
Consistent Truncations and Applications of
AdS/CFT: Spindles, Interfaces & S-folds

Kwok Chung Matthew Cheung

Supervised by Prof. Jerome P. Gauntlett

Department of Physics
Imperial College London

Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in
Physics of Imperial College London and the Diploma of Imperial College London





Copyright

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents
are licensed under a Creative Commons Attribution-Non Commercial 4.0 International
Licence (CC BY-NC). Under this licence, you may copy and redistribute the material in
any medium or format. You may also create and distribute modified versions of the work.
This is on the condition that: you credit the author and do not use it, or any derivative
works, for a commercial purpose. When reusing or sharing this work, ensure you make the
licence terms clear to others by naming the licence and linking to the licence text. Where a
work has been adapted, you should indicate that the work has been changed and describe
those changes. Please seek permission from the copyright holder for uses of this work that
are not included in this licence or permitted under UK Copyright Law.

1



2



Declaration

This thesis is based on the original research that was carried out along with my supervi-
sor, Jerome Gauntlett, and collaborators, Igal Arav, Jacob Fry, Rahim Leung, Matthew
Roberts, Christopher Rosen, James Sparks, between October 2018 and April 2022. Chap-
ters 2, 3, 4, 5, 6 and 7 are based on the following papers (referred to as [1–6] in the
bibliography):

• K. C. M. Cheung, J. P. Gauntlett, and C. Rosen, “Consistent KK truncations for
M5-branes wrapped on Riemann surfaces,” Class. Quant. Grav. 36 no. 22, (2019)
225003.

• K. C. M. Cheung and R. Leung, “Wrapped NS5-branes, consistent truncations and
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Núñez, David Tennyson, Daniel Waldram and Zhenghao Zhong for interesting physics
discussions.

I have now lived in the UK for nearly nine years, and this journey would not have been as
amazing if without the support and companionship of all my friends. Special thanks go to
(in alphabetical order) Adrian Bayer, Calvin Chen, Hywel Cleverdon, Julius Grimminger,
Rob Horne, Rahim Leung, Andreas Mantziris, Arshia Momeni, Matt Roberts, David Ten-
nyson, Torben Skrzypek, Benjamin Strittmatter, Antoine Vianey-Liaud, Eleonora Vriend,
Rhys Williams and Zhenghao Zhong for making life outside physics fun, and also to those
who understand what it means to be “Julius-ed”. Moreover, I would like to thank Hy-
wel Cleverdon, Julius Grimminger, David Tennyson and Antoine Vianey-Liaud again for
always being there to support me and cheer me up.

Since the first day I arrived in the UK, the Ho family has always been warm and
welcoming to my stay at their house. I would like to thank Betty Ho and Yin Ho for
always treating me like a part of the family. For Allestina Ho and Winnifer Ho, it is always
fun to hang out with the two of you, and I definitely cannot think of two better persons
to share the wonderful LEJOG experience with.

Finally, I would like to thank my parents, Pui Ming Ann Chan and Shun Wo Cheung,
for their unconditional love and support throughout my entire life. All of these would
not have been possible without them. I dedicate this thesis to them and my two late
grandmothers, whom I will always miss.

This work was supported by an Imperial College President’s PhD Scholarship.

5



6



Abstract

The AdS/CFT correspondence provides a framework which unifies gravity, gauge theory
and geometry. Since its introduction, this remarkable correspondence has provided us
many interesting and yet somewhat surprising results. In this thesis, we have explored
three aspects of the correspondence: (i) Consistent truncations, (ii) Wrapping branes on
spindles, and (iii) Mass deformations of N = 4 SYM.

The first part of this thesis is concerned with consistent truncations associated with
wrapped brane configurations. We present constructions of consistent truncations of D =
11 supergravity and Type IIA supergravity on a 6-dimensional manifold given by S4 twisted
over a Riemann surface, and they are associated with M5- and NS5-branes wrapping over
Riemann surfaces respectively. The resulting theories are both D = 5, N = 4 gauged
supergravity theories coupled to three vector multiplets, but the precise details of the
gauging of the two theories are different.

In the second part of the thesis, we present a novel construction of supersymmetric
AdS3 solutions in D = 11 supergravity, which are associated with wrapping M5-branes
over four-dimensional orbifolds. In one case, the orbifold is a spindle fibred over another
spindle, while in the other, it is a spindle fibred over a Riemann surface. We show that
the central charges of the corresponding d = 2 SCFTs calculated from the supergravity
solutions agree with field theory computations.

In the third part of the thesis, we study mass deformations of N = 4 SYM theory that
are spatially modulated in one spatial direction and preserve some supersymmetry. We
focus on generalisations of N = 1∗ theories and show that it is possible to preserve d = 3
conformal symmetry associated with a co-dimension one interface. Holographic solutions
are constructed using D = 5 gravitational theories which arise from consistent truncations
of SO(6) gauged supergravity. For mass deformations that preserve d = 3 superconformal
symmetry, we construct a rich set of Janus solutions which are supported by spatially
dependent mass sources on either side of the interface. Limiting case of these solutions
gives rise to novel RG interface solutions with N = 4 SYM on one side of the interface and
the Leigh-Strassler SCFT on the other. Another limiting case gives rise to S-fold solutions.
Specifically, we construct new classes of AdS4×S1×S5 solutions of Type IIB string theory
which have non-trivial SL(2,Z) monodromy along the S1 direction.
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Chapter 1

Introduction

1.1 Overview

At the microscopic level, the laws of nature are governed by quantum physics, and in
many cases of interest, the systems are strongly coupled where perturbative approximations
break down completely. Well known examples such as quantum chromodynamics and high-
temperature superconductors are notoriously hard to tackle, mainly due to the lack of a
well understood mathematical framework to study strongly coupled physics. Meanwhile,
string theory, commonly seen as the leading candidate for quantum gravity, provides an
elegant geometric framework to describe quantum field theories, and strikingly, the gravity
aspects of string theory are in fact related to the microscophic features of these strongly
coupled quantum field theories.

One of the most profound developments in the theoretical studies of string theory is the
discovery of the AdS/CFT correspondence. Since its introduction by Maldacena [8], the
AdS/CFT correspondence1 has provided a new paradigm to understand strongly coupled
quantum field theories. This remarkable correspondence, arising from string theory, pro-
vides an exact equivalence between a particular class of quantum field theories — conformal
field theories (CFTs), and theories of gravity in an Anti-de Sitter (AdS) spacetime. More
precisely, the correspondence states that the d-dimensional conformal field theory lives on
the boundary of the corresponding AdSd+1 geometry and is dynamically equivalent to the
dual string/M-theory on the AdSd+1 background. Another astonishing feature is that the
AdS/CFT correspondence is an example of a strong-weak duality. If the field theory is
strongly coupled, the dual gravity theory is weakly curved and can then be approximated
by classical supergravity. For this reason, certain difficult questions within strongly cou-
pled quantum field theories become tractable and can be studied using supergravity theory
techniques.

In its original formulation [8], the correspondence establishes the remarkable equivalence
between the four-dimensional N = 4 Super Yang-Mills (SYM) theory and the AdS5 × S5

geometry of Type IIB string theory. This particular example of holographic duality is
characterised by a high degree of symmetry, which allows highly non-trivial checks of the
conjecture, such as correlation functions of BPS operators. Motivated by the successes
of this correspondence, more AdS/CFT dual pairs have been identified since then, such
as the duality between the three-dimensional superconformal ABJM theory [9] and the

1We will use holographic duality, AdS/CFT correspondence and gauge/gravity correspondence inter-
changeably throughout the thesis.
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AdS4×S7 geometry of M-theory, the duality between some four-dimensional quiver gauge
theories [10] and AdS5 ×SE5 solutions of Type IIB [11] (where SE5 corresponds to a five-
dimensional Sasaki-Einstein manifold), and many more. Though far from fully proven, the
gravity/gauge correspondence continues to provide us new, non-trivial understanding of the
intricate relationship between gravity, gauge theory and geometry, as we shall demonstrate
in this thesis.

Supersymmetry is a framework which describes a set of transformations between bosons
and fermions, extending the Poincaré algebra to a graded Lie algebra, commonly called a
superalgebra. Supersymmetry provides profound insignts into many of the developments
of both physics and mathematics. For example, supersymmetry plays a key role in the
development of phenomenological models in particle physics, supersymmetry is a crucial
ingredient in the formulation of string/supergravity theory, and there is a deep connec-
tion between supersymmetry and geometry. The AdS/CFT correspondence is also best
understood within supersymmetric configurations, such as the aforementioned dual pairs.
In favourable circumstances, field theory observables, such as the free energy, can be com-
puted exactly using the techniques of supersymmetric localization [12], and compared with
the supergravity results to further confirm the validity of the correspondence.

Supersymmetric AdS solutions play a privileged role in the study of the gravity-gauge
correspondence, and inspire the systematic search of supersymmetric solutions of super-
gravity theories (see e.g. [13–17]). One essential feature of any supergravity theory is
that it is invariant under a set of local supersymmetry transformations. For example, the
infinitesimal supersymmetry transformations are schematically given by2

δg ∼ ϵψ , δψ ∼ ∇ϵ+ Flux · ϵ , (1.1)

where g is the metric associated with the graviton, the gravitino ψ is the associated super-
partner of the graviton, and the spinor ϵ denotes the infinitesimal parameter. Throughout
this entire thesis, we are mainly interested in bosonic solutions to the equations of mo-
tion that preserve at least one supersymmetry. These are solutions to the equations of
motion with ψ = 0 which are also invariant under supersymmetry variations, and we
refer to them as supersymmetric solutions. These supersymmetric solutions of supergrav-
ity theories provide important insignts into many of the developments in string theory.
For example, supersymmetric compactifications provide a setting to study particle phe-
nomenology from a string theory perspective, black hole microstates are best understood
for supersymmetric black holes [18,19], and of most importance here, supersymmetric AdS
solutions are crucial tools to understand quantum field theories via the AdS/CFT corre-
spondence. Furthermore, the study of supersymmetric solutions is associated with rich
geometric structures which are of intrinsic interest to both mathematicians and physicists.

In this thesis, we will utilise the AdS/CFT correspondence and various supergravity
theories to demonstrate a number of interesting results. The rest of this introductory
chapter will be devoted to explaining some important background material. We will first
review the original conjecture by Maldacena, followed by a brief discussion on holography.
Then we will move to discuss some basic aspects of consistent truncations. Finally, we will
give a brief outline of the rest of the thesis.

2The precise form depends on the spacetime dimension and the particular theory.
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1.1.1 Maldacena’s conjecture

Many excellent reviews and lecture notes have been written on the topic of gauge/gravity
dualities, see for example [20–24]. In the following, we will provide a brief review of the
famous conjecture by Maldacena.

In its original formulation [8], the AdS/CFT correspondence establishes the remarkable
equivalence between the following theories:

• N = 4 Super Yang-Mills (SYM) theory with gauge group SU(N) and Yang-Mills
coupling gYM

• Type IIB string theory with string length ls =
√
α′ and string coupling gs on the

maximally supersymmetric AdS5×S5 background with radius L and N units of F(5)

RR flux on S5

The parameters of the two theories are related via

g2YM = 2πgs , and 2g2YMN = L4/α′2 . (1.2)

This duality between N = 4 SYM and AdS5 × S5 is a consequence from studying the
dynamics on a stack of N parallel D3-branes in Type IIB string theory.

In the low energy limit, the dynamics of D-branes can be viewed from two different
perspectives: the open string (gsN ≪ 1) and the closed string (gsN ≫ 1) perspectives.
From the open string perspective (gsN ≪ 1), D-branes are higher-dimensional extended
objects where open strings can end on. The dynamics of the open strings are described
by a supersymmetric gauge theory living on the world-volume of the D-branes, while the
closed strings decouple and propagate in the flat background. The gauge fields are open
string excitations parallel to the D-branes, while the excitations transverse to the D-branes
correspond to the scalar fields of the gauge theory. In the special case of D3-branes, the
configuration describes the four-dimensional N = 4 SYM living on the world-volume of the
D3-branes. From the closed string perspective (gsN ≫ 1), D-branes are solitonic objects
of the low energy limit of string theory (i.e. supergravity). Hence we can consider D-
branes as gravitational sources which curve the surrounding spacetime, and closed strings
will propagate in this background. The supergravity solution of a stack of N D3-branes is
given by

ds210 = H−1/2ηµνdx
µdxν +H1/2δijdx

idxj , e2ϕ = g2s ,

F(5) = (1 + ∗10) dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ d
(

1

H

)
,

(1.3)

where µ, ν = 0, . . . , 3 and i, j = 4, . . . , 9, and the warp factor is given by

H = 1 +

(
L

r

)4

, (1.4)

with r2 =
∑

i (x
i)
2
and L4 = 4πgsNα

′2. The above geometry consists of two different
regions, r ≫ L and r ≪ L respectively. For r ≫ L, the warp factor H is approximately
equal to one and hence the metric reduces to the ten-dimensional Minkowski metric. For
r ≪ L, this corresponds to the near-horizon/throat region and the metric becomes

ds210 ≈
L2

z2
(
ηµνdx

µdxν + dz2
)
+ L2ds2S5 = L2ds2AdS5

+ L2ds2S5 , (1.5)
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where we have defined a new coordinate z = L2/r. The string states near the throat region
are highly energetic, which we might have to discard since we are taking the low energy
limit. However, we should recall that the string states measured by an observer at infinity
are of low energy due to the redshift caused by the near-horizon geometry. Therefore, the
observer at infinity see two different low energy propagating modes of closed strings: the
closed strings propagating in the flat spacetime and string excitations in the near-horizon
region (i.e. the AdS5 × S5 spacetime).

To sumarise, the dynamics of open strings give rise to the N = 4 SYM and the de-
coupled closed strings propagate in the flat spacetime in the open string perspective; and
in the closed string perspective, the dynamics of closed strings are described by Type IIB
fluctuations about the flat spacetime and the AdS5 × S5 spacetime respectively. The two
perspectives must be describing the same physics, and the closed string fluctuations in
flat spacetime are common in both descriptions. Therefore, we are left to conclude that
the open string fluctuations described by N = 4 SYM are equivalent to the Type IIB
fluctuations on AdS5 × S5.

1.1.2 Holography

The gravity/gauge correspondence is an exact equivalence between two distinct theories.
This exact equivalence includes a map between operators in the field theory and the spec-
trum of Type IIA/B/M-theory on the corresponding dual geometry. In other words, there
is a precise map/dictionary relating operators O in the quantum field theory and dynam-
ical fields, ϕ, in the bulk theory of gravity. To simplify our discussion in this section, we
will focus on scalar observables but the dictionary can be easily generalized to other types
of fields.

The operators of generic CFT are characterised by their scaling/conformal dimensions
∆, which specify the transformations under dilatation. On the gravity side, we consider a
scalar field with mass m and momentum pµ propagating in the AdS5 spacetime3, and the
Klein-Gordon equation is given by

z5∂z
(
z−3∂zϕp

)
−
(
m2L2 + p2z2

)
ϕp = 0 , (1.6)

where we define p2 = ηµνp
µpν . As z → 0 (near the conformal boundary), the Klein-Gordon

equation is characterised by two independent solutions,

ϕ ∼
( z
L

)4−∆

ϕ(s) +
( z
L

)∆
ϕ(v) + · · · , (1.7)

where ∆ satisfies

∆(∆− 4) = m2L2 , (1.8)

and corresponds to the scaling dimension of the operator O, dual to the bulk field ϕ.
We denote ϕ(s) as the source term which triggers deformation to the theory, meanwhile
schematically ϕ(v) is related to the vacuum expectation value of the operator via

⟨O⟩ ∼ lim
z→0

{( z
L

)−∆

ϕ

}
= ϕ(v) . (1.9)

3The AdS5 metric is provided in (1.5).
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More generally, one would consider to compute the n-point correlation functions, which are
obtained by using generating functionals on the field theory side. Remarkably, the holo-
graphic correspondence proposes the following relation between the field theory generating
functional and the string partition function [25,26]:

⟨e
∫
d4xϕ(s)O⟩ = Zstring

∣∣∣
limz→0

{
( z
L)

∆−4
ϕ
}
=ϕ(s)

∼ eSsugra

∣∣∣
limz→0

{
( z
L)

∆−4
ϕ
}
=ϕ(s)

, (1.10)

which in the low energy limit approximates to the supergravity result. This important
identification hence allows us to calculate correlation functions from a holographic point
of view, by using the on-shell supergravity action Ssugra.

4

In the above, we have provided a schematic description of the holographic dictionary
without specifying the AdS/CFT dual pair. These results, in general, are expected to
hold for any example of interest. In chapter 5, when we discuss mass deformations of
N = 4 SYM, we will provide a more precise field-operator map between N = 4 SYM and
AdS5 × S5.

1.1.3 Consistent truncations

Supergravity theories in 10/11 dimensions are low-energy approximations of string/M-
theory, and the studies of these theories provide invaluable insight into the rich struc-
ture of their high-energy counterparts. However, the direct construction of solutions of
higher-dimensional supergravity theories is a difficult task. A particularly powerful frame-
work that has been developed over the years to tackle this problem is consistent Kaluza–
Klein (KK) reductions (see e.g. [30]). Schematically, these truncations reduce the higher-
dimensional equations of motion to a set of lower-dimensional equations obtainable from
a lower-dimensional supergravity theory, which are easier to solve.

We begin with the original example considered by Kaluza and Klein, which is to perform
a reduction of pure gravity in D = 5 on a circle S1. The procedure starts with expanding
the components of the five-dimensional metric as Fourier series

g
(5)
MN(x, z) =

∑
n

g
(4)
MN(x) e

inz/L , (1.11)

where we denote x to be the coordinates of the lower-dimensional spaetime, z is the co-
ordinate on the circle S1 of radius L. The modes with n ̸= 0 are assoiated with massive
fields, and those with n = 0 are massless. Essentially, this procedure generates an infinite
tower of modes with masses proportional to the inverse of the radius of the circle. The
usual idea behind KK reductions is the assumption that the the radius is very small (i.e
of order the Planck length), such that we can safely discard the massive modes and retain
only the massless modes. This implies that the truncation ansatz is independent of z, and
the next step is to split the five-dimensional metric into four-dimensional fields as follow,

gMN =

(
gµν gµz
gzµ gzz

)
. (1.12)

4We should note that a careful holographic renormalisation procedure is still required to correctly
calculate correlation functions and anomalies (see e.g. [27–29]).
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From the four-dimensional viewpoint, the theory is now comprised of a metric, a gauge-
field and a scalar field. To make sure that the underlying U(1) symmetry is manifest, it is
more convenient to parametrise the line element as

ds25 = eϕ/
√
3ds24 + e−2ϕ/

√
3
(
dz + A(1)

)2
, (1.13)

where ϕ is the dilaton and A(1) = AM(x)dxM is a U(1) gauge field, all defined on the four-
dimensional spacetime. By substituting the above ansatz into the D = 5 Einstein equation,
one would obtain a D = 4 Einstein-Maxwell-Dilaton theory. We highlight that this KK
truncation is “consistent” in the sense that any solution of the four-dimensional theory is
automatically a solution to the five-dimensional theory. The reason for this consistency is
that the massless modes being kept are independent of the circle coordinate z, while all
of the massive modes, which have dependence on z, are set to zero. This is equivalent to
saying that the truncation ansatz incorporates the U(1) symmetry of the circle and hence
is consistent. However, we should emphasise that the consistency of this truncation does
not rely on L being sufficiently small, which one might argue from an effective field theory
perspective that the massive modes decouple because they are very heavy. Following the
same logic, one can carry out a similar Kaluza–Klein truncation of D = 11 supergravity
on S1 to obtain the Type IIA supergravity in D = 10 [31, 32]. The truncation ansatz is
simply given by

ds211 = e−2Φ/3ds210 + e4Φ/3
(
dz + C(1)

)2
,

A(3) = C(3) +B(2) ∧
(
dz + C(1)

)
,

(1.14)

where the ten-dimensional line element ds210, the dilaton Φ, the RR one-form C(1) and the
RR three-form C(3) are all independent of the S1 coordinate z. By substituting the above
ansatz into the D = 11 equations of motion, we would be able to recover the equations of
motion for the ten-dimensional Type IIA supergravity.

From an effective theory perspective, if the compactification admits a separation of
scale, we would be able to truncate the higher-dimensional supergravity theory to a lower-
dimensional effective supergravity theory by discarding modes above the cut-off scale as
illustrated in our earlier example. However, this argument cannot be applied to AdS com-
pactifications as the scales of the external and internal manifolds are closely related (or
to say, there is no natural separation between light and heavy modes in AdS compacti-
fications), and a truncation procedure is therefore required. A consistent truncation is a
procedure to truncate the original higher-dimensional theory to a finite set of fields such
that the dependence of the higher-dimensional fields on the internal manifold factorises
out once the truncation ansatz is substituted into the equations of motion of the original
theory [33]. Here let us consider a toy model5 with the following Lagrangian,

L =
1

2
(∂ϕ)2 +

1

2
(∂λ)2 − 1

2
gλϕ2 − 1

2
m2λ2 , (1.15)

where g is a coupling constant and m is a mass term for scalar field λ. The equations of
motion are hence given by

∂2ϕ = gλϕ , ∂2λ = m2λ+
1

2
gϕ2 . (1.16)

5We are using this example to demonstrate the basic idea of a consistent truncation, but it does not
involve compactifying a theory on an internal manifold.
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It is almost immediate to see that we can always discard the scalar field ϕ (i.e. setting ϕ = 0
and keeping only λ) without causing any inconsistency issue. However, it is not possible to
discard the field λ in the same way because of the presence of the ϕ2 term. One quick way
to see why the truncation with ϕ = 0 is consistent is that it is obtained by keeping only the
singlet under the Z2 symmetry of the original action (1.15). The idea of using a symmetry
group to select the finite set of fields is a crucial step in obtaining consistent truncations,
and throughout this thesis, we will see again and again that consistent truncations rely on
the complex interplay between the symmetries of the theory and the geometrical properties
of the compactification manifold.

There are rich examples of consistent truncations in the literature, such as truncations
ofD = 11 supergravity on S4 and S7 down to the maximally supersymmetric SO(5) gauged
supergravity in D = 7 [34–36] and SO(8) gauged supergravity in D = 4 [37] respectively.
In the case of Type IIB supergravity, there is a consistent truncation on S5 down to the
maximally supersymmetric SO(6) gauged supergravity in D = 5 [38–40]. One shared
feature of these particular examples is that they all admit supersymmetric AdS vacuum
solutions, which can correspondingly be uplifted as solutions to the D = 10/11 theories
(i.e. AdS7×S4, AdS4×S7 and AdS5×S5 which are in fact associated with the near-horizon
limits of M5-, M2- and D3-branes respectively). Consistent truncations are not restricted
to just maximal theories and their associated supersymmetric AdS backgrounds. We can
also consider truncations/theories with reduced supersymmetries. For example, there is a
consistent truncation of Type IIB supergravity on the homogeneous space T 1,1 down to an
N = 4 gauged supergravity in D = 5 [41–43], which admits supersymmetric AdS5 vacuum
solution corresponding to the Klebanov–Witten geometry AdS5×T 1,1 [44]. It is also known
that one can always truncate Type IIB supergravity on SE5 and D = 11 supergravity on
SE7 down to D = 5 and D = 4 minimal gauged supergravity respectively [45], with
supersymmetric vacuum solutions uplift to AdS5 × SE5 and AdS4 × SE7 respectively.

The key message from these known examples is that consistent truncations of super-
gravity theories are strongly related to the existence of supersymmetric AdS backgrounds,
which leads to the conjecture by Gauntlett and Varela in [45], stating that

• “Given an AdSd+1 ×M solution, after carrying out a KK reduction of the higher
dimensional supergravity theory on the internal manifold M , it is always possible to
truncate to a gauged supergravity in d+1 spacetime dimensions for which the fields
are dual to the superconformal current multiplet of the dual SCFT.”

Clearly, this conjecture is consistent with all the examples mentioned above and well extend
to all other known cases. As an example, the maximally supersymmetric AdS5×S5 solution
of Type IIB, which has superisometry algebra SU(2, 2|4), is dual to the N = 4 SYM theory
in d = 4, as discussed earlier. The superconformal current multiplet of the latter theory
includes the energy momentum tensor, SO(6) R-symmetry currents, along with scalars and
fermions. These are dual to the metric, SO(6) gauge fields along with scalar and fermionic
fields, which are precisely the field content of the maximally supersymmetric SO(6) gauged
supergravity in D = 5.

However, we shall emphasise that the existence of supersymmetric AdS backgrounds
is certainly not a requisite for the existence of a consistent truncation. There are of
course consistent truncations which are not tied to AdS backgrounds. For example, one
can truncate Type IIA supergravity on S3 around the linear dilaton background, which
corresponds to the near-horizon limit of NS5-branes, to obtain the D = 7 maximal ISO(4)
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gauged supergravity [36, 46, 47]. Another such example is the electric ISO(7) gauged
supergravity in D = 4 [48–50], which arise from reducing Type IIA supergravity on S6.

As mentioned at the begining, the power of consistent truncations lie in the fact that one
can study the easier lower-dimensional theories and uplift the solutions back to D = 10/11.
As an example, the D = 5 SO(6) gauged supergravity arises from reducing Type IIB
supergravity on S5, and is naturally associated with the D3-branes in Type IIB, which
makes it an ideal theory to studyN = 4 SYM from a holographic perspective. In particular,
understanding RG (renormalization group) flows induced by relevant deformations of N =
4 SYM is an important topic, and holography provides a novel perspective to understand
this difficult problem. For example, in [51], holographic RG flow solutions, which flow
from the N = 4 SYM theory in the UV to the N = 1 “Leigh-Strassler” SCFT [52] in
the IR, were constructed utilizing this SO(6) gauged supergravity, commonly known as
the FGPW solution. The FGPW solution provides a holographic realisation of RG flows
between N = 4 SYM and the N = 1 “Leigh-Strassler” SCFT and agrees with the field
theory result, providing further evidence for the conjectured duality.

Another important class of holographic flow solutions is the so-called Janus interface,
which we will refer to as a co-dimension one, planar, conformal interface that has the
same CFT on either side of the interface. This type of configuration can be studied
holographically [53] using supergravity theories, and rather remarkably, certain limiting
cases of these Janus solutions give rise to non-geometric backgrounds in Type IIB string
theory, which are patched together using the SL(2,Z) symmetry, known as S-folds. In
chapters 5, 6 and 7, we will explore these flow solutions and their connections to N = 4
SYM in greater detail.

Using the same D = 5 SO(6) gauged theory, twisted field theories, arising from wrap-
ping/compactifying D3-branes/N = 4 SYM on a Riemann surface, were studied holograph-
ically in the seminal work of [54]. The construction in [54] is realised by wrapping branes
over a Riemann surface embedded in manifolds of special holonomy. More specifically, the
theory is “topologically twisted” by setting the spin connection on the wrapped cycle to
be equal to the background gauge field associated with the R-symmetry, and hence admits
covariantly constant spinors (i.e. some supersymmetry is preserved). The seminal work
of [54] has since opened up the investigation of across dimensional RG flows from both the
SCFT and the supergravity sides. In a more recent development, starting with [55], novel
solutions describing branes wrapping over a two-dimensional orbifold with quantised deficit
angles at the two poles, also known as a spindle, have been constructed using the tech-
niques of consistent truncations. These new solutions are notable because supersymmetry
is not realised with the aforementioned topological twist. In addition, while the spindle has
orbifold singularities, the uplifted 10/11-dimensional solutions can be completely regular.
In chapter 4, we will return to explore this new type of wrapped brane configuration in
greater detail.

There are clearly more such solutions of D = 10/11 supergravity theories that were/can
be constructed via the method of consistent truncations, and throughout this thesis, we will
see over and over again the power of consistent truncations in the study of the AdS/CFT
correspondence.
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1.2 Outline of thesis

The main chapters of this thesis are organised into three parts: (i) Consistent truncations,
(ii) Wrapping branes on spindles, and (iii) Mass deformations of N = 4 SYM.

The first part of this thesis is concerned with consistent truncations associated with
wrapped brane configurations. Since the seminal work of [54], there are various super-
gravity constructions with branes wrapping supersymmetric cycles in manifolds of special
holonomy. In chapters 2 and 3, we are interested in configurations associated with M5-
branes and NS5-branes wrapping over Riemann surfaces respectively, and we construct the
corresponding consistent truncations to obtain new five-dimensional supergravity theories.
We also show that the M5-brane truncations in chapter 2 are intimately related to the
NS5-brane truncations in chapter 3 via the Inönü-Wigner contraction.

In the second part of the thesis, we will present in chapter 4 a novel construction
of supersymmetric AdS3 solutions in M-theory, which are associated with wrapping M5-
branes over four-dimensional orbifolds. It is important to highlight that the supersymmetry
of these solutions is not realised with the usual topological twist. These new solutions are
holographically dual to d = 2, N = (0, 2) SCFTs, and we show that the central charges of
the d = 2 SCFTs calculated from the gravity solutions agree with field theory computations
using anomaly polynomials and the c-extremization procedure.

In the third part of the thesis, we turn to study mass deformations of N = 4 SYM.
Mass deformations of N = 4 SYM theory that preserve some supersymmetry have been
extensively studied and are associated with interesting features under RG flow. However,
most of these studies consider only the case of homogeneous mass deformations. Our goal is
to explore, within a holographic setting, spatially modulated mass deformations. In chapter
5, we will study mass deformations of N = 4 SYM theory that are spatially modulated
in one of the three spatial dimensions and preserve some supersymmetry. We focus on
generalisations of N = 1∗ theories (i.e. deforming N = 4 SYM by adding mass terms
to the chiral multiplets) and demonstrate that one can preserve 3-dimensional conformal
symmetry associated with a co-dimension one interface. For mass deformations preserving
3-dimensional superconformal symmetry, we will construct a rich set of holographic Janus
interface solutions of N = 4 SYM theory.

In chapter 6, we focus on studying one particularly interesting limiting case of these
solutions, which gives rise to the so-called RG interface solutions. Schematically, an RG
interface separates two distinct conformal field theories CFTUV and CFTIR, with CFTIR

arising as the IR limit from perturbing CFTUV by a relevant operator. By taking appro-
priate limits of the Janus solutions, we construct novel RG interface solutions with N = 4
SYM on one side of the interface and the Leigh-Strassler SCFT on the other. In chapter
7, we will study another limiting case of Janus solutions, which gives rise to the so-called
S-fold solutions. Specifically, we construct infinite new classes of AdS4×S1×S5 solutions of
Type IIB string theory which have non-trivial SL(2,Z) monodromy along the S1 direction.
These solutions are supersymmetric and dual to 3-dimensional N = 1 SCFTs, and arise
as limiting cases of the aforementioned Janus solutions of N = 4 SYM theory which are
supported both by a different value of the coupling constant on either side of the interface,
as well as by mass deformations. Our construction goes beyond the usual linear dilaton
setup, which upon uplift to Type IIB can be compactified along the radial direction via
the SL(2,Z) duality transformation to form S-fold solutions. The key new feature of our
solutions is that the dilaton is now “linear plus periodic” along the radial coordinate, such
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that the metric is no longer invariant under translations in the radial direction, and our
solutions can still be uplifted to Type IIB to form S-fold solutions.

Finally, we conclude this thesis with a few remarks in chapter 8, followed by the ap-
pendices and the bibliography.
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Part II :

Consistent truncations
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Chapter 2

M5-branes wrapped on Riemann
surfaces

2.1 Introduction

The basic AdS/CFT examples arise from studying supergravity solutions describing planar
branes in the “near-horizon limit”. The D = 11 supergravity admits supersymmetric so-
lutions corresponding to N co-incident membranes (M2-branes) and co-incident fivebranes
(M5-branes), and in the near-horizon limit the metrics become AdS4 × S7 and AdS7 × S4

respectively. Similarly, the D = 10 Type IIA and IIB theories admit supersymmetric so-
lution corresponding to N co-incident Dp-branes and NS5-branes, and in the special case
of D3-branes, the metric becomes AdS5 × S5 in the near-horizon limit.

Beyond these well-known planar brane backgrounds, one particularly important class of
supergravity solutions is realised by wrapping branes over compact supersymmetric cycles
in manifolds of special holonomy. In these constructions of wrapped brane solutions, a
dominant paradigm for preserving supersymmetry has been the so-called topological twist.
Schematically, the Killing spinor equation on the worldvolume of a brane wrapped on a
cycle Σ is

(
d+ ω(1) − A(1)

)
ϵ = 0, with ω(1) the spin connection on Σ and A(1) the gauge

field that couples to the R-symmetry current. This equation, in general, does not admit
covariantly constant spinors, in which case supersymmetry is broken. An elegant solution
to this, as pioneered in [56,57], is to set the gauge field to be equal to the spin connection
on the cycle Σ — the “twist”, such that the Killing spinor equation admits covariantly
constant spinors.

From a more geometrical point of view, the spin connection ω(1) encodes the informa-
tion about the tangent bundle to Σ (which we denote as T (Σ)). Meanwhile, the gauge
connection one-form A(1) is coupled to the R-symmetry of the brane’s worldvolume the-
ory and is associated with the structure of the normal bundle to Σ (which we denote as
N(Σ)). Here we use M5-brane as an example, the field theory living on the fivebrane
with world-volume R1,5 ⊂ R1,10 has an internal SO(5) R-symmetry, which comes from
the five flat transverse directions to the fivebrane. Now consider compactifying the R1,5

worldvolume into R1,3 ×Σ2 (i.e. wrapping M5-brane on a two-cycle Σ2). If we decompose
SO(5) → SO(2)×SO(3) and choose the SO(2) gauge-fields to be equal to the SO(2) spin
connection on Σ2, then again we can have covariantly constant spinors on Σ2 preserving
supersymmetry. Geometrically, the identification of the SO(2) ⊂ SO(5) gauge fields with
the spin connection on Σ2 corresponds to the structure of the normal bundle of a Kähler
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2-cycle. The total space M4, where the 2-cycle Σ2 is embedded inside, is a non-compact
Calabi-Yau two-fold, since adding up the first chern class of T (Σ2) with the first chern
class of N(Σ2) gives the first chern class of M4 which is vanishing due to topological twist.
We highlight that the total space must be non-compact, such that the dual field theory
living on these wrapped brane configurations decouples from gravity. It should also be em-
phasised that we are not restricted to just wrapping branes over cycles inside Calabi-Yau
manifolds. Branes wrapping calibrated cycles in different special holonomy manifolds have
been studied, and for a comprehensive review, see [58].

These wrapped brane configurations can be well described within the AdS/CFT cor-
respondence. The corresponding supergravity solutions have on one side an asymptotic
boundary of the form AdSd+1 ×M , where M is a compact internal manifold, which de-
scribes the dual SCFT in the UV. On the other side, they have near-horizon geometries
of the schematic form AdSd+1 × Σ ×M , which describe the SCFTs in the IR obtained
by compactifying the UV SCFT on Σ with a topological twist. These solutions provide a
holographic realisation of RG flows interpolating between non-trivial UV and IR SCFTs,
and hence lead to important insights into the structure of strongly coupled SCFTs.

Since the seminal work of [54], there are various supergravity constructions which are
associated with M2/M5/Dp/NS5-branes wrapping supersymmetric cycles in manifolds of
special holonomy [59–74]. Here in this chapter, we are interested in the half maximally
supersymmetric Maldacena-Núñez AdS5×H2/Γ×S4 solution [54], whereH2/Γ is a compact
Riemann surface with genus greater than one, and the solution is holographically dual to
N = 2 SCFT in four-dimensional spacetime. The S4 factor is non-trivially fibred over the
H2/Γ factor and the solution describes the near-horizon limit of M5-branes wrapping over
an H2/Γ factor, embedded inside a Calabi-Yau two-fold. Alternatively, the dual d = 4,
N = 2 SCFT can be obtained by starting with the d = 6, N = (0, 2) SCFT, which is
holographically dual to the maximally supersymmetric AdS7 × S4 solution, compactifying
on H2/Γ with a topological twist in order to preserve d = 4, N = 2 supersymmetry and
then flowing to the IR.

Associated with this supersymmetric solution, one should be able to compactify D = 11
supergravity on H2/Γ×S4 and truncate to the half-maximal Romans’ SU(2)×U(1) gauged
supergravity in D = 5. In fact, this result, at the level of the bosonic fields, was already ob-
tained in [75]. Here in this chapter, we will show that one can fully extend this truncation
to a D = 5, N = 4 gauged supergravity coupled to three vector multiplets. We will carry
out the consistent Kaluza–Klein (KK) truncation from D = 11, first by reducing on S4 to
D = 7 maximal gauged supergravity and then further reducing on the H2/Γ factor. The
resulting D = 5 gauged supergravity contains the RG flow solution described above, which
was first constructed in [54] and is associated with the N = (0, 2) SCFT in d = 6 compact-
ified on H2/Γ and flowing to an N = 2 SCFT in d = 4. Furthermore, we show that one
can also carry out a similar consistent KK truncation of D = 11 supergravity on Σ2 × S4,
where Σ2 = S2,R2 (or a quotient thereof). For these cases, there is not a corresponding
supersymmetric AdS5 vacuum solution, which is certainly not a requisite for the existence
of a consistent KK truncation, but the truncations still have a natural holographic inter-
pretation. Indeed they incorporate the RG flows associated with compactifying the d = 6,
N = (0, 2) SCFT on S2 or R2, with a topological twist which preserves d = 4, N = 2
supersymmetry, and then flowing to the IR [54]. Unlike the H2 case, these theories do not
flow to SCFTs in the IR.

More specifically, we will show that the consistent KK truncation of D = 11 supergrav-
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ity on Σ2 ×S4 leads to an D = 5, N = 4 gauged supergravity with three vector multiplets
and the gauging lying in an SO(2)×SE(3) ⊂ SO(5, 3) subgroup of the SO(1, 1)×SO(5, 3)
global symmetry group of the ungauged theory. One motivation for our work came from
the consideration that the resulting N = 4 gauged supergravity could have additional su-
persymmetric AdS5 vacua and corresponding flows between them. Indeed, such scenarios
in N = 4 gauged supergravity were studied from a bottom up perspective in [76] and thus
it is of great interest to investigate which of these scenarios can be realised in a top down
setting. Using the results of [76], we will show that the only half maximally supersymmet-
ric AdS5 vacuum solution of the D = 5, N = 4 gauged supergravity theory that we obtain
is the one which uplifts to the AdS5 ×H2/Γ×S4 solution of [54]. We find that the D = 5,
N = 4 theory admits two non-supersymmetric AdS5×S2×S4 solutions, one of which was
first found in [77], while the other one is new. However, both of them have scalar modes
which violate the BF bound and hence are unstable.

The plan of the rest of the chapter is as follows. In section 2.2, we briefly review the
D = 7 maximal gauged supergravity and how any bosonic solution can be uplifted to
D = 11. In section 2.3, we discuss the consistent KK truncation of D = 7 maximal gauged
supergravity on Σ2 and in section 2.4 we show, at the level of the bosonic fields, that the
resulting D = 5 theory indeed exhibits N = 4 supersymmetry. Section 2.5 discusses some
subtruncations and section 2.6 discusses some solutions, including the new and unstable
AdS5 × S2 × S4 solution. We conclude with a few remarks in section 2.7 and collect some
useful results in the appendices.

2.2 D = 7 maximal SO(5) gauged supergravity

The D = 7 maximal SO(5) gauged supergravity has 32 real supercharges. The bosonic
field content of the theory is comprised of a metric, SO(5) Yang-Mills gauge fields Aij(1),

i, j = 1, . . . , 5 transforming in the 10 of SO(5), three-forms Si(3) transforming in the 5

of SO(5), and fourteen scalar fields given by a symmetric unimodular matrix T ij that
parametrises the coset SL(5,R)/SO(5). Following the notations of [36], the Lagrangian
for the bosonic fields is given by

L(7) = Rvol7 −
1

4
T−1
ij ∗DTjk ∧ T−1

kl DTli −
1

4
T−1
ik T

−1
jl ∗F ij

(2) ∧ F kl
(2) −

1

2
Tij ∗Si(3) ∧ Sj(3)

+
1

2g
Si(3) ∧DSi(3) −

1

8g
ϵij1j2j3j4 S

i
(3) ∧ F j1j2

(2) ∧ F j3j4
(2) +

1

g
Ω(7) − V vol7 ,

(2.1)

with covariant derivatives

DTij ≡ dTij + gAik(1)Tkj + gAjk(1)Tik ,

DSi(3) ≡ dSi(3) + gAij(1) ∧ S
j
(3) ,

F ij
(2) ≡ dAij(1) + gAik(1) ∧ Akj(1) ,

(2.2)

where g is the coupling constant. The scalar potential is given by

V =
1

2
g2
(
2Tr(T 2)− (TrT )2

)
, (2.3)
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and Ω(7) denotes the Chern-Simons terms for the Yang-Mills fields, which has the property

that its variation with respect to Aij(1) gives

δΩ(7) =
3

4
δj1j2j3j4i1i2kl

F i1i2
(2) ∧ F j1j2

(2) ∧ F j3j4
(2) ∧ δAkl(1) . (2.4)

An explicit expression of Ω(7) can be found in [78].
Any solution to the D = 7 maximal SO(5) gauged theory lifts to a solution of D = 11

supergravity, and the uplift formulae are provided in [34–36]. Following the notations
of [36], the D = 11 metric and the four-form field strength are given by

ds211 = ∆1/3ds27 +
1

g2
∆−2/3T−1

ij Dµ
iDµj , (2.5)

and

F(4) =
1

4!
ϵi1···i5

[
− 1

g3
U∆−2µi1Dµi2 ∧ · · · ∧Dµi5 + 6

g2
∆−1F i1i2

(2) ∧Dµi3 ∧Dµi4T i5jµj

+
4

g3
∆−2 T i1mDT i2nµmµn ∧Dµi3 ∧Dµi4 ∧Dµi5

]
− Tij∗7Si(3)µj +

1

g
Si(3) ∧Dµi ,

(2.6)

with its eleven-dimensional Hodge dual given by

∗F(4) = −gUϵ(7) −
1

g
T−1
ij ∗7DT ikµk ∧Dµj +

1

2g2
T−1
ik T

−1
jl ∗7F ij

(2) ∧Dµk ∧Dµl

+
1

g4
∆−1TijS

i
(3)µ

j ∧W(4) −
1

6g3
∆−1ϵijl1l2l3∗7Sm(3)TimTjkµk ∧Dµl1 ∧Dµl2 ∧Dµl3 ,

(2.7)

where µi are the embedding coordinates on S4 satisfying µiµi = 1, and

∆ = Tijµ
iµj , Dµi = dµi + gAij(1)µ

j , U = 2TijTjkµ
iµk −∆Tii . (2.8)

The AdS7 vacuum solution with Aij(1) = Si(3) = 0 and Tij = δij preserves all of the thirty-

two real supercharges and uplifts to the maximally supersymmetric AdS7 × S4 solution,
which describes the near-horizon limit of a stack of M5-branes. In the seminal work of [54],
two different supersymmetric AdS5 ×H2 were constructed which uplift to AdS5 ×H2 ×S4

solutions in D = 11, with a warped product metric and the S4 non-trivially fibred over
the H2 space. The fibration structure are different in the two solutions of [54] and they
either preserve 16 or 8 real supercharges (i.e. 1/2-BPS or 1/4-BPS). In both cases, the H2

factor can be replaced with an arbitrary quotient H2/Γ, while preserving supersymmetry,
and the case we are interested in is when Γ is a Fuchsian subgroup such that H2/Γ is is a
compact Riemann surface with genus greater than one. These solutions are dual to N = 2
or N = 1 superconformal field theories in four-dimensional spactime respectively, which
arise from wrapping the M5-branes on a Riemann surface that is embedded in a Calabi–
Yau two-fold or three-fold respectively. In this chapter, it is the 1/2-BPS solution that is
of interest. Specifically, we will use the fibration structure of this 1/2-BPS solution, which
incorporates the topological twist condition, to construct a consistent KK truncation of
D = 7 maximal gauged supergravity on H2 as well as on S2 and R2. We note that it is only
in the H2 case that the resulting D = 5 theory admits a supersymmetric AdS5 vacuum
solution, which corresponds to the 1/2-BPS solution in [54]. For the S2 case, there are two
non-supersymmetric AdS5 solutions which we will discuss in section 2.6.
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2.3 Consistent truncation

2.3.1 Truncation ansatz

The ansatz for the D = 7 metric is given by

ds27 = e−4ϕds25 + e6ϕds2(Σ2) , (2.9)

where ϕ is a scalar field defined on the five-dimensional spacetime. We introduce an
orthonormal frame for the two-dimensional metric, which we denote ds2(Σ2) = ēaēa, sat-
isfying the torsion-free condition dēa + ω̄ab ∧ ēb = 0, with a, b = 1, 2. We normalise this
metric such that R

(2)
ab = lg2δab, with l = 1, 0,−1 for Σ2 = S2,R2 or H2 respectively. We

also denote vol(Σ2) = ē1∧ ē2. The next step is to decompose the D = 7 SO(5) gauge fields
via SO(5) → SO(2)× SO(3) and write

Aab(1) =
1

g
ω̄ab + ϵabA(1) ,

Aaα(1) = −Aαa(1) = ψ1αēa − ψ2αϵabēb ,

Aαβ(1) = Aαβ(1) ,

(2.10)

with a, b = 1, 2 and α, β = 3, 4, 5. Crucially, this truncation ansatz incorporates the
spin connection ω̄ab of Σ2 in the expression for Aab which allows one to study M5-branes
wrapping Riemann surfaces with the so-called “topological twist”, such that d = 4, N = 2
supersymmetry is preserved on the non-compact part of the M5-brane worldvolume. The
ansatz (2.10) introduces an SO(2) one-form A(1), SO(3) one-forms Aαβ(1) transforming in

the (1,3) of SO(2)× SO(3), and six scalar fields ψaα ≡ (ψ1α, ψ2α), transforming as (2,3),
all defined on the five-dimensional spacetime. For the scalar fields, we take

T ab = e−6λδab , T aα = 0 , Tαβ = e4λT αβ . (2.11)

The decomposition of the original scalar coset SL(5)/SO(5) introduces a D = 5 scalar
field λ as well as another five scalar fields in the symmetric, unimodular matrix T αβ

parametrising the coset SL(3)/SO(3). The D = 7 three-forms are taken to be

Sa(3) = K1
(2) ∧ ēa − ϵabK2

(2) ∧ ēb ,
Sα(3) = hα(3) + χα(1) ∧ vol(Σ2) ,

(2.12)

giving rise to an SO(2) doublet of two-forms Ka
(2) ≡ (K1

(2), K
2
(2)) transforming as (2,1), a

triplet of three-forms hα(3) transforming as (1,3) and a triplet of one-forms χα(1) transforming

as (1,3), all defined on the five-dimensional spacetime. Finally, for later convenience in this
chapter, the indices on the D = 5 fields, instead of taking the indices α, β, γ, . . . ∈ {3, 4, 5},
will take

α, β, γ, . . . ∈ {1, 2, 3} . (2.13)

We can substitute this ansatz into the D = 7 equations of motion of the maximal
theory to carry out the truncation. After some tedious calculation, we have shown that
they are equivalent to a set of D = 5 unconstrained equations of motion, which establishes
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that the consistency of our KK truncation. Some details of this calculation are presented
in appendix A and the final D = 5 equations of motion are provided in (A.10)-(A.11) and
(A.14)-(A.20). Moreover, these D = 5 equations of motion can be derived systematically
from a five-form Lagrangian given by

L = Rvol5 + Lkin + Lpot + Ltop , (2.14)

where R is the Ricci scalar of the D = 5 metric and the remaining kinetic energy terms
are

Lkin =− 30∗dϕ ∧ dϕ− 30∗dλ ∧ dλ− 1

4
T −1
αβ T −1

γρ ∗DTβγ ∧DTρα

− 1

2
e12λ+4ϕ∗F(2) ∧ F(2) − e−6λ−2ϕ∗Ka

(2) ∧Ka
(2)

− 1

4
e−8λ+4ϕT −1

αβ T −1
γρ ∗Fαγ

(2) ∧ F
βρ
(2) − e2λ−6ϕT −1

αβ ∗Dψaα ∧Dψaβ

− 1

2
e4λ−12ϕTαβ∗χα(1) ∧ χβ(1) −

1

2
e4λ+8ϕTαβ∗hα(3) ∧ hβ(3) .

(2.15)

The potential terms are

Lpot = g2{ − 1

2
e12λ−16ϕ(l − ψ2)2 − e−8λ−16ϕϵabϵcd(ψaT −1ψc)(ψbT −1ψd)

+ e−10ϕ
(
2(l + ψ2)− e10λ(ψT ψ)− e−10λ(ψT −1ψ)

)
+

1

2
e−4ϕ

(
e8λ(TrT )2 − 2e8λTr(T 2) + 4e−2λTrT

)
}vol5 ,

(2.16)

where ψ2 ≡ ψaαψaα and the topological term is given by

Ltop = 1

g
ϵabKa

(2) ∧
(
DKb

(2) − gψbαhα(3)
)
+

1

g
ϵαβγK

a
(2) ∧Dψaγ ∧ Fαβ

(2)

+
1

2g
hα(3) ∧

(
Dχα(1) + 2gϵabψaαKb

(2)

)
+

1

2g
χα(1) ∧Dhα(3)

− 1

2
ϵαβγ(l − ψ2)hα(3) ∧ F βγ

(2) − ϵαβγ(ϵ
abψaβψbγ)hα(3) ∧ F(2)

− 1

2g
ϵαβγχ

α
(1) ∧ F βγ

(2) ∧ F(2) −
1

g
ϵαβγh

α
(3) ∧Dψaβ ∧Dψaγ

+
1

g
(ψaαDψaβ) ∧ Fαβ

(2) ∧ F(2) +
1

2g
(ϵabψaγDψbγ) ∧ Fαβ

(2) ∧ F
αβ
(2)

+
1

2
l Fαβ

(2) ∧ F
αβ
(2) ∧ A(1) −

1

g
(ϵabψaαDψbβ) ∧ Fαγ

(2) ∧ F
βγ
(2) .

(2.17)

In all of our expressions, we have used the following definitions of field strengths and
covariant derivatives:

F(2) ≡ dA(1) , Fαβ
(2) ≡ dAαβ(1) + gAαγ(1) ∧ A

γβ
(1) , Dχα(1) ≡ dχα(1) + gAαβ(1) ∧ χ

β
(1) ,

Dψaα ≡ dψaα + gAαβ(1)ψ
aβ + gA(1)ϵ

abψbα , DTαβ ≡ dTαβ + gAαγ(1)Tγβ + gAβγ(1)Tαγ ,
DKa

(2) ≡ dKa
(2) + gϵabA(1) ∧Kb

(2) , Dhα(3) ≡ dhα(3) + gAαβ(1) ∧ h
β
(3) .

(2.18)
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2.3.2 Field redefinitions

In order to make contact with the canonical language of D = 5, N = 4 supergravity, it is
both necessary and convenient to make a number of field redefinitions. We first define

Aαβ(1) = ϵαβγA
γ
(1) , (2.19)

with the field strength for Aα(1) given by Fα
(2) ≡ dAα(1) −

1

2
gϵαβγA

β
(1) ∧ Aγ(1). We next re-

place the one-form χα(1) with a one-form A α
(1) and three Stueckelberg scalar fields ξα, both

transforming under SO(3) in the fundamental representation, via

χα(1) =Dξα + gA α
(1) + ϵαβγψ

aβDψaγ , (2.20)

with Dξα ≡ dξα − gϵαβγA
β
(1)ξ

γ. Furthermore, the field redefinition introduces a new gauge

invariance, with non-compact group, in which δξα = Λα(x) and δA α
(1) = −g−1DΛα, leaving

χα(1) invariant. This could be used to eliminate the scalar fields ξα if desired. If we substitute

this into the equation of motion (A.11), we obtain

∗hα(3) = e−4λ−8ϕT −1
αβ

(
Gβ

(2) + 2ϵabψ
aβKb

(2) +
(
ϵβγρξ

γ + ψaβψaρ
)
F ρ
(2)

)
, (2.21)

where we have defined the two-form

Gα
(2) ≡ DA α

(1) − lFα
(2) , (2.22)

with DA α
(1) ≡ dA α

(1) − gϵαβγA
β
(1) ∧ A γ

(1). We note that this expression/redefinition for hα(3)
is invariant under the new non-compact gauging just mentioned. In order to facilitate the
identification with D = 5, N = 4 gauged supergravity, it is useful to notice that we can
write

Gα
(2) = d(A α

(1) − lAα(1))− gϵαβγA
β ∧ (A γ

(1) − lAγ(1))−
gl

2
ϵαβγA

β
(1) ∧ A

γ
(1) . (2.23)

We also redefine the two-forms Ka
(2) via

Ka
(2) =− 1√

2
ϵabL

b
(2) + ϵabψ

bαFα
(2) , (2.24)

and finally we redefine the two scalar fields ϕ, λ via

φ3 = 3ϕ− λ , Σ = e−(ϕ+3λ) . (2.25)

With these field redefinitions, we find that the D = 5 equations of motion given in
(A.10)-(A.11) and (A.14)-(A.20) can be obtained from the following Lagrangian

L =Rvol5 + LS + Lpot + LV + LT , (2.26)

with the scalar kinetic terms given by

LS =− 3Σ−2∗dΣ ∧ dΣ− 3∗dφ3 ∧ dφ3 −
1

4
T −1
αβ T −1

γρ ∗DTβγ ∧DTρα

− e−2φ3T −1
αβ ∗Dψaα ∧Dψaβ − 1

2
e−4φ3Tαβ∗χα(1) ∧ χβ(1) ,

(2.27)
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with χα(1) now given by (2.20). The potential terms for the scalar fields are the same as in

(2.16) and can be written in terms of the new fields as

Lpot = g2{Σ4
(
−e−4φ3ϵabϵcd(ψaT −1ψc)(ψbT −1ψd)− e−2φ3(ψT −1ψ)

)
+ Σ−2

(
−1

2
e−6φ3(l − ψ2)2 − e−4φ3(ψT ψ) + e−2φ3 [

1

2
(TrT )2 − Tr(T 2)]

)
+ 2Σ

(
e−3φ3(l + ψ2) + e−φ3TrT

)
}vol5 ,

(2.28)

and we note that the scalar potential is independent of the scalar fields ξα. The kinetic
terms for the vectors are given by

LV = −1

2
Σ−4∗F(2) ∧ F(2)

− 1

2
Σ2{e−2φ3T −1

αβ ∗Gα
(2) ∧Gβ

(2) + 2
√
2e−2φ3T −1

αβ ψ
aβ∗Gα

(2) ∧ La(2)
− 2e−2φ3T −1

αβ

(
ϵβγρξ

ρ + ψaβψaγ
)
∗Gα

(2) ∧ F γ
(2)

− 2
√
2
(
e−2φ3ψaβT −1

βγ (ϵγαρξ
ρ + ψaγψaα) + ψaα

)
∗La(2) ∧ Fα

(2)

+
(
e2φ3Tαβ + 2ψaαψaβ + e−2φ3 (ϵγαηξ

η + ψaγψaα) T −1
γρ

(
ϵρβτξ

τ + ψbρψbβ
))

∗Fα
(2) ∧ F β

(2)

+
(
2e−2φ3ψaαT −1

αβ ψ
bβ + δab

)
∗La(2) ∧ Lb(2)} . (2.29)

Finally, the topological terms are simplified to just

LT =
1

2g
ϵabL

a
(2) ∧DLb(2) −Gα

(2) ∧ Fα
(2) ∧ A(1) . (2.30)

2.4 Supersymmetry

2.4.1 D = 5, N = 4 gauged supergravity

In this section, we will first provide a summary of the general structure of N = 4 gauged
supergravity in D = 5, coupled to n = 3 vector multiplets, and we follow mostly the
conventions of [79] (which generalised the results in [80]).

The ungauged theory [81] has a global symmetry group given by SO(1, 1)×SO(5, n =
3). The bosonic field content consists of a metric, 6 + n = 9 Abelian vector fields and
1 + 5n = 16 scalar fields. The nine vector fields can be written as A0

(1) and AM
(1), with

M = 1, . . . , 8, which transform as a scalar and vector with respect to SO(5, 3), respectively.
The scalar manifold is given by SO(1, 1)×SO(5, 3)/(SO(5)×SO(3)), with the SO(1, 1) part
described by a real scalar field Σ, while we parametrise the coset SO(5, 3)/(SO(5)×SO(3))
by the 8× 8 matrix VAM . The matrix VAM is an element of SO(5, 3) satisfying

VTηV = η , (2.31)

where η is the invariant metric tensor of SO(5, 3). Global SO(5, 3) transformations act on
the right, while the local compensating SO(5)× SO(3) transformations act on the left via

V → h(x)Vg , g ∈ SO(5, 3) , h ∈ SO(5)× SO(3) . (2.32)
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The coset can also be parametrised by a symmetric positive definite matrix MMN defined
by

MMN = (VTV)MN , (2.33)

with MMN an element of SO(5, 3). We can raise indices using η and in particular the
inverse, which we denote by MMN , is given by

MMN ≡ ηMPηNQMPQ =
(
M−1

)MN
. (2.34)

In the following, we work in a basis in which η is not diagonal, but instead given by

η =

 0 0 13

0 −12 0
13 0 0

 . (2.35)

In order to work in a basis in which η is diagonal with the first five entries equal to −1 and
the last three entries equal to +1, as in [79], we can perform a similarity transformation
using the following matrix

U =

−U 0 U
0 12 0
U 0 U

 , with U =
1√
2

0 0 1
0 1 0
1 0 0

 , (2.36)

which satisfies U = UT = U−1 and detU = 1. In the expression for the scalar potential in
the gauged theory, given below, we will need the following antisymmetric tensor

MM1...M5 ≡ ϵm1...m5(U · V)m1
M1 . . . (U · V)m5

M5 , (2.37)

with the indices m1, . . . ,m5 running from 1 to 5.
The general D = 5, N = 4 gauged theory [79] is specified by a set of embedding tensors

fMNP = f[MNP ], ξMN = ξ[MN ] and ξM . These specify the gauge group in SO(1, 1) ×
SO(5, 3) and assign specific vector fields to the generators of the gauge group. The covariant
derivative is given by1

Dµ = ∇µ −
1

2
g
(
AM

(1)µf
NP

M tNP +A0
(1)µξ

NP tNP +AM
(1)µξ

N tMN +AM
(1)µξM t0

)
, (2.38)

where tMN = t[MN ] are the generators for SO(5, 3), t0 is the generator for SO(1, 1), we have
again raised indices using η and ∇µ is the Levi-Civita connection. To ensure closure of the
gauge algebra, the embedding tensors must satisfy the following algebraic constraints

3fR[MNfPQ]
R = 2f[MNP ξQ] , ξM

QfQNP = ξMξNP − ξ[NξP ]M ,

ξMξ
M = 0 , ξMNξ

N = 0 , fMNP ξ
P = 0 .

(2.39)

Associated with the vector fields A0
(1) and AM

(1), we need to introduce two-form gauge
fields B(2)0 and B(2)M . In the ungauged theory, these appear on-shell as the Hodge duals of
the fields strengths of the vectors. In the gauged theory the two-forms are introduced as

1Here the terms involving the generators differ by a factor two with the analogous expression in [79].
However, the explicit expression for the generators that we use in (2.50) below, also differ by a factor of
two implying that our covariant derivative is the same as [79].
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off-shell degrees of freedom, but the equations of motion ensure that the suitably defined
covariant field strengths are still Hodge dual. In particular, the two-forms appear in the
covariant field strengths for the vector fields, H0

(2) and HM
(2), via

HM
(2) = dAM

(1) −
1

2
gfNP

MAN
(1) ∧ AP

(1) −
1

2
gξP

MA0
(1) ∧ AP

(1) +
1

2
gξPAM

(1) ∧ AP
(1)

+
1

2
gξMNB(2)N − 1

2
gξMB(2)0 ,

H0
(2) = dA0

(1) +
1

2
gξMAM

(1) ∧ A0
(1) +

1

2
gξMB(2)M .

(2.40)

The equations of motion are invariant under gauge transformations, with spacetime de-
pendent parameters (Λ0,ΛM). In addition there are gauge transformations parametrised
by the spacetime dependent one-forms (Ξ(1)0,Ξ(1)M) that just act on the one-forms and
two-forms. In particular, acting on these fields we have

δAM
(1) = DΛM − 1

2
gξMNΞ(1)N +

1

2
gξMΞ(1)0 ,

δA0
(1) = DΛ0 − 1

2
gξMΞ(1)M ,

δB(2)M = DΞ(1)M − 2H0
(2)ΛM − 2H(2)MΛ0 ,

δB(2)0 = DΞ(1)0 − 2H(2)MΛM .

(2.41)

Using the canonical N = 4 language of [79] 2, the Lagrangian for the bosonic sector of
the theory can be written as

LN=4 = R vol5 + LSN=4 + LpotN=4 + LVN=4 + LTN=4 . (2.42)

The scalar kinetic energy terms are given by

LSN=4 = −3Σ−2∗dΣ ∧ dΣ +
1

8
∗DMMN ∧DMMN , (2.43)

and the scalar potential is given by

LpotN=4 =− 1

2
g2
{
fMNPfQRSΣ

−2

(
1

12
MMQMNRMPS − 1

4
MMQηNRηPS +

1

6
ηMQηNRηPS

)
+
1

4
ξMNξPQΣ

4(MMPMNQ − ηMPηNQ) + ξMξNΣ
−2MMN

+
1

3

√
2fMNP ξQRΣMMNPQR

}
vol5 . (2.44)

The kinetic terms for the vectors, which also involve two-form contributions via (2.40), are
given by

LVN=4 = −Σ−4∗H0
(2) ∧H0

(2) − Σ2MMN∗HM
(2) ∧HN

(2) . (2.45)

In order to present the topological part of the Lagrangian in (2.42), it is convenient to in-
troduce the calligraphic index M = (0,M) which allows us to group the 9 vector fields and

2Note that we have multiplied the Lagrangian in [79] by a factor of two.
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9 two-forms into the AM
(1) and B(2)M, each transforming in the fundamental representation

of SO(1, 1)× SO(5, 3). In the conventions of this paper,3 we have

LTN=4 =− 1√
2
gZMNBM ∧DBN −

√
2gZMNBM ∧ dNPQAP ∧ dAQ

−
√
2

3
g2ZMNBM ∧ dNPQAP ∧X Q

RS AR ∧ AS +

√
2

3
dMNPAM ∧ dAN ∧ dAP

+
1

2
√
2
gdMNPX

M
QR AN ∧ AQ ∧ AR ∧ dAP

+
1

10
√
2
g2dMNPX

M
QR X P

ST AN ∧ AQ ∧ AR ∧ AS ∧ AT . (2.46)

Here the symmetric tensor dMNP = d(MNP) has non-zero components

d0MN = dM0N = dMN0 = ηMN , (2.47)

the antisymmetric tensor ZMN = Z [MN ] has components

ZMN =
1

2
ξMN , Z0M = −ZM0 =

1

2
ξM , (2.48)

and the only non-zero components of XMN
P are given by

XMN
P = −fMN

P − 1

2
ηMNξ

P + δP[MξN ] , XM0
0 = ξM , X0M

N = −ξMN . (2.49)

2.4.2 Scalar manifold

We take the generators of SO(5, 3) to be given by the 8× 8 matrices4

(tMN)
A
B = δAMηBN − δANηMB , (2.50)

with invariant metric tensor η, non-diagonal, as given in (2.35). In order to parametrise the
coset SO(5, 3)/(SO(5)×SO(3)), we exponentiate a solvable subalgebra of the Lie algebra.
Following [82], the three non-compact Cartan generators H i and the twelve positive root
generators are given by5

H1 =
√
2t16 , H2 =

√
2t27 , H3 =

√
2t38 ,

T 1 = −t26 , T 2 = −t36 , T 3 = −t37 , T 4 = t12 , T 5 = t13 , T 6 = t23 ,

T 7 = −t14 , T 8 = −t24 , T 9 = −t34 , T 10 = −t15 , T 11 = −t25 , T 12 = −t35 .
(2.51)

We note that Tr(T i(T j)T ) = 2δij and Tr(HmHn) = 4δmn with Hm = (Hm)T .

3In an orthonormal frame, we take ϵ01234 = +1 so that ϵ = vol5. We assume that [79] have taken
ϵ01234 = −1 and then the expression for the topological term given here agrees with that in [79] up to an
overall factor of 2.

4Note that this differs by a factor of two compared with [79] as mentioned in footnote 1.
5To compare with (3.31) of [82] we should make the identifications (T 1, T 2, T 3) = (E1

2, E1
3, E2

3),
(T 4, T 5, T 6) = (V 12, V 13, V 23), (T 7, T 8, T 9) = (U1

1 , U
2
1 , U

3
1 ) and (T 10, T 11, T 12) = (U1

2 , U
2
2 , U

3
2 ).
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To make contact with the scalar fields in the reduced D = 5 theory, we first need an
explicit embedding of the coset SL(3)/SO(3) inside SO(5, 3)/(SO(5)× SO(3)). This can
be achieved by defining

H 1 = H2 −H1 , H 2 = H3 −H2 , E1 = T 1 , E2 = T 3 , E3 = T 2 , (2.52)

as well as H 3 = −(H1+H2+H3) which commutes with all five of the generators in (2.52).
By introducing six scalar fields φi and ai, we can consider the coset element

V(S) = e
1√
2
φ⃗·H⃗

ea1E
1

ea2E
2

ea3E
3

,

=

 e−φ3V −T 0 0
0 12×2 0
0 0 eφ3V

 ,
(2.53)

where the 3× 3 matrix V parametrises the coset SL(3)/SO(3) in a standard upper trian-
gular gauge (see appendix A.5):

V =

 eφ1 eφ1a1 eφ1 (a1a2 + a3)
0 eφ2−φ1 eφ2−φ1a2
0 0 e−φ2

 . (2.54)

Moreover, we can identify the scalar fields in the 3× 3 matrix T αβ in the reduced theory
via

T αβ = (V TV )αβ . (2.55)

As already anticipated in (2.25), we next note that the scalar field Σ, that parametrises
SO(1, 1) in the N = 4 theory and the scalar field φ3 can be identified with the scalar fields
ϕ, λ in the reduced theory via

φ3 = 3ϕ− λ , Σ = e−(ϕ+3λ) . (2.56)

Now we define the coset element, V , which parametrises SO(5, 3)/(SO(5) × SO(3)) and
includes the remaining scalar fields ξα and ψaα via

V =V(S)e
(ξ3−ψa1ψa2)T 4

e−(ξ2+ψa3ψa1)T 5

e(ξ
1−ψa2ψa3)T 6

· e
√
2ψ11T 7

e
√
2ψ12T 8

e
√
2ψ13T 9

e
√
2ψ21T 10

e
√
2ψ22T 11

e
√
2ψ23T 12

.
(2.57)

2.4.3 The embedding tensor

We claim that the reduced D = 5 theory is an N = 4 gauged supergravity with gauge
group SO(2)×SE(3) ⊂ SO(5, 3), where SE(3) is the three-dimensional special Euclidean
group. The compact SO(2)× SO(3) subgroup is generated by

g0 = t45 , g1 = t37 − t28 , g2 = −(t36 − t18) , g3 = t26 − t17 , (2.58)

with [gα, gβ] = ϵαβγgγ, and the additional non-compact generators in SE(3) are given by

g4 = t23 , g5 = −t13 , g6 = t12 . (2.59)
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The components of the embedding tensor are specified by6

ξM = 0 , ξ45 = −
√
2 ,

f187 = f268 = f376 =
√
2 , f678 = l

√
2 ,

(2.60)

along with the fact that fMNP = f[MNP ], ξ
NP = ξ[NP ] and the remaining components are

all zero. With this specific embedding tensor, we can identify the remaining gauge fields
and two-forms of the N = 4 theory with those of the reduced theory via

A0
(1) =

1√
2
A(1) , AM=α

(1) =
1√
2
(A α

(1) − lAα(1)) , AM=5+α
(1) = − 1√

2
Aα(1) , (2.61)

with α = 1, 2, 3 (and recalling (2.13)) as well as

B4
(2) =

1

g
L2
(2) , B5

(2) = −1

g
L1
(2) . (2.62)

In particular, the covariant two-form field strengths of the N = 4 theory given in (2.40)
are related to those of the reduced theory via

H0
(2) =

1√
2
F(2) , HM

(2) =
1√
2
(Gα

(2), L
a
(2),−Fα

(2)) , (2.63)

and the covariant derivative in (2.38) is given by

Dµ = ∇µ + g
(
Aµg0 + A1

µg1 + A2
µg2 + A3

µg3 + A 1
µ g4 + A 2

µ g5 + A 3
µ g6
)
. (2.64)

With the above identifications of the fields and the embedding tensor, we have shown
that the Lagrangian of theD = 5 theory given in (2.26)-(2.30) is equivalent to the canonical
N = 4 Lagrangian given in (2.42)-(2.46). We have presented a few details of this calculation
in appendix A.5.

