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摘要
本论文介绍了对希格斯玻色子与 τ -轻子之间的 Yukawa 耦合的 CP 特性的测量。
该测量使用了在 2015-2018 年间从大型强子对撞机中的 ATLAS 探测器中采集的
总计 139 fb−1 的质子对撞数据。这些质子对撞的质心能量为

√
s = 13 TeV。该研

究用以测量 CP 特性的可观测量由 τ -轻子的衰变产物中可探测的部分构建。希格
斯玻色子与 τ -轻子之间违反了 CP 对称性的相互作用由一个 CP 混合角 ϕτ 表示。
该混合角 ϕτ 在 68% 置信度下的期望值为 0◦ ± 28◦，在 95.5% 置信度下的期望值
为 0◦+75

◦

−70
◦。观测到的混合角 ϕτ 在 68% 置信度下的期望值为 9◦ ± 16◦，在 95.5% 置

信度下的期望值为 9◦ ± 34◦。此结果可以在 3.4 个标准差的区间内排除纯 CP -odd
的假设。本实验的观测符合标准模型的预期。
此外，本文还介绍了有关区分探测器中由堆积信号造成的粒子射流信号的研究。

Run-2 时期在 ATLAS 中使用的区分探测器中由堆积信号造成的粒子射流信号的
算法基于 K-近邻算法。本研究中，基于此算法的模型使用在 2015-2018 年间在
ATLAS 探测器采集的数据重新训练。此外，一个新的基于神经网络的模型被开发
用以区分由堆积信号造成的粒子射流信号。新模型的背景信号抑制率在所有给定
的工作环境中都得到了提升。
本文还介绍了一个用神经网络训练的对 CP 特性敏感的可观测量。在一个简
化了的数据模型中，该可观测量相比此前设计的可观测量以更高的确信度排除纯
CP -odd 的假设。这项研究会为未来对 CP 特性的精确测量做出贡献。





Abstract
This thesis presents a measurement of the CP -properties of the Yukawa coupling
between the Higgs boson and τ−lepton. The measurement uses the proton–proton
collision data collected from 2015 to 2018 with the ATLAS detector at the Large
Hadron Collider. Totally 139 fb−1 proton–proton collision data is collected at a
center-of-mass energy of

√
s = 13 TeV. This study investigates the CP -properties

with CP -sensitive observables defined by the visible decay products of τ−leptons.
CP -violating interactions between the Higgs boson and τ−lepton are described by
the CP -mixing angle ϕτ . The expected value of ϕτ according to the Standard Model
is 0◦±28◦ at 68% confidence level, and 0◦+75

◦

−70
◦ at 95.5% confidence level obtained from

a simulated dataset. The observed value of ϕτ is 9◦ ± 16◦ at 68% confidence level,
and 9◦ ± 34◦ at 95.5% confidence level. The pure CP -odd hypothesis is disfavoured
at 3.4 standard deviations. The observation is consistent with the Standard Model
expectations.

This thesis also presents studies of pile-up jet tagging. The pile-up jet tagging
algorithm is based on the K-Nearest Neighbor method. It is trained with the data
collected from 2015 to 2018 with the ATLAS detector. A new pile-up jet tagging
algorithm based on neural network is developed. It provides improvement to the
background rejection at all working points.

In this thesis, a new CP -sensitive observable is developed using neural network
approach. The trained observable excludes the pure CP -odd hypothesis at higher
confidence level in a simplified sample compared with the previously designed ob-
servable. These studies will contribute to future measurements of the CP -properties.
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Introduction

The ATLAS and CMS collaborations at the Large Hardon Collider (LHC) discovered

a particle consistent with the Standard Model (SM) Higgs boson in 2012 [1]. Several

studies have been performed to investigate the properties of this Higgs boson. Decay

of the Higgs boson to a pair of τ−leptons has been observed by the CMS and ATLAS

experiments in 2018 and 2019 respectively [2, 3]. This decay allows measurements

of the charge conjugation and parity (CP ) properties of the Yukawa coupling of

the Higgs boson to the τ−lepton. The SM Higgs boson is predicted to be purely

CP -even. Studies performed by ATLAS and CMS experiments on the interaction

between the Higgs boson and gauge bosons have not shown any deviations from

the SM predictions so far. A study on the interaction between Higgs boson and

gauge bosons published in 2015 has excluded the pure CP -odd structure at a 99.98%

confidence level [4]. Nevertheless, the presence of a small CP -odd admixture has not

been yet excluded. If CP -odd contributions to the Higgs boson interactions exist,

they may appear at the tree level in the Higgs boson-fermion interactions. CP-odd

contributions can only appear at the loop level in the Higgs boson interaction with

the SM gauge bosons [5]. Measurements of coupling between the Higgs boson and

τ−lepton might provide evidence for CP -mixing in the Higgs sector. Discovery

of CP -mixing will indicate the existence of new physics beyond the SM. It may

also contribute to the explanation of observed asymmetry between matter and anti-

matter in our Universe [6].

In this thesis, a measurement of the CP property in the interaction between the

Higgs boson and τ−lepton is presented. The analysis is based on the observables

constructed from the measured parameters of the τ−lepton decay products. The

proton-proton collision data recorded by the ATLAS detector from 2015 to 2018 are

used. The proton beams collided at a center-of-mass energy of
√
s = 13 TeV.

This thesis also presents a development of the pile-up jet tagging algorithm based

on neural network. The pile-up jet tagging algorithm is part of the reconstruction,

which takes detector signals as input and reconstructs the kinematic information

of the particles. This new algorithm improves background rejection and processing



speed. It has been adopted as the new default jet-vertex-tagging algorithm in the
ATLAS Run-3 data analysis which has started in 2022.

This thesis also includes the investigation of a new CP -sensitive observable for the
H → ττ decay. It demonstrates the potential of constructing new observables with
machine learning techniques. The new observables may improve the sensitivity of
measurements in future analysis. The presented methodology can also be applied
to other analyses in particle physics.
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Chapter 1

Theoretical background

1.1 The Standard Model and the Higgs boson
The Standard Model (SM) is a quantum field theory that describes the elementary
particles and the fundamental interactions. It predicted the existence of several
elementary particles: top, bottom and charm quarks, W and Z bosons, gluons,
Higgs boson and others. All these particles have been discovered in experiments
[7, 8, 9, 10, 11, 12]. The Higgs boson was discovered in 2012, by the experiments
conducted at the Large Hadron Collider [12]. Figure 1.1 shows the elementary
particles of the Standard Model and their quantum numbers. The quarks u, d, c,
s, t, b and the leptons e, νe, µ, νµ, τ , ντ are fermions. The bosons γ, W±/Z and g

carry electromagnetic force, the weak force and the strong force, respectively.
The SM predicts the Higgs boson to be a neutral particle with spin 0, and it has

no strong force interaction. The existence of the Higgs boson is predicted by the
Standard Model before its discovery, as a consequence of the Higgs mechanism [13].
It is predicted to couple with itself, fermions, W and Z bosons. The existence of
the Higgs boson solves the problem that the fermions and W and Z bosons are not
allowed to have mass term. The description of how these particles acquire mass
from the interaction with the Higgs boson is in Section 1.2.

The Standard Model is a gauge-invariant quantum field theory (QFT) with gauge
symmetry SU(3)c ⊗ SU(2)L ⊗ U(1)Y [14]. Quantum chromodynamics (QCD) is a
QFT with symmetry group SU(3)c, that describes the interaction between quarks
and gluons. The SU(2)L⊗U(1)Y symmetry describes the electromagnetic and weak
interactions, also named the Electroweak interaction (EW).

The interactions in the Standard Model are described by the SM Lagrangian.
Each term of the Lagrangian is invariant under the corresponding gauge transfor-
mation. The terms of electroweak interaction satisfy the SU(2)L ⊗ U(1)Y gauge
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Figure 1.1: Elementary particles in the Standard Model. The mass, charge and spin are labeled
in the corner.

symmetry, where Y represents the weak hypercharge of the U(1)Y symmetry. The
fields associated with SU(2) symmetry W µ

i (i = 1, 2, 3) only couple to left-handed
spinor fields, leading to a subscript L in the SU(2) symmetry. The Lagrangian of
electroweak interaction does not contain the mass term of gauge bosons ∝ m2

V V
µVµ.

Such a mass term is not invariant under the SU(2)L ⊗ U(1)Y transformation. The
mass term of fermions ∝ mf ψ̄ψ is also not allowed, since the left-handed particles
transform differently compared to the right-handed particles [15]. The gauge bosons
W± bosons, Z boson and fermions acquire mass from the Higgs mechanism [13].

1.2 The Higgs mechanism
The Higgs mechanism was first introduced in the 1960s [13]. It explained the

masses of gauge bosons, and successfully predicted the existence of the Higgs bo-
son. In 2013, the Nobel Prize in physics is awarded to François Englert and Peter
W. Higgs for the theoretical discovery of the Higgs mechanism, confirmed by the
discovery of the Higgs boson performed at the Large Hadron Collider [12].

Consider an isospin doublet of complex scalar fields,

H =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
, (1.1)

a Higgs potential V (H) is written as [15]:

V (H) = |H| = µ2H†H + λ(H†H)2. (1.2)



1.2 The Higgs mechanism 15

Figure 1.2: Higgs potential with degenerate ground states when µ
2
< 0 [16].

The parameters µ2 and λ describe the shape of the potential. The Higgs potential
has degenerate ground states when λ > 0 and µ2 < 0. Figure 1.2 shows the graph-
ical representation of the Higgs potential in this case. The potential V (H) gets a
minimum at |H| =

√
H†H. The vacuum expectation value (VEV) of the doublet

H is:

⟨H⟩ = |H| =

√
−µ2

2λ
=

υ√
2
, (1.3)

where υ is the vacuum expectation value of the Higgs potential.
By choosing a non-zero value for the Higgs potential in the vacuum state, the

electroweak symmetry is broken spontaneously. A concise way is to choose the
ϕ+ = 0 and make ϕ0 real. This choice is called the unitary gauge. Then the vacuum
expectation value is represented by:

⟨0|H|0⟩ =
(

0
υ√
2

)
. (1.4)

With the vacuum expectation value υ ≈ 246 GeV [17], the scalar doublet H can
be parameterized as:

H =
1√
2

(
0

υ + h

)
. (1.5)

As a result, the following Lagrangian terms represent the mass of the gauge bosons
[15]:
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Lmass =
1

2

(υg
2

)2
(W−

µ W
−µ +W+

µ W
+µ) +

1

2

(
υ
√
g2 + g′2

2

)2

ZµZ
µ, (1.6)

where g and g′ are coupling constants related to electroweak interaction.
The W± bosons gain mass of:

m
W

± =
υg

2
,

and the Z boson gains a mass of:

mZ =
υ
√
g2 + g′2

2
.

The latest measurement of the mass of the W± bosons and the Z boson are m
W

± =

80.397±0.012 GeV, mZ = 91.1876±0.0021 GeV [17], while the SM predicts m
W

± =

80.357 ± 0.004input ± 0.004theory GeV [18] and mZ = 91.1875 ± 0.0021 GeV [19].
The fermion masses are granted by the interaction between the Higgs field with the
fermions fields, which is called the Yukawa interaction. The fermion mass can be
expressed by:

mf =
λyfυ√

2
,

where the λyf represents the Yukawa coupling for the fermion [15].
The Higgs boson also gains mass through the Higgs mechanism [15]. The mass of

the Higgs boson is expressed by:

mHiggs =
√
2λυ2.

Photon and gluons do not interact with the Higgs field at tree level. These particles
do not acquire mass through the Higgs mechanism.

1.3 The baryon asymmetry of the Universe
Although the Standard Model explains the elementary particles and interactions

well, there are still observed phenomena that it cannot explain. One of them is
baryon asymmetry.

Baryons are heavy subatomic particles that are made up of three quarks. Baryon
number is a quantum number assigned to quarks and hadrons. A quark has a baryon
number of 1

3
, and an anti-quark has a baryon number of −1

3
. A proton or neutron
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has a baryon number of 1, corresponding to the sum of the baryon numbers of three
quarks. Baryon asymmetry η is defined as:

η =
NB −NB̄

Nγ

. (1.7)

It describes the difference between the number of baryons NB and antibaryons NB̄ in
the observed Universe. The Nγ is the number of photons in the cosmic background
radiation [20].

It is a natural assumption that the early Universe was neutral, and the same
amount of matter and anti-matter was produced in the Big Bang. This assumption
is challenged by the observation that much less anti-matter than matter is presently
found in Nature. The observed Universe contains negligible anti-matter compared
with matter. The Baryon asymmetry of the Universe was measured with the cos-
mic microwave background (CMB). The Wilkinson Microwave Anisotropy Probe
(WMAP) team measured the CMB radiation and provide an estimated η ∼ O(10−10)

[21, 22]. Even though it is a small number, the Standard model predicts a much
lower value η ∼ O(10−20) [23].

One of the possible ways to generate the matter-antimatter asymmetry is through
baryogenesis [24]. Baryogenesis is a hypothesis that describes the physical process
to produce matter-antimatter asymmetry in the early universe. In 1967s Andrei
Sakharov proposed three necessary conditions for baryogenesis to occur [25].

1. Process that violates the baryonic number exists.
2. Both the charge conjugation (C) symmetry and the combination of charge

conjugation and parity symmetries (CP ) are violated in the baryogenesis process.
3. The process violating the baryon asymmetry must happen under conditions

outside the thermal equilibrium.
Assuming the Universe is initially baryon symmetric, the condition 1 is required

to reach the observed Universe with the baryon asymmetry. Otherwise, the baryon
number is conserved.

The condition 2 requires both C and CP symmetry to be violated. The charge
conjugation (C), parity (P ), and time-reversal (T ) symmetry are three fundamental
symmetries. The charge symmetry transforms a particle into its corresponding anti-
particle. Parity is the inversion of all spatial coordinates. Time reversal reverses
the direction of the time axis. When C is conserved, the same number of particle
and anti-particle is created or annihilated. When CP symmetry is not violated, the
same number of left-handed particles and right-handed anti-particles is created or
annihilated.
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Within thermal equilibrium, a process that changes the baryon number has the
same rate as its inverse process that changes it back. The condition 3 is required by
baryogenesis, otherwise the overall rate of baryon number changes is canceled out
[26].

This thesis studies CP -violation in the Higgs fermionic decay, using data obtained
with the Large Hadron Collider.

1.4 The CP -violation
CP -transformation is an operation for studing the invariance under the combi-

nation of charge conjugation (C) and parity (P ) transformation. A process with
CP -symmetry conserves the laws of physics when the particles are replaced by their
anti-particles and the spatial coordinates are inverted. CP -violation happens when
the laws of physics change under the CP -transformation.

Parity symmetry breaking was observed in the experiment in the early 1950s [27].
One of the experiments demonstrating parity violation is the τ−θ puzzle, where the
same mass τ, θ mesons decay into three and two pions, respectively. The τ, θ mesons
are the former names of the neutral Kaon (K) meson. In 1956, T. D. Lee and C.
Yang proposed that the τ − θ puzzle could be explained by parity violation in the
weak interactions [27]. After that, an assumption of higher-level CP -symmetry was
made.

The evidence for CP -violation was discovered in 1964, in the neutral K-meson
decay [28]. Further experiments showed more evidence in the B meson decays and
Λb baryon decays [29, 30]. In 2012, The LHCb Collaboration reported the discovery
of CP -violation in D0 meson decay [31].

The mechanism explaining the CP -violation discovered in the K, B and D mesons
decay was implemented in the Standard Model. In 1973, Makoto Kobayashi and
Toshihide Maskawa introduce the Cabibbo-Kobayashi-Maskawa (CKM) matrix that
describes the transformation between the mass eigenstate of quarks q and the weak
eigenstates q′ [32]. The existence of complex terms of CKM matrix leads to CP -
violation, which explains all the found sources of CP -violation [33].

In the Standard Model, the Higgs boson is purely CP -even and no CP -violation
is expected. An observation of a mixed CP -even and CP -odd state would indicate
the existence of a new source of CP -violation in the Higgs sector. Such sources
are possible with potential new physics beyond the Standard Model. Experiments
on the bosonic decay of the Higgs boson have excluded the pure pseudoscalar state
of the Higgs boson [34, 35]. The CP -even coupling between the Higgs boson and
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gauge bosons is in the tree-level, which is the lowest-order interaction process. The
potential CP -odd coupling of the Higgs boson to gauge bosons may only occur at
higher-order levels, leading to the measurement suppressed by the mass scale of new
physics [36].

In contrast, both CP -even and CP -odd coupling between the Higgs boson and
fermions can be present at the tree-level [5]. The fermionic couplings can be stud-
ied in both processes of the Higgs boson production and the Higgs boson decay.
The measurements on the CP -violation in the Higgs production process have been
performed by the ATLAS and CMS Collaborations at the LHC, excluding the pure
CP -odd Yukawa coupling at 3.9σ [37] and 3.2σ [38], respectively.

1.5 Higgs boson production and decay in the
proton-proton collision

The Large Hadron Collider (LHC) is the largest particle accelerator in the world. It
is designed to produce proton-proton collision at a maximum center-of-mass energy
of 14 TeV. During the first operational run in the LHC, which is usually called the
Run-1, the accelerated proton beams were collided, with a center-of-mass energy
around 7 TeV in 2011 and 8 TeV in 2012. The second operational run (Run-2) was
started in 2015 with upgraded detectors. During the Run-2 experiments of LHC in
2015-2018, the proton beams collided at a center-of-mass around 13 TeV [39].

In 2012, the ATLAS [12] and CMS [40] collaborations announced the discovery
of a new particle compatible with the predicted Standard Model Higgs boson. The
analysis by ATLAS experiment was performed using the 4.8 fb−1 data collected at
√
s = 7 TeV and 5.8 fb−1 data collected at

√
s = 8 TeV. This analysis combined

the measurements in the H → ZZ∗, H → γγ, H → WW ∗, H → bb̄ and H → τ+τ−

decay channels for
√
s = 7 TeV data, and in the H → ZZ∗, H → γγ and H → WW ∗

channels for
√
s = 8 TeV data.

The latest measured value of the mass of the Higgs boson published by Particle
Data Group (PDG) is mH = 125.10 ± 0.14 GeV [17], based on the experiments at
the LHC data until 2022.

The expected cross sections of the Higgs boson production depend on the center-
of-mass energy of protons collision (

√
s). Figure 1.3 shows the Standard Model

Higgs boson production cross sections as a function of the center-of-mass energy.
This thesis studies the CP -violation in the Higgs fermionic decay in the Run-

2 experimental setup. At
√
s = 13 TeV and mH = 125.10 GeV, we expect the

dominant production process of the Higgs to be gluon fusion (ggF). Other channels
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Figure 1.3: Theoretical predicted SM Higgs boson production cross sections in p− p collisions as
functions of centre-of-mass energy

√
s [41].

