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Abstract: As a follow-up of a recent article in which we investigated the cosmological background
expansion history of the universe in Bianchi type-V cosmological models with bulk viscous fluid
and evolving cosmological Λ and Newtonian G parameters, we study the evolution of the cosmo-
logical perturbations in the current work. In particular, we analyse the evolution of the viscous
matter over-density that leads to formation of large-scale structures in the Bianchi-V model, and
compare the results with standard ΛCDM solutions. Our results suggest that introducing viscous
fluid in the background described by Bianchi-V geometry with evolving Λ and G amplifies the
structure-growth rate.

Keywords: perturbations; Bianchi type-V universe; anisotropies; varying G and Λ; viscous fluids

1. Introduction

The recent cosmological data from the strong redshift of type Ia supernovae and
changes in the cosmic microwave background power spectrum (CMB) [1–4] suggest that
the universe is currently undergoing a late-time accelerating expansion. From the standard
model of cosmology point of view, the cosmic acceleration is attributed to dark energy (DE).
It is thought to be a type of cosmic matter with a negative density. Cosmological data have
shown that it makes up around 70% of the universe’s total energy density. With its nature
largely unknown, one of the candidates put forth as a candidate source for DE is Einstein’s
cosmological parameter Λ. Furthermore, one of the several possible scenarios in which Λ is
considered a good DE candidate is as a function of time, instead of the usual consideration
of it being a constant, because its cosmological effect seems to have evolved with time
from being small in the early stages of the universe to its present dominance. Furthermore,
because Newton’s gravitational force was the only dominant force in the early moments of
the universe and the value of Newton’s constant G is very small in comparison to what
it was in the past, it is more appropriate and necessary to choose Newton’s constant as a
function of time alongside Einstein’s constant.

Based on this discussion, there are two conceivable strategies for considering the
coupling of G and Λ to be varying functions; these are modifications at the level of the
equation of motion, and modifications at the level of the action. Regrading the modifications
at the level of the action, both G and Λ will be coupled to the matter of “scale-dependent
couplings” in the Einstein–Hilbert action. Such a coupling will induce an additional
contribution △tij = Gk(gij�−∇i∇i)G

−1
k to the stress energy tensor in field equations.

Cosmological aspects of this approach, such as the evolution of density perturbations
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in the context of asymptotically safe gravity or scale-dependent gravity, where both the
cosmological constant and the Newtonian running constants are permitted to change over
time, have been examined by numerous researchers [5–10].

Bianchi models are primarily motivated by Bianchi’s work [11,12], and are non-
standard cosmological models that are homogeneous and non-isotropic in general. Further
motivated by Dirac’s hypothesis [13] on the evolution of the fundamental ‘constants’, in
this case Λ and G, Bianchi-type cosmological models with varying cosmological and New-
tonian constants have recently been studied by a number of researchers [14–21]. In this
work [22], for instance, a Bianchi type-V viscous fluid cosmological model for barotropic
fluid distribution with a variable cosmological term was investigated, and it was shown
that cosmic isotropization occurs asymptotically, with acceleration induced by the presence
of shear viscosity. Furthermore, Singh and others [23,24] demonstrated bulk viscous Bianchi
type-V cosmological models with a time-dependent cosmological term. By assuming that
the shear scalar is proportional to the volume expansion, and the bulk viscosity coefficient
is a power function of the energy density or volume expansion, exact solutions to Einstein’s
field equations are achieved.

In a recent article [25], we investigated the viability of the Bianchi type-Vcosmological
model, filled with bulk viscous universe and time-dependent cosmological parameter Λ

and Newtonian gravitational parameter G. We showed that such a model can adequately
describe a universe that starts off with a negative cosmological term, dominated by normal
matter in a decelerated background, that eventually becomes dark energy-dominated (and
hence accelerated) spacetime at late times, in concordance with current observations. This
follow-up work aims to tackle the nature of large-scale structure formation through cos-
mological perturbations around the Bianchi type-V spacetime background which, to our
knowledge, has not been considered in any existing literature. In particular, we follow the
1 + 3 covariant formalism of cosmological perturbations to derive the evolution equations
governing the perturbations of the matter energy density, expansion and shear perturba-
tions. We then couple these equations with the background field equations derived in P1 to
evaluate the rate of structure formation in the Bianchi-V model under investigation.