2.5 Consistent subtruncations

2.5.1 Romans’ D = 5 SU(2)× U(1) supergravity theory

When l = −1 (i.e. Σ2 = H2), we can recover the Romans’ D = 5 SU(2) × U(1) gauged
supergravity theory, maintaining half maximal supersymmetry (i.e. sixteen real super-
charges). The fact that this must be possible immediately follows from the Gauntlett-
Varela conjecture [45]. Specifically, we take

l = −1 , λ = 3ϕ , (2.65)

and set all of the remaining scalar fields to their trivial values Tαβ = δαβ, ψ
aα = 0. We

keep the two-forms and package them into a complex two-form via

C(2) = K1
(2) + iK2

(2) . (2.66)

6If we use (2.36) to move to a basis in which ηMN is diagonal, then the independent components are
given by f̄123 = − 1

2 (3 + l), f̄678 = 1
2 (3 − l), f̄128 = f̄236 = −f̄137 = − 1

2 (l + 1) and f̄178 = −f̄268 = f̄367 =
1
2 (1− l).
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Finally, we set χα(1) = 0 and impose the following

∗hα(3) =
1

2
e−20ϕϵαβγF

βγ
(2) . (2.67)

The field content is now comprised of a metric, a scalar field ϕ, SO(2)× SO(3) ≃ U(1)×
SU(2) gauge fields A(1), A

αβ
(1) and a complex two-form C(2) which is charged under the U(1)

gauge field. The truncated equations of motion are given in (A.21),(A.22) and are precisely
that of Romans’ theory [83] arising from the Lagrangian

LRomans =Rvol5 − 300∗dϕ ∧ dϕ− 1

2
e40ϕ∗F(2) ∧ F(2) −

1

2
e−20ϕ∗Fαβ

(2) ∧ F
αβ
(2)

− e−20ϕ∗C(2) ∧ C(2) +
1

2ig

(
C(2) ∧DC(2) − C(2) ∧DC(2)

)
+ g2(4e−10ϕ + e20ϕ)vol5 −

1

2
Fαβ
(2) ∧ F

αβ
(2) ∧ A(1) ,

(2.68)

and DC(2) = dC(2) − igA(1) ∧ C(2). We note that this Lagrangian can also be obtained by
directly substituting the ansatz into the D = 5 Lagrangian.

Furthermore, we can truncate Romans’ theory to D = 5 minimal gauged supergravity.
This can be achieved by imposing e10ϕ = 21/3, setting the two-forms to zero, C(2) = 0, and
keeping a single U(1) gauge field in the diagonal of U(1) × SU(2) via F 12

(2) = 2F(2) and

F 23
(2) = F 31

(2) = 0. The resulting equations of motion for D = 5 minimal gauged supergravity
can be derived from the following Lagrangian

LMin =Rvol5 − 3 · 21/3 ∗F(2) ∧ F(2) + 3 · 22/3 g2vol5 − 4F(2) ∧ F(2) ∧ A(1) . (2.69)

It is worth emphasising that these two subtruncations cannot exist when l = 1, 0, (i.e.
Σ2 = S2,R2). If they did exist, then the supersymmetric solution of these theories would
necessarily be associated with a supersymmetric AdS5 vacuum solution of the D = 5,
N = 4 gauged supergravity theory.

2.5.2 Various invariant sectors

There are various additional truncations, for all cases l = 0,±1, that arise from keeping
sectors invariant under various subgroups of SO(2)× SO(3).

SO(3) invariant sector

A simple truncation is to keep only the fields that transform as singlets under SO(3).
Setting hα(3) = χα(1) = ψaα = Aαβ = 0 and T αβ = δαβ in the D = 5 equations of motion

(A.10)-(A.11) and (A.14)-(A.20) leads to a consistent set of equations of motion. The fields
kept in this truncation consist of the metric as well as

ϕ , λ ,A(1) , K
a
(2) . (2.70)

It is consistent with the equations of motion to further set the two-forms to zero Ka
(2) = 0.

We note that this truncation cannot be further truncated to minimal gauged supergravity.
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SO(2) ⊂ SO(3) invariant sector

We can slightly extend the truncation just considered, by keeping fields that are invariant
under a subgroup SO(2) ⊂ SO(3). More specifically, we consider an SO(3) triplet, with
index α = 1, 2, 3 to decompose into a doublet and a singlet of SO(2), with indices α = 1, 2
and α = 3, respectively. The fields that are kept in this truncation are the metric and

ϕ , λ ,A(1) , K
a
(2) , Tαβ = diag(ew, ew, e−2w) , ψa3 , A12

(1) , χ
3
(1) , h

3
(3) . (2.71)

SO(2) invariant sector

We can also consider the truncation that keeps the fields that are invariant under the
explicit SO(2) factor in SO(2)×SO(3). The fields that are kept in this truncation are the
metric and

ϕ , λ , Tαβ , A(1) , A
αβ
(1) , χ

α
(1) , h

α
(3) . (2.72)

2.5.3 Diagonal SO(2)D invariant sector

The final subtruncation we consider, again for all cases l = 0,±1, keeps the sector that
is invariant under an SO(2)D diagonal subgroup of SO(2) × SO(2) ⊂ SO(2) × SO(3),
where SO(2) ⊂ SO(3) was defined in the previous subsection. Specifically, the reduced
theory is an D = 5, N = 2 gauged supergravity coupled to two vector multiplets, with the
two scalar fields parametrising the very special real manifold SO(1, 1) × SO(1, 1), and a
single hypermultiplet, with the four scalar fields parametrising the quaternionic manifold
SU(2, 1)/S[U(2)× U(1)]. Furthermore, the gauging is only present in the hypermultiplet
sector. In the following, we will demonstrate how to obtain this reduced theory. However,
we will omit the details of the explicit matching with N = 2 gauged supergravity and refer
readers to [1].

In restricting to the SO(2)D invariant sector, we should set ψa3 = Ka
(2) = 0 in (2.71) but

we can now keep two additional scalar modes in the ψaα sector with α = 1, 2, specifically,

z1 ≡ 1

2
(ψ11 + ψ22) , z2 ≡ 1

2
(ψ21 − ψ12) . (2.73)

This can be achieved by imposing

ψa2 = −ϵabψb1 , (2.74)

and keeping the fields

ϕ , λ , Tαβ = diag(ew, ew, e−2w) , za , A(1) , A
12
(1) , χ

3
(1) , h

3
(3) , (2.75)

as well as the metric. Note that using (2.74) we have z1 = ψ11, z2 = ψ21. Moreover, the
covariant derivative acting on za and the field strengths are now given by

F(2) = dA(1) , F 12
(2) = dA12

(1) , Dza = dza + gϵab(−A12
(1) + A(1))z

b , (2.76)

and we note that za, which is a singlet with respect to the diagonal SO(2), is a doublet of
the anti-diagonal SO(2). It is a straightforward exercise to show that this is a consistent
truncation of the D = 5 equations of motion in (A.10)-(A.11) and (A.14)-(A.20).
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We can redefine χ3
(1) and h

3
(3) into ξ and A(1) in the following way,

χ3
(1) ≡ dξ + gA(1) − 2ϵabz

aDzb ,

∗h3(3) ≡ e−4λ−8ϕ+2wG(2) ,
(2.77)

where
G(2) ≡ d(A(1) − lA12

(1)) , (2.78)

and one can easily check that these redefinitions are consistent with the reduced equations
of motion. We also replace the three scalar fields {ϕ, λ, w} with {Σ,Ω, φ} defined as

Σ = e−(ϕ+3λ) , Ω = e3ϕ−λ−w , φ = λ− 3ϕ− 1

2
w . (2.79)

After substituting these redefinitions into the equations of motion, we find that the equa-
tions of motion can be derived from the following Lagrangian

L =Rvol5 −
1

2
Σ−4∗F(2) ∧ F(2) −

1

2
Σ2Ω2∗F 12

(2) ∧ F 12
(2) −

1

2
Σ2Ω−2∗G(2) ∧G(2)

− 3Σ−2 ∗ dΣ ∧ dΣ− Ω−2∗dΩ ∧ dΩ− A(1) ∧ F 12
(2) ∧G(2)

− 2∗dφ ∧ dφ− 1

2
e4φ∗(dξ + gA(1) − 2ϵabz

aDzb) ∧ (dξ + gA(1) − 2ϵcdz
cDzd)

− 2e2φ∗Dza ∧Dza

+ g2Ω−2Σ−2{2le2φΩΣ3 − 1

2
e4φ(l − 2zaza)2 − 2e4φΩ2Σ6(zaza)2

− 1

2
e4φΩ4 + 4ΩΣ3 + 2e2φΩ2 + 2e2φΩ3Σ3 − 2e2φ(1− ΩΣ3)2zaza}vol5 ,

(2.80)

and it was shown in [1] that this resulting D = 5 theory exhibits N = 2 supersymmetry.

2.6 Some solutions of the D = 5 theory

2.6.1 Maximally supersymmetric AdS5 vacuum

The maximally supersymmetric AdS5 vacuum solution is obtained by setting l = −1,
taking

e30ϕ = 2 , e10λ = 2 , (2.81)

with all other fields set to their trivial values, and the AdS5 radius squared L2 is given by

g2L2 = 24/3 . (2.82)

By uplifting this solution to D = 7 and then to D = 11, it is straightforward to see that
this is the same 1/2-BPS AdS5 solution, constructed in [54], which is associated with M5-
branes wrapping a Riemann surface embedded inside a Calabi-Yau two-fold. The presence
of the spin connection ω̄ab of the Riemann surface in (2.10) corresponds to the topological
twist associated with the fibration structure of such wrapped M5-brane solutions.
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2.6.2 Non-supersymmetric AdS5 vacua

When l = +1, there are additional non-supersymmetric AdS5 solutions. The first solution
was found in [77] and is given by

e6ϕ =
1

3
(215 + 59

√
13)1/5 , e10λ = 3 +

√
13 , (2.83)

with all other fields set to their trivial values, and the AdS5 radius squared L2 is given by

g2L2 =
4

35/3
(−35 + 13

√
13)1/3 . (2.84)

It has been shown in [77] that the linearised perturbations in the ϕ, λ sector give rise to
modes that violate the BF bound, and hence this AdS5 solution is unstable.

The second solution, which is new, is found by numerically solving the equations of
motion. It is a solution which lies within the SO(2)D truncation (2.5.3) and again has
l = +1 with

ϕ ∼ 0.00721714 , λ ∼ 0.246758 , w ∼ −0.107101 ,

zaza ∼ 0.262789 , g2L2 ≈ 1.26882 .
(2.85)

Since za is non-zero, the solution spontaneously breaks the anti-diagonal SO(2) gauge
group (see (2.76)). By examining the linearised scalar perturbations of ϕ, λ, w, za within
the SO(2)D truncation, we find that the five modes with mass squared, m2, are given by

m2L2 ∼ 30.4342 , 22.7531 , 9.44854 , −6.92312 , (2.86)

as well as zero (associated with the phase of za). Clearly, there is a mode which violates
the BF bound m2L2 ≥ −4 and hence this solution is also unstable.

2.6.3 Some supersymmetric AdS3 and AdS2 solutions

There are a number of interesting solutions of Romans’ theory that can be uplifted to
D = 11 using our consistent truncation procedure. From a dual field theory perspective,
the D = 11 solutions describe RG flows of the N = 2 SCFT in d = 4 that is associated
with M5-branes wrapping a two-dimensional hyperbolic space7 embedded in a Calabi-Yau
two-fold, H2 ⊂ CY2.

We start with the supersymmetric black hole solution, numerically constructed in [63],
that flows from the supersymmetric AdS5 vacuum in the UV to a supersymmetric AdS2×H3

solution in the IR. The uplifted D = 11 solution [75] describes the RG flow of the d = 4,
N = 2 SCFT after being wrapped on H3 with a topological twist that preserves two of
the eight Poincaré supersymmetries. In the IR, one obtains a supersymmetric conformal
quantum mechanics dual to the AdS2 ×H3 ×H2 × S4 solution (warped and fibred). This
D = 11 AdS2 solution is the one found in [64] associated with M5-branes wrapping (H2 ⊂
CY2)× (H3 ⊂ CY3).

There is also supersymmetric black string solution of Romans’ theory, numerically
constructed in [54], that flows from the supersymmetric AdS5 vacuum in the UV to an

7As already mentioned, we can also take discrete quotients of the H2. Similarly, we can take quotients
of the H3,H2, S2 and R2 factors that appear in the discussion below.

40



AdS3 ×H2 solution in the IR. The uplifted D = 11 solution [75] describes the RG flow of
the d = 4, N = 2 SCFT after being placed on H2 with a topological twist that preserves,
from a d = 2 point of view, N = (2, 2) of the eight Poincaré supersymmetries. In the
far IR, one obtains a d = 2, N = (2, 2) SCFT dual to the AdS3 × H2 × H2 × S4 solution
(warped and fibred). This D = 11 AdS3 solution is the one found in [64] associated with
M5-branes wrapping (H2 ⊂ CY2)× (H2 ⊂ CY2).

Finally, in an interesting recent development [55,84], novel solutions describing branes
wrapping on the weighted projective space Σ = WCP1

[n−,n+], also known as a spindle, have
been constructed. In particular, there are supersymmetric AdS3 × Σ solutions of minimal
gauged supergravity [55] and Romans’ theory [85], and the notable feature of these solutions
is that supersymmetry is not realised with the usual topological twist on Σ. Using the uplift
formulae (2.5), the D = 11 solution has the form AdS3 × Σ × H2/Γ × S4, describing the
near-horizon limit of M5-branes wrapped on a four-dimensional orbifold Σ × H2/Γ, and
is holographically dual to d = 2, N = (0, 2) SCFT. We will provide a more thorough
discussion on spindles in chapter 4.

2.7 Discussion

In this chapter, we have presented a new construction of consistent truncation of D = 11
supergravity on Σ2×S4 where Σ2 = S2,R2 orH2, or a quotient thereof. We have shown that
the resulting D = 5 theory is an N = 4 gauged supergravity theory coupled to three vector
multiplets, and it is only in the H2 case that the resulting D = 5, N = 4 theory can admit
the 1/2-BPS supersymmetric AdS5 solution, which uplifts to the AdS5 ×H2 × S4 solution
of [54] that is dual to N = 2 SCFTs in four-dimensional spacetime. We have also explored
the possibility of whether there are additional AdS5 vacuum solutions in the reduced theory,
and we have found that the theory admits two additional non-supersymmetric solutions
which uplift to AdS5 × S2 × S4 solutions of D = 11 supergravity, both of which are BF-
unstable. It would be of interest to complete this exploration, using the recently developed
approach of [86], and investigate more generally other types of solutions of D = 5, N = 4
gauged supergravity theory.

This work can be viewed as a natural extension of the consistent KK truncation of
D = 11 supergravity on Σ3 × S4 down to an N = 2 gauged supergravity in D = 4, where
S3, R3 or Σ3 = H3 (or a quotient thereof) which was presented in [87]. In their work,
the fibration structure of the S4 over Σ3 is associated with wrapping M5-branes on a Slag
3-cycle Σ3 embedded inside Calabi-Yau three-fold. It is clear, from the Gauntlett-Varela
conjecture [45] and all these various truncation examples [87–90], that for each of the
different configurations of M5-branes wrapping on different calibrated cycles Σk studied
in [62, 64], there will be an associated consistent KK truncation on Σk × S4 and it would
be of great interest to work out the details. It would also be interesting to examine and
generalise our result using the mathematical tools from generalised geometry along the
lines discussed in [39, 89–92]. In particular, this should provide a succinct and systematic
way of determining the specific lower-dimensional gauged supergravity theory that should
arise from higher-dimensional compactifications.
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Chapter 3

NS5-branes wrapped on Riemann
surfaces

3.1 Introduction

Many of the examples of the gravity/gauge correspondence we have discussed are realised
with brane systems whose near-horizon limits give rise to AdS spacetimes. As a result,
the dual field theories of these systems are conformal, such as the widely celebrated corre-
spondence, associated with D3-branes, between N = 4 SYM and the AdS5 ×S5 geometry.
In general, the principle of the gravity/gauge correspondence is not limited to just AdS
spacetimes and their corresponding dual conformal field theories. In fact, the Dp- and NS5-
branes in Type IIA/B are prime examples to demonstrate holographic dualities beyond the
AdS/CFT correspondence.

In this chapter, we are mostly interested in configurations involving NS5-branes, which
are common in both Type IIA and IIB. More specifically, we consider a stack of NS5-branes
with the string coupling taken to be zero (i.e. gs → 0). In this limit with α′ fixed, the bulk
modes which interact with the NS5 brane via the string coupling would decouple. Hence
we are left with a six dimensional, non-gravitational theory with sixteen supercharges and
a mass scale set by α′ [93], which is commonly known as the little string theory. For more
details of the subject, we refer readers to [93, 94]. What is important here is that little
string theory admits a holographic description. Along the lines of the gravity/gauge corre-
spondence, the vacuum of string theory which asymptote at weak coupling to the D = 10
linear dilaton background, associated with the planar NS5-brane solution, is holographi-
cally dual to the d = 6 little string theory [95]. This holographic duality provides a way to
study some of the observables in this mysterious six-dimensional theory, and is also vital
to our discussion in this chapter.

In chapter 2, we have discussed AdS solutions which arise from wrapping M5-branes
on compact supersymmetric cycles. The same topological twist idea can also be applied to
configurations associated with wrapped NS5-branes, which should correspond to probing
lower-dimensional SYM theories that arise from compactifying the d = 6 little string theory
on these cycles. Holographically speaking, one would be seeking to construct supergravity
solutions which correspond to NS5-branes wrapping supersymmetric cycles in manifolds of
special holonomy. Such example was first constructed in [59] by wrapping NS5-branes on
S2 ⊂ CY3, which provides a gravity dual description of topological twisted N = 1 SYM in
d = 4. Applying the same twisting idea, supergravity solutions corresponding to wrapped
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NS5-branes with worldvolumes R1,3× (S2 ⊂ CY2) and R1,3× (S3 ⊂ CY3) were constructed
in [96, 97] and [98] respectively. From the dual field theory perspective, these solutions
describe SYM theories arising as the IR limit of the little string theory compactified on
supersymmetric cycles with a topological twist.

The existence of these wrapped NS5-brane solutions [96–98] suggests that one can trun-
cate Type IIA supergravity around them to obtain lower-dimensional gauged supergravity
theories. In [2], we answered this in the affirmative by presenting new consistent KK
truncations of D = 10 Type IIA supergravity on (i) Σ2 × S3, where Σ2 = S2, R2, H2 or
a quotient thereof, to a N = 4 gauged supergravity theory in D = 5, and (ii) Σ3 × S3,
where Σ3 = S3, R3, H3 or a quotient thereof, to a N = 2 gauged supergravity theory
in D = 4, at the level of the bosonic fields. The S3 factor common to both truncations
corresponds to the aforementioned S3 truncation of Type IIA supergravity to the D = 7
maximal ISO(4) gauged supergravity, and this D = 7 theory admits a “vacuum” solution
that uplifts to the NS5-brane near-horizon, linear dilaton solution. The further truncations
on a Slag/Kähler 2-cycle Σ2 and Slag 3-cycle Σ3, which are embedded inside Calabi–Yau
two- and three-fold respectively, correspond to the worldvolume of NS5-branes wrapping
on these supersymmetric cycles. For Σ2 = S2 and Σ3 = S3, the resulting D = 5 and D = 4
theories admit supersymmetric solutions, which uplift to R1,3 × R × S2 × S3 [96, 97] and
R1,2×R×S3×S3 [98] solutions of Type IIA respectively, describing the near-horizon limit
of NS5-branes wrapping on these cycles.

To carry out truncations (i) and (ii), the straightforward method would be to first reduce
the D = 10 Type IIA theory on S3 to obtain the maximal ISO(4) gauged supergravity
in D = 7, and then further reducing on a Slag/Kähler 2-cycle Σ2 to obtain the D = 5
theory, or on a Slag 3-cycle Σ3 to obtain the D = 4 theory. Instead, we show that the
KK truncations can be carried out by performing Inönü-Wigner (IW) contractions directly
on the D = 5 and D = 4 theories obtained from M5-branes wrapping Σ2 and Σ3. In
terms of the eleven-dimensional supergravity theory where the M5-branes live, the IW
contraction corresponds to the group contraction which takes S4 → S3 × R, where S4 is
the internal 4-sphere of M5-branes. The opening of an isometry direction along R allows
for the consistent truncation of the eleven-dimensional theory to the Type IIA theory, as
well as the interpretation of M5-branes becoming NS5-branes. This contraction procedure
was realised in [47] as a consistent transition from the D = 7 maximal SO(5) gauged
supergravity theory to the D = 7 maximal ISO(4) gauged supergravity theory. Our
consistent truncation procedure is summarised in figure 3.1.

The key message from figure 3.1 is that by virtue of the consistency of the IW contrac-
tion, once the supergravity theory describing M5-branes wrapping on a supersymmetric
cycle is known, the supergravity theory describing NS5-branes wrapping on the same cycle
can be obtained accordingly. To be concrete, we first describe our procedure for trun-
cation (i). We begin from the consistent KK truncation in D = 11, first by reducing
on S4 to the D = 7 maximal SO(5) gauged supergravity and then further reducing on
the Riemann surface Σ2. The resulting theory of this truncation is a D = 5, N = 4
(i.e. sixteen real supercharges) gauged supergravity coupled to three vector multiplets
with gauge group SO(2)× ISO(3), corresponding to the consistent truncation associated
with M5-branes wrapping a Riemann surface described in chapter 2. Here, at the five-
dimensional level, we perform the IW contraction given in [47] to obtain a new D = 5,
N = 4 gauged supergravity theory coupled to three vector multiplets with scalar manifold
SO(1, 1) × SO(5, 3)/(SO(5) × SO(3)). The scalar manifold of this new D = 5 theory is
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D = 11 SUGRA
S1 reduction−−−−−−−−−−−→ Type IIA SUGRA−−−−−−−−→

S4

−−−−−−−−→

S3

D = 7 SO(5) SUGRA
IW contraction−−−−−−−−−−−−→ D = 7 ISO(4) SUGRA

−−−−−−−−→

Σ2, Σ3

−−−−−−−−−→

Σ̃2, Σ̃3

D = 5, N = 4 SUGRA [1, 89],
D = 4, N = 2 SUGRA [87]

IW contraction−−−−−−−−−−−−→ D = 5, N = 4 SUGRA,
D = 4, N = 2 SUGRA

Figure 3.1: The possible routes of truncation. The IW contraction can be performed at
any of the specified points, but it is computationally easiest at the 4/5-dimensional level.

exactly the same as the D = 5 theory in [1, 89] as outlined in chapter 2. However, this
should not come as a surprise since the IW contraction procedure keeps the same number
of degrees of freedom. Along with the stringent condition set by D = 5, N = 4 supersym-
metry, this guarantees that the scalar manifold must remain the same. The gauge group
of the reduced D = 5 theory is SO(2)×GA100

5,17
when Σ2 = R2/Γ, and SO(2)×GA0

5,18
when

Σ2 = S2/Γ or H2/Γ, where GA100
5,17

and GA0
5,18

are two, five-dimensional matrix groups whose

Lie algebras are listed in [99]. The groups GA100
5,17

and GA0
5,18

are isomorphic to SO(2)⋉Σ2R4,

where the action of the semi-direct product depends on the curvature of the Riemann sur-
face Σ2. As a consequence of the appearance of these unconventional gauge groups, the
precise details of the gauging, such as the embedding tensors, as well as the vacuum struc-
ture of the theory, are completely different from that of [1,89]. The method for truncation
(ii) proceeds analogously. We first truncate the D = 7 maximal SO(5) gauged supergravity
on a Slag 3-cycle Σ3 as described in [87] to obtain a D = 4, N = 2 gauged supergravity
coupled to a single vector multiplet and two hypermultiplets with gauge group U(1)×R+.
Then, at the four-dimensional level, we perform the same IW contraction and obtain a new
D = 4, N = 2 gauged supergravity theory coupled to one vector multiplet and two hyper-
multiplets with scalar manifold SU(1, 1)/U(1) × G2(2)/SO(4) and gauge group R+ × R+

1. Similar to the D = 5 case, the scalar manifold of this new D = 4 theory is exactly the
same as the reduced D = 4 theory in [87], but the precise details of the gauging and the
vacuum structure of the two theories are completely different.

In the following, we will focus only on discussing the consistent truncation on Σ2, and
for the truncation on Σ3, the IW contraction is carried out in a very similar way to the
Σ2 case and we refer readers to [2] for the details. The plan of the rest of the chapter is

1For Σ3 = S3, truncation (ii) corresponds to a consistent KK truncation of Type IIA theory on
S3 × S3. We note that the resulting D = 4, N = 2 theory is not related to the D = 4, N = 4 Freedman-
Schwarz model [100] which can also be obtained from reducing Type IIA on S3×S3 [101] (for more details
see [101,102]), as the precise details of the two truncation procedures are different.
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as follows. In section 3.2, we review how the D = 7 maximal SO(5) gauged supergravity
relates to the S3 reduction of Type IIA to the maximal ISO(4) theory through the IW
contraction. Following this, in section 3.3, we discuss the consistent KK truncation of the
ISO(4) gauged supergravity on Σ2 and section 3.4 demonstrates, at the level of the bosonic
fields, that the reduced D = 5 theory is indeed an N = 4 gauged supergravity theory. In
section 3.5, we reproduce some known solutions of the D = 5 theory. We conclude with a
few final remarks in section 3.6, and collect some useful results in the appendices.

3.2 D = 7 maximal ISO(4) gauged supergravity

In chapter 2, we discussed some aspects of the D = 7 maximal SO(5) gauged supergravity
and its association with M5-branes. InD = 7, maximal supergravity theory (i.e. thirty-two
real superchagres) is not restricted to only the SO(5) gauge group. It is possible to consider
gauge groups such as ISO(4) and SO(3, 2), and we refer readers to [103] for a general
discussion. Here we are interested in the analogous wrapped brane story involving NS5-
branes, and the natural setting for this is the D = 7 maximal ISO(4) gauged supergravity
theory. For clarity, we will denote the fields of the ISO(4) theory with tildes to distinguish
them from those of the SO(5) theory.

The D = 7 ISO(4) gauged supergravity can either be obtained by performing a Pauli
reduction of Type IIA supergravity on S3 2, interpreted as the internal 3-sphere of a stack
of NS5-branes [36,46], or by taking an IW contraction of the D = 7 maximal SO(5) theory
which brings the SO(5) gauge group to ISO(4) [47]. The IW contraction procedure, as
outlined in [47], involves decomposing the SO(5) vector indices in a 4 + 1 split, then
rescaling all the fields by a contraction parameter k which is set to zero at the end such
that the gauge group becomes ISO(4). The decomposition and rescaling of the bosonic
fields of the SO(5) theory is given by

g = k2g̃ , A5A
(1) = k3Ã5A , AAB(1) = k−2ÃAB(1) , S5

(3) = k−4S̃(3) , SA(3) = kS̃A(3) ,

Tij =

(
k−2Φ̃1/4T̃AB −k3Φ̃1/4(T̃ τ̃)A

−k3Φ̃1/4(T̃ τ̃)A k8Φ̃−1 + k8Φ̃1/4T̃CDτ̃
C τ̃D

)
, gmn = g̃mn ,

(3.1)

with A,B ∈ {1, . . . , 4}. Compared to [47], our 5th index is their 0th index. We note that
there is an error in the (0, 0) component (i.e. our (5, 5) component) of the decomposition
of the scalar coset Tij given in [47], which rendered detT ̸= 1. We have fixed this issue in
(3.1).

After substituting (3.1) into the equations of motion of the SO(5) gauged supergravity
and taking the singular limit k → 0, one obtains the D = 7 maximal ISO(4) gauged
supergravity, whose equations of motion are provided in appendix B.1. In terms of the
D = 11 and the D = 10 Type IIA theories, the IW contraction corresponds to taking the
S4 on which D = 11 supergravity is reduced on, and turning it into S3 × R, with R now
an isometry direction. To see this, let µi, i ∈ {1, . . . , 5}, be the embedding coordinates
of S4 in R5 satisfying µiµi = 1. The IW contraction in (3.1), now interpreted as a set of
singular rescalings of the metric and 4-form flux in D = 11 supergravity, comes with an
additional rescaling of the embedding coordinates µi [47]. We now split µi into µA and µ5

2The existence of a consistent KK truncation of Type IIA supergravity on S3 leading to D = 7, ISO(4)
gauged supergravity was first suggested in [104].
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with A ∈ {1, . . . , 4}, and then rescale

µA = µ̃A , µ5 = k5µ̃5 . (3.2)

In the singular limit k → 0, the S4 constraint equation becomes

µ̃Aµ̃A = 1 , (3.3)

with µ̃5 unconstrained. This results in a degeneration of the topology from S4 into S3×R,
with µ̃A parameterising the S3 and µ̃5 parameterising R.

The bosonic field content of the ISO(4) gauged theory consists of a metric, SO(4) Yang-
Mills gauge fields ÃAB(1) transforming in the 6 of SO(4), four 1-forms Ã5A

(1) transforming in

the 4 of SO(4), 3-forms S̃A(3) transforming in the 4 of SO(4), a 3-form S̃(3) transforming in

the 1 of SO(4), four scalar fields τ̃A transforming in the 4 of SO(4), and ten scalar fields
given by Φ̃ and a symmetric unimodular matrix T̃AB parametrising the coset manifold
SL(4,R)/SO(4). By defining the Yang-Mills field strength

F̃AB
(2) ≡ dÃAB(1) + g̃ÃAC(1) ∧ ÃCB(1) , (3.4)

the covariant derivatives

D̃S̃A(3) ≡ dS̃A(3) + g̃ÃAB(1) ∧ S̃B(3) ,
D̃Ã5A

(1) ≡ dÃ5A
(1) + g̃ÃAB(1) ∧ Ã5B

(1) ,

D̃T̃AB ≡ dT̃AB + g̃ÃAC(1) T̃CB + g̃ÃBC(1) T̃AC ,

D̃τ̃A ≡ dτ̃A + g̃τ̃BÃAB(1) ,

(3.5)

the following useful combinations of fundamental fields

G̃A
(3) = S̃A(3) − τ̃AS̃(3) ,

G̃A
(2) = D̃Ã5A

(1) + τ̃BF̃BA
(2) ,

G̃A
(1) = D̃τ̃A − g̃Ã5A

(1) ,

(3.6)

and making use of (B.5) to integrate S̃(3) as

S̃(3) = dB̃(2) +
1

8
ϵABCD

(
F̃AB
(2) ∧ ÃCD(1) − 1

3
g̃ÃAB(1) ∧ ÃCE(1) ∧ ÃED(1)

)
, (3.7)

the overall Lagrangian for the bosonic sector is given by

L(7) = R̃ ṽol7 −
5

16
Φ−2∗̃dΦ̃ ∧ dΦ̃− 1

4
T̃−1
ABT̃

−1
CD∗̃D̃T̃BC ∧ D̃T̃DA

− 1

2
Φ̃5/4T̃AB∗̃G̃A

(1) ∧ G̃B
(1) −

1

4
Φ̃−1/2T̃−1

AC T̃
−1
BD∗̃F̃AB

(2) ∧ F̃CD
(2)

− 1

2
Φ̃3/4T̃−1

AB∗̃G̃A
(2) ∧ G̃B

(2) −
1

2
Φ̃−1∗̃S̃(3) ∧ S̃(3) −

1

2
Φ̃1/4T̃AB∗̃GA

(3) ∧ G̃B
(3)

− Ṽ ṽol7 +
1

2g̃
D̃S̃A(3) ∧ S̃A(3) + S̃A(3) ∧ S̃(3) ∧ Ã5A

(1) +
1

g̃
Ω̃(7)

+
1

2g̃
ϵABCDS̃

A
(3) ∧ D̃Ã5B

(1) ∧ F̃CD
(2) +

1

4
ϵABCDS̃(3) ∧ F̃AB

(2) ∧ Ã5C
(1) ∧ Ã5D

(1) ,

(3.8)
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with the scalar potential given by

Ṽ =
1

2
g̃2Φ̃1/2

(
2Tr(T̃ 2)− (TrT̃ )2

)
, (3.9)

and Ω̃(7) denotes the Chern-Simons terms depending on ÃAB(1) and Ã5A
(1), which will not

be important for our discussion in this chapter. There is a consistent truncation of this
maximal theory to a half-maximal SO(4) gauged theory (i.e. sixteen real supercharges)
obtained by setting

τ̃A = 0 , Ã5A
(1) = 0 , S̃A(3) = 0 , (3.10)

where the removal of the Ã5A
(1) fields breaks the ISO(4) gauge group to SO(4), and we

will call this the half-maximal truncation throughout this chapter. In the context of
the Type IIA theory, the half-maximal truncation corresponds to the removal of the Ra-
mond–Ramond sector.

Any solution to the D = 7 maximal ISO(4) theory lifts to a solution of D = 10 Type
IIA supergravity, and the uplift formulae are provided in [36,46]. Most notably, the linear
dilaton solution with ÃAB(1) = S̃(3) = 0 and T̃AB = δAB preserves sixteen real supercharges
and uplifts to the supersymmetric D = 10 solution, which describes the near-horizon limit
of a stack of NS5-branes. Similar to the M5-brane case, supersymmetric solutions corre-
sponding to NS5-branes wrapping calibrated cycles, like an S2 in CY2 and an S3 in CY3,
were constructed in [96,97] and [98] respectively. The uplift of these solutions to Type IIA
supergravity are holographically dual to compactifying the little string theory on supersym-
metric cycles with a topological twist, and the geometry of the solutions has the internal
3-sphere S3 non-trivially fibred over the cycles. These supergravity solutions motivated
our construction of the corresponding consistent truncations of the D = 7 ISO(4) theory
on the calibrated cycles. By virtue of the consistency of the IW contraction, we can obtain
such consistent KK truncations by directly applying (3.1) to the corresponding truncations
associated with M5-branes wrapping on the appropriate supersymmetric cycles, as we will
demonstrate explicitly in the upcoming sections.

3.3 Consistent truncation

3.3.1 Truncation ansatz

The analogous ansatz for NS5-branes wrapped on Riemann surfaces is the following. The
D = 7 metric is given by

ds27 = e−4ϕ̃ds̃25 + e6ϕ̃ds2(Σ̃2) . (3.11)

We introduce orthonormal frames {¯̃em;m ∈ {0, . . . , 4}} and {¯̃ea; a ∈ {1, 2}} for both ds̃25
and ds2(Σ̃2) respectively, and let ¯̃ωmn and ¯̃ωab be the corresponding spin connections. The
metric of the Riemann surface Σ̃2 satisfies R̃ab = lg̃2δab with l = 1, 0,−1 for Σ2 = S2,R2

or H2 respectively. The fields are decomposed via SO(4) → SO(2)1 × SO(2)2, where the
SO(4) vector indices decompose accordingly as i = (a, α), with a ∈ {1, 2} and α ∈ {3, 4}.
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The ISO(4) gauge fields are taken to be

Ãab(1) =
1

g̃
¯̃ωab + ϵabÃ(1) ,

Ãaα(1) = −Ãαa(1) = ψ̃1α ¯̃ea − ϵabψ̃2α ¯̃eb ,

Ãαβ(1) = ϵαβÃ(1) ,

Ãa5(1) = Ψ̃1 ¯̃ea − ϵabΨ̃2 ¯̃eb ,

Ãα5(1) = Ṽ α
(1) .

(3.12)

Similar to the M5-brane truncation discussed in chapter 2, the ansatz again incorporates
the spin connection ¯̃ωab in the expression for Ãab(1), which corresponds to the topological
twist condition that ensures the preservation of supersymmetry on the non-compact part
of the NS5-brane worldvolume. For the three-forms, we take

S̃a(3) = K̃1
(2) ∧ ¯̃ea − ϵabK̃2

(2) ∧ ¯̃eb ,

S̃α(3) = h̃α(3) + χ̃α(1) ∧ vol(Σ̃2) ,

S̃5
(3) = H̃(3) + X̃(1) ∧ vol(Σ̃2) .

(3.13)

For the scalars parametrising the coset SL(4,R)/SO(4) and the scalars τ̃A, we take

τ̃a = 0 , τ̃α = τ̃α ,

T̃ ab = e−6λ̃δab , T̃ aα = 0 , T̃αβ = e6λ̃T̃ αβ ,
(3.14)

where the symmetric, unimodular matrix T̃ αβ parametrises the coset SL(2,R)/SO(2), all
defined in the five-dimensional spacetime. Moreover, we will call these D = 5 fields the
NS5 fields, which are distinguished notationally from the M5 fields by a tilde.

Clearly, we can substitute the ansatz directly into the D = 7 equations of motion to
obtain a D = 5 theory. However, as explained earlier, it is quicker, and perhaps more
instructive to utilise the IW contraction that connects the SO(5) and ISO(4) theories. To
achieve this, we must identify the NS5 fields in terms of the M5 fields presented in chapter
2 via the IW contraction procedure outlined in (3.1).

Making use of (3.1), we arrive the following identification between the M5 and NS5
fields

g = k2g̃ , ēa = k−2 ¯̃ea , ēm = k4/3 ¯̃em , ϕ = ϕ̃+
2

3
log k , ψaα = ψ̃aα ,

ψa5 = k5Ψ̃a , λ = λ̃− 1

24
log Φ̃ +

1

3
log k , T αβ = k−10/3Φ̃5/12e2λ̃T̃ αβ

T α5 = −k5/3Φ̃5/12e2λ̃(T̃ τ̃)α , T 55 = k20/3
(
Φ̃−5/6e−4λ̃ + Φ̃5/12e2λ̃τ̃ T̃ τ̃

)
A(1) = k−2Ã(1) , Aαβ(1) = k−2ϵαβÃ(1) , Aα5(1) = k3Ṽ α

(1) , χα(1) = k5χ̃α(1) ,

χ5
(1) = X̃(1) , Ka

(2) = k3K̃a
(2) , hα(3) = kh̃α(3) , h5(3) = k−4H̃(3) .

(3.15)

We now substitute (3.15) into the D = 5 equations of motion obtained from the con-
sistent truncation associated with wrapping M5-branes on a Riemann surface, recorded
in appendix A, to obtain a new set of D = 5 equations after taking k → 0. This new
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set of D = 5 equations of motion is recorded in appendix B.2. To present the five-form
Lagrangian that encodes the equations of motion, we define the following SO(2)× SO(2)
covariant derivatives

D̃h̃α(3) ≡ dh̃α(3) + g̃ϵαβÃ(1) ∧ h̃β(3) ,
D̃Ṽ α

(1) ≡ dṼ α
(1) + g̃ϵαβÃ(1) ∧ Ṽ β

(1) ,

D̃χ̃α(1) ≡ dχ̃α(1) + g̃ϵαβÃ(1) ∧ χ̃β(1) ,
D̃ψ̃aα ≡ dψ̃aα + g̃ϵabψ̃

bαÃ(1) + g̃ϵαβψ̃
aβÃ(1) ,

D̃T̃αβ ≡ dT̃αβ + g̃ϵαγT̃γβÃ(1) + g̃ϵβγT̃αγÃ(1) ,

D̃τ̃α ≡ dτ̃α + g̃ϵαβ τ̃
βÃ(1) ,

D̃Ψ̃a ≡ dΨ̃a + g̃ϵabΨ̃
bÃ(1) ,

(3.16)

the field strengths
F̃(2) ≡ dÃ(1) , F̃(2) ≡ dÃ(1) , (3.17)

the following combinations of our fundamental fields

G̃α
(3) ≡ (T̃ h̃(3))α − (T̃ τ̃)αH̃(3) ,

J̃α(2) ≡ D̃Ṽ α
(1) + ϵαβ τ̃βF̃(2) ,

σ̃α(1) ≡ (T̃ χ̃(1))
α − (T̃ τ̃)αX̃(1) ,

P̃ a
(1) ≡ D̃Ψ̃a − g̃Ṽ α

(1)ψ̃
aα + τ̃αD̃ψ̃aα ,

Q̃α
(1) ≡ D̃τ̃α + g̃Ṽ α

(1) ,

R̃a ≡ Ψ̃a + τ̃αψ̃aα ,

(3.18)

and integrate (B.21) and (B.23) to write

H̃(3) = dΓ̃(2) +
1

2
Ã(1) ∧ F̃(2) +

1

2
Ã(1) ∧ F̃(2) ,

X̃(1) = dΞ̃ + ϵαβψ̃
aαD̃ψ̃aβ + g̃lÃ(1) .

(3.19)

The five-form Lagrangian is then given by

L(5) = R̃ṽol5 + Lkin(5) + Lpot(5) + Ltop(5) , (3.20)

where R̃ is the Ricci scalar of the D = 5 metric, the remaining kinetic terms are

Lkin(5) = −30∗̃dϕ̃ ∧ dϕ̃− 36∗̃dλ̃ ∧ dλ̃− 5

16
Φ̃−2∗̃dΦ̃ ∧ dΦ̃

− 1

4
T̃ −1
αβ T̃ −1

γρ ∗̃D̃T̃βγ ∧ D̃T̃ρα − Φ̃−1/2e−6ϕ̃T̃ −1
αβ ∗̃D̃ψ̃aα ∧ D̃ψ̃aβ

− Φ̃3/4e6λ̃−6ϕ̃∗̃P̃ a
(1) ∧ P̃ a

(1) −
1

2
Φ̃5/4e6λ̃T̃αβ ∗̃Q̃α

(1) ∧ Q̃β
(1)

− 1

2
Φ̃−1e−12ϕ̃∗̃X̃(1) ∧ X̃(1) −

1

2
Φ̃1/4e6λ̃−12ϕ̃T̃ −1

αβ ∗̃σ̃α(1) ∧ σ̃β(1)

− 1

2
Φ̃−1/2e4ϕ̃+12λ̃∗̃F̃(2) ∧ F̃(2) −

1

2
Φ̃−1/2e4ϕ̃−12λ̃∗̃F̃(2) ∧ F̃(2)

− 1

2
Φ̃3/4e4ϕ̃−6λ̃T̃ −1

αβ ∗̃J̃α(2) ∧ J̃β(2) − Φ̃1/4e−6λ̃−2ϕ̃∗̃K̃a
(2) ∧ K̃a

(2)

− 1

2
Φ̃−1e8ϕ̃∗̃H̃(3) ∧ H̃(3) −

1

2
Φ̃1/4e6λ̃+8ϕ̃T̃ −1

αβ ∗̃G̃α
(3) ∧ G̃β

(3) .

(3.21)
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The potential terms are

Lpot(5) =− g̃2
{
e−10ϕ̃

(
e12λ̃(ψ̃T̃ ψ̃)− 2(l + ψ̃2) + e−12λ̃(ψ̃T̃ −1ψ̃) + Φ̃5/4e−6λ̃R̃2

)
+

1

2
Φ̃1/2e−4ϕ̃

(
2e12λ̃Tr(T̃ 2)− e12λ̃(TrT̃ )2 − 4TrT̃

)
+ Φ̃−1/2e−12λ̃−16ϕ̃ϵabϵcd(ψ̃aT̃ −1ψ̃c)(ψ̃bT̃ −1ψ̃d)

+ 2Φ̃3/4e−6λ̃−16ϕ̃ϵabϵcd(ψ̃aT̃ −1ψ̃c)R̃bR̃d

+
1

2
Φ̃−1/2e12λ̃−16ϕ̃(l − ψ̃2)2

}
ṽol5 ,

(3.22)

where ψ̃2 ≡ ψ̃aαψ̃aα and R̃2 ≡ R̃aR̃a, and the topological terms are given by

Ltop(5) =
1

g̃
ϵabK̃

a
(2) ∧ D̃K̃b

(2) + 2ϵabR̃
aK̃b

(2) ∧ H̃(3) + 2ϵabψ̃
aαK̃b

(2) ∧ (T̃ −1G̃(3))
α

+
2

g̃
ϵαβD̃ψ̃

aα ∧ J̃β(2) ∧ K̃a
(2) +

2

g̃
P̃ a
(1) ∧ K̃a

(2) ∧ F̃(2) −
1

g̃
Q̃α

(1) ∧ (T̃ −1σ̃(1))
α ∧ H̃(3)

− 2

g̃
ϵαβR̃

aD̃ψ̃aα ∧ Q̃β
(1) ∧ H̃(3) + R̃2F̃(2) ∧ H̃(3) +

1

2g̃
(l − ψ̃2)ϵαβQ̃

α
(1) ∧ Q̃β

(1) ∧ H̃(3)

+
1

g̃
D̃((T̃ −1σ̃(1))

α) ∧ (T̃ −1G̃(3))
α − 1

g̃
ϵαβ(T̃ −1σ̃(1))

α ∧ J̃β(2) ∧ F̃(2)

− 2

g̃
ϵαβ(T̃ −1G̃(3))

α ∧
(
D̃ψ̃aβ ∧ P̃ a

(1) +
1

2
g̃(l − ψ̃2)J̃β(2) + g̃ϵabψ̃

aβR̃bF̃(2)

)
+

1

g̃
(T̃ −1G̃(3))

α ∧ Q̃α
(1) ∧ X̃(1) +

1

g̃
ϵabR̃

aD̃R̃b ∧ F̃(2) ∧ F̃(2)

+
1

2g̃2
ϵαβQ̃

α
(1) ∧ Q̃β

(1) ∧
(
dΞ̃ + g̃lÃ(1)

)
∧ F̃(2) +

2

g̃
ϵabϵαβψ̃

aαP̃ b
(1) ∧ J̃β(2) ∧ F̃(2)

− 2

g̃
R̃aD̃ψ̃aα ∧ J̃α(2) ∧ F̃(2) +

l

g̃
Q̃α

(1) ∧ J̃α(2) ∧ F̃(2) −
1

g̃
ψ̃aαψ̃aβQ̃α

(1) ∧ J̃β(2) ∧ F̃(2)

− 1

g̃
ϵabϵβγψ̃

aαψ̃bβQ̃α
(1) ∧ J̃γ(2) ∧ F̃(2) −

1

g̃
ϵabϵαβϵγηψ̃

aβD̃ψ̃bγ ∧ J̃α(2) ∧ J̃η(2) . (3.23)

Any solution of the equations of motion in B.2 can be uplifted to D = 10 Type IIA
supergravity. This can be done by first using (3.11)-(3.14) to uplift to the ISO(4) gauged
theory in D = 7, then using the uplift formulae in [47] which connect the ISO(4) gauged
supergravity and the D = 10 Type IIA theory.

3.3.2 Field redefinitions

In order to make contact with the canonical language ofD = 5, N = 4 gauged supergravity,
it is again convenient to make some field redefinitions. We first replace (T̃ −1σ̃(1))

α by

introducing two one-forms Ã α
(1) and two Stueckelberg scalar fields ξ̃α,

(T̃ −1σ̃(1))
α = D̃ξ̃α + g̃Ã α

(1) − τ̃αD̃Ξ̃ + g̃Ξ̃Ṽ α
(1) − ϵαβ

(
ψ̃aβψ̃aγQ̃γ

(1) + 2R̃aD̃ψ̃aβ
)
, (3.24)

where
D̃ξ̃α ≡ dξ̃α + g̃ϵαβ ξ̃

βÃ(1) , D̃Ξ̃ ≡ dΞ̃ + g̃lÃ(1) , (3.25)
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and we note that the SO(2) gauge symmetry is non-linearly realised by Ξ̃. Substituting
this into (B.22), we deduce that

Φ̃1/4e6λ̃+8ϕ̃∗̃G̃α
(3) = D̃Ã α

(1) − lϵαγD̃Ṽ
γ
(2) − lD̃τ̃α ∧ Ã(1) + ϵαγ ξ̃

γF̃(2) + 2ϵabψ̃aαK̃b
(2)

+ 2ψ̃aαR̃aF̃(2) + ϵβγψ̃
aαψ̃aβJ̃γ(2) + Ξ̃J̃α(2) ,

(3.26)

where
D̃Ã α

(1) ≡ dÃ α
(1) + g̃ϵαβÃ(1) ∧ Ã β

(1) − lÃ(1) ∧ Q̃α
(1) , (3.27)

and we note again that the SO(2) gauge symmetry is non-linearly realised by Ã α
(1). We

also need to dualise H̃(3). There are two ways to achieve this, the first way is to integrate
(B.28) directly, and the second way, which is easier and perhaps more intuitive, is to add
the following term

Ldual
(5) = B̃(1) ∧

(
dH̃(3) − F̃(2) ∧ F̃(2)

)
, (3.28)

to the original Lagrangian, with B̃(1) introduced as a Lagrange multiplier to enforce the

Bianchi identity dH̃(3) = F̃(2)∧F̃(2). Treating H̃(3) now as a fundamental field, the variation

of the total Lagrangian L(5) + Ldual
(5) with respect to H̃(3) gives rise to

Φ̃−1e8ϕ̃∗̃H̃(3) = dB̃(1) − Q̃α
(1) ∧

(
Ã α

(1) +
1

g̃
D̃ξ̃α − 1

g̃
τ̃αD̃Ξ̃− 1

g̃
Ξ̃D̃τ̃α

)
+ 2ϵabR̃

aK̃b
(2) + R̃2F̃(2) +

l

2g̃
ϵαβQ̃

α
(1) ∧ Q̃β

(1) ,

(3.29)

which we will substitute back into the total Lagrangian L(5)+Ldual
(5) . Finally, it is convenient

to redefine the two-forms K̃a
(2) via

K̃a
(2) = − 1√

2
ϵabL̃

b
(2) + ϵabR̃

bF̃(2) + ϵabϵαβψ̃
bαJ̃β(2) . (3.30)

Making use of the above field redefinitions, the kinetic terms for the vectors can be rewritten
as

LV =− 1

2
Φ̃−1/2e4ϕ̃+12λ̃∗̃F̃(2) ∧ F̃(2) − Φ̃1/4e−6λ̃−2ϕ̃∗̃K̃a

(2) ∧ K̃a
(2)

− 1

2
Φ̃−1/2e4ϕ̃−12λ̃∗̃F̃(2) ∧ F̃(2) −

1

2
Φ̃3/4e4ϕ̃−6λ̃T̃ −1

αβ ∗̃J̃α(2) ∧ J̃β(2)

+
1

2
Φ̃−1e8ϕ̃∗̃H̃(3) ∧ H̃(3) +

1

2
Φ̃1/4e6λ̃+8ϕ̃T̃ −1

αβ ∗̃G̃α
(3) ∧ G̃β

(3) .

(3.31)

We note that the positive signs in the H̃(3) and G̃
α
(3) terms do not indicate the presence of

ghost terms, as when we consider the dualised fields (3.26) and (3.29) which encodes the
true fundamental degrees of freedom, we obtain a sign flip from applying the Hodge star
twice. The topological terms are simplified to

LT =
1

2g̃
ϵabL̃

a
(2) ∧ D̃L̃b(2) −

g̃l

2
ϵαβṼ

α
(1) ∧ Ṽ β

(1) ∧ Ã(1) ∧ F̃(2)

− ϵαβ

(
D̃Ã α

(1) − lϵαγJ̃
γ
(2)

)
∧ Ṽ β

(1) ∧ F̃(2)

− F̃(2) ∧ F̃(2) ∧
(

B̃(1) − τ̃α
[
Ã α

(1) −
l

g̃
ϵαβQ̃

β
(1) +

l

2g̃
ϵαβdτ̃

β

]
+

1

g̃
ξ̃αQ̃α

(1)

)
+

1

g̃
ϵαβ

(
lτ̃α + ϵαγΞ̃τ̃

γ
)
F̃(2) ∧ F̃(2) ∧ Q̃β

(1) −
l

g̃
ϵαβdτ̃

α ∧ Q̃β
(1) ∧ Ã(1) ∧ F̃(2) .

(3.32)
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Up to total derivatives, we can rewrite the topological terms as

LT =
1

2g̃
ϵabL̃

a
(2) ∧ D̃L̃b(2) −

g̃l

2
ϵαβṼ

α
(1) ∧ Ṽ β

(1) ∧ Ã(1) ∧ F̃(2) (3.33)

− ϵαβ

(
d
[
Ã α

(1) − lϵαβṼ
β
(1)

]
+ g̃ϵαγÃ(1) ∧

[
Ã γ

(1) − lϵγρṼ
ρ
(1)

]
+ g̃lṼ α

(1) ∧ Ã(1)

)
∧ Ṽ β

(1) ∧ F̃(2)

− F̃(2) ∧ F̃(2) ∧
(

B̃(1) − τ̃α
[
Ã α

(1) − lϵαβṼ
β
(1) −

l

2g̃
ϵαβdτ̃

β

]
+

1

2g̃
τ̃ 2dΞ̃− Ξ̃τ̃αṼ α

(1) +
1

g̃
ξ̃αQ̃α

(1)

)
,

which, as we will show in the next section, is the form in which the N = 4 supersymmetry
is manifest.

3.4 Supersymmetry

For discussion of the general structure of N = 4 gauged supergravity in D = 5, we refer
readers back to section 2.4.1. In this section, we will provide the required ingredients to
demonstrate that our D = 5 theory indeed exhibits N = 4 supersymmetry.

3.4.1 Scalar manifold

We take the same set of generators of SO(5, 3) presented in section 2.4.2 to parametrise
the coset SO(5, 3)/(SO(5)×SO(3)). To make contact with the scalar fields in the reduced
theory, we would first need an explicit embedding of the coset SL(2,R)/SO(2) inside
SO(5, 3)/(SO(5)× SO(3)). This can be achieved by defining

H = H2 −H1, E = T 1 . (3.34)

In addition, we define Ĥ = −H1 − H2 which commutes with the above two generators.
We introduce three scalar fields {φ1, φ2, ρ} to form the following coset representative

V(s) = e
1√
2
φ1H+ 1√

2
φ2ĤeρE =


e−φ2V −T 0 0 0 0

0 1 0 0 0
0 0 12 0 0
0 0 0 eφ2V 0
0 0 0 0 1

 , (3.35)

where the 2 × 2 matrix V parametrises the coset SL(2,R)/SO(2) in the standard upper
triangular gauge

V =

(
eφ1 eφ1ρ
0 e−φ1

)
. (3.36)

We can identify the scalar fields in the 2× 2 matrix Tαβ in the reduced theory as

Tαβ = (V TV )αβ =

(
e2φ1 e2φ1ρ
e2φ1ρ e−2φ1 + e2φ1ρ2

)
. (3.37)

Collecting our results, the exact parametrisation of the coset SO(5, 3)/(SO(5)×SO(3)) is
given by

V = V(s)e
1√
2
φ3H3

eτ
3T 2

eτ
4T 3

e(Ξ−ψ
13ψ14−ψ23ψ24)T 4

· e(ξ4+[Ψ1+R1]ψ13+[Ψ2+R2]ψ23)T 5

e(−ξ
3+[Ψ1+R1]ψ14+[Ψ2+R2]ψ24)T 6

· e
√
2ψ13T 7

e
√
2ψ14T 8

e−
√
2Ψ1T 9

e
√
2ψ23T 10

e
√
2ψ24T 11

e−
√
2Ψ2T 12

,

(3.38)
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where we identify φ2 and φ3 as

φ2 = 3ϕ+
1

4
log Φ ,

φ3 = 3λ− 3ϕ+
3

8
log Φ .

(3.39)

The remaining SO(1, 1) part of the scalar manifold is described by a real scalar field Σ,

Σ = Φ1/8e−ϕ−3λ . (3.40)

3.4.2 Gauge group

In this section, we will demonstrate that the gauge group of the reduced D = 5 theory
is SO(2) × (SO(2)⋉Σ2 R4), where the action of the semi-direct product depends on the
curvature of the Riemann surface Σ2. Specifically, it is SO(2) × GA100

5,17
when l = 0, and

SO(2)×GA0
5,18

when l = ±1, where GA100
5,17

and GA0
5,18

are two five-dimensional matrix Lie

groups with Lie algebras A100
5,17 and A0

5,18 respectively.
The compact SO(2) subgroup of the gauge group is generated by 3

g0 = t45 , (3.41)

which is associated with the gauge field A(1), and the non-compact part of the gauge group,
SO(2)⋉Σ2 R4, is generated by

g1 = −t23 , g2 = t13 , g3 = −t36 , g4 = −t37 , g5 = t26 − t17 + lt12 , (3.42)

which are associated with the one-forms A α
(1), V

α
(1) and A(1) respectively (see (B.46)). We

note that the one-form B(1) does not participate in the gauging. The generators in (3.42)
satisfy the following commutation relations

[g1, g5] = −g2 , [g2, g5] = g1 , [g3, g5] = −lg1 − g4 , [g4, g5] = −lg2 + g3 . (3.43)

Rather remarkably, the algebra associated to l = 0 is not isomorphic to that associated to
l = ±1. These two distinct algebras belong to two different families of five-dimensional real
Lie algebras, namely Aspq5,17 and A

p
5,18, which are listed and discussed in [99]. The subscripts

m and n in Apm,n denote the dimension of the Lie algebra and the n-th algebra on the list
of [99] respectively, and the superscript p in Apm,n denotes the continuous parameter(s) on
which the algebra can depend on. Specifically, when l = 0, the algebra is described by
A100

5,17, and its minimal matrix group representation is given by [105] 4

MA100
5,17

=


cos θ sin θ x1 x3
− sin θ cos θ x2 x4

0 0 1 0
0 0 0 1

 , (3.44)

3The explicit representation of the generators of SO(5, 3) can be found in section 2.4.2.
4The minimal matrix group representation of Aspq5,17 is in general a 5× 5 matrix, however the minimal

representation is reduced to a 4× 4 matrix when p = q [105].
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while the algebras for the l = ±1 cases are described by A0
5,18 and their minimal matrix

group representations are given by [105]

MA0
5,18

=


cos θ sin θ x1 x3
− sin θ cos θ x2 x4

0 0 1 −lθ
0 0 0 1

 , (3.45)

where θ, x1, x2, x3, x4 are real parameters. The explicit representation of these generators
(3.42) can be found in appendix B.3, which after exponentiation recovers both (3.44) and
(3.45).

To understand the structure of the gauge group, let’s focus on l = 0, and consider two
of its elements

M1 =


cos θ sin θ x1 x3
− sin θ cos θ x2 x4

0 0 1 0
0 0 0 1

 , M2 =


cosϕ sinϕ y1 y3
− sinϕ cosϕ y2 y4

0 0 1 0
0 0 0 1

 . (3.46)

The composition M3 =M1M2 sends

θ 7→ θ + ϕ , xi 7→ xi +R(θ)yi , R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
⊕
(

cos θ sin θ
− sin θ cos θ

)
, (3.47)

where i ∈ {1, 2, 3, 4}. From this simple calculation, we observe that this group is isomorphic
to SO(2) ⋉ R4. When l = ±1, the above map becomes a bit more complicated, but the
overall SO(2)⋉ R4 structure remains the same. Putting it all together, we conclude that
the gauge group of our reduced D = 5 theory is SO(2)× (SO(2)⋉Σ2 R4).

3.4.3 The embedding tensor

The components of the embedding tensor are specified by

ξM = 0 , ξ45 = −
√
2 ,

f178 =
√
2 , f268 = −

√
2 , f678 = −

√
2l ,

(3.48)

with the remaining components equal to zero, and satisfy the algebraic constraints given
in (2.39). With (3.48), we can identify the gauge fields and two-forms of the canonical
N = 4 theory with those of the reduced theory via

A0
(1) =

1√
2
A(1) , (3.49)

and

A1
(1) =

1√
2

(
A 3

(1) − lV 4
(1)

)
, A2

(1) =
1√
2

(
A 4

(1) + lV 3
(1)

)
,

A3
(1) = − 1√

2

(
B(1) − τα

[
A α

(1) − lϵαβV
β
(1) −

l

2g
ϵαβdτ

β

]
+

1

2g
τ 2dΞ− ΞταV α

(1) +
1

g
ξαQα

(1)

)
,

B4
(2) =

1

g
L2
(2) , B5

(2) = −1

g
L1
(2) ,

A6
(1) = − 1√

2
V 4
(1) , A7

(1) =
1√
2
V 3
(1) , A8

(1) =
1√
2
A(1) , (3.50)
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and the remaining components of AM
(1) and BM(2) are all zero. For completeness, the corre-

sponding covariant 2-form field strengths are given by

H0
(2) =

1√
2
F(2) , (3.51)

and

H1
(2) =

1√
2

(
d
[
A 3

(1) − lV 4
(1)

]
+ gA(1) ∧

[
A 4

(1) + lV 3
(1)

]
+ glV 3

(1) ∧ A(1)

)
,

H2
(2) =

1√
2

(
d
[
A 4

(1) + lV 3
(1)

]
− gA(1) ∧

[
A 3

(1) − lV 4
(1)

]
+ glV 4

(1) ∧ A(1)

)
,

H3
(2) = − 1√

2
d

(
B(1) − τα

[
A α

(1) − lϵαβV
β
(1) −

l

2g
ϵαβdτ

β

]
+

1

2g
τ 2dΞ− ΞταV α

(1) +
1

g
ξαQα

(1)

)
− 1√

2
g
[
A α

(1) − lϵαβV
β
(1)

]
∧ Ṽ α

(1) +
1

2
√
2
glϵαβV

α
(1) ∧ V β

(1) ,

H4
(2) =

1√
2
L1
(2) , H5

(2) =
1√
2
L2
(2) ,

H6
(2) = − 1√

2
DV 4

(1) , H7
(2) =

1√
2
DV 3

(1) , H8
(2) =

1√
2
F(2) . (3.52)

With the above identifications, we conclude that the Lagrangian of our D = 5 theory is
equivalent to the canonical Lagrangian of D = 5, N = 4 gauged supergravity. We have
presented a few details of this calculation in appendix B.4.

3.5 Some solutions of the D = 5 theory

In this section, we reproduce the one-parameter family of 1/4-BPS solutions reported
in [96, 97] corresponding to a stack of NS5-branes wrapping on an S2 or H2 (i.e. l = +1
or l = −1). The solutions with an S2 describe pure N = 2 super Yang-Mills theory in
d = 4 arising as the IR limit of the little string theory compactified on S2 ⊂ CY2 with
a topological twist, while the dual field theory description of the solutions with an H2 is
unclear. From the five-dimensional perspective, the solutions lie in the sector where the
only fields are the metric, ϕ, λ, and Φ. The five-dimensional metric is given by

ds25 = g
4
3 z

2
3 e−

2
3
(x−2lg2z)

[
ds2(R1,3) + g2e2xdz2

]
, (3.53)

where z is the radial coordinate, and the function x(z) is defined as

e−2x = 1− l(1 + ce−2lg2z)

2g2z
. (3.54)

Here c is a real integration constant that, for l = 1, parameterises the different flows from
the UV to the IR. The values of the scalar fields are

e6ϕ = g2ze−
2
5
(x−2lg2z) , λ = −x

6
, Φ

5
4 = ex−2lg2z . (3.55)

The above solutions can easily be uplifted back to D = 10 using our KK truncation
procedure, and the explicit ten-dimensional uplift can be found in [96,97].
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For l = 0, we report the following domain wall solution

e5ϕ =
2g

3
r , ds25 = r2ds2(R1,3) + dr2 , (3.56)

with λ = 0 and log Φ = −12ϕ. This corresponds to the near-horizon limit of a stack of
NS5-branes (i.e. linear dilaton solution when uplifted to D = 10).

3.6 Discussion

In this chapter and [2], we have presented two consistent Kaluza–Klein truncations of
D = 10 Type IIA supergravity on (i) Σ2×S3, where Σ2 = S2, R2, H2 or a quotient thereof,
and (ii) Σ3 × S3, where Σ3 = S3, R3, H3 or a quotient thereof, at the level of the bosonic
fields. Instead of directly truncating the ten-dimensional theory on the corresponding
supersymmetric cycles to obtain the lower-dimensional theories, we showed that they can
be carried out starting from the reduced D = 5 and D = 4 theories associated with
M5-branes wrapping on the appropriate supersymmetric cycles using a group contraction
procedure, known as the Inönü-Wigner contraction. The two new theories can be viewed
as “cousins” of the five- and four-dimensional theories corresponding to the truncations
associated with M5-branes wrapping Σ2 [1, 89] and Σ3 [87], in the sense that they possess
the same amount of supersymmetry and field content, but as we have shown in this chapter,
the precise details of the gauging and the vacuum structures of the theories are entirely
different.

There are more examples of wrapped NS5-brane truncations that can be obtained using
our method. From the catalogue of wrapped M5-brane solutions listed in [58], we observe
that it is possible to obtain wrapped NS5-brane truncations on: (1) Σ2 × Σ′

2, a product
of two Riemann surfaces embedded inside two CY2 spaces 5; (2) Σ2 × Σ3 with Σ2 and Σ3

a Riemann surface and a Slag 3-cycle embedded inside a CY2 and CY3 respectively; (3) a
Kähler 4-cycle embedded inside a CY3. IW contractions are clearly not limited to just the
SO(5) and ISO(4) gauged supergravity theories in D = 7. For example, [48–50] obtained
the “cousins” of the SO(8) gauged N = 8 supergravity theories in D = 4 with gauge
groups ISO(7), interpreted as the IW contraction of the original SO(8) gauge group, as
well as SO(p, q) with p + q = 8. It is well-known that the SO(8) gauged supergravity
in D = 4 can be obtained by a consistent KK truncation of D = 11 supergravity on
S7, as demonstrated in [37]. By interpreting the S7 as the internal 7-sphere of a stack
of M2-branes, the SO(8) gauged supergravity can be seen as the natural arena to study
wrapped M2-brane solutions/truncations. As such, the existence of the contracted ISO(7)
gauged theory suggests that the IW contractions can be used to relate wrapped D2-brane
truncations from the corresponding wrapped M2-brane truncations in a similar way to the
relation between wrapped NS5-brane and M5-brane truncations. These correspondences
between the M2 and D2 truncations are purely within M-theory and its direct Type IIA
descendent, but can be seen to be related to the consistent truncation of massive IIA on
a 6-sphere S6, which yields the dyonic ISO(7) gauged supergravity in D = 4 [106]. By
setting the Romans mass to zero, the dyonic theory becomes the electric ISO(7) theory
described in [48].

Finally, the consistency of the IW contraction procedure also opens up the question of
which lower-dimensional gauged supergravity theories can be related via the IW contraction

5The wrapped M5-brane truncation on a product of two Riemann surfaces was constructed in [88].
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(or potentially other such group-theoretic procedures), and whether such relations are
actually contingent on there being a higher-dimensional origin, as there is in our case
transiting from M-theory to Type IIA with M5-branes becoming NS5-branes. Again, this
can perhaps be answered more systematically using the abstract language of generalised
geometry along the lines discussed in [39,89–91,107].
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Part III :

Wrapping branes on spindles
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Chapter 4

M5-branes wrapped on
four-dimensional orbifolds

4.1 Introduction

The first examples of the AdS/CFT correspondence involved the near-horizon limits of M2,
M5 and D3-branes in flat spacetime [8]. Following [54], it was realised that there is a rich
landscape of examples which can obtained by considering branes wrapping compact super-
symmetric cycles in manifolds of special holonomy. In these constructions, supersymmetry
is preserved by a partial topological twist on the world-volume of the brane, as discussed
in previous chapters.

In a more recent development, starting with [55], it has been realised that there are more
general constructions in which branes can wrap over a two-dimensional orbifold with quan-
tised deficit angles at the two poles, also known as a spindle. The first examples considered
D3-branes wrapping spindles [55], and constructions involving M2-branes, M5-branes and
D4-branes have also been made [84, 85, 108–114]. These new AdS/CFT examples, which
have been studied from both a gravity and a field theory point of view, have a number of
interesting features. All the known constructions have utilised a spindle with an azimuthal
symmetry. It has recently been shown that there are only two possibilities for preserving
supersymmetry, called the “twist” class and the “anti-twist” class [112], which are deter-
mined by the amount of magnetic R-symmetry flux threading the spindle. The twist case
is in the same topological class as the standard topological twist, and it differs in the sense
that the Killing spinors in the supergravity solutions are not constant on the spindle. The
anti-twist case is more novel and is specific to wrapping branes on a spindle.

In the case of wrapping M5-branes and D3-branes on spindles, assuming that the theory
flows to a SCFT in the IR, one can extract the central charge of the d = 4 or d = 2
SCFT using a-maximisation [115] or c-extremisation [116] respectively. One obtains the
anomaly polynomial of the reduced theory by suitably integrating the anomaly polynomial
of the parent theory. One novel feature is that the azimuthal symmetry gives rise to a
global symmetry of the reduced theory and this needs to be properly taken into account
in deriving the anomaly polynomial as discussed in [55], extending the results in [117].
Another interesting aspect of wrapping branes one spindles is that in some cases, involving
D3-branes and M2-branes, the corresponding supergravity solutions in D = 10 and D = 11
are completely regular. In cases involving M5-branes, orbifold singularities remain in the
D = 11 solutions, but the exact agreement with field theory calculations strongly suggest
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that these are indeed new, genuine examples of AdS/CFT dual pairs. With that being said,
it is still an outstanding issue to determine precisely how these orbifold singularities should
be treated. Finally, we also highlight that accelerating black hole solutions in D = 4 have
been given a new interpretation as RG flows associated with compactifying M2-branes on
spindles in [84,118,119].

Given these new developments, it is natural to ask if there can be constructions involv-
ing branes wrapping over higher-dimensional orbifolds. In this chapter, we present new
supersymmetric AdS3 solutions of D = 11 supergravity which describe M5-branes wrap-
ping over a particular class of four-dimensional orbifolds M4, and these new solutions are
holographically dual to d = 2, N = (0, 2) SCFTs. The most novel construction is when
M4 = Σ1 ⋉ Σ2, which consists of a two-dimensional spindle Σ2 that is non-trivially fibred
over another two-dimensional spindle Σ1. We also consider another construction1 when
M4 = Σg ⋉ Σ2, consisting of the spindle Σ2 fibred over a Riemann surface Σg with genus
g > 1.

