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Abstract

We investigate the exact overlaps between eigenstates of integrable spin chains and a special class of 
states called “integrable initial/final states”. These states satisfy a special integrability constraint, and they 
are closely related to integrable boundary conditions. We derive new algebraic relations for the integrable 
states, which lead to a set of recursion relations for the exact overlaps. We solve these recursion relations 
and thus we derive new overlap formulas, valid in the XXX Heisenberg chain and its integrable higher 
spin generalizations. Afterwards we generalize the integrability condition to twisted boundary conditions, 
and derive the corresponding exact overlaps. Finally, we embed the integrable states into the “Separation 
of Variables” framework, and derive an alternative representation for the exact overlaps of the XXX chain. 
Our derivations and proofs are rigorous, and they can form the basis of future investigations involving more 
complicated models such as nested or long-range deformed systems.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One dimensional quantum integrable models are very special systems, where the exact wave 
functions can be computed using analytic methods, even in the presence of interactions. However, 
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the computation of composite objects such as correlation functions is a notoriously difficult task 
even in these systems. In the last couple of years considerable effort was spent to study a special 
class of objects: the exact overlaps between the eigenstates of the model and a distinguished set 
of states, which are now called integrable initial states [1,2]. These overlaps display very special 
features and they are important for a number of reasons.

First of all we mention the context of non-equilibrium dynamics of integrable models, where 
the overlaps play a central role in the study of quantum quenches. In a quench one prepares 
the system in an initial state, which is not an eigenstate of the Hamiltonian, and the goal is to 
study the non-equilibrium dynamics, the emergence of steady states, and their properties [3]. The 
overlaps with the initial state are intermediate objects for the exact computations, and they serve 
as an input to the so-called Quench Action method, one of the main methods for the study of the 
steady states [4]. Thus it was crucial to find initial states where exact overlaps could be derived. 
The first exact results appeared for the Lieb-Liniger model in [5] and the Heisenberg spin chains 
in [6,7]. The exact overlap formulas played a central role in the early studies of the Generalized 
Gibbs Ensemble (GGE) in interacting integrable models, see [8,9].

It was found in these early studies that the overlaps are non-zero only if the eigenstate in 
question is an eigenvector of the space reflection operator. Furthermore the overlaps were found 
to possess a remarkable factorized form. It was later understood in [1] (see also [10,2]), that 
these properties are tied to special integrable structures behind the initial states. Namely, the 
solvable cases can be understood as integrable boundaries in time, and they are closely related to 
integrable boundary conditions. This understanding was inspired by the seminal work of Ghoshal 
and Zamolodchikov [11], which investigated integrable boundaries in integrable Quantum Field 
Theories (QFT’s).

In QFT the overlaps between the eigenstates and some finite volume integrable boundary state 
are called “exact g-functions”. The name “g-function” originally refers to the overlap between 
the finite volume ground state and the boundary state, and this quantity has already a rather rich 
structure [12,13]. Overlaps with excited state are then called excited state g-functions. We note 
that the factorized structure of the excited state overlaps already appeared in [14], but this work 
did not influence the later rigorous derivation of [7].

The exact overlaps also appeared in the context of the AdS/CFT duality: it was first found in 
[15] that they describe one-point functions in defect CFT. To be more precise, in a co-dimension 
one defect N = 4 SYM the tree-level one-point functions are given by overlaps between Bethe 
states corresponding to single trace operators and special two-site states or Matrix Product States 
[16–20]. On the string theory side the surface defect corresponds to a probe brane, where closed 
strings corresponding to single trace operators can be annihilated. The dual quantity of the one-
point function is the annihilation amplitude of the strings. In the 1+1 dimensional sigma model 
point of view this amplitude is an overlap between and eigenstate and a boundary state, which is 
thus an excited state g-function. For these reasons the overlaps appear on both the gauge and the 
string theory sides of the duality.

For the probe D5-brane, which preserves half of the supersymmetry it was showed that the 
tree level boundary states are integrable in the SO(6) sector, and the corresponding overlaps were 
also calculated in [18]. In [19] it was also showed that the one-point functions are integrable 
at one-loop level in the SU(2) sector. Using symmetry considerations the asymptotic all loop 
boundary state was proposed independently in [21] and [22] and its asymptotic overlaps was 
proposed for the full spectrum in [22,23]. In [24] the authors took the weak coupling limit of 
the asymptotic overlap and showed that this formula is covariant under the fermionic dualities 
and it is compatible with the tree level overlaps in various subsectors [18,20]. This is a strong 
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consistency check of the assumption that the integrability condition holds at the all loop level. 
It is worthwhile to mention that integrable boundary states also appear in the investigation of 
three-point function where two operators are of determinant type and third is of single trace type 
[25,26].

Let us now discuss the various methods used for the derivation of the exact overlaps. The 
first work [5] applied coordinate Bethe Ansatz in the Lieb-Liniger model to the overlaps with 
low particle numbers, and a conjecture was made for the general case. The paper [7] actually 
proved an exact formula for the Heisenberg spin chains, valid for arbitrary particle numbers. This 
proof was based on an off-shell overlap formula, originally derived by Tsushiya [27] and adapted 
to overlaps in [6] (see also [28]). However, this particular proof was valid only for a subclass 
of states, namely those related to the so-called diagonal K-matrices. Afterwards a number of 
works simply just assumed the factorized structure of the exact overlap, and determined the pair 
amplitude of the overlaps using either coordinate Bethe Ansatz [16–20] or the so-called Quantum 
Transfer Matrix (QTM) method [10,29,30].

A new approach was initiated in [31], where the exact formulas were proven regarding all par-
ticle numbers, based on the analytic properties of the coordinate Bethe Ansatz expressions. This 
method is based on the ideas of Korepin, developed for the derivation of the norm of the Bethe 
wave function [32]. It was shown in [31] that the method is applicable not only to the Heisen-
berg chain, but also to spin chains with non-compact local spaces such as the so-called sl(2, R)

chain. This method was already used in [33] to give an alternative proof for the overlap formulas 
between the Lieb-Liniger Bethe states and the Bose-Einstein condensate state, originally derived 
in [5] and first proven in [34]. However, the drawback of the method of [31] is that it is relatively 
difficult to apply it to new cases, and it was not clear whether it could be useful for the models 
solvable by the nested Bethe Ansatz.

It is desirable to develop further methods for the derivation and proof of exact overlap formu-
las. It is fair to say that none of the existing methods is convenient for actually proving the results 
in the nested spin chains. Furthermore, it is desirable to find a formulation which would allow an 
extension to long range deformed models, and in particular to the full AdS/CFT problem.

With this goal in mind we turn to two central methods used in integrability: the Algebraic 
Bethe Ansatz (ABA) and the Separation of Variables (SoV). Remarkably, up to now neither 
of these methods have been used for the systematic treatment of integrable initial states and 
their overlaps. The original work [6] was based on some simple computations with systems with 
boundaries in ABA, but the applicability of those results is very limited. In integrable QFT the 
g-functions were considered in connection with SoV in [35], but that work did not treat the 
integrability condition for the boundary states within SoV. It is worthwhile to recall that the 
natural language of the AdS/CFT spectral problem is the so-called Q-system, which is a set of 
relations for the so-called Q-functions [36]. On the other hand, the Q-functions are naturally 
interpreted as the wave functions in SoV. This gives further motivation to apply the SoV method 
to the boundary states. Nevertheless, a proper embedding of the integrable states into the SoV 
framework was missing up to now.

In the present work we initiate a systematic study of the overlaps using the ABA and the SoV 
approaches. We show that the ABA is capable of deriving new recursion relations for the over-
laps, which can complement the methods of [31], leading to a wider applicability. Furthermore 
we show that the integrable initial states can be represented also in the SoV framework, and we 
also derive new overlap formulas using this approach.
3
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2. Overlaps and ABA

In this section we review the construction of integrable two-site states for integrable spin 
chains [1]. We focus on the XXX chain and its integrable higher spin generalizations.

We introduce a new relation (which we call the KT-relation), which is very useful for the 
derivation of overlap formulas: it leads to a new recursion relation for the off-shell overlaps. This 
recursion can be solved in certain cases and we obtain the off-shell overlap as a Vandermonde-
like determinant. Using the argument of [31] we derive the on-shell formula of general two-site 
state for inhomogeneous chains with arbitrary quantum space. We close this section by calculat-
ing the overlaps for descendant states.

2.1. Integrable states and KT relation

Let us start with the definitions. Let us use the following convention for the R-matrix

R(u) = u1 + P = u1 + eij ⊗ eji, (2.1)

where eij -s are the 2 × 2 matrix units and P is the permutation matrix. Let E(r)
ij ∈ End

(
Cr+1

)
be 

the highest weight irrep of gl2 with highest weight (r, 0). The basis vectors are |p,q〉(r) ∈ Cr+1

for which p + q = r , 0 ≤ p, q ≤ r and

E
(r)
11 |p,q〉(r) = p |p,q〉(r) , E

(r)
22 |p,q〉(r) = q |p,q〉(r) . (2.2)

Using these representations we define the Lax operators

R(r)(u) = u1 + eij ⊗ E
(r)
ji , L(r)(u) = R(r)(u − r/2). (2.3)

The R- and L-matrices have crossing symmetry:

R12(u) = −σ
y
1 R

t1
12(−u − 1)σ

y
1 . (2.4)

L
(r)
12 (u) = −σ

y

1

[
L

(r)
12 (−u)

]t1
σ

y

1 = −�2

[
L

(r)
12 (−u)

]t2
�−1

2 , (2.5)

where σy =
(

0 −i

i 0

)
and the � is a matrix for which

�
(
E

(r)
11 − E

(r)
22

)
�−1 = E

(r)
22 − E

(r)
11 ,

�E
(r)
12 �−1 = −E

(r)
21 , �E

(r)
21 �−1 = −E

(r)
12 . (2.6)

Using the Lax operators we can define the monodromy and transfer matrices and their space 
reflected versions as

T0(u) = L
(r2L)
0,2L (u − ξ2L)L

(r2L−1)

0,2L−1(u − ξ2L−1) . . .L
(r2)
0,2 (u − ξ2)L

(r1)
0,1 (u − ξ1)

T π
0 (u) = L

(r1)
0,1 (u + ξ1)L

(r2)
0,2 (u + ξ2) . . .L

(r2L−1)

0,2L−1(u + ξ2L−1)L
(r2L)
0,2L (u + ξ2L)

(2.7)

and

t (u) = Tr0T0(u), �t(u)� = Tr0T
π
0 (u), (2.8)

where � is the space reflection operator. The matrix entries of the monodromy matrices are
4
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T (u) =
(

A(u) B(u)

C(u) D(u)

)
, T π (u) =

(
Aπ(u) Bπ(u)

Cπ(u) Dπ(u)

)
. (2.9)

The T and T π are not independent quantities. We can use the crossing symmetry of Lax matrices 
to express

σ
y

0

(
T π

0 (u)
)t0 σ

y

0 = L0,2L(−u − ξ2L) . . .L0,1(−u − ξ1) = T0(−u). (2.10)

Therefore

T π(u) =
(

D(−u) −B(−u)

−C(−u) A(−u)

)
. (2.11)

We can construct the eigenvalues and eigenvectors of the transfer matrix using the algebraic 
Bethe Ansatz. The eigenvectors can be built form the B-operators as

|u〉 = B(u1) . . .B(uN) |0〉 , (2.12)

where |0〉 is the reference state:

|0〉 = |r1,0〉(r1) ⊗ |r2,0〉(r2) ⊗ · · · ⊗ |r2L−1,0〉(r2L−1) ⊗ |r2L,0〉(r2L) . (2.13)

Below it is understood that u is a set of rapidities with N elements, unless otherwise noted.
The action of operators A(u) and D(u) on the pseudovacuum can be written in the usual form

A(u) |0〉 = λ+(u) |0〉 , D(u) |0〉 = λ−(u) |0〉 , (2.14)

where

λ±(u) =
2L∏
k=1

(u ± rk/2 − ξk) . (2.15)

The vector |u〉 is an eigenvector of the transfer matrix is the Bethe roots ui satisfy the Bethe 
Ansatz equations

λ+(ui)

λ−(ui)
= −Q1(ui + 1)

Q1(ui − 1)
, (2.16)

and the eigenvalue �(u) reads as

�(u) = λ+(u)
Q1(u − 1)

Q1(u)
+ λ−(u)

Q1(u + 1)

Q1(u)
, (2.17)

where we defined the Q-function

Q1(u) =
N∏

i=1

(u − ui). (2.18)

We can also construct the left eigenvectors with the same eigenvalue as

〈u| = 〈0|C(u1) . . .C(uN). (2.19)

In this paper we do not use any inner product therefore the quantities like 〈v|u〉 are defined as a 
natural pairing between a dual vector and a vector, but not as a scalar product.