The rest of the work is organised as follows: Section 2 gives a quick recap of the the
Bianchi type-V background cosmological model. The perturbations around the Bianchi
type-V background will be presented in Section 3. Section 4 will offer several cosmological
models based on the selection of time-varying shear and bulk viscosity. Finally, we bring
the article to a close with our conclusions in Section 5.

2. Background Field Equations

In orthogonal space and time coordinates, the Bianchi type-V metric is given by the
following formula:

ds2 = dt2 − A2dx2 − e2Kx[B2dy2 + C2dz2] . (1)

Here the metric coefficients A, B and C are functions of time, and K is constant that
is related to the curvature of spatial part. Assuming that a viscous fluid fills the universe,
the energy momentum tensor shown below represents the fluid’s distribution in space:

Tij = (ρ + p)uiuj + pgij − 2ησij , (2)

where ρ is matter-energy density, p is the effective pressure, ui = (u1, u2, u3, u4) = (0, 0, 0, 1)
is four-velocity vector of the cosmic fluid which is normalized as uiu

i = −1, σij is the shear
tensor and η > 0 is the coefficient of shear viscosity. The effective pressure p is defined in
terms of the isotropic pressure p and the coefficients of viscosity as

p = p − ξ∇iui = p − (3ξ − 2η)H . (3)
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where ξ > 0 is the coefficient of bulk viscosity and H is the Hubble parameter. Now, we
assume that the fluid has the following linear equation of state (EoS)

p = wρ ,

where −1 ≤ w ≤ 1 is the EoS parameter. The shear tensor is defined as

σij = hk
j ∇kui + hk

i ∇ku̇j −
1
3

θhij , (4)

where hij = gij + uiuj is the projection tensor and θ is the expansion scalar.
The field equations of the theory of general relativity with cosmological constant Λ are

Rij −
1
2

gijR = −κGTij + Λgij . (5)

where c = 1 is taken, κ ≡ 8π, G is the Newtonian gravitational constant, gij is the metric
tensor of the 4-dimensional space-time, Rij is the Ricci tensor, and R is the Ricci scalar.
Here, in this study, we assume that both G and Λ are no longer constants, but are functions
of time.

Einstein field equations (EFEs) in (5) for the Bianchi type-V universe filled with a
viscous fluid distribution are obtained as follows:

− B̈

B
− C̈

C
− Ḃ

B

Ċ

C
+

K2

A2 + 2ηκG
Ȧ

A
= κG

[

p −
(

ξ − 2
3

η

)

θ

]

− Λ , (6)

− Ä

A
− C̈

C
− Ȧ

A

Ċ

C
+

K2

A2 + 2ηκG
Ḃ

B
= κG

[

p −
(

ξ − 2
3

η

)

θ

]

− Λ , (7)

− Ä

A
− B̈

B
− Ȧ

A

Ḃ

B
+

K2

A2 + 2ηκG
Ċ

C
= κG

[

p −
(

ξ − 2
3

η

)

θ

]

− Λ , (8)

Ȧ

A

Ḃ

B
+

Ȧ

A

Ċ

C
+

Ḃ

B

Ċ

C
− 3K2

A2 = κGρ + Λ , (9)

−2
Ȧ

A
+

Ḃ

B
+

Ċ

C
= 0 . (10)

Here, an overdot represents a derivative with respect to cosmic time t.
The time dependence of G and Λ, together with consideration of the covariant deriva-

tive of the energy momentum tensor (2) involving viscosity, leads to the conservation
equation of the form

κG

[

ρ̇ + (p + ρ)

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)]

+ κρĠ + Λ̇ − 4κGησ2 = 0 . (11)

Assuming that the total matter content of the universe is conserved, this conservation
equation can be thought of as two different equations; using Equation (3), these two
independent equations are written as follows:

ρ̇ + 3H[p + ρ − (3ξ − 2η)H]− 4ησ2 = 0 , (12)

κρĠ + Λ̇ = 0 . (13)

Here, the shear scalar σ, σ0 being a constant that is related to the anisotropy of the
universe, is given by

σ2 =
1
2

σijσ
ij =

σ2
0

a6 , (14)
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and definition of the mean Hubble parameter is used for the term
(

Ȧ
A + Ḃ

B + Ċ
C

)

. In Bianchi
type space-times, the concept of the mean Hubble parameter is based on the definitions of
a spatial volume V and a mean scale factor a given by

V = a3 =
√

| − gij| = ABC . (15)

According to Equation (15), the average Hubble parameter H and the average deceler-
ation parameter q are defined as

H ≡ ȧ

a
=

1
3

(

Hx + Hy + Hz

)