We construct these new D = 11 supergravity solutions using the powerful techniques of
consistent truncations. Recall that there is a consistent truncation of D = 11 supergravity
on S4 down to D = 7 maximal SO(5) gauged supergravity [34, 35], which we discussed in
chapter 2. In this chapter, we will present a new consistent truncation of D = 7 gauged
supergravity on a spindle Σ2 down toD = 5 minimal gauged supergravity. The construction
is based on the supersymmetric AdS5×Σ2 solution ofD = 7 gauged supergravity associated
with M5-branes wrapping the spindle Σ2 in the twist class [109]. This supersymmetric
AdS5 solution is holographically dual to an d = 4, N = 1 SCFT and hence, based on the
conjecture of [45], such a consistent truncation from D = 7 to D = 5 on Σ2 is expected
to exist. As we will show, this is indeed the case, and a particularly interesting feature
is that a specific gauge choice is required to construct the truncation ansatz. We also
demonstrate that the Killing spinor equations of the D = 7 theory reduce to those of the
D = 5 theory. This shows that any supersymmetric solution of D = 5 minimal gauged
supergravity can be uplifted on Σ2 and then on S4 to to obtain supersymmetric solutions
of D = 11 supergravity.

With this new consistent truncation in hand, we can immediately uplift the recently
discovered supersymmetric AdS3×Σ1 solution of D = 5 minimal gauged supergravity [55],
which is in the anti-twist class, to obtain a new supersymmetric AdS3×Σ1⋉Σ2 solution of
D = 7 gauged supergravity that describes M5-branes wrapping over the four-dimensional
orbifold M4 = Σ1 ⋉ Σ2. In a similar fashion, we also uplift the known supersymmetric
AdS3 × Σg solution of D = 5 minimal gauged supergravity [70, 120], which is a standard
topological twist construction, and then uplift to obtain new supersymmetric AdS3×Σg⋉Σ2

solution describing M5-branes wrapping the four-dimensional orbifold M4 = Σg ⋉ Σ2. In
both cases, we calculate the central charges from the supergravity solutions and show
that they agree precisely with field theory calculations using anomaly polynomials and the
c-extremisation procedure.

The plan of the rest of the chapter is as follows. In section 4.2, we first provide a
brief review of the U(1)2 truncation of the D = 7 maximal theory and the supersymmetric
AdS5 × Σ2 solution within this truncation, then we discuss the consistent KK truncation
of D = 7 maximal gauged supergravity on Σ2. In sections 4.3 and 4.4, we present two new
classes of wrapped M5-brane solutions, AdS3×Σ1⋉Σ2 and AdS3×Σg⋉Σ2 respectively, and

1Our construction differs from the AdS3×Σ×Σg solutions discussed in [85,112] which involves a direct
product of a spindle and Riemann surface (analogous solutions for D4-branes were considered in [111]).
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discuss some aspects of these solutions. In section 4.5, we calculate the central charges of
the dual SCFTs using field theory arguments. We conclude with a few remarks in section
4.6 and collect some useful results in the appendices.

4.2 Consistent truncation on a spindle

In this section, we will show that there is a consistent KK truncation of D = 7 maximal
SO(5) gauged supergravity2 on a spindle, Σ2, down to D = 5 minimal gauged supergravity.
The starting point is the supersymmetric AdS5×Σ2 solution of [109] which, after uplifting
on an S4, is dual to a d = 4, N = 1 SCFT. Consistent with the Gauntlett-Varela conjecture
[45] and the results of [89], this truncation is expected to exist. The solution of [109] resides
in a U(1)2 sub-truncation of the D = 7 maximal theory and it turns out that the consistent
truncation that we are after can be formulated in this sub-truncation as well.

We begin with the bosonic sector of D = 7 maximal gauged supergravity truncated to
the U(1)2 ⊂ SO(5) sector. Specifically, we consider [SU(2)×SU(2)]/Z2

∼= SO(4) ⊂ SO(5)
and then take the two U(1)’s via [U(1) ⊂ SU(2)]2. In this sub-truncation, the bosonic field
content is comprised of the D = 7 metric, two U(1) gauge fields, two scalar fields and a
three-form. The Lagrangian is given by

L(7) =(R− V )vol7 − 6∗7dλ1 ∧ dλ1 − 6∗7dλ2 ∧ dλ2 − 8∗7dλ1 ∧ dλ2
− 1

2
e−4λ1∗7F 12

(2) ∧ F 12
(2) −

1

2
e−4λ2∗7F 34

(2) ∧ F 34
(2) −

1

2
e−4λ1−4λ2∗7S5

(3) ∧ S5
(3)

+
1

2
S5
(3) ∧ dS5

(3) − S5
(3) ∧ F 12

(2) ∧ F 34
(2) +

1

2
A12

(1) ∧ F 12
(2) ∧ F 34

(2) ∧ F 34
(2) ,

(4.1)

where the potential is given by

V =
1

2
e−8(λ1+λ2) − 4e2(λ1+λ2) − 2e−2(2λ1+λ2) − 2e−2(λ1+2λ2) . (4.2)

In appendx C.1, we explain how this sub-truncation can be obtained from the maximal
theory (after setting g = 1) as well as comparing with [121], and in appendix C.2, we
discuss the supersymmetry variations of D = 7 gauged supergravity which are rife with
typos/inconsistencies in the literature.

4.2.1 Supersymmetric AdS5 × Σ2 solution

We first recall that the D = 7 U(1)2 theory admits the supersymmetric AdS5×Σ2 solution
found3 in [109]. After uplifting on an S4, the solution is holographically dual to an N = 1
SCFT in four-dimensional spacetime. The D = 7 solution is given by

ds27 = (yP )1/5
[
ds2AdS5

+ ds2Σ2

]
,

A12
(1) =

q1
h1
dϕ , A34

(1) =
q2
h2
dϕ , e2λi =

(yP )2/5

hi
,

(4.3)

2In chapter 2, we discussed some aspects of the D = 7 maximal SO(5) gauged supergravity and its
association with M5-branes.

3In comparing with [109], we have to identify Xi = e2λi and A1, A2 with A12
(1), A

34
(1).
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with vanishing three-form, S5
(3) = 0, where the metric on AdS5 has unit radius, and

ds2Σ2
=

y

4Q
dy2 +

Q

P
dϕ2 , (4.4)

is the metric on the spindle Σ2. The solution is specified by two real parameters q1, q2 and
hi, P and Q are functions of y given by

hi(y) = y2 + qi ,

P (y) = h1(y)h2(y) =
(
y2 + q1

) (
y2 + q2

)
,

Q(y) = −y3 + 1

4
P (y) = −y3 + 1

4
(y2 + q1)

(
y2 + q2

)
.

(4.5)

The Killing spinor carries charge 1/2 with respect to the gauge field A12
(1)+A

34
(2) associated

with an R-symmetry of the d = 6, N = (0, 2) SCFT dual to the vacuum AdS7×S4 solution.
It was shown in [109] (see also [112]) that under the specific gauge choice in which the above
AdS5 × Σ2 solution is presented, the Killing spinor has an overall phase eiϕ/4. If we carry
out separate gauge transformations on the two gauge fields A12 → A12 + c1dϕ, A

34 →
A34 + c2dϕ, then the phase of the Killing spinor gets shifted via eiϕ/4 → ei[1+2(c1+c2)]ϕ/4.
Rather interestingly, as we will demonstrate below, in order to construct the consistent
KK truncation, we need to utilise a specific gauge choice associated with c1 = c2 = −1.

To ensure that Σ2 is a spindle specified by two relatively prime integers n± and with
suitably quantised magnetic fluxes through the spindle, fixed by two integers p1, p2, it is
necessary to restrict the two-parameters q1, q2 [109]. These solutions are necessarily within
the “twist” class [112] with

p1 + p2 = n− + n+ . (4.6)

Specifically, we take

q1 =
3 p1 p

2
2 (5n− − n+ + s) (5n+ − n− + s) (p1 − 2 p2 − s) (p1 + p2 + s)2

4 (n− − p1)2 (n− − p2)2 [s+ 2(p1 + p2)]4
,

q2 = q1|p1↔p2
,

where

s ≡
√
7 (p21 + p22) + 2 p1 p2 − 6 (n2

− + n2
+) . (4.7)

Explicit expressions for the four roots of the quartic polynomial Q(y) were given in [109]
and we take y to lie within the two middle roots y ∈ [y2, y3] where

y2 =
3 p1 p2 (5n+ − n− + s)(s+ p1 + p2)

2 (n− − p1)(n− − p2)[s+ 2 (p1 + p2)]2
,

y3 = y2|n+↔n−
.

(4.8)

Finally, we take ϕ to be a periodic coordinate with period ∆ϕ

∆ϕ

2π
=

[s− (p1 + p2)] [s+ 2(p1 + p2)]

9n− n+ (n− − n+)
. (4.9)
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This ensures that at the poles y = y2, y3 there are Zn± orbifold singularities, with conical
deficit angles given by 2π(1− 1

n±
) respectively. The quantised fluxes are then given by

1

2π

∫
Σ2

dA12
(1) =

p1
n−n+

,
1

2π

∫
Σ2

dA34
(1) =

p2
n−n+

, (4.10)

with pi ∈ Z. Thus A12
(1) and A34

(1) are connection one-forms on line bundles O(p1) and

O(p2) over Σ2, respectively, and, using (4.6), the R-symmetry gauge field A12
(1)) + A34

(1) is a

connection on O(n− + n+), associated with the twist class as noted above. In order to get
a well defined solution, one should take n− > n+ > 0 and p1 < 0 or p1 > n− + n+ and
hence4 in particular, p1p2 < 0.

After uplifting on S4, one obtain a supersymmetric AdS5 solution to D = 11 super-
gravity dual to a d = 4, N = 1 SCFT, as discussed in [112]. The corresponding central
charge calculated from the supergravity solution is given by [112]

a4d =
3 p21 p

2
2 (s+ p1 + p2)

8n− n+ (n− − p1) (p2 − n−) [s+ 2 (p1 + p2)]2
N3 , (4.11)

where N is the quantised four-form flux though the S4 and is associated with the number
of M5-branes wrapping the spindle Σ2.

4.2.2 Consistent truncation

We can use the AdS5×Σ2 solution given in (4.3)-(4.5) as a guide to construct a consistent
truncation ansatz on Σ2. For the D = 7 metric, we take

ds27 = (yP )1/5

[
ds25 +

y

4Q
dy2 +

Q

P

(
dϕ− 4

3
A(1)

)2
]
, (4.12)

where ds25 is the line element for the D = 5 metric and A(1) is the D = 5 gauge field.
Furthermore, the D = 7 gauge fields and the three-form are decomposed in the following
way

A12
(1) =

(
q1
h1

− 1

)(
dϕ− 4

3
A(1)

)
,

A34
(1) =

(
q2
h2

− 1

)(
dϕ− 4

3
A(1)

)
,

S5
(3) = −2y

3
∗5F(2) +

4yQ

3h1h2

(
dϕ− 4

3
A(1)

)
∧ F(2) ,

(4.13)

with the scalar fields unchanged from how they are in the AdS5 × Σ2 solution,

e2λi =
(yP )2/5

hi
. (4.14)

4Setting q1 = q2 in the local solutions (4.3)-(4.5) gives rise to local solutions in D = 7 minimal gauged
supergravity. However, the condition p1p2 < 0 shows that there are no spindle solutions in this sector with
p1 = p2.
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We substitute the above ansatz into the D = 7 equations of motion, and we obtain

Rµν = −4gµν +
2

3
FµρF

ρ
ν − 1

9
gµνFρσF

ρσ ,

d∗5F(2) = −2

3
F(2) ∧ F(2) ,

(4.15)

with ϵ01234 = +1. These are precisely the equations of motion for D = 5 minimal gauged
supergravity [122] in the same conventions5 as used in [55].

A couple of comments are in order. Firstly, as expected, the suitably normalised D = 5
gauge field A(1) appears in the ansatz in a manner that is associated with gauging constant
shifts of the ϕ coordinate: dϕ → dϕ − 4

3
A(1). Interestingly, we find that this needs to be

done using the specific gauge choice6 for the gauge fields A12
(1), A

34
(1) that was mentioned just

below (4.5). It would be nice to have a better understanding of this.
Second, the consistent truncation is a local construction and is valid for any choice of

the constants q1, q2. We are interested in restricting them as we discussed in the previous
subsection in order that y, ϕ parameterise a spindle with suitably quantised magnetic flux.
However, the consistent truncation can also be used for other values of the qi including the
non-compact half spindle solutions discussed in e.g. [123,124].

We can also analyse the consistent truncation at the level of the Killing spinors. Specif-
ically, in appendix C.2, we construct an ansatz for the D = 7 Killing spinors and show
that this leads to the following Killing spinor equations for bosonic configurations of the
resulting D = 5 theory[

∇α −
1

2
βα − iAα −

i

12

(
β βρ
α − 4δβαβ

ρ
)
Fβρ

]
ε = 0 . (4.16)

with β01234 = −i. This is precisely the Killing spinor equation7 for a bosonic configuration
of D = 5 gauged supergravity satisfying the equations of motion (4.15) in the conventions
of [55]. This shows that any supersymmetric bosonic solution of D = 5 minimal gauged
supergravity will give rise to a supersymmetric solution of D = 7 maximal gauged super-
gravity by uplifting on Σ2 via (4.12)-(4.14). We also note that the integrability conditions
for the Killing spinor equations discussed in [125] provide an indirect way to obtain the
D = 5 equations of motion in (4.15).

4.3 Supersymmetric AdS3 × Σ1 ⋉ Σ2 solutions

The D = 5 minimal gauged supergravity admits a supersymmetric AdS3 × Σ1 solution,
where Σ1 is a spindle [55]. In contrast to the spindle solution discussed in the last section,
which is in the twist class of [112], this D = 5 solution is in the anti-twist class. Using the

5In particular the D = 5 supersymmetry parameters have R-charge 1 with respect to the gauge-field
A(1). This is in contrast to charge 1/2 as in the normalisation of the gauge field used in [112] and also in
the D = 7 theory c.f. the comment below (4.5).

6Of course we can change the ansatz in (4.13) by carrying out gauge transformations A12
(1) → A12

(1)+a1dϕ,

A34
(1) → A34

(1)+a2dϕ and this of course leads to the same set of equations in (4.15) (though giving a different

phase for the Killing spinor).
7We note that in the conventions of [55] the D = 5 supersymmetry parameters have R-charge 1 with

respect to the gauge-field A(1). This is in contrast to charge 1/2 as in the normalisation of the gauge field
used in the D = 5 conventions of [112] and also in the D = 7 theory, c.f. the comment below (4.5).
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consistent truncation results (4.12)-(4.14), we can now uplift this solution on the spindle
Σ2 to obtain a new supersymmetric AdS3 × Σ1 ⋉ Σ2 solution of D = 7 maximal gauged
supergravity with Σ2 non-trivially fibred over Σ1. This new solution is holographically dual
to a d = 2 SCFT with N = (0, 2) supersymmetry.

4.3.1 Uplifting D = 5 to D = 7

The supersymmetric AdS3 × Σ1 solution of [55] is given by

ds25 =
4x

9
ds2AdS3

+ ds2Σ1
, A(1) =

1

4

(
1− a

x

)
dψ , (4.17)

where the metric on AdS3 has unit radius, and

ds2Σ1
=
x

f
dx2 +

f

36x2
dψ2 , (4.18)

is the metric on the spindle Σ1, and f is a function of x given by

f(x) = 4x3 − 9x2 + 6ax− a2 , (4.19)

with a a real constant. To ensure that Σ1 is indeed a spindle, specified by two coprime
integers m± (m− > m+), and with suitably quantised magnetic flux, one takes ψ to be
periodic with period ∆ψ and suitably restricts the parameter a,

a =
(m− −m+)

2(2m− +m+)
2(m− + 2m+)

2

4(m2
− +m−m+ +m2

+)
3

,

∆ψ =
2(m2

− +m−m+ +m2
+)

3m−m+(m− +m+)
2π .

(4.20)

One then takes the two smallest roots of the cubic f , which are given by

x1 =
(m− −m+)

2(m− + 2m+)
2

4(m2
− +m−m+ +m2

+)
2
,

x2 =
(m− −m+)

2(2m− +m+)
2

4(m2
− +m−m+ +m2

+)
2
.

(4.21)

The magnetic flux through the spindle is then given by8

1

2π

∫
Σ1

F(2) =
m− −m+

2m−m+

, (4.22)

where F(2) = dA(1). This implies that 2A(1) is a connection one-form on the line bundle
O(m− −m+) over the spindle Σ1 and hence we are in the anti-twist class as noted above.

Using the reduction ansatz given in (4.12)-(4.14), we can now write down the AdS3 ×
Σ1 ⋉ Σ2 solution of D = 7 gauged supergravity. The D = 7 metric is given by

ds27 = (yP )1/5
4x

9

[
ds2AdS3

+
9

4f
dx2 +

f

16x3
dψ2 +

9

16x

y

Q
dy2

+
9

4x

Q

P
(dϕ− 1

3

(
1− a

x

)
dψ)

2

]
,

(4.23)

8The extra factor of 2 in the denominator as compared with (4.10) is due to the fact that the D = 5
gauge field is normalised so that the supersymmetry parameters have charge 1 instead of 1/2, as noted in
footnote 7.
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while the remaining fields are given by

A12
(1) =

(
q1
h1

− 1

)(
dϕ− 1

3

(
1− a

x

)
dψ

)
,

A34
(1) =

(
q2
h2

− 1

)(
dϕ− 1

3

(
1− a

x

)
dψ

)
,

S5
(3) = −8ay

27
vol(AdS3) +

ayQ

3x2h1h2
dx ∧ dψ ∧ dϕ ,

e2λi =
(yP )2/5

hi
.

(4.24)

Recall that f = f(x) while Q,P, hi are all functions of y. We note that the four-dimensional
internal space metric in (4.23) has two Killing vectors ∂ϕ and ∂ψ.

Clearly the internal space has the form of the spindle Σ2, parametrised by (y, ϕ), fi-
bred over the spindle Σ1, parametrised by (x, ψ). To ensure that this fibration is well
defined (in the orbifold sense), we require that the one-form determining the fibration,
η ≡ 2π

∆ϕ

(
dϕ− 1

3

(
1− a

x

)
dψ
)
, is globally defined. This requires that

1

2π

∫
Σ1

dη =
t

m−m+

, t ∈ Z . (4.25)

But since dη = − 2π
∆ϕ

4
3
F(2), using (4.9) and (4.22) we immediately deduce that we need to

impose the following condition on the two sets of spindle quantum numbers m±, n± as well
as the pi satisfying (4.6):

t = −6(m− −m+)
n− n+ (n− − n+)

[s− (p1 + p2)] [s+ 2(p1 + p2)]
∈ Z . (4.26)

This condition ensures that away from the poles on the Σ2 fibre the space Σ1⋉Σ2 is smooth,
including at the poles of the Σ1 spindle base. Indeed at constant value of y ̸= y2, y3, (4.25)
implies that the total space parametrised by the Σ1 base and the circle parametrised by ϕ
will be a Lens space (see appendix A of [84]). However, there are orbifold singularities as-
sociated with the two poles of the Σ2 fibre, when y = y2, y3. The resulting four-dimensional
space M4 is then a spindly version of a Hirzebruch surface. We may describe this more
globally by starting with the base spindle Σ1 = WCP1

[m−,m+], together with the U(1) orbi-

bundle O(t) over it (with e2πiϕ/∆ϕ the fibre coordinate), where by definition the first Chern
class is given by (4.25). One then uses the transition functions for this bundle to fibre
Σ2 = WCP1

[n−,n+] over Σ1, with U(1) acting on the fibres Σ2 by rotation, fixing the poles.9

Notice here that the twisting parameter t ∈ Z can in principle be arbitrary, but that for
the particular solutions we have constructed this is fixed in terms of other parameters via
(4.26). This is likely to be an artefact of the particular ansatz we have taken for the solu-
tions, via a double uplift/consistent truncation. We also note that the resulting space M4

is naturally a toric complex orbifold, and as such can also be described by a gauged linear
sigma model (GLSM). Specifically, M4 may be realized as the vacuum moduli space of a
U(1)2 theory with 4 complex fields of charges (0,−t,m−,m+) and (n+, n−, 0, 0).

9Here one should also be careful to use an appropriate local model for the fibration near to the two
poles of the base Σ1, as described in detail in [112]. Specifically, near such a pole of Σ1, M4 is modelled as
a Zm± quotient of C× Σ2, where Zm± acts on both factors in this product.
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We will not attempt to find the general solution to (4.26) here since, as we will see
in the next section, additional conditions are required for regularity when uplifting to
D = 11. Nevertheless, we can use the results of [109] to show that such solutions do exist.
Specifically, we recall the generating formula provided in [109],

p1 =
n− + n+

2
− 3n− − n+

4
(βk+ + βk−)−

5n− − n+

4
√
3

(βk+ − βk−) . (4.27)

Here k ∈ Z≥0, and we have defined β± ≡ 2 ±
√
3. One can verify that for any n± and

k ∈ Z≥0, we have p1 ∈ Z and crucially also s ∈ Z, where s is defined in (4.7). Since
the expression multiplying (m− −m+) on the right hand side of (4.26) is rational, we can
always choose the integer (m− −m+) such that t ∈ Z.

4.3.2 Uplifting to D = 11

Uplifting the D = 7 solution to D = 11 using [36] (see appendix C.1), we find that the
eleven-dimensional metric is given by

ds211 = ∆1/3ds27 +∆−2/3
(
e4λ1+4λ2dw2

0 + e−2λ1 [dw2
1 + w2

1(dχ1 − A12
(1))

2]

+ e−2λ2 [dw2
2 + w2

2(dχ2 − A34
(1))

2]
)
,

(4.28)

where

∆ = e−4λ1−4λ2w2
0 + e2λ1w2

1 + e2λ2w2
2 . (4.29)

Here ∆χi = 2π and (w0, w1, w2), satisfying w
2
0+w

2
1+w

2
2 = 1 and parametrising a quadrant

of an S2, together parametrise an S4. We can take, for example,

w0 = sin ξ, w1 = cos ξ cos θ, w2 = cos ξ sin θ, (4.30)

with −π/2 ≤ ξ ≤ π/2, 0 ≤ θ ≤ π/2.
Uplifting the AdS3 × Σ1 ⋉ Σ2 solution (4.23)-(4.24), we see that the eight-dimensional

internal space is an S4 fibration over Σ1 ⋉ Σ2. More precisely, here one can regard S4 ⊂
R⊕C⊕C, with w0 a coordinate on the first factor, and (wi, χi) being polar coordinates on
the two copies of C, i = 1, 2. The two factors of C are then fibred over the seven-dimensional
spacetime via the U(1) gauge fields A12

(1), A
34
(1), respectively. As such, this fibration is well-

defined only if the periods of the corresponding gauge field fluxes F 12
(2) ≡ dA12

(1), F
34
(2) ≡ dA34

(1)

are appropriately quantised through two-cycles in the base AdS3×M4. We note that (4.10)
already implies that this is the case for a copy of the fibre Σ2 ofM4, and indeed this defines
the twisting parameters pi ∈ Z, i = 1, 2. We next define the two-cycles Sa ≡ {y = ya},
a = 2, 3, to be the two sections defined by the two poles of the fibre Σ2. From (4.24), we
then compute

1

2π

∫
S2

F 12
(2) =

(
q1

h1(y2)
− 1

)(
−4

3

m− −m+

2m−m+

)
=
p1t[p1 + p2 + 6(n+ − p1)− s]

6m−m+n−n+(n− − n+)
,

(4.31)
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where we have used (4.22), the results of section 4.2.1 and t ∈ Z was defined in (4.26).
Now y = y2 is the Zn+ orbifold singularity of the fibre spindle Σ2 = WCP1

[n−,n+], while each

Sa ∼= Σ1 = WCP1
[m−,m+] for a = 2, 3 is a copy of the base spindle. The flux number in

(4.31) should then be an integer multiple of 1/lcm{m−,m+, n+}. On the other hand t ∈ Z
is determined by (4.26).

We may write down a family of solutions to these integrality constraints as follows. We
introduce

t = 6n−n+(n− − n+)u , (4.32)

where u ∈ Z is an arbitrary integer. Then the condition (4.26) reads

m− −m+ = −[s− (p1 + p2)][s+ 2(p1 + p2)]u . (4.33)

For the family (4.27), recall that s ∈ Z, and the right hand side of (4.33) is manifestly
an integer, as required, and moreover may be regarded as fixing m− −m+ in terms of the
arbitrary integers n±, k, u ∈ Z. It is then immediate from the expression in (4.31) that this
flux number is an integer multiple of 1/m−m+.

One can then verify that the flux numbers for both F 12
(2) and F

34
(2) over the remaining two-

cycles in M4 are automatically quantised appropriately. For example, the flux of F 12
(2)/2π

through S3 = {y = y3} may be computed, with the expression found to be consistent with
the homology relation S3 − S2 =

t
m−m+

Σ2 ∈ H2(M4,R). On the other hand, the fluxes of

F 34
(2) are given by the same expressions as for F 12

(2), but with p1 and p2 exchanged, where
recall the latter are constrained to obey p1 + p2 = n− + n+.

Now we recall that the R-symmetry gauge field flux is FR
(2) ≡ F 12

(2)+F
34
(2). A computation

then gives

1

2π

∫
S2

FR
(2) =

[
− 1

n+

− [s− (p1 + p2)][s+ 2(p1 + p2)]

6n−n+(n− − n+)

]
t

m−m+

= − 1

n+

t

m−m+

+
m− −m+

m−m+

,

(4.34)

and similarly we find

1

2π

∫
S3

FR
(2) =

1

n−

t

m−m+

+
m− −m+

m−m+

. (4.35)

Again, via the homology relation S3 − S2 = t
m−m+

Σ2, the above equations immediately
confirm ∫

Σ2

FR
(2) =

1

n−
+

1

n+

=

∫
Σ2

c1(Σ2) , (4.36)

consistent with (4.10). Recall that the S4 bundle over M4 is twisted via embedding S4 ⊂
R⊕ C⊕ C, where the gauge fields A12

(1), A
34
(1) fibre the two copies of C, respectively. If the

total space of the corresponding C2 = C⊕C bundle overM4 were Calabi-Yau, the fluxes in
(4.34), (4.35) would agree with the first Chern class c1(M4) of M4, integrated through the
two sections Sa. At the section S2

∼= WCP1
[m−,m+], the tangent bundle of M4 splits into a

direct sum, where the complex tangent bundle to the section is simply O(m− +m+), with
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Chern number m−+m+

m−m+
, while the normal bundle is O(−t), with Chern number − t

n+m−m+
.

Notice here that the normal direction is a Zn+ singularity, hence the extra factor of n+. One
can see precisely this structure in (4.34), except we have m− −m+ rather than m− +m+.
Similar remarks apply to the section S3, where the normal bundle is instead O(t), which
is a Zn− singularity. Because of this, the total space of the C2 bundle is not Calabi-Yau,
but only due to the relative minus sign in the m− −m+ terms in (4.34), (4.35). This may
have been anticipated, since the original twist over the Σ1 spindle is an anti-twist, which
is reflected in the above formulae.

Having ensured that the D = 11 spacetime is a well-defined orbifold, we now turn to the
four-form flux. There are two natural four-cycles: fixing a point on the base M4 = Σ1⋉Σ2

we obtain a copy of the fibre S4. On the other hand, if we fix either the north or south
pole section w0 = ±1 of S4, we obtain copies of the baseM4 = Σ1⋉Σ2. The four-form flux
of the D = 11 solution consists of several terms which can be found in appendix C.1, and
here in the main text we focus on the terms which are relevant for quantising the four-form
flux through the above cycles. Specifically, we have

F(4) =
w1w2

w0

U∆−2dw1 ∧ dw2 ∧ (dχ1 − A12
(1)) ∧ (dχ2 − A34

(1))

− w0
1

3
F(2) ∧ dy ∧ dϕ+ . . . ,

(4.37)

where

U =
(
e−8λ1−8λ2 − 2e−2λ1−4λ2 − 2e−4λ1−2λ2

)
w2

0

−
(
e−2λ1−4λ2 + 2e2λ1+2λ2

)
w2

1 −
(
e−4λ1−2λ2 + 2e2λ1+2λ2

)
w2

2 ,
(4.38)

and we note that the last term in F(4) in (4.37) arises from a D = 7 contribution involving
∗7S5

(3) which contains the D = 5 field strength F(2).

To carry out flux quantisation, we first rescale the metric by L2 and the four-from by L3.
We can then integrate the first term in (4.37) on the S4 at a fixed point on M4 = Σ1 ⋉ Σ2

and find

1

(2πℓp)3

∫
S4

F(4) =
L3

πℓ3p
≡ N , (4.39)

where N is interpreted as the number of M5-branes wrapping M4 ≡ Σ1 ⋉ Σ2. We can also
integrate the four-form flux (4.37) along the orbifold four-cycle M4 in the D = 7 solution.
Representatives M±

4 for this cycle (with opposite orientation) are obtained at the north or
south pole of the S4 fibre w0 = ±1 and we find

1

(2πℓp)3

∫
M±

4

F(4) = ±m− −m+

m−m+

p1p2
n−n+(2(n− + n+) + s)

N . (4.40)

Since the total D = 11 spacetime has orbifold singularities, it is not clear what the precise
quantisation condition should be imposed on this flux. For the family of solutions we have
discussed, with p1 given by (4.27), the expression (4.40) is rational but not in general
integer. Of course, by choosing N appropriately, it can be made integer.

Finally, we calculate the central charge of the dual d = 2, N = (0, 2) SCFT. The
D = 7 Newton’s constant is given by (G(7))

−1 = N3/(6π2) (see, for example, appendix A.3
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of [112]). We then obtain the D = 3 Newton’s constant by reducing the D = 7 theory on
M4 = Σ1 ⋉ Σ2 to get

(G(3))
−1 = (G(7))

−1

∫
dxdψdydϕ

(
1

18
y

)
= (G(7))

−1∆x∆ψ
1

36
(y23 − y22)∆ϕ .

(4.41)

Therefore, the d = 2 central charge c = (3/2)(G(3))
−1 can be written as

c =
4(m− −m+)

3

3m−m+(m2
− +m−m+ +m2

+)
a4d , (4.42)

where a4d is given in (4.11).

4.4 Supersymmetric AdS3 × Σg ⋉ Σ2 solutions

Minimal D = 5 gauged supergravity also admits a supersymmetric AdS3 × H2 solution,
where H2 is a two-dimensional hyperbolic space with constant curvature metric. After
taking a discrete quotient, we get a supersymmetric AdS3 × Σg solution, where Σg is a
Riemann surface with genus g > 1. This is the standard topological twist solution, which
arises as the near-horizon limit of a black string solution [70, 120] and is dual to a d = 2
SCFT with N = (0, 2) supersymmetry. .

Using our consistent truncation results (4.12)-(4.14), we can also uplift this solution on
the spindle Σ2 to obtain a new supersymmetric AdS3 × Σg ⋉ Σ2 solution of D = 7 gauged
gravity with Σ2 non-trivially fibred over Σg. The D = 7 metric is given by

ds27 =
4(yP )1/5

9

[
ds2(AdS3) +

3

4
ds2(Σg) +

9y

16Q
dy2 +

9Q

4P

(
dϕ− 2

3
ω

)2
]
. (4.43)

Here ds2(Σg) is normalised such that the Ricci scalar is R(Σg) = −2 and ω is the Levi-
Civita connection one-form satisfying dω = −vol(Σg). Thus the volume of the Riemann
surface is

∫
Σg

vol(Σg) = 4π(g− 1). The remaining fields take the form

A12
(1) =

(
q1
h1

− 1

)(
dϕ− 2

3
ω

)
,

A34
(1) =

(
q2
h2

− 1

)(
dϕ− 2

3
ω

)
,

S5
(3) =

8y

27
vol(AdS3)−

2yQ

3h1h2
dϕ ∧ vol(Σg) ,

e2λi =
(yP )2/5

hi
.

(4.44)

Notice that the spindle Σ2 is non-trivially fibred over Σg. To ensure that this fibration is
well-defined (in the orbifold sense), we demand that the one-form determining the fibration,
η ≡ 2π

∆ϕ
(dϕ− 2

3
ω), is globally defined. This requires that

1

2π

∫
Σg

dη = t , t ∈ Z , (4.45)
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and hence we need to impose the quantisation condition relating the spindle quantum
numbers with the genus:

t = 12(g− 1)
n− n+ (n− − n+)

[s− (p1 + p2)] [s+ 2(p1 + p2)]
∈ Z . (4.46)

The global discussion of the resulting space M4 = Σg ⋉ Σ2 is very similar to that in
the previous section. Specifically, one begins with the complex line bundle O(t) over the
Riemann surface Σg, and then uses the U(1) transition function for this bundle to construct
the associated Σ2 fibration over Σg, with U(1) acting on Σ2 by azimuthal rotations around
the poles. The resulting space is then a spindly version of a rationally ruled surface,
replacing the CP1 fibres by Σ2 = WCP1

[n−,n+].
The twisting parameter t ∈ Z is constrained to satisfy (4.46), and one can solve this as

in the previous section by first writing

t = 12n−n+(n− − n+)u , (4.47)

with u ∈ Z arbitrary, and then imposing that the fibre data for Σ2 is given by the family
of solutions in (4.27). One then chooses the genus g to be

g = 1 + [s− (p1 + p2)] [s+ 2(p1 + p2)]u , (4.48)

where the right hand side is now manifestly an integer. This family of solutions is then
specified by n±, k, u ∈ Z, where recall that for this family also s ∈ Z.

We can now uplift on S4 to obtain a D = 11 solution exactly as in the previous section.
There are again two sections Sa = {y = ya} ∼= Σg, a = 2, 3, and we compute

1

2π

∫
S2

F 12
(2) =

(
q1

h1(y2)
− 1

)
4

3
(g− 1) =

p1t[p1 + p2 + 6(n+ − p1)− s]

6n−n+(n− − n+)
, (4.49)

similarly to (4.31). Substituting for t ∈ Z using (4.47), this flux number is an integer
for the family of solutions described above. The remaining flux numbers for F 12

(2), F
34
(2)

are similarly integer. However, a key difference with the Σ1 ⋉ Σ2 solutions in the previous
section is that the C2 fibration overM4 = Σg⋉Σ2 is now a Calabi-Yau four-fold. Essentially,
this is because we have doubly uplifted two twist solutions. To see this, we compute the
R-symmetry fluxes

1

2π

∫
S2

FR
(2) = − 1

n+

t− 2(g− 1) ,
1

2π

∫
S3

FR
(2) =

1

n−
t− 2(g− 1) . (4.50)

On the other hand, these expressions are precisely c1(M4) integrated over the cycles S2,
S3, respectively, where recall that

∫
Σg
c1(TΣg) = −2(g− 1), and the normal bundles of the

cycles are respectively O(−t) and O(t). This shows that the C2 bundle over M4 has zero
first Chern class, making the total space a Calabi-Yau four-fold.

We normalise the solution so that there are N units of quantised four-form flux through
the S4 fibre. There is then also the flux through the four-cycles M±

4
∼= Σg ⋉ Σ2 at the

north and south pole sections w0 = ±1 of the S4, where we compute

1

(2πℓp)3

∫
M±

4

F(4) = ∓2(g− 1)
p1p2

n−n+(2(n− + n+) + s)
N . (4.51)
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As discussed in the previous section, this is generally rational for the above family, and by
choosing N appropriately one can ensure that the fluxes are integer.

Finally, the central charge of the d = 2, N = (0, 2) SCFT in the large N limit is found
to be

c =
32

3
(g− 1)a4d , (4.52)

where a4d is given in (4.11). This result for the central charge is in perfect agreement with
the general field theory result of [126] for general d = 4, N = 1 SCFTs compactified on a
Riemann surface with a topological twist.

4.5 Field theory

We can calculate the central charges of the d = 2, N = (0, 2) SCFTs dual to the AdS3

solutions discussed in the last two sections using field theory arguments in a two step
process. We begin with the d = 6, N = (0, 2) SCFT living on the world volume of a stack
of N M5-branes. We compactify this d = 6 SCFT on a spindle Σ2 with magnetic fluxes
in the twist class to obtain a d = 4, N = 1 SCFT. From the results of [109], based on
studying the M5-brane anomaly polynomial and using a-maximisation, the central charge
of the d = 4 SCFT in the large N limit is given by

a4d =
3p21p

2
2(p1 + p2 + s)

8n−n+(n− − p1)(p2 − n−)(s+ 2(p1 + p2))2
N3 , (4.53)

which is in exact agreement with the supergravity result (4.11).
Now we consider compactifying this d = 4, N = 1 SCFT on the spindle Σ1, specified

by co-prime integers m+,m− and with the magnetic flux in the anti-twist class, to get a
d = 2, N = (0, 2) SCFT. Using the results of [55], based on the anomaly polynomial of a
general d = 4, N = 1 SCFT, the central charge of the d = 2 SCFT in the large N limit is
given by

c =
4(m− −m+)

3

3m−m+(m2
− +m−m+ +m2

+)
a4d , (4.54)

which is in exact agreement with the supergravity result (4.42). We can also carry out a
similar analysis after compactifying the d = 4, N = 1 SCFT on a Riemann surface Σg with
a topological twist. In fact, this is an example of a “universal twist” and we can use the
results of [126] to obtain the central charge in the large N limit

c =
32

3
(g− 1)a4d , (4.55)

which is again in exact agreement with the supergravity result (4.52).
It is also possible to derive these field theory results in a one-step process, by directly

reducing the M5-brane anomaly polynomial on the orbifold four-cycles. For example, in
compactifying the d = 6, N = (0, 2) theory on Σ1⋉Σ2, we would need to take into account
that the R-symmetry of the d = 2 SCFT arises from a mixture of an R-symmetry of the
parent d = 6 SCFT and the U(1) × U(1) global symmetry arising from the isometries
of Σ1 ⋉ Σ2. In appendix C.3, we carry out this analysis, which generalises the results
of [55, 109] on individual spindles. While the final answer is identical, we have included
some details because such an analysis would be needed in compactfying the d = 6 theory
on more general orbifolds.
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4.6 Discussion

In this chapter, we have presented two new families of AdS3 solutions of D = 11 super-
gravity, which describe M5-branes wrapping on four-dimensional orbifolds M4. In both
cases, M4 takes the form of a spindle Σ2 fibred over another two-dimensional space: either
another spindle Σ1, or a smooth Riemann surface Σg of genus g > 1. These solutions
are holographically dual to d = 2, N = (0, 2) SCFTs, and a computation of the central
charges of these theories using anomaly polynomials perfectly matches the supergravity re-
sults. In the case of M4 = Σg ⋉Σ2, the solution can be naturally interpreted as M5-branes
wrapping an orbifold four-cycle, which is holomorphically embedded inside a Calabi-Yau
four-fold, generalising [62,72]. Such an interpretation is not available for the solution with
M4 = Σ1 ⋉Σ2, and this feature, which is common for all of the known spindle solutions in
the anti-twist class, deserves a much better understanding.

A key ingredient in our construction is a new consistent KK truncation of D = 7
gauged supergravity on a spindle down to D = 5 minimal gauged supergravity. The new
solutions have then been obtained by a double uplifting procedure, starting with AdS3×Σ1

or AdS3 × Σg solutions of D = 5 minimal gauged supergravity, respectively, uplifting to
D = 7 on Σ2, and then uplifting on S4 to D = 11. This consistent truncation is local in
the supergravity fields, hence the analysis we have done here will also go through for the
(singular) half-spindle solutions studied in [123,124]. More generally, analogous consistent
truncations can also be carried out for other known AdSd+1 × Σ solutions, such as [111],
leading to new AdS2 × Σ1 ⋉ Σ2 solutions which should correspond to wrapping D4-branes
on Σ1 ⋉ Σ2.

The structure of the D = 7 solutions with M4 = Σ1 ⋉ Σ2 is rather remarkable: the
solutions are of cohomogeneity two, with the various supergravity fields depending non-
trivially on the two coordinates x and y, and they also exhibit a remarkable separation
of variables. Such a separation of variables in solutions to the Einstein equations is often
associated with the existence of a Killing (or Killing-Yano) tensor, and it would be inter-
esting to further investigate this perspective. In fact, it would have been extremely difficult
to find the D = 7 solutions directly, without any prior understanding of how to separate
variables in such manner, and there may be similar classes of solutions generalizing those
we have found here. We also note that the corresponding uplifted D = 11 AdS3 solutions
are different to those constructed in [127]. This naturally begs the question of how the new
solutions fit into a G-structure classification, extending [128].

Both families of supergravity solutions depend on a number of integer parameters,
and we expect there to be more general solutions of this type. For example, one might
anticipate solutions with M4 = Σ1 ⋉ Σ2, with arbitrary spindle data m±, n±, for Σ1,
Σ2, respectively, with an arbitrary twisting parameter t ∈ Z describing the fibration, and
where the S4 ⊂ R⊕ C2 fibration is specified by two further integer Chern numbers. This
is a seven-parameter family, while the solutions we have found have only five-parameters
(presumably due to the particular way we have constructed them as a double uplift). The
larger conjectured family would also include smooth M4: setting m± = 1 = n± gives
Hirzebruch surfaces M4 = F|t|.

The results we have presented open the door for potentially many more new orbifold
solutions. This raises a key question that we have left open in this chapter: what is the
appropriate four-form flux quantisation condition in M-theory when the D = 11 spacetime
has orbifold singularities? One approach to this would be to resolve (at least topologically)
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the singularities, quantise the flux on this smooth resolution, and then take the singular
limit. This would lead to rationally quantised flux, and we have shown that it is always
possible to impose such condition for our solutions by appropriately choosing the spindle
parameters, but the precise quantisation condition required remains unclear. We leave
this, and many of the other interesting questions raised above, for future work.
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Part IV :

Mass deformations of N = 4 SYM
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Chapter 5

Supersymmetric mass deformations
of N = 4 SYM

5.1 Introduction

Mass deformations of N = 4 d = 4 SYM theory that preserve some supersymmetry
have been extensively studied and are associated with very rich dynamical features under
RG flow (see e.g. [51, 52, 129–137]). However, most of these studies consider only the
case of homogeneous mass deformations. In this chapter, we will explore inhomogeneous
mass deformations of N = 4 SYM theory which are spatially modulated in one of the
three spatial directions and still preserve some residual supersymmetry. A particularly
interesting sub-class of such deformations also preserve conformal symmetry with respect
to the remaining three spacetime dimensions and describe co-dimension one superconformal
interfaces.

Our investigations are somewhat analogous to those which have been carried out in the
context of ABJM theory. It is known that the homogeneous (i.e. spatially independent)
mass deformations of ABJM theory [138, 139] can be generalised to mass deformations
that depend on one of the two spatial coordinates and still preserve 1/2 of the supersym-
metry [140]. Further generalisations, preserving less supersymmetry, were subsequently
investigated in [141]. Holographic descriptions of such deformations, preserving 1/4 of the
supersymmetry of D = 11 supergravity, were first constructed in [142] using the so-called
Q-lattice construction [143]. The results of [142] included novel solutions that are holo-
graphically dual to boomerang RG flows which flow from ABJM theory in the UV back to
ABJM theory in the IR. The Q-lattice construction of [142] was substantially generalised
in [144], where it was shown that there is a novel class of D = 11 supergravity solutions,
again preserving 1/4 of the supersymmetry, which can be obtained by simply solving the
Helmholtz equation on a complex plane. In addition to presenting a new set of solutions
describing boomerang RG flows, the construction of [144] also included the Janus solutions
of [145]. Finite temperature generalisations, using the Q-lattice construction, have been
discussed in [146,147].

Before continuing our discussion, we note that there are various usages of the term
“Janus” in the literature. In this chapter, we will refer it to a co-dimension one, planar,
conformal interface that has the same CFT on either side of the interface (or the same
up to a discrete parity symmetry). This includes the rich set of examples associated
with N = 4 SYM theory which are obtained by varying the coupling constant and theta
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angle as in [53, 148–156]. For these Janus configurations, the CFT is being deformed
by exactly marginal operators away from the interface, and in some cases there are also
additional sources for relevant operators located on the interface itself. For the Janus
solutions of D = 11 supergravity considered in [145], the ABJM theory is deformed by
relevant operators located on the interface, while for those considered in [144, 157], the
ABJM theory is deformed by relevant scalar operators that have spatial dependence away
from the interface (see also [158]).

In this chapter, we will show that there are new supersymmetric Janus configurations of
N = 4 SYM theory which arise from spatially modulated fermion and boson mass deforma-
tions but with the same coupling constant and theta angle on either side of the interface.
In addition to these Janus solutions, we will also construct novel supergravity solutions
dual to conformally invariant, co-dimension one interfaces, separating two different CFTs.
In these configurations, the two CFTs are related by the standard Poincaré invariant renor-
malisation group (RG) flow, hence we refer them as “RG interfaces” (see [159, 160]) and
they will be further discussed in chapter 6.

To determine which spatially modulated mass deformations of N = 4 SYM theory can
preserve supersymmetry, we employ the background field method of Festuccia and Seiberg
[161] (for theories with less supersymmetry, one might consider the simpler approach of
[162]). As in [163], we first couple theN = 4 SYM theory to off-shell conformal supergravity
and then take the Planck mass to infinity, such that the fields in the supergravity multiplet
become non-dynamical. In this limit, we are left with an N = 4 supersymmetric field
theory coupled to a set of non-dynamical supergravity fields, which are now viewed as
background couplings. The background couplings which preserve supersymmetry can then
be determined by analysing the supersymmetry transformations of the field theory coupled
to the off-shell supergravity theory.

We will focus our investigations on generalising the class of homogeneous mass defor-
mations known as the N = 1∗ theories. Recall that the field content of N = 4 SYM,
in terms of an N = 1 language, consists of a vector multiplet coupled to three chiral
multiplets Φa. Deforming the theory by adding to the superpotential a term of the form
∆W ∼ ∑3

a=1maTrΦaΦa, where ma are constant, complex mass parameters, defines the
class of N = 1∗ theories. Three cases of particular interest are (i) the “one mass model”
with m1 = m2 = 0, (ii) the “equal mass model”, with m1 = m2 = m3, and (iii) the N = 2∗

theory with m1 = m2 and m3 = 0.
We will show that all of these N = 1∗ theories can be generalised such that the mass

parameters depend on one of the three spatial coordinates while preserving N = 1 Poincaré
supersymmetry with respect to the remaining d = 3 spacetime dimensions. For the case of
the N = 2∗ theory, there is an enhancement to N = 2 Poincaré supersymmetry in d = 3.
Furthermore, it is possible to suitably choose the mass parameters such that the N = 1
Poincaré supersymmetry is enhanced to an N = 1 or N = 2 superconformal symmetry in
d = 3, respectively. This latter class of deformations defines a class of Janus configurations
of N = 4 SYM theory, which have the novel feature that the coupling constant and the
theta angle take the same value on either side of the interface, in contrast to previously
constructed Janus configurations of N = 4 SYM in the literature. It is important to em-
phasise that our field theory results concerning supersymmetric Janus configurations of
N = 4 SYM with constant coupling across the interface are complementary to the classi-
fication results carried out in [151], for which it was assumed that the coupling constant
varies across the interface and that any additional deformations are proportional to the
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spatial derivative of the coupling constant.
The deformations we are considering here can also be studied holographically by con-

structing solutions of Type IIB supergravity. A convenient and economic way to construct
such solutions is to first construct them within the D = 5 maximal SO(6) gauged super-
gravity [164–166] and then uplift them to D = 10 using [39, 40]. For the deformations
we consider here, we can utilise the consistent truncations of D = 5 maximal gauged su-
pergravity discussed in [167, 168], which is comprised of the D = 5 metric and a number
of scalar fields. Specifically, there is a corresponding consistent truncation model which is
suitable for studying the mass deformations for each of the threeN = 1∗ theories mentioned
above.

We will first derive the BPS equations that are relevant for spatially modulated mass
deformations of N = 4 SYM theory that preserve ISO(1, 2) symmetry. In this case, the
BPS equations are partial differential equations in two variables. For this class of solutions,
we will carry out a detailed analysis of the holographic renormalisation procedure, which
allows us to obtain detailed information on the sources and expectation values of various
operators. In order to have a supersymmetric renormalisation scheme, there is a set of
finite counterterms which one needs to introduce. By demanding that the energy density of
these BPS configurations is a total spatial derivative, thus leading to vanishing total energy,
imposes some constraints on these counterterms (which can be viewed as a complementary
approach to the “Bogomol’nyi trick” used in [167–169]). However, determining the full set
of conditions required for a supersymmetric scheme is left to future work.

We will then focus on the BPS equations for the special subclass of solutions associated
with Janus configurations. By writing the D = 5 metric ansatz foliated by AdS4 slices,
the BPS equations become a set of ODEs which we numerically solve for each of the
three consistent truncations. For each of the three models, we find supersymmetric Janus
solutions which approach the N = 4 SYM AdS5 vacuum on either side of the interface. We
also find solutions which approach the AdS5 vacuum on one side and are singular on the
other, as well as solutions that are singular on both sides, whose physical interpretation
remains unclear.

Additionally, for the one mass model, we find new types of solutions which will be
further explored and discussed in chapter 6. Recall that homogeneous mass deformations
in the one mass model induce a Poincaré invariant RG flow to the Leigh-Strassler (LS)
fixed point [52]. From the gravity side, within the truncation we consider for the one-mass
model, in addition to the N = 4 SYM AdS5 vacuum solution, there are two additional
AdS5 solutions, related by a Z2 symmetry, which we will denote LS±, and each of these two
fixed points is dual to the LS fixed point. Here we will construct novel solutions that are
dual to superconformal RG interfaces, approaching the N = 4 SYM AdS5 solution on one
side and one of the two LS AdS5 solutions on the other. We will also construct solutions
that approach LS+ AdS5 on one side of the interface and LS− AdS5 on the other, giving
rise to Janus solutions of the Leigh-Strassler SCFT.

We also find a particularly interesting new feature for the equal mass model. This model
is the most complicated one to analyse since it consists of four real scalar fields instead of
three. Furthermore, one of the scalar fields is the dilaton dual to the coupling constant of
N = 4 SYM. While there are certainly rich Janus solutions for which the coupling constant
is different on either side of the interface, we focus our attention on solutions where it has
the same value. Within this four-scalar model, we find a novel class of Janus solutions
that, rather surprisingly, approach a solution which is periodic in a bulk coordinate. By
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compactifying this coordinate, one then obtains a supersymmetric AdS4 × S1 solution.
After uplifting on S5 to Type IIB, this gives rise to a new supersymmetric AdS4 ×S1 ×S5

solution which will be further explored in chapter 7.
The plan of the rest of the chapter is as follows. In section 5.2, we determine the

conditions for spatially modulated mass deformations of N = 4 SYM theory to preserve
supersymmetry. In section 5.3, we introduce the supergravity truncation of D = 5 maximal
SO(6) gauged supergravity [167, 168] which couples the D = 5 metric to ten scalar fields,
as well as three further truncations that are relevant for studying the three classes of
N = 1∗ theories. In sections 5.4 and 5.5, we will present the BPS equations relevant for
spatially modulated mass deformations which preserve d = 3 Poincaré and superconformal
invariance. In section 5.6, we present and discuss various new supergravity solutions,
including the new Janus solutions as well as the solutions dual to superconformal RG
interfaces involving the LS fixed point for the one mass model and the novel AdS4 × S1

solution for the equal mass model. We conclude this chapter with some discussion in
section 5.7, and collect some useful results in the appendices, including the derivation of
the BPS equations and some details of the holographic renormalisation procedure used to
calculate expectation values of various operators.

5.2 Supersymmetric mass deformations

5.2.1 Background field method

Before continuing to discuss how one can systematically deform N = 4 SYM while pre-
serving some supersymmetry, we should first provide a brief review of the background field
method, used by Festuccia and Seiberg [161] to study supersymmetric field theories on
curved backgrounds.

Their idea is to first couple the flat spacetime supersymmetric field theory to an off-
shell supergravity theory. Recall that the supergravity multiplet is typically comprised
of the metric gµν , the gravitino ψµ and some auxiliary fields. Then we take a rigid limit
where the Planck mass is sent to infinity (or equivalently the Newton’s constant is sent to
zero), such that the metric is sent to a fixed background metric and the auxiliary fields are
also sent to fixed background values. Now we demand that the background configuration,
which is bosonic (i.e. ψµ = 0), preserves some supersymmetry, and this can be achieved by
requiring the supersymmetry variations of the gravitino (and in general all other fermions
in the supergravity multiplet) to vanish in the rigid limit,

δψµ = 0 , (5.1)

leading to a set of first order Killing spinor equations, which are the local condition for
preserving supersymmetry on a curved background. Specifically, we are interested in back-
ground configurations (i.e. metrics, auxiliary fields and all other bosonic fields in the super-
gravity multiplet) which can support (5.1) to admit non-trivial solutions. Once equipped
with a solution of (5.1) on a background configuration, we can determine the supersym-
metry transformations of the matter fields and the Lagrangian of the supersymmetric field
theory on this background from the coupled, off-shell supergravity theory by taking the
rigid limit.

This procedure by Festuccia and Seiberg provides a powerful, systematic treatment of
rigid supersymmetric field theories on curved backgrounds. In the next section, we will
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deploy the same technology to study supersymmetric deformations of N = 4 SYM by
coupling it to off-shell conformal supergravity.

5.2.2 Coupling to off-shell conformal supergravity

The coupling of N = 4 SYM to off-shell conformal supergravity [170] was investigated
in [171–173]. In [163], it was highlighted that this setup can be utilised to study supersym-
metric deformations of N = 4 SYM. As an application, supersymmetric deformations of
N = 4 SYM, including some known Janus configurations with non-trivial, spatially depen-
dent profiles for the coupling constant g and theta angle θ, were discussed in [163] using
this off-shell conformal supergravity formalism. In this section, we will employ the same
formalism to study a new class of spatially dependent mass deformations which generalise
the N = 1∗ homogeneous mass deformations.

The possible bosonic deformations of N = 4 SYM are parametrised by the bosonic aux-
iliary fields of the four-dimensional off shell conformal supergravity theory, which transform
in the representations of SU(4)R (i.e. the global R-symmetry group of the undeformed the-
ory). The deformations transforming in the 1 of SU(4)R are associated with placing N = 4
SYM on a curved manifold, as well as spatially dependent gauge coupling g and theta angle
θ which can be recasted as the complexified gauge coupling parameter τ ≡ θ

2π
+ i4π

g2
. In

addition, there are deformations Eij transforming in the 10 of SU(4)R, D
ij
kl transforming

in the 20 of SU(4)R, as well as one-forms V i
µ j and two-forms T ijµν transforming in the 15

and 6 of SU(4)R respectively. In this chapter, we will focus on spatially modulated mass
deformations of the bosonic and fermionic fields involving only Eij and D

ij
kl, hence we will

set

V i
µ j = 0 ,

T ijµν = 0 ,

τ = constant .

(5.2)

In general, the components of Eij and D
ij
kl are both complex and satisfy

Eij = Eji ,

Dij
kl = −Dji

kl = −Dij
lk ,

(Dkl
ij)

∗ = Dij
kl =

1

4
ϵijmnϵklpqD

pq
mn ,

Dij
kj = 0 ,

(5.3)

with i, j, · · · = 1, . . . , 4.
To see how these background fields couple to N = 4 SYM, we first recall that the field

content of N = 4 SYM consists of gauge fields Aµ, fermions ψi, both transforming in the
4 of SU(4)R, and bosons ϕij, satisfying (ϕij)∗ = ϕij =

1
2
ϵijklϕ

kl, transforming in the 6 of

80



SU(4)R. The deformed action, in flat spacetime, is given by12

S =

∫
d4yTr

(
− 1

4g2
FµνF

µν − θ

32π2
Fµν∗F µν − 1

2
Dµϕ

ijDµϕij − ψ̄iγ
µDµψ

i

− gϕij[ψ̄
i, ψj]− gϕij[ψ̄i, ψj] +

1

2
g2[ϕij, ϕjk][ϕ

kl, ϕli]

+
1

2
ϕij (Mϕ)

ij
klϕ

kl +
1

2
ψ̄i (Mψ)ij ψ

j +
1

2
ψ̄i
(
M̄ψ

)ij
ψj

− 2

3
g
(
M̄ψ

)kl
ϕij[ϕik, ϕjl]−

2

3
g (Mψ)kl ϕij[ϕ

ik, ϕjl]
)
.

(5.4)

The first two lines of (5.4) are just the undeformed action of N = 4 SYM with Fµν =
∂µAν − ∂νAµ + [Aµ, Aν ], Dµϕ

ij = ∂µϕ
ij + [Aµ, ϕ

ij] and Dµψ
i = ∂µψ

i + [Aµ, ψ
i]. The third

and fourth lines of (5.4) represent the terms responsible for the mass deformations, with
the mass matrices for the bosons and fermions given by

(Mϕ)
ij
kl =

1

2
Dij

kl −
1

12
δ[ikδ

j]
l

(
ĒmnEmn

)
,

(Mψ)ij = −1

2
Eij,

(
M̄ψ

)ij
= −1

2
Ēij , (5.5)

and Ēij ≡ (Eij)
∗. In general, these deformations Eij and Dij

kl can have arbitrary de-
pendence on the the spacetime coordinates. The supersymmetry transformations of the
matter fields for this deformed theory are given by3

δAµ = g
(
ϵ̄iγµψi + ϵ̄iγµψ

i
)
,

δψi = − 1

2g
Fµνγ

µνϵi − 2Dµϕ
ijγµϵj + Ēijϕjkϵ

k − 2g[ϕij, ϕjk]ϵ
k − 2ϕijηj,

δϕij = 2ϵ̄[iψj] − ϵijklϵ̄kψl .

(5.6)

The spinors ϵi and ηi parametrise the possible Poincaré supersymmetries and superconfor-
mal symmetries respectively. Preservation of some supersymmetries will only be possible
if there are solutions to the following equations

0 = Eijϵ
j ,

0 = −1

2
εijlm∂µEklγ

µϵm +Dij
klϵ

l +
1

2
EklĒ

l[iϵj] − 1

6
EmlĒ

mlδ
[i
k ϵ
j]

− 1

6
EmlĒ

m[iδ
j]
k ϵ

l − 1

2
ϵijlmEklηm ,

0 = 2∂µϵ
i − γµη

i ,

(5.7)

1We emphasise that a “mostly plus” (−,+,+,+) convention for the metric is used in this section, and
this is in contrast with the later usage of a “mostly minus” convention when we construct supergravity
solutions.

2Note that we mostly follow the conventions and notation of [171, 172]. Thus, ψi is a chiral spinor
satisfying γ5ψ

i = +ψi transforming in the 4̄ of SU(4). The conjugate spinor, ψi, defined by ψi ≡ B(ψi)∗

(in contrast to the notation used in [163]) where B−1γaB = γ∗a, has the opposite chirality, γ5ψi = −ψi, and
transforms in the 4 of SU(4). Note that we have changed the sign of (Mψ)ij in (5.5) compared with [163],

in agreement with eq. (10) of [171].
3Note that ϵi, ηi both transform in the 4̄ of SU(4) and satisfy the chirality conditions γ5ϵ

i = +ϵi,
γ5η

i = −ηi. The conjugate spinors ϵi, ηi transform in the 4 of SU(4) with γ5ϵi = −ϵi, γ5ηi = +ηi. We
note that (5.6) can be obtained from eq. (5) of [171].
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which arise from the supersymmetry variations of the gravitino and the auxiliary fields in
the off-shell conformal supergravity multiplet, and can be found in [170]. We note that a
complete basis of solutions to the last line of (5.7) is given by

ϵi = constant, ηi = 0 ,

ϵi =
1

2
yµγµη

i, ηi = constant.
(5.8)

In the following, when we refer to solutions to these background equations in (5.7) with a
given ϵi, we mean solutions as in the first line of (5.8), which are the Poincaré supersym-
metries. When referring to a solution with a given ηi, we mean a solution as in the second
line of (5.8), which are the superconformal symmetries.

It is important to emphasise that we do not attempt to find the most general solution
to (5.7). Our main goal here is to focus on generalising some known homogeneous (i.e.
spatially independent) mass deformations that can be studied holographically within the
known truncations of D = 5 maximal SO(6) gauged supergravity. Specifically, we will
consider the homogeneous N = 1∗ deformations and allow for an additional dependence
on one of the three spatial coordinates.

To cast the N = 1∗ deformations in the present formalism, we recall that the field
content of N = 4 SYM, when written in terms of the N = 1 language, is comprised of a
vector multiplet that includes the gauge-field and the gaugino, and three chiral superfields
Φa transforming in the 3 of SU(3) in the decomposition SU(3) × U(1) ⊂ SU(4)R. The
N = 1∗ homogeneous mass deformations can be obtained by adding to the superpotential
the following term

∆W ∼
3∑

a=1

maTrΦaΦa , (5.9)

withma complex. This deformation in (5.9) gives rise to masses for the bosons and fermions
in the three chiral multiplets, but there is no mass deformation for the gaugino in the vector
multiplet. Under the present formalism, these N = 1∗ deformations are associated with
fermion mass deformations of the form

Eij = diag(m1,m2,m3, 0), (5.10)

and together with boson mass deformations parametrised by both Eij and specific compo-
nents of Dij

kl which we will describe below.
Our goal is to generalise the N = 1∗ deformations by allowing ma to depend on one

of the three spatial coordinates (i.e. ma = ma(y)). We first analyse the general case with
distinct, non-vanishing mass terms ma, before moving on to discuss some subclasses which
are of relevance in this chapter. From the first line of (5.7), it is clear that one can preserve
N = 1 Poincaré supersymmetry of the form

ϵ = (0, 0, 0, ϵ4) . (5.11)

In the homogeneous case, with ma constant, we notice that the middle equation of (5.7)
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can be satisfied by choosing

D14
14 = D23

23 =
1

12

(
|m2|2+|m3|2−2|m1|2

)
,

D24
24 = D13

13 =
1

12

(
|m3|2+|m1|2−2|m2|2

)
,

D34
34 = D12

12 =
1

12

(
|m1|2+|m2|2−2|m3|2

)
.

(5.12)

If we allow spatially modulated deformations ma = ma(y), taking i = 1, j = 2 and k = 3
in (5.7) as an example, the spinor ϵ4 would need to satisfy

D12
34ϵ

4 − 1

2
∂ym3γ

yϵ4 = 0 , (5.13)

where ϵ4 is the spinor conjugate to ϵ4 with ϵ4 = B(ϵ4)∗. This can be solved by imposing
the following projection condition on the Poincaré supersymmetry parameters

γyϵ4 = eiσϵ4 , (5.14)

where σ is a real constant. In fact, we find that all components of (5.7) are satisfied by
taking

D12
34 = (D34

12)
∗ =

1

2
eiσ∂ym3,

D23
14 = (D14

23)
∗ =

1

2
eiσ∂ym1,

D31
24 = (D24

31)
∗ =

1

2
eiσ∂ym2 ,

(5.15)

as well as keeping (5.12), with all other components set to zero.
The projection condition (5.14) breaks half of the Poincaré supersymmetry of the N =

1∗ theories, which leaves us with two Poincaré supercharges. Since the deformations only
depend on one of the three spatial dimensions, we must have preserved Poincaré invariance
in the remaining d = 3 spacetime dimensions. Therefore, the above deformations preserve
N = 1 Poincaré supersymmetry in d = 3. For special choices of ma(y), we can further
preserve N = 1 superconformal symmetry in d = 3. To demonstrate this, we take

ηi = (0, 0, 0, η4) . (5.16)

Then again by considering, for example, i = 1, j = 2 and k = 3 in (5.7), we can show that
the spinor η4 has to satisfy

(m3 +
1

2
ym′

3)η4 =
1

2
ym′

3e
iσγyη4 . (5.17)

This can be solved by imposing the following projection condition

γyη4 = −eiση4 . (5.18)

and choosing

ma =
λa
y
, (5.19)
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for arbitrary complex constants λa. Clearly, these mass source terms are singular at y = 0,
which is the location of a co-dimension one interface. It is important to point out that we
are free to choose different mass sources on either side of the interface and still preserve
superconformal symmetry, by taking

ma =
λa
y
, for y > 0 , (5.20)

and

ma =
λ̃a
y
, for y < 0 , (5.21)

where λa and λ̃a are independent complex constants. We will see that such source terms
also arise in the supergravity solutions which we will present later in this chapter.

Let us now consider three special cases which we will focus on later in this chapter.

5.2.3 N = 1∗ one mass model

For this model, we assume that only one of the mass terms is non-zero, say m3. We
therefore consider a fermion mass matrix Eij of the form

E = diag(0, 0,m, 0). (5.22)

In the standard homogeneous case where m is independent of y, we can preserve d = 4,
N = 1 supersymmetry of the form (5.11) by turning on the boson mass matrix

Dα4
α4 = Dα3

α3 =
1

12
|m|2, no sum on α ∈ {1, 2} ,

D12
12 = D34

34 = −1

6
|m|2 .

(5.23)

These homogeneous deformations preserve a global SU(2) × U(1)R symmetry. To see
this, we have to decompose SU(3) × U(1)1 ⊂ SU(4)R with the SU(3) acting on each of
the indices i, j ∈ {1, 2, 3} in the fermion mass matrix Eij. We then further decompose
SU(2)×U(1)2 ⊂ SU(3) to find that the global symmetry preserving (5.22) consists of this
SU(2) factor as well as a diagonal subgroup U(1)R ⊂ U(1)1×U(1)2. Notice that the spinor
(5.11) parametrising the N = 1 Poincaré supersymmetry is charged under this U(1)R, so
it is in fact an R-symmetry of the N = 1∗ theory.

When m = m(y), we can preserve N = 1 Poincaré supersymmetry in d = 3 satisfying
the projection condition in (5.14) with

D12
34 = (D34

12)
∗ =

1

2
eiσ∂ym. (5.24)

We note that when m = m(y), the U(1)R R-symmetry of the N = 1∗ theory is broken and
we are left with an SU(2) global symmetry. If we choose m = λ

y
, we can further preserve

N = 1 superconformal symmetry in d = 3.
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5.2.4 N = 1∗ equal-mass model

For this model, we assume m1 = m2 = m3 so that the fermion mass matrix Eij takes the
form

Eij = diag(m,m,m, 0) . (5.25)

In the homogeneous case where m is independent of y, we preserve N = 1 supersymmetry
in d = 4 of the form (5.11) by taking Dij

kl = 0. By again considering the decomposition
SU(3) × U(1) ⊂ SU(4)R with the SU(3) acting on each of the indices i, j ∈ {1, 2, 3} in
Eij, we can see that these homogeneous mass deformations maintain an SO(3) ⊂ SU(3)
global symmetry of the undeformed N = 4 SYM theory.

When m = m(y), we can preserve N = 1 Poincaré supersymmetry in d = 3 satisfying
the projection condition in (5.14) with

Dα4
β4 = Dαβ

γδ = 0,

Dαβ
γ4 = (Dγ4

αβ)
∗ =

1

4
ϵαβδϵγϵϕD

ϵϕ
δ4 =

1

2
εαβγeiσ∂ym,

(5.26)

where α, β, γ, . . . ∈ {1, 2, 3}. We note that the spatially dependent deformations retain the
SO(3) global symmetry of the homogeneous case. If we choose m = λ

y
, we can further

preserve d = 3, N = 1 superconformal symmetry.

5.2.5 N = 2∗ model

For this model, we assume that one of the masses is zero, say m3 = 0, and the remaining
two terms are equal m1 = m2. Thus, the fermion mass matrix Eij is given by

Eij = diag(m,m, 0, 0). (5.27)

We first consider the homogeneous case where m is independent of y. By taking

D12
12 = D34

34 =
1

6
|m|2 ,

Dαp
αp = − 1

12
|m|2, no sum on α ∈ {1, 2} or p ∈ {3, 4} ,

(5.28)

we find that there is an enhancement to N = 2 supersymmetry of the form

ϵ = (0, 0, ϵ3, ϵ4) . (5.29)

These deformations preserve an SU(2)R × U(1) ⊂ SU(4)R global symmetry with SU(2)R
as the R-symmetry. To see this, we can decompose SU(2)1 × SU(2)2 × U(1) ⊂ SU(4)R
with SU(2)1 and SU(2)2 acting on the indices i, j ∈ {1, 2} and i, j ∈ {3, 4} respectively.
Then SU(2)R is SU(2)2, and clearly rotates the N = 2 supersymmetry parameters in
(5.29). The U(1) ⊂ SU(2)1 symmetry acts as an SO(2) rotation along the 1, 2-directions
and leaves (5.29) unchanged.

There can also be an enhancement of supersymmetry when m = m(y) is spatially
modulated. From (5.7) with (i, j) = (1, p), with p ∈ {3, 4}, and k = 2, we find the
following condition

1

2
εpq∂ymγ

yϵq +D1p
2qϵ

q = 0 , (5.30)
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and q ∈ {3, 4}. To solve this, we can consider a general projection condition of the form

γyϵp =Mpqϵ
q, (5.31)

where Mpq is some constant 2× 2 matrix. The consistency with the complex conjugate of
this condition requires that M must satisfy M̄pqMqr = δpr . If we define

M̃p
r = εpqMqr , (5.32)

then (5.30) implies

D1p
2q = −1

2
∂ymM̃

p
q . (5.33)

The tracelessness condition for D in (5.3) requires that M̃ is traceless (and therefore M is
symmetric). M̃ is therefore a traceless matrix in U(2). The remaining components of D
can then be inferred from (5.3).