√
s(TeV ) ggF V BF WH ZH tt̄H total
13 48.5+4.6%

−6.7% 3.78+2.2%
−2.2% 1.37+2.6%

−2.6% 0.88+4.1%
−3.5% 0.50+6.8%

−9.9% 55.1

14 54.7+4.6%
−6.7% 4.28+2.2%

−2.2% 1.51+1.9%
−2.0% 0.99+4.1%

−3.7% 0.60+6.9%
−9.8% 62.1

Table 1.1: Theoretical predicted Higgs boson production cross sections for a Higgs boson with
mH = 125.10± 0.14 GeV at different center of mass energy (

√
s) [41].

such as vector boson fusion (VBF), W/Z-associated Higgs strahlung (WH/ZH),
and top quark pair associated production (tt̄H) also contribute [17]. The Feynman
diagrams corresponding to the dominant Higgs production at the LHC are shown
in figure 1.4. Table 1.1 lists the theoretically predicted cross sections for these
production modes of the Higgs boson. The ggF is calculated at the next-next-
next-to-leading-order (N3LO) level. The VBF, WH, ZH processes are calculated at
the next-next-to-leading-order (NNLO) level. The ttH is calculated at the next-to-
leading-order (NLO) level.

The expected branching ratios of the Higgs boson decays are functions of the mass
of the Higgs boson. Figure 1.5 illustrates the relation between the branching ratio
of each decay mode and the mass of the Higgs boson.
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(a) (b)

(c) (d)

Figure 1.4: Main production channels of the Higgs boson in the p−p collision at
√
s = 13 TeV. (a)

gluon fusion (ggF); (b) vector boson fusion (VBF); (c) W/Z-associated Higgs strahlung (WH/ZH);
(d) top quark pair associated production (tt̄H).

Decay mode branching ratio
bb̄ 57.4+3.23%

−3.29%%
τ−τ+ 6.29+5.71%

−5.63%%
cc̄ 2.89+12.21%

−12.18%%
µ−µ+ 0.0218+5.95%

−5.86%%

Table 1.2: Expected branching ratio for the main fermionic decay modes of the Standard Model
Higgs boson [17, 41].

For a Standard Model Higgs boson with mH = 125.10± 0.14 GeV, the dominant
fermionic decay modes are shown in the table 1.2. The bb̄ decay mode has the
highest branching ratio in the fermions. The CP -analysis in this mode is difficult
due to the heavy QCD background in the LHC. The analysis of the LHC Run-2
data showed evidence of the bb̄ decay mode [42] and τ−τ+ decay mode [43] in 2018.
The µ−µ+ decay mode has a much lower branching ratio than the τ−τ+ decay mode
[17]. The events containing the process of Higgs decaying into µ−µ+ pair are rare in
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Figure 1.5: Expected branching ratios for the main decay modes in different Higgs boson mass
(MH) [17].

the data collected during the Run-2. Both the ATLAS [44] and CMS experiments
[45] have found the evidence of H → µµ decay, but the sensitivity has not reached
the level of discovery so far.
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Chapter 2

Experimental setup

2.1 The Large Hadron Collider
At the time of writing this thesis, the Large Hadron Collider (LHC) is the largest and
most powerful particle accelerator. The accelerator complex at CERN is a succession
of machines that accelerate particles to increasingly higher energies. Each machine
boosts the energy of a beam of particles before injecting it into the next machine in
the sequence. The LHC is the last element in this chain. The designed maximum
collision energy of LHC is 14 TeV [46, 47].

Linear accelerator 4 (Linac4) is the source of proton beams for the CERN accel-
erator complex. It accelerates negative hydrogen ions (H−

2 , consisting of a hydrogen
atom with an additional electron) to 160 MeV to prepare them to enter the Proton
Synchrotron Booster (PSB). The ions are stripped of their two electrons during in-
jection from Linac4 into the PSB, leaving only protons. These are accelerated to 2
GeV for injection into the Proton Synchrotron (PS), which pushes the beam up to
26 GeV. Protons are then sent to the Super Proton Synchrotron (SPS), where they
are accelerated up to 450 GeV [47]. After that, the protons are transferred to the
two beam pipes of the LHC. The beam in one pipe circulates clockwise while the
beam in the other pipe circulates anticlockwise. It takes 4 minutes and 20 seconds
to fill each LHC ring, and 20 minutes for the protons to reach the energy of 6.5 TeV.
Beams circulate for many hours inside the LHC beam pipes under normal operating
conditions. The single beam lifetime typically starts at around 20 hours. The life-
time of the beam increases to over 30 hours after 6 hours of stable beams [48]. The
two beams are brought into collision inside four detectors –ALICE, ATLAS, CMS,
and LHCb [47]. Figure 2.1 shows the schematic view of the CERN Accelerator
complex.
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Figure 2.1: Schematic view of the CERN Accelerator complex [39].

Protons are not the only particles accelerated in the LHC. Lead ions for the LHC
start from a source of vaporized lead and enter Linac3 before being collected and
accelerated in the Low Energy Ion Ring (LEIR). They then follow the same route
to maximum energy as the protons [49].

Two LHC operational runs have been finished. After each operational run, the
machine was undergoing a maintenance period for about two years.

The number of events generated in the LHC collisions is given by:

N = σevent

∫
Ldt, (2.1)

where the σevent is the cross section of the interaction, L is the instantaneous lumi-
nosity. The cross section is expressed with unit barns where 1 barn = 10−24 cm2.
The integrated luminosity is measured in units b−1. The integrated luminosity is
often simplified as the luminosity. The instantaneous luminosity L can be expressed
as:

L =
fnbN

2
pγ

4πϵβ∗ F, (2.2)
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Figure 2.2: Delivered luminosity for each year of Run-1 and Run-2 [39].

where f is the revolution frequency [50]. The Np is the typical number of protons
per bunch, nb is the number of bunches per beam, γ is the relativistic factor, ϵ is
the normalized transverse beam emittance, β∗ is the beta function at the collision
point, and F is a geometric luminosity reduction factor due to the crossing angle at
the interaction point. For head-on collision, the value of factor F is 1 and it becomes
smaller when the crossing angle increases. The product ϵβ∗ is directly related to the
beam size at the interaction point. In order to achieve a high luminosity, more high
population bunches need to collide at high frequency with the beam size as small as
possible [49].

Figure 2.2 shows the integrated luminosity delivered to the ATLAS detect in each
year during Run-1 and Run-2. There was more luminosity delivered to the ATLAS
detector during 2015-2018 compared with the Run-1 period from 2011-2012 [39].

There are multiple radio frequency (RF) cavities inside the LHC to constrain the
proton into bunches. The RF accelerates the protons and distributes bunches of
protons that are spaced apart from each other. Each bunch contains around 1011

protons. These bunches are separated from each other by 25 ns. There are about
2808 bunches loaded in the LHC during operation [39].

The protons are accelerated in opposite directions in the LHC and collide inside
the detectors. Just prior to the collision, the bunch is squeezed by focusing magnets
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to maximize the collision rate. There are four main experiments and detectors
along LHC. A Toroidal LHC ApparatuS (ATLAS) [39], Compact Muon Solenoid
(CMS) [51], Large Hadron Collider beauty (LHCb) [52], and A Large Ion Collider
Experiment (ALICE) [53].

ATLAS and CMS are general-purpose detectors. They are designed for wide-
ranged experiments and their results can be used for cross-verification, such as
testing the Standard Model and searching for new physics beyond the Standard
Model. The LHCb focuses on precision measurements of CP -violation and rare de-
cays of b-hadrons. ALICE aims to study physics of strongly interacting matter in
the collisions of heavy nuclei.

2.2 The ATLAS detector
The ATLAS detector is one of the two major general-purpose detectors at the

LHC. It has a cylindrical shape surrounding the LHC beam pipe. Figure 2.3 shows
the structure of the ATLAS detector. The detector has a length of 44 meters and
a height of 25 meters. The beams collide at the center of the ATLAS detector at a
frequency of 40 MHz.

Figure 2.4 shows the luminosity-weighted distribution of the mean number of
interactions per crossing for the proton collisions in ATLAS Run-2. There are five
curves in the plot. The area under each curve represents the integrated luminosity
recorded in that period. The total recorded integrated luminosity during 2015-2018
is 146.9 fb−1. The average number of interactions is 33.7 in the whole Run-2 period.
There are pile-up effects in the recorded data. The pile-up is caused by several
p − p collisions recorded as one event. There are in-time pile-up and out-of-time
pile-up. The in-time pile-up is the additional p-p collisions occurring in the same
bunch-crossing as the collision of interest. The out-of-time pile-up is due to the
electronics delay of the detectors. The unfinished detector response is reconstructed
as out-of-time pile-up collisions.

ATLAS is composed of a series of modular sub-detectors. The major sub-modules
are the Inner Detector, the Calorimeters and the Muon Spectrometer. Each of them
records certain information of the passing particles. The structure of ATLAS can
be divided into two parts, the barrel and the end-caps. The detectors in the barrel
region locate in a cylinder along the beam line. The detectors in the end-cap region
are arranged perpendicular to the beam line to measure the particles in low angle.

The coordinate system used to describe the ATLAS detector is summarised as
follows [54]. The nominal interaction point is defined as the origin of the coordinate
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Figure 2.3: The ATLAS detector [54].

system, while the beam direction defines the z-axis and the x-y plane is transverse to
the beam direction. The positive x-axis is defined as pointing from the interaction
point to the centre of the LHC ring and the positive y-axis is defined pointing
upwards. The side-A of the detector is defined as that with positive z and side-C is
that with negative z. The azimuthal angle ϕ is measured as usual around the beam
axis, and the polar angle θ is the angle from the beam axis. The pseudorapidity is
defined as:

η = −ln
(
tan

(
θ

2

))
. (2.3)

The transverse momentum pT , the transverse energy ET , and the missing transverse
energy Emiss

T are defined in the x-y plane. The distance ∆R in the pseudorapidity-
azimuthal angle space is defined as:

∆R =

√
(∆η)2 + (∆ϕ)2. (2.4)

Magnet system

In the ALTAS detector, the trajectories of charged particles are bent by magnetic
field to measure their momentum and charge. The magnetic field is generated by
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Figure 2.4: Distributions of the number of interactions per bunch-crossing [39].

superconducting magnet system. There are two main sections of the magnet system:
central solenoid magnet and toroid magnet.

The ATLAS solenoid surrounds the inner detector at the core of the experiment.
This powerful magnet is 5.6 m long, 2.56 m in diameter and weighs over 5 tonnes.
It provides a 2 T magnetic field in just 4.5 cm thickness.

The ATLAS toroids use a series of eight coils to provide a magnetic field of up to
3.5 T, used to measure the momentum of muons. There are three toroid magnets
in ATLAS: two at the ends of the experiment, and one massive toroid surrounding
the centre of the experiment. At 25.3 m in length, the central toroid is the largest
toroidal magnet ever constructed. It is unique in particle physics and an iconic
element of ATLAS. It uses over 56 km of superconducting wire and weighs about
830 tonnes. The end-cap toroids extend the magnetic field to particles leaving the
detector close to the beam pipe. Each end-cap is 10.7 m in diameter and weighs 240
tonnes [54].

The Inner Detector
The Inner Detector is composed of three subdetectors: the Pixel Detector, the
Semiconductor Tracker (SCT), and the Transition Radiation Tracker (TRT). The
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Figure 2.5: Integrated luminosity Recorded by ATLAS detector during 2016. Around 92% of
delivered luminosity are detected [39].

Inner Detector is 2.1 meters in diameter and 6.2 meters in length. The layout
is presented in figure 2.7. The Pixel Detector is closest to the beam. The SCT
surrounds the Pixel Detector and TRT surrounds the SCT. The main function of
the Inner Detector is to measure the trajectory of charged particles. As charged
particles traverse the detector, they leave behind a track of small energy deposits
(or hits) in each sub-detector, allowing the reconstruction of the trajectory of the
particle. The Pixel and SCT detectors cover the region |η| < 2.5 and TRT cover the
region |η| < 2.0. Figure 2.8 shows the structure of the Inner Detector. The Pixel
Detector covers the radius from 33.25 mm to 122.5 mm. The SCT covers a radius
of 299 mm to 514 mm，It is surrounded by the TRT with 528 mm in thickness.

The Pixel Detector consists of 1744 silicon pixel modules. These modules are
arranged in four concentric barrel layers and three disks at each end-caps. The end-
caps detector is placed at each end of a barrel-shaped detector to provide the most
complete coverage in detecting particles. Each module has 47232 pixels, covering an
area of 16.4×60.8 mm 2 and having a thickness of 250 µm. The signal in a module is
read out by 16 radiation-hard front-end chips bump-bonded to the sensor. There are
approximately 80.4 million readout channels in the Pixel Detector of ATLAS. Hits
in a pixel are read out if the signal exceeds a tunable threshold. The pulse height
is measured using the Time-over-Threshold (ToT) technique. The ToT technique
records a signal pulse by measuring the pulse width when the electric pulse has a
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Figure 2.6: The total integrated luminosity during Run-2 [39].

voltage higher than the given threshold. The spatial resolution of the pixel detector
is 10 µm in the azimuthal direction and 60 µm along the beam direction [56, 57].

The SCT consists of four coaxial cylindrical layers in the barrel region and nine
disks on each endcap. All layers can read out a position in two dimensions. The
SCT contains 4088 modules of silicon microstrip detectors. The microstrip is an
electromagnetic detector constructed with a flat conductor suspended over a ground
plane. The conductor and ground plane are separated by a dielectric material.
Each layer or disk provides measurements from two strips arranged at an angle, to
construct a space-points. Each of these silicon microstrips has a constant pitch of
80 µm and a thickness of 285 µm. There are around 6.3 million readout channels
in the SCT. It gives a resolution of 17 µm in the azimuthal direction and 580 µm
along the beam direction [58].

The TRT consists of thin-walled proportional drift straws [59]. Each proportional
drift straw is a tube with a diameter of 4 mm, filled with a gas mixture of Xe(70%),
CO2(27%) and O2(3%). There is a gold-plated tungsten anode wire of 31 µm di-
ameter at the center of each proportional drift straw. When charged particles pass
through the tube, the gas is ionized. The ions are drifted to the center wire and
send an electric signal as a readout. There are 52544 straws of 1440 mm in length in
the barrel region and 122880 straws with length of 370 mm in the end-caps, giving
approximately 351000 readout channels and providing 130 µm spatial resolution in
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Figure 2.7: The ATLAS Inner Detector [54].

the azimuthal direction. The spatial layout of TRT is designed such that a charged
particle with |η| < 2.0 with pT > 0.5 GeV passes through at least 30 straws. These
continuous readouts show a track trace in the detector [59].

Calorimeters

Surrounding the Inner Detector are the Calorimeters, which provide energy mea-
surements of showering particles [54]. The ATLAS calorimeter system is illustrated
in figure 2.9. There are two major sub-detectors, Electromagnetic Calorimeter (EM-
Cal) and Hadronic Calorimeter (HCal).

The ATLAS Electromagnetic Calorimeter is a high-granularity sampling calorime-
ter. It uses liquid argon (LAr) as the active material and lead plates as the pas-
sive absorber. The EMCal submodules are arranged in an accordion-like geome-
try to avoid azimuthal cracks. The EMCal in the barrel region covers the range
|η| < 1.475 and the end-cap region covers 1.375 < |η| < 3.2. There is a crack region
1.375 < |η| < 1.5 where the measurement is affected by additional material needed
to cool the inner detector. This region is usually excluded from the analysis.

The calorimeter barrel is divided into three layers with different granularities.
Layer 1 is segmented into strips of ∆η×∆ϕ = 0.0031×0.098, which helps separating
γ/π and measuring the electromagnetic shower direction. The second layer takes
70% in the thickness of the EMCal. It collects most of the shower energy at a
granularity of ∆η × ∆ϕ = 0.025 × 0.0245. The third layer coarsely segmented in



32 Experimental setup

Figure 2.8: The three complementary subdetectors in the barrel region of the ATLAS Inner
Detector [55].

η, with a granularity of∆η × ∆ϕ = 0.0031 × 0.098. It collects the shower tail and
provides extra depth. The layout of layers in the EM barrel calorimeter is shown in
figure 2.10.

The total thickness of EMCal is 22 radiation lengths in the barrel and 24 radiation
lengths in the end-caps. The radiation length X0 is defined as the mean path length
of a high-energy electron losing all but 1/e of its energy by bremsstrahlung in the
material [60]. The energy resolution of the EMCal was measured using a test-beam.
After noise subtraction, the energy resolution is (E in GeV):

σ(E)

E
=

10%√
E

⊕ 0.7%. (2.5)

The hadronic jets pass through the EMCal and reach the Hadronic Calorimeter
placed outside of EMCal. The HCal is a scintillating Tile Calorimeter (TileCal),
which uses scintillating tiles as the active material and steel as the absorber [61].
The HCal covers the range |η| < 1.7. The HCal is divided azimuthally into 64
wedges of the size ∆ϕ ≈ 0.1 [61]. The scintillator tiles are arranged normal to
the radial direction. The wavelength shifting fibers at each edge of the scintillating
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Figure 2.9: The ATLAS Calorimeters [54].

tiles collect the photon and generate amplified readout by photomultiplier tubes
(PMTs). These fibers define the 3D geometry of a cell. The cell dimension is
∆η × ∆ϕ = 0.1 × 0.1 in the first and second layers. and ∆η × ∆ϕ = 0.2 × 0.1

in the third layer. The granularity of the HCal is lower than the EMCal, but
the hadronic shower spread larger than the electromagnetic showers, making the
accuracy acceptable. The HCal system also contains hadronic end-cap calorimeters
(HEC). The HEC are copper/liquid-argon calorimeters. The HEC cover a range of
1.5 < |η| < 3.2 [54].

In addition to the end-cap calorimeters, the Forward Calorimeter (Fcal) provides
coverage over 3.1 < |η| < 4.9. It is composed of electromagnetic modules and
hadronic modules. The electromagnetic modules use LAr as active material and
copper as absorber. The hadronic modules also use LAr as active material but use
tungsten as absorber. The Fcal is designed to measure electromagnetic and hadronic
showers [54].

The Muon Spectrometer

The muon spectrometer (MS) is the outermost ATLAS subdetector. The muons
have a much higher penetration depth than other particles. The muon spectrometer
measures the momentum of muon and helps reconstruct the trajectory. It provides
a standalone measurement of muons within |η| < 2.7. It consists of four types
of detectors: Monitored Drift Tubes (MDTs), Cathode Strip Chambers (CSCs),
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Figure 2.10: Three layers of ATLAS barrel Electromagnetic Calorimeter [54]. The X0 is the
radiation length of electron in the material.

