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Resumo

Neste trabalho estudamos três diferentes aspectos envolvendo a supersimetria no

contexto da teoria de campos em (2 + 1) dimensões do espaço-tempo. Consideramos

primeiramente a possibilidade da quebra dinâmica de supersimetria no modelo de

Wess-Zumino, calculando o potencial efetivo até a aproximação de dois laços. Veri-

ficamos que o estado de vácuo permanece supersimétrico e que indução de massa e

a correspondente quebra de simetria discreta não são perturbativamente consistentes.

Em seguida, voltamos nossa atenção para a análise das identidades de Slavnov-Taylor

na eletrodinâmica não comutativa supersimétrica. A transversalidade da polarização

do vácuo é verificada explicitamente na aproximação de um laço e com a conclusão

de que nenhuma anomalia é introduzida pela não comutatividade ou pelo esquema

de regularização adotado no formalismo de supercampos. Por fim, o comportamento

ultravioleta para a teoria de Yang-Mills-Chern-Simons supersimétrica acoplada mini-

mamente com supercampos de matéria é investigado. Verificamos que o modelo é

superenormalizável e que os termos divergentes persistem somente nas funções 1PI

de dois pontos para o supercampo de calibre até a ordem de dois laços.
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Abstract

In this work we study three different aspects involving supersymmetry in the con-

text of quantum field theory in (2 + 1) space-time dimensions. We consider first the

possibility of dynamical supersymmetry breaking in the Wess-Zumino model, calcula-

ting the effective potential up to two loops. We found that the vacuum state remains

supersymmetric and the dynamical generation of mass together with the discrete sym-

metry breaking are not perturbatively consistent. Next, we turn our attention to the

analysis of the Slavnov-Taylor identities in the noncommutative supersymmetric elec-

trodynamics. The transversality of the vacuum polarization is verified explicitly in

the one loop approximation with the conclusion that no anomaly is introduced by the

noncommutativity or the regularization scheme adopted in the superfields formalism.

Finally, the ultraviolet behavior for supersymmetric Yang-Mills-Chern-Simons theory

minimally coupled to matter superfields is investigated. We verify that the model is

superenormalizable and that the divergent terms persist only in the gauge superfield

self-energy diagrams up to two-loop.
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Introdução

O estudo das simetrias presentes na natureza têm se revelado fundamental para a

compreensão dos mais diversos fenômenos físicos. Em particular, no Modelo Padrão

das partículas elementares (MP), as simetrias do grupo de calibre SU(3) ⊗ SU(2) ⊗
U(1) permitiram classificar todo o espectro das partículas observáveis até a presente

data. Simetrias de calibre em geral, são consideradas simetrias internas pois as trans-

formações dos campos e partículas não ocorrem no espaço-tempo real. Em contraste,

existem as simetrias ligadas as transformações sobre o espaço-tempo que incluem por

exemplo o grupo de Poincaré, isto é, o grupo das translações, rotações e “boosts” 1.

No início dos anos 60, os físicos acreditavam que era possível encontrar um grupo

de simetria que combinasse de modo não trivial o grupo de Poincaré com algum grupo

de simetria interna. Contudo, após inúmeras tentativas, mostrou-se que tal objetivo era

impossível dentro do contexto de grupos de Lie usual. De fato, os chamados teoremas

“no-go” de Coleman e Mandula [1] provaram que se assumirmos algumas hipóteses

plausíveis como localidade, causalidade, positividade de energia, finitude do número

de partículas e outras suposições mais técnicas, então qualquer grupo de Lie que con-

tem o grupo de Poincaré e um grupo compacto (interno) deve ser escrito como um

produto direto de tais grupos, levando a uma álgebra trivial para os seus geradores 2.

É claro que as limitações impostas pelos teoremas “no-go” são fortemente relacio-

nas com as hipóteses requeridas para prová-los. Uma delas repousa sobre a definição

de grupo de Lie e de sua álgebra, que é composta por relações de comutação entre os

geradores do grupo. No início dos anos 70, foi idealizado por Golfand e Likhtman [2] e

desenvolvido posteriormente por Wess e Zumino [3] que permitindo também relações

de anticomutação para os geradores das transformações, chegava-se a uma extensão

não-trivial do grupo de Poincaré que passava a relacionar bósons e férmions através

de uma nova transformação de simetria, chamada de supersimetria (ou simplesmente

SUSY). Em 1975, Haag, Lopuszanski e Sohnius [4] finalmente forneceram uma prova

rigorosa de que a supersimetria era a única extensão possível para as simetrias do

1Outras simetrias ligadas ao espaço-tempo são as simetrias discretas C, P e T.
2Uma discusão detalhada da prova do teorema de Coleman-Mandula pode ser encontrada no livro:

The Quantum Theory of Fields, Volume 3: Supersymmetry, S. Weinberg, Cambridge University Press, 2005.

1
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espaço-tempo admitida pela S-matriz no contexto de uma teoria de campos relativís-

tica 3.

A supersimetria surge então como uma simetria que combina bósons e férmions na

mesma representação (ou no mesmo multipleto) de um supergrupo, tal que os gera-

dores das transformações de supersimetria Q são espinores que satisfazem relações de

anticomutação na forma {Q, Q} ∼ P, com

Q |Bóson〉 = |Férmion〉 , Q |Férmion〉 = |Bóson〉 , (1)

onde P é o gerador das translações do grupo de Poincaré. Como consequência di-

reta, toda partícula bosônica deve ter uma parceira fermiônica e vice versa. Contudo,

tal espectro de novas partícula não foi observado até o momento. Assim, para que

a supersimetria seja viável como teoria física, ela deve estar quebrada nas escalas de

energias acessíveis atualmente.

Do ponto de vista puramente teórico, existem várias razões que motivam o es-

tudo da supersimetria. Talvez, a principal delas esteja ligada ao fato de que corre-

ções radiativas tendem a ser menos divergentes em teorias supersimétricas, devido

ao cancelamento das contribuições quânticas entre férmions e bósons. Tal mecanismo

de cancelamento fornece a possibilidade de construirmos teorias cujo comportamento

no ultravioleta é sensivelmente melhorado; alguns modelos, em particular a teoria de

super-Yang-Mills com N = 4 em quatro dimensões são finitas em todas as ordens de

perturbação [5]. Podemos destacar ainda a importância da supersimetria no contexto

das teorias de grande unificação (GUT) tais como a teoria das supercordas, juntamente

com a supergravidade (a extensão local da supersimetria).

O problema das divergências ultravioletas há muito preocupa os físicos teóricos

e está diretamente relacionado com o produto dos operadores de campos no mesmo

ponto, que em principio não está bem definido. Na tentativa de contornar esse pro-

blema, Heinseberg [6] propôs a existência de uma comprimento mínimo, que impli-

cava num principio de incerteza para medidas de comprimento e eliminava assim o

conceito de ponto (∆xµ∆xν = Θµν). Essas ideias deram origem ao conceito de espaço-

tempo não comutativo no qual as coordenadas passam a obedecer a relação de comu-

tação

[xµ, xν] = iΘµν, (2)

e foram primeiramente utilizadas por Snyder [7] como forma de amenizar o compor-

tamento ultravioleta em teoria quântica de campos. Contudo, tais ideias foram postas

de lado por um longo período em virtude do enorme sucesso do programa de renor-

3Um boa revisão historia sobre o nascimento da supersimetria pode ser encontrada no livro: The
Supersymmetric World, ed. by G. Kane, M. Shifman, World Scientific, 2000.
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malização.

No final dos anos 90, o interesse pela não comutatividade foi retomado com grande

impulso devido a descoberta de que uma teoria de Yang-Mills não comutativa poderia

ser obtida como um limite de baixas energias da teoria de cordas na presença de um

campo magnético de fundo [8]. Outra razão para considerarmos a ideia da quantização

do espaço-tempo pode ser extraída de simples argumentos heurísticos envolvendo a

teoria da relatividade geral. Quando consideramos distâncias comparáveis ao compri-

mento de Planck lp =
√

Gh̄/c3 ∼= 10−33cm, o campo gravitacional se torna tão intenso

que nem a luz ou outro sinal são capazes de transmitir informação de modo que medi-

das de coordenadas perdem o significado [28].

Apesar do sucesso inicial motivado pela relação entre a não comutatividade e a

teoria das cordas, alguns aspectos não familiares envolvendo o comportamento ultra-

violeta dos diagramas de Feynman na presença da não comutatividade logo chamaram

atenção. O exemplo mais importante é conhecido como “mistura UV/IR” que consiste

na conversão de parte das divergências ultravioletas (UV) da teoria comutativa em sin-

gularidades infravermelhas (IR) que podem impossibilitar o tratamento perturbativo

usual [10, 11, 12]. Outro ponto de destaque é a violação da unitariedade em modelos

envolvendo a não comutatividade entre espaço e tempo [13].

Lembrando que teorias supersimétricas apresentam um melhor comportamento di-

vergente é natural esperar que os termos não renormalizáveis em teorias não comuta-

tivas possam ser suavizados pela presença da supersimetria. Nesse contexto, vários

modelos com supersimetria e/ou não comutatividade tem sido extensamente investi-

gados por nosso grupo de pesquisa ao longo dos últimos anos [14].

Neste trabalho, estamos particularmente interessados em estudar três diferentes

questões envolvendo as correções radiativas sobre modelos supersimétricos com N =

1 em D = 2 + 1 dimensões: o mecanismo de quebra dinâmica de supersimetria apli-

cada ao modelo de Wess-Zumino (WZ), as identidades de Slavnov-Taylor para a ele-

trodinâmica supersimétrica não comutativa (NCSQED) e finalmente a questão envol-

vendo o cancelamento das divergências UV na teoria de super-Yang-Mills-Chern-Simons

(SYMCS). Em toda nossa abordagem utilizamos o formalismo de supercampos, que

permite preservar explicitamente a supersimetria em todas as etapas dos cálculos.

A seguir, apresentamos como este texto está dividido. No capítulo 1, apresenta-

mos o formalismo adotado para implementar a supersimetria em um espaço-tempo

(2 + 1)D, introduzindo os conceitos e as definições sobre álgebra supersimétrica, su-

perespaço e supercampos, além de nossa notação. No capítulo 2, faremos uma breve

revisão sobre teoria de campos não comutativas e discutiremos em mais detalhes o

fenômeno da mistura UV/IR. No capítulo 3, estudaremos a possibilidade de quebra

dinâmica de (super)simetria no modelo de WZ. No capítulo 4, apresentamos nosso
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estudo inicial sobre as identidades de Slavnov-Taylor para a NCSQED, provando ex-

plicitamente que a transversalidade da polarização do vácuo não é afetada pela não

comutatividade ou pelo particular mecanismo de regularização utilizada para preser-

var a supersimetria explicitamente. No capítulo 5, discutimos a finitude do modelo

SYMCS na presença de campo de matéria e apresentamos um valor para o parâmetro

de calibre no qual as divergências são todas eliminadas, em todas as ordens de pertur-

bação. Por fim, no capítulo 5.4, apresentamos nossas conclusões e discutimos algumas

perspectivas para este trabalho.



Capítulo 1

Supersimetria em um espaço-tempo

com 2 + 1 dimensões

Embora seja bastante extensa a literatura existente sobre supersimetria e de sua for-

mulação no superespaço1, não existe um padrão universalmente adotado referente as

notações e convenções sobre este assunto. Por isso, julgamos conveniente apresentar

o formalismo e as convenções utilizadas para descrever a supersimetria em (2+1) D e

fornecer as informações necessárias para o desenvolvimento do nosso estudo nos pró-

ximos capítulos. Todavia, não pretendemos ser auto-contido e sugerimos as referências

[18, 19] para maiores detalhes.

1.1 Notações e definições

Neste texto adotaremos o sistema natural de unidades, onde ℏ = c = 1. Nosso

espaço-tempo tridimensional possui assinatura Lorentziana dada pela métrica ηab =

diag(−1, 1, 1) e o tensor completamente anti-simétrico ǫabc é definido por ǫ012 = 1,

onde índices latinos representam as coordenadas do espaço-tempo, assumindo os va-

lores (0,1,2).

O grupo de Lorentz em três dimensões é realizado na representação vetorial dada

pelo grupo SO(1, 2) ou na representação espinorial pelo grupo SL(2, R). Neste último,

a representação fundamental tem dimensão dois e atua sobre espinores reais de Majo-

rana ψα = (ψ1, ψ2), definidos como variáveis de Grassmann (anticomutantes).

Seguindo [18], adotaremos a notação espinorial para todas as representações de

Lorentz. Os índices espinoriais serão denotados por letras gregas α, β, ...., com valores

1Como referência básica, podemos citar os textos clássicos em [15, 16, 17].

5



6 1. SUPERSIMETRIA EM UM ESPAÇO-TEMPO COM2 + 1 DIMENSÕES

(1,2) e serão abaixados ou levantados pelo tensor anti-simétrico definido por

Cαβ = −Cβα ≡
(

0 −i

i 0

)
, (1.1)

com a convenção de soma “noroeste-sudeste”, ou seja, ψα = Cαβψβ e ψα = ψβCβα, tal

que,

CαβCαµCβν = Cµν → Cαβ =

(
0 i

−i 0

)
= −Cαβ. (1.2)

A partir dessa convenção, observamos que para ψα real, ψα é imaginário e suas

componentes se relacionam por

ψα ≡ (ψ1, ψ2) = ψβCβα =
(

iψ2,−iψ1
)

. (1.3)

O “quadrado” de um espinor é definido por:

(ψ)2 ≡ 1
2

ψαψα = iψ1ψ2, (1.4)

que combinado com a definição usual de conjugação complexa (AB)⋆ ≡ B⋆A⋆, resulta

ser hermitiano

(
(ψ)2

)
⋆

= −i
(

ψ2
)
⋆
(

ψ1
)
⋆

= −iψ2ψ1 = iψ1ψ2 = (ψ)2. (1.5)

Algumas conseqüências imediatas das definições acima são:

CαβCλβ = δα
λ, CλβCβα = −δλ

α , (1.6)

CαβCγδ = δ
γ
α δδ

β − δ
γ
β δδ

α, (1.7)

ψαψα = Cαβψβψα = −ψβCβαψα = −ψβψβ, (1.8)

ψαψβ = Cβαψ2, ψαψβ = Cβαψ2. (1.9)

A escolha de utilizar a notação espinorial para todas as representações de Lorentz

implica que um vetor (representação tridimensional) será descrito por um bi-espinor

simétrico Vαβ = (V11, V12, V22) ou um bi-espinor de traço nulo Vα
β , definido por meio

das matrizes de Dirac como

Vαβ ≡ (γa)αβva =

(
v0 + v1 v2

v2 v0 − v1

)
, (1.10)
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Vα
β = VαδCδβ = (γa)α

βva =

(
iv2 −i(v0 + v1)

i(v0 − v1) −iv2

)
, (1.11)

onde escolhemos

(
γ0
)αβ

=

(
1 0

0 1

)
,
(

γ1
)αβ

=

(
1 0

0 −1

)
,
(

γ2
)αβ

=

(
0 1

1 0

)
, (1.12)

de tal modo que um bi-espinor se comporta como um objeto comutante. Algumas

relações úteis que as matrizes de Dirac em (1.12) satisfazem e que podem ser facilmente

verificadas seguem abaixo:

(γa)αβ(γb)βγ + (γb)αβ(γa)βγ = 2ηabδα
γ,

(γa)αβ(γb)βγ − (γb)αβ(γa)βγ = 2iǫabc(γc)
α
γ,

(γa)αβ(γb)βα = 2ηab,

(γa)αβ(γa)γδ = δα
γδ

β
δ + δα

δ δ
β
γ,

ǫabcǫa′b′c′ηcc′ = −
(

ηaa′ηbb′ − ηab′ηba′
)

. (1.13)

1.2 Álgebra de Grassmann

Na seção anterior, foi dito que os espinores ψα são variáveis de Grassmann, isto é,

que anticomutam. Vamos agora formalizar esta definição e apresentar as principais

operações que tais objetos satisfazem.

Sejam θα os geradores de uma n-dimensional álgebra de Grassmann, definida pela

relação {
θα, θβ

}
≡ θαθβ + θβθα = 0, (1.14)

onde α, β = 1, 2, ..., n. Em particular2, (θα)2 = 0. Podemos utilizar este fato para

concluir que a expansão em Taylor de uma função arbitrária definida nessas variáveis

somente conterá um número finito de termos; por exemplo, para um álgebra bidimen-

sional (nosso caso de interesse) temos

f (θ) = a0 + a1αθα + a2θ2 (1.15)

com a0 e a2 números ordinários (reais ou complexos) e a1α é um espinor de duas com-

ponentes.

A operação de diferenciação é definida pela relação,

2Não confundir com θ2 que é evidentemente diferente de zero.
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∂αθβ ≡ ∂

∂θα
θβ ≡ δ

β
α , (1.16)

de modo que

∂αθβ = Cαµ∂µθνCνβ = (δα
ν δ

µ
β − δα

βδ
µ
ν )δ

ν
µ = −δα

β, (1.17)

∂αθ2 =
1
2

∂αθβθβ =
1
2
(δ

β
α θβ − θβ∂αθβ) = θα. (1.18)

Precisaremos também do operador Laplaciano, definido por

∂2 ≡ 1
2

∂α∂α, (1.19)

e que produz imediatamente as seguintes igualdades

∂2θα = 0, (1.20)

∂2θ2 = −1. (1.21)

Para introduzir a operação de integração sobre as variáveis de Grassmann, adota-

mos a convenção de Berezin [20], definida por

∫
dθαθβ ≡ δ

β
α ,

∫
dθα ≡ 0, (1.22)

de modo a deixar a integração de qualquer função nas variáveis de grassmann invari-

ante por translação: θα → θα + ηα. Por exemplo, em uma dimensão temos:

∫
dθ f (θ + η) =

∫
dθ(a0 + θa1 + ηa1)

= a0

∫
dθ + a1

∫
dθθ − a1η

∫
dθ

= a1

=
∫

dθ f (θ). (1.23)

Formalmente, observamos que a integração é uma operação equivalente à diferencia-

ção,
∫

dθαθβ = δ
β
α = ∂αθβ. Definindo o elemento de medida em duas dimensões por

dθ2 ≡ 1
2

dθαdθα, (1.24)

obtemos a integral dupla ∫
d2θθ2 = ∂2θ2 = −1, (1.25)
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que permite definir a função delta satisfazendo as condições usuais:

δ2(θ) = −θ2 = −1
2

θαθα, (1.26)

∫
d2θδ2(θ − θ

′
) f (θ) = f (θ

′
). (1.27)

1.3 Superespaço e supercampos em (2 + 1) D

Uma forma compacta e muito útil de se trabalhar com supersimetria, inventada

por A. Salam e J. Strathdee [21], é considerar sua formulação no superespaço. Na

sua forma mais simples (N = 1, sem cargas centrais), o superespaço 5-dimensional é

uma variedade diferenciável parametrizada por três coordenadas bosônicas xαβ e duas

coordenadas fermiônicas θα, denotadas compactamente por zM = (xαβ, θα), de modo

que
(
zM
)†

= zM.

A diferenciação e integração sobre as coordenadas fermiônicas já foram definidas

na seção anterior. De forma análoga, a derivada para as coordenadas bosônicas é defi-

nida por

∂µν = (γa)µν∂a, (1.28)

∂µνxστ ≡ 1
2

δσ
(µδτ

ν) ≡
1
2
(δσ

µδτ
ν + δσ

ν δτ
µ), (1.29)

de tal modo que a divergência ∂µνxµν = 3 e os índices são levantados com auxilio

da métrica espinorial: ∂µν = CµαCνβ∂αβ . Outro operador que precisamos definir é o

D
′
Alambertiano:

� ≡ 1
2

∂αβ∂αβ. (1.30)

Todas as outras operações que envolvem as coordenadas bosônicas são definidas de

modo usual.

Uma função arbitrária Φ...(x, θ) definida no superespaço é chamada de supercampo.

Aqui, os pontos indicam outros índices de simetria que possam estar associados ao su-

percampo, como simetrias internas ou do espaço-tempo. Um supercampo transforma-

se de modo usual em relação as transformações do grupo de Poincaré, com os gera-

dores Pαβ (translações) e Mαβρσ (rotações e boosts) definidos na notação espinorial e

satisfazendo as álgebra de Lie do grupo.

A álgebra supersimétrica é realizada quando adicionamos à álgebra de Poincaré

relações de anticomutação envolvendo geradores espinoriais. Essa álgebra de Lie es-

tendida é denominada super-álgebra ou álgebra “graduada” e é dada por

[Pµν, Pρσ] = 0, (1.31)
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{Qµ, Qν} = 2Pµν, (1.32)

[Qµ, Pνρ] = 0, (1.33)

além das relações de comutação envolvendo Mαβρσ. Uma realização dessa álgebra no

superespaço é obtida definindo os geradores em termos de derivadas por

Pµν = i∂µν, (1.34)

Qµ = i(∂µ − θνi∂νµ). (1.35)

Podemos avaliar o efeito de uma transformação supersimétrica por meio do opera-

dor exp
{
−i(ξµνPµν + ǫαQα)

}
atuando sobre um supercampo arbitrário, com ξµν e ǫα

parâmetros reais e constantes. Assim,

Φ(x′, θ′) = exp[−i(ξλρ Pλρ + ǫλQλ)]Φ(x, θ)

= [1 + ξλρ∂λρ + ǫλ(∂λ − iθρ∂λρ)]Φ(x, θ) +O(ǫ2)

= Φ(x, θ) + ǫλ∂λΦ + (ξλρ − i
2

ǫ(λθρ))∂λρΦ, (1.36)

e corresponde a uma translação (x, θ)→ (x
′
, θ
′
) no superespaço, com

x
′λρ = xλρ + ξλρ − i

2
ǫ(λθρ),

θ
′λ = θλ + ǫλ. (1.37)

Deve-se observar que uma translação nas coordenadas fermiônicas necessariamente

implicará em uma translação nas coordenadas bosônicas, mas o contrário não se veri-

fica. Além do mais, se Φ é um supercampo (transformando-se segundo (1.36)), ∂µνΦ

também é, desde que

∂µνΦ(x′, θ′) = ∂µν

(
exp[−i(ξλρ Pλρ + ǫλQλ)]Φ(x, θ)

)

= [1 + ξλρ∂λρ + ǫλ(∂λ − iθρ∂λρ)]∂µνΦ(x, θ), (1.38)

onde utilizamos o fato que derivadas espaço-temporais comportam-se como bósons.

O mesmo não acontece com derivadas espinoriais ∂µΦ, mas pode-se definir derivadas

covariantes por transformação de supersimetria como

Dµ = ∂µ + iθν∂νµ, (1.39)
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obedecendo as seguintes relações de comutação e anticomutação com os geradores

[
Dµ, Pνλ

]
= 0, (1.40)

{
Dµ, Qν

}
= 0. (1.41)

Abaixo, segue algumas identidades que as derivadas ∂µν e Dµsatisfazem e serão

bastante úteis nos cálculos seguintes.

{Dµ, Dν} = 2iDµν, (1.42)

[Dµ, Dν] = 2CνµD2, (1.43)

DµDν = i∂µν + CνµD2, (1.44)

D2Dµ = −DµD2 = i∂µνDν, (1.45)

DνDγDν = 0, (1.46)

DβDγDα = DαDγDβ, (1.47)

(
D2
)2

= �. (1.48)

As derivadas também obedecem a regra de Leibnitz e podem ser integradas por

partes quando inseridas numa integral em d3xd2θ. Outra identidade útil é

∫
d3xd2θΦ(x, θ) =

∫
d3x∂2Φ(x, θ) =

∫
d3x

(
D2Φ(x, θ)

)
|θ=0 . (1.49)

1.4 Multipleto escalar

Seja Φαβ···(x, θ) um supercampo arbitrário. Devido a (1.14), uma expansão geral em

série de potências de θ será sempre finita e pode ser expressa como

Φαβ···(x, θ) = Aαβ···(x) + θµλµαβ···(x)− θ2Fαβ···(x), (1.50)

onde A, B, e F são chamados de campos componentes de Φ.

A representação mais simples de supersimetria é dada por um supercampo escalar

real, chamado também de multipleto escalar, que escrito em termos de componentes

assume a forma
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Φ(x, θ) = A(x) + θµψµ(x)− θ2F(x), (1.51)

com A(x) e F(x) funções escalares de x e ψµ(x) um espinor de duas componentes.

Essas componentes podem ser rapidamente obtidas por projeções do supercampo no

espaço-tempo ordinário como segue

A(x) = Φ(x, θ)|,
ψα(x) = DαΦ(x, θ)|,

F(x) = D2Φ(x, θ)|, (1.52)

com a barra vertical | indicando que após a operação correspondente ter sido efetuada

no supercampo, devemos tomar θ = 0.

As transformações de supersimetria para os campos componentes são obtidas a

partir de (1.36), tomando-se ξαβ = 0. Assim,

δΦ(x, θ) = ǫλ(∂λ − iθρ∂λρ)Φ(x, θ)

= ǫλψλ + θρ(ǫλi∂λρA + ǫλCρλF)− θ2ǫλCσρi∂λρψσ

≡ δA + θρδψρ − θ2δF, (1.53)

resultando em

δA = ǫλψλ,

δψρ = ǫλi∂λρA + ǫλCρλF,

δF = ǫλCσρi∂λρψσ. (1.54)

Pode-se notar que a transformação de supersimetria mistura as componentes bosôni-

cas com fermiônicas e que o comutador de duas transformações sucessivas produz

uma translação no espaço-tempo

[δ1, δ2](comp.) = −2ǫλ
1 ǫα

2 i∂λα(comp.). (1.55)

Para ilustrar o formalismo, vamos tomar como exemplo a ação da teoria λΦ3:

S =
∫

d3xd2θ[−1
2
(DαΦ)2 +

1
2

mΦ2 +
λ

6
Φ3]. (1.56)

Usando
∫

d3xd2θ f (Φ, DαΦ) =
∫

d3xD2 f (Φ, Dα)|, a parte cinética de (1.56) em ter-
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mos das componentes fica

Skin = −1
2

∫
d3xd2θ

1
2

DαΦDαΦ

=
1
2

∫
d3xd2θΦD2Φ

=
1
2

∫
d3xD2

[
ΦD2Φ

]
|

=
1
2

∫
d3x

(
D2ΦD2Φ + DαΦDαD2Φ + Φ(D2)2Φ

)
|

=
1
2

∫
d3x

(
F2 + ψαi∂ β

α ψβ + A�A
)

. (1.57)

Os termos de massa e interação resultam em

Smass+int =
∫

d3xd2θ[
1
2

mΦ2 +
λ

6
Φ3]

=
∫

d3xD2[
1
2

mΦ2 +
λ

6
Φ3]|

=
∫

d3x
1
2

Dβ[mΦDβΦ +
λ

2
Φ2DβΦ]|

=
∫

d3x[m(ψ2 + AF) + λ(Aψ2 +
1
2

A2F)]. (1.58)

1.5 Multipleto vetorial

Teorias de calibre usuais no espaço-tempo de Minkowski são construídas ao se im-

por que a ação do modelo seja invariante por alguma transformação de simetria repre-

sentada por algum grupo de Lie unitário, com álgebra Lie dada por

[Tm, Tn] = i f l
mmTl, Tm = (Tm)

†, (1.59)

e com os elementos do grupo escritos na forma exponencial

g = exp (iαmTm) , (1.60)

definidos com parâmetros reais (αm)∗ = αm. Os campos do modelo devem pertencer a

uma dada representação do grupo e transformam-se de acordo com

U(g1)U(g2) = U(g1 ◦ g2), U(g)U†(g) = I. (1.61)

A extensão para supercampos pode ser feita de modo análogo. Consideremos por

simplicidade o caso abeliano de uma rotação de fase constante. Para um supercampo
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escalar complexo,

Φ(z) =
1√
2
[Φ1(z) + iΦ2(z)], (1.62)

onde Φ1e Φ2são supercampos escalares reais, a lei de transformação é dada por

Φ(z) −→ Φ
′
(z) = eiKΦ,

Φ̄(z) −→ Φ̄
′
(z) = Φ̄e−iK. (1.63)

A Lagrangiana livre |DΦ|2 é invariante por esta transformação. Para estender essa

simetria para uma fase local, isto é, com K = K(x, θ) um supercampo escalar real

definido por

K(x, θ) = ω(x) + θαζα(x)− θ2τ(x), (1.64)

precisamos definir uma derivada covariante de calibre que atuando sobre Φ e Φ̄ man-

tenha Lcin = DαΦ̄DαΦ invariante. Isto é obtido por meio de

Dα → ∇α = Dα − iAα, (1.65)

com Aα um supercampo espinorial real, chamado de conexão de calibre espinorial. Sua

lei de transformação é obtida impondo-se que (∇Φ)
′
= eiK(∇Φ), implicando direta-

mente em

∇′α = eiK∇e−iK, (1.66)

tal que

A
′
α = eiK(Aα + DαK)e−iK. (1.67)

A expansão em série de Taylor de Aα na variável θ revela seu conteúdo em termos

de campos componentes e pode ser escrita como

Aα(x, θ) = χα(x)− θαH(x) + iθβVβα(x)− θ2(i∂αβχβ(x) + 2λα(x)), (1.68)

onde χα e λα são espinores reais, Vαβ é um biespinor real e simétrico e H(x) um esca-

lar. Tais componentes, são determinadas imediatamente pelas seguintes projeções do

supercampo Aα :

χα = Aα|θ=0,

H =
1
2

Dα Aα|θ=0,

Vαβ = − i
2
(DαAβ + DβAα)|θ=0,

λα =
1
2

DβDαAβ|θ=0. (1.69)
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A partir de Aα, podemos construir o supercampo

Wα =
1
2

DβDαAβ, (1.70)

que é invariante sob transformação de calibre e devido a (1.45), satisfaz a identidade

DαWα = 0. Como veremos a seguir, Wαé o análogo supersimétrico ao tensor intensi-

dade de campo Fµν da teoria eletromagnética. Sua expansão em componentes pode

ser escrita como

Wα = aα(x)− θαb(x) + θβ fαβ(x)− θ2dα, (1.71)

e se relacionam com as componentes de Aα por meio das seguintes projeções:

aα = Wα| = λα,

b = DαWα| = 0,

fαβ = DαWβ| = −
1
2
(∂

µ
α Vµβ + ∂

µ
β Vµα),

dα = D2Wα| = −
i
2

∂αβλβ. (1.72)

O conteúdo físico de Wαé revelado se construirmos a seguinte ação invariante de

calibre

S =
∫

d5zW2 =
∫

d3xd2θ
1
2

WαWα, (1.73)

que após a integração em d2θ assume a forma

S =
1
2

∫
d3xD2(WαWα)|,

=
1
4

∫
d3xDβDβ(W

αWα)|,

=
∫

d3x
(

WαD2Wα −
1
2

DβWαDβWα

)
|,

=
∫

d3x
(
−1

2
λαi∂αβλβ − 1

2
f αβ fαβ

)
, (1.74)

sendo constituída do termo de Maxwell na representação espinorial e um termo ciné-

tico de Dirac para a componente λα.

