lar) A = ée’C/leBAVBW,

) 1 _

ike® (e7V 0, +ikN9,) B = Ee’C/Qaﬂlw, (5.69)
. 1 _

ke’ (e’v&r + z'/iN’lar) By = fW%W-

The dependence of the Killing spinor on (x, ) can be determined and we find that they are
given by € = e/2e%/%n,, where 1, is a constant spinor satisfying the projection condition
given in (5.66). We note that these BPS equations are not all independent, and there is
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also an issue of consistency, given the reality of various functions entering these equations,
a point we will return to below. Note that these BPS equations are invariant under

r—-r, r—-x, —=E+T. (5.70)

It is interesting to point out that if we choose the gauge N = eV, then the equations
can be written in a simplified form, analogous to what was observed in [144]. We introduce
the complex coordinate w = r — ikx and the holomorphic (1,0)-form B is defined by

1 .
B= éel“v“c/?wczw. (5.71)

The equations (5.68)) can then be recast in the following form

0A =B, (5.72)
0B=—-FBAB, '
where F is a real quantity depending on W, K given by
— 3 1 AB A 1 2 3 2
F=1- éwvmﬂc VW — Z|851 log W| —Z|852 logW|*, (5.73)

where 0, 0 are the holomorphic and anti-holomorphic exterior derivatives respectively.
Similarly, (5.69) can be rewritten as

52t — _gwwcmvgwg,

_ 1 - _
b = —Z(W)‘l(?BlWB, (5.74)
98y — —Z(W)—la@wa

As we show in appendix [D.I] we can use this formulation of the BPS equations to show
that the consistency of the BPS equations requires a non-trivial condition on W, which
is provided in . Furthermore, we can show that the specific YW which appears in
the ten-scalar truncation, see , does satisfy this consistency condition. We strongly
believe the underlying reason for this is that we are working within a theory arising from
a consistent truncation of a supersymmetric theory.

5.5 BPS equations for Janus solutions

We now consider a particular sub-class of the BPS configurations discussed in the previous
section. The ansatz for the D = 5 metric is now given by

ds? = e*Ads*(AdS,) — N?dr?, (5.75)

where Ay, N and the scalar fields 31, £o, 2 are all now functions of r only. Here ds*(AdS,)
is the metric on AdS, of radius ¢, and in Poincaré coordinates this is given by

dz?> 1
dSQ(AdS4) = 62 —? + ﬁ (dtQ - dy% — dyg) . (576)
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The factor of ¢ can be absorbed by redefining A, but it is convenient and usefu]ﬂ to keep
it explicit. Note that we can recover the metric on AdSs; with radius L by setting N = 1
and
L
Ar = 7 COSh% : (5.77)
We can obtain the BPS equations for the Janus configuration as a special sub-class of
the 150(1,2) preserving configuration considered in the last section. Specifically, we take

e

eV =et =rtetat, (5.78)

then the metric ansatz (5.64)) precisely gives ((5.75)). From the first and third BPS equations
in (5.68)), we obtain

. 7’L'§ L
N9 Ay + Lt & K= g,
l 3 (5.79)

i0,§ + 24, — ZIm (Ne™“eM?W) =0,

with the second equation in (5.68]) implied by the first of these. From ([5.69), we get the
remaining BPS equations

—ig _ o
N719,24 + eTe’C/QlCABVgW =0,
—ig e
N0, By + e I0,, W = 0, (5.80)
e~ %

Nﬁlarﬁ2 +

1 GIC/28Q2W =0.

We can also obtain the Poincaré type Killing spinors for the Janus solutions directly
from those given in the previous section and we find

A 1 .
£, = 615/2+A.I/2£1/2ﬁn0’ 7012170 = —IKT)p , (581)

where 7y is a constant spinor, and e, = e %~%;. There are also superconformal type
Killing spinors of the form

1

1 .
€1 = ﬁ Vi + NG (tvo + 1171 + y2y2) 7° et/ 245 /2

To , (582)

where 7 is a constant spinor satisfying the following projection condition

200 = —ikng , (5.83)

and again €5 = e “~%,. The BPS equations (5.79) and (5.80) are invariant under the

transformations

r—-—-r, {=>&+T K— —kK, (5.84)

6Specifically, if we take £ — oo, we obtain the BPS equations for ordinary Lorentz invariant RG flows
with metric ds? = e24("ds?(RY?3) — dr.
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but note that the latter changes the projection on the Killing spinor. They are also invariant
under

r——r, 2zt =zt £ 4. (5.85)

By choosing the gauge N = e/, we can recast (5.79) and (5.80] in a manner similar

to what we did in the previous section. Specifically, we define

B, = %ezf”ﬂmw, (5.86)

then we obtain the following BPS equations:
0, Ay — ? = 2B, , (5.87)

and
0,B, = 2FB,B, , (5.88)

where F is the real quantity depending on W, IC given in (5.73)), as well as

0,24 = —3KAP VW B,,
W
1 _
001 = —5851 logWB, , (5.89)

0,02 = —2852 logWB, .

Note that the right hand side of (5.88]) is real and implies that Im(B) is constant, which
Is in agreement with (5.87). Given the reality of 5, and (5, we notice that for any function
G(z4, b1, B2) which depends only on the scalar fields and is anti-holomorphic in the four

complex scalar fields 24, using (5.87)-(5.89)) we can deduce
8,(GB,) = 2(OG)B, B, , (5.90)
where O is a differential operator acting on the scalar manifold and is defined via

~ 1 _ 3 _
VﬁvwaAg — 705, 108 W05,G — 05, 10gW05,G. (5.91)

Then, taking the r derivative of the last two equations in (5.89)), we obtain the following
necessary conditions for these set of equations to be consistent with ; being real:

oG = G — ;;cAB

Im (@aﬁi 1ogW> =0, (i=1,2). (5.92)

Notice that these conditions do not involve B, just the scalar fields, and hence they are
necessary conditions on K and W. One can explicitly check that these conditions are
satisfied for (5.41) and (5.42) in the ten-scalar model. It is also not difficult to see that if
is satisfied, then it is sufficient for a solution to exist, given a set of initial values for
24, B;, B satisfying the condition

Im (95, logWB,) =0 (i =1,2). (5.93)
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Indeed, by taking the taking the r derivative of the expression on the left hand side, using
(5.90) and given that (5.92)) holds, we see that ((5.93)) is guaranteed to be satisfied along the

flow. Furthermore, for any initial values of 2, §;, one can always choose an initial value of
B, which satisfies ((5.93)), and then solve the equations.
From the above arguments, given ([5.92)) is satisfied, one can also conclude the following:

e If the starting values of 24, 3; are such that 95, logWW = 0 or Im(9g, log W) # 0 (for
i = 1,2), then given a chosen value of § one can always find a starting value for Re(B,)
such that is satisfied and solve the equations. It is then guaranteed from (}5.93))
that along each point in the flow, either dg, logW = 0 or Im(dg, logW) # 0.

e Conversely, a choice of starting values with ds, log W # 0 and real, for either 3; or
Pa, is consistent with equations (5.89)) and ([5.88)) but is incompatible with equation

(5.87)) since it requires Im(B,) = 0.

e From the last two equations in (5.89)), it is clear that the turning point for f; corre-
sponds to a point in which 9, logW = 0.

e For a turning point of A;, we have Re(B,) = 0 and therefore implies that at
this point we must have Re(ds, log W) = 0. Thus, at the turning point we are free
to specify initial conditions for the z# which implies that the family of solutions is of
dimension twice the number of 2z which are active.

We have proved these results for the flows using the gauge N = e7. However, these are
gauge invariant results, and hence they are also valid for the gauge N = 1 which we will
use to construct numerical solutions in the next section.

5.6 Supersymmetric Janus Solutions

5.6.1 Preliminaries

Now we will focus on the Janus solutions which describe a planar, co-dimension one con-
formal interface in N' = 4 SYM which is supported by spatially dependent mass sources.
These solutions have a metric of the form given in ([5.75)):

ds® = *Ads*(AdSy) — dr? (5.94)

where we have now chosen the gauge N = 1 with
2

‘
ds*(AdS,) = g (—da® + dt* — dy; — dy3) - (5.95)

We note that in the gauge where N = 1, the BPS equations are invariant under shifts of
the radial coordinate

r — r + constant . (5.96)

It is illuminating to recall that the N'=4 SYM AdS5 vacuum solution with the above
AdS} slicing is given by

a, L

r
e = cosh T (5.97)
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with vanishing scalar fields. If we carry out the following coordinate transformation

2 72, 2)/L
r=\/y3 + L2 2/L, 6T/L:ep/Ly3+ ySZLe : ; (5.98)

we recover the AdSs; metric with flat-slicing, which is given by

dsy = e*/"(dt* — dy? — dys — dy3) — dp”. (5.99)

In the (p,ys) coordinates, the conformal boundary is reached at p — oo and has a flat
boundary metric with coordinates (¢,y;). While in the (r,x) coordinates, the conformal
boundary has three components: two half spaces r — 400 at x # 0, associated with
y3 > 0 and y3 < 0 respectively, joined together at the planar interface at z = 0 and finite
r, associated with y3 = 0. As r — 400, we obtain the AdS; metric on the two half spaces.
A few more details can be found in appendix and we have also shown a display of the

set-up there in figure [D.1]

Janus solutions: field theory on AdS;

The Janus solutions of N/ = 4 SYM that we construct approach the N' = 4 SYM AdS;
vacuum as r — oo but with additional mass sources. Analogous to the discussion for
the AdSs vacuum solution itself, the conformal boundary of these Janus configurations
consists of three components: two half spaces, with AdS; metrics, joined together at a
planar interface along the boundary of the AdS;. Note that the boundary at x = 0 is
not a standard asymptotically locally AdSs region, as the scalars are not approaching an
extremum of the potential, but only at r = 4o0.

We first consider the r — oo end of the interface. As r — oo, we demand that the
expansion series of the bulk fields have the following form

r

i ;
¢i=die E e =104,

o = ai,(s)%e_z’"/L + ai,(v)e_%/L +ee,, i=1,...,3, (5.100)
Bi = 51’,(3)%6_27”” - 51',(71)6_27”@ +oee, i=1,...,2,

0= P+ + P

Recall that in the N = 1 gauge, the BPS equations have a residual shift symmetry in the
radial coordinate r . By shifting the radial coordinate via r — r — AgL, we can
always remove the constant term Ay and we shall do so in the following. In particular, all
the expressions for the expectation values and sources given below are obtained with

Ay=0. (5.101)

The various other coefficients in this expansion, which are all real constants, are con-
strained by the BPS equations, as we detail below. The constants ¢; (), @i (s), Bi(s), Ps)
are associated with constant source terms for the mass deformations of N'= 4 SYM when
placed on AdS,;. Recalling from that these are sources for operators of conformal
dimensions A = 3,2,2, 4, respectively. It is extremely useful to note that the field theory
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sources on AdS, which are invariant under a rescaling of the AdS, radius ¢ are given by
LP; (s), €2CY¢,(3), ﬁzﬁh(s), ©(s)- In this chapter, we will not discuss deformations that involve
the coupling constant of A =4 SYM, and so we will always set

Ps) = 0. (5.102)

The BPS equations imply that these source terms must then satisfy

L
Qi (s) = —’fz@,(s), i1=1,...,3,

1
Bi,(s) = 3 (97 (s) + 9305) — 205.(5)) > (5.103)
Ba,(s) = (ﬁ,(s) - ¢3,(5) ;
¢4,(s) =0.

We note that these relations respect the field theory scaling dimensions of the sources on
AdS, as mentioned above.

Similarly, the constants ¢; (), @i (v), Biw); PE) i , with suitable contributions
from the sources, give rise to the expectation values of the scalar operators. We will give
explicit expressions for these in each of the three truncations below. As a simple example
here, using the renormalisation procedure discussed in appendix we find that for
N =4 SYM on AdS, we obtain

1

(Ou;) = m(az‘,(v) - 25aai,(s))~ (5.104)

Here ¢, is an undetermined constant that parametrises a finite counterterm, which we
have not fixed. As we shall see below, it is intimately connected with a novel feature of
the expectation values of the operators in flat spacetime. We also note that due to the
structure of the conformal anomaly, ¢2(0,,) is not invariant under a rescaling of ¢ as one
might have expected, and we will return to this below.

Janus solutions: field theory on flat spacetime

We are interested in obtaining the sources and expectation values for various operators of
N =4 SYM in flat spacetime, as in section [5.2l The metric on AdS; in is con-
formal to the flat spacetime metric. Therefore, we can obtain the relevant quantities in
flat spacetime from those on AdS; by simply performing a Weyl transformation with Weyl
factor x2/¢?. However, while the source terms transform covariantly under Weyl transfor-
mations, the expectation values do not due to the presence of source terms appearing in
the conformal anomaly A (similar to [184,/185]), schematically given by

L* ab 1 2 2 - 2 1 2
8tGLA = 3 (RabR — gR ) —L ; {(V@,(s)) + ER@,(S)}

, (5.105)

4 4
8 8
2 2 2 4 2 2
=20 0 2 T3t —5 D et
=1

i=1 1<i<j<4

where the dots refer to the extra terms which involve finite counterterms (see (D.35),(D.36])).
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In fact, we can obtain the relevant results within holography by carrying out a bulk co-
ordinate transformation such that as we approach the » — oo component of the conformal
boundary, it has a flat metric. For this component of the conformal boundary, we can use
the coordinate transformation of the form

2
e/l — %epw + %e‘p” +0(e ¥ Jyd),
n (5.106)

2
v =yt e O ),
2y3

with y3 > 0. Substituting this back into leads to expansion series of the bulk

fields as p — oo (see appendix . With this in hand, we can employﬂ the holographic

renormalisation procedure for the 7.SO(1,2) invariant configuration discussed in appendix

to read off the sources and expectation values of field theory operators, which are now
placed on flat spacetime.

The non-trivial sources for the dual scalar operators in N' = 4 SYM theory now have

the expected dependence on the spatial coordinate y;3 (still with y3 > 0) as discussed earlier
in section 5.2}

Chisy  Pas

, 5, t=1,...,3
Y3 62;;3 (5.107)
S =12,
Y3
with ¢4 ) = ©i) = 0. Recall that the numerators in these expressions are the scale

invariant field theory sources on AdSj,, and in flat spacetime, we see that these field theory
sources have scaling dimensions 1, 2, 2 associated with operators which have conformal
dimensions A = 3,2, 2 respectively. Furthermore, when combined with the BPS relations
given in , these expressions are in exact agreement with those derived in section
for each of the three sub-truncations.

Due to the structure of the conformal anomaly, the expressions for the expectation
values are more involved. As an example here, we have

1 2

(On,) = mi—g (Olz',(u) + a; (s) log <£Tia>) , (5.108)
and we will give explicit expressions for the other expectation values for each of the three
truncations below. In particular, we highlight the appearance of the log(ys) term in the
above expectation value. Notice that performing a scaling of the y3 coordinate is associated
with a shift in d,, which parametrises a finite counterterm. We can certainly choose a
renormalisation scheme in which we set 6§, = 0. However, there are additional similar
finite counterterms which appear in the expectation values of other operators, as we will
see in each of the three truncations below, and we have not been able to find a simple
argument which would fix all of them in a way that is consistent and compatible with
supersymmetry. Given the appearance of these log terms in the expectation values, we
expect that there will be at least one set of supersymmetric finite counterterms that one
is free to add. We leave further investigation on this issue to future work.

"To do this, one should use the results of appendix by replacing the coordinates (r,z) there with
(p7 y3)
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From the above results, we conclude that under a Weyl transformation of the AdS,
boundary metric of the form hg, — A2?hg, with A = z/I, the source terms transform
covariantly with ¢;5) — A7), i) — A 2ay) and By — A™2fBis). However, the
expectation values do not transform covariantly due to conformal anomaly. As an example
here, we have

(On,) = A2(0,) + :;T%A—Q log A (5.109)

The transformation properties for all the expectation values are provided in —.
It is worth emphasising that these results imply that some care is required in comparing
expectation values of operators on AdS, for solutions with different values of the AdSy
radius ¢ due to this non-covariant rescaling. In practice, we have set ¢ = 1 (as well as
L =1) in generating all of our numerical solutions.

The r — —oco0 end of the conformal boundary

The above analysis considers the » — oo end of the conformal boundary for the Janus
solutions. Clearly, there is a similar analysis for the »r — —oo end, which by assumption,
is again approaching the A" =4 SYM AdS5 vacuum. As r — —oo, the expansion series of
the bulk fields have the following form

r ~ ~
AJ:__+A0+...+A(v)e4T/L+...7

L
¢i:(;i,(s)er/L+"'+(5i,(1;)63T/L+“’ , t=1,...,4,
o; = —di7(s)%€2r/L + di,(v)ew/L 4+, 2 =1,...,3, (5.110)
Bi = —Bi,(s)%ewL + Bi,(v)e%/L 4+, i=1,...,2,

¢:¢(S)+...+¢(U)€4T/L+... 7
which can be obtained by replacing r — —r in , and we again set
Ay =0, (5.111)
by shifting the radial coordinatdﬂ. As we show in appendix , the BPS equations imply
that the coefficients are related as in the » — oo case. As an example, we now have
Qi (s) = +m%@,(s) , i=1,...,3,

) 1y L 5.112
s =3 < L) T P20 — 2¢3,(s)> ; ( )
5 72 72

/82,(8) = ¢1,(s) - ¢2,(s) ;

with 92547(5) = @(5) = 0.

To carry out the coordinate transformation back to flat space, we can use ([5.106|) with
r — —r and y3 — —y3. This will then give the relevant quantities on the y3 < 0 part
of the conformal boundary, with flat boundary metric. Thus, to obtain the flat boundary
results for y3 < 0 from those for y3 > 0, we need to make the replacements y3 — —y3 and
K — —K.

8When one numerically constructs a solution, one generically finds that Ag and Ay in (5.100) and
(5.110) are non-zero and not equal. In order to utilise our holographic renormalisation results with Ay =
Ay = 0, one needs to shift the radial coordinate by different constants at r = +oo.
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Constructing solutions

Having made some general comments on how to determine the sources and expectation
values for the Janus solutions, we now turn to presenting the solutions which we have
constructed for the three different truncations.

It is helpful to recall that the ten-scalar model, and the three further truncations, are
all invariant under the Zy symmetry that takes

P (5.113)

Furthermore, the BPS equations for the Janus solutions in (5.79)),(5.80]) are also invariant
under the Zs symmetry that acts as

r——r, 2tz o —f47. (5.114)

Combining these two, we conclude that the BPS equations are also invariant under

r——r, 2zt -zt ¢4, (5.115)
We have utilised various approaches to solving the BPS equations numerically. One
approach is to start at, say, r — oo, and then use the expansion to set initial
conditions to integrate in to smaller values of r and see where the solutions end up. As
we will see, while some solutions end up at a similar asymptotic region at r — —o0, and
hence are Janus solutions of A" = 4 SYM, there are also singular solutions that run off to
infinity. Furthermore, there are also solutions which do not have an asymptotic region of
the form (5.100)) or (5.110). Another approach, and a more general one, is to start at a
point in the bulk, for example a turning point of the function A,(r) at say » = 0 and then
integrate out to smaller and larger values of r, and again see where the solutions end up.
In the following, we will summarise the main results of these constructions.

5.6.2 N =2* model

We start with the N/ = 2* model. This model was summarised in section (£.3.31 There is
one complex scalar field z!, which can be expressed as

2! = tanh [ — ] (5.116)

and one real scalar field f;.

Consider solutions that approach N' = 4 SYM with mass sources at, say r — oo0.
Following our discussion in the previous section and using the results of appendices
[D.3] we can summarise the sources and expectation values for the operators which are
active. All of the source terms are specified by ¢; () with

L 2
Q,(s) = —’fzﬁbl,(s), Bis) = géﬁ(s)' (5.117)

The field theory sources on AdSy are given by ¢1 (s), 1,(s), Bi,s), With £y (), €2a1,(s),
(?P1 (s), invariant under Weyl scalings of ¢, while those on flat spacetime are given by

(5.107):

€¢1,(s) ‘€2a1,(5) ‘6261,(5)

9 ) 2
Y3

) 5.118
Y3 y% ( )
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and have scaling dimensions 1,2, 2, respectively. For the associated expectation values of
the operators in flat spacetime, we have

1 Ys
(Oa) = (Oay) = my—g (041,(u) + ay,(s) log (&25&)) ’ (5.119)

which then, along with ¢; (), determines the remaining expectation values

4kl 1+ 45, — 4584) 02
(Op,) = ———(0ay) P1,(5) + ( B)_z o)
L 2rGL Y3 (5.120)
20 1 L ¢ '
pr— _ ————— —_— 2 L— —_— ——— .
(On) = (On) = =5 -(O) b1 = 2L (On) = Tz

where d,, dg are unspecified finite counterterms.

An important aspect of the above summary, is that for a specific choice of finite coun-
terterms, all of the scalar sources and expectation values of the dual field theory can be
determined by providing f¢; () and 620417(@). We will now set £ =1 (as well as L = 1) and
also fix the sign arising from the projection conditions: k = +1.

1 Re 7'

1 Re z

Re z

Figure 5.2: The family of BPS solutions for the N' = 2* model is summarised by para-
metrically plotting the real and imaginary parts of the scalar field z'. The black squares
correspond to turning points of the function A;(r) and the three plots, from left to right,
correspond to solutions where the phase of the complex scalar field at the turning point is
0,7/4 and 7/2, respectively. The blue dot at the origin is the A" =4 SYM AdS5 vacuum
solution and the blue lines are Janus solutions. The boundary of field space is |z!|= 1,
marked with the grey circle. As one moves from r = —oco to r = +00, one moves clockwise
on the curves.

Following our discussion near the end of section [5.5], we know that there is a two-
parameter family of solutions for this model. A useful way to parametrise them is to take
one of the parameters to be the phase of the complex scalar z! at the turning point of
the function A;(r). Due to the symmetries given in (5.113) and (5.114)), we can restrict
to solutions for which this phase lies in the domain [0,7/2]. By fixing this phase, we can
construct a one-parameter family of solutions which we can represent by parametric plots
of the real and imaginary parts of the complex scalar field 2!, as illustrated in figure 5.2}
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In these plots, the black squares correspond to the turning points of the function A;(r),
and from left to right, the phase is set to be 0, 7/4,7/2 respectively. The blue dot at the
origin in each of the plots corresponds to the N' =4 SYM AdS5 vacuum solution.

For each fixed value of the phase, there is a one-parameter family of N' = 4 SYM Janus
solutions (blue curves) that approach the N' =4 SYM AdSs vacuum solution at r — 400,
with spatially modulated mass sources parametrised by ¢, (). Furthermore, focussing on
the 7 — +00 end, we find 0 < ¢y,(5) < @1,(s)|erit A0 1 (5)|erit% 00. The exception to this
occurs only for the class of solutions in which the phase at the turning point is exactly /2
(the right plot in figure . For this class of solutions, we find rather remarkably that it
has vanishing source, ¢;,s) = 0, on both sides of the interface, and we will return to this
point below. We also note that, somewhat surprisingly, for the generic solutions as the
phase approaches 7/2, the critical value of the source, ¢y (s)|erie does not approach zero.

Another interesting feature of this model is that for each Janus solution, with phase not
equal to 7/2, on either side of the interface at r — +o0, we always ﬁndﬂ that 451,(5) = —01,(s)
If we convert to sources in flat spacetime, recalling that we have set £ = 1, this means we
have a source of the form ¢y (5)/ys, for all y3 and where here ¢, ;) is the expansion coefficient
at r = +oo (which we noted above is in the range 0 < ¢y (5) < ¢1,(s)crit)-

We can also determine the expectation values of various operators for the Janus solu-
tions on each side of the interface at r = +00. With ¢ = 1, we just explain the behaviour
of a1,y which can be used to get all expectation values of scalar operators. For the special
case when the phase is equal to zero (left plot in figure , the solutions are invariant
under the symmetry and we find o () is the same on each side of the interface.
For this case we also find for the 7 = 400 end with 0 < ¢y (5) < ¢1,(s)|erit, that as ¢y ()
goes from 0 to ¢1,(s)’cm’t, then a; () increases from 0, hits a maximum and then decreases
to a finite negative value at ¢17($)|cm.

In contrast, for the class of Janus solutions when the phase is in the domain (0, 7/2) we
find that ;) and @y () do not have the same value at r = 400, respectively. When the
phase is equal to 7/2, it is a different story. As we noted above, there are no sources on
either side of the interface. We also find for the two sides of the interface o () = —ay () and
the energy density is zero. The absence of sources on either side of the interface
is noteworthy. It seems likely that there is a distributional source which is located on
the interface itself, otherwise we would have a configuration that spontaneously breaks
translations, and it would be interesting to verify this in detail.

