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Resumo

Neste trabalho estudamos trés diferentes aspectos envolvendo a supersimetria no
contexto da teoria de campos em (2 + 1) dimensdes do espago-tempo. Consideramos
primeiramente a possibilidade da quebra dindmica de supersimetria no modelo de
Wess-Zumino, calculando o potencial efetivo até a aproximacdo de dois lagos. Veri-
ficamos que o estado de vacuo permanece supersimétrico e que indugdo de massa e
a correspondente quebra de simetria discreta ndo sdo perturbativamente consistentes.
Em seguida, voltamos nossa atengdo para a analise das identidades de Slavnov-Taylor
na eletrodindmica ndo comutativa supersimétrica. A transversalidade da polarizacdo
do vécuo é verificada explicitamente na aproximac¢do de um lago e com a conclusdo
de que nenhuma anomalia é introduzida pela ndo comutatividade ou pelo esquema
de regularizagdo adotado no formalismo de supercampos. Por fim, o comportamento
ultravioleta para a teoria de Yang-Mills-Chern-Simons supersimétrica acoplada mini-
mamente com supercampos de matéria é investigado. Verificamos que o modelo é
superenormalizdvel e que os termos divergentes persistem somente nas fun¢des 1PI

de dois pontos para o supercampo de calibre até a ordem de dois lagos.
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Abstract

In this work we study three different aspects involving supersymmetry in the con-
text of quantum field theory in (2 + 1) space-time dimensions. We consider first the
possibility of dynamical supersymmetry breaking in the Wess-Zumino model, calcula-
ting the effective potential up to two loops. We found that the vacuum state remains
supersymmetric and the dynamical generation of mass together with the discrete sym-
metry breaking are not perturbatively consistent. Next, we turn our attention to the
analysis of the Slavnov-Taylor identities in the noncommutative supersymmetric elec-
trodynamics. The transversality of the vacuum polarization is verified explicitly in
the one loop approximation with the conclusion that no anomaly is introduced by the
noncommutativity or the regularization scheme adopted in the superfields formalism.
Finally, the ultraviolet behavior for supersymmetric Yang-Mills-Chern-Simons theory
minimally coupled to matter superfields is investigated. We verify that the model is
superenormalizable and that the divergent terms persist only in the gauge superfield

self-energy diagrams up to two-loop.
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Introducao

O estudo das simetrias presentes na natureza tém se revelado fundamental para a
compreensdo dos mais diversos fendmenos fisicos. Em particular, no Modelo Padrao
das particulas elementares (MP), as simetrias do grupo de calibre SU(3) ® SU(2) ®
U(1) permitiram classificar todo o espectro das particulas observéveis até a presente
data. Simetrias de calibre em geral, sdo consideradas simetrias internas pois as trans-
formagdes dos campos e particulas ndo ocorrem no espago-tempo real. Em contraste,
existem as simetrias ligadas as transformacdes sobre o espaco-tempo que incluem por

exemplo o grupo de Poincaré, isto é, o grupo das translagdes, rotacdes e “boosts” 1.

No inicio dos anos 60, os fisicos acreditavam que era possivel encontrar um grupo
de simetria que combinasse de modo néo trivial o grupo de Poincaré com algum grupo
de simetria interna. Contudo, ap6s intimeras tentativas, mostrou-se que tal objetivo era
impossivel dentro do contexto de grupos de Lie usual. De fato, os chamados teoremas
“no-go” de Coleman e Mandula [1] provaram que se assumirmos algumas hipoteses
plausiveis como localidade, causalidade, positividade de energia, finitude do namero
de particulas e outras suposi¢des mais técnicas, entdo qualquer grupo de Lie que con-
tem o grupo de Poincaré e um grupo compacto (interno) deve ser escrito como um

produto direto de tais grupos, levando a uma algebra trivial para os seus geradores 2.

E claro que as limitagdes impostas pelos teoremas “no-go” sao fortemente relacio-
nas com as hip6teses requeridas para prova-los. Uma delas repousa sobre a defini¢do
de grupo de Lie e de sua dlgebra, que é composta por relacdes de comutacdo entre os
geradores do grupo. No inicio dos anos 70, foi idealizado por Golfand e Likhtman [2] e
desenvolvido posteriormente por Wess e Zumino [3] que permitindo também rela¢des
de anticomutacdo para os geradores das transformacgdes, chegava-se a uma extensao
nao-trivial do grupo de Poincaré que passava a relacionar bésons e férmions através
de uma nova transformagao de simetria, chamada de supersimetria (ou simplesmente
SUSY). Em 1975, Haag, Lopuszanski e Sohnius [4] finalmente forneceram uma prova

rigorosa de que a supersimetria era a tinica extensdo possivel para as simetrias do

!0utras simetrias ligadas ao espago-tempo sdo as simetrias discretas C, P e T.
2Uma discuséo detalhada da prova do teorema de Coleman-Mandula pode ser encontrada no livro:
The Quantum Theory of Fields, Volume 3: Supersymmetry, S. Weinberg, Cambridge University Press, 2005.
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espaco-tempo admitida pela S-matriz no contexto de uma teoria de campos relativis-

tica 3.

A supersimetria surge entdo como uma simetria que combina bésons e férmions na
mesma representagdo (ou no mesmo multipleto) de um supergrupo, tal que os gera-
dores das transformacdes de supersimetria Q sdo espinores que satisfazem rela¢oes de

anticomutag¢do na forma {Q, Q} ~ P, com
Q |Béson) = |Férmion), Q |Férmion) = |Béson), (1)

onde P é o gerador das translagcdes do grupo de Poincaré. Como consequéncia di-
reta, toda particula bosdnica deve ter uma parceira fermidnica e vice versa. Contudo,
tal espectro de novas particula ndo foi observado até o momento. Assim, para que
a supersimetria seja vidvel como teoria fisica, ela deve estar quebrada nas escalas de
energias acessiveis atualmente.

Do ponto de vista puramente tedrico, existem vdrias razdes que motivam o es-
tudo da supersimetria. Talvez, a principal delas esteja ligada ao fato de que corre-
¢Oes radiativas tendem a ser menos divergentes em teorias supersimétricas, devido
ao cancelamento das contribui¢des quanticas entre férmions e bésons. Tal mecanismo
de cancelamento fornece a possibilidade de construirmos teorias cujo comportamento
no ultravioleta é sensivelmente melhorado; alguns modelos, em particular a teoria de
super-Yang-Mills com A/ = 4 em quatro dimensdes sdo finitas em todas as ordens de
perturbacdo [5]. Podemos destacar ainda a importancia da supersimetria no contexto
das teorias de grande unificagdo (GUT) tais como a teoria das supercordas, juntamente
com a supergravidade (a extensdo local da supersimetria).

O problema das divergéncias ultravioletas ha muito preocupa os fisicos tedricos
e estd diretamente relacionado com o produto dos operadores de campos no mesmo
ponto, que em principio ndo estd bem definido. Na tentativa de contornar esse pro-
blema, Heinseberg [6] prop0s a existéncia de uma comprimento minimo, que impli-
cava num principio de incerteza para medidas de comprimento e eliminava assim o
conceito de ponto (Ax*AxV = ®""). Essas ideias deram origem ao conceito de espago-
tempo ndo comutativo no qual as coordenadas passam a obedecer a relacdo de comu-
tacdo

[x#, x"] = i®", (2)

e foram primeiramente utilizadas por Snyder [7] como forma de amenizar o compor-
tamento ultravioleta em teoria quantica de campos. Contudo, tais ideias foram postas

de lado por um longo periodo em virtude do enorme sucesso do programa de renor-

3Um boa revisao historia sobre o nascimento da supersimetria pode ser encontrada no livro: The
Supersymmetric World, ed. by G. Kane, M. Shifman, World Scientific, 2000.
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malizagdo.

No final dos anos 90, o interesse pela ndo comutatividade foi retomado com grande
impulso devido a descoberta de que uma teoria de Yang-Mills ndo comutativa poderia
ser obtida como um limite de baixas energias da teoria de cordas na presenga de um
campo magnético de fundo [8]. Outra razdo para considerarmos a ideia da quantizagdo
do espago-tempo pode ser extraida de simples argumentos heuristicos envolvendo a
teoria da relatividade geral. Quando consideramos distancias comparaveis ao compri-
mento de Planck [, = /Gh/c® = 10~ %¢cm, 0 campo gravitacional se torna tdo intenso
que nem a luz ou outro sinal sdo capazes de transmitir informag¢do de modo que medi-

das de coordenadas perdem o significado [28].

Apesar do sucesso inicial motivado pela relagdo entre a ndo comutatividade e a
teoria das cordas, alguns aspectos ndo familiares envolvendo o comportamento ultra-
violeta dos diagramas de Feynman na presenca da ndo comutatividade logo chamaram
atencdo. O exemplo mais importante é conhecido como “mistura UV /IR” que consiste
na conversdo de parte das divergéncias ultravioletas (UV) da teoria comutativa em sin-
gularidades infravermelhas (IR) que podem impossibilitar o tratamento perturbativo
usual [10, 11, 12]. Outro ponto de destaque é a violacdo da unitariedade em modelos

envolvendo a ndo comutatividade entre espaco e tempo [13].

Lembrando que teorias supersimétricas apresentam um melhor comportamento di-
vergente é natural esperar que os termos ndo renormalizdveis em teorias ndo comuta-
tivas possam ser suavizados pela presenca da supersimetria. Nesse contexto, varios
modelos com supersimetria e/ou ndo comutatividade tem sido extensamente investi-

gados por nosso grupo de pesquisa ao longo dos dltimos anos [14].

Neste trabalho, estamos particularmente interessados em estudar trés diferentes
questdes envolvendo as corre¢des radiativas sobre modelos supersimétricos com N =
lem D = 2+ 1 dimensdes: o mecanismo de quebra dindmica de supersimetria apli-
cada ao modelo de Wess-Zumino (WZ), as identidades de Slavnov-Taylor para a ele-
trodinadmica supersimétrica ndo comutativa (NCSQED) e finalmente a questdo envol-
vendo o cancelamento das divergéncias UV na teoria de super-Yang-Mills-Chern-Simons
(SYMCS). Em toda nossa abordagem utilizamos o formalismo de supercampos, que

permite preservar explicitamente a supersimetria em todas as etapas dos célculos.

A seguir, apresentamos como este texto estd dividido. No capitulo 1, apresenta-
mos o formalismo adotado para implementar a supersimetria em um espago-tempo
(24 1)D, introduzindo os conceitos e as defini¢des sobre dlgebra supersimétrica, su-
perespaco e supercampos, além de nossa notagdo. No capitulo 2, faremos uma breve
revisdo sobre teoria de campos ndo comutativas e discutiremos em mais detalhes o
fenomeno da mistura UV/IR. No capitulo 3, estudaremos a possibilidade de quebra

dindmica de (super)simetria no modelo de WZ. No capitulo 4, apresentamos nosso
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estudo inicial sobre as identidades de Slavnov-Taylor para a NCSQED, provando ex-
plicitamente que a transversalidade da polarizagdo do vacuo ndo é afetada pela ndo
comutatividade ou pelo particular mecanismo de regularizacdo utilizada para preser-
var a supersimetria explicitamente. No capitulo 5, discutimos a finitude do modelo
SYMCS na presenca de campo de matéria e apresentamos um valor para o parametro
de calibre no qual as divergéncias sdo todas eliminadas, em todas as ordens de pertur-
bagdo. Por fim, no capitulo 5.4, apresentamos nossas conclusdes e discutimos algumas

perspectivas para este trabalho.



Capitulo 1

Supersimetria em um espaco-tempo

com 2 + 1 dimensoes

Embora seja bastante extensa a literatura existente sobre supersimetria e de sua for-
mulagio no superespago!, ndo existe um padrao universalmente adotado referente as
notagdes e convengdes sobre este assunto. Por isso, julgamos conveniente apresentar
o formalismo e as convengdes utilizadas para descrever a supersimetria em (2+1) D e
fornecer as informagdes necessdrias para o desenvolvimento do nosso estudo nos proé-
ximos capitulos. Todavia, ndo pretendemos ser auto-contido e sugerimos as referéncias

[18, 19] para maiores detalhes.

1.1 Notagoes e defini¢oes

Neste texto adotaremos o sistema natural de unidades, onde A = ¢ = 1. Nosso
espago-tempo tridimensional possui assinatura Lorentziana dada pela métrica 7,, =
diag(—1,1,1) e o tensor completamente anti-simétrico €?¢ é definido por €"? = 1,
onde indices latinos representam as coordenadas do espago-tempo, assumindo os va-
lores (0,1,2).

O grupo de Lorentz em trés dimensdes é realizado na representacdo vetorial dada
pelo grupo SO(1,2) ou na representacdo espinorial pelo grupo SL(2,R). Neste tltimo,
a representacdo fundamental tem dimensao dois e atua sobre espinores reais de Majo-

rana ¢* = (!, ¥?), definidos como variaveis de Grassmann (anticomutantes).

Seguindo [18], adotaremos a notac¢do espinorial para todas as representa¢des de

Lorentz. Os indices espinoriais serdo denotados por letras gregas «, B, ...., com valores

1Como referéncia bésica, podemos citar os textos cldssicos em [15, 16, 17].

5
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(1,2) e serdo abaixados ou levantados pelo tensor anti-simétrico definido por

0 —i
Cop = —Cpo = ( A ) (1.1)

com a convengdo de soma “noroeste-sudeste”, ou seja, Pp* = C“ﬁtpﬁ e, = 1pﬁC/3,x, tal
que,

CBCayCpr = Cur s ¥ = 0 1) = ¢ 1.2

appy = Cpv — - i 0 — ~ “ap- ()

A partir dessa convencdo, observamos que para §* real, {, é imagindrio e suas

componentes se relacionam por
Yo = (U1, 92) = 9PCpo = (i, —iy"). (13)
O “quadrado” de um espinor é definido por:

(¥)* = 9 o = ip'y?, (1.4)

N =

que combinado com a definicdo usual de conjugagdo complexa (AB)* = B*A*, resulta

ser hermitiano
(@2) =—i(¥?) (#') = —ip?p! = ip'y? = () (15)

Algumas conseqjiiéncias imediatas das defini¢des acima sdo:

C*FCrpg =05, CMCpy = -6y, (1.6)
CapC”° = 535;; — 5g(sg, (1.7)

P = CPpptpa = —9pC 0 = —ppyf, 18)
PP = CPY?, patpp = Cpatp®. (1.9)

A escolha de utilizar a notagdo espinorial para todas as representa¢des de Lorentz
implica que um vetor (representagdo tridimensional) sera descrito por um bi-espinor
simétrico V% = (V11, V12, V22) ou um bi-espinor de trago nulo V*; , definido por meio
das matrizes de Dirac como

VB = (1), = ( votor 7 ) ) (1.10)
02 0o — U1
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. i(op 4 00)
V& = Vs = (1) 0, = 02 i@ ) 1.11
B Y] (") pla < (09— 1) vy (1.11)

onde escolhemos

= (35) =0 5) @7 (10) o

de tal modo que um bi-espinor se comporta como um objeto comutante. Algumas
relacdes tteis que as matrizes de Dirac em (1.12) satisfazem e que podem ser facilmente
verificadas seguem abaixo:

gy = 2",

gy = 2™ (10)%,

Jpa = 21",
)

a)DC,B(r)/a v = 5,‘;5(’?-'—5?55,
eabcea’b’c’nccl _ (Uaa’ﬂbb’ - Uab’nba’) ‘ (1.13)

1.2 Algebra de Grassmann

Na sec¢do anterior, foi dito que os espinores §* sdo varidveis de Grassmann, isto é,
que anticomutam. Vamos agora formalizar esta definicdo e apresentar as principais
operacdes que tais objetos satisfazem.

Sejam 6* os geradores de uma n-dimensional dlgebra de Grassmann, definida pela
relagédo

{ea,eﬁ} = 9P 1+ 9Pg* — 0, (1.14)

ondewa, B = 1,2,..,n. Em particularz, (9”‘)2 = 0. Podemos utilizar este fato para
concluir que a expansdo em Taylor de uma funcdo arbitraria definida nessas varidveis
somente conterd um ndimero finito de termos; por exemplo, para um &lgebra bidimen-

sional (nosso caso de interesse) temos
£(0) = ag + a1,0* + a,6? (1.15)

com 4y e a; nimeros ordindrios (reais ou complexos) e a1, é um espinor de duas com-
ponentes.

A operacdo de diferenciacdo é definida pela relagéo,

2Nao confundir com 62 que é evidentemente diferente de zero.



8 1. SUPERSIMETRIA EM UM ESPACO-TEMPO CQM 1 DIMENSOES

d
9u0P = Weﬁ =94 (1.16)

de modo que

9“0 = C*9,0"C,p = (555;; S501)8, = —F, (1.17)
9.6% = —a 20P65 = 1(5/395 0P9,85) = . (1.18)
Precisaremos também do operador Laplaciano, definido por
2 1 «
- = Ea Ou, (1.19)
e que produz imediatamente as seguintes igualdades

9%0* = 0, (1.20)

%> = —1. (1.21)

Para introduzir a operacdo de integracdo sobre as varidveis de Grassmann, adota-

mos a convengao de Berezin [20], definida por

d6,0F = o°, db, (1.22)
/ /

de modo a deixar a integracdo de qualquer funcdo nas varidveis de grassmann invari-

ante por translagdao: 6* — 6% + n*. Por exemplo, em uma dimensao temos:
/def(e ) = /de(ao 4 6a; + )
- ao/d9+a1/d99—a117/d9
a1

- / d0f(6). (1.23)

Formalmente, observamos que a integragdo é uma operagao equivalente a diferencia-
cdo, f d6,6F = 255 — 9,0P. Definindo o elemento de medida em duas dimensdes por

de? = %d@“d@,x, (1.24)

obtemos a integral dupla
/ 12002 — 2262 — 1, (1.25)
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que permite definir a func¢do delta satisfazendo as condi¢des usuais:

5%(0) = —6% = —%eaea, (1.26)

/ 20520 — 0')£(8) = £(6)). (1.27)

1.3 Superespaco e supercamposem (2+ 1) D

Uma forma compacta e muito ttil de se trabalhar com supersimetria, inventada
por A. Salam e J. Strathdee [21], é considerar sua formula¢do no superespago. Na
sua forma mais simples (N' = 1, sem cargas centrais), o superespago 5-dimensional é
uma variedade diferencidvel parametrizada por trés coordenadas bosonicas x*f e duas
coordenadas fermidnicas 6%, denotadas compactamente por zM = (x*,0%), de modo
que (ZM)+ = zM,

A diferenciacdo e integracdo sobre as coordenadas fermidnicas ja foram definidas

na sec¢do anterior. De forma andloga, a derivada para as coordenadas bosonicas é defi-

nida por
O = (V) v, (1.28)
1 1

de tal modo que a divergeéncia d,,x"" = 3 e os indices sdo levantados com auxilio
da métrica espinorial: 0" = CP‘“C"/%E),X/; . Outro operador que precisamos definir é o
D' Alambertiano: )

= Ea“ﬁa,x,g_ (1.30)

Todas as outras operagdes que envolvem as coordenadas bosonicas sdo definidas de
modo usual.

Uma funcéo arbitraria ®_(x, 6) definida no superespaco é chamada de supercampo.
Aqui, os pontos indicam outros indices de simetria que possam estar associados ao su-
percampo, como simetrias internas ou do espago-tempo. Um supercampo transforma-
se de modo usual em relacdo as transformagdes do grupo de Poincaré, com os gera-
dores Pyp (translagdes) e Mypys (rotagdes e boosts) definidos na notagado espinorial e
satisfazendo as dlgebra de Lie do grupo.

A algebra supersimétrica é realizada quando adicionamos a algebra de Poincaré
relacdes de anticomutacdo envolvendo geradores espinoriais. Essa algebra de Lie es-
tendida é denominada super-algebra ou algebra “graduada” e é dada por

[P‘MVI Ppg’] — 0, (1.3].)



10 1. SUPERSIMETRIA EM UM ESPACO-TEMPO CQM 1 DIMENSOES

{Qu, Qv} = 2Py, (1.32)
[Q]M PI/P] = 0/ (133)

além das relagdes de comutagdo envolvendo M,p,,. Uma realizagdo dessa dlgebra no
superespago é obtida definindo os geradores em termos de derivadas por

P]/”/ — iayv, (1.34:)

Qu = i(d, — 0Yidy). (1.35)

Podemos avaliar o efeito de uma transformacdo supersimétrica por meio do opera-
dor exp { —i(" Py + €*Qq) } atuando sobre um supercampo arbitrario, com ¢* e €*

parametros reais e constantes. Assim,
O(x,0) = exp[—i(E¥Py,+€'Q))]P(x,0)
= [145%ay, + € (91 — i670,,)]®(x,6) + O(€?)
i
= ®(x,0) 4 €9, + (& — EeWw))aApcp, (1.36)

! !
e corresponde a uma translagdo (x,0) — (x,60 ) no superespago, com

x//\p — XAP + CAP _ ée()‘gp)l

o = 014 €r (1.37)

Deve-se observar que uma translacdo nas coordenadas fermiodnicas necessariamente
implicard em uma translacdo nas coordenadas bosodnicas, mas o contrario ndo se veri-
fica. Além do mais, se & é um supercampo (transformando-se segundo (1.36)), 9, P

também ¢é, desde que

0P (x,0') = ou (exp[—i((:)‘PP,\p + eAQA)]QD(x,@))
= [14&%0,,+ () —i0P9),)]0 P (x,0), (1.38)

onde utilizamos o fato que derivadas espaco-temporais comportam-se como bésons.
O mesmo ndo acontece com derivadas espinoriais d,®, mas pode-se definir derivadas
covariantes por transformacgdo de supersimetria como

Dy = 9, + 6"y, (1.39)
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obedecendo as seguintes rela¢des de comutagdo e anticomuta¢do com os geradores
[Dy, Pur] =0, (1.40)

{D,,Q,} =0. (1.41)

Abaixo, segue algumas identidades que as derivadas 9, e Dysatisfazem e serdo

bastante tteis nos calculos seguintes.

{Dy, Dy} = 2iDy,, (1.42)
[D,, D] = 2C,,D?, (1.43)
DDy = iduy + CyuD?, (1.44)
D?*D, = —DyD?* = id,, D", (1.45)
D'D"D, =0, (1.46)
DPDYD, = D,D'DP, (1.47)

’ 2
(D ) — 0. (1.48)

As derivadas também obedecem a regra de Leibnitz e podem ser integradas por
partes quando inseridas numa integral em d>xd?6. Outra identidade ttil é

/ Pxd?0D(x,0) = / Pxd?D(x,0) = / #x (D*®(x,0)) o= - (1.49)

1.4 Multipleto escalar

Seja @y...(x, 0) um supercampo arbitrario. Devido a (1.14), uma expansao geral em

série de poténcias de 0 serd sempre finita e pode ser expressa como

Dup...(xX,0) = Agp...(x) + 0" Aygp...(x) — 67 Fyp...(x), (1.50)

onde A, B, e F sdo chamados de campos componentes de .
A representagdo mais simples de supersimetria é dada por um supercampo escalar
real, chamado também de multipleto escalar, que escrito em termos de componentes

assume a forma
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P(x,0) = A(x) + 0", (x) — 6*F(x), (1.51)

com A(x) e F(x) funcdes escalares de x e ¢, (x) um espinor de duas componentes.
Essas componentes podem ser rapidamente obtidas por proje¢des do supercampo no

espago-tempo ordindrio como segue

Alx) = @(x,0)],
PYa(x) = Du®(x,0)],
F(x) = D?®(x,0)], (1.52)

com a barra vertical | indicando que ap6s a operagdo correspondente ter sido efetuada
no supercampo, devemos tomar 6 = 0.
As transformagdes de supersimetria para os campos componentes sdo obtidas a

partir de (1.36), tomando-se % = 0. Assim,

5(x,0) = €4(y —i69),)D(x,0)
= ey + 07 ("0, A + €' Co\F) — 02" Cid 1,

= JA+0°5p, — 0%GF, (1.53)
resultando em
A = 'y,
o = €90y, A+€"CpF,
SF = €'C7id) . (1.54)

Pode-se notar que a transformacdo de supersimetria mistura as componentes bosoni-
cas com fermidnicas e que o comutador de duas transformagdes sucessivas produz

uma translagdo no espago-tempo

(61,02 (comp.) = —2€} €510, (comp.). (1.55)

Para ilustrar o formalismo, vamos tomar como exemplo a a¢io da teoria A®°:

5= / d3xd26[—%(D“<I>)2 + %mCI)Z + %qﬁ]. (1.56)

Usando [ d>xd?0f(®, D, @) = [ d*xD?f(®, D, )|, a parte cinética de (1.56) em ter-
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mos das componentes fica

T —% / d3xd29%D“<I>D,XCI>

_ % / P xd260DD>P

_ % / #xD? [0D%9) |

= % / #x (D*®D*® + D@D, D*® + ®(D*)*®) |

= 5 [ @x (P +yriaLyg+ a0A). (1.57)

Os termos de massa e interagdo resultam em

1 A
Smass+int = /d3xd26[§mcp2+ ECDB]
1 A
— 3 21+ 2 A a3
_ /de [5m®? + 2 ®3)
1 A
_ 3 5
= /d xED/S[mCI)Dﬁ;CI)—i— EcI> Dpd]|
N /dgx[m(¢2+AF)+A(A¢’2+%A2F)]. (1.58)

1.5 Multipleto vetorial

Teorias de calibre usuais no espago-tempo de Minkowski sdo construidas ao se im-
por que a agdo do modelo seja invariante por alguma transformacdo de simetria repre-
sentada por algum grupo de Lie unitario, com algebra Lie dada por

[Ty, Tp] = ifh T, T = (Ti)Y, (1.59)
e com os elementos do grupo escritos na forma exponencial
g =exp (ia"Ty), (1.60)

definidos com pardmetros reais (a™)* = a”. Os campos do modelo devem pertencer a

uma dada representacdo do grupo e transformam-se de acordo com

U(g)U(g2) = U(g1082), U(gU'(g) =1 (1.61)

A extensdo para supercampos pode ser feita de modo andlogo. Consideremos por

simplicidade o caso abeliano de uma rotacdo de fase constante. Para um supercampo
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escalar complexo,

®(z) = %[cbl (2) + ia(2)], (1.62)

onde ®1e P,sdo supercampos escalares reais, a lei de transformacédo é dada por

D(z) — @ (z) = Ko,
P(z) — D (z) = de K. (1.63)

A Lagrangiana livre |DQD|2 é invariante por esta transformacdo. Para estender essa
simetria para uma fase local, isto é, com K = K(x,6) um supercampo escalar real
definido por

K(x,0) = w(x) + 0°C(x) — 6%1(x), (1.64)

precisamos definir uma derivada covariante de calibre que atuando sobre ® e ® man-
tenha L., = D*®D,® invariante. Isto é obtido por meio de

DDC — v“ — DIX - iADCI (1.65)

com A, um supercampo espinorial real, chamado de conexdo de calibre espinorial. Sua
lei de transformagdo é obtida impondo-se que (V®) = ¢K(V®), implicando direta-
mente em

V), = eéKkve K (1.66)

tal que

!