1.6 Superespaço Quântico

Teorias supersimétricas podem ser quantizadas estendendo-se o formalismo das

integrais de trajetórias para o superespaço, em completa analogia com a formulação

para o espaço-tempo usual. A grande vantagem de se trabalhar com a teoria formulada
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no superespaço é poder manipular em “blocos” os campos componentes em um dado

multipleto, mantendo a supersimetria manifesta em todas as etapas dos cálculos. Na

formulação em termos de campos componentes, os cálculos dos efeitos quânticos são

muito mais extensos do ponto de vista computacional e em geral, as duas abordagens

produzem os mesmos resultados físicos.

Para ilustrar o formalismo, consideremos o gerador funcional de um supercampo

escalar real massivo com auto-interação arbitrária:

Z(J) = exp[iSint(
δ

δJ
)]
∫
DΦ exp[i

∫ 1
2

Φ(D2 + m)Φ + JΦ]. (1.75)

Completando-se os quadrados da parte livre, obtemos

Z(J) = exp[iSint(
δ

δJ
)] exp[−i

∫
d3xd2θ

1
2

J
1

D2 + m
J]. (1.76)

No espaço dos momentos, as regras de Feynman são obtidas por:

• Propagadores:

1
i

δ

δJ(p, θ)
· 1

i
δ

δJ(−p, θ′)

∫ d3k
(2π)3 d2θ(−i)

{
1
2

J(k, θ)
1

D2 + m
J(−k, θ)

}

= −i
(D2 −m)

p2 + m2 δ2(θ − θ′), (1.77)

onde usamos 1
D2+m = D2−m

�−m2 .

• Vértices: Um termo de interação é do tipo
∫

d3xd2θΦDαΦDβΦD2Φ · · · . Assim,

cada vértice possui Φ linhas saindo, com os operadores Dα, Dβ, etc, atuando

sobre cada linha correspondente, e ainda uma integral sobre d2θ.

Para cálculos perturbativos, assim como na teoria quântica de campos usual, é conve-

niente determinar a ação efetiva:

Γ(Φ) = ∑
−i
n!

∫ d3p1 · · · d3pn

(2π)3n d2θ1 · · · d2θnΦ(p1, θ1) · · ·Φ(pn, θn)

×(2π)3δ(∑
n

pi)∏
L

∫ d3k
(2π)3 ∏

VI

∫
d2θ ∏

P
∏
V

, (1.78)

onde L, VI, P e V representam o número de laços, vértices internos, propagadores e

vértices, respectivamente.

Podemos manipular as integrações nos θ’s para reduzir a ação efetiva ao produtos

de todos os supercampos Φ’s calculados em uma única variável θ.

Isso é possível utilizando as seguintes regras:
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Figura 1.1: Correção à auto-energia do supercampo Φ com interação λΦ3.

Dα(θi, k)δ(θi − θi+1) = −Dα(θi+1,−k)δ(θi − θi+1),

δ2(θ1 − θ2)δ
2(θ2 − θ1) = 0,

δ2(θ1 − θ2)Dαδ2(θ2 − θ1) = 0,

δ2(θ1 − θ2)D2δ2(θ2 − θ1) = δ2(θ1 − θ2). (1.79)

A aplicação sucessiva dessas regras reduz a ação efetiva à forma

Γ(Φ) =
∫ d3p1 · · · d3pn

(2π)3n d2θ

×G(p1, · · · , pn)Φ(p1 , θ) · · ·DαΦ(pi , θ) · · ·D2Φ(pj, θ) · · · , (1.80)

onde G é obtida por integração nos momentos dos “loops” internos.

No modelo λΦ3 sem massa, a correção de auto-energia é representada pelo super-

gráfico de Feynman da Figura (1.1).

Γ2 =
iλ2

4

∫ d3p
(2π)3

∫ d3k
(2π)3 d2θ1d2θ2Φ(p, θ1)Φ(−p, θ2)

[
D2

1δ12

k2

] [
D2

2δ21

(k− p)2

]
,

tal que δ12 = δ(θ1 − θ2). Por conveniência, podemos selecionar a parte dependente de

θ escrevendo

Γ2(p) =
iλ2

4

∫ d3k
(2π)3

1
k2(k− p)2 Θ(p, θ),

com

Θ(p, θ) =
∫

d2θ1d2θ2

[
D2

1δ12

] [
D2

2δ21

]
Φ(p, θ1)Φ(−p, θ2).
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Os termos envolvendo θ podem ser manipulados, utilizando integração por partes:

Φ(−p, θ2)[D2
1δ12][D

2
2δ21]Φ(p, θ1) =

=Φ2(−p)
(
−1

2

)
Dα

1δ12

[
D1α

[
(D2

2δ21)Φ1(p)
]]

=Φ2(−p)δ12
1
2

Dα
1

[
D1α

[
(D2

2δ21)Φ1(p)
]]

Φ2δ12

[
(D2

1D2
2δ21)Φ1 + (Dα

1 D2
2δ21)D1αΦ1 + (D2

2δ21)(D
2
1Φ1)

]
, (1.81)

e de acordo com as regras (1.79) em adição com (D2)2 = −k2 e DαD2 = kαβDβ, obtemos

Γ2(p) =
iλ2

4

∫ d3k
(2π)3

1
k2(k− p)2

∫
d2θΦ(−p, θ)D2Φ(p, θ),

reduzindo a ação efetiva ao produto dos supercampos calculados em uma única variá-

vel θ.



Capítulo 2

Teoria quântica de campos não

comutativa: O formalismo de

Weyl-Moyal

Este capítulo é dedicado a fornecer uma breve revisão sobre a não comutatividade

em teoria quântica de campos baseada na correspondência Weyl-Moyal. Como exem-

plo, vamos aplicar o formalismo no modelo particular λφ4 em quatro dimensões. Após

obter as regras de Feynman modificadas pelo produto Moyal, discutiremos o meca-

nismo de mistura UV/IR calculando explicitamente a correção radiativa para a função

de dois pontos na aproximação de um laço. Embora o assunto seja vasto e já bastante

explorado na literatura, julgamos necessário explicitar os principais resultados e defi-

nições matemáticas sobre o tema antes de dar prosseguimento ao nosso estudo. Mais

detalhes podem ser encontrados nos textos de revisão [22].

2.1 A correspondência Weyl-Moyal

Na mecânica quântica usual, as variáveis clássicas de posição (x) e momento (p)

são reinterpretadas como operadores Hermitianos que atuam sobre um espaço de Hil-

bert e satisfazem as seguintes regras de comutação

[
x̂i, p̂j

]
= ih̄δij,

[
x̂i, x̂j

]
=

[
p̂i, p̂j

]
= 0. (2.1)

Contudo, podemos pensar que essas relações são apenas um caso particular quando

estamos trabalhando no limite de baixas energias. Para regiões do espaço envolvendo

distâncias muito curtas (ou altas energias) podemos supor que as coordenadas não

19
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mais comutem e passem a obedecer a seguinte relação1

[
x̂i, x̂j

]
= iθij, (2.2)

onde θij é uma matriz constante de dimensão do quadrado do comprimento. A gene-

ralização para o caso relativístico envolvendo o espaço-tempo de Minkowski D dimen-

sional é obtida tomando

[x̂µ, x̂ν] = iΘµν, com µ = 0, 1, . . . , D− 1. (2.3)

A primeira observação a ser feita é que esse tipo de relação viola explicitamente a

invariância de Lorentz (mas ainda preserva a invariância por translações), que passa a

ser considerada válida apenas no caso limite de Θ→ 0.

A formulação perturbativa para a versão não comutativa de uma dada teoria de

campos satisfazendo (2.3) apresenta algumas dificuldades. Em geral, estamos interes-

sados em calcular as amplitudes de espalhamento envolvendo operadores de campo

que dependam da coordenadas do espaço-tempo e atuam sobre vetores pertencentes a

um espaço de Fock. Ao quantizarmos o espaço-tempo impondo a relação de comuta-

ção (2.3) as coordenadas são promovidas a operadores associados a uma álgebra não

comutativa e não está claro como extrair as amplitudes de transição. Mostrou-se mais

conveniente associar os operadores de campos Φ̂(x̂) a funções Φ(x) definidas em um

espaço comutativo mas que obedecem a uma lei de multiplicação não comutativa. Tal

procedimento é conhecido como correspondência Weyl-Moyal [24] e implica em

Φ̂(x̂)←→ Φ(x), (2.4)

tal que o operador Φ̂(x̂) definido no espaço-tempo não comutativo pode ser escrito

como uma integral de Fourier

Φ̂(x̂) =
∫ dDk

(2π)D T(k)φ(k), (2.5)

onde definimos o operador

T(k) ≡ eikµ x̂µ
, (2.6)

com kµ sendo c-números e φ(k) representando a transformada de Fourier do campo

clássico Φ(x),

φ(k) =
∫

dDxeikµxµ
Φ(x). (2.7)

1Recentemente, outros tipos de não comutatividade tem sido considerada no contexto da Mecânica
Quântica. Veja por exemplo [23].
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É simples mostrar que o operador T(k) satisfaz as seguintes propriedades:

T†(k) = T(−k), (x̂† = x̂)

TrT(k) =
∫

dDx
〈

x
∣∣∣eikµ x̂µ

∣∣∣ x
〉
=
∫

dDxeikµxµ
= (2π)Dδ(D)(k),

T(k)T(q) = T(k + q)e−
i
2 kµqνΘµν

, (2.8)

onde na última linha utilizamos a fórmula de Baker-Campbell-Hausdorf: eAeB = eA+Be
1
2 [A,B]

em adição a [x̂µ, Θνρ] = 0. O mapeamento Φ̂ → Φ pode ser facilmente invertido com

ajuda de (2.8) levando a

Φ(x) =
∫ dDk

(2π)D e−ikµxµ
Tr
[
Φ̂(x̂)T†(k)

]
. (2.9)

O produto dos operadores Φ̂(x̂) pode ser determinado com ajuda das Eqs. (2.5) e (2.8),

como segue:

Φ̂1(x̂)Φ̂2(x̂) =
∫ dDk

(2π)D
dDq

(2π)D T(k)T(q)φ1(k)φ2(q)

=
∫ dDk

(2π)D
dDq

(2π)D T(k + q)e−
i
2 kµΘµνqν φ1(k)φ2(q). (2.10)

Para relacionar o resultado acima com o produto dos campos clássico Φ(x), vamos

proceder como em (2.9). Multiplicando a expressão anterior, pela direita por T†(p)

Φ̂1(x̂)Φ̂2(x̂)T†(p) =
∫ dDk

(2π)D
dDq

(2π)D T(k + q− p)e
i
2 (k+q)µΘµν pν e−

i
2 kµΘµνqνφ1(k)φ2(q),

(2.11)

e tomando o traço Tr juntamente com (2.8), obtemos como resultado

Tr
[

Φ̂1(x̂)Φ̂2(x̂)T†(p)
]
=
∫ dDk

(2π)D
dDq

(2π)D (2π)Dδ(D)(k + q− p)e−
i
2 kµΘµνqνφ1(k)φ2(q)

=
∫

dDy
dDk

(2π)D
dDq

(2π)D ei(k+q−p)µyµ
e−

i
2 kµΘµνqνφ1(k)φ2(q)

=
∫

dDy
dDk

(2π)D
dDq

(2π)D eipµyµ
φ1(k)e

−ikµyµ
e−

i
2 kµΘµνqνe−iqµyµ

φ2(q),

(2.12)
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que pode ser facilmente invertido resultando em

∫ dD p
(2π)D e−ipµxµ

Tr
[

Φ̂1(x̂)Φ̂2(x̂)T†(p)
]

=

∫
dDy

dDk
(2π)D

dDq
(2π)D

dD p
(2π)D e−ipµ(x−y)µ

φ1(k)e
−ikµyµ

e−
i
2 kµΘµνqνe−iqµyµ

φ2(q) =

∫
dDy

dDk
(2π)D

dDq
(2π)D δ(D)(x− y)φ1(k)e

−ikµyµ
e−

i
2 kµΘµνqνe−iqµyµ

φ2(q) =

∫ dDk
(2π)D

dDq
(2π)D φ1(k)e

−ikµxµ
e−

i
2 kµΘµνqν︸ ︷︷ ︸(

1+ i
2
←−
∂µ Θµν

−→
∂ν+...

)
e−iqµxµ

φ2(q) =

Φ1(x) exp
(

i
2
←−
∂µ Θµν−→∂ν

)
Φ2(x), (2.13)

o que nos permite definir o produto Moyal (ou estrela) por

Φ1(x) ⋆ Φ2(x) ≡
∫ dDk

(2π)D e−ikµxµ
Tr
[
Φ̂1(x̂)Φ̂2(x̂)T†(k)

]
=

Φ1(x) exp
(

i
2
←−
∂µ Θµν−→∂ν

)
Φ2(x) =

Φ1(x)Φ2(x) +
∞

∑
n=1

(
i
2

)n 1
n!

[
∂µ1 . . . ∂µnΦ1(x)

]
Θµ1ν1 . . . Θµ1ν1 [∂ν1 . . . ∂νnΦ2(x)] .

(2.14)

O produto estrela (2.14) é associativo mas não comutativo e reduz-se ao produto ordi-

nário de funções para Θ = 0. Note que integrando em x e usando T†(0) = I, podemos

expressar sua relação com o produto dos operadores Φ̂i(x̂) por meio de

∫
dDxΦ1(x) ⋆ Φ2(x) =

∫
dDx

dDk
(2π)D e−ikµxµ

Tr
[

Φ̂1(x̂)Φ̂2(x̂)T†(k)
]

=
∫ dDk

(2π)D (2π)Dδ(D)(k)Tr
[

Φ̂1(x̂)Φ̂2(x̂)T†(k)
]

= Tr
[
Φ̂1(x̂)Φ̂2(x̂)

]
, (2.15)

ou em geral

∫
dDxΦ1(x) ⋆ Φ2(x) ⋆ · · · ⋆ Φn(x) = Tr

[
Φ̂1(x̂)Φ̂2(x̂) · · · Φ̂n(x̂)

]
, (2.16)

tal que a propriedade de ciclicidade do traço garante que a integral acima é invariante

por permutações cíclicas. Além disso, pode-se mostrar que (Φ1 ⋆ Φ2)
† = Φ†

2 ⋆ Φ†
1.
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Um resultado particularmente importante que decorre diretamente de (2.10) e (2.15)

é obtido quando consideramos o produto estrela entre dois campos:

∫
dDxΦ1(x) ⋆ Φ2(x) =

∫ dDk
(2π)D

dDq
(2π)D Tr [T(k + q)] e−

i
2 kµΘµνqνφ1(k)φ2(q)

=
∫ dDk

(2π)D
dDq

(2π)D (2π)Dδ(D)(k + q)e−
i
2 kµΘµνqν4φ1(k)φ2(q)

=
∫ dDk

(2π)D φ1(k)φ2(−k)

=
∫

dDxΦ1(x)Φ2(x), (2.17)

implicando que a parte quadrática de uma ação qualquer que defina uma teoria não

comutativa, seja equivalente ao caso ordinário.

Finalmente, podemos checar que o comutador estrela, definido abaixo, resulta exa-

tamente na relação dada em (2.3),

[xµ, xν]
⋆
= xµ

⋆ xν − xν
⋆ xµ = iΘµν. (2.18)

Por conseguinte, a álgebra realizada pelo produto ordinário de operadores definidos

sobre um espaço-tempo não comutativo é equivalente a álgebra de funções clássicas

deformadas pelo produto Moyal. A seguir, vamos considerar os efeitos dessa modifi-

cação na determinação das regras de Feynman.

2.2 Quantização e regras de Feynman para teorias de cam-

pos não comutativas

Como vimos na seção anterior, a forma de tratar as teorias não comutativas é subs-

tituir o produto usual de campos pelo produto estrela2. Vamos considerar como exem-

plo a teoria definida pelo campo escalar real λΦ4. A versão não comutativa para a ação

que define o modelo é dada por

S[Φ] =
∫

d4x
[

1
2

∂µΦ ⋆ ∂µΦ− 1
2

m2Φ ⋆ Φ− λ

4!
Φ ⋆ Φ ⋆ Φ ⋆ Φ

]
. (2.19)

Em vista da Eq. (2.17), a teoria livre não é modificada e possui o mesmo propagador

de Feynman do caso usual

∆F(p) =
i

p2 −m2 + iǫ
. (2.20)

2Para o caso envolvendo teorias de calibre, precisamos também modificar a estrutura do grupo de
simetria, como discutiremos a seguir.
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A única alteração provocada pelo produto estrela está codificada no termo de interação.

De acordo com as Eqs. (2.5) e (2.16), podemos escrever no espaço dos momentos, a

parte da ação correspondente a interação na forma

Sint = − λ

4!

∫
d4xΦ ⋆ Φ ⋆ Φ ⋆ Φ

= − λ

4!

∫ [ 4

∏
i=1

d4ki

(2π)4

]
Tr [T(k1)T(k2)T(k3)T(k4)]

×φ(k1)φ(k2)φ(k3)φ(k4). (2.21)

A operação do traço pode ser facilmente realizada empregando-se as propriedades dos

operadores T(ki) descritas em (2.8). Assim, obtemos

Tr [T(k1)T(k2)T(k3)T(k4)] = Tr [T(k1 + k2)T(k3 + k4)] e−i(k1∧k2+k3∧k4)

= Tr [T(k1 + k2 + k3 + k4)] e−i[k1∧k2+k3∧k4+(k1+k2)∧(k3+k4)]

= (2π)4δ(4)(
4

∑
i=1

ki)e
−i[k1∧(k2+k3+k4)+k2∧(k3+k4)+k3∧k4], (2.22)

onde introduzimos a forma bilinear antissimétrica

ki ∧ kj =
1
2

kiµkjνΘµν = −kj ∧ ki. (2.23)

A generalização dos resultados acima para o produto de n campos é direta e corres-

ponde a

∫
dDxΦ1(x) ⋆ Φ2(x) ⋆ · · · ⋆ Φn(x)=

∫ [ n

∏
i=1

dDki

(2π)D

]
(2π)Dδ(D)(

n

∑
i=1

ki)V(k1, k2, . . . , kn)φ1(k1)φ2(k2) . . . φn(kn), (2.24)

onde

V(k1, k2, . . . kn) = exp

(
−i

n

∑
i<j=1

ki ∧ kj

)
. (2.25)

Como resultado, podemos concluir que o principal efeito da não comutatividade

em teoria de campos é modificar a estrutura da parte de interação, introduzindo um

fator de fase dependente dos momentos que correm nos vértices. Tal fato reflete dire-

tamente a natureza não local do produto Moyal expressa em (2.14). Em particular, de-

vido a esses fatores oscilatórios, poderíamos esperar uma melhora no comportamento

ultravioleta da teoria. Contudo, veremos a seguir que os diagramas de Feynman po-

dem ser separados em duas partes: planar e não planar. A parte planar é semelhante
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ao caso comutativo e não possui fator de fase, já a parte não planar fica multiplicada

pelo fator de fase. Em todo caso, os gráficos correspondentes a parte planar possuem

propriedades de renormalização semelhantes aquelas advindas da versão comutativa

da teoria. O comportamento da parte não planar dos diagramas de Feynman é bem

mais complicado e apresenta novos efeitos que podem inviabilizar o tratamento per-

turbativo do modelo em questão [10, 11, 12].

2.3 O mecanismo de mistura UV/IR

Nesta seção, ilustraremos algumas das propriedades singulares exibidas pela não

comutatividade no contexto de altas energias. Como exemplo, vamos realizar o cálculo

detalhado da renormalização da massa no modelo λφ4 na aproximação de um laço.

Para este fim, precisamos determinar a correção da função de dois pontos 1PI,

Γ(2)(p) = p2 −m2 − Σ(p), (2.26)

tal que nessa ordem, −iΣ(p) correspondente ao diagrama de Feynman ilustrado na

Fig. 2.1.

Mostraremos a seguir, que a principal consequência da não comutatividade é modi-

ficar a estrutura das integrais de momentos internos, que passam a exibir divergências

infravermelhas, mesmo a teoria sendo massiva. Tal fenômeno é conhecido como mis-

tura UV/IR e é uma característica geral em teoria de campos não comutativas [25].

O mecanismo UV/IR pode ser entendido de maneira bastante intuitiva por meio

dos comutadores [x̂, ŷ] = iθ e [x̂, p̂x] = ih̄. Da Mecânica Quântica usual, a relação de

incerteza generalizada entre dois operadores Hermitianos quaisquer, Â e B̂ é dada por

[26]

σ2
Aσ2

B ≥
(

1
2i

〈[
Â, B̂

]〉)2

, (2.27)

onde σA =
√
〈A2〉 − 〈A〉2 é o desvio padrão associado ao operador Â. Usando a

relação de comutação (2.2), segue imediatamente que

σxσy ≥
1
2

θ, (2.28)

representa a relação de incerteza para as coordenadas x e y devido a presença da

não comutatividade espacial. Então, qualquer acréscimo na precisão da medida em

x (σx → 0, σpx → ∞) implica numa piora na medida em y (σy → ∞, σpy → 0).

Voltando ao cálculo da correção da massa, a função de Green conexa relacionada

com o diagrama da Fig. 2.1 tem como expressão analítica
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Figura 2.1: Diagrama de Feynman para a correção da massa à um laço na teoria não
comutativa λφ4.

G(2)(p1, p2) = − iλ
4!

∫ [ 4

∏
i=1

d4ki

(2π)4

]
(2π)4δ(4)(k1 + k2 + k3 + k4)

× V(k1, k2, k3, k4) 〈: φ(p1)φ(p2)φ(k1)φ(k2)φ(k3)φ(k4) :〉 , (2.29)

em que as contrações de Wick são agora modificadas pela presença da função V(ki)

definida em (2.25). Dessa forma, as 12 contrações possíveis não são mais equivalentes

entre si e resultam em

〈: φ(p1)φ(p2)φ(k1)φ(k2)φ(k3)φ(k4) :〉V(k1, k2, k3, k4) =

φ(p1)φ(k1)φ(p2)φ(k2)φ(k3)φ(k4)V(−p1,−p2, k3,−k3)︸ ︷︷ ︸
=1

+

φ(p1)φ(k1)φ(p2)φ(k3)φ(k2)φ(k4)V(−p1, k2,−p2,−k2)︸ ︷︷ ︸
=exp(2ik2∧p2)

+

φ(p1)φ(k1)φ(p2)φ(k4)φ(k2)φ(k3)V(−p1, k2,−k2,−p2)︸ ︷︷ ︸
=1

+

9 contrações para (k1 ↔ k2,3,4). (2.30)

Como resultado, podemos separar G(2)(p1, p2) em duas partes: a parte planar (PL)

é independente de Θ e possui fator de simetria (1/3), enquanto que a parte não planar

(NPL) depende da fase exp(2ik ∧ p), com fator de simetria igual a (1/6),

G(2)(p1, p2) = G(2)
PL(p1, p2) + G(2)

NPL(p1, p2)

= − iλ
3
(2π)4δ(4)(p1 + p2)∆F(p1)∆F(p2)

∫ d4k
(2π)4

i
k2 −m2 − iǫ

− iλ
6
(2π)4δ(4)(p1 + p2)∆F(p1)∆F(p2)

∫ d4k
(2π)4

ie2ik∧p1

k2 −m2 − iǫ
. (2.31)

A função 1PI correspondente é obtida como de costume, removendo-se os propaga-
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dores externos juntamente com a delta de conservação energia-momento, tal que

−iΣ(p) = − iλ
3

∫ d4k
(2π)4

i
k2 −m2 − iǫ

− iλ
6

∫ d4k
(2π)4

ie2ik∧p

k2 −m2 − iǫ
. (2.32)

A contribuição planar em (2.32) é proporcional a correção usual da teoria comu-

tativa φ4, que por contagem de potência é quadraticamente divergente no limite UV.

Usando regularização dimensional, podemos escrevê-la na forma

ΣPL(p) =
λµ4−D

3

∫ dDk
(2π)D

i
k2 −m2 + iǫ

=
λm2

48π2

(
4πµ2

m2

)ε/2

Γ
(
−1 +

ε

2

)

= − λm2

48π2

[
2
ε
+ 1− γ− ln

(
m2

4πµ2

)
+O(ε)

]
, (2.33)

com ε = 4− D, µ um parâmetro com dimensão de massa introduzido no processo de

regularização e γ = 0.577 é a constante de Euler-Mascheroni.

A contribuição não planar também apresenta contagem de potência quadrática, mas a

presença do fator de fase dependente do momento interno modifica drasticamente a

integral de Feynman. Para calculá-la, vamos empregar a parametrização de Schwinger

i
k2 −m2 + iǫ

=
∫ ∞

0
dαeiα(k2−m2+iǫ), (2.34)

que substituída em (2.32), implica

ΣNPL(p) =
λµ4−D

6

∫ dDk
(2π)D

ie2ik∧p

k2 −m2 + iǫ

λµ4−D

6

∫ ∞

0
dαeiα(−m2+iǫ)

∫ dDk
(2π)D eiαk2+2ik∧p. (2.35)

A integração sobre k passa a ser tipo Gaussiana e para efetuá-la, vamos completar o

quadrado no expoente:

expoente = iα

[
kµkµ +

1
α

kµΘµν pν +

(
1

2α
Θµν pν

)2

−
(

1
2α

Θµν pν

)2
]

= iα

[(
kµ +

1
2α

Θµν pν

)2

+
1

4α2 p ◦ p

]
, (2.36)

onde definimos p ◦ p = pµΘµαΘαν pν. Agora, podemos resolver explicitamente a inte-
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gral no momento fazendo k→ k− 1
2α Θµν pν,

∫ dDk
(2π)D eiαk2+2ik∧p =

∫ dDk
(2π)D e

iα
[
k2+ 1

4α2 p◦p
]

= e
i

4α p◦p
∫ dk0

(2π)
eiαk2

0

∫ dD−1k
(2π)D−1 e−iαk2

=
e

i
4α p◦p

(2π)D

√
iπ
α

(√
π

iα

)D−1

=
i1−D/2

2DπD/2αD/2
e

i
4α p◦p. (2.37)

Inserindo o resultado acima em (2.35), obtemos

ΣNPL(p) =
λµ4−D

6
i1−D/2

2DπD/2

∫ ∞

0
dαα−D/2eiα(−m2+iǫ)+ i

4α p◦p. (2.38)

A integral em α pode ser regularizada fazendo p◦p
4 → p◦p

4 + i δ
4 e ao final tomamos

o limite ǫ, δ → 0. Para o caso D = 4, essa integral é calculada usando o resultado

conhecido [27]

∫ ∞

0
dzz−2eiaz+ ib

α =
2
√

a√
b

K1

(
−2i
√

a
√

b
)

, para Im[a]>0 e Im[b]>0, (2.39)

sendo K1 a função de Bessel modificada de ordem um. Após algumas simplificações,

segue que

ΣNPL(p) =
λm2

24π2

K1

(√
m2p ◦ p

)

√
m2p ◦ p

. (2.40)

Notemos que na região do ultravioleta para o momento externo p → ∞, a contribuição

ΣNPL permanece finita devido ao resultado

lim
z→∞

K1 (z) = 0. (2.41)

Substituindo (2.33) e (2.40) em (2.26), a renormalização da massa absorve a diver-

gência UV presente em ΣPL e resulta na seguinte função de dois pontos 1PI renorma-

lizada

Γ
(2)
R = p2 −m2

R −
λm2

R
24π2

K1

(√
m2

R p ◦ p
)

√
m2

R p ◦ p
, (2.42)

com

m2
R = m2

{
1− λ

48π2

[
2
ε
+ 1− γ− ln

(
m2

4πµ2

)]}
. (2.43)

Vamos agora considerar o comportamento de (2.42) na região infravermelha quando
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p → 0. Para pequenos argumentos, K1 pode ser expandida em série de Laurent na

forma
K1

(√
m2

R p ◦ p
)

√
m2

R p ◦ p

p→0
=⇒ 1

m2
R p ◦ p

+
1
2

ln





√
m2

R p ◦ p

2



 , (2.44)

indicando a presença de divergências infravermelhas do tipo quadrática e logarítmica,

ausentes no caso comutativo3. Essa substituição, de divergências ultravioletas comu-

tativas por singularidades infravermelhas devido a não comutatividade, é o que deno-

minamos de mistura UV/IR. Como consequência, o limite Θ → 0 não é suave e não

podemos mais recuperar a teoria comutativa quando levamos em conta as correções

quânticas.

Outra questão envolvendo a não comutatividade diz respeito a conservação da uni-

tariedade [13]. A madeira mais simples de evitar problemas relacionados a violação da

unitariedade consiste em considerar somente a não comutatividade entre as coordena-

das espaciais, tomando sempre Θ0i = 0. Tal procedimento não é único e formas mais

elaboradas para tratar esse problema são discutidas nas Refs. [28, 29, 30].

2.4 Não comutatividade em teorias de calibre

Teorias de calibre não comutativas são particularmente importantes devido a sua

conexão com teorias de cordas. Seiberg e Witten [8] mostraram que a dinâmica de

cordas bosônicas abertas conectadas a Dp-branas, na presença de um campo de fundo

Bij constante, descrita pela ação

S =
1

4πα′

∫

Σ
d2ξ

[
gij∂axi∂axj − 2πiα′Bijǫ

ab∂axi∂bxj
]

, (2.45)

pode ser relacionada, num certo limite, a uma teoria de calibre definida sobre um es-

paço não comutativo.

A promoção de uma teoria de calibre usual para o espaço-tempo não comutativo

é similar a nossa descrição anterior, envolvendo apenas campos escalares. Contudo,

algumas peculiaridades na extensão não comutativa dos grupos de Lie devem ser le-

vados em consideração agora.

Como exemplo, vamos considerar o caso de uma teoria definida sobre o grupo de si-

metria U(N) na representação fundamental. O campo de calibre associado Aµ(x) pode

ser expandido em termos dos geradores (Hermitianos) da álgebra de Lie do grupo;

3No caso comutativo, divergências infravermelhas são esperadas normalmente em teorias envol-
vendo partículas sem massa, já que o propagador passa a ter um pólo em p = 0. As singularidades
infravermelhas encontradas em (2.44) são originadas exclusivamente da não comutatividade e não de-
vem ser confundidas com o caso ordinário.
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Aµ(x) ≡ Aa
µta, com trN(tatb) = δab, a, b = 1, . . . , N2 e [ta, tb] = i f abctc. A versão não

comutativa desta teoria é obtida via correspondência Weyl-Moyal, isto é, o produto

usual de matrizes é substituído pelo produto estrela definido em (2.14). Dessa forma,

um elemento qualquer do grupo U⋆(N) passa a ser escrito como

U(x) = e⋆iλa(x)ta
=

∞

∑
n=0

1
n!