The plots given in figure [5.2] also reveal that there are other non-Janus solutions for
this model. When the phase is in the open domain (0, 7/2), there is also a one-parameter
family of solutions that approach N' =4 SYM as r — —oo, with —oco < gz~§17(s) < —01,(s) lerit-
At some finite value of the radial coordinate, past the turning point, the solution hits a
singularity, with |2'|]— 1. Such solutions, corresponding to the black curves in figure
are one-sided interfaces (a type of interace solution which has been suggested as a dual
description of BCFTs [186]). Finally, there are also solutions which approach singular
behaviour at both ends of the radial domain, denoted by black dashed lines in figure [5.2]
When the phase is equal to m/2, all solutions are regular Janus solutions except for the
one solution in the right plot of figure which has the turning point at Im(z!) = 1.

9This seems to suggest that there is some kind of conserved quantity for the BPS equations which we
have yet to identify.
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5.6.3 N = 1* one-mass model

This model was summarised in section [5.3.1f There is again one complex scalar field 2!,
which can be expressed as

2! = tanh B(ag - Z§b3):| : (5.121)

and one real scalar field ;. A particularly interesting feature of this model, which plays
an important role in the solution space, is the presence of the two LS* AdSs fixed point
solutions given in ((5.57)).

Consider solutions that approach ' = 4 SYM with mass sources at, say, r — o0.
Following the discussion in section and using the results of appendices [D.2]D.3], we
can summarise the sources and expectation values for the relevant operators which are
active. All of the source terms are specified by ¢ () with

L 2
a3,(s) = —Hz%,(s) ) 51,(3) = —§¢§,(s)~ (5.122)

The field theory sources on AdS, are given by ¢ (s), Qss), Bi,(s), With €ds ), o (s),
0?P1 (), iInvariant under Weyl scalings of £, while for those on flat spacetime the dimensionful

quantities are given by ((5.107)):

lhs sy  Casi PP

ys y3 3

: (5.123)

and have scaling dimensions 1, 2,2 respectively. For the associated expectation values of
the operators on flat spacetime, we have

(Ous) = My_g (Oés,(v) + az,(s) log (Eegéa)) , (5.124)

which then, with along with ¢3 () determines the remaining expectation values

4 /¢ 1 L 7/
<O¢3> = __<051> ¢3,(S) - 2KL—<0043> - _3¢37(S) )

drl (1446, —4d5) 2 |
<(9/81> = T <Oa3> ¢37(5) - 27TGL y_§¢3,(8) :

An important aspect of the above summary, is that for a specific choice of finite coun-
terterms, all of the scalar sources and expectation values of the dual field theory can be
obtained by providing {¢s5 (s and 62043,(1,). We will now set £ = xk = 1.

We now turn to the numerical solutions which we have summarised in figure [5.3] As
before, each plot corresponds to a fixed phase of the scalar field z! at the turning point of
Aj(r). The blue dot at the origin represents the N’ =4 SYM AdSs vacuum solution, while
the two red dots correspond to the two LS* AdSs fixed points given in (5.57)).

First consider the left panel in figure [5.3] There is a one-parameter family of NV = 4
SYM Janus solutions (blue curves) that approach the N' =4 SYM AdSs vacuum solution
with spatially modulated mass terms. Since the phase is zero, these solutions are invariant
under the symmetry and we find that we have source ¢35 on the r — 400
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side of the interface and source &37(5) = —¢3() on the r — —oo side. From the flat
space perspective, we therefore have (with ¢ = 1) a source of the form ¢g ) /ys, for all
y3. Similarly, we find that s, = a3, on either side of the interface. These Janus
solutions exist for 0 < ¢35y < 00. As ¢35 — 00, we have as(,) — oo and the Janus
solutions approach a new type of solution (red curve): a novel Janus solution with the LS*
AdS5 vacuum on one side of the interface and the LS~ AdSs vacuum on the other. These
solutions will be discussed in more detail in chapter [f; We note that there are no source
terms which are active on either side of this LS™ /LS~ interface. This actually follows from
the fact that once we demand that there are no sources for the irrelevant scalar operators
with A = 247 and A = 3+ /7 , it becomes impossible to source the relevant scalar
operator of the LS SCFT with dimension A = 1 + /7 whilst preserving supersymmetry
(see chapter [6] for further details). We also note that the irrational scaling dimensions for
these operators seem to exclude the possibility of having distributional sources for these
scalar operators on this interface while still preserving conformal symmetry. The two sides
of the LS* /LS~ interface are related by a discrete automorphism. Beyond this novel LS
Janus solution, there is also a one-parameter family of solutions that run off to singular
behaviour, with |z!|— 1 at finite values of r.

TR ey

Im z
Im z'
Im z

Re z

Re z
Figure 5.3: The family of BPS solutions for the N’ = 1* one mass model is summarised
by parametrically plotting the real and imaginary parts of the scalar field 2. The black
squares correspond to turning points of the function A;(r) and the three plots, from left
to right, correspond to solutions where the phase of the complex scalar field at the turning
point is 0, 7/4 and 7/2, respectively. The blue dot at the origin is the N' =4 SYM AdSj
vacuum and the blue lines are Janus solutions. The two red dots are the two LS AdS;
solutions, each dual to the Leigh-Strassler SCFT. In the middle plot, the red curve is a
conformal RG interface with N/ = 4 SYM on one side of the interface and the LS SCFT on
the other. In the left plot, the blue curves are N'= 4 SYM Janus solutions. The boundary
of field space is |z!|= 1 and the black curves are singular on one or both ends. As one
moves from r = —oo to r = 400, one moves clockwise on the curves.

The middle panel of figure 5.3 shows the set of solutions when the phase is 7/4 and this
provides the generic picture for phases in the open domain (0,7/2). There is again a one-
parameter family of N' =4 SYM Janus solutions (blue curves) with 0 < ¢35 (s) < @3,(s)|erit
at the 7 = oo end, where ¢ (5)|crit is finite. As @3 (5) — @3 (5)|erit, We have g () approaching
a finite value and the Janus solutions approach another new type of solution (red curve).
Before discussing that, we note that ¢s ) at r = oo and 953’(5) at r = —oo are not simply
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related in general and hence we have flat space sources as in (5.21)). Returning to the new
solution (red curve), we notice that it approaches the N =4 SYM AdS; vacuum at r — oo
and the LSt AdSs solution at r — —oo. This describes a superconformal RG interface,
with A/ = 4 SYM on one side of the interface supported by spatially dependent sources
where ¢35y = ¢3,(s)|crit, and the LS SCFT on the other. Once again, there are no sources
on the LS™ side of the interface. This particular solution will be discussed in more detail
in chapter @ Beyond this solution, for ¢ (s)|erit< @35 < 00 we obtain solutions which
start off at the mass deformed NV = 4 SYM AdSs vacuum at r — oo and then become
singular at some finite value of r, as marked with the black lines in the middle panel of
figure [5.3] There are also solutions that become singular at both r — +o0, and they are
marked by black dashed lines in figure [5.3]

Finally, when the phase is 7/2 (third plot in figure , there is a one-parameter
family of ' = 4 SYM Janus solutions that exist for —oco < ¢3 ) < 0. These solutions
are invariant under the symmetry and we find that the source on either side of the
interface at r = £o00 takes the same value 537(5) = ¢3 (5. From the flat space perspective,
we therefore have (with ¢ = 1) a source of the form ¢35 /|ys|, for all y3. There is also a
one-parameter family of solutions that are singular at finite values of the radial coordinate
in each direction and are marked by the dashed black lines in the right plot in figure |5.3

5.6.4 N = 1* equal-mass model

This model was summarised in section [5.3.2) There are two independent complex fields 2!
and 22, which can be expressed as

1
2! = tanh {5(3041 + @ — 3¢ + i¢4)} ;
(5.126)

2% = tanh B(al —p—ip — z'@)} .

Consider solutions which approach N'= 4 SYM with mass sources at, say r — 0o. As
already mentioned several times, we focus on solutions for which the source terms for the
gauge coupling constant and the gaugino mass vanish:

Ps) = Pa(s) = 0. (5.127)
All of the source terms for BPS configurations are then specified by ¢; ) with

L
0417(5) = —szﬂﬁl,(s) . (5.128)

The field theory sources on AdS, are given by ¢y (s and a; (5, with £¢; ) and 620417(3)
invariant under Weyl scalings of ¢, while those on flat spacetime are given by (5.107]):
lprs) Lo
Ys Y3
and have scaling dimensions 1 and 2, respectively. For the associated expectation values
of the operators in flat spacetime, we have
1 2 Y3
<0061> = <0062> - <OOC3> = 47TGLy_32’ (OZL(U) + al,(s) log <€€260‘>> ’

1 3 9 — 204(5) 4
<0¢4> = my—g (¢4,(v) - 3 ¢1,(s)) :

: (5.129)

(5.130)
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For BPS configurations, the remaining expectation values are determined by these expres-
sions, along with ¢; (), via

1 L /¢

Op,) = (Oy,) = (Oyy) = —26L—(Op,y) — —=—=01.(5)
(Og,) = (Og,) = (Og,) y3< ) G g e -
3kL H(3—254(5)) 03 3 .
y3(O,) = —T<O¢4> - Ty_§¢1’(s) :

Note that d,, d4(5) parametrise finite counterterms which we have not fixed. We will now
set { =k =1.

Following the discussion given at the end of section [5.5] we know that there is a four-
parameter family of solutions for this model. Here in this section, we will just study a
one-parameter family of solutions, leaving a more complete exploration for future work.
We also note the following technical point when solving the numerical equations. If we
construct a solution with non-vanishing A’'=4 SYM dilaton source at the r — oo end (i.e.
¢(s) 7 0), then we can obtain a solution with ¢y = 0 by using the shift symmetry of the
D =5 dilaton field .

In figure [5.4], we have summarised a one-parameter family of NV = 4 SYM Janus solu-
tions for this model (with ¢(s) = 0 on both sides), for which the phase of both scalars is
zero at the turning point and so the solutions are invariant under the symmetry .
In contrast to the previous two models, it is convenient to label this family of solutions
not by the values of 2% at the turning point but instead in terms of the value of o at the
turning point which we label as (a1);,. For a fixed value of (o )y, there is a one-parameter
family of solutions for which z,fp are real, all related by shifts of the dilaton and so for
regular solutions we can use this symmetry to fix ¢, = 0 for each value of (a1 )s,. We find
that regular solutions exist for —ae.it < (1) < Qerie With aeip =~ 0.447. In figure , we
have displayed a series of Janus solutions as blue curves, for various values in the range
(01)tp € [0, averit). Interestingly, as (aq )y, increases the solutions start to develop a sequence
of more and more loops in the parameter space of the scalar fields and as (o )y, — Qepit, We
obtain a new solution which is exactly periodic in the radial coordinate r (the red curve),
which we return to below.

We have just plotted z! in figure , and we note that the behaviour of 22 is broadly
similar, which we have not shown. We also note in addition to the Janus solutions, there
are also a host of solutions that are singular at both ends. The last panel in figure [5.4
displays a few of such solutions. In particular, there are solutions that can wind several
times around, before hitting the singularity.

We now return to the limiting periodic solution corresponding to the red curve in figure
5.4 As (0q)y — Qerit, all of the functions develop more and more periods in the radial
direction, with the period and shape changing very little as the limit is taken. In figure|5.5]
we have plotted the metric function A; as well as the scalar functions z!, 2% as a function
of r for a solution close to a.. For any (aq)y < aerit, we have a Janus solution with
Ay — +r/L and all the scalar fields becoming zero as r — +o00. The region in between,
however, approaches a solution that develops periodic behaviour. By compactifying along
the radial direction for this limiting periodic solution, we obtain a novel AdS, x S* solution
which will be further explored and discussed in chapter [7] Note that we can also approach
this critical solution from above, (a1)y > @erit, where solutions develop more and more
periods before becoming singular (see figure [5.4(h)).
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Figure 5.4: A family of symmetric BPS solutions for the N' = 1* equal mass model is
summarised by parametrically plotting the real and imaginary parts of the scalar field z!;
the behaviour of the other scalar field 22 is broadly similar. The black squares correspond
to turning points of the function A;(r), where the phase of both scalars is zero. The family
of solutions can be labelled by (o )y, a function of z! and 2% at the turning point invariant
under shifts of the dilaton. The blue dot at the origin is the N' = 4 SYM AdS5 vacuum and
the blue lines are Janus solutions. As (a1)y, increases we see the appearance of more and
more loops, asymptoting to the red curve, in figure (g), which describes a solution periodic
in the radial direction. In figure (h) we have exactly the same solutions as figure (g) but
with the addition of some illustrative solutions (black dashed lines) that are singular at
both ends (and without the red curve for clarity) . As one moves from r = —co to r = +00
one moves clockwise on the curves.

Im Z'
¢
Im z'

&/
.

Im 2'
ImAz‘
Im z'
| . Imcz' ]

A . Z'(n . 2(n

Figure 5.5: For the /' = 1* equal mass model as (a1)y — @erit, approaching the red curve
in figure 5.4 the A =4 SYM Janus solutions have a radial region approaching a solution
that is periodic in the radial coordinate. For any —ait < (1) < Qerit, the solution is a
Janus solution and so A; — +r/L and 24 — 0 as r — Z00. Both the period and shape of
the middle region is essentially unchanged as we approach the critical solution, with just
more periods appearing, and clearly reveals the functional form of the periodic solution.
The blue and orange curves are the real and imaginary components of z!, 22, respectively.

5.7 Discussion

In this chapter, we have investigated mass deformations of A’ = 4 SYM theory which de-
pend on one of the three spatial directions and preserve some residual supersymmetry. We
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have focussed on configurations with constant coupling constant and theta angle. We have
also explored these deformations within the context of holography, studying configurations
which preserve 1SO(1,2) symmetry as well those that in addition preserve conformal sym-
metry. For the latter class of deformations, we have constructed a number of interesting
new classes of supersymmetric Janus solutions.

In section [5.2] we have analysed the supersymmetric mass deformations of N = 4
SYM from a field theory perspective. This is achieved by coupling N' = 4 SYM to off-
shell conformal supergravity and then taking the Planck mass to infinity as in [163]. For
configurations that have constant complexified gauge coupling parameter 7 (i.e. constant
coupling constant and theta angle) as well as no deformations in the 15 and 6, parametrised
by V!, and T, ;LZ,, respectively, we reduced the entire problem to solving the equations given
in . We have then focussed on deformations which generalise the homogeneous N = 1*
mass deformations, studying in some detail with three particular cases: the N/ = 1* one
mass model, the N' = 1* equal mass model and the N' = 2* model. It would be interesting
to further investigate other possible solutions to . In the static case, we anticipate
that the examples we have studied cover the most general case of conformal interfaces after
employing suitable SU(4) rotations. However, there are additional classes of solutions that
allow time dependence which involve a null projection condition on the Killing spinors
which can be explored.

It would be interesting to analyse more general deformations which also allow 7 to
depend on the spatial coordinates. For the Janus class of configurations, this will include
the classification results of [151], which considered deformations with varying coupling
constant combined with other deformations all proportional to spatial derivatives of the
coupling constantF_UL By relaxing this latter condition, one can anticipate that additional
cases are possible, as a sort of superposition of those studied in |[151] with the ones of this
chapter. However, the non-linearity of the equations with respect to E;; indicates
that a more detailed analysis would be required. More generally, one can also explore
supersymmetry preserving deformations that also involve g,,,, Vlf j,» which have been utilised
in other situations, such as D3-branes wrapping supersymmetric cycles [59].

In the remainder of this chapter, we have analysed the supersymmetric mass deforma-
tions, with constant 7, from a holographic setting. We have utilised a consistent truncation
of D =5 maxiaml SO(6) gauged supergravity that involves 10 real scalar fields. This ten-
scalar model allows us to obtain BPS equations preserving ISO(1,2) symmetry for real
mass deformations. One natural arena to analyse complex mass deformations would be to
utilise an D = 5, N' = 2 gauged supergravity theory coupled to two vector multiplets and
four hypermultiplets, with scalar manifold given in . However, as far as we are aware,
this five-dimensional gauged supergravity theory has not been explicitly constructed in the
literature.

For the 1SO(1,2) preserving configurations associated with real mass deformations, we
have carried out a detailed analysis of the holographic renormalisation procedure, and we
notice that the model apparently admits a large number of finite counterterms. We have
managed to reduce this number a little by demanding that for supersymmetric configu-
rations the energy density should vanish. It would be extremely desirable to identify a
fully supersymmetric scheme along the lines of [187], but this could be a challenging task.

10The supersymmetric Janus supergravity solutions corresponding to [151] have recently been discussed
in [156]. From [156], one can check that the there are no source terms for the dimension A = 2, 3 operators
away from the interface, consistent with [151].
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Our results indicate that there should not be a unique supersymmetric scheme due to the
possibility of adding finite supersymmetric invariants; a useful starting point to determine
these invariants would be to use the results of [188]. A complementary approach would be
to generalise the field theory analysis in section 3 of [16§]. For the Janus configurations,
our holographic renormalisation procedure has allowed us to clearly identify source terms
and expectation values of operators, with the conformal interface interpreted as either de-
scribing N = 4 SYM on flat spacetime with spatially modulated mass sources or N = 4
SYM on AdS, spacetime with constant mass sources.

We have also shown that the deformed N' = 4 SYM theory has a conformal anomaly
which includes terms that are quadratic and quartic in the scalar source terms similar
to [184L[185]. For Janus configurations, we have shown that while the sources for the scalar
operators on either side of the interface transform covariantly with respect to Weyl trans-
formations, the expectation values for the corresponding operators do not. In particular,
the expectation values of the operators for interfaces of ' = 4 SYM on flat spacetime
contain novel terms logarithmic in the coordinate transverse to the interface as well as the
usual terms expected from conformal invariance.

In section [5.6] we have discussed various explicit Janus solutions of N = 4 SYM for
the N' = 2* theory as well as the one-mass and equal mass models. For all cases, our
constructions also reveal solutions that approach the N' = 4 SYM AdSs as r — oo (or
r — —oo in some cases) and then become singular at some finite value of . As such, these
solutions have a conformal boundary dual to N' = 4 SYM with mass deformations on a
half space that ends at a singularity. It would be interesting to examine these solutions
in more detail, including elucidating the precise nature of the singularities in Type 1I1B
supergravity, and see if they can be interpreted as BCFTs, as suggested in [186]. Perhaps
they can also be interpreted as a kind of RG flow for N/ =4 SYM on AdS,. It seems even
more challenging to find any physical interpretation for the singular solutions that do not
have any conformal boundary.

For the one mass model, we have also found some interesting special solutions which
involve the two LST AdS; fixed points that this model admits, each dual to the LS SCFT.
We found examples of both RG interface solutions, with A/ = 4 SYM on one side of the
interface, and the LS SCFT on the other, as well as a novel LS*/LS™ Janus solution dual
to a novel conformal interface of the LS SCFT. Both of these will be further discussed in
chapter [0l For the equal mass model, we have constructed a particular class of N' = 4
SYM Janus solutions that develop a periodic structure in the bulk radial coordinate, and
in the critical limit we find solutions which are exactly periodic. After compactifying the
radial direction, we obtain a new supersymmetric AdS, x S! solution that uplifts to a new
AdS, x S x S? solution of Type IIB supergravity, which will be further discussed in chapter
E]. This solution is somewhat reminiscent of the interesting AdS; x S! solutions in [156].
An important difference, however, is that while our new solutions are simply periodic in
the S* direction, the solutions of [156] have non-trivial SL(2,Z) monodromy. One might
anticipate that there are many more Janus solutions that can be constructed in gauged
supergravity which have the axion and dilaton activated along with mass sources. It seems
likely that this will also lead to a family of new AdS,; x S! solutions for which there is
non-trivial SL(2,Z) monodromy along the S! direction, as in the solutions of [156], and
we will return to this interesting point in chapter [7]
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Chapter 6

Superconformal RG interfaces

6.1 Introduction

Conformal defects/interfaces/boundaries are interesting objects to study in quantum field
theory and continue to be an active research topic (e.g. [189]). They provide important
insights into the non-trivial structure of quantum field theory, they play an important role
in our understanding of string theory and they have a broad range of applications within
the context of condensed matter physics.

In this chapter, we consider renormalisation group (RG) interfaces via holographic tech-
niques. As briefly discussed in chapter 5] an RG interface separates two distinct conformal
field theories, namely CFTyy and CFT g, with CFT;r being the conformal field theory
that arises after deforming CFTyy (i.e. the conformal field theory in the UV) by a relevant
operator and then flowing to the IR. The RG interface hence provides an important map
between observables in the two theories, as discussed in [159}/160], and provides a novel
perspective on the very important topic of classifying RG flows between CFTs.

Within the context of holography, an interesting construction of planar RG interfaces,
separating two different d = 3 SCFTs, was investigated in [157]. Strong numerical evidence
was provided for the existence of D = 11 supergravity solutions describing an RG interface
separating two distinct d = 3 supersymmetric field theories, with the d = 3, NV = 8
ABJM theory with SO(8) global R-symmetry on one side and the N'=1 SCFTs with G
global R-symmetry on the other. Within the D = 4, N' = 8 SO(8) gauged supergravity,
these two theories are holographically related via a Poincaré invariant RG flow. Moreover,
the co-dimension one interface, separating the two SCFTs, preserves d = 2, N = (0,1)
superconformal symmetry.

The main focus of this chapter is the construction of new gravitational solutions which
holographically describe co-dimension one, planar conformal interfaces separating two d =
4 SCFTs, with N/ = 4 SYM on one side of the interface and the “Leigh-Strassler” N =1
SCFT [52] on the other. Recall that the Leigh-Strassler (LS) SCFT arises as the IR limit
of an RG flow after perturbing N' = 4 SYM by a specific N' = 1* homogeneous mass
deformation which preserves an SU(2) x U(1)g global symmetry [52]. More specifically,
we can view N =4 SYM as N/ = 1 SYM coupled to three chiral multiplets, the A/ = 1*
mass deformation is achieved by giving a mass term to one of the chiral multiplets. The
RG flow, preserving d = 4, N' = 1 Poincaré supersymmetry and the SU(2) x U(1)g global
symmetry, were holographically constructed in [51] utilizing a consistent truncation of the
SO(6) gauged supergravity in D = 5, known as the FGPW solution. Since the D = 5
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SO(6) gauged supergravity is a consistent truncation Type IIB supergravity on S°, the
FGPW solution is automatically a solution of Type IIB supergravity.

Our Type IIB supergravity solutions, describing RG interfaces separating N' = 4 SYM
and the LS SCFT, are also constructed using a consistent truncation of SO(6) gauged
supergravity in D = 5 (slightly enlarged from the one used in [51]). Generically, the RG
interface solutions are supported by fermion and boson mass deformations on the N = 4
SYM side of the interface, which have non-trivial dependence on the spatial coordinate
transverse to the planar interface, similar to the Janus solutions discussed in chapter [5
These deformations preserve d = 3, N/ = 1 superconformal symmetry as well as an SU(2)
global symmetry (i.e. they break the U(1)z symmetry of the Poincaré invariant RG flow).
In contrast, there are no deformations for any relevant operators on the LS side of the in-
terface. On both sides of the interface, there are various operators with spatially dependent
expectation values. While this is the generic situation, there is a particularly interesting
solution for which the source term on the N'= 4 SYM side of the interface also vanishes.

To construct these new RG interface solutions, we start with a D = 5 gravitational
ansatz foliated by AdS, slices, which manifestly preserves d = 3 conformal invariance,
and then impose boundary conditions on the BPS equations such that on one side of the
interface we approach the LS fixed point. By integrating the BPS equations, we find
solutions that are associated with NV = 4 SYM on the other side of the interface. In
chapter [5] we have shown that these gravitational solutions also arise as limiting solutions
of a more general class of Janus solutions which are dual to superconformal interfaces with
N =4 SYM on both sides of the interface. In the limit which the magnitude of the mass
deformations on one of the N' =4 SYM sides of these Janus solutions diverge, we arrive
at an RG interface solution with A/ =4 SYM on one side and LS on the other.