A, = (A, + DyK)e K, (1.67)

A expansado em série de Taylor de A, na varidvel 6 revela seu contetido em termos

de campos componentes e pode ser escrita como
An(x,60) = xa(x) — 6 H(x) 4 8P Vo (x) — 02 (100" (x) + 240 (x)), (1.68)

onde X, e A, sd0 espinores reais, V,5 € um biespinor real e simétrico e H (x) um esca-
lar. Tais componentes, sdo determinadas imediatamente pelas seguintes proje¢des do

supercampo Ay :

Xa = A“|9:0/
1
H = _D(XAIX|9:0/
2 .
1

1
Ae = 5DﬁD,XAW:O. (1.69)
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2 ! '

que é invariante sob transformacdo de calibre e devido a (1.45), satisfaz a identidade
D*W, = 0. Como veremos a seguir, W,¢é o andlogo supersimétrico ao tensor intensi-
dade de campo F*¥ da teoria eletromagnética. Sua expansdo em componentes pode

ser escrita como
Wi = aq(x) — 0ab(x) + 0F fup(x) — 0%ds, (1.71)

e se relacionam com as componentes de A, por meio das seguintes projecdes:
Ay = sz’ = Ag,
b = D*W,| =0,
1
f‘"ﬁ = szWﬁ| = —E(a,xvag + aﬁ”VW),
i

upAP. (1.72)

da - D2Wp¢| = _E

O contetido fisico de W*é revelado se construirmos a seguinte agdo invariante de
calibre .
5= / PBzW? = / PxdPO W, (1.73)

que ap6s a integracdo em d26 assume a forma
1 3,12 o
5 = E/alxD (W),

1

— Z/d3xD/3D/3(W“W,x)|,

- [ (W“DZW“ - %D/BW“D/;W,X) ,

— / B (= Iavig onb — Lyoss (1.74)

27 b 2/ b )y

sendo constituida do termo de Maxwell na representacdo espinorial e um termo ciné-

tico de Dirac para a componente A,.

1.6 Superespaco Quantico

Teorias supersimétricas podem ser quantizadas estendendo-se o formalismo das
integrais de trajetdrias para o superespaco, em completa analogia com a formulagdo

para o espago-tempo usual. A grande vantagem de se trabalhar com a teoria formulada
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no superespaco € poder manipular em “blocos” os campos componentes em um dado
multipleto, mantendo a supersimetria manifesta em todas as etapas dos cédlculos. Na
formulacdo em termos de campos componentes, os cdlculos dos efeitos quanticos sdo
muito mais extensos do ponto de vista computacional e em geral, as duas abordagens
produzem os mesmos resultados fisicos.

Para ilustrar o formalismo, consideremos o gerador funcional de um supercampo

escalar real massivo com auto-interacdo arbitréria:

Z(J) = expliS; 5] /chexp[ /; (D? 4 m)® + @), (1.75)

Completando-se os quadrados da parte livre, obtemos

5
Z(]) = expliSiny (7)) expl - / Prd2ox o] 7. (1.76)

D2+

No espago dos momentos, as regras de Feynman sdo obtidas por:

e Propagadores:

1 46 1 ) A3k (1 1
i6](p,0) i6](—p,0) / arp o) {51 <k19>mf<—k,e)}

= i~ 520 -9, (1.77)

1 _ D*m
onde usamos - = -,

e Vértices: Um termo de interagdo é do tipo [ d>xd?0®D*®DFOD?P - - -. Assim,
cada vértice possui P linhas saindo, com os operadores D?, DP, etc, atuando

sobre cada linha correspondente, e ainda uma integral sobre d26.

Para célculos perturbativos, assim como na teoria quantica de campos usual, é conve-

niente determinar a acgao efetiva:

i B d
R [ g 00000000000

x (27)%8( Zpl H/ £ H/dZGHH (1.78)

onde L, VI, P e V representam o ntiimero de lagos, vértices internos, propagadores e
vértices, respectivamente.

Podemos manipular as integra¢des nos 6’s para reduzir a acdo efetiva ao produtos
de todos os supercampos ®’s calculados em uma tinica varidvel 6.

Isso é possivel utilizando as seguintes regras:
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-0

Figura 1.1: Corregdo a auto-energia do supercampo @ com interagao A®3.

D (6;,k)0(6; — 6i11) = —Da(6iy1, —k)0(6; — 6iy1),
(61 — 62)0% (6, —61) = 0,
6%(8; — 6,)D*6%(62 — 61) = 0,

6%(01 — 62)D?6%(6, — 01) = 6%(61 — 62). (1.79)

A aplicagdo sucessiva dessas regras reduz a acdo efetiva a forma

dBpq - dBp,

xG(p1, -+, pn)®@(p1,0) - - - D"®(p;,0) - - - D*®(p;,0)---,  (1.80)

onde G é obtida por integracdo nos momentos dos “loops” internos.

No modelo A®? sem massa, a correcdo de auto-energia é representada pelo super-
gréafico de Feynman da Figura (1.1).

D361,
k2

D36y
(k—p)?

iA2 [ dp Pk o o
= | G | Gt e (v 0)@(—p,62)

7

tal que 1o = 6(61 — 0,). Por conveniéncia, podemos selecionar a parte dependente de

0 escrevendo
Fa(p) = iAo dk 1
2T ) k- p)

O(p,0),

com

a(p, ) = / 426,426, [D%(slz] [D%ézl] ®(p,6,)D(—p,6>).
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Os termos envolvendo § podem ser manipulados, utilizando integracdo por partes:

D(—p,02)[D7612)[D3621] P (p, 61) =

=dy(—p) (—%) D712 [Dlrx [(D§521)¢1(P)]]

= ®a(—p)oiayDf [Die [(D3021) 1 (p)]|

i1y [(D%D%dzl)cbl + (D%D36y) D1, ®1 + (Dg(szl)(D%cbl)] . (181)

e de acordo com as regras (1.79) em adigdo com (D?)? = —k? e D*D? = k*F Dg, obtemos

iA?2 [ d%k 1 ) )
L) =5 | Grpe—y | COCPOD(0)

reduzindo a ac¢do efetiva ao produto dos supercampos calculados em uma tinica varia-
vel 0.



Capitulo 2

Teoria quantica de campos nao
comutativa: O formalismo de
Weyl-Moyal

Este capitulo é dedicado a fornecer uma breve revisdo sobre a ndo comutatividade
em teoria quantica de campos baseada na correspondéncia Weyl-Moyal. Como exem-
plo, vamos aplicar o formalismo no modelo particular A¢* em quatro dimensdes. Ap6s
obter as regras de Feynman modificadas pelo produto Moyal, discutiremos o meca-
nismo de mistura UV /IR calculando explicitamente a correcao radiativa para a fun¢do
de dois pontos na aproximagdo de um lago. Embora o assunto seja vasto e ja bastante
explorado na literatura, julgamos necessario explicitar os principais resultados e defi-
ni¢des matematicas sobre o tema antes de dar prosseguimento ao nosso estudo. Mais

detalhes podem ser encontrados nos textos de revisao [22].

2.1 A correspondéncia Weyl-Moyal

Na mecanica quantica usual, as varidveis classicas de posi¢do (x) e momento (p)
sdo reinterpretadas como operadores Hermitianos que atuam sobre um espaco de Hil-

bert e satisfazem as seguintes regras de comutagao
& p| = ine,
[ﬁil ,e]'] _ [ﬁi, ;ai] — 0. 2.1)

Contudo, podemos pensar que essas relagdes sdo apenas um caso particular quando
estamos trabalhando no limite de baixas energias. Para regides do espago envolvendo

distancias muito curtas (ou altas energias) podemos supor que as coordenadas nao

19
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mais comutem e passem a obedecer a seguinte relacio!
[aei, aef'] — 61, (2.2)

onde 6;; € uma matriz constante de dimensdo do quadrado do comprimento. A gene-
ralizagdo para o caso relativistico envolvendo o espago-tempo de Minkowski D dimen-

sional é obtida tomando
[, %] =i®", comu =0,1,...,D—1. (2.3)

A primeira observagdo a ser feita é que esse tipo de relagdo viola explicitamente a
invariancia de Lorentz (mas ainda preserva a invariancia por transla¢des), que passa a

ser considerada valida apenas no caso limite de ® — 0.

A formulagdo perturbativa para a versdo ndo comutativa de uma dada teoria de
campos satisfazendo (2.3) apresenta algumas dificuldades. Em geral, estamos interes-
sados em calcular as amplitudes de espalhamento envolvendo operadores de campo
que dependam da coordenadas do espago-tempo e atuam sobre vetores pertencentes a
um espago de Fock. Ao quantizarmos o espago-tempo impondo a relacdo de comuta-
¢do (2.3) as coordenadas sdo promovidas a operadores associados a uma algebra ndo
comutativa e ndo estd claro como extrair as amplitudes de transicdo. Mostrou-se mais
conveniente associar os operadores de campos ®(%£) a funcdes ®(x) definidas em um
espaco comutativo mas que obedecem a uma lei de multiplicacdo ndo comutativa. Tal

procedimento é conhecido como correspondéncia Weyl-Moyal [24] e implica em
d(%) +— d(x), (2.4)

tal que o operador & (%) definido no espago-tempo nao comutativo pode ser escrito

como uma integral de Fourier

. dPk
b(%) = / G TR 2.5)
onde definimos o operador
T(k) = ¥, (2.6)

com k;, sendo c-nimeros e ¢(k) representando a transformada de Fourier do campo
cléssico ®(x),

(k) = / dD xei ¥ B (x). 2.7)

IRecentemente, outros tipos de nao comutatividade tem sido considerada no contexto da Mecanica
Quantica. Veja por exemplo [23].
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E simples mostrar que o operador T (k) satisfaz as seguintes propriedades:

(k) = >, <»e*=ae>
L) = / P (x|o] x) = [ alree = 2m)P60) (k)
TRT() = <k+q>e—zkﬂv®’ @8)

onde na tltima linha utilizamos a férmula de Baker-Campbell-Hausdorf: e4e? = ¢A+5 e2lAB]
em adicdo a [£#,®"°] = 0. O mapeamento ® — ® pode ser facilmente invertido com

ajuda de (2.8) levando a

D ) , R
@Q):/i%%%f”ﬂﬁkﬁw)TWm] 2.9)

O produto dos operadores & (%) pode ser determinado com ajuda das Egs. (2.5) e (2.8),

como segue:

D D
biH2(0) = [ Gm s TR ()0a0)

dPk 4P N
- / D(zn70T<k+q>e‘2"”® To(K)pa(g).  (210)

~—

Para relacionar o resultado acima com o produto dos campos cldssico ®(x), vamos

proceder como em (2.9). Multiplicando a expressio anterior, pela direita por T™(p)

o 4Pk dP " "
®Mfﬁbﬂfﬂ*00==/k2ﬂ) oy Tk 0 = et O e S0 0 (k) ga ),
(2.11)

e tomando o tra¢o Tr juntamente com (2.8), obtemos como resultado

D D
Tr [él(f)ﬁ)z(f)fr(l?)] = /(gn;c (jn;7

D . 1 i v
_/ D d k dP )ElDez(kw—P)yy’e—ikV@” (k)2 (q)

(2m)P60) (k + g — p)e™ 2@ 1y (k) (q)

_ D de Dq oyt (k)e_ik#yye_%kﬂe)que_iq”yy (9)
)D (Pl CPZ q 4

(2.12)
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que pode ser facilmente invertido resultando em

D ] ) A X
/ (;lﬂg?D e—zpyxi Tr |:CI)1 (XA)CI)Z(??)T-I-(p) _

de dD dD i i i v i |
D q P —ip,(x—y)* —ik,y* — Lk, 0Mq, ,—iquyt _
/d y(27r) (27T)P (277)P ¢ pr(kje e = e g2(a)

p. d%k d°q p) ikt — ik, @M, gy
| @ Gy o (x = w8 e O 0 ) =
D, 4D .
/ d”k d q — ( ) —ikyxt e—%ky@’qu
(27)P (277)P —

e‘i%x”qbz(q) —

<1+§$@uva_§+,,,>

exp( 9,03, ) (x),  (2.13)

o que nos permite definir o produto Moyal (ou estrela) por

Dy (x) x Dy (x)

D1 (x)Ds(x) + ) <§) — [0y .- 0y, @1 (x)] @11 @MY (9, ... 0y, Do (x)] .
(2.14)
O produto estrela (2.14) é associativo mas ndo comutativo e reduz-se ao produto ordi-

nario de funcdes para ® = 0. Note que integrando em x e usando T'(0) = I, podemos

expressar sua relagdo com o produto dos operadores ®;(£) por meio de

[ P10 xa(x) = [P (zn;(De_ikﬂxyTr &1 (2)2(5)T* (1)

ou em geral
/deCI>1(x) K Dy(2) %k Dy (x) = T [y (£)y(£) - Du(2)],  (216)

tal que a propriedade de ciclicidade do trago garante que a integral acima é invariante

por permutacdes ciclicas. Além disso, pode-se mostrar que (P x P5) = &F x o
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Um resultado particularmente importante que decorre diretamente de (2.10) e (2.15)

é obtido quando consideramos o produto estrela entre dois campos:

D D .
Jaxenwen) = [ s T T+ e gt

Pk dP o
=/ 37 oy 20 ) e q)e O g1 ()92(9)

D
= [ Gphikea(—H)
— / dD x®, (x) D (x), 2.17)

implicando que a parte quadratica de uma a¢do qualquer que defina uma teoria ndo
comutativa, seja equivalente ao caso ordindrio.

Finalmente, podemos checar que o comutador estrela, definido abaixo, resulta exa-
tamente na relacdo dada em (2.3),

[xF, 2], = xF % x" — x¥ % xM = iOF. (2.18)

Por conseguinte, a dlgebra realizada pelo produto ordinario de operadores definidos
sobre um espago-tempo ndo comutativo é equivalente a dlgebra de fun¢des classicas
deformadas pelo produto Moyal. A seguir, vamos considerar os efeitos dessa modifi-
cacdo na determinacdo das regras de Feynman.

2.2 Quantizacao e regras de Feynman para teorias de cam-

pos ndo comutativas

Como vimos na se¢ado anterior, a forma de tratar as teorias ndo comutativas é subs-
tituir o produto usual de campos pelo produto estrela?. Vamos considerar como exem-
plo a teoria definida pelo campo escalar real A®*. A versdo ndo comutativa para a agio
que define o modelo é dada por

1 1 A
S[®] :/d4x [ancp*aﬂcp—Emzcb*@—ﬁcp*cp*cp*cp : (2.19)

Em vista da Eq. (2.17), a teoria livre ndo é modificada e possui o mesmo propagador
de Feynman do caso usual
i

Ap(p) = P (2.20)

2Para o caso envolvendo teorias de calibre, precisamos também modificar a estrutura do grupo de
simetria, como discutiremos a seguir.
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A tnica alteragdo provocada pelo produto estrela estd codificada no termo de interagéo.
De acordo com as Egs. (2.5) e (2.16), podemos escrever no espaco dos momentos, a

parte da acdo correspondente a interagdo na forma

Sing = —&/d"‘xCID*CI)*CID*CI)

_ / [ﬁ dk;

T(ky)T(k2)T (k3)T (kg)]
1:1

X4’(k1)4’(k2)4’(k3)4’(k4)- (2.21)

A operacao do trago pode ser facilmente realizada empregando-se as propriedades dos
operadores T'(k;) descritas em (2.8). Assim, obtemos

Tr [T (k1) T (ky)T(k3)T(ks)] = Tr [T(ky + ko) T (ks + kg )] e~ 1/ \katks/ka)
Tr [T (ky + k2 + k3 +ky)]e —ilky Ako+kaAkg+(kq+ko) A (ks +ks)]

— (27) 45 Z ) o ik A(kytka+ks)+hkoA(ks+ka) +ksNky] , (2.22)
i=1

onde introduzimos a forma bilinear antissimétrica

k; A k] = kwkﬁ,(@w/ = —k] A k. (2.23)

A generalizac¢do dos resultados acima para o produto de n campos é direta e corres-
ponde a

[ A1 () % B () - ¢ By ()=

/ [ﬁ éZ];D] (27)25 O (Y k)V (ki o, K (oK) - (), 229

i=1 i=1

onde

n
V(ki, ky, ... k) = exp (—i Y. ki/\kj> . (2.25)

i<j=1

Como resultado, podemos concluir que o principal efeito da ndo comutatividade
em teoria de campos é modificar a estrutura da parte de interac¢do, introduzindo um
fator de fase dependente dos momentos que correm nos vértices. Tal fato reflete dire-
tamente a natureza ndo local do produto Moyal expressa em (2.14). Em particular, de-
vido a esses fatores oscilatérios, poderiamos esperar uma melhora no comportamento
ultravioleta da teoria. Contudo, veremos a seguir que os diagramas de Feynman po-

dem ser separados em duas partes: planar e ndo planar. A parte planar é semelhante
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ao caso comutativo e ndo possui fator de fase, ja a parte ndo planar fica multiplicada
pelo fator de fase. Em todo caso, os gréficos correspondentes a parte planar possuem
propriedades de renormalizacdo semelhantes aquelas advindas da versdo comutativa
da teoria. O comportamento da parte ndo planar dos diagramas de Feynman é bem
mais complicado e apresenta novos efeitos que podem inviabilizar o tratamento per-

turbativo do modelo em questao [10, 11, 12].

2.3 O mecanismo de mistura UV/IR

Nesta segdo, ilustraremos algumas das propriedades singulares exibidas pela ndo
comutatividade no contexto de altas energias. Como exemplo, vamos realizar o célculo
detalhado da renormalizagio da massa no modelo A¢* na aproximagdo de um lago.

Para este fim, precisamos determinar a corre¢do da fungado de dois pontos 1PI,
I (p) = p? = m* — 2(p), (2.26)

tal que nessa ordem, —iX(p) correspondente ao diagrama de Feynman ilustrado na
Fig. 2.1.

Mostraremos a seguir, que a principal consequéncia da ndo comutatividade é modi-
ficar a estrutura das integrais de momentos internos, que passam a exibir divergéncias
infravermelhas, mesmo a teoria sendo massiva. Tal fendmeno é conhecido como mis-
tura UV/IR e é uma caracteristica geral em teoria de campos ndo comutativas [25].

O mecanismo UV/IR pode ser entendido de maneira bastante intuitiva por meio
dos comutadores [£, 7] = i0 e [£, px] = ifi. Da Mecanica Quéantica usual, a relagdo de
incerteza generalizada entre dois operadores Hermitianos quaisquer, A e B é dada por
[26]

2
o405 > (% ([A, B] >) , (2.27)

onde 04 = 1/(A2) — (A)? é o desvio padrio associado ao operador A. Usando a

relacdo de comutagdo (2.2), segue imediatamente que
1
Ox0y > 59, (2.28)

representa a relagdo de incerteza para as coordenadas x e y devido a presenga da

ndo comutatividade espacial. Entdo, qualquer acréscimo na precisdo da medida em

x (0x = 0, 0p, — o) implica numa piora na medida em y (¢, — oo, 7, — 0).
Voltando ao céalculo da correcdo da massa, a fungdo de Green conexa relacionada

com o diagrama da Fig. 2.1 tem como expressao analitica
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Figura 2.1: Diagrama de Feynman para a correcdo da massa a um laco na teoria nao
comutativa A¢*.

1/\ d*k;
G(Z)(P1/P2) — [ )14] 27‘[ 4(5 k1 +k2+k3+k4)

X V(k1/k2/k3,k4 cP(p1)P(p2)p(k1)p(k2)p(ks)p(ks) 1), (2.29)

em que as contragdes de Wick sdo agora modificadas pela presenca da fungéo V (k;)
definida em (2.25). Dessa forma, as 12 contra¢des possiveis ndo sdo mais equivalentes

entre si e resultam em

(- p(p1)P(p2)p(k1)p(ka)p(ks)p(ka) :) V (k1 ko, ks, ka) =

P(p1) (k)9 (p2)pka)p ks )b ka) V (—p1, —pa, ks, —ks) +

=1

1

PPk p(p2)9 (k) (k) (ks) V (—pu, ko, —pa, —ka) +

=exp(2ikyAp2)

[ ] [ 1 1
P(p1)p (k)9 (p2)¢(ka)p(k2)p(ka) V(—pr ko, —ka, —pa) +
-1
9 contragdes para (k1 <> ky34). (2.30)

Como resultado, podemos separar G2 (p; p;) em duas partes: a parte planar (PL)
é independente de © e possui fator de simetria (1/3), enquanto que a parte ndo planar
(NPL) depende da fase exp(2ik A p), com fator de simetria igual a (1/6),
2 2
G (p1,p2) = GH(PL p2) + GI(\I)IJL(PL p2)

o
= L+ AP [

—m? — i€

i\ d4k ie 2ikApq

— GOt A (p)A ) [ s @3

m2

A funcdo 1PI correspondente é obtida como de costume, removendo-se os propaga-
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dores externos juntamente com a delta de conservacdo energia-momento, tal que

() = iAo dk i N O
PI="73 2m)* k> —m? —ie 6 ) (2m)*k? —m? —ie

(2.32)

A contribuigdo planar em (2.32) é proporcional a correcdo usual da teoria comu-
tativa ¢*, que por contagem de poténcia é quadraticamente divergente no limite UV.

Usando regularizagdo dimensional, podemos escrevé-la na forma

AP dPk i
ZpL(p) = 3 / (2m)D k2 — m? +ie
Am? [ 4mp\ 7 €
B 48n2( m? ) F<_1+§)
Am? [2 m?
= _W lg‘Fl-’)’—lI’l <4n‘u2)+0(8)], (2.33)

com ¢ = 4 — D, y um parametro com dimensao de massa introduzido no processo de
regularizagdo e y = 0.577 é a constante de Euler-Mascheroni.

A contribui¢do ndo planar também apresenta contagem de poténcia quadratica, mas a
presenca do fator de fase dependente do momento interno modifica drasticamente a

integral de Feynman. Para calculéd-la, vamos empregar a parametrizagdo de Schwinger

i o0 (K22
e A (234)

que substituida em (2.32), implica

- )L‘u4_D de ieZik/\p
INPL(P) = — /(ZN)DkZ—mz“e
)
6 0 (2)P | |

A integracdo sobre k passa a ser tipo Gaussiana e para efetud-la, vamos completar o

quadrado no expoente:

2 2
expoente = ix kyky-i—%ky@va_F (%@WPO _ (i@yvpv) ]

1 2
= z pv
in (k + 20(@ pv) + 12P° p] , (2.36)

onde definimos p o p = p, O @, p". Agora, podemos resolver explicitamente a inte-
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gral no momento fazendo k — k — %@W Pv,

N
7T s

B L Y- B ey g
= [ 20 | e

B emPor  [in o\t
PV oa Vi

S — L (2.37)

Inserindo o resultado acima em (2.35), obtemos

AA-D 1-D/2 oo , o
ZNPL(P) = ‘u6 lenD/Z/O d(xlx—D/zem(—mz—&-ze)—F@pop' (2.38)

A integral em a pode ser regularizada fazendo 5 — EF 4 i% e ao final tomamos
o limite €,6 — 0. Para o caso D = 4, essa integral é calculada usando o resultado
conhecido [27]

/ dzz 2602+ — %Kl (—Zi\/ﬁ\/g) , para Im[a]>0 e Im[b]>0, (2.39)
0

sendo K; a fungdo de Bessel modificada de ordem um. Apoés algumas simplificagdes,

segue que

Am? Ki (\/ m2p o P)

Notemos que na regido do ultravioleta para o momento externo p — oo, a contribuigdo

(2.40)

YN PL permanece finita devido ao resultado

lim K (z) = 0. (2.41)

Z—00

Substituindo (2.33) e (2.40) em (2.26), a renormalizacdo da massa absorve a diver-

géncia UV presente em Xpj e resulta na seguinte fungao de dois pontos 1PI renorma-

lizada
[ 1172
r — Z—nﬂ-—Am%K1< ipe) (2.42)
ROZP TR g2 2 / '
\MrPOP
com

A2 m?
2 2)1 _ < oy
mi =m {1 18,22 L—i—l y—1In <47Tpt2>}}' (2.43)

Vamos agora considerar o comportamento de (2.42) na regido infravermelha quando
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p — 0. Para pequenos argumentos, K; pode ser expandida em série de Laurent na

K (ympor) oo 1 1 (ymheor 4

forma

[m2pop mipop = 2 2 ’
indicando a presenga de divergéncias infravermelhas do tipo quadratica e logaritmica,
ausentes no caso comutativo®. Essa substituicdo, de divergéncias ultravioletas comu-
tativas por singularidades infravermelhas devido a ndo comutatividade, é o que deno-
minamos de mistura UV/IR. Como consequéncia, o limite ® — 0 ndo é suave e ndo
podemos mais recuperar a teoria comutativa quando levamos em conta as correcdes
quanticas.