, q ≡ − aä

ȧ2 = − Ḣ

H2 − 1 , (16)

where Hx, Hy and Hz are the directional Hubble parameters along x, y and z directions,
respectively. For a Bianchi type-V universe, the directional Hubble parameters are Hx =
Ȧ
A , Hy = Ḃ

B and Hz = Ċ
C . The components of the shear tensor σij for the Bianchi type-V

model given by Equation (1) are obtained as

σ11 = Hx − H , σ22 = Hy − H , σ33 = Hz − H , σ44 = 0 , (17)

and the shear scalar σ as

σ2 =
1
6

[

(

Ȧ

A
− Ḃ

B

)2

+

(

Ḃ

B
− Ċ

C

)2

+

(

Ċ

C
− Ȧ

A

)2
]

. (18)

The field equations given in Equations (6)–(10) can be written in terms of H, q and σ as

κGp − Λ = H2(2q − 1)− σ2 +
K2

A2 , (19)

κGρ + Λ = 3H2 − σ2 − 3K2

A2 . (20)

Equations (19) and (20) are dubbed as generalized Friedmann equations for a Bianchi
type-V universe filled with the viscous fluid. The generalized Raychaudhuri equation for
this model is obtained as

Ḣ + 3H2 − 2K2

a2 − Λ +
κG

2
(p − ρ)− κG

(

3ξ

2
− η

)

H = 0 . (21)

It is impossible to solve this equation as it is because of the unknown variables
η, ξ, a, G, Λ, p and ρ. To find the solution by introducing extra information in the form
of initial conditions and a constraint, we consider the following form of the Friedmann
Equation (20) divided by 3H2:

1 = Ωm + ΩΛ + Ωσ + Ωχ , (22)

where

Ωm ≡ κGρm

3H2 , ΩΛ ≡ κGρΛ

3H2 , Ωσ ≡ σ2

3H2 , Ωχ ≡ K2

H2a2 (23)

are called density parameters. The current values of these dimensionless density parameters
are given in terms of the current values of the quantities that describe them, as

Ωm0 =
κG0ρm0

3H2
0

, ΩΛ0 =
κG0ρΛ0

3H2
0

, Ωσ0 =
σ2

0

3H2
0

, Ωχ0 =
K2

H2
0 a2

0
, (24)
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For the linear barotropic fluid, the conservation Equations (12) and (13) are obtained
in terms of the dimensionless density parameters (23) as follows:

Ω̇m +

(

2
Ḣ

H
− Ġ

G

)

Ωm + 3H(1 + wm)Ωm − κG[(3ξ − 2η) + 4ηΩσ] = 0 , (25)

Ω̇Λ + 2
Ḣ

H
ΩΛ +

Ġ

G
Ωm = 0 . (26)

In order to solve the different Ωi’s, one more equation is necessary besides the evo-
lution Equations (25) and (26), together with the constraint (22). Therefore, we use the
following additional evolution equations for the fractional energy density:

Ω̇χ + 2
(

H +
Ḣ

H

)

Ωχ = 0 , (27)

Ω̇σ +

(

6H + 2
Ḣ

H

)

Ωσ = 0 . (28)

Now, we see that our model consists of only five differential equations, such as (6)–(10),
(12) and (13), but contains six unknowns (H, Ωm, ΩΛ, Ωχ, Ωσ and G). To complete this
system of equations, we need an extra equation or assumption. To provide this necessity,
we adopt the assumption

G(t) = G0aδ (29)

in accordance with Dirac’s ansatz, which states that the gravitational constant G must
decrease with time. Here, δ = −1/60 is a constant obtained from observational con-
straints [26] which is in a good agreement with results of [27].

Now, to numerically integrate our equations and see if/how the results compare with
those of the ΛCDM model, we express the evolution equations of our model in redshift (z)
space using the transformation formula:

ḟ =
d f

dt
=

d f

dz

dz

da

da

dt
= −(1 + z)H f ′ (30)

where f is arbitrary function of time t, and we introduce the following dimensionless
parameters

h ≡ H

H0
, a =

1
(1 + z)

, ξ = αH0(ρm/ρm0)
n , and η = βH .