It is well known that the Bethe states with N magnons are highest weight states and their 
descendants are also eigenvectors of the transfer matrix with the same eigenvalue. Let us define 
spin operators as
5
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Fig. 1. Pictorial representation of the KYB equation (2.27), see on the right. The action of the Lax operator is represented 
by the crossing of the straight and dashed lines, which correspond to two (potentially different) auxiliary spaces. The 
thick horizontal line represents for the integrable final state (boundary in the time direction). The K-matrix connects the 
physical spaces to the integrable boundary, and its two “legs” carry rapidity parameters (inhomogeneities) opposite to 
each other.

S+ = e21, S− = e12, S3 = 1

2
(e11 − e22) , (2.20)

for which[
S+, S−]= 2S3,

[
S3, S

±]= ±S±. (2.21)

The asymptotic limit of the operator B is the spin lowering operator

lim
u→∞

1

u2L−1 B(u) = 	(S−), (2.22)

where 	 is the usual co-product. Let us define the descendant states as

|u,M〉 := 	(S−)M |u〉 . (2.23)

Below we will construct integrable two-site states. The construction requires that the sites of 
the spin chain are “paired” which means that for a pair of sites (2a − 1, 2a) the inhomogeneities 
are opposite to each other i.e.

ξ2a−1 = θa, ξ2a = −θa (2.24)

and the representations are the same i.e.

r2a−1 = r2a = sa. (2.25)

Two-site states can be built from K-matrices K(s)(u). The K-matrices are given by their com-
ponents kij , which can be arranged into a matrix or into a co-vector as

K1(u) =
∑
i,j

kij (u)eij , 
K12(u) =
∑
i,j

kij (u)e∗
i ⊗ e∗

j . (2.26)

These are two representations of the same quantity and we for simplicity we call them both 
K-matrix.

The defining equation of the K-matrices is the following equation [1,2,22,23]


K12(u) 
K(s)
34 (v)L

(s)
14 (u + v)L

(s)
13 (u − v) = 
K12(u) 
K(s)

34 (v)L
(s)
23 (u + v)L

(s)
24 (u − v). (2.27)

Following [22,23] we call it the KYB equation. We will see below that it is very closely related 
to the Boundary Yang-Baxter (BYB) equation. A graphical interpretation of the KYB equation 
is given in Fig. 1.
6
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Fig. 2. Graphical interpretation of the KT relation (2.29). The dashed vertical lines stand for the physical spaces of the 
spin chain, and the horizontal line is the auxiliary space of the monodromy matrix. We assume that this space carries the 
spin-1/2 representation, but the physical spaces can be higher dimensional. The main idea is to insert one more K-matrix 
which acts on the auxiliary space, and then to use the KYB relations consecutively, to shift the action of the extra K
from the right hand side to the left hand side. Working out the details we obtain (2.29). It is important that the indices at 
the left and right are free, thus we actually have a collection of 4 algebraic relations. The integrability condition (2.30) is 
found by multiplying with the inverse of one of the K-matrices, and taking the trace in auxiliary space.

We can now define two-site states as

〈�| = 
K(s1)(θ1) ⊗ · · · ⊗ 
K(sL)(θL). (2.28)

We call such a state an integrable final state. We use the expression “final state”, because in our 
conventions it is actually a co-vector which acts on the eigenstates of the model.

It follows directly from the KYB equation that such a two-site state satisfies the following 
relation (see 2 for the graphical derivation)

〈�| 
K12(u)T1(u) = 〈�| 
K12(u)T π
2 (u) ⇐⇒ 〈�|σyKt (u)T (u) = 〈�|T (−u)σyKt (u).

(2.29)

We call (2.29) the KT -relation; it can be understood as the “time”-boundary analog of the usual 
RT T -relation1. Note that it is actually a collection of 4 equations due to the free indices in 
the auxiliary space; specific components will be given below. Also, it is shown below that the 
KT -relation allows us to embed the overlap computations into the framework of algebraic Bethe 
Ansatz.

Let us assume that the K-matrix is invertible. In this case we can take the trace of the KT 
relation in auxiliary space after multiplying with the inverse of the K-matrix on either side. This 
leads to the integrability condition

〈�| t (u) = 〈�|�t(u)�. (2.30)

This condition was introduced in [1], and the equation (2.29) appears there as an intermedi-
ate step in the derivation (2.30). In this paper we point out that the equation (2.29) contains 
more information than the integrability condition (2.30), and we use this extra information in the 
derivation of the overlaps. We note that (2.30) is formally a relation for co-vectors.

It is known that the KYB equation is equivalent to the reflection equation [1,2,22,23]

L
(s)
12 (u − v)

(
�1K(s)

1 (−u)
)

L
(s)
12 (u + v)

(
σ

y

2 K2(−v)
)

= (σy
2 K2(−v)

)
L

(s)
12 (u + v)

(
�1K(s)

1 (−u)
)

L
(s)
12 (u − v). (2.31)

For s = 1 the reflection equation can be written as

1 The KT relation looks very similar as the twisted Yangian invariance of Baxter lattice with boundary, see (24) in [37].
7



T. Gombor and B. Pozsgay Nuclear Physics B 967 (2021) 115390
R12(u − v − 1/2)
(
σ

y

1 K(1)
1 (−u)

)
R12(u + v − 1/2)

(
σ

y

2 K2(−v)
)=(

σ
y
2 K2(−v)

)
R12(u + v − 1/2)

(
σ

y
1 K(1)

1 (−u)
)

R12(u − v − 1/2). (2.32)

Using the definitions


K(1)(u) := 1

u + 1/2

K(u + 1/2), K1(u) := σ

y

1 K1(−u) (2.33)

we obtain the usual reflection equation of XXX spin chain

R12(u − v)K1(u)R12(u + v)K2(v) = K2(v)R12(u + v)K1(u)R12(u − v). (2.34)

The solutions of this equation are well known. We use the following parametrization

k11(u) = au k12(u) = −b + cu (2.35)

k21(u) = b + cu k22(u) = du. (2.36)

We will also use normalized matrix entries

κ(u) := k21(u)

k11(u)
= b + cu

au
,

k12(u)

k11(u)
= −b + cu

au
= κ(−u), δ := k22(u)

k11(u)
= d

a
. (2.37)

Using this matrix we can obtain the K-matrices for the higher representations by the fusion 
procedure. It is more convenient to use the reflection equation (2.31) with the R-matrices. We 
use the s = 1 equation


K(1)
12 (u) 
K(1)

34 (v)R14(u + v)R13(u − v) = 
K(1)
12 (u) 
K(1)

34 (v)R23(u + v)R24(u − v) (2.38)

to construct the solution of the general KYB equation


K(1)
12 (u) 
K(s)

34 (v)L
(s)
14 (u + v + 1/2)L

(s)
13 (u − v + 1/2)

= 
K(1)
12 (u) 
K(s)

34 (v)L
(s)
23 (u + v + 1/2)L

(s)
24 (u − v + 1/2). (2.39)

The L(s)
14 (u ∓ v + 1/2) can be obtained from the original R-matrix using fusion [38]. We obtain

L
(s)
ab (u∓v+1/2) ∝

[
P(1,2,...,s)

b

][ s∏
k=1

Ra,k(u ∓ (v − s − 2k + 1

2
))

][
P(1,2,...,s)

b

]T
, (2.40)

where P(1,...,s) : (C2
)⊗s → Cs+1 is the projection operator to the symmetric subspace of (

C2
)⊗s

. The K(s)(v) can be obtained in an analogous way [39]


K(s)
a,b(v) =

[
s∏

k=1


K(1)
2k−1,2k(v − s − 2k + 1

2
)

]
×

[
s−1∏
l=1

s−l∏
k=1

R̄2k+2l−1,2k(2v − s + 2k + l − 1)

][
P(1,3,...,2s−1)

a

]T [
P(2,4,...,2s)

b

]T
, (2.41)

where

R̄(u) = 1

u + 1
R(u). (2.42)

In Fig. 3 we present a graphical interpretation of the fusion, taking the example of 
K(4)
(v).
a,b

8
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Fig. 3. Graphical illustration of the fusion rule (2.41) for the K-matrices. Here we present the example K(4)(v). The 
fused K-matrix is obtained by taking 4 copies of the original K-matrices with shifted rapidity parameters. Afterwards 
we apply a projection, which is symbolized by the boxes.

Using this convention for the K-matrices the overlap between 
〈
�
∣∣ and the pseudovacuum is〈

�
∣∣0〉= aL, (2.43)

where

L =
L∑

k=1

sk. (2.44)

In this section our goal is finding and proving overlap formulas as〈
�
∣∣u〉, (2.45)

where 
∣∣u〉 is an on-shell vector i.e. an eigenstate of the transfer matrices. However, quantities 

like (2.45) are not physical since they depend on our normalization conventions. Of course, for 
physical system the Hamiltonian is hermitian and we have a well-defined norm on the Hilbert 
space and we can divide (2.45) by the norm of the state. In this paper we do not introduce any 
metric but we have an option to define normalized quantities as〈

�
∣∣u〉〈u∣∣�∗〉〈

u
∣∣u〉 , (2.46)

where |u〉 and 〈u| are the right and left eigenvectors with the same eigenvalue (and spin). The 
advantage of this expression is that it does not depend on the normalization of the left/right 
eigenvectors. The disadvantage is that we have to define a new initial two-site state 

∣∣�∗〉 which 
is independent from the final two-site state 

〈
�
∣∣ (because of the absence of the metric). With the 

asterisk we suggest that it would be a complex conjugated state in a physical situation.
In the general case we can also define the initial two-site states. We can use the vector rear-

rangement of the previously defined K-matrices


K12(u)T =
∑
i,j

kij (u)ei ⊗ ej . (2.47)

We saw that they satisfy the reflection equation (2.31)
9
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L
(s)
12 (u − v)

(
�1K(s)

1 (−u)
)

L
(s)
12 (u + v)

(
σ

y

2 K2(−v)
)

= (σy
2 K2(−v)

)
L

(s)
12 (u + v)

(
�1K(s)

1 (−u)
)

L
(s)
12 (u − v). (2.48)

This equation can be written as

L
(s)
13 (v − u)L

(s)
14 (−u − v) 
K12(−u)T 
K(s)

34 (−v)T

= L
(s)
24 (v − u)L

(s)
23 (−u − v) 
K12(−u)T 
K(s)

34 (−v)T , (2.49)

which will be called KYB equation for right vectors. The initial two-site state is∣∣�〉= 
K(s1)(−θ1)
T ⊗ · · · ⊗ 
K(sL)(−θL)T , (2.50)

for which the corresponding KT -relation can be written as

T2(u) 
K12(u)T |�〉 = T π
1 (u) 
K12(u)T |�〉 ⇐⇒

T (u)K∗t (u)σ y |�〉 = K∗t (u)σ yT (−u) |�〉 . (2.51)

In the following we concentrate overlaps with the final two site states but we emphasize that the 
calculation for the initial two-site state is completely analogous.