Outra questdo envolvendo a ndo comutatividade diz respeito a conservagdo da uni-
tariedade [13]. A madeira mais simples de evitar problemas relacionados a viola¢do da
unitariedade consiste em considerar somente a ndo comutatividade entre as coordena-
das espaciais, tomando sempre ®p; = 0. Tal procedimento nédo é tnico e formas mais

elaboradas para tratar esse problema sdo discutidas nas Refs. [28, 29, 30].

2.4 Nao comutatividade em teorias de calibre

Teorias de calibre ndo comutativas sdo particularmente importantes devido a sua
conexdo com teorias de cordas. Seiberg e Witten [8] mostraram que a dinamica de
cordas bosonicas abertas conectadas a Dp-branas, na presenga de um campo de fundo

B;; constante, descrita pela agao

_ 1
 Aa!

S /Zdz(: [gijauxiaaxj — 27rioc’Bi]-e”b8uxi8bxj , (2.45)
pode ser relacionada, num certo limite, a uma teoria de calibre definida sobre um es-
paco ndo comutativo.

A promocdo de uma teoria de calibre usual para o espago-tempo ndo comutativo
é similar a nossa descrigdo anterior, envolvendo apenas campos escalares. Contudo,
algumas peculiaridades na extensdo ndo comutativa dos grupos de Lie devem ser le-
vados em consideragdo agora.

Como exemplo, vamos considerar o caso de uma teoria definida sobre o grupo de si-
metria U(N) na representagao fundamental. O campo de calibre associado A, (x) pode

ser expandido em termos dos geradores (Hermitianos) da dlgebra de Lie do grupo;

3No caso comutativo, divergéncias infravermelhas sdo esperadas normalmente em teorias envol-
vendo particulas sem massa, ja que o propagador passa a ter um p6lo em p = 0. As singularidades
infravermelhas encontradas em (2.44) sdo originadas exclusivamente da ndo comutatividade e ndo de-
vem ser confundidas com o caso ordinério.
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Au(x) = Ajt?, com trn (t°t) = 6%, a,b = 1,...,N? e [t*,tY] = if™°t°. A versdo ndo
comutativa desta teoria é obtida via correspondéncia Weyl-Moyal, isto é, o produto
usual de matrizes é substituido pelo produto estrela definido em (2.14). Dessa forma,

um elemento qualquer do grupo U, (N) passa a ser escrito como

U(x) = ™08 = i % (A% (x) )" (2.46)

A acdo de Yang-Mills U, (N) ndo comutativa é definida entdo por

S = —i /d4x trny [Fuw * F*], (2.47)

sendo try o traco ordindrio de matrizes e com o tensor intensidade de campo represen-
tado na forma

F]/”/ — a]/{AV — ayAy - lg [Ay, Al/:|*
= Ay —auAy —ig [Aw A] + 30 (3:A4,9pA, — 9 AdpA,) + O(7).
(2.48)

Alei de transformacgao de calibre para campo A, também é modificada pela corres-
pondéncia Weyl-Moyal, e passa a ser definida como sendo

Ay — Ux Ay« Ut + éu*ayuf (2.49)

A invariancia da agdo de Yang-Mills ndo comutativa (2.47) sob a transformagao
(2.49) segue diretamente da ciclicidade tanto do produto estrela quanto da operacdo de
traco das matrizes U(x), e implica na seguinte regra de transformagdo para o campo
F, [

Fuw — Ux Fyy U (2.50)

E importante notar que a teoria de calibre ndo comutativa definida pela acao (2.47)
apresenta intera¢des ndo triviais ja no caso abeliano para N = 1. Isso decorre direta-
mente do produto estrela, pois agora o comutador [A, A, ], é diferente de zero mesmo
quando temos f*¢ = 0, e somente para ® = 0 coincide com o setor de Maxwell da
eletrodinamica usual.

A quantizagdo perturbativa e a determinacdo das regras de Feynman sdo obtidas
como de costume via formalismo funcional, adicionando-se os campos fantasmas de
Faddeev-Popov e o termo de fixacdo de calibre associado. Os termos bilineares (propa-

gadores), assim como no caso escalar, ndo sdo afetados pela ndo comutatividade. Mas
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os vértices de intera¢do sdo acompanhados de fungdes polinomiais que dependem do
momento, acarretando um cardter altamente nao linear a teoria.

Devemos destacar ainda que nossa escolha pelo grupo de simetria U(N) néo é ar-
bitraria. A generaliza¢do ndo comutativa para outros grupos é fortemente restringida
pela natureza do produto Moyal [31]. O ponto importante é que as transformacdes
de calibre modificadas pelo produto estrela dependem do anticomutador {#*, to }, em
adigdo a relagao de comutagéao [t?, 1] que define a dlgebra de Lie do grupo *. Em geral,
o anticomutador de dois geradores pertence a dlgebra de Lie apenas no caso do grupo
U(N), na representagdo fundamental. Assim, outros grupos como SU(N), SO(N) ou
Sp(N) ndo possuem uma extensdo ndo comutativa e devem ser descartados a princi-

pio.

“Em particular, devemos garantir que
g, 2] = % (Af*AP+ A A7) |0, 8] + % (AfxAb =2V an) {1060},

possa ser escrito como uma combinacao linear dos geradores t°.
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Capitulo 3

Potencial efetivo a dois lagos para o
modelo de Wess-Zumino em 2 + 1

dimensoes

Neste capitulo, o potencial efetivo para o modelo de Wess-Zumino com N' = 1 em
2 + 1 dimensdes serd calculado no formalismo de supercampos até a aproximacao de
dois lagos. Mostraremos que a supersimetria ndo é quebrada por corre¢des radioativas,
e a aparente geragdo dinamica de massa ndo é perturbativamente consistente. Além
disso, o estudo detalhado da renormalizacdo do modelo serd realizado, e de posse dos
contratermos necessdrios para renormalizar a teoria, determinaremos as fun¢des ,Bg e
Yo do grupo de renormaliza¢do. A partir desses cdlculos, mostraremos que o modelo
é infravermelho livre e que o comportamento cldssico referente ao escalonamento dos
momentos externos é alterado por corre¢des radioativas. Nossos resultados corrigem

alguns equivocos presentes na literatura.

3.1 Quebra dindmica de (super)simetria em 2 + 1 dimen-
soes

Embora a supersimetria (SUSY) seja um conceito chave na fisica de particulas ele-
mentares e campos, ela ndo é corroborada (até a presente data) por evidéncias expe-
rimentais. Entdo, qualquer modelo realistico envolvendo a SUSY deve incluir algum
mecanismo de quebra desta simetria. Muitos mecanismos diferentes foram propos-
tos na literatura; por exemplo, o Modelo Padrao Minimamente Supersimétrico contém
operadores que quebram explicitamente a supersimetria e foi sugerido na tentativa de
resolver o problema da hierarquia [32].

A violagdo de SUSY devido a solugdes tipo instantons [33], sua conexdo com a R-

33
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simetria [34] e com o index de Witten [35, 36] também foram intensamente investiga-
dos durante os ultimos anos. Vdrias variagcdes ou extensdes dos modelos de O’Rai
teartaigh e Fayet-Iliopoulos [37], que apresentam quebra espontanea de SUSY e mais
recentemente, teorias que exibem um vacuo meta instdvel com SUSY quebrada [38]

também tem sido propostas.

Uma questdo interessante é se um mecanismo puramente perturbativo, isto é, uma
quebra de simetria dindmica induzida por corre¢des radiativas pode ser obtida em
modelos classicamente supersimétricos. Tal interesse reside no fato de que uma escala

de massa poderia ser gerada dinamicamente.

Contudo, em 3 + 1 dimensdes do espago-tempo essa possibilidade deve ser descar-
tada devido aos teoremas de ndo-renormalizacdo [39, 40]. Tais teoremas asseguram
que se a SUSY ndo for espontaneamente quebrada na aproximacao cldssica, entdo ela
ndo poderd ser violada por corre¢des perturbativas. Por outro lado, em 2 4 1 dimen-
sOes essas restrigdes (a0 menos para N/ = 1) ndo existem [41, 42]. Tal possibilidade
abre caminho para investigarmos perturbativamente a estrutura do vdcuo nessas te-
orias via o célculo do potencial efetivo [43]. Recentemente, o potencial efetivo para
o modelo de Wess-Zumino (WZ) em trés dimensdes com N = 2 foi calculado até a
aproximagdo de dois lagos na Ref. [44]. Para o caso com N = 1, o potencial efetivo
foi primeiramente calculado em [45] para os modelos de WZ e da eletrodinamica sem
massa. Em ambos os modelos, o autor mostrou que nem a SUSY e nem a invaridncia
de calibre sdo quebradas por corre¢des radioativas até a aproximagdo de um lago; no
entanto, em 2 + 1 dimensdes os termos envolvendo logaritmicos dos campos cldssicos
aparecem somente na aproximacdo de dois ou mais lagos. Desde que estas contribui-
¢Oes logaritmicas tem um papel crucial na quebra dindmica de simetria, os célculos
devem ser ampliados pelo menos até a ordem de dois lagos.

No formalismo de campos componentes, o potencial efetivo até dois lagos para o
modelo de WZ foi calculado “off-shell” e “on-shell” nas Refs. [46] e [47], respectiva-
mente. Na Ref. [46] é reportado um problema concernente a renormaliza¢do do poten-
cial efetivo: um termo divergente que ndo pode ser absorvido pelo reescalonamento da
Lagrangiana cldssica aparece. Por sua vez, na Ref. [47] tais dificuldades com a renorma-
lizagdo ndo foram encontradas, mas é relatado que a SUSY é quebrada, acompanhada
de uma geracdo dinamica de massa. Nesse trabalho, contudo, o calculo do potencial
efetivo ndo leva em conta corre¢des radioativas para equagdo de movimento do campo
auxiliar [48]. Esses fatos nos levam a concluir que a renormalizagdo e a estrutura de
véacuo do modelo de WZ tridimensional sdo questdes ainda ndo satisfatoriamente res-

pondidas.

Neste capitulo, temos por objetivo calcular o potencial efetivo de WZ até a apro-

ximacgdo de dois lagos diretamente na formulacdo de supercampo. Mostraremos que



3.2. APRESENTACAO DO MODELO 35

a renormalizacdo do potencial efetivo é obtida de modo usual. Além disso, verifica-
remos que a supersimetria ndo é quebrada e que a gera¢do dindmica de massa nao é
perturbativamente consistente. Calcularemos ainda a fungéo B associada com a auto-
interacdo qudrtica e fungdo ye que caracteriza a dimensdo andmala do supercampo.

Esse capitulo é organizado como segue.

Na secdo 3.2, o modelo é definido e o potencial cldssico é analisado para diferentes
configuracdes das constantes de acoplamento. Na segdo 3.3, os célculos na ordem de
um e dois lagos sdo efetuados e a andlise da renormalizagdo do modelo é apresentada.
Na sec¢do 3.4, a possibilidade da quebra dindmica de (super)simetria para o caso par-
ticular de interesse no qual a teoria é classicamente invariante de escala é investigada
e mostramos explicitamente que as simetrias sdo preservadas até essa ordem. A fun-
¢do B, da constante de acoplamento também ¢ calculada, mostrando-se que o modelo

exibe um polo de Landau no limite do ultravioleta.

3.2 Apresentacao do modelo

A acgdo renormalizavel mais geral para o modelo de WZ com N = 1, contendo um

unico supercampo escalar real em 2 4 1 dimensdes é dada por:
1
S[P] = /dSZ {—L—LD“CI)D,XCID +W(D) + £CT} , (3.1)

onde W(®) = a® + m®? + %@3 + $:@* é o superpotencial, ®(x,0) = ¢(x) + 0% (x) —
F(x)6? é um supercampo escalar, d°z = d°xd?6 é o elemento de volume no superespaco

e Lcr é a Lagrangiana de contratermos. As dimensdes de massa do supercampo esca-
lar e das constantes de acoplamento sdo: [®] = 1/2, [A] = 1/2, [¢] = 0, [a] = 3/2.

Quando A = a = 0, a agdo cléssica é invariante sob a transformacao de simetria dis-
creta ® — — P e se além disso, m = 0, o modelo é também classicamente invariante de

escala.

O contetido em campos componentes da Eq. (3.1) é facilmente revelado apés a

integracdo na coordenada grasmaniana 0:

S = / dx {%(4;54; +9tidd pg + F2) + m(y? + ¢F)

+ Agy® + %4;21?) + §¢3P + %gbzi,bz +afF + cCT} : (3.2)
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A agdo acima é invariante sob as seguintes transformacdes de SUSY:

54) — —Glxl/),x,
0 = —€P(CupF +idep9),
SF = —eialyg, (3.3)

onde €* é um parametro fermidnico constante.

z

O potencial classico “off-shell” é obtido diretamente da Eq. (3.2):

v (g, F) = —%FZ — FS(¢), (3.4)

onde S(¢) = W'(¢) = (a + m¢ + 5¢* + £¢°). Eliminando-se o campo auxiliar F por
meio de sua equagio de movimento dV(%) /9F = 0, isto é, F = S(¢). o potencial classico
torna-se fungdo somente do campo fisico ¢, tal que

vO(p) =(S(9))* > 0. (3.5)

E bem conhecido que em qualquer teoria com supersimetria exata, o estado de
vacuo deve corresponder a um minimo global do potencial efetivo com S(¢y,i,,) = 0
e V(¢pmin) = 0[40]. Para ¢ # 0 o modelo (em nivel de arvore) tem uma fase com
SUSY preservada, desde que S(¢y,i,) = 0 sempre tem ao menos uma solugdo real para
¢Pmin- Neste caso, se 4 = A = 0 entdo temos um minimo em ¢,,;;, = 0 e se além disso,
temos também —6m/g > 0, entdo existe duas outras solugdes: ¢y, = £+/—6m/g que
quebram espontaneamente a simetria ¢ — —¢. De qualquer modo, para g # 0 a SUSY
é classicamente preservada.

Outra possibilidade ocorre quando ¢ = 0 e A # 0. Se 2aA < m?, a equagdo F = 0

tem duas solugdes reais ¢,,;, = —75 & (’}\1—22 — 27”)1/ 2 e a SUSY ¢ preservada. Se em vez
disso, 2aA > m?, o ponto de minimo para V(%)(¢) ocorre em ¢y, = —2 (solugio de
dv(0 /d¢ = 0, para qual F = '2”—; —a # 0) e implica em V (¢y,) = #(2/\5{ —m?)? >0,

revelando uma quebra espontanea de SUSY em nivel classico. O potencial classico é
desenhado na Fig. 3.1 como uma func¢do do campo fisico ¢ para alguns valores dos
parametros a, m, A e g.

3.3 Calculo do potencial efetivo

Ha vérios métodos para o calculo do potencial efetivo em teoria de campos ordina-
ria. Iremos empregar o método funcional devido a Jackiw [49], cuja extensdo para o

superespaco é direta. O método é baseado na seguinte prescricdo: primeiramente de-
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(@ (b)

Va(e)
Va(e)

Vcl (¢)
Vcl (¢)

Figura 3.1: Potencial Cléssico: (a)-a = A =0eg=m =1/2,(b)-a=A =0e
g=—-m=1/2,(c)-a=1,A=1/2,m=3eg=0,(d)-a=4A=m=1/2eg=0.

vemos deslocar o supercampo quantico @ por um supercampo classico ¢.; e considerar
a acao

810, 9u] = S+ pu] — Slpu] — | d5z<1>— (3.6)

q:':(Pcl
onde ¢ (0) = 01 — 6?03, com 07 = (¢) e o5 = (F) sendo os valores esperados no vacuo
x-constantes dos campos componentes escalares (a invaridncia de Lorentz do vacuo

requer que (%) = 0). A acdo S assume a forma

S(@,9a] = [ { (D2 +m+Agy+597) @
n 5(A + 9 ) D% + %@4} . 3.7)

O potencial efetivo pode ser escrito numa forma manifestamente supercovariante

0).
(3.8)
O primeiro termo em Eq. (3.8) é o potencial cldssico como dado em (3.4), com ¢ — o

como

Verflo, 02) = VO (y,00) — ﬁln Det [z’A;l(z,z’)} + é <O 'Texpi/dSZﬁmt(CI),cpd)
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e F — 07. O segundo termo é a corregdo em um lago, onde

525 [ @]

ZAZ_Tl (Z, Z/) = m = (D2 +m+ /\(Pcl + %473) 55(2 — Z/), (39)

D=

e Q) = [dx é o volume do espago-tempo. O terceiro termo codifica as corregdes de
ordem mais alta na expansdo de lagos: a soma dos “one-particle-irreducible” superdi-
agramas de vacuo com dois ou mais lagos calculados a partir da acdo deslocada (3.7).
Notemos que o potencial efetivo é fun¢do somente dos campos constantes 07 e 02. A
abordagem em supercampos adotada aqui garante que apds toda as manipula¢des da
D-élgebra, somente uma tinica §-integracdo permanega para ser feita. Isso nos permite

escrever o potencial efetivo numa forma equivalente a (3.4).

3.3.1 Correcdo a um laco

A contribui¢ao a um laco V(1) para o potencial efetivo é expressa pelo determinante
funcional em (3.8). Tal determinante pode ser calculado pelo método da fungdo zeta
(C-function method) como descrito na Ref. [45]. Seguindo os célculos delineados no

apéndice A, podemos escrever V(1) como

; 3 2 2
v 2/ (2m)3 In k2 + 3
1 3/2 3/2
- L [(y-;:) - (m2) ] (3.10)

onde usamos regulariza¢cdo dimensional e subtragdo minima para realizar a integral

no momento. O pardmetro M? = u? — 3 é o quadrado da massa bosonica, ji; = m +
8,2 4 A 2 _ 2 4

Aoy + $07 € amassa fermionica e 5 = Aoy + o107 (notemos que 5 € encarado apenas

como uma notac¢do simplificada, podendo assumir valores negativos). Observamos

o célculo perturbativo é vélido somente para M? positivo, para M? < 0 o potencial

efetivo assume valores complexos.

Por conseguinte, até a ordem de um lago, o potencial efetivo é finito e dado por

Vepplo,0n) = vO vl

— —ged-ast | (s2) - (s2-es) |, e

talque 1 = S,y = »S" e M = (52 — 025")1/2 ea = 1/871.

Vamos agora investigar a possibilidade de quebra da SUSY. Os pontos estaciondrios
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de V,ss sdo determinados a partir das condigdes

v,
U 0= —gy— S+ aS"(S? — 58"/, (3.12)
80'2
v,
2 0= -0 +a [25'5(8%)1/2 — (288" — ) (57 — 228")'/?| . (3.13)
1

Se a SUSY é exata, o minimo do potencial efetivo ocorre em V, f=0,como =0. A
partir das expressdes anteriores, quando o = 0 temos que a Eq. (3.11) é identicamente
nula, assim como a Eq. (3.13). Assim, a condigdo de SUSY exata equivale a Eq. (3.12)

ter uma solugdo real para 0y = 0, isto €,
S—aS"|S'| =0, (3.14)

ter uma solugdo real o7 = 77. Nesse caso, a configuragdo (07 = 1,02 = 0) é um ponto
estaciondrio e também um zero de V.. Se em vez disso, a Eq. (3.14) ndo tém solugdo,
entdo 0, = 0 ndo é solugdo da Eq. (3.12) e a SUSY é quebrada.

Da defini¢do de S, para g # 0 é facil ver que a Eq. (3.14) sempre possui ao menos
uma solugdo real, ja que neste caso temos uma equacado polinomial de terceiro grau em
01. No caso particular a = A = m = 0, temos 07 = 0» = 0 como um minimo absoluto e
a simetria discreta juntamente com a simetria de escala sdo ambas preservadas. Nossos
célculos concordam com os resultados da Ref. [45].

Se considerarmos ¢ = 0 e A > 0, temos solugdes reais para o se m? + a2\t > 2aA,
significando que a SUSY é preservada neste caso também.

3.3.2 Correcio a dois lacos

Como é bem sabido, para que a quebra de simetria ocorra por correcdes radioativas
é necessario a inducédo de termos da forma h(oy,07) In f(0y,072). Em 2 4+ 1 dimensoes,
isto ocorre somente em dois (ou mais) lagos. Para estudar essa possibilidade e fazer
uma analise detalhada dos contratermos UV necessérios para renormalizar o potencial
efetivo, iremos considerar o caso geral em que todos os parametros na Eq. (3.1) sejam
ndo nulos.

Vamos iniciar nosso calculo estabelecendo as regras de Feynman para a teoria des-

locada (3.7). O propagador livre satisfaz a equacdo de Green:

A

O.Ap(z—2) =i8°(z - 7)), (3.15)

onde O, = D2 4 u; — 1#30% com iy e p3 definidos como antes.

Para inverter o operador O, faremos uso do método dos operadores de projecio,
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desenvolvido nas Refs. [50, 51]. Uma base para o espaco dos operadores escalares é

formado pelo conjunto de seis operadores linearmente independentes:
Py=1, Pp=D? Py=0% P3=0"D,, Py=06>D? P5=idp0"DF,

que satisfazem a tabela de multiplica¢do 3.1:

P ) P Py Ps
P L] —Py+ P+ Py 2P + Ps —P;+ 0P, — P5 | O(—2Py + P3)
) Py 0 0 0 0
P3| —Ps 2P, P; — 2P, 2P, 2U1P, + P5
Py | 0P —P 2P, —Py —2U1P,
Ps | —0P; 0 —2U1P, + Ps 0 D(Pg + 2P4)

Tabela 3.1: Tabela de multiplicagdo empregada na inversdo de O. Além disso, temos as rela-
¢Oes triviais: PyP; = P;Py = P;,comi =0,...,5.

Ap6s uma algebra direta, o superpropagador no espaco dos momentos pode ser
escrito como

Ar(k;0 —0") (ch )52 6 —10"), (3.16)

onde:
S S SNSRI Gt 1)) SR G
k> + M R M (k2 + p7) (k* + M?)” (k2 + p7) (k2 + M?2)’
o 2imp3 _ M3
4

TR M) TR )R+ M)

Os vértice de interacdo sdo lidos diretamente da Eq. (3.7) e os fatores de simetria
sdo determinados pelo teorema de Wick de modo usual.

Os superdiagramas em dois lagos para o potencial efetivo estdo desenhados na Fig.
3.2. As expressdes analiticas associadas sdo mostradas no apéndice C e as integrais
de momento a dois lagos que resultam da D-algebra sdo calculadas via regularizacdo
dimensional por meio das férmulas apresentadas no apéndice B.

(2)

A contribuigdo do diagrama (a), denotada por V,”’, resulta ser finita, desde que ela
é constituida pelo produto de integrais de momento a um laco sem “overlapping”. Por
sua vez, o diagrama (b) tem divergéncias proporcionais a todos os termos presentes no
potencial classico V(9), o que comprova que a renormalizacio do modelo é obtida de

modo usual. Em resumo, temos os seguintes resultados:
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(a (b)

Figura 3.2: Bolhas de vacuo em dois lagos para v e Vb(z), respectivamente.

vy _ 8 M3
! 32m2 (M + 1)’
@ _ (A+gm)|p 2M + 1y 3M

2 2
PR [ (M) M (M) 2y

64712 3 271
2
3 H U 3 U
3% - M 8
T a2 Hfdw Zln( " )} (Am + 81101 602)}, (3.17)

onde I, = % + 1n[47'ce(1_75)] e ¢ é um parametro arbitrdrio de massa introduzido via

regularizagdo dimensional.

O potencial efetivo renormalizado até a ordem de dois lagos é dado por
Vs = VO 4 v v 4 v 1 v, (3.18)

tal que Vr representa os contratermos obtidos por reescalonamento do potencial clas-
sico , 5 5
Ver = — {552(722 + odmoqr0y + 7(71202 + Zgaf’(rz + 5610’2] , (3.19)

como pode ser lido diretamente da Lagrangiana cldssica em (3.4); Z é o contratermo
devido a renormalizacdo da fun¢do de onda e os outros contratermos sdo claramente

indicados. As partes divergentes de V(2) podem ser colecionadas em

@ _ law
Viio = Tog 2

{—%gz(f% + (2¢%m 4 5gA?) 000 + 6% A0ty 4 2830 0n + (2gmA + Ag’)(rz} .
(3.20)

A partir dessa equagdo, concluimos que a renormalizagdo do potencial efetivo ne-
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cessita de todos os contratermos presentes em Eq. (3.19):

1,
0Z = —ggzldiv +0Zfin

oa = %(ngA/A\—i—)\}\Z)Idiv—i—éaﬂn

1 N
om = E(ngz + 5g)\2)ldiv + 5mf1n
SN = 68" Algiy + OAgiy
68 = 688 Lsiv + 68fin (3.21)

onde definimos ¢ = ¢/8me A = A/8m.

Agora, vamos comparar o resultado anterior com outros encontrados na literatura.
Em [44] o potencial efetivo para o modelo de WZ com A/ =2 em 2 + 1 D foi estudado
na aproximagao de dois lagos. Os autores concluem que somente a renormalizacdo da
funcdo de onda é necessdria. Tal fato ndo é inesperado; a formulagdo do superespaco
com supersimetria A’ = 2 em 2+ 1 D pode ser obtida a partir da formulagdo com
N =1 do superespaco em 3 + 1 D por meio do mecanismo de reducgdo dimensional
[52] e entdo, os teoremas em 3 + 1 D de ndo-renormalizacdo sdo esperados funciona-
rem também com N/ = 2 em 2+ 1 D. Entretanto, nosso resultado reflete o fato que
para N = 1em 2+ 1 D os teoremas de ndo-renormaliza¢do ndo se aplicam e a renor-

malizac¢do de todos os pardmetros presentes no modelo é necessaria.

Notemos ainda que a Eq. (3.17) contém trés diferentes argumentos nos termos in-
duzidos envolvendo logaritmos, enquanto que as expressdes obtidas em [44] possuem
somente um tipo de argumento. Essa diferenca é provavelmente resultado da aproxi-
magao adotada em [44], tal que as derivadas espinoriais D, ® e D>® (além do caso espa-
cial usual 0®/dx#) sdo desprezadas. Nossos resultados também contradizem aqueles
obtidos em [46] para um modelo similar com A/ = 1, no qual um contratermo da forma
(716, que ndo esta presente na Lagrangiana classica, foi necessdrio para cancelar as diver-
géncias obtidas nos cdlculos dos diagramas em dois lagos, no formalismo de campos
componentes.