Here α, β and 0 ≤ n ≤ 1
2 are dimensionless constants. For more details about ξ(t)

being a simple power function of the energy density see [28–31]. Then, the evolution
Equations (21), (25)–(28) become a completely dimensionless system in redshift space
as follows
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h′ =
h

(1 + z)

[

3 − 2Ωχ − 3ΩΛ − 3
2
(1 − wm)Ωm

]

− κG0

(1 + z)1+δ

[

3α

2

(

h2Ωm(1 + z)δ

Ωm0

)n

− βh

]

(31)

Ω
′
m = −2h′

h
Ωm +

1
1 + z

(−δ + 3 + 3wm)Ωm − κG0

(1 + z)1+δ

[

3α

h

(

h2Ωm(1 + z)δ

Ωm0

)n

− 2β + 4βΩσ

]

, (32)

Ω
′
Λ
= −2h′

h
ΩΛ − δ

1 + z
Ωm , (33)

Ω
′
χ = −2h′

h
Ωχ +

2Ωχ

1 + z
, (34)

Ω
′
σ = −2h′

h
Ωσ +

6Ωσ

1 + z
, (35)

In what follows, Figures 1 and 2 show the evolution of G and Λ with redshift, and as
expected, Figure 1 shows G decreasing with time (normalised to unity today), whereas
Figure 2 shows Λ increasing with time reaching its current (normalised) value of around
0.7. We also notice the evolution of the fractional matter density, which, as reported in [25],
shows a local maximum at some recent redshift z ∼ 0.5 and decreasing to its current value.
This feature might suggest that the behaviour of expected matter decay is affected by
viscosity in a non-trivial way for such models, and may be an interesting distinguishing
feature worth looking out for in existing or future astronomical data, to confirm or rule
out such models. Figure 3 shows the evolution of the fractional curvature and anisotropy
parameters, with vanishingly small values today, as suggested by observations and the
standard FLRW-based ΛCDM cosmology.

The background equations of this section will be used together with the perturbation
equations derived in the following section to determine the rate of structure formation in
our Bianchi type-V spacetime model with viscosity and evolving Λ and G.

Figure 1. The variation of G for viscous Bianchi type-V cosmological model vs. redshift.



Universe 2023, 9, 61 7 of 19

Figure 2. The variation of Ωm and ΩΛ for viscous Bianchi type-V cosmological model vs. redshift.

Figure 3. The variation of Ωσ and Ωχ for viscous Bianchi type-V cosmological model vs. redshift.

3. Perturbations

It is now a well-established fact that the universe is not perfectly smooth, but is full of
large-scale structures (galaxies, clusters, superclusters, voids, etc.) seeded from primordial
fluctuations. Cosmological perturbation theory provides the mechanism to explain how
these small fluctuations grow and form the large-scale structures in the real, lumpy, uni-
verse. The actual procedure of perturbing can be done in two ways [32]: the metric-based
approach, developed through the pioneering works of Lifshitz [33], Bardeen [34], and Ko-
dama and Sasaki [35], and the covariant approach developed by Ehlers [36], Hawking [37],
Olson [38], and Ellis and Bruni [39]. The first approach involves the foliation of the
background spacetime with hypersurfaces and perturbing away from it. It is a non-local,
linear theory which requires that the metric be specified from the start. Difficulty dealing
with nonlinear effects and in handling the unphysical gauge modes that are inherent to
the theory are the main disadvantages of this approach [39–41]. The covariant formalism,
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on the other hand, is a way of describing spacetime via covariantly defined variables with
respect to a partial frame formalism such as the 1+ 3 [39] or 1+ 1+ 2 [42] spacetime decom-
position techniques. It is a suitable method to describe physics and geometry using tensor
quantities and relations valid in all coordinate systems. It is a local, covariant theory based
on threading spacetimes with frames. This approach differs from the standard one in that it
starts from the theory and reduces to linearities in a particular background. Nonlinearities
can be accommodated, but the main advantage of this approach is that no unphysical gauge
modes appear here.

Existing work in the study of cosmological dynamics universes filled with viscous
fluid models with evolving Λ and G focus, to the most part, on the background expan-
sion history. To our knowledge, there has been, for example, no work on the large-scale
structure formation scenarios of such viscous-fluid-filled Bianchi-V spacetimes. We will
therefore attempt to close this gap by studying the perturbations of such spacetimes, as
these perturbations are generally understood to be the seeds of the large-scale structures
we see in the universe today (see [32] and references therein for more details). To do so,
we start by defining the covariant and gauge-invariant gradient variables that describe
perturbations in the matter energy density, expansion and shear, as per the 1 + 3 covariant
perturbation formalism [39,43,44]:

Da ≡
a∇̃aρ

ρ
, Za ≡ a∇̃aΘ , Σa ≡ a∇̃aσ . (36)