Note that the choice of the matrix M breaks the SU(2)R R-symmetry of the homoge-
neous deformations down to a U(1)R. This is expected since the spatially modulated solu-
tion preserves N = 2 Poincaré supersymmetry in d = 3 and so we expect an SO(2) = U(1)
R-symmetry. The overall global symmetry is U(1)R × U(1). If we choose m = λ

y
, we can

further preserve N = 2 superconformal symmetry in d = 3 with

ηi = (0, 0, η3, η4) , (5.34)

and
γyηp = −Mpqη

q . (5.35)

5.3 Supergravity truncations

To study spatially dependent mass deformations of N = 4 SYM using holographic tech-
niques, we would like to construct suitable solutions of Type IIB supergravity [174,175]. A
convenient and economic way to do this is to construct solutions of the maximally super-
symmetric SO(6) gauged supergravity in D = 5 and then uplift the solutions to D = 10
using the results of [39,40]. The D = 5 maximal SO(6) gauged supergravity has 42 scalar
fields, parametrising the scalar manifold E6(6)/USp(8), which transform in the irreps 1+1,
10+10 and 20′ of SO(6). However, this is still rather unmanageable and so naturally one
would like to find simpler consistent truncations of this complicated D = 5 theory.

For general constant, complex mass parameters ma, associated with the N = 1∗ the-
ories, there is a corresponding consistent truncation of the maximal theory that can be
utilised, as discussed in [168], and can also be used when ma = ma(y). Specifically, one
keeps the fields of SO(6) gauged supergravity which are invariant under a (Z2)

3 symme-
try of the SO(6) × SL(2,R) symmetry of the theory. This leads to an D = 5, N = 2
gauged supergravity theory coupled to two vector multiplets and four hypermultiplets.
This supergravity theory contains eighteen scalar fields which parametrise the coset

M18 = SO(1, 1)× SO(1, 1)× SO(4, 4)

SO(4)× SO(4)
. (5.36)
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Schematically, these eighteen scalar fields are dual to the following operators in N = 4
SYM theory:

∆ = 4 : φ, φ̃ ↔ TrFµνF
µν , TrFµν∗F µν ,

∆ = 3 : ϕi ↔ Tr (χiχi + cubic in Zi) , i = 1, 2, 3 ,

ϕ4 ↔ Tr (λλ+ cubic in Zi) ,

∆ = 2 : αi ↔ Tr
(
Z2
i

)
, i = 1, 2, 3 ,

β1 ↔ Tr
(
|Z1|2+|Z2|2−2|Z3|2

)
,

β2 ↔ Tr
(
|Z1|2−|Z2|2

)
.

(5.37)

Here φ, φ̃ are real and arise from the 1+1 irreps of SO(6) mentioned above. The scalar
fields ϕi, ϕ4 are complex and arise from the 10+10 irreps. The three complex scalar fields
αi and the two real scalars β1, β2 which parametrise the SO(1, 1)× SO(1, 1) factors in the
scalar manifold M18, arise from the 20′ irrep4. For the N = 4 SYM operators appearing
on the right hand side of (5.37), when written in terms of N = 1 language, we note that Zi
and χi are the bosonic and fermionic components of the chiral superfields Φi while λ is the
gaugino of the vector multiplet. We note that the supergravity modes do not capture the
Konishi operator Tr(|Z1|2+|Z2|2+|Z3|2). Having source terms for the three complex scalar
fields ϕi with i = 1, 2, 3 are dual to deforming N = 4 SYM by the three fermion masses
ma given in (5.10). By allowing spatially dependent sources for these ϕi as well as suitable
source terms for αi, β1 and β2, we can study spatially dependent mass deformations with
arbitrary complex ma(y) via holographic techniques. As far as we are aware, this D = 5,
N = 2 gauged supergravity theory has not been explicitly constructed in the literature.

If we restrict to deformations for which the mass parameters ma(y) are all real, we can
further simplify the above model. As discussed in [168], we can further truncate the above
gauged supergravity theory to just keep the metric and ten scalar fields which parametrise
the following coset

M10 = SO(1, 1)× SO(1, 1)×
[
SU(1, 1)

U(1)

]4
. (5.38)

This is achieved by truncating the D = 5, N = 2 gauged supergravity theory using an
additional Z2 symmetry, which lies in a [O(6)× SL±(2,R)] /Z2 subgroup, which is the
actual symmetry group of N = 8 gauged supergravity [180]. We note that this truncation
does not result a supergravity theory in D = 5. Nevertheless, this truncation can still be
used to obtain supersymmetric solutions of SO(6) gauged supergravity and hence Type
IIB supergravity. The ten real scalar fields consist of φ, ϕi, ϕ4, αi and β1, β2, which are
all now real and dual to the obvious Hermitian generalisations of the operators given in
(5.37). In particular, we will refer to φ as the “dilaton”.

As already noted above, the two scalar fields β1, β2 parametrise the SO(1, 1)×SO(1, 1)
factor in M10. The remaining eight scalar fields of this truncation, parametrising the coset

4We note that β1, β2 are the two real scalar fields that appear in the N = 2 gauged supergravity
model coupled to two vector multiplets [176], commonly known as the STU model. If we supplement the
STU model with complex ϕi, ϕ4, we can obtain the so-called charged cloud truncation considered in [177].

The scalars in this truncation parametrise the coset SO(1, 1) × SO(1, 1) × [SU(1, 1)/U(1)]
4
, but it is a

different set of scalar fields of SO(6) gauged supergravity than those kept in (5.38). It is also different
to the truncation of [178, 179], which has scalars parametrising the same coset, but does not contain any
scalars in the 10 of SO(6) which are dual to fermion mass deformations.
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[SU(1, 1)/U(1)]4, can be packaged into four complex scalar fields zA via

z1 = tanh

[
1

2
(α1 + α2 + α3 + φ− iϕ1 − iϕ2 − iϕ3 + iϕ4)

]
,

z2 = tanh

[
1

2
(α1 − α2 + α3 − φ− iϕ1 + iϕ2 − iϕ3 − iϕ4)

]
,

z3 = tanh

[
1

2
(α1 + α2 − α3 − φ− iϕ1 − iϕ2 + iϕ3 − iϕ4)

]
,

z4 = tanh

[
1

2
(α1 − α2 − α3 + φ− iϕ1 + iϕ2 + iϕ3 + iϕ4)

]
.

(5.39)

The gravity-scalar part of the Lagrangian is given by

L = −1

4
R + 3(∂β1)

2 + (∂β2)
2 +

1

2
KAB̄∂µz

A∂µz̄B̄ − P , (5.40)

where P is the scalar potential and K is the Kähler potential given by

K = −
4∑

A=1

log(1− zAz̄A) . (5.41)

The scalar potential can be derived from a holomorphic superpotential-like term

W ≡ 1

L
e2β1+2β2

(
1 + z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 + z1z2z3z4

)
+
1

L
e2β1−2β2

(
1− z1z2 + z1z3 − z1z4 − z2z3 + z2z4 − z3z4 + z1z2z3z4

)
+
1

L
e−4β1

(
1 + z1z2 − z1z3 − z1z4 − z2z3 − z2z4 + z3z4 + z1z2z3z4

)
,

(5.42)

via

P =
1

8
eK
[
1

6
∂β1W∂β1W +

1

2
∂β2W∂β2W +KB̄A∇AW∇B̄W − 8

3
WW

]
, (5.43)

where KB̄A is the inverse of the Kähler metric KAB̄ and the Kähler covariant derivative is
defined via ∇AW ≡ ∂AW + ∂AKW .

The ten-scalar model is invariant under Z2×S4 discrete symmetries which, importantly,
leave W invariant. First, it is invariant under the Z2 symmetry

zA → −zA , ⇔ {ϕi, ϕ4, αi, φ} → −{ϕi, ϕ4, αi, φ} . (5.44)

Second, it is invariant under an S3 permutation symmetry which acts on (−z2,−z3, z4) as
well as β1, β2 and is generated by two elements:

{z3 ↔ −z4 ⇔ ϕ1 ↔ ϕ3 , α1 ↔ α3} , β1 → −1

2
(β1 + β2) , β2 →

1

2
(β2 − 3β1) ,

{z2 ↔ −z4 ⇔ ϕ1 ↔ ϕ2 , α1 ↔ α2} , β2 → −β2 .
(5.45)

There is also an invariance under the interchange of pairs of the zA:

z1 ↔ z4, −z2 ↔ −z3 , ⇔ (ϕ2, ϕ3) → −(ϕ2, ϕ3) , (α2, α3) → −(α2, α3) ,

z1 ↔ −z2, −z3 ↔ z4 , ⇔ (ϕ1, ϕ3) → −(ϕ1, ϕ3) , (α1, α3) → −(α1, α3) , (5.46)

z1 ↔ −z3, −z2 ↔ z4 , ⇔ (ϕ1, ϕ2) → −(ϕ1, ϕ2) , (α1, α2) → −(α1, α2) .
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Together (5.44)-(5.46) generate Z2 × S4 as observed in [181]. We also note that (5.45),
(5.46) are discrete subgroups of the SO(6) R-symmetry while (5.44) is part of the SL(2,R)
symmetry of D = 5 gauged supergravity. The D = 5 theory is also invariant under shifts
of the dilaton

φ→ φ+ c . (5.47)

We note that this shift symmetry is generated by the following holomorphic Killing vector

l =
1

2

4∑
A=1

(−1)s(A)
(
1− (zA)2

) ∂

∂zA
, (5.48)

where s(A) = 0 for A = 1, 4 and s(A) = 1 for A = 2, 3. Moreover, we define

K̃ ≡ K + logW + logW , (5.49)

and we have

lA∂AK̃ + lĀ∂ĀK̃ = 0 . (5.50)

The corresponding moment map µ = µ(zA, z̄A) is given by

µ = − i

2

4∑
A=1

(−1)s(A)
zA − z̄A

1− zAz̄A
. (5.51)

In terms of the fields given in (5.39), the moment map depends only on ϕi, ϕ4 and takes
the following form

µ =
1

2
[tan(−ϕ1 − ϕ2 − ϕ3 + ϕ4)− tan(−ϕ1 + ϕ2 − ϕ3 − ϕ4)

− tan(−ϕ1 − ϕ2 + ϕ3 − ϕ4) + tan(−ϕ1 + ϕ2 + ϕ3 + ϕ4)] .
(5.52)

Using the conventions of [168] (also see appendix D.1), a solution to the equations
of motion of this ten-scalar model is supersymmetric provided that one can find a pair
of symplectic Majorana spinors (ε1, ε2) with ε2 = −iγ4ε∗1 satisfying the following Killing
spinor equations

∇µε1 +Aµε1 −
1

6
eK/2Wγµε2 = 0 ,

γµ∂µz
Aε1 +

1

2
eK/2KB̄A

(
∇B̄W

)
ε2 = 0 ,

3γµ∂µβ1ε1 +
1

4
eK/2

(
∂β1W

)
ε2 = 0 ,

γµ∂µβ2ε1 +
1

4
eK/2

(
∂β2W

)
ε2 = 0 ,

(5.53)

where

Aµ ≡ −1

4

[
∂AK∂µzA − ∂B̄K∂µz̄B̄

]
. (5.54)

There are various consistent sub-truncations of the ten-scalar model which were also
discussed in [168], and we summarise these results in figure 5.1. In this chapter, we focus on
the three sub-truncations which can be used for real, spatially dependent mass deformations
associated with each of the three cases considered in section 5.2.
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z2 = −z4, β2 = 0

z2 = z̄2 z1 = −z3 z2 = z3, β1 = 0

z1 = z3, z2 = 0
z1 = −z3

z3 = z̄3 = z2,
β1 = 0z2 = z̄2 z1 = z2

z1 = −z2z1 = −z2,
β1 = 0

z2 = z̄2

10-scalar truncation

7-scalar truncation
SO(2) invariant
φ1 = φ2, φ3, φ4

α1 = α2, α3, ϕ, β1

6-scalar truncation
U(1)× U(1) invariant
φ1 = φ2, φ3 = −φ4
α1 = α2, α3, ϕ, β1

5-scalar truncation
SU(2) invariant

φ3, φ4
α3, ϕ, β1

N = 1∗ equal-mass truncation
SO(3) invariant
φ1 = φ2 = φ3, φ4
α1 = α2 = α3, ϕ

N = 2∗ truncation
φ1 = φ2, α1 = α2, β1

4-scalar truncation
SU(2)× U(1) invariant
φ3 = −φ4, α3, ϕ, β1

contains N = 2 S-fold

3-scalar truncation
SO(3)× SO(3) invariant
φ1 = φ2 = φ3 = −φ4
α1 = α2 = α3, ϕ

contains N = 4 S-fold

N = 1∗ one-mass truncation
φ3, α3, β1

contains LS point

2-scalar truncation
SU(3) invariant

φ4, ϕ
contains N = 1 S-fold

Figure 5.1: Various sub-truncations of the ten-scalar model. In this chapter, we focus on
the N = 1∗ equal mass truncation, the N = 1∗ one mass truncation and the N = 2∗

truncation. In chapter 7, we will make use of the other sub-truncations when discussing
various S-fold constructions.

5.3.1 N = 1∗ one mass model

This model is obtained by taking the limit where two of the masses vanish, which we take
to be m1 = m2 = 0 as discussed in section 5.2.3 and m3 is real. Starting with the ten-scalar
model (5.38), we must have source terms for ϕ3 and α3. It turns out to be consistent to
set ϕ1 = ϕ2 = α1 = α2 = φ = ϕ4 = β2 = 0, which is equivalent to setting

z1 = z2 = −z3 = −z4 and β2 = 0 , (5.55)

with

z1 = tanh

[
1

2
(α3 − iϕ3)

]
. (5.56)

This truncation results in a three-scalar model with scalar fields z1, and β1, which we will
use to construct supersymmetric Janus solutions later. The discrete symmetries reduce to
just the Z2 symmetry generated by z1 → −z1.

One important feature of this three-scalar model is that in addition to the maximally
supersymmetric AdS5 vacuum solution with vanishing scalars, dual to N = 4 SYM theory,
there are two additional AdS5 vacuum solutions, labelled as LS±. These two AdS5 vacuum
solutions are related by the Z2 symmetry (5.44) and given by

z1 = ±i(2−
√
3) , β1 = −1

6
log(2) , L̃ =

3

25/3
L, (5.57)

where L̃ is the radius of the AdS5 spacetime for both LS± solutions. When uplifted to Type
IIB, these AdS5 fixed point solutions preserve SU(2) × U(1)R global symmetry and are
each holographically dual to the d = 4, N = 1 SCFT found by Leigh and Strassler in [52].
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By examining the linearised fluctuations of the scalar fields around the LS± vacua, we find
that α3 is dual to an irrelevant operator O∆=2+

√
7

α3
with conformal dimension ∆ = 2 +

√
7.

The linearised modes involving ϕ3 and β2 mix, and after diagonalisation we find modes
which are dual to one relevant operator and one irrelevant operator in the LS SCFT,

which we label O∆=1+
√
7

ϕ3,β2
and O∆=3+

√
7

ϕ3,β2
with conformal dimensions ∆ = 1 +

√
7 ∼ 3.6 and

∆ = 3 +
√
7 ∼ 5.6, respectively.

Note that when we set α3 = 0, we obtain a gravitational model with two real scalar
fields, which is the same model used to construct the homogeneous RG flows associated with
the N = 1∗ one mass model. These holographic RG flows, which preserve SU(2)× U(1)R
global symmetry, flow from the N = 4 fixed point in the UV to the Leigh-Strassler fixed
point [52] in the IR and were constructed in [51] and uplifted to Type IIB in [180]. This
gravity-scalar model, with α3 = 0, preserves the SU(2)×U(1)R global symmetry5 and since
the U(1)R is broken when the mass deformations are spatially modulated as discussed in
section 5.2.3, hence this two-scalar model cannot be used for our purpose.

5.3.2 N = 1∗ equal-mass model

For this model, we have m1 = m2 = m3 = m as discussed in section 5.2.4, and we are
considering m to be real. Thus, we must have ϕ1 = ϕ2 = ϕ3 as well as α1 = α2 = α3 and
both non-zero, associated with the sources for the boson and fermion mass deformations.
It turns out to be inconsistent to further set the gaugino condensate ϕ4 or the dilaton φ
to zero. However, it is consistent to set β1 = β2 = 0. Or equivalently, we can set

z4 = −z3 = −z2 , and β1 = β2 = 0 , (5.58)

in the ten-scalar model (5.38), leading to a four-scalar model, parametrised by (z1, z2) with

z1 = tanh

[
1

2
(3α1 + φ− i3ϕ1 + iϕ4)

]
,

z2 = tanh

[
1

2
(α1 − φ− iϕ1 − iϕ4)

]
.

(5.59)

The discrete symmetries reduce to the symmetry generated by (z1, z2) → −(z1, z2), and
this truncation is invariant under shifts of the dilaton (5.47). The Kähler potential (5.41)
is now given by

K = − log(1− z1z̄1)− 3 log(1− z2z̄2) , (5.60)

and an explicit expression for the potential P can be found in (3.8) of [137].
We note that this four-scalar model can be further truncated to give a theory with two

real scalar fields by setting α1 = φ = 0. The resulting theory keeps ϕ1, associated with
real SO(3) ⊂ SU(3)R invariant fermion masses, and the gaugino condensate field ϕ4. This
two-scalar model is the same model as that used by GPPZ [131] to construct RG flows

5We note that if one keeps an SU(2) × U(1) ⊂ SU(3) ⊂ SO(6) invariant sector of SO(6) gauged
supergravity, one obtains a D = 5, N = 2 supergravity coupled to one vector multiplet and one hyper-
multiplet [180]. The five scalar fields parametrise the coset SO(1, 1) × SU(2, 1)/[SU(2) × U(1)]. With
β2 as the SO(1, 1) factor, the remaining coset is obtained by supplementing ϕ3 with a complex partner,
associated with a complex fermion mass, and two more scalars φ, φ̃ dual to operators as in (5.37).
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associated with homogeneous SO(3) invariant mass deformations (and uplifted to Type
IIB in [135,136] extending the result in [180]).

For the equal mass model, with spatially dependent complex masses, there is an alter-
native consistent truncation that can be utilised. By keeping an SO(3) ⊂ SU(3) ⊂ SO(6)
invariant sector of maximal SO(6) gauged supergravity, one can obtain a D = 5, N = 2
supergravity coupled to two hypermultiplets [180,182]. The eight scalar fields of this theory
parametrise the following quaternionic-Kähler manifold

MSO(3) =
G2(2)

SU(2)× SU(2)
. (5.61)

This eight scalar model can be viewed as an extension to the above four-scalar model, by
simply adding a complex partner to each of the four real scalars α1, φ, ϕ1, ϕ4. Although we
will not utilise this truncation in this chapter, it is a natural arena for further investigations
of spatially dependent complex mass deformations for the equal mass model.

5.3.3 N = 2∗ model

This model is obtained by setting two of the masses to be equal and one to be zero.
Specifically, we take real m1 = m2 ̸= 0 and m3 = 0, as discussed in section 5.2.5. To
study this case, we can consistently set ϕ1 = ϕ2, α1 = α2 and β1 ̸= 0, while setting
α3 = ϕ3 = ϕ4 = φ = β2 = 0 in the ten-scalar model. Or equivalently, we can set

z1 = z3 , z2 = z4 = β2 = 0 . (5.62)

with

z1 = tanh [α1 − iϕ1] , (5.63)

leading to a three-scalar model, parametrised by z1 and β1. This model is invariant under
the discrete symmetry generated by z1 → −z1.

Note that if we set α1 = 0, we obtain a gravitational model with two real scalar fields
which is the same model used to construct the holographic RG flows associated with the
homogeneous N = 2∗ deformations in [183]. These RG flows preserve SU(2)R × U(1)
global symmetry. This two-scalar model cannot be utilised to study spatially modulated
mass deformations, since, as discussed in section 5.2.5, the spatial dependence breaks
SU(2)R × U(1) down to U(1)R × U(1).

5.4 Supersymmetric mass deformations with ISO(1, 2)

symmetry

In this section, we will discuss the BPS equations which are associated with supersymmetric
mass deformations preserving ISO(1, 2) symmetry. In appendix D.2, we will provide a
detailed analysis of the holographic renormalisation procedure for this class of solutions,
which will be useful in future studies of these solutions as well as when we discuss physical
properties of supersymmetric Janus solutions, which arise as a special sub-class. We leave
most of the technical details in appendix D.2, but highlight here that there are a number
of interesting issues, including a large number of possible finite counterterms, subtleties
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in obtaining a supersymmetric renormalisation scheme and interesting source terms which
appear in the conformal anomaly.

Within the ten-scalar truncation discussed in section 5.3, we consider the following
ansatz

ds2 = e2A(dt2 − dy21 − dy22)− e2V dx2 −N2dr2 , (5.64)

where A, V,N and the scalar fields zA, β1, β2 are all functions of (x, r) only. This ansatz
preserves an ISO(1, 2) symmetry associated with the three coordinates t, y1, y2. The coor-
dinates r, x, together, parametrise both the remaining field theory direction, upon which
the mass deformations depend, as well as the holographic radial coordinate. There is some
residual gauge freedom in this ansatz, associated with reparametrising (r, x) and in practice
we will find it convenient to fix this in different ways.

In appendix D.1, we derive the associated set of BPS equations. We define the following
orthonormal frame

(e0, e1, e2, e3, e4) = (eAdt, eAdy1, e
Ady2, e

V dx,Ndr) . (5.65)

Note that the supersymmetry transformations are parametrised by a pair of symplectic
Majorana spinors ϵ1 and ϵ2. We find that the Killing spinors are independent of t, y1, y2
and satisfy the following projection condition

γ012ϵ1 = −iκϵ1 , (5.66)

with κ = ±1, which implies γ012ϵ2 = iκϵ2 as a result of the Majorana condition ϵ2 = −iγ4ϵ∗1,
as well as

γ4ϵ1 = eiξϵ2 , (5.67)

where ξ is a function of (x, r). We note that that we also have ϵ∗1 = ie−iξϵ1. The associated
system of BPS equations are then given by

e−V ∂xA+ iκN−1∂rA− iκ

3
eK/2e−iξW̄ = 0 ,

−e−V ∂xξ − κN−1∂rV + 2ie−VAx +
κ

3
eK/2Re(e−iξW̄) = 0 ,

−N−1∂rξ + κN−1e−V ∂xN + 2iN−1Ar +
1

3
eK/2Im(e−iξW̄) = 0 ,

(5.68)

where we recall the definition of Aµ given in (5.54), and

iκeiξ
(
e−V ∂x + iκN−1∂r

)
zA =

1

2
eK/2KB̄A∇B̄W̄ ,

iκeiξ
(
e−V ∂x + iκN−1∂r

)
β1 =

1

12
eK/2∂β1W̄ ,

iκeiξ
(
e−V ∂x + iκN−1∂r

)
β2 =

1

4
eK/2∂β2W̄ .

(5.69)

The dependence of the Killing spinor on (x, r) can be determined and we find that they are
given by ϵ1 = eA/2eiξ/2η0, where η0 is a constant spinor satisfying the projection condition
given in (5.66). We note that these BPS equations are not all independent, and there is
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also an issue of consistency, given the reality of various functions entering these equations,
a point we will return to below. Note that these BPS equations are invariant under

r → −r, x→ −x, ξ → ξ + π . (5.70)

It is interesting to point out that if we choose the gauge N = eV , then the equations
can be written in a simplified form, analogous to what was observed in [144]. We introduce
the complex coordinate w = r − iκx and the holomorphic (1, 0)-form B is defined by

B ≡ 1

6
eiξ+V+K/2Wdw . (5.71)

The equations (5.68) can then be recast in the following form

∂A = B ,

∂̄B = −FB ∧ B̄ ,
(5.72)

where F is a real quantity depending on W , K given by

F ≡ 1− 3

2

1

|W|2∇AWKAB̄∇B̄W̄ − 1

4
|∂β1 logW|2−3

4
|∂β2 logW|2 , (5.73)

where ∂, ∂̄ are the holomorphic and anti-holomorphic exterior derivatives respectively.
Similarly, (5.69) can be rewritten as

∂̄zA = −3

2
(W̄)−1KB̄A∇B̄W̄B̄ ,

∂̄β1 = −1

4
(W̄)−1∂β1W̄B̄ ,

∂̄β2 = −3

4
(W̄)−1∂β2W̄B̄ .

(5.74)

As we show in appendix D.1, we can use this formulation of the BPS equations to show
that the consistency of the BPS equations requires a non-trivial condition on W , which
is provided in (D.21). Furthermore, we can show that the specific W which appears in
the ten-scalar truncation, see (5.42), does satisfy this consistency condition. We strongly
believe the underlying reason for this is that we are working within a theory arising from
a consistent truncation of a supersymmetric theory.

5.5 BPS equations for Janus solutions

We now consider a particular sub-class of the BPS configurations discussed in the previous
section. The ansatz for the D = 5 metric is now given by

ds25 = e2AJds2(AdS4)−N2dr2 , (5.75)

where AJ , N and the scalar fields β1, β2, z
A are all now functions of r only. Here ds2(AdS4)

is the metric on AdS4 of radius ℓ, and in Poincaré coordinates this is given by

ds2(AdS4) = ℓ2
[
−dx

2

x2
+

1

x2
(
dt2 − dy21 − dy22

)]
. (5.76)
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The factor of ℓ can be absorbed by redefining AJ , but it is convenient and useful6 to keep
it explicit. Note that we can recover the metric on AdS5 with radius L by setting N = 1
and

eAJ =
L

ℓ
cosh

r

L
. (5.77)

We can obtain the BPS equations for the Janus configuration as a special sub-class of
the ISO(1, 2) preserving configuration considered in the last section. Specifically, we take

eV = eA = ℓeAJx−1 , (5.78)

then the metric ansatz (5.64) precisely gives (5.75). From the first and third BPS equations
in (5.68), we obtain

N−1∂rAJ +
iκ

ℓ
e−AJ − e−iξ

3
eK/2W = 0 ,

i∂rξ + 2Ar −
i

3
Im
(
Ne−iξeK/2W

)
= 0 ,

(5.79)

with the second equation in (5.68) implied by the first of these. From (5.69), we get the
remaining BPS equations

N−1∂rz
A +

e−iξ

2
eK/2KAB̄∇B̄W = 0,

N−1∂rβ1 +
e−iξ

12
eK/2∂β1W = 0,

N−1∂rβ2 +
e−iξ

4
eK/2∂β2W = 0 .

(5.80)

We can also obtain the Poincaré type Killing spinors for the Janus solutions directly
from those given in the previous section and we find

ε1 = eiξ/2+AJ/2ℓ1/2
1√
x
η0, γ012η0 = −iκη0 , (5.81)

where η0 is a constant spinor, and ϵ2 = e−iξγ4ϵ1. There are also superconformal type
Killing spinors of the form

ε1 =
1√
ℓ

[√
x+

1√
x
(tγ0 + y1γ1 + y2γ2) γ

3

]
eiξ/2+AJ/2η0 , (5.82)

where η0 is a constant spinor satisfying the following projection condition

γ012η0 = −iκη0 , (5.83)

and again ϵ2 = e−iξγ4ϵ1. The BPS equations (5.79) and (5.80) are invariant under the
transformations

r → −r, ξ → ξ + π, κ→ −κ , (5.84)

6Specifically, if we take ℓ→ ∞, we obtain the BPS equations for ordinary Lorentz invariant RG flows
with metric ds25 = e2A(r)ds2(R1,3)− dr2.
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but note that the latter changes the projection on the Killing spinor. They are also invariant
under

r → −r, zA → z̄A, ξ → −ξ + π . (5.85)

By choosing the gauge N = eAJ , we can recast (5.79) and (5.80) in a manner similar
to what we did in the previous section. Specifically, we define

Br ≡
1

6
eiξ+AJ+K/2W , (5.86)

then we obtain the following BPS equations:

∂rAJ −
iκ

l
= 2Br , (5.87)

and

∂rBr = 2FBrB̄r , (5.88)

where F is the real quantity depending on W , K given in (5.73), as well as

∂rz
A = −3KAB̄∇B̄W

W B̄r ,

∂rβ1 = −1

2
∂β1 logWB̄r ,

∂rβ2 = −3

2
∂β2 logWB̄r .

(5.89)

Note that the right hand side of (5.88) is real and implies that Im(B) is constant, which
is in agreement with (5.87). Given the reality of β1 and β2, we notice that for any function
G(z̄A, β1, β2) which depends only on the scalar fields and is anti-holomorphic in the four
complex scalar fields zA, using (5.87)-(5.89) we can deduce

∂r(GB̄r) = 2(ÔG)BrB̄r , (5.90)

where Ô is a differential operator acting on the scalar manifold and is defined via

ÔG ≡ FG − 3

2
KĀB∇BW

W ∂ĀG − 1

4
∂β1 logW∂β1G − 3

4
∂β2 logW∂β2G. (5.91)

Then, taking the r derivative of the last two equations in (5.89), we obtain the following
necessary conditions for these set of equations to be consistent with βi being real:

Im
(
Ô∂βi logW

)
= 0 , (i = 1, 2). (5.92)

Notice that these conditions do not involve B, just the scalar fields, and hence they are
necessary conditions on K and W . One can explicitly check that these conditions are
satisfied for (5.41) and (5.42) in the ten-scalar model. It is also not difficult to see that if
(5.92) is satisfied, then it is sufficient for a solution to exist, given a set of initial values for
zA, βi, B satisfying the condition

Im
(
∂βi logWB̄r

)
= 0 (i = 1, 2). (5.93)
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Indeed, by taking the taking the r derivative of the expression on the left hand side, using
(5.90) and given that (5.92) holds, we see that (5.93) is guaranteed to be satisfied along the
flow. Furthermore, for any initial values of zA, βi, one can always choose an initial value of
Br which satisfies (5.93), and then solve the equations.

From the above arguments, given (5.92) is satisfied, one can also conclude the following:

• If the starting values of zA, βi are such that ∂βi logW = 0 or Im(∂βi logW) ̸= 0 (for
i = 1, 2), then given a chosen value of κ

l
one can always find a starting value for Re(Br)

such that (5.93) is satisfied and solve the equations. It is then guaranteed from (5.93)
that along each point in the flow, either ∂βi logW = 0 or Im(∂βi logW) ̸= 0.

• Conversely, a choice of starting values with ∂βi logW ≠ 0 and real, for either β1 or
β2, is consistent with equations (5.89) and (5.88) but is incompatible with equation
(5.87) since it requires Im(Br) = 0.

• From the last two equations in (5.89), it is clear that the turning point for βi corre-
sponds to a point in which ∂βi logW = 0.

• For a turning point of AJ , we have Re(Br) = 0 and therefore (5.93) implies that at
this point we must have Re(∂βi logW) = 0. Thus, at the turning point we are free
to specify initial conditions for the zA which implies that the family of solutions is of
dimension twice the number of zA which are active.

We have proved these results for the flows using the gauge N = eAJ . However, these are
gauge invariant results, and hence they are also valid for the gauge N = 1 which we will
use to construct numerical solutions in the next section.

5.6 Supersymmetric Janus Solutions

5.6.1 Preliminaries

Now we will focus on the Janus solutions which describe a planar, co-dimension one con-
formal interface in N = 4 SYM which is supported by spatially dependent mass sources.
These solutions have a metric of the form given in (5.75):

ds2 = e2AJds2(AdS4)− dr2 , (5.94)

where we have now chosen the gauge N = 1 with

ds2(AdS4) =
ℓ2

x2
(
−dx2 + dt2 − dy21 − dy22

)
. (5.95)

We note that in the gauge where N = 1, the BPS equations are invariant under shifts of
the radial coordinate

r → r + constant . (5.96)

It is illuminating to recall that the N = 4 SYM AdS5 vacuum solution with the above
AdS4 slicing is given by

eAJ =
L

ℓ
cosh

r

L
, (5.97)
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with vanishing scalar fields. If we carry out the following coordinate transformation

x =
√
y23 + L2e−2ρ/L, er/L = eρ/L

y3 +
√
y23 + L2e−2ρ/L

L
, (5.98)

we recover the AdS5 metric with flat-slicing, which is given by

ds25 = e2ρ/L(dt2 − dy21 − dy22 − dy23)− dρ2 . (5.99)

In the (ρ, y3) coordinates, the conformal boundary is reached at ρ → ∞ and has a flat
boundary metric with coordinates (t, yi). While in the (r, x) coordinates, the conformal
boundary has three components: two half spaces r → ±∞ at x ̸= 0, associated with
y3 > 0 and y3 < 0 respectively, joined together at the planar interface at x = 0 and finite
r, associated with y3 = 0. As r → ±∞, we obtain the AdS4 metric on the two half spaces.
A few more details can be found in appendix D.3 and we have also shown a display of the
set-up there in figure D.1.

Janus solutions: field theory on AdS4

The Janus solutions of N = 4 SYM that we construct approach the N = 4 SYM AdS5

vacuum as r → ±∞ but with additional mass sources. Analogous to the discussion for
the AdS5 vacuum solution itself, the conformal boundary of these Janus configurations
consists of three components: two half spaces, with AdS4 metrics, joined together at a
planar interface along the boundary of the AdS4. Note that the boundary at x = 0 is
not a standard asymptotically locally AdS5 region, as the scalars are not approaching an
extremum of the potential, but only at r = ±∞.

We first consider the r → ∞ end of the interface. As r → ∞, we demand that the
expansion series of the bulk fields have the following form

AJ =
r

L
+ A0 + · · ·+ A(v)e

−4r/L + · · · ,
ϕi = ϕi,(s)e

−r/L + · · ·+ ϕi,(v)e
−3r/L + · · · , i = 1, . . . , 4 ,

αi = αi,(s)
r

L
e−2r/L + αi,(v)e

−2r/L + · · · , , i = 1, . . . , 3 ,

βi = βi,(s)
r

L
e−2r/L + βi,(v)e

−2r/L + · · · , i = 1, . . . , 2 ,

φ = φ(s) + · · ·+ φ(v)e
−4r/L + · · · .

(5.100)

Recall that in the N = 1 gauge, the BPS equations have a residual shift symmetry in the
radial coordinate r (5.96). By shifting the radial coordinate via r → r − A0L, we can
always remove the constant term A0 and we shall do so in the following. In particular, all
the expressions for the expectation values and sources given below are obtained with

A0 = 0 . (5.101)

The various other coefficients in this expansion, which are all real constants, are con-
strained by the BPS equations, as we detail below. The constants ϕi,(s), αi,(s), βi,(s), φ(s)

are associated with constant source terms for the mass deformations of N = 4 SYM when
placed on AdS4. Recalling from (5.37) that these are sources for operators of conformal
dimensions ∆ = 3, 2, 2, 4, respectively. It is extremely useful to note that the field theory
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sources on AdS4 which are invariant under a rescaling of the AdS4 radius ℓ are given by
ℓϕi,(s), ℓ

2αi,(s), ℓ
2βi,(s), φ(s). In this chapter, we will not discuss deformations that involve

the coupling constant of N = 4 SYM, and so we will always set

φ(s) = 0 . (5.102)

The BPS equations imply that these source terms must then satisfy

αi,(s) = −κL
ℓ
ϕi,(s) , i = 1, . . . , 3 ,

β1,(s) =
1

3

(
ϕ2
1,(s) + ϕ2

2,(s) − 2ϕ2
3,(s)

)
,

β2,(s) = ϕ2
1,(s) − ϕ2

2,(s) ,

ϕ4,(s) = 0 .

(5.103)

We note that these relations respect the field theory scaling dimensions of the sources on
AdS4 as mentioned above.

Similarly, the constants ϕi,(v), αi,(v), βi,(v), φ(v) in (5.100), with suitable contributions
from the sources, give rise to the expectation values of the scalar operators. We will give
explicit expressions for these in each of the three truncations below. As a simple example
here, using the renormalisation procedure discussed in appendix D.2, we find that for
N = 4 SYM on AdS4 we obtain

⟨Oαi
⟩ = 1

4πGL
(αi,(v) − 2δααi,(s)) . (5.104)

Here δα is an undetermined constant that parametrises a finite counterterm, which we
have not fixed. As we shall see below, it is intimately connected with a novel feature of
the expectation values of the operators in flat spacetime. We also note that due to the
structure of the conformal anomaly, ℓ2⟨Oαi

⟩ is not invariant under a rescaling of ℓ as one
might have expected, and we will return to this below.

Janus solutions: field theory on flat spacetime

We are interested in obtaining the sources and expectation values for various operators of
N = 4 SYM in flat spacetime, as in section 5.2. The metric on AdS4 in (5.95) is con-
formal to the flat spacetime metric. Therefore, we can obtain the relevant quantities in
flat spacetime from those on AdS4 by simply performing a Weyl transformation with Weyl
factor x2/ℓ2. However, while the source terms transform covariantly under Weyl transfor-
mations, the expectation values do not due to the presence of source terms appearing in
the conformal anomaly A (similar to [184,185]), schematically given by

8πGLA = −L
4

8

(
RabR

ab − 1

3
R2

)
− L2

4∑
i=1

[
(∇ϕi,(s))2 +

1

6
Rϕ2

i,(s)

]

−
3∑
i=1

α2
i,(s) − 6β2

1,(s) − 2β2
2,(s) +

8

3

4∑
i=1

ϕ4
i,(s) −

8

3

4∑
1≤i<j≤4

ϕ2
i,(s)ϕ

2
j,(s) + · · ·

(5.105)

where the dots refer to the extra terms which involve finite counterterms (see (D.35),(D.36)).
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In fact, we can obtain the relevant results within holography by carrying out a bulk co-
ordinate transformation such that as we approach the r → ∞ component of the conformal
boundary, it has a flat metric. For this component of the conformal boundary, we can use
the coordinate transformation of the form

er/L =
y3
ℓ
eρ/L +

L2

4ℓy3
e−ρ/L +O(e−3ρ/L/y33) ,

x = y3 +
L2

2y3
e−2ρ/L +O(e−4ρ/L/y33) ,

(5.106)

with y3 > 0. Substituting this back into (5.100) leads to expansion series of the bulk
fields as ρ → ∞ (see appendix D.3). With this in hand, we can employ7 the holographic
renormalisation procedure for the ISO(1, 2) invariant configuration discussed in appendix
D.2 to read off the sources and expectation values of field theory operators, which are now
placed on flat spacetime.

The non-trivial sources for the dual scalar operators in N = 4 SYM theory now have
the expected dependence on the spatial coordinate y3 (still with y3 > 0) as discussed earlier
in section 5.2:

ℓϕi,(s)
y3

,
ℓ2αi,(s)
y23

, i = 1, . . . , 3

ℓ2βi,(s)
y23

, i = 1, , 2 ,

(5.107)

with ϕ4,(s) = φ(s) = 0. Recall that the numerators in these expressions are the scale
invariant field theory sources on AdS4, and in flat spacetime, we see that these field theory
sources have scaling dimensions 1, 2, 2 associated with operators which have conformal
dimensions ∆ = 3, 2, 2 respectively. Furthermore, when combined with the BPS relations
given in (5.103), these expressions are in exact agreement with those derived in section 5.2
for each of the three sub-truncations.

Due to the structure of the conformal anomaly, the expressions for the expectation
values are more involved. As an example here, we have

⟨Oαi
⟩ = 1

4πGL

ℓ2

y23

(
αi,(v) + αi,(s) log

( y3
ℓe2δα

))
, (5.108)

and we will give explicit expressions for the other expectation values for each of the three
truncations below. In particular, we highlight the appearance of the log(y3) term in the
above expectation value. Notice that performing a scaling of the y3 coordinate is associated
with a shift in δα, which parametrises a finite counterterm. We can certainly choose a
renormalisation scheme in which we set δα = 0. However, there are additional similar
finite counterterms which appear in the expectation values of other operators, as we will
see in each of the three truncations below, and we have not been able to find a simple
argument which would fix all of them in a way that is consistent and compatible with
supersymmetry. Given the appearance of these log terms in the expectation values, we
expect that there will be at least one set of supersymmetric finite counterterms that one
is free to add. We leave further investigation on this issue to future work.

7To do this, one should use the results of appendix D.2 by replacing the coordinates (r, x) there with
(ρ, y3).
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From the above results, we conclude that under a Weyl transformation of the AdS4

boundary metric of the form hab → Λ2hab, with Λ = x/l, the source terms transform
covariantly with ϕi(s) → Λ−1ϕi(s), αi(s) → Λ−2αi(s) and βi(s) → Λ−2βi(s). However, the
expectation values do not transform covariantly due to conformal anomaly. As an example
here, we have

⟨Oαi
⟩ → Λ−2⟨Oαi

⟩+ αi(s)
4πGL

Λ−2 log Λ . (5.109)

The transformation properties for all the expectation values are provided in (D.40)-(D.42).
It is worth emphasising that these results imply that some care is required in comparing
expectation values of operators on AdS4 for solutions with different values of the AdS4

radius ℓ due to this non-covariant rescaling. In practice, we have set ℓ = 1 (as well as
L = 1) in generating all of our numerical solutions.

The r → −∞ end of the conformal boundary

The above analysis considers the r → ∞ end of the conformal boundary for the Janus
solutions. Clearly, there is a similar analysis for the r → −∞ end, which by assumption,
is again approaching the N = 4 SYM AdS5 vacuum. As r → −∞, the expansion series of
the bulk fields have the following form

AJ = − r

L
+ Ã0 + · · ·+ Ã(v)e

4r/L + · · · ,

ϕi = ϕ̃i,(s)e
r/L + · · ·+ ϕ̃i,(v)e

3r/L + · · · , i = 1, . . . , 4 ,

αi = −α̃i,(s)
r

L
e2r/L + α̃i,(v)e

2r/L + · · · , , i = 1, . . . , 3 ,

βi = −β̃i,(s)
r

L
e2r/L + β̃i,(v)e

2r/L + · · · , i = 1, . . . , 2 ,

φ = φ̃(s) + · · ·+ φ̃(v)e
4r/L + · · · ,

(5.110)

which can be obtained by replacing r → −r in (5.100), and we again set

Ã0 = 0 , (5.111)

by shifting the radial coordinate8. As we show in appendix D.3.2, the BPS equations imply
that the coefficients are related as in the r → ∞ case. As an example, we now have

α̃i,(s) = +κ
L

ℓ
ϕ̃i,(s) , i = 1, . . . , 3 ,

β̃1,(s) =
1

3

(
ϕ̃2
1,(s) + ϕ̃2

2,(s) − 2ϕ̃2
3,(s)

)
,

β̃2,(s) = ϕ̃2
1,(s) − ϕ̃2

2,(s) ,

(5.112)

with ϕ̃4,(s) = φ̃(s) = 0.
To carry out the coordinate transformation back to flat space, we can use (5.106) with

r → −r and y3 → −y3. This will then give the relevant quantities on the y3 < 0 part
of the conformal boundary, with flat boundary metric. Thus, to obtain the flat boundary
results for y3 < 0 from those for y3 > 0, we need to make the replacements y3 → −y3 and
κ→ −κ.

8When one numerically constructs a solution, one generically finds that A0 and Ã0 in (5.100) and
(5.110) are non-zero and not equal. In order to utilise our holographic renormalisation results with A0 =
Ã0 = 0, one needs to shift the radial coordinate by different constants at r = ±∞.
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Constructing solutions

Having made some general comments on how to determine the sources and expectation
values for the Janus solutions, we now turn to presenting the solutions which we have
constructed for the three different truncations.

It is helpful to recall that the ten-scalar model, and the three further truncations, are
all invariant under the Z2 symmetry that takes

zA → −zA . (5.113)

Furthermore, the BPS equations for the Janus solutions in (5.79),(5.80) are also invariant
under the Z2 symmetry that acts as

r → −r, zA → z̄A, ξ → −ξ + π . (5.114)

Combining these two, we conclude that the BPS equations are also invariant under

r → −r, zA → −z̄A, ξ → −ξ + π . (5.115)

We have utilised various approaches to solving the BPS equations numerically. One
approach is to start at, say, r → ∞, and then use the expansion (5.100) to set initial
conditions to integrate in to smaller values of r and see where the solutions end up. As
we will see, while some solutions end up at a similar asymptotic region at r → −∞, and
hence are Janus solutions of N = 4 SYM, there are also singular solutions that run off to
infinity. Furthermore, there are also solutions which do not have an asymptotic region of
the form (5.100) or (5.110). Another approach, and a more general one, is to start at a
point in the bulk, for example a turning point of the function AJ(r) at say r = 0 and then
integrate out to smaller and larger values of r, and again see where the solutions end up.
In the following, we will summarise the main results of these constructions.

5.6.2 N = 2∗ model

We start with the N = 2∗ model. This model was summarised in section 5.3.3. There is
one complex scalar field z1, which can be expressed as

z1 = tanh [α1 − iϕ1] (5.116)

and one real scalar field β1.
Consider solutions that approach N = 4 SYM with mass sources at, say r → ∞.

Following our discussion in the previous section and using the results of appendices D.2-
D.3, we can summarise the sources and expectation values for the operators which are
active. All of the source terms are specified by ϕ1,(s) with

α1,(s) = −κL
ℓ
ϕ1,(s) , β1,(s) =

2

3
ϕ2
1,(s) . (5.117)

The field theory sources on AdS4 are given by ϕ1,(s), α1,(s), β1,(s), with ℓϕ1,(s), ℓ
2α1,(s),

ℓ2β1,(s), invariant under Weyl scalings of ℓ, while those on flat spacetime are given by
(5.107):

ℓϕ1,(s)

y3
,

ℓ2α1,(s)

y23
,

ℓ2β1,(s)
y23

, (5.118)
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and have scaling dimensions 1, 2, 2, respectively. For the associated expectation values of
the operators in flat spacetime, we have

⟨Oα1⟩ = ⟨Oα2⟩ =
1

4πGL

ℓ2

y23

(
α1,(v) + α1,(s) log

( y3
ℓe2δα

))
, (5.119)

which then, along with ϕ1,(s), determines the remaining expectation values

⟨Oβ1⟩ = −4κℓ

L
⟨Oα1⟩ϕ1,(s) +

(1 + 4δα − 4δβ)

2πGL

ℓ2

y23
ϕ2
1,(s) ,

⟨Oϕ1⟩ = ⟨Oϕ2⟩ = −2

3

ℓ

y3
⟨Oβ1⟩ϕ1,(s) − 2κL

1

y3
⟨Oα1⟩ −

L

4πG

ℓ

y33
ϕ1,(s) .

(5.120)

where δα, δβ are unspecified finite counterterms.
An important aspect of the above summary, is that for a specific choice of finite coun-

terterms, all of the scalar sources and expectation values of the dual field theory can be
determined by providing ℓϕ1,(s) and ℓ

2α1,(v). We will now set ℓ = 1 (as well as L = 1) and
also fix the sign arising from the projection conditions: κ = +1.
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Figure 5.2: The family of BPS solutions for the N = 2∗ model is summarised by para-
metrically plotting the real and imaginary parts of the scalar field z1. The black squares
correspond to turning points of the function AJ(r) and the three plots, from left to right,
correspond to solutions where the phase of the complex scalar field at the turning point is
0, π/4 and π/2, respectively. The blue dot at the origin is the N = 4 SYM AdS5 vacuum
solution and the blue lines are Janus solutions. The boundary of field space is |z1|= 1,
marked with the grey circle. As one moves from r = −∞ to r = +∞, one moves clockwise
on the curves.

Following our discussion near the end of section 5.5, we know that there is a two-
parameter family of solutions for this model. A useful way to parametrise them is to take
one of the parameters to be the phase of the complex scalar z1 at the turning point of
the function AJ(r). Due to the symmetries given in (5.113) and (5.114), we can restrict
to solutions for which this phase lies in the domain [0, π/2]. By fixing this phase, we can
construct a one-parameter family of solutions which we can represent by parametric plots
of the real and imaginary parts of the complex scalar field z1, as illustrated in figure 5.2.

103



In these plots, the black squares correspond to the turning points of the function AJ(r),
and from left to right, the phase is set to be 0, π/4, π/2 respectively. The blue dot at the
origin in each of the plots corresponds to the N = 4 SYM AdS5 vacuum solution.

For each fixed value of the phase, there is a one-parameter family of N = 4 SYM Janus
solutions (blue curves) that approach the N = 4 SYM AdS5 vacuum solution at r → ±∞,
with spatially modulated mass sources parametrised by ϕ1,(s). Furthermore, focussing on
the r → +∞ end, we find 0 < ϕ1,(s) < ϕ1,(s)|crit and ϕ1,(s)|crit ̸= ∞. The exception to this
occurs only for the class of solutions in which the phase at the turning point is exactly π/2
(the right plot in figure 5.2). For this class of solutions, we find rather remarkably that it
has vanishing source, ϕ1,(s) = 0, on both sides of the interface, and we will return to this
point below. We also note that, somewhat surprisingly, for the generic solutions as the
phase approaches π/2, the critical value of the source, ϕ1,(s)|crit does not approach zero.

Another interesting feature of this model is that for each Janus solution, with phase not
equal to π/2, on either side of the interface at r → ±∞, we always find9 that ϕ̃1,(s) = −ϕ1,(s).
If we convert to sources in flat spacetime, recalling that we have set ℓ = 1, this means we
have a source of the form ϕ1,(s)/y3, for all y3 and where here ϕ1,(s) is the expansion coefficient
at r = +∞ (which we noted above is in the range 0 < ϕ1,(s) < ϕ1,(s)|crit).

We can also determine the expectation values of various operators for the Janus solu-
tions on each side of the interface at r = ±∞. With ℓ = 1, we just explain the behaviour
of α1,(v) which can be used to get all expectation values of scalar operators. For the special
case when the phase is equal to zero (left plot in figure 5.2), the solutions are invariant
under the symmetry (5.114) and we find α1,(v) is the same on each side of the interface.
For this case we also find for the r = +∞ end with 0 < ϕ1,(s) < ϕ1,(s)|crit, that as ϕ1,(s)

goes from 0 to ϕ1,(s)|crit, then α1,(v) increases from 0, hits a maximum and then decreases
to a finite negative value at ϕ1,(s)|crit.

In contrast, for the class of Janus solutions when the phase is in the domain (0, π/2) we
find that α1,(v) and α̃1,(v) do not have the same value at r = ±∞, respectively. When the
phase is equal to π/2, it is a different story. As we noted above, there are no sources on
either side of the interface. We also find for the two sides of the interface α1,(v) = −α̃1,(v) and
the energy density (D.45) is zero. The absence of sources on either side of the interface
is noteworthy. It seems likely that there is a distributional source which is located on
the interface itself, otherwise we would have a configuration that spontaneously breaks
translations, and it would be interesting to verify this in detail.

The plots given in figure 5.2 also reveal that there are other non-Janus solutions for
this model. When the phase is in the open domain (0, π/2), there is also a one-parameter
family of solutions that approach N = 4 SYM as r → −∞, with −∞ < ϕ̃1,(s) < −ϕ1,(s)|crit.
At some finite value of the radial coordinate, past the turning point, the solution hits a
singularity, with |z1|→ 1. Such solutions, corresponding to the black curves in figure 5.2
are one-sided interfaces (a type of interace solution which has been suggested as a dual
description of BCFTs [186]). Finally, there are also solutions which approach singular
behaviour at both ends of the radial domain, denoted by black dashed lines in figure 5.2.
When the phase is equal to π/2, all solutions are regular Janus solutions except for the
one solution in the right plot of figure 5.2 which has the turning point at Im(z1) = 1.

9This seems to suggest that there is some kind of conserved quantity for the BPS equations which we
have yet to identify.
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5.6.3 N = 1∗ one-mass model

This model was summarised in section 5.3.1. There is again one complex scalar field z1,
which can be expressed as

z1 = tanh

[
1

2
(α3 − iϕ3)

]
, (5.121)

and one real scalar field β1. A particularly interesting feature of this model, which plays
an important role in the solution space, is the presence of the two LS± AdS5 fixed point
solutions given in (5.57).

Consider solutions that approach N = 4 SYM with mass sources at, say, r → ∞.
Following the discussion in section 5.6.1 and using the results of appendices D.2-D.3, we
can summarise the sources and expectation values for the relevant operators which are
active. All of the source terms are specified by ϕ3,(s) with

α3,(s) = −κL
ℓ
ϕ3,(s) , β1,(s) = −2

3
ϕ2
3,(s) . (5.122)

The field theory sources on AdS4 are given by ϕ3,(s), α3,(s), β1,(s), with ℓϕ3,(s), ℓ
2α3,(s),

ℓ2β1,(s), invariant under Weyl scalings of ℓ, while for those on flat spacetime the dimensionful
quantities are given by (5.107):

ℓϕ3,(s)

y3
,

ℓ2α3,(s)

y23
,

ℓ2β1,(s)
y23

, (5.123)

and have scaling dimensions 1, 2, 2 respectively. For the associated expectation values of
the operators on flat spacetime, we have

⟨Oα3⟩ =
1

4πGL

ℓ2

y23

(
α3,(v) + α3,(s) log

( y3
ℓe2δα

))
, (5.124)

which then, with along with ϕ3,(s) determines the remaining expectation values

⟨Oϕ3⟩ =
4

3

ℓ

y3
⟨Oβ1⟩ϕ3,(s) − 2κL

1

y3
⟨Oα3⟩ −

L

4πG

ℓ

y33
ϕ3,(s) ,

⟨Oβ1⟩ =
4κℓ

L
⟨Oα3⟩ϕ3,(s) −

(1 + 4δα − 4δβ)

2πGL

ℓ2

y23
ϕ2
3,(s) .

(5.125)

An important aspect of the above summary, is that for a specific choice of finite coun-
terterms, all of the scalar sources and expectation values of the dual field theory can be
obtained by providing ℓϕ3,(s) and ℓ

2α3,(v). We will now set ℓ = κ = 1.
We now turn to the numerical solutions which we have summarised in figure 5.3. As

before, each plot corresponds to a fixed phase of the scalar field z1 at the turning point of
AJ(r). The blue dot at the origin represents the N = 4 SYM AdS5 vacuum solution, while
the two red dots correspond to the two LS± AdS5 fixed points given in (5.57).

First consider the left panel in figure 5.3. There is a one-parameter family of N = 4
SYM Janus solutions (blue curves) that approach the N = 4 SYM AdS5 vacuum solution
with spatially modulated mass terms. Since the phase is zero, these solutions are invariant
under the symmetry (5.114) and we find that we have source ϕ3,(s) on the r → +∞
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side of the interface and source ϕ̃3,(s) = −ϕ3,(s) on the r → −∞ side. From the flat
space perspective, we therefore have (with ℓ = 1) a source of the form ϕ3,(s)/y3, for all
y3. Similarly, we find that α̃3,(v) = α3,(v) on either side of the interface. These Janus
solutions exist for 0 < ϕ3,(s) < ∞. As ϕ3,(s) → ∞, we have α3,(v) → ∞ and the Janus
solutions approach a new type of solution (red curve): a novel Janus solution with the LS+

AdS5 vacuum on one side of the interface and the LS− AdS5 vacuum on the other. These
solutions will be discussed in more detail in chapter 6. We note that there are no source
terms which are active on either side of this LS+/LS− interface. This actually follows from
the fact that once we demand that there are no sources for the irrelevant scalar operators
with ∆ = 2 +

√
7 and ∆ = 3 +

√
7, it becomes impossible to source the relevant scalar

operator of the LS SCFT with dimension ∆ = 1 +
√
7 whilst preserving supersymmetry

(see chapter 6 for further details). We also note that the irrational scaling dimensions for
these operators seem to exclude the possibility of having distributional sources for these
scalar operators on this interface while still preserving conformal symmetry. The two sides
of the LS+/LS− interface are related by a discrete automorphism. Beyond this novel LS
Janus solution, there is also a one-parameter family of solutions that run off to singular
behaviour, with |z1|→ 1 at finite values of r.
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Figure 5.3: The family of BPS solutions for the N = 1∗ one mass model is summarised
by parametrically plotting the real and imaginary parts of the scalar field z1. The black
squares correspond to turning points of the function AJ(r) and the three plots, from left
to right, correspond to solutions where the phase of the complex scalar field at the turning
point is 0, π/4 and π/2, respectively. The blue dot at the origin is the N = 4 SYM AdS5

vacuum and the blue lines are Janus solutions. The two red dots are the two LS± AdS5

solutions, each dual to the Leigh-Strassler SCFT. In the middle plot, the red curve is a
conformal RG interface with N = 4 SYM on one side of the interface and the LS SCFT on
the other. In the left plot, the blue curves are N = 4 SYM Janus solutions. The boundary
of field space is |z1|= 1 and the black curves are singular on one or both ends. As one
moves from r = −∞ to r = +∞, one moves clockwise on the curves.

The middle panel of figure 5.3 shows the set of solutions when the phase is π/4 and this
provides the generic picture for phases in the open domain (0, π/2). There is again a one-
parameter family of N = 4 SYM Janus solutions (blue curves) with 0 < ϕ3,(s) < ϕ3,(s)|crit
at the r = ∞ end, where ϕ3,(s)|crit is finite. As ϕ3,(s) → ϕ3,(s)|crit, we have α3,(v) approaching
a finite value and the Janus solutions approach another new type of solution (red curve).
Before discussing that, we note that ϕ3,(s) at r = ∞ and ϕ̃3,(s) at r = −∞ are not simply
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related in general and hence we have flat space sources as in (5.21). Returning to the new
solution (red curve), we notice that it approaches the N = 4 SYM AdS5 vacuum at r → ∞
and the LS+ AdS5 solution at r → −∞. This describes a superconformal RG interface,
with N = 4 SYM on one side of the interface supported by spatially dependent sources
where ϕ3,(s) = ϕ3,(s)|crit, and the LS SCFT on the other. Once again, there are no sources
on the LS+ side of the interface. This particular solution will be discussed in more detail
in chapter 6. Beyond this solution, for ϕ3,(s)|crit< ϕ3,(s) < ∞ we obtain solutions which
start off at the mass deformed N = 4 SYM AdS5 vacuum at r → ∞ and then become
singular at some finite value of r, as marked with the black lines in the middle panel of
figure 5.3. There are also solutions that become singular at both r → ±∞, and they are
marked by black dashed lines in figure 5.3.

Finally, when the phase is π/2 (third plot in figure 5.3), there is a one-parameter
family of N = 4 SYM Janus solutions that exist for −∞ < ϕ3,(s) < 0. These solutions
are invariant under the symmetry (5.115) and we find that the source on either side of the
interface at r = ±∞ takes the same value ϕ̃3,(s) = ϕ3,(s). From the flat space perspective,
we therefore have (with ℓ = 1) a source of the form ϕ3,(s)/|y3|, for all y3. There is also a
one-parameter family of solutions that are singular at finite values of the radial coordinate
in each direction and are marked by the dashed black lines in the right plot in figure 5.3.

5.6.4 N = 1∗ equal-mass model

This model was summarised in section 5.3.2. There are two independent complex fields z1

and z2, which can be expressed as

z1 = tanh

[
1

2
(3α1 + φ− i3ϕ1 + iϕ4)

]
,

z2 = tanh

[
1

2
(α1 − φ− iϕ1 − iϕ4)

]
.

(5.126)

Consider solutions which approach N = 4 SYM with mass sources at, say r → ∞. As
already mentioned several times, we focus on solutions for which the source terms for the
gauge coupling constant and the gaugino mass vanish:

φ(s) = ϕ4,(s) = 0 . (5.127)

All of the source terms for BPS configurations are then specified by ϕ1,(s) with

α1,(s) = −κL
ℓ
ϕ1,(s) . (5.128)

The field theory sources on AdS4 are given by ϕ1,(s) and α1,(s), with ℓϕ1,(s) and ℓ2α1,(s)

invariant under Weyl scalings of ℓ, while those on flat spacetime are given by (5.107):

ℓϕ1,(s)

y3
,

ℓ2α1,(s)

y23
, (5.129)

and have scaling dimensions 1 and 2, respectively. For the associated expectation values
of the operators in flat spacetime, we have

⟨Oα1⟩ = ⟨Oα2⟩ = ⟨Oα3⟩ =
1

4πGL

ℓ2

y23

(
α1,(v) + α1,(s) log

( y3
ℓe2δα

))
,

⟨Oϕ4⟩ =
1

2πGL

ℓ3

y33

(
ϕ4,(v) −

9− 2δ4(5)
3

ϕ3
1,(s)

)
.

(5.130)
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For BPS configurations, the remaining expectation values are determined by these expres-
sions, along with ϕ1,(s), via

⟨Oϕ1⟩ = ⟨Oϕ2⟩ = ⟨Oϕ3⟩ = −2κL
1

y3
⟨Oα1⟩ −

L

4πG

ℓ

y33
ϕ1,(s) ,

y3⟨Oφ⟩ = −3κL

2
⟨Oϕ4⟩ −

κ(3− 2δ4(5))

4πG

ℓ3

y33
ϕ3
1,(s) .

(5.131)

Note that δα, δ4(5) parametrise finite counterterms which we have not fixed. We will now
set ℓ = κ = 1.

Following the discussion given at the end of section 5.5, we know that there is a four-
parameter family of solutions for this model. Here in this section, we will just study a
one-parameter family of solutions, leaving a more complete exploration for future work.
We also note the following technical point when solving the numerical equations. If we
construct a solution with non-vanishing N=4 SYM dilaton source at the r → ∞ end (i.e.
φ(s) ̸= 0), then we can obtain a solution with φ(s) = 0 by using the shift symmetry of the
D = 5 dilaton field (5.47).

In figure 5.4, we have summarised a one-parameter family of N = 4 SYM Janus solu-
tions for this model (with φ(s) = 0 on both sides), for which the phase of both scalars is
zero at the turning point and so the solutions are invariant under the symmetry (5.114).
In contrast to the previous two models, it is convenient to label this family of solutions
not by the values of zi at the turning point but instead in terms of the value of α1 at the
turning point which we label as (α1)tp. For a fixed value of (α1)tp, there is a one-parameter
family of solutions for which zitp are real, all related by shifts of the dilaton and so for
regular solutions we can use this symmetry to fix φ(s) = 0 for each value of (α1)tp. We find
that regular solutions exist for −αcrit < (α1)tp < αcrit with αcrit ≈ 0.447. In figure 5.4, we
have displayed a series of Janus solutions as blue curves, for various values in the range
(α1)tp ∈ [0, αcrit). Interestingly, as (α1)tp increases the solutions start to develop a sequence
of more and more loops in the parameter space of the scalar fields and as (α1)tp → αcrit, we
obtain a new solution which is exactly periodic in the radial coordinate r (the red curve),
which we return to below.

We have just plotted z1 in figure 5.4, and we note that the behaviour of z2 is broadly
similar, which we have not shown. We also note in addition to the Janus solutions, there
are also a host of solutions that are singular at both ends. The last panel in figure 5.4
displays a few of such solutions. In particular, there are solutions that can wind several
times around, before hitting the singularity.

We now return to the limiting periodic solution corresponding to the red curve in figure
5.4. As (α1)tp → αcrit, all of the functions develop more and more periods in the radial
direction, with the period and shape changing very little as the limit is taken. In figure 5.5,
we have plotted the metric function AJ as well as the scalar functions z1, z2 as a function
of r for a solution close to αcrit. For any (α1)tp < αcrit, we have a Janus solution with
AJ → ±r/L and all the scalar fields becoming zero as r → ±∞. The region in between,
however, approaches a solution that develops periodic behaviour. By compactifying along
the radial direction for this limiting periodic solution, we obtain a novel AdS4×S1 solution
which will be further explored and discussed in chapter 7. Note that we can also approach
this critical solution from above, (α1)tp > αcrit, where solutions develop more and more
periods before becoming singular (see figure 5.4(h)).
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Figure 5.4: A family of symmetric BPS solutions for the N = 1∗ equal mass model is
summarised by parametrically plotting the real and imaginary parts of the scalar field z1;
the behaviour of the other scalar field z2 is broadly similar. The black squares correspond
to turning points of the function AJ(r), where the phase of both scalars is zero. The family
of solutions can be labelled by (α1)tp, a function of z1 and z2 at the turning point invariant
under shifts of the dilaton. The blue dot at the origin is the N = 4 SYM AdS5 vacuum and
the blue lines are Janus solutions. As (α1)tp increases we see the appearance of more and
more loops, asymptoting to the red curve, in figure (g), which describes a solution periodic
in the radial direction. In figure (h) we have exactly the same solutions as figure (g) but
with the addition of some illustrative solutions (black dashed lines) that are singular at
both ends (and without the red curve for clarity) . As one moves from r = −∞ to r = +∞
one moves clockwise on the curves.
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Figure 5.5: For the N = 1∗ equal mass model as (α1)tp → αcrit, approaching the red curve
in figure 5.4, the N = 4 SYM Janus solutions have a radial region approaching a solution
that is periodic in the radial coordinate. For any −αcrit < (α1)tp < αcrit, the solution is a
Janus solution and so AJ → ±r/L and zA → 0 as r → ±∞. Both the period and shape of
the middle region is essentially unchanged as we approach the critical solution, with just
more periods appearing, and clearly reveals the functional form of the periodic solution.
The blue and orange curves are the real and imaginary components of z1, z2, respectively.

5.7 Discussion

In this chapter, we have investigated mass deformations of N = 4 SYM theory which de-
pend on one of the three spatial directions and preserve some residual supersymmetry. We
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have focussed on configurations with constant coupling constant and theta angle. We have
also explored these deformations within the context of holography, studying configurations
which preserve ISO(1, 2) symmetry as well those that in addition preserve conformal sym-
metry. For the latter class of deformations, we have constructed a number of interesting
new classes of supersymmetric Janus solutions.

In section 5.2, we have analysed the supersymmetric mass deformations of N = 4
SYM from a field theory perspective. This is achieved by coupling N = 4 SYM to off-
shell conformal supergravity and then taking the Planck mass to infinity as in [163]. For
configurations that have constant complexified gauge coupling parameter τ (i.e. constant
coupling constant and theta angle) as well as no deformations in the 15 and 6, parametrised
by V i

µ j and T
ij
µν , respectively, we reduced the entire problem to solving the equations given

in (5.7). We have then focussed on deformations which generalise the homogeneous N = 1∗

mass deformations, studying in some detail with three particular cases: the N = 1∗ one
mass model, the N = 1∗ equal mass model and the N = 2∗ model. It would be interesting
to further investigate other possible solutions to (5.7). In the static case, we anticipate
that the examples we have studied cover the most general case of conformal interfaces after
employing suitable SU(4) rotations. However, there are additional classes of solutions that
allow time dependence which involve a null projection condition on the Killing spinors
which can be explored.

It would be interesting to analyse more general deformations which also allow τ to
depend on the spatial coordinates. For the Janus class of configurations, this will include
the classification results of [151], which considered deformations with varying coupling
constant combined with other deformations all proportional to spatial derivatives of the
coupling constant10. By relaxing this latter condition, one can anticipate that additional
cases are possible, as a sort of superposition of those studied in [151] with the ones of this
chapter. However, the non-linearity of the equations (5.7) with respect to Eij indicates
that a more detailed analysis would be required. More generally, one can also explore
supersymmetry preserving deformations that also involve gµν , V

i
µ j, which have been utilised

in other situations, such as D3-branes wrapping supersymmetric cycles [59].
In the remainder of this chapter, we have analysed the supersymmetric mass deforma-

tions, with constant τ , from a holographic setting. We have utilised a consistent truncation
of D = 5 maxiaml SO(6) gauged supergravity that involves 10 real scalar fields. This ten-
scalar model allows us to obtain BPS equations preserving ISO(1, 2) symmetry for real
mass deformations. One natural arena to analyse complex mass deformations would be to
utilise an D = 5, N = 2 gauged supergravity theory coupled to two vector multiplets and
four hypermultiplets, with scalar manifold given in (5.36). However, as far as we are aware,
this five-dimensional gauged supergravity theory has not been explicitly constructed in the
literature.

For the ISO(1, 2) preserving configurations associated with real mass deformations, we
have carried out a detailed analysis of the holographic renormalisation procedure, and we
notice that the model apparently admits a large number of finite counterterms. We have
managed to reduce this number a little by demanding that for supersymmetric configu-
rations the energy density should vanish. It would be extremely desirable to identify a
fully supersymmetric scheme along the lines of [187], but this could be a challenging task.

10The supersymmetric Janus supergravity solutions corresponding to [151] have recently been discussed
in [156]. From [156], one can check that the there are no source terms for the dimension ∆ = 2, 3 operators
away from the interface, consistent with [151].
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Our results indicate that there should not be a unique supersymmetric scheme due to the
possibility of adding finite supersymmetric invariants; a useful starting point to determine
these invariants would be to use the results of [188]. A complementary approach would be
to generalise the field theory analysis in section 3 of [168]. For the Janus configurations,
our holographic renormalisation procedure has allowed us to clearly identify source terms
and expectation values of operators, with the conformal interface interpreted as either de-
scribing N = 4 SYM on flat spacetime with spatially modulated mass sources or N = 4
SYM on AdS4 spacetime with constant mass sources.