2.2. The KT relation and the overlaps

In the following we will use the KT relation to calculate overlaps between the above defined 
two-site states 〈�| and the off-shell Bethe states. The main advantage of this method is that it can 
be applied even for inhomogeneous chains and it gives the overlap formula for all representations 
of the quantum space simultaneously. This is remarkable, because in the higher spin cases it is 
not necessary to know the explicit form of the K-matrices, it is enough to know they exists e.g. 
given by fusion(2.41) 2. Nevertheless it is possible to derive the exact overlaps.

We start with the following component of the KT relations:

〈�| (k11(u)B(u) + k21(u)D(u)) = 〈�| (k21(u)Aπ(u) + k22(u)Cπ(u)
)
. (2.52)

Using the crossing relation for the space reflected monodromy matrix (2.11) we obtain

〈�| (k11(u)B(u) + k21(u)D(u)) = 〈�| (k21(u)D(−u) − k22(u)C(−u)) . (2.53)

We can see that this equation can be used to replace B-operators with D- and C-operators, 
therefore we can decrease the number of magnons iteratively. Using the normalized matrix entries 
κ(u) and δ the equation (2.53) can be written as

〈�|B(u) = κ(u) 〈�| (D(−u) − D(u)) − δ 〈�|C(−u). (2.54)

This will lead to a recursion relation for the overlaps, as we show below. We note that a different 
type of recursion was earlier used in [41], where the recursion also involved changing the length 
of the spin chain in each step. In contrast, the relation (2.54) does not change the volume, thus it 
leads to a different recursion procedure.

Now we demonstrate the usefulness of the KT-relation by very simple and instructive calcu-
lations which give the off-shell overlaps for one and two magnons.

2 A closed form expression can be found in [40]. It is for the non-compact chain but should work for the compact case 
too.
10



T. Gombor and B. Pozsgay Nuclear Physics B 967 (2021) 115390
N=1

We calculate the one magnon overlap as

〈�|B(u) |0〉 =κ(u) 〈�| (D(−u) − D(u)) |0〉 − A 〈�|C(−u) |0〉
=aLκ(u)

(
λ+(u) − λ−(u)

)
, (2.55)

where we used the identities

λ±(−u) = λ∓(u). (2.56)

N=2

Let us calculate the two magnon overlap

〈�|B(u1)B(u2) |0〉 = κ(u1) 〈�| (D(−u1) − D(u1))B(u2) |0〉 − δ 〈�|C(−u1)B(u2) |0〉 .

(2.57)

Using the commutation relations

D(u)B(v) = u − v + 1

u − v
B(v)D(u) − 1

u − v
B(u)D(v) (2.58)

C(u)B(v) = B(v)C(u) + 1

u − v
(A(v)D(u) − A(u)D(v)) (2.59)

we obtain the following expressions

〈�|D(u1)B(u2) |0〉 =u1 − u2 + 1

u1 − u2
λ−(u1) 〈�|B(u2) |0〉

− 1

u1 − u2
λ−(u2) 〈�|B(u1) |0〉

=aL
[
κ(u2)

u1 − u2 + 1

u1 − u2
λ−(u1)

(
λ+(u2) − λ−(u2)

)
− κ(u1)

1

u1 − u2
λ−(u2)

(
λ+(u1) − λ−(u1)

)]
(2.60)

and

〈�|C(−u1)B(u2) |0〉 = −aL
1

u1 + u2

(
λ+(u1)λ

+(u2) − λ−(u1)λ
−(u2)

)
. (2.61)

Therefore the two magnon overlap can be written as

〈�|B(u1)B(u2) |0〉 = aL
[(

κ(u1)κ(u2)
u1 + u2 − 1

u1 + u2
+ δ

1

u1 + u2

)
λ+(u1)λ

+(u2)−

−κ(u1)κ(u2)
u1 − u2 + 1

u1 − u2
λ−(u1)λ

+(u2)−

−κ(u1)κ(u2)
u1 − u2 − 1

u1 − u2
λ+(u1)λ

−(u2)+

+
(

κ(u1)κ(u2)
u1 + u2 + 1

u1 + u2
− δ

1

u1 + u2

)
λ−(u1)λ

−(u2)

]
. (2.62)
11
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2.3. Global rotation

The previous examples showed that the term in the KT -relation proportional to δ causes 
significant difficulty. This arises from the appearance of the C-operators, whose commutation 
relations with the B-operators are more involved.

However, we can use a global rotation to eliminate the δ-terms. Applying the following rota-
tion


K ′
12(u) = 
K12(u) exp

(
γ − c

a
S+
)

, (2.63)

where

γ 2 = c2 − ad (2.64)

the components of the rotated K matrix are

k′
11(u) = au k′

12(u) = −b + γ u (2.65)

k′
21(u) = b + γ u k′

22(u) = 0. (2.66)

At the end of the day we want to obtain on-shell overlap formulas and we know that the on-shell 
Bethe vectors are highest weight states i.e.

S+ |u〉 = 0, (2.67)

therefore〈
�
∣∣u〉= 〈�′∣∣ exp

(
c − γ

a
S+
)∣∣u〉= 〈�′∣∣u〉, (2.68)

where the two-site state 
〈
�
∣∣ is built from the K-matrix 
K ′

12. The last equation shows that we can 
work with this rotated K-matrix for which

κ ′(u) = b + γ u

au
, δ′ = 0. (2.69)

2.4. Recursion relation for the overlap

Let us continue with the derivation of a recursion formula for the off-shell formula

SN(u1, . . . , uN) = 〈�′∣∣u1, . . . , uN

〉
. (2.70)

We only need the following commutation relations [42]

D(u1)B(u2) . . .B(uN) =
N∏

k=2

u1 − uk + 1

u1 − uk

B(u2) . . .B(uN)D(u1)−

−
N∑

l=2

1

u1 − ul

N∏
k=2�=l

ul − uk + 1

ul − uk

B(u1) . . . ̂B(ul) . . .B(uN)D(ul).

(2.71)
12



T. Gombor and B. Pozsgay Nuclear Physics B 967 (2021) 115390
Let us start with the KT relation

SN(u1, . . . , uN) = 〈�′∣∣B(u1)B(u2) . . .B(uN) |0〉
=κ ′(u1)

〈
�′∣∣ (D(−u1) − D(u1))B(u2) . . .B(uN) |0〉 . (2.72)

Substituting the commutation relations we can obtain the recursion relation:

SN(u1, . . . , uN) =

κ ′(u1)

( N∏
k=2

u1 + uk − 1

u1 + uk

λ+(u1)SN−1(u2, . . . , uN)−

−
N∏

k=2

u1 − uk + 1

u1 − uk

λ−(u1)SN−1(u2, . . . , uN)+

+
N∑

l=2

1

u1 + ul

N∏
k=2�=l

ul − uk + 1

ul − uk

λ−(ul)SN−1(−u1, u2 . . . ûl . . . uN)+

+
N∑

l=2

1

u1 − ul

N∏
k=2�=l

ul − uk + 1

ul − uk

λ−(ul)SN−1(u1, u2 . . . ûl . . . uN)

)
.

(2.73)

We saw that the two magnon overlap is simplified as

S2(u1, u2) =aLκ ′(u1)κ
′(u2)

(
u1 + u2 − 1

u1 + u2
λ+(u1)λ

+(u2) − u1 − u2 + 1

u1 − u2
λ−(u1)λ

+(u2)−

−u1 − u2 − 1

u1 − u2
λ+(u1)λ

−(u2) + u1 + u2 + 1

u1 + u2
λ−(u1)λ

−(u2)

)
. (2.74)

Seeing this formula we may assume that the N magnon overlap reads as

SN(u1 . . . uN) =aL
[

N∏
k=1

κ ′(uk)

]

×
⎡⎣ ∑

{σ1,...,σN }={±,...,±}

∏
1≤k<l≤N

σkuk + σlul − 1

σkuk + σlul

N∏
k=1

σkλ
σk (uk)

⎤⎦ . (2.75)

It turns out that this assumption is true: the formula above can be proved using the recursion 
relation (2.73). We present the derivation in Appendix A.

The overlap formula (2.75) can be also written in a determinant form. After a simple rear-
rangement we obtain that

SN(u1 . . . uN) =aL

[∏N
k=1 κ ′(uk)

]
∏

1≤k<l≤N

[
u2

l − u2
k

]
×
[ ∑

σ1,...,σN

∏
k<l

[(
ul − σl

2

)2 −
(
uk − σk

2

)2
] N∏

k=1

σkλ
σk (uk)

]
, (2.76)

which can be written as
13
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SN(u1 . . . uN) = aL
[

N∏
k=1

κ ′(uk)

]
detV +

N (u1, . . . , uN)∏
1≤k<l≤N

[
u2

l − u2
k

] , (2.77)

where we defined a Vandermonde-like determinant[
V +

N (u1, . . . , uN)
]
kl

= (uk − 1/2)2l−2λ+(uk) − (uk + 1/2)2l−2λ−(uk). (2.78)

This result is reminiscent of the determinant formula found by Tsushiya in [27], which describes 
the off-shell overlaps the diagonal K-matrices in the spin-1/2 chain [6]. However, the matrix 
elements are different already in the spin-1/2 chain, with no direct connection to the formulas of 
Tsushiya. Thus (2.77) seems to be a completely new result. We stress that it is valid not only in 
the spin-1/2 XXX chain, but also in the higher spin integrable generalizations.

2.5. On-shell overlaps

In this subsection we review the connection between the integrability condition and the pair 
structure of Bethe roots. Furthermore, we also derive the on-shell overlap formulas, which are 
new in the higher spin cases.

We remind that the first derivation of exact on-shell overlaps of the Heisenberg spin chains 
was presented in [7]. In that work the on-shell limit of the off-shell formulas of [6,28] was taken, 
and the factorized structure was found. The only work after [7,43] which actually proved overlap 
formulas was [31]. In [31] a new method was introduced, which derived the on-shell overlaps 
based on the analytic properties of the of-shell cases. Below we review this method, and we use 
it to derive new on-shell overlaps.