Para o caso com ¢ # 0 e A # 0 a renormalizacdo também requer que da e dm
sejam ndo nulos. O sub-caso com somente ¢ # 0 é renormalizavel, requerendo a re-
normalizacdo de ¢ em adicdo ade Z. Se ¢ = 0 e A # 0 (onde o modelo torna-se
super-renormalizdvel) o cancelamento das divergéncias UV em dois lagos também re-
quer que éa # 0.
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3.4 O vacuo supersimétrico

Vamos investigar agora em mais detalhes o submodelocom g #Oem =A =a =0,
que é de particular interesse por ser classicamente invariante de escala. Como discu-
tido na segdo prévia, o modelo requer somente os contratermos JZ e ég. O potencial

efetivo renormalizado V¢ assume a forma

14+6Zpy o g+0g 1
Vesf=— > fm‘fz G [ +E(V - M)

2M + g
H

3M
+(y1(2y%+M2) Iy 2>1n7], (3.22)

1
+ ﬁ g (pn = M) (pn —4M) — 5#1(#1 — M?)In

_ %]/ll(lol/l% _ M2)1HM

onde jiy = g07/2, y3 = goy0n e M = (u} — p3)'/2. Observe que V,s ¢ real somente
para M real, isto é, se (g0} — 4010%) > 0.

A singularidade em 07 = 0 para 0» # 0, no ultimo termo de V, 7f, € remanescente
da divergéncia IR produzida pela auséncia do termo de massa na ac¢do cldssica. Assim,
0p = 0 ndo é um ponto conveniente para impor as condi¢des de renormalizacdo. O
ponto 07 = y, onde y é o pardmetro de massa introduzido via regularizagdo dimensio-
nal constitui uma escolha mais natural. Para ver esse fato, vamos expandir a expressao

do potencial efetivo em poténcias de oy.

O resultado pode ser posto na forma

0Q s 2
o 3|1 & B 8fin 1 A_g 82 A2 3_g hoa21. 91
Verr = 0207 3 + ( 6 + 288 — 588 2¢¢°In > 29¢°In "
1 Zfin 1, 29 3 o2
2| 1 _94fin L 52 1 g 91 3
(3.23)

onde, como antes, § = ¢/87. Para fixar 6gs;, € 6Z¢;,, vamos impor que todos os ter-
mos dentro dos parenteses sejam nulos. Essa escolha implica que no ponto 07 = ,
os coeficientes dos dois mondmios ((72(71 e (72) sdo os mesmos do potencial classico
Veiass = —(g/6)0207 — (1/2)03. A primeira condigdo fixa a constante de acoplamento
e a segunda implica que o coeficiente do termo cinético da Lagrangiana efetiva renor-

malizada em o7 = p seja um.
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Na forma expandida, o potencial renormalizado resulta em

ATEE 003 (—%—Zggzlnzl>

1 1 2
+ 0'22 <—§ +§gzln%> +0'§"F(0'1). (324)

Agora, vamos investigar a possibilidade da quebra de supersimetria. E facil verifi-
car que Veff(al, o, = 0) = 0, assim como Vesr/00 ]02:0 = 0. A condigdo 0V,ss/0d0 ]02:0 =
0, implica na seguinte equacdo de “gap” para o7:

2
73 (1 +12¢21n ‘;—1> — 0. (3.25)

Essa equagdo tem um solugdo trivial em 07" = 0, o que assegura que a SUSY, assim
como a simetria discreta ® — —® sdo ambas preservadas pelas corre¢des radioativas.
Considerando o termo entre parenteses, uma possivel solucdo ndo nula 7" # 0 seria

dada por
min\2 2
2In M = — Lo7” 3.26
Contudo, seguindo o argumento de Coleman e Weinberg [43], corre¢des de ordem
2
mais alta sdo esperadas introduzir potencias mais altas de ¢ In %1 > 1 (em valores ab-
solutos) e assim, levar este novo minimo para uma regido muito afastada do intervalo

de validade da aproximagao de dois lagos.

Concluimos que nenhum véacuo ndo trivial é induzido por corre¢des radiativas e
que nem a SUSY e nem a geragdo dindmica de massa ocorrem. Nossos resultados
contradizem os obtidos na Ref. [47], onde é relatado que as corre¢des de dois lagos sdo
capazes de induzir uma quebra de supersimetria, seguida por uma gerac¢do dindmica

de massa.

Por outro lado, uma conclusdo similar a nossa foi obtido em [53], para 0 modelo
O(N) WZ na aproximacgdo 1/N. De fato, como discutido em [43], a quebra espontanea
de simetria e a geracdo de massa através de corregdes radiativas sdo possiveis somente
em modelos com mais de uma constate de acoplamento e necessitam de um ajuste fino

entre estas constantes para garantir a validade da expansdo perturbativa.

Para encerrar esse capitulo, vamos determinar as fungdes B¢ e g do grupo de
renormalizagdo para o caso particular com ¢ # 0Oem = A = a = 0. Podemos relacionar

o supercampo e a constante de acoplamento ndo renormalizados ®g e gp em termos de
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@ e g renormalizados por meio das defini¢des

Nj—=

O = Z2d = (1+02), (3.27)
. . |1+g¢716
Q0 = 4gZg =g 752 g], (3.28)
[0

e escrevendo explicitamente os contratermos a partir da Eq. (3.21) como

2
1
0z = — 1 98;712 - + termos finitos, (3.29)
3¢° 1
0g = ﬁg + termos finitos, (3.30)

obtemos a fun¢ado beta na ordem principal

_ %8 _ 5¢°
s = 13, = oam ¢
3
% (parae — 0). (3.31)

Esse resultado estd de acordo com o obtido na Ref. [54] pelo calculo direto das partes
divergentes das varias fun¢des de vértice no formalismo de campos componentes. A

solucdo da Eq. (3.31) é dada por

2 g
g = _ (3.32)
1— %gzln%

Partindo com um g?> < 1 na escala de energia definida por y, vemos que a cons-
tante de acoplamento efetiva > cresce quando a escala ji é aumentada. Entdo, a curtas
distancias, os resultados acima ndo sdo factiveis: corre¢des de mais lacos tornam-se
cada vez maiores quando comparadas com as de segunda ordem. Se em vez disso

temos ji — 0, obtemos g‘z — 0, revelando um limite IR livre.

Uma dimensdo andmala para o modelo também é induzida, como pode ser vista

pelo célculo da fungdo ye:

. 1 dan@
o= G (3.33)

A partir de (3.27), podemos escrever (3.33) na forma

d6Z g
2(1467) yo = u2 28 (3.34)
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Substituindo (3.29) e (3.31) em (3.34), obtemos

2 2 4
2<1 3 1)’yq>: g " 1 (3.35)

19272 9612 24-96t¢’

que implica em
2

Yo = ﬁ. (3.36)



Capitulo 4

Identidades de Slavnov-Taylor para a
QED ndo comutativa supersimétrica em
(2+1)D

Apresentaremos neste capitulo o estudo das identidades de Slavnov-Taylor para a
eletrodinamica quantica ndo comutativa supersimétrica em 2 + 1 dimensdes. O acopla-
mento com matéria é realizado por supercampos escalares complexos na representagdo

fundamental.

4.1 Supersimetria, simetria BRST e nao comutatividade

Um dos principais problemas na formulagdo de teorias de calibre no superespaco é
a auséncia de um mecanismo de regularizacdo que preserve explicitamente ambas as
simetrias; de calibre e a supersimetria. Em geral, a agdo efetiva renormalizada obtida
a partir de um particular esquema de regularizagdo, como por exemplo regularizagdo
dimensional (ou DReG), pode ndo a priori satisfazer explicitamente as identidades de
Ward e manter a supersimetria manifesta, quando formulada no superespaco [55].

Para ver o porqué desse problema, imaginemos uma teoria de calibre usual, formu-
lada no superespago com A/ = 1 em 3 + 1 dimensdes do espago-tempo. Seguindo o
procedimento bem estabelecido por Grisaru et al. [18] para a determinac¢do da agdo
efetiva diretamente no superespaco, o mecanismo de regularizacdo que permite isolar
as divergéncias, renormalizar a teoria e manter a supersimetria manifesta em todas as
etapas dos calculos é a regularizacdo por redugdo dimensional (ou DReD) [56]. Neste
particular esquema, toda a D-algebra envolvendo os superdiagramas de Feynman, que
na formula¢do em componentes corresponde a manipulagdo dos tragos, contragdes, etc,
das matrizes de Dirac, é realizada com a dimenséo fixada em D = 4. Somente ao final,

47
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quando a agdo efetiva é transformada numa fungdo local nas coordenadas grasmania-
nas, tomamos D = 4 — € e resolvemos as integrais de momento escalares resultantes.
Como o ntimero de graus de liberdade bosonicos e fermidnicos, agrupados de forma
condensada nos multipletos formados pelos supercampos, sdo mantidos inalterados
em todas as etapas, entdo podemos garantir que esse método preserva a supersimetria
explicitamente. Contudo, tal fato ndo garante que a simetria de calibre seja preservada,
pois alguma componente do campo de calibre em 4 — D pode sofrer uma transforma-
¢do de calibre diferente das outras componentes mantidas fixas em D = 4. Por essa
razdo, a DReD ndo preserva a invariancia de calibre em todos os estagios e corre o risco
de violar as identidades de Ward, embora preserve a supersimetria explicitamente. Tal
fato constitui uma inconsisténcia da DReD e foi primeiramente descrito em [57]. Por
outro lado, na formulagdo em campos componentes, podemos aplicar a DReG desde o
inicio e, como é bem sabido, ela preserva explicitamente a simetria de calibre ao tratar
todos 0s campos do modelo em questdo como objetos D-dimensionais [58]. Infeliz-
mente, como a supersimetria é manifesta somente em D = 4, a DReG ndo garante a

preservacao de tal simetria no modelo.

Outro aspecto que pode contribuir para a violacdo das simetrias de calibre é o efeito
da mistura ultravioleta/infravermelha (UV/IR), peculiar em teoria de campos ndo co-
mutativas. Tal fendmeno é capaz de transformar termos com divergéncias ultravioletas
em divergéncias infravermelhas e tecnicamente pode ser visto como decorrente da se-
paragdo dos diagramas de Feynmam em partes planar e ndo planar. Esse fato pode
inviabilizar a expansdo perturbativa, tornando um modelo comutativo que ordinaria-
mente é renormalizdvel em uma teoria com termos infravermelhos singulares que ndo
podem ser eliminados pelo processo de renormalizacdo [10, 11, 12]. Entretanto, o can-
celamento das divergéncias devido as contribui¢des bosonicas e fermiodnicas em teorias

supersimétricas, pode ajudar a amortizar o efeito da mistura UV/IR.

No situagdo usual sabe-se que as identidades de Ward-Takashashi (WT) produzem
vinculos diagramaticos entre as diferentes fun¢des de Green, como consequéncia da
simetria de calibre original. Tais identidades sdo fundamentais para relacionar os dife-
rentes contratermos e tornar vidvel o programa de renormaliza¢do em todas as ordens
de perturbagdo. Por conseguinte, uma verificagdo explicita das identidades de WT for-
nece um modo de garantir que a simetria de calibre ndo foi violada por nenhuma pos-
sivel anomalia introduzida através de um esquema de regularizagdo ou pela presenca
da ndo comutatividade.

Em particular, para o caso da eletrodinamica quantica supersimétrica ndo comuta-
tiva em 2 + 1 dimensdes (NCSQED;) foi provada sua finitude e auséncia de singula-
ridades UV/IR ndo integraveis até a ordem de uma lago [59]. Contudo, a importante

questdo envolvendo a preservagdo ou ndo da simetria de calibre, devido a introdugdo
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da ndo comutatividade e/ou DRGe, ndo foi estudada até o presente momento. Neste
capitulo, apresentaremos uma andlise preliminar das identidades de WT generalizadas
(ou identidades de Slavnov-Taylor (ST)) para a NCSQEDs;.

Na sec¢do 4.2, definiremos o modelo que descreve a NCSQEDj utilizando o forma-
lismo de supercampos. Também incluiremos a interagdo com matéria, permitindo o
acoplamento do supercampo de calibre com um supercampo escalar complexo na re-
presentacdo fundamental. A quantiza¢do da teoria é realizada de maneira candnica,
com a introdug¢do de um termo fixador de calibre e dos correspondentes campos fan-
tasmas de Faddeev—Popov. Na secdo 4.3, definiremos as transformag¢des de BRST e
faremos a verificagdo explicita da invaridncia da agdo cladssica sob esse conjunto de
transformagdes. No que segue, derivaremos as identidades de ST via formalismo fun-
cional, diretamente no superespago. Na se¢do 4.4, determinaremos uma expressao
geral para o grau de divergéncia superficial da teoria, indicando que o modelo é super-
renormalizavel. Finalmente, na se¢do 4.5, calcularemos a agdo efetiva correspondente
a funcdo de dois pontos para o supercampo de calibre na aproximacdo de um lago e

mostraremos explicitamente que a mesma satisfaz a identidade de ST.

4.2 Acao classica em supercampos e a quantizacao no su-

perespaco

4.2.1 Apresentacao do modelo

A NCSQED; com N = 1 é definida no superespaco pela agao classica [59]

S = % / BN« W, 4.1)

onde o elemento de integragio é representado por d°z = d>xd?0 e o produto Moyal é
o mesmo que em (2.14) e s6 afeta as coordenadas do espago-tempo x*. O supercampo
espinorial W* que representa a intensidade de campo eletromagnética é construido a
partir do supercampo espinorial de calibre A* por meio da relacao

1
2

2

W, = DﬁDaAﬁ—%g[Aﬁ,DﬁA“}* 5|48 {4, A 4.2)

X
tal que o simbolo “x” indica que todos os campos no interior do comutadores e antico-
mutadores sdo multiplicados via produto Moyal. Notemos que a ndo comutatividade
induz um comportamento ndo-abeliano na teoria, mesmo que o grupo de simetria seja
o U(1),. Do termo bilinear, podemos extrair a dimensdo do supercampo em unida-

des de massa[A,| = 0, tal que a constante de acoplamento possui dimensao [g] = 1/2.
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Deve-se notar que ao tomar ¢ — 0, obtemos a versdo usual da eletrodinamica supersi-
métrica tridimensional [18]. Além disso, estamos considerando a ndo comutatividade
apenas nas coordenadas espaciais (@% = 0) a fim de evitar problemas de unitariedade
[60].

A acdo definida por S é invariante sob a transformacao de calibre ndo comutativa

SeAn(z) = SV.K(z) = é (DeK — ig [Aa,KL,), 3)

0Q | =

onde V, = D, —ig[As, |+ é a derivada covariante espinorial e K(z) é um super-
campo escalar real arbitrario, tal que W, se transforma covariantemente por (W,)" =
e'X %« W, x e7'X | Para prosseguir com a quantizagio da teoria, devemos fixar o calibre

acrescentando uma novo termo a S na forma

__1 5 o 2 B
Sor = E/d z(D"A,) D (D Ag) . (4.4)

onde a é um parametro adimensional que fixa a escolha do calibre. Deve-se observar
que o termo acima quebra a invaridncia de calibre da teoria, mas mantém a supersime-
tria manifesta. Para completar a quantizagdo, seguimos o procedimento de Faddeev-

Popov adicionando a agdo classica a contribui¢do dos campos fantasmas na forma
1 5./ o
Spp = E/dzc*DV,Xc
1
= 5 /d5zc’ *x D* (Dyc —ig{Au,c},), (4.5)

tal que ¢(z) e ¢/(z) sdo supercampos escalares anticomutantes real e imaginario, res-
pectivamente. Tal que a condi¢do de hermiticidade da Lagrangiana dos supercampos
fantasmas seja preservada. Note que em (4.5), a derivada supercovariante é composta
por um anticomutador entre A, e ¢, em contraste com (4.3). Dessa forma, estamos as-
sumindo que os campos fantasmas comportam-se como supercampos fermionicos sob

a algebra da supersimetria e estdo na representacdo adjunta do grupo de calibre 2/ (1),

Para completar nosso modelo, vamos admitir que o supercampo de calibre acopla

minimamente com a matéria por meio da agao
5 i T
S o= [ @2 | S VEB«V,0+ MO

- / 4z {—% (DY® + igDAY) x (Dy® — igA,®) + MOD| , (4.6)

onde ® é um supercampo escalar complexo pertencente a representacdo fundamental
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do grupo de U(1),, com dimensdo em unidades de massa [®] = 1/2. Observamos
que a derivada covariante atuando sobre um supercampo bosonico na representacao

fundamental assume a forma V = D, — igA,.

A acdo definida em (4.6) é invariante sob a transformacao de calibre (4.3), em adicao

com as seguintes transformagdes para os campos ® e :

5cd = iKx®,
5c® = —idxK. (4.7)

4.2.2 Regras de Feynman

As regras de Feynman para os supercampos da NCSQEDj3; Ay, ¢, ¢/, ® e ®, podem
ser obtidas diretamente das Lagrangianas em (4.1), (4.4), (4.5) e (4.6). Os propagadores
sdo definidos pelos termos quadréticos e os vértices pelos termos de interagdo. Como
visto na se¢do 1.6, o procedimento para determinar os propagadores segue o caso no

caso usual, tal que alguns passos intermedidrios serdo omitidos.

A acdo quadrética para o campo de calibre é dada por:

Spr = /d5 { DﬁD”A,;D“DUA“—Z—D/SAﬁDZD“A}
= 3 / d>zAg {—iDaDﬁD“DU—EDﬁDZD“] Ag, (4.8)

onde utilizamos integragdo por partes. Com o auxilio das identidades supersimétricas
DPD*D, = D,D*“DP, DED? = —D?DP e D*DFP = i9*F — C*FD?, podemos reescrever

(4.8) na forma

Sp2 = / d5zA5[ DZD“D5+2 DZD/SD“} Aq
= —/d5zA E 1+1 C'Xﬁm1 —1+— i0"PD?| A (4.9)
2 Fl2 w 2 w o ‘

O propagador de Feynman é obtido completando os quadrados no gerador funcio-
nal para o supercampo de calibre e realizando a integragdo Gaussiana sobre A,. Isto é
equivalente a inversdo do termo entre colchetes na Eq. (4.9), deste modo o propagador
de Feynman AF,Xﬁ(zl — 2p) satisfaz a seguinte equacdo de Green:

1 1 .
—EDZDP‘D“ + ﬂDZD“D” Apup(z1 — 22) = 15;;55(.21 —27), (4.10)

21
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a qual, é possivel verificar que no espago dos momentos assume a forma

Arap(p;01—02) = <A,X p,01)Ap(—p,62))

_ 2p ; [D?DyDy —aD?D.Dg | 82(61 - 62),

1 1
= 3 {cﬁa?(a +1) — F(a — 1)%[)2} 5201 —6), (4.11)

Note que a escolha mais conveniente para o parametro fixador de calibre é x = 1

(calibre de Feynman), implicando no propagador simplificado

1
(Au(p,01)Ap(—p,02)) _, = zcﬁa?(s’l(e1 —65). (4.12)

As partes quadraticas associadas aos supercampos fantasmas de Faddeev-Popov e

de matéria sdo dadas por

S, = / Pzc' D, (4.13)

Ser = / #20 (D2+ M) ®. (4.14)

Os propagadores correspondentes podem ser obtidos de forma similar, resultando em:

2
Ge(p, 61 —02) = ((p,61)c(—p,02)) = i%fsz(el —6), (4.15)

DZ—M

pz n MZ(S (61 — 607). (4.16)

Ap(p, 61 —62) = (@(p,01)P(—p,02)) =

Os termos de interacdo da acdo clédssica dos setores de calibre puro, dos campos

fantasmas e de matéria sdo obtidos de 4.1, 4.2, 4.5 e 4.6, sendo respectivamente

Sc(int) = / dz { S D*Ag*[A?, Dy As] — % [Aﬂ D,;A“} [A%, Dy Aq]
g’
- 12D/3D“A/3* (A%, { A, Ad}] + 25 [Aﬁ D/;A“} (A%, {Ag, Ad}]
gt
b &[40 (ap A w147, (An, ALY @17)
Sep(int) = _% /dSZ [ x D*Ag % c+ ¢ % A" x Dyc + ' x D*cx Ay — ' e D*A,],

(4.18)
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Spint) = /d5[ (D*® x Ay + @ — D x A x D) — S;CID*A“*A,X*CD (4.19)

onde o produto Moyal nos (anti)comutadores estd subtendido.

Os vértices representados no espago dos momentos podem ser escritos na forma

e Setor de calibre:

_ (& 2 |3l d3ki 353 }3: ) By T o
VA3 = d-6 3 (27T) ) ( k])Dg-Al,XD D A2’3A3 Slﬂ(kl /\kg),
. -

2 Pl (27)
(4.20)
(1) g Tk p
vl = (7) [ BT 5015 25 (3 k) AL DA A Do A,
sin [k1 A (k3 + ky)] sin(kg A k3), (4.21)
2 4 A3k 4
ve = (%) / 0] [ 55 (27)°6° (1 k) DPD* Ay AS Asi A
i1 (270) =1
sin [kp A (ks + kq)] sin(ks A ky), (4.22)
42 d3k : p
Vs = ( ) / 91—[ ij)A'lyD'yA%Ag,AéllBAStx
j=1

sin [(ky + ko + k3) A k4] sin [(ky + k2) A k3] sin(ky A kp), (4.23)

- (%))

sin [(kl +ky+ks+ks) A k4] sin [(kl + ko +k3) A k5]
sin [k1 A (ko + k3)] sin(kp A k3). (4.24)

6
(271)26()_ k) AT Agy ASAE AgpAgg
j=1

e Campos fantasmas

3 3
Ve = (—g) / 20 1283(Y_ k;)D*cheaAsy sin(ks Aks). (4.25)
:1 j=1
e Setor de matéria
1 lg dZ & 353 & kDD A D —ikoNk3 4
q>2A (Z ]) 1424 P3e , (4.26)
:1 j=1
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3

(2) zg 29
V= (%) [ e
:1
4
Vq)ZAZ - <_—) /dz

(4.28)

onde adotamos a notagdo simplificada A;, = Ax(k;, 0), ¢; = c(k;, 0) e ©; = D(k;, 0).

3
)363( 2 )®1 ASD, Do~ kN3, (4.27)

353 Zk D1 AT Az Dye™ ilko/\(katka)+ksks]
j=

4.3 Identidades de Slavnov-Taylor para a acao efetiva: for-

mulacdao em supercampos

4.3.1 Simetria BRST

Como vimos anteriormante, a Lagrangiana total para a NCSQED; é dada por

1 1— _
Lo = EW”‘*Wm—EV‘XCID*V,XCID—|—M<I>*CI>
1 o 2 B 1 ! w
~ - (D"4)D (DPag) + 5¢/ % D"Vae, (4.29)

onde somente o0s trés primeiros termos sdo invariantes de calibre.

No processo de quantizacdo, a simetria de calibre foi quebrada com a introducdo
do parametro « e, por conseguinte, a Lagrangiana definida em (4.29) ndo é mais inva-
riante de calibre. Contudo, existe ainda uma simetria adicional, que estd diretamente
relacionada com os supercampos fantasmas e recebe o nome de simetria BRST (Becchi,
Rouet, Stora e Tyutin [61]). A simetria BRST é uma simetria global que envolve um
parametro escalar fermionico, mas diferentemente das transformagdes de supersime-
tria, cujo pardmetro é um espinor por transformagdes de Lorentz, aqui ele se comporta

como um escalar.

A importancia das transformagdes de BRST reside no fato de que elas permitem
derivar identidades de Ward, neste caso chamadas de Slavnov-Taylor [62], as quais
relacionam as fungdes de vértices de n-pontos e os contratermos necessarios para a

renormalizagéao.
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As transformagdes de BRST para o modelo sdo definidas como segue

sAy, = —€V,¢,

sc = Igecxg,

s¢ = G%DZD“A,X,

s® = igecx P,

s® = —iged*g, (4.30)

onde € é um parametro fermidnico constante e imagindrio. Antes de demonstrar a

invariancia de (4.29) sob (4.30), convém demonstrar as seguintes relacdes:

s(D*A,) = 0,
s(Vac) = 0,
s(cxc) = 0. (4.31)

De fato, a primeira identidade acima resulta de
s(D*Ay) = D*(sAy) = D*(—€Vyc) = eD*Vyc =0, (4.32)

onde no ultimo passo usamos a equagdo de movimento para o supercampo fantasma

c, obtida por meio de 5; IF = 0. Similarmente, obtemos

s(Vac) = s(Dac—ig{Aac},)
= Dy(sc) —ig{sAa,c}, —ig{Aa sc},
= Vq(sc) —ig{sAx,c},
= Vg(igecxc) —ig{—€Vac,c},
= —ige (Vackc—cx Vo)
+ ig(eVackc+cx (eVyc))
0, (4.33)

e finalmente

s(cxc) = scxc+cxsc
= (igec*c)*c+ c* (igec *c)
= ige(c*xcxCc—CcxC*C)

= 0, (4.34)
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onde usamos o fato do produto Moyal ser associativo e também a regra de Leibniz
Vao(f xg) = Vaf xg £ f*x Vg, onde o sinal depende se f é béson (+) ou férmion (-).