(iλa(x)ta)n
⋆

. (2.46)

A ação de Yang-Mills U⋆(N) não comutativa é definida então por

S = −1
4

∫
d4x trN

[
Fµν ⋆ Fµν

]
, (2.47)

sendo trN o traço ordinário de matrizes e com o tensor intensidade de campo represen-

tado na forma

Fµν = ∂µ Aν − ∂νAµ − ig
[
Aµ, Aν

]
⋆

= ∂µ Aν − ∂νAµ − ig
[
Aµ, Aν

]
+

g
2

Θαβ
(
∂αAµ∂β Aν − ∂α Aν∂βAµ

)
+O(Θ2).

(2.48)

A lei de transformação de calibre para campo Aµ também é modificada pela corres-

pondência Weyl-Moyal, e passa a ser definida como sendo

Aµ −→ U ⋆ Aµ ⋆ U† +
i
g

U ⋆ ∂µU†. (2.49)

A invariância da ação de Yang-Mills não comutativa (2.47) sob a transformação

(2.49) segue diretamente da ciclicidade tanto do produto estrela quanto da operação de

traço das matrizes U(x), e implica na seguinte regra de transformação para o campo

Fµν,

Fµν → U ⋆ Fµν ⋆ U†. (2.50)

É importante notar que a teoria de calibre não comutativa definida pela ação (2.47)

apresenta interações não triviais já no caso abeliano para N = 1. Isso decorre direta-

mente do produto estrela, pois agora o comutador [Aµ,Aν]⋆ é diferente de zero mesmo

quando temos f abc = 0, e somente para Θ = 0 coincide com o setor de Maxwell da

eletrodinâmica usual.

A quantização perturbativa e a determinação das regras de Feynman são obtidas

como de costume via formalismo funcional, adicionando-se os campos fantasmas de

Faddeev-Popov e o termo de fixação de calibre associado. Os termos bilineares (propa-

gadores), assim como no caso escalar, não são afetados pela não comutatividade. Mas
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os vértices de interação são acompanhados de funções polinomiais que dependem do

momento, acarretando um caráter altamente não linear a teoria.

Devemos destacar ainda que nossa escolha pelo grupo de simetria U(N) não é ar-

bitrária. A generalização não comutativa para outros grupos é fortemente restringida

pela natureza do produto Moyal [31]. O ponto importante é que as transformações

de calibre modificadas pelo produto estrela dependem do anticomutador
{

ta, tb
}

, em

adição a relação de comutação
[
ta, tb

]
que define a álgebra de Lie do grupo 4. Em geral,

o anticomutador de dois geradores pertence a álgebra de Lie apenas no caso do grupo

U(N), na representação fundamental. Assim, outros grupos como SU(N), SO(N) ou

Sp(N) não possuem uma extensão não comutativa e devem ser descartados a princí-

pio.

4Em particular, devemos garantir que

[
Aa

µta, λbtb
]
⋆

=
1
2

(
Aa

µ ⋆ λb + λb
⋆ Aa

µ

) [
ta, tb

]
+

1
2

(
Aa

µ ⋆ λb − λb
⋆ Aa

µ

){
ta, tb

}
,

possa ser escrito como uma combinação linear dos geradores ta.
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Capítulo 3

Potencial efetivo a dois laços para o

modelo de Wess-Zumino em 2 + 1

dimensões

Neste capítulo, o potencial efetivo para o modelo de Wess-Zumino com N = 1 em

2 + 1 dimensões será calculado no formalismo de supercampos até a aproximação de

dois laços. Mostraremos que a supersimetria não é quebrada por correções radioativas,

e a aparente geração dinâmica de massa não é perturbativamente consistente. Além

disso, o estudo detalhado da renormalização do modelo será realizado, e de posse dos

contratermos necessários para renormalizar a teoria, determinaremos as funções βg e

γΦ do grupo de renormalização. A partir desses cálculos, mostraremos que o modelo

é infravermelho livre e que o comportamento clássico referente ao escalonamento dos

momentos externos é alterado por correções radioativas. Nossos resultados corrigem

alguns equívocos presentes na literatura.

3.1 Quebra dinâmica de (super)simetria em 2 + 1 dimen-

sões

Embora a supersimetria (SUSY) seja um conceito chave na física de partículas ele-

mentares e campos, ela não é corroborada (até a presente data) por evidências expe-

rimentais. Então, qualquer modelo realístico envolvendo a SUSY deve incluir algum

mecanismo de quebra desta simetria. Muitos mecanismos diferentes foram propos-

tos na literatura; por exemplo, o Modelo Padrão Minimamente Supersimétrico contém

operadores que quebram explicitamente a supersimetria e foi sugerido na tentativa de

resolver o problema da hierarquia [32].

A violação de SUSY devido a soluções tipo instantons [33], sua conexão com a R-

33



34 3. POTENCIAL EFETIVO A DOIS LAÇOS PARA O MODELO DE WESS-ZUMINO EM2 + 1 DIMENSÕES

simetria [34] e com o índex de Witten [35, 36] também foram intensamente investiga-

dos durante os últimos anos. Várias variações ou extensões dos modelos de O’Rai

feartaigh e Fayet-Iliopoulos [37], que apresentam quebra espontânea de SUSY e mais

recentemente, teorias que exibem um vácuo meta instável com SUSY quebrada [38]

também tem sido propostas.

Uma questão interessante é se um mecanismo puramente perturbativo, isto é, uma

quebra de simetria dinâmica induzida por correções radiativas pode ser obtida em

modelos classicamente supersimétricos. Tal interesse reside no fato de que uma escala

de massa poderia ser gerada dinamicamente.

Contudo, em 3 + 1 dimensões do espaço-tempo essa possibilidade deve ser descar-

tada devido aos teoremas de não-renormalização [39, 40]. Tais teoremas asseguram

que se a SUSY não for espontaneamente quebrada na aproximação clássica, então ela

não poderá ser violada por correções perturbativas. Por outro lado, em 2 + 1 dimen-

sões essas restrições (ao menos para N = 1) não existem [41, 42]. Tal possibilidade

abre caminho para investigarmos perturbativamente a estrutura do vácuo nessas te-

orias via o cálculo do potencial efetivo [43]. Recentemente, o potencial efetivo para

o modelo de Wess-Zumino (WZ) em três dimensões com N = 2 foi calculado até a

aproximação de dois laços na Ref. [44]. Para o caso com N = 1, o potencial efetivo

foi primeiramente calculado em [45] para os modelos de WZ e da eletrodinâmica sem

massa. Em ambos os modelos, o autor mostrou que nem a SUSY e nem a invariância

de calibre são quebradas por correções radioativas até a aproximação de um laço; no

entanto, em 2 + 1 dimensões os termos envolvendo logarítmicos dos campos clássicos

aparecem somente na aproximação de dois ou mais laços. Desde que estas contribui-

ções logarítmicas tem um papel crucial na quebra dinâmica de simetria, os cálculos

devem ser ampliados pelo menos até a ordem de dois laços.

No formalismo de campos componentes, o potencial efetivo até dois laços para o

modelo de WZ foi calculado “off-shell” e “on-shell” nas Refs. [46] e [47], respectiva-

mente. Na Ref. [46] é reportado um problema concernente à renormalização do poten-

cial efetivo: um termo divergente que não pode ser absorvido pelo reescalonamento da

Lagrangiana clássica aparece. Por sua vez, na Ref. [47] tais dificuldades com a renorma-

lização não foram encontradas, mas é relatado que a SUSY é quebrada, acompanhada

de uma geração dinâmica de massa. Nesse trabalho, contudo, o cálculo do potencial

efetivo não leva em conta correções radioativas para equação de movimento do campo

auxiliar [48]. Esses fatos nos levam a concluir que a renormalização e a estrutura de

vácuo do modelo de WZ tridimensional são questões ainda não satisfatoriamente res-

pondidas.

Neste capítulo, temos por objetivo calcular o potencial efetivo de WZ até a apro-

ximação de dois laços diretamente na formulação de supercampo. Mostraremos que
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a renormalização do potencial efetivo é obtida de modo usual. Além disso, verifica-

remos que a supersimetria não é quebrada e que a geração dinâmica de massa não é

perturbativamente consistente. Calcularemos ainda a função βg associada com a auto-

interação quártica e função γΦ que caracteriza a dimensão anômala do supercampo.

Esse capítulo é organizado como segue.

Na seção 3.2, o modelo é definido e o potencial clássico é analisado para diferentes

configurações das constantes de acoplamento. Na seção 3.3, os cálculos na ordem de

um e dois laços são efetuados e a análise da renormalização do modelo é apresentada.

Na seção 3.4, a possibilidade da quebra dinâmica de (super)simetria para o caso par-

ticular de interesse no qual a teoria é classicamente invariante de escala é investigada

e mostramos explicitamente que as simetrias são preservadas até essa ordem. A fun-

ção βg da constante de acoplamento também é calculada, mostrando-se que o modelo

exibe um polo de Landau no limite do ultravioleta.

3.2 Apresentação do modelo

A ação renormalizável mais geral para o modelo de WZ com N = 1, contendo um

único supercampo escalar real em 2 + 1 dimensões é dada por:

S[Φ] =
∫

d5z
{
−1

4
DαΦDαΦ + W(Φ) +LCT

}
, (3.1)

onde W(Φ) = aΦ+ 1
2 mΦ2 + λ

3! Φ
3 +

g
4! Φ

4 é o superpotencial, Φ(x, θ) = φ(x)+ θαψα(x)−
F(x)θ2 é um supercampo escalar, d5z ≡ d3xd2θ é o elemento de volume no superespaço

e LCT é a Lagrangiana de contratermos. As dimensões de massa do supercampo esca-

lar e das constantes de acoplamento são: [Φ] = 1/2, [λ] = 1/2, [g] = 0, [a] = 3/2.

Quando λ = a = 0, a ação clássica é invariante sob a transformação de simetria dis-

creta Φ→ −Φ e se além disso, m = 0, o modelo é também classicamente invariante de

escala.

O conteúdo em campos componentes da Eq. (3.1) é facilmente revelado após a

integração na coordenada grasmaniana θ:

S =
∫

d3x
{

1
2
(φ�φ + ψαi∂ β

α ψβ + F2) + m(ψ2 + φF)

+ λ(φψ2 +
1
2

φ2F) +
g
6

φ3F +
g
2

φ2ψ2 + aF +LCT

}
. (3.2)



36 3. POTENCIAL EFETIVO A DOIS LAÇOS PARA O MODELO DE WESS-ZUMINO EM2 + 1 DIMENSÕES

A ação acima é invariante sob as seguintes transformações de SUSY:

δφ = −ǫαψα,

δψα = −ǫβ(CαβF + i∂αβφ),

δF = −ǫαi∂ β
α ψβ, (3.3)

onde ǫα é um parâmetro fermiônico constante.

O potencial clássico “off-shell” é obtido diretamente da Eq. (3.2):

V(0)(φ, F) = −1
2

F2 − FS(φ), (3.4)

onde S(φ) ≡ W ′(φ) = (a + mφ + λ
2 φ2 +

g
6 φ3). Eliminando-se o campo auxiliar F por

meio de sua equação de movimento ∂V(0)/∂F = 0, isto é, F = S(φ). o potencial clássico

torna-se função somente do campo físico φ, tal que

V(0)(φ) =
1
2
(S(φ))2 ≥ 0. (3.5)

É bem conhecido que em qualquer teoria com supersimetria exata, o estado de

vácuo deve corresponder a um mínimo global do potencial efetivo com S(φmin) = 0

e V(φmin) = 0 [40]. Para g 6= 0 o modelo (em nível de árvore) tem uma fase com

SUSY preservada, desde que S(φmin) = 0 sempre tem ao menos uma solução real para

φmin. Neste caso, se a = λ = 0 então temos um mínimo em φmin = 0 e se além disso,

temos também −6m/g > 0, então existe duas outras soluções: φmin = ±
√
−6m/g que

quebram espontaneamente a simetria φ→ −φ. De qualquer modo, para g 6= 0 a SUSY

é classicamente preservada.

Outra possibilidade ocorre quando g = 0 e λ 6= 0. Se 2aλ ≤ m2, a equação F = 0

tem duas soluções reais φmin = −m
λ ± (m2

λ2 − 2a
λ )1/2 e a SUSY é preservada. Se em vez

disso, 2aλ > m2, o ponto de mínimo para V(0)(φ) ocorre em φmin = −m
λ (solução de

dV(0)/dφ = 0, para qual F = m2

2λ − a 6= 0) e implica em V(φmin) =
1

8λ2 (2λa−m2)2
> 0,

revelando uma quebra espontânea de SUSY em nível clássico. O potencial clássico é

desenhado na Fig. 3.1 como uma função do campo físico φ para alguns valores dos

parâmetros a, m, λ e g.

3.3 Cálculo do potencial efetivo

Há vários métodos para o cálculo do potencial efetivo em teoria de campos ordiná-

ria. Iremos empregar o método funcional devido à Jackiw [49], cuja extensão para o

superespaço é direta. O método é baseado na seguinte prescrição: primeiramente de-
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Figura 3.1: Potencial Clássico: (a) - a = λ = 0 e g = m = 1/2, (b) - a = λ = 0 e
g = −m = 1/2, (c) - a = 1, λ = 1/2, m = 3 e g = 0, (d) -a = 4, λ = m = 1/2 e g = 0.

vemos deslocar o supercampo quântico Φ por um supercampo clássico φcl e considerar

a ação

Ŝ[Φ, φcl] ≡ S[Φ + φcl]− S[φcl ]−
∫

d5zΦ
δS
δΦ

∣∣∣∣
Φ=φcl

, (3.6)

onde φcl(θ) = σ1− θ2σ2, com σ1 = 〈φ〉 e σ2 = 〈F〉 sendo os valores esperados no vácuo

x-constantes dos campos componentes escalares (a invariância de Lorentz do vácuo

requer que 〈ψα〉 = 0). A ação Ŝ assume a forma

Ŝ[Φ, φcl] =
∫

d5z
[

1
2

Φ
(

D2 + m + λφcl +
g
2

φ2
cl

)
Φ

+
1
3!
(λ + gφcl)Φ

3 +
g
4!

Φ4
]

. (3.7)

O potencial efetivo pode ser escrito numa forma manifestamente supercovariante
como

Ve f f (σ1, σ2) = V(0)(σ1, σ2)−
i

2Ω
ln Det

[
i∆−1

F (z, z′)
]
+

i
Ω

〈
0
∣∣∣∣T exp i

∫
d5zL̂int(Φ, φcl)

∣∣∣∣ 0
〉

.

(3.8)

O primeiro termo em Eq. (3.8) é o potencial clássico como dado em (3.4), com φ → σ1
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e F → σ2. O segundo termo é a correção em um laço, onde

i∆−1
F (z, z′) =

δ2S[Φ]

δΦzδΦz′

∣∣∣∣
Φ=φcl

=
(

D2 + m + λφcl +
g
2

φ2
cl

)
δ5(z− z′), (3.9)

e Ω ≡
∫

d3x é o volume do espaço-tempo. O terceiro termo codifica as correções de

ordem mais alta na expansão de laços: a soma dos “one-particle-irreducible” superdi-

agramas de vácuo com dois ou mais laços calculados a partir da ação deslocada (3.7).

Notemos que o potencial efetivo é função somente dos campos constantes σ1 e σ2. A

abordagem em supercampos adotada aqui garante que após toda as manipulações da

D-álgebra, somente uma única θ-integração permaneça para ser feita. Isso nos permite

escrever o potencial efetivo numa forma equivalente a (3.4).

3.3.1 Correção a um laço

A contribuição a um laço V(1) para o potencial efetivo é expressa pelo determinante

funcional em (3.8). Tal determinante pode ser calculado pelo método da função zeta

(ζ-function method) como descrito na Ref. [45]. Seguindo os cálculos delineados no

apêndice A, podemos escrever V(1) como

V(1) = − i
2

∫ d3k
(2π)3 ln

[
k2 + M2

k2 + µ2
1

]

=
1

12π

[(
µ2

1

)3/2
−
(

M2
)3/2

]
, (3.10)

onde usamos regularização dimensional e subtração mínima para realizar a integral

no momento. O parâmetro M2 = µ2
1 − µ2

2 é o quadrado da massa bosônica, µ1 = m +

λσ1 +
g
2 σ2

1 é a massa fermiônica e µ2
2 = λσ2 + gσ1σ2 (notemos que µ2

2 é encarado apenas

como uma notação simplificada, podendo assumir valores negativos). Observamos

o cálculo perturbativo é válido somente para M2 positivo, para M2
< 0 o potencial

efetivo assume valores complexos.

Por conseguinte, até a ordem de um laço, o potencial efetivo é finito e dado por

Ve f f (σ1, σ2) = V(0) + V(1)

= −1
2

σ2
2 − σ2S +

2
3

α

[(
S′2
)3/2
−
(

S′2 − σ2S′′
)3/2

]
, (3.11)

tal que µ1 = S′, µ2
2 = σ2S′′ e M = (S′2 − σ2S′′)1/2 e α = 1/8π.

Vamos agora investigar a possibilidade de quebra da SUSY. Os pontos estacionários
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de Ve f f são determinados a partir das condições

∂Ve f f

∂σ2
= 0 = −σ2 − S + αS′′(S′2 − σ2S′′)1/2, (3.12)

∂Ve f f

∂σ1
= 0 = −σ2S′ + α

[
2S′S′′(S′2)1/2 − (2S′S′′ − gσ2)(S′2 − σ2S′′)1/2

]
. (3.13)

Se a SUSY é exata, o mínimo do potencial efetivo ocorre em Ve f f = 0, com σ2 = 0. A

partir das expressões anteriores, quando σ2 = 0 temos que a Eq. (3.11) é identicamente

nula, assim como a Eq. (3.13). Assim, a condição de SUSY exata equivale a Eq. (3.12)

ter uma solução real para σ2 = 0, isto é,

S− αS′′|S′| = 0, (3.14)

ter uma solução real σ1 = σ̄1. Nesse caso, a configuração (σ1 = σ̄1, σ2 = 0) é um ponto

estacionário e também um zero de Ve f f . Se em vez disso, a Eq. (3.14) não têm solução,

então σ2 = 0 não é solução da Eq. (3.12) e a SUSY é quebrada.

Da definição de S, para g 6= 0 é fácil ver que a Eq. (3.14) sempre possui ao menos

uma solução real, já que neste caso temos uma equação polinomial de terceiro grau em

σ1. No caso particular a = λ = m = 0, temos σ1 = σ2 = 0 como um mínimo absoluto e

a simetria discreta juntamente com a simetria de escala são ambas preservadas. Nossos

cálculos concordam com os resultados da Ref. [45].

Se considerarmos g = 0 e λ > 0, temos soluções reais para σ1 se m2 + α2λ4 > 2aλ,

significando que a SUSY é preservada neste caso também.

3.3.2 Correção a dois laços

Como é bem sabido, para que a quebra de simetria ocorra por correções radioativas

é necessário a indução de termos da forma h(σ1, σ2) ln f (σ1, σ2). Em 2 + 1 dimensões,

isto ocorre somente em dois (ou mais) laços. Para estudar essa possibilidade e fazer

uma analise detalhada dos contratermos UV necessários para renormalizar o potencial

efetivo, iremos considerar o caso geral em que todos os parâmetros na Eq. (3.1) sejam

não nulos.

Vamos iniciar nosso cálculo estabelecendo as regras de Feynman para a teoria des-

locada (3.7). O propagador livre satisfaz a equação de Green:

Ôz∆F(z− z′) = iδ5(z− z′), (3.15)

onde Ôz = D2
z + µ1 − µ2

2θ2 com µ1 e µ2
2 definidos como antes.

Para inverter o operador Ô, faremos uso do método dos operadores de projeção,
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desenvolvido nas Refs. [50, 51]. Uma base para o espaço dos operadores escalares é

formado pelo conjunto de seis operadores linearmente independentes:

P0 = 1, P1 = D2, P2 = θ2, P3 = θαDα, P4 = θ2D2, P5 = i∂αβθαDβ,

que satisfazem a tabela de multiplicação 3.1:

P1 P2 P3 P4 P5
P1 � −P0 + P3 + P4 2P1 + P5 −P1 +�P2 − P5 �(−2P0 + P3)
P2 P4 0 0 0 0
P3 −P5 2P2 P3 − 2P4 2P4 2�P2 + P5
P4 �P2 −P2 2P4 −P4 −2�P2
P5 −�P3 0 −2�P2 + P5 0 �(P3 + 2P4)

Tabela 3.1: Tabela de multiplicação empregada na inversão de Ô. Além disso, temos as rela-
ções triviais: P0Pi = PiP0 = Pi, com i = 0, . . . , 5.

Após uma álgebra direta, o superpropagador no espaço dos momentos pode ser

escrito como

∆F(k; θ − θ′) = i

(
5

∑
i=0

ciPi

)
δ2(θ − θ′), (3.16)

onde:

c0 =
µ1

k2 + M2 , c1 = − 1
k2 + M2 , c2 = − (k2 − µ2

1)µ
2
2

(k2 + µ2
1)(k

2 + M2)
, c3 = − µ1µ2

2

(k2 + µ2
1)(k

2 + M2)
,

c4 = − 2µ1µ2
2

(k2 + µ2
1)(k

2 + M2)
, c5 = − µ2

2

(k2 + µ2
1)(k

2 + M2)
.

Os vértice de interação são lidos diretamente da Eq. (3.7) e os fatores de simetria

são determinados pelo teorema de Wick de modo usual.

Os superdiagramas em dois laços para o potencial efetivo estão desenhados na Fig.

3.2. As expressões analíticas associadas são mostradas no apêndice C e as integrais

de momento a dois laços que resultam da D-álgebra são calculadas via regularização

dimensional por meio das fórmulas apresentadas no apêndice B.

A contribuição do diagrama (a), denotada por V(2)
a , resulta ser finita, desde que ela

é constituída pelo produto de integrais de momento a um laço sem “overlapping”. Por

sua vez, o diagrama (b) tem divergências proporcionais a todos os termos presentes no

potencial clássico V(0), o que comprova que a renormalização do modelo é obtida de

modo usual. Em resumo, temos os seguintes resultados:
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(a) (b)

Figura 3.2: Bolhas de vácuo em dois laços para V(2)
a e V(2)

b , respectivamente.

V(2)
a = − g

32π2
Mµ1µ2

2
(M + µ1)

,

V(2)
b =

(λ + gσ1)
2

64π2

[
µ2

2
2

Idiv − 6µ2
1 ln

(
2M + µ1

µ

)
+ (M2 + 5µ2

1) ln
(

3M
µ

)]

+
(λ + gσ1)

2

64π2

[
−M2 ln

(
M
µ

)
+

M2

3

{
1 + ln

(
M + 2µ1

27µ

)}
− 2

3
Mµ1

+
µ2

1
3

{
1− 6 ln

(
3M
µ

)
− 10 ln

(
M + 2µ1

µ

)}
+

2
3
(M2 + 8µ2

1) ln
(

2M + µ1

µ

)]

+
gσ2

64π2

[{
Idiv − 2 ln

(
3M
µ

)}(
λµ1 + gµ1σ1 −

g
6

σ2

)]
, (3.17)

onde Idiv = 1
ǫ + ln[4πe(1−γE)] e µ é um parâmetro arbitrário de massa introduzido via

regularização dimensional.

O potencial efetivo renormalizado até a ordem de dois laços é dado por

Ve f f = V(0) + V(1) + V(2)
a + V(2)

b + VCT, (3.18)

tal que VCT representa os contratermos obtidos por reescalonamento do potencial clás-

sico

VCT = −
[

1
2

δZσ2
2 + δmσ1σ2 +

δλ

2
σ2

1 σ2 +
δg
6

σ3
1 σ2 + δaσ2

]
, (3.19)

como pode ser lido diretamente da Lagrangiana clássica em (3.4); δZ é o contratermo

devido a renormalização da função de onda e os outros contratermos são claramente

indicados. As partes divergentes de V(2) podem ser colecionadas em

V(2)
div =

Idiv

128π2

[
−1

3
g2σ2

2 + (2g2m + 5gλ2)σ1σ2 + 6g2λσ2
1 σ2 + 2g3σ3

1 σ2 + (2gmλ + λ3)σ2

]
.

(3.20)

A partir dessa equação, concluímos que a renormalização do potencial efetivo ne-
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cessita de todos os contratermos presentes em Eq. (3.19):

δZ = −1
3

ĝ2 Idiv + δZ f in

δa =
1
2
(2mĝλ̂ + λλ̂2)Idiv + δa f in

δm =
1
2
(2mĝ2 + 5gλ̂2)Idiv + δm f in

δλ = 6ĝ2λIdiv + δλ f in

δg = 6gĝ2 Idiv + δg f in (3.21)

onde definimos ĝ = g/8π e λ̂ = λ/8π.

Agora, vamos comparar o resultado anterior com outros encontrados na literatura.

Em [44] o potencial efetivo para o modelo de WZ com N = 2 em 2 + 1 D foi estudado

na aproximação de dois laços. Os autores concluem que somente a renormalização da

função de onda é necessária. Tal fato não é inesperado; a formulação do superespaço

com supersimetria N = 2 em 2 + 1 D pode ser obtida a partir da formulação com

N = 1 do superespaço em 3 + 1 D por meio do mecanismo de redução dimensional

[52] e então, os teoremas em 3 + 1 D de não-renormalização são esperados funciona-

rem também com N = 2 em 2 + 1 D. Entretanto, nosso resultado reflete o fato que

para N = 1 em 2 + 1 D os teoremas de não-renormalização não se aplicam e a renor-

malização de todos os parâmetros presentes no modelo é necessária.

Notemos ainda que a Eq. (3.17) contêm três diferentes argumentos nos termos in-

duzidos envolvendo logaritmos, enquanto que as expressões obtidas em [44] possuem

somente um tipo de argumento. Essa diferença é provavelmente resultado da aproxi-

mação adotada em [44], tal que as derivadas espinoriais DαΦ e D2Φ (além do caso espa-

cial usual ∂Φ/∂xµ) são desprezadas. Nossos resultados também contradizem aqueles

obtidos em [46] para um modelo similar comN = 1, no qual um contratermo da forma

σ6
1 , que não está presente na Lagrangiana clássica, foi necessário para cancelar as diver-

gências obtidas nos cálculos dos diagramas em dois laços, no formalismo de campos

componentes.

Para o caso com g 6= 0 e λ 6= 0 a renormalização também requer que δa e δm

sejam não nulos. O sub-caso com somente g 6= 0 é renormalizável, requerendo a re-

normalização de g em adição a de Z. Se g = 0 e λ 6= 0 (onde o modelo torna-se

super-renormalizável) o cancelamento das divergências UV em dois laços também re-

quer que δa 6= 0.
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3.4 O vácuo supersimétrico

Vamos investigar agora em mais detalhes o submodelo com g 6= 0 e m = λ = a = 0,

que é de particular interesse por ser classicamente invariante de escala. Como discu-

tido na seção prévia, o modelo requer somente os contratermos δZ e δg. O potencial

efetivo renormalizado Ve f f assume a forma

Ve f f =−
1 + δZ f in

2
σ2

2 −
g + δg f in

6
σ3

1 σ2 +
1

12π
(µ3

1 −M3)

+
g

32π2

[
1
3

µ1(µ1 −M)(µ1 − 4M)− 2
3

µ1(µ
2
1 −M2) ln

2M + µ1

µ

− 1
3

µ1(10µ2
1 −M2) ln

M + 2µ1

µ
+
(

µ1(2µ2
1 + M2) +

g
6

σ2
2

)
ln

3M
µ

]
, (3.22)

onde µ1 = gσ2
1 /2, µ2

2 = gσ1σ2 e M = (µ2
1 − µ2

2)
1/2. Observe que Ve f f é real somente

para M real, isto é, se (gσ4
1 − 4σ1σ2) > 0.

A singularidade em σ1 = 0 para σ2 6= 0, no último termo de Ve f f , é remanescente

da divergência IR produzida pela ausência do termo de massa na ação clássica. Assim,

σ1 = 0 não é um ponto conveniente para impor as condições de renormalização. O

ponto σ2
1 = µ, onde µ é o parâmetro de massa introduzido via regularização dimensio-

nal constitui uma escolha mais natural. Para ver esse fato, vamos expandir a expressão

do potencial efetivo em potências de σ2.

O resultado pode ser posto na forma

Ve f f = σ2σ3
1

[
−g

6
+

(
−δg f in

6
+

1
2

gĝ− 3
2

gĝ2 − 2gĝ2 ln
3g
2

)
− 2gĝ2 ln

σ2
1

µ

]

+ σ2
2

[
−1

2
+

(
−δZ f in

2
− 1

2
ĝ +

29
18

ĝ2 +
1
3

ĝ2 ln
3g
2

)
+

1
3

ĝ2 ln
σ2

1
µ

]
+ σ3

2 F (σ1),

(3.23)

onde, como antes, ĝ = g/8π. Para fixar δg f in e δZ f in, vamos impor que todos os ter-

mos dentro dos parenteses sejam nulos. Essa escolha implica que no ponto σ2
1 = µ,

os coeficientes dos dois monômios (σ2σ3
1 e σ2

2 ) são os mesmos do potencial clássico

Vclass = −(g/6)σ2σ3
1 − (1/2)σ2

2 . A primeira condição fixa a constante de acoplamento

e a segunda implica que o coeficiente do termo cinético da Lagrangiana efetiva renor-

malizada em σ1 = µ seja um.
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Na forma expandida, o potencial renormalizado resulta em

Ve f f = σ2σ3
1

(
−g

6
− 2gĝ2 ln

σ2
1

µ

)

+ σ2
2

(
−1

2
+

1
3

ĝ2 ln
σ2

1
µ

)
+ σ3

2 F (σ1). (3.24)

Agora, vamos investigar a possibilidade da quebra de supersimetria. É fácil verifi-

car que Ve f f (σ1, σ2 = 0) = 0, assim como ∂Ve f f /∂σ1
∣∣
σ2=0 ≡ 0. A condição ∂Ve f f /∂σ2

∣∣
σ2=0 =

0, implica na seguinte equação de “gap” para σ1:

σ3
1

(
1 + 12ĝ2 ln

σ2
1

µ

)
= 0. (3.25)

Essa equação tem um solução trivial em σmin
1 = 0, o que assegura que a SUSY, assim

como a simetria discreta Φ → −Φ são ambas preservadas pelas correções radioativas.

Considerando o termo entre parenteses, uma possível solução não nula σmin
1 6= 0 seria

dada por

g2 ln
(σmin

1 )2

µ
= −16π2

3
. (3.26)

Contudo, seguindo o argumento de Coleman e Weinberg [43], correções de ordem

mais alta são esperadas introduzir potencias mais altas de g2 ln σ2
1

µ ≫ 1 (em valores ab-

solutos) e assim, levar este novo mínimo para uma região muito afastada do intervalo

de validade da aproximação de dois laços.