We will also present an additional Type IIB solution which arises as a limiting case of
the RG interface solutions. Specifically, when the magnitude of the mass deformations on
the ' =4 SYM side of the RG interface goes to infinity, we obtain a new superconformal
Janus interface with the LS SCF'Ts on both sides of the interface, but related by a discrete
Zo symmetry. More precisely, the D = 5 gravity theory admits a AdS5 solution, dual
to N = 4 SYM, and two additional LS* AdSs solutions, each dual to the LS SCFT,
which are related by the bulk Zs symmetry. Similarly, the Poincaré invariant RG flow
solutions from the N' = 4 SYM AdSs solution to the LST AdSs5 solutions are also related
by this symmetry. The new Janus solution, which we denote by LS* /LS, has a conformal
boundary approaching the LST AdSs solution on one side of the interface and the LS~
AdSs solution on the other. Interestingly, the LS /LS~ Janus solutions are not supported
by any source terms for operators on either side of the interface, but just have operators
taking spatially modulated expectation values. By determining how the expectation value
of a relevant operator of the LS theory behaves as the mass deformation on the N = 4
SYM side diverges, we are able to identify novel critical exponents from our numerics.
Furthermore, our constructions also include a class of D = 5 solutions that approach the
LS* AdSs solution on one side of the interface and are singular on the other side. The
singularities, with scalar fields reaching the boundary of the scalar manifold, is similar to
the singularities which arise in Poincaré invariant RG flows (e.g. [51]). Similar solutions,
using spatially dependent sources, were also found in a bottom up context in [186] (see
also [157]). In [186], it was suggested that these singular solutions can be interpreted as
being dual to boundary CFTs. An interesting difference between our solutions and those
of [186] is that on the LS side the sources vanish. We leave a further investigation of these
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solutions, including the precise nature of the singularity in D = 10 and the corresponding
dual interpretation, to future work.

The plan of the chapter is as follows. In section [6.2] we provide a review of the ' = 1*
one-mass deformations of N'=4 SYM. In section we present new superconformal RG
interface solutions of D = 5 SO(6) gauged supergravity. We conclude this chapter with
some discussion in section [6.4]

6.2 N = 1* one-mass deformations of N =4 SYM

In chapter [3, we provided a detailed discussion on supersymmetric mass deformations of
N = 4 SYM, and one of the three cases considered there was the N/ = 1* one-mass
model. In this section, we will provide a brief, but self-contained, review of the one-mass
deformations from both the field theory and gravity sides, then we will provide the BPS
equations which would be needed later to construct RG interface solutions.

6.2.1 Field theory

We begin by recalling some aspects of homogeneous (i.e. spatially independent) N' = 1*
“one-mass deformations” of N'= 4 SYM theory{}] We can view the field content of N = 4
SYM in terms of A/ = 1 language as a vector multiplet, which includes the gauge-field
and the gaugino, coupled to three chiral multiplets ®,. Under the decomposition of the
R-symmetry SU(3) x U(1); C SU(4)g, the three chiral multiplets ®, transform in the 3
of SU(3) C SU(4)gr. The N = 1* one-mass deformations are obtained by adding mass
terms associated with one of the chiral multiplets, say ®3. Specifically, we add to the
superpotential Wgy s of N =4 SYM the following term

AWSYM ~ mTr(q)g) R (61)

where m is a complex constant for homogeneous deformations. The one-mass deformation
gives rise to complex masses for the bosons and fermions in the chiral multiplets, and
there is no mass deformation for the gaugino. This homogeneous deformation (i.e. with
m constant), preserves an SU(2) x U(1)g global symmetry with U(1)g an R-symmetry.
The SU(2) factor arises from the decomposition SU(2) x U(1), C SU(3), and the U(1)g
is a diagonal subgroup of U(1); x U(1)s. Under RG flow, this deformation leads to the
Leigh-Strassler SCFT in the IR, which has the SU(2) x U(1)g global symmetry. The dual
gravitational solutions describing the Poincaré invariant RG flow between N’ = 4 SYM and
the LS fixed point, were constructed in [51}/180], as we will recall below.

Later in this chapter, we will construct gravitational RG interface solutions which
have N/ = 4 SYM and the LS fixed point on either side of the planar interface. As we
will see, these solutions have non-vanishing sources for boson and fermion masses on the
N = 4 SYM side of the interface which depend on the spatial direction transverse to
the interface (i.e. y3). This means that the mass parameter in is now spatially
dependent (i.e. m = m(y3)). From the analysis of [162], we can deduce that this preserve
supersymmetry, provided that we include specific F' terms in the superpotential. This
leads to fermion masses of the form mTr x2 + h.c., and deforms the scalar mass term via

IThe possibility of SCFTs arising from such mass deformations were first discussed in [129] and see |52
for a later treatment.
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|m|*Tr| Z3|?+(m/Tr Z2+h.c.), where Z3 and y3 are the bosonic and fermionic components of
the chiral superfield ®3 respectively. The bosonic mass term m’ breaks the SU(2) x U(1)g
global symmetry of the homogeneous mass deformations down to SU(2). Overall, the
deformation will preserve d = 3, N' = 1 superconformal symmetry of the interface provided
that m(ys) o< 1/ys. Further details on these field theory results can be found in chapter [

6.2.2 The D =5 gravity model

We will utilize a D = 5 theory of gravity, called the A/ = 1* one mass model in [168], that
arises as a consistent truncation of D = 5, N' = 8 SO(6) gauged supergravity and hence
also as a consistent Kaluza—Klein truncation of Type IIB supergravity [174,/175] reduced
on S%. This means, by definition, that solutions of this D = 5 theory can be uplifted on a
five-sphere to obtain exact supergravity solutions of Type IIB [39,40]. We will follow the
conventions used in [168] and use a mostly minus (+, —, —, —, —) signature for the D =5
metric.

The bosonic field content is comprised of the D = 5 metric, a complex scalar field z
and a real scalar field 5. The Lagrangian takes the form

1 1
L= _ZR +3(08)* + 51@28”2«8“5 -P, (6.2)
where K.; = 0.0:K and the Kahler potential is given by

K =—4log(l —z22). (6.3)

The scalar potential P can be derived from a superpotential-like term
L 4p 2 4 2 o3 2\2
W:Ze (1+62 +z)—i—ze (1—29)°, (6.4)
via
L (1 YV zz 5 S
P = §€ 885)/\/(351/\/ + K#*V WV — gWW , (6.5)
where K?* is the inverse of the Kahler metric K.z and the Kahler covariant derivative is

defined via VW = 04W + 04KW. As in [16§], we can express the complex scalar field
in terms of two real scalar fields, o and ¢, via

1
z = tanh [5(04 — wﬁ)} . (6.6)
We note that the bosonic part of this theory is invariant under the Zy symmetry,
z2 = —z. (6.7)

This model admits an AdS5 vacuum solution, with vanishing scalars and radius L, that
uplifts to the maximally supersymmetric AdSs x S° solution, dual to N' =4 SYM theory.
By analysing the linearised fluctuations of the scalar fields around this vacuum solution, we
deduce that ¢ is dual to a fermion mass operator (’)ﬁz?’, with conformal dimension A = 3,
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while o and 3 are dual to bosonic mass operators O5=2 and OﬁAZQ, both with conformal
dimensions A = 2. Schematically, we havd’

o Oﬁz?’ = Tr (x3x3 + cubic in Z,) + h.c.,
a & O =Tr(Z3) + hec., (6.8)
ﬁ — OﬁA:2 =Tr (‘Z1|2+|Zg|2—2‘23‘2) ,

where Z, and y, are the bosonic and fermionic components of the chiral superfields ®,.
Notice that this truncation is suitable for studying real mass deformations of N' =4 SYM
theory, a point we highlighted in chapter [5]

The D = 5 model also admits two additional supersymmetric AdSs solutions, which
we label by LS*, given by

P=4i2-V3) o ngZZF%, a=0,

) g (6.9)
5:—610g(2)> L:WL

where L is the radius of the AdSs space for both LS* solutions. The two solutions are
related by the bulk Z, symmetry of the D = 5 gravitational theory. When uplifted
to Type IIB, these fixed point solutions preserve SU(2) x U(1)r global symmetry and
are holographically dual to the N' = 1 SCFT found by Leigh and Strassler in [52]. By
examining the linearised fluctuations of the scalar fields around the LS* AdSs solutions,
we deduce that o is dual to an irrelevant operator O2=2+V7 with conformal dimension
A = 24+ /7. The linearised modes involving ¢ and 8 mix, and after diagonalisation we
find modes that are dual to one relevant and one irrelevant operator in the LS SCFT,
which we label as Oﬁ;H‘ﬁ and Oﬁ;”ﬁ with conformal dimensions A = 1 + /7 ~ 3.6

and A =3+ V7 respectively.

Gravitational solutions for the homogeneous RG flows, preserving d = 4 Poincaré in-
variance and flowing from the N' = 4 SYM AdS; solution in the UV to LST (or LS™)
AdSj5 solution in the IR, were constructed in [51,|180]. These RG flows, which preserve
SU(2) x U(1)g global symmetry, are driven by a supersymmetric source for the relevant
fermion mass operator O5=* and the boson mass operator O3=2 in N’ = 4 SYM. We note
that these solutions can be constructed using the D = 5 gravitational theory by setting
the real part of the complex field to zero (i.e. Re(z) =0 < a = 0). The RG interface
solutions which we will construct in this chapter, break the U(1)z symmetry and hence we
need to keep a # 0. We also note that the solutions flowing to the LSt and the LS~ AdS;
solutions are related by the bulk Z, symmetry (6.7).

6.2.3 BPS equations for conformal interfaces

The D =5 ansatz for conformal interface solutions is given by
ds? = e*Ads*(AdS,) — dr?, (6.10)

where the function A and the scalar fields 3, z are all functions of r only. Here ds*(AdSy)
is the metric on AdSy of radius ¢, and in Poincaré coordinates this is given by
2 o [ da? 1 2 2 2
ds*(AdSy) = 07 | —— + s (dt* — dyi — dy3) | , (6.11)

T2

2Recall that the supergravity modes do not capture the Konishi operator Tr(|Z;|?+|Z2|?+|Z5]?).
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with 0 < x < oo. The AdS, isometries of the ansatz implies that it generically preserves a
d = 3 conformal symmetry.
As discussed in chapter [5] we can recover the metric on AdSs with radius L if we set

et = %cosh% : (6.12)
and —oo < r < 00. To see this, one can first change coordinates via cosh(r/L) = 1/cos p,
with —7/2 < p < 7/2. Then making the additional change of coordinates y3 = z sin u,
Z = x cos 1, we obtain the metric on AdS5 in Poincaré coordinates
2
ds* = L* —dZ% + % (dt* — dy? — dy3 — dy3) | | (6.13)
with 0 < Z < oo and —o0 < y3 < 0o. The conformal boundary is located at Z = 0 and 3
parametrises one of the spatial coordinates of this boundary. Note that the coordinates x, u
are polar coordinates constructed from y3, Z. Thus, the conformal boundary of AdSs in
the coordinates , consists of three components: r — oo and = # 0, associated
with the half space parametrised by (¢,1;) with y3 > 0, r — —oo0 and = # 0, associated
with the half space parametrised by (t,y;) with y3 < 0, and these are joined at the plane
(t,y;) with y3 = 0, associated with x = 0.
We are interested in constructing interface solutions that preserve some supersymmetry.
Using the supersymmetry transformations and conventions given in [16§], for the D = 5
ansatz in (6.10]), we derive the following BPS equations

0, A+ %e‘A — ée—i€+’</2W =0,
1 ' A _

0,6 = 5 (0.K0,2 = 0:K0,2) — %Im (e EH2W) =0,

. (6.14)

Oz + ie’ifﬂcﬂl@gvgw =0,

1 . —
&ﬁ + EG_ZS-HC/zaﬁW =0.

Here ¢ = £(r) is the phase factor which appears in the expression for the Killing spinors.
More details of this derivation can be found in chapter [5] It is worth emphasising that
if the above BPS equations are satisfied, then the full equations of motion are satisfied.
Furthermore, after uplifting to Type IIB, the D = 10 solutions generically preserve an

= 3, N = 1 superconformal symmetry. We note that the BPS equations are invariant
under the Zy symmetry of the theory. In addition, they are also invariant under the
following Zsy action

r—-r, z—z &——E+T. (6.15)
Combining these two Z, actions, we also have
r—-r, z—-z &= -—{+T. (6.16)

It is worth noting that this last symmetry leaves invariant each of the two LS* AdSs
solutions, and is dual to a discrete C'P symmetry of the LS SCFT.
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6.3 The N =4 SYM/LS RG interface and LS* /LS~
Janus

We consider solutions of the form (6.10)) which describe a conformal RG interface between
N =4 SYM and the LS SCFT. The D = 5 gravitational theory has two AdSs; vacuum
solutions, LS¥, related by the Z, symmetry and dual to the LS SCFT; without loss
of generality we will focus on LS™. In particular, we want to solve the BPS equations
and impose boundary conditions on the ansatz such that as r — oo, the solutions
approach the N' =4 SYM AdS5 solution, while as r — —oo, the solutions approach the
LSt AdSs solution.

6.3.1 Holographic renormalisation

Before presenting the numerical solutions, we will briefly discuss the holographic renormal-
isation procedure in determining the sources and expectation values of various operators
in the dual field theory, and more details of the procedure can be found in chapter 5] We
first discuss the A" = 4 SYM side of the interface. We begin by developing the asymptotic
expansion to the BPS equations given, as » — oo, by

r
A=—+...
L+ ’

¢ — ¢(5)6_T/L + “ e + ¢(v)€—3T/L + ORI

T
a=agpe " Fage

B =5

(6.17)

8)16—21”/L + ﬁ(v)e—?r/L 4+
L
with a number of relations amongst the various constant coefficients in the above expansion.
The terms ¢y, a(s) and 35, which denote the source terms for the dual operators, must
satisfy
Qs) = _%¢(s) , B = —%cb?s) : (6.18)
As r — oo, we approach a component of the conformal boundary located on one side
of the interface, with metric AdS; as in (6.11). Thus, this expansion is naturally suited to
obtaining the sources and expectation values for the various operators when N' = 4 SYM is
placed on AdSy. The field theory sources on AdS, are given by ¢(s), as), B(s) and we note
that ¢y, (*as), (25 are invariant under Weyl rescalings of the AdSy radius ¢. Since we
are interested in the associated quantities when the theory is placed on flat spacetime, we
need to carry out a suitable Weyl transformation, with Weyl factor 22 /¢? acting on (6.11).
One subtlety in this approach, is that the source terms give rise to terms in the conformal
anomaly quadratic and quartic in the sources as in [184,/185], which we discussed in detail
in chapter [
A solution with boundary conditions is associated with the following sources for
N =4 SYM on flat spacetime,

Lo s) Cay) B

ys y3 y3

, (6.19)
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with y3 > 0, and the BPS equations imply ((6.18)). Note that all sources can be expressed in
terms of ¢ (), which we will use in the numerical plots below. For the associated expectation
values of the operators in flat spacetime, we have

(Oa) = 4W1GL5_; (oz(@ + ) log (%)) , (6.20)

which then, along with ¢(,) determines the remaining expectation values via

40 1 L 7
<O¢>> <Oﬂ> ¢ - 2L—<Oa> 3¢
3ys Ys 4G y3 (6.21)
w0 (1446, —455) 2 '
<05> - f<001> ¢(S) G L y_g(b(s) :

Here 4,, 03 are finite counterterms which we have not fixed, and the reason for this was
discussed in detail in chapter [}l While the sources transform covariantly under Weyl
transformations of the boundary theory, the expectation values do not as we highlighted in
chapter [f| In our numerical results below, we will fix £ =1 (as well as L = 1) and discuss
the values of ¢, and ), which for a definite choice of finite counterterms then gives all
of the sources and expectation values.

We now consider the LS™ side of the interface. First of all, since the scalar operators
have irrational scaling dimensions, there are no finite counterterms that we can add. Sec-
ondly, and for similar reasons, the conformal anomaly does not contain any source terms
for the scalar operators. Thirdly, it turns out to be not possible to add source terms for the
relevant operator (’)A VT in the LS theory and be compatible with the BPS equations.
Since we want the solutlons to approach the LSt AdSs solution as r — —oo, we also need
to demand that there are no source terms for the two irrelevant operators OA_QJ“‘[ and

(’)AB 3+V7 In addition to a universal mode associated with shifts in the coordinate r, we
then find that there is a single BPS mode of the form, as r — —o0,

= i(2—V/3) +iCer VDL

1 : (6.22)
[ = —élogQ e HVIIL

parametrised by a real number ¢ and

b= (3+2f) (1+\/?). (6.23)

This mode is associated with the relevant operator OAB V7 i the LS+ theory acquiring
an expectation value. More precisely, for thls 81de of the interface as r — —oo, which is
y3 < 0 in the flat spacetime boundary, using we define

(055YT) o (_iyg)Hﬁg. (6.24)

OA 3+V7

The two irrelevant operators Oﬁzﬂ‘ﬁ and also acquire expectation values pro-

portional to (.
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6.3.2 Numerical solutions

We numerically construct RG interface solutions by starting with the LS™ side at r = —oo,
shooting out with the mode associated with (Oﬁ;lJr\ﬁ), parametrised by ¢, and then seeing
where the trajectory ends up at » = oo. The main results are presented in figures |6.1

6.3 There is another set of physically equivalent solutions which start with LS~ side at
r = —oo, which can be obtained using the Z, symmetry , and we would not explicitly

discuss these solutions.

L : :
@ b

Figure 6.1: The family of D = 5 BPS solutions is summarised by parametrically plotting
the real and imaginary parts of the complex scalar field z. The blue dot represents the
N =4 SYM AdS5 vacuum solution and the two red dots represent the two LS * AdSs
vacuum solutions. The blue curves are dual to N'=4 SYM/LS* RG interfaces. For these
solutions, the bottom panel shows plots of ¢ and «,), which determine the expectation
values on the LS and N = 4 SYM sides respectively, as a function of ¢(s) which determines
the sources on the N' = 4 SYM side. The dashed blue line in the top panel is the RG
interface solution for which all source terms vanish on the N' = 4 SYM side of the interface.
As ¢(s) — +00, one approaches the LS* /LS~ Janus solution, which is labelled by the red
curve. The black curves become singular at |z|= 1.

Figure [6.1] provides a parametric plot of the real and imaginary parts of the complex
scalar field, z, for the solutions we have constructed. The blue dot at the origin represents
the NN = 4 SYM AdS; solution, while the two red dots represent the two LS* AdSs
solutions, related by the Z, symmetry . The blue curves represent a one-parameter
family of RG interface solutions with ' = 4 SYM theory on one side (y3 > 0) and LS™
on the other (y3 < 0). We have also plotted in the bottom left panel ¢, which determines
the expectation values of the LS SCFT via , as a function of ¢(,), which we recall
fixes the fermion mass deformation as well as all other source terms on the N' = 4 SYM
theory side via , . In the bottom right panel, we have plotted «,), which
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along with ¢, determines the expectation value on the N' = 4 SYM theory side, as a
function of ¢(,). The RG interface solutions exist in the range —oco < ¢) < oo with
0 < ¢ < Cerit = 0.0281. When ¢y — 400 (and ¢ = (i), the solutions approach the
red curve, and when ¢y — —oo (and ( — 0), they approach a vertical line along the
imaginary z axis.

We next note that the lower panels in figure [6.1] clearly reveal the existence of an RG
interface solution for which ¢y = 0. This means that all sources on the N' = 4 SYM
side vanish, and since the sources always vanish on the LS* side, this rather remarkably
proves the existence of an RG interface solution that has vanishing sources away from the
interface. For this special solution, marked by the dashed blue line in figure 6.1, we can
determine the expectation values of the operators in the two SCFTS. On the LS™ side,
we find ¢ ~ 0.0040. On the N = 4 side, recalling from - that the expectation
values of the scalar operators are all determined by «a(,) and ¢, we find o,y = 0.3553.

The general behaviour of the radial functions for all of the ' = 4 SYM/LS* RG
interface solutions (blue curves in figure share a similar form. As an example, in
figure [6.2| we provide the plots of the metric and scalar functions for the special source-free
solution (i.e. ¢y = 0).
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Figure 6.2: The BPS solution for the dashed blue curve in figure , describing an N = 4
SYM/LS RG interface, for which all source terms vanish i.e. ¢y = 0. We have plotted
A" = dA/dr and the three scalar functions as a function of r. The LST AdSs solution is
approached at r — —oo, while the N' = 4 SYM AdS5 solution is approached at r — oo.
The red dashed lines provide the associated values of the LS™ AdS5 solution.

We next consider how the RG interface solutions behave as ¢ — —oo (and ¢ — 0),
when they approach a vertical blue line in figure [6.1} In this limit, one can show that the
solutions have a region which closely approaches the Poincaré invariant RG flow solution
from N = 4 SYM to the LS™ fixed point, as one might anticipate. To make this more
precise, we can reinstate ¢ and then keep ¢ fixed while taking ¢ — oo, such that we
are solving the BPS equations on the N' = 4 SYM side where the % term in is
significantly suppressed. With ¢ = 1, as we have assumed in our numerics, we can see the
approach to the Poincaré invariant solution by parametrically plotting the behaviour of A’
with respect to the imaginary part of z (recall that in the Poincaré invariant RG solution
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the real part of z vanishes) as we have done in figure In the limit which ¢y — —oo,
we can analyse the way in which ¢ — 0 on the LS™ side. This gives rise to the following
critical exponent, which from our numerics we find

¢~ ol v~ 1.6457. (6.25)

Recall that ¢ gives the expectation value of an operator with conformal dimension 14 /7
as in (6.24). We also note that the exact critical exponent ((6.25) seems to be equal to

—1+ /7, and it would be extremely interesting to prove this observation.
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Figure 6.3: We display the limiting behaviour of N' =4 SYM/LS RG interface solutions
of figure using parametric plots of A’ versus Im(z). As ¢ — —o0, the solutions in
figure proach a vertical blue line. In this limit (top panel), the solutions approximate
two solutions, the dashed red line, which is the Poincaré invariant RG flow solution from
N =4 SYM to the LS™ fixed point, joined with the vertical blue line, which is the LS™
fixed point itself. As ¢(;) — +00, the solutions in ﬁgure approach the red curve in figure
. In this limit (bottom panel), the solutions approximate two solutions, the dashed red
line, which is the Poincaré invariant RG flow solution from N = 4 SYM to the LS~ fixed
point, joined with the dark blue line which is the LS*/LS™ Janus solution.

We now consider what happens to the RG interface solutions as ¢ — +o0o, when
¢ = Corit = 0.0281, as in the lower left panel of figure 6.1} In this limit, the blue curves in
figure [6.1] approach the red curve which is a new type of Janus interface solution. Indeed,
the red curve describes a Janus solution with LS™ on one side of the interface and LS~ on the
other. Interestingly, we have vanishing sources on both sides of the Janus interface. This
solution is invariant under the Z, symmetry . The way in which the RG interface
solutions approach this LST/LS™ Janus is also interesting. From figure one might
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expect that on the N' = 4 SYM side of the interface (r — o0), the solution starts to
approach the Poincaré invariant RG flow solution from A = 4 SYM to the LS~ fixed
point. Indeed, this is the case, with the limiting solutions behaving analogously to those
in[6.3] Focussing now on the LS* side, we obtain another critical exponent:

and again we suggest that this critical exponent is exactly equal to —1 + /7.

Figure also shows that there is a one-parameter family of solutions which approach
LSt as r — —oo, and then approach a singular behaviour, with |z|— 1, at some finite
value of r. These solutions can be characterised by the expectation value of the operator
<(’)$;1+‘ﬁ> in the LS SCFT and have ¢ > (..., appearing to exist for arbitrary large values
of ¢. Although not plotted in figure [6.1] there are also singular solutions starting at LS*
with ¢ < 0 and hitting a singularity at |z|= 1. These solutions describe configurations of the
LS SCF'T when placed on a half space without sources and with non-vanishing expectation
values. Similar solutions were discussed in [186] in a bottom up context where they were
interpreted as being dual to boundary CFTs. An important difference, however, is that
the solutions in [186] were supported by non-vanishing sources. We also note that the
singularity of the solutions we have constructed are similar to those that arise in Poincaré
invariant RG flows (e.g. [51]) and it would be interesting to investigate this further.

6.4 Discussion

In this chapter, we have constructed gravitational solutions that are holographically dual to
RG interface solutions and examined some of their properties. Using a D = 5 gravitational
model, we have found solutions dual to RG interface solutions with ' = 4 SYM on one
side and the N =1 LS SCFT on the other. Generically, these solutions are supported by
spatially dependent mass terms on the N' = 4 SYM side of the interface, but there is one
particular solution for which all sources vanish. As the source terms of the N’ = 4 SYM
side diverge, we obtain a novel D = 5 solution describing a LS* /LS~ Janus solution. From
the dual field theory point of view, the Janus interface has the same LS SCFT on either
side of the interface, and they are related by the action of a discrete Z, symmetry, which
is a novel feature.