Resistive Plate Chambers (RPCs), and Thin Gap Chambers (TGCs) [62]. Figure
2.11 shows the layout of ATLAS muon spectrometer [54].

The precision momentum measurement is performed by the MDT. The MDT
cover the region |η| < 2.7, except for the innermost layer, where it covers the range
|η| < 2. The basic element of the MDT is a tube with a diameter of 29.97 mm. The
tube is made of aluminum and is filled with Ar/CO2 gas (93%/7%) at 3 bar. The
MDT achieves an average resolution of 35 µm for a muon passing through a MDT
chamber [54].

The hardware limit of MDT to receive signals is 150 Hz/cm2. This limit is exceeded
in the end-cap region of the detector. In the forward region within 2 < |η| < 2.7,
the MDT is replaced by CSC, due to its higher capability. The CSC can be safely
operated at a counting rate of 1000 Hz/cm2, which is sufficient for muon detection
in the 2 < |η| < 2.7 region. The tubes of the CSC are filled with Ar/CO2 gas
(80%/20%). The CSC reaches a resolution of 40 µm in the radial direction [54].

The MDT and CSC are used for reconstructing the trajectories of muons. The
RPC and TGC are used for triggering. The RPC detectors locate at the barrel
region |η| < 1.05. The RPC is a gaseous parallel electrode-plate detector. It is
composed of two plate parallel to each other at a distance of 2 mm. It is filled with
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Figure 2.11: The ATLAS Muon Spectrometer [54].

a gas mixture of C2H2F4/Iso-C4H10/SF6 (94.7%/5%/0.3%). The TGC detectors are
located at the end-cap region 1.05 < |η| < 2.4. They have a time resolution of 1.5 ns.
The TGC is composed of chambers filled with a gas mixture of CO2/n-pentane gas
(55%/45%). It provides a time resolution of 4 ns. With the signal collected by
the PRC and TGC, the trigger system delivers a muon candidate within tens of
nanoseconds after the passage of a particle [54].

Triggers

The trigger system of ATLAS is designed to select collisions to be recorded. The
trigger system is formed by a hardware-based first-level trigger (L1) and a software-
based high-level trigger (HLT). The HLT contains a software-based second-level
trigger (L2) and event filter [54].

The L1 selects events based on the presence of particles with large transverse
momentum, such as muons, electrons, photons, jets, and hadronic decaying τ . It
also selects events with large total transverse energy or large missing transverse
energy. The maximum acceptance rate of the L1 trigger is 75 kHz and possibly to
be upgraded to 100 kHz in the future. Decision of the L1 trigger is made within
2.5 µs after a bunch-crossing occurs.
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The L2 trigger is seeded by regions-of-interest that has been labeled possible trig-
ger objects by the L1 trigger. It further limits the data rate to 3.5 kHz with the
information of coordinates, energy, and types. On average, an event is processed
around 40 ms.

The event filter is an offline trigger. It selects events with a maximum rate of
200 Hz and stores the selected events in an offline storage [63].

The L1 and L2 use the information from the calorimeters and the muon chambers
for their decision. The overall HLT algorithm also uses the information from the
inner detector to refine the selection. With better energy deposition and track
reconstruction, it significantly improves the identification of particles.

2.3 Data reconstruction
The interaction between the produced particles and the detector is recorded as

electronic signals, with a combination of position, time, and energy deposit. The
computing algorithms are designed to reconstruct the physics information from the
recorded detector data.

Tracks and primary vertices
In particle physics, a track is the reconstructed trajectory of a charged particle in
the detector. The vertex is the position where an interaction happens. The recon-
struction of tracks and vertices is the basis of object identification. For charged
particles, the track information is reconstructed with the inner detector. The muon
reconstruction also uses the muon spectrometer. There are three stages for recon-
structing a track with the inner detector: pre-processing, track-finding, and post-
processing stage [64]. The pre-processing stage uses the raw data from the Pixel
and SCT detectors. The detected information is converted to positions in the lab
frame.

The track-finding stage involves a set of different tracking strategies [65]. These
strategies are optimized for different cases. By default, the track-finding algorithm
finds a combination of space points as a track seed. These space points are associ-
ated to the detected signals in the pixel layers and the first SCT layer. Then the
algorithms attempt to extend these seeds in the SCT region to get a track candi-
date. A set of fitting algorithms are applied to reject the outlier candidates and
mis-identified tracks. These selected tracks are associated to the detected informa-
tion in the path. Then the found tracks are refitted with full information of all
detectors in the inner detector to further improve its accuracy [54].
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Figure 2.12: Illustration of the reconstruction of electron [64].

The primary vertex is defined as the point where p−p collision occurred. Primary
vertices are reconstructed from a collection of reconstructed tracks. These tracks
must satisfy the following requirements. Each of these tracks must has pT > 400 MeV
and |η| < 2.5. There must be at least 9 recorded detected interactions in the
SCT if the track is in |η| < 1.65, or 11 detected interactions if the track is in
1.65 < |η| < 2.5. There must be at least 1 detected interaction in the first two
layers of the Pixel detector. The track has at most 1 shared detected interaction
with the other reconstructed tracks in the Pixel detector, and has at most 2 shared
detected interaction with the other tracks in the SCT. The track should not has a
hole in the Pixel detector and at most 1 hole in the SCT, where the hole represents
a place on a detector surface that is expected passed by but not observed [66].

These selected tracks are used as input of vertex finding and vertex fitting algo-
rithms to get primary vertices. It is an iterative procedure. In each iteration, it finds
the best fit value of a vertex position that is associated to at least two tracks. The
less compatible tracks are down-weighted. Then the vertex position is recalculated.
After one vertex is determined, the tracks incompatible with the vertex are used as
input of vertex finding algorithm again, until no additional vertex can be found [66].

Electrons and photons
The electron and photon have similar behavior in the EMCal. The electron recon-
struction uses the reconstructed track and the clusters in the calorimeter. A cluster
represents a set of detected interaction positions that close to each other, since a
particle always leaves signals in multiple calorimeter elements.
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Figure 2.12 demonstrates the detection of an electron. The electron passes through
the pixels, SCT, TRT, presampler and finally reaches the calorimeter. The red dash
line shows a photon produced during the interaction of this electron with the detector
[64]. It also reaches the calorimeter and leaves an energy deposit near the electron
[67].

The electron track identification is done in two steps. The first step is pattern
recognition. It attempts to use the π hypothesis to fit the energy loss of the can-
didate. If it is not likely to be a π, an electron hypothesis is fitted to the signal
where up to 30% energy loss due to bremsstrahlung at each intersection is expected.
Then the Gaussian Sum Filter algorithm is applied to the electron candidate to take
non-linear bremsstrahlung into consideration [68].

Muons
Muons are reconstructed from the tracks detected by the inner detector and the
muon spectrometer. When hits are detected in the muon chamber, the searching
algorithm will try to match them with the other related signals. If it happens in
the MDT, it will try to search each layer to get a segment, which represents a set of
connected signal positions. If it is found in the CSC, the segment is reconstructed in
the η − ϕ plane. And the RPC and TGC can measure the vector orthogonal to the
bend plane. Two segments or a high-quality segment can build a track. There are
four types of reconstructed muon tracks: combined muons, segment-tagged muons,
calorimeter-tagged muons, and extrapolated muons [69].

The combined muons use both the inner detector and the muon spectrometer
information. It requires a global fit to match information from different sources.
Some hits may be removed or added to improve the fit. Most muon candidates
are reconstructed starting from the outermost hit and matching the hits of the
inner detector tracks. Segment-tagged muons are those reconstructed with at least
one segment of the track in the MDT or the CSC chambers additional to the MS
information. This method is used when the track only leaves information in one
layer of the MS chambers after the trigger. Calorimeter-tagged muons use the
energy deposit in the calorimeter. Muons reconstructed in this way have the lowest
purity among the four types, but have high recovery acceptance when |η| < 0.1. The
extrapolated muons are those with only MS information. This method can recover
the muons in the 2.5 < |η| < 2.7 range, which has exceeded the range of the inner
detector [69].

Some muon background candidates come from pion and kaon decays. To suppress
this kind of background, quality requirements are applied. These requirements are
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Figure 2.13: Muon reconstruction efficiencies for the Loose/Medium/Tight identification algo-
rithms [70].

based on the number of hits in the ID and MS. Figure 2.13 shows the efficiency of
muon reconstruction in Loose/Medium/Tight identification categories.

Jets
Jets are collimated sprays of hadrons produced in the hadronization process. Jets
are reconstructed with the calorimeter readout and the particle trajectories detected
with the inner detector. The calorimeter cells are used as input and expanded from a
calorimeter seed cell with a growing volume algorithm. The topologically connected
calorimeter cells are called topo-clusters. Each topo-cluster is calibrated with the
energy deposit of electromagnetically interacting particles [71].

The calibration of reconstruction consists of several steps. First, the hard-scattering
vertex is selected as the primary vertex with the largest

∑
p2T , summed over all the

tracks associated with it. A correction to the jets is applied according to the choice
of hard-scattering vertex. Then the effect of pile-up is removed. After that, the four-
momentum of jets are corrected by simulation-based calibration. Improvements are
made by taking calorimeter readout, muon segment, track variables, and global se-
quential calibration into account. The jet energy is calibrated with the real data
[72].

The pile-up jets are removed with an algorithm called Jet-Vertex-Tagger (JVT).
JVT is a multivariate algorithm trained with the ATLAS Monte Carlo simulated
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samples. It is applied to jets within a certain range of transverse momentum (pT )
and pseudorapidity (η). The jets within 20 < pT < 30 GeV, |η| < 2.4 range are
given JVT scores between 0 and 1. The JVT score close to 1 represents a high
possibility of being a hard-scattering jet. The jets with pT > 50 GeV are assumed
to be hard-scattering jet [73].

Hadronic τ decays

The hadronically decayed τ−lepton candidates are seeded by jets. These jets are
reconstructed using an anti-kt algorithm [74, 75, 76]. The clusters of calorimeter
cells are used as inputs to the anti-kt algorithm. The τ−lepton candidates seeded
by jets are additionally required to have pT > 10 GeV and |η| < 2.5 [77, 76].

The τ−lepton vertex is selected according to the fraction of momentum from the
tracks associated with a jet. The tracks are required to have pT > 1 GeV. The
shortest distance from the track to the τ−lepton candidates vertex in the transverse
plane d0 < 1 mm. The shortest distance in the longitudinal plane, |∆z0sin(θ)| <
1.5 mm, where ∆z0 is the closest approach along the longitudinal axis, and θ is the
polar angle of the track [77].

The direction of the τ−lepton candidate is calculated using the vector sum of the
clusters of calorimeter cells within a cone limited by the angular difference ∆R < 0.2

to the direction of the seed jet, originated from the τ−lepton vertex. The energy of
the τ−lepton candidate is calculated from the energy deposition measured in these
clusters of calorimeter cells. A calibration algorithm is applied to correct the energy
deposition to the average value of the energy carried by the τ−lepton candidate [77].

The reconstructed τ−lepton candidates contain other particles and jet-like signa-
tures. A recurrent neural networks (RNN) discriminant is developed to separate the
τ−lepton from jets initiated by quarks or gluons [76]. And a Boosted Decision Tree
(BDT) discriminant is developed to separate misidentified hadronic τ−lepton decay
due to electrons [77]. The τ−lepton selected by both discriminants is required to
have 1 or 3 associated tracks, and have pT > 20 GeV and |η| < 2.47 (excluding the
region 1.37 < |η| < 1.52).

Missing transverse energy

Not all the particles are visible in the detector. Some particles such as neutrinos
hardly leave any signal in the detector. In this case, the corresponding transverse
momentum will not be recorded. According to momentum conservation, the missing
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transverse energy and momentum can be measured by summing up the transverse
momentum of all visible parts.

Apart from the neutrino, some other visible particles can also have missing mo-
menta, such as the electron, muon, photon, jets. The detectors also record energy
deposits in calorimeters with no object associated to. These signals also contribute
to the missing momenta [78].
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Chapter 3

Jet-Vertex-Tagger Retraining

This chapter introduces the Jet-vertex-Tagger (JVT) algorithm, the multivariate
algorithm designed to distinguish the hard-scattering jets from the pile-up jets. The
author of this thesis developed new JVT models and retrained these models with the
ATLAS Run-2 data and simulated samples, and expanded the applicable working
range from 20 < pT < 50 GeV, |η| < 2.4 to 20 < pT < 110 GeV, |η| < 2.5. The new
model with the best score improves the background rejection rate in three working
points corresponding to the signal efficiency of 0.97, 0.92, and 0.85. These studies
have not been applied to the recent ATLAS Run-2 analysis of measuring the CP -
property in the H → ττ decay. One of the new algorithms based on neural network
has been adopted as the new default JVT algorithm in the current ATLAS Run-3
data analysis, which started in 2022. It may inspire future improvements of jet
reconstruction.

3.1 Hard-scattering jet identification
At the LHC, multiple collisions happen when the beam bunches cross. Most of the
events contain no collision of interest. Some events contain one or more collisions of
interest. In ATLAS, the primary vertices are defined as the reconstructed positions
of the p − p collisions. In each event, the hard-scattering vertex is defined as the
primary vertex with the largest summed p2T of all trajectories it associated to. All
the other reconstructed primary vertices are defined as pile-up vertices. The hard-
scattering jets are defined as those associated with the hard-scattering vertex. The
pile-up jets are those not associated with the hard-scattering vertex, no matter
whether they are caused by in-time pile-up or out-of-time pile-up. The pile-up jets
are rejected by a multivariable algorithm called Jet-Vertex-Tagger (JVT). The JVT
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developed for ATLAS Run-1 data is based on the KNN algorithm with two variables
JV F/corrJV F and RpT

as inputs.
Figure 3.1 shows an example of p − p collision in the ATLAS detector. It is a

reconstructed Z → µµ event from the ATLAS Run-1 data, where the centre-of-
mass energy is

√
s = 8 TeV. The two thick yellow lines represent the two muon

trajectories from the Z boson generated from the hard-scattering collision. All other
lines represent trajectories from the pile-up collisions [73].

Figure 3.1: A Z → µµ event from the ATLAS Run-1 data. The lines represent the trajectory of
detected particles. The dots represent the collision points [73].

Jet Vertex Tagger

The JVT is trained with Run-1 data and Monte Carlo samples. The local neigh-
borhood is defined dynamically as the 100 nearest neighbors around the test point
using a Euclidean metric in the RpT

-corrJV F space. The two observables RpT
and

corrJV F are calculated from the detected vertex and track information [79]:

RpT
=

∑
k p

trkk
T (PV0)

pjetT

, (3.1)

corrJV F =

∑
k p

trkk
T (PV0)∑

l p
trkl
T (PV0) +

∑
n≥1

∑
l p

trkl
T (PVn)

CwN
PU
trk

. (3.2)

The observable RpT
is defined as the ratio between the pT sum of all tracks from

the primary vertex to the pT of jet. The ptrkkT (PV0) is the transverse momentum
of each track originated from the hard-scattering primary vertex. The pjetT is the
transverse momentum of the tested jet. Figure 3.2 shows the distribution of RpT

for
the pileup and hard-scatter jets with 20 < pT < 30 GeV [79].

The observable corrJV F is calculated using all the tracks related to the tested
jet. The NPU

trk is the number of tracks originating from the pile-up vertex. When
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Figure 3.2: RpT
distribution for pileup and hard-scatter jets with 20 < pT < 30 GeV in ATLAS

Run-1 Monte Carlo simulated sample [79].

the number of primary vertex n ≥ 1, the ptrklT (PVn) is the transverse momentum
of each track originated from the pile-up vertex. The corrJVF is the ratio between
the pT sum of all the tracks from the primary vertex to the pT of all the tracks
associated with the tested jet, with those from the pile-up vertex reweighted. There
is a constant Cw = 0.01 in the weight of the pile-up tracks. The value of Cw is
manually chosen [79]. Figure 3.3 shows the distribution of corrJV F for the pile-up
and hard-scattering jets with 20 < pT < 30 GeV [79].

The K-nearest-neighbors (KNN) algorithm is a non-parametric classification method
[80]. Figure 3.4 shows a demonstration of the KNN algorithm. There are 7 red and
7 blue dots in a 2-D plane of RpT

- corrJV F . The red dots represent the signal,
which is the hard-scattering jets. The blue dots represent the background, which is
the pile-up jets. The value of k is set to 6. The green dot is the jet to be tested.
In the nearest 6 dots, 4 of them are signals and 2 of them are backgrounds. When
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Figure 3.3: CorrJVF distribution for pileup and hard-scatter jets in ATLAS Run-1 Monte Carlo
simulated sample [79].

both the weights of signal and background are 1, The KNN score is 0.67. If the
working point is selected to be 0.50, the jet is identified as a hard-scattering jet. If
the working point is selected to be 0.70, the jet is identified as a pile-up jet.

Figure 3.5 shows the JVT distribution for hard-scattering and pileup jets with
20 < pT < 30 GeV in the Run-1 MC sample [79]. The hard-scattering jets have JVT
score close to 1 and pileup jets are close to 0. Working point is assigned for certain
analysis depending on the required signal efficiency. The jets with JVT scores larger
than the working point are identified as hard-scattering jets, otherwise pileup jets.
A working point closer to 1 rejects more pileup jets but reduces the signal efficiency.
A lower cut retains more signal events but more background is left.

The JVT algorithm was updated for Run-2 analysis with the data collected in
2015 [81], where the energy scale was re-calibrated. The Run-2 JVT still used the



3.2 Jet-Vertex-Tagger retraining 47

Figure 3.4: Demonstration of the KNN method. The green dot is a tested jet.

KNN method in RpT
-corrJV F space.

3.2 Jet-Vertex-Tagger retraining

The ATLAS Run-2 was performed under a center of mass energy larger than Run-
1 and the detectors were upgraded. The Run-2 JVT was required to identify the
hard-scattering jet in a larger range. The Run-1 JVT was designed to work in the
20 < pT < 50 GeV, |η| < 2.4 range. The Run-2 analysis required the JVT to work
in a range of 20 < pT < 110 GeV and |η| < 2.5. It was retrained with Run-2 Monte
Carlo simulated sample and validated with the Run-2 data collected in 2018.