Let us first discuss the implications of the integrability condition on Bethe roots. Applying 
on-shell Bethe vectors on the integrability condition (2.30) we obtain that

〈�| t (u) |u〉 = 〈�|�t(u)� |u〉 −→ (�(u) − �(−u))
〈
�
∣∣u〉= 0, (2.79)

where �(u) is the eigenvalue of the transfer matrix

t (u) |u〉 = �(u) |u〉 , �t(u)� |u〉 = t (−u) |u〉 = �(−u) |u〉 . (2.80)

We just obtained that non-vanishing overlaps can be found only if

�(u) = �(−u) (2.81)

The explicit form of the eigenvalue is

�(u) = λ+(u)
Q1(u − 1)

Q1(u)
+ λ−(u)

Q1(u + 1)

Q1(u)
. (2.82)

Using the formula for �(u) (2.17) we can convince ourselves that the condition (2.81) is equiv-
alent to

Q1(−u) = (−1)NQ1(u) (2.83)

This implies that the set of (finite) Bethe roots is parity symmetric. Generally the two possibilities 
are

u = {u1,−u1, u2,−u2, . . . , uN/2,−uN/2
}

or

u = {u1,−u1, u2,−u2, . . . , u(N−1)/2,−u(N−1)/2,0
}
. (2.84)
14
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Let us now turn to the method of [31] for the derivation of on-shell overlaps. For simplicity 
we focus on the case when all rapidities come in pairs. We also use the following notation for the 
two halves of the set of Bethe roots:

u+
N/2 = {u1, u2, . . . , uN/2

}
, (2.85)

u−
N/2 = {uN/2+1, uN/2+2, . . . , uN

}
. (2.86)

The key observation of [31] was that the non-zero terms in the on-shell overlaps are obtained 
from apparent poles of the off-shell overlaps associated with the pair structure. The paper [31]
concentrated on homogeneous spin chains. Let us introduce the notation

w(u) = eiLp(u) (2.87)

where p(u) is the lattice momentum in the model under consideration. In [31] w(u) was denoted 
as a(u), but we chose to change the notation to avoid confusion with the parameter a of the 
K-matrix.

It was observed in [31] that the off-shell overlap has apparent poles of the type

w(u1)w(u2) − 1

u1 + u2
(2.88)

where we selected for simplicity a concrete pair (u1, u2). In the on-shell limit such factors will 
acquire some finite value (depending on L) if u1 + u2 → 0. However, it was also shown in [31]
that the regular terms all add up to zero, and the finite on-shell overlap consists only of these 
pole contributions. Thus it is necessary to understand the precise pole structure of the off-shell 
overlaps.

Let us now turn to our new off-shell formulas. It is our goal to use the arguments of [31] to 
derive new on-shell overlaps. In our case the w-variables are replaced by

wk = λ+(uk)

λ−(uk)
, (2.89)

because we also treat the inhomogeneous cases. In the homogeneous case the original functions 
are reproduced. In the on-shell limit the Bethe Ansatz equations

wk

N∏
j=1

f (uk − uj )

f (uj − uk)
= −1 (2.90)

are satisfied where

f (u) = u − 1

u
. (2.91)

Returning to the representation (2.75) of the off-shell overlaps we see the occurrence of the 
formal poles of the type (u1 + u2)

−1. However, our normalization is different from that of [31]. 
Let us therefore introduce the new normalization

SN(u1, . . . , uN) =
N∏

k=1

1

λ−(uk)
SN(u1, . . . , uN) (2.92)

with the exact result given by
15
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SN(u1 . . . uN) =aL
[

N∏
k=1

κ ′(uk)

]

×
⎡⎣ ∑

{σ1,...,σN }={±,...,±}

∏
1≤k<l≤N

σkuk + σlul − 1

σkuk + σlul

N∏
k=1

σkw
σk+1/2
k

⎤⎦ . (2.93)

We can see that this overlap function depends only on the wi parameters, and the separate de-
pendence on λ±(ui) disappeared.

Let us regard the off-shell overlap as a function of the u-variables and w-variables, which are 
treated as formally independent variables. Taking the u1 + u2 → 0 limit we obtain the singular 
piece

SN(u1 . . . uN) =1 − w1w2

u1 + u2
κ ′(u1)κ

′(−u1)

×
[

N∏
k=3

κ(uk)

][
N∏

k=3

u1 − uk − 1

u1 − uk

u1 + uk + 1

u1 + uk

]

× aL

⎡⎣ ∑
{σ3,...,σN }

∏
3≤k<l≤N

σkuk + σlul − 1

σkuk + σlul

×
N∏

k=3

σk

(
uk + u1 − 1

uk + u1 + 1

uk − u1 − 1

uk − u1 + 1

)σk+1/2

w
σk+1/2
k

]
+ reg. (2.94)

Therefore the residue can be written as

SN(u1 . . . uN |w1, . . . ,wN) = w1w2 − 1

u1 + u2
F(u1) ×

[
N∏

k=3

f (u1 − uk)f (−u1 − uk)

]
×

SN−2(u3 . . . uN |w̃3, . . . , w̃N ) + reg. (2.95)

where SN−2 contains the modified wk parameters

w̃k = f (uk + u1)

f (−uk − u1)

f (uk − u1)

f (u1 − uk)
wk. (2.96)

Above F(u) is a rational function which carries the dependence on the initial state:

F(u) = −κ ′(u)κ ′(−u) = −γ 2

a2

u2 − b2/γ 2

u2 . (2.97)

The structure of the residue in (2.95) agrees with Proposition 1 of [31]. Repeating the derivation 
of [31] one can show that if the above residue property holds, then the un-normalized on-shell 
overlap is equal to

SN → aL
N/2∏
j=1

F(u+
j )

∏
1≤j<k≤N/2

f̄ (u+
j , u+

k ) × detG+
N/2, (2.98)

where G± are the so-called Gaudin-like matrices of size N × N , with matrix elements
2 2
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G±
jk =

(
∂

∂u+
j

φ(u+
k ) ± ∂

∂u+
j

φ(u−
k )

)∣∣∣∣∣
u−

i =−u+
i

, (2.99)

with

φ(u) = log

⎡⎣λ+(u)

λ−(u)

N∏
j=1

f (u − uj )

f (uj − u)

⎤⎦ (2.100)

and

f̄ (λ,μ) = f (λ − μ)f (λ + μ)f (−λ − μ)f (−λ + μ). (2.101)

Therefore we just proved that the overlap function has the following on-shell limit

〈�|u+
N/2〉 = aL

N/2∏
j=1

F(u+
j )

N/2∏
j=1

λ+(u+
j )λ−(u+

j )
∏

1≤j<k≤N/2

f̄ (u+
j , u+

k ) × detG+
N/2. (2.102)

To calculate the normalized overlap we need the pairing between left and right eigenstates

〈u|u〉 =
N∏

j=1

λ+(uj )λ
−(uj )

∏
1≤j<k≤N

f (uj − uk)f (uk − uj ) × detGN, (2.103)

where G is the Gaudin matrix

Gjk = ∂

∂uj

φ(uk). (2.104)

For the pair structure the Gaudin determinant is factorized

detGN = detG+
N/2 detG−

N/2. (2.105)

We can then obtain the normalized overlap as

〈�|u+
N/2〉〈u+

N/2|�〉
〈u+

N/2|u+
N/2〉

= a2L
N/2∏
j=1

ν(u+
j )

detG+
N/2

detG−
N/2

, (2.106)

where the one particle overlap function is

ν(u) = (F (u))2

f (2u)f (−2u)
= γ 4

a4

(u2 − b2/γ 2)2

u2(u2 − 1/4)
. (2.107)

We observe the remarkable factorized form of the on-shell overlap. It is important that the 
formula (2.106) is valid also in the integrable higher spin chains with SU(2)-symmetry. The 
dependence on the spin representation is carried only through the Gaudin-like matrices, because 
their entries depend on the functions λ±(u), which on the other hand depend on the spin, see 
(2.15). In contrast, the pair amplitude ν(u) is completely independent of the spin. The algebraic 
reason behind this remarkable separation and factorization is that in the higher spin cases the 
K-matrices are constructed using the fusion relation (2.41), and they are completely determined 
by the K-matrices of the defining representation.

An alternative interpretation of the factorized formula (including the higher spin cases) can 
be given using the Quantum Transfer Matrix (QTM) method, see [1,2,30]. We do not pursue that 
method here, nevertheless let us give a few comments. In the QTM method the fused K-matrices 
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describe the fusion of boundary transfer matrices, which belong to the same commuting hierar-
chy. It can then be argued using the methods of [10], that the pair amplitude ν(u) has to be the 
same for all spins. The argument using the QTM method can be applied only in the infinite vol-
ume limit, but our computations here reach the same conclusions, using rigorous computations 
in arbitrary finite volume.

2.6. Descendant states

We close this section by calculating the overlaps for the descendant states〈
�
∣∣u,M

〉
. (2.108)

Overlaps with 
〈
�′∣∣

Let us start with the two-site state 
〈
�′∣∣, which is obtained from the rotated K-matrix (2.63) and 

for which the off-shell formula is available. For an off-shell state we can continuously change 
the rapidities, which means that we can obtain the descendant overlaps from a simple limit

〈
�′∣∣u1 . . . , uN ,M

〉= lim
uN+1,...,uN+M→∞

M∏
i=1

1

u2L−1
N+i

SN+M(u1, . . . , uN+M). (2.109)

Let us start with the case M = 1. Now

SN+1(u1, . . . , uN+1) = aL
[

N+1∏
k=1

κ ′(uk)

]⎡⎢⎣ ∑
{
σ1,...,σN+1

}={±,...,±}
fN+1(σ1 . . . , σN+1)

⎤⎥⎦ ,

(2.110)

where

fN+1(σ1 . . . , σN+1) =
∏

1≤k<l≤N+1

σkuk + σlul − 1

σkuk + σlul

N+1∏
k=1

σkλ
σk (uk). (2.111)

We can pair the terms as

fN+1(σ1 . . . , σN ,+) + fN+1(σ1 . . . , σN ,−) =
∏

1≤k<l≤N

σkuk + σlul − 1

σkuk + σlul

N∏
k=1

σkλ
σk (uk)×⎡⎣ ∏

1≤k≤N

(
1 − 1

uN+1 + σkuk

)
λ+(uN+1) −

N∏
k=1

(
1 + 1

uN+1 − σkuk

)
λ−(uN+1)

⎤⎦=

fN(σ1 . . . , σN)u2L−1
N+1

[
2 (L− N) +O(u−1

N+1)
]
, (2.112)

where we used the following asymptotic expansions

u−2Lλ−(u) = 1 + ±Lu−1 +O(u−2), (2.113)
N∏

k=1

(
1 ∓ 1

u ± σkuk

)
= 1 ∓ Nu−1 +O(u−2). (2.114)
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Substituting (2.112) to (2.110) we obtain that

lim
uN+1→∞

1

u2L−1
N+1

SN+1(u1, . . . , uN+1) = 2 (L− N)
γ

a
SN(u1, . . . , uN). (2.115)

Using this formula we get the following off-shell result

〈
�′∣∣u1 . . . , uN ,M

〉= (2γ

a

)M M−1∏
i=0

(L− N − i) SN(u1, . . . , uN). (2.116)

Therefore the ratio of off-shell formulas can be written as〈
�′∣∣u,M

〉〈
�′∣∣u〉 =

(
2γ

a

)M M−1∏
i=0

(L− N − i) =
(

2γ

a

)M
(L− N)!

(L− N − M)! . (2.117)

This result holds also in the on-shell limit.