From the results of this chapter, it seems likely that if a holographic Poincaré invariant
RG flow solution from CFTyy to CFT R exists, then there will always be a corresponding
RG interface solution. It is likely that these RG interface solutions will be supported
by spatially dependent sources on the CFTyy side of the RG interface and vanishing
sources on the CFT;g side, but there could be some classes of solutions where there are
additional sources activated on the CFT ;g side. We also conjecture that among these RG
interface solutions there will always be a special solution for which the sources away from
the interface all vanish. In addition, it would be interesting to investigate setups for which
there are Poincaré invariant RG flows from CFTyy to two IR CFTs, CET;r and CFTp,
which are not related by any parity transformation. For example, it may be possible to have
situations for which there is no Poincaré invariant RG flow between CFT iz and CFTrp,
yet one might question if a conformal interface between the two theories can still exist. In
situations for which there is a Poincaré invariant RG flow between CFT;z and CFT';p,
one might expect RG interfaces with multiple interfaces.
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It would be interesting to explore these ideas further by explicitly constructing addi-
tional examples of Type IIB and D = 11 supergravity. For example, we think it would
be worthwhile to construct RG interface solutions separating the ABJM SCFT with the
d =3, N =2SCFT with SU(3) xU(1) global symmetry, for which the associated Poincaré
invariant RG flows have been constructed [1904191]. It should be possible to construct var-
ious interface solutions, similar to those in this chapter, utilising the consistent truncation
outlined in [192].

In both this chapter and the previous chapter, we have elucidated what is happening
to the sources and expectation values of various operators on either side of the interface,
for both the RG interface solutions and the Janus solutions. It would be both interesting
and important to further understand what is happening on the interface itself. While this
might seem like an intricate issue, we note that the distributional sources for a class of
holographic supersymmetric Janus solutions were explicitly determined in [144]. Although,
the derivation of |144] utilised the fact that the BPS equations can be boiled down to
solving the Helmholtz equation on the complex plane, we expect it should be possible
to suitably generalise the analysis to the present setting. It would also be interesting to
explore transport across the interface, analogous to what was recently done in the context
of d =2 CFTs using holographic techniques [193].

Finally, we have also discussed D = 5 solutions which are non-singular on one side of
the interface, approaching the LS* AdSs solution and becoming singular on the other. As
also mentioned in chapter b such singular solutions were argued to be related to BCFTs
in [186]. We have shown that the singular solutions have vanishing source terms on the non-
singular side of the interface. It would be interesting to further investigate the nature of
the singularity in D = 10 and determine the precise dual interpretation of these solutions.
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Chapter 7
New family of AdS; S-folds

7.1 Introduction

The landscape of non-geometric backgrounds of string/M-theory which are associated with
the AAS/CFT correspondence is still a largely unexplored territory. By definition, such
solutions/backgrounds are patched together using duality transformations and hence they
are not ordinary solutions of the low-energy supergravity approximation. Nevertheless,
in favourable situations one can still utilise supergravity constructions to obtain valuable
insights.

Within the context of Type IIB string theory, which is the focus of this chapter, we can
consider S-folds i.e. non-geometric solutions that are patched together using the SL(2,7Z)
symmetry. For AdS/CFT applications, we are interested in solutions of Type IIB super-
gravity of the form AdS x M with the axion-dilaton, the three-forms and the self dual
five-form all active on the internal manifold M. The S-fold construction implies that M
will have monodromies in SL(2,7Z), which act on the axion-dilaton and the three-forms. If
these monodromies involve contractible loops in M, then this generally leads to the pres-
ence of brane singularities and regions where the supergravity approximation breaks down.
However, one can hope to make further progress if the solutions lie within the context of
F-theory, similar to the construction of AdS; solutions discussed in [194,(195].

We can also consider AdS x M solutions of Type IIB supergravity where the SL(2,Z)
monodromies do not involve contractible loops. In this case, provided that the fields are all
varying slowly on M, we can expect the Type IIB supergravity approximation to be valid,
and such solutions would correspond to some dual CFTs. Examples of such solutions were
presented in [196] and further discussed in [197], where the ten-dimensional spacetime is
of the form AdS; x S' x S with non-trivial SL(2,Z) monodromy around the S* direction.
The solutions preserve the supersymmetry associated with A" =4 SCFTs in d = 3, and we
will refer to them as AV = 4 S-folds. These solutions can be constructed as a certain limit
of a class of N' = 4 Janus solutions [151] which describe d = 3, N' = 4 superconformal
interfaces of the four-dimensional N' = 4 SYM theory. Using this perspective and the
results of [154],/198], a conjecture for the SCFT dual to these N' = 4 S-folds was provided
in [197].

Other than the A/ = 4 S-fold solutions, one can also consider S-fold constructions with
less supersymmetry. In fact, AV =1 and N = 2 S-fold solutions of the form AdS, x S* x S°
have been constructed in [156},/199200]. In particular, it was shown in [156] how they can
be obtained as limiting solutions of N' =1 [149}[150,/155] and N = 2 [151] Janus solutions,

125



also describing superconformal interfaces of d = 4, N' = 4 SYM theory. Moreover, the
N =1 AdS, x S' x S® S-folds have been generalised to N =1 AdS, x S! x SE5 S-folds,
where SEj5 is an arbitrary five-dimensional Sasaki-Einstein manifold [201].

In the Janus solutions which are used to construct the S-fold examples in [156,197], the
complexified gauge coupling 7 of N' = 4 SYM theory takes different values on either side
of the interface. As highlighted in chapter [5| this is not always necessarily the case. In
fact, it is possible to have interfaces in A’ = 4 SYM with the same value of 7 on either side
of the interface, but instead are supported by spatially dependent fermion and boson mass
deformations, while preserving d = 3 conformal symmetry. In chapter 5, we constructed
the associated holographic solutions using D = 5 SO(6) gauged supergravity, and such all
our solutions can be uplifted back to Type IIB. Among all of the solutions constructed
in chapter [5] we would like to recall and highlight the supersymmetric AdS; x R solution
presented in section [5.6.4] This AdS, xR solution is obtained as a limit of this class of Janus
solutions which is periodic in the R direction and uplifts to give a smoothl] AdS; x S* x S°
solution of Type IIB supergravity (i.e. without S-folding). It is worth emphasising that the
constructions presented in chapter 5[ can be generalised to give interface solutions which
have spatially dependent masses and varying 7. It is therefore natural to ask if there
are limiting classes of such Janus solutions which can be utilised to construct new S-fold
solutions and/or periodic solutions. While we have not found any more periodic solutions,
we have found infinite new classes of supersymmetric AdS; x R solutions of D =5 SO(6)
gauged supergravity which give rise to infinite new classes of S-fold solutions of the form
AdS, x S' x S®, generically preserving N' = 1 supersymmetry in d = 3.

Our new construction will utilise various consistent sub-truncations of D = 5, SO(6)
gauged supergravity all lying within the 10-scalar truncation of [168], which we provided a
detailed discussion in chapter[5] One of these scalar fields is the D = 5 dilaton ¢, which for
the vacuum AdSs solutions is dual to the gauge coupling parameter of N’ = 4 SYM theoryﬂ
Within this truncation, we numerically construct families of AdS; x R solutions that arise
as certain limits of Janus solutions with N' = 4 SYM on either side of the interface. We
then uplift these solutions to obtain AdSy x R x S° of Type IIB supergravity, using the
results of [39,40]. Additional AdS,; x R x S° supergravity solutions in D = 10 can then
be generated using the Type IIB SL(2,R) transformations. Finally, within this family
of Type IIB supergravity solutions, one can find discrete examples by using the SL(2,Z)
duality transformations, which leads to supersymmetric AdS, x S x S° S-fold solutions of
Type 1IB string theory.

Overall, the D = 5 metric for the solutions we discuss in this chapter is all of the
following form

ds? = 2 [ds*(AdS,) — dr?], (7.1)

where all of the D = 5 scalar fields are functions of the radial coordinate. The ansatz
therefore preserves d = 3 conformal invariance. The D = 5 solutions associated with the
known N = 1,2 and 4 S-folds are all direct products of the form AdS, x R with constant
warp factor A and with all of the D = 5 scalar fields constant, except for the D = 5 dilaton
field ¢, which varies linearly in the radial coordinate.

L As far as we are aware, this is the first example of a supersymmetric AdS; x Mg solution of Type IIB
supergravity, with compact Mg that is smooth i.e. without sources.

2We note that, in general, the Type IIB dilaton of the uplifted solutions is not exactly the same as the
D = 5 dilaton, as explained in appendix
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The new AdS; x R solutions have several interesting features. First of all, the metric
on AdS4 x R is no longer a direct product but a warped product, since the warp factor now
has non-trivial dependence on the radial direction. Secondly, and importantly, the warp
factor A(r) and all of the D = 5 scalar fields are now periodic in the radial direction, with
the same period Ar, except for ¢ which is now a “linear plus periodic” (LPP) function of r.
Therefore, unlike the known AdS, xR S-fold solutions, the metric no longer admits a Killing
vector associated with translations in the radial direction and, furthermore, the solution
is no longer invariant under the continuous translational symmetry which is associated
with a dilaton shift. Thirdly, as a consequence of the previous point, we do not believe
that our new solutions can be constructed within the maximally supersymmetric D = 4
gauged supergravity theory which have been used to construct the known S-fold solutions
[196,/199,200]. This is simply because the D = 4 theory is obtained by carrying out a
Scherk-Schwarz reduction of D = 5 maximal gauged supergravity along the radial direction,
and this reduction requires such a continuous symmetry. In figure [7.1} we have illustrated
how the new solutions arise as limiting cases of Janus solutions of N' = 4 SYM, with in
general the N/ = 4 SYM coupling constant taking different values on either side of the
interface.
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Figure 7.1: A D = 5 Janus solution that is approaching the new AdS; x R solutions for
the SO(3) invariant model. As 7 — Zoo, the solution is approaching AdSs; on either
side of the interface: the warp factor is behaving as A — +7/L, the D = 5 dilaton is
approaching two different constants ¢ — ¢, while the remaining scalar fields ¢, a; and
¢4 (not displayed) are going to zero. In the intermediate regime, we can see the build up
of a periodic structure for the warp factor and the scalar fields, with ¢ having, in addition,
a linear dependence in 7 (i.e. ¢ is a “linear plus periodic” (LPP) function). In the new
limiting AdS; x R solution, the intermediate structure extends all the way out to infinity.
Note that we have used the proper distance radial coordinate 7 given in (7.3)).

The plan of the rest of the chapter is as follows. In section [7.2] we discuss the general
framework for constructing the new AdS; x R solutions in D = 5 and the procedure for
obtaining AdS,; x S* x S® S-folds solutions of Type IIB string theory. In sections and
7.4 we discuss in more detail the constructions for two particular sub-truncations of the
ten-scalar model [168]: (i) an SO(3) C SU(3) C SO(6) invariant model involving four
scalar fields and (ii) an SU(2) C SU(3) C SO(6) invariant model involving five scalar
fields. The SO(3) invariant model, also known as the N' = 1* equal mass model, includes
the AdS; x R solutions associated with the known N = 1 and N/ = 4 S-fold solutions as
well as the periodic AdSs x R solution constructed in chapter [5| We note that figure
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is associated with this model. The SU(2) invariant model includes the AdS,; x R solutions
associated with the known N = 2 S-fold solutions and it also includes those associated with
the known A = 1 S-fold solutions. In both truncations, our new family of S-fold solutions
includes the previous known solutions. Furthermore, we can identify in both cases the
existence of some of our new family of solutions by a perturbative construction around
the known N = 1 S-fold solution (rather interestingly, we have not be able to find such
perturbative constructions around the N' = 2,4 solutions). We conclude this chapter with
some discussion in section [7.5] and collect some useful results in the appendices, including
some useful results concerning how to uplift solutions of the ten-scalar model in D =5 to
Type IIB supergravity.

7.2 Constructing S-folds

The construction of our S-fold solutions starts with constructing solutions of the ten-scalar
model in D = 5, for which a detailed discussion can be found in chapter 5] These are
then uplifted to Type IIB, where additional solutions are generated using the SL(2,R)
symmetry of Type IIB supergravity. Finally, we utilise the SL(2,7Z) symmetry of Type
IIB string theory to carry out the S-folding procedure.

7.2.1 Ansatzin D=5
We consider solutions of D =5 SO(6) gauged supergravity of the following form

ds? = e*Ads*(AdSy) — N?dr?, (7.2)

where ds?(AdS,) is the metric on AdS;, which we take to have unit radius, and A, N,
B, B2, 2 are all functions of r only. As discussed in the previous two chapters, this ansatz
preserves d = 3 conformal invariance. There is still some residual freedom in choosing the
radial coordinate. In this chapter, we will either use the “conformal gauge” with N = e,
as in (|7.1]), or the “proper distance gauge” with N =1

4 radial coordinate: 7,

(7.3)

conformal gauge: N =
N —

€ Y
proper distance gauge: 1, radial coordinate: 7,

with dr = eddr.

We are interested in supersymmetric configurations which, generically, are associated
with A/ = 1 superconformal symmetry in d = 3 (i.e. two Poincaré supercharges plus
two superconformal supercharges). As shown in chapter , we can obtain such solutions
provided that we solve the followingﬂ BPS equations (in the conformal gauge),

0,A—1i=2B,, (7.4)
0.B, = 2FB,B,, '
where we recall that F is a real quantity just depending on W, K given by
— 3 1 AB A 1 2 3 2
F=1- 3 |W|2VAWIC VW — Z|aﬂ1 log W| —Z|852 log W/~ (7.5)

3With essentially no loss of generality, the parameter x = +1 appearing in chapter [5, which fixes the
projections on the Killing spinors, has been set to x = +1 here.
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as well as

9,4 — —gicaBYEW B :
4%
&ﬁl = —%851 IOgWBT 3 (76)

0,09 = —2852 logWB, .

In these equations, the quantity B, is defined as B, = 1e®“tAT5/2W where £(r) is a
phase that appears in the Killing spinors. It is helpful to recall that the BPS equations are
left invariant under the transformation

r— -, 2 74 E— —€&+m. (7.7)

The BPS equations are also invariant under the discrete Z, x Sy symmetries in -
and this will also be the case for any of the sub-truncations in figure for which they are
still present. Additional general aspects of the space of solutions to these BPS equations
were discussed in chapter [5

It will also be useful to notice that the dilaton shift symmetry of the ten-scalar
model gives rise to a conserved quantity for the BPS equations. Specifically, one can check
that an integral of motion for the BPS equations is given by

1 54 _
& ﬁeg :U’(ZJ Z) ) (78>
where the moment map was given in (5.51)) or (5.52)). This result can be derived via the
Noether procedure as follows. The Killing vector [ generating the symmetry (5.47)), gives
rise to a conserved current for the full equations of motion. For our ansatz, we deduce that
the radial component of this current is given by

£ o /g (ICAB&EBZA + Ky AaTszf‘) , (7.9)
which is a conserved quantity and independent of r. Using the BPS equations, we obtain
£ o 34 (aA/ZBrzA + aﬁéﬁ) ,
— A [(zAaA/E +149,K) Re(B,) — % (zAaAié - zf‘agié)] , (7.10)
= —e34 <z’lA8AI€) = -y

7.2.2 Janus solutions
We now briefly recall and summarise some aspects of the Janus solutions constructed in
chapter 5] The maximally supersymmetric AdSs vacuum solution, dual to d = 4, N' = 4
SYM, has a warp factor given by

A T

e :Lcoshz, (7.11)

with all of the scalar fields vanishing i.e. z4 = 0.
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Supersymmetric Janus solutions, describing superconformal interfaces of d = 4, N' = 4
SYM, can be obtained by solving the BPS equations and imposing boundary conditions
such that the solutions approach the AdS5 vacuum solution at r = +o0, with suitable
falloffs for the scalar fields. A detailed analysis of holographic renormalisation procedure
for such Janus solutions was carried out in appendix (using the proper distance gauge).
The focus in chapter 5] was to construct Janus solutions that are dual to interfaces of N' = 4
SYM that are supported by fermion and boson masses which have a non-trivial spatial
dependence on the direction transverse to the interface. These solutions were constructed
within the following truncations: the N' = 2* truncation (three scalar fields), the N' = 1*
one-mass truncation (three scalar fields) and the N' = 1* equal-mass, SO(3) invariant
truncation (four scalar fields). For a visualised summary of the sub-truncations of the
ten-scalar model, we refer readers to figure |5.1}

Within the Janus solutions of the A/ = 1* equal-mass truncation, a special limiting
AdSy x R solution was found with the warp factor A and all of the scalar fields periodic in
the R direction (see section [5.6.4). This solution can be compactified on the R direction
and after uplifting to Type IIB, one obtains a regular AdS; x S' x S® solution (without
S-folding). In the following, we will present new AdS; x R solutions which are no longer
periodic in the R direction, but can also be found as limiting classes of Janus solutions. In
the new solutions, the D = 5 dilaton ¢ is a LPP function while the remaining scalars and
warp factor are periodic in the R direction, where an illustration is provided in figure [7.1]
All of our new S-fold solutions arise as limits of D = 5 Janus solutions with ¢(,), which
parametrises the source for the operator dual to ¢, taking different values on either side of
the interface. In other words, these Janus solutions are interfaces of d = 4, N' = 4 SYM
with the coupling constant taking different values on either side of the interface.

It will also be helpful to recall that for the N/ = 1* one-mass truncation, in addition
to the AdSs vacuum solution dual to d = 4, N' = 4 SYM, there are also two other AdSs
solutions, LS*, which are both dual to the Leigh-Strassler ' = 1 SCFT. In chapters
and [6] novel limiting solutions of the Janus solutions associated with interfaces involving
the LS SCFT were constructed. Specifically, we found solutions dual to an RG interface
with A/ = 4 SYM on one side of the interface and the LS theory on the other, as well as
Janus solutions with the LS theory on either side of the interface. In this chapter, we also
construct solutions within the 5-scalar SU(2) truncation in figure (see red box), which
contain the LS* fixed points. In addition to the new LPP solutions, we also find limiting
Janus solutions that involve Janus interfaces with the LS* fixed points i.e. solutions with
LS* on either side of the interface with a linear D = 5 dilaton.

Finally, as somewhat of an additional information, we note that the conserved quan-
tity € given in implies a constraint amongst the sources and expectation values of
operators of N' = 4 SYM theory for the Janus configurations. Following the holographic
renormalisation procedure outlined in chapter |5 which was carried out using the proper
distance gauge, the expansion series of the bulk fields at the 7 — oo end of the interface
are given by

_ _ 7 _ _
¢i = dime T dime T = ai,(s)ze_QT/L + oy me T4

T o —9F —4F
Bi= B A B b o=t pwe T
A:%+...+A(v)e—4f/L_|_... i (7.12)
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Here ¢ (s), @i (s), ... give the source terms of the dual operators, while ¢; (), @ (v), ... can
be used to obtain the expectation values, explicitly given in chapter [5] Using the expan-
sion serires as well the conditions on sources and expectation values imposed by the BPS
configurations, we find that the integral of motion is given by

1
= E(QQM,@) — 4P1 (5)D2,(5)P3,(s)) - (7.13)

7.2.3 AdS; x R solutions and S-folds

Our principal interest in this chapter concerns a new class of solutions to the BPS equations
of the form (in conformal gauge):

ds® = *A[ds*(AdS,) — dr?],

7.14
p=kr+f(r), (7-14)

where k is a constant and A, f and all other scalar fields satisfy
A(r)y=A(r+Ar), f(r)=flr+Ar), 2%r)=z%r+Ar). (7.15)

Notice that, in general, the D =5 dilaton ¢ is an LPP function, while the warp factor
and the remaining scalar fields are all periodic functions of r, with period Ar. Over one
period, ¢ changes by an amount Ay given by

Ap = p(r+ Ar) — o(r) = kEAr. (7.16)

Although we have defined Ay in the conformal gauge, importantly (and unlike &, Ar) it
is invariant under coordinate changeg]| of the form r — p with dp = G(r)dr, where G(r) is
a periodic function G(r + Ar) = G(r). We can also define the proper distance of a period
A7, which is given by

Ar
Af:/ eAdr . (7.17)
0

For the special case when k£ = 0 and ¢ is purely periodic, these solutions are periodic
in the r-direction and we can then immediately compactify the radial direction to obtain
an AdS, x S' solution. In this case, if we identify after just one period A7, which is
the length of the S'. We presented one such solution in section and this will also
appear in our new constructions. For this purely periodic solution, the period of the
warp factor is half of that of the scalar fields. Another special case is when k& # 0 and
f =0, the dilaton field ¢ is purely linear in r, while A and all other scalar fields become
constants. These AdS; x R solutions are associated with the known AdS, S-fold solutions:
one can periodically identify the radial direction after uplifting to Type IIB supergravity
and making a suitable identification with an SL(2,7Z) transformation, as we will outline in
more generality below.

We now continue with the more general class of LPP solutions of the form with
both k # 0 and f # 0. We will show that these new LPP solutions give rise to new classes of

*After integrating we can write p = cr + H(r) with H(r + Ar) = H(r) and H having no zero mode.
Inverting this, we can write r = (1/c)p + H(p) with H(p + Ap) = H(p), where Ap = cAr. In this gauge
we can then write ¢ = (k/c)p + f(p) with f(p+ Ap) = f(p) and Ap = kAr.
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AdSy S-fold solutions. We begin by noting, as explained in appendix (see also [156]),
that the dilaton-shift symmetry (5.47) of the D = 5 theory acts as a specific SL(2,R)
transformation in D = 10. If the Type IIB dilaton ¢ and axion Cj are parametrised as

o2 d B
- (e Co?+e 6@00)7 (7.18)

then the transformation is given by m — (S™HTmS™!, where S € SL(2,R) in the hyper-
bolic conjugacy class is given by

S(c) = (60 96) : (7.19)

Equivalently, we have ® — ® + 2¢ and Cy — e~2¢C,.

To carry out the S-fold procedure, we note that starting from the uplifted D = 5
solutions, we can obtain a family of uplifted Type IIB solutions after acting with a general
element P € SL(2,R). For example, the axion and dilaton in this larger family will be
of the form m(p) = (P~")Tm(¢)P~'. Within this larger family of Type IIB solutions,
we then look for solutions that we can periodically identify along the radial direction
with period ¢Ar i.e. ¢ € N times the fundamental period Ar, up to the action of an
M € SL(2,7Z) transformation. Recalling that as we translate by Ar in the radial direction
in the conformal gauge , we have p — ¢ + Ay and hence we require that

(e +qAp) = (M) Tm(p) M, (7.20)
where we have
M = +PS(qAp)P". (7.21)

The different S-folded solutions which can be obtained in this way are labelled by the
conjugacy classes of M in SL(2,Z). A discussion of such classes can be found in [202,203]
(see also [204]). For any conjugacy class M, we have that —M and =M~ also represent
conjugacy classes. Clearly from the form of S in ([7.19), we must be in the hyperbolic
conjugacy class with |Tr(M)|> 2. We have the following possibilities for M (as well as
the conjugacy classes —M and =M ™1):

M = (_"1 (1)) n>3, (7.22)

with trace n, as well as “sporadic cases” M(t) of trace t. For example, the complete list
for 3 <t < 12 is given by

M(8) = (; g) . M(10) = G g) O Ma2) = (; 121> . (7.23)

For these cases, in order to find solutions to ([7.20]) (focussing on the positive sign in ([7.21))
we must have

qAp = arccoshg : for n>3 q>1. (7.24)
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For example, for the S-folds that are identified using M in SL(2,Z) given in ([7.22) we
have

_ ! Ve
P= (5(_n+ e T wﬁ)> : (7.25)

Interestingly, the S-folding procedure preserves the same amount of supersymmetry as
the original solution. If we translate the D = 5 solution by Ar, we have ¢ — ¢+ Ap. This
shift in the dilaton can be obtained equivalently by carrying out a Kahler transformation
K=K+ f+fandW — e/W with f = f(z*). Under this transformation, the

symplectic Majorana pair of spinors transforms as e — e/=//%¢; and gy — e~ (=4,
This transformation is implemented on the bosonic fields as an element of S € SL(2,R).
In appendix [E.1.3], we show that this is also true for the preserved supersymmetries. Thus,
as we translate by Ar, the solution and the preserved supersymmetries get transformed by
the same element of SL(2,R). This will also be true after uplifting to D = 10 and hence,
after conjugating by P € SL(2,R), the S-fold procedure will retain the same amount of

supersymmetry.

7.2.4 Free energy of the S-folds

The AdS; x S' x 8% S-fold solutions of the kind we have just described should be dual,
in general, to N/ = 1 SCFTs in d = 3. One key observable is Fgs, the free energy of the
SCFT on S3. This can be determined holographically by dimensionally reducing Type 1IB
on St x 8% to a four-dimensional theory of gravity and then evaluating the regularised on-
shell action for the AdS, vacuum solution of this theory. With a four-dimensional theory
that has an AdS, vacuum solution with unit radius, we have

™

Fos = .
T 26y

(7.26)

Here G4 is the four-dimensional Newton’s constant which can be obtained from the five-
dimensional Newton’s constant via

1 1 /qAT d 3A (7 27)
_— T . .
G Ge)Jo ‘

Here we remind the reader that the radial coordinate, r, is associated with the D = 5
conformal gauge, as in ([7.14)). Recalling that the maximally supersymmetric Ad.Ss vacuum
with radius L solves the equations of motion and is dual to d = 4, N' = 4 SYM with gauge
group SU(N), we have the standard result

1 N?
167TG(5) N 87‘(‘2[/3 .

(7.28)

Putting this together we get our final formula for the free energy

N2 Ar
-FS3 = —F / dr 63A 5
0

n Ar
_ E arccoshy / g A
L3 Ap 0

(7.29)
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The first expression is valid for all solutions, including the periodic solution (for which it
is natural to take ¢ = 1), while the second expression is valid for the S-folded solutions. In
the special case of the known N = 1,2, 4 S-folds which have a purely linear D = 5 dilaton
(i.e. ¢ =krin (7.14)) and A is constant, we can rewrite this as
N2 3A
Fgs = F%arccoshg : (7.30)
Finally, following the arguments in [197], at fixed n the Type IIB supergravity approx-
imation should be valid in the large N limit since higher derivative corrections will be
suppressed by terms of order 1/ V/'N.