We have also shown that the deformed N = 4 SYM theory has a conformal anomaly
which includes terms that are quadratic and quartic in the scalar source terms similar
to [184,185]. For Janus configurations, we have shown that while the sources for the scalar
operators on either side of the interface transform covariantly with respect to Weyl trans-
formations, the expectation values for the corresponding operators do not. In particular,
the expectation values of the operators for interfaces of N = 4 SYM on flat spacetime
contain novel terms logarithmic in the coordinate transverse to the interface as well as the
usual terms expected from conformal invariance.

In section 5.6, we have discussed various explicit Janus solutions of N = 4 SYM for
the N = 2∗ theory as well as the one-mass and equal mass models. For all cases, our
constructions also reveal solutions that approach the N = 4 SYM AdS5 as r → ∞ (or
r → −∞ in some cases) and then become singular at some finite value of r. As such, these
solutions have a conformal boundary dual to N = 4 SYM with mass deformations on a
half space that ends at a singularity. It would be interesting to examine these solutions
in more detail, including elucidating the precise nature of the singularities in Type IIB
supergravity, and see if they can be interpreted as BCFTs, as suggested in [186]. Perhaps
they can also be interpreted as a kind of RG flow for N = 4 SYM on AdS4. It seems even
more challenging to find any physical interpretation for the singular solutions that do not
have any conformal boundary.

For the one mass model, we have also found some interesting special solutions which
involve the two LS± AdS5 fixed points that this model admits, each dual to the LS SCFT.
We found examples of both RG interface solutions, with N = 4 SYM on one side of the
interface, and the LS SCFT on the other, as well as a novel LS+/LS− Janus solution dual
to a novel conformal interface of the LS SCFT. Both of these will be further discussed in
chapter 6. For the equal mass model, we have constructed a particular class of N = 4
SYM Janus solutions that develop a periodic structure in the bulk radial coordinate, and
in the critical limit we find solutions which are exactly periodic. After compactifying the
radial direction, we obtain a new supersymmetric AdS4×S1 solution that uplifts to a new
AdS4×S1×S5 solution of Type IIB supergravity, which will be further discussed in chapter
7. This solution is somewhat reminiscent of the interesting AdS4 × S1 solutions in [156].
An important difference, however, is that while our new solutions are simply periodic in
the S1 direction, the solutions of [156] have non-trivial SL(2,Z) monodromy. One might
anticipate that there are many more Janus solutions that can be constructed in gauged
supergravity which have the axion and dilaton activated along with mass sources. It seems
likely that this will also lead to a family of new AdS4 × S1 solutions for which there is
non-trivial SL(2,Z) monodromy along the S1 direction, as in the solutions of [156], and
we will return to this interesting point in chapter 7.
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Chapter 6

Superconformal RG interfaces

6.1 Introduction

Conformal defects/interfaces/boundaries are interesting objects to study in quantum field
theory and continue to be an active research topic (e.g. [189]). They provide important
insights into the non-trivial structure of quantum field theory, they play an important role
in our understanding of string theory and they have a broad range of applications within
the context of condensed matter physics.

In this chapter, we consider renormalisation group (RG) interfaces via holographic tech-
niques. As briefly discussed in chapter 5, an RG interface separates two distinct conformal
field theories, namely CFTUV and CFTIR, with CFTIR being the conformal field theory
that arises after deforming CFTUV (i.e. the conformal field theory in the UV) by a relevant
operator and then flowing to the IR. The RG interface hence provides an important map
between observables in the two theories, as discussed in [159, 160], and provides a novel
perspective on the very important topic of classifying RG flows between CFTs.

Within the context of holography, an interesting construction of planar RG interfaces,
separating two different d = 3 SCFTs, was investigated in [157]. Strong numerical evidence
was provided for the existence of D = 11 supergravity solutions describing an RG interface
separating two distinct d = 3 supersymmetric field theories, with the d = 3, N = 8
ABJM theory with SO(8) global R-symmetry on one side and the N = 1 SCFTs with G2

global R-symmetry on the other. Within the D = 4, N = 8 SO(8) gauged supergravity,
these two theories are holographically related via a Poincaré invariant RG flow. Moreover,
the co-dimension one interface, separating the two SCFTs, preserves d = 2, N = (0, 1)
superconformal symmetry.

The main focus of this chapter is the construction of new gravitational solutions which
holographically describe co-dimension one, planar conformal interfaces separating two d =
4 SCFTs, with N = 4 SYM on one side of the interface and the “Leigh-Strassler” N = 1
SCFT [52] on the other. Recall that the Leigh-Strassler (LS) SCFT arises as the IR limit
of an RG flow after perturbing N = 4 SYM by a specific N = 1∗ homogeneous mass
deformation which preserves an SU(2) × U(1)R global symmetry [52]. More specifically,
we can view N = 4 SYM as N = 1 SYM coupled to three chiral multiplets, the N = 1∗

mass deformation is achieved by giving a mass term to one of the chiral multiplets. The
RG flow, preserving d = 4, N = 1 Poincaré supersymmetry and the SU(2)×U(1)R global
symmetry, were holographically constructed in [51] utilizing a consistent truncation of the
SO(6) gauged supergravity in D = 5, known as the FGPW solution. Since the D = 5
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SO(6) gauged supergravity is a consistent truncation Type IIB supergravity on S5, the
FGPW solution is automatically a solution of Type IIB supergravity.

Our Type IIB supergravity solutions, describing RG interfaces separating N = 4 SYM
and the LS SCFT, are also constructed using a consistent truncation of SO(6) gauged
supergravity in D = 5 (slightly enlarged from the one used in [51]). Generically, the RG
interface solutions are supported by fermion and boson mass deformations on the N = 4
SYM side of the interface, which have non-trivial dependence on the spatial coordinate
transverse to the planar interface, similar to the Janus solutions discussed in chapter 5.
These deformations preserve d = 3, N = 1 superconformal symmetry as well as an SU(2)
global symmetry (i.e. they break the U(1)R symmetry of the Poincaré invariant RG flow).
In contrast, there are no deformations for any relevant operators on the LS side of the in-
terface. On both sides of the interface, there are various operators with spatially dependent
expectation values. While this is the generic situation, there is a particularly interesting
solution for which the source term on the N = 4 SYM side of the interface also vanishes.

To construct these new RG interface solutions, we start with a D = 5 gravitational
ansatz foliated by AdS4 slices, which manifestly preserves d = 3 conformal invariance,
and then impose boundary conditions on the BPS equations such that on one side of the
interface we approach the LS fixed point. By integrating the BPS equations, we find
solutions that are associated with N = 4 SYM on the other side of the interface. In
chapter 5, we have shown that these gravitational solutions also arise as limiting solutions
of a more general class of Janus solutions which are dual to superconformal interfaces with
N = 4 SYM on both sides of the interface. In the limit which the magnitude of the mass
deformations on one of the N = 4 SYM sides of these Janus solutions diverge, we arrive
at an RG interface solution with N = 4 SYM on one side and LS on the other.

We will also present an additional Type IIB solution which arises as a limiting case of
the RG interface solutions. Specifically, when the magnitude of the mass deformations on
the N = 4 SYM side of the RG interface goes to infinity, we obtain a new superconformal
Janus interface with the LS SCFTs on both sides of the interface, but related by a discrete
Z2 symmetry. More precisely, the D = 5 gravity theory admits a AdS5 solution, dual
to N = 4 SYM, and two additional LS± AdS5 solutions, each dual to the LS SCFT,
which are related by the bulk Z2 symmetry. Similarly, the Poincaré invariant RG flow
solutions from the N = 4 SYM AdS5 solution to the LS± AdS5 solutions are also related
by this symmetry. The new Janus solution, which we denote by LS+/LS−, has a conformal
boundary approaching the LS+ AdS5 solution on one side of the interface and the LS−

AdS5 solution on the other. Interestingly, the LS+/LS− Janus solutions are not supported
by any source terms for operators on either side of the interface, but just have operators
taking spatially modulated expectation values. By determining how the expectation value
of a relevant operator of the LS theory behaves as the mass deformation on the N = 4
SYM side diverges, we are able to identify novel critical exponents from our numerics.
Furthermore, our constructions also include a class of D = 5 solutions that approach the
LS± AdS5 solution on one side of the interface and are singular on the other side. The
singularities, with scalar fields reaching the boundary of the scalar manifold, is similar to
the singularities which arise in Poincaré invariant RG flows (e.g. [51]). Similar solutions,
using spatially dependent sources, were also found in a bottom up context in [186] (see
also [157]). In [186], it was suggested that these singular solutions can be interpreted as
being dual to boundary CFTs. An interesting difference between our solutions and those
of [186] is that on the LS side the sources vanish. We leave a further investigation of these
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solutions, including the precise nature of the singularity in D = 10 and the corresponding
dual interpretation, to future work.

The plan of the chapter is as follows. In section 6.2, we provide a review of the N = 1∗

one-mass deformations of N = 4 SYM. In section 6.3, we present new superconformal RG
interface solutions of D = 5 SO(6) gauged supergravity. We conclude this chapter with
some discussion in section 6.4.

6.2 N = 1∗ one-mass deformations of N = 4 SYM

In chapter 5, we provided a detailed discussion on supersymmetric mass deformations of
N = 4 SYM, and one of the three cases considered there was the N = 1∗ one-mass
model. In this section, we will provide a brief, but self-contained, review of the one-mass
deformations from both the field theory and gravity sides, then we will provide the BPS
equations which would be needed later to construct RG interface solutions.

6.2.1 Field theory

We begin by recalling some aspects of homogeneous (i.e. spatially independent) N = 1∗

“one-mass deformations” of N = 4 SYM theory1. We can view the field content of N = 4
SYM in terms of N = 1 language as a vector multiplet, which includes the gauge-field
and the gaugino, coupled to three chiral multiplets Φa. Under the decomposition of the
R-symmetry SU(3) × U(1)1 ⊂ SU(4)R, the three chiral multiplets Φa transform in the 3
of SU(3) ⊂ SU(4)R. The N = 1∗ one-mass deformations are obtained by adding mass
terms associated with one of the chiral multiplets, say Φ3. Specifically, we add to the
superpotential WSYM of N = 4 SYM the following term

∆WSYM ∼ mTr(Φ2
3) , (6.1)

where m is a complex constant for homogeneous deformations. The one-mass deformation
gives rise to complex masses for the bosons and fermions in the chiral multiplets, and
there is no mass deformation for the gaugino. This homogeneous deformation (i.e. with
m constant), preserves an SU(2) × U(1)R global symmetry with U(1)R an R-symmetry.
The SU(2) factor arises from the decomposition SU(2) × U(1)2 ⊂ SU(3), and the U(1)R
is a diagonal subgroup of U(1)1 × U(1)2. Under RG flow, this deformation leads to the
Leigh-Strassler SCFT in the IR, which has the SU(2)×U(1)R global symmetry. The dual
gravitational solutions describing the Poincaré invariant RG flow between N = 4 SYM and
the LS fixed point, were constructed in [51,180], as we will recall below.

Later in this chapter, we will construct gravitational RG interface solutions which
have N = 4 SYM and the LS fixed point on either side of the planar interface. As we
will see, these solutions have non-vanishing sources for boson and fermion masses on the
N = 4 SYM side of the interface which depend on the spatial direction transverse to
the interface (i.e. y3). This means that the mass parameter in (6.1) is now spatially
dependent (i.e. m = m(y3)). From the analysis of [162], we can deduce that this preserve
supersymmetry, provided that we include specific F terms in the superpotential. This
leads to fermion masses of the form mTrχ2

3 + h.c., and deforms the scalar mass term via

1The possibility of SCFTs arising from such mass deformations were first discussed in [129] and see [52]
for a later treatment.
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|m|2Tr|Z3|2±(m′TrZ2
3+h.c.), where Z3 and χ3 are the bosonic and fermionic components of

the chiral superfield Φ3 respectively. The bosonic mass term m′ breaks the SU(2)×U(1)R
global symmetry of the homogeneous mass deformations down to SU(2). Overall, the
deformation will preserve d = 3, N = 1 superconformal symmetry of the interface provided
that m(y3) ∝ 1/y3. Further details on these field theory results can be found in chapter 5.

6.2.2 The D = 5 gravity model

We will utilize a D = 5 theory of gravity, called the N = 1∗ one mass model in [168], that
arises as a consistent truncation of D = 5, N = 8 SO(6) gauged supergravity and hence
also as a consistent Kaluza–Klein truncation of Type IIB supergravity [174, 175] reduced
on S5. This means, by definition, that solutions of this D = 5 theory can be uplifted on a
five-sphere to obtain exact supergravity solutions of Type IIB [39, 40]. We will follow the
conventions used in [168] and use a mostly minus (+,−,−,−,−) signature for the D = 5
metric.

The bosonic field content is comprised of the D = 5 metric, a complex scalar field z
and a real scalar field β. The Lagrangian takes the form

L = −1

4
R + 3(∂β)2 +

1

2
Kzz̄∂µz∂

µz̄ − P , (6.2)

where Kzz̄ = ∂z∂z̄K and the Kähler potential is given by

K = −4 log(1− zz̄) . (6.3)

The scalar potential P can be derived from a superpotential-like term

W =
1

L
e4β(1 + 6z2 + z4) +

2

L
e−2β(1− z2)2 , (6.4)

via

P =
1

8
eK
(
1

6
∂βW∂βW +Kz̄z∇zW∇z̄W − 8

3
WW

)
, (6.5)

where Kz̄z is the inverse of the Kähler metric Kzz̄ and the Kähler covariant derivative is
defined via ∇AW ≡ ∂AW + ∂AKW . As in [168], we can express the complex scalar field
in terms of two real scalar fields, α and ϕ, via

z = tanh

[
1

2
(α− iϕ)

]
. (6.6)

We note that the bosonic part of this theory is invariant under the Z2 symmetry,

z → −z . (6.7)

This model admits an AdS5 vacuum solution, with vanishing scalars and radius L, that
uplifts to the maximally supersymmetric AdS5 × S5 solution, dual to N = 4 SYM theory.
By analysing the linearised fluctuations of the scalar fields around this vacuum solution, we
deduce that ϕ is dual to a fermion mass operator O∆=3

ϕ , with conformal dimension ∆ = 3,
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while α and β are dual to bosonic mass operators O∆=2
α and O∆=2

β , both with conformal
dimensions ∆ = 2. Schematically, we have2

ϕ ↔ O∆=3
ϕ = Tr (χ3χ3 + cubic in Za) + h.c. ,

α ↔ O∆=2
α = Tr

(
Z2

3

)
+ h.c. ,

β ↔ O∆=2
β = Tr

(
|Z1|2+|Z2|2−2|Z3|2

)
,

(6.8)

where Za and χa are the bosonic and fermionic components of the chiral superfields Φa.
Notice that this truncation is suitable for studying real mass deformations of N = 4 SYM
theory, a point we highlighted in chapter 5.

The D = 5 model also admits two additional supersymmetric AdS5 solutions, which
we label by LS±, given by

z = ±i(2−
√
3) ⇔ ϕ = ∓π

6
, α = 0 ,

β = −1

6
log(2) , L̃ =

3

25/3
L ,

(6.9)

where L̃ is the radius of the AdS5 space for both LS± solutions. The two solutions are
related by the bulk Z2 symmetry (6.7) of the D = 5 gravitational theory. When uplifted
to Type IIB, these fixed point solutions preserve SU(2) × U(1)R global symmetry and
are holographically dual to the N = 1 SCFT found by Leigh and Strassler in [52]. By
examining the linearised fluctuations of the scalar fields around the LS± AdS5 solutions,
we deduce that α is dual to an irrelevant operator O∆=2+

√
7

α with conformal dimension
∆ = 2 +

√
7. The linearised modes involving ϕ and β mix, and after diagonalisation we

find modes that are dual to one relevant and one irrelevant operator in the LS SCFT,

which we label as O∆=1+
√
7

ϕ,β and O∆=3+
√
7

ϕ,β with conformal dimensions ∆ = 1 +
√
7 ∼ 3.6

and ∆ = 3 +
√
7 respectively.

Gravitational solutions for the homogeneous RG flows, preserving d = 4 Poincaré in-
variance and flowing from the N = 4 SYM AdS5 solution in the UV to LS+ (or LS−)
AdS5 solution in the IR, were constructed in [51, 180]. These RG flows, which preserve
SU(2) × U(1)R global symmetry, are driven by a supersymmetric source for the relevant
fermion mass operator O∆=3

ϕ and the boson mass operator O∆=2
β in N = 4 SYM. We note

that these solutions can be constructed using the D = 5 gravitational theory by setting
the real part of the complex field to zero (i.e. Re(z) = 0 ⇔ α = 0). The RG interface
solutions which we will construct in this chapter, break the U(1)R symmetry and hence we
need to keep α ̸= 0. We also note that the solutions flowing to the LS+ and the LS− AdS5

solutions are related by the bulk Z2 symmetry (6.7).

6.2.3 BPS equations for conformal interfaces

The D = 5 ansatz for conformal interface solutions is given by

ds25 = e2Ads2(AdS4)− dr2 , (6.10)

where the function A and the scalar fields β, z are all functions of r only. Here ds2(AdS4)
is the metric on AdS4 of radius ℓ, and in Poincaré coordinates this is given by

ds2(AdS4) = ℓ2
[
−dx

2

x2
+

1

x2
(
dt2 − dy21 − dy22

)]
, (6.11)

2Recall that the supergravity modes do not capture the Konishi operator Tr(|Z1|2+|Z2|2+|Z3|2).
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with 0 < x <∞. The AdS4 isometries of the ansatz implies that it generically preserves a
d = 3 conformal symmetry.

As discussed in chapter 5, we can recover the metric on AdS5 with radius L if we set

eA =
L

ℓ
cosh

r

L
, (6.12)

and −∞ < r < ∞. To see this, one can first change coordinates via cosh(r/L) = 1/cosµ,
with −π/2 < µ < π/2. Then making the additional change of coordinates y3 = x sinµ,
Z = x cosµ, we obtain the metric on AdS5 in Poincaré coordinates

ds2 = L2

[
−dZ

2

Z2
+

1

Z2

(
dt2 − dy21 − dy22 − dy23

)]
, (6.13)

with 0 < Z <∞ and −∞ < y3 <∞. The conformal boundary is located at Z = 0 and y3
parametrises one of the spatial coordinates of this boundary. Note that the coordinates x, µ
are polar coordinates constructed from y3, Z. Thus, the conformal boundary of AdS5 in
the coordinates (6.10), (6.12) consists of three components: r → ∞ and x ̸= 0, associated
with the half space parametrised by (t, yi) with y3 > 0, r → −∞ and x ̸= 0, associated
with the half space parametrised by (t, yi) with y3 < 0, and these are joined at the plane
(t, yi) with y3 = 0, associated with x = 0.

We are interested in constructing interface solutions that preserve some supersymmetry.
Using the supersymmetry transformations and conventions given in [168], for the D = 5
ansatz in (6.10), we derive the following BPS equations

∂rA+
i

ℓ
e−A − 1

3
e−iξ+K/2W = 0 ,

i∂rξ −
1

2
(∂zK∂µz − ∂z̄K∂µz̄)−

i

3
Im
(
e−iξ+K/2W

)
= 0 ,

∂rz +
1

2
e−iξ+K/2Kzz̄∇z̄W = 0,

∂rβ +
1

12
e−iξ+K/2∂βW = 0.

(6.14)

Here ξ = ξ(r) is the phase factor which appears in the expression for the Killing spinors.
More details of this derivation can be found in chapter 5. It is worth emphasising that
if the above BPS equations are satisfied, then the full equations of motion are satisfied.
Furthermore, after uplifting to Type IIB, the D = 10 solutions generically preserve an
d = 3, N = 1 superconformal symmetry. We note that the BPS equations are invariant
under the Z2 symmetry of the theory. In addition, they are also invariant under the
following Z2 action

r → −r, z → z̄, ξ → −ξ + π . (6.15)

Combining these two Z2 actions, we also have

r → −r, z → −z̄, ξ → −ξ + π . (6.16)

It is worth noting that this last symmetry leaves invariant each of the two LS± AdS5

solutions, and is dual to a discrete CP symmetry of the LS SCFT.
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6.3 The N = 4 SYM/LS RG interface and LS+/LS−

Janus

We consider solutions of the form (6.10) which describe a conformal RG interface between
N = 4 SYM and the LS SCFT. The D = 5 gravitational theory has two AdS5 vacuum
solutions, LS±, related by the Z2 symmetry (6.7) and dual to the LS SCFT; without loss
of generality we will focus on LS+. In particular, we want to solve the BPS equations
and impose boundary conditions on the ansatz (6.10) such that as r → ∞, the solutions
approach the N = 4 SYM AdS5 solution, while as r → −∞, the solutions approach the
LS+ AdS5 solution.

6.3.1 Holographic renormalisation

Before presenting the numerical solutions, we will briefly discuss the holographic renormal-
isation procedure in determining the sources and expectation values of various operators
in the dual field theory, and more details of the procedure can be found in chapter 5. We
first discuss the N = 4 SYM side of the interface. We begin by developing the asymptotic
expansion to the BPS equations given, as r → ∞, by

A =
r

L
+ . . . ,

ϕ = ϕ(s)e
−r/L + · · ·+ ϕ(v)e

−3r/L + · · · ,
α = α(s)

r

L
e−2r/L + α(v)e

−2r/L + · · · ,

β = β(s)
r

L
e−2r/L + β(v)e

−2r/L + · · · ,

(6.17)

with a number of relations amongst the various constant coefficients in the above expansion.
The terms ϕ(s), α(s) and β(s), which denote the source terms for the dual operators, must
satisfy

α(s) = −L
ℓ
ϕ(s) , β(s) = −2

3
ϕ2
(s) . (6.18)

As r → ∞, we approach a component of the conformal boundary located on one side
of the interface, with metric AdS4 as in (6.11). Thus, this expansion is naturally suited to
obtaining the sources and expectation values for the various operators when N = 4 SYM is
placed on AdS4. The field theory sources on AdS4 are given by ϕ(s), α(s), β(s) and we note
that ℓϕ(s), ℓ

2α(s), ℓ
2β(s) are invariant under Weyl rescalings of the AdS4 radius ℓ. Since we

are interested in the associated quantities when the theory is placed on flat spacetime, we
need to carry out a suitable Weyl transformation, with Weyl factor x2/ℓ2 acting on (6.11).
One subtlety in this approach, is that the source terms give rise to terms in the conformal
anomaly quadratic and quartic in the sources as in [184,185], which we discussed in detail
in chapter 5.

A solution with boundary conditions (6.17) is associated with the following sources for
N = 4 SYM on flat spacetime,

ℓϕ(s)

y3
,

ℓ2α(s)

y23
,

ℓ2β(s)
y23

, (6.19)
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with y3 > 0, and the BPS equations imply (6.18). Note that all sources can be expressed in
terms of ϕ(s), which we will use in the numerical plots below. For the associated expectation
values of the operators in flat spacetime, we have

⟨Oα⟩ =
1

4πGL

ℓ2

y23

(
α(v) + α(s) log

( y3
ℓe2δα

))
, (6.20)

which then, along with ϕ(s) determines the remaining expectation values via

⟨Oϕ⟩ =
4

3

ℓ

y3
⟨Oβ⟩ϕ(s) − 2L

1

y3
⟨Oα⟩ −

L

4πG

ℓ

y33
ϕ(s) ,

⟨Oβ⟩ =
4ℓ

L
⟨Oα⟩ϕ(s) −

(1 + 4δα − 4δβ)

2πGL

ℓ2

y23
ϕ2
(s) .

(6.21)

Here δα, δβ are finite counterterms which we have not fixed, and the reason for this was
discussed in detail in chapter 5. While the sources transform covariantly under Weyl
transformations of the boundary theory, the expectation values do not as we highlighted in
chapter 5. In our numerical results below, we will fix ℓ = 1 (as well as L = 1) and discuss
the values of ϕ(s) and α(v), which for a definite choice of finite counterterms then gives all
of the sources and expectation values.

We now consider the LS+ side of the interface. First of all, since the scalar operators
have irrational scaling dimensions, there are no finite counterterms that we can add. Sec-
ondly, and for similar reasons, the conformal anomaly does not contain any source terms
for the scalar operators. Thirdly, it turns out to be not possible to add source terms for the

relevant operator O∆=1+
√
7

ϕ,β in the LS theory and be compatible with the BPS equations.
Since we want the solutions to approach the LS+ AdS5 solution as r → −∞, we also need
to demand that there are no source terms for the two irrelevant operators O∆=2+

√
7

α and

O∆=3+
√
7

ϕ,β . In addition to a universal mode associated with shifts in the coordinate r, we
then find that there is a single BPS mode of the form, as r → −∞,

z = i(2−
√
3) + iζer(1+

√
7)/L̃ + . . . ,

β = −1

6
log 2 + bζer(1+

√
7)/L̃ + . . . ,

(6.22)

parametrised by a real number ζ and

b =
1

18

(
3 + 2

√
3
)(

1 +
√
7
)
. (6.23)

This mode is associated with the relevant operator O∆=1+
√
7

ϕ,β in the LS+ theory acquiring
an expectation value. More precisely, for this side of the interface as r → −∞, which is
y3 < 0 in the flat spacetime boundary, using (6.22) we define

⟨O∆=1+
√
7

ϕ,β ⟩ ∝
(

ℓ

−y3

)1+
√
7

ζ . (6.24)

The two irrelevant operators O∆=2+
√
7

α and O∆=3+
√
7

ϕ,β also acquire expectation values pro-
portional to ζ.
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6.3.2 Numerical solutions

We numerically construct RG interface solutions by starting with the LS+ side at r = −∞,

shooting out with the mode associated with ⟨O∆=1+
√
7

ϕ,β ⟩, parametrised by ζ, and then seeing
where the trajectory ends up at r = ∞. The main results are presented in figures 6.1-
6.3. There is another set of physically equivalent solutions which start with LS− side at
r = −∞, which can be obtained using the Z2 symmetry (6.7), and we would not explicitly
discuss these solutions.
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Figure 6.1: The family of D = 5 BPS solutions is summarised by parametrically plotting
the real and imaginary parts of the complex scalar field z. The blue dot represents the
N = 4 SYM AdS5 vacuum solution and the two red dots represent the two LS ± AdS5

vacuum solutions. The blue curves are dual to N = 4 SYM/LS+ RG interfaces. For these
solutions, the bottom panel shows plots of ζ and α(v), which determine the expectation
values on the LS+ andN = 4 SYM sides respectively, as a function of ϕ(s) which determines
the sources on the N = 4 SYM side. The dashed blue line in the top panel is the RG
interface solution for which all source terms vanish on the N = 4 SYM side of the interface.
As ϕ(s) → +∞, one approaches the LS+/LS− Janus solution, which is labelled by the red
curve. The black curves become singular at |z|= 1.

Figure 6.1 provides a parametric plot of the real and imaginary parts of the complex
scalar field, z, for the solutions we have constructed. The blue dot at the origin represents
the N = 4 SYM AdS5 solution, while the two red dots represent the two LS± AdS5

solutions, related by the Z2 symmetry (6.7). The blue curves represent a one-parameter
family of RG interface solutions with N = 4 SYM theory on one side (y3 > 0) and LS+

on the other (y3 < 0). We have also plotted in the bottom left panel ζ, which determines
the expectation values of the LS SCFT via (6.24), as a function of ϕ(s), which we recall
fixes the fermion mass deformation as well as all other source terms on the N = 4 SYM
theory side via (6.18), (6.19). In the bottom right panel, we have plotted α(v), which
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along with ϕ(s) determines the expectation value on the N = 4 SYM theory side, as a
function of ϕ(s). The RG interface solutions exist in the range −∞ < ϕ(s) < ∞ with
0 < ζ < ζcrit ≈ 0.0281. When ϕ(s) → +∞ (and ζ → ζcrit), the solutions approach the
red curve, and when ϕ(s) → −∞ (and ζ → 0), they approach a vertical line along the
imaginary z axis.

We next note that the lower panels in figure 6.1 clearly reveal the existence of an RG
interface solution for which ϕ(s) = 0. This means that all sources on the N = 4 SYM
side vanish, and since the sources always vanish on the LS+ side, this rather remarkably
proves the existence of an RG interface solution that has vanishing sources away from the
interface. For this special solution, marked by the dashed blue line in figure 6.1, we can
determine the expectation values of the operators in the two SCFTS. On the LS+ side,
we find ζ ≈ 0.0040. On the N = 4 side, recalling from (6.18)-(6.21) that the expectation
values of the scalar operators are all determined by α(v) and ϕ(s), we find α(v) = 0.3553.

The general behaviour of the radial functions for all of the N = 4 SYM/LS+ RG
interface solutions (blue curves in figure 6.1) share a similar form. As an example, in
figure 6.2 we provide the plots of the metric and scalar functions for the special source-free
solution (i.e. ϕ(s) = 0).
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Figure 6.2: The BPS solution for the dashed blue curve in figure 6.1, describing an N = 4
SYM/LS RG interface, for which all source terms vanish i.e. ϕ(s) = 0. We have plotted
A′ = dA/dr and the three scalar functions as a function of r. The LS+ AdS5 solution is
approached at r → −∞, while the N = 4 SYM AdS5 solution is approached at r → ∞.
The red dashed lines provide the associated values of the LS+ AdS5 solution.

We next consider how the RG interface solutions behave as ϕ(s) → −∞ (and ζ → 0),
when they approach a vertical blue line in figure 6.1. In this limit, one can show that the
solutions have a region which closely approaches the Poincaré invariant RG flow solution
from N = 4 SYM to the LS+ fixed point, as one might anticipate. To make this more
precise, we can reinstate ℓ and then keep ϕ(s) fixed while taking ℓ → ∞, such that we
are solving the BPS equations on the N = 4 SYM side where the 1

ℓ
term in (6.14) is

significantly suppressed. With ℓ = 1, as we have assumed in our numerics, we can see the
approach to the Poincaré invariant solution by parametrically plotting the behaviour of A′

with respect to the imaginary part of z (recall that in the Poincaré invariant RG solution

121



the real part of z vanishes) as we have done in figure 6.3. In the limit which ϕ(s) → −∞,
we can analyse the way in which ζ → 0 on the LS+ side. This gives rise to the following
critical exponent, which from our numerics we find

ζ ∼ |ϕ(s)|−γ, γ ≈ 1.6457 . (6.25)

Recall that ζ gives the expectation value of an operator with conformal dimension 1 +
√
7

as in (6.24). We also note that the exact critical exponent (6.25) seems to be equal to
−1 +

√
7, and it would be extremely interesting to prove this observation.
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Figure 6.3: We display the limiting behaviour of N = 4 SYM/LS RG interface solutions
of figure 6.1 using parametric plots of A′ versus Im(z). As ϕ(s) → −∞, the solutions in
figure 6.1 approach a vertical blue line. In this limit (top panel), the solutions approximate
two solutions, the dashed red line, which is the Poincaré invariant RG flow solution from
N = 4 SYM to the LS+ fixed point, joined with the vertical blue line, which is the LS+

fixed point itself. As ϕ(s) → +∞, the solutions in figure 6.1 approach the red curve in figure
6.1. In this limit (bottom panel), the solutions approximate two solutions, the dashed red
line, which is the Poincaré invariant RG flow solution from N = 4 SYM to the LS− fixed
point, joined with the dark blue line which is the LS+/LS− Janus solution.

We now consider what happens to the RG interface solutions as ϕ(s) → +∞, when
ζ → ζcrit ≈ 0.0281, as in the lower left panel of figure 6.1. In this limit, the blue curves in
figure 6.1 approach the red curve which is a new type of Janus interface solution. Indeed,
the red curve describes a Janus solution with LS+ on one side of the interface and LS− on the
other. Interestingly, we have vanishing sources on both sides of the Janus interface. This
solution is invariant under the Z2 symmetry (6.15). The way in which the RG interface
solutions approach this LS+/LS− Janus is also interesting. From figure 6.1, one might
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expect that on the N = 4 SYM side of the interface (r → ∞), the solution starts to
approach the Poincaré invariant RG flow solution from N = 4 SYM to the LS− fixed
point. Indeed, this is the case, with the limiting solutions behaving analogously to those
in 6.3. Focussing now on the LS+ side, we obtain another critical exponent:

ζcrit − ζ ∼ ϕ−γ
(s) , γ ≈ 1.6459 , (6.26)

and again we suggest that this critical exponent is exactly equal to −1 +
√
7.

Figure 6.1 also shows that there is a one-parameter family of solutions which approach
LS+ as r → −∞, and then approach a singular behaviour, with |z|→ 1, at some finite
value of r. These solutions can be characterised by the expectation value of the operator

⟨O∆=1+
√
7

ϕ,β ⟩ in the LS SCFT and have ζ > ζcrit, appearing to exist for arbitrary large values
of ζ. Although not plotted in figure 6.1, there are also singular solutions starting at LS+

with ζ < 0 and hitting a singularity at |z|= 1. These solutions describe configurations of the
LS SCFT when placed on a half space without sources and with non-vanishing expectation
values. Similar solutions were discussed in [186] in a bottom up context where they were
interpreted as being dual to boundary CFTs. An important difference, however, is that
the solutions in [186] were supported by non-vanishing sources. We also note that the
singularity of the solutions we have constructed are similar to those that arise in Poincaré
invariant RG flows (e.g. [51]) and it would be interesting to investigate this further.

6.4 Discussion

In this chapter, we have constructed gravitational solutions that are holographically dual to
RG interface solutions and examined some of their properties. Using a D = 5 gravitational
model, we have found solutions dual to RG interface solutions with N = 4 SYM on one
side and the N = 1 LS SCFT on the other. Generically, these solutions are supported by
spatially dependent mass terms on the N = 4 SYM side of the interface, but there is one
particular solution for which all sources vanish. As the source terms of the N = 4 SYM
side diverge, we obtain a novel D = 5 solution describing a LS+/LS− Janus solution. From
the dual field theory point of view, the Janus interface has the same LS SCFT on either
side of the interface, and they are related by the action of a discrete Z2 symmetry, which
is a novel feature.

From the results of this chapter, it seems likely that if a holographic Poincaré invariant
RG flow solution from CFTUV to CFTIR exists, then there will always be a corresponding
RG interface solution. It is likely that these RG interface solutions will be supported
by spatially dependent sources on the CFTUV side of the RG interface and vanishing
sources on the CFTIR side, but there could be some classes of solutions where there are
additional sources activated on the CFTIR side. We also conjecture that among these RG
interface solutions there will always be a special solution for which the sources away from
the interface all vanish. In addition, it would be interesting to investigate setups for which
there are Poincaré invariant RG flows from CFTUV to two IR CFTs, CFTIR and CFT′

IR,
which are not related by any parity transformation. For example, it may be possible to have
situations for which there is no Poincaré invariant RG flow between CFTIR and CFT′

IR,
yet one might question if a conformal interface between the two theories can still exist. In
situations for which there is a Poincaré invariant RG flow between CFTIR and CFT′

IR,
one might expect RG interfaces with multiple interfaces.
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It would be interesting to explore these ideas further by explicitly constructing addi-
tional examples of Type IIB and D = 11 supergravity. For example, we think it would
be worthwhile to construct RG interface solutions separating the ABJM SCFT with the
d = 3, N = 2 SCFT with SU(3)×U(1) global symmetry, for which the associated Poincaré
invariant RG flows have been constructed [190,191]. It should be possible to construct var-
ious interface solutions, similar to those in this chapter, utilising the consistent truncation
outlined in [192].

In both this chapter and the previous chapter, we have elucidated what is happening
to the sources and expectation values of various operators on either side of the interface,
for both the RG interface solutions and the Janus solutions. It would be both interesting
and important to further understand what is happening on the interface itself. While this
might seem like an intricate issue, we note that the distributional sources for a class of
holographic supersymmetric Janus solutions were explicitly determined in [144]. Although,
the derivation of [144] utilised the fact that the BPS equations can be boiled down to
solving the Helmholtz equation on the complex plane, we expect it should be possible
to suitably generalise the analysis to the present setting. It would also be interesting to
explore transport across the interface, analogous to what was recently done in the context
of d = 2 CFTs using holographic techniques [193].

Finally, we have also discussed D = 5 solutions which are non-singular on one side of
the interface, approaching the LS± AdS5 solution and becoming singular on the other. As
also mentioned in chapter 5, such singular solutions were argued to be related to BCFTs
in [186]. We have shown that the singular solutions have vanishing source terms on the non-
singular side of the interface. It would be interesting to further investigate the nature of
the singularity in D = 10 and determine the precise dual interpretation of these solutions.
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Chapter 7

New family of AdS4 S-folds

7.1 Introduction

The landscape of non-geometric backgrounds of string/M-theory which are associated with
the AdS/CFT correspondence is still a largely unexplored territory. By definition, such
solutions/backgrounds are patched together using duality transformations and hence they
are not ordinary solutions of the low-energy supergravity approximation. Nevertheless,
in favourable situations one can still utilise supergravity constructions to obtain valuable
insights.

Within the context of Type IIB string theory, which is the focus of this chapter, we can
consider S-folds i.e. non-geometric solutions that are patched together using the SL(2,Z)
symmetry. For AdS/CFT applications, we are interested in solutions of Type IIB super-
gravity of the form AdS ×M with the axion-dilaton, the three-forms and the self dual
five-form all active on the internal manifold M . The S-fold construction implies that M
will have monodromies in SL(2,Z), which act on the axion-dilaton and the three-forms. If
these monodromies involve contractible loops in M , then this generally leads to the pres-
ence of brane singularities and regions where the supergravity approximation breaks down.
However, one can hope to make further progress if the solutions lie within the context of
F-theory, similar to the construction of AdS3 solutions discussed in [194,195].

We can also consider AdS ×M solutions of Type IIB supergravity where the SL(2,Z)
monodromies do not involve contractible loops. In this case, provided that the fields are all
varying slowly on M , we can expect the Type IIB supergravity approximation to be valid,
and such solutions would correspond to some dual CFTs. Examples of such solutions were
presented in [196] and further discussed in [197], where the ten-dimensional spacetime is
of the form AdS4×S1×S5 with non-trivial SL(2,Z) monodromy around the S1 direction.
The solutions preserve the supersymmetry associated with N = 4 SCFTs in d = 3, and we
will refer to them as N = 4 S-folds. These solutions can be constructed as a certain limit
of a class of N = 4 Janus solutions [151] which describe d = 3, N = 4 superconformal
interfaces of the four-dimensional N = 4 SYM theory. Using this perspective and the
results of [154, 198], a conjecture for the SCFT dual to these N = 4 S-folds was provided
in [197].

Other than the N = 4 S-fold solutions, one can also consider S-fold constructions with
less supersymmetry. In fact, N = 1 and N = 2 S-fold solutions of the form AdS4×S1×S5

have been constructed in [156,199,200]. In particular, it was shown in [156] how they can
be obtained as limiting solutions of N = 1 [149,150,155] and N = 2 [151] Janus solutions,
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also describing superconformal interfaces of d = 4, N = 4 SYM theory. Moreover, the
N = 1 AdS4 × S1 × S5 S-folds have been generalised to N = 1 AdS4 × S1 × SE5 S-folds,
where SE5 is an arbitrary five-dimensional Sasaki-Einstein manifold [201].

In the Janus solutions which are used to construct the S-fold examples in [156,197], the
complexified gauge coupling τ of N = 4 SYM theory takes different values on either side
of the interface. As highlighted in chapter 5, this is not always necessarily the case. In
fact, it is possible to have interfaces in N = 4 SYM with the same value of τ on either side
of the interface, but instead are supported by spatially dependent fermion and boson mass
deformations, while preserving d = 3 conformal symmetry. In chapter 5, we constructed
the associated holographic solutions using D = 5 SO(6) gauged supergravity, and such all
our solutions can be uplifted back to Type IIB. Among all of the solutions constructed
in chapter 5, we would like to recall and highlight the supersymmetric AdS4 × R solution
presented in section 5.6.4. This AdS4×R solution is obtained as a limit of this class of Janus
solutions which is periodic in the R direction and uplifts to give a smooth1 AdS4×S1×S5

solution of Type IIB supergravity (i.e. without S-folding). It is worth emphasising that the
constructions presented in chapter 5 can be generalised to give interface solutions which
have spatially dependent masses and varying τ . It is therefore natural to ask if there
are limiting classes of such Janus solutions which can be utilised to construct new S-fold
solutions and/or periodic solutions. While we have not found any more periodic solutions,
we have found infinite new classes of supersymmetric AdS4 ×R solutions of D = 5 SO(6)
gauged supergravity which give rise to infinite new classes of S-fold solutions of the form
AdS4 × S1 × S5, generically preserving N = 1 supersymmetry in d = 3.

Our new construction will utilise various consistent sub-truncations of D = 5, SO(6)
gauged supergravity all lying within the 10-scalar truncation of [168], which we provided a
detailed discussion in chapter 5. One of these scalar fields is the D = 5 dilaton φ, which for
the vacuum AdS5 solutions is dual to the gauge coupling parameter of N = 4 SYM theory.2

Within this truncation, we numerically construct families of AdS4 ×R solutions that arise
as certain limits of Janus solutions with N = 4 SYM on either side of the interface. We
then uplift these solutions to obtain AdS4 × R × S5 of Type IIB supergravity, using the
results of [39, 40]. Additional AdS4 × R × S5 supergravity solutions in D = 10 can then
be generated using the Type IIB SL(2,R) transformations. Finally, within this family
of Type IIB supergravity solutions, one can find discrete examples by using the SL(2,Z)
duality transformations, which leads to supersymmetric AdS4×S1×S5 S-fold solutions of
Type IIB string theory.

Overall, the D = 5 metric for the solutions we discuss in this chapter is all of the
following form

ds2 = e2A(r)[ds2(AdS4)− dr2] , (7.1)

where all of the D = 5 scalar fields are functions of the radial coordinate. The ansatz
therefore preserves d = 3 conformal invariance. The D = 5 solutions associated with the
known N = 1, 2 and 4 S-folds are all direct products of the form AdS4 × R with constant
warp factor A and with all of the D = 5 scalar fields constant, except for the D = 5 dilaton
field φ, which varies linearly in the radial coordinate.

1As far as we are aware, this is the first example of a supersymmetric AdS4×M6 solution of Type IIB
supergravity, with compact M6 that is smooth i.e. without sources.

2We note that, in general, the Type IIB dilaton of the uplifted solutions is not exactly the same as the
D = 5 dilaton, as explained in appendix E.1.
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The new AdS4 × R solutions have several interesting features. First of all, the metric
on AdS4×R is no longer a direct product but a warped product, since the warp factor now
has non-trivial dependence on the radial direction. Secondly, and importantly, the warp
factor A(r) and all of the D = 5 scalar fields are now periodic in the radial direction, with
the same period ∆r, except for φ which is now a “linear plus periodic” (LPP) function of r.
Therefore, unlike the known AdS4×R S-fold solutions, the metric no longer admits a Killing
vector associated with translations in the radial direction and, furthermore, the solution
is no longer invariant under the continuous translational symmetry which is associated
with a dilaton shift. Thirdly, as a consequence of the previous point, we do not believe
that our new solutions can be constructed within the maximally supersymmetric D = 4
gauged supergravity theory which have been used to construct the known S-fold solutions
[196, 199, 200]. This is simply because the D = 4 theory is obtained by carrying out a
Scherk-Schwarz reduction ofD = 5 maximal gauged supergravity along the radial direction,
and this reduction requires such a continuous symmetry. In figure 7.1, we have illustrated
how the new solutions arise as limiting cases of Janus solutions of N = 4 SYM, with in
general the N = 4 SYM coupling constant taking different values on either side of the
interface.
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Figure 7.1: A D = 5 Janus solution that is approaching the new AdS4 × R solutions for
the SO(3) invariant model. As r̄ → ±∞, the solution is approaching AdS5 on either
side of the interface: the warp factor is behaving as A → ±r̄/L, the D = 5 dilaton is
approaching two different constants φ → φ±, while the remaining scalar fields ϕ1, α1 and
ϕ4 (not displayed) are going to zero. In the intermediate regime, we can see the build up
of a periodic structure for the warp factor and the scalar fields, with φ having, in addition,
a linear dependence in r̄ (i.e. φ is a “linear plus periodic” (LPP) function). In the new
limiting AdS4 ×R solution, the intermediate structure extends all the way out to infinity.
Note that we have used the proper distance radial coordinate r̄ given in (7.3).

The plan of the rest of the chapter is as follows. In section 7.2, we discuss the general
framework for constructing the new AdS4 × R solutions in D = 5 and the procedure for
obtaining AdS4 × S1 × S5 S-folds solutions of Type IIB string theory. In sections 7.3 and
7.4, we discuss in more detail the constructions for two particular sub-truncations of the
ten-scalar model [168]: (i) an SO(3) ⊂ SU(3) ⊂ SO(6) invariant model involving four
scalar fields and (ii) an SU(2) ⊂ SU(3) ⊂ SO(6) invariant model involving five scalar
fields. The SO(3) invariant model, also known as the N = 1∗ equal mass model, includes
the AdS4 × R solutions associated with the known N = 1 and N = 4 S-fold solutions as
well as the periodic AdS4 × R solution constructed in chapter 5. We note that figure 7.1
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is associated with this model. The SU(2) invariant model includes the AdS4×R solutions
associated with the known N = 2 S-fold solutions and it also includes those associated with
the known N = 1 S-fold solutions. In both truncations, our new family of S-fold solutions
includes the previous known solutions. Furthermore, we can identify in both cases the
existence of some of our new family of solutions by a perturbative construction around
the known N = 1 S-fold solution (rather interestingly, we have not be able to find such
perturbative constructions around the N = 2, 4 solutions). We conclude this chapter with
some discussion in section 7.5, and collect some useful results in the appendices, including
some useful results concerning how to uplift solutions of the ten-scalar model in D = 5 to
Type IIB supergravity.

7.2 Constructing S-folds

The construction of our S-fold solutions starts with constructing solutions of the ten-scalar
model in D = 5, for which a detailed discussion can be found in chapter 5. These are
then uplifted to Type IIB, where additional solutions are generated using the SL(2,R)
symmetry of Type IIB supergravity. Finally, we utilise the SL(2,Z) symmetry of Type
IIB string theory to carry out the S-folding procedure.

7.2.1 Ansatz in D = 5

We consider solutions of D = 5 SO(6) gauged supergravity of the following form

ds2 = e2Ads2(AdS4)−N2dr2 , (7.2)

where ds2(AdS4) is the metric on AdS4, which we take to have unit radius, and A, N ,
β1, β2, z

A are all functions of r only. As discussed in the previous two chapters, this ansatz
preserves d = 3 conformal invariance. There is still some residual freedom in choosing the
radial coordinate. In this chapter, we will either use the “conformal gauge” with N = eA,
as in (7.1), or the “proper distance gauge” with N = 1

conformal gauge: N = eA , radial coordinate: r ,

proper distance gauge: N = 1 , radial coordinate: r̄ ,
(7.3)

with dr̄ = eAdr.
We are interested in supersymmetric configurations which, generically, are associated

with N = 1 superconformal symmetry in d = 3 (i.e. two Poincaré supercharges plus
two superconformal supercharges). As shown in chapter 5, we can obtain such solutions
provided that we solve the following3 BPS equations (in the conformal gauge),

∂rA− i = 2Br,

∂rBr = 2FBrB̄r ,
(7.4)

where we recall that F is a real quantity just depending on W , K given by

F ≡ 1− 3

2

1

|W|2∇AWKAB̄∇B̄W̄ − 1

4
|∂β1 logW|2−3

4
|∂β2 logW|2 , (7.5)

3With essentially no loss of generality, the parameter κ = ±1 appearing in chapter 5, which fixes the
projections on the Killing spinors, has been set to κ = +1 here.
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as well as

∂rz
A = −3KAB̄∇B̄W

W B̄r ,

∂rβ1 = −1

2
∂β1 logWB̄r ,

∂rβ2 = −3

2
∂β2 logWB̄r .

(7.6)

In these equations, the quantity Br is defined as Br ≡ 1
6
eiξ+A+K/2W , where ξ(r) is a

phase that appears in the Killing spinors. It is helpful to recall that the BPS equations are
left invariant under the transformation

r → −r, zA → z̄A, ξ → −ξ + π . (7.7)

The BPS equations are also invariant under the discrete Z2×S4 symmetries in (5.44)-(5.46)
and this will also be the case for any of the sub-truncations in figure 5.1 for which they are
still present. Additional general aspects of the space of solutions to these BPS equations
were discussed in chapter 5.

It will also be useful to notice that the dilaton shift symmetry (5.47) of the ten-scalar
model gives rise to a conserved quantity for the BPS equations. Specifically, one can check
that an integral of motion for the BPS equations is given by

E ≡ 1

L3
e3Aµ(z, z̄) , (7.8)

where the moment map was given in (5.51) or (5.52). This result can be derived via the
Noether procedure as follows. The Killing vector lA generating the symmetry (5.47), gives
rise to a conserved current for the full equations of motion. For our ansatz, we deduce that
the radial component of this current is given by

E ∝ √
ggrr

(
KAB̄∂rz̄

B̄lA +KBĀ∂rz
BlĀ
)
, (7.9)

which is a conserved quantity and independent of r. Using the BPS equations, we obtain

E ∝ e3A
(
∂AK̃Brl

A + ∂ĀK̃B̄rl
Ā
)
,

= e3A
[
(lA∂AK̃ + lĀ∂ĀK̃) Re(Br)−

i

2

(
lA∂AK̃ − lĀ∂ĀK̃

)]
,

= −e3A
(
ilA∂AK̃

)
= −e3Aµ .

(7.10)

7.2.2 Janus solutions

We now briefly recall and summarise some aspects of the Janus solutions constructed in
chapter 5. The maximally supersymmetric AdS5 vacuum solution, dual to d = 4, N = 4
SYM, has a warp factor given by

eA = L cosh
r̄

L
, (7.11)

with all of the scalar fields vanishing i.e. zA = 0.
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Supersymmetric Janus solutions, describing superconformal interfaces of d = 4, N = 4
SYM, can be obtained by solving the BPS equations and imposing boundary conditions
such that the solutions approach the AdS5 vacuum solution (7.11) at r̄ = ±∞, with suitable
falloffs for the scalar fields. A detailed analysis of holographic renormalisation procedure
for such Janus solutions was carried out in appendix D.2 (using the proper distance gauge).
The focus in chapter 5 was to construct Janus solutions that are dual to interfaces of N = 4
SYM that are supported by fermion and boson masses which have a non-trivial spatial
dependence on the direction transverse to the interface. These solutions were constructed
within the following truncations: the N = 2∗ truncation (three scalar fields), the N = 1∗

one-mass truncation (three scalar fields) and the N = 1∗ equal-mass, SO(3) invariant
truncation (four scalar fields). For a visualised summary of the sub-truncations of the
ten-scalar model, we refer readers to figure 5.1.

Within the Janus solutions of the N = 1∗ equal-mass truncation, a special limiting
AdS4×R solution was found with the warp factor A and all of the scalar fields periodic in
the R direction (see section 5.6.4). This solution can be compactified on the R direction
and after uplifting to Type IIB, one obtains a regular AdS4 × S1 × S5 solution (without
S-folding). In the following, we will present new AdS4 × R solutions which are no longer
periodic in the R direction, but can also be found as limiting classes of Janus solutions. In
the new solutions, the D = 5 dilaton φ is a LPP function while the remaining scalars and
warp factor are periodic in the R direction, where an illustration is provided in figure 7.1.
All of our new S-fold solutions arise as limits of D = 5 Janus solutions with φ(s), which
parametrises the source for the operator dual to φ, taking different values on either side of
the interface. In other words, these Janus solutions are interfaces of d = 4, N = 4 SYM
with the coupling constant taking different values on either side of the interface.

It will also be helpful to recall that for the N = 1∗ one-mass truncation, in addition
to the AdS5 vacuum solution dual to d = 4, N = 4 SYM, there are also two other AdS5

solutions, LS±, which are both dual to the Leigh-Strassler N = 1 SCFT. In chapters 5
and 6, novel limiting solutions of the Janus solutions associated with interfaces involving
the LS SCFT were constructed. Specifically, we found solutions dual to an RG interface
with N = 4 SYM on one side of the interface and the LS theory on the other, as well as
Janus solutions with the LS theory on either side of the interface. In this chapter, we also
construct solutions within the 5-scalar SU(2) truncation in figure 5.1 (see red box), which
contain the LS± fixed points. In addition to the new LPP solutions, we also find limiting
Janus solutions that involve Janus interfaces with the LS± fixed points i.e. solutions with
LS± on either side of the interface with a linear D = 5 dilaton.

Finally, as somewhat of an additional information, we note that the conserved quan-
tity E given in (7.8) implies a constraint amongst the sources and expectation values of
operators of N = 4 SYM theory for the Janus configurations. Following the holographic
renormalisation procedure outlined in chapter 5, which was carried out using the proper
distance gauge, the expansion series of the bulk fields at the r̄ → ∞ end of the interface
are given by

ϕi = ϕi,(s)e
−r̄/L + · · ·+ ϕi,(v)e

−3r̄/L + · · · , αi = αi,(s)
r̄

L
e−2r̄/L + αi,(v)e

−2r̄/L + · · · ,

βi = βi,(s)
r̄

L
e−2r̄/L + βi,(v)e

−2r̄/L + · · · , φ = φ(s) + · · ·+ φ(v)e
−4r̄/L + · · · ,

A =
r̄

L
+ · · ·+ A(v)e

−4r̄/L + · · · . (7.12)

130



Here ϕi,(s), αi,(s), ... give the source terms of the dual operators, while ϕi,(v), αi,(v), ... can
be used to obtain the expectation values, explicitly given in chapter 5. Using the expan-
sion serires as well the conditions on sources and expectation values imposed by the BPS
configurations, we find that the integral of motion is given by

E =
1

L3
(2ϕ4,(v) − 4ϕ1,(s)ϕ2,(s)ϕ3,(s)) . (7.13)

7.2.3 AdS4 × R solutions and S-folds

Our principal interest in this chapter concerns a new class of solutions to the BPS equations
of the form (in conformal gauge):

ds2 = e2A[ds2(AdS4)− dr2] ,

φ = kr + f(r) ,
(7.14)

where k is a constant and A, f and all other scalar fields satisfy

A(r) = A(r +∆r) , f(r) = f(r +∆r) , zA(r) = zA(r +∆r) . (7.15)

Notice that, in general, the D = 5 dilaton φ is an LPP function, while the warp factor
and the remaining scalar fields are all periodic functions of r, with period ∆r. Over one
period, φ changes by an amount ∆φ given by

∆φ ≡ φ(r +∆r)− φ(r) = k∆r . (7.16)

Although we have defined ∆φ in the conformal gauge, importantly (and unlike k,∆r) it
is invariant under coordinate changes4 of the form r → ρ with dρ = G(r)dr, where G(r) is
a periodic function G(r +∆r) = G(r). We can also define the proper distance of a period
∆r̄, which is given by

∆r̄ =

∫ ∆r

0

eAdr . (7.17)

For the special case when k = 0 and φ is purely periodic, these solutions are periodic
in the r-direction and we can then immediately compactify the radial direction to obtain
an AdS4 × S1 solution. In this case, if we identify after just one period ∆r̄, which is
the length of the S1. We presented one such solution in section 5.6.4 and this will also
appear in our new constructions. For this purely periodic solution, the period of the
warp factor is half of that of the scalar fields. Another special case is when k ̸= 0 and
f = 0, the dilaton field φ is purely linear in r, while A and all other scalar fields become
constants. These AdS4×R solutions are associated with the known AdS4 S-fold solutions:
one can periodically identify the radial direction after uplifting to Type IIB supergravity
and making a suitable identification with an SL(2,Z) transformation, as we will outline in
more generality below.

We now continue with the more general class of LPP solutions of the form (7.14) with
both k ̸= 0 and f ̸= 0. We will show that these new LPP solutions give rise to new classes of

4After integrating we can write ρ = cr +H(r) with H(r +∆r) = H(r) and H having no zero mode.
Inverting this, we can write r = (1/c)ρ + H̃(ρ) with H̃(ρ +∆ρ) = H̃(ρ), where ∆ρ = c∆r. In this gauge
we can then write φ = (k/c)ρ+ f̃(ρ) with f̃(ρ+∆ρ) = f̃(ρ) and ∆φ = k∆r.
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AdS4 S-fold solutions. We begin by noting, as explained in appendix E.1 (see also [156]),
that the dilaton-shift symmetry (5.47) of the D = 5 theory acts as a specific SL(2,R)
transformation in D = 10. If the Type IIB dilaton Φ and axion C0 are parametrised as

mαβ =

(
eΦC0

2 + e−Φ −eΦC0

−eΦC0 eΦ

)
, (7.18)

then the transformation is given by m → (S−1)TmS−1, where S ∈ SL(2,R) in the hyper-
bolic conjugacy class is given by

S(c) =
(
ec 0
0 e−c

)
, (7.19)

Equivalently, we have Φ → Φ + 2c and C0 → e−2cC0.
To carry out the S-fold procedure, we note that starting from the uplifted D = 5

solutions, we can obtain a family of uplifted Type IIB solutions after acting with a general
element P ∈ SL(2,R). For example, the axion and dilaton in this larger family will be
of the form m̃(φ) = (P−1)Tm(φ)P−1. Within this larger family of Type IIB solutions,
we then look for solutions that we can periodically identify along the radial direction
with period q∆r i.e. q ∈ N times the fundamental period ∆r, up to the action of an
M ∈ SL(2,Z) transformation. Recalling that as we translate by ∆r in the radial direction
in the conformal gauge (7.14), we have φ→ φ+∆φ and hence we require that

m̃(φ+ q∆φ) = (M−1)T m̃(φ)M−1 , (7.20)

where we have

M = ±PS(q∆φ)P−1 . (7.21)

The different S-folded solutions which can be obtained in this way are labelled by the
conjugacy classes of M in SL(2,Z). A discussion of such classes can be found in [202,203]
(see also [204]). For any conjugacy class M, we have that −M and ±M−1 also represent
conjugacy classes. Clearly from the form of S in (7.19), we must be in the hyperbolic
conjugacy class with |Tr(M)|> 2. We have the following possibilities for M (as well as
the conjugacy classes −M and ±M−1):

M =

(
n 1
−1 0

)
, n ≥ 3 , (7.22)

with trace n, as well as “sporadic cases” M(t) of trace t. For example, the complete list
for 3 ≤ t ≤ 12 is given by

M(8) =

(
1 2
3 7

)
, M(10) =

(
1 4
2 9

)
, M(12) =

(
1 2
5 11

)
. (7.23)

For these cases, in order to find solutions to (7.20) (focussing on the positive sign in (7.21))
we must have

q∆φ = arccosh
n

2
, for n ≥ 3, q ≥ 1 . (7.24)
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For example, for the S-folds that are identified using M in SL(2,Z) given in (7.22) we
have

P =

(
1 − 1√

n2−4
1
2
(−n+

√
n2 − 4) 1

2
(1 + n√

n2−4
)

)
. (7.25)

Interestingly, the S-folding procedure preserves the same amount of supersymmetry as
the original solution. If we translate the D = 5 solution by ∆r, we have φ→ φ+∆φ. This
shift in the dilaton can be obtained equivalently by carrying out a Kähler transformation
K → K + f + f̄ and W → e−fW with f = f(zA). Under this transformation, the
symplectic Majorana pair of spinors transforms as ε1 → e(f−f̄)/4ε1 and ε2 → e−(f−f̄)/4ε2.
This transformation is implemented on the bosonic fields as an element of S ∈ SL(2,R).
In appendix E.1.3, we show that this is also true for the preserved supersymmetries. Thus,
as we translate by ∆r, the solution and the preserved supersymmetries get transformed by
the same element of SL(2,R). This will also be true after uplifting to D = 10 and hence,
after conjugating by P ∈ SL(2,R), the S-fold procedure will retain the same amount of
supersymmetry.

7.2.4 Free energy of the S-folds

The AdS4 × S1 × S5 S-fold solutions of the kind we have just described should be dual,
in general, to N = 1 SCFTs in d = 3. One key observable is FS3 , the free energy of the
SCFT on S3. This can be determined holographically by dimensionally reducing Type IIB
on S1 ×S5 to a four-dimensional theory of gravity and then evaluating the regularised on-
shell action for the AdS4 vacuum solution of this theory. With a four-dimensional theory
that has an AdS4 vacuum solution with unit radius, we have

FS3 =
π

2G(4)

. (7.26)

Here G(4) is the four-dimensional Newton’s constant which can be obtained from the five-
dimensional Newton’s constant via

1

G(4)

=
1

G(5)

∫ q∆r

0

dr e3A . (7.27)

Here we remind the reader that the radial coordinate, r, is associated with the D = 5
conformal gauge, as in (7.14). Recalling that the maximally supersymmetric AdS5 vacuum
with radius L solves the equations of motion and is dual to d = 4, N = 4 SYM with gauge
group SU(N), we have the standard result

1

16πG(5)

=
N2

8π2L3
. (7.28)

Putting this together we get our final formula for the free energy

FS3 =
N2

L3
q

∫ ∆r

0

dr e3A ,

=
N2

L3

arccoshn
2

∆φ

∫ ∆r

0

dr e3A .

(7.29)
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The first expression is valid for all solutions, including the periodic solution (for which it
is natural to take q = 1), while the second expression is valid for the S-folded solutions. In
the special case of the known N = 1, 2, 4 S-folds which have a purely linear D = 5 dilaton
(i.e. φ = kr in (7.14)) and A is constant, we can rewrite this as

FS3 =
N2

L3

e3A

k
arccosh

n

2
. (7.30)

Finally, following the arguments in [197], at fixed n the Type IIB supergravity approx-
imation should be valid in the large N limit since higher derivative corrections will be
suppressed by terms of order 1/

√
N .

7.3 SO(3) invariant equal mass model

This model is obtained from the ten-scalar model by setting z2 = z3 = −z4, or equivalently
setting α1 = α2 = α3, ϕ1 = ϕ2 = ϕ3 and β1 = β2 = 0. This four-scalar model is
parametrised by the two complex fields

z1 = tanh

[
1

2
(3α1 + φ− 3iϕ1 + iϕ4)

]
, z2 = tanh

[
1

2
(α1 − φ− iϕ1 − iϕ4)

]
. (7.31)

The integral of motion (7.8) for this truncation is given by

E =
1

L3
e3A

1

2
[− tan(3ϕ1 − ϕ4) + 3 tan(ϕ1 + ϕ4)] . (7.32)

This model has two further sub-truncations as illustrated in figure 5.1, and it contains
the known N = 1 and N = 4 AdS4 × R S-fold solutions. Firstly, if we set z1 = −z2 (or
equivalently α1 = ϕ1 = 0), we obtain a two-scalar SU(3) invariant model depending on
φ, ϕ4 which overlaps5 with the truncation considered in the context of N = 1 S-folds in
section 4 of [156]. The N = 1 AdS4 × R S-fold solution is given (in conformal gauge) by

φ =

√
5

2
r, ϕ4 = cos−1

√
5

6
, eA =

5L

6
, α1 = ϕ1 = 0 , (7.33)

and we have E = 25
√
5

108
. There is another N = 1 S-fold solution obtained from the symmetry

(5.44), with opposite sign for E . The free energy of these solutions can be obtained from
(7.30) and is given by

FS3 =
25
√
5

108
arccosh

n

2
N2 . (7.34)

in agreement with [156]. On the other hand if we further set z2 = z̄2, or equivalently
ϕ1 = −ϕ4, then we obtain a three-scalar SO(3) × SO(3) invariant model depending on
α1, ϕ1, φ that overlaps6 with the truncation considered in the context of N = 4 S-folds in

5They consider a model with four scalars: (φ, χ, c, ω). One should set c = ω = 0 and then identify
sinϕ4 = tanhχ as well as g = 2/L.

6They consider a model with five scalars: (φ, χ, α, c, ω). One should set c = ω = 0 and then identify
α1 = α and sin 4ϕ1 = − tanh 4χ. We also note that setting z2 = z̄2 in the BPS equations (5.89) leads
to an additional algebraic reality constraint. The compatibility of imposing this constraint with the BPS
equations can be verified as in section 5 of [4] for a similar issue associated with the reality of the scalar
fields β1, β2.
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section 2 of [156]. The N = 4 S-fold solution is given (in conformal gauge) by

φ =
1√
2
r , ϕ1 = −ϕ4 = −1

2
cot−1

√
2 , eA =

L√
2
, α1 = 0 , (7.35)

and has E = 1
2
. Again there is another N = 4 S-fold solution obtained from the symmetry

(5.44), with opposite sign for E . From (7.30) the free energy of these solutions is given by

FS3 =
1

2
arccosh

n

2
N2 . (7.36)

in agreement with [156,197].
The model also contains a single periodic AdS4×R solution that was found numerically

in section 5.6.4 which has E = 0. In this particular solution, the warp factor eA and all
the scalar fields, including φ, are purely periodic in the radial direction. Thus, it can
immediately be compactified to give an AdS4 × S1 solution of D = 5 supergravity and
then uplifted to an AdS4×S1×S5 solution of Type IIB using the results of appendix E.1.
From the numerical results, we can calculate the free energy (7.29) and we find

FS3 ≈ q × 1.90107N2 , (7.37)

where q is the number of periods over which we have compactified.
The periodic solution was found as a limiting case of a class of Janus solutions in chapter

5. Our focus there was Janus solutions that approach the N = 4 SYM vacuum with the
same value of φ(s) on either side of the interface, corresponding to the same value of τ
of N = 4 SYM on either side of the interface. It is straightforward to generalise these
Janus solutions to allow φ(s) to take different values on either side of the interface. As
already mentioned, taking limits of these Janus solutions leads to new families of AdS4×R
solutions with φ as an LPP function of the radial coordinate r. Before summarising these
new solutions which are all found numerically, we discuss how some of the new family of
solutions can arise by perturbing the AdS4 ×R solution associated with the N = 1 S-fold
solution.

7.3.1 Periodic perturbation about the N = 1 S-fold

Within the N = 1∗ equal mass model, we consider linearised perturbations of the BPS
equations about the AdS4×R solution (7.33), associated with the N = 1 S-fold. There are
zero modes associated with shifts of φ, A and there is also a freedom to shift the coordinate
r. There are two linearised modes that depend exponentially on r. Of most interest is that
there is also a linearised periodic mode of the form

δα1 = sin

√
5r

3
, δϕ1 = −

√
5 cos

√
5r

3
. (7.38)

We can use this periodic mode to construct a perturbative expansion in a parameter ϵ,
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which takes the form

α1 =
∞∑

m,p=1

a(α1)
m,p ϵ

m sin pKr , ϕ1 = ϕzm1 (ϵ) +
∞∑

m,p=1

a(ϕ1)m,p ϵ
m cos pKr ,

ϕ4 = ϕzm4 (ϵ) +
∞∑

m,p=1

a(ϕ4)m,p ϵ
m cos pKr , φ = k(ϵ)r +

∞∑
m,p=1

a(φ)m,pϵ
m sin pKr ,

A = Azm(ϵ) +
∞∑

m,p=1

a(A)m,pϵ
m cos pKr ,

(7.39)

where all functions are periodic in the radial direction with period ∆r ≡ 2π
K
, with φ

having an extra linear piece, and hence an LPP function, exactly as in (7.14)-(7.16). The
wavenumber K is given by the following expansion series in ϵ:

K ≡ 2π

∆r
=

√
5

3
− 184

√
5

13
ϵ2 − 2155938

√
5

2197
ϵ4 − 1193970682204

1856465
√
5

ϵ6 + · · · , (7.40)

which we notice is decreasing as we move away from the N = 1 S-fold solution. Interest-
ingly, we notice that α1 has vanishing zero mode in this expansion, while the zero modes
of the remaining periodic functions are explicitly given by

ϕzm1 = −5
√
5ϵ2 − 9431

√
5

26
ϵ4 − 6269904259

26364
√
5
ϵ6 + · · · ,

ϕzm4 = cos−1

√
5

6
−

√
5ϵ2 − 61645

√
5

676
ϵ4 − 110249429617

1713660
√
5
ϵ6 + · · · ,

Azm = log
5L

6
− 3ϵ2 − 102177

338
ϵ4 − 60279560187

1428050
ϵ6 + · · · ,

(7.41)

and the slope of φ takes the form

k =

√
5

2
− 9

√
5

2
ϵ2 − 513855

√
5

1352
ϵ4 − 295876107351

1142440
√
5
ϵ6 + · · · . (7.42)

Furthermore, we also have ∆φ ≡ k∆r which is given by

∆φ = 3π +
1305π

13
ϵ2 +

95032143π

8788
ϵ4 +

11893037855571π

7425860
ϵ6 + · · · . (7.43)

The integral of motion (7.32) is given by

E =
25
√
5

108

(
1− 6ϵ2 − 14598

169
ϵ4 − 1590041883

142805
ϵ6 + · · ·

)
. (7.44)

One finds that all of the expansion parameters a
(∗)
m,p appearing in (7.39) are only non-zero

when m+ p is even. This implies the following property of the perturbative solution under
a half period shift in the radial coordinate. Specifically, let Ψ = {A,α1, ϕ1, ϕ4} denote the
periodic functions such that the whole solution is specified by Ψ(ϵ, r) and φ(ϵ, r). We then
find

Ψ(ϵ, r + π/K) = Ψ(−ϵ, r), φ(ϵ, r + π/K) = φ(−ϵ, r) + constant , (7.45)
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where the constant can be removed by (5.47). This means that changing the sign of ϵ gives
the same solution (i.e. up to a shift in the radial direction plus a shift of φ).