These gradient variables evolve according to the following equations:

Ḋa −



w −
(

ξ − 2β

9
Θ

)

Θ

ρ
+

(nξΘ − wρ)(4βσ2/3ρ)

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ

− 4βσ2

3ρ



ΘDa − Ya

+



1 + w −
(

ξ − 2β

9
Θ

)

Θ

ρ
+

(

ξ − 4β
9 Θ

)

(4βσ2/3)

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ

Θ

ρ
− 4βσ2

3ρ



Za +
8β

3
Θ

ρ
σΣa

+



1 −
4βσ2

3

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ





2βΘ

3ρ
Xa = 0 , (37)

Ża +

[

2
3

Θ − 3κG

2

(

ξ − 4β

9
Θ

)

− (ξ − 4β/9Θ)Θ̇

(1 + w)ρ − (ξ − 2β/9Θ)Θ

]

Za

− (ξ − 4β/9Θ)

ρ + p − (ξ − 2β/9Θ)Θ
∇̃2Za

+

[

κG

2
(1 + 3w)ρ − 3κG

2
nξΘ − (nξΘ − wρ)Θ̇

(1 + w)ρ − (ξ − 2β/9Θ)Θ

]

Da

− (nξΘ − wρ)

ρ + p − (ξ − 2β/9Θ)Θ
∇̃2Da + 4σΣa

+

[

1 − (2β/3)Θ̇
ρ + p − (ξ − 2β/9Θ)Θ

]

Xa −
2β/3

ρ + p − (ξ − 2β/9Θ)Θ
∇̃2Xa = 0 , (38)

Σ̇a + ΘΣa + σ



1 +

(

ξ − 4β
9 Θ

)

Θ

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ



Za + σ





(nξΘ − wρ)

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ



ΘDa

+
2β
3 σΘ

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ

Xa − σb
a Σb = 0 , (39)

where Xa = σb
a Zb, Ya = σb

a Db and σb
a Σb are new vector quantities introduced due to the

effect of shear. These equations govern the rate at which structures grow in a Bianchi
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type-V universe with viscous matter and changing Λ and G parameters. To understand the
true picture of the matter growth rate, we need to re-write these equations in a ready-to-be
solved format in the next section, and combine them with the background expansion history
given by Equations (31)–(35).

4. Results and Discussion

We notice that the evolution Equations (40)–(42) do not form a closed system due to
the introduction of the Xa, Ya and σb

a Σb terms. From here onwards, we are going to propose
that since the observed anisotropy in the universe is very small, if any, then the product of
shear and any first-order (perturbed) quantity is even smaller, and hence negligible. This
results in the following closed system of first-order partial differential equations governing
the evolution of the perturbations:

Ḋa −



w −
(

ξ − 2β

9
Θ

)

Θ

ρ
+

(nξΘ − wρ)(4βσ2/3ρ)

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ

− 4βσ2

3ρ



ΘDa

+



1 + w −
(

ξ − 2β

9
Θ

)

Θ

ρ
+

(

ξ − 4β
9 Θ

)

(4βσ2/3)

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ

Θ

ρ
− 4βσ2

3ρ



Za

+
8βΘ

3ρ
σΣa = 0 , (40)

Ża +

[

2
3

Θ − 3κG

2

(

ξ − 4β

9
Θ

)

− (ξ − 4β/9Θ)Θ̇

(1 + w)ρ − (ξ − 2β/9Θ)Θ

]

Za

− (ξ − 4β/9Θ)

ρ + p − (ξ − 2β/9Θ)Θ
∇̃2Za

+

[

κG

2
(1 + 3w)ρ − 3κG

2
nξΘ − (nξΘ − wρ)Θ̇

(1 + w)ρ − (ξ − 2β/9Θ)Θ

]

Da

− (nξΘ − wρ)

ρ + p − (ξ − 2β/9Θ)Θ
∇̃2Da + 4σΣa = 0 , (41)

Σ̇a + ΘΣa + σ



1 +

(

ξ − 4β
9 Θ

)

Θ

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ



Za

+σ





(nξΘ − wρ)

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ



ΘDa = 0 . (42)

However, it is generally believed that large-scale structure formation follows spherical
clustering [43,44]. We therefore take only the spherically symmetric components of the
gradient vectors by writing:

∆ ≡ a∇̃aDa , Z ≡ a∇̃aZa , Σ ≡ a∇̃a
Σa . (43)

The evolution equations in these scalar variables are then given by:
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∆̇ −



w −
(

ξ − 2β

9
Θ

)