Concluímos que nenhum vácuo não trivial é induzido por correções radiativas e

que nem a SUSY e nem a geração dinâmica de massa ocorrem. Nossos resultados

contradizem os obtidos na Ref. [47], onde é relatado que as correções de dois laços são

capazes de induzir uma quebra de supersimetria, seguida por uma geração dinâmica

de massa.

Por outro lado, uma conclusão similar à nossa foi obtido em [53], para o modelo

O(N) WZ na aproximação 1/N. De fato, como discutido em [43], a quebra espontânea

de simetria e a geração de massa através de correções radiativas são possíveis somente

em modelos com mais de uma constate de acoplamento e necessitam de um ajuste fino

entre estas constantes para garantir a validade da expansão perturbativa.

Para encerrar esse capitulo, vamos determinar as funções βg e γΦ do grupo de

renormalização para o caso particular com g 6= 0 e m = λ = a = 0. Podemos relacionar

o supercampo e a constante de acoplamento não renormalizados Φ0 e g0 em termos de
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Φ e g renormalizados por meio das definições

Φ0 = Z
1
2
ΦΦ = (1 + δZ)

1
2 Φ, (3.27)

g0 = µεgZg = µεg

[
1 + g−1δg

Z2
Φ

]
, (3.28)

e escrevendo explicitamente os contratermos a partir da Eq. (3.21) como

δZ = − g2

192π2
1
ε
+ termos finitos, (3.29)

δg =
3g3

32π2
1
ε
+ termos finitos, (3.30)

obtemos a função beta na ordem principal

βg = µ
∂g
∂µ

=
5g3

24π2 − εg

=
5g3

24π2 (para ε→ 0). (3.31)

Esse resultado está de acordo com o obtido na Ref. [54] pelo cálculo direto das partes

divergentes das várias funções de vértice no formalismo de campos componentes. A

solução da Eq. (3.31) é dada por

ḡ2 =
g2

1− 5
12π2 g2ln µ̄

µ

. (3.32)

Partindo com um g2 ≪ 1 na escala de energia definida por µ, vemos que a cons-

tante de acoplamento efetiva ḡ2 cresce quando a escala µ̄ é aumentada. Então, a curtas

distâncias, os resultados acima não são factíveis: correções de mais laços tornam-se

cada vez maiores quando comparadas com as de segunda ordem. Se em vez disso

temos µ̄→ 0, obtemos ḡ2 → 0, revelando um limite IR livre.

Uma dimensão anômala para o modelo também é induzida, como pode ser vista

pelo cálculo da função γΦ:

γΦ =
1
2

µ
d ln ZΦ

dµ
. (3.33)

A partir de (3.27), podemos escrever (3.33) na forma

2 (1 + δZ) γΦ = µ
∂δZ
∂g

∂g
∂µ

. (3.34)
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Substituindo (3.29) e (3.31) em (3.34), obtemos

2
(

1− g2

192π2
1
ε

)
γΦ =

g2

96π2 −
5g4

24 · 96π4
1
ε

, (3.35)

que implica em

γΦ =
g2

192π2 . (3.36)



Capítulo 4

Identidades de Slavnov-Taylor para a

QED não comutativa supersimétrica em

(2 + 1)D

Apresentaremos neste capítulo o estudo das identidades de Slavnov-Taylor para a

eletrodinâmica quântica não comutativa supersimétrica em 2+ 1 dimensões. O acopla-

mento com matéria é realizado por supercampos escalares complexos na representação

fundamental.

4.1 Supersimetria, simetria BRST e não comutatividade

Um dos principais problemas na formulação de teorias de calibre no superespaço é

a ausência de um mecanismo de regularização que preserve explicitamente ambas as

simetrias; de calibre e a supersimetria. Em geral, a ação efetiva renormalizada obtida

a partir de um particular esquema de regularização, como por exemplo regularização

dimensional (ou DReG), pode não a priori satisfazer explicitamente as identidades de

Ward e manter a supersimetria manifesta, quando formulada no superespaço [55].

Para ver o porquê desse problema, imaginemos uma teoria de calibre usual, formu-

lada no superespaço com N = 1 em 3 + 1 dimensões do espaço-tempo. Seguindo o

procedimento bem estabelecido por Grisaru et al. [18] para a determinação da ação

efetiva diretamente no superespaço, o mecanismo de regularização que permite isolar

as divergências, renormalizar a teoria e manter a supersimetria manifesta em todas as

etapas dos cálculos é a regularização por redução dimensional (ou DReD) [56]. Neste

particular esquema, toda a D-álgebra envolvendo os superdiagramas de Feynman, que

na formulação em componentes corresponde a manipulação dos traços, contrações, etc,

das matrizes de Dirac, é realizada com a dimensão fixada em D = 4. Somente ao final,

47
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quando a ação efetiva é transformada numa função local nas coordenadas grasmania-

nas, tomamos D = 4− ǫ e resolvemos as integrais de momento escalares resultantes.

Como o número de graus de liberdade bosônicos e fermiônicos, agrupados de forma

condensada nos multipletos formados pelos supercampos, são mantidos inalterados

em todas as etapas, então podemos garantir que esse método preserva a supersimetria

explicitamente. Contudo, tal fato não garante que a simetria de calibre seja preservada,

pois alguma componente do campo de calibre em 4− D pode sofrer uma transforma-

ção de calibre diferente das outras componentes mantidas fixas em D = 4. Por essa

razão, a DReD não preserva a invariância de calibre em todos os estágios e corre o risco

de violar as identidades de Ward, embora preserve a supersimetria explicitamente. Tal

fato constitui uma inconsistência da DReD e foi primeiramente descrito em [57]. Por

outro lado, na formulação em campos componentes, podemos aplicar a DReG desde o

início e, como é bem sabido, ela preserva explicitamente a simetria de calibre ao tratar

todos os campos do modelo em questão como objetos D-dimensionais [58]. Infeliz-

mente, como a supersimetria é manifesta somente em D = 4, a DReG não garante a

preservação de tal simetria no modelo.

Outro aspecto que pode contribuir para a violação das simetrias de calibre é o efeito

da mistura ultravioleta/infravermelha (UV/IR), peculiar em teoria de campos não co-

mutativas. Tal fenômeno é capaz de transformar termos com divergências ultravioletas

em divergências infravermelhas e tecnicamente pode ser visto como decorrente da se-

paração dos diagramas de Feynmam em partes planar e não planar. Esse fato pode

inviabilizar a expansão perturbativa, tornando um modelo comutativo que ordinaria-

mente é renormalizável em uma teoria com termos infravermelhos singulares que não

podem ser eliminados pelo processo de renormalização [10, 11, 12]. Entretanto, o can-

celamento das divergências devido as contribuições bosônicas e fermiônicas em teorias

supersimétricas, pode ajudar a amortizar o efeito da mistura UV/IR.

No situação usual sabe-se que as identidades de Ward-Takashashi (WT) produzem

vínculos diagramáticos entre as diferentes funções de Green, como consequência da

simetria de calibre original. Tais identidades são fundamentais para relacionar os dife-

rentes contratermos e tornar viável o programa de renormalização em todas as ordens

de perturbação. Por conseguinte, uma verificação explicita das identidades de WT for-

nece um modo de garantir que a simetria de calibre não foi violada por nenhuma pos-

sível anomalia introduzida através de um esquema de regularização ou pela presença

da não comutatividade.

Em particular, para o caso da eletrodinâmica quântica supersimétrica não comuta-

tiva em 2 + 1 dimensões (NCSQED3) foi provada sua finitude e ausência de singula-

ridades UV/IR não integráveis até a ordem de uma laço [59]. Contudo, a importante

questão envolvendo a preservação ou não da simetria de calibre, devido a introdução
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da não comutatividade e/ou DRGe, não foi estudada até o presente momento. Neste

capítulo, apresentaremos uma análise preliminar das identidades de WT generalizadas

( ou identidades de Slavnov-Taylor (ST)) para a NCSQED3.

Na seção 4.2, definiremos o modelo que descreve a NCSQED3 utilizando o forma-

lismo de supercampos. Também incluiremos a interação com matéria, permitindo o

acoplamento do supercampo de calibre com um supercampo escalar complexo na re-

presentação fundamental. A quantização da teoria é realizada de maneira canônica,

com a introdução de um termo fixador de calibre e dos correspondentes campos fan-

tasmas de Faddeev–Popov. Na seção 4.3, definiremos as transformações de BRST e

faremos a verificação explícita da invariância da ação clássica sob esse conjunto de

transformações. No que segue, derivaremos as identidades de ST via formalismo fun-

cional, diretamente no superespaço. Na seção 4.4, determinaremos uma expressão

geral para o grau de divergência superficial da teoria, indicando que o modelo é super-

renormalizável. Finalmente, na seção 4.5, calcularemos a ação efetiva correspondente

a função de dois pontos para o supercampo de calibre na aproximação de um laço e

mostraremos explicitamente que a mesma satisfaz a identidade de ST.

4.2 Ação clássica em supercampos e a quantização no su-

perespaço

4.2.1 Apresentação do modelo

A NCSQED3 com N = 1 é definida no superespaço pela ação clássica [59]

SG =
1
2

∫
d5zWα

⋆ Wα, (4.1)

onde o elemento de integração é representado por d5z ≡ d3xd2θ e o produto Moyal é

o mesmo que em (2.14) e só afeta as coordenadas do espaço-tempo xµ. O supercampo

espinorial Wα que representa a intensidade de campo eletromagnética é construído a

partir do supercampo espinorial de calibre Aα por meio da relação

Wα =
1
2

DβDαAβ −
ig
2

[
Aβ, DβAα

]
⋆ −

g2

6

[
Aβ, {Aβ, Aα}

]
⋆

, (4.2)

tal que o símbolo “⋆” indica que todos os campos no interior do comutadores e antico-

mutadores são multiplicados via produto Moyal. Notemos que a não comutatividade

induz um comportamento não-abeliano na teoria, mesmo que o grupo de simetria seja

o U (1)⋆. Do termo bilinear, podemos extrair a dimensão do supercampo em unida-

des de massa[Aα] = 0, tal que a constante de acoplamento possui dimensão [g] = 1/2.
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Deve-se notar que ao tomar g → 0, obtemos a versão usual da eletrodinâmica supersi-

métrica tridimensional [18]. Além disso, estamos considerando a não comutatividade

apenas nas coordenadas espaciais (Θ0i = 0) a fim de evitar problemas de unitariedade

[60].

A ação definida por SG é invariante sob a transformação de calibre não comutativa

δG Aα(z) ≡
1
g
∇αK(z) =

1
g
(DαK− ig [Aα, K]

⋆
) , (4.3)

onde ∇α = Dα − ig[Aα, ]⋆ é a derivada covariante espinorial e K(z) é um super-

campo escalar real arbitrário, tal que Wα se transforma covariantemente por (Wα)′ =
eiK

⋆ Wα ⋆ e−iK . Para prosseguir com a quantização da teoria, devemos fixar o calibre

acrescentando uma novo termo a SG na forma

SGF = − 1
4α

∫
d5z (Dα Aα) D2

(
DβAβ

)
. (4.4)

onde α é um parâmetro adimensional que fixa a escolha do calibre. Deve-se observar

que o termo acima quebra a invariância de calibre da teoria, mas mantêm a supersime-

tria manifesta. Para completar a quantização, seguimos o procedimento de Faddeev-

Popov adicionando a ação clássica a contribuição dos campos fantasmas na forma

SFP =
1
2

∫
d5zc′ ⋆ Dα∇αc

=
1
2

∫
d5zc′ ⋆ Dα (Dαc− ig {Aα, c}

⋆
) , (4.5)

tal que c(z) e c′(z) são supercampos escalares anticomutantes real e imaginário, res-

pectivamente. Tal que a condição de hermiticidade da Lagrangiana dos supercampos

fantasmas seja preservada. Note que em (4.5), a derivada supercovariante é composta

por um anticomutador entre Aα e c, em contraste com (4.3). Dessa forma, estamos as-

sumindo que os campos fantasmas comportam-se como supercampos fermiônicos sob

a álgebra da supersimetria e estão na representação adjunta do grupo de calibre U (1)⋆
.

Para completar nosso modelo, vamos admitir que o supercampo de calibre acopla

minimamente com a matéria por meio da ação

SM =
∫

d5z
[
−1

2
∇αΦ ⋆∇αΦ + MΦ̄Φ

]

=
∫

d5z
[
−1

2
(DαΦ̄ + igΦ̄Aα) ⋆ (DαΦ− igAαΦ) + MΦ̄Φ

]
, (4.6)

onde Φ é um supercampo escalar complexo pertencente a representação fundamental
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do grupo de U (1)⋆, com dimensão em unidades de massa [Φ] = 1/2. Observamos

que a derivada covariante atuando sobre um supercampo bosônico na representação

fundamental assume a forma ∇ = Dα − igAα.

A ação definida em (4.6) é invariante sob a transformação de calibre (4.3), em adição

com as seguintes transformações para os campos Φ e Φ̄:

δGΦ = iK ⋆ Φ,

δGΦ̄ = −iΦ̄ ⋆ K. (4.7)

4.2.2 Regras de Feynman

As regras de Feynman para os supercampos da NCSQED3; Aα, c, c′, Φ e Φ̄, podem

ser obtidas diretamente das Lagrangianas em (4.1), (4.4), (4.5) e (4.6). Os propagadores

são definidos pelos termos quadráticos e os vértices pelos termos de interação. Como

visto na seção 1.6, o procedimento para determinar os propagadores segue o caso no

caso usual, tal que alguns passos intermediários serão omitidos.

A ação quadrática para o campo de calibre é dada por:

SA2 =
1
2

∫
d5z
[

1
4

DβDσ AβDαDσ Aα −
1

2α
DβAβD2DαAα

]

=
1
2

∫
d5zAβ

[
−1

4
DσDβDαDσ −

1
2α

DβD2Dα

]
Aα, (4.8)

onde utilizamos integração por partes. Com o auxilio das identidades supersimétricas

DβDαDσ = DσDαDβ, DβD2 = −D2Dβ e DαDβ = i∂αβ − CαβD2, podemos reescrever

(4.8) na forma

SA2 =
1
2

∫
d5zAβ

[
−1

2
D2DαDβ +

1
2α

D2DβDα

]
Aα

=
1
2

∫
d5zAβ

[
1
2

(
1 +

1
α

)
Cαβ�+

1
2

(
−1 +

1
α

)
i∂αβD2

]
Aα. (4.9)

O propagador de Feynman é obtido completando os quadrados no gerador funcio-

nal para o supercampo de calibre e realizando a integração Gaussiana sobre Aα. Isto é

equivalente a inversão do termo entre colchetes na Eq. (4.9), deste modo o propagador

de Feynman ∆Fαβ(z1 − z2) satisfaz a seguinte equação de Green:
[
−1

2
D2DµDα +

1
2α

D2DαDµ

]

z1

∆Fµβ(z1 − z2) = iδα
βδ5(z1 − z2), (4.10)
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a qual, é possível verificar que no espaço dos momentos assume a forma

∆Fαβ(p; θ1 − θ2) =
〈

Aα(p, θ1)Aβ(−p, θ2)
〉

=
i

2p4

[
D2DβDα − αD2DαDβ

]
δ2(θ1 − θ2),

=
i
2

[
Cβα

1
p2 (α + 1)− 1

p4 (α− 1)pαβD2
]

δ2(θ1 − θ2), (4.11)

Note que a escolha mais conveniente para o parâmetro fixador de calibre é α = 1

(calibre de Feynman), implicando no propagador simplificado

〈
Aα(p, θ1)Aβ(−p, θ2)

〉
α=1 = iCβα

1
p2 δ2(θ1 − θ2). (4.12)

As partes quadráticas associadas aos supercampos fantasmas de Faddeev-Popov e

de matéria são dadas por

Sc2 =
∫

d5zc′D2c, (4.13)

SΦ2 =
∫

d5zΦ̄
(

D2 + M
)

Φ. (4.14)

Os propagadores correspondentes podem ser obtidos de forma similar, resultando em:

GF(p, θ1 − θ2) =
〈
c′(p, θ1)c(−p, θ2)

〉
= i

D2

p2 δ2(θ1 − θ2), (4.15)

∆F(p, θ1 − θ2) = 〈Φ(p, θ1)Φ̄(−p, θ2)〉 = −i
D2−M
p2 + M2 δ2(θ1 − θ2). (4.16)

Os termos de interação da ação clássica dos setores de calibre puro, dos campos

fantasmas e de matéria são obtidos de 4.1 , 4.2 , 4.5 e 4.6 , sendo respectivamente

SG(int) =
∫

d5z
[
− ig

4
DβDα Aβ ⋆ [A

σ, DσAα]−
g2

8

[
Aβ, DβAα

]
⋆ [Aσ, Dσ Aα]

− g2

12
DβDα Aβ ⋆ [A

σ, {Aσ, Aα}] +
ig3

12

[
Aβ, DβAα

]
⋆ [Aσ, {Aσ, Aα}]

+
g4

72

[
Aβ,

{
Aβ, Aα

}]
⋆ [Aσ, {Aσ, Aα}]

]
, (4.17)

SFP(int) = −
ig
2

∫
d5z
[
c′ ⋆ DαAα ⋆ c + c′ ⋆ Aα

⋆ Dαc + c′ ⋆ Dαc ⋆ Aα − c′ ⋆ c ⋆ Dα Aα

]
,

(4.18)
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SM(int) =
∫

d5z
[

ig
2
(DαΦ̄ ⋆ Aα ⋆ Φ− Φ̄ ⋆ Aα

⋆ DαΦ)− g2

2
Φ̄ ⋆ Aα

⋆ Aα ⋆ Φ

]
, (4.19)

onde o produto Moyal nos (anti)comutadores está subtendido.

Os vértices representados no espaço dos momentos podem ser escritos na forma

• Setor de calibre:

VA3 =
(g

2

) ∫
d2θ

3

∏
i=1

d3ki

(2π)3 (2π)3δ3(
3

∑
j=1

kj)Dσ A1αDβDαA2β Aσ
3 sin(k1 ∧ k3),

(4.20)

V(1)
A4 =

(
g2

2

) ∫
d2θ

4

∏
i=1

d3ki

(2π)3 (2π)3δ3(
4

∑
j=1

kj)Aβ
1 DβAα

2 Aσ
3 Dσ A4α

sin [k1 ∧ (k3 + k4)] sin(k4 ∧ k3), (4.21)

V(2)
A4 =

(
g2

3

) ∫
d2θ

4

∏
i=1

d3ki

(2π)3 (2π)3δ3(
4

∑
j=1

kj)D
βDαA1β Aσ

2 A3α A4σ

sin [k2 ∧ (k3 + k4)] sin(k3 ∧ k4), (4.22)

VA5 =

(
−2g3

3

) ∫
d2θ

5

∏
i=1

d3ki

(2π)3 (2π)3δ(
5

∑
j=1

kj)Aγ
1 DγAα

2 Aβ
3 A4β A5α

sin [(k1 + k2 + k3) ∧ k4] sin [(k1 + k2) ∧ k3] sin(k1 ∧ k2), (4.23)

VA6 =

(
−2g4

9

) ∫
d2θ

6

∏
i=1

d3ki

(2π)3 (2π)3δ(
6

∑
j=1

kj)Aγ
1 A2γ Aα

3 Aβ
5 A6β A4α

sin [(k1 + k2 + k3 + k5) ∧ k4] sin [(k1 + k2 + k3) ∧ k5]

sin [k1 ∧ (k2 + k3)] sin(k2 ∧ k3). (4.24)

• Campos fantasmas

VAc2 = (−g)
∫

d2θ
3

∏
i=1

d3ki

(2π)3 (2π)3δ3(
3

∑
j=1

kj)D
αc′1c2A3α sin(k2 ∧ k3). (4.25)

• Setor de matéria

V(1)
Φ2 A =

(
ig
2

) ∫
d2θ

3

∏
i=1

d3ki

(2π)3 (2π)3δ3(
3

∑
j=1

kj)D
αΦ̄1 A2αΦ3e−ik2∧k3 , (4.26)
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V(2)
Φ2 A =

(
− ig

2

) ∫
d2θ

3

∏
i=1

d3ki

(2π)3 (2π)3δ3(
3

∑
j=1

kj)Φ̄1 Aα
2 DαΦ3e−ik2∧k3 , (4.27)

VΦ2 A2 =

(
−g2

2

) ∫
d2θ

4

∏
i=1

d3ki

(2π)3 (2π)3δ3(
4

∑
j=1

kj)Φ̄1 Aα
2 A3αΦ4e−i[k2∧(k3+k4)+k3∧k4],

(4.28)

onde adotamos a notação simplificada Aiα ≡ Aα(ki , θ), ci = c(ki, θ) e Φi ≡ Φ(ki , θ).

4.3 Identidades de Slavnov-Taylor para a ação efetiva: for-

mulação em supercampos

4.3.1 Simetria BRST

Como vimos anteriormante, a Lagrangiana total para a NCSQED3 é dada por

LTot =
1
2

Wα
⋆ Wα −

1
2
∇αΦ ⋆∇αΦ + MΦ̄ ⋆ Φ

− 1
4α

(DαAα) D2
(

Dβ Aβ

)
+

1
2

c′ ⋆ Dα∇αc, (4.29)

onde somente os três primeiros termos são invariantes de calibre.

No processo de quantização, a simetria de calibre foi quebrada com a introdução

do parâmetro α e, por conseguinte, a Lagrangiana definida em (4.29) não é mais inva-

riante de calibre. Contudo, existe ainda uma simetria adicional, que está diretamente

relacionada com os supercampos fantasmas e recebe o nome de simetria BRST (Becchi,

Rouet, Stora e Tyutin [61]). A simetria BRST é uma simetria global que envolve um

parâmetro escalar fermiônico, mas diferentemente das transformações de supersime-

tria, cujo parâmetro é um espinor por transformações de Lorentz, aqui ele se comporta

como um escalar.

A importância das transformações de BRST reside no fato de que elas permitem

derivar identidades de Ward, neste caso chamadas de Slavnov-Taylor [62], as quais

relacionam as funções de vértices de n-pontos e os contratermos necessários para a

renormalização.
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As transformações de BRST para o modelo são definidas como segue

sAα = −ǫ∇αc,

sc = igǫc ⋆ c,

sc′ = ǫ
1
α

D2DαAα,

sΦ = igǫc ⋆ Φ,

sΦ̄ = −igǫΦ̄ ⋆ c, (4.30)

onde ǫ é um parâmetro fermiônico constante e imaginário. Antes de demonstrar a

invariância de (4.29) sob (4.30), convém demonstrar as seguintes relações:

s(Dα Aα) = 0,

s(∇αc) = 0,

s(c ⋆ c) = 0. (4.31)

De fato, a primeira identidade acima resulta de

s(Dα Aα) = Dα(sAα) = Dα(−ǫ∇αc) = ǫDα∇αc = 0, (4.32)

onde no último passo usamos a equação de movimento para o supercampo fantasma

c, obtida por meio de δSFP
δc′ = 0. Similarmente, obtemos

s(∇αc) = s (Dαc− ig {Aα, c}
⋆
)

= Dα(sc)− ig {sAα, c}
⋆
− ig {Aα, sc}

⋆

= ∇α(sc)− ig {sAα, c}
⋆

= ∇α(igǫc ⋆ c)− ig {−ǫ∇αc, c}
⋆

= −igǫ (∇αc ⋆ c− c ⋆∇αc)

+ ig (ǫ∇αc ⋆ c + c ⋆ (ǫ∇αc))

= 0, (4.33)

e finalmente

s(c ⋆ c) = sc ⋆ c + c ⋆ sc

= (igǫc ⋆ c) ⋆ c + c ⋆ (igǫc ⋆ c)

= igǫ(c ⋆ c ⋆ c− c ⋆ c ⋆ c)

= 0, (4.34)
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onde usamos o fato do produto Moyal ser associativo e também a regra de Leibniz

∇α( f ⋆ g) = ∇α f ⋆ g± f ⋆∇αg, onde o sinal depende se f é bóson (+) ou férmion (-).

A invariância da teoria sob (4.30) é simplificada se notarmos que a transformação

para Aα pode ser considerada uma transformação de calibre infinitesimal quando iden-

tificamos K(z) = gǫc(z), tal que

δG Aα(z) ≡
1
g
∇αK(z) =

1
g
∇αgǫc(z) = −ǫ∇αc = sAα, (4.35)

e de forma análoga para os supercampos de matéria. Notemos que K† = gc†ǫ† =

−gcǫ = gǫc = K. Desse modo, precisamos mostrar apenas que as partes envolvendo

os supercampos fantasmas e o fixador de calibre são invariantes por BRST, a menos de

termos de superfície. De Fato,

s (SGF + SFP) = − 1
4α

∫
d5z
(

DβsAβD2Dα Aα + DβAβD2DαsAα

)

+
1
2

∫
d5z
(
sc′Dα∇αc + c′Dαs∇αc

)

= − 1
2α

∫
d5zD2Dβ AβDαsAα +

1
2

∫
d5zsc′Dα∇αc

=
ǫ

2α

∫
d5z
[
−D2Dβ AβDα∇αc + D2DβAβDα∇αc

]

= 0, (4.36)

tal que a ação STot =
∫

d5zLTot é invariante. Na derivação acima, integramos por partes

duas vezes na primeira linha e usamos (4.30) e (4.31).

Uma importante característica das transformações de BRST é a nilpotência, isto é, o

resultado de duas operações sucessivas será sempre nulo:

s1(s2φ) = 0. (4.37)

A prova da nilpotência para Aα, c′ e c, segue diretamente de (4.31). Por exemplo,

para o supercampo Aα, temos

s1 (s2Aα) = s1 (−ǫ2∇αc) = −ǫ2 (s1∇αc) = 0. (4.38)

Para os supercampos de matéria a prova também é direta e segue abaixo

s1 (s2Φ) = s1 (igǫ2c ⋆ Φ)

= igǫ2 (s1c ⋆ Φ + c ⋆ s1Φ)

= i2g2ǫ2ǫ1 (c ⋆ c ⋆ Φ− c ⋆ c ⋆ Φ)

= 0, (4.39)
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de modo análogo para Φ̄.

4.3.2 Identidades de Slavnov-Taylor

Como vimos anteriormente, a simetria de calibre presente na ação clássica se ma-

nifesta, após o procedimento de quantização, por meio da simetria BRST. Como con-

sequência, as funções de Green podem ser mutuamente relacionadas. Tais vínculos

podem ser expressos através das identidades Slavnov-Taylor. A seguir, deduziremos

essas relações diretamente no superespaço, aplicando o procedimento padrão adotado

nas teorias de calibre [63].

Considerando o gerador funcional

Z [J] =
∫
DADc′DcDΦDΦ̄ exp

{
i
∫

d5z (LTot +LFontes)

}
, (4.40)

onde LTot é definida em (4.29) e os termos de fontes são dados por

LFontes = Jα
⋆ Aα + η ⋆ c + c′ ⋆ η′ + χ̄ ⋆ Φ + Φ̄ ⋆ χ. (4.41)

Sabendo que
∫

d5zLTot é invariante por (4.30) e que as fontes não se transformam, po-

demos realizar a seguinte mudança de variáveis para representar as transformações de

BRST.

A→ Ã, c′ → c̃′, c→ c̃, Φ→ Φ̃, Φ̄→ ˜̄Φ. (4.42)

Substituindo (4.42) em (4.40), obtemos

Z̃ [J] =
∫
DADc′DcDΦDΦ̄ exp

{
i
∫

d5z
(
LTot + Jα

⋆ Ãα

+η ⋆ c̃ + c̃′ ⋆ η′ + χ̄ ⋆ Φ̃ + ˜̄Φ ⋆ χ
)}

, (4.43)

onde consideramos que o elemento de integração funcional também é invariante, tendo

em vista que (4.42) são “shifts” nos supercampos produzidos por transformações uni-

tárias.

Sabendo que a Eq. (4.42) consiste simplesmente em uma mudança de variáveis,

então (4.40) e (4.43) devem ser iguais. Isso significa que as funções de Green geradas

por Z [J] devem ser as mesmas que aquelas obtidas por Z̃ [J]:

〈0 |T [Aα(z) . . .]| 0〉 =
〈
0
∣∣T
[
Ãα(z) . . .

]∣∣ 0
〉

, (4.44)

implicando em

s 〈0 |T [Aα(z) . . .]| 0〉 = 0, (4.45)
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A Eq. (4.45) pode ser reescrita na forma de vínculos sobre o gerador funcional. Empre-

gando a forma infinitesimal Ã = A + sA, c̃ = c + sc, etc, e expandindo a exponencial

em (4.43) até primeira ordem, chegamos em

∫
DADc′DcDΦDΦ̄

∫
d5z
(

Jα
⋆ sAα + η ⋆ sc + sc′ ⋆ η′ + χ̄ ⋆ sΦ + sΦ̄ ⋆ χ

)

× exp
{

i
∫

d5z
(
LTot + Jα

⋆ Aα + η ⋆ c + c′ ⋆ η′ + χ̄ ⋆ Φ + Φ̄ ⋆ χ
)}

= 0. (4.46)

Substituindo as transformações de BRST e reescrevendo a expressão resultante na

forma de derivadas funcionais de Z com respeito as fontes, obtemos equações de vín-

culo não lineares sobre o gerador funcional. Esta expressão é inconveniente pois ela

contém derivadas funcionais aplicadas sobre termos envolvendo o produto de super-

campos.

Com o propósito de linearizar as equações de vínculo representadas em (4.46), va-

mos introduzir fontes adicionais para os supercampos compostos, representados pelas

transformações de BRST não lineares: sA ∼ ∇c, sc ∼ c ⋆ c, sΦ ∼ c ⋆ Φ e sΦ̄ ∼ Φ̄ ⋆ c.

Desse modo, a Lagrangiana (4.41) é substituída por

Σ ≡ Jα
⋆ Aα + η ⋆ c + c′ ⋆ η′ + χ̄ ⋆ Φ + Φ̄ ⋆ χ

− Kα
⋆∇αc + igζ̄ ⋆ c ⋆ Φ− igΦ̄ ⋆ c ⋆ ζ + igλ ⋆ c ⋆ c, (4.47)

onde Kα, ζ̄, ζ e λ são as novas fontes associadas aos supercampos ∇αc, c ⋆ Φ, Φ̄ ⋆ c e

c ⋆ c, respectivamente. Note, quanto a estatística, que essas são fontes

Bosônicas: {χ̄, χ, Kα, λ} ,

Fermiônicas:
{

Jα, η, η′ ζ̄, ζ
}

.

Agora, podemos utilizar a propriedade de nilpotência para reescrever a Eq. (4.46)

na forma

∫
DADc′DcDΦDΦ̄

∫
d5z (sΣ) exp

{
i
∫

d5z (LTot + Σ)

}
= 0, (4.48)

sendo

sΣ = Jα
⋆ sAα + η ⋆ sc + sc′ ⋆ η′ + χ̄ ⋆ sΦ + sΦ̄ ⋆ χ

= ǫ

(
Jα

⋆∇αc− igη ⋆ c ⋆ c +
1
α

D2DβAβ ⋆ η′ + igχ̄ ⋆ c ⋆ Φ− igΦ̄ ⋆ c ⋆ χ

)
,

(4.49)
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onde consideramos que os termos de fontes são invariantes por BRST.