Finally, after uplifting to Type IIB, using the results of appendix E.1, and carrying
out the S-fold procedure as described in section 7.2.3, we obtain new S-folds of Type
IIB provided that we can solve (7.24). The free energy for the S-folded solutions can be
obtained from (7.29) and is given by

FS3 =
25
√
5

108

(
1− 1305

13
ϵ4 − 26414316

133
ϵ6 + . . .

)
arccosh

n

2
N2 . (7.46)

To solve (7.24), we first note that 2 cosh 3π ∼ 12391.6. Thus, the smallest value of n that
can be reached in (7.24) is n = 12392, which occurs for q = 1 and ϵ ∼ 0.0003. There are
additional branches of solutions, labelled by q, which, for a given n, have smaller values
of ϵ. Thus, we can find S-fold solutions with arbitrarily small ϵ. We also note that while
these AdS4 × R solutions are perturbatively connected with the N = 1 AdS4 × R S-fold
solution, they are not S-folds of Type IIB string theory. This is clear when we recall that
for the latter we can solve (7.24) for any n ≥ 3 by suitably adjusting the period ∆r over
which we S-fold, while for the perturbative solutions, as just noted, we have n ≥ 12392.

TheN = 1∗ equal mass, SO(3) invariant truncation we are considering also contains the
known N = 4 AdS4 ×R S-fold solution (7.35). If we consider the linearised perturbations
of the BPS equations about this solution, we again find zero modes associated with shifts
of φ, A and there is also a freedom to shift the coordinate r. The remaining modes all
depend exponentially on the radial coordinate. In particular, there is no longer a linearised
periodic mode and this feature will manifest itself in the family of new solutions we discuss
in the next section.

7.3.2 New S-fold solutions

The new AdS4 × R solutions, with φ as a LPP function, can be constructed as limiting
cases of Janus solutions. A convenient way to numerically solve the BPS equations (5.87)-
(5.89) is to set initial conditions for the scalar fields at a turning point of the metric warp
function, A, which corresponds to Re(Br) = 0 along with the values of the scalar fields
at the turning points. Some general comments concerning this procedure were made in
sections 5 and 6 of chapter 5.

Specifically, we consider Janus solutions with the turning point of A located at r = rtp.
Since the BPS equations are unchanged by shifting the radial coordinate by a constant,
we can take rtp = 0. We can also use the shift symmetry (5.47) to choose φ(rtp) = 0. We
can then focus7 on solutions that are invariant under the Z2 symmetry,

r → −r, zA → −z̄A, ξ → −ξ + π . (7.47)

This implies that ϕi, ϕ4 are even functions of r and αi, φ are odd functions of r. In
particular, at the turning point we can take αi(rtp) = 0 as part of our initial value data.
For the SO(3) invariant model, these Janus solutions are therefore fixed by the values of

7If we relax the condition that the initial data is invariant under the Z2 symmetry, then we do not find
any LPP solutions of the type we are interested in for constructing S-folds. We also note that the general
periodic perturbative solution (7.39) did not assume invariance under the Z2 symmetry, yet it is in fact
invariant.
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ϕ1(rtp) and ϕ4(rtp). By suitably tuning the values of the scalar field at the turning points,
we are able to construct the limiting cases of solutions associated with the S-folds.

The space of solutions that we have constructed in this way is summarised by the
coloured curve in figure 7.2, with the colour indicating the value of |E|, given by (7.32).
If one starts with turning point data that lies anywhere within the coloured curve, one
obtains a Janus solution of N = 4 SYM theory with fermion and boson masses and a
coupling constant that varies as one crosses the interface. For example, the Janus solution
depicted in figure 7.1 corresponds to the black cross inside the curve in figure 7.2. On
the other hand, if one starts outside the curve, then one finds that the solution becomes
singular on both sides of the interface.

|ℰ|

�

���

���

���

���

���

Figure 7.2: Turning point initial data for the AdS4×R solutions of the N = 1∗ equal mass
SO(3) invariant model. Red dots correspond to the exactly periodic solution, blue dots
correspond to the N = 1 linear dilaton solutions, green dots to the N = 4 linear dilaton
solutions and green squares to the bounce solutions. The remaining points on the curve
correspond to AdS4×R solutions with φ as a LPP function of r. All points inside the curve
correspond to Janus solutions of N = 4 SYM theory (the black cross is the Janus solution
in figure 7.1), while points outside the curve have singularities. Points on the curve with
the same colour represent the same solution, up to shifts of φ and the discrete symmetry
in (5.44).

Observe that figure 7.2 is symmetric under changing the signs of both ϕ1(rtp) and
ϕ4(rtp), as a result of the symmetry (5.44). The associated AdS4×R solutions obtained by
this symmetry, which is a discrete R-symmetry combined with an S-duality transformation
for the associated Janus solutions, are physically equivalent. The value of E is positive for
the upper part of the curve between the two red dots and negative for the lower part. We
next highlight that the blue dots correspond to the two N = 1 AdS4 ×R S-fold solutions,
with φ a linear function of r, as in (7.33). The red dots correspond to the purely periodic
AdS4×R solution found in section 5.6.4. We will come back to the green dots and squares
in a moment. The remaining points on the curve all correspond to AdS4×R solutions with
φ as an LPP function of r. Also, if one starts at the N = 1 S-fold solution at the top of the
curve, then one can match on to the perturbative family of solutions that we constructed
in the previous section and there is a similar story for the N = 1 S-fold solution at the
bottom of the curve.
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We now return to the green dots and squares in figure 7.2. The green dots, located
at |E| = 1/2 represent the N = 4 linear dilaton solutions given in (7.35), while the green
squares represent “bounce” solutions that involve those solutions, as we now explain. We
first consider the limiting class of the LPP solutions as we move along the coloured curve
in figure 7.2 towards the upper green dot. To illustrate, in the left panel of figure 7.3 we
have displayed the behaviour of one of the periodic functions, ϕ1(r), as one approaches the
critical initial data associated with the green dot, which has ϕ1(rtp) = −1/2 cot−1

√
2 ∼

−0.308. The figure shows that in this limit, the solution simply degenerates into the N = 4
linear dilaton solution (7.35) for all values of r. In the right panel of figure 7.3, we have
also displayed the approach to the upper green square. In this case, the solution develops
a region that approaches the N = 4 linear dilaton solution (7.35) as one moves away from
r = 0 in either direction. Exactly at the initial values associated with the green square,
the solution will no longer be an LPP solution but degenerates into a “bounce solution”
which approaches the N = 4 linear dilaton solution (7.35) at both r̄/L→ ±∞, with a kink
in the middle. We also see that these degenerations of the LPP solutions split the whole
family of solutions into two branches of LPP solutions: one that includes the perturbative
solutions constructed using the N = 1 linear dilaton solution and another that contains
the periodic solution.
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Figure 7.3: Family of LPP solutions for the N = 1∗ equal mass SO(3) invariant model with
turning point data illustrating the behaviour of ϕ1 when approaching the green dots and
squares in figure 7.2, with |E| = 1/2. The figures display just the periodic behaviour of ϕ1

for clarity and just one period. The left panel shows that the limiting solutions associated
with the green dots degenerate into the N = 4 linear dilaton solution, marked with a
dashed green line. The right panel shows the limiting solution associated with the green
square becomes a bounce solution which approaches the N = 4 linear dilaton solution, at
both r̄ → ±∞, with a kink in ϕ1 centred at r̄ = 0.

In order to obtain S-fold solutions of Type IIB string theory, we also need to impose the
quantisation condition (7.24). In figure 7.4, we have plotted some of these discrete solutions
as well as FS3 given in (7.29). The discrete set of vertical points coloured blue and green
correspond to the N = 1 and N = 4 S-fold solutions with linear dilatons respectively, and
n increases from 3 to infinity as one moves up. For these S-folds, we can obtain all values
n ≥ 3 by suitably adjusting the period ∆r over which we S-fold. The red dots correspond
to the periodic solution for different values of the numbers of period, q, which are used
in making the S1 compactification. The remaining discrete points correspond to N = 1
S-fold solutions with φ as an LPP function, for representative values of q = 1, 2, 3. Starting
from the left, for a given q, we have n = 3 on the left and then rising to infinity as one
approaches the bounce solution or the N = 4 S-fold solution at E = 1/2. Moving further
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to the right, the value of n decreases from infinity down to a bounded value [2 cosh q3π],
at the intersection with the N = 1 solutions on the blue line, which can be deduced from
the perturbative analysis (7.43).
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Figure 7.4: Plot of the discrete S-folded solutions and the associated free energy of the
dual field theory, FS3 , for the N = 1∗ equal mass SO(3) invariant model as in figure 7.2.
The discrete points rapidly become indistinguishable from continuous lines.

7.4 SU(2) invariant 5-scalar model

This model is obtained from the ten-scalar model by setting z1 = −z3, z2 = −z4, or
equivalently setting α1 = α2 = 0, ϕ1 = ϕ2 = 0 and β2 = 0. This model involves five scalar
fields which are parametrised by

β1, z
1 = tanh

[
1

2
(α3 + φ− iϕ3 + iϕ4)

]
, z2 = tanh

[
1

2
(α3 − φ− iϕ3 − iϕ4)

]
. (7.48)

In addition to the symmetry (5.44), this model is also invariant under the symmetry

ϕ3 → −ϕ3 , α3 → −α3 , (7.49)

with β1, ϕ4, φ unchanged. This additional symmetry will clearly manifest itself in the family
of solutions we construct below. The integral of motion (7.8) for this truncation is now
given by

E =
1

L3
e3A [− tan(ϕ3 − ϕ4) + tan(ϕ3 + ϕ4)] . (7.50)

If we further set z1 = −z2 (or equivalently setting α3 = ϕ3 = 0 and β1 = 0), then we
obtain a two-scalar model depending φ, ϕ4 that overlaps with the truncation considered in
the context of N = 1 S-folds in section 4 of [156], which we also discussed in the previous
section. The AdS4 × R solution associated with the N = 1 S-folds is given by

φ =

√
5

2
r, ϕ4 = cos−1

√
5

6
, eA =

5L

6
,

β1 = α3 = ϕ3 = 0 ,

(7.51)
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with E = 25
√
5

108
. On the other hand, if we set z2 = z̄2 (or equivalently setting ϕ3 = −ϕ4), then

we obtain a four-scalar model depending on ϕ3, α3, φ, β1 that overlaps
8 with the truncation

considered in the context of N = 2 S-folds in section 3 of [156]. Also note that after
utilising the symmetry (7.49), we can also truncate to a 4-scalar model by taking z1 = z̄1,
or equivalently ϕ3 = +ϕ4. The N = 2 S-fold solution, with ϕ3 = −ϕ4, is given by

φ = r , ϕ3 = −ϕ4 = −π
8
, β1 = − 1

12
log 2 , eA =

L

21/3
, α3 = 0 , (7.52)

with E = 1
2
. From (7.30), the free energy of these solutions is found to be

FS3 =
1

2
arccosh

n

2
N2 , (7.53)

which is in agreement with [156].
Finally, if we set z1 = z2 (or equivalently setting ϕ4 = φ = 0), then we obtain the

N = 1∗ one-mass truncation used in chapters 5 and 6, which contains three scalar fields
β1, ϕ3, α3. As mentioned a few times already, this truncation also admits two LS AdS5

fixed point solutions, LS±, which are related by (7.49) and given by

β1 = −1

6
log 2, ϕ3 = ±π

6
, α3 = 0, L̃ =

3

25/3
L , (7.54)

where L̃ is the radius of the AdS5.

7.4.1 Periodic perturbation about the N = 1 S-fold

Just as in the last section, within the 5-scalar truncation we can build a perturbative
solution about the N = 1 S-fold solution given in (7.51). The key point is that there is
now a periodic linearised perturbation of the form

δα3 = sin

√
5r

3
, δϕ3 = −

√
5 cos

√
5r

3
. (7.55)

We can use this periodic mode to construct a perturbative expansion in a parameter ϵ,
which takes the form

α3 =
∞∑

m,p∈odd

a(α3)
m,p ϵ

m sin pKr , ϕ3 =
∞∑

m,p∈odd

a(ϕ3)m,p ϵ
m cos pKr ,

ϕ4 = ϕzm4 (ϵ) +
∞∑

m,p∈even

a(ϕ4)m,p ϵ
m cos pKr , φ = k(ϵ)r +

∞∑
m,p∈even

a(φ)m,pϵ
m sin pKr ,

β1 = βzm1 (ϵ) +
∞∑

m,p∈even

a(β1)m,p ϵ
m cos pKr , A = Azm(ϵ) +

∞∑
m,p∈even

a(A)m,pϵ
m cos pKr ,

(7.56)

where the sums over odd integers start from 1 and the sums over even integers start from
2. All functions with the exception of φ are periodic in the radial direction with period

8They consider a model with seven scalars: (φ, χ, α, λ, c, ω, ψ). One should set c = ω = ψ = 0 and
then identify α = β1, λ = α3, sin 2ϕ3 = − tanh 2χ as well as g = 2/L.
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∆r = 2π
K
, and φ is an LPP function, exactly as in (7.14)-(7.16). The wavenumber K is

given by the following expansion series in ϵ:

K ≡ 2π

∆r
=

√
5

3
− 292

√
5

117
ϵ2 − 3316328

√
5

59319
ϵ4 − 241179878834

30074733
√
5
ϵ6 + · · · , (7.57)

which is decreasing as we move away from the N = 1 S-fold solution.
Notice that both α3 and ϕ3 have vanishing zero mode in the expansion series. The zero

modes of the remaining periodic functions are explicitly given by

ϕzm4 = cos−1
(√5

6

)
−

√
5

3
ϵ2 − 4861

√
5

6084
ϵ4 − 185672641

√
5

9253764
ϵ6 + · · · ,

βzm1 = −2

3
ϵ2 − 755

78
ϵ4 − 5171099

19773
ϵ6 + · · · ,

Azm = log

(
5L

6

)
− ϵ2 − 10241

3042
ϵ4 − 663866873

4626882
ϵ6 + · · · ,

(7.58)

and the slope of φ takes the form

k =

√
5

2
− 3

√
5

2
ϵ2 − 311

√
5

1352
ϵ4 − 19753429

√
5

228488
ϵ6 + · · · . (7.59)

Furthermore, we also have ∆φ ≡ k∆r which is given by

∆φ = 3π +
175π

13
ϵ2 +

5295375π

8788
ϵ4 +

153607091549π

7425860
ϵ6 + · · · . (7.60)

The integral of motion (7.50) is given by

E =
25
√
5

108

(
1− 2ϵ2 +

4598

507
ϵ4 +

96057473

771147
ϵ6 + · · ·

)
. (7.61)

We now write the periodic functions collectively as Ψ1 = {A, ϕ4, β1} and Ψ2 = {α3, ϕ3}
so that the whole solution is specified by Ψ1(ϵ, r), Ψ2(ϵ, r) and φ(ϵ, r). We then find

Ψ1(ϵ, r + π/K) = Ψ1(−ϵ, r) = +Ψ1(ϵ, r),

Ψ2(ϵ, r + π/K) = Ψ2(−ϵ, r) = −Ψ2(ϵ, r),

φ(ϵ, r + π/K) = φ(−ϵ, r) + constant ,

(7.62)

where the constant can be removed by (5.47) and we note that the last equalities in the
first two lines are associated with the symmetry (7.49).

After uplifting to Type IIB and carrying out the S-fold procedure as described in section
7.2.3, we obtain new S-folds of Type IIB provided that we can solve (7.24). This can be
done as in the discussion following (7.46) and, in particular, the smallest value of n that
can be reached in (7.24) is n = 12392, which occurs for q = 1 and ϵ ∼ 0.0008. The free
energy for the S-folded solutions can be obtained from (7.29) and is given by

FS3 =
25
√
5

108

(
1− 175

39
ϵ4 − 13887100

393
ϵ6 + . . .

)
arccosh

n

2
N2 . (7.63)

This truncation also contains the known AdS4 ×R N = 2 S-fold solutions, but there is
no longer a linearised periodic mode within this truncation in which to build an analogous
solution. This is similar to the known AdS4 × R N = 4 S-fold solutions in the SO(3)
invariant truncation that we considered in the previous section.
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7.4.2 New S-fold solutions

The new AdS4 × R solutions, with φ as an LPP function, can again be constructed as
limiting cases of Janus solutions. We start by constructing Janus solutions with turning
point of A at r = rtp, with rtp = 0. We can use the shift symmetry (5.47) to choose
φ(rtp) = 0. We then focus on solutions that are invariant under the Z2 symmetry, obtained
by combining (5.44) and (7.7),

r → −r, zA → −z̄A, ξ → −ξ + π . (7.64)

This implies that ϕ3, ϕ4 are even functions of r and α3, φ are odd functions. Thus, we
again take α3(rtp) = 0 as part of our initial value data for the solutions. From (5.87)-(5.89)
and as explained in section 5 of chapter 5, the solutions are now specified by the values of
ϕ3(rtp) and ϕ4(rtp), while the value of β1(rtp) is fixed by this data. By suitably tuning the
values of the scalar field at the turning points, we are able to construct the limiting cases
of solutions associated with the S-folds.

The space of solutions we have found in this way is summarised by the curve shown
in figure 7.5. If one starts with turning point data that lies anywhere within the curve,
one obtains a Janus solution of N = 4 SYM theory with fermion and boson masses and a
coupling constant that varies as one crosses the interface. On the other hand, if one starts
outside the curve, then one finds that the solution becomes singular on both sides of the
interface.
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Figure 7.5: Turning point initial data for the AdS4 × R solutions of the 5-scalar SU(2)
invariant model. The blue dots correspond to the N = 1 linear dilaton solutions while the
green dots correspond to theN = 2 linear dilaton solutions, as well as the associated soliton
solutions. The red dots correspond to the two LS AdS5 solutions, LS±. The remaining
points on the solid lines correspond to AdS4 ×R solutions with φ as a LPP function of r,
with the same colour representing the same physical solution. All points inside the curve
correspond to Janus solutions of N = 4 SYM theory while points outside the curve have
singularities. The dashed lines correspond to LS±/LS± Janus solutions.

The figure is symmetric under changing the signs of either ϕ3(rtp) or ϕ4(rtp). This is
a result of the symmetries (5.44) and (7.49). The associated AdS4 × R solutions obtained
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using these symmetries, which for the Janus solutions are a combination of a discrete R-
symmetry and an S-duality transformation (in the case of (5.44)), are physically equivalent.
The value of E is positive for the upper part of the curve and negative for the lower part.
We next highlight that the blue dots correspond to the N = 1 AdS4 × R S-fold solutions
which have φ a linear function of r. The green dots represent the N = 2 AdS4 × R S-fold
solutions as well as the associated “soliton” solutions which we discuss further below. The
remaining points on the coloured, solid lines all correspond to AdS4 × R solutions with φ
as an LPP function of r. Also, if one starts with the N = 1 S-fold solution at the top of the
curve, then one can match on to the perturbative family of solutions that we constructed.

In the limit of approaching the green dots in figure 7.5 along the solid curve, the LPP
solutions degenerate into the AdS4 × R N = 2 S-fold solutions, which we illustrate in the
left panel of figure 7.6 for one of the periodic functions, ϕ3(r). As one approaches the
critical initial data associated with the green dot which has ϕ3 = π

8
∼ 0.39, the solution

degenerates into the N = 2 S-fold solution, with the region around r̄ = 0 extending out
all the way to infinity. Interestingly, essentially using the same family of solutions, one can
construct another limiting solution which is a kind of “soliton” solution that approaches
one of the AdS4 × R N = 2 S-fold solutions as r̄ → −∞ and a different AdS4 × R N = 2
S-fold solution, related by flipping the sign of ϕ3, as r̄ → ∞. This limiting solution is
illustrated in the right panel of figure 7.6.
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Figure 7.6: Limiting families of solutions for the 5-scalar SU(2) invariant model, with just
the periodic behaviour of ϕ3 displayed. The left panel illustrates the approach to the green
dots in figure 7.5, along the coloured curve; one finds that the solution will approach the
N = 2 linear dilaton solution associated with the upper green dashed line for all r̄. In the
right panel, we display a different limiting solution, obtained by fixing ϕ3(0) = 0, which
degenerates into a soliton solution that approaches one N = 2 linear dilaton solution, at
r̄ → −∞ and another N = 2 linear dilaton solution at r̄ → ∞ with opposite sign of ϕ3

(related by (7.49)).

We next turn to the remaining points in figure 7.5. The red dots represent the two LS
AdS5 fixed points given in (7.54), which we refer to as LS±. Moving along the class of Janus
solutions on the horizontal axis towards the red dots at the right, say, one finds that the
Janus solutions degenerate into three components: a Poincaré invariant RG flow solution
that starts off at the AdS5 vacuum and then approaches the LS+ AdS5 fixed point, the
LS+ fixed point solution itself and then another Poincaré invariant RG flow solution going
between LS+ and the AdS5 vacuum. The dashed curves correspond to another interesting
degeneration of the Janus solutions. As one approaches the dashed curve on the right side
of the figure, one again finds three components: there are the same two Poincaré invariant
components and the middle component is now an LS Janus solution that moves between
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LS+ and LS+ on either side of the interface, with φ linear in r̄. There is similar behaviour
as one approaches the red dot or the dashed line on the left side of the figure with LS−

replacing LS+.
To obtain S-fold solutions of Type IIB string theory, we again need to impose the

quantisation condition (7.24). In figure 7.7, we have plotted some of these discrete solutions
as well as FS3 given in (7.29). The discrete set of vertical points coloured blue and green
correspond to the N = 1 and N = 2 S-fold solutions with linear dilatons respectively, and
n increases from 3 to infinity as one moves up. The remaining discrete points correspond
to N = 1 S-fold solutions with φ as an LPP function, for representative values of q = 1, 2.
Starting from the right at the blue dots, for a given q, we have n starting from [2 cosh q3π],
which can be deduced from the perturbative analysis (7.60), and then rising to infinity as
one approaches the N = 2 S-fold solution at E = 1/2, where the free energy diverges.
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Figure 7.7: Plot of the discrete S-folded solutions and the associated free energy of the
dual field theory, FS3 , for the 5-scalar SU(2) invariant model as in figure 7.5. The discrete
points rapidly become indistinguishable from a continuous line.

7.5 Discussion

We have constructed a rich set of new S-fold solutions of Type IIB string theory of the form
AdS4 × S1 × S5, which are holographically dual to N = 1 SCFTs in d = 3. The solutions
are patched together along the S1 direction using a non-trivial SL(2,Z) transformation
in the hyperbolic conjugacy class. These solutions are first constructed in D = 5 gauged
supergravity and then uplifted to D = 10. In the previously known AdS4 × R solutions
associated with S-folds preserving N = 1, 2, 4 supersymmetry, the D = 5 dilaton field is a
linear function of the radial coordinate. In our new constructions, the D = 5 dilaton is now
a linear plus periodic (LPP) function. We have also shown that some of the new families of
LPP AdS4×R solutions can be seen as a perturbative expansion around the N = 1 S-fold
solution with a linear dilaton. In addition, for the SO(3) invariant model, the numerical
construction of such solutions has revealed additional branches of LPP AdS4×R solutions,
which are not perturbatively connected with any known S-fold solutions.

An interesting feature of the new AdS4 × S1 × S5 solutions is that we can make the
size of the S1 parametrically larger than the size of the S5, by carrying out the S-folding
procedure after multiple periods with respect to the underlying periodic structure. This
should give rise to an interesting hierarchy of scaling dimensions in the dual d = 3, N = 1
SCFT.
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A proposal for the N = 4 SCFT in d = 3 dual to the N = 4 S-folds of [196] was
suggested in [197]. One takes the strongly coupled [TU(N)] theory of [154] and then
gauges the global U(N) × U(N) global symmetry using an N = 4 vector multiplet. In
addition, one adds a Chern-Simons term at level n, where n is the integer that is used
to make the S-folding identifications (see (7.24)). Proposals for the SCFT in d = 3 dual
to the N = 2 S-folds of [200] were also discussed in [156]. It would be very interesting
to identify the N = 1 SCFTs in d = 3 that are dual to the S-fold solutions of [199], the
constructions in this chapter, as well as the periodic AdS4 ×S1 ×S5 solution of chapter 5.
The small amount of preserved supersymmetry makes this identification challenging, but
one can hope that the connection with Janus solutions which we have highlighted in this
chapter, as well as in chapter 5, will allow progress to be made.

We have seen that the periodic AdS4 × R solution found in chapter 5 which uplifts to
smooth AdS4×S1×S5 of Type IIB supergravity, is a rather special solution in the general
constructions of this chapter. It would be very interesting to know whether or not there
are additional such solutions of the form AdSd × T n ×Mk either in D = 10 or D = 11
supergravity. Moreover, we have focussed on constructing supersymmetric S-fold solutions,
but one can also investigate the non-supersymmetric types. In fact, non-supersymmetric
AdS4×R×M5 solutions of Type IIB supergravity were discussed long ago in [205] and [206].
These solutions are associated with the D = 10 dilaton linear in the R direction, and have
been subsequently rediscovered several times [199,207–209]. However, we note that it was
argued in [199,208,209] that these solutions are unstable (in contrast to the claim in [205])
and hence are not of interest for S-folds with CFT duals.

It seems likely that one can construct additional LPP AdS4 × R solutions within the
ten-scalar truncation and more generally within the full D = 5 SO(6) gauged supergravity
with 42 scalars. It may also be possible to construct new Type IIB solutions of the form
AdS4 ×S1 ×SE5, where SE5 is a Sasaki-Einstein manifold, generalising the work of [201].
More generally, one might attempt to construct non-geometric solutions of the form AdSd×
T n ×Mk, where T

n is an n-dimensional torus and the solutions are patched together in
the T n directions using the U-duality transformations in [210].
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Chapter 8

Discussion and final comments

In the first part of this thesis, we have presented constructions of consistent truncations
of D = 11 supergravity and Type IIA supergravity on Σ2 × S4 and Σ2 × S3 respectively,
where Σ2 = S2,R2 or H2, or a quotient thereof. We have shown that the resulting theories
of chapters 2 and 3 are both D = 5, N = 4 gauged supergravity theories coupled to three
vector multiplets, but the precise details of the gauging and the vacuum structure of the
two theories are different. The truncations considered in chapter 2 are associated with
M5-branes wrapped on Riemann surfaces, while the truncations considered in chapter 3
are associated with NS5-branes wrapped on Riemann surfaces. The dual field theories,
arising from these two configurations, are physically inequivalent. In spite of their different
physical meanings, these two truncations are in fact related by a singular group contraction
procedure, known as the Inönü-Wigner contraction. From the higher-dimensional point of
view, the contraction corresponds to a singular limit, such that S4 degenerates into R×S3

and D = 11 supergravity reduces along R to the Type IIA theory. At the level of the
corresponding isometry groups, this limit realizes the Inönü-Wigner contraction.

From the Gauntlett-Varela conjecture [45] and all these various truncation examples
[1, 2, 87–90], it is clear that for each of the different configurations of M5- or NS5-branes
wrapping on different calibrated cycles Σk studied in [62,64,98], there will be an associated
consistent KK truncation on Σk × S4 or Σk × S3, respectively, and it would be of great
interest to work out the details. Apart from wrapped brane configurations, it was realised in
[211,212] and more recently highlighted in [7] that Non-Abelian T-duality can be harnessed
to obtain new consistent truncations of Type IIA from Type IIB or vice-versa. This could
yet be another interesting avenue one would like to pursue. Furthermore, it would be
extremely interesting to generalise all these results and observations using the tools from
generalised geometry along the lines discussed in [39, 89–92]. In particular, this should
provide a succinct and systematic way of determining the specific lower-dimensional gauged
supergravity theory that should arise from higher-dimensional compactifications.

In the second part of this thesis, we have presented a novel construction of supersym-
metric AdS3 solutions in M-theory, which are associated with wrapping M5-branes over
four-dimensional orbifoldsM4. In both cases, M4 takes the form of a spindle Σ2 fibred over
another two-dimensional space: either another spindle Σ1, or a smooth Riemann surface
Σg of genus g > 1. These solutions are holographically dual to d = 2, N = (0, 2) SCFTs,
and a computation of the central charges of these theories using anomaly polynomials
and the c-extremization procedure matches perfectly with the supergravity results. In the
case of M4 = Σg ⋉ Σ2, the solution can be naturally interpreted as M5-branes wrapping
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an orbifold four-cycle, which is holomorphically embedded inside a Calabi-Yau four-fold,
generalising [62,72]. However, such an interpretation is not available for the solution with
M4 = Σ1 ⋉ Σ2, and this particular feature, which is common for all of the known spindle
solutions in the anti-twist class, deserves a much better understanding.

Our construction involves a new consistent truncation of D = 7 gauged supergravity on
a spindle down to D = 5 minimal gauged supergravity. This new truncation is local in the
supergravity fields, hence the analysis will also go through for the half-spindle solutions
studied in [123, 124], which are proposed as holographic duals for a class of superconfor-
mal field theories of Argyres-Douglas (AD) type [213]. By applying our results to their
constructions with appropriate identifications, this should give rise to new supersymmetric
AdS3 solutions, which are dual to two-dimensional SCFTs arising as the IR limit of four-
dimensional SCFTs of AD type compactified on either a spindle or a Riemann surface. It
would be extremely interesting to work out the exact field theory mechanism and confirm
the proposal, which for now, we will leave as an intriguing open question.

Our results [3], like many of the recently discovered spindle/half-spindle solutions [55,84,
85, 109–112, 114, 123, 124, 214, 215], strongly suggest a new landscape of orbifold solutions
to be explored in string theory. These examples exhibit a number of new, non-trivial
properties raising questions in both the gravity and the field theory sides. What kind of
data should be specified at the orbifold points when defining a SCFT on a spindle? Is it
possible to obtain a more general truncation on a spindle (i.e. beyond minimal gauged
theory)? Can we obtain more general solutions analogous to our “spindle ⋉ spindle”
solution? How do we compute indices on a spindle? For now, we will leave these, and
many of the other interesting questions, for future work.

In the third part of this thesis, we have provided a systematic investigation of mass
deformations of N = 4 SYM theory which depend on one of the three spatial directions
and preserve some residual supersymmetry from both the field theory and the gravity
sides. We have explored these deformations within the context of holography, studying
configurations which preserve ISO(1, 2) symmetry as well those that additionally preserve
conformal invariance. For the latter class of deformations, we have constructed a number
of interesting new classes of supersymmetric Janus solutions. One particularly interesting
limiting case of these solutions gives rise to the RG interface solutions. By taking limits of
the Janus solutions, we have constructed novel RG interface solutions with N = 4 SYM
on one side of the interface and the Leigh-Strassler SCFT on the other. From our results,
it seems very likely that if a Poincaré invariant RG flow from CFTUV to CFTIR exists,
then there will be a corresponding RG interface solution, and it would be of interest to
construct more examples to confirm this conjecture.

Another interesting result is our construction of novel AdS4×S1×S5 solutions of Type
IIB string theory which have non-trivial SL(2,Z) monodromy along the S1 direction. These
supersymmetric solutions are proposed to be dual to 3-dimensional N = 1 SCFTs, and
arise as limiting cases of Janus solutions of N = 4 SYM theory which are supported both
by a different value of the coupling constant on either side of the interface, as well as
by mass deformations. The key new feature of our solutions is that the dilaton is now
“linear plus periodic” (LPP) along the radial coordinate, such that the metric is no longer
invariant under translations in the radial direction, and our solutions can still be uplifted
to Type IIB to form S-fold solutions via the SL(2,Z) duality transformation. We have
constructed these novel LPP solutions numerically, and it would be extremely desirable to
construct analytic expressions of these solutions for better understanding. Furthermore,
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it seems plausible that more general solutions would be found by enlarging the ten-scalar
model to the D = 5, N = 2 gauged theory containing eighteen scalar fields, though this
would first require the explicit construction of the N = 2 gauged theory.

Additional insights into S-fold backgrounds have been gained by studying the associated
holographic RG-flows. In [216, 217], across dimensional RG flows, from AdS5 × S5, dual
to N = 4 SYM, to various AdS4 × S1 × S5 S-fold solutions, dual to d = 3 SCFTs, were
constructed. The existence of these holographic RG flows suggests that these S-fold SCFTs
can be viewed as IR fixed points of RG flows associated with marginal deformations of N =
4 SYM. This should also help elucidate some properties of the conformal manifold of S-fold
SCFTs [218, 219], such as the compactness of the conformal manifold. Furthermore, new
AdS4 S-fold solutions, which are patched together using the SL(2,Z) transformation in the
elliptic conjugacy class, were constructed in [219,220]. Clearly, a lot of interesting questions
concerning S-fold backgrounds and their implications remains to be fully answered.

In conclusion, we have explored several aspects of the vast topic of the AdS/CFT
correspondence. This correspondence intimately relates gauge theory and gravity with far
reaching consequences, as seen from the many examples. Though it is far from being fully
understood, lots of new physics and mathematics can still be learnt from this extraordinary
correspondence!
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Appendix A

Chapter 2 appendix

A.1 Equations of motion of D = 7 maximal SO(5)

gauged supergravity

The equations of motion for D = 7 gauged supergravity arising from (2.1) are given by

DS
(i)
(3) =gTij∗S

j
(3) +

1

8
ϵij1j2j3j4F

j1j2
(2) ∧ F j3j4

(2) ,

D
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T−1
ik T

−1
jl ∗F ij

(2)

)
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2g
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and
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where

X = −1

4
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−1
jl F

ij
ρ1ρ2

F klρ1ρ2 − 1

3
TijS

i
ρ1ρ2ρ3

Sjρ1ρ2ρ3 + 2V . (A.3)

A.2 Consistency of the truncation

We substitute the truncation ansatz for the D = 7 fields given in (2.9)-(2.12) into the
equations of motion for D = 7 maximal supergravity given in (A.1)-(A.2). Before carrying
out the computations, it is useful to note that

DT ab = −6e−6λdλδab ,

DT aα = g
(
e4λ(T ψ1)α − e−6λψ1

α

)
ēa − g

(
e4λ(T ψ2)α − e−6λψ2

α

)
ϵabēb ,

DTαβ = e4λ
(
4dλT αβ +DT αβ

)
,

(A.4)
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where DTαβ ≡ dTαβ + gAαγ(1)Tγβ + gAβγ(1)Tαγ. Furthermore, for the gauge fields we have

F ab
(2) = g

(
l − ψ2

)
ēa ∧ ēb + ϵabF(2) ,

F aα
(2) = Dψ1α ∧ ēa −Dψ2α ∧ ϵabēb ,

Fαβ
(2) = Fαβ

(2) + 2g(ϵabψaαψbβ)vol(Σ2) ,

(A.5)

where

F(2) ≡ dA(1) ,

Fαβ
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γβ
(1) ,

Dψaα ≡ dψaα + gAαβ(1)ψ
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abψbα .
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Similarly, for the three-form we have

DSa(3) = (DK1
(2) − gψ1αhα(3)) ∧ ēa − (DK2

(2) − gψ2αhα(3)) ∧ ϵabēb ,
DSα(3) = Dhα(3) + (Dχα(1) + 2gϵabψaαKb
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(A.7)

where
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(2) ,

Dhα(3) ≡ dhα(3) + gAαβ(1) ∧ h
β
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Dχα(1) ≡ dχα(1) + gAαβ(1) ∧ χ
β
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(A.8)

Finally, for the metric tensor, we use the orthonormal frame em = e−2ϕēm, m = 1, ..., 5 and
ea = e3ϕēa, a = 1, 2 and find that the D = 7 Ricci tensor has components

Rmn = e4ϕ
(
R(5)
mn + 2∇2ϕηmn − 30∇mϕ∇nϕ

)
,

Ram = 0 ,

Rab = e4ϕ
(
−3∇2ϕ+ lg2e−10ϕ

)
δab ,

(A.9)

where R
(5)
mn is the Ricci tensor for the D = 5 metric ds25 = ēmēm in (2.9) and we have used

R
(2)
ab = lg2δab, where R

(2)
ab is the Ricci tensor for ds2(Σ2) = ēaēa.

A.3 D = 5 Equations of motion

The equations of motion for the three-form in (A.1) give rise to
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(A.10)

as well as
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It is helpful to note that when g ̸= 0 these imply
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and also
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where we have used
1

2
ϵαβγF

αρ
(2) ∧ F

βγ
(2) = 0.

We next consider the gauge field equations of motion in (A.1). When the indices
(k, l) = (a, b) and (k, l) = (α, β), we find
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and

D(T −1
γ[αT −1

β]ρ e
4ϕ−8λ∗F γρ

(2))− 4ge2λ−6ϕψa[α(T −1)β]γ∗Dψaγ + 2gT −1
γ[α∗DTβ]γ

+ ϵαβγ

[
g(l − ψ2)e4λ−12ϕ∗(T χ(1))

γ + e4λ+8ϕF(2) ∧ ∗(T h(3))γ − 2e−6λ−2ϕϵabDψaγ ∧ ∗Kb
(2)

]
+ 2h

[α
(3) ∧ χ

β]
(1) = 0 , (A.15)

respectively. When the indices (k, l) = (a, α), we get
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We now consider the equations of motion for the scalar fields in (A.1). From the (i, j) =
(a, b) components, we obtain
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From the (i, j) = (α, β) components, we obtain
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The equations of motion for the scalar fields with mixed components (i, j) = (a, α) are
trivially satisfied.

Finally, we consider the reduction of the Einstein equations (A.2). From the (a, b)
components, we obtain
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From the (m,n) components, we find that the D = 5 Ricci tensor must satisfy

R(5)
mn =30∇mϕ∇nϕ+ 30∇mλ∇nλ+

1

4
T −1
αβ T −1

γρ DmTβγDnTρα

+
1

2
e12λ+4ϕ

(
(F(2))ml(F(2))

l
n − 1

6
gmn(F(2))ls(F(2))

ls

)
+ e−6λ−2ϕ

(
(Ka

(2))ml(K
a
(2))

l
n − 1

6
gmn(K

a
(2))ls(K

a
(2))

ls

)
+

1

4
e−8λ+4ϕT −1

αβ T −1
γρ

(
(Fαγ

(2) )ml(F
βρ
(2))

l
n − 1

6
gmn(F

αγ
(2) )ls(F

βρ
(2))

ls

)
+ e2λ−6ϕT −1

αβ

(
Dmψ

aαDnψ
aβ
)
+

1

2
e4λ−12ϕ(χα(1))m(T χ(1))

α
n

+
1

4
e4λ+8ϕTαβ

(
(hα(3))mls(h

β
(3))

ls
n − 2

9
gmn(h

α
(3))lst(h

β
(3))

lst

)
+ g2gmn

{1
6
e−4ϕ

(
2e8λTr(T 2)− e8λ(TrT )2 − 4e−2λTrT

)
+

1

6
e12λ−16ϕ(l − ψ2)2 +

1

3
e−8λ−16ϕϵabϵcd(ψaT −1ψc)(ψbT −1ψd)

− 1

3
e−10ϕ

(
2(l + ψ2)− e10λ(ψT ψ)− e−10λ(ψT −1ψ)

)}
.

(A.20)

The mixed (ma) components are trivially satisfied.

A.4 Subtruncation to Romans’ theory

If we consider the subtruncation considered in section 2.5.1, then we find that the D = 5
equations of motion given in (A.10)-(A.11) and (A.14)-(A.20) can be boiled down to

DC(2) = ige−20ϕ∗C(2) ,

d
(
e40ϕ∗F(2)

)
=− 1

2
Fαβ
(2) ∧ F

αβ
(2) − C(2) ∧ C(2) ,

D
(
e−20ϕ∗Fαβ

(2)

)
=− Fαβ

(2) ∧ F(2) ,

d∗dϕ =
1

30
e40ϕ∗F(2) ∧ F(2) −

1

30
e−20ϕ∗C(2) ∧ C(2) ,

− 1

60
e−20ϕ∗Fαβ

(2) ∧ F
αβ
(2) −

1

30
g2
(
e20ϕ − 2e−10ϕ

)
vol5 ,

(A.21)

and

Rmn = 300∇mϕ∇nϕ+
1

2
e40ϕ

(
(F(2))ml(F(2))

l
n − 1

6
gmn(F(2))ls(F(2))

ls

)
+

1

2
e−20ϕ

(
(Fαβ

(2) )ml(F
αβ
(2) )n

l − 1

6
gmn(F

αβ
(2) )ls(F

αβ
(2) )

ls

)
− 1

3
g2gmn

(
4e−10ϕ + e20ϕ

)
+ e−20ϕ

(
(C(2))(m|l|(C(2))

l
n) − 1

6
gmn(C(2))ls(C(2))

ls

)
.

(A.22)

In these expressions, we have defined C(2) = K1
(2) + iK2

(2) with DC(2) = dC(2) − igA(1) ∧ C(2).
These equations of motion can be derived from the Lagrangian given in (2.68).
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A.5 Matching with N = 4 supergravity

We present a few formulae which are helpful in explicitly matching the reduced D = 5
theory of section 2.3 with those of D = 5, N = 4 gauged supergravity theory which was
discussed in section 2.4.

We begin by providing the parametrisation of the SL(3)/SO(3) coset which we used in
(2.54) The generators for the Lie algebra of SL(3) are given by

h1 =

1 0 0
0 −1 0
0 0 0

 , h2 =

0 0 0
0 1 0
0 0 −1

 ,

e1 =

0 1 0
0 0 0
0 0 0

 , e2 =

0 0 0
0 0 1
0 0 0

 , e3 =

0 0 1
0 0 0
0 0 0

 ,

f1 =

0 0 0
1 0 0
0 0 0

 , f2 =

0 0 0
0 0 0
0 1 0

 , f3 =

0 0 0
0 0 0
1 0 0

 .

(A.23)

The coset element can then be represented in an upper triangular gauge via

V = eφ1h1+φ2h2ea1e1ea2e2ea3e3 ,

=

 eφ1 eφ1a1 eφ1 (a1a2 + a3)
0 eφ2−φ1 eφ2−φ1a2
0 0 e−φ2

 .
(A.24)

Next, turning to the SO(5, 3)/(SO(5) × SO(3)) coset element V , given in (2.57), we
find that the Maurer-Cartan one-form, which takes values in the solvable Lie algebra, has
the form

dV · V−1 =

1√
2
dφ1H

1 +
1√
2
dφ2H

2 +
1√
2
dφ3H

3 + e2φ1−φ2da1E1 + e2φ2−φ1da2E2 + eφ1+φ2(da3 + a1da2)E3

+ e−φ2−2φ3X3T 4 + e−φ1+φ2−2φ3(−X2 − a2X
3)T 5 + eφ1−2φ3(X1 + a1X

2 + (a3 + a1a2)X
3)T 6

+
√
2e−φ1−φ3dψ11T 7 +

√
2eφ1−φ2−φ3(dψ12 − a1dψ

11)T 8 +
√
2eφ2−φ3(dψ13 − a3dψ

11 − a2dψ
12)T 9

+
√
2e−φ1−φ3dψ21T 10 +

√
2eφ1−φ2−φ3(dψ22 − a1dψ

21)T 11 +
√
2eφ2−φ3(dψ23 − a3dψ

21 − a2dψ
22)T 12 ,

(A.25)

where

Xα ≡ dξα + ϵαβγψ
aβdψaγ . (A.26)

We can decompose the Maurer-Cartan one-form as

dV · V−1 = P0 +Q0 , (A.27)

where Q0 lies in the Lie algebra of SO(5)×SO(3) (the antisymmetric part of the one-form)
and P0 lies in the complement (the symmetric part of the one-form). We can then calculate

1

8
∗dMMN ∧ dMMN = −1

2
Tr(∗P0 ∧ P0) ,

= −1

4
Tr(∗[dV · V−1] ∧ [dV · V−1 + (dV · V−1)T ]) ,

(A.28)
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and we obtain the kinetic terms for the scalars as in (2.27), without yet incorporating the
gauging. To incorporate the latter we use the covariant derivative given in (2.64) which
we write as D = d+ gA with

A ≡ Aµg0 + A1
µg1 + A2

µg2 + A3
µg3 + A 1

µ g4 + A 1
µ g5 + A 3

µ g6 . (A.29)

We can then decompose DV · V−1 = P +Q as we did for the ungauged case. In particular,
we have P = P0+g(V ·A ·V−1)SO(5,3)/(SO(5)×SO(3)), where the last term is in the Lie algebra
complementary to that of SO(5)×SO(3). We find that the gauged scalar kinetic terms in
(2.27) are obtained precisely after calculating −1

2
Tr(∗P ∧ P).

We can write the matrix MMN in (2.33) in the explicit form

MMN =

 e−2φ3T −1 e−2φ3T −1 · ST e−2φ3T −1 · Y
e−2φ3S · T −1 e−2φ3S · T −1 · ST + 12×2 e−2φ3S · T −1 · Y + S
e−2φ3YT · T −1 e−2φ3YT · T −1 · ST + ST e−2φ3YT · T −1 · Y + ST · S + e2φ3T

 ,

(A.30)

where

Saα ≡
√
2ψaα ,

Yαβ ≡ ϵαβγξ
γ +

1

2
Sαa Sβa .

(A.31)

To calculate the N = 4 scalar potential LpotN=4, given in (2.44), with the embedding tensor
given in (2.60), we find the following non-vanishing contributions

− 1

2
fMNPfQRSΣ

−2

(
1

12
MMQMNRMPS − 1

4
MMQηNRηPS +

1

6
ηMQηNRηPS

)
= −1

2
e12λ−16ϕ(l − ψ2)2 +

1

2
e−4ϕ+8λ[(TrT )2 − 2Tr(T 2)]

− e−10ϕ+10λ(ψT ψ) ,

− 1

8
ξMNξPQΣ

4
(
MMPMNQ − ηMPηNQ

)
= −e−10ϕ−10λ(ψT −1ψ)− e−8λ−16ϕϵabϵcd(ψaT −1ψc)(ψbT −1ψd) ,

(A.32)

and

− 1

3
√
2
fMNP ξQRΣMMNPQR = 2le−10ϕ + 2e−10ϕψ2 + 2e−2λ−4ϕTrT , (A.33)

where in the last expression we have utilised the definition (2.37). Summing these contri-
butions we find that the N = 4 scalar potential LpotN=4 in (2.44) precisely gives the scalar
potential Lpot of the reduced theory, given in (2.28).

Turning now to the vectors, using the identification of the field strengths given in (2.63)
as well as (A.30), the kinetic terms of the vectors of the N = 4 theory, LVN=4, given in
(2.45), exactly reproduce the kinetic terms of the vectors in the reduced theory, LV , given
in (2.29). We next compare the topological parts of the Lagrangian. We find that the
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non-zero contributions to LTN=4, given in (2.46), are (up to a total derivative),

− 1√
2
gZMNBM ∧DBN =

1

2g
L1
(2) ∧DL2

(2) −
1

2g
L2
(2) ∧DL1

(2) ,

√
2

3
dMNPAM ∧ dAN ∧ dAP = −d[A α

(1) − lAα(1)] ∧ dAα(1) ∧ A(1) ,

1

2
√
2
gdMNPX

M
QR AN ∧ AQ ∧ AR ∧ dAP =

− 1

2
gϵαβγd[A

α
(1) − lAα(1)] ∧ Aγ(1) ∧ A

β
(1) ∧ A(1)

− gϵαβγA
γ
(1) ∧ [A β

(1) −
1

2
lAβ(1)] ∧ dAα(1) ∧ A(1) .

(A.34)

Combining these expressions we recover the topological parts of the Lagrangian LT of the
reduced theory given in (2.30).
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Appendix B

Chapter 3 appendix

B.1 Equations of motion of D = 7 maximal ISO(4)

gauged supergravity

In this section, we apply the IW contractions to obtain the equations of motion of maximal
ISO(4) gauged supergravity in D = 7 from those of the maximal SO(5) gauged theory.
For clarity, we will write down the SO(5) equations of motion. It is also more convenient
to work with the scalar matrix MAB ≡ Φ̃1/4T̃AB instead of T̃AB. We note that MAB is not
independent of Φ̃, as detM = Φ̃. We begin with the Sj(3) equations,

D(Tij∗Sj(3)) = F ij
(2) ∧ S

j
(3) . (B.1)

Using the notation defined in (3.4)-(3.6), we find that (B.1) yields the following two equa-
tions of motion:

D̃
(
MAB∗̃G̃B

(3)

)
= F̃AB

(2) ∧ G̃B
(3) − G̃A

(2) ∧ S̃(3) , (B.2)

and
d
(
Φ̃−1∗̃S̃(3)

)
=MAB∗̃G̃A

(3) ∧ G̃B
(1) + G̃A

(2) ∧ G̃A
(3) . (B.3)

Next, we consider the non-Abelian Bianchi identities

DSi(3) = gTij∗Sj(3) +
1

8
ϵij1···j4F

j1j2
(2) ∧ F j3j4

(2) . (B.4)

These yield

dS̃(3) =
1

8
ϵABCDF̃

AB
(2) ∧ F̃CD

(2) , (B.5)

and

D̃G̃A
(3) = g̃MAB∗̃G̃B

(3) −
1

2
ϵABCDG̃

B
(2) ∧ F̃CD

(2) − G̃A
(1) ∧ S̃(3) . (B.6)

Following this, we consider the Yang-Mills equations

D
(
T−1
ik T

−1
jl ∗F ij

(2)

)
= −2gT−1

i[k ∗DTl]i −
1

2
ϵi1i2i3klTi3jF

i1i2
(2) ∧ ∗Sj(3) − Sk(3) ∧ Sl(3) . (B.7)

The (k, l) = (5, 5) component gives a 0 = 0 identity, the (k, l) = (A, 5) components give

D̃
(
Φ̃M−1

AB∗̃G̃B
(2)

)
= g̃Φ̃MAB∗̃G̃B

(1) − S̃(3) ∧ G̃A
(3) −

1

2
ϵAB1B2B3MB3CF̃

B1B2

(2) ∧ ∗̃G̃C
(3) , (B.8)
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and the (k, l) = (A,B) components give

D̃
(
M−1

ACM
−1
BD∗̃F̃CD

(2)

)
= −2g̃M−1

C[A∗̃DMB]C + Φ̃M−1
ACG̃

B
(1) ∧ ∗̃G̃C

(2) − G̃A
(3) ∧ G̃B

(3)

−Φ̃M−1
BCG̃

A
(1) ∧ ∗̃G̃C

(2) −
1

2
ϵABCD

(
Φ̃−1F̃CD

(2) ∧ ∗̃S̃(3) − 2MDEG̃
C
(2) ∧ ∗̃G̃E

(3)

)
.

(B.9)

We now consider the scalar equations, which are given by

D
(
T−1
ik ∗DTkj

)
= 2g2(2TikTkj − TkkTij) vol7+T

−1
im T

−1
kl ∗Fml

(2) ∧ F kj
(2)

+ Tjk∗Sk(3) ∧ Si(3) −
1

5
δijQ ,

(B.10)

where

Q = 2g2
(
2TijTij − (Tii)

2) vol7+T−1
nmT

−1
kl ∗Fml

(2) ∧ F kn
(2) + Tkl∗Sk(3) ∧ Sl(3) . (B.11)

Defining

Q̃ = 2g̃2
(
2MABMAB − (MAA)

2
)
ṽol7 −M−1

ABM
−1
CD∗̃F̃AC

(2) ∧ F̃BD
(2)

− 2Φ̃M−1
AB∗̃G̃A

(2) ∧ G̃B
(2) +MAB∗̃G̃A

(3) ∧ G̃B
(3) + Φ̃−1∗̃S̃(3) ∧ S̃(3) ,

(B.12)

which is the limit of Q as k → 0, we find that the (5, 5), (A, 5) and (A,B) components of
the scalar equations respectively yield

d(Φ̃−1∗̃dΦ̃) = Φ̃MAB∗̃G̃A
(1) ∧ G̃B

(1) + Φ̃M−1
AB∗̃G̃A

(2) ∧ G̃B
(2) − Φ̃−1∗̃S̃(3) ∧ S̃(3) +

1

5
Q̃ ,

D̃
(
Φ̃MAB∗̃G̃B

(1)

)
= Φ̃M−1

BC ∗̃G̃C
(2) ∧ F̃AB

(2) −MAB∗̃G̃B
(3) ∧ S̃(3) , (B.13)

and

D̃
(
M−1

AC ∗̃D̃MCB

)
= 2g̃2 (2MACMCB −MCCMAB) ṽol7 +M−1

ACM
−1
DE ∗̃F̃CE

(2) ∧ F̃DB
(2)

+Φ̃MBC ∗̃G̃C
(1) ∧ G̃A

(1) − Φ̃M−1
AC ∗̃G̃C

(2) ∧ G̃B
(2) +MBC ∗̃G̃C

(3) ∧ G̃A
(3) −

1

5
δABQ̃ . (B.14)

Finally, we consider the Einstein equations

R(7)
µν =

1

4
T−1
ij T

−1
kl DµTjkDνTli +

1

4
T−1
ik T

−1
jl F

ij
µρF

klρ
ν +

1

4
TijS

i
µρ1ρ2

Sjρ1ρ2ν +
1

10
gµνX , (B.15)

where

X = −1

4
T−1
ik T

−1
jl F

ij
ρ1ρ2

F klρ1ρ2 − 1

3
TijS

i
ρ1ρ2ρ3

Sjρ1ρ2ρ3 + g2
(
2TijTij − (Tii)

2
)
. (B.16)

Defining

X̃ = −1

4
M−1

ABM
−1
CDF̃

AC
ρ1ρ2

F̃BDρ1ρ2 − 1

2
Φ̃M−1

ABG̃
A
ρ1ρ2

G̃Bρ1ρ2 − 1

3
MABG̃

A
ρ1ρ2ρ3

G̃Bρ1ρ2ρ3

− 1

3
Φ̃S̃ρ1ρ2ρ3S̃

ρ1ρ2ρ3 + g̃2
(
2MABMAB − (MAA)

2
)
,

(B.17)

which is the limit of X as k → 0, we find, after some algebra, that

R̃(7)
µν =

1

4
M−1

ABM
−1
CDD̃µMBCD̃νMAD +

1

4
Φ̃−2∇̃µΦ̃∇̃νΦ̃ +

1

2
Φ̃MABG̃

A
µ G̃

B
ν

+
1

4
M−1

ACM
−1
BDF̃

AB
µρ F̃

CDρ
ν +

1

2
Φ̃M−1

ABG̃
A
µρG̃

Bρ
ν +

1

4
Φ̃−1S̃µρ1ρ2S̃

ρ1ρ2
ν

+
1

4
MABG̃

A
µρ1ρ2

G̃Bρ1ρ2
ν +

1

10
g̃µνX̃ .

(B.18)
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B.2 D = 5 Equations of motion

The equations of motion of the M5-brane D = 5 theory [1] can be found in appendix A.3 of
this thesis. We are going to plug in our truncation ansatz (3.15) and set k → 0 to obtain a
new set of equations of motion. Using our definitions in (3.18), (A.10) yields the following
three equations,

D̃K̃a
(2) − g̃R̃aH̃(3) − g̃ψ̃aα(T̃ −1G̃(3))

α

= −g̃Φ̃1/4e−6λ̃−2ϕ̃ϵab∗̃K̃b
(2) + ϵabP̃ b

(1) ∧ F̃(2) + ϵabϵαβD̃ψ̃bα ∧ J̃β(2) ,
(B.19)

and

D̃
(
(T̃ −1G̃(3))

α
)
= −Q̃α

(1) ∧ H̃(3) + ϵαβJ̃
β
(2) ∧ F̃(2) + g̃Φ̃1/4e6λ̃−12ϕ̃∗̃σ̃α(1) , (B.20)

and
dH̃(3) = F̃(2) ∧ F̃(2) . (B.21)

Next, the equations in (A.11) give

D̃
(
(T̃ −1σ̃(1))

α
)
= −Q̃α

(1) ∧ X̃(1) − 2g̃ϵabψ̃aαK̃b
(2) + g̃Φ̃1/4e6λ̃+8ϕ̃∗̃G̃α

(3)

+ 2ϵαβ

(
D̃ψ̃aβ ∧ P̃ a

(1) +
1

2
g̃(l − ψ̃2)J̃β(2) + gϵabψ̃

aβR̃bF̃(2)

)
,

(B.22)

and

dX̃(1) = ϵαβ

(
D̃ψ̃aα ∧ D̃ψ̃aβ + 1

2
g̃ϵαβ(l − ψ̃2)F̃(2) + g̃ϵabψ̃aαψ̃bβF̃(2)

)
. (B.23)

The equations in (A.12) give

D̃
(
Φ̃1/4e−6λ̃−2ϕ̃∗̃K̃a

(2)

)
= −F̃(2) ∧ K̃a

(2) − g̃Φ̃1/4e6λ̃−12ϕ̃ϵabψ̃bα∗̃σ̃α(1)
− ϵab

(
Dψ̃bα ∧ (T̃ −1G̃(3))

α + P̃ b
(1) ∧ H̃(3)

)
,

(B.24)

D̃
(
Φ̃1/4e6λ̃−12ϕ̃∗̃σ̃α(1)

)
= ϵαβF̃(2) ∧ (T̃ −1G̃(3))

β + J̃α(2) ∧ H̃(3) , (B.25)

and

d
(
Φ̃−1e−12ϕ̃∗̃X̃(1)

)
= Φ̃1/4e6λ̃−12ϕ̃Q̃α

(1) ∧ ∗̃σ̃α(1) − J̃α(2) ∧
(
T̃ −1G̃(3)

)α
. (B.26)

The equation in (A.13) gives

D̃
(
Φ̃1/4e6λ̃+8ϕ̃∗̃G̃α

(3)

)
= ϵαβF̃(2) ∧ (T̃ −1σ̃(1))

β + J̃α(2) ∧ X̃(1) + 2ϵabDψ̃aα ∧ K̃b
(2) (B.27)

+ 2g̃ϵabψ̃aα
(
ψ̃bβ(T̃ −1G̃(3))

β + R̃bH̃(3)

)
+ 2g̃Φ̃1/4e−6λ̃−2ϕ̃ψ̃aα∗̃K̃a

(2) ,

and

d
(
Φ̃−1e8ϕ̃∗̃H̃(3)

)
= Φ̃1/4e6λ̃+8ϕ̃Q̃α

(1) ∧ ∗̃G̃α
(3) − J̃α(2) ∧ (T̃ −1σ̃(1))

α + 2ϵabP̃ a
(1) ∧ K̃b

(2)

+ 2g̃Φ̃1/4e−6λ̃−2ϕ̃R̃a∗̃K̃a
(2) + 2g̃ϵabR̃aψ̃bβ(T̃ −1G̃(3))

β .
(B.28)
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The equation in (A.14) gives

d
(
Φ̃−1/2e12λ̃+4ϕ̃∗̃F̃(2)

)
− 2g̃ϵab

(
Φ̃−1/2e−6ϕ̃(T̃ −1ψ̃)aα∗̃D̃ψ̃bα + Φ̃1/4e6λ̃−6ϕ̃R̃a∗̃P̃ b

(1)

)
+ Φ̃−1e8ϕ̃F̃(2) ∧ ∗̃H̃(3) − Φ̃−1/4e6λ̃+8ϕ̃ϵαβJ̃

α
(2) ∧ ∗̃G̃β

(3) + K̃a
(2) ∧ K̃a

(2)

+ g̃Φ̃−1e−12ϕ̃ϵαβϵ
abψ̃aαψ̃bβ ∗̃X̃(1) + 2g̃Φ̃1/4e6λ̃−12ϕ̃ϵαβϵ

abR̃aψ̃bα∗̃σ̃β(1) = 0 .

(B.29)

The equation in(A.15) gives

D̃
(
Φ̃3/4e4ϕ̃−6λ̃∗̃(T̃ −1J̃(2))

α
)
− 2g̃Φ̃3/4e6λ̃−6ϕ̃ψ̃aα∗̃P̃ a

(1) + g̃Φ̃5/4e6λ̃∗̃(T̃ Q̃(1))
α

− ϵαβΦ̃
1/4
[
g̃(l − ψ̃2)e6λ̃−12ϕ̃∗̃σ̃β(1) + e6λ̃+8ϕ̃F̃(2) ∧ ∗G̃β

(3) − 2e−6λ̃−2ϕ̃ϵabD̃ψ̃aβ ∧ ∗̃K̃b
(2)

]
+ (T̃ −1G̃(3))

α ∧ X̃(1) − H̃(3) ∧ (T̃ −1σ̃(1))
α = 0 , (B.30)

and

d
(
Φ̃−1/2e4ϕ̃−12λ̃∗̃F̃(2)

)
− Φ̃3/4e4ϕ̃−6λ̃ϵαβQ̃

α
(1) ∧ ∗̃(T̃ −1J̃(2))

β − 2g̃ϵαβΦ̃
−1/2e−6ϕ̃ψ̃aαT̃ −1

βγ ∗̃D̃ψ̃aγ

+ g̃ϵαβT̃ −1
γα ∗̃D̃T̃βγ + g̃(l − ψ̃2)Φ̃−1e−12ϕ̃∗̃X̃(1) + Φ̃−1e8ϕ̃F̃(2) ∧ ∗̃H̃(3)

− 2Φ̃1/4e−6λ̃−2ϕ̃ϵabP̃ a
(1) ∧ ∗K̃b

(2) + ϵαβ(T̃ −1G̃(3))
α ∧ (T̃ −1σ̃(1))

β = 0 . (B.31)

The equation in (A.16) gives

D̃
(
Φ̃3/4e6λ̃−6ϕ̃∗̃P̃ a

(1)

)
− g̃2

[
2Φ̃3/4e−6λ̃−16ϕ̃ϵabϵcdR̃c(ψ̃bT̃ −1ψ̃d) + Φ̃5/4e−6λ̃−10ϕ̃R̃a

]
ṽol5

+ Φ̃1/4e−6λ̃−2ϕ̃F̃(2) ∧ ϵab∗̃K̃b
(2) + Φ̃1/4e6λ̃−12ϕ̃ϵβγ ∗̃σ̃β(1) ∧ D̃ψ̃aγ

+ H̃(3) ∧ ϵabK̃b
(2) = 0 , (B.32)

and

D̃
(
Φ̃−1/2e−6ϕ̃T̃ −1

αβ ∗̃D̃ψ̃aβ
)
+ Φ̃3/4e6λ̃−6ϕ̃Q̃α

(1) ∧ ∗̃P̃ a
(1)

− g̃2
{
2Φ̃−1/2e−12λ−16ϕ̃ϵabϵcd(ψ̃bT̃ −1ψ̃d)(T̃ −1ψ̃)cα − Φ̃−1/2e12λ̃−16ϕ̃(l − ψ̃2)ψ̃aα

+e−10ϕ̃
(
e12λ̃(T̃ ψ̃)aα − 2ψ̃aα + e−12λ̃(T̃ −1ψ̃)aα

)
+ 2Φ̃3/4e−6λ̃−16ϕ̃ϵabϵcdR̃bR̃d(T̃ −1ψ̃)cα

}
ṽol5

− ϵαβ

[
Φ̃−1e−12ϕ̃∗̃X(1) ∧ D̃ψ̃aβ − Φ̃1/4e6λ̃−12ϕ̃∗̃σ̃β(1) ∧ P̃ a

(1) − Φ̃1/4e−6λ̃−2ϕ̃J̃β(2) ∧ ϵab∗̃Kb
(2)

]
+ (T̃ −1G̃(3))

α ∧ ϵabK̃b
(2) = 0 . (B.33)
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The equations in (A.17)-(A.18) give

d∗̃dλ̃− 1

24
Φ̃5/4e6λ̃T̃αβ ∗̃Q̃α

(1) ∧ Q̃β
(1) −

1

12
Φ̃3/4e6λ̃−6ϕ̃∗̃P̃ a

(1) ∧ P̃ a
(1) −

1

24
Φ̃1/4e6λ̃−12ϕ̃T̃ −1

αβ ∗̃σ̃α(1) ∧ σ̃β(1)

− 1

12
Φ̃−1/2e4ϕ̃+12λ̃∗̃F̃(2) ∧ F̃(2) +

1

12
Φ̃−1/2e4ϕ̃−12λ̃∗̃F̃(2) ∧ F̃(2) +

1

24
Φ̃3/4e4ϕ̃−6λ̃T̃ −1

αβ ∗̃J̃α(2) ∧ J̃β(2)

+
1

12
Φ̃1/4e−6λ̃−2ϕ̃∗̃K̃a

(2) ∧ K̃a
(2) −

1

24
Φ̃1/4e6λ̃+8ϕ̃T̃ −1

αβ ∗̃G̃α
(3) ∧ G̃β

(3)

+ g̃2
{
1

6
e−10ϕ̃

(
e−12λ̃(ψ̃T̃ −1ψ̃)− e12λ̃(ψ̃T̃ ψ̃) + 1

2
Φ̃5/4e−6λ̃R̃2

)
− 1

12
Φ̃−1/2e12λ̃−16ϕ̃(l − ψ̃2)2 − 1

12
Φ̃1/2e12λ̃−4ϕ̃

(
2Tr(T̃ 2)− (TrT̃ )2

)
+

1

6
Φ̃−1/2e−12λ̃−16ϕ̃ϵabϵcd(ψ̃aT̃ −1ψ̃c)(ψ̃bT̃ −1ψ̃d)

+
1

6
Φ̃3/4e−6λ̃−16ϕ̃ϵabϵcd(ψ̃aT̃ −1ψ̃c)R̃bR̃d

}
ṽol5 = 0 . (B.34)

and

d(Φ̃−1∗̃dΦ̃)− Φ̃5/4e6λ̃T̃αβ ∗̃Q̃α
(1) ∧ Q̃β

(1) −
6

5
Φ̃3/4e6λ̃−6ϕ̃∗̃P̃ a

(1) ∧ P̃ a
(1) −

1

5
Φ̃1/4e6λ̃−12ϕ̃T̃ −1

αβ ∗̃σ̃α(1) ∧ σ̃β(1)

+
4

5
Φ̃−1/2e−6ϕ̃T̃ −1

αβ ∗̃Dψ̃aα ∧Dψ̃aβ + 4

5
Φ̃−1e−12ϕ̃∗̃X̃(1) ∧ X̃(1) −

3

5
Φ̃3/4e−6λ̃+4ϕ̃T̃ −1

αβ ∗̃J̃α(2) ∧ J̃β(2)

+
2

5
Φ̃−1/2e4ϕ̃+12λ̃∗̃F̃(2) ∧ F̃(2) +

2

5
Φ̃−1/2e4ϕ̃−12λ̃∗̃F̃(2) ∧ F̃(2) −

2

5
Φ̃1/4e−6λ̃−2ϕ̃∗̃K̃a

(2) ∧ K̃a
(2)

+
4

5
Φ̃−1e8ϕ̃∗̃H̃(3) ∧ H̃(3) −

1

5
Φ̃1/4e6λ̃+8ϕ̃T̃ −1

αβ ∗̃G̃α
(3) ∧ G̃β

(3)

+ g̃2
{
2

5
Φ̃−1/2e12λ̃−16ϕ̃(l − ψ̃2)2 − 2

5
Φ̃1/2e−4ϕ̃

(
2e12λ̃Tr(T̃ 2)− e12λ̃(TrT̃ )2 − 4TrT̃

)
− 2Φ̃5/4e−6λ̃−10ϕ̃R̃2 +

4

5
Φ̃−1/2e−12λ̃−16ϕ̃ϵabϵcd(ψ̃aT̃ −1ψ̃c)(ψ̃bT̃ −1ψ̃d)

− 12

5
Φ̃3/4e−6λ̃−16ϕ̃ϵabϵcdR̃bR̃d(ψ̃aT̃ −1ψ̃c)

}
ṽol5 = 0 , (B.35)

and

D̃
(
Φ̃5/4e6λ̃∗̃(T̃ Q̃(1))

α
)
− 2Φ̃3/4e6λ̃−6ϕ̃∗̃P̃ a

(1) ∧ D̃ψ̃aα

+ Φ̃3/4e−6λ̃+4ϕ̃ϵαβ ∗̃(T̃ −1J̃(2))
β ∧ F̃(2) + Φ̃1/4e6λ̃+8ϕ̃∗̃G̃α

(3) ∧ H̃(3) + Φ̃1/4e6λ̃−12ϕ̃∗̃σ̃α(1) ∧ X̃(1)

− 2g̃2e−6λ̃−10ϕ̃
(
Φ̃5/4ψ̃aαR̃a − 2Φ̃3/4e−6ϕ̃ϵabϵcdR̃a(ψ̃bT̃ −1ψ̃c)ψ̃dα

)
ṽol5 = 0 , (B.36)

164



and

D̃
(
T̃ −1
αγ ∗̃D̃T̃γβ

)
− Φ̃5/4e6λ̃

(
T̃βγδαρ −

1

2
T̃γρδαβ

)
∗̃Q̃γ

(1) ∧ Q̃
ρ
(1)

+ Φ̃−1/2e−6ϕ̃
(
2T̃ −1

αγ δβρ − T̃ −1
γρ δαβ

)
∗̃D̃ψ̃aγ ∧ D̃ψ̃aρ − Φ̃1/4e6λ̃−12ϕ̃

(
T̃ −1
αγ δβρ −

1

2
T̃ −1
γρ δαβ

)
∗̃σ̃γ(1) ∧ σ̃

ρ
(1)

+ Φ̃3/4e−6λ̃+4ϕ̃
(
T̃ −1
αγ δβρ −

1

2
T̃ −1
γρ δαβ

)
∗̃J̃γ(2) ∧ J̃

ρ
(2) − Φ̃1/4e6λ̃+8ϕ̃

(
T̃ −1
αγ δβρ −

1

2
T̃ −1
γρ δαβ

)
∗̃G̃γ

(3) ∧ G̃
ρ
(3)

+ g̃2
{
e−10ϕ̃

[
2e−12λ̃(T̃ −1ψ̃)aαψ̃aβ − 2e12λ̃ψ̃aα(T̃ ψ̃)aβ − e−12λ̃(ψ̃T̃ −1ψ̃)δαβ + e12λ̃(ψ̃T̃ ψ̃)δαβ

]
− 2Φ̃−1/2e−12λ̃−16ϕ̃

[
2T̃ −1

αγ T̃ −1
ρη δβξ − T̃ −1

ξγ T̃ −1
ρη δαβ

]
(ϵabψ̃aγψ̃bη)(ϵcdψ̃cρψ̃dξ)

+ 2Φ̃3/4e−6λ̃−16ϕ̃
[
2T̃ −1

αγ δβρ − T̃ −1
γρ δαβ

]
(ϵabψ̃aγR̃b)(ϵcdψ̃cρR̃d)

+ Φ̃1/2e−4ϕ̃
[
2e12λ̃Tr(T̃ 2)δαβ − e12λ̃(TrT̃ )2δαβ − 2TrT̃ δαβ

− 4e12λ̃(T̃ 2)αβ + 2e12λ̃TrT̃ T̃αβ + 4T̃αβ
]}

ṽol5 = 0 . (B.37)

The equations in (A.19)-(A.20) give

d∗̃dϕ̃− 1

30
Φ̃−1/2e4ϕ̃+12λ̃∗̃F̃(2) ∧ F̃(2) +

1

10
Φ̃−1/2e−6ϕ̃T̃ −1

αβ ∗̃Dψ̃aα ∧Dψ̃aβ

+
1

10
Φ̃3/4e6λ̃−6ϕ̃∗̃P̃ a

(1) ∧ P̃ a
(1) −

1

30
Φ̃−1/2e4ϕ̃−12λ̃∗̃F̃(2) ∧ F̃(2) −

1

30
Φ̃3/4e4ϕ̃−6λ̃T̃ −1

αβ ∗̃J̃α(2) ∧ J̃β(2)

+
1

30
Φ̃1/4e−6λ̃−2ϕ̃∗̃K̃a

(2) ∧ K̃a
(2) +

1

10
Φ̃−1e−12ϕ̃∗̃X̃(1) ∧ X̃(1) +

1

10
Φ̃1/4e6λ̃−12ϕ̃T̃ −1

αβ ∗̃σ̃α(1) ∧ σ̃β(1)

− 1

15
Φ̃−1e8ϕ̃∗̃H̃(3) ∧ H̃(3) −

1

15
Φ̃1/4e6λ̃+8ϕ̃T̃ −1

αβ ∗̃G̃α
(3) ∧ G̃β

(3)

+ g̃2
{
1

6
e−10ϕ̃

(
e12λ̃(ψ̃T̃ ψ̃)− 2(l + ψ̃2) + e−12λ̃(ψ̃T̃ −1ψ̃) + Φ̃5/4e−6λ̃R̃2

)
+

2

15
Φ̃−1/2e12λ̃−16ϕ̃(l − ψ̃2)2 +

1

30
Φ̃1/2e−4ϕ̃

(
2e12λ̃Tr(T̃ 2)− e12λ̃(TrT̃ )2 − 4TrT̃

)
+

4

15
Φ̃−1/2e−12λ̃−16ϕ̃ϵabϵcd(ψ̃aT̃ −1ψ̃c)(ψ̃bT̃ −1ψ̃d)

+
8

15
Φ̃3/4e−6λ̃−16ϕ̃ϵabϵcd(ψ̃aT̃ −1ψ̃c)R̃bR̃d

}
ṽol5 = 0 , (B.38)
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and

R̃(5)
mn = 30∇̃mϕ̃∇̃nϕ̃+ 36∇̃mλ̃∇̃nλ̃+

5

16
Φ̃−2∇̃mΦ̃∇̃nΦ̃ +

1

4
T̃ −1
αβ T̃ −1

γρ DmT̃βγDnT̃ρα

+ Φ̃−1/2e−6ϕ̃T̃ −1
αβ Dmψ̃

aαDnψ̃
aβ + Φ̃3/4e6λ̃−6ϕ̃P̃ a

mP̃
a
n +

1

2
Φ̃5/4e6λ̃T̃αβQ̃α

mQ̃
β
n

+
1

2
Φ−1e−12ϕ̃X̃mX̃n +

1

2
Φ̃1/4e6λ̃−12ϕ̃T̃ −1

αβ σ̃
α
mσ̃

β
n

+
1

2
Φ̃−1/2e4ϕ̃+12λ̃

(
(F̃(2))ml(F̃(2))

l
n − 1

6
g̃mn(F̃(2))ls(F̃(2))

ls
)

+
1

2
Φ̃−1/2e4ϕ̃−12λ̃

(
(F̃(2))ml(F̃(2))

l
n − 1

6
g̃mn(F̃(2))ls(F̃(2))

ls
)

+
1

2
Φ̃3/4e4ϕ̃−6λ̃T̃ −1

αβ

(
(J̃α(2))ml(J̃

β
(2))

l
n − 1

6
g̃mn(J̃

α
(2))ls(J̃

β
(2))

ls
)

+ Φ̃1/4e−2ϕ̃−6λ̃
(
(K̃a

(2))ml(K̃
a
(2))

l
n − 1

6
g̃mn(K̃

a
(2))ls(K̃

a
(2))

ls
)

+
1

4
Φ̃−1e8ϕ̃

(
(H̃(3))mls(H̃(3))

ls
n − 2

9
g̃mn(H̃(3))lsr(H̃(3))

lsr
)

+
1

4
Φ̃1/4e8ϕ̃+6λ̃T̃ −1

αβ

(
(G̃α

(3))mls(G̃
β
(3))

ls
n − 2

9
g̃mn(G̃

α
(3))lsr(G̃

β
(3))

lsr
)

+ g̃2g̃mn

{1
3
e−10ϕ̃

(
e12λ̃(ψ̃T̃ ψ̃)− 2(l + ψ̃2) + e−12λ̃(ψ̃T̃ −1ψ̃) + Φ̃5/4e−6λ̃R̃2

)
+

1

6
Φ̃−1/2e12λ̃−16ϕ̃(l − ψ̃2)2 +

1

6
Φ̃1/2e−4ϕ̃

(
2e12λ̃Tr(T̃ 2)− e12λ̃(TrT̃ )2 − 4TrT̃

)
+

1

3
Φ̃−1/2e−12λ̃−16ϕ̃ϵabϵcd(ψ̃aT̃ −1ψ̃c)(ψ̃bT̃ −1ψ̃d)

+
2

3
Φ̃3/4e−6λ̃−16ϕ̃ϵabϵcd(ψ̃aT̃ −1ψ̃c)R̃bR̃d

}
. (B.39)

B.3 Minimal representations of A100
5,17 and A0

5,18

We provide here an explicit representation of the generators in (3.42),

g1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , g2 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , g3 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,

g4 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , g5 =


0 1 0 0
−1 0 0 0
0 0 0 −l
0 0 0 0

 .