A invaridncia da teoria sob (4.30) é simplificada se notarmos que a transformacao
para A, pode ser considerada uma transformacéao de calibre infinitesimal quando iden-
tificamos K(z) = gec(z), tal que

0cAu(z) = =V,.K(z) = év,xgec(z) = —eV4C =5A,, (4.35)

1
4
e de forma analoga para os supercampos de matéria. Notemos que KT = gcfe’ =
—gce = gec = K. Desse modo, precisamos mostrar apenas que as partes envolvendo

os supercampos fantasmas e o fixador de calibre sdo invariantes por BRST, a menos de
termos de superficie. De Fato,

s(Scr+Spp) = —ﬁ/d% (DﬁsAﬁDZD“Aa+D/3A5D2D“SA,X>
+ %/d5z (s¢'D*V e + ' D*sV )
— _% / d5zD2DﬁAﬁD“sA“—|—% / d°zsc' D*V ¢
_ % / @z [~D?DPAgD*V ¢ + D*DF AGD*Vc|
0,

(4.36)

tal que aacdo St = f d°z L1, é invariante. Na derivagdo acima, integramos por partes
duas vezes na primeira linha e usamos (4.30) e (4.31).

Uma importante caracteristica das transformag¢des de BRST é a nilpoténcia, isto é, o
resultado de duas operagdes sucessivas serd sempre nulo:

51 (Sz()b) = 0. (437)

A prova da nilpoténcia para A, ¢’ e ¢, segue diretamente de (4.31). Por exemplo,

para o supercampo A, temos
51 (s2An) =51 (—€2Vac) = —€2 (51Vac) = 0. (4.38)
Para os supercampos de matéria a prova também é direta e segue abaixo

s1(s2®) = s1 (igerc* D)
= igey (s1cx P+ cx51D)
= i?g%ere1 (cxcxD —cxcx D)

= 0, (4.39)
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de modo anélogo para .

4.3.2 Identidades de Slavnov-Taylor

Como vimos anteriormente, a simetria de calibre presente na acdo cldssica se ma-
nifesta, ap6s o procedimento de quantiza¢do, por meio da simetria BRST. Como con-
sequéncia, as fun¢des de Green podem ser mutuamente relacionadas. Tais vinculos
podem ser expressos através das identidades Slavnov-Taylor. A seguir, deduziremos
essas relacdes diretamente no superespaco, aplicando o procedimento padrao adotado
nas teorias de calibre [63].

Considerando o gerador funcional
z[]] = / DADE DeDODE exp {i / B2 (Lot + cPOmes)} , (4.40)
onde L7,; é definida em (4.29) e os termos de fontes sdo dados por
Lrontes = J* % Ag+nxc+c' *n' + xx D+ Dxy. (4.41)

Sabendo que [ d°zLr,; é invariante por (4.30) e que as fontes ndo se transformam, po-
demos realizar a seguinte mudanga de varidveis para representar as transformacdes de
BRST.

A=A =, c—sé @D d— o (4.42)

Substituindo (4.42) em (4.40), obtemos

Z[]] = /DADC’DCDCIDDCTD exp {i/d5z (Lot 4+ J* * Ag
+17*5+6’*n’+)3*<f>+5>*)(>}, (4.43)

onde consideramos que o elemento de integracdo funcional também é invariante, tendo
em vista que (4.42) sdo “shifts” nos supercampos produzidos por transformagdes uni-
tarias.

Sabendo que a Eq. (4.42) consiste simplesmente em uma mudanca de varidveis,
entdo (4.40) e (4.43) devem ser iguais. Isso significa que as fun¢des de Green geradas

por Z[]] devem ser as mesmas que aquelas obtidas por Z[]]:
(0]T [Ax(z)...]|0) = (0|T [Au(z)...]| 0), (4.44)

implicando em
s(0|T [Ax(z)...]|0) =0, (4.45)
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A Eq. (4.45) pode ser reescrita na forma de vinculos sobre o gerador funcional. Empre-
gando a forma infinitesimal A=A+5A¢=c+sc etc e expandindo a exponencial

em (4.43) até primeira ordem, chegamos em

/DADC’DCDCD'D@/CISZ (J¥ *sAx+nxsc+sc’ xn' + g HsP+sPx x)

xexp{i/dSZ (L‘Tot—t—]"‘*A,X-|—;7*c+c’*17’+)€*<1>-|—<i>*)()} =0. (4.46)

Substituindo as transformagdes de BRST e reescrevendo a expressdo resultante na
forma de derivadas funcionais de Z com respeito as fontes, obtemos equagdes de vin-
culo nao lineares sobre o gerador funcional. Esta expressdo é inconveniente pois ela
contém derivadas funcionais aplicadas sobre termos envolvendo o produto de super-

campos.

Com o prop6ésito de linearizar as equagdes de vinculo representadas em (4.46), va-
mos introduzir fontes adicionais para os supercampos compostos, representados pelas
transformacdes de BRST nao lineares: sA ~ V¢, sc ~ cxc, s® ~ cx D e sd ~ O xc.

Desse modo, a Lagrangiana (4.41) é substituida por

Y o= J*xApt+nk e+ xn +xx P+ Dxy
— K*xVuc+iglxcx D —igdxcx{ +igA*c*c, (4.47)

onde K%, {, { e A sdo as novas fontes associadas aos supercampos V,c, c x P, P xc e

c * ¢, respectivamente. Note, quanto a estatistica, que essas sdo fontes
Bosonicas: {x, x, K*, A},
Fermiobnicas: {J* n, ' {, {}.

Agora, podemos utilizar a propriedade de nilpoténcia para reescrever a Eq. (4.46)

na forma
/ DADE DcDODS / Pz (sT) exp {i / Pz (Lot + 2)} o, (4.48)
sendo

sY = J*xsAy+nxsc+sc xy' + fxsD +sDxy
=€ (]“*V,xc—igiy*c*c—k%DzDﬁAﬁ*q’+igX*c*<I>—ig<T>*c*X) ,
(4.49)
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onde consideramos que os termos de fontes sdo invariantes por BRST.

A partir da definicdo do gerador funcional em (4.40) e da adigdo dos termos de
fontes para os supercampos compostos em (4.47), as seguintes identificacdes podem
ser estabelecidas:

162

Toke — (7Vac)s

162 .

e = (igc*x D),

162 -

T (igd*c),

162 .

5 = (igcxc),

162

o = (A, (4.50)

tal que a expressdo genérica (¢) é definida por
_ / DADE DeDODDel | ©=(Lr+E), 4.51)

Substituindo (4.50) em (4.48) e lembrando que o parametro € é arbitrdrio, obtemos a

identidade de Slavnov-Taylor para o gerador das fun¢des de Green Z:

0Z 1 0Z 5Z 62
/d5 { —J* % 51<v<_'7 EJF—DZD%]NWUFX E—E }:0. (4.52)

Podemos escrever o resultado acima em termos de W[], 7,4, x, i K, A, Z, ] através
da relacio W =iln Z:

oW 1 oW oW oW
I A R R el ATy S ari SLEC

Diferenciando a Eq. (4.53) com respeito as fontes e tomando-as iguais a zero, obte-
mos as identidades que relacionam as diferentes funcdes de Green conexas da teoria.
Esse é o significado formal da Eq. (4.45) previamente obtida. Dessa forma, a simetria
BRST é de importancia fundamental no estudo da renormalizabilidade das teorias de
calibre, tendo em vista que pode estabelecer relacdes entre os contratermos necessarios
para o cancelamento das divergéncias, além de garantir a independéncia de calibre
para os observéaveis fisicos.

Como visto no capitulo 1, o formalismo de supercampos adotado nesse trabalho
permite calcular diretamente a a¢do efetiva I', que representa o gerador funcional das
fungdes de Green préprias (1PI). E conveniente portanto, expressar a identidade de
ST em termos de T'[A, ¢, ¢/, @, DK, A\, ], com o auxilio da transformada de Legendre
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definida por

F[A/C/C//q)zci);K/)\/g/g_] — _W[]/”/U//X/X;K//\lglg_]
— /d5z (JéxAg+yH e+« + 3D+ D*x) (454)

tal que a acdo efetiva é func¢do das fontes dos supercampos compostos de BRST.

Usando a Eq. (4.54), podemos verificar as seguintes relagdes:

or oW

SAuc = —Ju W = _Agu

6T W .

e T ey T

or oW
poe = 0y =t

oT W
sor — X s T

or oW -
i A — &, (4.55)

onde o sobrescrito ¢° indica que estamos tratando de supercampos cldssicos no sentido

de SW
o T (9)) = 9", (4.56)

sendo assim, serd omitido por simplicidade. Além disso, temos ainda

ST W 6T W 6T 6W o oW

KT oKY o7 el o oA oA (457

Por meio das Eqs. (4.55) e (4.57), podemos reescrever a Eq. (4.53) na forma

ST 6T 6T of 1 ST 6T oI 6T o
Pz b L 0L A L L G
/Z{ AR ok Tt Ta B 50 Tso oz st sa ) Y
(4.58)

a qual representa a identidade de ST para a agdo efetiva.

Uma identidade adicional é gerada por meio da equa¢do de movimento funcional
para o supercampo fantasma c. Para obté-la, vamos separar os termos envolvendo ¢’
em L+ X

Lot +X = %c’ *x D*V ¢ + ¢’ 1’ + (demais termos), (4.59)

tal que & [ d°z (Lyot +Z) = 1D*V,4c + 17'. Como Z[]] s6 depende das fontes, entdo a
derivada funcional com respeito a ¢’ é nula e resulta em

16Z[]] 1., —
T = 5D (Vae) + 1/ Z[]] = 0. (4.60)
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Com o auxilio de (4.50), podemos reescrever o resultado acima como

1 ., [W ;

ED <5K“) +n =0. (4.61)
Em termos da acdo efetiva teremos

1 (ol or

ED ((SK“) + 5o = 0. (4.62)

Inserindo a Eq. (4.62) em (4.58) e integrando por partes, obtemos

/d5z{( C“ﬁ5r+1D“D2D/3Aﬁ) L0 LI Lo 5F}:0,

SAB G Y W Y TP T T
(4.63)
Podemos simplificar a Eq. (4.63) redefinindo a acdo efetiva como
! 1 5 2
=T+ /d 2D A, D2DP Ay, (4.64)
tal que

or’ or 1 or' o

_CM I — P «D2ph = _ =
C 5A/5 C S AP —i— D D“D Aﬁ, 5 o etc. (4.65)

Assim, finalmente obtemos a identidade de ST para a acio efetiva I tal como no
caso comutativo usual [63],

ST 6T or oT T or or oT
5 ap Y o Yt oo e 9 9 L
/dz{ B TR R R W e 5g*5ci>} 0. (4.66)

Devemos apontar aqui que as identidades de ST derivadas anteriormente envol-
vem quantidades ndo renormalizadas e, por conseguinte, um mecanismo de regulari-
zagdo que permita isolar as quantidades divergentes sem violar a invariancia de BRST
da teoria quantizada deve ser adotado. Nosso objetivo é verificar explicitamente, até
a aproximagdo de um lago, se a regularizacdo por reducdo dimensional e/ou a ndo
comutatividade podem violar as identidades deduzidas formalmente nessa secdo.

4.4 Divergéncia superficial e finitude perturbativa

Vimos anteriormente que para estudar a invariancia BRST quanticamente, introdu-
zimos superfontes externas acopladas aos supercampos das transformacgdes nao linea-

res. Dessa forma, a acdo efetiva em nivel de drvore passa a ser
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TO[A, ¢,d,®,®;K, A, ,l] = Sc + Sm + Scr + Sep + Sks, (4.67)

onde a agdo envolvendo as superfontes de BRST é dada por
Spg = /dSZ [—K* %« Vac+iglxcx D —igdxcx{+ighxcxc. (4.68)

Na acdo representada pela Eq. (4.67), devemos levar em conta os vértices de in-
teracdo devido a Eq. (4.68) nos célculos envolvendo os diagramas de Feynman. E
importante salientar que as superfontes de BRST sdo campos ndo propagantes, e as re-
gras de Feynman deduzidas em 4.2.2 continuam vélidas, sofrendo apenas o acréscimo

dos novos vértices em (4.68).

Nosso objetivo agora serd determinar quais os diagramas 1PI que contribuem para
a acgdo efetiva até a ordem de um lago e que sdo superficialmente divergentes. As-
sim como no caso usual, devemos determinar o grau de divergéncia superficial w(G)
associado a um supergrafico genérico. A contagem de poténcias para teorias ndo comu-
tativas segue analoga ao caso comutativo. Consistindo basicamente na diferenca entre
as poténcias de momento interno que aparecem nos numeradores e denominadores
em um dado diagrama. Contudo, além dos momentos internos provenientes dos ele-
mentos de integracdo e dos propagadores, teremos contribui¢des devido as derivadas
covariantes D, que aparecem nos propagadores e/ou vértices. Dessa forma, o grau de

divergéncia superficial w pode ser escrito genericamente por

w(G) =3L —4P4 —2(Pp + P.) + (k’'s devido as D’s), (4.69)
onde
L = numero de lagos,
P4 = namero de superpropagadores internos de calibre,
Py = nuamero de superpropagadores internos de matéria,
P, = nutmero de superpropagadores internos fantasmas.

Na férmula acima, cada lago contribui com um elemento de integragdo nos momen-
tos internos [ d°k; ~ k> e os fatores numéricos que acompanham os propagadores sdo
devido aos momentos que aparecem explicitamente em cada um deles: (AA) ~ D*/k,
(®P) ~ D?/k?* e (c'c) ~ D?/k*. Todas as derivadas espinoriais covariantes D's pro-
venientes dos propagadores ou dos vértices podem gerar poténcias de momento por

meio da relacdo {Dy, Dg} ~ kug. No que diz respeito a parte de interagdo, vamos



4.4. DIVERGENCIA SUPERFICIAL E FINITUDE PERTURBATIVA

63

adotar a seguinte notagdo para facilitar a identificacdo dos vértices:

e Setor de calibre:

V 43: nimero de vértices puros de calibre com trés derivadas espinoriais;

V 44: niimero de vértices puros de calibre com duas derivadas espinoriais;

V 45: nimero de vértices puros de calibre com uma derivada espinorial;

V 46: nimero de vértices puros de calibre com nenhuma derivada espinorial;

V 4.2t nimero de vértices calibre/fantasma com uma derivada espinorial;

e Setor de matéria:

V 4q2: nimero de vértices calibre/matéria com uma derivada espinorial;

V j242: nmero de vértices calibre/matéria com nenhuma derivadas espinorial;

e Setor das superfontes de BRST:

Vkc: nimero de vértices misto K/c uma derivada espinorial;

Vkac: nimero de vértices misto K/ A/c com nenhuma derivada espinorial;
Vzoc: nimero de vértices misto {/®/c com nenhuma derivada espinorial;

V)2 namero de vértices misto A/c/c com nenhuma derivada espinorial.

Para referéncia futura, vamos escrever abaixo as expressdes dos vértices mistos,

contendo as fontes de BRST, ja no espago dos momentos.

Phy dk
/ 2oL 1 )2 (270)28% (k1 + ka) [~ KEDuca],

3 d3k 3 .
Vicae = (29) / 20 | (2n)13 (27)363(Y_ kj) K Agaca sin(ky A ks),

i=1 j=1
V)\CZ — /dz

3
Vioe = (i8) / d*6
:1

3
(27‘[)3(53(2 k]‘)/\10203 sin(ky A k3),
=1

L:lw

3 .
383 (Y_k)) [C1c2®3 — Preala] €M,
=1
Desse modo, o nimero inicial de derivadas D, é dado por:

n° total de D's = 4Pa+2(Po+ Pe) +3Vas +2Vaa + Vs + Vo + Vage,

D's dos propagadores D's dos vértices

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)
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onde notamos que o vértice V. ~ K*D,c ndo é levado em conta na contagem das D’s,

pois 0 mesmo ndo pode formar nenhum diagrama 1PI.

No célculo da D-algebra, cada propagador contribui com uma delta de Dirac gras-
maniana 6%(6; — 6,) e podemos usar V — 1 integracdes em d?6 para elimina-las, res-
tando

n° total de 6's apés a D-dlgebra =P — V + 1, (4.75)

onde P e V representam a soma de todos os propagadores e vértices, respectivamente.
As §'s restantes sdo eliminadas pelas derivadas D, por meio da relagdo D?67, ~ 1.

Assim, o numero final de D’s disponiveis para se converterem em momento é igual a

n° finalde D’'s = 4P4 +2(Pp + Pe) + 3V +2Vs + Vs + Vo + Viage
— 2(P-V+1)
= —242P4+5V 3 +4V,a+3(Vys + Vyeo + Vyg2)
+ 2(Vye + Vgrge + Vikac + Vioe + Vy2)- (4.76)

Sabendo que a cada dois D’s podemos gerar um k, entdo

n° final de D’s B @
2 27

w(G) = 3L — 2Py —2P + (4.77)
onde Np representa as derivadas aplicadas aos supercampos externos, as quais ndo se
transformaram em momento. Podemos eliminar o termo que contém L aplicando a
relagdo topoldgica

L+V-P=1, (4.78)

de modo que w(G) assume a forma

1 3
w(G) = 24 Po+Pe— Vs = Vas = 5(Vas + Var + Vya2)

— 2(Vas + Vg2 + Vac + Vioe + Vi2). (4.79)

Além disso, Py e P, obedecem as identidades que relacionam as linhas externas (Eg, E.)
com os propagadores e vértices, tal que

ZVACI)Z —|— ZVAZCI)Z + ng)c - Eq)
O = ’

; (4.80)

_ ZVACZ —+ VKAC + ng)c + ZV/\CZ — Ec
=
2

(4.81)
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Substituindo as relagoes (4.80) e (4.81) em (4.79), finalmente obtemos
1 3 1
CU(G) 2 — —VA3 — VA4 — _VAS - 2VA6 - _VAC2
2 2 2
1 3
EVAqDZ - VAZq)Z - EVKAC — V@'CDC — V/\CZ
1 1 1
—E.— -Ep — =Np. (4.82)

2 2 2
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A partir da expressdo acima, podemos concluir que:

1. O modelo é super-renormalizavel, isto é, existe apenas um ntamero finito de dia-

gramas superficialmente divergentes (com w > 0);
2. Os diagramas divergentes persistem até a ordem de dois lagos;
3. Existem trés tipos de divergéncias ultravioletas; w = 0,0 < w <lew = 1;

4. Nao ha diagramas superficialmente divergentes com supercampos fantasmas c e

¢’ ou com fontes K,, ¢, { e A como linhas externas;

5. Em um lago, temos diagramas divergentes com dois, trés e quatro A, como linha

externa, assim como diagramas com ®® e ADPP;

6. Em dois lagos, temos apenas divergéncias logaritmicas nos diagramas com dois

A, nas linhas externas.

As conclusdes acima estdo resumidas na Tabela 4.1 e os diagramas 1PI, superficial-

mente divergentes na aproximagdo de um lago, sdo mostrados nas Figs. 4.1 a 4.5.

| 1lago [2lagos | w(G) |

AAAA; ®D | AA w =
AAA;ADD 0<w<1
AA w =

Tabela 4.1: Contagem de poténcia para os diagramas 1PI.

Como vimos acima, as corre¢des radiativas para a agdo efetiva exibem no maximo
divergéncias lineares. Devido ao efeito da mistura UV/IR, tais divergéncias podem
inviabilizar o mecanismo de renormaliza¢do, uma vez que singularidades nado integra-
veis UV/IR ndo podem ser canceladas pelos métodos usuais. No entanto, em [59] foi
provado que o modelo é livre de divergéncias lineares UV/IR e que é finito até a apro-

ximacdo de um laco.
\/\Q/\A _r/ | | \\
ANnANANAA oA
; ; \ -
a b c

Figura 4.1: Diagramas linearmente divergentes para a fun¢do de dois pontos do super-
campo de calibre.
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oA g /&M@x g@}\

Figura 4.2: Outras contribui¢des superficialmente divergentes.

O ()

a b

Figura 4.3: Correcdes a um lago linearmente divergentes para a auto-energia do super-
campo espinorial de calibre no setor de matéria.

O OO QO

Figura 4.4: Contribui¢oes das func¢des de trés e quatro pontos do supercampo de cali-

Figura 4.5: Correc¢des a um lago para a auto-energia do supercampo ®.

NN
QR

Figura 4.6: Correcdes para os vértices mistos calibre-matéria.
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4.5 Prova explicita das identidades de ST: Transversali-

dade da polarizac¢ao do vacuo.

Assim como na eletrodindmica quantica ordindria, podemos esperar que a simetria
de BRST implique na transversalidade da polarizacdo do vacuo. Para traduzir tal pro-
priedade na linguagem de supercampos, vamos nos restringir inicialmente ao setor de

calibre puro da teoria, a extensdo para o setor de matéria é direta.

Considere as identidades (4.58) e (4.62), escritas no espago dos momentos:

/d29 dp [Cﬁ“ oT oT N oT ST
(2m)3 6AP(p,0) 6K*(—p,0)  oc(p,0) AM(—p,0)
1,5 6T B
+EDDAﬁ(p,9)75C,(_pIQ) = 0, (483

1., or©® or(©

2D 3K*(p, 0) + 5/ (p, ) =0. (4.84)

. 52 . . .
Vamos aphcar (6] operador —5c(q,w)5AF‘(l,0') e tomar os campos zguazs a zero. Ass1m, temos

sucessivamente

52 <cﬁ“ oT oT )
dc(q,w)6AF(1,0) 5AP(p,0) 6K*(—p,0)

-0
52T 52T
pa 4.85
SAI(L,0)5AF(p,0) o dc(g, w)oK*(—p,0) :0' ( )
6 6T 6T 0 (4.86)
6c(q,w)sAH(L,0) \dc(p,0) 6A(—p,0) ) |_y ’
e
52 1, ST
120 ot _
dc(q,w)sAr(l,0) <ocD b A/S(PIQ)ZSC’(—Pﬁ)) -0
1.5 33 200 oT
aD D, (2m)°8°(p +1)6°(0 — o) 57,0 (<, 0] |y’ (4.87)

Substituindo as Eqs. (4.85), (4.86) e (4.87) em (4.83), integrando por partes e lem-
brando que as derivadas espinoriais assumem a configuracdo de momento dos termos
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sobre 0s quais elas atuam, obtemos:

3 2 2
(27)3 SAH(,0)6AP(p,0) |_y dc(q, w)oK:(—p,0)|_,
1, oT B
+ DDA 0) s | = 0 48

Para demonstrar que a polarizacdo do vacuo é transversal, precisamos ainda da Eq.

(4.84). Aplicando o operador Ws’w), temos como resultado:
5T 1_, 5T

= = .89

de(g,w)oc’(1,0) |, 2D (Z’U)éc(q,w)dK“(l,U) 0 (489)

e substituindo (4.89) em (4.88), chegamos em

/ 26 d>p { e 5T 5T }
(27)3 SAM(1,0)6AP(p,0) |_y dc(q, w)oK*(—p,0)|_,
+iD D?D* o°T = 0. (4.90)
20 M éc(q,w)oK*(Lo) |y

Devido aos efeitos da ndo comutatividade, as corre¢des radiativas podem em prin-
cipio, modificar os coeficientes dos termos em (4.9), além de introduzir uma nova es-
trutura tensorial. Sendo assim, podemos supor o seguinte ansatz para a funcdo de dois
pontos do supercampo de calibre

6T
SA(1,0)5AF(p,0)|_

1 2 1 2

Pvp 2 Pyu 353 2
+ (¢)D*D,D" £ 4 (d)D?DgD" 2L | (271)35%(p 4+ 1)62(8 — o),
" /ﬁQ ﬁ /ﬁz

(4.91)

onde (a), (b), (c) e (d) representam as corre¢des quanticas e os dois tltimos termos en-
volvendo pug = Oump” (™) «p @ modificagdo na estrutura tensorial devido a presenga
de ©"". Substituindo (4.91) em (4.90) e integrando por partes, obtemos

1 2 1 2
~u ~
p'zz + (d)D'prcDZ Pyu

VP2 VP2
52T

1 2y _
+ 5-DyD?D }&(q,w)K“(l,a) - 0. (4.92)

+(c)D"D,D?
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Aplicando D¥(l,0) em (4.92) e lembrando que D¥D’D,, = 0, Dsz = —DHDZ,
D* = —I?, podemos reescrever o resultado anterior na forma
() — 1] ZZD“ + (@)D* D7D p2 P T —0.  (49)
V2| oc(q @)K (1L o) |

O dltimo termo entre colchetes é identicamente nulo, pois

DIDYpy = 5 (D', D} by
= PP
= Pa(Y)TO" P (Yn)
= Papm®@™tr (v"7")
= 2pmpnO™"
= 0. (4.94)

Assim, finalmente obtemos como resultado

2 e 5T
a oc(q,w)Ke(l,0)|_,

que implica em (b) = 1. Consequentemente, a parte longitudinal do propagador do

[(b) —1] =0, (4.95)

supercampo de calibre é protegida pela simetria BRST e ndo pode receber corre¢des
radiativas. No que segue, mostraremos explicitamente que (b) = 0 na aproximacao de

um lago.

Setor de calibre puro: Funcao de 2-pontos do campo A,

A acdo efetiva I'y 4 correspondente a fun¢do de 2-pontos para o supercampo A,
recebe trés contribui¢des a uma laco, como pode ser visto na Fig. 4.1.