A partir da definição do gerador funcional em (4.40) e da adição dos termos de

fontes para os supercampos compostos em (4.47), as seguintes identificações podem

ser estabelecidas:

1
i

δZ
δKα

= 〈−∇αc〉 ,

1
i

δZ
δζ̄

= 〈igc ⋆ Φ〉 ,

1
i

δZ
δζ

= 〈igΦ̄ ⋆ c〉 ,

1
i

δZ
δλ

= 〈igc ⋆ c〉 ,

1
i

δZ
δJα

= 〈Aα〉 , (4.50)

tal que a expressão genérica 〈φ〉 é definida por

〈φ〉 =
∫
DADc′DcDΦDΦ̄φei

∫
d5z(LTot+Σ). (4.51)

Substituindo (4.50) em (4.48) e lembrando que o parâmetro ǫ é arbitrário, obtemos a

identidade de Slavnov-Taylor para o gerador das funções de Green Z :

∫
d5z
{
−Jα

⋆
δZ
δKα
− η ⋆

δZ
δλ

+
1
α

D2Dβ δZ
δJβ

⋆ η′ + χ̄ ⋆
δZ
δζ̄
− δZ

δζ
⋆ χ

}
= 0. (4.52)

Podemos escrever o resultado acima em termos de W[J, η, η′, χ, χ̄; K, λ, ζ, ζ̄ ] através

da relação W = i lnZ :

∫
d5z
{
−Jα

⋆
δW
δKα
− η ⋆

δW
δλ

+
1
α

D2Dβ δW
δJβ

⋆ η′ + χ̄ ⋆
δW
δζ̄
− δW

δζ
⋆ χ

}
= 0. (4.53)

Diferenciando a Eq. (4.53) com respeito as fontes e tomando-as iguais a zero, obte-

mos as identidades que relacionam as diferentes funções de Green conexas da teoria.

Esse é o significado formal da Eq. (4.45) previamente obtida. Dessa forma, a simetria

BRST é de importância fundamental no estudo da renormalizabilidade das teorias de

calibre, tendo em vista que pode estabelecer relações entre os contratermos necessários

para o cancelamento das divergências, além de garantir a independência de calibre

para os observáveis físicos.

Como visto no capítulo 1, o formalismo de supercampos adotado nesse trabalho

permite calcular diretamente a ação efetiva Γ, que representa o gerador funcional das

funções de Green próprias (1PI). É conveniente portanto, expressar a identidade de

ST em termos de Γ[A, c, c′, Φ, Φ̄; K, λ, ζ, ζ̄ ], com o auxilio da transformada de Legendre
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definida por

Γ[A, c, c′, Φ, Φ̄; K, λ, ζ, ζ̄ ] = −W[J, η, η′, χ, χ̄; K, λ, ζ, ζ̄ ]

−
∫

d5z
(

Jα
⋆ Aα + η ⋆ c + c′ ⋆ η′ + χ̄ ⋆ Φ + Φ̄ ⋆ χ

)
,(4.54)

tal que a ação efetiva é função das fontes dos supercampos compostos de BRST.

Usando a Eq. (4.54), podemos verificar as seguintes relações:

δΓ

δAαc = −Jα,
δW
δJα

= −Ac
α,

δΓ

δcc = +η,
δW
δη

= −cc,

δΓ

δc′c
= −η′,

δW
δη′

= +c′c,

δΓ

δΦc = −χ̄,
δW
δχ̄

= −Φc,

δΓ

δΦ̄c = −χ,
δW
δχ

= −Φ̄c, (4.55)

onde o sobrescrito φc indica que estamos tratando de supercampos clássicos no sentido

de

−δW
δJ

= 〈φ〉J ≡ φc, (4.56)

sendo assim, será omitido por simplicidade. Além disso, temos ainda

δΓ

δKα
= − δW

δKα
;

δΓ

δζ̄
= −δW

δζ̄
;

δΓ

δζ
= −δW

δζ
;

δΓ

δλ
= −δW

δλ
. (4.57)

Por meio das Eqs. (4.55) e (4.57), podemos reescrever a Eq. (4.53) na forma

∫
d5z
{
−Cαβ δΓ

δAβ
⋆

δΓ

δKα
+

δΓ

δc
⋆

δΓ

δλ
+

1
α

D2DβAβ ⋆
δΓ

δc′
+

δΓ

δΦ
⋆

δΓ

δζ̄
− δΓ

δζ
⋆

δΓ

δΦ̄

}
= 0,

(4.58)

a qual representa a identidade de ST para a ação efetiva.

Uma identidade adicional é gerada por meio da equação de movimento funcional

para o supercampo fantasma c. Para obtê-la, vamos separar os termos envolvendo c′

em LTot + Σ

LTot + Σ =
1
2

c′ ⋆ Dα∇αc + c′ ⋆ η′ + (demais termos), (4.59)

tal que δ
δc′
∫

d5z (LTot + Σ) = 1
2 Dα∇αc + η′. Como Z [J] só depende das fontes, então a

derivada funcional com respeito a c′ é nula e resulta em

1
i

δZ [J]
δc′

=
1
2

Dα 〈∇αc〉+ η′Z [J] = 0. (4.60)
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Com o auxílio de (4.50), podemos reescrever o resultado acima como

1
2

Dα

(
δW
δKα

)
+ η′ = 0. (4.61)

Em termos da ação efetiva teremos

1
2

Dα

(
δΓ

δKα

)
+

δΓ

δc′
= 0. (4.62)

Inserindo a Eq. (4.62) em (4.58) e integrando por partes, obtemos

∫
d5z
{(
−Cαβ δΓ

δAβ
+

1
2α

DαD2DβAβ

)
⋆

δΓ

δKα
+

δΓ

δc
⋆

δΓ

δλ
+

δΓ

δΦ
⋆

δΓ

δζ̄
− δΓ

δζ
⋆

δΓ

δΦ̄

}
= 0,

(4.63)

Podemos simplificar a Eq. (4.63) redefinindo a ação efetiva como

Γ
′
= Γ +

1
4α

∫
d5zDα AαD2DβAβ, (4.64)

tal que

−Cαβ δΓ
′

δAβ
= −Cαβ δΓ

δAβ
+

1
2α

DαD2DβAβ,
δΓ
′

δc
=

δΓ

δc
, etc. (4.65)

Assim, finalmente obtemos a identidade de ST para a ação efetiva Γ
′

tal como no

caso comutativo usual [63],

∫
d5z

{
−Cαβ δΓ

′

δAβ
⋆

δΓ
′

δKα
+

δΓ
′

δc
⋆

δΓ
′

δλ
+

δΓ
′

δΦ
⋆

δΓ
′

δζ̄
− δΓ

′

δζ
⋆

δΓ
′

δΦ̄

}
= 0. (4.66)

Devemos apontar aqui que as identidades de ST derivadas anteriormente envol-

vem quantidades não renormalizadas e, por conseguinte, um mecanismo de regulari-

zação que permita isolar as quantidades divergentes sem violar a invariância de BRST

da teoria quantizada deve ser adotado. Nosso objetivo é verificar explicitamente, até

a aproximação de um laço, se a regularização por redução dimensional e/ou a não

comutatividade podem violar as identidades deduzidas formalmente nessa seção.

4.4 Divergência superficial e finitude perturbativa

Vimos anteriormente que para estudar a invariância BRST quanticamente, introdu-

zimos superfontes externas acopladas aos supercampos das transformações não linea-

res. Dessa forma, a ação efetiva em nível de árvore passa a ser
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Γ(0)[A, c, c′, Φ, Φ̄; K, λ, ζ, ζ̄ ] = SG + SM + SGF + SFP + SES, (4.67)

onde a ação envolvendo as superfontes de BRST é dada por

SES =
∫

d5z
[
−Kα

⋆∇αc + igζ̄ ⋆ c ⋆ Φ− igΦ̄ ⋆ c ⋆ ζ + igλ ⋆ c ⋆ c
]

. (4.68)

Na ação representada pela Eq. (4.67), devemos levar em conta os vértices de in-

teração devido a Eq. (4.68) nos cálculos envolvendo os diagramas de Feynman. É

importante salientar que as superfontes de BRST são campos não propagantes, e as re-

gras de Feynman deduzidas em 4.2.2 continuam válidas, sofrendo apenas o acréscimo

dos novos vértices em (4.68).

Nosso objetivo agora será determinar quais os diagramas 1PI que contribuem para

a ação efetiva até a ordem de um laço e que são superficialmente divergentes. As-

sim como no caso usual, devemos determinar o grau de divergência superficial ω(G)

associado a um supergráfico genérico. A contagem de potências para teorias não comu-

tativas segue análoga ao caso comutativo. Consistindo basicamente na diferença entre

as potências de momento interno que aparecem nos numeradores e denominadores

em um dado diagrama. Contudo, além dos momentos internos provenientes dos ele-

mentos de integração e dos propagadores, teremos contribuições devido as derivadas

covariantes Dα que aparecem nos propagadores e/ou vértices. Dessa forma, o grau de

divergência superficial ω pode ser escrito genericamente por

ω(G) = 3L− 4PA − 2(PΦ + Pc) + (k’s devido as D′s), (4.69)

onde

L = número de laços,

PA = número de superpropagadores internos de calibre,

PΦ = número de superpropagadores internos de matéria,

Pc = número de superpropagadores internos fantasmas.

Na fórmula acima, cada laço contribui com um elemento de integração nos momen-

tos internos
∫

d3ki ≈ k3 e os fatores numéricos que acompanham os propagadores são

devido aos momentos que aparecem explicitamente em cada um deles: 〈AA〉 ∼ D4/k4,

〈Φ̄Φ〉 ∼ D2/k2 e 〈c′c〉 ∼ D2/k2. Todas as derivadas espinoriais covariantes D′s pro-

venientes dos propagadores ou dos vértices podem gerar potências de momento por

meio da relação {Dα, Dβ} ∼ kαβ. No que diz respeito à parte de interação, vamos
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adotar a seguinte notação para facilitar a identificação dos vértices:

• Setor de calibre:

VA3: número de vértices puros de calibre com três derivadas espinoriais;

VA4: número de vértices puros de calibre com duas derivadas espinoriais;

VA5: número de vértices puros de calibre com uma derivada espinorial;

VA6: número de vértices puros de calibre com nenhuma derivada espinorial;

VAc2 : número de vértices calibre/fantasma com uma derivada espinorial;

• Setor de matéria:

VAΦ2: número de vértices calibre/matéria com uma derivada espinorial;

VA2Φ2 : número de vértices calibre/matéria com nenhuma derivadas espinorial;

• Setor das superfontes de BRST:

VKc: número de vértices misto K/c uma derivada espinorial;

VKAc: número de vértices misto K/A/c com nenhuma derivada espinorial;

VζΦc: número de vértices misto ζ/Φ/c com nenhuma derivada espinorial;

Vλc2 : número de vértices misto λ/c/c com nenhuma derivada espinorial.

Para referência futura, vamos escrever abaixo as expressões dos vértices mistos,

contendo as fontes de BRST, já no espaço dos momentos.

VKc =
∫

d2θ
d3k1

(2π)3
d3k2

(2π)3 (2π)2δ3(k1 + k2) [−Kα
1 Dαc2] , (4.70)

VKAc = (2g)
∫

d2θ
3

∏
i=1

d3ki

(2π)3 (2π)3δ3(
3

∑
j=1

kj)K
α
1 Aα2c3 sin(k2 ∧ k3), (4.71)

Vλc2 = (g)
∫

d2θ
3

∏
i=1

d3ki

(2π)3 (2π)3δ3(
3

∑
j=1

kj)λ1c2c3 sin(k2 ∧ k3), (4.72)

VζΦc = (ig)
∫

d2θ
3

∏
i=1

d3ki

(2π)3 (2π)3δ3(
3

∑
j=1

kj)
[
ζ̄1c2Φ3 − Φ̄1c2ζ2

]
eik3∧k2 . (4.73)

Desse modo, o número inicial de derivadas Dα é dado por:

n◦ total de D′s = 4PA + 2(PΦ + Pc)︸ ︷︷ ︸
D′s dos propagadores

+ 3VA3 + 2VA4 + VA5 + VAc2 + VAΦ2︸ ︷︷ ︸
D′s dos vértices

, (4.74)
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onde notamos que o vértice VKc ∼ KαDαc não é levado em conta na contagem das D′s,

pois o mesmo não pode formar nenhum diagrama 1PI.

No cálculo da D-álgebra, cada propagador contribui com uma delta de Dirac gras-

maniana δ2(θ1 − θ2) e podemos usar V − 1 integrações em d2θ para eliminá-las, res-

tando

n◦ total de δ′s após a D-álgebra = P−V + 1, (4.75)

onde P e V representam a soma de todos os propagadores e vértices, respectivamente.

As δ′s restantes são eliminadas pelas derivadas Dα por meio da relação D2δ2
12 ∼ 1.

Assim, o número final de D′s disponíveis para se converterem em momento é igual a

n◦ final de D′s = 4PA + 2(PΦ + Pc) + 3VA3 + 2VA4 + VA5 + VAc2 + VAΦ2

− 2 (P−V + 1)

= −2 + 2PA + 5VA3 + 4VA4 + 3(VA5 + VAc2 + VAΦ2)

+ 2(VA6 + VA2Φ2 + VKAc + VζΦc + Vλc2). (4.76)

Sabendo que a cada dois D′s podemos gerar um k, então

ω(G) = 3L− 2PA − 2P +
n◦ final de D′s

2
− ND

2
, (4.77)

onde ND representa as derivadas aplicadas aos supercampos externos, as quais não se

transformaram em momento. Podemos eliminar o termo que contém L aplicando a

relação topológica

L + V − P = 1, (4.78)

de modo que ω(G) assume a forma

ω(G) = 2 + PΦ + Pc −
1
2

VA3 −VA4 − 3
2
(VA5 + VAc2 + VAΦ2)

− 2(VA6 + VA2Φ2 + VKAc + VζΦc + Vλc2). (4.79)

Além disso, PΦ e Pc obedecem as identidades que relacionam as linhas externas (EΦ, Ec)

com os propagadores e vértices, tal que

PΦ =
2VAΦ2 + 2VA2Φ2 + VζΦc − EΦ

2
, (4.80)

Pc =
2VAc2 + VKAc + VζΦc + 2Vλc2 − Ec

2
(4.81)
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Substituindo as relações (4.80) e (4.81) em (4.79), finalmente obtemos

ω(G) = 2− 1
2

VA3 −VA4 − 3
2

VA5 − 2VA6 − 1
2

VAc2

− 1
2

VAΦ2 −VA2Φ2 − 3
2

VKAc−VζΦc −Vλc2

− 1
2

Ec −
1
2

EΦ −
1
2

ND. (4.82)



66 4. IDENTIDADES DE SLAVNOV-TAYLOR PARA A QED NÃO COMUTATIVA SUPERSIMÉTRICA EM(2 + 1)D

A partir da expressão acima, podemos concluir que:

1. O modelo é super-renormalizável, isto é, existe apenas um número finito de dia-

gramas superficialmente divergentes (com ω ≥ 0);

2. Os diagramas divergentes persistem até a ordem de dois laços;

3. Existem três tipos de divergências ultravioletas; ω = 0, 0 ≤ ω < 1 e ω = 1;

4. Não há diagramas superficialmente divergentes com supercampos fantasmas c e

c′ ou com fontes Kα, ζ, ζ̄ e λ como linhas externas;

5. Em um laço, temos diagramas divergentes com dois, três e quatro Aα como linha

externa, assim como diagramas com ΦΦ̄ e AΦΦ̄;

6. Em dois laços, temos apenas divergências logarítmicas nos diagramas com dois

Aα nas linhas externas.

As conclusões acima estão resumidas na Tabela 4.1 e os diagramas 1PI, superficial-

mente divergentes na aproximação de um laço, são mostrados nas Figs. 4.1 à 4.5.

1 laço 2 laços ω(G)

AAAA; ΦΦ̄ AA ω = 0
AAA;AΦΦ̄ 0 ≤ ω < 1

AA ω = 1

Tabela 4.1: Contagem de potência para os diagramas 1PI.

Como vimos acima, as correções radiativas para a ação efetiva exibem no máximo

divergências lineares. Devido ao efeito da mistura UV/IR, tais divergências podem

inviabilizar o mecanismo de renormalização, uma vez que singularidades não integrá-

veis UV/IR não podem ser canceladas pelos métodos usuais. No entanto, em [59] foi

provado que o modelo é livre de divergências lineares UV/IR e que é finito até a apro-

ximação de um laço.

a b 
� �
Figura 4.1: Diagramas linearmente divergentes para a função de dois pontos do super-
campo de calibre.
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Figura 4.2: Outras contribuições superficialmente divergentes.

a b
Figura 4.3: Correções a um laço linearmente divergentes para a auto-energia do super-
campo espinorial de calibre no setor de matéria.

Figura 4.4: Contribuições das funções de três e quatro pontos do supercampo de cali-
bre.

a b
Figura 4.5: Correções a um laço para a auto-energia do supercampo Φ.

Figura 4.6: Correções para os vértices mistos calibre-matéria.
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4.5 Prova explícita das identidades de ST: Transversali-

dade da polarização do vácuo.

Assim como na eletrodinâmica quântica ordinária, podemos esperar que a simetria

de BRST implique na transversalidade da polarização do vácuo. Para traduzir tal pro-

priedade na linguagem de supercampos, vamos nos restringir inicialmente ao setor de

calibre puro da teoria, a extensão para o setor de matéria é direta.

Considere as identidades (4.58) e (4.62), escritas no espaço dos momentos:

∫
d2θ

d3p
(2π)3

[
Cβα δΓ

δAβ(p, θ)

δΓ

δKα(−p, θ)
+

δΓ

δc(p, θ)

δΓ

λ(−p, θ)

+
1
α

D2DβAβ(p, θ)
δΓ

δc′(−p, θ)

]
= 0, (4.83)

1
2

Dα δΓ(0)

δKα(p, θ)
+

δΓ(0)

δc′(p, θ)
= 0. (4.84)

Vamos aplicar o operador δ2

δc(q,ω)δAµ(l,σ) e tomar os campos iguais a zero. Assim, temos

sucessivamente

δ2

δc(q, ω)δAµ(l, σ)

(
Cβα δΓ

δAβ(p, θ)

δΓ

δKα(−p, θ)

)∣∣∣∣
=0

=

Cβα δ2Γ

δAµ(l, σ)δAβ(p, θ)

∣∣∣∣
=0

δ2Γ

δc(q, ω)δKα(−p, θ)

∣∣∣∣
=0

, (4.85)

δ2

δc(q, ω)δAµ(l, σ)

(
δΓ

δc(p, θ)

δΓ

δλ(−p, θ)

)∣∣∣∣
=0

= 0, (4.86)

e

δ2

δc(q, ω)δAµ(l, σ)

(
1
α

D2DβAβ(p, θ)
δΓ

δc′(−p, θ)

)∣∣∣∣
=0

=

−1
α

D2Dµ(2π)3δ3(p + l)δ2(θ − σ)
δΓ

δc(q, ω)δc′(−p, θ)

∣∣∣∣
=0

. (4.87)

Substituindo as Eqs. (4.85), (4.86) e (4.87) em (4.83), integrando por partes e lem-

brando que as derivadas espinoriais assumem a configuração de momento dos termos
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sobre os quais elas atuam, obtemos:

∫
d2θ

d3p
(2π)3

[
Cβα δ2Γ

δAµ(l, σ)δAβ(p, θ)

∣∣∣∣
=0

δ2Γ

δc(q, ω)δKα(−p, θ)

∣∣∣∣
=0

]

+
1
α

DµD2(l, σ)
δΓ

δc(q, ω)δc′(l, σ)

∣∣∣∣
=0

= 0. (4.88)

Para demonstrar que a polarização do vácuo é transversal, precisamos ainda da Eq.

(4.84). Aplicando o operador δ
δc(q,ω)

, temos como resultado:

δ2Γ

δc(q, ω)δc′(l, σ)

∣∣∣∣
=0

=
1
2

Dα(l, σ)
δ2Γ

δc(q, ω)δKα(l, σ)

∣∣∣∣
=0

, (4.89)

e substituindo (4.89) em (4.88), chegamos em

∫
d2θ

d3p
(2π)3

[
Cβα δ2Γ

δAµ(l, σ)δAβ(p, θ)

∣∣∣∣
=0

δ2Γ

δc(q, ω)δKα(−p, θ)

∣∣∣∣
=0

]

+
1

2α
DµD2Dα δ2Γ

δc(q, ω)δKα(l, σ)

∣∣∣∣
=0

= 0. (4.90)

Devido aos efeitos da não comutatividade, as correções radiativas podem em prin-

cípio, modificar os coeficientes dos termos em (4.9), além de introduzir uma nova es-

trutura tensorial. Sendo assim, podemos supor o seguinte ansatz para a função de dois

pontos do supercampo de calibre

δ2Γ

δAµ(l, σ)δAβ(p, θ)

∣∣∣∣
=0

=

[
−1

2
(a)D2DµDβ +

1
2α

(b)D2DβDµ

+ (c)D2DµDγ p̃γβ√
p̃2

+ (d)D2DβDγ p̃γµ√
p̃2

]
(2π)3δ3(p + l)δ2(θ − σ),

(4.91)

onde (a), (b), (c) e (d) representam as correções quânticas e os dois últimos termos en-

volvendo p̃αβ = Θnmpn(γm)αβ a modificação na estrutura tensorial devido a presença

de Θnm. Substituindo (4.91) em (4.90) e integrando por partes, obtemos

[
−1

2
(a)DαDµD2 +

1
2α

(b)DµDαD2

+(c)DγDµD2 p̃ α
γ√
p̃2

+ (d)DγDαD2 p̃γµ√
p̃2

+
1

2α
DµD2Dα

]
δ2Γ

δc(q, ω)Kα(l, σ)

∣∣∣∣
=0

= 0. (4.92)
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Aplicando Dµ(l, σ) em (4.92) e lembrando que DµDσDµ = 0, D2Dµ = −DµD2,

D4 = −l2, podemos reescrever o resultado anterior na forma

[
[(b)− 1]

l2

α
Dα + (d)DµDγDαD2 p̃γµ√

p̃2

]
δ2Γ

δc(q, ω)Kα(l, σ)

∣∣∣∣
=0

= 0. (4.93)

O último termo entre colchetes é identicamente nulo, pois

DµDγ p̃γµ =
1
2
{Dµ, Dγ} p̃γµ

= pµγ p̃γµ

= pa(γ
a)µγΘmn pm(γn)γµ

= pa pmΘmntr (γaγn)

= 2pmpnΘmn

= 0. (4.94)

Assim, finalmente obtemos como resultado

[(b)− 1]
l2

α
Dα δ2Γ

δc(q, ω)Kα(l, σ)

∣∣∣∣
=0

= 0, (4.95)

que implica em (b) = 1. Consequentemente, a parte longitudinal do propagador do

supercampo de calibre é protegida pela simetria BRST e não pode receber correções

radiativas. No que segue, mostraremos explicitamente que (b) = 0 na aproximação de

um laço.

Setor de calibre puro: Função de 2-pontos do campo Aα

A ação efetiva ΓAA correspondente a função de 2-pontos para o supercampo Aα

recebe três contribuições a uma laço, como pode ser visto na Fig. 4.1.

O diagrama (a), cuja expressão analítica é dada por

Γ
(a)
AA = − i

2!

〈
:

i2

2!
(VA3)2 :

〉
, (4.96)

a qual, no espaço dos momentos, assume a forma

Γ
(a)
AA =

ig2

16

∫
d2θkd2θq

3

∏
i=1

d3ki

(2π)3
d3qi

(2π)3 (2π)3δ3(k1 + k2 + k3)(2π)3δ3(q1 + q2 + q3)

sin(k1 ∧ k3) sin(q1 ∧ q3)
〈

: Dσ Aα(k1, θk)D
βDα Aβ(k2, θk)Aσ(k3, θk)

DµAν(q1, θq)DγDν Aγ(q2, θq)Aµ(q3, θq) :
〉

. (4.97)
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Após realizar as contrações dos supercampos e substituir os propagadores de ca-

libre dado em (4.11), utilizamos o pacote SusyMath [65] para efetuar a D-álgebra. O

resultado obtido pode ser escrito na forma

Γ
(a)
AA =

∫
d2θ

d3p
(2π)3

d3k
(2π)3 sin2(k ∧ p)

[
a1D2Aα(−p, θ)Aα(p, θ) + a2αβD2Aα(−p, θ)Aβ(p, θ)

+ a3αβ Aα(−p, θ)Aβ(p, θ) + a4 Aα(−p, θ)Aα(p, θ)
]

, (4.98)

onde os coeficientes a1, a2αβ, a3αβ e a4 são dados por

a1 =

(
− ig2(−1 + α)2Cβ,γ ((k)γ,δ(−k + p)β,ǫ− (k)β,δ(−k + p)γ,ǫ

)
(p)δ,ǫ

32(k)2 ((−k + p)2)
2

)
, (4.99)

a2αβ =

(
− ig2(1 + α)2

(
4(k)α,β + 3(p)α,β

)

16(k)2(−k + p)2 +
ig2(1− α)(1+ α)

32 ((k)2)
2
((−k + p)2)

2

×
((

4p.(−k + p)
(
(k)α,β − (p)α,β + (−k + p)α,β

)
+
(
−(k)β,γ(−k + p)α,δ + 2(−k + p)α,γ(−k + p)β,δ

)
(p)γ,δ

+ Cα,γCβ,δ

(
4(−k + p)ǫ,ζ(k)

γ,ǫ
(
(k)δ,ζ − (p)δ,ζ

)
+ 2(k)ǫ,ζ(p)δ,ζ(−k + p)γ,ǫ − (p)ǫ,ζ(k)

δ,ǫ(−k + p)γ,ζ
))

(k)2

+ 2
(

2k.(−k + p)
(
(p)α,β − (−k + p)α,β

)
+ (k)α,γ(k)β,δ(p)γ,δ − 4

(
(k)α,β + (p)α,β

)
(k)2

)
(−k + p)2

)

+
ig2(1− α)2

64 ((k)2)
2
((−k + p)2)

2

(
−Cβ,γCδ,ǫ(k)α,ζ(p)ǫ,η(−k + p)δ,θ(p)γ,θ(−k + p)ζ ,η

+ 2(k)2
(
(−k + p)α,δ

(
(p)β,γ(k)

γ,δ − 2(k)β,γ(p)γ,δ
)
+ (k)α,γ(p)β,δ(−k + p)γ,δ + 2(−k + p)α,β

(
−(k)2 + (p)2

))

+
(
(k)γ,β(−k + p)α,δ(p)γ,δ + (−k + p)β,δ

(
(2(p)α,γ + 3(−k + p)α,γ) (k)γ,δ − 2(k)α,γ(p)γ,δ

))
(−k + p)2

+
(
(k)γ,β(p)α,δ(−k + p)γ,δ + 2Cβ,γCδ,ǫ(k)ǫ,ζ

(
(p)α,δ(p)γ,ζ + (−k + p)α,δ(−k + p)γ,ζ

)

+ 4(k)α,β(p)2− 2(k)β,α(p)2
)
(−k + p)2 + 2

(
(k)α,β − (k)β,α

) (
(−k + p)2

)2

+ 4k.(−k + p)
(
(k)α,β

(
2(k)2 + (p)2

)
+
(
2(p)α,β − 3(−k + p)α,β

)
(−k + p)2

)

+ Cα,γ

(
−Cδ,ǫ(k)δ,ζ(−k + p)β,η(−k + p)ǫ,θ(p)γ,ζ(p)η,θ

+ Cβ,δ

(
4k.(−k + p)(k)ǫ,ζ(p)γ,ǫ(p)δ,ζ + (k)ǫ,ζ(p)η,θ(p)γ,ǫ(−k + p)δ,θ(−k + p)ζ ,η

+ 2
(
(k)ǫ,ζ

(
(p)δ,ζ(−k + p)γ,ǫ + 2(p)δ,ǫ(−k + p)γ,ζ

)
− 2(p)ǫ,ζ(k)

γ,ǫ(−k + p)δ,ζ
)
(k)2

+ (−k + p)ǫ,ζ

(
(−k + p)η,θ(k)

γ,η(p)δ,ǫ(p)ζ ,θ + 2
(

2
(
−2(k)γ,ζ + (p)γ,ζ

)
(p)δ,ǫ + (k)γ,ǫ

(
2(k)δ,ζ − (p)δ,ζ

))
(k)2

))

−
(

Cδ,β(k)
δ,ǫ
(
(−k + p)ǫ,ζ(p)γ,ζ + (p)ǫ,ζ(−k + p)γ,ζ

)
+ Cδ,ǫ

(
−(k)δ,ζ(−k + p)β,ǫ

(
2(p)γ,ζ + (−k + p)γ,ζ

)

+ 2(k)ǫ,ζ

(
(−k + p)δ,β(p)γ,ζ + (p)δ,β(−k + p)γ,ζ

))
+ 2Cβ,δ

(
(−k + p)ǫ,ζ(k)

γ,ζ(p)δ,ǫ

+ (p)ǫ,ζ(k)
γ,ζ(−k + p)δ,ǫ + (k)ǫ,ζ

(
2(p)γ,ζ(p)δ,ǫ− (p)γ,ǫ(−k + p)δ,ζ

)))
(−k + p)2

)))
, (4.100)
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a3αβ =

(
− ig2(1 + α)2

32(k)2(−k + p)2

(
Cγ,δ ((p)β,δ(−k + p)α,γ + (p)α,δ

(
(−k + p)β,γ + (−k + p)γ,β

))

+
(
4Cβ,γ(k)α,δ − 4Cα,γ(k)β,δ + Cγ,β(−k + p)α,δ

)
(p)γ,δ

)

+
ig2(1− α)(1+ α)

32 ((k)2)
2
((−k + p)2)

2

(
−
(

Cγ,β (−(k)α,δ + (−k + p)α,δ) (p)γ,δ(k)2

+ Cγ,δ (2k.(−k + p)
(
(p)β,δ(−k + p)α,γ − (p)β,γ(−k + p)α,δ − (p)α,δ(−k + p)β,γ + (p)α,γ(−k + p)β,δ

)

+
(
−(k)γ,β(p)α,δ − 2(k)α,γ(p)β,δ + (p)β,δ(−k + p)α,γ + 2(p)α,δ(−k + p)β,γ + (p)α,δ(−k + p)γ,β

)
(k)2

))
(−k + p)2

+ Cα,γ

(
−4p.(−k+ p)(−k + p)β,δ(p)γ,δ(k)2 + 2(k)β,δ(−k + p)ǫ,ζ(k)