Θ

ρ
+

(nξΘ − wρ)(4βσ2/3ρ)

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ

− 4βσ2

3ρ



Θ∆

+



1 + w −
(

ξ − 2β

9
Θ

)

Θ

ρ
+

(

ξ − 4β
9 Θ

)

(4βσ2/3)

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ

Θ

ρ
− 4βσ2

3ρ



Z

+
8βΘ

3ρ
σΣ = 0 , (44)

Σ̇ + ΘΣ + σ



1 +

(

ξ − 4β
9 Θ

)

Θ

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ



Z + σ





nξΘ − wρ

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ



Θ∆ = 0 , (45)

Ż +

[

2
3

Θ − 3κG

2

(

ξ − 4β

9
Θ

)

− (ξ − 4β/9Θ)

(1 + w)ρ − (ξ − 2β/9Θ)Θ
(Θ̇ +

2K
a2 )

]

Z

− (ξ − 4β/9Θ)

(1 + w)ρ − (ξ − 2β/9Θ)Θ
∇̃2Z

+

[

κG

2
(1 + 3w)ρ − 3κG

2
nξΘ − (nξΘ − wρ)

(1 + w)ρ − (ξ − 2β/9Θ)Θ
(Θ̇ +

2K
a2 )

]

∆ ,

− (nξΘ − wρ)

(1 + w)ρ − (ξ − 2β/9Θ)Θ
∇̃2

∆ + 4σΣ = 0 (46)

where we have used the relation

a∇̃a
(

∇̃2Za

)

= ∇̃2(a∇̃aZa

)

+
2K

a2 a∇̃aZa = ∇̃2Z +
2K
a2 Z , (47)

K being the curvature scalar of the 3-space. Next, we need to write these equations as
a system of ordinary differential equations. We can achieve this through the technique of
harmonic decomposition, through which we can write

∇̃2X = − k2

a2 X (48)

for some wavenumber k, not to be confused with κ nor with curvature K. Thus, in the
harmonic space, the evolution of the perturbations in the kth mode become:

∆̇
k −



w −
(

ξ − 2β

9
Θ

)

Θ

ρ
+

(nξΘ − wρ)(4βσ2/3ρ)

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ

− 4βσ2

3ρ



Θ∆
k

+



1 + w −
(

ξ − 2β

9
Θ

)

Θ

ρ
+

(

ξ − 4β
9 Θ

)

(4βσ2/3)

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ

Θ

ρ
− 4βσ2

3ρ



Zk +
8βΘ

3ρ
σΣ

k = 0 , (49)

Żk +

[

2
3

Θ − 3κG

2

(

ξ − 4β

9
Θ

)

− (ξ − 4β/9Θ)

(1 + w)ρ − (ξ − 2β/9Θ)Θ
(Θ̇ +

2K− k2

a2 )

]

Zk

+

[

κG

2
(1 + 3w)ρ − 3κG

2
nξΘ − (nξΘ − wρ)

(1 + w)ρ − (ξ − 2β/9Θ)Θ
(Θ̇ +

2K− k2

a2 )

]

∆
k + 4σΣ

k = 0 ,

Σ̇
k + ΘΣ

k + σ



1 +

(

ξ − 4β
9 Θ

)

Θ

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ



Zk + σ





nξΘ − wρ

(1 + w)ρ −
(

ξ − 2β
9 Θ

)

Θ



Θ∆
k = 0 . (50)
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These are ordinary differential equations, and hence much easier to handle than the
earlier partial differential Equations (40)–(45). By defining the following dimensionless
quantities

γ ≡ k2

H2
0

, Z ≡ Z

H0
, S ≡ Σ

H0
,

and expressing the differential equations in redshift space, we can rewrite the harmonically-
decomposed perturbations equations as:

∆
′k = − 3

(1 + z)

{

w − κG0

Ωmh(1 + z)δ

[

α

(

h2Ωm(1 + z)δ

Ωm0

)n

− 2β

3
h

]

− 4β

3
κG0

(1 + z)δ

Ωσ

Ωm

+
4β

3
Ωσ

Ωm

κG0

(1 + z)δ







αn
(

h2Ωm(1+z)δ

Ωm0

)n
− whΩm

κG0(1+z)−δ

(1+w)hΩm

κG0(1+z)−δ −
[

α
(

h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]







}

∆
k

+
1

h(1 + z)

[

1 + w − κG0

Ωmh(1 + z)δ

[

α

(

h2Ωm(1 + z)δ

Ωm0

)n

− 2β

3
h

]

