

Investigation of ^3H capture in $^7\text{Li} + ^{50}\text{Ti}$ reaction

Shouvik Pal¹, Biswajit Das¹, A. Kundu¹, R. Palit¹, P. Dey¹, Vishal Malik¹, A. Sindhu¹, U. Garg², D. Negi³, Md. S. R. Laskar⁴, Rajkumar Santra⁵, S.K. Jadav¹, B.S. Naidu¹, A.T. Vazhappilly¹

¹ Department of Nuclear and Atomic Physics,
Tata Institute of Fundamental Research, Mumbai - 400005, INDIA.

² Department of Physics and Astronomy,
University of Notre Dame, Notre Dame, Indiana 46556, USA

³ Department of Physics, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal 576104, India

⁴ Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano 20133, Italy and

⁵ Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India

Introduction

Reactions involving weakly bound stable nuclei like $^{6,7}\text{Li}$ and ^9Be remain an interesting subject in low energy nuclear reaction [1]. In particular, these reactions can produce some of the slightly neutron rich nuclei. The other interest is the reaction dynamics study involving these weakly bound nuclei which can be carried out by comparing the predictions of nuclear reaction models with the experimental cross section measurements. In particular, the presence of $t + \alpha$ cluster structure of ^7Li ground state leads to breakup, transfer-breakup, incomplete fusion and cluster transfer channels. The particle-gamma coincidence technique is a powerful tool to study the various reaction mechanisms in this type of reactions[2,3]. Detection of t or α as ejectile in the outgoing channel following the ^7Li induced reaction with ^{50}Ti target along with the discrete gamma-rays provide wealth of information about the dynamics. Measurement of the ejectile energies are found to be another controlling parameter for distinguishing various reactions mechanisms. Recently, the population of ^{54}Cr following α -transfer in the $^7\text{Li} + ^{50}\text{Ti}$ reaction has been studied. Here, we report the population of ^{53}V following the t -transfer in the same reaction.

Possible Reaction channels of $^7\text{Li} + ^{50}\text{Ti}$

One of the strongest channels is the complete fusion-evaporation reaction (CF), which exhibits a large cross-section at above-barrier

energies. In a complete fusion reaction, the resulting compound nucleus (in our experiment $^7\text{Li} + ^{50}\text{Ti} \rightarrow ^{57}\text{Mn}$) is typically highly excited; so it decays and gives various types of residual nuclei. From the yields calculated from PACE4 we can conclude that ^{53}V is not produced by complete fusion channel (its percentage is below 1 percent). Another possibility is breakup fusion, in which ^7Li breaks up into triton and α particles, and then one of these fragments fuses with ^{50}Ti , leading to excited states of ^{54}Cr or ^{53}V . The ^{54}Cr nucleus can de-excite to $^{51-53}\text{Cr}$ through xn-evaporation, as well as to $^{51-53}\text{V}$ via pxn channels. Similarly, ^{53}V can de-excite to $^{49-52}\text{V}$ through xn-evaporation, as well as to $^{49-51}\text{Ti}$ via pxn channels. Lastly, the transfer reaction which occurs when ^7Li is in close proximity to ^{50}Ti during scattering, resulting in wavefunction overlap between these nuclei. This overlap facilitates the transfer of nucleons, leading to the formation of either ^{54}Cr or ^{53}V . The remaining triton or alpha particle is then emitted.

Experimental Details

The $^7\text{Li} + ^{50}\text{Ti}$ reaction, with a 20 MeV ^7Li beam (beam current 4 nA) was performed at 14UD Pelletron Linac Facility at TIFR in Mumbai, India. A self-supporting ^{50}Ti target (with enrichment $\approx 83\%$) was used. Seventeen Compton-suppressed clover HPGe detectors were positioned at various angles relative to the beam direction: three at 40° , 115° , 140° , and 157° each, one at 65° , and four at

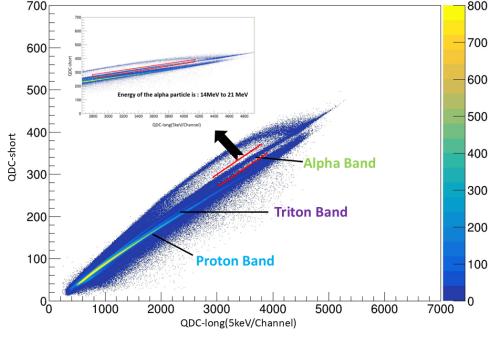


FIG. 1: A two-dimensional spectrum of QDC-short vs QDC-long for CsI(Tl) detectors

90° to detect the deexciting γ rays from the present reaction. Ten CsI(Tl) detectors each having dimensions of $1.5 \times 1.5 \times 0.3$ cm 3 were installed inside the target chamber at a distance of 4 cm from the target center of the INGA setup to detect the outgoing charged particles. Among them, four were centered at $\theta = 34^\circ$, five at 56° , and one at 78° .

Experimental Results

The particle- γ coincident data were sorted into a ntuple for further analysis. For the time coincident events, the QDC-short, QDC-long values for CsI(Tl) detectors and the energy of the HPGe clover detectors were recorded in the ntuple. From this ntuple, a 2-D spectrum of QDC-short vs QDC-long for CsI(Tl) detector was extracted (shown in fig 1). We could identify each band separately for different types of particles as shown in the same figure. In our previous work [2] triton band was gated and ^{54}Cr which is coming from fusion with the α -particle was studied. Currently the spectrum is gated in the α -band using ROOT so that we can get the γ -spectrum of ^{53}V . In ROOT each 1-D spectra (which is basically generated after giving gate) coming from different module have been added. The merged α -gated γ -spectrum is shown in fig 2.

Conclusion

An overview of various reaction products of ^7Li induced reaction of ^{50}Ti target is pre-

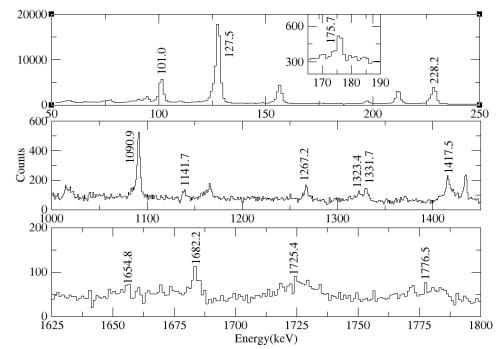


FIG. 2: α -gated γ -spectrum showing most of the known transitions below 1800 keV of ^{53}V as reported in NNDC level scheme.

sented. The potential of particle- γ coincidence technique to identify different reaction products from this experiment has been discussed in the present work. The configuration of the experimental setup has been described. The measured γ -ray spectrum in coincidence with the α -particle, showed most of known γ -ray transitions from neutron rich ^{53}V isotope which is reported in NNDC level scheme. More work is in progress to identify the different excited states of ^{53}V and the presence of other isotopes in the data.

Acknowledgments

The authors would like to acknowledge the TIFR-BARC PLF for providing a stable beam, and the Center for Accelerator Target Science at ANL for providing the ^{50}Ti target. This work is partly supported by the DAE, Government of India, under Project No. RTI4002 and the U.S. National Science Foundation (Grant No. PHY-2011890).

References

- [1] P. E. Hodgson and E. Bétká *et al.*, Physics Reports, **374** (2003) 1–89.
- [2] Biswajit Das *et al.*, under review.
- [3] S. K. Pandit *et al.*, Physics Letters B, **820** (2021) 136570.