γ,ǫ(p)δ,ζ(k)2

+ Cβ,δCǫ,ζ
(

2(p)ζ ,η(−k + p)ǫ,θ(k)
γ,θ(k)δ,η + (k)ζ ,η(p)ǫ,θ(p)δ,η(−k + p)γ,θ

)
(k)2

− 4(−k + p)β,δ(k)
γ,δ(k)2(p)2− 2(k)β,δ(−k + p)γ,δ(k)2(p)2 − 2(k)β,δ(k)ǫ,ζ(p)γ,ǫ(p)δ,ζ(−k + p)2

+ 4(k)β,δ(p)γ,δ(k)2(−k + p)2 + 7(−k + p)β,δ(p)γ,δ(k)2(−k + p)2
)

− Cβ,γ(k)
2
(
(k)δ,ǫ(−k + p)α,ζ(p)γ,ǫ(p)δ,ζ + 4(k)α,δ(p)γ,δ(−k + p)2

+ (−k + p)α,δ

(
−2(−k + p)ǫ,ζ(p)γ,ǫ(p)δ,ζ + 4(p)γ,δ(−k + p)2

)))

+
ig2(1− α)2

64 ((k)2)
2
((−k + p)2)

2

(
−4Cβ,γ(k)α,δ(−k + p)ǫ,ζ(k)

γ,ǫ(p)δ,ζ(k)2 − 2Cβ,γ(k)δ,ǫ(−k + p)α,ζ(p)γ,ǫ(p)δ,ζ(k)2

− 2Cβ,γ(k)δ,ǫ(−k + p)α,ζ(p)γ,δ(p)ǫ,ζ(k)2 + 4Cβ,γk.(−k + p)(k)α,δ(p)γ,δ(p)2

+ Cβ,γ(k)α,δ(p)ǫ,ζ(−k + p)γ,ζ(−k + p)δ,ǫ(p)2 + 4Cβ,γ(−k + p)α,δ(p)γ,δ(k)2(p)2

− Cγ,β(k)δ,ǫ(−k + p)α,ζ(p)γ,δ(p)ǫ,ζ(−k + p)2 − 2Cβ,γ(k)δ,ǫ(−k + p)α,ζ(p)ζ ,δ(−k + p)γ,ǫ(−k + p)2

− Cγ,β(k)δ,ǫ(p)α,ζ(p)γ,δ(−k + p)ǫ,ζ(−k + p)2 − 2Cβ,γ(k)α,δ(p)γ,δ(p)2(−k + p)2

+ 2Cβ,γ(k)α,δ(−k + p)γ,δ(p)2(−k + p)2 + Cγ,δ
(

4(k)α,β(−k + p)γ,ζ

(
(p)δ,ǫ(k)

ǫ,ζ − (k)δ,ǫ(p)ǫ,ζ
)
(k)2

+ (−k + p)2 (−4k.(−k + p)
(
(p)β,δ(−k + p)α,γ − (p)β,γ(−k + p)α,δ − (p)α,δ(−k + p)β,γ + (p)α,γ(−k + p)β,δ

)

+ (p)δ,ǫ(−k + p)α,γ(−k + p)β,ζ(k)
ǫ,ζ + (k)γ,ǫ(−k + p)α,ζ(−k + p)β,δ(p)ǫ,ζ − 2(k)β,ǫ(p)α,δ(−k + p)γ,ζ(p)ǫ,ζ

− 2(k)γ,ǫ(−k + p)α,β(−k + p)δ,ζ(p)ǫ,ζ − (k)β,γ(−k + p)α,ǫ(−k + p)δ,ζ(p)ǫ,ζ + (k)β,ǫ(p)δ,ζ(−k + p)α,γ(−k + p)ǫ,ζ

− (k)γ,ǫ(p)α,ζ(−k + p)β,δ(−k + p)ǫ,ζ + 2(k)β,γ(p)α,δ(p)2 + (k)β,δ(−k + p)α,γ(p)2 + 3(k)β,γ(−k + p)α,δ(p)2

+ 2(k)α,γ(−k + p)β,δ(p)2 + 3(k)β,γ(p)α,δ(−k + p)2
))

+ Cα,γ

(
8k.(−k + p)(k)β,δ(p)γ,δ(k)2

− 2(p)β,δ(−k + p)ǫ,ζ(k)
δ,ζ(p)γ,ǫ(k)2 + 2(k)β,δ(−k + p)ǫ,ζ(k)

γ,ζ(p)δ,ǫ(k)2 + 2(k)β,δ(−k + p)ǫ,ζ(k)
γ,ǫ(p)δ,ζ(k)2

− 2(k)δ,ǫ(p)β,ζ(p)γ,δ(−k + p)ǫ,ζ(k)2 + 4(−k + p)β,δ(p)γ,δ
(
(k)2

)2
− 4k.(−k + p)(k)β,δ(p)γ,δ(p)2

− (−k + p)β,δ(−k + p)ǫ,ζ(k)
γ,ǫ(p)δ,ζ(p)2 − 4(−k + p)β,δ(k)

γ,δ(k)2(p)2− 4(−k + p)β,δ(p)γ,δ(k)2(p)2

− 4(k)β,δ(−k + p)γ,δ(k)2(p)2 + (−k + p)β,δ(−k + p)ǫ,ζ(k)
δ,ζ(p)γ,ǫ(−k + p)2

− Cδ,βCǫ,ζ(k)η,ǫ(−k + p)ζ ,θ(p)γ,θ(p)δ,η(−k + p)2 + 2(k)δ,ǫ(−k + p)β,ζ(p)γ,δ(p)ǫ,ζ(−k + p)2

+ 2(k)δ,ǫ(−k + p)ζ ,β(p)γ,ǫ(p)ζ ,δ(−k + p)2 − Cδ,βCǫ,ζ(k)η,ǫ(p)ζ ,θ(p)δ,η(−k + p)γ,θ(−k + p)2 + 4(p)β,δ(k)
γ,δ(p)2(−k + p)2

− 2(−k + p)β,δ(k)
γ,δ(p)2(−k + p)2 − 4(k)β,δ(p)γ,δ(p)2(−k + p)2

+ 2(k)β,δ(−k + p)γ,δ(p)2(−k + p)2 + (k)β,δ(p)γ,δ
(
(−k + p)2

)2
+ Cβ,δCǫ,ζ

(
(k)η,θ(p)ζ ,ϑ(−k + p)ǫ,κ(p)γ,η(p)δ,κ(−k + p)θ,ϑ

+ (k)ǫ,η(p)γ,η
(
−(−k+ p)ζ ,θ

(
(−k + p)ϑ,κ(p)δ,ϑ(p)θ,κ + 2(p)δ,θ

(
(k)2 − 2(−k + p)2

))

+ 2(p)ζ ,θ(−k + p)δ,θ(−k + p)2
)
+ 2(−k + p)ǫ,θ

(
2(p)ζ ,η

(
(k)γ,θ(k)δ,η − (k)γ,η(p)δ,θ

)
(k)2

+ (k)ζ ,η

(
−(p)γ,θ(p)δ,η(k)2 + (p)γ,η(p)δ,θ(−k + p)2

))))))
, (4.101)
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a4 =

(
ig2(1 + α)2 (2k.p− 3(p)2− 2(−k + p)2)

16(k)2(−k + p)2

+
ig2(1− α)2

32 ((k)2)
2
((−k + p)2)

2

(
(k)β,γ(−k + p)δ,ǫ

(
(p)β,ǫ(p)γ,δ + (p)β,δ(p)γ,ǫ

)
(k)2 − 4p.(−k + p)

(
(k)2

)2

+ 2(−k + p)2
(

k.p(−k + p)2 − 2k.(−k + p)
(
(p)2 + (−k + p)2

)))

− ig2(1− α)(1 + α)

16 ((k)2)
2
((−k + p)2)

2

(
2p.(−k + p)(k)2

(
(k)2 + (p)2− (−k + p)2

)

+ (−k + p)2
(

2k.(−k + p)
(
(p)2 + (−k + p)2

)
+ (k)2

(
−3k.p + 2(−k + p)2

))))
. (4.102)

Pode-se observar que Γ
(a)
AA possui termos com divergências lineares e logarítmicas,

além de vários termos finitos. As divergências lineares são as mais perigosas pois são

acompanhadas de termos proporcionais a Aα Aα, induzindo massa para o supercampo

de calibre e violando a simetria BRST. Para isolar as divergências lineares, vamos ex-

pandir os coeficientes acima em torno do momento externo pαβ = 0, tal que

a1(p = 0) = a3αβ(p = 0) = 0, (4.103)

a2αβ(p = 0) = − ig2(1 + α)2(k)α,β

4 ((k)2)
2

− ig2(1− α)(1 + α)
(
Cα,γCβ,δ(k)ǫ,ζ(k)γ,ǫ(k)δ,ζ + 3(k)α,β(k)2

)

8 ((k)2)
3

+
ig2(1− α)2

64 ((k)2)
3

[
3(k)α,γ(k)β,δ(k)

γ,δ

+ Cα,γ

(
Cδ,ǫ(k)β,ǫ(k)δ,ζ(k)

γ,ζ − 4Cβ,δ(k)ǫ,ζ(k)
γ,ǫ(k)δ,ζ

)

+ 2
(

Cβ,γCδ,ǫ(k)α,δ(k)ǫ,ζ(k)
γ,ζ − 7(k)α,β(k)

2 − (k)β,α(k)
2
)]

, (4.104)

a4(p = 0) =
(
− ig2α

2(k)2

)
. (4.105)

Podemos ver facilmente que o único termo linearmente divergente está em a4. Mos-
traremos posteriormente que essa divergência é cancelada quando somamos todas as
contribuições devido aos demais diagramas. Entretanto, a prova da identidade de ST
para os demais termos num calibre arbitrário é deveras volumosa. Escolhendo o cali-
bre de Feynman (α = 1) as funções a1,2,3,4 se reduzem a

a1(α = 1) = 0, (4.106)

a2αβ(α = 1) =

(
− ig2

(
4(k)α,β + 3(p)α,β

)

4(k)2(−k + p)2

)
, (4.107)
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a3αβ(α = 1) =
ig2
(
Cγ,δ

(
2(k)β,γ(p)α,δ + (k)α,γ(p)β,δ

)
+
(
−5Cβ,γ(k)α,δ + 4Cα,γ(k)β,δ

)
(p)γ,δ

)

8(k)2(−k + p)2 ,

(4.108)

a4(α = 1) = − ig2

2(k)2 +
ig2k.p

2(k)2(−k + p)2 −
3ig2(p)2

4(k)2(−k + p)2 , (4.109)

o que acarreta numa grande simplificação. Dessa forma, iremos nos limitar a provar a

transversalidade da polarização do vácuo no calibre de Feynman α = 1.

A segunda contribuição para a ação efetiva ΓAA é devido ao diagrama (b) da Fig.

4.1, cuja expressão analítica é dada por

Γ
(b)
AA = − i

2!

〈
: i(V(1)

A4 + V(2)
A4 ) :

〉
≡ Γ

(b1)
AA + Γ

(b2)
AA . (4.110)

Com ajuda das Eqs. (4.21) e (4.22), o resultado acima assume a seguinte forma

Γ
(b1)
AA =

g2

4

∫
d2θ

4

∏
i=1

d3ki

(2π)3 (2π)3δ3(k1 + k2 + k3 + k4) sin [k1 ∧ (k3 + k4)] sin(k4 ∧ k3)

〈
: Aβ(k1, θ)Dβ Aα(k2, θ)Aσ(k3, θ)Dσ Aα(k4, θ) :

〉
, (4.111)

e

Γ
(b2)
AA =

g2

6

∫
d2θ

4

∏
i=1

d3ki

(2π)3 (2π)3δ3(k1 + k2 + k3 + k4) sin [k2 ∧ (k3 + k4)] sin(k3 ∧ k4)

〈
: DβDα Aβ(k1, θ)Aσ(k2, θ)Aα(k3, θ)Aσ(k4, θ) :

〉
. (4.112)

Seguindo o procedimento descrito anteriormente, obtemos

Γ
(b)
AA =

∫
d2θ

d3p
(2π)3

d3k
(2π)3 sin2(k ∧ p)

[
b1αβD2Aα(−p, θ)Aβ(p, θ)

+ b2γβDγDβAα(−p, θ)Aα(p, θ)

+ b3αβ Aα(−p, θ)Aβ(p, θ) + b4Aα(−p, θ)Aα(p, θ)
]

, (4.113)

tal que

b1αβ =
ig2(1− α)(k)α,β

6 ((k)2)
2 , (4.114)

b2γβ =

(
− ig2(1− α)(k)β,γ

4 ((k)2)
2

)
, (4.115)

b3αβ =
ig2(1− α)Cα,γ(k)β,δ(p)γ,δ

6 ((k)2)
2 , (4.116)
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b4 =

(
− ig2(1− α)

2(k)2

)
. (4.117)

Note que os termos envolvendo os coeficientes b1αβ, b2γβ e b3αβ possuem apenas

divergências logarítmicas. O único termo linearmente divergente está contido em b4.

Além disso, a contribuição desse diagrama se anula completamente no calibre de Feyn-

man α = 1, isto é, b1 = b2 = b3 = b4 = 0.

Por último, vamos determinar a contribuição relativa ao gráfico (c) na Fig. 4.1, de-

vido aos supercampos fantasmas de Faddev-Popov. A expressão analítica para esse

diagrama é dada por

Γ
(c)
AA = − i

2!

〈
:

i2

2!
(VAc2)2 :

〉
. (4.118)

Usando a Eq. (4.25), podemos reescrever (4.118) no espaço dos momentos

Γ
(c)
AA =

ig2

4

∫
d2θkd2θq

3

∏
i=1

d3ki

(2π)3
d3qi

(2π)3 (2π)3δ3(k1 + k2 + k3)(2π)3δ3(q1 + q2 + q3)

sin(k2 ∧ k3) sin(q2 ∧ q3)

×
〈

: Dαc′(k1, θk)c(k2 , θk)Aα(k3, θk)D
βc′(q1, θq)c(q2, θq)Aα(q3, θq) :

〉
, (4.119)

Utilizando o propagador dado por (4.15), o resultado para esse diagrama será

Γ
(c)
AA =

∫
d2θ

d3p
(2π)3

d3k
(2π)3 sin2(k ∧ p)

[
c1αβ Aα(−p, θ)Aβ(p, θ) + c2Aα(−p, θ)Aα(p, θ)

]

(4.120)

onde

c1αβ =
ig2
(
Cα,γ(−k + p)β,δ(p)γ,δ − Cβ,γ(p)α,δ(−k + p)γ,δ

)

4(k)2(−k + p)2 , (4.121)

c2 =
ig2

2(k)2 . (4.122)

Observe que as contribuições acima não dependem do calibre, já que as linhas in-

ternas são propagadores do supercampo fantasma. O termo envolvendo c1αβ possui

divergência logarítmica, enquanto que o termo correspondente a c2 é linearmente di-

vergente.

Agora estamos em condição de mostrar que a possível violação da simetria BRST

por uma termo de massa para o supercampo de calibre, induzido por correções radia-

tivas, é cancelada na aproximação de um laço.

Somando apenas as contribuições linearmente divergentes nas Eqs. (4.105), (4.117)

e (4.122), podemos ver que estes fatores cancelam-se mutuamente:

a4 + b4 + c2 = − ig2α

2(k)2 −
ig2(1− α)

2(k)2 +
ig2

2(k)2 = 0, (4.123)
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garantindo que nenhuma renormalização para a massa seja necessária. Note que esse

resultado é independente do calibre adotado e está de acordo com a Ref. [59]. Além

disso, naquele trabalho foi relatado que as divergências logarítmicas são também au-

sentes e, por conseguinte, a função de dois pontos para o supercampo Aα é finita na

aproximação de um laço. Examinaremos a seguir se a estrutura dessas correções finitas

realmente garantem a transversalidade da polarização do vácuo.

Adicionando (4.98), (4.113) e (4.120), no calibre α = 1, obtemos

ΓAA(α = 1) =
∫

d2θ
d3p
(2π)3

d3k
(2π)3 sin2(k ∧ p)

×
[(
− ig2

(
4(k)α,β + 3(p)α,β

)

4(k)2(−k + p)2

)
D2Aα(−p, θ)Aβ(p, θ)

+

(
ig2
(
Cγ,δ

(
2(k)β,γ(p)α,δ + (k)α,γ(p)β,δ

)
+
(
−5Cβ,γ(k)α,δ + 4Cα,γ(k)β,δ

)
(p)γ,δ

)

8(k)2(−k + p)2

+
ig2
(
Cα,γ(−k + p)β,δ(p)γ,δ − Cβ,γ(p)α,δ(−k + p)γ,δ

)

4(k)2(−k + p)2

)
Aα(−p, θ)Aβ(p, θ)

+

(
ig2 (2k.p− 3(p)2)

4(k)2(−k + p)2

)
Aα(−p, θ)Aα(p, θ)

]
. (4.124)

Com o auxílio da identidade p2Cαβ = pαδ pδ
β, podemos simplificar o resultado acima,

tal que

ΓAA(α = 1) =
∫

d2θ
d3p
(2π)3

d3k
(2π)3 sin2(k ∧ p)

×
[(
− ig2

(
4(k)α,β − 3(p)α,β

)

4(k)2(k + p)2

)
D2Aα(p, θ)Aβ(−p, θ)

+




ig2
(
(p)α,δ(k)δ

β + 3(p)β,δ(k)δ
α

)

4(k)2(k + p)2


 Aα(p, θ)Aβ(−p, θ)

+

(
− ig2

(
2k.p + 5(p)2

)

4(k)2(k + p)2

)
Aα(p, θ)Aα(−p, θ)

]
, (4.125)

onde fizemos p → −p. Para isolar a parte correspondente ao termo longitudinal em

(4.125), vamos separar as integrais de momento interno em k e reescrevê-las como se-

gue
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I1αβ = − ig2

4

∫ d3k
(2π)3 sin2(k ∧ p)

(
4(k)α,β − 3(p)α,β

)

4(k)2(k + p)2 , (4.126)

I2αβ =
ig2

4

∫ d3k
(2π)3 sin2(k ∧ p)

(
(p)α,δ(k)δ

β + 3(p)β,δ(k)δ
α

)

(k)2(k + p)2 , (4.127)

I3 = − ig2

4

∫ d3k
(2π)3 sin2(k ∧ p)

(
2k.p + 5(p)2)

(k)2(k + p)2 . (4.128)

Empregando a parametrização de Feynman

1
ab

=
∫ 1

0
dx

1
[ax + b(1− x)]2

e efetuando a mudança de momento k→ l + xp, a integral I1αβ assume a forma

I1αβ = − ig2

4

∫ 1

0
dx
∫ d3l

(2π)3 sin2(l ∧ p)

(
4lαβ − (4x + 3)pαβ

)

4(k)2(k + p)2

=
ig2

4

∫ 1

0
dx(4x + 3)pαβ

∫ d3l
(2π)3

sin2(l ∧ p)

[l2 + x(1− x)p2]
2 , (4.129)

sendo que o termo envolvendo lαβ é nula por paridade.

As demais integrais seguem de forma análoga:

I2αβ =
ig2

4

∫ 1

0
dx2xp2CαβG(p2, x), (4.130)

I3 =
ig2

4

∫ 1

0
dx(2x− 5)p2G(p2, x), (4.131)

onde definimos a função

G(p2, x) =
∫ d3l

(2π)3
sin2(l ∧ p)

[l2 + x(1− x)p2]
2 . (4.132)

Substituindo as Eqs. (4.129), (4.130) e (4.131) em (4.125), podemos reescrever a ação

efetiva para a função de dois pontos de Aα na forma

ΓAA =

(
− ig2

4

) ∫
d2θ

d3p
(2π)3

×
∫ 1

0
dxG(p2, x)Aα(p, θ)

[
(2x + 4)DβDαD2 + (2x− 1)DαDβD2

]
Aβ(−p, θ),

(4.133)

onde empregamos as identidades {Dα, Dβ} = 2pαβ, D4 = −p2 e [Dα, Dβ] = −2Cαβ.

Conforme enunciado anteriormente, as divergências logarítmicas foram cancela-
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das, restando apenas correções finitas envolvendo a função G(p2, x). Essa expressão

pode ser comparada com a Eq. (4.91). Aplicando o operador δ2

δAµ(q,ω)δAβ(p,θ)
sobre

(4.133), identificamos a correção da parte longitudinal do propagador de calibre como

sendo proporcional a integral

Longitudinal =
∫ 1

0
dx(2x− 1)G(p2, x)

=
∫ 1

0
dx(2x− 1)

∫ d3l
(2π)3

sin2(l ∧ p)

[l2 + x(1− x)p2]
2 . (4.134)

Fazendo a seguinte mudança de variável; x → y+ 1
2 , podemos escrever a Eq. (4.134)

na forma

Longitudinal =
∫ 1

2

− 1
2

dy2y
∫ d3l

(2π)3
sin2(l ∧ p)

[
l2 + (1

4 − y2)p2
]2

=
∫ 1/2

−1/2
dy2yG(p2, y2)

= 0. (4.135)

Concluímos que a correção de um laço para a parte longitudinal do propagador

do supercampo de calibre é nula, corroborando para a preservação da simetria BRST

no setor de calibre puro do modelo. Embora esse resultado tenha sido calculado em

um calibre particular (α = 1), acreditamos que a parte longitudinal não sofre correções

quânticas. Em um calibre arbitrário, esperamos apenas que o coeficiente da parte trans-

versal possa depender de α. A seguir, voltaremos nossa atenção para as contribuições

devido ao acoplamento com a matéria.

Setor de matéria: Função de 2-pontos do campo Aα

A primeira contribuição para a ação efetiva é representada na Fig. 4.3 pelo dia-

grama (a). Sua expressão analítica é construída por meio dos vértices (4.26) e (4.27), tal

que

Γ(a) = − i
2!

〈
:

i2

2!
(V(1)

Φ2 A + V(2)
Φ2 A)

2 :
〉

=
i
4

〈
: V(1)

Φ2 AV(1)
Φ2A + 2V(1)

Φ2 AV(2)
Φ2 A + V(2)

Φ2AV(2)
Φ2 A :

〉
, (4.136)
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e produz como resultado final,

Γ
(a)
AA = ig2

∫
d2θ

d3p
(2π)3 f (p, M)

[(
M
4

pαβ +
p2

8
Cβα

)
Aα(p, θ)Aβ(−p, θ)

+

(
M
4

Cβα −
1
4
(k + p)αβ

)
D2Aα(p, θ)Aβ(−p, θ)

]

− ig2
∫

d2θ
d3p
(2π)3

d3k
(2π)3

1
2(k2 + M2)

Aα(p, θ)Aα(−p, θ), (4.137)

onde

f (p, M) =
∫ d3k

(2π)3
1

(k2 + M2) [(k + p)2 + M2]

=
i

4π
√

p2
arctan

(
1
2

√
p2

M2

)
, (4.138)

e seu comportamento assintótico é dado por

lim
p→0

f (p, M) =
i

8π
√

M2
,

lim
p→∞

f (p, M) =
i

8
√

p2
. (4.139)

Podemos observar no resultado acima a ausência dos fatores trigonométricos envol-

vendo o parâmetro não comutativo Θ, sendo análogo a versão supersimétrica comu-

tativa. Tal fato é consequência direta do supercampo de matéria Φ pertencer a repre-

sentação fundamental o grupo de calibre U (1)⋆. Além disso, destacamos a presença

de um termo de massa linearmente divergente, o qual em princípio violaria a simetria

BRST.

A segunda contribuição para a ação efetiva é proveniente do diagrama (b) na Fig.

4.3, e pode ser escrita como

Γ(b) = − i
2!
〈: iVΦ2 A2 :〉 , (4.140)

com VΦ2 A2 dado por (4.28). Após a D-álgebra obtemos

Γ(b) = ig2
∫

d2θ
d3p
(2π)3

d3k
(2π)3

1
2(k2 + M2)

Aα(p, θ)Aα(−p, θ), (4.141)

o qual somando ao termo de massa em (4.137), cancelam-se mutuamente. Após al-

gumas simplificações algébricas, podemos escrever o resultado para Γ(a) + Γ(b) na se-
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guinte forma

ΓMat
AA = ig2

∫
d2θ

d3p
(2π)3 f (p, M)Aα(p, θ)

[
−M

4
DβDα +

1
8

DβDαD2
]

Aβ(−p, θ). (4.142)

Assim, as correções radiativas para o setor de matéria são finitas e induzem um termo

tipo Chern-Simons na ação efetiva. Contudo, a transversalidade do propagador de

calibre continua preservada.

4.6 Identidade de ST: Vértice triplo de calibre

Para obter a identidade de ST que envolve a função de vértice triplo de calibre, isto

é, a parte própria de
〈
0
∣∣T
(

Aα Aβ Aσ

)∣∣ 0
〉

, vamos primeiramente diferenciar a Eq. (4.83)

com respeito aos campos clássicos c(k, λ), Aµ(q, ω) e Aν(l, σ) e tomar ao final todos os

campos iguais a zero. Dessa forma, obtemos os seguintes resultados

δ3

δc(k, λ)δAµ(q, ω)δAν(l, σ)

(
Cβα δΓ

δAβ(p, θ)

δΓ

δKα(−p, θ)

)∣∣∣∣ =

Cαβ δ3Γ

δAµ(q, ω)δAν(l, σ)δAβ(p, θ)

∣∣∣∣
δ2Γ

δc(k, λ)δKα(−p, θ)

∣∣∣∣ −

Cαβ δ2Γ

δAν(l, σ)δAβ(p, θ)

∣∣∣∣
δ3Γ

δc(k, λ)δAµ(q, ω)δKα(−p, θ)

∣∣∣∣ +

Cαβ δ2Γ

δAµ(q, ω)δAβ(p, θ)

∣∣∣∣
δ3Γ

δc(k, λ)δAν(l, σ)δKα(−p, θ)

∣∣∣∣ , (4.143)

δ3

δc(k, λ)δAµ(q, ω)δAν(l, σ)

(
δΓ

δc(p, θ)

δΓ

δλ(−p, θ)

)∣∣∣∣ = 0, (4.144)

e

δ3

δc(k, λ)δAµ(q, ω)δAν(l, σ)

(
1
α

D2DβAβ(p, θ)
δΓ

δc′(−p, θ)

)∣∣∣∣ =

1
α

D2Dνδ2(θ − σ)(2π)3δ3(p + l)
δ3Γ

δc(k, λ)δAµ(q, ω)δc′(−p, θ)

∣∣∣∣ −

1
α

D2Dµδ2(θ −ω)(2π)3δ3(p + q)
δ3Γ

δc(k, λ)δAν(l, σ)δc′(−p, θ)

∣∣∣∣ , (4.145)

onde, por conveniência, introduzimos a notação simplificada O| para indicar que o

objeto O deve ser determinado tomando-se todos os campos iguais a zero ao final dos

cálculos.
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As funções de vértices δ3Γ
δcδAδK e δ3Γ

δcδAδc′ podem ser relacionadas por meio da identi-

dade (4.84), mediante a aplicação do operador δ2

δc(k,λ)δA(q,ω)
. Assim, temos a identidade

adicional:

δ3Γ

δc(k, λ)δAµ(q, ω)δc′(−p, θ)

∣∣∣∣ = −
1
2

Dα

(
δ3Γ

δc(k, λ)δAµ(q, ω)δKα(−p, θ)

)∣∣∣∣ . (4.146)

Substituindo as relações (4.143), (4.144) e (4.145) em (4.83) e levando em conta a Eq.
(4.146), podemos escrever a identidade envolvendo o vértice triplo de calibre na forma:

∫
d2θ

d3 p
(2π)3

{
Cαβ δ3Γ

δAµ(q, ω)δAν(l, σ)δAβ(p, θ)

∣∣∣∣
δ2Γ

δc(k, λ)δKα(−p, θ)

∣∣∣∣+
[
−Cαβ δ2Γ

δAν(l, σ)δAβ(p, θ)

∣∣∣∣−
1

2α
DαD2Dνδ2(θ− σ)(2π)3δ3(p + l)

]
δ3Γ

δc(k, λ)δAµ(q, ω)δKα(−p, θ)

∣∣∣∣+
[

Cαβ δ2Γ

δAµ(q, ω)δAβ(p, θ)

∣∣∣∣+
1

2α
DαD2Dµδ2(θ−ω)(2π)3δ3(p + q)

]
δ3Γ

δc(k, λ)δAν(l, σ)δKα(−p, θ)

∣∣∣∣
}

= 0,

(4.147)

onde integramos por partes nas duas últimas linhas acima.

As identidades funcionais obtidas em (4.146) e (4.147) representam vínculos não

triviais, decorrentes da simetria BRST, envolvendo as diferentes funções de vértices
δ3Γ

δAδAδA , δ2Γ
δcδK , δ2Γ

δAδA , δ3Γ
δcδAδK e δ3Γ

δcδAδc′ . Como veremos a seguir, tais vínculos restringem o

número de diferentes contratermos necessários para controlar o comportamento ultra-

violeta do modelo em questão. Mas antes, vamos deduzir uma última identidade de

interesse, envolvendo os setores de matéria e calibre.

4.7 Identidade de ST: Vértice matéria-calibre

A identidade de ST para o vértice espinorial matéria-calibre, a parte própria de

〈0 |T (ΦΦ̄Aα)| 0〉 , pode ser derivada por meio da Eq. (4.58) com todos os campos iguais

a zero após diferenciarmos com respeito a c(k, λ), Φ̄(q, ω) e Φ(l, σ). As derivadas

funcionais resultam em

δ3

δc(k, λ)δΦ̄(q, ω)δΦ(l, σ)

(
Cβα δΓ

δAβ(p, θ)

δΓ

δKα(−p, θ)

)∣∣∣∣ =

Cαβ δ3Γ

δΦ̄(q, ω)δΦ(l, σ)δAβ(p, θ)

∣∣∣∣
δ2Γ

δc(k, λ)δKα(−p, θ)

∣∣∣∣ , (4.148)

δ3

δc(k, λ)δΦ̄(q, ω)δΦ(l, σ)

(
δΓ

δc(p, θ)

δΓ

δλ(−p, θ)

)∣∣∣∣ = 0, (4.149)
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δ3

δc(k, λ)δΦ̄(q, ω)δΦ(l, σ)

(
1
α

D2Dβ Aβ(p, θ)
δΓ

δc′(−p, θ)

)∣∣∣∣ = 0, (4.150)

δ3

δc(k, λ)δΦ̄(q, ω)δΦ(l, σ)

(
δΓ

δΦ(p, θ)

δΓ

δζ̄(−p, θ)

)∣∣∣∣ =

δ2Γ

δΦ̄(q, ω)δΦ(p, θ)

∣∣∣∣
δ3Γ

δc(k, λ)δΦ(l, σ)δζ̄ (−p, θ)

∣∣∣∣ , (4.151)

e

δ3

δc(k, λ)δΦ̄(q, ω)δΦ(l, σ)

(
− δΓ

δζ(p, θ)

δΓ

δΦ̄(−p, θ)

)∣∣∣∣ =

− δ3Γ

δc(k, λ)δΦ̄(q, ω)δζ(p, θ)

∣∣∣∣
δ2Γ

δΦ(l, σ)δΦ̄(−p, θ)

∣∣∣∣ . (4.152)

Assim, com as Eqs. (4.148), (4.149), (4.150), (4.151) e (4.152) chegaremos à seguinte

identidade de ST envolvendo a função de vértice matéria-calibre:

∫
d2θ

d3p
(2π)3

{
Cαβ δ3Γ

δΦ̄(q, ω)δΦ(l, σ)δAβ(p, θ)

∣∣∣∣
δ2Γ

δc(k, λ)δKα(−p, θ)

∣∣∣∣

+
δ2Γ

δΦ̄(q, ω)δΦ(p, θ)

∣∣∣∣
δ3Γ

δc(k, λ)δΦ(l, σ)δζ̄ (−p, θ)

∣∣∣∣

− δ3Γ

δc(k, λ)δΦ̄(q, ω)δζ(p, θ)

∣∣∣∣
δ2Γ

δΦ(l, σ)δΦ̄(−p, θ)

∣∣∣∣
}

= 0.