Overlaps with 
〈
�
∣∣

Let us continue with the general case. Since we have no off–shell formula we have to do some-
thing different as in the previous case. We can only use the on-shell formula

〈
�
∣∣u〉= aL

N/2∏
i=1

F(u+
i ) × GN/2, (2.118)

where GN is independent form the two-site state

GN/2 =
N/2∏
j=1

λ+(u+
j )λ−(u+

j )
∏

1≤j<k≤N/2

f̄ (u+
j , u+

k ) × detG+
N/2, (2.119)

and

F(u) = −κ ′(u)κ ′(−u) = −γ 2

a2

u2 − b2/γ 2

u2 = γ 2

a2 h(u), (2.120)

where

h(u) = −u2 − b2/γ 2

u2 . (2.121)

Using these notations the overlap can be written as

〈
�
∣∣u〉= aL−Nγ N

N/2∏
i=1

h(u+
i ) × GN/2. (2.122)

Let us use the following expression for the descendant states

|u,M〉 := dM

dαM
exp

(
α	(S−)

)∣∣∣∣∣
α=0

|u〉 . (2.123)

Applying it to the overlap

〈
�
∣∣u,M

〉= dM

dαM

〈
�
∣∣ exp

(
α	(S−)

)∣∣u〉∣∣∣∣∣ = dM

dαM

〈
�α

∣∣u〉∣∣∣∣∣ . (2.124)

α=0 α=0
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The rotated two-site state can be built from the rotated K-matrix

K12(u|α) = K12(u)
[
exp

(
αS−)⊗ exp

(
αS−)]=

(
aαu −bα + cαu

bα + cαu dαu

)
, (2.125)

where

aα = a + 2cα + dα2 bα = b (2.126)

cα = c + dα dα = d. (2.127)

From this rotated K-matrix we can build a two-site state 
〈
�α

∣∣. We observe that

γ 2
α = c2

α − aαdα = c2 − ad = γ 2, (2.128)

therefore γ and the function h(u) are invariant quantities w.r.t rotations. The rotated overlap can 
be written as

dM

dαM

〈
�α

∣∣u〉∣∣∣∣∣
α=0

= dM

dαM

[
aL−N
α

]
α=0

γ N

N/2∏
i=1

h(u+
i ) × GN/2. (2.129)

Using the expansion

aL−N
α =(a + 2cα + dα2)L−N

=
L−N∑
M=0

αM

�M/2�∑
i=0

(L− N

i

)(L− N − i

M − 2i

)
di(2c)M−2iaL−N−M+i (2.130)

we obtain

dM

dαM

[
aL−N
α

]
α=0

= aL−NA(N,M), (2.131)

where

A(N,M) = M!
�M/2�∑
i=0

(L− N

i

)(L− N − i

M − 2i

)
di(2c)M−2iai−M. (2.132)

Therefore the overlaps for descendant states are

〈
�
∣∣u,M

〉= A(N,M)aL−Nγ N

N/2∏
i=1

h(u+
i ) × GN/2. (2.133)

We can see that the overlaps with the Bethe state and its descendant states are the same up to a 
numerical prefactor3:〈

�
∣∣u,M

〉〈
�
∣∣u〉 = A(N,M). (2.134)

This is consistent with the previous result, since

A(N,M)

∣∣∣∣∣
δ=0

= M!
(L− N

M

)
(2c)Ma−M =

(
2c

a

)M
(L− N)!

(L− N − M)! . (2.135)

3 For a special matrix product state it was already observed that the overlaps with the Bethe and their descendant states 
are the same up to a combinatorical prefactor [44].
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3. Integrable final states for twisted spin chains

So far the integrable initial states and the exact overlaps have not yet been considered in spin 
chains with twisted boundary conditions. The main reason for this is that the observed properties 
of the integrable states, such as the “pair structure” for the overlaps seemed to be tied to the 
periodic boundary conditions. Here we show that there is a natural generalization to twisted 
cases, given that the twist is compatible with the K-matrix. Furthermore, we also derive new 
overlap formulas. The computations in this Section will form the basis of the SoV treatment in 
Section 4.

3.1. Twisted spin chains

The transfer matrix for the twisted case can be written as

t (u) = Tr0 [T0(u)G0] , (3.1)

where G is the twist matrix. For the simplicity we use a diagonal twist

G =
(

z1 0
0 z2

)
. (3.2)

The off-shell Bethe vectors have the same form as the untwisted ones

|u〉 = B(u1) . . .B(uN) |0〉 . (3.3)

The only difference is that now the eigenvalue of the transfer matrix is

�(u) = z1λ
+(u)

Q1(u − 1)

Q1(u)
+ z2λ

−(u)
Q1(u + 1)

Q1(u)
. (3.4)

There is an alternative way to build the eigenstates

|v〉 = C(v1) . . .C(v2L−N)
∣∣0′〉 , (3.5)

where 
∣∣0′〉 is the lowest weight reference state∣∣0′〉= |0, s1〉(s1) ⊗ |0, s1〉(s1) ⊗ · · · ⊗ |0, sL〉(sL) ⊗ |0, sL〉(sL) . (3.6)

The new vector |v〉 is an eigenvector of t (u) with the same eigenvalue as |u〉 when the QQ-
relation is satisfied

z2Q1

(
u + 1

2

)
Q2

(
u − 1

2

)
− z1Q1

(
u − 1

2

)
Q2

(
u + 1

2

)
= (z2 − z1)Q12 (u) , (3.7)

where

Q12 (u) =
L∏

k=1

(
u2 −

(
θk + sk − 1

2

)2
)(

u2 −
(

θk + sk − 3

2

)2
)

× · · ·

· · · ×
(

u2 −
(

θk + −sk + 3

2

)2
)(

u2 −
(

θk + −sk + 1

2

)2
)

. (3.8)

In summary, the eigenvalues can be expressed in two formally different ways
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�(u) = z1λ
+(u)

Q1(u − 1)

Q1(u)
+ z2λ

−(u)
Q1(u + 1)

Q1(u)
(3.9)

= z2λ
+(u)

Q2(u − 1)

Q2(u)
+ z1λ

−(u)
Q2(u + 1)

Q2(u)
, (3.10)

which are however equivalent if the QQ-relation is satisfied.
Let us continue with the integrable states. In the untwisted case the intuition of the integrability 

condition was that the action of the conserved charges and the space reflected conserved charges 
on the integrable state must be equal. However, this argument implicitly assumed that the space 
reflection is a symmetry of the system, or equivalently that the transfer matrix and the space 
reflected transfer matrix are commuting. This is generally not true for twisted models.

On the other hand, we saw that we can also use t (−u) in the integrability definition instead of 
the space reflected transfer matrix (these are equal for the untwisted case but not in the twisted 
one) and the t (−u) generate the same set of conserved charges as t (u). Therefore the natural 
generalization of the integrability condition is

〈�| t (u) = 〈�| t (−u). (3.11)

Importantly, t (u) is now the twisted transfer matrix. The natural question is: What is the impli-
cation of this definition on the Q-functions or the Bethe roots?

Applying the Bethe state |u〉 on the integrability condition we obtain that

(�(u) − �(−u))
〈
�
∣∣u〉= 0, (3.12)

therefore the non-vanishing overlaps require that

�(u) = �(−u). (3.13)

Using (3.9)-(3.10) the left and right hand side can be written as

�(u) = z1λ
+(u)

Q1(u − 1)

Q1(u)
+ z2λ

−(u)
Q1(u + 1)

Q1(u)
(3.14)

�(−u) = z1λ
+(u)

Q2(−u + 1)

Q2(−u)
+ z2λ

−(u)
Q2(−u − 1)

Q2(−u)
. (3.15)

We can see that the condition (3.13) is equivalent to

Q2(−u) = (−1)NQ1(u). (3.16)

This condition obviously requires that there is a selection rule for the number of magnons

N = L, (3.17)

and the set of u is the same as v but with opposite signs

{u1, u2, . . . , uN } = {−v1,−v2, . . . ,−vN } . (3.18)

This is the natural generalization of the pair structure to the twisted cases. In the original un-
twisted case the rapidities are paired with each other; here the rapidities from two different 
representations of the same state are paired. Going back to the un-twisted case we get −v = u iff 
the pair structure for u also holds, thus the different integrability conditions are indeed equivalent. 
We stress that (3.18) is very restrictive and it does not hold for an arbitrary on-shell configuration.

Let us continue with the two site states which are solutions of the integrability condition 
(3.11). For the two-site state
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〈�| = 
K(s1)(θ1) ⊗ · · · ⊗ 
K(sL)(θL) (3.19)

we saw that it satisfies the KT-relation

〈�| 
K12(u)T1(u) = 〈�| 
K12(u)T π
2 (u), (3.20)

or equivalently

〈�|σyKt (u)T (u) = 〈�|T (−u)σyKt (u). (3.21)

Using this equation the action of the twisted transfer matrix can be written as

〈�| t (u) = 〈�|Tr
[
T (−u)σyKt (u)G

(
σyKt (u)

)−1
]
, (3.22)

which means that the integrability condition is satisfied if

σyKt (u)G = GσyKt (u). (3.23)

This is an important compatibility condition between the twist and the K-matrix.
Solutions of the KYB equation also satisfying this condition can be written as

k11(u) = 0 k12(u) = −b + cu (3.24)

k21(u) = b + cu k22(u) = 0. (3.25)

Let us continue with the determination of the off-shell overlap formula. Since the off-shell 
Bethe vectors are completely independent from the twist we can apply the previous off-shell 
overlap formula (2.77) for the twisted chain. Due to the compatibility condition we have to take 
the limit a → 0. In this limit the reflection factor κ(u) goes to ∞. Taking the proper limit we 
obtain that non-vanishing overlaps require that

N = L, (3.26)

and the final formula is

SL(u1 . . . uL) =
⎡⎣ L∏

k=1

κ̃(uk)

⎤⎦ detV +
L (u1, . . . , uL)∏

1≤k<l≤L
[
u2

l − u2
k

] , (3.27)

where the Vandermonde-like determinant is given by (2.78) and

κ̃(u) = b + cu

u
. (3.28)

The overlap formula (3.27) is also well-defined for on-shell states. Potential problems could only 
appear from the poles, but in the twisted case the pair structure does generally not hold and 
therefore generally u2

k − u2
l �= 0.

We can also see that ratio of overlaps with different integrable states only depends on the κ̃
functions, namely〈

�
∣∣u〉〈

�′∣∣u〉 =
L∏

k=1

κ̃(uk)

κ̃ ′(uk)
. (3.29)

Let 
〈
�0
∣∣ be the two-site state corresponding to b = 1, c = 0. The state 

〈
�0
∣∣ is the generalization 

of the Dimer state to arbitrary spins. Using this state as reference state we can obtain the general 
overlap as
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〈
�
∣∣u〉= L∏

k=1

(cuk + b)
〈
�0
∣∣u〉= (−c)LQ1(−b/c)

〈
�0
∣∣u〉. (3.30)

3.2. Untwisted limit

Here we investigate the limit when the model is tuned back the original untwisted case.
The twisted boundary condition restricts the possible two-site states radically, because the 

components a and d are fixed to zero by the compatibility with the twist. Therefore one might 
think that the integrability definition is too restrictive, as we loose a number of states which 
were integrable for the untwisted model. It might appear that we have not found the proper 
generalization of the integrability condition to the twisted case, and that the twisted case is not 
very useful to study the original untwisted problem.