O diagrama (a), cuja expressdo analitica é dada por

I‘(“) :_i <i(V )2> (4.96)
D TR TR ‘

a qual, no espaco dos momentos, assume a forma

d3k d
D5 APE b+ Ko+ k) 208 g1 + 2+ 49)

ry) = / d*Oyd? qH

sm(k1 A k3) Sll’l(ql A q3) <: DgAa(kl,Gk)DﬁD“Aﬁ(kz, Qk)AU(k:;, Gk)
D, A, (q1,85)DYD" Ay (q2,04) A¥ (g3, 604) ). (4.97)
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Ap6s realizar as contragdes dos supercampos e substituir os propagadores de ca-
libre dado em (4.11), utilizamos o pacote SusyMath [65] para efetuar a D-algebra. O

resultado obtido pode ser escrito na forma

Py Pk ) )
/ 26 (2733 o sin(k A p) [a1D2A%(=p,0) A (p,0) + a24p DA% (—p,0) AP (p,0)

+ anpAT(—p,0)AP(p,0) + a4 (—p,0) Au(p,6)] (@.98)

onde os coeficientes a1, dayg, d34p € a4 s80 dados por

o (_igZ(—l + &) 2CPY ((K)y,0(—k + P)pe — (K)ps(—k + P)oe) (P)§’€> , 299)

32(k)2 ((—k + p)2)*

. _ _ig2(1+oc)2 (4(k)a,g+3(p)ag) + i?(1—a)(1+a)
2up 16(k)2(—k+ p)? 32 ((k)2)* ((—k+p)2)

(
X (49K 4 ) (FDap = (Pagp+ (=k+ Plag) + (=(K)py (—k + Plas +2(—k + Plas(—k+ P)ps) ()
+ CunCpa (4(=k+ Peg (B (0% = (p)°F) +2()ec (p)F (—k+ p) 7 = (P)eg (K)*(=k+ p)74) ) (k)
+ 2(2k(=k+p) ((Pap = (—k+ Pag) + K)oy (055(p) ™ = 4 (K)ag + (Phag) (K)2) (—k+p)?)

g1 =)’ oo ket D) a0k B
o k+p)2)2( CoaC (K)az (P)en(—k+ P)so(p) " (—k+ p)*

+ 20 ((—k+ Pl ((p ),M(W—Z(kwpw)+(k)»w(p)ﬁ,a(—mp)*r5+2(—k+m (w2 +(1?))
() =K+ Plas(p)™ + (—k+ P)ps (R(PIay +3(=K+ Phay) ()7 = 2(K)as(p)7) ) (—k+ p)?
() p(Paa(=k+ )7 +2C5,CO (ke ((Pas(p) ™ + (—k+ plas(—k+p)74)
4(R)0p(p)? - (km(p))( k42 42 ((Ra — Rps) (k4 p2)]
4k (=k+p) (R)ap (2002 + (p)?) + (2(Pap = 3(—k+ P)up) (<k + p)?)
Canr (—C (K)og (—k+ p)py(—k+ p)eo(p)(p)"*
Cps (#e(—k+ PY(R)ez(P) ()% + (Keg (Pya(p) ™ (<K -+ )P (—k + p)?
2 ((K)eg ()P (—k4p)7 +2(p) (= + p)") = 2(p)eg ()7 (—k + p)*4 ) (K)?
(—k+ Plag (k4o (p)*<(p)* +2 (2 (<2074 + (p)4) (1) + (k) (2(0)*% = (1)) ) (K)?) )
- (ca s(0% (—k+P)eg ()78 + (Pleg(—k+p)"E) + €€ (= (K)o (—k+ppe (2(p)7E + (=k+p)74)
Koz ((=k+P)op(p) ™ + (Plap(—k+p)"4) ) +2Cp,s (= + pleg (k) (p)*
(P)eg ()78 (=k+ ) + (K)o (20074 (p)* = (p)"(=k+ p)*4) ) ) (=k+p)?) ) ), (4.100)

+

+

)
(

+ o+ o+ o+ o+ o+

+

+
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a3ap =

+

+ o+ 4+ o+

-2 2 _
(~smer e (€ (st P+ (Phs (k5 P+ ()

(4Cp 5 (K)as = 4Casy (K)ps + Crp( =K+ Plas) (1))

Y
32 Eé(gk)(;)z (D(é)f(li i :32)2 (7 (C%ﬁ (= (k) a5+ (=k+P)as) (p)v,é(k)z

C7 (2k(=k+p) (P)ps(—k+ Py = (P (=K + Plas — (Plas(—=k+P)py + (Plas(—k + )ps)

(= ()5 (Pag = 20Daiy (P)ps + (D)l =k + Plasy +2(P)aa(—k+ p)py + (Plas(—k+ P)og) (K)2) ) (—k+p)?
Coy (=4p-(—k+ ) (=k+ p)p.a(p) 7 ()% + 20005 (—k + P (K) 7 (p) 4 ()2

CpaCF (2(p)ey(—k + P)eaR) (0™ + (K) gy (p)es () (=K + p) ™) (k)

4=k + p)pa ()7 (02 (p)* = 2(0)p5(—k + p) 7 (02 (P)* = 2(0)p5 (ke (p) 7 (p) 4 (—k + p)?

40055 (p) ™ (k)2 (—k+ p)? + <k+p>w<p> *(k2(—k+p)?)

Coa (k)2 (R)se(—k+ Plag(p) " () +4(K)us (p) " (—k+ p)?

(—k+Pas ( 2(=k+ pleg(p)™(p)* +4(p)" (<k+p)?) ) )

ig (1 —(x)z 4C (K r O (Y2 ()2 — 2Cn - (K)s k V() ()2
62 (02 (k1 7)) (* B (E)as (=4 p)eg (k)74 (p)** (k)™ — 2Cp 5 (K)s,e(—k + plag ()7 (p)** (k)
( ™ (p)?

2Cp(K)pe(—k + Plag (P) () (K2 +4Ca 1 k.(—k + P) (K)as (P) ()
Co(K) s (Pez (=K -+ P74 (k4 p)* (p)? +4Cp o (—k+ Pas(p) ™ (K)2(p)*
Crp(R)se(—k+ Plag (p) () (—k+ p)? = 2Cp 0 (K)pe(—k + Plag (P (< + p) ¥ (—k + p)?
Crp(R)se(Paz (p) (= + ) (K + p)* = 2Cp 0 (K (p) 7 (P~ + )
2Cp 1 (K)as (—k+P) 7 ()2 (—k+ p)2 +C7 (4(K)ap(—k + Pz ((P)se(B) = (K)ae(p)F) (k)2

—k+p)? (—4k(=k+p) ((P)ps(—k+ Py = (D) gy (=K + Plag = (Pas(—k+ gy + (Plany (=K + P)ps)

Plae(—k+ Pl (—k+ Pz () + (K)o K+ Pag (K + Pps(p) = 2(K)p.e(Plas(—k+ Py (p)F

2()ye(—k+ Plap(—k+ Pog(p)F = (R)pr(—k+ Plae(—k+ Plag(p)% + (K pe(Plag(—k+ plan(—k -+ p)*
(Ke(Plag(—k+ P)ps(—k+ )P +2(K)5., (P)as(P)? + (R)ps(—k + Plas(p)> +3(K) gy (—k + Plas(p)?

2(K)ay (—k+ P)pa(p)? +3(K) gy (Pas(—k+p)?) ) + Casy (8K.(—k+ ) (K)p.(p) ™ (k)2

2(p)pa(—k+ P)ez (0% ()7 (0 +2(K)ps (—k + p)eg () F (p) (0% +2(0)p5(—k + peg (k) () ()2

205 (P ()™ (k4 p)E (K + 4~k + psa(p)™ ((02)” = k. (—k + p) (K)p(p) 7 (p)?

(—k+ Pk + Peg (K7 (p) 4 (p)? = 4(=k + p)pa (k) (0)2(p)? = 4(—k + p)ps (p) " (K)*(p)?

4(0)5(—k + p) P (K12 (p)? + (—k+ Pps(—k + Plag (k)4 (p) ¥ (—k+ p)?

Co,6CH (K=K + Poa(p) ™ (P (=K + )2 4+ 2(K)se (—k + p)pz () (p)F (—k + p)?
2(0)5,e(—k+ ) p(p) 7 (P) (—k + p) = Co 5CH (K)ye(P)z.o(p)™ (—k+ p) 7 (= + p) + 4(p) s ()7 (p)2(—k+ )
2(=k+ p)psl) 7 (P (—k+ p)* = 4(0) s (p) ™ (p)2(~k + p)?

20)gs(—k + P (P2 -+ P2+ (Rps(p) ™ (k4 p)2) + Cpact C((k) o(P)o(—k+ Pex(p) ()" (< + p)*
(k)e,n(l’)w(—(—k+l’)§9((—k+7’) <(p)* (P +2(p) ( k+p2))

2(p)ga(—k+p)*(—k+p)?) +2 k+Pe6((P o (074 P> (k)2

Ken (=) (P10 + () () (~k+1)2))))) ). (.101)

)
(

)
)
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4.5. PROVA EXPLICITA DAS IDENTIDADES DE ST: TRANSVERSADREDBA POLARIZACAO DO VACUO. 73

a = (1’82<1+a>2 (2k.p —3(p)> — 2(—k + p)?)
4= 16(k)2(—k + p)2
S (kP ()P40 + (P)P4(p)7) (1 = p—+ ) (7)°
32 (k22 ((—k+p2? \ 7 ‘
+ 2=k +p)? (kp(—k+p)? = 2k(~k+p) (9P + (~k+p)%)))
ig?(1—a)(1+a) _ 2 2 2_(_ 2
(B ((kt i BPkE P (04 () = ()

+ (ke p)? (2Kt p) () (k4 p)?) + (0% (=3kp+2(—k+p)?)))). (4.102)

a . . A . . - .
Pode-se observar que 1"541)4 possui termos com divergéncias lineares e logaritmicas,

além de varios termos finitos. As divergéncias lineares sdo as mais perigosas pois sdo
acompanhadas de termos proporcionais a A*A,, induzindo massa para o supercampo
de calibre e violando a simetria BRST. Para isolar as divergéncias lineares, vamos ex-

pandir os coeficientes acima em torno do momento externo p,p = 0, tal que

a1(p = 0) = azp(p =0) =0, (4.103)

ig?(1+ ) (k)up
4((k)2)?
igz(l - 0‘)(1 + ‘X) (Clx,'yC,B,(S (k)e,é(k)%e (k)é,C + 3(k)1x,,3 (k)z)

8 ((k)2)3
i02(1 — )2
% [3(k)a,~,(k)ﬁ’5(k)7,5

Cary (CO€(K) e (K)o (k)" — 4Cp,5(k)e (k)7 (K)F)
2 (Cmc‘s’e(k)a,a (K)e,g (k)78 = 7(k)ap(k)* — (k)ﬁ,,x(k)z)} (4.104)

a2u¢ﬁ(r):0) = -

as(p =0) = (— zzf;;xz) : (4.105)

Podemos ver facilmente que o tinico termo linearmente divergente estd em a4. Mos-
traremos posteriormente que essa divergéncia é cancelada quando somamos todas as
contribui¢des devido aos demais diagramas. Entretanto, a prova da identidade de ST
para os demais termos num calibre arbitrdrio é deveras volumosa. Escolhendo o cali-
bre de Feynman (« = 1) as fungdes 41234 se reduzem a

am(a=1)=0, (4.106)

ayap( = 1) = —igz (4(K)ap +3(P)asp)
R W G C L

(4.107)
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igz (CWS (2(k)/3,"r(P)tx,5 + (k)ﬂw(P)ﬁ,é) + (_5C/3,“r(k)rx,5 + 4C1x,7(k)/3,5) (P)WS)

azp(a = 1) =

B2kt p)? '
i ) o (4.108)
o ig ig°k.p 3ig”(p
e =1) = =5 Y 2R (k) ARk P (4.109)

o que acarreta numa grande simplificagdo. Dessa forma, iremos nos limitar a provar a

transversalidade da polariza¢do do vacuo no calibre de Feynman o = 1.

A segunda contribui¢do para a agdo efetiva I'y 4 é devido ao diagrama (b) da Fig.

4.1, cuja expressdo analitica é dada por
Ty == (v +vid) ) = oy + 187 (4.110)

Com ajuda das Egs. (4.21) e (4.22), o resultado acima assume a seguinte forma

) _ & [ a7 @k . .
i) = £ /d GE Gy (27363 (ky + ko + ks + Ky ) sin [k1 A (ks + ka)] sin(ky A ks)
<: AP (ky,0)Dg A (ky, 0) A7 (k3, 6) Dy Ay (ks 6) > (4.111)
e
T2 1363 (k1 + ko + ks -+ kq) sin [ka A (ks + ks )] sin(ks A kg)
<: DﬁD“Aﬁ(kl,e)A (ka, 0) A (k3, 0) Ao (ke 0) :> . (4.112)

Seguindo o procedimento descrito anteriormente, obtemos

a3 a3k
rfz)q = /dZG( l; 3 2 sin (k/\p) [blaﬁDz “(— p,G)Aﬁ(p,Q)
14

27T
+ by,sD"DPA*(—p,0)Au(p,0)
,0)A

+ bapA(—p,0)AP(p,0) + by A" (~p,0) Au(p,0)] (4.113)
e ig”(1— a)(K)op
g =y (4.114)
. <_ ig? (i (—(koczgl;)/s,v> , @115)
baap = ig”(1 — &) Cay (k) s (p)7° (4.116)
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by = (—igzz((lT)_z"‘)) . (4.117)

Note que os termos envolvendo os coeficientes b1, by, € bzap possuem apenas

divergéncias logaritmicas. O tinico termo linearmente divergente estd contido em b.
Além disso, a contribuicdo desse diagrama se anula completamente no calibre de Feyn-
manx = 1,isto é, b; = by = by = by = 0.

Por ultimo, vamos determinar a contribuigdo relativa ao grafico (c) na Fig. 4.1, de-
vido aos supercampos fantasmas de Faddev-Popov. A expressdo analitica para esse

diagrama é dada por
i/ i

Usando a Eq. (4.25), podemos reescrever (4.118) no espago dos momentos

d3k 4,
) = ig* / 420 dZQqH ‘7) (27)38% (ky + ko + k3) (271)38% (g1 + g2 + q3)

sin(ky A k3) sm(qz A q3)
X <: D¢/ (ky, 0 )c(ka, B¢) Aa (k3, 6) DEC (91, 00)c(q2, 0,) Au (3, 6,) > (4.119)

Utilizando o propagador dado por (4.15), o resultado para esse diagrama sera

d3k
I = /d2 27)3 5 sin®(k A p) [Clzx/sA“(—Pﬁ)Aﬁ(P/@) +C2A“(_P'9)A“(p’9)}
(4.120)
onde
18 (Can(k+P)ps(P)T = Ca(p)as(—k + p)7) (4.121)
1p 42—k + p)? ’ |

02

_ &
=gl (4.122)

Observe que as contribui¢gdes acima ndo dependem do calibre, j& que as linhas in-
ternas sdo propagadores do supercampo fantasma. O termo envolvendo c1,5 possui
divergéncia logaritmica, enquanto que o termo correspondente a c; é linearmente di-
vergente.

Agora estamos em condi¢do de mostrar que a possivel violagdo da simetria BRST
por uma termo de massa para o supercampo de calibre, induzido por corre¢oes radia-
tivas, é cancelada na aproximacgdo de um lago.

Somando apenas as contribuic¢oes linearmente divergentes nas Eqs. (4.105), (4.117)

e (4.122), podemos ver que estes fatores cancelam-se mutuamente:

ay -+ b4 -+ C) = — — > + = 0, (4123)
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garantindo que nenhuma renormalizagdo para a massa seja necesséria. Note que esse
resultado é independente do calibre adotado e estd de acordo com a Ref. [59]. Além
disso, naquele trabalho foi relatado que as divergéncias logaritmicas sdo também au-
sentes e, por conseguinte, a funcdo de dois pontos para o supercampo A, é finita na
aproximagdo de um lago. Examinaremos a seguir se a estrutura dessas corregdes finitas

realmente garantem a transversalidade da polarizacao do vécuo.

Adicionando (4.98), (4.113) e (4.120), no calibre « = 1, obtemos

Tan(a /dz 5 sin (k/\p)
e s
P)as + (K)ay (P)ps) + (—5Cs (K)o +4Cayy (k)gs) (p)7)

g (C
+< 802 (—k + p)?

18 (Copy(=k+p)ps(p)" — Cpr(P)as(—k +p)7?)
4(k)2(—k + p)?

O
" (Zg‘l<1(<§§ki?—k fﬁ;ﬁ) Aﬂ("”")“‘“(”"’)] ~ (4.124)

Com o auxilio da identidade pZC,X/; = pmgp‘sﬁ, podemos simplificar o resultado acima,

+ A% (~p,0)AP(p,6)

tal que

3 3
Tyala =1) = /d2 d 2R sin2(k A p)

X (()”‘13_ ()pc,B) 2 g,
( 4(k)2(k + p)2 )D A%(p,0)AP(—p,0)
(( Ju6 (k ) +3(p)g, (k)‘l) )
" O )A(n@Am—nm
i¢? (2k.p + 5(p)?
+ [ - g4gk)2lzk++ r();;z) )) Atx(p,G)Aa(—p,Q)] , (4.125)

onde fizemos p — —p. Para isolar a parte correspondente ao termo longitudinal em
(4.125), vamos separar as integrais de momento interno em k e reescrevé-las como se-
gue
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k)a,p
Ligp = — zg / sm (kA p) (4(4()k)7-(k —31—(]9; /3), (4.126)
o2 3 (P)as (k)5 +3(p)ps (k)%
Ioup = %/ (;nkp sinz(k/\p)< CLEDL ) (4.127)
_ g (2k.p +5(p)?)
/ _sin?(k A p) T (4.128)

Empregando a parametrizagao de Feynman

1 1
ab /o dx[ax—l—b(l—x)]2

e efetuando a mudanga de momento k — I + xp, a integral I1,5 assume a forma

zg (41“5 — (4x + 3)P1x[3)
hep = / / 3sin(I A p) 4(K)2(k + p)?
ig* d3l sin?(I A p)
— / dx(4x + 3) p,xﬁ/ 512 12— )2 (4.129)

sendo que o termo envolvendo [, € nula por paridade.

As demais integrais seguem de forma andloga:
ig? ! 2 2
Ly = —/ dx2xp~CapG(p~, x), (4.130)
R / dx(2x — 5)p°G (12, x), (4.131)

onde definimos a func¢ao

2 a3l sin?(1 A p)
G20 = [ P a1 = S (4132)

Substituindo as Egs. (4.129), (4.130) e (4.131) em (4.125), podemos reescrever a acao
efetiva para a funcdo de dois pontos de A, na forma

)
_ [ _1 2, &°p
Faa = < 4)/d9(27r3

/01 dxG(p?, x)A%(p,0) [(2x +4)DgDyD* + (2x — 1)D,XD13D2] AP(—p,0),
(4.133)

onde empregamos as identidades {D,, Dﬁ} = 2Pap, D* = —p? e [D,, D/;] = —2C,p.

Conforme enunciado anteriormente, as divergéncias logaritmicas foram cancela-
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das, restando apenas corregdes finitas envolvendo a funcdo G(p?, x). Essa expressdo

pode ser comparada com a Eq. (4.91). Aplicando o operador sobre

(52
SAH (q,w)o AP (p,0)
(4.133), identificamos a corregdo da parte longitudinal do propagador de calibre como

sendo proporcional a integral

1
Longitudinal = /dx(Zx—l)G(pz,x)
0

A (0% d°l sin?(1 A p)
_ /Od 2 1)/(27T)3 T (4.134)

Fazendo a seguinte mudanca de varidvel; x — y + %, podemos escrever a Eq. (4.134)

na forma

sin?(1 A p)
2
12+ yz)vz}
172 2 .2
= / dy2yG(p~,y°)

—-1/2
= 0. (4.135)

Lo d3l
Longitudinal = / dy2y /

Concluimos que a correcdo de um lago para a parte longitudinal do propagador
do supercampo de calibre é nula, corroborando para a preservacdo da simetria BRST
no setor de calibre puro do modelo. Embora esse resultado tenha sido calculado em
um calibre particular (« = 1), acreditamos que a parte longitudinal n&o sofre corre¢des
quanticas. Em um calibre arbitrario, esperamos apenas que o coeficiente da parte trans-
versal possa depender de a. A seguir, voltaremos nossa atenc¢do para as contribuicoes

devido ao acoplamento com a matéria.

Setor de matéria: Funcao de 2-pontos do campo A,

A primeira contribuicdo para a agdo efetiva é representada na Fig. 4.3 pelo dia-

grama (a). Sua expressdo analitica é construida por meio dos vértices (4.26) e (4.27), tal

que
a i/ @)
j
T i < Ve Vigon + 2Viay Voo + Vaan Vars > (4.136)
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e produz como resultado final,

a . M 2
ey = i 00 | (Y pus B ) 4%, 0148 (-, 0)

b (G gk plap) D2A°(p,0)4° (—p,0)]

dPp &k 1
-8 /dz p 3 (27)3 2(k2 + M2) A%(p,0)Aa(—p,0), (4.137)
onde
a3k
f(p, M) = /( )3 (k2 4+ M2) [(k + p)2 + M?]

i
= 47_[\/>arctan< ) (4.138)

e seu comportamento assintético é dado por

lim f(p, M)
p—0

lim f(p,M) = . (4.139)

e 52

Podemos observar no resultado acima a auséncia dos fatores trigonométricos envol-
vendo o parametro ndo comutativo ®, sendo andlogo a versdo supersimétrica comu-
tativa. Tal fato é consequéncia direta do supercampo de matéria ® pertencer a repre-
sentagdo fundamental o grupo de calibre 2/(1),. Além disso, destacamos a presenga

de um termo de massa linearmente divergente, o qual em principio violaria a simetria
BRST.

A segunda contribui¢do para a agdo efetiva é proveniente do diagrama (b) na Fig.
4.3, e pode ser escrita como

() — —% (:1Vgop2 1), (4.140)

com Vg2 42 dado por (4.28). Apés a D-élgebra obtemos

By Pk 1
2 P AL -
—ig /d S P L ) A%(p,0) Au(—p,0), (4.141)

o qual somando ao termo de massa em (4.137), cancelam-se mutuamente. Ap0s al-

gumas simplificacdes algébricas, podemos escrever o resultado para I'®) 4 T'%) na se-
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guinte forma

: a3 M 1
F%ﬁt:182/d29(2nl;3f(P,M)A“(PI9) 7 DeDa+ 5DgDaD?| AF(—p,6). (4.142)

Assim, as corregdes radiativas para o setor de matéria sdo finitas e induzem um termo
tipo Chern-Simons na agdo efetiva. Contudo, a transversalidade do propagador de
calibre continua preservada.

4.6 Identidade de ST: Vértice triplo de calibre

Para obter a identidade de ST que envolve a fungdo de vértice triplo de calibre, isto
é, a parte propria de (0|T (AyAgAs)|0), vamos primeiramente diferenciar a Eq. (4.83)
com respeito aos campos cléssicos c(k,A), A*(g,w) e AY(l, o) e tomar ao final todos os

campos iguais a zero. Dessa forma, obtemos os seguintes resultados

53 (cﬁ“ oT oT )
bc(k, \)oAH (q,w)0AY (1, 0) 5AP(p,0) SK*(—p,0)
up 5T ' 5T
SAF(q,w)8AY(1,0)6AP(p,0) | dc(k, A)6K*(—p,0)
«p 5T ‘ 5T
SAV(1,0)5AP(p,0) | dc(k, A)SA* (g, w)0K*(—p,0)
ap 5T ' 5T
SAM(q,w)6AP(p,0)| dc(k,A)0AY(I,0)0K*(—p,0)|

(4.143)

& oT oT
dc(k, A)oAH (q,w)oAY(1,0) (5c(p,9) 5)\(—;9,9)) ‘ =0 (4.144)

i 1DZDﬁA( 9)75r =
5e(k, NSAF (g, w)3AY (1, o) \ a PP s (=p0) )|
5T
21 2(n 33 _
D°D,é67(60 — o) (2m)°8° (p + 1) 5c(k, AVS AR (q,@)3¢ (—p, 0)
5T
oc(k, \)6AY (1,0)oc' (—p,0)|

1
o
1
«

D*D,0%(0 — w)(27)%8% (p + q) (4.145)

onde, por conveniéncia, introduzimos a notagdo simplificada O| para indicar que o
objeto O deve ser determinado tomando-se todos os campos iguais a zero ao final dos
calculos.
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~ P 53T 53T . . . .
As fungoes de vértices 5 75r € 5-5a57 podem ser relacionadas por meio da identi-

dade (4.84), mediante a aplicagdo do operador WM' Assim, temos a identidade

adicional:

RT 1 " 53T
5C(k,/\)5AV (q/w)5cl(—p, 9) ’ = _ED <5C(k,/\)5AV (q/w)éK“(—P,Q)) ’ . (4.146)

Substituindo as relagdes (4.143), (4.144) e (4.145) em (4.83) e levando em conta a Eq.
(4.146), podemos escrever a identidade envolvendo o vértice triplo de calibre na forma:

/ 20 dp { o 5°r ‘ 5T ‘Jr
: (27)3 SAH(q,w)5AV(1,0)8AP(p,0) | dc(k, A)6K*(—p,0)
T 1 5°r

_C*p _ 2 pap2 200 353

{ ¢ 5AV(Z,U)5AI3(p,6)‘ 240" D" D00 = 0)(271)° <p+l)} (SC(k,A)(SAF‘(q,w)(SK"‘(—p,G)}+

o 52r 1 a2 2 3¢3 53r _
 a a0~ )| s | =

(4.147)

onde integramos por partes nas duas tltimas linhas acima.

As identidades funcionais obtidas em (4.146) e (4.147) representam vinculos ndo

triviais, decorrentes da simetria BRST, envolvendo as diferentes funcdes de vértices

5r Pr 8T 8r e 5r
SASASA’ 5c0K’ SASA’ 3c6ASK © 5coASC

numero de diferentes contratermos necessarios para controlar o comportamento ultra-

. Como veremos a seguir, tais vinculos restringem o

violeta do modelo em questdo. Mas antes, vamos deduzir uma tltima identidade de

interesse, envolvendo os setores de matéria e calibre.