There are two Monte Carlo (MC) simulated samples used in the Jet-Vertex-Tagger
retraining. Both of the MC samples are generated with Powheg [82] and Pythia8
[83]. The MC sample used in the training is a di-jet sample generated with the
parton distribution function set NNPDF23LO [84], which contains enough hard-
scattering and pileup jets in each event. MC sample of Z → µµ events is generated
with the parton distribution function set CTEQ6L1 [85]. The Z → µµ sample is
used to test a set of selection cuts, which select a hard-scattering jet enriched region
in Run-2 data collected in 2018. The selected events are used to validate the trained
JVT models.
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Figure 3.5: Distribution of JVT for pileup and hard-scatter jets with 20 < pT < 30 GeV in
ATLAS Run-1 Monte Carlo simulated sample [79].

The MC samples are reconstructed with the ATLAS reconstruction packages,
assigning a JVT score for all reconstructed jets in each event. This JVT score is
used as a baseline of JVT retraining. The first model used in the JVT retraining was
the KNN method in RpT

-corrJV F space. This model trained the JVT with 30000

hard-scattering jets as signal and 30000 pileup jets as background. Both signal and
background weights were set to 1. This model is named KNN-V2 due to the two
input variables RpT

and corrJV F .
A new JVT model was developed using the KNN method, with four input vari-

ables. In additional to RpT
and corrJV F , the new methods also use the transverse

momentum pT and pseudorapidity η. This method is called KNN-V4. Figures 3.6,
3.7, 3.8 and 3.9 shows the distributions of the four variables: corrJV F , RpT

, η, and
pT , respectively.

The current JVT trained with the KNN method requires the storage of trained
samples. When a sample is tested, the KNN method calculates the distance between
the sample to all the points in the storage. The complexity increases with the



3.2 Jet-Vertex-Tagger retraining 49

Figure 3.6: Normalized distributions of the variable corrJV F . The blue histogram is the distri-
bution in the hard-scattering jets. The red histogram is the distribution in the pile-up jets.

size of the training dataset. The JVT is a common tool in the ATLAS analysis.
The calculation is done for every dataset collected by ATLAS. An algorithm with
constant complexity will improve the calculation speed in the Run-3 and future
analysis.

Besides the KNN method, two new models based on neural network were designed.
The KNN method requires the storage of trained samples. When a sample is tested,
the KNN method calculates the distance between the sample to all the points in
the storage. The complexity increases with the size of the training dataset. The
neural network algorithms have a complexity independent on the size of the input
dataset. In a neural network, the input variables of each event are converted to a
vector. The vector passes through a calculation and returns a value or a vector as
output. The calculation contains changeable parameters. After each calculation, a
loss is calculated with the output of calculation. The parameters in the calculation
is updated with the loss. The calculation expression, the loss and the way to update
the parameter depend on how the neural network is designed. In the Run-2 JVT
training, the neural network algorithms are applied.
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Figure 3.7: Normalized distributions of the variable RpT
. The blue histogram is the distribution

in the hard-scattering jets. The red histogram is the distribution in the pile-up jets.

The input of JVT is the RpT
, corrJV F , pT and η. It forms a dimension-4 vector.

The calculation is designed as a combination of three matrices, three vectors and
activation functions. Each matrix with size (n,m) correspond to a vector with
dimension n. The vector is called a bias vector. The input vector with dimension-m
is multiplied with an n×m matrix and generates an output vector with dimension-
n. The output vector is added with the bias vector with the same dimension.
Then each element in the result of the sum is put in an activation function. The
activation function of the JVT training is selected to be tanh(x). The activation
function provides non-linear transformation and limits the value of the output to a
fixed range. The processes described above are repeated in each layer of a neural
network. There are totally three layers in the JVT training. The three matrices have
sizes of (14, 4), (9, 14) and (1, 9). There are also three corresponding bias vectors
with dimensions 14, 9, and 1. All the values in the three matrices and bias vectors
are changeable. These values are updated after each cycle, based on the output of
the network.
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Figure 3.8: Normalized distributions of the variable η. The blue histogram is the distribution in
the hard-scattering jets. The red histogram is the distribution in the pile-up jets.

The final output of the last layer returns a number. The tanh() transform each
element in the input vector to a value between −1 and 1. The result is linearly
rescaled by the function y = x+1

2
, where x is the output of the neural network and

y is the output of this algorithm. The rescaling makes the output consistent with
the previous JVT range from 0 to 1. The JVT is trained with supervised learning.
Each jet in the training dataset is assigned a number. For hard-scattering jet, it is
set to one. For pile-up jet, it is set to zero. The square of the difference between the
returned value and the assigned number is used as the loss. A lower loss represents
a better result. The gradient descent method is used to update the changeable
values in matrices and vectors. The method calculates the gradient and updates the
parameter with a negative gradient with a scale. The scale is called the learning
rate. In this training it is set to 0.02. If the result of a model converges to a value,
the loss reaches a local minimum with the gradient descent.

In the neural network designed for the JVT model, all the parameters in each
matrix and bias vector are updated with the gradient descent method. This network
is also called the multilayer perceptron (MLP) algorithm. The model trained with
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Figure 3.9: The normalized distributions of the variable pT . The blue histogram is the distribution
in the hard-scattering jets. The red histogram is the distribution in the pile-up jets.

RpT
, corrJV F , pT and η is named MLP-V4. And the one trained with RpT

and
corrJV F is called MLP-V2. The MLP-V4 and MLP-V2 are trained using the same
amount of signal and background samples with the KNN methods. These MLP
algorithms take fewer storage resources than the JVT algorithm based on the KNN
method. For the KNN-V4 method, the model requires a storage space for 240000

numbers, while the MLP-V4 model only requires a storage space for 215 numbers.
During the calculation, the KNN methods require memory of the calculated distance.
The MLP methods only require a memory no larger than the size of matrices. The
MLP-V4 method has advantages in the storage and memory cost compared with
the KNN methods. The storage and memory cost of KNN increases with the size of
training dataset, while the MLP methods do not. The time cost in calculating the
JVT with the KNN methods linearly increases with the size of the training dataset
[86], while the neural network methods have a constant time cost when calculating
the JVT score. The neural network method is promising in dealing with a large
amount of training data.

The performance of a supervised distinguishing algorithm can be quantified by



3.2 Jet-Vertex-Tagger retraining 53

Figure 3.10: Receiver operating characteristic curve of all tested methods. The blue line is the
JVT score provided by reconstruction packages. The others are the models trained in ATLAS
Run-2 sample. The curve in red is for MLP-V4 method. It has the best pile-up rejection at almost

all hard-scattering efficiency.

the Receiver Operating Characteristic (ROC) curve. It is a curve on the 2-D plane
of the signal efficiency and background rejection rate. When the signal efficiency
increases, the selection is looser, leading to a lower background rejection rate, and
vice versa. The area under the ROC curve is called AUC, which is a score for judging
the model. The AUC is 1 when it is an ideal distinguishing model, and it is around
0.5 when the model separates the two categories without any bias.

Among all the tested methods, the MLP-V4 shows the best performance, which
provides a pile-up rejection of 0.957 at a hard-scattering efficiency of 0.95. The
performance of all tested methods is shown in figure 3.10. The curve in red is for
the MLP-V4 method. It has the best pile-up rejection in almost the whole range of
the hard-scattering efficiency.
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Selection cuts
pT Z > 30 GeV

|pT Z − pT jet| < 5 GeV
|ηZ + ηjet| < 0.3
|∆ϕ(Z, jet)| > 2.8

Table 3.1: Selection cuts of Hard-scattering jet enriched region in the ATLAS Run-2 Monte Carlo
simulated sample. The leading jet is the jet with the largest transverse momentum among the jets

in an event. In the selection cut, the “jet” represents the leading jet in the event.

Jet Vertex Tagger validation

The Retrained JVT is validated within a hard-scattering enriched region. It uses
the Z → µµ + jets events from Run-2 data collected in 2018. The hard-scattering
enriched region in Z → µµ+ jets sample is selected with the cut listed in table 3.1.
Only the jets with the largest transverse momentum in an event are counted. The
Z bosons are reconstructed with two µ in the final state. The transverse momentum
of the Z boson is required to be larger than 30 GeV. The difference between the
transverse momentum of the Z boson and the leading jet is required to be smaller
than 5 GeV. The η and ϕ cuts guarantee that the Z and the leading jet are in
the back-to-back position. This selection cuts correctly select the hard-scattering
leading jet in 89.1% of the events in the Monte Carlo simulated Z → µµ + jets

testing sample. This method was used in the Run-1 JVT training, the selection cuts
are adjusted to optimize the proportion of the hard-scattering leading jet [79].

The same selection cuts are applied to the ATLAS Run-2 Z → µµ + jets data,
in order to estimate the performance of JVT in handling the hard-scattering jets.
Figure 3.11 and figure 3.12 show the normalized JVT distribution in the hard-
scattering enriched data, Monte Carlo simulated hard-scattering jets, and pileup-jet
samples. Both figures use the ATLAS Run-2 samples. Figure 3.11 uses the JVT
score provided by the reconstruction packages [79]. Figure 3.12 is generated for the
MLP-V4 method. In both figures, a reasonable agreement is observed between the
distribution of JVT in the hard-scattering enriched data and the one in the Monte
Carlo simulated hard-scattering jets. This result validates the effectiveness of the
JVT in real data.

Working point of Jet-Vertex-Tagger

Three working points are defined in ATLAS analysis, named “loose”, “medium”
and “tight”. These three working points correspond to the signal efficiency 97%,
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Figure 3.11: Normalized JVT distribution in hard-scattering enriched data, Monte Carlo simu-
lated hard-scattering jet and pileup jet samples. The JVT is calculated using the JVT trained in

ATLAS Run-1 samples. The histogram is drawn with log scale in y-axis.

Figure 3.12: Normalized JVT distribution in hard-scattering enriched data, Monte Carlo simu-
lated hard-scattering jet and pileup jet samples. The JVT is calculated with MLP_V4 method

trained in ATLAS Run-2 samples. The histogram is drawn with log scale in y-axis.
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Model JVT loose JVT medium JVT tight
SE = 0.97 SE = 0.92 SE = 0.85
WP BR WP BR WP BR

JVT 0.295 0.915 0.828 0.956 0.955 0.964
KNN-V2 0.170 0.916 0.640 0.961 0.870 0.968
MLP-V4 0.525 0.931 0.904 0.966 0.953 0.973

Table 3.2: Work point of JVT in loose, medium and tight cut. The “SE” represent the signal
efficiency. The “WP” represent the working point. The “BR” represent the background rejection.
The model JVT represent the one used in the reconstruction packages. The KNN-V2 is the model
use the input variables RpT

and corrJV F . The MLP-V4 model is the one with best performance
at all the three signal efficiencies, which is a neural network model with four input variables: RpT

,
corrJV F , pT and η.

92% and 85%, respectively. Table 3.2 shows the working point values together with
the corresponding pileup-jet rejection rates. Three JVT models are listed: the one
currently used, the KNN-V2, and the MLP-V4. The MLP-V4 has slightly better
background rejection at all three working points.
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Chapter 4

CP -violation in Higgs boson
decays to τ pairs

4.1 Decays of τ−lepton
There is no CP -violation expected in the interaction between the Higgs boson and
the other particles in the Standard Model. The SM Higgs boson is predicted to
be purely CP -even. The Run-1 data excluded the pure CP -odd state at 99.98%
confidence level [4]. CP -mixing is still possible in the interaction between the Higgs
boson and the other particles.

One way to probe the CP nature of the Higgs boson coupling is to measure the
spin correlations of the τ−lepton pair from the decay of the Higgs boson. The
τ−lepton is the unique choice in the measurement. The branching ratio of Higgs
decaying to µ−lepton pair or electron-positron pair is much lower than decaying
into τ−lepton pair. The method of measuring the spin correlations between the
lepton pair used in this thesis also requires the leptons decay in the tracking volume
of detector, which is not applicable for the electrons and muons.

The τ−leptons decay both leptonically and hadronically. Table 4.1 lists the frac-
tion of the dominant decay processes of the τ−lepton. Both leptonic decay and
hadronic decay channels are used in the analysis. In the leptonic decay channels,
the τ−lepton decays into an electron or a muon, with two undetectable neutrinos.
The hadronic decay of τ has one neutrino in the final state, as well as charged and
neutral pions: π± and π0. These decay channels are labeled with alphanumeric
codes. The leptonic decay channels are labeled with ℓ. The hadronic decay channels
are named as XpYn, where “X” is the number of charged pions and the “Y” is the
number of neutral pions. For example, in the H → ττ process, when one τ decays
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Decay mode Branching fraction Notation
µ−ν̄µντ 17.4 %

ℓ
e−ν̄eντ 17.8 %
h−ντ 11.5 % 1p0n

(π−ντ ) (10.8 %)
h−π0ντ 25.9 % 1p1n

(π−π0ντ ) (25.5 %)
h− ≥ 2π0ντ 10.8 % 1pXn

(π−2π0ντ ) (9.3 %)
3h±ντ 9.8 % 3p0n

(3π±ντ ) (9.3 %)

Table 4.1: Branching fractions of dominant leptonic and hadronic τ decay modes [17] and their
notations used in the analysis. “h±” includes π

± and K
±. The hadronic decay is dominated by

decays to π
±, which are shown in parenthesis.

into the leptonic channel and the other decay into one charged pion and a neutrino,
it is called a lepton-hadron channel, or lephad. It is labeled as ℓ− 1p0n.

Some BSM Models predicts CP -violation in the Yukawa interaction. The CP -
violation can either be caused by CP -mixing angle or Yukawa coupling magnitude
[87]. This study focuses on the measurement of CP -mixing angle. Some other BSM
Models, such as Two Higgs Doublet Model (THDM), predicts CP -violation caused
by Yukawa coupling magnitude. The THDM requires the Higgs field to be composed
of two complex scalar field. Each complex scalar field acquires nonzero vaccum-
expectation-value v1 and v2, where v =

√
v21 + v22 = 246 GeV. Both scalar fields

interacts with τ−lepton pair, with different coupling constant. The CP -violation
arises due to the combination of two Yukawa interactions [88]. Further analysis
on the CP -violation caused by Yukawa coupling magnitude may be carried on if
evidence of two Higgs scalar fields is detected.

In a model of CP -violation caused by CP -mixing angle, a general model-independent
effective Yukawa interaction between the Higgs boson and τ−lepton pair can be
parametrized as [89]:

Lhττ = −mτ

v
κτ (cosϕτ τ̄ τ + sinϕτ τ̄ iγ5τ)h , (4.1)

where the vacuum expectation value of the Higgs field v = 246 GeV, κτ > 0 is the
reduced Yukawa coupling strength, and ϕτ ∈ [−π/2, π/2] is the “CP -mixing” angle
that parametrizes the relative contributions of the CP -even and CP -odd compo-
nents to the Hττ coupling. The Standard Model hypothesis predicts a ϕτ = 0, corre-
sponding to pure CP -even. The pure CP -odd hypothesis corresponds to ϕτ = π/2.
Any other value of ϕτ corresponds to CP -mixing state.
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The information of the scalar-pseudoscalar mixing angle ϕτ is encoded in the
transverse spin correlation in the H → ττ decay, which is independent of the Higgs
production. The differential decay width in the Higgs rest frame can be written as
[89, 90]:

dΓhττ ∝ 1− s−z s
+
z + cos(2ϕτ )(s

−
⊥ · s+⊥) + sin(2ϕτ )[(s

−
⊥ × s+⊥) · k̂

−], (4.2)

where k̂− is the normalised τ− spatial momentum in the Higgs boson rest frame, ŝ±

are the unit spin vectors of τ± in their respective τ rest frames, and s±⊥(s±z ) are the
transverse (longitudinal) components of ŝ± with respect to k̂−. The information of
ϕτ can be obtained from the correlation between the transverse components of the
spin of τ−lepton.

Equation 4.2 shows that the longitudinal components of the spin correlation are
insensitive to the CP -mixing angle, and that the sensitivity lies only in the transverse
spin correlation of the di-τ system. The τ spin correlation is observable by measuring
the angular distributions of the τ decay products. In the τ− → π−ντ decay, the π−

momentum points preferably in the same direction as the τ spin in the τ− rest
frame. In the τ+ → π+ν̄τ decay the π+ momentum points preferably in the opposite
direction of τ−lepton spin in the τ+ rest frame. The spin correlation can thus be
measured by considering the angular correlations of the τ decay products.

This can be done by defining a “signed” acoplanarity angle φ∗
CP ∈ [0, 2π] as the

angle between the τ decay planes spanned by the τ decay products in the zero-
momentum frame (ZMF) of the visible di-τ decays. Figure 4.2 is an illustration of
the observable φ∗

CP. All the four vectors in the calculation are boosted to the visible
di-τ ZMF. The visible di-τ ZMF is the ZMF of all the detected particles in the final
state of H → ττ . It is an approximation of the Higgs rest frame due to the absence
of the reconstruction of neutrinos in the τ−lepton decay products.

Figure 4.1 illustrate the Lorentz transformation from the lab frame to the di-τ
ZMF. In a H → ττ event, the Higgs boson may has an initial speed to a random
direction in the lab frame. The di-τ ZMF is a frame moving at a constant relative
speed to the lab frame. By boosting all the 4-vectors to the di-τ ZMF with Lorentz
transformation, the analysis can be done in a frame with a rest Higgs boson.

If the τ−leptons are from a scalar Higgs boson, the φ∗
CP peaks at π, while in the

case of a pseudo-scalar Higgs boson, the φ∗
CP to peak at 0 and 2π. Figure 4.3 shows

the normalized distribution of φ∗
CP in the CP -even and CP -odd H → ττ decay and

in the Z → ττ process. The black long-dash dotted line shows a CP -mixing model
with ϕτ = −π

4
. Equation 4.3 shows the relationship between the ϕτ and the decay

width for H → ττ decay [89]:
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Figure 4.1: Illustration of the Lorentz transformation from the lab frame to the di-τ ZMF.

dΓ
H→τ

+
τ
− ≈ 1− b(E+)b(E−)

π2

16
cos(φ∗

CP − 2ϕτ ), (4.3)

where the functions b(E±) express the spin analyzing power of a given decay mode,
in which for direct decays τ± → π±ντ and τ± → aL,T,±ντ it equals +1. For other
decays such as τ± → ρ±ντ , it is generally energy dependent.

An important feature of the φ∗
CP observable is that it follows a flat and uniform

distribution for background processes, so that the presence of background does not
bias the sensitivity to ϕτ . For example, the differential cross section of the Z → ττ

process in the τ+τ− ZMF has no dependence of φ∗
CP in LO and NLO QCD. The

red flat line in figure 4.3 represent the ϕ∗ distribution of the Z → ττ process [90].
In the experiment, the detector effects from reconstruction and analysis selection
can introduce shape distortion [89, 90]. These effects may affect the experimental
sensitivity of the CP -mixing angle. The methods used in this analysis to build the
φ∗

CP observables with respect to the ττ decay modes are based on [89].