(B.40)

B.4 Matching with N = 4 supergravity

In this section, we present some of the details on how to match the truncated D = 5 theory
of section 3.3 with the canonical language of N = 4 theory in [79].
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The parametrisation of the coset SO(5, 3)/(SO(5)× SO(3)) is given in (3.38), and we
find that the Lie algebra valued Maurer-Cartan one form is given by

dV · V−1 =
1√
2
dφ1H +

1√
2
dφ2Ĥ +

1√
2
dφ3H

3 + e2φ1dρ E

+ eφ3+φ1+φ2

(
Q3

(1) + ρQ̃4
(1)

)
T 2 + eφ3−φ1+φ2Q4

(1)T
3 + e−2φ2X(1)T

4

+ eφ3−φ1−φ2(T −1σ̃(1))
4T 5 − eφ3+φ1−φ2

[
(T −1σ(1))

3 + ρ(T −1σ(1))
4
]
T 6

+
√
2e−φ1−φ2dψ13T 7 +

√
2eφ1−φ2(dψ14 − ρdψ13)T 8 −

√
2eφ3P 1

(1)T
9

+
√
2e−φ1−φ2dψ23T 10 +

√
2eφ1−φ2(dψ24 − ρdψ23)T 11 −

√
2eφ3P 2

(1)T
12 ,

(B.41)

where φ2, φ3 are defined in (3.39) and

Ra = Ψa + ταψaα , X(1) = dΞ + ϵαβψ
aαdψaβ , P a

(1) = dΨa + ταdψaα ,

Qα
(1) = dτα , (T −1σ(1))

α = dξα − ταdΞ− ϵαβ

(
ψaβψaγQγ

(1) + 2Radψaβ
)
,

(B.42)

are the ungauged versions of X(1), P
a
(1), Q

α
(1) and (T −1σ(1))

α. The Maurer-Cartan one

form can be decomposed as dV · V−1 = Q(0)
(1) + P(0)

(1) , where Q(0)
(1) lies in the Lie algebra of

SO(5)× SO(3), and P(0)
(1) lies in its complement. The ungauged kinetic term of the scalar

fields in the coset SO(5, 3)/(SO(5)× SO(3)) is equal to

1

8
∗dMMN ∧ dMMN =− 1

2
Tr
(
∗P(0)

(1) ∧ P(0)
(1)

)
=− 1

4
Tr
(
∗
[
dV · V−1

]
∧
[
dV · V−1 + (dV · V−1)

T
])
.

(B.43)

The scalar manifold of the reduced theory is SO(1, 1) × SO(5, 3)/(SO(5) × SO(3)), and
the ungauged kinetic term of all of the scalar fields can be recast into

LSN=4 =− 3Σ−2∗dΣ ∧ dΣ +
1

8
∗dMMN ∧ dMMN , (B.44)

where the SO(1, 1) part of the scalar manifold is described by the real scalar field Σ, via

Σ = Φ1/8e−ϕ−3λ . (B.45)

To incorporate the gauging, we need to use the covariant derivative given in (2.64) which
we denote as D = d+ gA with

A = A(1)g0 + A 3
(1)g1 + A 4

(1)g2 + V 3
(1)g3 + V 4

(1)g4 +A(1)g5 . (B.46)

Now we can decompose the gauged version of the Maurer-Cartan one form DV · V−1 =

P +Q. In particular we have P = P(0) + g
2

[
V · A · V−1 + (V · A · V−1)

T
]
, which lies in the

complement of the Lie algebra of SO(5)× SO(3). Finally, we find that the gauged scalar
kinetic terms are recovered precisely after evaluating −1

2
Tr(∗P ∧ P).

We provide here the explicit expression of the matrix MMN which is defined in (2.33),

M =

 T −1
3 T −1

3 · ST T −1
3 · Y

S · T −1
3 S · T −1

3 · ST + 12 S · T −1
3 · Y + S

YT · T −1
3 YT · T −1

3 · ST + ST YT · T −1
3 · Y + ST · S + T3

 , (B.47)
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where

V3 =

 eφ1+φ2 eφ1+φ2ρ eφ1+φ2(τ 3 + ρτ 4)
0 e−φ1+φ2 e−φ1+φ2τ 4

0 0 e−φ3

 , S =

( √
2ψ13

√
2ψ14 −

√
2Ψ1

√
2ψ23

√
2ψ24 −

√
2Ψ2

)
,

(B.48)

and

Yij =
1

2
Sai Saj +

 0 Ξ ξ4 +Raψa3

−Ξ 0 −ξ3 +Raψa4

−ξ4 −Raψa3 ξ3 −Raψa4 0


ij

. (B.49)

and we also define T3 ≡ V T
3 · V3. To calculate the N = 4 scalar potential (2.44), we

have to make use of the embedding tensor specified in (3.48) and we find the following
non-vanishing contributions

− 1

2
fMNPfQRSΣ

−2
( 1

12
MMQMNRMPS − 1

4
MMQηNRηPS +

1

6
ηMQηNRηPS

)
= −1

2
Φ1/2e−4ϕ

(
2e12λTr(T 2)− e12λ(TrT )2

)
− 1

2
Φ−1/2e12λ−16ϕ(l − ψ2)2 − e−10ϕe12λ(ψT ψ) ,

− 1

8
ξMNξPQΣ

4
(
MMPMNQ − ηMPηNQ

)
= −Φ̃−1/2e−12λ−16ϕϵabϵcd(ψaT −1ψc)(ψbT −1ψd)− 2Φ3/4e−6λ−16ϕϵabϵcd(ψaT −1ψc)RbRd

− e−10ϕ
(
e−12λ(ψT̃ −1ψ) + Φ5/4e−6λR2

)
,

− 1

3
√
2
fMNP ξQRΣMMNPQR = 2e−10ϕ(l + ψ2) + 2Φ1/2e−4ϕTrT . (B.50)

Combining these contributions, we are able to recover the scalar potential in our truncated
theory (3.22).

We now turn to the vector sector. Using the identifications in (3.51)-(3.52) and MMN

in (B.47), we find that the N = 4 kinetic terms of the vectors in (2.45) matches with
the kinetic terms of the vectors of the truncated theory (3.31) (after applying the field
redefinitions in (3.26) and (3.29)). For the topological part of the Lagrangian, we find that
the non-zero contributions to LTN=4 (2.46) are (up to a total derivative),

− 1√
2
gZMNBM ∧DBN =

1

2g
ϵabL

a
(2) ∧DLb(2) ,

1

2
√
2
gdMNPX

M
QR AN ∧ AQ ∧ AR ∧ dAP

= −gl
2
ϵαβV

α
(1) ∧ V β

(1) ∧ A(1) ∧ F(2) − gA(1) ∧ A α
(1) ∧ V α

(1) ∧ F(2) , (B.51)
√
2

3
dMNPAM ∧ dAN ∧ dAP

= −ϵαβ
(
d
[
A α

(1) − lϵαβV
β
(1)

])
∧ V β

(1) ∧ F̃(2)

− F(2) ∧ F(2) ∧
(

B(1) − τα
[
A α

(1) − lϵαβV
β
(1) −

l

2g
ϵαβdτ

β

]
+

1

2g
τ 2dΞ− ΞταV α

(1) +
1

g
ξαQα

(1)

)
.

Combining these contributions, we recover the topological part of the Lagrangian in our
truncated theory (3.33).

168



Appendix C

Chapter 4 appendix

C.1 The U(1)×U(1) truncation of D = 7maximal gauged

supergravity

We have provided an overview of D = 7 maximal SO(5) gauged supergravity in chapter
2, and in this section, we will discuss some aspects of the U(1) × U(1) truncation of the
maximal theory.

The D = 7 U(1)2 theory, as first discussed in [121], can be obtained by keeping just
the two U(1) gauge fields, A12

(1), A
34
(1), one of the three-forms, S5

(3), and two scalar fields

Tij =diag
(
e2λ1 , e2λ1 , e2λ2 , e2λ2 , e−4λ1−4λ2

)
. (C.1)

The Lagrangian (2.1) then becomes

L(7) =(R− V )vol7 − 6∗7dλ1 ∧ dλ1 − 6∗7dλ2 ∧ dλ2 − 8∗7dλ1 ∧ dλ2
− 1

2
e−4λ1∗7F 12

(2) ∧ F 12
(2) −

1

2
e−4λ2∗7F 34

(2) ∧ F 34
(2) −

1

2
e−4λ1−4λ2∗7S5

(3) ∧ S5
(3)

+
1

2g
S5
(3) ∧ dS5

(3) −
1

g
S5
(3) ∧ F 12

(2) ∧ F 34
(2) +

1

2g
A12

(1) ∧ F 12
(2) ∧ F 34

(2) ∧ F 34
(2) ,

(C.2)

where

V = g2
[
1

2
e−8(λ1+λ2) − 4e2(λ1+λ2) − 2e−2(2λ1+λ2) − 2e−2(λ1+2λ2)

]
. (C.3)

For configurations with F 12
(2) ∧ F 34

(2) = 0, we can further consistently set S5
(3) = 0.

The equations of motion for the D = 7 U(1)2 gauged supergravity arising from (C.2)
can be written in the form

P1 ≡ 3d∗7dλ1 + 2d∗7dλ2 +
1

2
e−4λ1∗7F 12

(2) ∧ F 12
(2) +

1

2
e−4λ1−4λ2∗7S5

(3) ∧ S5
(3)

− g2
(
2e−2(2λ1+λ2) + e−2(λ1+2λ2) − e−8(λ1+λ2) − 2e2(λ1+λ2)

)
∗71 = 0 ,

P2 ≡ 2d∗7dλ1 + 3d∗7dλ2 +
1

2
e−4λ2∗7F 34

(2) ∧ F 34
(2) +

1

2
e−4λ1−4λ2∗7S5

(3) ∧ S5
(3)

− g2
(
e−2(2λ1+λ2) + 2e−2(λ1+2λ2) − e−8(λ1+λ2) − 2e2(λ1+λ2)

)
∗71 = 0 ,

G1 ≡ d
(
e−4λ1∗7F 12

(2)

)
+ e−4λ1−4λ2∗7S5

(3) ∧ F 34
(2) = 0 ,

G2 ≡ d
(
e−4λ2∗7F 34

(2)

)
+ e−4λ1−4λ2∗7S5

(3) ∧ F 12
(2) = 0 ,

T ≡ dS5
(3) − ge−4λ1−4λ2∗7S5

(3) − F 12
(2) ∧ F 34

(2) = 0 ,

(C.4)
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and

Rµν = 6∂µλ1∂νλ1 + 6∂µλ2∂νλ2 + 8∂(µλ1∂ν)λ2 +
1

5
gµνV

+
1

2
e−4λ1(F 12

µρF
12ρ
ν − 1

10
gµνF

12
ρσF

12ρσ) +
1

2
e−4λ2(F 34

µρF
34ρ
ν − 1

10
gµνF

34
ρσF

34ρσ)

+
1

4
e−4λ1−4λ2(S5

µρσS
5ρσ
ν − 2

15
gµνS

5
ρσδS

5ρσδ) .

(C.5)

To uplift solutions to D = 11 on S4 in the U(1)2 truncation, it is convenient to
parametrise the four-sphere S4 by writing the embedding coordinates µi as

µ1 + iµ2 = cos ξ cos θ eiχ1 , µ3 + iµ4 = cos ξ sin θ eiχ2 , µ5 = sin ξ , (C.6)

with −π/2 ≤ ξ ≤ π/2, 0 ≤ θ ≤ π/2 and 0 ≤ χ1, χ2 ≤ 2π. Using the above parametrisation,
we can write down the uplift ansatz for the D = 7 U(1)2 theory

ds211 = ∆1/3ds27 +
1

g2
∆−2/3

{
e4λ1+4λ2dw2

0 + e−2λ1
[
dw2

1 + w2
1

(
dχ1 − gA12

(1)

)2]
+ e−2λ2

[
dw2

2 + w2
2

(
dχ2 − gA34

(1)

)2]}
,

(C.7)

with

∆ = e−4λ1−4λ2w2
0 + e2λ1w2

1 + e2λ2w2
2 , (C.8)

and

w0 = sin ξ , w1 = cos ξ cos θ , w2 = cos ξ sin θ , (C.9)

satisfying w2
0 + w2

1 + w2
2 = 1.

Within the D = 7 U(1)2 theory, the D = 11 four-form flux can be written as

F(4) =
w1w2

g3w0

U∆−2 dw1 ∧ dw2 ∧
(
dχ1 − gA12

(1)

)
∧
(
dχ2 − gA34

(1)

)
+

2w2
1w

2
2

g3
∆−2e2λ1+2λ2 (dλ1 − dλ2) ∧

(
dχ1 − gA12

(1)

)
∧
(
dχ2 − gA34

(1)

)
∧ dw0

+
2w0w1w2

g3
∆−2

[
e−2λ1−4λ2w1dw2 ∧ (3dλ1 + 2dλ2)− e−4λ1−2λ2w2dw1 ∧ (2dλ1 + 3dλ2)

]
∧
(
dχ1 − gA12

(1)

)
∧
(
dχ2 − gA34

(1)

)
+

1

g2
∆−1F 12

(2) ∧
[
w0w2 e

−4λ1−4λ2dw2 − w2
2e

2λ2dw0

]
∧
(
dχ2 − gA34

(1)

)
+

1

g2
∆−1F 34

(2) ∧
[
w0w1 e

−4λ1−4λ2dw1 − w2
1e

2λ1dw0

]
∧
(
dχ1 − gA12

(1)

)
− w0e

−4λ1−4λ2∗7S5
(3) +

1

g
S5
(3) ∧ dw0 , (C.10)

with

U =
(
e−8λ1−8λ2 − 2e−2λ1−4λ2 − 2e−4λ1−2λ2

)
w2

0

−
(
e−2λ1−4λ2 + 2e2λ1+2λ2

)
w2

1 −
(
e−4λ1−2λ2 + 2e2λ1+2λ2

)
w2

2 .
(C.11)
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We also note that if we integrate the D = 11 four-form flux over the S4 at any arbitrary
point on the D = 7 spacetime, we obtain∫

S4

F(4) =

∫
S4

w1w2

g3w0

U∆−2 dw1 ∧ dw2 ∧ dχ1 ∧ dχ2

= 8π2 .

(C.12)

Rather remarkably, the dependence in the integrand on the scalar fields λi drops out of
the definite integral.

C.2 Supersymmetry of D = 7 gauged supergravity

The supersymmetry transformations for bosonic configurations of D = 7 maximal SO(5)
gauged supergravity associated with the conventions of [36] are given by

δψµ =[∇µ +
1

4
QµijΓ

ij − g

20
Tγµ +

1

80
(γµ

νρ − 8δνµγ
ρ)ΓijΠ

i
AΠ

j
BF

AB
(2)νρ

− 1

60
(γµ

νρσ − 9

2
δνµγ

ρσ)Γi(Π−1)Ai S(3)Aνρσ]ϵ ,

δχi =[− 1

2
γµΓjPµij +

g

2
(Tij −

1

5
Tδij)Γ

j +
1

32
γµν(ΓklΓi −

1

5
ΓiΓkl)Π

k
AΠ

l
BF

AB
(2)µν

+
1

120
γµνρ(Γi

j − 4δji )(Π
−1)Aj S(3)Aµνρ]ϵ .

(C.13)

Our D = 7 gamma matrices satisfy γ0123456 = +1 and Γ12345 = +1. Here Πk
A, A = 1, . . . , 5

also parametrise the coset SL(5,R)/SO(5) and Tij = Π−1A
i Π

−1B
j δAB. In addition, Pµij and

Qµij are defined as the symmetric and antisymmetric parts of the Maurer–Cartan one form
Π−1A

i (δ
B
A∂µ + g

2
AµA

B)Πk
Bδkj respectively. We have determined these from the literature,

which we have found to have many typos, and also using a number of self consistency
checks which we will outline below.

From these expressions, one can derive the supersymmetry transformations in the
U(1)× U(1) truncation. Following [121], we define

ψ̂µ = ψµ −
1

2
γµΓ

5χ5 , χ̂1 = Γ1χ1 +
3

2
Γ3χ3 , χ̂3 =

3

2
Γ1χ1 + Γ3χ3 , (C.14)

and find that the supersymmetry transformations are1

δψ̂µ =

[
∇µ +

g

2
A12
µ Γ12 +

g

2
A34
µ Γ34 − g

4
e−4λ1−4λ2γµ +

1

2
γµγ

ν (∂νλ1 + ∂νλ2)

− 1

4
γν
(
e−2λ1Γ12F

12
µν + e−2λ2Γ34F

34
µν

)
+

1

8
γνρe−2λ1−2λ2Γ5S5

µνρ

]
ϵ ,

(C.15)

1Note that to obtain the Killing spinor equations in (5.4) of [112], which had vanishing three-form and
γ0123456 = −1, one should set g = 1 and also take γµ → −γµ.
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and

δχ̂1 =

[
1

4
(2∂µλ1 + 3∂µλ2) γ

µ +
g

4

(
e2λ2 − e−4λ1−4λ2

)
− 1

16
e−2λ2Γ34F

34
µνγ

µν +
1

48
γµνρΓ5e−2λ1−2λ2S5

µνρ

]
ϵ ,

δχ̂3 =

[
1

4
(3∂µλ1 + 2∂µλ2) γ

µ +
g

4

(
e2λ1 − e−4λ1−4λ2

)
− 1

16
e−2λ1Γ12F

12
µνγ

µν +
1

48
γµνρΓ5e−2λ1−2λ2S5

µνρ

]
ϵ .

(C.16)

We have carried out a highly non-trivial check2 of these conditions and their compatibility
with the equations of motion by considering integrability conditions of the supersymmetry
transformations as in [221]. For example, if we write δψ̂µ ≡ Dµϵ and δχ̂i ≡ ∆iϵ, then a
lengthy calculation shows that

γµ[Dµ,∆1]ϵ =

[
−1

4
∗7P2 −

1

8
e2λ2 (∗7G2)µ γ

µΓ34 −
w

48
e−2λ1−2λ2 (∗7T )µνρ γ

µνρΓ5

]
ϵ

+

[
−1

2
g
(
e2λ1 + e−4λ1−4λ2

)
+

(
9

2
∂µλ1 + 5∂µλ2

)
γµ − 3

8
e−2λ1F 12

µνΓ12γ
µν

+
1

8
e−2λ1−2λ2S5

µνρΓ
5γµνρ

]
∆1ϵ

+

[
3

2
g
(
−e2λ2 + e−4λ1−4λ2

)
+

(
∂µλ1 +

3

2
∂µλ2

)
γµ − 1

8
e−2λ2F 34

µνΓ34γ
µν

+
1

24
e−2λ1−2λ2S5

µνρΓ
5γµνρ

]
∆2ϵ , (C.17)

where P2,G2 and T are defined in (C.4) and vanish when the equations of motion are
satisfied. Therefore, when the equations of motion are satisfied, the commutator on the
left hand side vanishes for supersymmetric configurations satisfying ∆iϵ = 0.

A final comment is that one can further restrict to a diagonal U(1) sector by setting
A12 = A34, then compare with the results on the U(1) ⊂ SU(2) sector of D = 7 minimal
gauged supergravity. However, we only find consistency with e.g. [222] provided that we
set γ0123456 = +1 in [222].

C.2.1 Fermionic reduction

Associated with the ansatz for the bosonic fields given in (4.12)-(4.14), we introduce the
following orthonormal frame

eα =(yP )1/10ēα , e5 =
y3/5P 1/10

2
√
Q

dy , e6 =
y1/10

√
Q

P 2/5

(
dϕ− 4

3
A(1)

)
, (C.18)

2Note that we calculated the commutator in (C.4) assuming γ0123456 = w and Γ12345 = v where
w, v = ±1. It is only in the case that w = v = +1, which is the conventions we are using, that the
commutator gives another supersymmetry transformation when the equations of motion are satisfied.
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with ēα, α = 0, 1, 2, 3, 4, an orthonormal frame for the D = 5 metric ds25. It is convenient to
use an explicit set of D = 7 gamma matrices γµ, suited to the decomposition SO(1, 6) →
SO(1, 4)× SO(2), given by

γα = βα ⊗ σ3 , γ5 = 1⊗ σ1 , γ6 = 1⊗ σ2 , (C.19)

where βα are D = 5 gamma matrices satisfying β01234 = −i1. For these D = 5 gamma
matrices, we define the B-intertwiner B5 satisfying B5βαB

−1
5 = −β∗

α and B2
5 = 1. We can

also define B2 = σ1, such that B2(σ
1, σ2)B−1

2 = +(σ1, σ2)∗. We then define B7 = B5 ⊗ B2

satisfying B7γ
µB−1

7 = +γµ∗.

We now consider a D = 7 spinor e−
3iϕ
4 ε⊗ ζ(2), where ε is an arbitrary D = 5 spinor and

the two-component spinor ζ(2) on the spindle Σ2 is provided below. We also need the D = 7

conjugate spinor which is given by e+
3iϕ
4 εc ⊗ ζc(2), where ε

c ≡ B5ε
∗ and ζc(2) ≡ σ1ζ∗(2). We

then consider the following ansatz for D = 7 Killing spinors of SO(5) gauged supergravity

ϵ = e−
3iϕ
4 ε⊗ ζ(2) ⊗ u− or ϵ = e

3iϕ
4 εc ⊗ ζc(2) ⊗ u+ , (C.20)

where u± are two four-component spinors acted on by the SO(5) gamma matrices Γi which
have the same eigenvalue with respect to both Γ12 and Γ34,

Γ12u± = Γ34u± = ±iu± . (C.21)

The two-component spinor ζ(2) on the spindle Σ2 is given by3

ζ(2) =
y1/20√
2P 1/5

 √√
P + 2y3/2√√
P − 2y3/2

 , ζc(2) =
y1/20√
2P 1/5

 √√
P − 2y3/2√√
P + 2y3/2

 , (C.22)

satisfying (
cosαγ56 + i sinαγ5

)
ε⊗ ζ(2) = + iε⊗ ζ(2) ,

⇔
(
cosαγ56 − i sinαγ5

)
εc ⊗ ζc(2) = − iεc ⊗ ζc(2) ,

(C.23)

where

cosα =
2y3/2√
P

, sinα = 2

√
Q

P
. (C.24)

The explicit phase factor appearing in (C.20) arises due to the specific gauge that we are
using for the gauge fields in the ansatz.

We next substitute this ansatz into the D = 7 Killing spinor equations (C.15)-(C.16).
We find that δχ̂1 = δχ̂3 = 0. To analyse δψ̂µ, we would need the spin connection one-forms
associated with the frame, which are given by

ωαβ = ω̄αβ +
2
√
Q

3y1/10P 3/5
Fα

β e
6 , ωα5 =

2
√
Q

y7/10P 1/5
∂y
[
(yP )1/10

]
eα ,

ω6
α =− 2

√
Q

3y1/10P 3/5
Fαβ e

β , ω6
5 =

2P 3/10

y7/10
∂y

(
y1/10

√
Q

P 2/5

)
e6 ,

(C.25)

3Note that these are not exactly the same as those given in [112] for the AdS5 × Σ2 solution, due to
the different supersymmetry conventions as noted in footnote 1.
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where ω̄αβ are the spin connection one-forms for the D = 5 metric ds25. After some work,

we find that δψ̂µ = 0 is equivalent, in either of the two cases in (C.20), to the D = 5 spinor
ε satisfying [

∇̄α −
1

2
βα − iAα −

i

12

(
β βρ
α − 4δβαβ

ρ
)
Fβρ

]
ε = 0 , (C.26)

and recall we have β01234 = −i1. This is precisely the Killing spinor equation for a bosonic
configuration of D = 5 minimal gauged supergravity with g = 1.

C.2.2 R-symmetry of AdS3 × Σ1 ⋉ Σ2 solution

Here we identify the R-symmetry of our AdS3 × Σ1 ⋉ Σ2 solution of D = 7 gauged super-
gravity by constructing suitable Killing spinor bi-linears.

For the decomposition SO(1, 4) → SO(1, 2) × SO(2), we write the D = 5 gamma
matrices as βa = αa ⊗ σ3, β3 = 1 ⊗ σ2 and β4 = 1 ⊗ σ1, where αa are D = 3 gamma
matrices satisfying α0α1α2 = 1 and given by α0 = iσ2, α1 = σ1 and α2 = σ3. In this basis,
we take B5 = β3.

The D = 5 Killing spinors solving (C.26) for the supersymmetric AdS3 × Σ1 solution
of [55], given in (4.17)-(4.18), are written as

ε = ϑAdS3 ⊗ ζ(1) , (C.27)

where ϑAdS3 is a Killing spinor on AdS3 satisfying ∇aϑAdS3 =
1
2
αaϑAdS3 , and ζ(1) is a spinor

on the spindle Σ1 given by

ζ(1) =

(√
f1(x)√
x

, i

√
f2(x)√
x

)
, (C.28)

where
f1(x) = −a+ 2x3/2 + 3x , f2(x) = a+ 2x3/2 − 3x , (C.29)

satisfying f(x) = f1(x)f2(x) with f(x) given in (4.19). As in [55], the spinor is independent
of the coordinate ψ associated with the specific gauge used in (4.17).

We now provide the explicit expression of the Killing spinors on AdS3. We write the
metric on AdS3 in Poincaré coordinates as

ds2(AdS3) =
−(dx0)2 + (dx1)2 + dr2

r2
, (C.30)

and then from e.g. appendix B of [112], we can write

ϑ
(1)
AdS3

=
1√
r

(
0
1

)
, ϑ

(2)
AdS3

=
1√
r

[
ix0σ2 + x1σ1 + rσ3

]( 1
0

)
, (C.31)

associated with the Poincaré and superconformal Killing spinors, respectively. Overall, the
D = 7 Killing spinors in (C.20) are given by

ϵ(i) = e−
3iϕ
4 ϑ

(i)
AdS3

⊗ ζ(1) ⊗ ζ(2) ⊗ u− or ϵ(i) = e
3iϕ
4 ϑ

(i)
AdS3

⊗ σ1ζ∗(1) ⊗ ζc(2) ⊗ u+ . (C.32)
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We can now construct spinor bi-linears to extract the associated superconformal algebra.
We have u†−u+ = 0 and we normalise u†−u− = u†+u+ = 6 for convenience. Defining ϵ̄ = ϵ†γ0
for bi-linears of the u− Killing spinors, we have the following expressions[

ϵ̄(1)γmϵ(1)
]
∂m = ∂x0 − ∂x1 ,[

ϵ̄(2)γmϵ(2)
]
∂m =

[
r2 + (x0 − x1)2

]
∂x0 +

[
r2 − (x0 − x1)2

]
∂x1 + 2r(x0 − x1)∂r ,[

ϵ̄(1)γmϵ(2)
]
∂m = −(x0∂x0 + x1∂x1 + r∂r) + (x1∂x0 + x0∂x1)− i(2∂ψ − 4

3
∂ϕ) ,

(C.33)

and we get the same result for bi-linears of the u+ Killing spinors. On the right hand
side of (C.33), we have obtained precisely the set of Killing vectors generating the d = 2,
N = (0, 2) superconformal algebra with the R-symmetry Killing vector identified as

R = 2∂ψ − 4

3
∂ϕ . (C.34)

C.3 Anomaly polynomial for Σ1 ⋉ Σ2

We are interested in determining the anomaly polynomial associated with N M5-branes
wrapped on R1,1 × Σ1 ⋉ Σ2. The D = 7 supergravity construction shows that we are
interested in activating background gauge fields in a U(1) × U(1) ⊂ SO(5)R subgroup
of the SO(5)R symmetry of the M5-brane worldvolume theory. This setup is associated
with the normal bundle N to the M5-branes splitting via N = R ⊕ N1 ⊕ N2, where Ni

are complex line bundles. In the large N limit, we can write the anomaly polynomial as
(e.g. [117]):

A6d =
N3

24
c1(N1)

2c1(N2)
2 . (C.35)

In compactifying the d = 6 theory on Σ1 ⋉ Σ2, we need to take into account the
U(1)J1 × U(1)J2 global symmetry arising from the isometries of Σ1 ⋉ Σ2. Generalising
the results of [55, 109, 117], we want to compute the 6d anomaly polynomial (C.35) on an
eight-dimensional manifold, Z8, which is defined as the total space of a Σ1 ⋉ Σ2 fibration
over a four-dimensional manifold Z4,

Σ1 ⋉ Σ2 ↪→ Z8 ↪→ Z4 . (C.36)

As in [55,109], we demand that the Killing spinors are invariant under the U(1)J1 ×U(1)J2
symmetry generated by the normalised Killing vectors (∆ψ

2π
∂ψ,

∆ϕ
2π
∂ϕ).

Now recall the gauge fields of the D = 7 supergravity solution given in (4.24). In
this gauge, from (C.20) and (C.27), we see that the Killing spinors depend on ϕ but are
independent of ψ. We want to work in a specific gauge in which the Killing spinors have
no dependence on either ϕ or ψ, hence we consider gauge fields of the following form

A12
(1) =

(
q1
h1

− 1 + a1

)
dϕ+

[
b1 −

1

3

(
q1
h1

− 1

)(
1− a

x

)]
dψ ,

A34
(1) =

(
q2
h2

− 1 + a2

)
dϕ+

[
b2 −

1

3

(
q2
h2

− 1

)(
1− a

x

)]
dψ ,

(C.37)
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where we have allowed gauge transformations parametrised by ai, bi with i = 1, 2 satisfying
a1+a2 =

3
2
and b1+b2 = 0, such that the Killing spinors are independent of both ϕ and ψ.

Following the procedure in [55,109], we now introduce the following connection one-forms
on Z8:

A1
(1) = ρ1(y)

(
dϕ+

∆ϕ

2π
AJ2

)
+

[
b1 −

1

3
θ1(y)

(
1− a

x

)](
dψ +

∆ψ

2π
AJ1

)
,

A2
(1) = ρ2(y)

(
dϕ+

∆ϕ

2π
AJ2

)
+

[
b2 −

1

3
θ2(y)

(
1− a

x

)](
dψ +

∆ψ

2π
AJ1

)
,

(C.38)

where we have defined two functions on the fibre Σ2 of Σ1 ⋉ Σ2:

θi(y) =
qi

hi(y)
− 1 ,

ρi(y) = θi(y) + ai ,
(C.39)

with ρ′i = θ′i and (AJ1 , AJ2) are connection one-forms associated with the U(1)J1 × U(1)J2
symmetry. The associated curvature two-forms F i

(2) = dAi
(1) are given by

F i
(2) = ρ′idy ∧

[
dϕ+

∆ϕ

2π
AJ2 −

1

3

(
1− a

x

)(
dψ +

∆ψ

2π
AJ1

)]
+
ρi∆ϕ

2π
FJ2

− aθi
3x2

dx ∧
(
dψ +

∆ψ

2π
AJ1

)
+

∆ψ

2π

[
bi −

1

3
θi

(
1− a

x

)]
FJ1 ,

(C.40)

where FJi = dAJi , [F i
(2)/2π] ∈ H2(Z8,Z) and we have normalised such that c1(Ji) ≡

[FJi/2π] ∈ H2(Z4,Z).
We now write

c1(Ni) = ∆ic1(R2d) + c1(F i
(2)) , (C.41)

where R2d is the pull-back of a U(1)R symmetry bundle over Z4 and the trial R-charges
satisfy ∆1 +∆2 = 2. This latter condition ensures that the preserved spinor has R-charge
1. The d = 2 anomaly polynomial on Z4, at large N , is now obtained by substituting
c1(Ni) into A6d given in (C.35) and then integrating over Σ1 ⋉ Σ2,

A2d =
N3

24

∫
Σ1⋉Σ2

c1(N1)
2c1(N2)

2 . (C.42)

This gives the following d = 2 anomaly polynomial

A2d =
N3

24
{(∆2

1I1 +∆2
2I2 +∆1∆2I3)c1(R2d)

2 + (∆1I4 +∆2I5)c1(R2d)c1(J1)

+ (∆1I6 +∆2I7)c1(R2d)c1(J2) + I8c1(J1)
2 + I9c1(J2)

2 + I10c1(J1)c1(J2)} ,
(C.43)
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where

I1 =
∆ϕ

3π

(
1

m−
− 1

m+

)[
θ22
]y3
y2
,

I2 =
∆ϕ

3π

(
1

m−
− 1

m+

)[
θ21
]y3
y2
,

I3 =
∆ϕ

3π

(
1

m−
− 1

m+

)
[4θ1θ2]

y3
y2
, (C.44)

I4 =
4∆ϕ

9π

(
1

m2
−
− 1

m2
+

)[
θ1θ

2
2

]y3
y2
+

8∆ϕ

9π

m3
+ −m3

−

m2
−m

2
+(m− +m+)

(
b1
2

[
θ22
]y3
y2
+ b2 [θ1θ2]

y3
y2

)
,

I5 =
4∆ϕ

9π

(
1

m2
−
− 1

m2
+

)[
θ21θ2

]y3
y2
+

8∆ϕ

9π

m3
+ −m3

−

m2
−m

2
+(m− +m+)

(
b1 [θ1θ2]

y3
y2
+

b2
2

[
θ21
]y3
y2

)
,

and

I6 =
2(∆ϕ)2

3π2

(
1

m−
− 1

m+

)(
[ρ1ρ2θ2]

y3
y2
− a1

2

[
ρ22
]y3
y2

)
,

I7 =
2(∆ϕ)2

3π2

(
1

m−
− 1

m+

)(
[ρ1ρ2θ1]

y3
y2
− a2

2

[
ρ21
]y3
y2

)
,

I8 =
4∆ϕ

27π

(
1

m3
−
− 1

m3
+

)([
θ21θ

2
2

]y3
y2
+ 2b1

[
θ1θ

2
2

]y3
y2
+ 2b2

[
θ21θ2

]y3
y2

)
+

8∆ϕ

27π

(m2
− +m−m+ +m2

+)(m
3
+ −m3

−)

m3
−m

3
+(m− +m+)2

(
b21
2

[
θ22
]y2,3
y2,2

+
b22
2

[
θ21
]y2,3
y2,2

+ 2b1b2 [θ1θ2]
y2,3
y2,2

)
,

I9 =
(∆ϕ)3

6π3

(
1

m−
− 1

m+

)(
3

2

[
ρ21ρ

2
2

]y3
y2
− a1

[
ρ1ρ

2
2

]y3
y2
− a2

[
ρ21ρ2

]y3
y2

)
,

I10 =
2(∆ϕ)2

9π2

(
1

m2
−
− 1

m2
+

)(
3

2

[
θ21θ

2
2

]y3
y2
+ a1

[
θ1θ

2
2

]y3
y2
+ a2

[
θ21θ2

]y3
y2

)
(C.45)

+
4(∆ϕ)2

9π2

(m3
+ −m3

−)

m2
−m

2
+(m− +m+)

(
b1

[
[ρ1ρ2θ2]

y3
y2
− a1

2

[
ρ22
]y3
y2

]
+ b2

[
[ρ1ρ2θ1]

y3
y2
− a2

2

[
ρ21
]y3
y2

])
.

Having obtained the d = 2 anomaly polynomial, we can derive the associated d = 2
central charge using the c-extremization procedure outlined in [116]. The coefficient of
1
2
c1(La)c1(Lb) in the expression for A2d given in (C.43) is trγ3QaQb, where the global

symmetry Qa is associated with the U(1) bundle La over Z4 and γ3 is the d = 2 chirality
operator. Now c-extremization implies that the d = 2 superconformal U(1)R symmetry
extremizes

ctrial = 3trγ3R2
trial , (C.46)

over the space of possible R-symmetries. The trial R-symmetry is written as

Rtrial = R2d + ϵ1J1 + ϵ2J2 , (C.47)

which leads to a trial central charge given by

ctrial = −6
N3

24

{
(∆2

1I1 +∆2
2I2 +∆1∆2I3) + (∆1I4 +∆2I5)ϵ1 + (∆1I6 +∆2I7)ϵ2

+ I8ϵ
2
1 + I9ϵ

2
2 + I10ϵ1ϵ2

}
.

(C.48)
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The trial R-symmetry is parametrised by ϵ1, ϵ2 and ∆1,∆2 subject to ∆1 + ∆2 = 2. We
also have dependence on the gauge parameters ai, bi which we recall satisfy a1 + a2 = 3

2

and b1 + b2 = 0 to keep the Killing spinors independent of ψ and ϕ.
Carrying out the c-extremisation procedure, we find

ϵ∗1 =
3m−m+(m− +m+)

m2
− +m−m+ +m2

+

= 2
2π

∆ψ
,

ϵ∗2 = −n−n+(2n− − p1 − p2)(s+ p1 + p2)

(n− − p1)(p2 − n−)(s+ 2p1 + 2p2)
= −4

3

2π

∆ϕ
,

(C.49)

and

∆∗
1 =

4a1
3

− 2b1 , ∆∗
2 =

4a2
3

− 2b2 = 2−∆∗
1 , (C.50)

with the corresponding central charge given by

c∗ =
N3

2

(m− −m+)
3

m−m+ (m2
− +m−m+ +m2

+)

p21p
2
2(s+ p1 + p2)

n−n+(n− − p1)(p2 − n−)(s+ 2p1 + 2p2)2
. (C.51)

This expression for the central charge is in exact agreement with the supergravity result
(4.42). We can also compare the twisting of the R-symmetry which arises from the two
global U(1) symmetries, Ji. We can identify J1, J2 with ∂ψ̃, ∂ϕ̃, respectively, where ψ̃ ≡
(2π/∆ψ)ψ, ϕ̃ ≡ (2π/∆ϕ)ϕ with ∆ψ̃ = ∆ϕ̃ = 2π. Then at the extremal point we find that

ϵ∗1J1 + ϵ∗2J2 = 2∂ψ − 4

3
∂ϕ , (C.52)

and this is the R-symmetry Killing vector that appears as part of a spinor bilinear in
(C.34).

It is interesting to highlight that ϵ∗1, ϵ
∗
2 and c

∗ are all independent of the gauge parameters
ai, bi. We also observe that there is a one-parameter family of preferred gauges with
(4/3)a1 − 2b1 = 1 for which

∆∗
1 = ∆∗

2 = 1 . (C.53)

This includes the special case with a1 = a2 =
3
4
and b1 = b2 = 0.
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Appendix D

Chapter 5 appendix

D.1 Derivation of the BPS equations with ISO(1, 2)

symmetry

To discuss the supersymmetry transformations, we will follow the conventions of [166,168].
The D = 5 gamma matrices obey {γm, γn} = 2ηmn = 2diag {1,−1,−1,−1,−1}, and we
take γ0, γ1, γ2, γ3 to be imaginary and γ4 to be real. We normalise γ01234 = −1.

Consider the ansatz

ds2 = e2A(dt2 − dy21 − dy22)− e2V dx2 −N2dr2 , (D.1)

where A, V,N and the scalar fields zA, β1, β2 are all functions of (x, r) only. We use the
orthonormal frame (e0, e1, e2, e3, e4) = (eAdt, eAdy1, e

Ady2, e
V dx,Ndr). We assume that the

Killing spinor is independent of t, y1, y2 and begin by imposing the projection condition

γ34ϵ1 = −iκϵ1 , (D.2)

and hence γ012ϵ1 = −iκϵ1. Using the Majorana condition ϵ2 = −iγ4ϵ∗1, we also have
γ34ϵ2 = iκϵ2 and γ012ϵ2 = iκϵ2.

From the t, y1, y2 components of the gravitino equations, we get(
−e−V ∂xA− iκN−1∂rA

)
ϵ1 =

1

3
eK/2W̄γ3ϵ2 , (D.3)

while from the x, r components we get, respectively,

e−V ∂xϵ1 +
iκ

2
N−1∂rV ϵ1 + e−VAxϵ1 +

1

6
eK/2W̄γ3ϵ2 = 0 ,

N−1∂rϵ1 −
iκ

2
N−1e−V ∂xNϵ1 +N−1Arϵ1 +

1

6
eK/2W̄γ4ϵ2 = 0 .

(D.4)

Taking the complex conjugate of (D.3) and using the Majorana condition we deduce that∣∣∣∣(1

3
eK/2W̄)−1(e−V ∂xA+ iκN−1∂rA

)∣∣∣∣ = 1 . (D.5)

We therefore introduce a phase ξ(x, r) via

e−V ∂xA = −κ
3
eK/2Im(e−iξW̄) ,

N−1∂rA =
1

3
eK/2Re(ie−iξW̄) ,

(D.6)
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and solve (D.3) by imposing the projection

γ3ϵ2 = −iκe−iξϵ1 . (D.7)

We also note that (D.6) implies the integrability condition

−∂r
[
κeV eK/2Im(e−iξW̄)

]
= ∂x

[
NeK/2Re(e−iξW̄)

]
. (D.8)

We can now rewrite (D.4) in the form

eiξ/2eA/2∂x
(
e−A/2e−iξ/2ϵ1

)
=
ieV

2

[
−e−V ∂xξ − κN−1∂rV + 2ie−VAx +

κ

3
eK/2Re(e−iξW̄)

]
ϵ1 ,

eiξ/2eA/2∂r
(
e−A/2e−iξ/2ϵ1

)
=
iN

2

[
−N−1∂rξ + κN−1e−V ∂xN + 2iN−1Ar +

1

3
eK/2Im(e−iξW̄)

]
ϵ1 ,

(D.9)

By taking the complex conjugate of these two equations and using ϵ∗1 = ie−iξϵ1, we deduce
that in each expression, the left and right hand sides each separately vanish. We thus
conclude that the Killing spinor takes the form

ϵ1 = eA/2eiξ/2η0, ϵ2 = iκe−iξγ3ϵ1 , (D.10)

where η0 is a constant spinor satisfying γ012η0 = −iκη0.
The combined system of BPS equations are thus given by

e−V ∂xA+ iκN−1∂rA− iκ

3
eK/2e−iξW̄ = 0 ,

−e−V ∂xξ − κN−1∂rV + 2ie−VAx +
κ

3
eK/2Re(e−iξW̄) = 0 ,

−N−1∂rξ + κN−1e−V ∂xN + 2iN−1Ar +
1

3
eK/2Im(e−iξW̄) = 0 ,

(D.11)

as well as the following equations from the remaining fermion variations

iκeiξ
(
e−V ∂x + iκN−1∂r

)
zA =

1

2
eK/2KB̄A∇B̄W̄ ,

iκeiξ
(
e−V ∂x + iκN−1∂r

)
β1 =

1

12
eK/2∂β1W̄ ,

iκeiξ
(
e−V ∂x + iκN−1∂r

)
β2 =

1

4
eK/2∂β2W̄ .

(D.12)

We note that these equations are not all independent. We also observe that these equations
are invariant under

r → −r , x→ −x , ξ → ξ + π . (D.13)

As discussed in the main text, we can rewrite them in a simplified manner if we choose
the gauge N = eV . We define the complex coordinate w = r − iκx, and we write the
anti-holomorphic derivative as ∂̄ = dw̄ 1

2
(∂r − iκ∂x) and the (1, 0) form B as

B =
1

6
eiξ+V+K/2Wdw . (D.14)

180



The equations (D.11) can be recast in the form

∂A = B ,

∂̄B = −FB ∧ B̄ ,
(D.15)

where

F ≡ 1− 1

|W|2 [
3

2
∇AWKAB̄∇B̄W̄ +

1

4
|∂β1W|2+3

4
|∂β2W|2] , (D.16)

while (D.12) become

∂̄zA = −3

2
(W̄)−1KB̄A∇B̄W̄B̄ ,

∂̄β1 = −1

4
(W̄)−1∂β1W̄B̄ ,

∂̄β2 = −3

4
(W̄)−1∂β2W̄B̄ .

(D.17)

After fixing the gauge (by choosing N), the BPS equations (D.11) and (D.12) are a set
of 16 real equations for 13 real functions, A, V, ξ, zA, β1, β2 with A = 1, . . . , 4, in the ten-
scalar truncation, and therefore seem to be over constrained. To establish the consistency
of these equations, it is convenient to analyse (D.15) and (D.17) in the gauge N = eV . We
first observe that F is a manifestly real quantity that depends only on the scalar fields.
The BPS equations are constrained due to the fact that A, β1 and β2 are all real. If one
takes the holomorphic exterior derivative ∂̄ of the equations for these functions in (D.15)
and (D.17), one obtains necessary conditions for these equations to be satisfied. For A,
this condition is given by

Re(∂̄B) = 0. (D.18)

which is automatically satisfied from (D.15). We are therefore left with two constraints to
check.

To do so, it is useful to first prove the following result. Consider any function G(z̄A, β1, β2)
which depends only on the scalar fields and is anti-holomorphic in the four complex scalars
zA. Using the BPS equations (D.15) and (D.17), we deduce that

∂(GB̄) = (ÔG)B ∧ B̄, (D.19)

where Ô is a differential operator on the scalar manifold defined as

ÔG ≡ FG − 3

2
KĀB∇BW

W ∂ĀG − 1

4
∂β1 logW∂β1G − 3

4
∂β2 logW∂β2G. (D.20)

Then, taking the ∂ derivative of the last two equations in (D.17), we obtain the following
necessary conditions for these set of equations to be consistent with βi being real:

Im
(
Ô∂βi logW

)
= 0 , (i = 1, 2). (D.21)

Notice that these conditions do not involve B, just the scalar fields, and hence they are
conditions on K and W . One can explicitly check that these conditions are satisfied for
(5.41) and (5.42) in the ten-scalar model. We expect that these conditions are sufficient
conditions for consistency. While we have not proven this in general, we did for the sub-
class of Janus solutions as discussed below (5.92). It would be interesting if there is a
way to understand these consistency conditions more directly from the underlying N = 2
supergravity theory.
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D.2 Holographic Renormalisation

In this appendix, we provide some details on the holographic renormalisation procedure and
give expressions for various one point functions. Specifically, we will focus on configurations
that preserve ISO(1, 2) symmetry, and we will first consider general configurations before
restricting to the BPS configurations. In appendix D.3, we will specialise to those that
additionally preserve conformal symmetry.

The holographic renormalisation procedure relevant for mass deformed Euclidean N =
4 SYM theory was discussed in [168], and there is some overlap with our analysis below.
In particular, finite counterterms that are consistent with the global symmetries of the
four-sphere were analysed in some detail. While the analysis in [168] was sufficient in order
to be able to calculate the universal part of the free energy, which was the observable of
principle objective in that paper, it is not sufficient to calculate other observables. Our
analysis will include other finite counterterms which appear in observables that we consider
for our solutions. We also emphasise in advance that while we have extended the results
of [168] in a manner that is sufficient for our purposes, additional work is still required
in order to have a complete holographic renormalisation scheme that is consistent and
compatible with N = 4 supersymmetry.

D.2.1 General case

We consider the class of solutions that are general enough to describe sources which depend
on one of the spatial directions and preserve ISO(1, 2) symmetry. Specifically, we consider
metrics of the form

ds2 = e2A(r,x)(dt2 − dy21 − dy22)− e2V (r,x)dx2 − dr2 ,

≡ γab(r, x)dx
adxb − dr2 ,

(D.22)

with all scalar fields functions of (r, x) only. The conformal boundary is located at r → ∞
and there we have the expansion

γab = e2r/Lhab(x) + . . . , (D.23)

where hab(x) is the metric for the spacetime where the dual field theory resides, which we
write as

hab(x)dx
adxb = e2Ω(x)

(
dt2 − dy21 − dy22 − e2f(x)dx2

)
, (D.24)

where the function f(x) is included for convenience (it can be useful in utilising different
gauge choices in numerically solving the equations). Two cases of particular interest are
firstly, when Ω(x) is constant, associated with a flat boundary metric. Secondly, when
eΩ = ℓ/x and f(x) = constant, associated with an AdS4 boundary metric, with radius
ℓ (more precisely, this gives a component of the boundary for the Janus solutions as we
elaborate further in appendix D.3).

The full action can be written as the sum of four terms:

S = SBulk + SGH + Sct + Sfinite . (D.25)
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The first two terms are the bulk action and the boundary Gibbons-Hawking-York term,
given by

SBulk + SGH =
1

4πG

∫
d5x
√

|g|L − 1

8πG

∫
d4x

√
|γ|K , (D.26)

where the the bulk Lagrangian L for the ten-scalar model is given in (5.40) and the trace
of extrinsic curvature for the outward pointing normal one-form n = dr is given by K =
−1

2
γab∂rγab. As in [168], we also have

16πG =
8π2L3

N2
, (D.27)

associated with the AdS5 vacuum solution, with vanishing scalar fields, dual to SU(N)
N = 4 SYM theory. The boundary action Sct that is required to remove divergences takes
the form

Sct =
1

16πG

∫
d4x

√
|γ|
{
− 6

L
+
L

2
R− L(∇φ)2 − 2

L

4∑
i=1

(ϕi)
2

− 4

L
(1− L

2r
)(6(β1)

2 + 2(β2)
2 +

3∑
k=1

(αk)
2)

− r

L
[
L3

4
(RabR

ab − 1

3
R2) +

L

3
R

4∑
i=1

(ϕi)
2

− 16

3L

4∑
i=1

(ϕi)
4 +

16

3L

4∑
1≤i<j≤4

(ϕi)
2(ϕj)

2 + 2L
4∑
i=1

(∇ϕi)2]

− r

L
[
L3

3
R(∇φ)2 + 2L3

3
(∇φ)4 − L3Rab∂aφ∂bφ

+
L3

2
(□φ)2 +

4L

3

4∑
i=1

(ϕi)
2(∇φ)2]

}
,

(D.28)

where all quantities are evaluated with respect to γab evaluated in the limit r → ∞. Finally,
the finite counterterms that we shall consider are given by

Sfinite =
1

16πG

∫
d4x

√
|γ|{ − δR2

L3

4
(RabR

ab − 1

3
R2)− δ∆R2

L3

4
(RabR

ab +
1

3
R2)

− δRϕ2(1)
L

3
R

3∑
i=1

(ϕi)
2 − δRϕ2(2)

L

3
R(ϕ4)

2 + δ4(1)
16

3L

3∑
i=1

(ϕi)
4 + δ4(2)

16

3L
(ϕ4)

4

− δ4(3)
16

3L

3∑
1≤i<j≤3

(ϕi)
2(ϕj)

2 − δ4(4)
16

3L

3∑
i=1

(ϕi)
2(ϕ4)

2 + δ4(5)
16

3L
ϕ1ϕ2ϕ3ϕ4

− δα
4

L
(
L

r
)
2

3∑
k=1

(αk)
2 − δβ

4

L
(
L

r
)
2
(6(β1)

2 + 2(β2)
2)

− δ∂ϕ2(1)2L
3∑
i=1

(∇ϕi)2 − δ∂ϕ2(2)2L(∇ϕ4)
2 (D.29)

+ δβ̃[24L(
β1
r

− 1

3L

[
(ϕ1)

2 + (ϕ2)
2 − 2(ϕ3)

2
]
)
2
+ 8L(

β2
r

− 1

L

[
(ϕ1)

2 − (ϕ2)
2
]
)
2
]} ,
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which depends on 14 constant coefficients {δR2 , δ∆R2 , . . . , } and again we have utilised the
boundary metric γab evaluated in the limit r → ∞.

There are a number of comments concerning our choice of finite counterterms, which
defines a renormalisation scheme. We first note that we have not included a Riemann
squared term, RabcdR

abcd, since we are only considering conformally flat backgrounds as
in (D.24) and hence they can be expressed in terms of RabR

ab and R2. We next note
that Sfinite respects the discrete symmetries (5.44)-(5.46) of the D = 5 theory. We now
recall that the scalar field φ is dual to a marginal operator in N = 4 SYM theory, as
in (5.37), and its boundary value can be identified with changing the coupling constant
of the theory. Being a source for a marginal operator, there are many additional finite
counterterms which one can consider, including allowing the δ coefficients appearing in
Sfinite to be functions of φ as well as including terms with derivatives of φ (see [223] for a
more complete discussion). These additional counterterms could be significantly simplified
if we impose that they must respect the shift symmetry φ→ φ+ const. of the bulk D = 5
gravitational theory, but this is not a natural scheme one should consider at first.

However, for the purpose of our work, where we assume that there are no sources
active for φ, as we make precise below, and the fact that we will only be calculating one
point functions, Sfinite is in fact general enough to accomodate this extra assumption. In
particular, if any of the δ’s did depend on φ, it would only be the terms linear in φ that
could affect the one-point functions, and we exclude such terms using the symmetry (5.44).
This is still not the whole story: one might consider terms of the schematic form φαϕ2.
Taking into account (5.45)-(5.46), we could have terms φ(α1ϕ2ϕ3 + α2ϕ3ϕ1 + α3ϕ1ϕ2) and
φ(α1ϕ1 + α2ϕ2 + α3ϕ3)ϕ4, and so we exclude1 the presence of these terms by making the
extra assumption that the finite counterterms must respect φ→ −φ. Demanding that this
renormalisation scheme is supersymmetric also places certain restrictions on {δR2 , ..., }, as
we will demonstrate below.

Before continuing, we highlight that φ → −φ and (5.44) are not symmetries of the
perturbative field theory since they involve a Z2 ⊂ SL(2,Z) duality transformation2. In
other words, we are invoking this non-perturbative symmetry as part of our renormalisation
scheme. It should be clear that, more generally, one might invoke invariance under the full
SL(2,Z) as a starting principle and this will impose restrictions on the various δ’s. In fact,
this point of view was considered in section 3 of [168], from a field theory perspective, in
the specific case of N = 4 SYM on the S4. It would be interesting to extend that analysis
to the present setup of spatially modulated masses. We also note that we have included
finite counter terms in (D.29) that were not needed for the holographic analysis of [168].
These include some with spatial dependence (e.g. δ∂ϕ2(1)) as well as δα, δβ which were not
needed in the calculation of the universal part of the free energy on the four-sphere (see
also footnote 4 below).

Using the bulk equations of motion, we can develop the following, schematic, asymptotic

1If they were included, they would only affect the expectation value of Oφ for the equal mass model.
2Note that the field theory SL(2,Z) acts in Type IIB on the ten-dimensional axion and dilaton. The

transformation on the D = 5 fields is discussed in appendix C of [168] and is rather involved; all we need
here is the fact that near the boundary the Z2 symmetry acts on the sources as φ→ −φ.
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expansion series as r → ∞:

A =
r

L
+ Ω+ · · ·+ A(v)e

−4r/L + · · · ,

V =
r

L
+ Ω+ f + · · ·+ V(v)e

−4r/L + · · · ,
ϕi = ϕi,(s)e

−r/L + · · ·+ ϕi,(v)e
−3r/L + · · · , i = 1, . . . , 4 ,

αi = αi,(s)
r

L
e−2r/L + αi,(v)e

−2r/L + · · · , , i = 1, . . . , 3 ,

βi = βi,(s)
r

L
e−2r/L + βi,(v)e

−2r/L + · · · , i = 1, . . . , 2 ,

φ = φ(s) + · · ·+ φ(v)e
−4r/L + · · · ,

(D.30)

where all coefficients, except for φ(s), can depend on the coordinate x. In this expansion
series, ϕi,(s), αi,(s), βi,(s) and φ(s) provide sources for the corresponding dual operators in
N = 4 SYM given in (5.37). Our interest is spatially dependent mass deformations and
hence we allow ϕi,(s), αi,(s), βi,(s) to depend on x, but we take

φ(s) = 0 . (D.31)

We do, however, note that in general φ(v) does depend on x and is related to the operator
dual to φ acquiring a spatially dependent expectation value. We also note that in develop-
ing the asymptotic expansion series, there is one algebraic and one differential constraint
relating A(v) and V(v) which ensure the Ward identities in the boundary theory, given below,
are satisfied.

The expectation value for the stress tensor is given by

⟨T ab⟩ = lim
r→∞

{
e6r/L

−2√
|γ|

δS

δγab

}
. (D.32)

The expectation value of the operators dual to the scalar fields are given by

⟨OΨ⟩ = lim
r→∞

{
e∆Ψr/L

1√
|γ|

δS

δΨ

}
or lim

r→∞

{( r
L

)
e∆Ψr/L

1√
|γ|

δS

δΨ

}
, (D.33)

where the former expression is for φ, ϕi, ϕ4, dual to operators with ∆ = 4, 3, 3 and the
latter for αi, βi, dual to operators with ∆ = 2. We will not present these expressions for
general finite counterterms as the expressions are extremely lengthy. Instead, we just note
that we have checked that the following Ward identity is satisfied

∇a⟨T a
b⟩+

4∑
i=1

⟨Oϕi⟩ ∂bϕi,(s) +
3∑
i=1

⟨Oαi
⟩ ∂bαi,(s) +

2∑
i=1

⟨Oβi⟩ ∂bβi,(s) = 0 , (D.34)

where here the covariant derivative is defined with respect to the field theory metric hab
in (D.23),(D.24) and this metric has been used to raise the index on ⟨T a

b⟩. We also recall
here that we have assumed that the source term φ(s) vanishes.

Furthermore, the trace of the stress tensor can be expressed as

⟨T a
a⟩+

4∑
i=1

⟨Oϕi⟩ϕi,(s) + 2
3∑
i=1

⟨Oαi
⟩αi,(s) + 2

2∑
i=1

⟨Oβi⟩ βi,(s) = A (D.35)
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where A is given by

8πGLA = −L
4

8

(
RabR

ab − 1

3
R2

)
− δ∆R2L4□R

−
3∑
i=1

α2
i,(s) − 6β2

1,(s) − 2β2
2,(s) +

8

3

4∑
i=1

ϕ4
i,(s) −

8

3

4∑
1≤i<j≤4

ϕ2
i,(s)ϕ

2
j,(s)

− L2

4∑
i=1

[
(∇ϕi,(s))2 +

1

6
Rϕ2

i,(s)

]

+ 2L2(δ∂ϕ2(1) − δRϕ2(1))
3∑
i=1

∇(ϕi,(s)∇ϕi,(s))

+ 2L2(δ∂ϕ2(2) − δRϕ2(2))
[
∇(ϕ4,(s)∇ϕ4,(s))

]
,

(D.36)

where the geometric quantities are again written with respect to the field theory metric
hab in (D.23), (D.24). Here A is the conformal anomaly for N = 4 SYM on a curved
ISO(1, 2) invariant boundary in the presence of spatially dependent sources. The first
line of the conformal anomaly is the standard term involving the Ricci tensor along with
a familiar contribution coming from the finite counterterm parametrised by δ∆R2 . The
remaining contributions are terms involving the sources for the scalar operators [184,185].
The integrated anomaly should be invariant under Weyl transformations and we can see
that this is true after recalling that αi(s), βi(s) have scaling dimension two, ϕi(s), ϕ4(s) have
dimension one as well as the expression for a conformally coupled scalar in four spacetime
dimensions appearing in the third line. The presence of these source terms crucially relies
on the fact that they are sourcing operators with integer conformal dimensions and hence
are not expected to be present for generic CFTs.

It is illuminating to see how the source and expectations values change under a class
of Weyl transformations of the boundary metric (D.24). Specifically, we consider the
transformation

hab → Λ2hab , (D.37)

with Λ = e−Ω, which takes the boundary metric (D.24) (with f(x) = 0) to a flat space
metric. As r → ∞, we can achieve this by implementing the following schematic coordinate
transformation:

x→ x− L2

2
(∂xΩ)e

−2r/L + · · · ,

er/L → e−Ωer/L +
L2

4
e−Ω(∂xΩ)

2e−r/L + · · · .
(D.38)

We can quickly conclude that all of the source terms transform covariantly, as one expects:

αi,(s) → Λ−2αi,(s), βi,(s) → Λ−2βi,(s), ϕi,(s) → Λ−1ϕi,(s), φ(s) → φ(s) , (D.39)

(though we will set φ(s) = 0). The transformation on the “(v)” expansion coefficients
in (D.30) is more elaborate and this leads to the following non-covariant transformation
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properties for the associated expectation values. For the ∆ = 2 operators, we find

⟨Oαi
⟩ →Λ−2⟨Oαi

⟩+ 1

4πGL
α1,(s)Λ

−2 log Λ ,

⟨Oβ1⟩ →Λ−2⟨Oβ1⟩+
3

2πGL
β1,(s)Λ

−2 log Λ ,

⟨Oβ2⟩ →Λ−2⟨Oβ2⟩+
1

2πGL
β2,(s)Λ

−2 log Λ ,

(D.40)

for the ∆ = 3 operators, we have

⟨Oϕi=1,2,3
⟩ → Λ−3⟨Oϕi=1,2,3

⟩+ L

4πG
Λ−2∂xϕi,(s)∂xΛ− L

8πG
ϕi,(s)Λ

−3(∂xΛ)
2

+
1

2πGL
Λ−3 log Λ

(
−4ϕ3

i,(s) +
4

3
ϕi,(s)

4∑
j=1

ϕ2
j,(s) − L2Λ ∂xϕi,(s)∂xΛ

+ L2ϕi,(s)(∂xΛ)
2 +

L2

2
Λ2∂x∂xϕi,(s) −

L2

2
Λϕi,(s)∂x∂xΛ

)
+ (δRϕ2(1) − δ∂ϕ2(1))

L

4πG
ϕi,(s)

(
2Λ−3(∂xΛ)

2 − Λ−2∂x∂xΛ
)
,

(D.41)

and ⟨Oϕi=4
⟩ transforms as in (D.41), but with the coefficient (δRϕ2(1)−δ∂ϕ2(1)) in the last line

replaced with (δRϕ2(2) − δ∂ϕ2(2)). In particular, if ϕ4,(s) = 0, as it is for BPS configurations
when φ(s) = 0, then ⟨Oϕi=4

⟩ transforms covariantly. Finally, the ∆ = 4 operator transforms
covariantly when φ(s) = 0:

⟨Oφ⟩ →Λ−4⟨Oφ⟩ . (D.42)

The presence of the log Λ terms appearing in the expressions for ∆ = 2, 3 are a consequence
of the conformal anomaly (D.36).

D.2.2 BPS configurations

We now restrict to ISO(1, 2) configurations which satisfy the BPS equations in (5.68)-
(5.69). Continuing to assume that φ(s) = 0, we find the following constraints on the
sources

φ(s) = 0 ,

ϕ4,(s) = 0 ,

αi,(s) = κLe−Ω−f (∂xϕi,(s) + ϕi,(s)∂xΩ
)
, i = 1, . . . , 3 ,

β1,(s) =
1

3

(
ϕ2
1,(s) + ϕ2

2,(s) − 2ϕ2
3,(s)

)
,

β2,(s) = ϕ2
1,(s) − ϕ2

2,(s) .