4,7 Identidade de ST: Vértice matéria-calibre

A identidade de ST para o vértice espinorial matéria-calibre, a parte propria de
(0|T (PDPA*)|0), pode ser derivada por meio da Eq. (4.58) com todos os campos iguais
a zero ap6s diferenciarmos com respeito a c(k,A), ®(q,w) e ®(I,0). As derivadas

funcionais resultam em

63 ( cpe_ T 6T )) B
5c(k, 1)6® (g, w)6®(1,0) 5AP(p,0) 6K*(—p,0) )|
5T 5T
ap
¢ (5<T>(q,w)5<I>(l,(7)5A/3(p,9)’(5c(k,)\)5K“(—p,9)' / (4.148)
53 oT oT 0 4149
oc(k, A)o®(q,w)o®(1, o) (50(;7,9) 5/\(—p,9))‘ - (#.149)
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53
5c(k,A)o®(q, w)o6d(l, 0

)
et RN

53 oT oT B

dc(k, A)o®@ (g, w)o®(l, o) <5<I>(p,9) 67 (—M))' B
52T »Rr

6®(q,w)o®(p, ) ' 5c<k,A>5<I><z,a>5é<—p,9>' ’

(4.151)

6 (_ 6T 6T ) ‘ B
5c(k, \)o®(q,w)o6®(l,0) \ 6L(p,0) 6®(—p,0) B
B 5T ’ 6T '
5c(k, A)o®(q,w)él(p,0) | 6®(1,0)6P(—p,0)

(4.152)

Assim, com as Eqs. (4.148), (4.149), (4.150), (4.151) e (4.152) chegaremos a seguinte
identidade de ST envolvendo a funcao de vértice matéria-calibre:

3 3 2
(271)3 oD(q,w)odD(1,0)5AP(p,0) | dc(k, A)6K*(—p,0)
N 5T 5T
3®(q,w)éd(p,0) | dc(k,A)6D(1,0)5C (—p,0)
5T

6T _ 0
5<I>(l,0)5<f>(—;9,9)‘} -
(4.153)

dc(k, 1)oP (g, w)dl(p,0)

4.8 Calculos explicitos a nivel de arvore

Acdo renormalizada

As identidades de ST derivadas previamente sdo validas somente de modo formal,
desde que as corre¢des radiativas contém divergéncias, sejam elas ultravioletas usu-
ais ou originadas do mecanismo de mistura UV/IR. Para eliminar essas divergéncias,
contratermos devem ser introduzidos por reparametrizacdo da Lagrangiana original
que representa 0 modelo em questdo. No nosso caso, vamos redefinir os campos Ay,

® (ou®), ¢ (ou '), os pardmetros g, M, « e também as fontes associadas as transfor-
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macdes de BRST nao-lineares; K%, A, { e {, na forma:
A* = 71248, @ =220, c=2)",
g = Zggr, M = ZMMr, K = Zlar, (4.154)
em conjunto com
K* = ZgK%, A =Z)A,,
=20, $=2Zi0r, (4.155)

‘_ 7
r

tal que o subscrito “r” indica quantidades renormalizadas.

A acdo (4.67) escrita em termos dos campos, parametros e fontes renormalizadas

passa a ser representada por:

e Termos bilineares

1 Z 1
Se = 5 / Aoz A, {—ZlD”DﬁD“DU—ﬂDﬁDZD“} A,  (4.156)

Ser = / P28, (D% + Z27M,) @, (4.157)

Sa = 7 / P2c D%, (4.158)

onde devemos observar que a constante de renormalizacdo para o parametro « foi

escolhida de modo a manter o termo de fixa¢do de calibre inalterado pelas redefini¢des

acima. A razdo para isso foi mostrada na se¢do 4.5, quando provamos que tal termo

ndo sofre corre¢des radiativas.

e Termos de interacdo dos setores de calibre e calibre/matéria

Vs = ZZy? Vs, Vs = Z3Z3 Vs, Vas = Z3ZY Vs, Ve = ZgZ3 Ve,

N—— —— N—_—— N——
=74 —Zs =7 =7
(4.159)
Ve = ZgZV2Z3V, o, VD = 2,207 Vo s, Vo = 222021 Vg 2.
S———r N——— N——
:Zl :ZlM :ZZM
(4.160)
e Termos de interacdo com as fontes de BRST
Vi — Zx 22 Vi = 74 / P2 [~K'Vae,], 4.161)
———

=Zg
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Vr = ZpZo 2V 227V, Vo = ZiZ 732702 Ve, Vi = ZaZgZ3Vy,  (4162)
~—_——— N— ———— N——

=Zg =Zy =Z1

onde assumimos que V, = D, — i (ZgZ}m) e {Are, }

Assim como no caso usual, as constantes de renormalizacdo Z;, Z,, etc, sdo deter-
minadas de modo a cancelar as divergéncias que aparecem na agdo efetiva quando
levamos em conta as corre¢des devido aos diagramas de Feynman. Lembramos ainda
que a parte finita dos contratermos necessita de convenientes condi¢des de normaliza-
¢do para serem fixados de modo univoco.

Uma consequéncia muito importante da simetria BRST diz respeito a renormaliza-
¢do da constante de acoplamento g. Notemos que a constante de renormalizagdo Z,
aparece em todos os sete termos das Eqs. (4.159) e (4.160), de modo que se o valor de
Z¢ for o mesmo em todos eles, entdo as outras constantes de renormalizagdo nédo sao

independentes entre si e satisfazem o seguinte vinculo,

Zs _Zs_Zo _Zr _Z1_Zu_ Zwm

Z. 712 — — 26 _ 7 _ 2 — . 4.163
871 Zl Z4 Z5 Zé Z3 ZZ ZlM ( )

Relagdes como as determinadas em (4.163) sdo muito importantes na prova da re-
normalizacdo das teorias de calibre em todas as ordens de perturbacdo. Uma vez que
estabelecemos sua validade, podemos aplicar um dado esquema de subtra¢do, como
por exemplo o método BPHZ! e verificar por inducdo a renormalizabilidade ordem a
ordem [64].

A seguir, nos limitaremos a mostrar em nivel de drvore que as relagdes contidas em
(4.163), assim como aquelas envolvendo as constantes de renormalizagdo em (4.161) e
(4.162), podem ser extraidas das identidades de ST dadas em (4.89), (4.146), (4.147) e
(4.153).

Auto-energia dos campos fantasmas

A identidade que envolve a fun¢do de dois pontos do campo fantasma é dada pela
Eq. (4.89). A nivel de arvore, os termos da acdo efetiva que contribuem sdo dados por

(escritos no espaco dos momentos):

!Originalmente desenvolvido por Bogoliubov e Parasiuk e complementado posteriormente por
Hepp e Zimmermann [63].
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2 d3k'
Vi = —Zs / 20T (271)13 (27363 (ky + ko) KEDyca, (4.164)
i=1
74 20/ 2 d3ki 3¢3 ' 2
S =7 / 20T a (27)383 (k1 + ko )¢}, D¢y, (4.165)
i=1

‘“ I!

tal que por simplicidade de notagdo, omitiremos o subscrito “7” nas quantidades renor-

malizados daqui por diante.

As derivadas funcionais de interesse resultam em:

82V, B s ,

5c(k, 1)oK* (—p, 0) ‘ = Zg(27)°6°(—p + k)Dad™(0 — A), (4.166)
2

e ‘ = Z3(21)38%(—p + k)D?6%(0 — ). (4.167)

oc(k,A)oc’(—p,0)

Substituindo (4.166) e (4.167) em (4.89), temos
[Zs — Z3] D*6*(0 — A)(27m)°8*(—p + k) =0, (4.168)

e segue entao que
Zg = Z3. (4.169)

Funcdo de vértice fantasma-calibre

Vamos considerar agora a identidade representada pela Eq. (4.146). Usando (4.25)

e a expressdo para o vértice envolvendo o produto da fonte K* com os campos Ay, c,

dada por
dk; 3
Vkac = (ZSZgzl/z 2g /dzel 27'( 353 Z Kl ,X2C3811’1(k2/\k3)
i=1 (27T) j=1
(4.170)
podemos facilmente verificar que
PVac = —71(3) 2m)38®(p — g — k) sin(k A q)
sc(k, \)oAF(q,wYoc (—p,0)| 1\ P 9

/ 20'D 020 — 0)82(0) — w) (0 — A),
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52VKAC ’

1/2 330, 4 .
oc(k, \)SAF (g, w )oK (—p, 0) Z§ZoZy'* (28) Can(270)°0%(p — q — k) sin(k A q)

x / 20520 — 0)82(6' — )52 (6 — A).
Vemos dai que
|~71+ 2s2,71%] (3) (27)°8*(p — g — K) sin(k A q)
x / 20'D, 020 — 0)82(0) — w)d2(O' —A) = 0,

implicando em

2,77/ =21 =21 (4.171)

Funcao de vértice triplo de calibre

Antes de iniciar nossa discussdo sobre a implicacdo da identidade (4.147) na rela-
¢do entre as constantes de renormalizacdo, vamos adotar as seguintes defini¢des para

simplificar nosso problema:

_ 20 PP ap &T 5T
(a) = /d 9(27-[)3 C (5AV(q,aJ)(5AV(l,(7)5Aﬁ(p,9)‘ 5c(k, )oK (—p,0) |’ (4.172)
2y dp ap 8T 1 a2 52 353
o1 4173
bc(k, \)6A¥(q,w)6K*(—p,0) |’ (4.173)

2
(c) = /dze) (577];3 [C"‘ AN, j)gAﬁ(p,Q) ‘ + %D"‘DZDH&?(@ —w)(2m)38% (p + q)]
53T
dc(k,A)SAY(l,0)0K*(—p,0) ' '

X

(4.174)

Usando essas expressdes, a Eq. (4.147) assume a forma (a) + (b) + (¢) = 0. As-
sim, vamos determinar primeiramente os termos (b) e (¢) na aproximacado de arvore.

Considerando as Egs. (4.156) e (4.170), as derivadas de interesse correspondem a

%S 2 7 1
_ClXﬁ A _1D2D Dlx _DIXD.'ZD (32 9 o ) 3(53 l )
(5AV(Z,U)(5A5(p,0)‘ { PP o v| 0°(6 —0)(27)70°(p +1)
" “ox — [-ZD?D, D" + - D*D?D,, | 82(0 — w) (27)°8(p + 4)
SAH(q,w)6AP(p,0) 2 " 2u . ’

(4.175)
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e ainda
B3Vk - 5 . 353 2 2
52 (K, MO AR (4, ) 3K (=, 8) ‘ = (2Z18) Capsin(k A q)(27)°8°(p — q — k)67 (6 — w)d6”(6 — A),

(2Z18) Casin(k A1) (2r)38% (p — 1 — k)6*(0 — 0)82(6 — A),

PV
3c(k, \Yo AV (I, 0)oK* (—p, 8)
(4.176)

na qual empregamos o resultado ZngZ%/ 2=7.

Aplicando os resultados acima em (b) e (c), nés integramos no momento p e entdo obtemos

(b)+(c) = (=Z1Z18) 2n)*8 (k+q+1)sin(k A1)
X / d’0 [D*D,D,,6*(0 — 0)6*(0 — w) + D*D,Dy6*(0 — w)3*(6 — 0)] 6%(8 — A).
(4.177)

Agora, vamos voltar nossa aten¢do para o termo (a). Empregando (4.20), podemos

mostrar que

lX‘B 53VA3
SAM(q,w)8AY(1,0)5AF(p,0)

= <%) (271)383 (p+-1+q)sin(p A

x {—Dy [DUD%Z(G — )2 (0 — w)] ~D, [DP,D“(SZ(O — w)6* (0 - 0)]

—D,D" [Dyéz(e — )20 — w)} — D,D" [Dvéz((? —w)8 (6 - 0)}

+D%?(0 — ) DDy (6 — w) + D*6%(6 — w) D, D,6%(6 — a)} .
(4.178)

De acordo com essa expressdo, juntamente com (4.166), segue entdo que

(a) = (Zf‘*g ) [ &6 (fgg (27)56% (p + 1+ )% (—p +K) sin(p A1)
X {—Dy [DVD”‘éz(G — )32 (0 — w)] ~D, [DHD“éz(G — w)o*(0 — (7)]
—D,D" [Dyé"z(e — )86 — w)} — D,D* [vasz(e — W) (0 — 0)}

+D%%(0 — 0) Dy D,6%(6 — w) + D*5*(6 — w) D, D, 6%(6 — a)} Dad%(6 — A).
(4.179)

Vamos agora integrar por partes o resultado anterior para liberar a 6(0 — A) e com
o auxilio das identidades D,D,D* = 0 e D,D,D* = D*D,D,, obtemos o seguinte
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resultado

(a) = (@) P8 (k+1+q)sin(k 1) [ 6
x {ZDZDvDyéz(G — 0)8%(6 — w) + 2D*Du D5 (0 — w)82(6 — o)
—D,yD"6*(0 — 0) Dy D% (0 — w) — D,D*6*(8 — w) Dy Dy6% (0 — o)
—2D2%5%(0 — 0) DDy 0%(6 — w) — 2D*62(6 — w) Dy D, 8%(6 — a)} 52(0 — M).
(4.180)

Notemos que os dois primeiros termos em (4.180) ja estio numa forma conveniente
para serem relacionados com aqueles obtidos em Eq. (4.177). Nos resta agora, mostrar
que os demais termos cancelam-se mutuamente. Para ver como isso pode ser feito,
vamos considerar o quarto termo em (4.180), representado por (a4) = —D,D*5?(6 —
w)DyD,8%(0 — o). Empregando a relacdo de comutacao [Dy, DV] = 2Cy, D? em adicido
com C”‘ﬁ = —(5%, podemos reescrever (a4) como segue:
(as) = C*¥DD,6*(0 — 0)DyDx*(0 — w)
_ [DVD“(SZ(O — 0)DuDy8%(0 — w) +2D%5%(0 — 0)DyD,6%(6 — w)

+2D?5%(0 — w)DyDy8*(0 — o) + 4C,, D*6*(0 — 0)D?6*(0 — w) | ,
e aplicando mais uma vez a relagéo D, D, = DD, + ZCWDZ, finalmente temos que

(as) = |DyD“6*(0 — 0)DyDyu6*(0 — w) + 2D*6*(0 — 0) D Dy6* (0 — w)
+2D%52(0 — w)Dy D, 8%(6 — (7)] . (4.181)

De (4.180) e (4.181), é facil ver que a forma final de (a) é dada por

(4) = (ZsZ4g) (271)°8(k + 1+ q)sin(k A1) / P2652(6 — )
x [DZDVDWQ(G — 0)8%(0 — w) + D2D, D, 5% (60 — w)6*(6 — 0)] ,
(4.182)

e, portanto, (a) + (b) + (¢) = 0 implica em

(ZsZy — Z124) (27)23 (k + 1 + q)gsin(k A1) / P26052(6 — 1)

x [DZDVDWQ(G — 0)8%(6 — w) + D2D, D, 8%(6 — w)5*(6 — 0)] = 0. (4.183)
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Dai segue o resultado final
2 _
Z1  Zs

mostrando que a identidade (4.147) reduz o nimero de constantes de renormalizacdo

, (4.184)

independentes, vinculadas pela renormalizagdo de g, como tinhamos mencionado an-

teriormente.

Funcdo de vértice matéria-calibre

Para finalizar, vamos determinar agora, quais rela¢des entre as constantes de renor-
malizagdo sdo obtidas por meio da identidade (4.153). Procedendo de maneira andloga

ao caso anterior, consideremos a notacao

/ 26 d p _ 5T ’ 5T
5®(q,w)6®(1,0)5AP(p,0) | dc(k, A)oK*(—p,0)|’
5T 5T
2
/ a6 2n 3 50(q, w )5@(;},9)‘ Scle A)od(, ol (—p, )" 189
5°r 5T
—— 2

(em) / Forg 27r 3 5c(k, A\)od (g, w )5§(p,9)‘ 50,050 (—pay|. (+187)

tal que (apr) + (bm) + (cm) = O representa a Eq. (4.153).

Na aproximacao de arvore, o termo (ayy) recebe contribui¢do do vértice

(12) 18 2 Ak 33 > o—ikank
VAT le( )/d@’ [ G 5 ; ika/\ks

X [D*®1 Az ®3 — P1ASD, D3], (4.188)
que resulta em

317(12)
ap 0 VCDZA

0D(q,w)od(1, )0 AP (p,0)

— Zun (%) @0+ 14.q) [ PIDR - )60 - 0

—ePMDRS2(9 — )62 (6 — w)] , (4.189)
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e também da Eq. (4.166). Integrando no momento p, entdo

(am) = ZimZs (%) (27)38% (k + 1 4 gq)e'®"! / d*0

x [D“(SZ(O — W)Dyd(0 — A)32(6 — 0) — D*6(8 — ) Dyd2(0 — A)62(6 — w)] .

(4.190)
Por outro lado, os termos (by) e (cp1) recebem contribuicoes de
Ve = (278 (p +q) | 22D + ZoZuM)| 8*(0 — w) (4.191)
59 (q,w)0®(p, 0) M ’ '
PV = (2 (—p +1) |ZD* + ZoZuM)| 82(0 — o) (4.192)
(1, 0)0D(—p,0) M / '

&V;
Sc(k, A)o®(1,0)6C (—p,0)

= Zo(ig) 2m)383(—p +1+k)e PN&2(0 — 0)52(0 — A),
(4.193)
83V,

Sk NS0, )50 — 20 (8) QNS (p g+ )en IS0 — W) - A),

(4.194)

que resultam em

)06%(p + q)0* (—p + 1 + k)e PN

i [ P,

X [Zzngzé’z(O — W) + ZoZoZyM& (0 — w)] 52(0 — 0)5%(6 — M),
(4.195)

1062 (—p +1)6*(p + g + k)e PN

(ecm) = —(ig) /dz

[ZzzloDzé’z(Q - a) + ZoZ1oZMO*(6 — 0)] 52(0 — w)32(6 — A).
(4.196)

X

Notemos primeiramente que os termos contendo a massa renormalizada M podem

ser agrupados de forma independente dos demais e, portanto, teremos

(Z9 — Z19] ZoZag (igM) (271)30% (k41 + g)e' 7! / d*05%(0 — 0)5%(8 — w)d*(0 — A) =0,
(4.197)
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e, assim,
Zg = Z19. (4.198)

Considerando os demais termos em (bys) + (cp), uma dltima integragdo por partes
nos permite escrever

(b)) + (cp) = —Z2Zo (%) (2)383 (k + 1 + q)e™ / %0

X [D“(sz(e — W)De(0 — M50 — o) — D*6%(8 — ) Dyd2(0 — A)5%(6 — w)] ,

(4.199)
de modo que (apr) + (byr) + (cm) = 0 implica em

Ziv 2oy

=7 (4.200)

Para um estudo mais completo das identidades de ST devemos verificar as relagdes
anteriores para as fungdes de vértices superficialmente divergentes, que envolve o cél-
culo dos diagramas com trés e quatro pernas externas. Mesmo na aproximagao de um

laco, essa tarefa é bem mais trabalhosa e devera ser concluida posteriormente.
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Capitulo 5

A teoria de Yang-Mills-Chern-Simons
supersimétrica em D = 2 4 1 dimensdes

Uma caracteristica fundamental da teoria quantica de campos é o aparecimento
de quantidades infinitas quando se tenta calcular, por exemplo, amplitudes de espa-
lhamento além do nivel da arvore. Fisicamente, modelos aceitdveis devem ser finitos
(mas ficamos entdo restritos a uma pequena classe de tais modelos) ou tratdveis por al-
gum mecanismo consistente de renormalizacdo. Como é bem conhecido na literatura,
a inclusdo da supersimetria melhora o comportamento ultravioleta de tais modelos.
Nesse espirito, vérios trabalhos tém sido publicados nos tltimos anos, e seguindo o
artigo publicado por nosso grupo de pesquisa sobre a finitude da eletrodinamica quan-
tica supersimétrica em D = 2 + 1 dimensdes [66], nada mais natural que a extensao
destes estudos para o caso da teoria da ndo-abeliana. Assim, neste capitulo, apresen-
taremos um estudo sobre a finitude, em todas as ordens de perturbagdo, da teoria da
super-Yang-Mills-Chern-Simons acoplada minimamente a matéria em trés dimensodes
do espago-tempo (SYMCSM). Em nossa abordagem utilizamos o formalismo de super-
campos, que permite estabelecer a finitude do modelo em um calibre particular, através
do estudo das corre¢des radiativas da fun¢do de dois pontos na aproximagdo de dois
lagos.

5.1 Apresentacdao do modelo

O modelo proposto é descrito por uma agdo que contém supercampos de Yang-
Mills-Chern-Simons com N =1, acoplados a um supercampo escalar de matéria [18]

S = Ssym + Sscs + Swmat, (6.1)

93
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com

1
T / BZWEW,, (5.2)

1 1 i 1
Sscs = g—ztr/d5z§m (A“m + 2 {A% 4P| DA, + - { 4%, 4P} {A“,Aﬁ}), (5.3)

Syt = / £z (V20 + M), (5.4)

onde V, = D, —iA, é a derivada supercovariante de calibre, ® é o supercampo escalar

complexo de matéria e

1 i 1

Wo = 5DPDAg — [Aﬁ, DﬁAa} - [Aﬁ, {Ag, A,X}} , (5.5)

é o espinor intensidade de campo covariante, construido a partir do supercampo de

calibre A,. Deve-se notar que A, e W, assumem valores na algebra de Lie de SU(N),
tal que

Ay = AT, Wy =W;T,, (5.6)

onde os geradores do grupo {T,} na representagdo fundamental, coma =1, ..., N 2 _

1, sdo matrizes N x N hermitianas e satisfazem a algebra de Lie e as relagdes abaixo :

[T., Tyl = ifweTe, (fape S0 as constantes de estrutura) (5.7)

tr (TaTy) = TrROw, (5.8)
TiTqg = Tr <5il5jk - %é}j%) , (5.9)
facafoea = 2TRNOgp, (5.10)
fatmfomnfenr = TRN fape- (5.11)

Além disso, o supercampo de matéria pertencente a representacdo fundamental car-

rega o indice de simetria do grupo, sendo denotado por ®,.

Para seguir com o tratamento perturbativo no formalismo das integrais de traje-
torias, fazemos uso do procedimento de Faddeev-Popov, que consiste em adicionar
a densidade Lagrangiana (5.1) um termo fixador de calibre e os respectivos campos

fantasmas associados,

1

1 1
Scr+ Skp = ?tr / d°z [—ED”‘A,XD2D/3A[5] +tr / d°z {iaD“vac] . (5.12)
Invertendo-se a parte quadratica da agdo total dada por Ssypr + Sscs + Smat + Scr +

Srp determinamos os propagadores do campo de calibre, matéria e fantasma, que no
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espaco dos momentos sdo dados respectivamente por:

—id,y| « D’ DoDg 1 (D* —m) DgDy
Tr |2 (22 2 K(E+m?)

(Awa (k,0) Agy (—k,0")) = 62 (60— 0')(5.13)

(D, (k,0) Dy (—k,0')) = 5mn(517MN21)52 (610", (5.14)
(ca(k,8) Ty (=K 0')) = }iﬂblk)zaz (66, (5.15)

Os vértices do modelo sdo determinados a partir dos termos de interagdo S; da acdo

total e sdo dados por:

; _
= [ { )i Da®iAY D) — 5 (T,), B4 D,
+% abeD*DP ALAT' D, A + mgTRfabcAWAﬁbDﬁAc

2
gTRfu CDIX aAb c gz (TaTb> ; AMZA[IZCEZ,(D.

2
T
R e feaD DPALAT A5 A+ T8 o o 4D, A D 1)

m g2 Tr

3T
t— fabefechMAﬂbAc A/z + g RfabmfmcnfndeAMD AﬁbAwAd A;;

4T
RfabmfmcnfndlflefAMA'BbAC AWAE AJ;} (5.16)
5.2 Correc¢oes radiativas

Para provar a finitude UV de SYMCSM, vamos seguir a seguinte estratégia:
1. Calcular o grau de divergéncia superficial;

2. Discutir sobre a aparéncia das divergéncias lineares e logaritmicas, comentando

sobre seu cancelamento em um lago;

3. Avaliar explicitamente os diagramas de dois lagos com divergéncias logaritmi-
cas, onde realizamos a D-algebra com o auxilio do pacote SusyMath [65] para o
programa Mathematica®, mostrando que as divergéncias se cancelam, ao menos

para um calibre especifico.
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5.3 Graude divergénciasuperficial e renormalizabilidade

do modelo

Nosso objetivo nessa se¢do é obter uma expressado algébrica para o grau de diver-
géncia superficial w(G) em termos dos elementos topoldgicos caracteristicos, e assim,
poder determinar os tipos de divergéncias e em quais graficos elas aparecem.

Seja G um supergrafico com L lacos, V vértices e P propagadores tal que:

e Vértices

Vj3: namero de vértices puros de campo de calibre com trés derivadas espinoriais;
Vj4 : nimero de vértices puros de campo de calibre com duas derivadas espinoriais;

V}ﬁ + VAS : namero de vértices puros de campo de calibre com uma derivada espino-

rial;

Vg6 + Vg4 : namero de vértices puros de campo de calibre com nenhuma derivada
espinorial;
V}l g2 - umero de vértices mistos (escalar-calibre) com uma derivada espinorial;
ng o2 - numero de vértices mistos com zero derivada espinorial;
V42 : nimero de vértices com os campos fantasmas e calibre;
e Propagadores
Py : namero de propagadores do campo escalar (®,P;) ~ D?/k%;
P4 : nimero de propagadores do campo de calibre <AZ‘A5 > ~ D*/k4;
P, : namero de propagadores do campo fantasma (cc) ~ D?/k?;
Além disso, temos ainda que definir:
Es : linhas externas escalares;
E4: linhas externas do supercampo de calibre;
E. : linhas externas dos campos fantasmas!;

Np: derivadas espinoriais aplicadas nas linhas externas.