4.2 Methods to measure the CP -mixing angle
Impact parameter method
The impact parameter (IP) method can be applied to any decay modes that have a
non-vanishing impact parameter. It is particularly useful in the decays where there
is only one visible particle in the τ decay, such as the hadronic decay τ± → π±ντ
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Figure 4.2: Illustration of a H → τ
+
τ
− → π

+
π
−
+ 2ν decay in the ττ Zero Momentum Frame.

The decay planes are spanned by the momenta of the τ leptons and the pions. The angle acopla-
narity angle φ

∗
CP ∈ [0, 2π] is sensitive to the CP -mixing angle.

and leptonic decays τ± → ℓ±νlντ . In these decays, the τ decay plane is formed from
the spatial vector q± of the charged particle (π±, ℓ±) and the 3-dimensional impact
parameter vector n± of the charged particle [89, 91, 92, 93, 94].

Figure 4.4 shows how the impact parameter is defined ideally. The primary vertex
(PV) is where the Higgs boson is produced. q− denotes the visible charged particle
in the final state. The position of the visible particle is called the secondary vertex.
The impact parameter, which is labeled as n±, is defined as the vector that starts
from the PV and points to the closest point to the track of the visible particle.

Experimentally the reconstruction precision of the secondary vertex of τ decay
is poor. In this analysis, the impact parameter is constructed using the position
parameters d0 and z0 of the charged particle. The d0 is defined as the distance
between the closest position of the reconstructed track to the beam line. The z0 is the
longitudinal value of that position. The impact parameter is calculated by assuming
the secondary vertex located at (d0cosϕ, d0sinϕ, z0), where ϕ is the azimuthal angle
of the visible component.

The 4-momenta of the charged particle and the impact parameter are initially
measured and defined in the laboratory frame. The impact parameter is expanded to
a 4-vector (0, xIP , yIP , zIP ), so that it can be transformed in Lorentz transformation.
They are boosted to the visible di-τ ZMF [89].
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Figure 4.3: Normalized φ
∗
CP distribution for pp → H/Z

∗
/γ

∗ → τ
+
τ
− production in the τ

+
τ
− →

π
+
π
−
+2ν decay [90]. The distribution for a CP -even (CP -odd) Higgs boson is shown by the blue

dashed line (black dotted line). For a Higgs boson of CP mixture with ϕτ = −π
4 the distribution

is given by the black long-dash dotted line. The distribution for the Z → ττ process is shown by
the solid red line, which is one of the main background of the φ

∗
CP measurements.

The boosted impact parameter vector is labeled as n̂∗±. It is used to calculate
the angle between the two decay planes. Each of the decay planes is formed by
the impact parameter and its corresponding charged particle q̂∗±. The angle φ∗ is
expressed as:

φ∗ = arccos(n̂∗+
⊥ · n̂∗−

⊥ ), (4.4)

where n̂∗±
⊥ represents the component of the impact parameter that is verticle to the

direction of the charged particle q±.
The CP -sensitive observable φ∗

CP (0 ≤ φ∗
CP ≤ 2π) is defined by:

φ∗
CP =

{
φ∗ if O∗

CP ≥ 0;

2π − φ∗ if O∗
CP < 0 ,

(4.5)

where the O∗
CP is defined as:

O∗
CP = q̂∗− · (n̂∗+

⊥ × n̂∗−
⊥ ). (4.6)

Figure 4.5 illustrates the φ∗
CP construction used in the IP method.

The performance of the IP-method is related to the impact parameter vector size
and its uncertainty. A value called dsig0 is defined as the transverse track impact
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Figure 4.4: Definition of the impact parameter vector n± in the plane of the decay τ
± → π

±
ντ or

τ
± → ℓ

±
νlντ in the laboratory frame [91]. Here, q− is the measured charged particle momentum,

PV is the τ production vertex, and k− is the 3-momentum of the τ
−.

parameter d0 divided by its uncertainty:

dsig0 =
d0
σd0

. (4.7)

The IP-method works better in the τ decay products with higher dsig0 . In order to
maximize the CP sensitivity of φ∗

CP, the events are divided into two regions called
High and Low. In IP-method, The High and Low regions are separated by a cut on
the |dsig0 |.

ρ method

In the case of indirect decays τ± → ρ±ν, with ρ± → π±π0, the τ decay plane can be
formed from the spatial vectors of the charged components and neutral components.
The 4-momentum vectors q∗± denotes the charged components. The q∗0± represent
the neutral components from ρ±, respectively. All these vectors are boosted to the
visible di-τ ZMF. Using the normalized spatial vectors q̂∗± and q̂∗0±, the angle φ∗

is expressed as:
φ∗ = arccos(q̂∗0+

⊥ · q̂∗0−
⊥ ), (4.8)

where the q̂∗0±
⊥ represent the verticle component of the neutral pion. The variable

O∗
CP is defined as:

O∗
CP = q̂∗− · (q̂∗0+

⊥ × q̂∗0−
⊥ ). (4.9)
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Figure 4.5: Definitions of 3-vectors and φ
∗
CP in the visible di-τ ZMF used in the impact parameter
method [89].

Figure 4.6: Definitions of 3-vectors and ϕ
∗ in the visible di-τ ZMF used in the ρ method [89].
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The angle φ∗′ is defined as:

φ∗′ =

{
φ∗ if O∗

CP ≥ 0;

2π − φ∗ if O∗
CP < 0.

(4.10)

The distribution of φ∗′ is not sensitive to ϕτ . The sensitivity appears when the φ∗′

is corrected using the variables y− and y+. The variables y− and y+ are defined as:

y− =
E

π
− − E

π
0

E
π
− + E

π
0

, y+ =
E

π
+ − E

π
0

E
π
+ + E

π
0

. (4.11)

The E
π
±,0 are the energies of the pions measured in the lab frame. The variable y−

is calculated for the decay products of the τ−. The y+ corresponds to the decay
products of the τ−. The φ∗

CP is shifted by a π when the product y+y− < 0:

φ∗
CP =

{
φ∗′ if y+y− ≥ 0;

φ∗′ + π if y+y− < 0.
(4.12)

Figure 4.6 illustrates the definition of the 3-vectors and φ∗
CP in the visible di-τ ZMF

used in the ρ method.
In the analysis, the events with the larger absolute values of the upsilon product

y+y− are observed to have higher sensitivity to ϕτ . The value of |y+y−| is used
to select events into different categories. This method is applied to 1p1n-1p1n
and 1p1n-1pXn decay channels. In the case of 1pXn decay, the vector of neutral
component is defined as the sum of the 4-momenta of all neutral pions.

IP-ρ method

In the case of two τ leptons decaying into different decay channels, where one has
neutral components and the other does not, a combined method can be applied.
The combined method is called IP-ρ method. For the decay τ− → π−ντ , the τ

decay plane is spanned by the normalised spatial vector q̂∗− and the transverse
component of the impact parameter vector, n̂∗−

⊥ . For the ρ+ → π+π0, the decay
plane is calculated as in the ρ-method. All the 4-vectors are boosted to the visible
di-τ ZMF. The angle φ∗ and the correlation variable O∗

CP are defined by:

φ∗ = arccos(q̂∗0+
⊥ · n̂∗−

⊥ ), O∗
CP = q̂∗− · (q̂∗+

⊥ × n̂∗−
⊥ ), (4.13)

that can be combined to:

φ∗′ =

{
φ∗′ if O∗

CP ≥ 0 ;

2π − φ∗′ if O∗
CP < 0 .

(4.14)
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Figure 4.7: Definitions of 3-vectors and φ
∗
CP in the visible di-τ ZMF used in the IP-ρ method

[89].

Using the sign of y+, defined in Equation 4.11 and computed in the laboratory frame,
the observable φ∗

CP is defined as:

φ∗
CP =

{
φ∗′ if y+ ≥ 0 ;

φ∗′ + π if y+ < 0 .
(4.15)

Figure 4.7 illustrates the definition of the 3-vectors and φ∗
CP in the visible di-τ

ZMF used in the IP-ρ method.

a1-method for 3-prong decays

The a1-method is used in the case of 3π decays with τ → a1ντ , where a±1 → ρ0π±

and ρ0 → π+π−. The a1-method is an extension of the ρ-method to 3-prong decays.
This method selects a pair of charged π’s from the 3-prong decay to form an inter-
mediate ρ0 particle. Together with the remaining charged π, a φ∗

CP observable can
be constructed as done in the ρ-method. The charged and neutral components π±

and π0 determine respectively the spatial vectors; and here in the a1-method, ρ0 is
taken as the neutral components.

Some ambiguities exist in this method as compared to the ρ-method. First, the
choice of π± pair to form the intermediate ρ0 meson is somewhat arbitrary, attributed
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Method Channel Charged component Neutral component
ρ 1p1n π± π0

a1 3p0n π± (the highest pT track) π±π± pair (the remaining tracks)

Table 4.2: Components used as spatial vectors in φ
∗
CP construction in ρ and a1 methods, respec-

tively, in the corresponding decay modes.

to the broad resonance peak of ρ0, especially at the reconstructed objects level.
Second, the variable y used in the ρ-method needs to be re-defined to account for
the mass effects. In the 1p1n case, the mass terms are negligible due to the small
difference of π± and π0 masses and are therefore dropped from the original definition
in practice. In the a1 case, the mass difference between π± and the duplet is no longer
negligible. The associated mass terms in the upsilons have a more significant effect
to the CP -sensitivity of the constructed φ∗

CP. The variable ya1 is defined as [95]:

y±a1 =
E

ρ
0 − E

π
±

E
ρ
0 + E

π
±
−
m2

a1
−m2

π
± +m2

ρ
0

2m2
a1

.

Two charged π tracks with the lowest pT are chosen to form a duplet, without
requiring opposite charges. The duplet is treated as a particle with 4-momenta
equals to the sum of 4-momenta of the two selected πs. The duplet is taken to
replace the neutral component in the ρ method, while the highest-pT charged π

is taken as the charged component. The choice exhibits a close-to-optimal CP -
sensitivity in the constructed φ∗

CP observable among other choices using all three
tracks from the a1 cascade decays.

Another possibility, explored in Ref [95], is to use only a pair of tracks forming
the intermediate ρ0. This method requires a pair of pions with opposite charges.
The pion with the same charge to the τ it decays from is chosen as the charged
component and the oppositely charged one replaces the neutral component of the
ρ-method. This method provides a similar CP -sensitivity to the currently chosen
method. Besides the methods metioned above, attempts are made on constructing
CP -sensitivity observable for the τ → a1ντ decay with neural network.

In this analysis, only the 3p0n decay are considered. Only the 1p1n-3p0n and
3p0n-1p1n (ℓ-3p0n) events are considered in the τhadτhad (τlepτhad) channel. The 3p
decay with more than one π0 (3pXn) and 3p-3p events have much lower statistics and
exhibit very small CP -sensitivity in the corresponding φ∗

CP observables, as shown
in [95]. The 3p0n High and Low regions are defined with |ya1 | and another variable
dsig0 or |y|, depending on the decay mode of the other τ−lepton decay.
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4.3 Investigation of 3-prong CP observables
The 3-prong observable is defined as an extension to the ρ-method. The IP-method
requires an impact parameter calculated from the primary vertex position, transverse
position of the secondary vertex, and the direction of π±. In the 3-prong decay of
τ−lepton, there are three π± detected. Each of these π± has an impact parameter
pointing to a different direction. The neutral component can hardly be defined from
these impact parameters in the 3-prong decay.

The a1-method is described in section 4.2. The track with the highest pT among
the three tracks is selected as the charged component. The sum of the rest two
tracks is used as the “neutral” component. In the 1-prong ρ-method, the “neutral”
component is always neutral. In 3-prong decay, the decay plane is formed by a π±

and the other component k̂, which is selected manually. In some selection strategies,
k̂ may not be neutral. To distinguish it from a real neutral component in the 1-prong
channels, it is named the “fork component” in the rest of this section.

Besides the a1-method, there are many other methods to define the CP -sensitive
observable for 3-prong decay. Two types of observables are used in the investigation
of the 3-prong CP observables. For the type-1 observables, one π± is selected as the
charged component, and the other two π± are selected as the fork component. The
decay plane is defined by the charged component and the fork component. For the
type-2 observables, one of the π± with the same charge to the τ−lepton is selected
as the charged component, and the other two π± are selected as the fork component.
The decay plane is defined by the two opposite charged π± in the fork component.

The observables of type 1 do not require neutral fork components. There are three
types of charge requirements of the fork component: no-charge-requirement, requir-
ing the opposite charge π±, and requiring the same charge π±. The a1-method is an
example of no charge requirement. For the observables with no-charge-requirement
or those requiring opposite charge, the fork components are selected according to
the pT of tracks or the invariant mass of the fork component. The invariant mass of
the fork component is compared with the mρ = 775 MeV. For each H → ττ event,
there is only one choice of selecting the same charge π± as the fork component.

The observables constructed using a ρ-method may be shifted by π depending on
the sign of a variable y. Two choice of y are used for each tested observable: y±a1 ,
and y±ρ−like defined as follows:

y±a1 =
E

ρ
0 − E

π
±

E
ρ
0 + E

π
±
−
m2

a1
−m2

π
± +m2

ρ
0

2m2
a1

,
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fork component y DKL (×10000)
Two π± with the lowest pT ya1 69.35

Two π± with invariant mass farther from 775 MeV yρ−like 58.16
Two same charged π± yρ−like 40.25

Opposite charged π± with lower invariant mass yρ−like 28.72
Opposite charged π± with invariant mass farther from 775 MeV yρ−like 24.66

Two π± with the largest pT ya1 19.92
Two same charged π± ya1 19.26

Two π± with the invariant mass farthest from 775 MeV yρ−like 15.85
Opposite charged π± with invariant mass farther from 775 MeV ya1 14.95

Two π± with the lowest pT yρ−like 9.563

Table 4.3: Top 10 tested type-1 observables, ranking with the KL-divergence between CP -even
and CP -odd distribution of the proposed observable.

y±ρ−like =
E

π
± − E

ρ
0

E
π
± + E

ρ
0

. (4.16)

One of the ways to compare the effectiveness of these observables is to calculate
the Kullback–Leibler (KL) divergence [96] between the normalized distribution of
observables that reweighted to the CP -even and CP -odd states. The KL diver-
gence is a method that quantifies how close a probability distribution is to another.
The following equation shows how KL divergence is calculated in two discrete dis-
tributions p and q, where pi and qi are the corresponding probabilities in the i-th
bin:

DKL(p||q) =
∑
i

pilog

(
pi
qi

)
. (4.17)

The KL divergence DKL(p||q) is a non-negative number. The KL divergence is equal
to zero only when p(x) = q(x). A lower KL divergence value represents a smaller
difference between the two distributions. All the tested observables are measured in
the visible di-τ ZMF.

Table 4.3 lists the top 10 tested observables, ranking with the KL divergence
between the reweighted CP -even and CP -odd distributions. The distributions of
the observables are estimated using the Monte Carlo simulated sample. The plots
of the distributions of these observables are shown in appendix A.

Among all the observables constructed using type 1 selection strategy, the ob-
servable selecting two π± with the lowest pT and corrected by ya1 has the highest
DKL score. This observable is the one used in the a1-method. Figure 4.8 shows the
distribution of the observable constructed with the a1-method.
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Figure 4.8: CP -sensitive observable candidate using type-1 method. Two π
± with the lowest pT

are selected to form the fork component.

The observable using the same charges π± to form the fork component also per-
forms well. Figure 4.9 shows the distribution of the observable constructed with
this method.

The type-2 method is an alternative method of calculating the CP -sensitive ob-
servable. Instead of using the fork component and the other π± to construct the
decay plane, type-2 methods select the fork component and construct the decay
plane with the two π±s in the fork component. This method requires two π±s with
opposite charges, otherwise, the orientation of the decay plane cannot be determined.

The calculation of type-2 observables also uses the ρ-method. The neutral com-
ponent is replaced by the π± with the opposite charge to the τ it decays from. The
variable yρρ that shifts the observable is defined as:

y±ρρ =
E

π
± − E

π
∓

E
π
± + E

π
∓
.

There are 6 observables constructed with type-2 method. Table 4.4 lists these
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Figure 4.9: Calculated phistar candidate using type-1 method. Two π
± with the same charge

are selected to form the fork component.

fork component y DKL (×10000)
The π± pair with higher pT yρρ 68.28

The π± pair with invariant mass closer to 775 MeV yρρ 63.03
The π± pair with lower invariant mass yρρ 51.94
The π± pair with higher invariant mass yρρ 31.47

The π± pair with invariant mass farther from yρρ 21.99
The π± pair with lower pT yρρ 20.63

Table 4.4: Top 6 tested observables using the type-2 selection strategy, ranking with the KL-
divergence between the CP -even and CP -odd distribution of the proposed observable.

observables and ranks them with the KL divergence. The plots of the distributions
of these observables are shown in appendix A.

Figure 4.10 shows the distribution of the best performing observable constructed
with the type-2 selection strategy. The 3-prong decayed τ−lepton contains three
π±s, there are two same charged π±s and one with the opposite charge. From the
two same charged π±s, the one with higher pT is selected to form the fork component



72 CP -violation in Higgs boson decays to τ pairs

Figure 4.10: Observable constructed with the type-2 strategy. From the two same charged tracks,
the one with higher pT is selected to form the fork component.

with the opposite-charged π±.
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Chapter 5

Measurement of CP properties in
the H → ττ coupling

5.1 Experimental data and Monte Carlo simula-
tion

Data
This analysis is performed using ATLAS Run-2 data collected from 2015 to 2018.
Table 5.1 lists the integrated luminosity recorded in each year during Run-2.

Monte Carlo simulation
There are four main Higgs production processes that dominate the Higgs boson
production at the LHC: gluon-gluon fusion (ggH), vector boson fusion (V BF ), as-
sociated V H and ttH production processes. The expected cross sections of these
Higgs production processes are listed in table 5.2. The Powheg [82] and Pythia [83]
programs are used for event generation and modeling of parton showering, respec-
tively. Table 5.3 lists the packages used in the simulation of each production process.
The “ME” column gives the generator for calculating the matrix elements. The “PS”
column shows the package for generating parton showering [98]. The ggH process
is simulated at the next-to-next-to-leading-order (NNLO) accuracy [99, 100], with a
normalization to the cross section calculated in the next-to-next-to-next-to-leading-
order (N3LO) QCD and NLO electroweak corrections. The V BF and V H processes
are simulated to next-to-leading order (NLO) accuracy, with a normalization to
the cross section calculated in the NNLO QCD and NLO electroweak corrections
[101, 102, 103, 104, 105, 106, 107, 108, 109, 110]. The ttH process is generated at
NLO accuracy.
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Year
∫
Ldt (fb−1)

2015 3.22
2016 32.99
2017 44.31
2018 58.45

Table 5.1: Integrated luminosity in each year during the ATLAS Run-2 [97].