− 4β

3
κG0

(1 + z)δ

Ωσ

Ωm

+
4β

3
Ωσ

Ωm

κG0

h(1 + z)δ







α
(

h2Ωm(1+z)δ

Ωm0

)n
− 4β

3 h

(1+w)hΩm

κG0(1+z)−δ −
[

α
(

h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]







]

Z k

+
8β

3
κG0

h(1 + z)δ+1

√
3Ωσ

Ωm
Sk , (51)

Z ′k =
1

(1 + z) h

[

2h − 3
2

κG0

(1 + z)δ

{

α

(

h2Ωm(1 + z)δ

Ωm0

)n

− 4β

3
h

}

−

{

α
(

h2Ωm(1+z)δ

Ωm0

)n
− 4β

3 h

}

(1+w)h2Ωm

κG0(1+z)−δ − h
{

α
(

h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
}

(

−hh′(1 + z) +
2
3

h2
Ωχ − γ

3
(1 + z)2

)

]

Z k

+
3

(1 + z)

[

Ωmh

2
(1 + 3w)− 3

2
αnκG0

(1 + z)δ

(

h2Ωm(1 + z)δ

Ωm0

)n

−
αn

(

h2Ωm(1+z)δ

Ωm0

)n
− whΩm

κG0(1+z)−δ

(1+w)h2Ωm

κG0(1+z)−δ − h
{

α
(

h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
}

(

−hh′(1 + z) +
2
3

h2
Ωχ − γ

3
(1 + z)2

)

]

∆
k

+
4
√

Ωσ

(1 + z)
Sk , (52)

S ′k =
3

(1 + z)
Sk +

√
3Ωσ

(1 + z)






1 +

α
(

h2Ωm(1+z)δ

Ωm0

)n
− 4β

3 h

(1+w)hΩm

κG0(1+z)−δ −
[

α
(

h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]






Z k

+
3h

√
3Ωσ

(1 + z)







αn
(

h2Ωm(1+z)δ

Ωm0

)n
− whΩm

κG0(1+z)−δ

(1+w)hΩm

κG0(1+z)−δ −
[

α
(

h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]






∆

k . (53)

These equations are now closed, and can be numerically integrated with the assump-
tion that the background expansion history is known. As the main aim of this work is
to see the effect of viscosity and changing the constants Λ and G 1 on the growth rate of
matter density perturbations, we will set our initial conditions at some redshift zin, solve
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the above system of equations for ∆k(z) and compare it with that of standard GR/ΛCDM.
The following plots are obtained by defining

δk(z) ≡ ∆k(z)

∆k(zin)
(54)

with zin = 20 in both GR/ΛCDM and our current models. The present-day values of the
background expansion history are better known than those at zin; however, we have used
the latest Planck 2018 results for the background cosmological parameters. We have also
used the following dimensionless viscosity parameters: α = 0.312, β = 1, n = 0.2. From the
plots, we can clearly see the following:

• If we normalize the perturbations at some redshift zin in the past and evolve them,
we expect larger amplitudes today, in the case of GR without Λ , as opposed to the
ΛCDM case with constants Λ and G;

• If we consider evolving G and Λ, the perturbation amplitudes today will be higher
than that of ΛCDM , but smaller than that of GR without Λ;

• If we include viscosity, the perturbation amplitudes today are much higher than those
of ΛCDM and GR without Λ. This might suggest that, although we analysed our
results up to linear perturbations, the system is actually highly nonlinear, as observed
for another non-ΛCDM scenario in a recent study [45].

In the following, we vary either one of the viscosity parameters α, β, n, keeping the
others constant, and study the effect of that variation. The following are some of the
highlights of our observations:

• Increasing α decreases the late-time perturbation amplitude in the short-wavelength
regime, but this effect is reversed for z & 0.65;

• Increasing α increases the perturbation amplitude in the long-wavelength regime;
• Increasing β increases the perturbation amplitudes in both the short- and long-

wavelength regimes;
• Increasing n increases the perturbation amplitudes in both the short- and long-

wavelength regimes.