7.3 SO(3) invariant equal mass model

This model is obtained from the ten-scalar model by setting z? = 2 = —z*, or equivalently
setting vy = ap = a3, ¢1 = ¢ = ¢3 and f; = [ = 0. This four-scalar model is
parametrised by the two complex fields
1 1
2! = tanh {5(3041 + o —3ip + i¢4)} . 2> =tanh {5(041 — @ —ipy —ids)| . (7.31)
The integral of motion ([7.8) for this truncation is given by
1 1
&= Ee?’Ai [—tan(3¢1 — ¢4) + 3tan(dy + ¢4)] - (7.32)

This model has two further sub-truncations as illustrated in figure 5.1, and it contains
the known N =1 and N = 4 AdS; x R S-fold solutions. Firstly, if we set z! = —22 (or
equivalently a; = ¢; = 0), we obtain a two-scalar SU(3) invariant model depending on
¥, ¢4 which overlapﬂ with the truncation considered in the context of N = 1 S-folds in
section 4 of [156]. The N'=1 AdS,; x R S-fold solution is given (in conformal gauge) by

5 5 5L

Q= —\/_7“, pr=cos =, =" ar=¢1 =0, (7.33)
2 6 6

and we have £ = %g. There is another N' = 1 S-fold solution obtained from the symmetry

5.44)), with opposite sign for £. The free energy of these solutions can be obtained from
7.30) and is given by

25v/5 n . o
Fos = 108 arccoshEN : (7.34)
in agreement with [156]. On the other hand if we further set 22 = 22, or equivalently
¢$1 = —¢4, then we obtain a three-scalar SO(3) x SO(3) invariant model depending on

a1, @1, ¢ that overlapsﬂ with the truncation considered in the context of N = 4 S-folds in

5They consider a model with four scalars: (¢, x,c,w). One should set ¢ = w = 0 and then identify
sin ¢4 = tanh x as well as g = 2/L.

5They consider a model with five scalars: (¢, X, @,c,w). One should set ¢ = w = 0 and then identify
a; = «a and sind¢; = —tanh4y. We also note that setting 22 = 22 in the BPS equations leads
to an additional algebraic reality constraint. The compatibility of imposing this constraint with the BPS
equations can be verified as in section 5 of [4] for a similar issue associated with the reality of the scalar
fields 51, 62.
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section 2 of [156]. The N = 4 S-fold solution is given (in conformal gauge) by

1 1, L, L
r, Cbl ¢4 2CO \/—7 € \/57

= a; =0, 7.35
2 \/5 1 ( )

and has & = % Again there is another N' = 4 S-fold solution obtained from the symmetry

(5.44), with opposite sign for £. From (7.30) the free energy of these solutions is given by
1

Fgs = §arccosth2. (7.36)

in agreement with [156,(197].

The model also contains a single periodic AdSy x R solution that was found numerically
in section which has & = 0. In this particular solution, the warp factor e and all
the scalar fields, including ¢, are purely periodic in the radial direction. Thus, it can
immediately be compactified to give an AdS; x S! solution of D = 5 supergravity and
then uplifted to an AdS, x S! x S? solution of Type IIB using the results of appendix .
From the numerical results, we can calculate the free energy and we find

Fgs ~ ¢ x 1.90107N? (7.37)

where ¢ is the number of periods over which we have compactified.

The periodic solution was found as a limiting case of a class of Janus solutions in chapter
Bl Our focus there was Janus solutions that approach the N'= 4 SYM vacuum with the
same value of ¢, on either side of the interface, corresponding to the same value of 7
of N = 4 SYM on either side of the interface. It is straightforward to generalise these
Janus solutions to allow ¢, to take different values on either side of the interface. As
already mentioned, taking limits of these Janus solutions leads to new families of AdSy x R
solutions with ¢ as an LPP function of the radial coordinate r. Before summarising these
new solutions which are all found numerically, we discuss how some of the new family of
solutions can arise by perturbing the AdS,; x R solution associated with the A" =1 S-fold
solution.

7.3.1 Periodic perturbation about the NV =1 S-fold

Within the N’ = 1* equal mass model, we consider linearised perturbations of the BPS
equations about the AdS,; x R solution , associated with the A/ = 1 S-fold. There are
zero modes associated with shifts of ¢, A and there is also a freedom to shift the coordinate
r. There are two linearised modes that depend exponentially on r. Of most interest is that
there is also a linearised periodic mode of the form

dag = sin @ : dp1 = —Vbcos @ : (7.38)

We can use this periodic mode to construct a perturbative expansion in a parameter e,
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which takes the form

Z al?)em sin pKr ¢ = 7™ (€) + Z all)e™ cos pKr
m,p=1 m,p:l
Oy = Z a,’ e ™cospKr, er + Z a( em sin pKr, (7.39)
m,p=1 m,p=1
A= A" (e Z a,, e cospKr,
m,p=1
where all functions are periodic in the radial direction with period Ar = —”, with ¢

having an extra linear piece, and hence an LPP function, exactly as in ((7.14] - The
wavenumber K is given by the following expansion series in e:

2r /5 184v/5 , 2155938v/5 , _ 1193970682204 6 (7.40)
- = € — 6 [N .
Ar 3 13 2197 1856465+/5 ’

which we notice is decreasing as we move away from the N’ = 1 S-fold solution. Interest-
ingly, we notice that aq has vanishing zero mode in this expansion, while the zero modes
of the remaining periodic functions are explicitly given by

K

gom W 9431\/5 6269904259
1 = € — —55

- + e
26 26364\/_
5 616455 110249429617
2 o7l /2 \/Be — et — 64 ... (7.41)
4 676 1713660\/_
5L 102177 60279560187

AP — Jog T — 32 — 4_ ..

085 ~3¢ ~ 335 € TamEg0 < T

and the slope of ¢ takes the form

1 2 1 1
Lo VB 9VE, BIBSSSVE 205876107351 o (7.42)
2 2 1352 114244075

Furthermore, we also have Ay = kAr which is given by

130567 , 950321437 ,  11893037855571m 4

Ay =3 7.43
PO T T s T T 725860 (7.43)
The integral of motion (|7.32)) is given by
2515 , 14598 , 1590041883
- . . ) 7.44
€= 08 ( — 0 gg € 142805 (7.44)

One finds that all of the expansion parameters a,(n)p appearing in ([7.39)) are only non-zero

when m + p is even. This implies the following property of the perturbative solution under
a half period shift in the radial coordinate. Specifically, let W = {A, ay, ¢1, ¢4} denote the
periodic functions such that the whole solution is specified by U(e, ) and ¢(e, 7). We then
find

U(e,r+m/K)=W(—er), ole,r+m/K) = @(—€,r) + constant , (7.45)
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where the constant can be removed by . This means that changing the sign of € gives
the same solution (i.e. up to a shift in the radial direction plus a shift of ¢).

Finally, after uplifting to Type IIB, using the results of appendix and carrying
out the S-fold procedure as described in section [7.2.3] we obtain new S-folds of Type
IIB provided that we can solve . The free energy for the S-folded solutions can be
obtained from ([7.29)) and is given by

Fes =

25v/5 | 1305 , 26414316 4
108 13 13

+... ) arccoshg]\f2 . (7.46)

To solve , we first note that 2 cosh 37 ~ 12391.6. Thus, the smallest value of n that
can be reached in is n = 12392, which occurs for ¢ = 1 and € ~ 0.0003. There are
additional branches of solutions, labelled by ¢, which, for a given n, have smaller values
of e. Thus, we can find S-fold solutions with arbitrarily small e. We also note that while
these AdS; x R solutions are perturbatively connected with the N' = 1 AdS,; x R S-fold
solution, they are not S-folds of Type IIB string theory. This is clear when we recall that
for the latter we can solve for any n > 3 by suitably adjusting the period Ar over
which we S-fold, while for the perturbative solutions, as just noted, we have n > 12392.

The N = 1* equal mass, SO(3) invariant truncation we are considering also contains the
known N =4 AdS,; x R S-fold solution . If we consider the linearised perturbations
of the BPS equations about this solution, we again find zero modes associated with shifts
of ¢, A and there is also a freedom to shift the coordinate r. The remaining modes all
depend exponentially on the radial coordinate. In particular, there is no longer a linearised
periodic mode and this feature will manifest itself in the family of new solutions we discuss
in the next section.

7.3.2 New S-fold solutions

The new AdS, x R solutions, with ¢ as a LPP function, can be constructed as limiting
cases of Janus solutions. A convenient way to numerically solve the BPS equations —
(5.89) is to set initial conditions for the scalar fields at a turning point of the metric warp
function, A, which corresponds to Re(B,) = 0 along with the values of the scalar fields
at the turning points. Some general comments concerning this procedure were made in
sections 5 and 6 of chapter [5

Specifically, we consider Janus solutions with the turning point of A located at r = ry,.
Since the BPS equations are unchanged by shifting the radial coordinate by a constant,
we can take 1, = 0. We can also use the shift symmetry to choose ¢p(ry,) = 0. We
can then focusﬂ on solutions that are invariant under the Z, symmetry,

r— —r, 2t 74, E— -+, (7.47)
This implies that ¢;, ¢4 are even functions of r and «;,¢ are odd functions of r. In
particular, at the turning point we can take o;(ry,) = 0 as part of our initial value data.
For the SO(3) invariant model, these Janus solutions are therefore fixed by the values of

If we relax the condition that the initial data is invariant under the Zy symmetry, then we do not find
any LPP solutions of the type we are interested in for constructing S-folds. We also note that the general
periodic perturbative solution (7.39)) did not assume invariance under the Zs symmetry, yet it is in fact
invariant.
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¢1(rep) and ¢4(ryy). By suitably tuning the values of the scalar field at the turning points,
we are able to construct the limiting cases of solutions associated with the S-folds.

The space of solutions that we have constructed in this way is summarised by the
coloured curve in figure [7.2] with the colour indicating the value of ||, given by (7.32).
If one starts with turning point data that lies anywhere within the coloured curve, one
obtains a Janus solution of A/ = 4 SYM theory with fermion and boson masses and a
coupling constant that varies as one crosses the interface. For example, the Janus solution
depicted in figure [7.1] corresponds to the black cross inside the curve in figure On
the other hand, if one starts outside the curve, then one finds that the solution becomes
singular on both sides of the interface.
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Figure 7.2: Turning point initial data for the AdS, x R solutions of the N' = 1* equal mass
SO(3) invariant model. Red dots correspond to the exactly periodic solution, blue dots
correspond to the N = 1 linear dilaton solutions, green dots to the N' = 4 linear dilaton
solutions and green squares to the bounce solutions. The remaining points on the curve
correspond to AdSy; X R solutions with ¢ as a LPP function of 7. All points inside the curve
correspond to Janus solutions of N =4 SYM theory (the black cross is the Janus solution
in figure , while points outside the curve have singularities. Points on the curve with
the same colour represent the same solution, up to shifts of ¢ and the discrete symmetry
in ([5.44]).

Observe that figure is symmetric under changing the signs of both ¢;(r,) and
¢4(rep), as a result of the symmetry . The associated AdS; x R solutions obtained by
this symmetry, which is a discrete R-symmetry combined with an S-duality transformation
for the associated Janus solutions, are physically equivalent. The value of £ is positive for
the upper part of the curve between the two red dots and negative for the lower part. We
next highlight that the blue dots correspond to the two A" =1 AdS; x R S-fold solutions,
with ¢ a linear function of r, as in . The red dots correspond to the purely periodic
AdS, x R solution found in section [5.6.4. We will come back to the green dots and squares
in a moment. The remaining points on the curve all correspond to AdS; x R solutions with
¢ as an LPP function of r. Also, if one starts at the A/ = 1 S-fold solution at the top of the
curve, then one can match on to the perturbative family of solutions that we constructed
in the previous section and there is a similar story for the N = 1 S-fold solution at the
bottom of the curve.
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We now return to the green dots and squares in figure [7.2] The green dots, located
at || = 1/2 represent the N = 4 linear dilaton solutions given in (7.37]), while the green
squares represent “bounce” solutions that involve those solutions, as we now explain. We
first consider the limiting class of the LPP solutions as we move along the coloured curve
in figure towards the upper green dot. To illustrate, in the left panel of figure [7.3| we
have displayed the behaviour of one of the periodic functions, ¢;(r), as one approaches the
critical initial data associated with the green dot, which has ¢;(ry,) = —1/2cot™ /2 ~
—0.308. The figure shows that in this limit, the solution simply degenerates into the V' = 4
linear dilaton solution for all values of r. In the right panel of figure , we have
also displayed the approach to the upper green square. In this case, the solution develops
a region that approaches the N' = 4 linear dilaton solution as one moves away from
r = 0 in either direction. Exactly at the initial values associated with the green square,
the solution will no longer be an LPP solution but degenerates into a “bounce solution”
which approaches the A/ = 4 linear dilaton solution at both 7/L — o0, with a kink
in the middle. We also see that these degenerations of the LPP solutions split the whole
family of solutions into two branches of LPP solutions: one that includes the perturbative
solutions constructed using the N' = 1 linear dilaton solution and another that contains
the periodic solution.
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Figure 7.3: Family of LPP solutions for the N' = 1* equal mass SO(3) invariant model with
turning point data illustrating the behaviour of ¢; when approaching the green dots and
squares in figure [7.2] with |€] = 1/2. The figures display just the periodic behaviour of ¢,
for clarity and just one period. The left panel shows that the limiting solutions associated
with the green dots degenerate into the N’ = 4 linear dilaton solution, marked with a
dashed green line. The right panel shows the limiting solution associated with the green
square becomes a bounce solution which approaches the N = 4 linear dilaton solution, at
both © — 400, with a kink in ¢; centred at ¥ = 0.

In order to obtain S-fold solutions of Type IIB string theory, we also need to impose the
quantisation condition . In figure , we have plotted some of these discrete solutions
as well as Fgs given in ([7.29). The discrete set of vertical points coloured blue and green
correspond to the NV =1 and N' = 4 S-fold solutions with linear dilatons respectively, and
n increases from 3 to infinity as one moves up. For these S-folds, we can obtain all values
n > 3 by suitably adjusting the period Ar over which we S-fold. The red dots correspond
to the periodic solution for different values of the numbers of period, g, which are used
in making the S* compactification. The remaining discrete points correspond to N = 1
S-fold solutions with ¢ as an LPP function, for representative values of ¢ = 1,2, 3. Starting
from the left, for a given ¢, we have n = 3 on the left and then rising to infinity as one
approaches the bounce solution or the N' = 4 S-fold solution at & = 1/2. Moving further
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to the right, the value of n decreases from infinity down to a bounded value [2 cosh ¢37],
at the intersection with the A/ = 1 solutions on the blue line, which can be deduced from

the perturbative analysis ([7.43)).
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Figure 7.4: Plot of the discrete S-folded solutions and the associated free energy of the
dual field theory, Fgs, for the N = 1* equal mass SO(3) invariant model as in figure [7.2]
The discrete points rapidly become indistinguishable from continuous lines.

7.4 SU(2) invariant 5-scalar model

This model is obtained from the ten-scalar model by setting 2! = —2z3, 22 = —2*%, or

equivalently setting a; = ag = 0, ¢1 = ¢ = 0 and F = 0. This model involves five scalar
fields which are parametrised by

1 1
Bi, z' = tanh {5(@3 + o — i3 + i¢4)} , 22 = tanh {5 (g — @ — i3 —igy)| . (7.48)
In addition to the symmetry ((5.44)), this model is also invariant under the symmetry

3 = —¢3, a3 — —as, (7.49)

with Sy, ¢4, p unchanged. This additional symmetry will clearly manifest itself in the family
of solutions we construct below. The integral of motion (7.8) for this truncation is now
given by

1
€ = 756 [~ tan(¢s — ¢a) + tan(@s + ¢4)] - (7.50)
If we further set 2! = —2? (or equivalently setting az = ¢35 = 0 and $; = 0), then we

obtain a two-scalar model depending ¢, ¢4 that overlaps with the truncation considered in
the context of N’ =1 S-folds in section 4 of [156], which we also discussed in the previous
section. The AdSy x R solution associated with the A" = 1 S-folds is given by

V5 1\/3 . 5L
p= ¢4 = cos 5’ e =5 (7.51)
fr=az3=¢3=0,
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with & = %5. On the other hand, if we set 22 = z2 (or equivalently setting ¢3 = —¢,), then
we obtain a four-scalar model depending on ¢3, as, ¢, 51 that overlapﬂ with the truncation
considered in the context of N/ = 2 S-folds in section 3 of [156]. Also note that after
utilising the symmetry (7.49)), we can also truncate to a 4-scalar model by taking z' = z',
or equivalently ¢3 = +¢4. The N’ = 2 S-fold solution, with ¢35 = —¢y, is given by

A L

T 1
p=r, ¢3=—¢4=—§, ﬁlz_ﬁlogz, " =515 as =0, (7.52)

with € = % From (7.30)), the free energy of these solutions is found to be

1
Fos = —arccoshﬁN2, (7.53)
2 2
which is in agreement with [156].
Finally, if we set 2! = 22 (or equivalently setting ¢4 = ¢ = 0), then we obtain the
N = 1* one-mass truncation used in chapters [f] and [6] which contains three scalar fields

B, ¢3, 3. As mentioned a few times already, this truncation also admits two LS AdSs
fixed point solutions, LS*, which are related by (7.49)) and given by

1 T ~ 3
B = —glog 2, ¢3= ﬂ:g, as =0, L= WL’ (7.54)

where L is the radius of the AdSs.

7.4.1 Periodic perturbation about the A/ =1 S-fold

Just as in the last section, within the 5-scalar truncation we can build a perturbative
solution about the A/ = 1 S-fold solution given in (7.51]). The key point is that there is
now a periodic linearised perturbation of the form

. /br

5()43:81117, 5¢3:—\/5COS@.

(7.55)

We can use this periodic mode to construct a perturbative expansion in a parameter e,
which takes the form

a3 = Z aﬁﬁ‘;)emsinp[(r, P53 = Z ag,‘f;)emcospKr,
m,p€odd m,pEodd
bi=0()+ Y allemcospKr, e =k(Or+ Y. alf)msinpKr,  (7.56)
m,pceven m,pceven

pr = Bi"(€) + Z aﬁf}gemcospKr, A= A""(e) + Z a%‘;emcospKr,

m,pceven m,pceven

where the sums over odd integers start from 1 and the sums over even integers start from
2. All functions with the exception of ¢ are periodic in the radial direction with period

8They consider a model with seven scalars: (¢, X, a, A, ¢, w,v). One should set ¢ = w = ¢ = 0 and
then identify oo = 1, A = ag, sin2¢3 = —tanh 2y as well as g = 2/L.
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Ar = 2?”, and ¢ is an LPP function, exactly as in ((7.14)-(7.16]). The wavenumber K is
given by the following expansion series in e:

P V5 292v/5 ,  3316328v/5 , 241179878834 |
g f— € — —

=Ar 3 117 59319 30074m33vE

which is decreasing as we move away from the N' = 1 S-fold solution.
Notice that both a3 and ¢35 have vanishing zero mode in the expansion series. The zero
modes of the remaining periodic functions are explicitly given by

om . (\/3> V5, 48615 , 1856726415
_ 5y V5, i
6

. (7.57)

to 3 6084 9253764
2, 755, 5171099
em _ 22 193 4 7.58
! 3 TR T 1ot © T (7.58)
5L 10241 , 663866873
Azm — 1 it 2 4 6 .
Og( 6 ) T 3042 T acaess2 ¢ T
and the slope of ¢ takes the form
5 3v5, 311V5 19753429+/5
k:i__\/_g_ \/_64— \/_e6+---. (7.59)
2 2 1352 228488
Furthermore, we also have Ay = kAr which is given by
1757 , 52953767 , 1536070915497
Ap=3 2 4 6. 7.60
P O s C T T Tamee0 (7.60)
The integral of motion ((7.50)) is given by
25v/5 4598 96057473
E="—1(1-2¢ 1 6y, 7.61
108 < T 5orC T (7.61)

We now write the periodic functions collectively as Uy = {A, ¢4, f1} and ¥y = {as, ¢3}
so that the whole solution is specified by ¥y(e,r), Wa(e, ) and (e, 7). We then find

\1[1(67T + W/K) = lIjl(_eﬂﬁ) = +\I/1(67T)7
Uyle,r+7/K) = Uy(—e,1) = —Uy(e, 1), (7.62)
ole,r+7m/K) = @(—¢€,1) + constant ,

where the constant can be removed by and we note that the last equalities in the
first two lines are associated with the symmetry .

After uplifting to Type IIB and carrying out the S-fold procedure as described in section
, we obtain new S-folds of Type IIB provided that we can solve . This can be
done as in the discussion following and, in particular, the smallest value of n that
can be reached in is n = 12392, which occurs for ¢ = 1 and € ~ 0.0008. The free
energy for the S-folded solutions can be obtained from (|7.29)) and is given by

25v/5 L 175 4 13887100

— (11— —€" — ———«¢
108 39 393

This truncation also contains the known AdS,; x R A/ = 2 S-fold solutions, but there is

no longer a linearised periodic mode within this truncation in which to build an analogous

solution. This is similar to the known AdS; x R N = 4 S-fold solutions in the SO(3)
invariant truncation that we considered in the previous section.

Fgz = + .. > eurccoshg]\f2 : (7.63)
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7.4.2 New S-fold solutions

The new AdS; x R solutions, with ¢ as an LPP function, can again be constructed as
limiting cases of Janus solutions. We start by constructing Janus solutions with turning
point of A at r = ry,, with r,, = 0. We can use the shift symmetry to choose
©(ryy) = 0. We then focus on solutions that are invariant under the Z, symmetry, obtained

by combining (5.44]) and (7.7)),
r— -, P §— —§+m. (7.64)

This implies that ¢3, ¢4 are even functions of r and as, ¢ are odd functions. Thus, we
again take a(ry,) = 0 as part of our initial value data for the solutions. From ([5.87)-(5.89)
and as explained in section 5 of chapter 5] the solutions are now specified by the values of
¢3(rep) and ¢4(ryy), while the value of By (ry,) is fixed by this data. By suitably tuning the
values of the scalar field at the turning points, we are able to construct the limiting cases
of solutions associated with the S-folds.

The space of solutions we have found in this way is summarised by the curve shown
in figure [7.5] If one starts with turning point data that lies anywhere within the curve,
one obtains a Janus solution of N’ =4 SYM theory with fermion and boson masses and a
coupling constant that varies as one crosses the interface. On the other hand, if one starts
outside the curve, then one finds that the solution becomes singular on both sides of the
interface.
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Figure 7.5: Turning point initial data for the AdS,; x R solutions of the 5-scalar SU(2)
invariant model. The blue dots correspond to the A/ = 1 linear dilaton solutions while the
green dots correspond to the A/ = 2 linear dilaton solutions, as well as the associated soliton
solutions. The red dots correspond to the two LS AdSs solutions, LST. The remaining
points on the solid lines correspond to AdS; x R solutions with ¢ as a LPP function of 7,
with the same colour representing the same physical solution. All points inside the curve
correspond to Janus solutions of N' = 4 SYM theory while points outside the curve have
singularities. The dashed lines correspond to LS*/LS* Janus solutions.

The figure is symmetric under changing the signs of either ¢g(r¢,) or ¢4(ry,). This is
a result of the symmetries (5.44]) and (7.49). The associated AdS; x R solutions obtained
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using these symmetries, which for the Janus solutions are a combination of a discrete R-
symmetry and an S-duality transformation (in the case of ), are physically equivalent.
The value of £ is positive for the upper part of the curve and negative for the lower part.
We next highlight that the blue dots correspond to the N'=1 AdS; x R S-fold solutions
which have ¢ a linear function of r. The green dots represent the N' =2 AdS; x R S-fold
solutions as well as the associated “soliton” solutions which we discuss further below. The
remaining points on the coloured, solid lines all correspond to AdSy x R solutions with ¢
as an LPP function of r. Also, if one starts with the N' = 1 S-fold solution at the top of the
curve, then one can match on to the perturbative family of solutions that we constructed.