Para o caso de existir um processo espalhamento maior contendo subgraficos divergentes com cam-
pos fantasmas nas linhas externos.
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Num gréafico genérico, as poténcias de momento aparecem explicitamente nos ele-
mentos de integragdo dos momentos relacionados com o nimero de lagos independen-
tes e também nos propagadores. Além disso, as derivadas espinoriais covariantes po-
dem transformar-se em momento através da relagdo {D, D} ~ k. Cada lago contribui
com uma integral d°k e cada propagador com o fator 1/k* (campo escalar e fantasma)

ou 1/k* (campo de calibre). Deste modo,

w(G) =3L —4P4 — 2Py — 2P, + (k’s devido as D’s). (5.17)

As derivadas espinoriais tém origem nos propagadores e vértices, e seu nimero
total é 4Py + 2Py + 2P +3V3, + Vs + Vg, , + V3, +2V3, + V5. No célculo das
fungdes de correlagdo, cada propagador contribui com uma 6 (6 — 0') e podemos usar
V — 1 integragdes em d?0 para eliminar essas ¢'s, restando Py + P4 + P. — V + 1 que
por sua vez sdo eliminadas pelas derivadas covariantes através da relacio D?5%(6) ~ 1.
Dessa forma, o numero total de D’s disponiveis para se converterem em momento é

igual a
2P +5V3s +4V3s+3 (Vi + Vis + Vibog + Vi) +2 (Vs + Voo + Vi) =2~ Np.
Como a cada dois D’s temos um k, a equagéo (5.17) assume a forma

w(G) = 3L—4P4 —2Py —2P,
2P + 5V, +4V3,+3 (Vi + Vis + Via s + Vi)
2
2 (Vs + Voo + V3) =2 = Np
2
= 24 Pp+P.— 1pr — E (V}p + VAS + Vc}ﬂA + Vz}\cz>

2 2
N,
— 2(Viet Vi + Vi) = Vi — =2,

(5.18)

onde a relagdo topolégica L + V — P = 1 foi utilizada na tltima igualdade acima.

As linhas externas sdo relacionadas com os propagadores e vértices pelas identida-
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des topolégicas:

0 1 0 2 1 3 0 1 1
(6Vs +5Vhs +4V3 +4V2, + 3V}, + 3V, + 2V 0 + Viay + Vi — Ea)

Py = ,
4 2
(2Viay + 2V + —Eo)
Py = ,
2
(2vi.—E)
Po= —H5—

cuja substituicdo em (5.18), possibilita expressar o grau de divergéncia superficial como

w(G) = 2— % (Vaap+ V3o +Via) - g (Vi + V)

Vi = Ve =2 (Vi + Vi) - — = - s (5.19)

A parti da equagdo (5.19) podemos proceder com a andlise e selecdo dos graficos
de interesse. Nossa atencdo estd concentrada apenas nos diagramas divergentes, pois
desejamos verificar se é possivel eliminar toda a parte infinita das fun¢des de corre-
lagdo por meio de uma escolha adequada do parametro de calibra a. Os diagramas
com Eg = 2 ou E; = 2 possuem divergéncia superficial logaritmica w = 0 apenas
na aproximacdo de um lago. Mas devido ao método de regularizacdo adotado, todas
as contribui¢des com diagramas de um lago sdo finitas, apesar de superficialmente di-
vergentes por contagem de poténcia. Diagramas com E4 > 2 sdo superficialmente
divergentes apenas em um lago e convergentes em dois ou mais lagos. Para E4 = 2,
encontramos diagramas com w = 0 — Np /2 na aproximagao de dois lagos.

Dessa forma, as divergéncias logaritmicas que devemos realmente nos preocupar
estdo presentes nos diagramas de dois lagos da fun¢ado de dois pontos do supercampo
de calibre A, e estdo desenhados nas Figs. 5.1, 5.2 e 5.3.

5.4 Correcdes em dois lagos: funcao de dois pontos do

supercampo de calibre

Da anélise anterior, as tinicas fung¢des de vértice com divergéncias logaritmicas, sdo
aquelas com dois supercampos de calibre externos e sem nenhuma derivada covari-
ante D, atuando sobre eles. Os diagramas correspondentes sdo mostrados na Fig. 5.1
(envolvendo somente acoplamento de calibre), 5.2 (aqueles envolvendo o acoplamento
com os supercampos fantasmas) e 5.3 (aqueles envolvendo o acoplamento com maté-

ria). A correspondente contribui¢do divergente para a fun¢do de vértice estd localizada
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nos termos de mais baixa ordem numa expansdo em torno do momento externo p = 0,
e assume a forma

d3p

d?0T g 4 A (p,0) A% (—p,0), 5.20
2y Ol (p,0) Az (=p,0) (5.20)

rAA(muss) = /

tal que

Faa=Tan0a) +Taaa) T Taage) +Taaqa) +Taaae) +Taaqy
+Taa0g) T Taaan) +Taaee) FTaaey) +Taace +Taaca
+Taa0e) tTaaes) +Taaca) +Taace T Taage TTaaca) +Taage) (5:21)

e os ndmeros entre paréntesis indicam cada diagrama individualmente, nas Figs. 5.1,
52,e53.

De acordo com as regras de Feynman determinadas na segao 5.1, o resultado pre-
liminar para as partes divergentes de I' 44, juntamente com alguns detalhes sobre os
calculos estdo indicados no apéndice D. A andlise proviséria desses resultados, indica
que o esperado cancelamento mutuo entre as divergéncias logaritmicas ndo é com-
pleto e que um termo de massa para A, é gerado por corre¢des radiativas. Consequen-
temente, a simetria BRST é quebrada na aproximagdo de dois lagcos. Um fendmeno
similar para o modelo da QED3 supersimétrica foi relatado em [66], no qual o cance-
lamento das divergéncias é obtido apenas em um calibre particular. Atualmente, os
resultados apresentados aqui estdo em discussdo e a aplicacdo do método das identi-

dades de Slavnov-Taylor, desenvolvido em detalhe no capitulo 4, segue em curso.
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Figura 5.1: Diagramas de dois pontos para A* contendo somente vértices puros de
calibre.

Figura 5.2: Diagramas de dois pontos para A* com vértices do tipo fantasmas-calibre.

(a) (0) (c)
() © 0
@) ) w(é)wm

)

() (F) @

Figura 5.3: Contribuic¢des para a fun¢do de dois pontos do supercampo de calibre A,
em dois lacos e com vértices mistos (escalar-calibre).



Conclusoes

No presente trabalho, focamos nossa atenc¢do em trés modelos da teoria quantica
de campos supersimétrica em 2 4 1 dimensdes do espaco-tempo, onde analisamos trés
questdes bastante distintas mas de grande importancia do ponto de vista teérico, a
saber: a quebra dinamica de supersimetria, o comportamento ultravioleta e simetria
BRST.

Na primeira situagdo, analisada no capitulo 3, calculamos o potencial efetivo para
o modelo de Wess-Zumino com supersimetria N' = 1. Um analise detalhada da re-
normalizagdo e da estrutura de vacuo do modelo foi apresentada, até a ordem de dois
lagos. Um dos principais resultados é que a renormalizagdo da teoria requer, além de
contratermo para a fun¢do de onda, também contratermos de massa e de constante
de acoplamento. Esse resultado difere do relatado em [46], onde a renormalizacdo do
modelo requer um contratermo extra 0¥ que ndo pode ser obtido por reparametrizagdo
da Lagrangiana original. Paralelamente, verificamos que o estado de vdcuo preserva a
supersimetria e a simetria discreta ® — —® da teoria cldssica, ao contrério do que foi
indicado em [47]. Esses resultados deram origem ao trabalho [68].

O capitulo 4 desta tese trata da prova explicita das identidades de Slavnov-Taylor
no modelo da eletrodinamica supersimétrica ndo comutativa. Especial atengao foi
dada a funcdo de vértice de dois pontos do supercampo A,. Verificamos explicita-
mente, na ordem de um laco, que as divergéncias lineares presentes no termo indu-
zido de massa se cancelam mutuamente, e que a parte longitudinal do propagador de
calibre nado sofre nenhuma corre¢do radiativa. Para completar nosso estudo, devemos
estender as identidades diagramaticas para outras fun¢des de vértices envolvendo trés
e quatro campos externos. Esse cdlculo ainda estd em progresso.

O quinto capitulo é dedicado ao estudo da finitude do modelo super-Yang-Mills-
Chern-Simons acoplado com matéria. Utilizando a formula¢do em supercampos e a
regularizagdo por reducdo dimensional, fomos capazes de determinar a estrutura das
divergéncias UV. Como resultado preliminar, nés verificamos que o esquema de regu-
larizacdo adotado (DReD), implica na quebra da simetria BRST por um termo de massa
induzido que ndo se anula em um calibre arbitrario. Esses resultados estdo atualmente

em fase de discussao.
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Finalmente, gostaria de ressaltar minha participagdo em trés outros trabalhos reali-
zados durante meu doutoramento [69, 70, 71], e que por tratassem de tépicos distintos

dos aqui abordados, ndo foram incluidos na apresentagao desta tese.



Apéndice A
O método da funcio zeta {(s)

Neste apéndice, iremos calcular a contribuigdo a um laco V(1) para o potencial efe-
tivo do modelo de Wess-Zumino pelo método da fungdo zeta, como descrito na Ref.
[45]. Em geral, o determinante funcional Det® deve ser entendido como o produto
dos autovalores do operador O escrito em alguma base conveniente. No nosso caso, é
obvio que o elemento de matriz iA;'(z,z') dado por (3.9) representa o operador dife-
rencial O, = D? +m + A + %(Pz na representacdo coordenada no superespago. Assu-

mindo formalmente uma equacao de autovalor para O, dada por

/dSZ,@Z(Z/ 2)fu(2') = anfu(2), (A1)
e definindo a funcéo zeta { associada ao operador na base coordenadad(z,z') = 0,6°(z —
z') por
1
¢s) =)~ (A.2)
n n

entdo, o determinante funcional de O, pode ser escrito na forma
DetO; = [Jan =exp [-7'(0)] . (A.3)
n

Assim, o célculo do determinante funcional se reduz ao problema de se obter uma
representac¢do analitica para a fungdo {(s) . O poder desse método reside no fato de que
em muitos casos de interesse é possivel obter tal representacdo. Para este fim, vamos
introduzir uma fungao definida no superespaco G(z,z’; T) que obedece uma equagao

tipo calor:

0.G(z,7;7) + ?)—f =0, (A.4)

com a condicdo inicial G(x,8;x",0’; T = 0) = 5°(x — x/)5%(6 — 0").

Podemos verificar diretamente que a fungéo {(s) pode ser escrita como uma trans-
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formada integral de Mellin da funcdo G(z,z’; T) na forma

1 o / /
{(s) = m/g drrs1 /d3xd29G(x =x,0=6;1), (A.5)

para G(z,2;7) = ¥, expl—ant]fu(2)f; (2/)-

Agora, nossa tarefa é determinar uma solugéo explicita de G(z,z’; T) satisfazendo a
Eq. (A.4) e sujeita a condicdo inicial acima. Para este objetivo, assumiremos que esta
funcdo é invariante por translagdes no espago-tempo, tal que uma representacdo de

Fourier exista e seja dada por:

Bk
(27)°

com o seguinte “ansatz” para g(k,6,0’; 7):

Gx,0;%,6';7) = / 9(k,0,0;7) exp [—ik(x — 1)), (A.6)

g(k,0,0';7) = Ak, T) +0"0"PkysB(k, T) +06,C(k, T) + 6> D(k,T) + 0*E(k, T) + 6*0”H(k, T).
(A7)
Para determinar os coeficientes A, B, C, D, E e H, n6s devemos usar a forma expli-

cita de O, obtida de (3.15) e inserir (A.7) em (A.4). Esta equacgdo resulta em um sistema
diferencial linear de seis equagdes e seis incognitas, sujeito as condigdes inicias:

A(k,0)=0 B(k0)=0 C(k0)=1
D(k,0) = -1 E(k0)=—1 H(k0) = 0. (A.8)

As solugdes desse sistema sao facilmente obtidas com a ajuda do software Mathematica®©

e sdo dadas por

Alk,T) = ;[e—f(mw)_eq(m_ _kz%)}

2/~ + 13

Bk©) = f_? etV el )]
Clk1) = % [+ VTR g el VR

D(k,t) = 1 {e_T(’”J’\/W)_{_e—T(m—\/W)
e < )

4

2
E(k,t) = _% [e—r(w\/T%)Jr (11— /413

|,
|,

/]2 2
F(k,1) = ﬂ [6_7<H1+\/ —kzﬂl%) _e_T<7/‘1_\/ —k2+y§)} ) (A.9)

2



105

onde iy = m + Aoy + 507 e u3 = Aoy + goy07 . A partir desses resultados, somos capa-

zes de construir a fungdo {(s) como prescrito na Eq. (3.7) e integrando em 6 obtemos

(s) = % /O e / P xd?0 (S;kp Ak, 7) +262 (C(k,7) + D(k, 7))

_ ﬂ/d—?”‘/w drr-1(=2) [C(k,T) + D(k,7)] (A.10)
- T(s)J @) Jo ' o '
A integracdo em T é direta e com a ajuda da relagdo v = —(i/20)InDet® =

(1/202){’(0), chegamos ao resultado desejado para a contribui¢do de um lago do po-
tencial efetivo:

k> + M?
K2+

i ik
V= 35 (-80) = =3 | Gt

onde M? = u% — y3. Finalmente, a integral de momento poder ser realizada por regu-

) (A.11)

larizacdo dimensional de modo usual.
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Apéndice B
Integras basicas a dois lacos

Todas as integrais escalares a dois lagos que aparecem nesse trabalho podem ser

escritas como combinagdes das seguintes integrais basicas [67] (no espago Euclidiano):

I(m - ) B / dkP qu 1
ums) = e e (@ ) (7 ) [ 7 o
—2¢ 2
_u 1 B _ (WI1 + my + m3)
= o [6 y+1—1In < 471_‘”2 )] p (B.1)

dkP dPq k2 q?
271)P (2m)P (k2 +m?) (g2 + m32) [(k + q)% 4+ m3]

—2€
- fmz (’”i)’ + mg) m3 + mym31(my, m, ms), (B.2)

Kl(m1/m2/m3) - / (

dkP 4P k-q)?
KZ(mll my, m3) - / ( 9 ( q)

2m)P (2m)P (k2 +m?2) (g2 + m3) [(k + )% + m3]

‘u—Ze

64712
+ (m% + m%) mymy +

{m% (mymsz + momsz — mymy) — ms <3m? + 3m3 + mimy + mlm%)

1 2
1 (m% +m5 — m%) I(my,my, m3)} , (B.3)

2mm)D (27)P (k2 + m?2) (g +

‘u—Ze
= o2 (mymy — mymz — myms)

[(k + )2 4 m3]

S k-
K3 (mll my, m3) - / q
( m
41
2

q

5)

(m +m5 — ) I(my, mp, m3),
(B.4)
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Aquie =3 — D,y ~ 0.5772 é a constate de Euler e y é um parametro com dimenséao de
massa introduzido no processo de regularizacdo dimensional. Outras formulas tteis

no célculo das integrais no espago dos momentos sdo:

1 1 1 )
(k2 +m?) (k2 + m3) N ms —m3 |kK2+m?  kK24+m5|’ ’
1 1 0 1
G~z [ ®9



Apéndice C

Bolhas de vacuo no modelo de

Wess-Zumino

As expressodes analiticas para as bolhas de vacuo a dois lacos, que contribuem para
o potencial efetivo, desenhadas na Fig. 3.2 sdo dadas por (dPk = ufd>~¢k):

) ¢ [ dPkdPgq
V¥ = =5 ] T O Be (k0 = 0l Ar(0:0 — 62)l s,
_ _& dequ Vl]”l% (C 1)
2) @R | (R + M2)(q* +p3) (9> + M?) |/ '
e
ded q 24 12 2 2
— _3i / 120,820, (62, 02) Ar (k; 01 — 02)Ar (g3 01 — 02)Ar(—k — g; 61 — 62),
(C.2)
onde
1
I(63,63) = 5 |(A +801) — (Agoz + gPoron) (63 + 63) + Po36R63) . (C3)

Ap0s realizar a D-4lgebra e fazer a integracdo remanescente em 6 , obtemos as seguin-

@),

tes integrais de momento em dois lagos para V,

109



110 C. BOLHAS DE VACUO NO MODELO DE WESS-ZUMINO

@) d"kdPq —13(A 4 g07)?
[ / 57)2D 2 2) (2 2\ (12 + 112\ (02 + 12 2 2 2,2
(271)2D 12(k2 + M?) (g2 + M2) (K2 4 1i3) (42 + pi3) [(k + 9)2 + M?] [(k + )2 + 43

(K (@2 + 1) + 2k [ (2 + 1) (2 +123) = (€ + 4% = (k+0)* + 3]
42 |q* =154 — 4% | (k+ ) + 2483 | + 6313 +2(k + )2 (=543 + 13)|
2" — 4313 |k +0)* + 203 + K27 [2(k+9)* — 1 — 413 |

/ dPkdPq —6g111 (A + go1) o + g%03
(27)2P 12(k> + M?)(q* + M?) [(k + q)* + M?]’

X

(C.4)

Todas as integrais acima sdo realizadas no esquema de regularizacdo por reducao
dimensional, usando as férmulas apresentadas no apéndice B. Os resultados finais sdo

dispostos em (3.17).



Apéndice D

Integrais divergentes no modelo
SYMCSM a dois lacos

Neste apéndice, apresentamos alguns detalhes sobre os célculos das partes log di-
vergentes das func¢des de dois pontos do supercampo de calibre A,. Por contagem de
potencia em (5.19), essas divergéncias aparecem somente nos termos sem nenhuma
derivada covariante D aplicada nas pernas externas dos diagramas correspondentes.

Vamos iniciar com os diagramas mostrados na Fig. 5.1, que envolve somente os
vértices de calibre puro. O diagrama 5.1(a) corresponde a expressdo

1 1
r(5.1a) = _g4(TR)2<: /dSXﬁfabefecd (D“DﬁAZAvbA'CyAg + gAMDDCA/SbAWD’YA%) (x) :

1 / / / ! 1 / / / !
: / dsyﬁ Fape forcrar (D“DﬁAg A" AS AL + S A D, APY Ae DA,A%) (y) ),

a qual ap6s as contracdes dos campos, a manipulagdo da D-dlgebra e a selecdo dos

termos divergentes na forma da Eq. 5.20, resulta em
kg 1
r — Ny [
AaE =8IRS ) (2 W 4 m?) () [k — )7 + )
[ (66° + 774 + 4910 +176) | (124° — 470 + 270u — 253) (k -q)°

1536 384q2(k — q)2
(14a® — 31a® + 240 — 1) (k- q)*  (184° — 49a% 4 102a + 109) k - g
128k2(k — q)? 256(k — )2
N (60a® — 73942 + 38a —253) k-q  (84a3 —170a* + 249x — 103) k - g
76842 768k>
(« —1)%(k-q)° | (¢ —1)%(50 — 3) (k- )2 DO
8k2q?(k — q)? 32k2g? ' '

As integrais escalares nos momentos internos k e g sdo regularizadas por reducdo
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dimensional e calculadas com o auxilio das formulas apresentadas no apéndice B. Co-

lecionando apenas as partes divergentes de Iy 4(5.1,), podemos escrever o resultado

25502 4 3200 — 191) ¢* N2 Tg .
TaaGi) = — ( 1638 47r2e) g + termos finitos. (D.2)

Procedendo de modo similar para os outros diagramas na Fig. 5.1, obtemos

Bk dq 1
Laasiy = g'N? R/ 3 3702 2 (A2 L 12 2 .2
' (27m)° (2m)® (k> + m?) (g% +m?) [(k + q)* 4+ m?]
3%k q)? N 02(k - q)° w (3602 + 470 + 23)
16 (k2 +m?) g% = 8 (k> +m2?) g% [(k + q)? + m?] 512
a (—13a”+35a +6) (k-q)> Ba(@®+a+2)k-g aZa+1k-g
25642 [(k + )2 + m?] 5122 256 (k2 + m?)
_oc(51x2+570c+36)k-q+ a(a+1)(k-q)°
512[(k+q)* +m?]  32(k* +m?) (k+q)* [(k +q)* + m?]
a(10a — 1)(k - )2 a(31a — 3)(k - q)?
128(k +q)2 [(k+q)2 +m?] ~ 128 (k2 + m2) [(k + q)% + m?]
“2 g4 NZ TR L
o + termos finitos, (D.3)
Bk &g 1

Faasaer = 8T | s oyt W) G (= 7
(@ +a+1)  [w(9%a®+3a—4)+8] (k-9)*> ala—1)k-gq

4 24 (k2 +m?) (k — g)? 442
[« (92 + 30 —10) +14] kg (a—1)*(k-q)*  (x—1)(k-q)°
. 48(k — q)? Ak (R m?)
[ (—9a2 + 330 +22) — 14] k- g
B 48 (k2 + m?)

2 3 4 NZ T
= — (2 25)6;3; o R + termos finitos, (D.4)
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- B !/ Pk dg 1
AA(5.14d) 8 ( ) 2 ) K2+ m2) (2 + m2) [(k — q)2 + m?]
D @keg?  alw-D(k-g? x@a+1)
k2+m2 k q)2 8(k2—i—m2)2 4 (k? + m?) > 4
CaRa(5a—3) +11] (k-q)* «[2a(5a —39)+19/k-q  a*(a —1)k-q
32 (k% +m?) (k —q)? 64 (k% + m?) 442
a(a—1)%(k-q)> a2a(50—6)+19]k-q
447 (k — q)? 64(k —q)?
_ a(a—3)g" N’ T .
= Poere + termos finitos, (D.5)
Pk a3 1
I _ ANZT / q
A1) = 8 IR ) (2m)? (R + m2) (% + m2) [(k + q)2 + m?]
(wl—Ma—n_%m—1V@-m2 7(a —1)(k-q)>
12 12k242 2412 (k + q)?
3(a —1)%(k-q)®> ala—1)k-g a2a+3)k-q a5a+3)k-q
842 (k +q)? 642 6(k+q)> 12k2
L+ 1) g N* Ty ..
3 o6 + termos finitos, (D.6)
Pk dd 1
_ AT A2 q
Paasip = 871N / (27)% (27)® (k2 +m?) (g2 + m?) [(k — q)? + m?]
 a(a—1)%(k-q)* (@®+1)(k-q9°  a(2a®-3a+1)(k-g)°
16k? (k? + m?) g>(k — q)> = 8k (k* + m?) (k — q)? 32k? (k? +m?) g?
L« (110> —18a+7) (k-q)®  (2a° +6a®> — 192 +7) (k- q)° N a(a —3)
32 (k? + m?) g% (k — gq)? 32k2 (k2 + m?) (k — q)? 12
a(a—1)(k-q)* («*>—=2a—1)(k-q)*  (3¢*>—28a—1) (k-q)°
4 (k2 + m?) g2 16k2 (k2 + m?) 16 (k2 +m?) (k — q)?
o (11a? — 350 +24) (k-9)* (v —1) (1842 — 22a — 1) (k- q)?
a 64 (k% +m?) g? a 64q%(k — q)?
(503 +22a% — 360 +7) (k-q)*>  (28a® — 2702 4 270 — 9) (k- q)?
6412 (k2 + m2) T ) (k= q)
Cala—Dk-g  a(Za+10)k-gq Mwa—nkq+(wﬁ—qmﬁ+ﬁa+akq
342 12(k — q)2 16 (k% + m?) 128(k — q)2
(320% — 40>+ 430 —2) k-q  (54a® —124a%> +41la+ 1) kg
128 (k2 4+ m2) a 128 (k2 4+ m2) g2

1142 — 1150 — 36) g* N2 T
_ _‘X( x 4(5)09‘67_;66) 8" N” Tr + termos finitos. (D.7)
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Os diagramas envolvendo o acoplamento entre o supercampo de calibre e os super-
campos fantasmas sdo descritos na Fig. 5.2. Suas contribui¢des divergentes para I' 44
sdo dada por

r _ ag*N2Ty / ’k  d°q 1
47g2
__ag"N7IR .
= ST + termos finitos , (D.8)
. B _(ocz—l)g4N2TR/ Ak d3q K —k-q
AA(520) 1 (271)® (270)% g2 (k2 + m2)? (k + q)2
_(ocz—l)g4N2TR ..
e + termos finitos , (D.9)
a(a —1)gIN?TR [ d°k  d°g k-q
FAA(S.ZC) = 4 / 3 3 512 212 2
(27)” (270)" g* (k2 + m?)" (k — q)
a(a —1)g*N?Tg .
oerle + termos finitos , (D.10)
LaaG2d) =Taas2e) =0 (D.11)

Somando-se todas as contribui¢des do setor de calibre puro, temos como resultado
aEq. (7?).

i volv éria s i ig. 5.3.
Os diagramas envolvendo os supercampos de matéria sdo descritos na Fig. 5.3
Seguindo o procedimento delineado acima, os resultados para as contribui¢des diver-

gentes resultam em

VICE 0g'Tr [ _dk _d% k-q
20N ) 2n) (k2 + M2) (g2 + m2) [(k+ )% + M2
4
¢ Tr "
! N 322 + termos finitos, (D.12)

r SN -1 TR [ Bk A (0 —2)g> —2(a—1)k-q
443k — N / (2n)? (27)° l(kz +M2) @2 (2 +m?) [(k — )2 + M?]
(N2-1)g*Tg 1

= — N e + termos finitos, (D.13)
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. _ gt (N2 —1) TR/ 3k d’q 2(a —1)k-q— (« —2)g?
AA(530) 2N (2n)® (2m)* (2 + M?) g% (% + m?) [(k — q)> + M?]
(N2-1)g*Tr 1 .
N e + termos finitos , (D.14)
d*k g 7 +k-q
r —  _ag*NT /
A4(530) TR 2n)? (2r)? (R + MZ) g2 (g% + m2) [(k+ )2 + M2
4
L g TR 1 ..
= —aN e + termos finitos , (D.15)
r Bl LY (a4 1)
AAS3e) 2N (2n)? (2m)’ (K + M?) (g% + M?) [(k — q)* 4 m?]
- (N> -2)¢* T 1 .
= (a+1) N e + termos finitos, (D.16)
. _ g+ (N2 TR/ B3k d3g 1
AAB3S) 4N (27)* (2m)® (K2 + M?) (% + M?) [(k + q)* + m?]
o (N> -2)¢* T 1 -
= —(a+1) AN e + termos finitos , (D.17)
I oenn = _g4NTR/ d’k  d°q wk-q
o 2 ) @n) @n) (@4 m2) (2 + M2) [(k — )2 + M?]
 Ng'Tgx 1 .
= —« 1 3072 + termos finitos , (D.18)
r &N / 3k d%q k-q
AAE 2 J (@)’ 2r)° (2 + m2)* (42 + M2) [(k + )2 + M2]
4
= Ng Tr 1 + termos finitos . (D.19)
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