However, it turns out that the twisted overlap formula (3.27) already contains all the informa-
tion which is needed to reconstruct the most general untwisted on-shell overlap formula. This 
happens because the general two-site state can be obtained from the restricted one by a rotation 
and the twisted overlap formula gives all the non-vanishing untwisted overlaps for the Bethe 
states, as well as their descendants.

Let us start with the behavior of the Bethe roots in the untwisted limit. It is common knowl-
edge that as the twist is tuned back to zero, the Bethe roots go either to the solutions of the 
untwisted Bethe equations, or they approach infinity. We know that the non-vanishing overlap 
requires the pair structure of the Bethe roots for periodic boundary conditions. This means that 
for z1, z2 → 1 the Bethe roots have the following limit

u2a+1 + u2a → 0, for a = 1, . . . ,N/2, (3.31)

uk → ∞, for k = N + 1, . . . ,L, (3.32)

and the limit of the Bethe vectors reads as

lim
z1,z2→1

L−N∏
i=1

1

u2L−1
N+i

SL(u1 . . . uL) = lim
z1,z2→1

L−N∏
i=1

1

u2L−1
N+i

〈
�̄
∣∣u1, . . . , uL

〉= 〈�̄∣∣u,L− N
〉
,

(3.33)

where 
〈
�̄
∣∣ is the two-site state which can be built from the K-matrix K̄(u) for which

k̄11(u) = 0 k̄12(u) = −b + γ u (3.34)

k̄21(u) = b + γ u k̄22(u) = 0. (3.35)

Taking the untwisted limit of the twisted formula we obtain that

lim
z1,z2→1

L−N∏
i=1

1

u2L−1
N+i

SL(u1 . . . uL) = (2γ )L−N (L− N)!SN(u1, . . . , uN) =

= 2L−N (L− N)!γL
N/2∏
i=1

h(ui) × GN(u), (3.36)

where we used the κ ′ = κ̄ and M = L − N limit of the equations (2.116) and (2.122) in the first 
and the second rows. From (3.33) and (3.36) we obtained the on-shell untwisted overlaps for the 
special state 

〈
�̄
∣∣
24



T. Gombor and B. Pozsgay Nuclear Physics B 967 (2021) 115390
〈
�̄
∣∣u,L− N

〉= 2L−N (L− N)!γL
N/2∏
i=1

h(ui) × GN(u). (3.37)

The general K-matrix (2.35)-(2.36) can obtained from K̄ as

K12(u) = K̄12(u)
(
exp(αS−) ⊗ exp(αS−)

) (
exp(βS+) ⊗ exp(βS+)

)
, (3.38)

where

α = a

2γ
, β = c − γ

a
. (3.39)

Therefore the general two-site state can be obtained by a rotation as〈
�
∣∣= 〈�̄∣∣ exp(α	(S−)) exp(β	(S+)), (3.40)

which means that the general on-shell untwisted overlap can be written as〈
�
∣∣u〉= 〈�̄∣∣ exp(α	(S−)) exp(β	(S+))

∣∣u〉. (3.41)

The highest weight property of the Bethe state implies that S+ acts trivially, and we can use 
simply the expansion of the exponential of S− to obtain〈

�
∣∣u〉= αL−N

(L− N)!
〈
�̄
∣∣u,L− N

〉
, (3.42)

where it was used that the states with non-zero spin have vanishing overlap with 
〈
�̄
∣∣.

Substituting (3.37) we obtain that

〈
�
∣∣u〉= αL−N

(L− N)!2L−N (L− N)!γL
N/2∏
i=1

h(ui) × GN(u) = aL−Nγ N

N/2∏
i=1

h(ui) × GN(u),

(3.43)

which agrees with the result of the previous section.

4. Overlaps and SoV

In this section we embed the integrable initial states into the framework of Separation of Vari-
ables. We investigate the overlaps between the SoV basis and the integrable two-site states. We 
will see that the SoV techniques can be used to derive the overlaps in question, but interestingly 
we obtain a formula which is different from the previous result (3.27).

The SoV approach was pioneered by Sklyanin [45]. The idea of the SoV is to find a basis 
in which the eigenvectors of the transfer matrix factorize into one particle blocks. It turns out 
that the SoV basis can be found by diagonalizing the B-operator. However, in the periodic case 
the B-operator is nilpotent, therefore one usually introduces a twist. For a diagonal twist the B-
operator is still nilpotent, therefore a non-diagonal twist is required. In the SoV construction it is 
advantageous if the spectrum of the B operator is non-degenerate and this is the situation in the 
XXX spin chain if the inhomogeneities are in a generic position.

There exist a number of equivalent realizations of the SoV construction, depending on the 
conventions for the twists. For our purposes the most convenient choice is the set of conventions 
of [46] which uses a rotated version of the transfer matrix. Following [46] we call it the “good” 
transfer matrix.
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For simplicity we concentrate here on the case when the quantum space is in the defining 
representation i.e. sk = 1 for k = 1, . . . , L. At first we review of the construction of the SoV 
basis following [46]. This basis diagonalizes the “good” B-operator. Let us define the “good” 
monodromy matrix

T (u) = U−1T (u)GU (4.1)

and “good” B-operator

B(u) = T12(u), B̄(u) = z

z2 − 1
B(u), (4.2)

where we use the following conventions for the twist and U :

G =
(

z 0
0 1/z

)
, U =

(
α α

0 1/α

)
. (4.3)

The operator T (u) in (4.1) is the original monodromy matrix defined in (2.7).
The left/right eigenvectors of B form the left/right SoV basis:

〈
h1 . . . h2L

∣∣B̄(u) =
2L∏
i=1

(u − ξi + hi)
〈
h1 . . . h2L

∣∣,
B̄(u)

∣∣h1 . . . h2L

〉= 2L∏
i=1

(u − ξi + hi)
∣∣h1 . . . h2L

〉
, (4.4)

where hi = ± 1
2 . We choose the normalization as〈

h
∣∣0〉= 1,

〈
0′∣∣h〉= 1. (4.5)

These vectors and co-vectors are orthogonal and their “norm” is [46]

μ(h) = 1〈
h
∣∣h〉 = 1

α4L(z2 − 1)2L

2L∏
i=1

(2hi)
∏
i<j

ξi − ξj + hi − hj

ξi − ξj

. (4.6)

The off-shell Bethe vectors can be written as∣∣u〉= N∏
i=1

B̄(ui)
∣∣0〉, 〈

v
∣∣= 2L−N∏

i=1

〈
0′∣∣B̄(vi). (4.7)

The overlaps are

〈
h
∣∣u〉= 2L∏

i=1

Q1(ξi − hi),
〈
v
∣∣h〉= 2L∏

i=1

Q2(ξi − hi). (4.8)

When the vector 
∣∣u〉 and co-vector 

〈
v
∣∣ are right and left eigenvectors of the transfer matrix with 

the same eigenvalue then the Q-functions satisfy the QQ-relation:

z2Q1(u − 1/2)Q2(u + 1/2) − Q1(u + 1/2)Q2(u − 1/2) = (z2 − 1)Q12(u), (4.9)

where

Q12(u) =
2L∏

(u − ξi). (4.10)

i=1
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The overlap between off-shell Bethe states can be written as〈
v
∣∣u〉=∑

h

μ(h)
〈
v
∣∣h〉〈h∣∣u〉= 1

α4L(z2 − 1)2L

∑
h

∏
i<j

ξi − ξj + hi − hj

ξi − ξj

×

×
2L∏
i=1

2hiQ1(ξi − hi)Q2(ξi − hi) = 1

α4L(z2 − 1)2L

∏
i<j

1

ξj − ξi

detW2L, (4.11)

where the matrix W is

[W2L]ij = (ξi + 1/2)j−1Q−
1 (ξi)Q

−
2 (ξi) − (ξi − 1/2)j−1Q+

1 (ξi)Q
+
2 (ξi),

for 1 ≤ a, b ≤ 2L. (4.12)

We are interested in overlaps with integrable final states. In accordance with the previous Sections 
we require that the inhomogeneities are in pairs:

ξ2i−1 = θi, ξ2i = −θi . (4.13)

Similarly as before, non-vanishing overlaps can be found if the Q-functions satisfy the integra-
bility condition

Q1(u) = (−1)LQ2(−u). (4.14)

Let us use these restrictions to simplify the Vandermonde-like determinants. The rows with odd 
and even indices can be written as

[W2L]2i−1,b =
[
(θi + 1/2)b−1Q−

1 (θi)Q
−
2 (θi) − (θi − 1/2)b−1Q+

1 (θi)Q
+
2 (θi)

]
(4.15)

[W2L]2i,b = (−1)b
[
(θi + 1/2)b−1Q−

1 (θi)Q
−
2 (θi) − (θi − 1/2)b−1Q+

1 (θi)Q
+
2 (θi)

]
.

(4.16)

Subtracting the rows W2i−1,b from W2i,b we obtain that the determinant is factorized as

detW2L =

∣∣∣∣∣∣∣∣∣∣∣

W1,1 W1,2 W1,3 W1,4 . . .

−W1,1 W1,2 −W1,3 W1,4 . . .

W3,1 W3,2 W3,3 W3,4 . . .

−W3,1 W3,2 −W3,3 W3,4 . . .
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣
2L×2L

=

∣∣∣∣∣∣∣∣∣∣∣

W1,1 W1,2 W1,3 W1,4 . . .

0 2W1,2 0 2W1,4 . . .

W3,1 W3,2 W3,3 W3,4 . . .

0 2W3,2 0 2W3,4 . . .
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣
2L×2L

=2L

∣∣∣∣∣∣∣
W1,1 W3,3 . . .

W3,1 W3,3 . . .
...

...
. . .

∣∣∣∣∣∣∣
L×L

×

∣∣∣∣∣∣∣
W1,2 W1,4 . . .

W3,2 W3,4 . . .
...

...
. . .

∣∣∣∣∣∣∣
L×L

. (4.17)

Thus we find
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detW2L = 2L detW+
L detW−

L , (4.18)

where[
W+

L

]
ab

= (θa + 1/2)2b−2Q−
1 (θa)Q

−
2 (θa) − (θa − 1/2)2b−2Q+

1 (θa)Q
+
2 (θa), (4.19)[

W−
L

]
ab

= (θa + 1/2)2b−1Q−
1 (θa)Q

−
2 (θa) − (θa − 1/2)2b−1Q+

1 (θa)Q
+
2 (θa), (4.20)

for 1 ≤ a, b ≤ L. Using the condition (4.14) we can express the matrices using only the Q1
function as[

W+
L

]
ab

= (−1)L
[
(θa + 1/2)2b−2Q−

1 (θa)Q
+
1 (−θa) − (θa − 1/2)2b−2Q+

1 (θa)Q
−
1 (−θa)

]
,

(4.21)[
W−

L

]
ab

= (−1)L
[
(θa + 1/2)2b−1Q−

1 (θa)Q
+
1 (−θa) − (θa − 1/2)2b−1Q+

1 (θa)Q
−
1 (−θa)

]
.