In the limit of approaching the green dots in figure along the solid curve, the LPP
solutions degenerate into the AdS; x R N/ = 2 S-fold solutions, which we illustrate in the
left panel of figure for one of the periodic functions, ¢3(r). As one approaches the
critical initial data associated with the green dot which has ¢35 = £ ~ 0.39, the solution
degenerates into the N' = 2 S-fold solution, with the region around 7 = 0 extending out
all the way to infinity. Interestingly, essentially using the same family of solutions, one can
construct another limiting solution which is a kind of “soliton” solution that approaches
one of the AdS,; x R N = 2 S-fold solutions as ¥ — —oo and a different AdS; x R N = 2
S-fold solution, related by flipping the sign of ¢3, as ¥ — oo. This limiting solution is
illustrated in the right panel of figure [7.6
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Figure 7.6: Limiting families of solutions for the 5-scalar SU(2) invariant model, with just
the periodic behaviour of ¢3 displayed. The left panel illustrates the approach to the green
dots in figure [7.5], along the coloured curve; one finds that the solution will approach the
N = 2 linear dilaton solution associated with the upper green dashed line for all 7. In the
right panel, we display a different limiting solution, obtained by fixing ¢3(0) = 0, which
degenerates into a soliton solution that approaches one N/ = 2 linear dilaton solution, at
7 — —oo and another N/ = 2 linear dilaton solution at 7 — oo with opposite sign of ¢

(related by (7.49)).

We next turn to the remaining points in figure The red dots represent the two LS
AdSs fixed points given in ([7.54)), which we refer to as LS*. Moving along the class of Janus
solutions on the horizontal axis towards the red dots at the right, say, one finds that the
Janus solutions degenerate into three components: a Poincaré invariant RG flow solution
that starts off at the AdSs vacuum and then approaches the LSt AdS5 fixed point, the
LST fixed point solution itself and then another Poincaré invariant RG flow solution going
between LS* and the AdS5 vacuum. The dashed curves correspond to another interesting
degeneration of the Janus solutions. As one approaches the dashed curve on the right side
of the figure, one again finds three components: there are the same two Poincaré invariant
components and the middle component is now an LS Janus solution that moves between
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LST and LS™ on either side of the interface, with ¢ linear in 7. There is similar behaviour
as one approaches the red dot or the dashed line on the left side of the figure with LS~
replacing LS™.

To obtain S-fold solutions of Type IIB string theory, we again need to impose the
quantisation condition . In figure , we have plotted some of these discrete solutions
as well as Fgs given in . The discrete set of vertical points coloured blue and green
correspond to the NV =1 and N' = 2 S-fold solutions with linear dilatons respectively, and
n increases from 3 to infinity as one moves up. The remaining discrete points correspond
to N = 1 S-fold solutions with ¢ as an LPP function, for representative values of ¢ = 1, 2.
Starting from the right at the blue dots, for a given ¢, we have n starting from [2 cosh ¢3],
which can be deduced from the perturbative analysis , and then rising to infinity as
one approaches the N/ = 2 S-fold solution at £ = 1/2, where the free energy diverges.
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Figure 7.7: Plot of the discrete S-folded solutions and the associated free energy of the
dual field theory, Fgs, for the 5-scalar SU(2) invariant model as in figure . The discrete
points rapidly become indistinguishable from a continuous line.

7.5 Discussion

We have constructed a rich set of new S-fold solutions of Type IIB string theory of the form
AdS, x S' x S, which are holographically dual to A' =1 SCFTs in d = 3. The solutions
are patched together along the S! direction using a non-trivial SL(2,Z) transformation
in the hyperbolic conjugacy class. These solutions are first constructed in D = 5 gauged
supergravity and then uplifted to D = 10. In the previously known AdS; x R solutions
associated with S-folds preserving N’ = 1, 2.4 supersymmetry, the D = 5 dilaton field is a
linear function of the radial coordinate. In our new constructions, the D = 5 dilaton is now
a linear plus periodic (LPP) function. We have also shown that some of the new families of
LPP AdS, x R solutions can be seen as a perturbative expansion around the N' = 1 S-fold
solution with a linear dilaton. In addition, for the SO(3) invariant model, the numerical
construction of such solutions has revealed additional branches of LPP AdS, x R solutions,
which are not perturbatively connected with any known S-fold solutions.

An interesting feature of the new AdS; x S' x S® solutions is that we can make the
size of the S! parametrically larger than the size of the S°, by carrying out the S-folding
procedure after multiple periods with respect to the underlying periodic structure. This
should give rise to an interesting hierarchy of scaling dimensions in the dual d = 3, N’ =1
SCFT.
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A proposal for the N' = 4 SCFT in d = 3 dual to the N' = 4 S-folds of [196] was
suggested in [197]. One takes the strongly coupled [TU(N)] theory of [154] and then
gauges the global U(N) x U(N) global symmetry using an N' = 4 vector multiplet. In
addition, one adds a Chern-Simons term at level n, where n is the integer that is used
to make the S-folding identifications (see ([7.24))). Proposals for the SCFT in d = 3 dual
to the NV = 2 S-folds of [200] were also discussed in [156]. It would be very interesting
to identify the N =1 SCFTs in d = 3 that are dual to the S-fold solutions of [199], the
constructions in this chapter, as well as the periodic AdS, x S* x S° solution of chapter [5]
The small amount of preserved supersymmetry makes this identification challenging, but
one can hope that the connection with Janus solutions which we have highlighted in this
chapter, as well as in chapter [5], will allow progress to be made.

We have seen that the periodic AdS; x R solution found in chapter [5| which uplifts to
smooth AdSy x S x S® of Type IIB supergravity, is a rather special solution in the general
constructions of this chapter. It would be very interesting to know whether or not there
are additional such solutions of the form AdS; x T™ x M, either in D = 10 or D = 11
supergravity. Moreover, we have focussed on constructing supersymmetric S-fold solutions,
but one can also investigate the non-supersymmetric types. In fact, non-supersymmetric
AdSy xR x Mj solutions of Type IIB supergravity were discussed long ago in [205] and [206].
These solutions are associated with the D = 10 dilaton linear in the R direction, and have
been subsequently rediscovered several times [199,207-209]. However, we note that it was
argued in [199,208,209] that these solutions are unstable (in contrast to the claim in [205])
and hence are not of interest for S-folds with CFT duals.

It seems likely that one can construct additional LPP AdS; x R solutions within the
ten-scalar truncation and more generally within the full D = 5 SO(6) gauged supergravity
with 42 scalars. It may also be possible to construct new Type IIB solutions of the form
AdSy x S* x SE5, where SEs is a Sasaki-Einstein manifold, generalising the work of [201].
More generally, one might attempt to construct non-geometric solutions of the form AdS; x
T" x My, where T" is an n-dimensional torus and the solutions are patched together in
the T™ directions using the U-duality transformations in [210].
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Part V :

Conclusions
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Chapter 8

Discussion and final comments

In the first part of this thesis, we have presented constructions of consistent truncations
of D = 11 supergravity and Type IIA supergravity on ¥y x S* and 35 x S? respectively,
where 3y = 5%, R? or H?, or a quotient thereof. We have shown that the resulting theories
of chapters [2] and [3] are both D = 5, N/ = 4 gauged supergravity theories coupled to three
vector multiplets, but the precise details of the gauging and the vacuum structure of the
two theories are different. The truncations considered in chapter [2] are associated with
Mb-branes wrapped on Riemann surfaces, while the truncations considered in chapter
are associated with NS5-branes wrapped on Riemann surfaces. The dual field theories,
arising from these two configurations, are physically inequivalent. In spite of their different
physical meanings, these two truncations are in fact related by a singular group contraction
procedure, known as the Inonii-Wigner contraction. From the higher-dimensional point of
view, the contraction corresponds to a singular limit, such that S* degenerates into R x S®
and D = 11 supergravity reduces along R to the Type ITA theory. At the level of the
corresponding isometry groups, this limit realizes the Inonii-Wigner contraction.

From the Gauntlett-Varela conjecture [45] and all these various truncation examples
[1,[2,/87-90], it is clear that for each of the different configurations of M5- or NS5-branes
wrapping on different calibrated cycles ¥y studied in [62,64,98], there will be an associated
consistent KK truncation on X, x S* or ¥, x S3, respectively, and it would be of great
interest to work out the details. Apart from wrapped brane configurations, it was realised in
[211],212] and more recently highlighted in [7] that Non-Abelian T-duality can be harnessed
to obtain new consistent truncations of Type ITA from Type IIB or vice-versa. This could
yet be another interesting avenue one would like to pursue. Furthermore, it would be
extremely interesting to generalise all these results and observations using the tools from
generalised geometry along the lines discussed in [39,89-92]. In particular, this should
provide a succinct and systematic way of determining the specific lower-dimensional gauged
supergravity theory that should arise from higher-dimensional compactifications.

In the second part of this thesis, we have presented a novel construction of supersym-
metric AdS3 solutions in M-theory, which are associated with wrapping Mb5-branes over
four-dimensional orbifolds M. In both cases, M, takes the form of a spindle 5 fibred over
another two-dimensional space: either another spindle 1, or a smooth Riemann surface
¥, of genus g > 1. These solutions are holographically dual to d = 2, N' = (0,2) SCFTs,
and a computation of the central charges of these theories using anomaly polynomials
and the c-extremization procedure matches perfectly with the supergravity results. In the
case of My = X3 X o, the solution can be naturally interpreted as Mb-branes wrapping
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an orbifold four-cycle, which is holomorphically embedded inside a Calabi-Yau four-fold,
generalising [62,72]. However, such an interpretation is not available for the solution with
M, = 1 x o, and this particular feature, which is common for all of the known spindle
solutions in the anti-twist class, deserves a much better understanding.

Our construction involves a new consistent truncation of D = 7 gauged supergravity on
a spindle down to D = 5 minimal gauged supergravity. This new truncation is local in the
supergravity fields, hence the analysis will also go through for the half-spindle solutions
studied in [123,|124], which are proposed as holographic duals for a class of superconfor-
mal field theories of Argyres-Douglas (AD) type [213]. By applying our results to their
constructions with appropriate identifications, this should give rise to new supersymmetric
AdSj3 solutions, which are dual to two-dimensional SCFTs arising as the IR limit of four-
dimensional SCFTs of AD type compactified on either a spindle or a Riemann surface. It
would be extremely interesting to work out the exact field theory mechanism and confirm
the proposal, which for now, we will leave as an intriguing open question.

Our results [3], like many of the recently discovered spindle/half-spindle solutions 55,84,
85,[109H112}/114,|123/[124, 214, 215], strongly suggest a new landscape of orbifold solutions
to be explored in string theory. These examples exhibit a number of new, non-trivial
properties raising questions in both the gravity and the field theory sides. What kind of
data should be specified at the orbifold points when defining a SCFT on a spindle? Is it
possible to obtain a more general truncation on a spindle (i.e. beyond minimal gauged
theory)? Can we obtain more general solutions analogous to our “spindle x spindle”
solution? How do we compute indices on a spindle? For now, we will leave these, and
many of the other interesting questions, for future work.

In the third part of this thesis, we have provided a systematic investigation of mass
deformations of NV = 4 SYM theory which depend on one of the three spatial directions
and preserve some residual supersymmetry from both the field theory and the gravity
sides. We have explored these deformations within the context of holography, studying
configurations which preserve 150(1,2) symmetry as well those that additionally preserve
conformal invariance. For the latter class of deformations, we have constructed a number
of interesting new classes of supersymmetric Janus solutions. One particularly interesting
limiting case of these solutions gives rise to the RG interface solutions. By taking limits of
the Janus solutions, we have constructed novel RG interface solutions with N' =4 SYM
on one side of the interface and the Leigh-Strassler SCF'T on the other. From our results,
it seems very likely that if a Poincaré invariant RG flow from CFTyy to CFT R exists,
then there will be a corresponding RG interface solution, and it would be of interest to
construct more examples to confirm this conjecture.

Another interesting result is our construction of novel AdS, x S x S° solutions of Type
I1B string theory which have non-trivial SL(2,Z) monodromy along the S! direction. These
supersymmetric solutions are proposed to be dual to 3-dimensional N' = 1 SCFTs, and
arise as limiting cases of Janus solutions of N' =4 SYM theory which are supported both
by a different value of the coupling constant on either side of the interface, as well as
by mass deformations. The key new feature of our solutions is that the dilaton is now
“linear plus periodic” (LPP) along the radial coordinate, such that the metric is no longer
invariant under translations in the radial direction, and our solutions can still be uplifted
to Type IIB to form S-fold solutions via the SL(2,Z) duality transformation. We have
constructed these novel LPP solutions numerically, and it would be extremely desirable to
construct analytic expressions of these solutions for better understanding. Furthermore,
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it seems plausible that more general solutions would be found by enlarging the ten-scalar
model to the D = 5, N' = 2 gauged theory containing eighteen scalar fields, though this
would first require the explicit construction of the N/ = 2 gauged theory.

Additional insights into S-fold backgrounds have been gained by studying the associated
holographic RG-flows. In [216}217], across dimensional RG flows, from AdS5 x S°, dual
to N' =4 SYM, to various AdS,; x S x S° S-fold solutions, dual to d = 3 SCFTs, were
constructed. The existence of these holographic RG flows suggests that these S-fold SCFT's
can be viewed as IR fixed points of RG flows associated with marginal deformations of N' =
4 SYM. This should also help elucidate some properties of the conformal manifold of S-fold
SCFTs [218,)219], such as the compactness of the conformal manifold. Furthermore, new
AdS, S-fold solutions, which are patched together using the SL(2,7Z) transformation in the
elliptic conjugacy class, were constructed in [219,220]. Clearly, a lot of interesting questions
concerning S-fold backgrounds and their implications remains to be fully answered.

In conclusion, we have explored several aspects of the vast topic of the AdS/CFT
correspondence. This correspondence intimately relates gauge theory and gravity with far
reaching consequences, as seen from the many examples. Though it is far from being fully
understood, lots of new physics and mathematics can still be learnt from this extraordinary
correspondence!
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Appendix A

Chapter |2 appendix

A.1 Equations of motion of D = 7 maximal SO(5)
gauged supergravity
The equations of motion for D = 7 gauged supergravity arising from (22.1]) are given by
; . 1 - -
DS((3)) :gﬂj*sg?’) + gﬁij1j2j3j4F(jgl)J2 N F(jg)ﬂ s

-1, g - 1 ivi i
DT T FY ) = — 29T DT - o st Fi3)* A DS

+ o ORI F A F N = Sty 1 S,

D (Tigl*D(Tkj)) = 29° (2T Tij — TeToj)voly + T, T s FB) A F) + TiroxSfyy A Sl

1
—=0 [2g2(2TikTik — (Tyi)*)voly + T, T ' Fig) A Flsy + TixS(ay A Sgg)] , (A1)

and
e " ij klp 1 ( jp1p2 1
R, = ZT“ Ty D150, T + ZTzk: le FupFu + ZTijSumpzSu + 1_OQWX’ (A.2)
where 1 1
X = _Zﬂzlj}yngmFume N §Ejszlpzp35jplp2p3 +2V. (A.3)

A.2 Consistency of the truncation

We substitute the truncation ansatz for the D = 7 fields given in (2.9)-(2.12) into the
equations of motion for D = 7 maximal supergravity given in (A.1])-(A.2]). Before carrying
out the computations, it is useful to note that

DT® = —6e 526,

DT = g (N (TY)a = O2) &0 = g (N(TUDa - O2) 42, (A)

DT = e (4dAT*" + DT*?) |
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where D75 = dTap + gA?‘lV)’TW + gA'flA;’Tm. Furthermore, for the gauge fields we have

Fi =g (=) e Ne"+ " Fy),
F(aa — wla A et — Dw2a A Gabéb, (A5>

Fo) = Fiy + 2g(e*9* 4 )vol (%),

where
= dAq)
a,B _ a,B o B
F(Q) = QA% + A A AT (A.6)
D¢aa = dwaa gA((llﬁ)lﬁaB + gA(l)eab¢ba '

Similarly, for the three-form we have

DSy = (DK (5 — g ®hiy)) Ae® — (DK — g**hiy)) A ee’,

ab, jac 77 (A?)
DSy = Dhiy) + (DX(1)+2ge b K(Q))/\VOI(EQ),

where
DKy = dK(y) + ge” Ay A Kfyy |
Dhiy = dhy + gAY A hiy, (A8)
Dxiyy = dxiyy + 94T A Xy -

Finally, for the metric tensor, we use the orthonormal frame e™ = e=2%¢™ m = 1,...,5 and
e® = e3%¢%, ¢ = 1,2 and find that the D = 7 Ricci tensor has components

Ry = € (RE) + 2V @y — 30V,00V,0) |
Ram =0, (A.9)
Ry, = €' (=3V?¢ + 1ge %) b,

where RS, is the Ricci tensor for the D = 5 metric ds? = e™e™ in (2.9) and we have used
Rl(j)) = 1g*6ap, Where R((j)) is the Ricci tensor for ds?(X,) = e%e”.

A.3 D =5 Equations of motion

The equations of motion for the three-form in (A.1)) give rise to

- - a 1 a
DKy — gihly) = —ge™ >k Ky + Seap e DY NFY
2 (A.10)

. 1
Dhiy) = ge™™2*(Txw)* + 5€asy F o AFp,

(2)
as well as

Dxgy + 296(1%“&](?2) = 964A+8¢*<Th(3))a ,

a ay 1 b ra (A.11)
+ €apy (D@b P ADYS + Sg(l = ) Fo) + gey %IWF(z)) :
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It is helpful to note that when g # 0 these imply

D(e—G)\—?(b*KEz)) _ _ F( 2 A Kzz) . Eabowa A h?g) o g€4)\—12(]§Eab¢bo¢*(7~X(1))0c7

A.12

D(€4A—12¢*<7‘X( )Y) = F(OZ‘)B A hﬁ ( |
and also

D 504(Thes)?) = Fioy AX(y) + 26 D™ A Ky + 29e0 0" iy (A.13)

+ 29676)\72¢¢aa*K(a2)

1
where we have used 5604,37Fgl; A F(ﬁ; =0.

We next consider the gauge field equations of motion in (A.1). When the indices
(k,1) = (a,b) and (k,1) = (a, ), we find

— a — ax (64 1 o
d(e P94 [ ) — 2ge~ 002N cab(TLypyaas yber 4 564”8@360457]7(2) N *(Th))”

(A.14)
+ g 0 (€U )R (Tx )" + Ky A Ky =0,
and
DTy T e M E() — 4ge™ 0 (T ) 1Dy + 29T [+ DTy,
a9 = )N T(Tx)T + €45 Flg) A +(Thig)T — 262Dy A Ky
o A B
+ 2hiz A Xy =0, (A.15)

respectively. When the indices (k,[) = (a, @), we get
D(GQ/\—6¢7;—1*D1/)(IB) . 92 |:26—8)\—16¢6abecd(¢b7——lwd) (T—1¢)ca
12)\ 16¢< ¢ )waa +e —10¢ ( 10)\(7~¢)aa . Qwaa + 6_10A(T_117D)aa> ]V015 (A16)

1
+ €apy (26 PTBOEG) N ey — e P(Tx) A DY ) Wiy A Ky = 0.

We now consider the equations of motion for the scalar fields in (A.1)). From the (i,j) =
(a,b) components, we obtain

d(xd)\) — 1_1064%1”*1?(2) NI 310 SO Ahy N (Thes)® — %e“ PPty A (Txw)”

- 3_1()€2A_6¢7;E1*D¢aa A Dy — 310 e 8>\7ij P F(ﬁg F(é()x

oK A K + g [N WT ) - T )

e 2T — AT 4 e P TT)

_ 1—10(l _?)2el 166 125 —BA—169 gab ced (a1 )(¢bT—1¢d)]VO15 —0. (A.17)
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From the (7, j) = («, ) components, we obtain

2
D(T;'«DT,5) + ge”—“(?)ﬁ;léﬁp — T, 0ag)xDV™ A D™

ST e — TS T ) < A S

oy Tpn (2)

1 1
— 564’”8‘#(37‘575@ — Typ0ap) #ligy N iy — 3¢ e 12 (3T5,00p — Topbas) X1y A X(1)

+ 92{36 108367 10N (T 1yp)aay8 — el yoe (Ty)of — =N T—1p)55 + ' (YT ) gl

+ §e4¢[268)‘Tr(7'2)5a5 — N TYT )00 — 26 TrT Sap
— 6T %) ap + 3P TT Top + 66 Top)
ST e — T T g (€ ) () bvols = 0. (A18)

ay Tpn
The equations of motion for the scalar fields with mixed components (i,j) = (a,«) are
trivially satisfied.

Finally, we consider the reduction of the Einstein equations (A.2). From the (a,b)
components, we obtain

1

d(xd¢p) — 0

1 —8\+4¢ ay ﬁp 1 —6A—2¢_ rra a
—a0¢ TOT T HEG) N Fg o+ e TR K Gy A Ky

+ %64)\—12¢*X 1 (TX(l ) . 1_1564>\+8¢*ha A (Th(g))a (A 19)
e (W)~ 20+ )+ OGT ) 4 eI ()

+ %6_4"5 (26 Tr(T2) — e (TrT)? — 4e 2 TuT)

4 ::1_56—8)\—16¢6ab€cd(wa7——1¢0) (wa_ll/)d) }V015 =0.

1
612)\+4¢*F(2) A F(2) + 1_062>\—6q57;—ﬂ1*D¢aa A D¢aﬁ

15°
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From the (m,n) components, we find that the D = 5 Ricci tensor must satisfy

R, =30V, + 30V,,AV A+.'Eﬁ 1D T D Ton

1 1

+ el ((F(Q))ml(F(2))nl g 9mn(El2 ))zs(F@))ls)
_ — a a 1

+ e 020 <(K(z>)mz(K<2))nl 69mn(K<2))ls(K(2>> )

1

9 (FEDFES)" )

1 . 5
b TR () FE

X 62)\76@7;75 ( 9D, wa[o’) 4 ;e4>\ 12¢>(X 8 Yo (T X)) (A.20)

1 o 2 ’

. 7164H8¢7;’3 ((h(3)>ml5(h(ﬁ3)) ls ggmn(h( ))lst(h(ﬁ:s))l t)
1

" 929mn{6€_4¢ (2e8Te(T?) — e (TrT)? — de P TxT)

4 1612)\—1&;5([ . ¢2)2 4 16—8A—16¢6ab€cd(wa7~—1wc)(wa—lzbd)

6 3
S g — POWTE) - T )

The mixed (ma) components are trivially satisfied.

A.4 Subtruncation to Romans’ theory

If we consider the subtruncation considered in section then we find that the D =5

equations of motion given in (A.10)-(A.11)) and (A.14)-(A.20) can be boiled down to

DC(Q) = z'gefzo‘z’*c 2)

L o
d (€% Fpp) = QF@‘; NES —Cay A Cy

—20¢ , 0B apf
D( F()) F(>/\F<> (A.21)
1 _
dxdp = 30 40¢*F( 2) A\ Floy — %672%*6(2) A C(z)

1 —20 af af 1 20 —-10
— @e ¢*F(2) /\F(2) — %g ( ¢ 2e7! ¢) vols ,

and

1 1
R = 300V ¢V + 5™ ((F@))mz(F(z))n’ — ggmn(F@))zs(F(z))“)

1 — «@ e} « « S 1 -
+ 2¢ 200 ((F@?)ml(F@l;) - gmn(F(Q?)lS(F@?)l ) — 29" Gmn (46 100+ 620¢) (A.22)

1
6 3
1

i o200 ((6(2))(m|l(c(2))n)l 6gmn(c(2))ls((_?(2))15) .

In these expressions, we have defined C) = K(lz) + @'K(22) with DCg) = dC2) —igAny ACpa)
These equations of motion can be derived from the Lagrangian given in ([2.68|).
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A.5 Matching with A/ = 4 supergravity

We present a few formulae which are helpful in explicitly matching the reduced D = 5
theory of section with those of D = 5, N/ = 4 gauged supergravity theory which was
discussed in section 2.4

We begin by providing the parametrisation of the SL(3)/SO(3) coset which we used in
The generators for the Lie algebra of SL(3) are given by

1 0 0 00 O
hi=(0 -1 0|, hy=|01 0 |,
0 0 0 00 -1
010 000 001
egr=(0 0 0], e=100 1], es=1[0 0 0], (A.23)
0 00 0 00 000
000 0 00 0 00
fi=1100], fo=1000|, fz=[(000
0 00 010 1 00
The coset element can then be represented in an upper triangular gauge via
V = e¥rhitezhz jaien jazez jazes 7
e?t  e¥la; e (ajag + az) (A.24)
= 0 er2¥1 er2 g, .
0 0 e ¥?

Next, turning to the SO(5,3)/(SO(5) x SO(3)) coset element V, given in (2.57), we
find that the Maurer-Cartan one-form, which takes values in the solvable Lie algebra, has
the form
ay -y =

1 1 1
—dgpljfl + —2d¢2%2 + —2d303%3 + €2¢17¢2da151 + 629027(’0161@252 + €Lp1+(’02 (dag + aldag)é’?’