(D.43)

In particular, we see that the sources αi,(s), βi,(s) are determined by ϕi,(s) with i = 1, . . . , 3.
We also find an additional set of relations amongst the expansion functions A(v), V(v) and
ϕi,(v), ϕ4,(v), αi,(v), βi,(v), φ(v) which provide relations between the expectation values of the
various dual scalar operators as well as the stress tensor. We will not record the general
expressions here as they are rather lengthy, but we will do so for each of the three sub-
truncations that we study.
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It is now illuminating to use these results to calculate the energy density for flat field
theory metric, hab = ηab (i.e. Ω = f = 0 in (D.24)). Firstly, we find that stress energy
tensor itself takes the form

πG⟨T ab⟩ = ηab
[
− 1 + 4δ4(1) − 8δβ

12L

3∑
i=1

ϕ4
i,(s) −

3− 4δ4(3) + 8δβ
12L

3∑
1≤i<j≤3

ϕ2
i,(s)ϕ

2
j,(s)

+
3∑
i=1

{ − κ

16
ϕi,(s)∂xαi,(v) −

κ

8
∂xϕi,(s)αi,(v) +

L(δRϕ2(1) − δ∂ϕ2(1) + 4δα)

16
(∂xϕi,(s))

2

+ δRϕ2(1)
L

16
ϕi,(s)∂

2
xϕi,(s)}

]
+ σab

[ 3∑
i=1

{ − κ

48
ϕi,(s)∂xαi,(v) +

κ

24
∂xϕi,(s)αi,(v) +

L(δRϕ2(1) − 3δ∂ϕ2(1))

48
(∂xϕi,(s))

2

+ δRϕ2(1)
L

48
ϕi,(s)∂

2
xϕi,(s)}

]
, (D.44)

where the matrix σab = diag(1,−1,−1, 3) satisfies ηabσ
ab = 0 and hence does not contribute

to the conformal anomaly. Using this, we obtain the following expression for the local
energy density for BPS configurations in flat space:

8πGL⟨T t
t⟩ =

3∑
i=1

[2
3
∂x(δRϕ2(1)L

2ϕi,(s)∂xϕi,(s) − κLϕi,(s)αi,(v))−
2

3
(1 + 4δ4(1) − 8δβ)ϕ

4
i,(s)

− L2(δ∂ϕ2(1) − 2δα)(∂xϕi,(s))
2
]
− 2

3
(3− 4δ4(3) + 8δβ)

3∑
1≤i<j≤3

ϕ2
i,(s)ϕ

2
j,(s) . (D.45)

For a supersymmetric renormalisation scheme, we demand that the finite counterterms are
such that the right hand side is a total spatial derivative, such that the total energy for
spatially modulated supersymmetric sources (with compact support) is exactly zero. This
implies that the following conditions must be satisfied

δ4(1) = −1

4
+ 2δβ,

δ4(3) =
3

4
+ 2δβ,

δ∂ϕ2(1) = 2δα .

(D.46)

These conditions are similar to those one would get by using the “Bogomol’nyi trick”
(see [167–169]), but we note that the analysis of [168] did not include the possibility of δα
and δβ.

Since we would like to work with a scheme that preserves supersymmetry, we will
impose (D.46). Note in the above energy analysis we have set φ(s) = 0 which, for super-
symmetric configurations implies ϕ4,(s) = 0. It seems likely that if we consider zero energy
BPS configurations when these sources are also active, then we would be able to further
constrain3 δ4(2), δ4(4) and δ4(5). In order to fully determine the 14 coefficients appearing in

3From the results of [168] we anticipate that we would get δ4(2) = −3/4 + . . . , δ4(4) = 3/2 + . . . ,
δ4(5) = 9/2 + . . . , where the dots refer to terms involving δα and δβ .
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the finite counterterm action, one would like to implement a fully supersymmetric holo-
graphic renormalisation scheme, along the lines of [187], including imposing the SL(2,Z)
invariance, but we leave this difficult task for future work (see also e.g. [188]). We will
explicitly see that the terms δα, δβ, in particular, appear4 in novel contributions to the
expectation values of operators for Janus solutions (e.g. see (5.108)).

N = 1∗ one-mass model

This model is obtained from the ten-scalar model by setting ϕ1 = ϕ2 = 0, α1 = α2 = 0 as
well as φ = ϕ4 = 0 and β2 = 0. Thus, we have

z1 = z2 = −z3 = −z4 , and β2 = 0 , (D.47)

and we write (as in [168])

z1 = tanh

[
1

2
(α3 − iϕ3)

]
. (D.48)

For the general ISO(1, 2) configurations, with boundary field theory metric (D.24), we use
the expansion

A =
r

L
+ Ω+ · · ·+ A(v)e

−4r/L + · · · ,

V =
r

L
+ Ω+ f + · · ·+ V(v)e

−4r/L + · · · ,
ϕ3 = ϕ3,(s)e

−r/L + · · ·+ ϕ3,(v)e
−3r/L + · · · ,

α3 = α3,(s)
r

L
e−2r/L + α3,(v)e

−2r/L + · · · ,

β1 = β1,(s)
r

L
e−2r/L + β1,(v)e

−2r/L + · · · ,

(D.49)

where ϕ3,(s), α3,(s), β1,(s) are the source terms for the scalar operators in (5.37). Using the
renormalisation scheme (D.46) we find that the one-point functions of the scalar operators
are given by

⟨Oα3⟩ =
1

4πGL

(
α3,(v) − 2δαα3,(s)

)
,

⟨Oβ1⟩ =
3

2πGL

(
β1,(v) − 2δββ1,(s) + 2δβ̃

(
β1,(s) +

2

3
ϕ2
3,(s)

))
,

⟨Oϕ3⟩ =
1

2πGL

(
ϕ3,(v) +

1

6
(7 + 32δβ)ϕ

3
3,(s) + 8δβ̃ϕ3,(s)

(
β1,(s) +

2

3
ϕ2
3,(s)

)
+
L2

4
(1 + 4δα)□ϕ3,(s) −

L2

24
(1 + 2δRϕ2(1))Rϕ3,(s)

)
,

(D.50)

4 Observe that if we substitute the supersymmetry condition (D.46) as well as the BPS conditions
on the sources (D.43) into the finite counter term action (D.29), then δβ drops out; this is relevant for
evaluating the free energy of a given configuration, but we reiterate that δβ does appear in our one point
functions. Finally, it would be interesting to make a connection with theN = 1 supersymmetric field theory
analysis in section 3 of [168]. Here we simply note that this would appear to involve the invariant I2 in
equation (3.12) of [168] as well as an additional counterterm involving background gauge supermultiplets
that was not considered (nor needed) in [168].
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where □ and R refer to the field theory metric hab in (D.24), along with the expected
results

⟨Oα1⟩ = ⟨Oα2⟩ = ⟨Oβ2⟩ = ⟨Oϕ1⟩ = ⟨Oϕ2⟩ = ⟨Oϕ4⟩ = ⟨Oφ⟩ = 0 . (D.51)

Focussing now on the ISO(1, 2) configurations that also solve the BPS equations (5.68)-
(5.69), the relation between the sources in (D.43) is given by

α3,(s) = κLe−Ω−f (∂xϕ3,(s) + ϕ3,(s)∂xΩ) ,

β1,(s) = −2

3
ϕ2
3,(s) .

(D.52)

The BPS equations also impose relations between the coefficients with “(v)” subscript in
(D.49), which are explicitly given by

ϕ3,(v) = 4β1,(v)ϕ3,(s) −
7

6
ϕ3
3,(s) −

L2

4
□ϕ3,(s) +

L2

24
Rϕ3,(s)

+ κLe−Ω−f (
1

2
∂xα3,(v) + α3,(v)∂xΩ)−

L2

4
e−2Ω−2fϕ3,(s)(∂xΩ)

2 ,

−2α3,(v)ϕ3,(s) =
κL

2
e−Ω−f (3∂xβ1,(v) + [6β1,(v) + 2ϕ2

3,(s)]∂xΩ) .

(D.53)

Under the renormalisation scheme (D.46), these are equivalent to the following set of rela-
tionships between the one point functions of the scalar operators for the BPS configurations

⟨Oα3⟩ϕ3,(s) =− κL

8
e−Ω−f (∂x⟨Oβ1⟩+ 2⟨Oβ1⟩∂xΩ +

1

πGL
ϕ2
3,(s)∂xΩ)

+ (δβ − δα)
κ

4πG
e−Ω−f [∂x(ϕ

2
3,(s)) + 2ϕ2

3,(s)∂xΩ] ,

⟨Oϕ3⟩ =
4

3
⟨Oβ1⟩ϕ3,(s) + κLe−Ω−f (∂x⟨Oα3⟩+ 2⟨Oα3⟩∂xΩ)

− L

8πG
e−2Ω−2fϕ3,(s)(∂xΩ)

2

+ δα
L

2πG
e−Ω−f∂x[e

−Ω−f (∂xϕ3,(s) + ϕ3,(s)∂xΩ)]

+ δα
L

2πG
e−Ω−f [2e−Ω−f (∂xϕ3,(s) + ϕ3,(s)∂xΩ)∂xΩ]

+ δα
L

2πG
□ϕ3,(s) − δRϕ2(1)

L

24πG
Rϕ3,(s) ,

(D.54)

where R is again the Ricci scalar for the boundary metric hab given in (D.24).

N = 1∗ equal-mass model

This model is obtained from the ten-scalar model by setting ϕ1 = ϕ2 = ϕ3 as well as
α1 = α2 = α3. In addition we set β1 = β2 = 0. Thus, we have

z4 = −z3 = −z2 , and β1 = β2 = 0 , (D.55)

and we parametrise (z1, z2) via

z1 = tanh

[
1

2
(3α1 + φ− i3ϕ1 + iϕ4)

]
,

z2 = tanh

[
1

2
(α1 − φ− iϕ1 − iϕ4)

]
.

(D.56)

190



For the general ISO(1, 2) configurations, with boundary field theory metric (D.24), we
use the expansion

A =
r

L
+ Ω+ · · ·+ A(v)e

−4r/L + · · · ,

V =
r

L
+ Ω+ f + · · ·+ V(v)e

−4r/L + · · · ,
ϕ2 = ϕ3 = ϕ1 = ϕ1,(s)e

−r/L + · · ·+ ϕ1,(v)e
−3r/L + · · · ,

ϕ4 = ϕ4,(s)e
−r/L + · · ·+ ϕ4,(v)e

−3r/L + · · · ,
α2 = α3 = α1 = α1,(s)

r

L
e−2r/L + α1,(v)e

−2r/L + · · · ,
φ = φ(s) + · · ·+ φ(v)e

−4r/L + · · · ,

(D.57)

where ϕ1,(s), ϕ4,(s), α1,(s), φ(s) determine the source terms for the scalar operators in (5.37)
and we again emphasise that we focus on φ(s) = 0. Using the renormalisation scheme
(D.46) we find that the one-point functions of the scalar operators are given by

⟨Oα1⟩ = ⟨Oα2⟩ = ⟨Oα3⟩ =
1

4πGL
(α1,(v) − 2δαα1,(s)) ,

⟨Oϕ1⟩ = ⟨Oϕ2⟩ = ⟨Oϕ3⟩ =
1

2πGL

(
ϕ1,(v) +

5

6
ϕ3
1,(s) −

9− 2δ4(5)
3

ϕ2
1,(s)ϕ4,(s)

+
5− 8δ4(4)

6
ϕ1,(s)ϕ

2
4,(s) +

L2

4
(1 + 4δα)□ϕ1,(s) −

L2

24
(1 + 2δRϕ2(1))Rϕ1,(s)

)
,

⟨Oϕ4⟩ =
1

2πGL

(
ϕ4,(v) −

9− 2δ4(5)
3

ϕ3
1,(s) −

5− 8δ4(4)
2

ϕ2
1,(s)ϕ4,(s) +

11 + 16δ4(2)
6

ϕ3
4,(s)

+
L2

4
(1 + 2δ∂ϕ2(2))□ϕ4,(s) −

L2

24
(1 + 2δRϕ2(2))Rϕ4,(s)

)
,

⟨Oφ⟩ =
1

πGL

(
φ(v) −

3

4
(α1,(s) − 4α1,(v))(ϕ

2
1,(s) − ϕ1,(s)ϕ4,(s))

)
,

(D.58)

where □ and R refer to the field theory metric hab in (D.24), along with the expected
results

⟨Oβ1⟩ = ⟨Oβ2⟩ = 0 . (D.59)

Focussing now on the ISO(1, 2) configurations that also solve the BPS equations (5.68),
(5.69), the relation between the sources in (D.43) is given by

φ4,(s) = 0 ,

ϕ4,(s) = 0 ,

α1,(s) = κLe−Ω−f (∂xϕ1,(s) + ϕ1,(s)∂xΩ) .

(D.60)

The BPS equations also impose relations between the coefficients with “(v)” subscript in
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(D.57), which are explicitly

φ(v) = −3α1,(v)ϕ
2
1,(s) −

κL

4
e−Ω−f∂x(ϕ

3
1,(s) − ϕ4,(v))−

3κL

4
e−Ω−f (ϕ3

1,(s) − ϕ4,(v))∂xΩ ,

ϕ1,(v) = −5

6
ϕ3
1,(s) −

L2

4
□ϕ1,(s) +

L2

24
Rϕ1,(s) + κLe−Ω−f

(
1

2
∂xα1,(v) + α1,(v)∂xΩ

)
− L2

4
e−2Ω−2fϕ1,(s)(∂xΩ)

2 . (D.61)

Under the renormalisation scheme (D.46) these are equivalent to the following set of rela-
tionships between the one point functions of the scalar operators for the BPS configurations

⟨Oϕ1⟩ = κLe−Ω−f (∂x⟨Oα1⟩+ 2⟨Oα1⟩∂xΩ)−
L

8πG
e−2Ω−2fϕ1,(s)(∂xΩ)

2

+ δα
L

2πG
e−Ω−f∂x[e

−Ω−f (∂xϕ1,(s) + ϕ1,(s)∂xΩ)]

+ δα
L

2πG
e−Ω−f [2e−Ω−f (∂xϕ1,(s) + ϕ1,(s)∂xΩ)∂xΩ]

+ δα
L

2πG
□ϕ1,(s) − δRϕ2(1)

L

24πG
Rϕ1,(s) ,

⟨Oφ⟩ =
κL

2
e−Ω−f (∂x⟨Oϕ4⟩+ 3⟨Oϕ4⟩∂xΩ)

+
κ(3− 2δ4(5))

12πG
e−Ω−f (∂x(ϕ3

1,(s)) + 3ϕ3
1,(s)∂xΩ

)
,

(D.62)

where R is again the Ricci scalar for the boundary metric hab given in (D.24).

N = 2∗ model

This model is obtained from the ten-scalar model by setting ϕ1 = ϕ2, α1 = α2 and β1 ̸= 0,
while imposing α3 = ϕ3 = ϕ4 = φ = β2 = 0. Thus, we set

z1 = z3, z2 = z4 = β2 = 0 , (D.63)

with

z1 = tanh[α1 − iϕ1] . (D.64)

The expansion for the general ISO(1, 2) configurations is given by

A =
r

L
+ Ω+ · · ·+ A(v)e

−4r/L + · · · ,

V =
r

L
+ Ω+ f + · · ·+ V(v)e

−4r/L + · · · ,
ϕ2 = ϕ1 = ϕ1,(s)e

−r/L + · · ·+ ϕ1,(v)e
−3r/L + · · · ,

α2 = α1 = α1,(s)
r

L
e−2r/L + α1,(v)e

−2r/L + · · · ,

β1 = β1,(s)
r

L
e−2r/L + β1,(v)e

−2r/L + · · · ,

(D.65)
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where ϕ1,(s), α1,(s) and β1,(s) are the source terms for the scalar operators. The one point
functions are given by

⟨Oα1⟩ = ⟨Oα2⟩ =
1

4πGL
(α1,(v) − 2δαα1,(s)) ,

⟨Oβ1⟩ =
3

2πGL

(
β1,(v) − 2δββ1,(s) + 2δβ̃(β1,(s) −

2

3
ϕ2
1,(s))

)
,

⟨Oϕ1⟩ = ⟨Oϕ2⟩ =
1

2πGL

(
ϕ1,(v) +

3 + 8δβ
3

ϕ3
1,(s) − 4δβ̃ϕ1,(s)

(
β1,(s) −

2

3
ϕ2
1,(s)

)
+
L2

4
(1 + 4δα)□ϕ1,(s) −

L2

24
(1 + 2δRϕ2(1))Rϕ1,(s)

)
,

(D.66)

where □ and R refer to the field theory metric hab in (D.24), along with the expected
results

⟨Oα3⟩ = ⟨Oβ2⟩ = ⟨Oϕ3⟩ = ⟨Oϕ4⟩ = ⟨Oφ⟩ = 0 . (D.67)

Turning to the supersymmetric ISO(1, 2) BPS configurations satisfying (5.68), (5.69),
the relation between the sources is given by

α1,(s) = κLe−Ω−f (∂xϕ1,(s) + ϕ1,(s)∂xΩ) ,

β1,(s) =
2

3
ϕ2
1,(s) .

(D.68)

The BPS equations also impose relations between the coefficients with “(v)” subscript in
(D.65) given by

ϕ1,(v) = −2β1,(v)ϕ1,(s) − ϕ3
1,(s) −

L2

4
□ϕ1,(s) +

L2

24
Rϕ1,(s)

+ κLe−Ω−f
(
1

2
∂xα1,(v) + α1,(v)∂xΩ

)
− L2

4
e−2Ω−2fϕ1,(s)(∂xΩ)

2 ,

2α1,(v)ϕ1,(s) =
κL

2
e−Ω−f (3∂xβ1,(v) + [6β1,(v) − 2ϕ2

1,(s)]∂xΩ) .

(D.69)

Under the renormalisation scheme (D.46) these are equivalent to the following set of rela-
tionships between the one point functions of the scalar operators for the BPS configurations

⟨Oα1⟩ϕ1,(s) =
κL

8
e−Ω−f (∂x⟨Oβ1⟩+ 2⟨Oβ1⟩∂xΩ− 1

πGL
ϕ2
1,(s)∂xΩ)

+ (δβ − δα)
κ

2πG
e−Ω−fϕ1,(s)(∂xϕ1,(s) + ϕ1,(s)∂xΩ) ,

⟨Oϕ1⟩ = −2

3
⟨Oβ1⟩ϕ1,(s) + κLe−Ω−f (∂x⟨Oα1⟩+ 2⟨Oα1⟩∂xΩ)

− L

8πG
e−2Ω−2fϕ1,(s)(∂xΩ)

2

+ δα
L

2πG
e−Ω−f∂x[e

−Ω−f (∂xϕ1,(s) + ϕ1,(s)∂xΩ)]

+ δα
L

2πG
e−Ω−f [2e−Ω−f (∂xϕ1,(s) + ϕ1,(s)∂xΩ)∂xΩ]

+ δα
L

2πG
□ϕ1,(s) − δRϕ2(1)

L

24πG
Rϕ1,(s) ,

(D.70)

where again R refer to the field theory metric hab in (D.24).
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D.3 One point functions for Janus solutions

We first recall here the metric for AdS5 written in “Janusian” coordinates that makes
manifest the foliation by AdS4 spaces. We then discuss how the results of the previous
appendix can be employed to obtain holographic data for the Janus solutions discussed in
section 5.6.

D.3.1 Janusian coordinates for AdS5

Consider writing AdS5, with radius L, in Poincaré coordinates, in mostly minus signature,
singling out a preferred spatial direction y3:

ds2 =
L2

Z2

[
−dZ2 − dy23 + (dt2 − dy21 − dy22)

]
, (D.71)

with Z ∈ (0,∞). Notice that (y3, Z) parametrise a half plane as in figure D.1. We can
switch to polar coordinates for this half plane via y3 = x sinµ, Z = x cosµ, with x ∈ (0,∞)
and µ ∈ [−π/2, π/2] to get

ds2 =
L2

cos2 µ

[
−dµ2 +

1

x2
(
−dx2 + dt2 − dy21 − dy22

)]
. (D.72)

We can also do a further coordinate change, by setting cosµ = [cosh(r/L)]−1 and keeping
x fixed to get

ds2 = −dr2 + cosh2(r/L)

[
L2

x2
(
−dx2 + dt2 − dy21 − dy22

)]
, (D.73)

with x ∈ (0,∞) and r ∈ (−∞,∞). These (x, r) coordinates are related to the original
Poincare coordinates via x =

√
y23 + Z2, er/L = (y3 +

√
y23 + Z2)/Z, and are also illus-

trated in figure D.1. We also note that r → ±∞ are associated with y3 > 0 and y3 < 0,
respectively. Finally, after writing Z = Le−ρ/L in the original metric (D.71), we have

Z = Le−ρ/L

x → ∞x → ∞

y3

r↓+∞
r↓−∞

Figure D.1: Coordinates for Janus configurations, with (t, y1, y2) suppressed. We have
ρ ∈ (−∞,+∞) and y3 ∈ (−∞,∞), with the conformal boundary located at ρ → ∞,
parametrised by (t, y1, y2, y3), which naturally comes with a flat space metric. We can
also use coordinates with x ∈ (0,∞), r ∈ (−∞,∞), with the straight lines of constant r
parametrising AdS4 spacetime. In these coordinate, the conformal boundary consists of
three components: the two half spaces at r = ±∞, parametrised by (t, y1, y2, x) which
naturally come with an AdS4 metric, and x→ 0 which is the interface y3 = 0.
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ds2 = −dρ2 + e2ρ/L
[
dt2 − dy21 − dy22 − dy23

]
, (D.74)

with ρ ∈ (−∞,+∞) and the conformal boundary at ρ→ ∞. We heavily utilise the (ρ, y3)
coordinates and the (r, x) coordinates in this chapter, with the former associated with flat
spacetime boundary metric and the latter associated with AdS4 boundary metric.

D.3.2 BPS Janus solutions: field theory on AdS4

The BPS Janus solutions discussed in sections 5.4 and 5.6 are special sub-classes of the
ISO(1, 2) preserving BPS solutions discussed in appendix D.2 with

eA(r,x) = eV (r,x) = eAJ (r)
ℓ

x
, (D.75)

and all scalar fields taken to be functions of r only. As r → ±∞, the N = 4 SYM Janus
solutions approach the N = 4 SYM AdS5 vacuum but with additional mass sources. Like
the N = 4 SYM AdS5 vacuum solution itself, the conformal boundary again consists of
three components, with two half spaces (with AdS4 metrics) that are joined at a planar
interface. Let us first consider the r → ∞ end before returning to the r → −∞ end later
in this section. After recalling (D.30), as r → ∞ we have the schematic expansion series
of the BPS equations (5.79),(5.80) (with N = 1) given by

AJ =
r

L
+ A0 + · · ·+ A(v)e

−4r/L + · · · ,
ϕi = ϕi,(s)e

−r/L + · · ·+ ϕi,(v)e
−3r/L + · · · , i = 1, . . . , 4 ,

αi = αi,(s)
r

L
e−2r/L + αi,(v)e

−2r/L + · · · , , i = 1, . . . , 3 ,

βi = βi,(s)
r

L
e−2r/L + βi,(v)e

−2r/L + · · · , i = 1, . . . , 2 ,

φ = φ(s) + · · ·+ φ(v)e
−4r/L + · · · .

(D.76)

The various constant coefficients in this expansion are constrained by the BPS equations, as
discussed below. We have highlighted a constant term A0 that can appear in the expansion
for AJ . By shifting the radial coordinate via r → r−A0L, we can always remove this term
and we shall do so in the following. In particular, all the expressions for the expectation
values and sources given below are obtained with

A0 = 0 . (D.77)

The terms ϕi,(s), αi,(s), βi,(s), φ(s) give rise to source terms for N = 4 SYM on this
component of the conformal boundary with AdS4 metric. Recalling that these are sources
for operators of conformal dimension ∆ = 3, 2, 2, 4 respectively, it is helpful to note that
the field theory sources on AdS4, that are invariant under Weyl scalings of ℓ, are given by
ℓϕi,(s), ℓ

2αi,(s), ℓ
2βi,(s). We are always assuming that φ(s) = 0 and from (D.43), the BPS

conditions relating the sources are given for the ten-scalar model by

αi,(s) = −κL
ℓ
ϕi,(s) , i = 1, . . . , 3 ,

β1,(s) =
1

3

(
ϕ2
1,(s) + ϕ2

2,(s) − 2ϕ2
3,(s)

)
,

β2,(s) = ϕ2
1,(s) − ϕ2

2,(0) ,

ϕ4,(s) = 0 .

(D.78)
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In a similar manner ϕi,(v), αi,(v), βi,(v) and φ(v), with suitable contributions from the
sources, give rise to the expectation values of the scalar operators. We can obtain these
results for each of the three truncations considered in appendix D.2, after using eΩ = ℓ/x
and f(x) = 0, as we will summarise below.

N = 1∗ one-mass model: AdS4 boundary

We use the renormalisation scheme (D.46). From (D.50), we have

⟨Oα3⟩ =
1

4πGL
(α3,(v) − 2δαα3,(s)) . (D.79)

For BPS Janus configurations, from (D.54) we can then express the remaining non-trivial
expectation values in terms of ⟨Oα3⟩ along with ϕ3,(s) as follows:

⟨Oβ1⟩ =
4κℓ

L
⟨Oα3⟩ϕ3,(s) −

(1 + 4δα − 4δβ)

2πGL
ϕ2
3,(s) ,

⟨Oϕ3⟩ =
4

3
⟨Oβ1⟩ϕ3,(s) −

2κL

ℓ
⟨Oα3⟩ −

L

8πGℓ2
(1− 8δα + 4δRϕ2(1))ϕ3,(s) .

(D.80)

Notice that these expressions depend on the δα, δβ, δRϕ2(1) which parametrise finite coun-
terterms that we haven’t fixed. We also have

⟨Oα1⟩ = ⟨Oα2⟩ = ⟨Oβ2⟩ = ⟨Oϕ1⟩ = ⟨Oϕ2⟩ = ⟨Oϕ4⟩ = ⟨Oφ⟩ = 0 , (D.81)

independent of the counterterms. Notice that for a fixed choice of δα, δβ, δRϕ2(1), we can
therefore specify all of the scalar sources and expectation values of the dual field theory by
giving ϕ3,(s) and α3,(v).

N = 1∗ equal-mass model: AdS4 boundary

We use the renormalisation scheme (D.46). From (D.58) and (D.78), for BPS configurations
we have

⟨Oα1⟩ = ⟨Oα2⟩ = ⟨Oα3⟩ =
1

4πGL

(
α1,(v) − 2δαα1,(s)

)
,

⟨Oϕ4⟩ =
1

2πGL

(
ϕ4,(v) −

9− 2δ4(5)
3

ϕ3
1,(s)

)
.

(D.82)

For BPS Janus configurations, from (D.62) we can then express the other expectation
values in terms of ⟨Oα1⟩, ⟨Oϕ4⟩ along with ϕ1,(s) as follows

⟨Oϕ1⟩ = −2κL

ℓ
⟨Oα1⟩ −

L(1 + 4δRϕ2(1) − 8δα)

8πGℓ2
ϕ1,(s) ,

⟨Oφ⟩ = −3κL

2ℓ
⟨Oϕ4⟩ −

κ(3− 2δ4(5))

4πGℓ
ϕ3
1,(s) .

(D.83)

Notice that these expressions depend on the δα, δRϕ2(1), δ4(5) which parametrise finite
counterterms which we haven’t fixed. We also have

⟨Oβ1⟩ = ⟨Oβ2⟩ = 0 , (D.84)

independent of the counterterms. Notice that for a fixed choice of δα, δRϕ2(1), δ4(5) we can
therefore specify all of the scalar sources and expectation values of the dual field theory by
giving ϕ1,(s), α1,(v) and ϕ4,(v).
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N = 2∗ model: AdS4 boundary

We use the renormalisation scheme (D.46). From (D.66), we have

⟨Oα1⟩ = ⟨Oα2⟩ =
1

4πGL
(α1,(v) − 2δαα1,(s)) , (D.85)

For BPS Janus configurations, from (D.70) we can then express the other expectation
values in terms of ⟨Oα1⟩ along with ϕ1,(s) as follows

⟨Oϕ1⟩ = ⟨Oϕ2⟩ = −2

3
⟨Oβ1⟩ϕ1,(s) −

2κL

ℓ
⟨Oα1⟩ −

L

8πGℓ2
(1− 8δα + 4δRϕ2(1))ϕ1,(s) ,

⟨Oβ1⟩ = −4κℓ

L
⟨Oα1⟩ϕ1,(s) +

(1 + 4δα − 4δβ)

2πGL
ϕ2
1,(s) .

(D.86)

Notice that these expressions depend on the δα, δβ, δRϕ2(1) which parametrise finite coun-
terterms which we haven’t fixed. We also have

⟨Oα3⟩ = ⟨Oβ2⟩ = ⟨Oϕ3⟩ = ⟨Oϕ4⟩ = ⟨Oφ⟩ = 0 , (D.87)

independent of the counterterms. Notice that for a fixed choice of δα, δβ, δRϕ2(1), we can
therefore specify all of the scalar sources and expectation values of the dual field theory by
giving ϕ1,(s) and α1,(v).

Results for the r → −∞ end, AdS4 boundary

We now discuss analogous results, for the sources and expectation values, for the conformal
boundary, with AdS4 metric, at the r → −∞ end. Here we can develop an asymptotic
expansion series to the BPS equations (5.79),(5.80) (with N = 1) of the form

AJ =
−r
L

+ Ã0 + · · ·+ Ã(v)e
4r/L + · · · ,

ϕi = ϕ̃i,(s)e
r/L + · · ·+ ϕ̃i,(v)e

3r/L + · · · , i = 1, . . . , 4 ,

αi = α̃i,(s)
−r
L
e2r/L + α̃i,(v)e

2r/L + · · · , , i = 1, . . . , 3 ,

βi = β̃i,(s)
−r
L
e2r/L + β̃i,(v)e

2r/L + · · · , i = 1, . . . , 2 ,

φ = φ̃(s) + · · ·+ φ̃(v)e
4r/L + · · · ,

(D.88)

and we will always set Ã0 = 0, which can be achieved by a shift of the radial coordinate.
This has exactly the same form as in (D.76) after the interchange r → −r. The BPS
equations will then relate various coefficients. We can easily deduce these relations using
the following argument. We first recall that the BPS equations (5.79),(5.80) are invariant
under the transformation r → −r, ξ → ξ + π and κ → −κ. Secondly, we want to use
the result that if a solution has ξ = 0 at r = +∞ then necessarily it will have ξ = π at
r = −∞. This can be seen from (5.87): at r → ±∞ the scalars are approaching zero so
the phase of W is going to zero. Thus, the phase of Br at r → ±∞ is ξ, and from (5.87) we
see that ξ must change by π in going from r = +∞ to r = −∞. Taking these two results
together, we can then deduce that all of the results that we obtained for the r → +∞ end
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can be taken over to the r → −∞ end provided that wherever κ appears in the former, it
is replaced5 with −κ in the latter.

Thus, for example, we can conclude that the BPS equations in (5.79),(5.80) (with
N = 1) imply that in the expansion (D.88) at r → −∞ we now have

α̃i,(s) = +2κ
L

ℓ
ϕ̃i,(s) , i = 1, . . . , 3 ,

β̃1,(s) =
1

3

(
ϕ̃2
1,(s) + ϕ̃2

2,(s) − 2ϕ̃2
3,(s)

)
,

β̃2,(s) = ϕ̃2
1,(s) − ϕ̃2

2,(0) ,

ϕ̃4,(s) = 0 ,

(D.89)

and we note the sign flip in the first line as compared to (D.78). Similarly, for all the
results for the expectation values at the r → ∞ end, we can take over to analogous results
at the r → −∞ end, after replacing κ with −κ.

D.3.3 BPS Janus solutions: field theory on flat spacetime

For the Janus solutions, we are primarily interested in obtaining the sources and expec-
tation values for operators of N = 4 SYM in flat spacetime. To do this6, we carry out a
bulk coordinate transformation as we approach the r → ∞ component of the conformal
boundary, that we are focussing on, so that it has a flat metric. For the r → ∞ component
of the conformal boundary, we can use the coordinate transformation of the form

er/L =
y3
ℓ
eρ/L +

L2

4ℓy3
e−ρ/L +O(e−3ρ/L/y33) ,

x = y3 +
L2

2y3
e−2ρ/L +O(e−4ρ/L/y33) ,

(D.90)

with y3 > 0. Substituting this into (5.100) then leads to an expansion as ρ→ ∞ with the
metric asymptoting to

ds2 → −dρ2 + e2ρ/L
(
dt2 − dy21 − dy22 − dy23

)
, (D.91)

and recalling the discussion in section D.3.1, this component of the conformal boundary
is for y3 > 0. As ρ → ∞, we find that the expansion for the scalars given in (D.76) then
becomes

ϕi =
ℓ

y3
ϕi,(s)e

−ρ/L +
ℓ3

y33

{
ϕi,(v) −

L2

4ℓ2
ϕi,(s)

+

(
L2

ℓ2
ϕi,(s) − 4ϕ3

i,(s) +
4

3
ϕi,(s)

4∑
j=1

ϕ2
j,(s)

)[ ρ
L
+ log

(y3
ℓ

)]}
e−3ρ/L + · · · , i = 1, 2, 3,

αi =
ℓ2

y23

{
αi,(v) + αi,(s)

[ ρ
L
+ log

(y3
ℓ

)]}
e−2ρ/L + · · · , i = 1, 2, 3, (D.92)

5Recall that κ = ±1 enters the Killing spinor projections (5.81). To avoid possible confusion, we
emphasise that we are holding this projection fixed in developing the asymptotic expansion (D.88) at
r → −∞; the argument we have given is just a way of getting at the result.

6Note that the results in this section can also obtained from our results (D.37)-(D.42).
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and

βi =
ℓ2

y23

{
βi,(v) + βi,(s)

[ ρ
L
+ log

(y3
ℓ

)]}
e−2ρ/L + · · · , i = 1, 2,

φ =
ℓ4

y43

{
φ(v) − (α1,(s)ϕ2,(s)ϕ3,(s) + α2,(s)ϕ1,(s)ϕ3,(s)

+ α3,(s)ϕ1,(s)ϕ2,(s))
[ ρ
L
+ log

(y3
ℓ

) ]}
e−4ρ/L + · · · .

(D.93)

We note that we have set ϕ4,(s) = 0 as implied by the BPS relations (D.78).
To proceed, we notice that this form of the solution is a special case of the ISO(1, 2)

invariant configurations discussed in appendix D.2, with Ω(x) = f(x) = 0, provided that
we replace the coordinates (r, x) in that appendix with (ρ, y3). As a consequence, we can
immediately read off the sources and the expectation values for the various operators. The
non-zero scalar sources in flat spacetime are of the form

ℓϕi,(s)
y3

,
ℓ2αi,(s)
y23

, i = 1, . . . , 3

ℓ2βi,(s)
y23

, i = 1, . . . , 2 ,

(D.94)

with ϕ4,(s) = φ(s) = 0. Recalling that the numerators in these expression are scale invariant
parameters, we see that these quantities have the correct field theory scaling dimensions
of 1, 2, 2, for sources of operators with conformal dimension ∆ = 3, 2, 2, respectively.

We can also use the results in sections D.2.2-D.2.2, to deduce the expectation values
of the operators for the BPS configurations and the results are recorded in the next sub-
sections. A general point we can notice is the presence of the novel terms of the form
∼ log(y3/ℓ).

N = 1∗ one-mass model: flat boundary

Transforming the results from section D.3.2 to flat space boundary we obtain

⟨Oα3⟩ =
1

4πGL

ℓ2

y23

(
α3,(v) + α3,(s) log

( y3
ℓe2δα

))
. (D.95)

The BPS relations between the remaining expectation values are given by

⟨Oϕ3⟩ =
4

3

ℓ

y3
⟨Oβ1⟩ϕ3,(s) − 2κL

1

y3
⟨Oα3⟩ −

L

4πG

ℓ

y33
ϕ3,(s) ,

⟨Oβ1⟩ =
4κℓ

L
⟨Oα3⟩ϕ3,(s) −

(1 + 4δα − 4δβ)

2πGL

ℓ2

y23
ϕ2
3,(s) .

(D.96)

N = 1∗ equal-mass model: flat boundary

Transforming the results from section D.3.2 to flat space boundary we obtain for the BPS
configurations

⟨Oα1⟩ = ⟨Oα2⟩ = ⟨Oα3⟩ =
1

4πGL

ℓ2

y23

(
α1,(v) + α1,(s) log

( y3
ℓe2δα

))
,

⟨Oϕ4⟩ =
1

2πGL

ℓ3

y33

(
ϕ4,(v) −

9− 2δ4(5)
3

ϕ3
1,(s)

)
.

(D.97)
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The BPS relations between the remaining expectation values are given by

⟨Oϕ1⟩ = ⟨Oϕ2⟩ = ⟨Oϕ3⟩ = −2κL
1

y3
⟨Oα1⟩ −

L

4πG

ℓ

y33
ϕ1,(s) ,

y3⟨Oφ⟩ = −3κL

2
⟨Oϕ4⟩ −

κ(3− 2δ4(5))

4πG

ℓ3

y33
ϕ3
1,(s) .

(D.98)

N = 2∗ model: flat boundary

Transforming the results from section D.3.2 to flat space boundary we obtain

⟨Oα1⟩ = ⟨Oα2⟩ =
1

4πGL

ℓ2

y23

(
α1,(v) + α1,(s) log

( y3
ℓe2δα

))
. (D.99)

The BPS relations between the remaining expectation values are given by

⟨Oβ1⟩ = −4κℓ

L
⟨Oα1⟩ϕ1,(s) +

(1 + 4δα − 4δβ)

2πGL

ℓ2

y23
ϕ2
1,(s) ,

⟨Oϕ1⟩ = ⟨Oϕ2⟩ = −2

3

ℓ

y3
⟨Oβ1⟩ϕ1,(s) − 2κL

1

y3
⟨Oα1⟩ −

L

4πG

ℓ

y33
ϕ1,(s) .

(D.100)

Results for the r → −∞ end, flat boundary

The above analysis concerning sources and expectation values was for the conformal bound-
ary end located at r → ∞ (AdS4 boundary metric) or y3 > 0 (flat boundary metric). In
section D.3.2 we discussed the asymptotic expansion of the solution, with AdS4 boundary,
for the conformal boundary end located at r → −∞. For this end, we can then employ
the coordinate transformation to flat space, as given in (D.90) but switching r → −r and
y3 → −y3. This will then give the relevant quantities on the y3 < 0 part of the conformal
boundary, with flat boundary metric. Recalling the discussion in section D.3.2, we can
therefore obtain the flat boundary results for y3 < 0 from those for y3 > 0, by making the
replacements y3 → −y3 and κ→ −κ.
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Appendix E

Chapter 7 appendix

E.1 Uplifting to Type IIB supergravity

E.1.1 The ten-scalar model in maximal gauged supergravity

We first discuss how the ten-scalar model is obtained from maximal SO(6) gauged super-
gravity in D = 5. The 42 scalars of SO(6) gauged supergravity parametrise the coset
E6(6)/USp(8), with USp(8) the maximal compact subgroup of E6(6). To describe this coset
space, it is convenient to work in a basis for E6(6) that is adapted to its maximal subgroup
SL(6)× SL(2,R). Following [164], we write the generators of E6(6) in the fundamental 27
representation in this basis as

X =

−4Λ[I
[MδJ ]

N ]
√
2ΣIJPβ

√
2ΣMNKα ΛP

Kδβ
α + Λβ

αδP
K

 , (E.1)

where the indices I, J, ... = 1, 2, . . . , 6, raised and lowered with δIJ , label the fundamental of
SL(6), while the indices α, β, ... = 1, 2, raised and lowered with ϵαβ, are SL(2,R) indices.
It is often convenient to consider X as a 27×27 matrix associated with the branching
of the fundamental of E6(6) under SL(6) × SL(2,R), like 27 → (15,1) + (6,2). From
this perspective, a fundamental index of E6(6), A = 1, 2, . . . 27 splits according to {A} =
{[IJ ], Iα}, where [IJ ] are the 15 antisymmetric pairs of SL(6) indices.

The non-compact part of this algebra is generated by the 20 symmetric, traceless ΛI
J ∈

SL(6), the 2 symmetric, traceless Λα
β ∈ SL(2,R) and the 20 ΣIJKα antisymmetric in

IJK, satisfying ΣIJKα = 1
6
ϵIJKLMNϵαβΣ

LMNβ. It is possible to choose a gauge for the
coset element such that these 42 non-compact generators are in one-to-one correspondence
with the scalar fields of the gauged supergravity.

In this gauge, the truncation to the ten-scalar model discussed in [168], retains the
metric and the ten scalar fields {β1, β2, ᾱ1, ᾱ2, ᾱ3, ϕ̄1, ϕ̄2, ϕ̄3, ϕ̄4, φ̄} defined by

ΛI
J = diag (ᾱ1 + β1 + β2,−ᾱ1 + β1 + β2, ᾱ2 + β1 − β2,−ᾱ2 + β1 − β2, ᾱ3 − 2β1,−ᾱ3 − 2β1) ,

Λα
β = diag (φ̄,−φ̄) , (E.2)

201



B(1) B(2) S
(1)
1 S

(1)
2 S

(2)
1 S

(2)
2 S

(3)
1 S

(3)
2 S

(4)
1 S

(4)
2

ᾱ1 0 0 1
2

0 1
2

0 1
2

0 1
2

0
ᾱ2 0 0 1

2
0 −1

2
0 1

2
0 −1

2
0

ᾱ3 0 0 1
2

0 1
2

0 −1
2

0 −1
2

0
φ̄ 0 0 1

2
0 −1

2
0 −1

2
0 1

2
0

ϕ̄1 0 0 0 1
2

0 1
2

0 1
2

0 1
2

ϕ̄2 0 0 0 1
2

0 −1
2

0 1
2

0 −1
2

ϕ̄3 0 0 0 1
2

0 1
2

0 −1
2

0 −1
2

ϕ̄4 0 0 0 −1
2

0 1
2

0 1
2

0 −1
2

β1 1 0 0 0 0 0 0 0 0 0
β2 0 1 0 0 0 0 0 0 0 0

Table E.1: The non-compact generators of the SO(1, 1)2×SU(1, 1)4 ⊂ E6(6) algebra in the
27 that are associated with the ten-scalar truncation can be obtained from this table and
(E.2),(E.3).

and

Σ1351 = −Σ2462 =
1

2
√
2

(
ϕ̄1 + ϕ̄2 + ϕ̄3 − ϕ̄4

)
,

Σ1461 = −Σ2352 =
1

2
√
2

(
−ϕ̄1 + ϕ̄2 + ϕ̄3 + ϕ̄4

)
,

Σ2361 = −Σ1452 =
1

2
√
2

(
ϕ̄1 − ϕ̄2 + ϕ̄3 + ϕ̄4

)
,

Σ2451 = −Σ1362 =
1

2
√
2

(
ϕ̄1 + ϕ̄2 − ϕ̄3 + ϕ̄4

)
.

(E.3)

These barred scalar fields are non-linearly related to the unbarred scalar fields that we use
in (5.39), however they do agree at the linear order. It is straightforward to demonstrate
that the generators associated with this truncation generate SO(1, 1)2×SU(1, 1)4 ⊂ E6(6).

Specifically, if we let B(1), B(2) each generate an SO(1, 1), and S
(A)
1,2,3 for A = 1, 2, 3, 4

generate four commuting copies of SU(1, 1) satisfying

[S
(A)
1 , S

(A)
2 ] = 2S

(A)
3 , [S

(A)
1 , S

(A)
3 ] = 2S

(A)
2 , [S

(A)
2 , S

(A)
3 ] = −2S

(A)
1 , (E.4)

then we can explicitly identify the generators using table E.1.
The ten scalar fields which are retained in the truncated theory parametrise the coset

SO(1, 1)2 × [SU(1, 1)/U(1)]4. It is convenient to parametrise this coset in terms of two
real scalars β1,2 and four complex scalars zA, which are functions of the remaining scalars
{ᾱ1, ᾱ2, ᾱ3, ϕ̄1, ϕ̄2, ϕ̄3, ϕ̄4, φ̄}, with the zA transforming linearly under the U(1) ⊂ SU(1, 1).
To do this, we first move to a basis for each of the SU(1, 1) algebras with definite U(1)
charge, by defining the generators

E(A) =
1

2
(S

(A)
1 + iS

(A)
2 ) , and F (A) =

1

2
(S

(A)
1 − iS

(A)
2 ). (E.5)

The desired parametrisation of the coset is then given by

V = eβ1B
(1)+β2B(2) ·

∏
a

es(|z
A|)(zAE(A)+z̄AF (A)) , (E.6)
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where

s(|zA|) = 1

|zA|arcsech
√
1− |zA|2. (E.7)

We will work with right cosets, in which V transforms from the left under global elements of
SO(1, 1)2 ×SU(1, 1)4 and from the right under local U(1)4 rotations. The U(1)4 invariant
tensor defined by

M = V · V† , (E.8)

can then be used to construct the kinetic terms for the scalar fields of the D = 5 ten-scalar
model via

L(k)
10 =

1

96
Tr
(
∂µM∂µM−1

)
, (E.9)

as given in (5.40). It will also play an important role in the uplift of this ten-scalar model
to ten dimensions as we shall discuss below.

The scalar potential P of the ten-scalar model appearing in (5.40) can be obtained from
this coset representative using the general results for the form of the scalar potential in the
SO(6) gauged supergravity given in [164]. To do this, and following [164], it is helpful to
change to a basis adapted to USp(8) ⊂ E6(6) using the antisymmetric hermitian gamma
matrices of Cliff(7). An explicit representation is provided by the set of 8 × 8 matrices
(Γ0,ΓI), which can be written as

Γ0 = −σ2 ⊗ σ3 ⊗ σ3 , Γ1 = σ1 ⊗ σ1 ⊗ σ2 ,

Γ2 = σ3 ⊗ σ1 ⊗ σ2 , Γ3 = −σ2 ⊗ σ1 ⊗ 1 ,

Γ4 = 1⊗ σ2 ⊗ 1 , Γ5 = σ2 ⊗ σ3 ⊗ σ1 ,

Γ6 = −1⊗ σ3 ⊗ σ2 ,

(E.10)

where the σ1,2,3 are Pauli matrices. From these, one defines

ΓIJ =
1

2
[ΓI ,ΓJ ] and ΓIα = (ΓI , iΓIΓ0), (E.11)

whose “spinor” indices a, b are USp(8) indices. In particular (ΓIJ)
ab transforms in the 27

of USp(8), indexed by the symplectic traceless index pairs [ab]. The symplectic trace is
taken with respect to the invariant tensor

Ωab = −Ωab = −i (Γ0)
ab . (E.12)

Introducing the notation

VA ab =
(
VIJ

ab, V Iαab
)
, and V =

(
UIJ

PQ UIJ,Rβ
UKα,PQ UKα

Rβ

)
, (E.13)

for the coset representative in the USp(8) and SL(6) × SL(2,R) bases, respectively, one
can use (E.11) to relate the two:

VPQ
ab =

1

8

[
(ΓIJ)

ab UPQ
IJ + 2

(
ΓIα
)ab

UPQ,Iα

]
,

V Kαab =
1

4
√
2

[
(ΓIJ)

ab UKα,IJ + 2
(
ΓIβ
)ab

UKα
Iβ

]
.

(E.14)
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The W tensors in [164] are then given by

Wabcd = δIJϵαβV
Iαa′b′V Jβc′d′Ωaa′Ωbb′Ωcc′Ωdd′ , Wab = ΩdcWcadb , (E.15)

and the scalar potential of the SO(6) gauged supergravity is

P = −g
2

32

(
2WabW

ab −WabcdW
abcd
)
, (E.16)

where USp(8) indices are raised and lowered with the symplectic invariant (E.12) according
to the rules implicit in (E.15). After substituting (E.6), using

g =
2

L
, (E.17)

and we obtain (5.43) for the ten-scalar truncation.

E.1.2 The uplift to Type IIB supergravity

The uplift of the bosonic sector of the maximal gauged supergravity to Type IIB super-
gravity is given in [40]. The D = 10 Einstein metric can be written in the form

ds210 = ∆−2/3
(
ds25 +Gmndθ

mdθn
)
, (E.18)

where ds25 is the D = 5 metric, θm, m = 1, 2, ..., 5, parametrise S5 and the metric Gmn and
the warp factor ∆ are defined below. The Type IIB dilaton, Φ, and axion, C0, parametrise
the coset SL(2,R)/SO(2) and can be packaged in terms of a two-dimensional matrix via

mαβ =

(
eΦC0

2 + e−Φ −eΦC0

−eΦC0 eΦ

)
, (E.19)

with detm = 1. The remaining Type IIB fields consist of two-form potentials (A1
(2), A

2
(2)),

which transform as an SL(2,R) doublet and from which we identify the NS-NS two-form
B(2) and the RR two-form C(2) via

B(2) = A1
(2) , C(2) = A2

(2) , (E.20)

as well as the four-form potential C(4) which is associated with the self-dual five-form flux
as in [40].

We focus on uplifting the gravity-scalar sector of the D = 5 theory for which the scalar
matrix M introduced in (E.8) plays an important role. In the SL(6)× SL(2,R) basis, we
can write the components of M and its inverse M−1 as

M =

(
MIJ,PQ MIJ

Rβ

MKα
PQ MKα,Rβ

)
, M−1 =

(
M IJ,PQ M IJ

Rβ

MKα
PQ MKα,Rβ

)
. (E.21)

We also introduce the round metric on the five-sphere G̊mn and its inverse G̊mn. We can
write the Killing vectors of the round metric in terms of constrained coordinates Y I on S5,
satisfying Y IY I = 1, via

KIJ
m = − 1

L
G̊mnY[I∂nYJ ] . (E.22)
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In term of these quantities, the ten-dimensional fields of the uplifted D = 5 gravity-
scalar sector are given by

Gmn = KIJ
mKPQ

nM IJ,PQ ,

mαβ = (mαβ)
−1 = ∆4/3YIYJM

Iα,Jβ ,

Aαmn = −LϵαβGnkKk
IJM

IJ
Pβ∂mY

P ,

Cmnkl =
L4

4

(√
G̊ϵmnklpG̊

pq∆4/3mαβ∂q
(
∆−4/3mαβ

)
+ ω̊mnkl

)
,

(E.23)

where dω̊ = 16volS5 . Note that the D = 10 warp factor ∆ is defined implicitly using the
fact that the axio-dilaton matrix (E.23) satisfies detm = 1.

Restricting now to the ten-scalar model, we can illustrate the above formulae by writing
down the components of the axion and dliaton matrix:

∆−4/3m11 =

e2β1+2β2

(
(1 + z1)(1 + z̄1)(1 + z4)(1 + z̄4)

(1− z1z̄1)(1− z4z̄4)
(Y1)

2 +
(1− z2)(1− z̄2)(1− z3)(1− z̄3)

(1− z2z̄2)(1− z3z̄3)
(Y2)

2

)
+ e2β1−2β2

(
(1 + z1)(1 + z̄1)(1− z2)(1− z̄2)

(1− z1z̄1)(1− z2z̄2)
(Y3)

2 +
(1− z3)(1− z̄3)(1 + z4)(1 + z̄4)

(1− z3z̄3)(1− z4z̄4)
(Y4)

2

)
+ e−4β1

(
(1 + z1)(1 + z̄1)(1− z3)(1− z̄3)

(1− z1z̄1)(1− z3z̄3)
(Y5)

2 +
(1− z2)(1− z̄2)(1 + z4)(1 + z̄4)

(1− z2z̄2)(1− z4z̄4)
(Y6)

2

)
,

∆−4/3m22 =

e2β1+2β2

(
(1 + z2)(1 + z̄2)(1 + z3)(1 + z̄3)

(1− z2z̄2)(1− z3z̄3)
(Y1)

2 +
(1− z1)(1− z̄1)(1− z4)(1− z̄4)

(1− z1z̄1)(1− z4z̄4)
(Y2)

2

)
+ e2β1−2β2

(
(1 + z3)(1 + z̄3)(1− z4)(1− z̄4)

(1− z3z̄3)(1− z4z̄4)
(Y3)

2 +
(1− z1)(1− z̄1)(1 + z2)(1 + z̄2)

(1− z1z̄1)(1− z2z̄2)
(Y4)

2

)
+ e−4β1

(
(1 + z2)(1 + z̄2)(1− z4)(1− z̄4)

(1− z2z̄2)(1− z4z̄4)
(Y5)

2 +
(1− z1)(1− z̄1)(1 + z3)(1 + z̄3)

(1− z1z̄1)(1− z3z̄3)
(Y6)

2

)
,

∆−4/3m12 =

e2β1+2β2

(
(z2 − z̄2)(z3 − z̄3)

(1− z2z̄2)(1− z3z̄3)
− (z1 − z̄1)(z4 − z̄4)

(1− z1z̄1)(1− z4z̄4)

)
Y1Y2

+ e2β1−2β2

(
(z1 − z̄1)(z2 − z̄2)

(1− z1z̄1)(1− z2z̄2)
− (z3 − z̄3)(z4 − z̄4)

(1− z3z̄3)(1− z4z̄4)

)
Y3Y4

+ e−4β1

(
(z1 − z̄1)(z3 − z̄3)

(1− z1z̄1)(1− z3z̄3)
− (z2 − z̄2)(z4 − z̄4)

(1− z2z̄2)(1− z4z̄4)

)
Y5Y6 . (E.24)

There are a number of additional sub-truncations of the ten-scalar model as summarised
in figure 5.1. In this paper we are particularly interested in the SO(3) invariant 4-scalar
model as well as the SU(2) invariant 5-scalar model and their sub-truncations.

The SO(3) invariant 4-scalar model

This truncation is obtained from the ten-scalar model by taking β1 = β2 = 0 and z4 =
−z3 = −z2. The truncation is invariant under SO(3) ⊂ SU(3) ⊂ SO(6). Similar to [135],
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a useful parametrisation of the five-sphere adapted to this isometry is given byY 1 + iY 2

Y 3 + iY 4

Y 5 + iY 6

 = eiα cosχR

1
0
0

+ ieiα sinχR

0
1
0

 . (E.25)

Here we have 0 ≤ α ≤ 2π, 0 ≤ χ ≤ π/4, and R = eξ1g1eωg2eξ2g1 is an SO(3) rotation
matrix parametrised by three Euler angles ω, ξ1, ξ2 where g1, g2 are the 3× 3 matrices

g1 = e21 − e12 , and g2 = e31 − e13 , (E.26)

with eij having a unit in the i, j position and zeroes elsewhere. In this parametrisation,
the round metric on the five-sphere is written as a U(1) fibration over CP 2 as

dΩ̊2
5 = ds2CP 2 + (dα− sin 2χτ3)

2 , (E.27)

where
ds2CP 2 = dχ2 + sin2 χ τ 21 + cos2 χ τ 22 + cos2 2χ τ 23 , (E.28)

and the τ1,2,3 are locally left-invariant one-forms for SO(3) given by

τ1 = − sin ξ2dω + cos ξ2 sinωdξ1 ,

τ2 = cos ξ2dω + sin ξ2 sinωdξ1 ,

τ3 = dξ2 + cosωdξ1 .

(E.29)

This parametrisation of CP 2 is cohomogeneity-one with principle orbits actually given by
SO(3)/Z2 ⊂ SU(3) (rather than SO(3)). The singular orbits are an RP2 at χ = 0 and an
S2 at χ = π/4 (see e.g. [224]).

After uplifting solutions in the SO(3) invariant model, the ten dimensional metric will,
in general, have non-trivial dependence on α and more general dependence on χ than that
given in (E.28)-(E.29) and the symmetry will be the SO(3)/Z2 associated with the τi. For
the further truncation to the SU(3) invariant model in figure 5.1, the χ dependence will
be as in (E.28), giving rise to SU(3) symmetry associated with CP 2, but there will be
non-trivial dependence on α.

The SO(3)× SO(3) invariant 3-scalar model

The SO(3)×SO(3) invariant sector has three scalars, and can be obtained from the SO(3)
invariant model just discussed by setting z2 = z̄2. Specifically, we have

z1 = tanh

[
1

2
(3α1 + φ− 4iϕ1)

]
, z2 = tanh

[
1

2
(α1 − φ)

]
, (E.30)

with β1 = β2 = 0. For this case, we can parametrise the five-sphere using the following
coordinates

Y1 = cosψ sin θ cos ξ, Y3 = cosψ sin θ sin ξ, Y5 = cosψ cos θ ,

Y2 = sinψ sin θ̃ cos ξ̃, Y4 = sinψ sin θ̃ sin ξ̃, Y6 = sinψ cos θ̃ ,
(E.31)

with 0 ≤ θ, θ̃ ≤ π, 0 ≤ ξ, ξ̃ ≤ 2π and 0 ≤ ψ ≤ π/2. In these coordinates, the round metric
on the five-sphere is given by

dΩ̊2
5 = dψ2 + cos2 ψ dΩ2

2 + sin2 ψ dΩ̃2
2 , (E.32)
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with dΩ2
2 = dθ2 + sin2 θdξ2 and dΩ̃2

2 = dθ̃2 + sin2 θ̃dξ̃2. The SO(3) × SO(3) symmetry of
the gauged supergravity model is generated by the Killing vectors for each of the round
two-spheres.

For this model, it will be useful to write down some additional uplifting formulae. The
D = 10 metric takes the form

ds210 = ∆−2/3

[
ds25 + L2

(
dψ2 +

dΩ2
2

e4α1 sec 4ϕ1 + tan2 ψ
+

dΩ̃2
2

e−4α1 sec 4ϕ1 + cot2 ψ

)]
,

(E.33)

with the D = 10 warp factor given below. The axion-dilaton matrix is diagonal with

m11 =∆4/3

[
cos2 ψ

(1 + z1)(1 + z̄1)(1− z2)2

(1− |z1|2)(1− (z2)2)
+ sin2 ψ

(1− z2)4

(1− (z2)2)2

]
,

=∆4/3
[
e2φ−2α1 sin2 ψ + e2α1+2φ sec 4ϕ1 cos

2 ψ
]
,

m22 =∆4/3

[
sin2 ψ

(1− z1)(1− z̄1)(1 + z2)2

(1− |z1|2)(1− (z2)2)
+ cos2 ψ

(1 + z2)4

(1− (z2)2)2

]
,

=∆4/3
[
e−2φ−2α1 sec 4ϕ1 sin

2 ψ + e2α1−2φ cos2 ψ
]
,

(E.34)

and m12 = m21 = 0, where the D = 10 warp factor is given by

∆4/3 =
e2α1 sec2 ψ√

(e4α1 sec 4ϕ1 + tan2 ψ) (e4α1 + tan2 ψ sec 4ϕ1)
. (E.35)

Thus, we have vanishing axion, C0 = 0 and eΦ = m11.
The NS-NS and RR two-forms are found to be

B(2) = L2 i sin
3 ψ (z2 − 1)(z1 − z̄1)

Π1

volS̃2 ,

C(2) = −L2 i cos
3 ψ (z2 + 1)(z1 − z̄1)

Π2

volS2 ,

(E.36)

where

Π1 = z1
[
(z2 − 1) sin2 ψ − z̄1(z2 + cos 2ψ)

]
+ z2 cos 2ψ + z̄1(z2 − 1) sin2 ψ + 1 ,

Π2 = z1
[
(z2 + 1) cos2 ψ + z̄1(z2 + cos 2ψ)

]
+ z2 cos 2ψ + z̄1(z2 + 1) cos2 ψ + 1 ,

(E.37)

and volS2 = sin θ dθ ∧ dξ, volS̃2 = sin θ̃ dθ̃ ∧ dξ̃. Finally, the four-form potential is given by

C(4) =
L4

4
ω̂ − L4

8
sin3 2ψ(

z1(z2 + 2z̄1 − 2) + z2(z̄1 − 4)− 2z̄1

−3Π1 − Π2 + z1(1 + z2 − z̄1z2) + (z2 + 1)z̄1 − 4

+
z1(z2 + 2z̄1 + 2) + z2(z̄1 + 4) + 2z̄1

Π1 + 3Π2 − z1z2(z̄1 + 1) + z1 − z2z̄1 + z̄1 + 4
)volS2 ∧ volS̃2 ,

(E.38)

where the four-form ω̂ is

ω̂ = (2ψ − 1

2
sin 4ψ)volS2 ∧ volS̃2 , (E.39)

and satisfies dω̂ = 16volS5 , where the volume form is with respect to the round metric
(E.32).
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The SU(2) invariant 5-scalar model

This truncation is obtained from the ten-scalar model by taking β2 = 0, z4 = −z2 and
z3 = −z1. The resulting truncation is invariant under SU(2) ⊂ SU(3) ⊂ SO(6). To
parametrise the five-sphere so that this symmetry is manifest, similar to [156] we define

Y 1 + iY 2 = e
i
2
(ξ1+ξ2) sin ρ cos(ω/2) ,

Y 3 + iY 4 = e
i
2
(−ξ1+ξ2) sin ρ sin(ω/2) ,

Y 5 + iY 6 = eiα cos ρ ,

(E.40)

with ω, ξ1, ξ2 Euler angles of SU(2) with

0 ≤ ω ≤ π, 0 ≤ ξ1 ≤ 2π, 0 ≤ ξ2 < 4π , (E.41)

and 0 ≤ ρ ≤ π/2, 0 ≤ α ≤ 2π. In these coordinates the metric on the round sphere takes
the form

dΩ̊2
5 = dρ2 + cos2 ρdα2 +

1

4
sin2 ρ

(
τ 21 + τ 22 + τ 23

)
, (E.42)

where the τi are SU(2) left-invariant forms given in (E.29). The SU(2) symmetry then
corresponds to the Killing vector fields associated with the SU(2) action. In general, ∂α
will not be a Killing vector of the uplifted solutions of the SU(2) invariant 5-scalar model
and furthermore, the coefficients of the τi will differ from that of (E.42).

We can also write ξ2 = 2α + γ such that

Y 1 + iY 2 = eiα+
i
2
ξ1+

i
2
γ sin ρ cos(ω/2) ,

Y 3 + iY 4 = eiα−
i
2
ξ1+

i
2
γ sin ρ sin(ω/2) ,

Y 5 + iY 6 = eiα cos ρ .

(E.43)

We then have

dΩ̊2
5 = ds2CP 2 +

(
dα +

1

2
sin2 ρτ3

)2

, (E.44)

where

ds2CP 2 = dρ2 +
1

4
sin2 ρ(τ̃ 21 + τ̃ 22 ) +

1

16
sin2 2ρ τ̃ 23 , (E.45)

and the τ̃1,2,3 are left-invariant one-forms for SU(2)

τ̃1 = − sin γdω + cos γ sinωdξ1 ,

τ̃2 = cos γdω + sin γ sinωdξ1 ,

τ̃3 = dγ + cosωdξ1 .

(E.46)

For the uplift of the SU(2) invariant 5-scalar model, the metric will in general depend
on α and moreover the extra U(1) associated with rotating τ̃1 into τ̃2 that is manifest in
(E.45) will no longer be present. Moving down to the SU(3) truncation in figure 5.1, the
uplifted metric will have a CP 2 factor, as in (E.45), giving rise to the SU(3) symmetry but
in general there will be dependence on α. Moving instead to the SU(2) × U(1) invariant
truncation in figure 5.1, the uplifted metric will in general have dependence on α, and the
U(1) associated with rotating τ̃1 into τ̃2 that is manifest in (E.45) will be present.
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E.1.3 The SL(2,R) action in five and ten dimensions

Both the D = 5 maximal gauged supergravity and the Type IIB supergravity are invariant
under global SL(2,R) transformations. Focussing on the gravity and scalar sector of the
D = 5 theory, the relationship between the two SL(2,R) transformations can be made
explicit using uplift formulae in (E.23).

Consider first the D = 5 theory in which the SL(2,R) ⊂ E6(6) can be generated by the
X of (E.1) with Λα

β as a linear combination of the three matrices (Λi)α
β given by(

Λ1
)
α
β = (σ1)α

β,
(
Λ2
)
α
β = (σ3)α

β,
(
Λ3
)
α
β = (−iσ2)α

β, (E.47)

Explicitly, in terms of the 27 dimensional representation the SL(2,R) generators are thus

Xi|SL(2,R) =



015×15

(Λi)α
β

(Λi)α
β

(Λi)α
β

(Λi)α
β

(Λi)α
β

(Λi)α
β


. (E.48)

A finite SL(2,R) transformation in the D = 5 theory, using the ith generator, can then
be written S i(5) = ecX

i|SL(2,R) where c is a constant. This transformation acts on the scalar

matrix M given in (E.8) via

M → M′ = S i(5) · M · S i(5) T . (E.49)

From this, one can infer the corresponding transformation of the scalars parametrising the
coset which, in general, is non-linear. For the specific case of the transformation associated
with the i = 2 generator, one finds the following action on the ten-scalar model:

β1 →β1 , β2 → β2 ,

z1 → z1 + tanh c
2

1 + tanh c
2
z1
, z2 → z2 − tanh c

2

1− tanh c
2
z2
,

z3 → z3 − tanh c
2

1− tanh c
2
z3
, z4 → z4 + tanh c

2

1 + tanh c
2
z4
.

(E.50)

From (5.39), one can conclude that this transformation is equivalent to a simple shift in
the D = 5 dilaton field φ→ φ+ c. Also note that the SL(2,R) transformations associated
with the i = 1, 3 generators take us outside the ten-scalar truncation and will not play a
role here.

We now turn to the SL(2,R) action in D = 10. From (E.23), we can conclude that
the D = 5 transformation generated by the element S i(5) is equivalent to a transformation
generated by

S i(10) = ec(Λ
i)

α
β

, (E.51)

in the D = 10 theory. For example, and of most interest, the transformation associated
with the i = 2 generator gives rise to

m−1 → m′ −1 = S2
(10) ·m−1 · S2

(10)
T , (E.52)
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Overall, this transformation is equivalent to

mαβ → m′
αβ =

(
e−2cm11 m12

m12 e2cm22

)
, (E.53)

and translates into the following simple transformation of the D = 10 Type IIB dilaton
and axion:

Φ → Φ + 2c and C0 → e−2cC0 . (E.54)

The transformation by S2
(10) plays a key role for our solutions, as it allows one to S-fold

the D = 5 solutions, as discussed in the main text (note that we call this transformation
simply S in (7.19)).

In checking that the S-fold procedure does not break supersymmetry, it is very useful to
see how an S2

(5) ∈ SL(2,R) transformation acts on the D = 5 supersymmetry parameters.
A transformation by any element of the E6(6) global symmetry group is associated with a
local compensating USp(8) transformation, H, which acts on the fermions. For the action
of S2

(5), we find that H ∈ U(1)4 ⊂ USp(8), in the fundamental representation, is explicitly
given by

H =


k1+k̄1

2
0 0 0

k̄1−k1
2

0 0 0

0
k2+k̄2

2
0 0 0

k̄2−k2
2

0 0

0 0
k3+k̄3

2
0 0 0

k̄3−k3
2

0

0 0 0
k4+k̄4

2
0 0 0

k̄4−k4
2

k̄1−k1
2

0 0 0
k1+k̄1

2
0 0 0

0
k̄2−k2

2
0 0 0

k2+k̄2
2

0 0

0 0
k̄3−k3

2
0 0 0

k3+k̄3
2

0

0 0 0
k̄4−k4

2
0 0 0

k4+k̄4
2

 , (E.55)

with

k1 =

(
g1g2g3g4
ḡ1ḡ2ḡ3ḡ4

)1/4

, k2 =

(
ḡ1g2ḡ3g4
g1ḡ2g3ḡ4

)1/4

,

k3 =

(
ḡ1ḡ2g3g4
g1g2ḡ3ḡ4

)1/4

, k4 =

(
g1ḡ2ḡ3g4
ḡ1g2g3ḡ4

)1/4

,

(E.56)

and

g1 = 1 + tanh (c/2) z1, g2 = 1− tanh (c/2) z2 ,

g3 = 1− tanh (c/2) z3, g4 = 1 + tanh (c/2) z4 .
(E.57)

The action on the supersymmetry parameters ε can be seen by diagonalising the W -tensor
Wab of D = 5 gauged supergravity (E.15) and restricting εa to lie within the space spanned
by the eigenvectors of Wab with eigenvalues eK/2W (1st) and eK/2W (5th). In this basis,
the USp(8) transformation is found to be

Ĥ = diag
(
k1, k2, k3, k4, k̄1, k̄2, k̄3, k̄4

)
. (E.58)

The dilaton shift action can also be seen as a Kähler transformation acting in the D = 5
theory. Under φ→ φ+ c, we have K → K+ f + f̄ and W → e−fW with f = f(zA) given
by

ef = cosh4(c/2)g1g2g3g4 . (E.59)
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Under this transformation, the preserved supersymmetries of the BPS equations transform
as ε1 → e(f−f̄)/4ε1 and ε2 → e−(f−f̄)/4ε2 i.e. ε1 → k1ε1 and ε2 → k̄1ε2. This shows that the
dilaton shift is realised by an SL(2,R) transformation which is also acting as an SL(2,R)
transformation on the preserved supersymmetries. This allows us to conclude that the
S-folding procedure will preserve the supersymmetry of the D = 5 solutions as noted in
the main text.
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