(4.22)

Substituting this to the overlap between two off-shell Bethe states (4.11) we obtain that

〈
v
∣∣u〉= (−1)L

α4L(z2 − 1)2L

[
L∏

a=1

1

θa

][∏
a<b

1

(θ2
a − θ2

b )2

]
detW+

L detW−
L . (4.23)

4.1. Overlap formulas

Now we want to calculate the overlaps with the previously defined boundary state. For si = 1
this is the Dimer which can be written as

K(1) =
(

0 −1
1 0

)
, (4.24)

and 〈
�0
∣∣= 
K(1) ⊗ · · · ⊗ 
K(1),

∣∣�0
〉= 
K(1)T ⊗ · · · ⊗ 
K(1)T . (4.25)

For the non-vanishing overlaps with on-shell Bethe states the Q-function have to satisfy the 
integrability condition (4.14). Using the KT -relation (2.29) we can also check that the operator 
B acts on the Dimer state as〈

�0
∣∣B(u) = 〈�0

∣∣B(−u), B(u)
∣∣�0

〉= B(−u)
∣∣�0

〉
, (4.26)

which means the overlaps 
〈
�0
∣∣h〉 and 

〈
h
∣∣�0

〉
are not zero iff

h2i−1 = −h2i , for i = 1, . . . ,L. (4.27)

We can see that the local degrees of freedom is halved, because for each pair (h2i−1, h2i ) only 
two possibilities give non-zero overlap. The vectors with h2i−1 = h2i lead to zero overlap for all 
i = 1, . . . , L. This halving of the degrees of freedom in this particular case is the analogous to 
the “pair structure” on the level of the Bethe roots.

It is now convenient to define a new notation for the independent degrees of freedom as〈
f1 . . . fL

∣∣= 〈h1h2 . . . h2L−1h2L

∣∣, ∣∣f1 . . . fL

〉=∣∣h1h2 . . . h2L−1h2L

〉
, (4.28)

where
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(h2i−1 = +1

2
, h2i = −1

2
) ←→ fi = +1 (4.29)

(h2i−1 = −1

2
, h2i = +1

2
) ←→ fi = −1. (4.30)

Our goal is to calculate the overlap〈
�0
∣∣u〉=∑

h

μ(h)
〈
�0
∣∣h〉〈h∣∣u〉=∑

f

μ(f)
〈
�0
∣∣f〉〈f∣∣u〉. (4.31)

In the formula we already know the norm and the overlap 
〈
f
∣∣u〉:

μ(f) = 1

α4L(z2 − 1)2L

L∏
a=1

2θa + fa

2θa

∏
a<b

(
faθa + fbθb + 1

faθa + fbθb

)2

, (4.32)

〈
f
∣∣u〉= (−1)L

L∏
a=1

Q1(θa − fa/2)Q2(θa − fa/2), (4.33)

〈
v
∣∣f〉= (−1)L

L∏
a=1

Q1(θa − fa/2)Q2(θa − fa/2). (4.34)

In the formulas above we used the integrability condition for the Q-functions (4.14). In the 
Appendix B we derive that the overlap 

〈
�0
∣∣f〉 can be written as

〈
�0
∣∣f〉= Cr

L∏
a=1

fa2θa

2θa + fa

∏
a<b

faθa + fbθb

faθa + fbθb + 1
, (4.35)

〈
f
∣∣�0

〉= Cl

L∏
a=1

fa2θa

2θa + fa

∏
a<b

faθa + fbθb

faθa + fbθb + 1
, (4.36)

where the product of the normalization factors is

ClCr = α4L(z2 − 1)2L
L∏

a=1

(θa + 1/2)(θa − 1/2)

θ2
a

. (4.37)

Substituting (4.32), (4.33) and (4.35) to the overlap formula we obtain that

〈
�0
∣∣u〉= Cr(−1)L

α4L(z2 − 1)2L

∑
f

∏
a<b

faθa + fbθb + 1

faθa + fbθb

L∏
a=1

faQ1(θa − fa/2)Q2(θa − fa/2)

= Cr(−1)L

α4L(z2 − 1)2L

∏
a<b

1

θ2
b − θ2

a

∑
f

∏
a<b

(
(θb + fb/2)2 − (θa + fa/2)2

)

×
L∏

a=1

faQ1(θa − fa/2)Q2(θa − fa/2). (4.38)

We can see that this formula can be written in a compact form using the Vandermonde-like 
determinant W+

L :〈
�0
∣∣u〉= Cr(−1)L

α4L(z2 − 1)2L

∏ 1

θ2 − θ2
detW+

L . (4.39)

a<b b a
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Similarly we can derive the overlap for the co-vectors:

〈
v
∣∣�0

〉= Cl(−1)L

α4L(z2 − 1)2L

∏
a<b

1

θ2
b − θ2

a

detW+
L . (4.40)

Using these formulas the normalized overlap reads as〈
�0
∣∣u〉〈v∣∣�0

〉〈
v
∣∣u〉 = (−1)L

L∏
a=1

(θa + q/2)(θa − q/2)

θa

detW+
L

detW−
L

. (4.41)

We used the “generalized pair” structure (or integrability condition) Q1(u) = (−1)LQ2(−u) in 
the derivation of the factorization of detW (4.18) and in (4.33)-(4.34), but we did not use the 
Bethe Ansatz or the QQ-relations. This means that the above formula holds for both off-shell 
and on-shell states.

In the previous Section we saw that the on-shell overlap of general two-site state can be 
obtained from the overlap of the reference state 〈�0| as〈

�
∣∣u〉〈

�0
∣∣u〉 =

〈
v
∣∣�〉〈

v
∣∣�0

〉 = (−c)LQ1(−b/c) = (c)LQ2(b/c). (4.42)

Therefore the general normalized overlap can be written as〈
�
∣∣u〉〈v∣∣�〉〈
v
∣∣u〉 = (−c2)LQ2

1(b/c)

L∏
i=1

(θi + q/2)(θi − q/2)

θi

detW+
L

detW−
L

. (4.43)

We emphasize that this formula is different from the previous result (3.27), even though some of 
the ingredients might look similar. At this point the connection between these two results is not 
clear, and it deserves further study.

Also, it would be important to compute the homogeneous limit of the final formula (4.43). It 
is known that in SoV the computation of the homogeneous limit is often very challenging, and 
usually it requires a separate study.4 Thus we leave this task to a future work.

5. Conclusion

In this paper we investigated integrable initial/final states and their overlaps using the Alge-
braic Bethe Ansatz and the Separation of Variables method. We obtained a number of results, 
and we feel it is worthwhile to give here a list of them:

Our main results are a) the KT -relation (2.30) which leads to the recursion relations for the 
overlap, b) the off-shell overlap formula (2.78) valid for all integrable final states of the higher 
spin models, c) the corresponding on-shell formula (2.102)-(2.106), d) a generalization of the 
integrability condition to twisted spin chains, see (3.16)-(3.18), e) the corresponding overlap 
formula (3.27), valid on-shell and off-shell, f) the SoV representation (4.27) of the integrabil-
ity condition for the Dimer state, and g) the final overlap formula (4.43) within SoV, valid for 
arbitrary integrable states of the spin-1/2 chain.

4 An interesting computation was presented in Appendix R of [26], where a known overlap formula was expressed in a 
form that is reminiscent of the SoV results, for example it involves only the Q-functions. Connections to our results are 
not yet clear.
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In our view the most important results are the KT relation, the generalization of the integra-
bility condition to the twisted chains and also to the SoV method. This opens the way to study 
nested systems using Algebraic Bethe Ansatz (ABA) and SoV. Combining the KT -relation with 
the techniques of [47] used in ABA one could get recursive equations and sum rules for the 
overlaps, similar to those obtained for the scalar products of the Bethe vectors in the models 
with gl(m|n) symmetry [48,49]. Focusing on SoV, our present results are expressed using the 
Q-functions, which are the natural building blocks to treat the exact operator spectrum of the 
N = 4 SYM theory. The extension of our methods to nested systems and long range spin chains 
is a promising direction. Thus our present results constitute an important step towards the exact 
one-point functions in the defect CFT.

One of the interesting open questions is to what extent the present methods are helpful for 
the overlaps in those cases, when the initial/final states are given by integrable MPS [16–20,2]. 
We believe that the KT -relation could be established also in those cases, but it would lead to 
considerably more complicated recursion relations. At present it is not clear whether the methods 
could be useful in practical computations.

CRediT authorship contribution statement

Tamás Gombor: Conceptualization, Methodology, Writing (original and revision)
Balázs Pozsgay: Conceptualization, Writing (original and revision), Funding acquisition

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Acknowledgements

We acknowledge collaboration with Yunfeng Jiang and Deliang Zhong on early stages of this 
project. We also thank Rouven Frassek for valuable comments. T.G. was supported by NKFIH 
grant K134946.

Appendix A. Derivation of the off-shell overlap formula (2.75)

In this section we prove the off-shell overlap formula (2.75). In the derivation the following 
expression will appear

EM(v|u1, . . . , uM) =
M∏

k=1

v + uk − 1

v + uk

v − uk

v − uk − 1
+

M∑
l=1

(
κ(−v)

κ(ul)

1

v + ul

− κ(v)

κ(ul)

1

v − ul

)
v − ul

v − ul − 1

M∏
k=1�=l

ul − uk + 1

ul − uk

ul + uk

ul + uk + 1
, (A.1)

where uk �= 0 and uk �= ul for k �= l and

κ(u) = b + cu
. (A.2)
au
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At first, we prove that the following identity holds

EM(v|u1, . . . , uM) = 1. (A.3)

To prove this identity we have to check that the EM(v|u1, . . . , uM) as a meromorphic function 
of v is equal to 1. In the v → ∞ limit, it is satisfied i.e.

lim
v→∞EM(v|u1, . . . , uM) = 1. (A.4)

Therefore the identity (A.3) holds if the meromorphic function EM(v) has no poles in the v-
plane. The formal poles are v = 0, un, −un, un + 1. It is easy to convince ourselves that residues 
vanish

Res
v=un

EM(v|u1, . . . , uM) = 0 (A.5)

Res
v=0

EM(v|u1, . . . , uM)

=
M∑
l=1

(−b/a

κ(ul)

1

ul

+ b/a

κ(ul)

1

ul

)
ul

ul + 1

M∏
k=1�=l

ul − uk + 1

ul − uk

ul + uk

ul + uk + 1
= 0. (A.6)

Res
v=−un

EM(v|u1, . . . , uM) = − 2un

2un + 1

M∏
k=1�=n

−un + uk − 1

−un + uk

−un − uk

−un − uk − 1
+

+ 2un

2un + 1

M∏
k=1�=n

un − uk + 1

un − uk

un + uk

un + uk + 1
= 0 (A.7)

Res
v=un+1

EM(v|u1, . . . , uM) = 2un

2un + 1

M∏
k=1�=n

un + uk

un + uk + 1

un − uk + 1

un − uk

+

+
(

κ(−un − 1)

κ(un)

1

2un + 1
− κ(un + 1)

κ(un)

)

×
M∏

k=1�=l

un − uk + 1

un − uk

un + uk

un + uk + 1
= 0, (A.8)

therefore the identity (A.3) is satisfied.
Now, we turn on to prove (2.75). Here we use induction. Let us assume that (2.75) holds for 

SN−1 i.e.