V2 V2 V2

e PTERXOTY om0 (X2 — 0, XO)TO 4 e (X a9 X + (a3 4 a1a0) XP) TP
+ V2 PPN TT 4 V26517 (A" — aydp™)TE + V26727 (d — azdyp' — apdy)™?) T
+ \/Ee—c,m—gpgdeITlO + \/Eegol—gpg—cpg, (d¢22 o a1d¢21)T11 + \/56902—903 (dl/}23 o a3d,¢}21 . anw22>T12 7

(A.25)
where
X = dE™ + eqp ™ dyp™ (A.26)
We can decompose the Maurer-Cartan one-form as
av-v'=p"+Q°, (A.27)

where QU lies in the Lie algebra of SO(5) x SO(3) (the antisymmetric part of the one-form)
and P lies in the complement (the symmetric part of the one-form). We can then calculate
1 1
g*dMMN A dMMN = —§Tr(>x<730 AP,

_ —im*[dv VAV VT4 @V VT,

(A.28)
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and we obtain the kinetic terms for the scalars as in ([2.27)), without yet incorporating the
gauging. To incorporate the latter we use the covariant derivative given in (2.64])) which
we write as D = d + g2 with

A= Augo+ Ao+ Algy + Adgs + 7, 94 + 7, 95 + ), g6 (A.29)

We can then decompose DV - V™! = P+ Q as we did for the ungauged case. In particular,
we have P =P+ g(V-A- V1) 50(5.3)/(s0(5)x50(3))» Where the last term is in the Lie algebra
complementary to that of SO(5) x SO(3). We find that the gauged scalar kinetic terms in
are obtained precisely after calculating —3Tr(xP A P).

We can write the matrix My in in the explicit form

e~ 2p3T 1 e~ 2o -1. 8T e 2Ty
Muy = | 8. T1 208 T-1.8T 4 1,,, S T Y+ S
6729033/1—' . 7‘71 672(,03:)}7—’ . 7’71 . ST + ST 672903;))’1—‘ . 7‘71 . y + ST . S + eZ(pgT
(A.30)
where
Saa = \/ﬁwaa’
(A.31)

1
yoaﬁ = Eaﬂ’yg,y + 58385 :

To calculate the ANV = 4 scalar potential Eﬁ?t 4> given in (2.44), with the embedding tensor
given in (2.60)), we find the following non-vanishing contributions

1 1 1 1
. §fMNPfQRSZ_2 (EMMQMNRMPS _ ZMMQT]NRT]PS + 77MQ,),,NR??PS)

6
1 1
— _5612)\—16¢(l . 1/)2>2 + 56_4¢+8)\[(T1"T)2 . 2Tr(7-2)]
_ 6—10¢+10A(w7—¢) ’ (A.32)
— %gMNgPQE4 (MMPMNQ —nMPpNe)
_6—10¢—10)\(¢7‘—1¢) o 6—8/\—16¢6abecd(¢a7‘—1wc) (wa_l'QZ)d) ’
and
—= funpEQrEMMNPRR = 9]e7199 4 971007 4 26 P TYTYT (A.33)

3f

where in the last expression we have utilised the definition - Summing these contri-
butions we find that the N' = 4 scalar potentlal Ep o _, in - precisely gives the scalar
potential £P° of the reduced theory, given in

Turning now to the vectors, using the identiﬁcation of the field strengths given in
as well as , the kinetic terms of the vectors of the N' = 4 theory, L},_,, given in
, exactly reproduce the kinetic terms of the vectors in the reduced theory, £V, given
in (2.29). We next compare the topological parts of the Lagrangian. We find that the
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non-zero contributions to £1,_,, given in (2.46)), are (up to a total derivative),

1 1 1
— —gZ"NBy ADBy = —Lly AN DL?, — —L%, A DL},
/2 M N T o @~ 9,7 2)
V2 AN AN N AAP = —dl e — A% A A% A A
3 MNP = —d| 1 — (1)] (1) 1) >
1
—— gdpnp X oM AN A AC A AR N dAT = (A.34)
2\/59 MNPAQR
1 a « 53
— §g€a,3’}’d[£{(l) - lA(l)] /\ A’(YI) /\ A(l) /\ A(l)
1
B B o
— geap Al ANy — GlAQ] A dA A gy

2

Combining these expressions we recover the topological parts of the Lagrangian £ of the
reduced theory given in ([2.30)).
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Appendix B

Chapter |3 appendix

B.1 Equations of motion of D = 7 maximal 1SO(4)
gauged supergravity

In this section, we apply the IW contractions to obtain the equations of motion of maximal
ISO(4) gauged supergravity in D = 7 from those of the maximal SO(5) gauged theory.
For clarity, we will write down the SO(5) equations of motion. It is also more convenient
to work with the scalar matrix Myp = OVAT instead of Typ. We note that M,p is not
independent of ®, as det M = ®. We begin with the Sgg) equations,

D(ﬂj*5(3)) = Fg) A Sf3) : (B.1)
Using the notation defined in (3.4)-(3.6)), we find that (B.1]) yields the following two equa-

tions of motion:

D <MAB>T<G'ZB3)> = Fé;g VAN ég) — éé) A g(g) , (B.Q)
and ) ) ) ) i i
4 (871%5)) = ManiGihy A GB) + Gy 1 G (B.3)
Next, we consider the non-Abelian Bianchi identities
A . 1 - -
DS(s) = gTijxS(a + ein-aa k) NG - (B.4)
These yield
. 1 . .
dS() = §€ABCDF(3)B ANEGD, (B.5)
and .

Following this, we consider the Yang-Mills equations

—1p— ij - 1 ivi j
D (Crzkljﬂ]ll*F(g)) = —297’;[[:*1}7}}1 - §€i1i2i3klE3jF(2)2 /\ *SgB) - S(kB) /\ Sé3) . (B?)

The (k,1) = (5,5) component gives a 0 = 0 identity, the (k,l) = (A, 5) components give

L = . N . 1 N .
D (®M333GH)) = §8MasiGl) — S A Gy = Seanimp Muc P ™ A3GG), (BS)
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and the (k,l) = (A, B) components give
D (MgéMg})?kFgf’) = —2GM; *DMpjc + @M Gl A #Gh) — Gy A GG,

B.9)
_(DMBé’Gé) A *Gg) — EEABCD <(I) 1F(g)D A\ *5(3) — QMDEG(CQ) A *Gg)> .
We now consider the scalar equations, which are given by
D (T '+DTyy) = 29° (2T Th; — TerToj) vole +T5, T+ F5) A FS)
N . 1 (B.10)
where
Q = 2¢° (2T, Ti; — (Tii)*) voly + T, T < F 5} A Fly + TxSfyy A Sl - (B.11)
Defining
Q = 257 (2MapMap — (Mas)?) voly — MyhMELREAC A FEP (B12)

— 20M pxG ) A Gl + MapFG iy NG + @553 A S,

which is the limit of @ as k — 0, we find that the (5,5), (A4,5) and (A, B) components of
the scalar equations respectively yield

- - - - - - ~ ~ - ~ - 1 -~
d(®715dD) = OMapiGiyy A GG + OMp¥Gio) A Gy — O 1S A Sy + 2Q,
D (9M,53GE)) = BMERGG, A FAP — MapGly A S (B.13)

and

D (Mgg;DMCB) — 2 (2MacMop — Moo Mag) voly + M MphEGE A FBP
- - - L . - N 1 -
+OMpedGiy A Gy = PMEFGE) A G + MpciGig A Gl = 204pQ. (B.14)

Finally, we consider the Einstein equations

| | PN 1 . 1
RL? = ZTilekllDuTjkDVTli + ZTilejl 1FuiFflp + ZﬂjSmmSﬁpm + 1—09qu7 (B-15>
where
1 iy 1 , ,
X = _Z_sz‘;lTﬁngszklme B §Ejsz1p2p35jplp2p3 + 92 (QTUTU - (TH)Z) : (B.16)
Defining
~ 1 - - ) 1~ - ~ 1 ~ ~
X = _ZMAéMC%)FSSQFBDp p2 _ ECI)MAéGépQGBppo _ gMABGflmp?,GBplmpg -
1. - . )
- gq)sﬂlpzpssmmpg + §2 (2MABMAB - (MAA)2) )
which 1s the limit o as k — 0, we ind, after some algebra, that
hich is the limit of X as k — 0 find, af lgeb h
~ 1 ~ ~ 1 g 22 = 12 ~ A~
R = 1 M Mg D, MpoD,Map + Z(I)_QVM<I>VV(I> + §<I>MABG,‘:‘G5
1 ~n 1= 4~ 1~ = ~
+ MaeMppF FUP7 + SOMpGLG + L0718, 8,77 (B.18)
1 “~A  ABpips 1. =
+ ZMABGWMPzGup 7”2+ EgNVX'
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B.2 D =5 Equations of motion

The equations of motion of the M5-brane D = 5 theory [1] can be found in appendix of
this thesis. We are going to plug in our truncation ansatz and set £ — 0 to obtain a
new set of equations of motion. Using our definitions in , yields the following
three equations,

DIN(CL . géaH gwaa( 1G(3))

B.19
g(I)l/4 —61—2¢ ab*Kéy) + 6(;LbP /\«F(Z) + eabeab’owa A J,B ( )
and
D <(7~d_1é(3))0‘> = _Q((ll) A [:[(3) + Eaﬁj(g) A F(Q) + §é1/466/\_12¢§<5?1) , (B.QO)
and ) 3 )
dHg) = Fio) A Fgy - (B.21)
Next, the equations in (A.11]) give
D <(7-71‘~7(1))a> = —Qp) N X(1) — 25€P Ky + GO 1P TE0RGY,
o B 1 - - (B.22)
+ 26,5 (Dwaﬁ A PGy + 5@(1 — ¢2)J(2) + geaV™ R F(2)> ,
and
% Mo, Mo, 1 « 72\ T ~ _ab,Tac,7bB 17
dX(1) = €ap (Dwa A Dyp*P + 50¢ Pl — ) Fo) + Ge™y ¢bﬂF(2)) : (B.23)
The equations in (A.12)) give
D <é1/4€—6X—2¢3”~(€2)) _ _15(2) A f( _ e 6A—126 _ab ba*o_(l)
, » . R (B.24)
<D¢a (T G )"+ P(l)/\H(3)> ;
D (Ci)l/4665‘_12¢§<(~7?1)> = Ea’gﬁ(g) AN (7‘_1@1(3))5 + j&) N 1{[(3) , (B25)
and
a (@ MRy ) = BV 12G0, nwsl, — Ty A (TG (B.26)
The equation in (A.13)) gives
D <<T>1/4e6>‘+8¢>7<@‘()‘3)> = P Foy ANT 'ow)? + J ) A Xy + 26® Dy A f(&) (B.27)
~ abwaa (w ( 1G(3)) + R H(g)) + 2‘&&)1/46—6)\—%),(;(1@;[{&)’
and

4 (@715 ) ) = BUMEQR A FGY, — Ty AT 50))" + 2Py AR, .
+ 251N RILKY + 2Ge® R (TG y))°

162



The equation in (A.14) gives
d (&)—1/26125\+4$;]5(2)> — 2Gew <é—1/26—6¢~5<7——1,&)aa;[)1/;ba X &)1/466X—6¢~5éa;ﬁ)(bl)>
+ (7P—168$ﬁ(2) A ;]::[(3) - (i_l/4€65‘+8q§€a/gj(oé) A\ %éﬂ + K(a) A KEI) (B29)
+ g&)fl6712¢~>€a56ab1/;aa1/;b,8;)2(1) 4 2§&)1/466;\712<;3 abRawba*O_(l —0.
The equation in(A.15)) gives
D (1T )" ) — 259NN P + 5T Q)
— €op®!* [N(l — e 63~ 12‘1’*0’(81) + €S F) A *éé) — 276720 ¢ab DB A ;KE)Q)
+ (7171@(3 ) N X( 1) — (T71~ )a =0, (B.BO)
and
d <(-1:)71/2€4¢3712i;<f(2)) _ &)3/46455765\6&56?((11) A ;(fflj@))ﬁ _ 2‘&6&5&)71/2676@31&(1047;;1;D&ay
+ §€a57~;;1>~k[77~‘57 + g(l — ’&2)@_16_12&;)2(1) + (i)—le&;;ﬁw(z) VAN >T<I:](3)
— 2&)1/46_&_%6(16?&) A *K&) + Eaﬁ('f—_lé(y,))a A (72_15(1))’8 =0. (B.31)
The equation in (A.16|) gives
D <é3/4€65\—6q~5;<ﬁ)(al)) _ [2é3/46—6i\—16436ab6cdéc(I;b,i-—ldd) 4 (i)s/4€—6X—10q§Ra] vols
+ (i)l/4e—6i—2¢3]:—(2) A eab;f(?) (1)1/4 6A— 12¢ €g 1 A Dwa'y
+ f{(g) A\ Eabk(bz) =0, (B.32)
and
D @)71/2676&7@1;152/;(15) I &)3/466;\765)@&1 A %]5&
e {2&)—1/26—12)\—16¢€abecd(¢b7-— wd)(T w)ca _ §1/2p125- 16¢>( ¢ Waa
_I_e—loé <e12Z\(7-@aa _ QQLaa i 6—125\(7——1@%) i 2&)3/46—65\—16q~§€ab€cdébéd(7‘—1,&)0@} VE)15
— e |97 THEX ) A DY — BN 120550

(1)
+ (T 'G)* Ae™ Ky =0. (B.33)

Ha 1/4_—61—24 78 abz 1-b
/\P(].)_¢ / e ¢J(2)/\€ *K(Q)]
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The equations in (A.17)-(A.18) give

~ ~ ~ 1 -~ 1 -+
5/46AF & 8 3/4,6A-653 pa 1/4 ,6A-12¢ —1~~a
d¥d\ — 24@ Tas*Qy A Q) — 2@ *P( A P( I~ 24<I> 'T ) A a( D
1 - T 6% .~ 1~ T 163 . = ~ 1 - 631~ o ~
— E@_1/264¢+12)\*F@) N F(Q) + E(I) 1/2¢40 12)‘*./—"(2) VAN f(g) + ﬂq)3/464¢ 6)\7;51*J(2) VAN J(g)
L 214 —63-24- 7a a L =14 63 8”—1~~a ~B

+g {é —10¢ (6125\@7-1@ 12,\@7-@ <I>5/4 6/\R2)
1. L 1. _ - 5
_ E(1)—1/2612>\—16¢(l )2 - E(I>1/2€12,\—4¢ <2Tr(7'2) _ (Tr'T)2>
+ Eliq) 1/2 —123— 16¢ ab cd(d 7—71,&0)(1;(;7—711/;(1/)
1

+ 6&)3/466;\16&6“6“(1/7“7:11;6)}?(’}?‘1’/} vols = 0. (B.34)

and

S N . 1- < i 3
d(®15dD) — DN 53O A QL — @3/4 63605 Py A PG — gcbl/‘*e“-l%n;l*ag;) NG

4o o i 4__~~~ ~ 3~ 6 Ad A~ o

+29 2e =80T 1X DY A DY + 0 Le 293X ) A Xy — 5@3/46 OHOT 55Ty A T
2z 4p+120% - n 2z 4¢—120% T T 2214 _63-2- fra rra

+ g(D 1/2g4+12 *F(Q) A F(g) + S(I) 1/2g4¢—12 *.F(g) VAN f(Q) - g@l/ e " 2¢*K(2) VAN K(Q)
U WO T S

+ g@ 1€8¢*H(3) N H(g) - gq)l/4€6)\+8¢7;ﬁ1*G(3) A G(ﬁs)

2. S16h  rava 2s (o oier 5 s -
4 { 2H- 1/2612,\—16¢<l )2 - g(I>1/2€—4¢ (2612’\Tr(72) (T - 4TrT>
_ oL 4. 16 L e T
. 2(1)5/46—6)\—10¢R2 + g(I)_1/26_12)\_16¢€ab66d(¢a7’_1¢6> (wa_ll/)d)
12 - S el e s ~
_ g@3/46—6)\—16¢6ab€cdeRd(1/Ja7‘—1wc)} VOl5 =0 7 (B35>
and
D (@°11eR5(T Q) ) — 280%™ 093P, & Do
+ &)3/46—6:\—1-4(;3604,8;(7*—1j(Z))ﬁ /\]:—(2) + (’131/46(5X+8<;3>~ké<(13) A 1,—:[(3) + é1/4665\—12<73;5€61) /\j((l)
_ 2926—65\—1043 <(§5/4,(Zaalfia _ 2@3/46—65)6(11760(1}}(1(Q/;bi-—llﬁc)lﬁda) vols = 0, (B.36)
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and

[ s - < 1~ . .
D (7;_71*D7’Vﬂ) — @91 (%v‘sap - 57;/)5@’) *Q?1) A Q€1)

- o - s . e 5 qod e 1~ 3
+ @120 (27;;166p - ﬁ?léaﬁ) £DUY™ A Dy — pH/1efr12¢ (Ta;lagp - 57;;1%5) R57 A G0

o aSiaif 1~ s . - ot f 1~ . .
N (T, — ST s )Ty A Ty — BN (TG, — ST N0 3G A G
I gz{e—m(zé [26—125\(7‘—1,&)(104772(16 _ 2612:\77Z;aa(7~1;)a6 _ 6_12x(@z7~’_11/~})5a5 i 612&@7-@5&6}

o 2&)_1/26_12:\_16(; [27;;17;;1565 . 72;17;;1504,8] (EabT;a’sz;bn)(GCd@ZJCp&dg)
+ 2&)3/4676;\71&% [27;;15,8,0 . 7;;150[ :| (Eabd;a’yéb) (ECdlECde)
4§20 [26125‘TI“(7~—2)(5,15 — "?MTrT) 2605 — 2T0T S0

— 4P (T2) 05 + 26 P T Tog + 4@] }VE>15 ~0. (B.37)
The equations in (A.19)-(A.20) give

- 1 - - ~ 1 - - . - -
dxdg — %®_1/264¢+12>‘%F(2) A Fo) + 1—Oc1>—1/2e—6%—51>w¢w A Dyp*?

—_

1 53/4 6A—647 Da Da F-1/2 4¢—120% T 7 1 %3/4 4p—6AF—13 Fa 78
+ 1—0(1) e *P(l) AN P(l) — %q) e *F(Q) /\.; 2 — %(I) e 70&5 *J(Q) A J(2)

1 $1/4 —6A—2¢7 ra a 1 1 —12¢~ v % 1 $1/4 _6A—12¢F—17 ~a ~ B
+ 3 MemOA20R K N Ky + % e *x X1y A X + T [ePTOT NG NG

1o - 1 ot st 1 e
— Eq)ile&b*H(g) VAN H(g) - B®1/4€6A+8¢7;51*G(3) A G(ﬁ3)

1 - S e~ - o 5 _
e {66—1% (612A(¢7—¢) 2+ 9?) + e P (GT ) + @5/46—6>\R2)

4 135&)1/2612I\16<Z>(l _ &2)2 X 3_10@1/264@ (26125‘Tr(7~"2) _ 6125‘(TI‘7-)2 _ 4Tr7'>
4= —120—16¢ _ab_cd(, TadF—1,7c\( TbF—17
+ 1_5@ 1/2e 12X 16¢€ b6 d(¢ T lw )(¢b7~ I@Z)d)

8 . < S -
+ 1—5@3/46_6>‘_16¢6ab66d(@/JQT_I?,DC)Rde} vol; =0, (B.38)
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and

- N B S e - -
RE) = 30V,,0V 0 + 36V, AV, A + T V@V, + 1 o8 T DTy Dy T e

+ (5_1/26_6(5 Na—ﬁleT;aaDnT;aﬁ + (53/466;\—6(1315;11Pg + %é5/466;\7~‘aﬁc}%@£

—_

4= —p- 1 —12¢X

X,
]_~ ad n s
4 Lg-12,084108 ( Yt (F2)),n ggmn(F(z))ls( (2))1)

. ok 1~ ~ T s
+ =P 1/264¢ 12>\<(~F( ))ml(}_(Z)) - _gmn(f(2))l8(‘F(2))l )

6
Looin sgoeiit( /50y (7 1. 5oy (8
+ 5@3/464¢ 6)\7;/31 ((J(g))ml(c](ﬂg)>nl - ggmn(J )is (J(Q)) >

F —2¢—6) r-a r-a 1. r-a r-a \ls
+ Pl/tem20 6)\<(K(2))ml(K(2))nl - égmn(K@))lS(K(Q))l

+ ;@1/4 61— 12¢7-ﬁ 5 0

— D |

[\DP—‘[\D

1~ b ] ] s 2 ] ] sr
+72 1€8¢((H(3))m1s(H(3))nl - §gmn(H(3))1sr(H<3))l >

2

2 gmn(égg)),ST(Gfg))zsr)

1= p+6XF— o e s
+ Zq)1/468¢+6/\7-0461 (( (3))mls(G?3))nl B 5

Az {; o ( X GTP) — 201+ 9°) + e P GT 1) + ci,s/z;e—ﬁXRz)
é(i) /2@125\716¢~)(l - 1/;2)2 —+ é&)l/264¢~5 (26125\Tr(7-2) . 6125\(Tr7-)2 . 4TI‘7->
+ e b T (T )

4 ;&)3/4665\16q~$€ab€cd(1/~}a7~—11/~}c>ﬁibﬁgd} . (B.39)

B.3 Minimal representations of A}, and A ¢

We provide here an explicit representation of the generators in (3.42)),

0

g1 g3

o O OO
o O OO
o O OO
S O O
o O OO
o O oo
o O OO

1
0
0
(B.40)

o O
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o |

o~~~

B.4 Matching with N = 4 supergravity

In this section, we present some of the details on how to match the truncated D = 5 theory
of section [3.3| with the canonical language of N' = 4 theory in [79].
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The parametrisation of the coset SO(5,3)/(SO(5) x SO(3)) is given in (3.38), and we
find that the Lie algebra valued Maurer-Cartan one form is given by

1 1 . 1
AV -V = —doiH + —=dosH + —dps H? + e*1dp €
\/5 ©1 \/§ Y2 \/§ ©3 14

| epaterte <Q?1) 4 PQ?l)) T 64P3—§01+<P2Q4(11)T3 X 6‘2“’2X(1)T4

- _ _ _ B.41
+ eP3—P1=P2 (T_ld(l))4T5 _ 6903+<P1 P2 [(T 10(1))3 + P(T 10_(1))4] TG ( )
+ \/ﬁe—@l—wzdwl?qﬂ + \/2e¥1 %2 (dwl4 _ pdwlg)TS _ ﬁewsp(ll)TQ
+ ﬁe—¢1—¢2d¢23T10 + \/ﬁe(pl—cpz (dw24 . pd’g[)Qg)Tll . \/§€¢3P(21)T12 :
where @9, 3 are defined in ((3.39)) and
R =W+ 7o Xy = dZ + eqp™dp™ Py = dW* + 70dy*®
(B.42)

Qty = dr*, (T o) = d§® = 1% — eay (60 Q),) + 2RV |

are the ungauged versions of X(y), P(“l), Q?‘l) and (7 'oq))® The Maurer-Cartan one
form can be decomposed as dV - V7! = QE(B + 73((?)) , where QE?; lies in the Lie algebra of

SO(5) x SO(3), and 73((%) lies in its complement. The ungauged kinetic term of the scalar
fields in the coset SO(5,3)/(SO(5) x SO(3)) is equal to

M A MY = — e (P A ) (B.43)
_ iTr(* [dV : v*] A [dV VT (V- Vﬁl)TD ‘

The scalar manifold of the reduced theory is SO(1,1) x SO(5,3)/(SO(5) x SO(3)), and

the ungauged kinetic term of all of the scalar fields can be recast into
1
L3, = =38 %dY A dY + Moy A dMMN (B.44)

where the SO(1,1) part of the scalar manifold is described by the real scalar field ¥, via
¥ = pl/8em93A (B.45)

To incorporate the gauging, we need to use the covariant derivative given in (2.64) which
we denote as D = d + g2l with

A= Awygo + 527(?{)91 + Wé)gz + V(Bi)QS + V(‘i)g4 + Aw)gs - (B.46)

Now we can decompose the gauged version of the Maurer-Cartan one form DV - V™! =

P + Q. In particular we have P = P + ¢ [V AV (VA V_I)T} , which lies in the

complement of the Lie algebra of SO(5) x SO(3). Finally, we find that the gauged scalar
kinetic terms are recovered precisely after evaluating —3Tr(xP A P).