Higgs production process Expected cross section(pb)
ggF 48.5+2.2

3.3

V BF 3.78+0.08
−0.08

V H 2.26+0.03
−0.03

tt̄H 0.51+0.03
−0.05

Table 5.2: Expected cross section for the four main Higgs production processes at mH =
125.09 GeV [41].

The “PDF set” column lists the parton distribution function packages used in
generating parton showering. The parton distribution function represents the prob-
ability density to find a parton carrying a momentum fraction at a certain energy
scale. The “PDF4LHC15” [111], “CTEQ6L1” [85] and “NNPDF2.3” [112] are parton
distribution function sets calculated in previous researches.

A “tune” is a specific modification for a Monte Carlo generator. The Monte Carlo
simulation models depends on several free parameters. The simulation requires
optimization so that the result produced matches the ATLAS experimental result
[113]. The tune packages are developed for different PDF sets accordingly. The
“AZNLO” [114] and “A14” [113] are the tune packages developed for the ATLAS
Monte Carlo simulations.

The spin correlation of τ−lepton is simulated with the TauSpinner package in all
simulated signal events. TauSpinner is a tool to generate different CP hypothe-
ses from generated Higgs [115, 116, 117]. For each event, TauSpinner generates a
weight for each CP hypothesis. By using the truth-level kinematics information,
it can add spin-effect. The simulated Monte Carlo H → ττ with TauSpinner con-
tains the kinematics of the particles, as well as TauSpinner weight for different CP
hypotheses. By applying these weights to events while generating a distribution,
it will give a reweighted distribution for a certain CP hypothesis. Figure 5.1 and
figure 5.2 demonstrate the validation of the TauSpinner package. Three samples
are generated with Pythia8 [118], corresponding to the CP -even, CP -odd, and un-
polarised samples, respectively. The unpolarized sample does not have spin-effect.
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Process Generator PDF set Tune Order
ME PS ME PS

H → ττ
ggF Powheg Pythia8 PDF4LHC15 CTEQ6L1 AZNLO NNLO
VBF Powheg Pythia8 PDF4LHC15 CTEQ6L1 AZNLO NLO
V H Powheg Pythia8 PDF4LHC15 CTEQ6L1 AZNLO NLO
tt̄H Powheg Pythia8 NNPDF2.3 A14 NLO
Background
V + jets Sherpa 2.2.1 NNPDF30 Sherpa NNLO
tt̄ Powheg Pythia8 NNPDF2.3 A14 NLO
Single top Powheg Pythia8 NNPDF2.3 A14 NLO
Di-Boson Sherpa 2.2.1 NNPDF30 Sherpa NNLO

Table 5.3: Overview of the MC generators used for the main signal and background samples.
The “ME” column gives the generator to calculate Matirx Elements. The “PS” column shows the

package for generating Parton Showering.

It can be reweighted to a CP -state with the corresponding TauSpinner weight. In
each of the plots, the blue dots label the samples simulated with the CP -even or
CP -odd hypotheses in Pythia8, and the red dots label the samples reweighted from
an unpolarized sample with a TauSpinner weight. The distributions of the kinematic
observables and the φ∗

CP in the reweighted samples show similar behavior with the
samples simulated with the same CP state.

Table 5.3 also lists the generators used for the simulation of the background sam-
ples. The background with V + jets and di-boson final states are generated with
Sherpa 2.2.1 [119]. The background with tt̄ and single top quark final states are
generated with Powheg and Pythia8.

All simulated samples passed through a full simulation of the ATLAS detector
response using the Geant4 package [120, 121]. The effects of multiple interactions
in the same and nearby bunch crossings are modeled by overlaying minimum-bias
events simulated with Pythia8. Events are weighted to match the distribution of
the average number of interactions per bunch crossing [39].

5.2 Event selection
After event reconstruction, the events containing at least one τ−leptons are selected
[54]. A set of offline pT thresholds are designed to further select the events. Table
5.4 lists the pT thresholds for different decay modes. The lepton candidates are
required to have minimum transverse momenta to ensure trigger operation at the
plateau efficiency.
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Figure 5.1: Validation of TauSpinner reweighting between SM CP -even and unpolarised samples
after TauSpinner reweighting.

Trigger chain Data period Trigger pT threshold Offline pT threshold

Single electron 2015 pT (e) > 24 GeV pT (e) > 25 GeV
2016-2018 pT (e) > 26 GeV pT (e) > 27 GeV

Single muon 2015 pT (µ) > 20 GeV pT (µ) > 21 GeV
2016-2018 pT (µ) > 26 GeV pT (µ) > 27.3 GeV

Ditau 2015-2018 pT (τL) > 35 GeV pT (τL) > 40 GeV
pT (τS) > 25 GeV pT (τS) > 30 GeV

Table 5.4: The pT thresholds applied at trigger and offline stage for the selected electrons, muons
and τhad-vis. τL is the leading τhad-vis. τS is the sub-leading τhad-vis.

The two τ−lepton candidates are required to have opposite electric charges in
each event. The angular distance between the lepton candidates is required to
be ∆Rττ < 2.5, ∆ηττ < 1.5 in the τlepτhad channel. For the τhadτhad channel,
0.6 < ∆Rττ < 2.5 and ∆ηττ < 1.5 are required. Each event in the τlepτhad channel
requires at least one jets with pT > 40 GeV. The requirement in the τhadτhad channel
is tightened to contain a jet with pT > 40 GeV, and |η| < 3.2. The Emiss

T is required
to be greater than 20 GeV in both decay channels. The τlepτhad channel further
requires the transverse mass smaller than 70 GeV, where the transverse mass mT is
defined by m2

T = E2 − p2z.
The selected events are categorized to the VBF and boosted regions. The VBF

region contains events with a sub-leading jet with pT > 30 GeV. The two leading
jets are required to have the following kinematics: mjj > 400 GeV, |∆ηjj| > 3.0;
η(j0) × η(j1) < 0. The pseudorapidity η of the two lepton candidates lies between
the η of the two leading jets. The Boosted region contains the events with pT(ττ) >
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Figure 5.2: Validation of TauSpinner reweighting between SM CP -odd and unpolarised samples
after TauSpinner reweighting.

100 GeV and not passing the selection of the VBF region. The VBF region is split
into two regions: VBF_1 and VBF_0, based on the output of a BDT-based VBF
tagger [122]. The events in the VBF_1 region is more likely to be generated by VBF
Higgs boson production. The boost region is also split into Boost_1 and Boost_0

regions. The Boost_1 contains the events with ∆Rττ ≤ 1.5 and pT(ττ) ≥ 140 GeV.
For each region, the signal region and control region are defined with the invariant

mass of the τ−lepton pair, which is estimated with a likelihood-based algorithm
called Missing Mass Calculator (MMC) [123]. The invariant mass estimated by the
MMC is called mMMC

ττ . The signal region is defined with 110 < mMMC
ττ < 150 GeV.

The control region is defined with 60 < mMMC
ττ < 110 GeV. Table 5.5 lists the

selection criteria for the signal regions. The selection criteria are the same for
τlepτhad and τhadτhad channels.

Within each region, the signal region is divided to high, medium and low regions,
depending on the decay channels and selection criteria. The high region contains the
events from decay channels: l-1p0n, l-1p1n, 1p0n-1p0n, 1p0n-1p1n and 1p1n-1p1n.
In each decay channel, part of the events with higher sensitivity are selected by the
selection criteria listed in table 5.6 and table 5.6. The medium region contains the
events from l-1pXn, l-3p0n, 1p0n-1pXn, 1p1n-1pXn and 1p1n-3p0n. These decay
channels have lower sensitivity than the decay channels in the high region. All the
events not passing the selections in the high and medium regions are grouped into
the low region.
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Signal regions (110 < mMMC
ττ < 150 GeV)

VBF Boost
Sub-leading jet pT > 30 GeV Not VBF
mjj > 400 GeV pT(ττ) > 100 GeV
|∆ηjj| > 3.0; η(j0)× η(j1) < 0
Both τhad candidates must lie between the
two leading jets in pseudorapidity
VBF 1 VBF 0 Boost 1 Boost 0
BDT(VBF) > 0.0 BDT(VBF) < 0.0 ∆Rττ ≤ 1.5 and

pT(ττ) ≥ 140 GeV
Not Boost 1

Z → ττ Control regions (60 < mMMC
ττ < 110 GeV)

VBF 1 ZCR VBF 0 ZCR Boost 1 ZCR Boost 0 ZCR
BDT(VBF) > 0.0 BDT(VBF) < 0.0 ∆Rττ ≤ 1.5 and

pT(ττ) ≥ 140 GeV
Not Boost 1

Table 5.5: Summary of selection criteria for the VBF and Boost regions in the analysis.

Channel Signal region Decay mode Selection criteriacombination

τlepτhad

High
l-1p0n dsig

0 (e) > 2.5 or dsig
0 (µ) > 2.0

dsig
0 (τ1p0n) > 1.5

l-1p1n dsig
0 (e) > 2.5 or dsig

0 (µ) > 2.0
|y(τ1p1n)| > 0.1

Medium
l-1pXn dsig

0 (e) > 2.5 or dsig
0 (µ) > 2.0

|y(τ1pXn)| > 0.1

l-3p0n dsig
0 (e) > 2.5 or dsig

0 (µ) > 2.0
|y(τ3p0n)| > 0.6

Low All above Not passing
selection criteria

Table 5.6: Summary of selection criteria for the signal regions in the τlepτhad channel.
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Channel Signal region Decay mode Selection criteriacombination

τhadτhad

High
1p0n-1p0n dsig

0 (τ1) > 1.5 and dsig
0 (τ2) > 1.5

1p0n-1p1n dsig
0 (τ1p0n) > 1.5 and |y(τ1p1n)| > 0.1

1p1n-1p1n |y(τ1)y(τ2)| > 0.2

Medium
1p0n-1pXn dsig

0 (τ1p0n) > 1.5 and |y(τ1pXn)| > 0.1
1p1n-1pXn |y(τ1p1n)y(τ1pXn)| > 0.2
1p1n-3p0n |y(τ1p1n)| > 0.1 and |y(τ3p0n)| > 0.6

Low All above Not passing
selection criteria

Table 5.7: Summary of selection criteria for the signal regions in the τhadτhad channel.

5.3 Background estimation
The background processes in the signal region is estimated using Monte Carlo sim-
ulation and data-driven techniques. The dominant process in the background is the
Z/γ∗ → ττ + jets. This process is estimated through Monte Carlo simulation with
the generators listed in the table 5.3. The control region in each category is used to
extract the normalizations of the Z → ττ + jets background.

The second most significant background is the events with jets misidentified as
a τ−lepton, labeled as “fake” in the rest of this thesis. The contribution of the
misidentified τ−lepton is estimated with a data-driven method called the fake-factor
method. The fake-factor method estimates the contribution of fake events in various
regions using data and MC simulated samples. For each signal region, a correspond-
ing anti-τ region is selected. An anti-τ region contains the events passing all the
selections in the analysis except for the τ−lepton identification. The distribution of
the observables is estimated with the events within this region. The expected yield
of the fake events in the signal region is calculated by:

NSR
fakes = (Nanti−τ

Data −Nanti−τ
MC, no jet→τ )×F , (5.1)

where Nanti−τ
Data represents the number of events in the anti-τ region of data. The

Nanti−τ
MC, no jet→τ is the number of non-fake events in the anti-τ region of Monte Carlo

simulated samples, normalized to expected yield. The difference between them is
multiplied by a fake factor F , which is defined as:

F = RWFW +RTopFTop +RQCDFQCD, (5.2)

where Fi is calculated separately in the control regions for different sources. The
fake events mostly consist of the events with final states of W + jets, top quark, and
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multiple jets produced by quantum chromodynamics (QCD). The control regions
for these background sources are defined by inverting some of the selection criteria
so that the region is enriched with the fake events [124, 125]. The fake factor is
calculated as:

Fi =
Npass−τ,CRi

Data −Npass−τ,CRi
MC, no jet→τ

Nanti−τ,CRi
Data −Nanti−τ,CRi

MC, no jet→τ

, (5.3)

where Npass−τ,CRi
Data − Npass−τ,CRi

MC, no jet→τ is the difference between the number of events
passing the τ identification in the data and MC samples. It is divided by the
difference between the number of events failing the τ−lepton identification in the
data and MC samples. These calculated fake factors are summed up with a weight
Ri, which is the expected fractional contribution of that process.

The fake factor method is based on the following assumptions. The fake factor
calculated from different data periods can be combined. The fake factor calculated
for different decay channels τeτhad and τµτhad can be combined. The fake factor
calculated in the control region can be used in the signal region.

Besides the Z → ττ + jets and fake events, there are some processes with small
contribution to the background, such as Z → ll+jets and Z → ττ+jets, H → WW ,
and top quark production processes. Background events from these sources are
summarised as “others”. These are estimated with Monte Carlo simulation and are
normalized to their theoretical expectations. All the MC simulated samples are
generated with the packages listed in table 5.3.

5.4 Expected event number

Table 5.8 and Table 5.9 shows the Standard Model expected event number in each
region of the τ lep τhad and τhad τhad channels in the ATLAS Run-2 data, respectively.

5.5 Systematic uncertainties

Systematic uncertainties generally affect the yields in the signal and control regions
as well as the distribution shape of the main fit observable φ∗

CP. They can be grouped
into three types: the experimental uncertainties, the theoretical uncertainties, and
the τ−lepton decay reconstruction uncertainties.
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H → ττ Z → ττ Fake Other Bkgs
VBF 1 high 17.90±2.32 9.61±4.99 2.33±1.02 0.23±0.26
VBF 1 medium 8.13±1.64 6.36±3.63 1.90±0.52 0.06±1.21
VBF 1 low 60.37±6.98 56.68±14.48 30.83±10.82 15.71±7.91
VBF 0 high 11.52±2.04 40.55±9.89 8.53±3.44 5.45±8.90
VBF 0 medium 5.02±0.85 21.28±6.55 4.75±1.15 0.61±1.43
VBF 0 low 38.50±5.72 190.49±43.06 101.27±38.42 61.27±23.13
Boost 1 high 61.30±12.61 269.44±47.49 19.10±3.96 13.78±4.16
Boost 1 medium 25.99±5.17 120.21±19.79 11.00±2.48 5.50±1.63
Boost 1 low 194.74±38.81 1080.25±162.75 288.86±44.61 297.89±27.84
Boost 0 high 50.23±8.24 387.97 ±66.45 79.52 ±11.66 21.93 ±6.92
Boost 0 medium 23.07 ±3.62 196.48 ±36.32 41.73 ±7.28 8.01 ±8.10
Boost 0 low 181.13 ±28.06 1886.67 ±281.04 1063.31 ±127.73 539.24 ±86.25
VBF 1 ZCR 12.50 ±1.66 263.09 ±20.80 22.71 ±5.58 9.10 ±6.85
VBF 0 ZCR 9.47 ±1.39 699.14 ±62.05 74.58 ±17.29 28.18 ±11.62
Boost 1 ZCR 54.09 ±12.22 10844.00 ±582.14 370.50 ±48.92 339.81 ±20.71
Boost 0 ZCR 37.74 ±6.78 7256.64 ±435.14 665.00 ±71.62 217.85 ±37.13

Table 5.8: Expected event number for the signal and contol regions in the τ lepτhad channel in
the ATLAS Run-2 data.

H → ττ Z → ττ Fake Other Bkgs
VBF 1 high 17.75±2.87 18.05±14.62 8.47±3.15 0.62±1.66
VBF 1 medium 13.70±2.50 12.26±5.03 8.11±2.38 1.86±1.22
VBF 1 low 31.02±4.72 26.90±8.78 19.92±6.55 1.27±1.14
VBF 0 high 12.52±2.54 56.00±19.65 25.35±7.27 6.69±3.25
VBF 0 medium 9.40±1.75 36.20±14.11 20.75±4.90 5.42±2.58
VBF 0 low 21.76±4.25 90.16±22.55 99.66±19.60 15.15±5.83
Boost 1 high 78.97±18.08 426.64±80.49 50.76±12.63 25.50±7.88
Boost 1 medium 58.63±12.46 308.78±59.94 45.87±8.52 20.61±4.10
Boost 1 low 134.43±29.50 764.51±136.35 122.43±26.91 63.86±11.01
Boost 0 high 60.79±12.39 645.85±101.76 258.41±51.44 64.79±16.68
Boost 0 medium 48.49±8.79 494.10±79.63 261.17±41.70 44.96±7.76
Boost 0 low 109.63±20.22 1167.99±191.39 894.93±171.16 174.55±33.03
VBF 1 ZCR 7.07±1.21 188.26±17.31 40.56±9.80 2.70±1.13
VBF 0 ZCR 6.03±1.20 575.28±60.81 140.55±25.16 11.21±3.40
Boost 1 ZCR 44.71±10.62 9854.75±722.34 495.04±106.27 210.02±25.79
Boost 0 ZCR 25.32±5.54 6309.88±496.63 1687.33±326.82 121.54±18.45

Table 5.9: Expected event number for the signal and contol regions in the τhad τhad channel in
the ATLAS Run-2 data.
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Experimental uncertainties

Experimental uncertainties are estimated following the recommendations from the
ATLAS combined performance groups. The uncertainties considered in the analysis
are listed below.

• Muon: Energy scale and resolution, reconstruction, identification, isolation,
triggers [126].

• Electron: Energy scale and resolution, reconstruction, identification, isolation,
triggers, charge identification [127].

• Tau: Energy scale and resolution, reconstruction, identification, triggers, misiden-
tified τ−lepton estimation [128].

• Jet: Energy scale and resolution, flavor, Jet-Vertex-Tagger, b-tagging [129].

• Missing transverse energy: Resolution, energy scale [130].

• Luminosity [131].

Jet uncertainties including jet energy resolution and scale have the largest impact
among all the systematic uncertainties. Systematic uncertainties in the jet energy
scale for central jets (|η| < 1.2) vary from 1% for a large range of high-pT jets
250 < pT < 2000 GeV, to 5% at very low pT (20 GeV) and 3.5% at very high pT

(pT> 2.5 TeV). The absolute uncertainty on the relative jet energy resolution is
found to be 1.5 at 20 GeV decreasing to 0.5 at 300 GeV [132].