SN−1(u1, . . . , uN−1) =
∑

{σ1,...,σN }={±,...,±}
f (σ1, . . . , σN−1)

N−1∏
k=1

σkλ
σk (uk), (A.9)

where

f (σ1, . . . , σN) = aL
[

N∏
k=1

κ(uk)

]⎡⎣ ∏
1≤k<l≤N

σkuk + σlul − 1

σkuk + σlul

⎤⎦ . (A.10)

Using the formula of SN−1 and the recursion relation (2.73) we can obtain an expression for SN :
32



T. Gombor and B. Pozsgay Nuclear Physics B 967 (2021) 115390
SN(u1 . . . uN) =κ(u1)

[
N∏

k=2

u1 + uk − 1

u1 + uk

λ+(u1)SN−1(u2 . . . uN)−

−
N∏

k=2

u1 − uk + 1

u1 − uk

λ−(u1)SN−1(u2 . . . uN)+ (A.11)

+
N∑

l=2

1

u1 + ul

N∏
k=2�=l

ul − uk + 1

ul − uk

λ−(ul)SN−1(−u1, u2 . . . ûl . . . uN)+

+
N∑

l=2

1

u1 − ul

N∏
k=2�=l

ul − uk + 1

ul − uk

λ−(ul)SN−1(u1, u2 . . . ûl . . . uN)

]
=

=
∑

{σ1,...,σN }={±,...,±}
f̃ (σ1, . . . , σN−1)

N−1∏
k=1

σkλ
σk (uk).

The proof is complete if we show that the coefficients f and f̃ are the same. Let us collect the 
terms λ+(u1)λ

−(u2) . . . λ−(uM)λ+(uM+1) . . . λ+(uN). Dividing the coefficients f and f̃ we 
obtain that

f̃ (+,−, . . . ,−,+, . . . ,+)

f (+,−, . . . ,−,+, . . . ,+)
=

M∏
k=2

u1 − uk

u1 − uk − 1

u1 + uk − 1

u1 + uk

+

+
M∑
l=2

(
κ(−u1)

κ(ul)

1

u1 + ul

− κ(u1)

κ(ul)

1

u1 − ul

)
u1 − ul

u1 − ul − 1

M∏
k=2�=l

ul − uk + 1

ul − uk

ul + uk

ul + uk + 1
=

= EM−1(u1|u2, . . . , uM) = 1, (A.12)

where the last line we used the identity (A.3). Since the recursion relation is symmetry under the 
permutations of u2, . . . , uN we just obtained that

f̃ (+, σ2, . . . , σN−1) = f (+, σ2, . . . , σN−1). (A.13)

Analogously we can handle the coefficients with σ1 = +:

f̃ (−,−, . . . ,−,+, . . . ,+)

f (−,−, . . . ,−,+, . . . ,+)
=

M∏
k=2

u1 + uk

u1 + uk + 1

u1 − uk + 1

u1 − uk

+

+
M∑
l=2

(
κ(−u1)

κ(ul)

1

u1 + ul

− κ(u1)

κ(ul)

1

u1 − ul

)
u1 + ul

u1 + ul + 1

M∏
k=2�=l

ul − uk + 1

ul − uk

ul + uk

ul + uk + 1
=

= EM−1(−u1|u2, . . . , uM) = 1, (A.14)

and using the permutation symmetry we just obtained that

f̃ (−, σ2, . . . , σN−1) = f (−, σ2, . . . , σN−1). (A.15)

Thus we proved (2.75).
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Appendix B. The overlap between the Dimer state and the SoV basis vectors

The calculation of the overlap 
〈
�0
∣∣f〉 is based on the integrability condition〈

�0
∣∣t (u)

∣∣f〉= 〈�0
∣∣t (−u)

∣∣f〉. (B.1)

Therefore we need two to know how the transfer matrix act on the SoV basis. The transfer matrix 
can be written as

t (u) = A(u) +D(u), (B.2)

where the operators A and D are the diagonal elements of the “good” monodromy matrix

A(u) = T11(u), D(u) = T22(u). (B.3)

Since the R-matrix is gl(2) invariant “good” monodromy is satisfy the RTT relation

R12(u − v)T1(u)T2(v) = T2(v)T1(u)R12(u − v), (B.4)

therefore

(v − u + 1)A(v)B(u) = (v − u)B(u)A(v) +A(u)B(v) (B.5)

(u − v + 1)D(v)B(u) = (u − v)B(u)D(v) +D(u)B(v). (B.6)

Substituting v = ξi − hi we obtain that

B(u)A(ξi − hi)
∣∣h〉= u − ξi + hi − 1

u − ξi + hi

λh(u)A(ξi − hi)
∣∣h〉 (B.7)

B(u)D(ξi − hi)
∣∣h〉= u − ξi + hi + 1

u − ξi + hi

λh(u)D(ξi − hi)
∣∣h〉. (B.8)

Therefore the A(ξi − hi) and D(ξi − hi) are lowering and raising operator, respectively i.e.

A(ξi − 1/2)
∣∣ . . . , hi = +1/2, . . .

〉= F
(+ 1

2 )

i

∣∣ . . . , hi = −1/2, . . .
〉
,

A(ξi + 1/2)
∣∣ . . . , hi = −1/2, . . .

〉= 0, (B.9)

D(ξi + 1/2)
∣∣ . . . , hi = −1/2, . . .

〉= F
(− 1

2 )

i

∣∣ . . . , hi = +1/2, . . .
〉
,

D(ξi − 1/2)
∣∣ . . . , hi = +1/2, . . .

〉= 0, (B.10)

which means that at these special rapidities the transfer matrix acts on the SoV basis as

t (ξi − hi)
∣∣ . . . , hi, . . .

〉= F
(hi)
i

∣∣ . . . ,−hi, . . .
〉
. (B.11)

We can easily fix the parameters F (hi)
i . Let us consider the following expression〈

0′∣∣t (ξi − hi)
∣∣ . . . , hi, . . .

〉= F
(hi)
i . (B.12)

We also know the action of the transfer matrix on the pseudovacuum 
〈
0′∣∣

〈
0′∣∣t (u) = zQ12(u − 1/2) + 1

z
Q12(u + 1/2), (B.13)

therefore〈
0′∣∣t (ξi − hi)

∣∣ . . . , hi, . . .
〉= z2hi Q12(ξi − 2hi), (B.14)
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which means

F
(hi)
i = z2hi Q12(ξi − 2hi). (B.15)

Since the transfer matrix is a matrix valued polynomial with degree 2L we can use the following 
interpolation

t (u) = t∞
2L∏
i=1

(u − ξi − hi) +
2L∑
j=1

t (ξj − hj )

2L∏
i=1�=j

u − ξi + hi

ξj − hj − ξi + hi

, (B.16)

where t∞ is proportional to the identity. Using this interpolation formula and (B.12) we obtain 
that

t (u)
∣∣h〉= t∞

∣∣h〉 2L∏
i=1

(u − ξi + hi) +
2L∑
j=1

F
(hi)
i

∣∣ . . . ,−hi, . . .
〉 2L∏
i=1�=j

u − ξi + hi

ξj − hj − ξi + hi

.

(B.17)

Substituting this into the integrability condition〈
�0
∣∣t (θ1 + 1/2)

∣∣− 1

2
,−1

2
, . . .

〉= 〈�0
∣∣t (−θ1 − 1/2)

∣∣− 1

2
,−1

2
, . . .

〉
(B.18)

we obtain that

F
(− 1

2 )

1

〈
�0
∣∣+ 1

2
,−1

2
, . . .

〉= − 1

2θ1
F

(− 1
2 )

1

〈
�0
∣∣+ 1

2
,−1

2
, . . .

〉
+ 2θi + 1

2θ1
F

(− 1
2 )

2

〈
�0
∣∣− 1

2
,+1

2
, . . .

〉 2L∏
i=3

θ1 + 1
2 + ξi − hi

θ1 − 1
2 + ξi − hi

. (B.19)

Here we used the selection rules h2b−1 = −h2b for the non-vanishing overlaps 
〈
�0
∣∣h〉, see (4.27). 

We can see that the quotient of overlaps can be written as〈
�0
∣∣+ 1

2 ,− 1
2 , . . .

〉〈
�0
∣∣− 1

2 ,+ 1
2 , . . .

〉 = F
(− 1

2 )

2

F
(− 1

2 )

1

2L∏
i=3

θ1 + 1
2 + ξi − hi

θ1 − 1
2 + ξi − hi

=

− 2θi − 1

2θi + 1

L∏
b=2

θ1 + 1
2 + θb − h2b−1

θ1 + 1
2 + θb + 1

2

θ1 − 1
2 − θb − 1

2

θ1 − 1
2 − θb + h2b−1

× θ1 + 1
2 − θb + h2b−1

θ1 + 1
2 − θb + 1

2

θ1 − 1
2 + θb − 1

2

θ1 − 1
2 + θb − h2b−1

. (B.20)

Using the notation 
∣∣f1 . . . , fL

〉
this equation is simplified as〈

�0
∣∣+ 1, f2, . . . , fL

〉〈
�0
∣∣− 1, f2, . . . , fL

〉 = −2θi − 1

2θi + 1

θ1 + fbθb

θ1 + fbθb + 1

−θ1 + fbθb + 1

−θ1 + fbθb

, (B.21)

therefore the overlap between the Dimer state and the SoV basis vectors can be written as

〈
�0
∣∣f〉= Cr

L∏ 2θa

2faθa + 1

∏ faθa + fbθb

faθa + fbθb + 1
, (B.22)
a=1 a<b
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where Cr is independent on the variables fa .
Analogously way we can calculate the overlap with the co-vector basis 

〈
f
∣∣�0

〉
. The only dif-

ference is the action of the transfer matrix on 
〈
h
∣∣, which is given by〈

. . . , hi, . . .
∣∣t (ξi − hi) = G

(hi)
i

〈
. . . ,−hi, . . .

∣∣, (B.23)

where

G
(hi)
i = z−2hi Q12(ξi − 2hi). (B.24)

Repeating the same calculation as above we obtain that〈+ 1
2 ,− 1

2 , . . .
∣∣�0

〉〈− 1
2 ,+ 1

2 , . . .
∣∣�0

〉 = G
(− 1

2 )

2

G
(− 1

2 )

1

2L∏
i=3

θ1 + 1
2 + ξi − hi

θ1 − 1
2 + ξi − hi

=
〈
�0
∣∣+ 1

2 ,− 1
2 , . . .

〉〈
�0
∣∣− 1

2 ,+ 1
2 , . . .

〉 , (B.25)

therefore〈
f
∣∣�0

〉= Cl

L∏
a=1

2θa

2faθa + 1

∏
a<b

faθa + fbθb

faθa + fbθb + 1
, (B.26)

where Cl is independent of fa-s. We can fix the product ClCr by calculating the norm 
〈
�0
∣∣�0

〉=
2L and inserting the full system〈

�0
∣∣�0

〉=∑
h

μ(h)
〈
�0
∣∣h〉〈h∣∣�0

〉=∑
f

μ(f)
〈
�0
∣∣f〉〈f∣∣�0

〉
. (B.27)

Substituting (4.32), (B.22) and (B.26) we obtain that

〈
�0
∣∣�0

〉= ClCr

α4L(z2 − 1)2L

∑
f

L∏
a=1

2θa

2θa + fa

= ClCr

α4L(z2 − 1)2L

L∏
a=1

2θa

4θ2
a − 1

∑
f

L∏
a=1

(2θa − fa)

=2L ClCr

α4L(z2 − 1)2L

L∏
a=1

4θ2
a

4θ2
a − 1

. (B.28)

Therefore

ClCr = α4L(z2 − 1)2L

L∏
a=1

(θa + 1/2)(θa − 1/2)

θ2
a

. (B.29)
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