(4.153)

4.8 Cálculos explícitos a nível de árvore

Ação renormalizada

As identidades de ST derivadas previamente são válidas somente de modo formal,

desde que as correções radiativas contêm divergências, sejam elas ultravioletas usu-

ais ou originadas do mecanismo de mistura UV/IR. Para eliminar essas divergências,

contratermos devem ser introduzidos por reparametrização da Lagrangiana original

que representa o modelo em questão. No nosso caso, vamos redefinir os campos Aα,

Φ (ou Φ̄), c (ou c′), os parâmetros g, M, α e também as fontes associadas as transfor-
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mações de BRST não-lineares; Kα, λ, ζ e ζ̄, na forma:

Aα = Z1/2
1 Aα

r , Φ = Z1/2
2 Φr, c = Z̃1/2

3 cr,

g = Zggr, M = ZM Mr, α = Z1αr, (4.154)

em conjunto com

Kα = ZKKα
r , λ = Zλλr,

ζ = Zζζr, ζ̄ = Zζ̄ ζ̄r , (4.155)

tal que o subscrito “r” indica quantidades renormalizadas.

A ação (4.67) escrita em termos dos campos, parâmetros e fontes renormalizadas

passa a ser representada por:

• Termos bilineares

SA2
r

=
1
2

∫
d5zArβ

[
−Z1

4
DσDβDαDσ −

1
2α

DβD2Dα

]
Arα, (4.156)

SΦ2
r

=
∫

d5zΦ̄r

(
Z2D2 + Z2ZM Mr

)
Φr, (4.157)

Sc2
r

= Z̃3

∫
d5zc′rD2cr, (4.158)

onde devemos observar que a constante de renormalização para o parâmetro α foi

escolhida de modo a manter o termo de fixação de calibre inalterado pelas redefinições

acima. A razão para isso foi mostrada na seção 4.5, quando provamos que tal termo

não sofre correções radiativas.

• Termos de interação dos setores de calibre e calibre/matéria

VA3 → ZgZ3/2
1︸ ︷︷ ︸

=Z4

VA3
r
, VA4 → Z2

gZ2
1︸ ︷︷ ︸

=Z5

VA4
r
, VA5 → Z3

gZ5/2
1︸ ︷︷ ︸

=Z6

VA5
r
, VA6 → Z4

gZ3
1︸ ︷︷ ︸

=Z7

VA6
r
,

(4.159)

VAc2 → ZgZ1/2
1 Z̃3︸ ︷︷ ︸

=Z̃1

VArc2
r
, V(1,2)

Φ2 A → ZgZ2Z1/2
1︸ ︷︷ ︸

=Z1M

VΦ2
r Ar

, VΦ2A2 → Z2
gZ2Z1︸ ︷︷ ︸
=Z2M

VΦ2
r A2

r
.

(4.160)

• Termos de interação com as fontes de BRST

VK → ZKZ̃1/2
3︸ ︷︷ ︸

=Z8

VKr = Z8

∫
d5z [−Kα

r∇αcr] , (4.161)
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e

Vζ̄ → Zζ̄ZgZ̃1/2
3 Z1/2

2︸ ︷︷ ︸
=Z9

Vζ̄r
, Vζ → Zζ ZgZ̃1/2

3 Z1/2
2︸ ︷︷ ︸

=Z10

Vζr , Vλ → ZλZgZ̃3︸ ︷︷ ︸
=Z11

Vλr , (4.162)

onde assumimos que ∇α = Dα − i
(

ZgZ1/2
1

)
gr {Arα, }.

Assim como no caso usual, as constantes de renormalização Z1, Z2, etc, são deter-

minadas de modo a cancelar as divergências que aparecem na ação efetiva quando

levamos em conta as correções devido aos diagramas de Feynman. Lembramos ainda

que a parte finita dos contratermos necessita de convenientes condições de normaliza-

ção para serem fixados de modo unívoco.

Uma consequência muito importante da simetria BRST diz respeito a renormaliza-

ção da constante de acoplamento g. Notemos que a constante de renormalização Zg

aparece em todos os sete termos das Eqs. (4.159) e (4.160), de modo que se o valor de

Zg for o mesmo em todos eles, então as outras constantes de renormalização não são

independentes entre si e satisfazem o seguinte vínculo,

ZgZ1/2
1 =

Z4

Z1
=

Z5

Z4
=

Z6

Z5
=

Z7

Z6
=

Z̃1

Z̃3
=

Z1M

Z2
=

Z2M

Z1M
. (4.163)

Relações como as determinadas em (4.163) são muito importantes na prova da re-

normalização das teorias de calibre em todas as ordens de perturbação. Uma vez que

estabelecemos sua validade, podemos aplicar um dado esquema de subtração, como

por exemplo o método BPHZ1 e verificar por indução a renormalizabilidade ordem a

ordem [64].

A seguir, nos limitaremos a mostrar em nível de árvore que as relações contidas em

(4.163), assim como aquelas envolvendo as constantes de renormalização em (4.161) e

(4.162), podem ser extraídas das identidades de ST dadas em (4.89), (4.146), (4.147) e

(4.153).

Auto-energia dos campos fantasmas

A identidade que envolve a função de dois pontos do campo fantasma é dada pela

Eq. (4.89). A nível de árvore, os termos da ação efetiva que contribuem são dados por

(escritos no espaço dos momentos):

1Originalmente desenvolvido por Bogoliubov e Parasiuk e complementado posteriormente por
Hepp e Zimmermann [63].



4.8. CÁLCULOS EXPLÍCITOS A NÍVEL DE ÁRVORE 85

VKc = −Z8

∫
d2θ′

2

∏
i=1

d3ki

(2π)3 (2π)3δ3(k1 + k2)Kα
1 Dαc2, (4.164)

Sc2 = Z̃3

∫
d2θ′

2

∏
i=1

d3ki

(2π)3 (2π)3δ3(k1 + k2)c′1D2c2, (4.165)

tal que por simplicidade de notação, omitiremos o subscrito “r” nas quantidades renor-

malizados daqui por diante.

As derivadas funcionais de interesse resultam em:

δ2VKc

δc(k, λ)δKα(−p, θ)

∣∣∣∣ = Z8(2π)3δ3(−p + k)Dαδ2(θ − λ), (4.166)

δ2Sc2

δc(k, λ)δc′(−p, θ)

∣∣∣∣ = Z̃3(2π)3δ3(−p + k)D2δ2(θ − λ). (4.167)

Substituindo (4.166) e (4.167) em (4.89), temos

[
Z8 − Z̃3

]
D2δ2(θ − λ)(2π)3δ3(−p + k) = 0, (4.168)

e segue então que

Z8 = Z̃3. (4.169)

Função de vértice fantasma-calibre

Vamos considerar agora a identidade representada pela Eq. (4.146). Usando (4.25)

e a expressão para o vértice envolvendo o produto da fonte Kα com os campos Aα, c,

dada por

VKAc =
(

Z8ZgZ1/2
1

)
(2g)

∫
d2θ′

3

∏
i=1

d3ki

(2π)3 (2π)3δ3(
3

∑
j=1

kj)K
α
1 Aα2c3 sin(k2 ∧ k3),

(4.170)

podemos facilmente verificar que

δ2VAc2

δc(k, λ)δAµ(q, ω)δc′(−p, θ)

∣∣∣∣ = −Z̃1 (g) (2π)3δ3(p− q− k) sin(k ∧ q)

×
∫

d2θ′Dµδ2(θ′ − θ)δ2(θ′ − ω)δ2(θ′ − λ),
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δ2VKAc

δc(k, λ)δAµ(q, ω)δKα(−p, θ)

∣∣∣∣ = Z8ZgZ1/2
1 (2g) Cαµ(2π)3δ3(p− q− k) sin(k ∧ q)

×
∫

d2θ′δ2(θ′ − θ)δ2(θ′ − ω)δ2(θ′ − λ).

Vemos daí que

[
−Z̃1 + Z8ZgZ1/2

1

]
(g) (2π)3δ3(p− q− k) sin(k ∧ q)

×
∫

d2θ′Dµδ2(θ′ − θ)δ2(θ′ − ω)δ2(θ′ − λ) = 0,

implicando em

ZgZ1/2
1 =

Z̃1

Z8
=

Z̃1

Z̃3
. (4.171)

Função de vértice triplo de calibre

Antes de iniciar nossa discussão sobre a implicação da identidade (4.147) na rela-

ção entre as constantes de renormalização, vamos adotar as seguintes definições para

simplificar nosso problema:

(a) ≡
∫

d2θ
d3 p
(2π)3 Cαβ δ3Γ

δAµ(q, ω)δAν(l, σ)δAβ(p, θ)

∣∣∣∣
δ2Γ

δc(k, λ)δKα(−p, θ)

∣∣∣∣ , (4.172)

(b) ≡
∫

d2θ
d3 p
(2π)3

[
−Cαβ δ2Γ

δAν(l, σ)δAβ(p, θ)

∣∣∣∣−
1

2α
DαD2Dνδ2(θ − σ)(2π)3δ3(p + l)

]

× δ3Γ

δc(k, λ)δAµ(q, ω)δKα(−p, θ)

∣∣∣∣ , (4.173)

(c) ≡
∫

d2θ
d3 p
(2π)3

[
Cαβ δ2Γ

δAµ(q, ω)δAβ(p, θ)

∣∣∣∣+
1

2α
DαD2Dµδ2(θ − ω)(2π)3δ3(p + q)

]

× δ3Γ

δc(k, λ)δAν(l, σ)δKα(−p, θ)

∣∣∣∣ . (4.174)

Usando essas expressões, a Eq. (4.147) assume a forma (a) + (b) + (c) = 0. As-

sim, vamos determinar primeiramente os termos (b) e (c) na aproximação de árvore.

Considerando as Eqs. (4.156) e (4.170), as derivadas de interesse correspondem a

−Cαβ δ2SA2

δAν(l, σ)δAβ(p, θ)

∣∣∣∣ =

[
Z1

2
D2DνDα +

1
2α

DαD2Dν

]
δ2(θ − σ)(2π)3δ3(p + l),

Cαβ δ2SA2

δAµ(q, ω)δAβ(p, θ)

∣∣∣∣ =

[
−Z1

2
D2DµDα +

1
2α

DαD2Dµ

]
δ2(θ −ω)(2π)3δ3(p + q),

(4.175)
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e ainda

δ3VK

δc(k, λ)δAµ(q, ω)δKα(−p, θ)

∣∣∣∣ =
(
2Z̃1g

)
Cαµ sin(k ∧ q)(2π)3δ3(p− q− k)δ2(θ − ω)δ2(θ − λ),

δ3VK

δc(k, λ)δAν(l, σ)δKα(−p, θ)

∣∣∣∣ =
(
2Z̃1g

)
Cαν sin(k ∧ l)(2π)3δ3(p− l − k)δ2(θ − σ)δ2(θ − λ),

(4.176)

na qual empregamos o resultado Z8ZgZ1/2
1 = Z̃1.

Aplicando os resultados acima em (b) e (c), nós integramos no momento p e então obtemos

(b) + (c) =
(
−Z1Z̃1g

)
(2π)3δ3(k + q + l) sin(k ∧ l)

×
∫

d2θ
[
D2DνDµδ2(θ − σ)δ2(θ −ω) + D2DµDνδ2(θ − ω)δ2(θ − σ)

]
δ2(θ − λ).

(4.177)

Agora, vamos voltar nossa atenção para o termo (a). Empregando (4.20), podemos

mostrar que

Cαβ δ3VA3

δAµ(q, ω)δAν(l, σ)δAβ(p, θ)

=

(
Z4g

2

)
(2π)3δ3(p + l + q) sin(p ∧ l)

×
{
−Dµ

[
DνDαδ2(θ − σ)δ2(θ − ω)

]
− Dν

[
DµDαδ2(θ −ω)δ2(θ − σ)

]

−DνDα
[

Dµδ2(θ − σ)δ2(θ −ω)
]
− DµDα

[
Dνδ2(θ −ω)δ2(θ − σ)

]

+Dαδ2(θ − σ)DµDνδ2(θ − ω) + Dαδ2(θ − ω)DνDµδ2(θ − σ)
}

.

(4.178)

De acordo com essa expressão, juntamente com (4.166), segue então que

(a) =

(
Z8Z4g

2

) ∫
d2θ

d3p
(2π)3 (2π)6δ3(p + l + q)δ3(−p + k) sin(p ∧ l)

×
{
−Dµ

[
DνDαδ2(θ − σ)δ2(θ −ω)

]
− Dν

[
DµDαδ2(θ − ω)δ2(θ − σ)

]

−DνDα
[

Dµδ2(θ − σ)δ2(θ −ω)
]
− DµDα

[
Dνδ2(θ − ω)δ2(θ − σ)

]

+Dαδ2(θ − σ)DµDνδ2(θ −ω) + Dαδ2(θ − ω)DνDµδ2(θ − σ)
}

Dαδ2(θ − λ).

(4.179)

Vamos agora integrar por partes o resultado anterior para liberar a δ2(θ − λ) e com

o auxílio das identidades DαDνDα = 0 e DµDνDα = DαDνDµ, obtemos o seguinte
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resultado

(a) =

(
Z8Z4g

2

)
(2π)3δ3(k + l + q) sin(k ∧ l)

∫
d2θ

×
{

2D2DνDµδ2(θ − σ)δ2(θ − ω) + 2D2DµDνδ2(θ −ω)δ2(θ − σ)

−DνDαδ2(θ − σ)DαDµδ2(θ −ω)− DµDαδ2(θ − ω)DαDνδ2(θ − σ)

−2D2δ2(θ − σ)DµDνδ2(θ − ω)− 2D2δ2(θ − ω)DνDµδ2(θ − σ)
}

δ2(θ − λ).

(4.180)

Notemos que os dois primeiros termos em (4.180) já estão numa forma conveniente

para serem relacionados com aqueles obtidos em Eq. (4.177). Nos resta agora, mostrar

que os demais termos cancelam-se mutuamente. Para ver como isso pode ser feito,

vamos considerar o quarto termo em (4.180), representado por (a4) ≡ −DµDαδ2(θ −
ω)DαDνδ2(θ− σ). Empregando a relação de comutação

[
Dµ, Dν

]
= 2CνµD2 em adição

com Cα
β = −δα

β, podemos reescrever (a4) como segue:

(a4) = CαβDβDνδ2(θ − σ)DµDαδ2(θ −ω)

=
[

DνDαδ2(θ − σ)DαDµδ2(θ − ω) + 2D2δ2(θ − σ)DνDµδ2(θ −ω)

+2D2δ2(θ − ω)DνDµδ2(θ − σ) + 4CνµD2δ2(θ − σ)D2δ2(θ −ω)
]

,

e aplicando mais uma vez a relação DνDµ = DµDν + 2CµνD2, finalmente temos que

(a4) =
[

DνDαδ2(θ − σ)DαDµδ2(θ − ω) + 2D2δ2(θ − σ)DµDνδ2(θ − ω)

+2D2δ2(θ −ω)DνDµδ2(θ − σ)
]

. (4.181)

De (4.180) e (4.181), é fácil ver que a forma final de (a) é dada por

(a) = (Z8Z4g) (2π)3δ3(k + l + q) sin(k ∧ l)
∫

d2θδ2(θ − λ)

×
[

D2DνDµδ2(θ − σ)δ2(θ −ω) + D2DµDνδ2(θ − ω)δ2(θ − σ)
]

,

(4.182)

e, portanto, (a) + (b) + (c) = 0 implica em

[
Z8Z4 − Z1Z̃1

]
(2π)3δ3(k + l + q)g sin(k ∧ l)

∫
d2θδ2(θ − λ)

×
[

D2DνDµδ2(θ − σ)δ2(θ − ω) + D2DµDνδ2(θ − ω)δ2(θ − σ)
]

= 0. (4.183)
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Daí segue o resultado final
Z4

Z1
=

Z̃1

Z̃3
, (4.184)

mostrando que a identidade (4.147) reduz o número de constantes de renormalização

independentes, vinculadas pela renormalização de g, como tínhamos mencionado an-

teriormente.

Função de vértice matéria-calibre

Para finalizar, vamos determinar agora, quais relações entre as constantes de renor-

malização são obtidas por meio da identidade (4.153). Procedendo de maneira análoga

ao caso anterior, consideremos a notação

(aM) ≡
∫

d2θ
d3p
(2π)3 Cαβ δ3Γ

δΦ̄(q, ω)δΦ(l, σ)δAβ(p, θ)

∣∣∣∣
δ2Γ

δc(k, λ)δKα(−p, θ)

∣∣∣∣ ,(4.185)

(bM) ≡
∫

d2θ
d3p
(2π)3

δ2Γ

δΦ̄(q, ω)δΦ(p, θ)

∣∣∣∣
δ3Γ

δc(k, λ)δΦ(l, σ)δζ̄ (−p, θ)

∣∣∣∣ , (4.186)

(cM) ≡ −
∫

d2θ
d3p
(2π)3

δ3Γ

δc(k, λ)δΦ̄(q, ω)δζ(p, θ)

∣∣∣∣
δ2Γ

δΦ(l, σ)δΦ̄(−p, θ)

∣∣∣∣ , (4.187)

tal que (aM) + (bM) + (cM) = 0 representa a Eq. (4.153).

Na aproximação de árvore, o termo (aM) recebe contribuição do vértice

V(1,2)
Φ2A = Z1M

(
ig
2

) ∫
d2θ′

3

∏
i=1

d3ki

(2π)3 (2π)3δ3(
3

∑
j=1

kj)e
−ik2∧k3

× [DαΦ̄1A2αΦ3 − Φ̄1Aα
2 DαΦ3] , (4.188)

que resulta em

Cαβ
δ3V(1,2)

Φ2 A

δΦ̄(q, ω)δΦ(l, σ)δAβ(p, θ)

= Z1M

(
ig
2

)
(2π)3δ3(p + l + q)

[
e−ip∧lDαδ2(θ −ω)δ2(θ − σ)

−eip∧qDαδ2(θ − σ)δ2(θ −ω)
]

, (4.189)
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e também da Eq. (4.166). Integrando no momento p, então

(aM) = Z1MZ8

(
ig
2

)
(2π)3δ3(k + l + q)eiq∧l

∫
d2θ

×
[

Dαδ2(θ −ω)Dαδ2(θ − λ)δ2(θ − σ)− Dαδ2(θ − σ)Dαδ2(θ − λ)δ2(θ − ω)
]

.

(4.190)

Por outro lado, os termos (bM) e (cM) recebem contribuições de

δ2VΦ2

δΦ̄(q, ω)δΦ(p, θ)
= (2π)3δ3(p + q)

[
Z2D2 + Z2ZM M

]
δ2(θ −ω), (4.191)

δ2VΦ2

Φ(l, σ)δΦ̄(−p, θ)
= (2π)3δ3(−p + l)

[
Z2D2 + Z2ZM M

]
δ2(θ − σ), (4.192)

δ3Vζ̄

δc(k, λ)δΦ(l, σ)δζ̄ (−p, θ)
= Z9 (ig) (2π)3δ3(−p + l + k)e−ip∧lδ2(θ − σ)δ2(θ − λ),

(4.193)
δ3Vζ

δc(k, λ)δΦ̄(q, ω)δζ(p, θ)
= Z10 (ig) (2π)3δ3(p + q + k)e−ip∧qδ2(θ − ω)δ2(θ − λ),

(4.194)

que resultam em

(bM) = (ig)
∫

d2θ
d3p
(2π)3 (2π)6δ2(p + q)δ2(−p + l + k)e−ip∧l

×
[

Z2Z9D2δ2(θ − ω) + Z2Z9ZM Mδ2(θ − ω)
]

δ2(θ − σ)δ2(θ − λ),

(4.195)

(cM) = − (ig)
∫

d2θ
d3p
(2π)3 (2π)6δ2(−p + l)δ2(p + q + k)e−ip∧q

×
[

Z2Z10D2δ2(θ − σ) + Z2Z10ZM Mδ2(θ − σ)
]

δ2(θ −ω)δ2(θ − λ).

(4.196)

Notemos primeiramente que os termos contendo a massa renormalizada M podem

ser agrupados de forma independente dos demais e, portanto, teremos

[Z9 − Z10] Z2ZM (igM) (2π)3δ3(k + l + q)eiq∧l
∫

d2θδ2(θ − σ)δ2(θ − ω)δ2(θ − λ) = 0,

(4.197)
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e, assim,

Z9 = Z10. (4.198)

Considerando os demais termos em (bM) + (cM), uma última integração por partes

nos permite escrever

(bM) + (cM) = −Z2Z9

(
ig
2

)
(2π)3δ3(k + l + q)eiq∧l

∫
d2θ

×
[

Dαδ2(θ − ω)Dαδ2(θ − λ)δ2(θ − σ)− Dαδ2(θ − σ)Dαδ2(θ − λ)δ2(θ −ω)
]

,

(4.199)

de modo que (aM) + (bM) + (cM) = 0 implica em

Z1M

Z2
=

Z9

Z8
. (4.200)

Para um estudo mais completo das identidades de ST devemos verificar as relações

anteriores para as funções de vértices superficialmente divergentes, que envolve o cál-

culo dos diagramas com três e quatro pernas externas. Mesmo na aproximação de um

laço, essa tarefa é bem mais trabalhosa e deverá ser concluída posteriormente.
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Capítulo 5

A teoria de Yang-Mills-Chern-Simons

supersimétrica em D = 2 + 1 dimensões

Uma característica fundamental da teoria quântica de campos é o aparecimento

de quantidades infinitas quando se tenta calcular, por exemplo, amplitudes de espa-

lhamento além do nível da árvore. Fisicamente, modelos aceitáveis devem ser finitos

(mas ficamos então restritos a uma pequena classe de tais modelos) ou tratáveis por al-

gum mecanismo consistente de renormalização. Como é bem conhecido na literatura,

a inclusão da supersimetria melhora o comportamento ultravioleta de tais modelos.

Nesse espírito, vários trabalhos têm sido publicados nos últimos anos, e seguindo o

artigo publicado por nosso grupo de pesquisa sobre a finitude da eletrodinâmica quân-

tica supersimétrica em D = 2 + 1 dimensões [66], nada mais natural que a extensão

destes estudos para o caso da teoria da não-abeliana. Assim, neste capítulo, apresen-

taremos um estudo sobre a finitude, em todas as ordens de perturbação, da teoria da

super-Yang-Mills-Chern-Simons acoplada minimamente à matéria em três dimensões

do espaço-tempo (SYMCSM). Em nossa abordagem utilizamos o formalismo de super-

campos, que permite estabelecer a finitude do modelo em um calibre particular, através

do estudo das correções radiativas da função de dois pontos na aproximação de dois

laços.

5.1 Apresentação do modelo

O modelo proposto é descrito por uma ação que contêm supercampos de Yang-

Mills-Chern-Simons com N =1, acoplados a um supercampo escalar de matéria [18]

S = SSYM + SSCS + Smat, (5.1)
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com

SSYM =
1

2g2 tr
∫

d5zWαWα, (5.2)

SSCS =
1
g2 tr

∫
d5z

1
2

m
(
AαWα +

i
6

{
Aα, Aβ

}
DβAα +

1
12

{
Aα, Aβ

}{
Aα, Aβ

})
, (5.3)

Smat =
∫

d5z
(

Φ̄∇2Φ + MΦ̄Φ
)

, (5.4)

onde∇α = Dα− iAα é a derivada supercovariante de calibre, Φ é o supercampo escalar

complexo de matéria e

Wα =
1
2

DβDαAβ −
i
2

[
Aβ, DβAα

]
− 1

6

[
Aβ,

{
Aβ, Aα

}]
, (5.5)

é o espinor intensidade de campo covariante, construído a partir do supercampo de

calibre Aα. Deve-se notar que Aα e Wα assumem valores na álgebra de Lie de SU(N),

tal que

Aα = Aa
αTa, Wα = Wa

α Ta, (5.6)

onde os geradores do grupo {Ta} na representação fundamental, com a = 1, ... , N2 −
1, são matrizes N × N hermitianas e satisfazem a álgebra de Lie e as relações abaixo :

[Ta, Tb] = i fabcTc, ( fabc são as constantes de estrutura) (5.7)

tr (TaTb) = TRδab, (5.8)

Ta
ijT

a
kl = TR

(
δilδjk −

1
N

δijδkl

)
, (5.9)

facd fbcd = 2TRNδab, (5.10)

falm fbmn fcnl = TRN fabc. (5.11)

Além disso, o supercampo de matéria pertencente a representação fundamental car-

rega o índice de simetria do grupo, sendo denotado por Φa.

Para seguir com o tratamento perturbativo no formalismo das integrais de traje-

tórias, fazemos uso do procedimento de Faddeev-Popov, que consiste em adicionar

à densidade Lagrangiana (5.1) um termo fixador de calibre e os respectivos campos

fantasmas associados,

SGF + SFP =
1
g2 tr

∫
d5z
[
− 1

4α
DαAαD2DβAβ

]
+ tr

∫
d5z
[

1
2

c̄Dα∇αc
]

. (5.12)

Invertendo-se a parte quadrática da ação total dada por SSYM + SSCS + Smat + SGF +

SFP determinamos os propagadores do campo de calibre, matéria e fantasma, que no
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espaço dos momentos são dados respectivamente por:

〈
Aαa (k, θ) Aβb

(
−k, θ′

)〉
=
−iδab

TR

[
α

2
D2DαDβ

(k2)
2 − 1

2

(
D2 −m

)
DβDα

k2 (k2 + m2)

]
δ2 (θ − θ′

)
,(5.13)

〈
Φm (k, θ) Φ̄n

(
−k, θ′

)〉
=−iδmn

(
D2 −M

)

k2 + M2 δ2 (θ − θ′
)

, (5.14)

〈
ca (k, θ) c̄b

(−k, θ′
)〉

=
−iδab

TR

D2

k2 δ2 (θ − θ′
)

. (5.15)

Os vértices do modelo são determinados a partir dos termos de interação SI da ação

total e são dados por:

SI =
∫

d5z
[
− ig

2
(Ta)ij DαΦi A

αaΦj −
ig
2
(Ta)ij Φi A

αaDαΦj

+
gTR

4
fabcDαDβ Aa

α AγbDγAc
β +

mgTR

6
fabc Aαa AβbDβAc

α

+
gTR

2
fabcDαcaAb

αcc − g2

2

(
TaTb

)
ij

Aαa Ab
αΦiΦj

+
g2TR

12
fabe fecdDαDβAa

α Aγb Ac
γ Ad

β +
g2TR

8
fabe fecd AαaDαAβb AγcDγAd

β

+
mg2TR

24
fabe fecd Aαa Aβb Ac

α Ad
β +

g3TR

12
fabm fmcn fnde AαaDαAβb Aγc Ad

γ Ae
β

+
g4TR

72
fabm fmcn fndl fle f Aαa Aβb Ac

α AγdAe
γ A f

β

]
. (5.16)

5.2 Correções radiativas

Para provar a finitude UV de SYMCSM, vamos seguir a seguinte estratégia:

1. Calcular o grau de divergência superficial;

2. Discutir sobre a aparência das divergências lineares e logarítmicas, comentando

sobre seu cancelamento em um laço;

3. Avaliar explicitamente os diagramas de dois laços com divergências logarítmi-

cas, onde realizamos a D-álgebra com o auxilio do pacote SusyMath [65] para o

programa Mathematica c©, mostrando que as divergências se cancelam, ao menos

para um calibre especifico.
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5.3 Grau de divergência superficial e renormalizabilidade

do modelo

Nosso objetivo nessa seção é obter uma expressão algébrica para o grau de diver-

gência superficial ω(G) em termos dos elementos topológicos característicos, e assim,

poder determinar os tipos de divergências e em quais gráficos elas aparecem.

Seja G um supergráfico com L laços, V vértices e P propagadores tal que:

• Vértices

V3
A3 : número de vértices puros de campo de calibre com três derivadas espinoriais;

V2
A4 : número de vértices puros de campo de calibre com duas derivadas espinoriais;

V1
A3 + V1

A5 : número de vértices puros de campo de calibre com uma derivada espino-

rial;

V0
A6 + V0

A4 : número de vértices puros de campo de calibre com nenhuma derivada

espinorial;

V1
AΦ2 : número de vértices mistos (escalar-calibre) com uma derivada espinorial;

V0
A2Φ2 : número de vértices mistos com zero derivada espinorial;

VAc2 : número de vértices com os campos fantasmas e calibre;

• Propagadores

PΦ : número de propagadores do campo escalar 〈Φ̄aΦb〉 ∼ D2/k2;

PA : número de propagadores do campo de calibre
〈

Aα
a Aβ

b

〉
∼ D4/k4;

Pc : número de propagadores do campo fantasma 〈c̄c〉 ∼ D2/k2;

Além disso, temos ainda que definir:

EΦ : linhas externas escalares;

EA: linhas externas do supercampo de calibre;

Ec : linhas externas dos campos fantasmas1;

ND: derivadas espinoriais aplicadas nas linhas externas.

1Para o caso de existir um processo espalhamento maior contendo subgráficos divergentes com cam-
pos fantasmas nas linhas externos.
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Num gráfico genérico, as potências de momento aparecem explicitamente nos ele-

mentos de integração dos momentos relacionados com o número de laços independen-

tes e também nos propagadores. Além disso, as derivadas espinoriais covariantes po-

dem transformar-se em momento através da relação {D, D} ∼ k. Cada laço contribui

com uma integral d3k e cada propagador com o fator 1/k2 (campo escalar e fantasma)

ou 1/k4 (campo de calibre). Deste modo,

ω(G) = 3L− 4PA − 2PΦ − 2Pc + (k’s devido as D’s). (5.17)

As derivadas espinoriais têm origem nos propagadores e vértices, e seu número

total é 4PA + 2PΦ + 2Pc + 3V3
A3 + V1

A3 + V1
Φ2A + V1

Ac2 + 2V2
A4 + V1

A5 . No cálculo das

funções de correlação, cada propagador contribui com uma δ2(θ − θ
′
) e podemos usar

V − 1 integrações em d2θ para eliminar essas δ′s, restando PΦ + PA + Pc − V + 1 que

por sua vez são eliminadas pelas derivadas covariantes através da relação D2δ2(θ) ∼ 1.