The uncertainties from misidentified τ−lepton estimation arise from the statistical
uncertainties in the fake factors and their relative weighting. The uncertainties are
assigned per τ−lepton pair decay combination in the τ lep τhad and τhad τhad channels.

Theoretical uncertainties

This analysis follows closely the full Run-2 H → ττ cross-section analysis [97], where
most of the H → ττ and Z → ττ theoretical uncertainties are inherited from. The
theoretical uncertainties are applied to the signal and background processes.

The signal prediction uncertainties mainly come from three main sources: the
QCD scale due to missing higher orders calculation. the parton shower and hadro-
nisation model, renormalization and factorization scales [97] and the PDF [111, 85].
These uncertainties are applied to the production cross-sections, which only affect
the signal normalization.
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For MC background, the uncertainties are considered for renormalization and
factorization scales, resummation scale variations, jet-to-parton matching scheme
[133], choice of the value of strong coupling constant αS, and PDF uncertainties
[112].

Analysis-specific uncertainties
Besides the experimental uncertainties and the theoretical uncertainties, there are
some uncertainties considered specifically in this analysis. These uncertainties arise
from the decay mode classification of τ−lepton, the uncertainties affecting the φ∗

CP

shape, and the fake background estimation.
The uncertainties on the τ−lepton decay mode classification is derived from the

decay mode reconstruction efficiency and the event migration between decay modes.
The scale factors are derived for a τ−lepton identification working point to correct
the MC sample to match with data. In this analysis, the τ−lepton decay mode
classification uncertainties are taken from the preliminary measurement hadronic tau
substructure in the ATLAS Tau CP working group using the 2016-2017 data[134].

The shape of observable φ∗
CP is affected by the uncertainties of the objects such

as the charged particles and neutral pions. Most of these uncertainties have already
been considered in the experimental uncertainties. Within this analysis, additional
uncertainties on the energy scales and angular resolution of the π0 are measured. The
invariant mass of the π±−π0 system m(π±, π0) is found sensitive to π0 energy scale
and angular resolution. The distribution of the observable m(π±, π0) is measured
in Z → ττ control regions. For the τ lep τhad decay modes, the Z → ττ control
region consists of l − 1p1n events. For the τhad τhad decay modes, the Z → ττ

control region consists of 1p1n−1p1n events. The uncertainties on the energy scales
and angular resolution of the π0 are determined from the max-likelihood fit in these
control regions.

The uncertainty of the TauSpinner reweighting is also assigned. The uncertainties
of TauSpinner are calculated for each di-τ decay mode and production mode combi-
nation separately. These uncertainties are estimated by comparing the distribution
of the truth φ∗

CP between the simulated CP -even/odd samples and the templates
reweighted by TauSpinner from an unpolarized sample.

5.6 Maximum-likelihood fit
The CP -mixing angle ϕτ is measured with the binned maximum likelihood fit. The
maximum likelihood fit uses 24 signal regions (SR) and 10 control regions (CR).
These signal regions and control regions are listed below.
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• Signal regions (12 SRs per τ lepτhad and τhadτhad channels)

– VBF 1: High, Medium, Low;

– VBF 0: High, Medium, Low;

– Boost 1: High, Medium, Low;

– Boost 0: High, Medium, Low.

• Z(→ ττ)+jets control regions (4 CRs per τ lepτhad and τhadτhad channels)

– VBF 1;

– VBF 0;

– Boost 1;

– Boost 0.

• ρ-constraint Z(→ ττ)+jets control regions (1 CR per τ lepτhad and τhadτhad

channels)

– Inclusive ℓ-1p1n or 1p1n-1p1n.

The Z(→ ττ)+jets control regions (ZCR) is divided into two part, ZCR 0 and
ZCR 1. The ZCR 0 is split to the 8 Z(→ ττ)+jets control regions for VBF 1, VBF
0, Boost 1, Boost 0 in the τ lepτhad and τhadτhad channels. Each of the control regions
in ZCR 0 contains only one bin. These control regions are used to extract the Z→ ττ

normalizations from data.
The ZCR 1 for the τ lepτhad and τhadτhad channels are called ρ-constrainted Z(→

ττ)+jets control regions in the analysis. These control regions are used to constrain
the π0 related uncertainties with the shape of ρ invariant mass distributions. In the
Standard Model τ−lepton decay, the 1p1n decay products π± and π0 are decayed
from a ρ particle. The m(π±, π0) calculated from 4-momentum of π± and π0 could
constrain the uncertainties related to π0.

The φ∗
CP is an observable within a range between 0 and 2π. In each signal region,

the φ∗
CP from different decay channels are filled in the same histogram with 9 evenly

distributed bins, except for the high and medium regions of VBF 1 with 7 bins and
all the low regions with 4 bins. The high and medium regions of VBF 1 have limited
sample size. The low regions have low sensitivity to the φ∗

CP.
The number of simulated signal and background events are normalized to the

therotical predicted values [135]. The 5 normalization factors (NF) are defined to
leave the normalization of the H → ττ signal and Z→ ττ background samples free
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floating in the fit. There is one NF for signal: NF H (µH→ττ ). And there are 4 NF
for Z → ττ background, corresponding to the 4 Z control regions: VBF_1, VBF_0,
Boost_1, Boost_0, respectively.

The event number in each bin is expected to follow the Poisson distribution. The
likelihood function is defined as a product of conditional probabilities P over binned
distributions of the discriminating observables in each event category [136]:

L(x;ϕτ , θ) =

Nbin∏
i

P (ni|Si(x;ϕτ , θ) + Bi(θ))

Nnuisance∏
m

Cm(θ). (5.4)

In this equation, ni represents the observed number of events in each bin. Si(x;ϕτ , θ)

and Bi(θ) are the number of events for the estimated signal and background. Con-
straints on the nuisance parameters corresponding to the systematic uncertainties
are represented by the functions Cm(θ) [137]. The binned likelihood fit is imple-
mented in the TRExFitter package [138], which is a fitting software interfaced with
HistFactory [139], RooFit [140], and RooStats [141].

The parameter of interest ϕτ is chosen such that the CP -even SM hypothesis is
realised for ϕτ = 0, while the CP -odd hypothesis corresponds to ϕτ = ±90. Other
ϕτ values correspond to other in-between CP -mixed couplings. A set of nineteen
signal templates corresponding to ϕτ values from -90 to 90 in intervals of 10 are
created by reweighting the simulated unpolarized H → ττ signal samples with
TauSpinner [117], as described in Section 5.1. A simple one-dimensional morphing
with linear interpolation [142] on the parameter of interest ϕτ is employed in the fit
for the CP hypothesis templates. The morphing is a built-in function of TRExFitter
[138] package that generates templates on the parameter of interest by the linear
combinations of given templates.

The normalizations of the CP -even or CP -mixed signal sample and Z → ττ back-
ground sample are introduced as unconstrained nuisance parameters in the likelihood
model. Other nuisance parameters enter the fit account for various uncertainties as
described in Section 5.5.

Test statistic and quantifying sensitivity

The binned likelihood function L(x;ϕτ , θ) is a function of the data x, the free-
floating mixing angle ϕτ , and nuisance parameters θ corresponding to the systematic
uncertainties. The likelihood function is evaluated for each ϕτ hypothesis using
the reweighted signal templates, with the background processes unchanged. The
negative log-likelihood (NLL) is defined as the test statistic and an NLL curve can
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Fitted parameters Observed value Expected value
ϕτ 9± 16◦ 0± 28◦

µττ 1.02± 0.20 1.00± 0.21

NF V BF1
Z→ττ 1.04± 0.08 1.00± 0.08

NF V BF0
Z→ττ 0.95± 0.07 1.00± 0.08

NFBoost1
Z→ττ 1.01± 0.05 1.00± 0.04

NFBoost0
Z→ττ 1.02± 0.05 1.00± 0.05

Table 5.10: Fitted result for the free-floating parameters in the measurement. Observed and
expected values are shown for the CP -mixing angle ϕτ , the signal strength µττ and the background

normalizations NFZ→ττ .

be constructed as a function of ϕτ . The test statistic is based on a profile likelihood
ratio [143]:

q = −2 ln L(κ⃗,
ˆ̂
θ⃗(κ⃗))

L(κ⃗, θ⃗(κ⃗))
= −2 lnλ(κ⃗), (5.5)

with the conditional and the unconditional maximum-likelihood estimators in the
numerator and the denominator, respectively. The NLL adopted in the analysis is
equivalent to q/2. The frequentist central confidence interval [ϕ̂τ − σϕ̂τ

, ϕ̂τ + σϕ̂τ
]

can be directly read off the NLL function using Neyman constructions [144]:

− logL(ϕ̂τ ± Nσϕ̂τ
) = − logLmax +

N2

2
, (5.6)

where N quantifies the confidence level. N = 1 refers to standard double-sided
Gaussian quantiles “1σ”. The equation 5.6 means that after constructing the NLL
curve by calculating the NLL value for each ϕτ hypothesis and a specific dataset x,
the 68% central confidence interval (N = 1 refers to standard double-sided gaussian
quantiles “1σ”) can be determined from the best estimator ϕ̂τ , at which the NLL
curve is minimal, by reading off the ∆ NLL = NLL - NLLmin at 0.5. This interval
should contain the true value of ϕτ in 68% of all cases. The expected central confi-
dence interval can be determined under the assumption that the pseudo-measured
dataset contains the pure CP-even SM-like signal and the expected background.

5.7 Results

The post-fit distributions of the observable φ∗
CP are presented in this section, where

the parameters are set to the value that maximizes the likelihood to observed data.
Figure 5.3 and figure 5.4 show the distributions of φ∗

CP in the high signal region of
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Figure 5.3: Post-fit distributions of φ∗
CP in the high signal regions in the τ lep τhad channel.The

φ
∗
CP bins are counted incrementally through all signal regions and cover the range [0, 360]

◦ for each
signal region. Other backgrounds include W + jets, di-boson, top, Z → ll, and H → WW . The

uncertainty band includes all sources of considered uncertainties.

the τ lep τhad and τhad τhad channels respectively. The horizontal axis is bined in ob-
servable φ∗

CP, and divided into four sections corresponding to the four signal regions
VBF_1, VBF_0, Boost_1, and Boost_0. In each of these sections, the bins are
evenly arranged to cover the range [0◦, 360◦]. The black dots in the figures represent
the observed data. The estimated signal and background events are stacked and
colored. The best fit H → ττ signal is represented by the red color. The dominant
background Z → ττ is represented by the blue color, and the misidentified τ back-
ground is represented by the yellow color. The background from W + jets, di-boson,
top, Z → ll, and H → WW events contribute much less than the dominant two.
These backgrounds are combined and labeled as “Other” and colored with purple.
The uncertainty is represented with shaded area. Within the figures, the distribu-
tions of φ∗

CP in the CP -even and CP -odd states are represented by red and green
lines. The post-fit distributions of medium and low signal region in τ lep τhad and
τhad τhad channels are shown in figure 5.5, 5.6, 5.7, and 5.8 with the same notations.

Figure 5.9 and figure 5.10 show the post-fit distributions of the π± and π0 total
invariant mass in the Z control regions in the τ lep τhad and τhad τhad channels. In
the τ lep τhad channel, the l-1p1n events are used. In the τhad τhad channel, the 1p1n-
1p1n events are used. In the 1p1n-1p1n channel, there are two choices of (π±,π0)
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Figure 5.4: Post-fit distributions of φ∗
CP in the high signal regions in the τhad τhad channel.The

φ
∗
CP bins are counted incrementally through all signal regions and cover the range [0, 360]

◦ for each
signal region. Other backgrounds include W + jets, di-boson, top, Z → ll, and H → WW . The

uncertainty band includes all sources of considered uncertainties.

pair. The (π±,π0) pair from τ−lepton with larger transverse momentum is selected
to calculate m(π±, π0). Data shows a good agreement with the prediction in the
distribution of π± − π0 invariant mass.

Table 5.10 lists the fitted parameters in the real data and the Asimov data. The
best-fit value of the CP -mixing angle ϕτ is 9◦±16◦ in the observation and 0◦±28◦ in
the expectation at 68% confidence level. The pure CP -odd hypothesis is disfavoured
by the observation at 3.4σ, while the expected exclusion limit is 2.1σ, where σ is the
standard deviation. A larger value of standard deviation refers to a lower possibility
that the observation is caused by statistical fluctuation. Figure 5.11 shows the 1D
likelihood scan of ϕτ . The difference between the observed and expected sensitivities
of the ϕτ can be attributed to statistical fluctuation in data. The uncertainties of the
ϕτ measurement are highly dependent on the size of the modulation amplitude of the
φ∗

CP. The analysis is sensitive to the shape of φ∗
CP distribution. This measurement

is compatible with the measurement of the CMS Collaboration on the same mixing-
angle parameter, where the observed CP -mixing angle is −1◦ ± 19◦ and 0◦ ± 21◦ in
the expectation at 68% confidence level [136].

The best fit value of signal strength is 1.02±0.20 in the observation and 1.00±0.21

in the expectation. The normalizations for background in each signal region are
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Set of nuisance parameters Impact on ϕτ (◦)
Jet 4.3
Emiss

T 0.4
Electron 0.3
Muon 0.9
τhad reconstruction 1.0
Fake τ 0.6
τhad decay mode reconstruction 0.3
π0 angular resolution and energy scale 0.2
Trajectories and impact parameter 0.7
Flavour Tagging 0.2
Luminosity 0.1
Theory uncertainty in H → ττ processes 1.5
Theory uncertainty in Z → ττ processes 1.1
Simulated background sample statistics 1.4
Signal normalization 1.4
Background normalization 0.6
Total systematic uncertainty 5.2
Data sample statistics 15.6
Total 16.4

Table 5.11: Impact of different sources of uncertainty on the ϕτ measurement.

shown in table 5.10. These results are compatible with the SM expectation within
the measured uncertainties.

Table 5.11 summarises the impact of the uncertainties. The total uncertainty is
dominated by the statistical uncertainties of the data sample. The dominant con-
tributions to the systematic uncertainties are from jets, followed by limited sample
size of the background simulations, uncertainties from the free-floating normaliza-
tion factors and theory uncertainties. Effects from other sources are no larger than
1◦.

The expected sensitivities in excluding pure CP -odd hypothesis is 1.1σ in the τ lep

τhad channel and 1.7σ in the τhad τhad channel. The high signal regions contribute
the most. In the τ lep τhad channel, the high signal region contributes 1.0σ, and the
high region in the τhad τhad channel contribute 1.4σ. Other signal regions contribute
little.

Figure 5.12 shows the 2D likelihood scan on the CP -mixing angle ϕτ and the
signal strength µττ . The solid line shows the 1σ confidence level region. The dashed
line shows the 2σ confidence level region. No strong correlation is observed between
ϕτ and µττ . The SM prediction with ϕτ = 0 and µττ = 1 is compatible with the
observation within the 1σ confidence region.
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Figure 5.5: Post-fit distributions of φ∗
CP in the medium signal regions in the τ lep τhad channel.The

φ
∗
CP bins are counted incrementally through all signal regions and cover the range [0, 360]

◦ for each
signal region. Other backgrounds include W + jets, di-boson, top, Z → ll, and H → WW . The

uncertainty band includes all sources of considered uncertainties.

Figure 5.6: Post-fit distributions of φ∗
CP in the medium signal regions in the τhad τhad channel.The

φ
∗
CP bins are counted incrementally through all signal regions and cover the range [0, 360]

◦ for each
signal region. Other backgrounds include W + jets, di-boson, top, Z → ll, and H → WW . The

uncertainty band includes all sources of considered uncertainties.
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Figure 5.7: Post-fit distributions of φ∗
CP in the low signal regions in the τ lep τhad channel. The

φ
∗
CP bins are counted incrementally through all signal regions and cover the range [0, 360]

◦ for each
signal region. Other backgrounds include W + jets, di-boson, top, Z → ll, and H → WW . The

uncertainty band includes all sources of considered uncertainties.

Figure 5.8: Post-fit distributions of φ∗
CP in the low signal regions in the τhad τhad channel.The

φ
∗
CP bins are counted incrementally through all signal regions and cover the range [0, 360]

◦ for each
signal region. Other backgrounds include W + jets, di-boson, top, Z → ll, and H → WW . The

uncertainty band includes all sources of considered uncertainties.
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Figure 5.9: Post-fit distributions of π± − π
0 invariant mass in the Z control regions in the τ lep

τhad channel. The l-1p1n events are used in the fitting. Other backgrounds include W + jets,
di-boson, top, Z → ll and H → WW . The uncertainty band includes all sources of considered

uncertainties.

Figure 5.10: Post-fit distributions of π
± − π

0 invariant mass in the Z control regions in the
τhad τhad channel.The 1p1n-1p1n events are used in the fitting. Only the τhad with highest pT
is selected. Other backgrounds include W + jets, di-boson, top, Z → ll, and H → WW . The

uncertainty band includes all sources of considered uncertainties.
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Figure 5.11: 1-D likelihood scan for the CP -mixing angle ϕτ . The observed (expected) value of
ϕτ is 9

◦ ± 16
◦ (0◦ ± 28

◦) at 68% confidence level. The value of ϕτ is 9
◦ ± 16

◦ at 68% confidence
level. The CP -odd hypothesis is rejected at 3.4σ level in the observation and 2.1σ level in the

expectation.

Figure 5.12: The Observed 2D likelihood scan of ϕτ and signal strength µττ . The solid line shows
the 1σ confidence level region. The dashed line shows the 2σ confidence level region.
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Chapter 6

Further Studies

The measurement of CP -mixing can be improved in future studies. The LHC Run-3
has started since July-2022, at an unprecedented center of mass energy of 13.6 TeV
[145]. The uncertainties of the CP -mixing measurement will be improved with the
Run-3 data samples, which are expected to deliver larger integrated luminosity.
Some improvements can also be done in the method of the measurement. The
analysis introduced in this thesis contains the τ lep τhad and τhad τhad channels, while
the τ lep τ lep channels are not being taken into account. The events with 3p1n decay
or more than one τhad decay into 3p0n or 1pXn are also not considered in the
current analysis. These decay channels can contribute to the measurements even
if they showed low sensitivity in the reconstructed Run-2 samples. Besides, some
studies on the algorithms are being performed. This chapter introduces one of the
ongoing studies on exploring the CP -sensitive 3p0n-1p1n observables with machine
learning techniques.