5. Discussions and Conclusions

In this work, we have shown that introducing viscosity to the cosmic fluid not only
affects the background expansion history, as shown in the results of Figures 1 and 2, but also
the rate at which structures grow. We have demonstrated this by first looking at the rate of
structure growth in pure GR with and without the cosmological constant (and assuming a
non-evolving gravitational constant G), depicted in Figure 4. As expected, the amplitudes’
comparison shows structure growth in ΛCDM is slower compared to pure GR, as structures
have less time to coalesce and grow in an accelerated background. Next, we showed in
Figure 5 that more structures can be expected in a Bianchi-V universe with evolving Λ

and G compared to both ΛCDM and pure GR cases. We then introduced the viscosity,
and showed in Figures 6 and 7 that structures grow even faster in this case, perhaps even
suggesting nonlinear effects in the perturbations. Such divergences might be smoking-gun
evidence of the failures of viscous Bianchi type-V models in the test of cosmological viability.
Moreover, our results suggest that the longer the wavelength (i.e., the smaller the value of
the wavenumber k and hence the dimensionless parameter γ), the larger the perturbation
amplitudes, ceteris paribus. We have demonstrated this finding in Figures 8–13, and it is
in line with other findings [45–48] in the literature. In the short-wavelength regime, we
noticed the perturbation amplitudes reaching maximum values at about the same redshift
that the fractional background matter density peaked; see Figures 2, 7, 8, 10 and 12 for a
comparison. Such a trend is not observed in the long-wavelength regime, and this may be
because in the small-γ limit, the wavelength-dependent contributions to the perturbations
of Equation (52) are negligible compared to the other terms in the equation. However,
this needs further scrutiny. As a follow-up exercise, it is worthwhile doing a cosmological
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viability test using more rigorous data analysis techniques involving simulated data values
of the model compared against actual astronomical data.

Figure 4. The variation of the matter density perturbations δk(z) for ΛCDM and GR without Λ

(Ωm = 1, ΩΛ = 0) vs. redshift. The current values from [49] h(0) = 1, Ωm(0) ≡ Ωm0 = 0.3111,
ΩΛ(0) ≡ ΩΛ0 = 0.6889, Ωχ0 = −0.0007, Ωσ0 = 1 − Ωm0 − ΩΛ0 − Ωχ0 have been used for the
background, whereas ∆k(zin) = 10−5, Z k(zin) = 10−5 and Σk(zin) = 10−5 have been used as initial
conditions for the perturbations, along with the fourth-order Runge–Kutta method to integrate the
system numerically.

Figure 5. The variation of the matter density perturbations δk(z) for a Bianchi type-V model for non-
viscous (α = 0 = β) fluid, but with changing G and Λ vs. redshift. The current values from [49] h(0) =
1, Ωm(0) ≡ Ωm0 = 0.3111, ΩΛ(0) ≡ ΩΛ0 = 0.6889, Ωχ0 = −0.0007, Ωσ0 = 1 − Ωm0 − ΩΛ0 − Ωχ0

have been used for the background, whereas ∆k(zin) = 10−5, Z k(zin) = 10−5 and Σk(zin) = 10−5

have been used as initial conditions for the perturbations, along with the fourth-order Runge–Kutta
method to integrate the system numerically.
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Figure 6. The variation of the matter density perturbations δk(z) for a viscous Bianchi type-V
cosmological model vs. redshift for long wavelength. The same initial conditions as the previous
figures are used, but this time with viscosity included.

Figure 7. The variation of the matter density perturbations δk(z) for a viscous Bianchi type-V
cosmological model vs. redshift for short wavelength. The same initial conditions as the previous
figures are used, but this time with viscosity included.
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Figure 8. The variation of the matter density perturbations δk(z) for a viscous Bianchi type-V
cosmological model vs. redshift for γ = 50, β = 1, n = 0.2, and different values of α.

Figure 9. The variation of the matter density perturbations δk(z) for a viscous Bianchi type-V
cosmological model vs. redshift for γ = 4, β = 1, n = 0.2, and different values of α.
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Figure 10. The variation of the matter density perturbations δk(z) for a viscous Bianchi type-V
cosmological model vs. redshift for γ = 50, α = 0.3, n = 0.2, and different values of β.

Figure 11. The variation of the matter density perturbations δk(z) for a viscous Bianchi type-V
cosmological model vs. redshift for γ = 4, α = 0.3, n = 0.2 and different values of β.
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Figure 12. The variation of the matter density perturbations δk(z) for a viscous Bianchi type-V
cosmological model vs. redshift for γ = 50, α = 0.3, β = 1 and different values of n.

Figure 13. The variation of the matter density perturbations δk(z) for a viscous Bianchi type-V
cosmological model vs. redshift for γ = 4, β = 1 and n = 0.2 and different values of α.
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1 From here onwards, we will set κG0 = 1 for simplicity.
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