Dessa forma, o número total de D′s disponíveis para se converterem em momento é

igual a

2PA + 5V3
A3 + 4V2

A4 + 3
(

V1
A3 + V1

A5 + V1
Φ2 A + V1

Ac2

)
+ 2

(
V0

A6 + V0
Φ2 A2 + V0

A4

)
− 2−ND .

Como a cada dois D′s temos um k, a equação (5.17) assume a forma

ω(G) = 3L− 4PA − 2PΦ − 2Pc

+
2PA + 5V3

A3 + 4V2
A4 + 3

(
V1

A3 + V1
A5 + V1

Φ2 A + V1
Ac2

)

2

+
2
(

V0
A6 + V0

Φ2 A2 + V0
A4

)
− 2− ND

2

= 2 + PΦ + Pc −
1
2

V3
A3 −

3
2

(
V1

A3 + V1
A5 + V1

Φ2 A + V1
Ac2

)

− 2
(

V0
A6 + V0

Φ2 A2 + V0
A4

)
−V2

A4 −
ND

2
, (5.18)

onde a relação topológica L + V − P = 1 foi utilizada na última igualdade acima.

As linhas externas são relacionadas com os propagadores e vértices pelas identida-
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des topológicas:

PA =

(
6V0

A6 + 5V1
A5 + 4V0

A4 + 4V2
A4 + 3V1

A3 + 3V3
A3 + 2V0

Φ2A2 + V1
Φ2 A + V1

Ac2 − EA

)

2
,

PΦ =

(
2V1

Φ2A + 2V0
Φ2 A2 +−EΦ

)

2
,

Pc =

(
2V1

Ac2 − Ec

)

2
,

cuja substituição em (5.18), possibilita expressar o grau de divergência superficial como

ω(G) = 2− 1
2

(
V1

Φ2 A + V3
A3 + V1

Ac2

)
− 3

2

(
V1

A3 + V1
A5

)

− V2
A4 −V0

Φ2A2 − 2
(

V0
A6 + V0

A4

)
− EΦ

2
− Ec

2
− ND

2
. (5.19)

A parti da equação (5.19) podemos proceder com a análise e seleção dos gráficos

de interesse. Nossa atenção está concentrada apenas nos diagramas divergentes, pois

desejamos verificar se é possível eliminar toda a parte infinita das funções de corre-

lação por meio de uma escolha adequada do parâmetro de calibra α. Os diagramas

com EΦ = 2 ou Ec = 2 possuem divergência superficial logarítmica ω = 0 apenas

na aproximação de um laço. Mas devido ao método de regularização adotado, todas

as contribuições com diagramas de um laço são finitas, apesar de superficialmente di-

vergentes por contagem de potência. Diagramas com EA > 2 são superficialmente

divergentes apenas em um laço e convergentes em dois ou mais laços. Para EA = 2,

encontramos diagramas com ω = 0− ND/2 na aproximação de dois laços.

Dessa forma, as divergências logarítmicas que devemos realmente nos preocupar

estão presentes nos diagramas de dois laços da função de dois pontos do supercampo

de calibre Aα e estão desenhados nas Figs. 5.1, 5.2 e 5.3.

5.4 Correções em dois laços: função de dois pontos do

supercampo de calibre

Da análise anterior, as únicas funções de vértice com divergências logarítmicas, são

aquelas com dois supercampos de calibre externos e sem nenhuma derivada covari-

ante Dα atuando sobre eles. Os diagramas correspondentes são mostrados na Fig. 5.1

(envolvendo somente acoplamento de calibre), 5.2 (aqueles envolvendo o acoplamento

com os supercampos fantasmas) e 5.3 (aqueles envolvendo o acoplamento com maté-

ria). A correspondente contribuição divergente para a função de vértice está localizada
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nos termos de mais baixa ordem numa expansão em torno do momento externo p = 0,

e assume a forma

ΓAA(mass) =
∫ d3p

(2π)3 d2θΓAA Aαa (p, θ) Aa
α (−p, θ) , (5.20)

tal que

ΓAA = ΓAA(1a) + ΓAA(1b) + ΓAA(1c) + ΓAA(1d) + ΓAA(1e) + ΓAA(1 f )

+ ΓAA(1g) + ΓAA(1h) + ΓAA(2a) + ΓAA(2b) + ΓAA(2c) + ΓAA(2d)

+ ΓAA(2e) + ΓAA(2 f ) + ΓAA(3a) + ΓAA(3b) + ΓAA(3c) + ΓAA(3d) + ΓAA(3e),(5.21)

e os números entre parêntesis indicam cada diagrama individualmente, nas Figs. 5.1,

5.2, e 5.3.

De acordo com as regras de Feynman determinadas na seção 5.1, o resultado pre-

liminar para as partes divergentes de ΓAA, juntamente com alguns detalhes sobre os

cálculos estão indicados no apêndice D. A análise provisória desses resultados, indica

que o esperado cancelamento mútuo entre as divergências logarítmicas não é com-

pleto e que um termo de massa para Aα é gerado por correções radiativas. Consequen-

temente, a simetria BRST é quebrada na aproximação de dois laços. Um fenômeno

similar para o modelo da QED3 supersimétrica foi relatado em [66], no qual o cance-

lamento das divergências é obtido apenas em um calibre particular. Atualmente, os

resultados apresentados aqui estão em discussão e a aplicação do método das identi-

dades de Slavnov-Taylor, desenvolvido em detalhe no capítulo 4, segue em curso.
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(a) (b) (c)

(e) (f)

(i) (j)

(g) (h)

(d)

Figura 5.1: Diagramas de dois pontos para Aα contendo somente vértices puros de
calibre.

(a) (b) (c)

(d) (e)

Figura 5.2: Diagramas de dois pontos para Aα com vértices do tipo fantasmas-calibre.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(k)(j) (l)

Figura 5.3: Contribuições para a função de dois pontos do supercampo de calibre Aα

em dois laços e com vértices mistos (escalar-calibre).



Conclusões

No presente trabalho, focamos nossa atenção em três modelos da teoria quântica

de campos supersimétrica em 2+ 1 dimensões do espaço-tempo, onde analisamos três

questões bastante distintas mas de grande importância do ponto de vista teórico, a

saber: a quebra dinâmica de supersimetria, o comportamento ultravioleta e simetria

BRST.

Na primeira situação, analisada no capítulo 3, calculamos o potencial efetivo para

o modelo de Wess-Zumino com supersimetria N = 1. Um análise detalhada da re-

normalização e da estrutura de vácuo do modelo foi apresentada, até a ordem de dois

laços. Um dos principais resultados é que a renormalização da teoria requer, além de

contratermo para a função de onda, também contratermos de massa e de constante

de acoplamento. Esse resultado difere do relatado em [46], onde a renormalização do

modelo requer um contratermo extra σ6
1 que não pode ser obtido por reparametrização

da Lagrangiana original. Paralelamente, verificamos que o estado de vácuo preserva a

supersimetria e a simetria discreta Φ → −Φ da teoria clássica, ao contrário do que foi

indicado em [47]. Esses resultados deram origem ao trabalho [68].

O capítulo 4 desta tese trata da prova explícita das identidades de Slavnov-Taylor

no modelo da eletrodinâmica supersimétrica não comutativa. Especial atenção foi

dada a função de vértice de dois pontos do supercampo Aα. Verificamos explicita-

mente, na ordem de um laço, que as divergências lineares presentes no termo indu-

zido de massa se cancelam mutuamente, e que a parte longitudinal do propagador de

calibre não sofre nenhuma correção radiativa. Para completar nosso estudo, devemos

estender as identidades diagramáticas para outras funções de vértices envolvendo três

e quatro campos externos. Esse cálculo ainda está em progresso.

O quinto capítulo é dedicado ao estudo da finitude do modelo super-Yang-Mills-

Chern-Simons acoplado com matéria. Utilizando a formulação em supercampos e a

regularização por redução dimensional, fomos capazes de determinar a estrutura das

divergências UV. Como resultado preliminar, nós verificamos que o esquema de regu-

larização adotado (DReD), implica na quebra da simetria BRST por um termo de massa

induzido que não se anula em um calibre arbitrário. Esses resultados estão atualmente

em fase de discussão.
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Finalmente, gostaria de ressaltar minha participação em três outros trabalhos reali-

zados durante meu doutoramento [69, 70, 71], e que por tratassem de tópicos distintos

dos aqui abordados, não foram incluídos na apresentação desta tese.



Apêndice A

O método da função zeta ζ(s)

Neste apêndice, iremos calcular a contribuição a um laço V(1) para o potencial efe-

tivo do modelo de Wess-Zumino pelo método da função zeta, como descrito na Ref.

[45]. Em geral, o determinante funcional DetÔ deve ser entendido como o produto

dos autovalores do operador Ô escrito em alguma base conveniente. No nosso caso, é

obvio que o elemento de matriz i∆−1
F (z, z′) dado por (3.9) representa o operador dife-

rencial Ôz = D2 + m + λϕ̂ + g
2 ϕ̂2 na representação coordenada no superespaço. Assu-

mindo formalmente uma equação de autovalor para Ôz dada por

∫
d5z′Ôz(z, z′) fn(z′) = αn fn(z), (A.1)

e definindo a função zeta ζ associada ao operador na base coordenadaÔ(z, z′) ≡ Ôzδ5(z−
z′) por

ζ(s) = ∑
n

1
αs

n
, (A.2)

então, o determinante funcional de Ôz pode ser escrito na forma

DetÔz ≡∏
n

αn = exp
[
−ζ′(0)

]
. (A.3)

Assim, o cálculo do determinante funcional se reduz ao problema de se obter uma

representação analítica para a função ζ(s) . O poder desse método reside no fato de que

em muitos casos de interesse é possível obter tal representação. Para este fim, vamos

introduzir uma função definida no superespaço G(z, z′ ; τ) que obedece uma equação

tipo calor:

ÔzG(z, z′ ; τ) +
∂G
∂τ

= 0, (A.4)

com a condição inicial G(x, θ; x′, θ′; τ = 0) = δ3(x− x′)δ2(θ − θ′).

Podemos verificar diretamente que a função ζ(s) pode ser escrita como uma trans-
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formada integral de Mellin da função G(z, z′; τ) na forma

ζ(s) =
1

Γ(s)

∫ ∞

0
dττs−1

∫
d3xd2θG(x = x′, θ = θ′; τ), (A.5)

para G(z, z′ ; τ) ≡ ∑n exp[−αnτ] fn(z) f ∗n (z
′).

Agora, nossa tarefa é determinar uma solução explicita de G(z, z′; τ) satisfazendo a

Eq. (A.4) e sujeita a condição inicial acima. Para este objetivo, assumiremos que esta

função é invariante por translações no espaço-tempo, tal que uma representação de

Fourier exista e seja dada por:

G(x, θ; x′, θ′; τ) =
∫ d3k

(2π)3 g(k, θ, θ′ ; τ) exp
[
−ik(x− x′)

]
, (A.6)

com o seguinte “ansatz” para g(k, θ, θ′ ; τ):

g(k, θ, θ′ ; τ) = A(k, τ)+ θαθ′βkαβB(k, τ)+ θαθ′αC(k, τ)+ θ2D(k, τ)+ θ′2E(k, τ)+ θ2θ′2H(k, τ).

(A.7)

Para determinar os coeficientes A, B, C, D, E e H, nós devemos usar a forma explí-

cita de Ôz obtida de (3.15) e inserir (A.7) em (A.4). Esta equação resulta em um sistema

diferencial linear de seis equações e seis incógnitas, sujeito as condições inicias:

A(k, 0) = 0 B(k, 0) = 0 C(k, 0) = 1

D(k, 0) = −1 E(k, 0) = −1 H(k, 0) = 0. (A.8)

As soluções desse sistema são facilmente obtidas com a ajuda do software Mathematica c©

e são dadas por

A(k, τ) =
1

2
√
−k2 + µ2

2

[
e
−τ
(

µ1+
√
−k2+µ2

2

)

− e
−τ
(

µ1−
√
−k2+µ2

2

)]
,

B(k, τ) = − 1

2
√
−k2

[
e−τ(µ1+

√
−k2) − e−τ(µ1−

√
−k2)

]
,

C(k, τ) =
1
2

[
e−τ(µ1+

√
−k2) + e−τ(µ1−

√
−k2)

]
,

D(k, τ) = −1
2

[
e
−τ
(

µ1+
√
−k2+µ2

2

)

+ e
−τ
(

µ1−
√
−k2+µ2

2

)]
,

E(k, τ) = −1
2

[
e
−τ
(

µ1+
√
−k2+µ2

2

)

+ e
−τ
(

µ1−
√
−k2+µ2

2

)]
,

F(k, τ) =

√
−k2 + µ2

2

2

[
e
−τ
(

µ1+
√
−k2+µ2

2

)

− e
−τ
(

µ1−
√
−k2+µ2

2

)]
, (A.9)
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onde µ1 = m + λσ1 +
g
2 σ2

1 e µ2
2 = λσ2 + gσ1σ2 . A partir desses resultados, somos capa-

zes de construir a função ζ(s) como prescrito na Eq. (3.7) e integrando em θ obtemos

ζ(s) =
1

Γ(s)

∫ ∞

0
dττs−1

∫
d3xd2θ

d3k
(2π)3

[
A(k, τ) + 2θ2 (C(k, τ) + D(k, τ))

]

=
Ω

Γ(s)

∫ d3k
(2π)3

∫ ∞

0
dττs−1(−2) [C(k, τ) + D(k, τ)] . (A.10)

A integração em τ é direta e com a ajuda da relação V(1) = −(i/2Ω) ln DetÔ =

(i/2Ω)ζ′(0), chegamos ao resultado desejado para a contribuição de um laço do po-

tencial efetivo:

V(1) = − i
2Ω

(
−ζ′(0)

)
= − i

2

∫ d3k
(2π)3 ln

[
k2 + M2

k2 + µ2
1

]
, (A.11)

onde M2 = µ2
1 − µ2

2. Finalmente, a integral de momento poder ser realizada por regu-

larização dimensional de modo usual.
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Apêndice B

Integras básicas a dois laços

Todas as integrais escalares a dois laços que aparecem nesse trabalho podem ser

escritas como combinações das seguintes integrais básicas [67] (no espaço Euclidiano):

I(m1, m2, m3) =
∫ dkD

(2π)D
dDq

(2π)D
1(

k2 + m2
1

) (
q2 + m2

2

) [
(k + q)2 + m2

3

]

=
µ−2ǫ

32π2

[
1
ǫ
− γ + 1− ln

(
(m1 + m2 + m3)

2

4πµ2

)]
, (B.1)

K1(m1, m2, m3) =
∫ dkD

(2π)D
dDq

(2π)D
k2q2

(
k2 + m2

1

) (
q2 + m2

2

) [
(k + q)2 + m2

3

]

= − µ−2ǫ

16π2

(
m3

1 + m3
2

)
m3 + m2

1m2
2 I(m1, m2, m3), (B.2)

K2(m1, m2, m3) =
∫ dkD

(2π)D
dDq

(2π)D
(k · q)2

(
k2 + m2

1

) (
q2 + m2

2

) [
(k + q)2 + m2

3

]

=
µ−2ǫ

64π2

{
m2

3 (m1m3 + m2m3 −m1m2)−m3

(
3m3

1 + 3m3
2 + m2

1m2 + m1m2
2

)

+
(

m2
1 + m2

1

)
m1m2 +

1
4

(
m2

1 + m2
2 −m2

3

)2
I(m1, m2, m3)

}
, (B.3)

K3(m1, m2, m3) =
∫ dkD

(2π)D
dDq

(2π)D
k · q(

k2 + m2
1

) (
q2 + m2

2

) [
(k + q)2 + m2

3

]

=
µ−2ǫ

32π2 (m1m2 −m2m3 −m1m3) +
1
2

(
m2

1 + m2
2 −m2

3

)
I(m1, m2, m3),

(B.4)
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Aqui ǫ = 3−D, γ ≈ 0.5772 é a constate de Euler e µ é um parâmetro com dimensão de

massa introduzido no processo de regularização dimensional. Outras formulas úteis

no cálculo das integrais no espaço dos momentos são:

1(
k2 + m2

1

) (
k2 + m2

2

) =
1

m2
2 −m2

1

[
1

k2 + m2
1
− 1

k2 + m2
2

]
, (B.5)

1

(k2 + m2)
2 = − 1

2m
∂

∂m

[
1

k2 + m2

]
. (B.6)



Apêndice C

Bolhas de vácuo no modelo de

Wess-Zumino

As expressões analíticas para as bolhas de vácuo a dois laços, que contribuem para

o potencial efetivo, desenhadas na Fig. 3.2 são dadas por (dDk ≡ µεd3−εk):

V(2)
a = −g

8

∫ dDkdDq
(2π)2D d2θ ∆F(k; θ − θ1)|θ=θ1

∆F(q; θ − θ2)|θ=θ2

= −g
2

∫ dDkdDq
(2π)2D

[
µ1µ2

2

(k2 + M2)(q2 + µ2
1)(q

2 + M2)

]
, (C.1)

e

V(2)
b = −3i

∫ dDkdDq
(2π)2D d2θ1d2θ2I(θ2

1 , θ2
2)∆F(k; θ1 − θ2)∆F(q; θ1 − θ2)∆F(−k− q; θ1 − θ2),

(C.2)

onde

I(θ2
1 , θ2

2) =
1

36

[
(λ + gσ1)

2 − (λgσ2 + g2σ1σ2)(θ
2
1 + θ2

2) + g2σ2
2 θ2

1θ2
2

]
. (C.3)

Após realizar a D-álgebra e fazer a integração remanescente em θ , obtemos as seguin-

tes integrais de momento em dois laços para V(2)
b :
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V(2)
b =

∫ dDkdDq
(2π)2D

−µ2
2(λ + gσ1)

2

12(k2 + M2)(q2 + M2)(k2 + µ2
1)(q

2 + µ2
1) [(k + q)2 + M2]

[
(k + q)2 + µ2

1

]

×
{

k4(q2 + µ2
1) + 2k.q

[
(k2 + µ2

1)(q
2 + µ2

1)− (k2 + q2 − (k + q)2 + µ2
1)µ

2
2

]

+µ2
1

[
q4 − 15µ4

1 − 4q2
[
(k + q)2 + 2µ2

1

]
+ 6µ2

1µ2
2 + 2(k + q)2(−5µ2

1 + µ2
2)
]

+k2q4 − 4k2µ2
1

[
(k + q)2 + 2µ2

1

]
+ k2q2

[
2(k + q)2 − µ2

1 − 4µ2
2

]}

+
∫ dDkdDq

(2π)2D

−6gµ1(λ + gσ1)σ2 + g2σ2
2

12(k2 + M2)(q2 + M2) [(k + q)2 + M2]
. (C.4)

Todas as integrais acima são realizadas no esquema de regularização por redução

dimensional, usando as fórmulas apresentadas no apêndice B. Os resultados finais são

dispostos em (3.17).



Apêndice D

Integrais divergentes no modelo

SYMCSM a dois laços

Neste apêndice, apresentamos alguns detalhes sobre os cálculos das partes log di-

vergentes das funções de dois pontos do supercampo de calibre Aα. Por contagem de

potencia em (5.19), essas divergências aparecem somente nos termos sem nenhuma

derivada covariante D aplicada nas pernas externas dos diagramas correspondentes.

Vamos iniciar com os diagramas mostrados na Fig. 5.1, que envolve somente os

vértices de calibre puro. O diagrama 5.1(a) corresponde a expressão

Γ(5.1a) = −g4(TR)
2〈:
∫

d5x
1

12
fabe fecd

(
DαDβAa

α AγbAc
γ Ad

β +
1
8

AαaDαAβb AγcDγAd
β

)
(x) :

:
∫

d5y
1

12
fa′b′e′ fe′c′d′

(
DαDβAa′

α Aγb′Ac′
γ Ad′

β +
1
8

Aαa′DαAβb′Aγc′DγAd′
β

)
(y) :〉 ,

a qual após as contrações dos campos, a manipulação da D-álgebra e a seleção dos

termos divergentes na forma da Eq. 5.20, resulta em

ΓAA(5.1a) = g4N2TR

∫ d3k

(2π)3
d3q

(2π)3
1

(k2 + m2) (q2 + m2) [(k− q)2 + m2]
[
−
(
66α3 + 77α2 + 491α + 176

)

1536
+

(
12α3− 47α2 + 270α− 253

)
(k · q)2

384q2(k− q)2

−
(
14α3− 31α2 + 24α− 1

)
(k · q)2

128k2(k− q)2 −
(
18α3 − 49α2 + 102α + 109

)
k · q

256(k− q)2

+

(
60α3− 739α2 + 38α− 253

)
k · q

768q2 −
(
84α3− 170α2 + 249α− 103

)
k · q

768k2

+
(α− 1)3(k · q)3

8k2q2(k− q)2 +
(α− 1)2(5α− 3)(k · q)2

32k2q2

]
. (D.1)

As integrais escalares nos momentos internos k e q são regularizadas por redução
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dimensional e calculadas com o auxílio das formulas apresentadas no apêndice B. Co-

lecionando apenas as partes divergentes de ΓAA(5.1a), podemos escrever o resultado

ΓAA(5.1a) = − (255α2 + 320α− 191) g4 N2 TR

16384π2ǫ
+ termos finitos. (D.2)

Procedendo de modo similar para os outros diagramas na Fig. 5.1, obtemos

ΓAA(5.1b) = g4N2TR

∫ d3k

(2π)3
d3q

(2π)3
1

(k2 + m2) (q2 + m2) [(k + q)2 + m2]
[
− 3α3(k · q)2

16 (k2 + m2) q2 +
α2(k · q)3

8 (k2 + m2) q2 [(k + q)2 + m2]
+

α
(
36α2 + 47α + 23

)

512

+
α
(−13α2 + 35α + 6

)
(k · q)2

256q2 [(k + q)2 + m2]
− 3α

(
α2 + α + 2

)
k · q

512q2 +
α(7α + 1)k · q
256 (k2 + m2)

−α
(
5α2 + 57α + 36

)
k · q

512 [(k + q)2 + m2]
+

α(α + 1)(k · q)3

32 (k2 + m2) (k + q)2 [(k + q)2 + m2]

+
α(10α− 1)(k · q)2

128(k + q)2 [(k + q)2 + m2]
+

α(31α− 3)(k · q)2

128 (k2 + m2) [(k + q)2 + m2]

]

=
α2 g4 N2 TR

512π2ǫ
+ termos finitos, (D.3)

ΓAA(5.1c) = g4N2TR

∫ d3k

(2π)3
d3q

(2π)3
1

(k2 + m2) (q2 + m2) [(k− q)2 + m2]
[(

α2 + α + 1
)

4
+

[
α
(
9α2 + 3α− 4

)
+ 8
]
(k · q)2

24 (k2 + m2) (k− q)2 − α(α− 1)k · q
4q2

−
[
α
(
9α2 + 3α− 10

)
+ 14

]
k · q

48(k− q)2 − (α− 1)2(k · q)2

4q2(k− q)2 +
(α− 1)(k · q)2

4 (k2 + m2) q2

−
[
α
(
−9α2 + 33α + 22

)
− 14

]
k · q

48 (k2 + m2)

]

= − (α2 − 3) g4 N2 TR

256π2ǫ
+ termos finitos, (D.4)
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ΓAA(5.1d) = g4N2TR

∫ d3k

(2π)3
d3q

(2π)3
1

(k2 + m2) (q2 + m2) [(k− q)2 + m2]
[
− α2(k · q)3

8 (k2 + m2)
2 (k− q)2

− α2(k · q)2

8 (k2 + m2)
2 −

α(α− 1)(k · q)2

4 (k2 + m2) q2 −
α(2α + 1)

4

−α [2α(5α− 3) + 11] (k · q)2

32 (k2 + m2) (k− q)2 − α [2α(5α− 39) + 19] k · q
64 (k2 + m2)

+
α2(α− 1)k · q

4q2

+
α(α− 1)2(k · q)2

4q2(k− q)2 +
α [2α(5α− 6) + 19] k · q

64(k− q)2

]

=
α(α− 3) g4 N2 TR

256π2ǫ
+ termos finitos, (D.5)

ΓAA(5.1e) = g4N2TR

∫ d3k

(2π)3
d3q

(2π)3
1

(k2 + m2) (q2 + m2) [(k + q)2 + m2]
[(

5α2 − 14α− 1
)

12
+

(α− 1)2(k · q)2

12k2q2 +
7(α− 1)2(k · q)2

24k2(k + q)2

+
3(α− 1)2(k · q)2

8q2(k + q)2 +
α(α− 1)k · q

6q2 +
α(2α + 3)k · q

6(k + q)2 +
α(5α + 3)k · q

12k2

]

= −3
(α + 1) g4 N2 TR

256π2ǫ
+ termos finitos, (D.6)

ΓAA(5.1 f ) = g4TRN2
∫ d3k

(2π)3
d3q

(2π)3
1

(k2 + m2) (q2 + m2) [(k− q)2 + m2]
[
− α(α− 1)2(k · q)4

16k2 (k2 + m2) q2(k− q)2 +

(
α2 + 1

)
(k · q)3

8k2 (k2 + m2) (k− q)2 −
α
(
2α2 − 3α + 1

)
(k · q)3

32k2 (k2 + m2) q2

−α
(
11α2− 18α + 7

)
(k · q)3

32 (k2 + m2) q2(k− q)2 +

(
2α3 + 6α2 − 19α + 7

)
(k · q)3

32k2 (k2 + m2) (k− q)2 +
α(α− 3)

12

+
α(α− 1)(k · q)2

4 (k2 + m2) q2 −
(
α2 − 2α− 1

)
(k · q)2

16k2 (k2 + m2)
+

(
3α2 − 28α− 1

)
(k · q)2

16 (k2 + m2) (k− q)2

−α
(
11α2− 35α + 24

)
(k · q)2

64 (k2 + m2) q2 − (α− 1)
(
18α2− 22α− 1

)
(k · q)2

64q2(k− q)2

+

(
5α3 + 22α2 − 36α + 7

)
(k · q)2

64k2 (k2 + m2)
+

(
28α3− 27α2 + 27α− 9

)
(k · q)2

64 (k2 + m2) (k− q)2

−α(α− 1)k · q
3q2 +

α(7α + 10)k · q
12(k− q)2 +

α(17α− 1)k · q
16 (k2 + m2)

+

(
29α3− 153α2 + 6α + 3

)
k · q

128(k− q)2

+

(
32α3 − 4α2 + 43α− 2

)
k · q

128 (k2 + m2)
−
(
54α3− 124α2 + 41α + 1

)
k · q

128 (k2 + m2) q2

]

= −α(11α2 − 115α− 36) g4 N2 TR

4096π2ǫ
+ termos finitos. (D.7)
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Os diagramas envolvendo o acoplamento entre o supercampo de calibre e os super-

campos fantasmas são descritos na Fig. 5.2. Suas contribuições divergentes para ΓAA

são dada por

ΓAA(5.2a) =
αg4N2TR

8

∫ d3k

(2π)3
d3q

(2π)3
1

k2(k + q)2 (q2 + m2)

= −αg4N2TR

256π2ǫ
+ termos finitos , (D.8)

ΓAA(5.2b) = −
(
α2 − 1

)
g4N2TR

4

∫ d3k

(2π)3
d3q

(2π)3
k2 − k · q

q2 (k2 + m2)
2 (k + q)2

= − (α2 − 1)g4N2TR

256π2ǫ
+ termos finitos , (D.9)

ΓAA(5.2c) =
α(α− 1)g4N2TR

4

∫ d3k

(2π)3
d3q

(2π)3
k · q

q2 (k2 + m2)
2 (k− q)2

=
α(α− 1)g4N2TR

256π2ǫ
+ termos finitos , (D.10)

ΓAA(5.2d) = ΓAA(5.2e) = 0 . (D.11)

Somando-se todas as contribuições do setor de calibre puro, temos como resultado

a Eq. (??) .

Os diagramas envolvendo os supercampos de matéria são descritos na Fig. 5.3.

Seguindo o procedimento delineado acima, os resultados para as contribuições diver-

gentes resultam em

ΓAA(5.3a) =
αg4TR

N

∫ d3k

(2π)3
d3q

(2π)3
k · q

(k2 + M2) (q2 + m2) [(k + q)2 + M2]
2

= α
g4 TR

2N
1

32π2ǫ
+ termos finitos, (D.12)

ΓAA(5.3b) =
g4
(

N2 − 1
)

TR

N

∫ d3k

(2π)3
d3q

(2π)3

[
(α− 2)q2 − 2(α− 1)k · q

(k2 + M2) q2 (q2 + m2) [(k− q)2 + M2]

]

= − (N2 − 1)g4 TR

N
1

32π2ǫ
+ termos finitos, (D.13)
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ΓAA(5.3c) =
g4
(

N2 − 1
)

TR

2N

∫ d3k

(2π)3
d3q

(2π)3
2(α− 1)k · q− (α− 2)q2

(k2 + M2) q2 (q2 + m2) [(k− q)2 + M2]

=
(N2 − 1)g4 TR

2N
1

32π2ǫ
+ termos finitos , (D.14)

ΓAA(5.3d) = −αg4NTR

∫ d3k

(2π)3
d3q

(2π)3
q2 + k · q

(k2 + M2) q2 (q2 + m2) [(k + q)2 + M2]

= −αN
g4 TR

2
1

32π2ǫ
+ termos finitos , (D.15)

ΓAA(5.3e) =
g4
(

N2 − 2
)

TR

2N

∫ d3k

(2π)3
d3q

(2π)3
(α + 1)

(k2 + M2) (q2 + M2) [(k− q)2 + m2]

= (α + 1)
(N2 − 2)g4 TR

2N
1

32π2ǫ
+ termos finitos, (D.16)

ΓAA(5.3 f ) = −g4(α + 1)
(

N2 − 2
)

TR

4N

∫ d3k

(2π)3
d3q

(2π)3
1

(k2 + M2) (q2 + M2) [(k + q)2 + m2]

= −(α + 1)
(N2 − 2)g4 TR

4N
1

32π2ǫ
+ termos finitos , (D.17)

ΓAA(5.3g) = −g4NTR

2

∫ d3k

(2π)3
d3q

(2π)3
α k · q

(k2 + m2)
2
(q2 + M2) [(k− q)2 + M2]

= −α
N g4 TR

4
1

32π2ǫ
+ termos finitos , (D.18)

ΓAA(5.3h) = −g4NTR

2

∫ d3k

(2π)3
d3q

(2π)3
k · q

(k2 + m2)
2
(q2 + M2) [(k + q)2 + M2]

=
N g4 TR

4
1

32π2ǫ
+ termos finitos . (D.19)
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