We provide here the explicit expression of the matrix M,y which is defined in (2.33)),

75—1 73—1 . ST 75—1 X y
M=| STt ST, '8+1, ST, YV+S : (B.47)
VT VT ST ST YT Y+ ST S+ Ty
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where

ePrte2 emﬂozp 6901+<,02(7_3+p7_4)

= —p1+p2 — 1+ 4 _ \/§¢13 \/iw14 —\/iqjl
V?) 8 (& 0 e s T 5 S ( ﬂw% ﬂwu _\/5\112 s
(B.48)
and
1 0 = 64 + Rawa?)
Yij = 53?5]{1 + —= 0 — €3 4 Roqpt . (B.49)
_54 _ Ral/}a?) §3 . Ra¢a4 0

ij
and we also define T3 = VJI' - V3. To calculate the NV = 4 scalar potential (2.44)), we

have to make use of the embedding tensor specified in (3.48) and we find the following
non-vanishing contributions

1 1 1 1
- §fMNPfQRSZ_2 (EMMQMNRMPS B ZMMQ,'?NR”PS n 67]MQ77NR77PS>

1 1
_ _5@1/267@ (2612’\Tr(7'2) _ 612’\(Tr7')2) _ 5@71/2612)\716¢(l ) 6710%12,\(1?7—2#) 7
1
_ ngprQE4 <MMPM/\/Q _ 77MPnNQ>
— _&)71/26712)\716¢>€ab€cd(wanlwc) (waflwd> o 2(1)3/4676)\716¢>6ab€cd(wanlwc)Rde
_ o100 (6712)\<¢7-71w) T @5/4676)\R2) ,

3ffMNpsQRzMMNPQR — 20711 4 4?) 4 20" % OV T (B.50)

Combining these contributions, we are able to recover the scalar potential in our truncated
theory .

We now turn to the vector sector. Using the identifications in (3.51)- ED and My
in , we find that the A/ = 4 kinetic terms of the vectors in @D matches with
the kinetic terms of the vectors of the truncated theory (after applying the field
redefinitions in (3.26]) and - For the topological part of the Lagrangian, we find that
the non-zero contrlbutlons to Li_, are (up to a total derivative),

1 1,
9Z*N By A DBy = 2g L DL},

V2

1
gdpnp X oAV A AS A AR A dAT

2V/2
z
= —%eagv(l) AVE A A — gAw) NG NV A Flay, (B.51)
V2 e A A QAN A dAP
3
= —€ap <d [Wff) - Z%BVu)D AV A P

o (67 l 1 o el pget 1 oMo
— Floy N Fioy A (:@(1) —T {527(1) — lEaﬁv(f) — %eaﬁdrg + E7'2d: — =T V(l) + Ef Q(l)> .

Combining these contributions, we recover the topological part of the Lagrangian in our
truncated theory ([3.33)).
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Appendix C

Chapter 4 appendix

C.1 The U(1)xU(1) truncation of D = 7 maximal gauged
supergravity

We have provided an overview of D = 7 maximal SO(5) gauged supergravity in chapter
2| and in this section, we will discuss some aspects of the U(1) x U(1) truncation of the

maximal theory.
The D = 7 U(1)? theory, as first discussed in [121], can be obtained by keeping just
the two U(1) gauge fields, A112 , A34 one of the three-forms, 5(53), and two scalar fields

7’1” —dlag( 2\ 2/\1’ 62)\2, €2>\2, 674/\174)\2) ) (Cl)
The Lagrangian (2.1 then becomes
£(7) = (R — V>V017 — 6*7d)\1 VAN d)\l — 6*7d>\2 A d)\Q — 8*7d)\1 A d)\g

1 1 34 34 1 —4X1—4N
—5 terFlyy A Flyy — 5e7 *7F(>/\F<> 3¢ TS ASE ()

1
+ %5(53) A de’g) gS( ) A F(”) A F(34 Alf) A F(Q) F(Q) A F(?’Q% ,
where

1
V=g 56—8(/\1+/\2) _4e20uA2) 9220+ h2) 9 22X | (C.3)

For configurations with F 12) N F (3% = 0, we can further consistently set 55’3) = 0.

The equations of motion for the D = 7 U(1)? gauged supergravity arising from (C.2))
can be written in the form

1 1
Py = 3dx7d Ny + 2d*7d Mg + 56_4)‘1*7}7(122) A F2) + = 5 _4’\1_4’\2*75’?3) A 5(53)

_ 92 (26—2(2)\1-1-)\2) + 6—2(/\1+2/\2) . 6—8(/\1+>\2) — % ()\1+)\2)) *71 _ O,

1 1
Pp = 2dsgdAs + Bdirds + e ur o A Fy) + e T Sy A Sy

—2(2X1+X2) + 26—2(>\1+2>\2) _ e—8(>\1+>\2) . 262(>\1+)\2)) *7]1 — O (C4>

G =d (6_4/\1*7F(122)) + 6_4’\1_4’\2*75(53) A F(324S =0,
G =d (e _4/\2*7F34) R 55 A F(12) =0,

T dS(3) — ge —4h - 4>\2*7S ) /\ F(?)é; = 0
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and
1
R/W = 68“)\18,,)\1 + 68“)\281,>\2 + 88(“)\181,))\2 + ggWV

1 B 1 o 1 _ 1 o
T3¢ M EGEY — [ Fpe F) g R ER B — 150 g FPY7) - (C5)
2

+ lee_4>\l —4 )Xo (Sngsgpa

To uplift solutions to D = 11 on S* in the U(1)? truncation, it is convenient to
parametrise the four-sphere S* by writing the embedding coordinates p' as

guysﬁ 655;706) )

pt +ip? = cosEcosfeXt | P +ipt =cosésinfe™?,  p® =sin€, (C.6)

with —7/2 <& <7/2,0<60 <7/2and 0 < x1, x2 < 27. Using the above parametrisation,
we can write down the uplift ansatz for the D =7 U(1)? theory

1
dshy = AVdsk + A {eP i gug e [dw? + wf (dx - gAR)’|

) (C.7)
b2 [dw2 + w2 (dXQ A?f)) i|} )
with
A = 7Ty 2 o2 4 e (C.8)
and
wo =siné, w; =coscosf, wy=cossind, (C.9)

satisfying wg + w? + w3 = 1.
Within the D = 7 U(1)? theory, the D = 11 four-form flux can be written as

wWLW
Fuy = gl 2UA2 dwy A dwy N\ (dX1 gA%lz)) A (dXz - QA%))
2w?w?
+ 913 ZA—2€2)\1+2>\2 (d)\l _ d)\2> A (Xm — gA%lz)) AN (dX2 — gA?f)) A d'UJo
2
SN A2 [ P2y, duy A (3dAy + 2dAs) — €12 wyduwy A (2dN + 3d)s)]
g

A (dx1 — gA(H) A (dye — gAY

1
+ —A_IF(EQ) A [wowg e~ gy — e )‘deo} (d)@ — gA?f))

92
1
+ EA_lF(?’Q% A [wowl e~ M gy — wfe”‘ldwo} A (dX1 — gA%lz))
4 — 1
— Wop€ M 4)\2*75(53) + 55?3) AN dwo y (ClO)
with
— —8A1—8X2 —2X1—4X2 —4X1—2Xo
U (e 2e 2e ) wh
. (672)\174)\2 + 262/\1+2/\2) w]_ o (674)\1 —2Xg + 262/\1+2/\2) wg ] (Cl]')
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We also note that if we integrate the D = 11 four-form flux over the S* at any arbitrary
point on the D = 7 spacetime, we obtain

wi1w2 2
Fy = UA ™ dwy A dwy ANdx1 ANd
/54 @ /54 gHwo LA A XA (C.12)

= 872

Rather remarkably, the dependence in the integrand on the scalar fields \; drops out of
the definite integral.

C.2 Supersymmetry of D =7 gauged supergravity

The supersymmetry transformations for bosonic configurations of D = 7 maximal SO(5)
gauged supergravity associated with the conventions of [36] are given by

1 ij g 1 v v i j
oYy =V, + ZQWT D ST+ = (3 = 80, )Ty T T Foy,,

20 80
1 vpo 9 v_ po\TV —
- @(7}1« — §5u7p )F (H 1);'45(3)Aypa]67 (C 13)
1 : 1 , 1 1 )
Oxi == 57" T" P + g(TiJ = £ T0)1 + 557" (Dl = DD LR FG,
U o
+ 1—20’}/“ p(Fi] — 4(52])(1—[ 1)3'48(3)A;wp]6-

Our D = 7 gamma matrices satisfy 7o123456 = +1 and [jg345 = +1. Here 1%, A=1,...,5
also parametrise the coset SL(5,R)/SO(5) and T;; = I 117156 45. In addition, P,;; and
Q),i; are defined as the symmetric and antisymmetric parts of the Maurer—Cartan one form
4050, + 2A,4P)I156,; respectively. We have determined these from the literature,
which we have found to have many typos, and also using a number of self consistency
checks which we will outline below.

From these expressions, one can derive the supersymmetry transformations in the
U(1) x U(1) truncation. Following [121], we define

. 1 ) 3 3
Yy =, — §%F5X5 , X =T+ §F3X37 = §F1X1 + I3, (C.14)

and find that the supersymmetry transformations aref'_-]

. 1
S = |V SARTE 4+ SAUDH — Lemthideg, 4 997 (9,M + O, ho)

(C.15)
1, . 1 by o
— P (T RE + e PR E) o+ 2yre P RTIS], e

Note that to obtain the Killing spinor equations in (5.4) of [112], which had vanishing three-form and
Yo123456 = —1, one should set g = 1 and also take v* — —~*.
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and

1
oX1 = {Z (20,M1 + 30, 22) ¥ + % (22 — e~ 1)
L2 84w 1w —2n -2 g5
_ Ee D3y oy + Eﬁyu PT5e S5l e,
1 (C.16)
0X3 = L—l (30,A1 + 20, 02) Y + % (€2>\1 _ 674/\174)‘2)

1 _ S v
— Ee 2’\1F12F/}ZW” + EV“ PO~ M 2’\252,”} €.
We have carried out a highly non-trivial Checkﬂ of these conditions and their compatibility
with the equations of motion by considering integrability conditions of the supersymmetry

transformations as in [221]. For example, if we write d¢), = D,e and 6x; = Aje, then a
lengthy calculation shows that

1 1 w
VD, Ale = [‘1*7792 — 2P (5002), Ty — 72 M7 (57T)

uvp |

’””Tﬂ €
+ _1 ( 201 —4X1—4Xo ga Y 56 A u_§ —2>\1F12F Ny
59 \¢ te )+ 2u1+ w2 |7~ g€ ak 127

+ée‘2’\1_2AQSZWP57W”} Ase

3 o 3 1 )
+ |:§g (—62)\2 +e M 4)\2) + (aﬂ)\l + 5(9#)\2) ")/H — g@ 2A2F3§F34"}/u

1
+ﬁe”1”2sprr5wﬂ] Age,  (C.17)

where Ps, Gy and T are defined in and vanish when the equations of motion are
satisfied. Therefore, when the equations of motion are satisfied, the commutator on the
left hand side vanishes for supersymmetric configurations satisfying A;e = 0.

A final comment is that one can further restrict to a diagonal U(1) sector by setting
A2 = A3 then compare with the results on the U(1) C SU(2) sector of D = 7 minimal
gauged supergravity. However, we only find consistency with e.g. [222] provided that we
set Yo123456 = +1 in [222]

C.2.1 Fermionic reduction

Associated with the ansatz for the bosonic fields given in (4.12))-(4.14), we introduce the

following orthonormal frame

3/5 p1/10 1/10 4
ea:(yP)l/IOéa’ 65: Y d 66_ Y \/@ ( > ’

2Note that we calculated the commutator in (C.4]) assuming 7o123456 = w and T'j2345 = v where
w,v = 1. It is only in the case that w = v = +1, which is the conventions we are using, that the
commutator gives another supersymmetry transformation when the equations of motion are satisfied.
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with &%, @ = 0,1,2,3, 4, an orthonormal frame for the D = 5 metric ds?. It is convenient to
use an explicit set of D = 7 gamma matrices v#, suited to the decomposition SO(1,6) —
SO(1,4) x SO(2), given by

'704:6&@0-37 '75:]l®0'1, ’76:]l®0'2, (019)

where (8, are D = 5 gamma matrices satisfying Bpjo34 = —il. For these D = 5 gamma
matrices, we define the B-intertwiner Bs satisfying Bs3.B; " = —3; and B2 = 1. We can
also define By = o, such that By(c!,0%)B; " = +(0!,0?)*. We then define B; = Bs ® B
satisfying Byy# Byt = 41+,

We now consider a D = 7 spinor e~ e ® ((2), where € is an arbitrary ) = 5 spinor and
the two-component spinor (o) on the splndle 9 is provided below. We also need the D =7
conjugate spinor which is given by et e ®C () where €¢ = Bse* and QQ) = UIQ . We
then consider the following ansatz for D = 7 Killing spinors of SO(5) gauged supergravity

E=e Te® C2) ® u_ or e=eciet® (o) ® uy, (C.20)

where u- are two four-component spinors acted on by the SO(5) gamma matrices I'* which
have the same eigenvalue with respect to both I'*2 and I'4,

I‘uui = F34U:|: = :I:zui . (C21)

The two-component spinor () on the spindle 5 is given byﬂ

/20 VP + 232 y!/2 VP = 2y3/?
VaPYs \ P gy VPSP 4 22
satisfying
(cos ay*® 4+ isin oz75) E® (2 = +1e® (), (C.23)
& (cosay™ —isinay®) e @ (G = —ie® ® (fy '
where

3/2
cosa = 2\y/ﬁ : sina = 24/ % . (C.24)

The explicit phase factor appearing in arises due to the specific gauge that we are
using for the gauge fields in the ansatz.

We next substitute this ansatz into the D = 7 Killing spinor equations ({C.15) - -
We find that dx; = dx3 = 0. To analyse (wm we would need the spin connection one-forms
associated with the frame, which are given by

2\/_ a 6 a 2\/6 1/10
3y1/10p3/5F pe . W= y7/10P1/58y [(yP)" ] e

. 2 2 (V00
Yy )

_ 5 —
Wa = 3y1/10P3/5 a0 a5 Las € Wi = y7/10 P2/5

wOéIB — a}a +

)

(C.25)

3Note that these are not exactly the same as those given in [112] for the AdSs x 5 solution, due to
the different supersymmetry conventions as noted in footnote
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where G5 are the spin connection one-forms for the D = 5 metric ds3. After some work,

we find that (5@% = 0 is equivalent, in either of the two cases in (C.20)), to the D = 5 spinor
e satisfying

— 1 , )
va - 56& - ZAa - E (Baﬂp - 46551)) Fﬁp €= O? (026)
and recall we have [By1234 = —i1. This is precisely the Killing spinor equation for a bosonic

configuration of D = 5 minimal gauged supergravity with g = 1.

C.2.2 R-symmetry of AdS3 x | X 5 solution

Here we identify the R-symmetry of our AdS; x 1 X 5 solution of D = 7 gauged super-
gravity by constructing suitable Killing spinor bi-linears.

For the decomposition SO(1,4) — SO(1,2) x SO(2), we write the D = 5 gamma
matrices as 3, = a, ® 02, 3 = 1 ® 0% and B4 = 1 ® o', where a, are D = 3 gamma
matrices satisfying agoas = 1 and given by ag = i0?, a; = o' and oy = 2. In this basis,
we take By = (5.

The D = 5 Killing spinors solving for the supersymmetric AdS; x 1 solution

of [55], given in (4.17)-(4.18]), are written as
e = Vaasy ® (1) (C.27)

where 9445, is a Killing spinor on AdSs satisfying V, ¥ 445, = %aaﬂ Adss, and (1 is a spinor
on the spindle ; given by

Gy = (\/%x) i \/f/%(x)> : (C.28)

where
filr) = —a+22%2 + 3z, folz)=a+22%% - 3z, (C.29)

satisfying f(z) = fi(z)f2(x) with f(z) given in (4.19). Asin [55], the spinor is independent
of the coordinate 1) associated with the specific gauge used in (4.17]).

We now provide the explicit expression of the Killing spinors on AdS;. We write the
metric on AdS3 in Poincaré coordinates as

—(dx®)* + (da')* + dr?

ds*(AdSs) = - , (C.30)
and then from e.g. appendix B of |112], we can write
1 0 1 . 1
19%53 v ( 1 ) ; 19542;53 =7 [ia°0% + z'ot + o] ( 0 ) : (C.31)

associated with the Poincaré and superconformal Killing spinors, respectively. Overall, the
D = 7 Killing spinors in ((C.20|) are given by

3ig

i _3id (4 i 22 g (e * c
W) = e 79543153 © () @ (o @u- or € =e 19&13153 ® 'y ®Ch @uy . (C.32)
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We can now construct spinor bi-linears to extract the associated superconformal algebra.
We have uiu+ = 0 and we normalise vl u_ = u1u+ = 6 for convenience. Defining € = €l

for bi-linears of the u_ Killing spinors, we have the following expressions

[5(1)7m€(1)] Opy = Opo — Ot ,
[€@yme®] Oy = [r? + (2 = 21)?] Dpo + [r* = (% = )] O + 2r(a” — 2D, , (C.33)

4
[€Vyme?] 0, = (20,0 + 201 +70,) + (21040 + 2°0,1) — (20, — 304).

and we get the same result for bi-linears of the u, Killing spinors. On the right hand
side of ((C.33)), we have obtained precisely the set of Killing vectors generating the d = 2,
N = (0, 2) superconformal algebra with the R-symmetry Killing vector identified as

R=20,— §a¢. (C.34)

C.3 Anomaly polynomial for ;| x

We are interested in determining the anomaly polynomial associated with N Mb5-branes
wrapped on R x | x 4. The D = 7 supergravity construction shows that we are
interested in activating background gauge fields in a U(1) x U(1) C SO(5)g subgroup
of the SO(5)g symmetry of the M5-brane worldvolume theory. This setup is associated
with the normal bundle N to the M5-branes splitting via N' = R @ N} & N,, where N
are complex line bundles. In the large N limit, we can write the anomaly polynomial as

(e.g. [117]):

N3
A(jd = ﬁcl(Nl)ch(/\/’g)Q. (035)
In compactifying the d = 6 theory on ;| X 5, we need to take into account the

U(1);, x U(1)y, global symmetry arising from the isometries of 1 X 5. Generalising
the results of [55,|109}/117], we want to compute the 6d anomaly polynomial on an
eight-dimensional manifold, Zg, which is defined as the total space of a | x 5 fibration
over a four-dimensional manifold Zj,

1 X 99— Zg > . (C36>

As in [55,/109], we demand that the Killing spinors are invariant under the U(1),, x U(1),,
symmetry generated by the normalised Killing vectors (%%7 %&ﬁ).

Now recall the gauge fields of the D = 7 supergravity solution given in (4.24). In
this gauge, from and , we see that the Killing spinors depend on ¢ but are
independent of ). We want to work in a specific gauge in which the Killing spinors have
no dependence on either ¢ or ¢, hence we consider gauge fields of the following form

2 (D e _ 8
A(l)_(h1 1+a1>d¢+{b1 3(h1 1><1 JC)}CZ?/M

34 _ (& (e _a
A(l)_(h2 1+a2>dq§+[b2 3(h2 1)(1 x)}dw,
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where we have allowed gauge transformations parametrised by a;, b; with ¢ = 1, 2 satisfying
a;+ay = % and by + by = 0, such that the Killing spinors are independent of both ¢ and .
Following the procedure in [55,109], we now introduce the following connection one-forms
on ZSZ

Aty =) (04 5200 ) + o= 3010 (1= 2)] (a0 5240 )

or 3
(C.38)
A 1 A
A%l) = p2(y) (d¢ + 2—7?14&) + {52 - 592(9) (1 — %)1 (dw + Q—rAJl) ,

where we have defined two functions on the fibre 35 of | x 5:

%) ) (C.39)

pi(y) = 0i(y) + a;,

with p} = 60, and (A,,, Aj,) are connection one-forms associated with the U(1),, x U(1),,
symmetry. The associated curvature two-forms F,) = d.Aj,, are given by

i Ao 1 a A pPiA
(2) = Pidy A [d¢+ o A, 3 <1 :1:> (d¢+ o AJ1>} t = Fy,

— 31‘2d$/\ (d?/i+ %A‘h) + % |:bz — §91 (1 — E>:| FJl s

(C.40)

where Fj, = dAy, [F(y/2r] € H?(Zs,Z) and we have normalised such that c¢i(J;) =
[FJZ/27T] S H2(Z4,Z).
We now write

c1(N) = Ajer(Rag) + 1 (-F(ig)) ; (C.41)

where Ry, is the pull-back of a U(1)g symmetry bundle over Z, and the trial R-charges
satisfy A; + Ay = 2. This latter condition ensures that the preserved spinor has R-charge
1. The d = 2 anomaly polynomial on Z4, at large N, is now obtained by substituting
c1(N;) into Agg given in (C.35)) and then integrating over | X o,

.AQd = ﬂ/ Cl(N1)261(N2)2 . (C42)

This gives the following d = 2 anomaly polynomial

NS
Ast = (AT + ASD + A Ao Ts)er(Roa)” + (Al + DoTs)er (Rag)er (1)

+ (A1Is + Agl7)er (Roa)er (Jo) + [801(J1)2 + [961(J2)2 + Liper (Jr)er(Jo) }

(C.43)
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_Ap 1 1 2745
h= 57 ()
Ao (1 1 278
=57 () 10
A 1 1
Iy = —f (m_ - m_) 40,0137 (C.44)
- +
- 4Agz5 1 1 27 Y3 8A¢ mi_ - mi b, 2193 Y3
Iy = o <m_2_ - m_%r> [9192]y2 + or mz_mi(m_ +m) D) [92]y2 + b [9192]y2 ’
4N (1 1 o1y SAp  md —m? vs | 02 1070
Iy = o <m—2_ - m_i) [9192]y2 +t 5. (4 ) b1 [616-],) + 5 [61],, ) -
and
2(A¢)2 ]. ]- Y3 a 2793
lo==gm o~ my ([p1p292]y2 2 [pQ]y2> ’
2(A¢)? (1 1 a 3
I; = <37:§> <E - m_+> ([p1p291]zz - 52 [ﬂﬂi) :
4A¢ ]_ 1 3 3 3
=120 (m _ W) ([6:63)% + 20, (81637 + 260 [670.]")
= +
2 2 3 _ 3 2 2
Gt e ) (S [+ 2 681+ 2miea 0l )
ey — + ’ ’ ’
Ag)3 1 1 3 . .
L= (E - m—+) (5 [piea]], — i o3l — [ﬂ?m]zi) =
A TR O R
- +
4(A¢)2 (mi_ - m3_) Y3 a1 1 273 Y3 a2 r 97y3
o gy (0 el = 5 DAL v [fueatily = 5 (A1)

Having obtained the d = 2 anomaly polynomial, we can derive the associated d = 2
central charge using the c-extremization procedure outlined in [116]. The coefficient of
sc1(Lg)ei(Ly) in the expression for Ay given in is trv2Q,Qs, where the global
symmetry Q, is associated with the U(1) bundle L, over Z; and ~* is the d = 2 chirality
operator. Now c-extremization implies that the d = 2 superconformal U(1)g symmetry
extremizes

Cirial = STy R2.00 s (C.46)
over the space of possible R-symmetries. The trial R-symmetry is written as
Ririal = Roa + €1J1 + €2.J2, (C.47)
which leads to a trial central charge given by
N3
Ctrial — —6g{(A%]1 + A%IQ + AlAglg) + (A1]4 + AQI5)€1 + (Al]ﬁ + A2]7)€2 (C 48)

+ ]86% + 1963 + [106162} .
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The trial R-symmetry is parametrised by €7, €5 and Ay, Ay subject to Ay + Ay = 2. We

also have dependence on the gauge parameters a;, b; which we recall satisfy a; + ay = %
and by + by = 0 to keep the Killing spinors independent of ¢ and ¢.
Carrying out the c-extremisation procedure, we find
. Sm_my(m_+my) 27
€ = = s
Yom tmemy +m2 TAY (C.49)
o nn (2n_—pr—po)(st+pitpy) 427
2 (n_ —p1)(p2 —n_)(s +2p1 + 2ps) 3A¢’
and
4 4
Af=t—20y, Aj=ZE-26,=2-4], (C.50)
with the corresponding central charge given by
N3 _ 3 2,2
ooV (m_ —my) pipa(s + p1 + p2) (51

2 m_my (m2 +m_my +mi)n_ny(n_ —pi)(ps — n-)(s + 2p1 + 2p2)*

This expression for the central charge is in exact agreement with the supergravity result
(4.42). We can also compare the twisting of the R-symmetry which arises from the two
global U(1) symmetries, J;. We can identify Ji,J» with 9, 03, respectively, where ) =
(21| AP)Y, ¢ = (21 Ap)¢ with Ap = Ap = 2r. Then at the extremal point we find that

4
6?]1 + €§J2 = 281/, - §8¢, (052)
and this is