6.1 Investigation of CP -sensitive 3p0n-1p1n ob-
servables

The observable φ∗
CP in 3p0n-1p1n channel is constructed with the a1-ρ method as

described in chapter 4. There exists an arbitrariness in how to determine the inter-
mediate ρ in the τ decay product. In the full analysis, several different observables
are tested. The one using the lowest pT π pair shows the best expected pure CP -odd
exclusion limit in an MC simulated data fit, without considering the nuisance param-
eters. Other observable does not show considerable improvement to the lowest pT
method. The methods of constructing the φ∗

CP in the 1p1n-3p0n channel are based
on assumptions, which have numerous possibilities. Section 4.3 lists some of these
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attempts. Machine learning techniques can help searching for optimal observables
with better efficiency.

Several published articles have shown the potential of machine-learning based
methods to study the CP -violation in H → ττ decay, including 3p0n-1p1n channel
events [146, 147]. In these articles, neural network models are designed to evaluate
the preference of a single H → ττ decay event to be CP -even and CP -odd. The
neural network models take the 4-momentum and the charges of all 4 π± and 1
π0 in a 3p0n-1p1n τhad τhad decay as the input, and provide a number between 0
and 1 as the output. The input events are generated with Pythia8 [118] and the
spin correlation is simulated by TauSpinner [115, 116, 117]. These MC samples
are shared by the particle physics group in the Institute of Physics, Jagellonian
University and used in this study. The output of the model determines whether an
event has a higher TauSpinner weight in the CP -even or CP -odd state. Their result
published in 2017 demonstrated the possibility of predicting the spin correlation by
the reconstructable information of visible decay products of τ−lepton [146].

In the ATLAS H → ττ decay CP analysis, the observable φ∗
CP is measured in a

binned histogram. The histogram is reweighted to different CP hypotheses. This
study designed a neural network to train a CP -sensitive observable for the 3p0n-1p1n
decay channel. The neural network model is required to take the reconstructable
information of π± and π0 as the input and to provide an output variable, defined
between 0 and 2π. The model is trained to achieve better separation between the
histograms reweighted by the TauSpinner weight of the CP -even and CP -odd states.
considering that there is no known model that provides the best separation, the
model is trained with reinforcement learning instead of supervised learning.

6.2 Main types of machine learning techniques
Machine learning technique has become widely used in particle physics analysis.
There are mainly three types of machine learning techniques: supervised learning,
unsupervised learning and reinforcement learning.

Supervised Learning

Supervised Learning is a method used to map input dataset with a set of labels.
In the training process, it requires a set of pairs, consisting of an input object and
a desired output value. A supervised learning algorithm tends to learn a model to
give an output for each input object and make it as close as possible to the desired



6.3 Searching for 3p0n-1p1n observable with reinforcement learning97

output value. Therefore the supervised learning may design the loss function as a
function of the desired value and algorithm output value.

Supervised learning is widely used in the binary classification. Both ATLAS and
CMS are using supervised learning model in the H → ττ analysis, for instance, the
particle identification [79]. In a binary classification, the output of the model is a
number. A working point is selected within the range of model output and the sign
of the difference between the output number and the work point determines the
classification of the input. The Jet-vertex-tagger described in Chapter 4 is a typical
example of the supervised learning based algorithm.

Unsupervised Learning

Unsupervised learning is a type of machine learning algorithm that learns patterns
in an unlabeled dataset. Even though the dataset is unlabeled, the unsupervised
learning may learn the feature to separate the input events into clusters. Sometimes
it is mixed with supervised learning, and called semi-supervised learning. Semi-
supervised learning extract feature from dataset that only part of the dataset has
desired output value.

Reinforcement Learning
Reinforcement learning is a kind of machine learning algorithm that trains an intel-
ligent agent to take action to some state in an environment. Figure 6.1 shows the
working principle of a typical reinforcement learning algorithm. During the training
of a reinforcement learning model, the agent detects states of the environment and
takes actions based on the model. The actions may affect the environment and
change its state. The actions grant rewards to the agent. The actions may come to
an end and a final reward is calculated. The model will be updated based on the
final reward.

6.3 Searching for 3p0n-1p1n observable with re-
inforcement learning

Instead of raising and testing methods manually as demonstrated in section 4.3,
the reinforcement learning may test the methods automatically with a much higher
speed. A neural network ϕNN

CP is designed to replace the φ∗
CP in 3p0n-1p1n channel. A

reinforcement learning model is designed as below. The environment is the training
dataset and two histograms of the same size, which are initially empty. The agent
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Figure 6.1: The typical structure of a Reinforcement learning algorithm.

receives a state that contain an event from the training dataset and the status of the
histograms. The agent provides a number n as the output of the ϕNN

CP model, which
determines the nth bin of the two histograms that will be filled. The two histograms
are corresponding to CP -even and CP -odd separately. The nth bin of the CP -even
histogram is filled with the CP -even TauSpinnner weight, while the nth bin of the
CP -odd histogram is filled with the CP -odd TauSpinnner weight. The filling ends
when the designed upper limit is reached. The DNLL value is calculated between
the CP -odd histogram and the CP -even histogram, as described in chapter 5. The
DNLL score is used as the reward to update the ϕNN

CP model.

Monte Carlo sample and input structure

The machine learning model in this study is trained with the MC samples provided
by the group that published the articles [146, 147]. These MC samples are generated
using Pythia8 and Tauspinner to simulate the spin correlation. Two sets of MC
samples are used. One of them only contains H → ττ events. The other one only
contains Z → ττ events. Each event in either set contains 4-momenta and charges
of four π± and one π0 in 3p0n-1p1n τhad τhad decay. Besides, each event contains two
weight numbers. For H → ττ events, the two numbers correspond to TauSpinner
weight of CP -even and CP -odd state. Since no spin correlation is expected in the
simulated Z → ττ events, both weight numbers are set to 1 in Z → ττ events.
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Layers Matrix size bias vector size dropout rate activation function
First Layer 88× 59 88 No drop out tanh(x)
Second Layer 12× 88 12 0.1 tanh(x)
Third Layer 2× 12 2 No drop out N/A

Table 6.1: Structure of layers in the neural network model ϕNN
CP .

The input of neural network contains the charge of each pion, its kinetic informa-
tion, the φ∗

CP and y calculated with 5 different methods. The kinematic information
of each pions are boosted to the ZMF of all visible decay products. Then the di-
rection of the particle is expressed as a 3-dimensional vector with unit length. The
kinematic information of a pion is converted to a vector of dimension 5, containing
energy, pT and the 3-dimensional direction vector. The input contains CP -sensitive
observables calculated using 5 different methods. One of them is the method used
in current analysis, which uses the two π± with the lowest pT as neutral component.
The other four methods are selected by assuming only opposite charge π± pair can
be selected to be neutral component. There are only two ways to select neutral
component from opposite charge π± pair. Each of the two ways provides two φ∗

CP

calculated by a1 − ρ method and ρint method separately. Each of the 5 methods
contributes 5 numbers in the input of neural network: φ∗

CP calculated with corre-
sponding method, y, 2π − φ∗

CP, φ∗
CP without the correction of y, and φ∗

CP with an
opposite correction −y. The φ∗

CP observable takes value from 0 to 2π. It is repre-
sented as a coordinate on a unit circle to avoid discontinuity. This representation
is applied to all φ∗

CP related input variables. Adding these CP -sensitive observables
to the input may help the neural network to learn the progress made by previous
studies. Since the currently used φ∗

CP is one of the input variable, the neural network
will be trained to obtain an observable better than the known one.

Design of neural network
A neural network ϕNN

CP is designed to replace the CP sensitive observable φ∗
CP in

3p0n-1p1n τhad decay channel. It is a fully connected neural network, with three
layers. Each layer contains a matrix and a bias vector. All the elements in these ma-
trices and bias vectors are floating. They are updated during the training. Chapter
4 has shown how a neural network works. Each layer receives an input vector. The
vector pass through the matrix and the result is summed up with the bias vector.
All the elements in the result vectors go through the activation function. The result
is then delivered to the next layer, or is delivered as the output if it is the last layer.
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Figure 6.2: Structure of the designed Reinforcement learning algorithm.

Table 6.1 shows the structure of layers with the size of matrix and bias vectors.
These layers use tanh(x) as the activation function.

Technique called dropout [148] is applied to the training of ϕNN
CP model. It is a

computationally cheap and effective method to reduce overfitting in the training of
neural network. The dropout is applied to some layers in a neural network. When a
layer is set to a dropout layer with dropout rate rd, the elements in the input vector
of that layer are randomly set to be 0 by a possibility rd. Those elements not set to
0 are rescaled by 1

1−rd
. The second layer of neural network ϕNN

CP is a dropout layer
with a dropout rate rd = 0.1. The dropout is only applied in the training. No input
is muted when the neural network is applied to a test.

The output of the neural network ϕNN
CP is a 2-D vector. The 2-D vector is nor-

malized and mapped to a unit circle, where each point represents an angle within
0 to 2π. The output angle is the observable designed to replace the CP -sensitive
observable φ∗

CP. The action of the reinforcement learning is to select a bin index and
fill the corresponding bin in two histograms with CP -even and CP -odd TauSpinner
weight, where both histograms have 7 evenly divided bins.

The neural network updates the parameters and cleans the histograms after every
3000 input events. The process between each update is called an epoch. The 3000
events contains 1000 H → ττ events and 2000 Z → ττ events. The reward is defined
as the negative number of the loss function of neural network. It is defined as an
approximated log-likelihood of CP -odd histogram to the CP -even histogram.
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Loss function
In the training of neural network, the loss function is required to be differentiable.
The likelihood function without floating signal strength and nuisance parameters
can be expressed as [143]:

L =
N∏
j=1

(sj + bj)
nj

nj!
e−(sj+bj), (6.1)

where the N is the number of bins of the histograms. Both histograms must have
same number of bins. The quantity nj is the number of events in the j-th bin of the
tested histogram. In this study, it is the histogram of CP -odd sample, containing
both the H → ττ signal and the Z → ττ background. The quantities sj and bj are
the numbers of signal and background events in the j-th bin of the base histogram,
respectively. In this study, the base histogram is the histogram of of CP -even
sample, containing both the H → ττ signal and the Z → ττ background.

The loss function is defined as the log-likelihood function where the factorial func-
tion is replaced by the Stirling’s approximation [149]:

n! ≈
√
2πn(

n

e
)n ≈ cnn+ 1

2 e−n, (6.2)

where c =
√
2π ≈ 2.5066. The approximated log-likelihood LLapprox can be ex-

pressed as:

LLapprox =
∑
m

(N odd
m −N even

m +N odd
m ln(N even

m )− ln(c)− (N odd
m +

1

2
)ln(N odd

m )), (6.3)

where N even
m and N odd

m are the content in the bin m of the histograms reweighted by
CP -even and CP -odd TauSpinner weight. This approximation has high accuracy
for a large enough N odd

m and the N even
m is not related to the accuracy. The difference

between LLapprox and log-likelihood function is:

ln(S(n))− ln(n!) =
1

12n
+

1

288n2 + · · · , (6.4)

where S(n) is the stirling’s function. The loss function is the negative number of
the approximated delta negative log-likelihood:

Lf = −DNLL(odd, even) = LLapprox(odd, even)− LLapprox(even, even). (6.5)

During the training of neural network ϕNN
CP , the contribution to the loss function

from bins with entries less than 4 is set to zero. The output of the loss function is
called loss.
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Figure 6.3: The changes of the loss during the training. The red dots represent the loss calculated
for φ

∗
CP. The blue dots represent the loss calculated for the observable trained by ϕ

NN
CP .

6.4 Results
The model of neural network ϕNN

CP converged after a training with 18000 epochs.
The model is trained with samples randomly selected from 106 events generated
with Pythia8 and TauSpinner. After every 50 epochs, the model is tested with the
ATLAS MC sample described in Chapter 5. The test is repeated 800 times with
1000 events randomly selected from H → ττ samples and 2000 events selected from
Z → ττ samples. Figure 6.3 shows the changes of loss during the whole training.
The learning rate was set to 0.01 at the beginning and it was adjusted to 0.0001
after the 5400 epochs. Each pair of points and error bar represents the mean and the
standard deviation of the 800 tested results. The red dots in figure 6.3 represent the
loss calculated with φ∗

CP in the test sample. The blue dots represent the loss of the
neural network ϕNN

CP calculated in each epoch. The testing loss of the neural network
quickly dropped below the loss for φ∗

CP and it became stable when the learning rate
is manually set to 0.0001.

Figure 6.4 compares the DNLL value calculated for the observable trained with
neural network ϕNN

CP and the observable in different CP hypothesis. The number
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Figure 6.4: Comparison between the DNLL score of trained observable and φ
∗
CP. The number of

H → ττ events is scaled to the expected yield in Run-2 with a luminosity of 136 fb
−1.

of H → ττ is scaled to the expected yield in Run-2 with a luminosity of 136 fb−1.
The background is estimated by Z → ττ sample with twice the number of H → ττ

events. This figure shows that the model trained with CP -even and CP -odd sample
performs well in the hypothesis with ϕτ close to ±π

2
, and performs worse when ϕτ

close to 0.
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Chapter 7

Summary

A measurement of the CP -properties of the interaction between the Higgs boson
and τ−leptons has been presented. The measurement was performed using 139fb−1

proton–proton collision data collected at a center-of-mass energy of
√
s = 13 TeV.

The data was collected by the ATLAS experiment at the LHC in 2015-2018.
This study measures the CP -properties via observables φ∗

CP constructed from
the τ−lepton decay product. The CP -sensitive observable φ∗

CP is defined by IP-
method, ρ-method, IP-ρ method or a1-method, depending on the decay mode of
the τ−lepton. The CP -violating interactions are parametrized by the CP -mixing
angle ϕτ . The distribution of the observable φ∗

CP is affected by the CP -mixing angle
ϕτ . This measurement constrains the ϕτ with the maximum likelihood fit to the
observable φ∗

CP.
The analysis uses the τ lep τhad events from l-1p0n, l-1p1n, l-1pXn and l-3p0n decay

modes, and the τhad τhad events from 1p0n-1p0n, 1p0n-1p1n, 1p1n-1p1n, 1p0n-1pXn,
1p1n-1pXn and 1p1n-3p0n decay modes. The events that pass the selection are filled
into histograms in the 24 signal region and 10 control regions depending on their
kinematic properties and decay mode of τ−lepton pair. The maximum likelihood
fit determines the best fit value of ϕτ as well as the free floating signal strength and
background normalization factors.

Using the Monte Carlo simulated data, the expectation value of the ϕτ for the
collected dataset is constrained to be 0◦±28◦ at 68% confidence level, and 0◦+75

◦

−70
◦ at

95.5% confidence level. The observed value of ϕτ is 9◦±16◦ at 68% confidence level,
and 9◦ ± 34◦ at 95.5% confidence level. The best fit value of the signal strength is
1.02± 0.20. The pure CP -odd hypothesis is disfavoured at 3.4 standard deviations.
This observation is consistent with the Standard Model expectation.
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The definition of φ∗
CP in the 1p1n-3p0n decay mode is not unique. Several methods

of constructing φ∗
CP has been presented in this thesis. The performance of these ob-

servables is evaluated with Kullback–Leibler divergence. The a1-method is selected
as observable used in this analysis due to its high CP -sensitivity and no requirement
on the charge information of π±. A machine learning method is developed in a sim-
plified dataset, which only consists of H → ττ signal and Z → ττ background data
with twice the event amount of the signal events. This machine learning method
performs better in rejecting the pure CP -odd hypothesis compared to the φ∗

CP con-
structed using a1-method in the simplified dataset. The machine learning method
can be further improved with a more complete background estimation.

This thesis also presents an improvement to the pile-up jet tagging algorithm.
The Jet-Vertex-Tagger (JVT) algorithm is a commonly used tool in the analysis
performed at the ATLAS. It is used to distinguish the hard-scattering jet from the
pile-up jets. The study presented in this thesis retrained the JVT with the K-
Nearest-Neighbor method using the Monte Carlo simulated sample. The original
JVT has the pile-up rejection rate 0.915, 0.956 and 0.964 for the signal efficiency
97% (loose), 92% (medium), 85% (tight), respectively. The retrained JVT improves
the pile-up rejection rate to 0.916, 0.961, 0.968 for the loose, medium and tight
selections, respectively. A new JVT algorithm using neural network is trained using
the same dataset. It improves the pile-up rejection rate to 0.931, 0.966, 0.973 for
the loose, medium and tight selections, respectively. This new JVT algorithm has
been adopted as the new default jet-vertex-tagging algorithm in the ATLAS Run-3
data analysis.

The precision of the presented analysis is limited by the statistical uncertainty of
the data sample. The Run-3 of the Large Hadron Collider has started in Spring
2022. This period is proposed to deliver 280 fb−1 total integrated luminosity, which
is much larger than the 156 fb−1 total integrated luminosity in the Run-2. It will
provide more data and help improving the statistical uncertainty. Improvements on
the measurement method and reconstruction software may also improve the result.
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A 3-prong observables

(a) (b)

(c) (d)

Figure 1: Type 1 observables in di-τ visible ZMF, the observables are corrected with ya1
. (a)

fork component = smallest pT pair; (b) fork component = largest pT pair; (c) fork component =
pair with closest mass to ρ mass; (d) fork component = opposite charge pair farest to ρ mass.
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(a) (b)

(c) (d)

Figure 2: Type 1 observables in di-τ visible ZMF, the observables are corrected with ya1
. (a) fork

component = opposite charge pair with smaller mass; (b) fork component = same charge pair; (c)
fork component = opposite charge pair closer to ρ mass; (d) fork component = opposite charge

pair farther to ρ mass.
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(a) (b)

(c) (d)

Figure 3: Type 1 observables in di-τ visible ZMF, the observables are corrected with yρ−like. (a)
fork component = smallest pT pair; (b) fork component = largest pT pair; (c) fork component =

pair with closest mass to ρ mass; (d) fork component = opposite charge pair farest to ρ mass.
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(a) (b)

(c) (d)

Figure 4: Type 1 observables in di-τ visible ZMF, the observables are corrected with yρ−like. (a)
fork component = opposite charge pair with smaller mass; (b) fork component = same charge pair;
(c) fork component = opposite charge pair closer to ρ mass; (d) fork component = opposite charge

pair farther to ρ mass.
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(a) (b)

(c)

Figure 5: Type 2 observables in di-τ visible ZMF, the observables are corrected with yρρ. (a)
fork component = opposite charge pair with mass closer to ρ mass; (b) fork component = opposite
charge pair with mass farther to ρ mass; (c) fork component = opposite charge Pair with smaller

mass.
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(a) (b)

(c)

Figure 6: Type 2 observables in di-τ visible ZMF, the observables are corrected with yρρ. (a)
fork component = opposite charge Pair with larger mass; (b) fork component = opposite charge

pair with larger pT ; (c) fork component = opposite charge Pair with smaller pT .
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