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Deep learning in quasar physics
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In view of increasing data volume of existing and upcoming telescopes/detectors we here
apply the 1–dimensional convolutional neural network (CNN) to estimate the redshift of
(high-)redshifts quasars in Sloan Digital Sky Survey IV (SDSS-IV) quasar catalog from
DR16 of eBOSS. Our CNN takes the flux of the quasars as an array and their redshift as
labels. We here evidence that new structure of the network, and augmenting the training
set, provide a high precision result in estimating the redshift of quasars.
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1. Introduction

Quasars are the most luminous active galactic nuclei(AGN) which are powered by

accretion disk around supermassive black holes at centers of their host galaxies.

Thanks to their high luminosity, they can be observed across the universe in wide

range of redshift from z = 0 to z ∼ 7. Thus, quasars give us important information

about the early universe, the structure formation and evolution.1, 2

Nowadays, astronomy and astrophysics have been brought into the big data era

through the construction and development of ground-based and space telescope.

Since huge amount of data, ranging from gamma-ray, x-ray, ultraviolet, optical,
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infrared and radio bands of quasars is available in sky surveys, various challenges

and opportunities are created for scientific discoveries.3, 6

In recent years, machine learning (ML) and deep learning (DL) have been uti-

lized in astronomy and astrophysics in order to deal with the big data surveys

and as well extract the new physical understanding. The goal in ML and DL is to

diagnose, by optimization, common characteristics and features in data.10 These

interesting branch of computer science have been used in estimating the physical

parameters and classification of celestial objects; for example the morphological

classification of galaxies,15, 16, 20 estimation of photometric redshift,12, 25, 33, 34 clas-

sification of star/galaxy,4, 27, 32 spectral classification of stars.5, 7, 17, 35

This article is mainly dedicated to train a CNN to predict the redshift of Quasi-

stellar radio source (quasars) or quasi stellar objects (QSO) in Sloan Digital Sky

Survey IV (SDSS-IV) quasar catalog from Data Release 16 (DR16) of the extended

Baryon Oscillation Spectroscopic Survey (eBOSS), which is the most comprehensive

catalog of spectroscopically collected quasars to date.26

2. Dataset

In this paper, we exploit dataset from the quasar spectra obtained by the Sloan

Digital Sky Survey-4(SDSS-4). They are provided by the Sixteenth Data Release

(DR16) of SDSS extended Baryon Oscillation Spectroscopic Survey (eBOSS).14 Ac-

cording to the technical details of eBOSS, namely the wavelength coverage in range

of 361nm−1014nm with the resolutionR = 2000, where R = λ
Δλ , more than 700,000

quasar spectra have been detected in the redshift range 0 ≤ z ≤ 7.1.

The distributions of detected quasars redshift in the DR16 catalog is shown in

Fig. 1. As can be seen, the number of quasars reaches its maximum around z ≈ 2.5;

at earlier epochs i.e., higher redshifts, they are comparatively rare.

2.1. Redshift

The observed quasar spectra contain broad emission lines, often time-variable flux

both in the continuum and in the emission lines and UV flux; see e.g.11 The shift

and deformation of the various lines and specific characteristic of different fluxes

in the spectra of quasars, due to the cosmological redshift, makes quasars a proper

tool to invest the deep learning method and extract the common features hidden in

their spectra (flux).

In DR16Q catalog, redshifts obtained for quasars by different methods, such as

principal component analysis (PCA) and QuasarNET are reported. In this work we

use “primary” redshift or best redshift for quasars which has been selected from

the available visual inspection redshifts,8 or, alternatively, the SDSS automated

pipeline redshift;, see23, 24 and references therein for more information. The best

option is exploiting only the visual inspection redshifts which will be presented in

the forthcoming papers.
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Fig. 1. The distributions of “primary” redshift of quasars in the DR16 catalog.

3. Convolutional neural network (CNN)

3.1. CNN architecture

Since the spectra of quasars are represented by flux versus the wavelength, namely

1+1 dimensional set of data, they can be considered as as time-series. For this rea-

son, the neural network model in this work is designed to be a 1-dimensional CNN.

It operates like a combination of some mathematical functions, which optimizes

through several filters, and transforms the input data; here flux of quasars, to the

output data, here redshift of quasars, by extracting the hidden features from the

quasars’ fluxes.

The physical information, such as redshift are hidden in the observed flux, and

CNNs, as a regressor, are supposed to estimate the redshift through the train-

ing process. The CNN in the current work is a combination of convolutional and

fully-connected layers. The convolutional layers are initialized with He Normal ini-

tializer.22 If the model requires to access the non-linear modes in data he Rectified

Linear Unit (ReLU) activation function is implemented.36

The filters in each convolutional layer scans each row (flux) and extract the

prominent features from the raw input for the specific redshift. The feature-

extraction layers have a repeating pattern of the convolutional layers whereas the

pooling layers reduce the dimensions and concentrate only on the most promi-

nent features. This process recognizes the non-linear correlation within the dataset.

Finally, the fully-connected feed-forward layers connect and assign the extracted
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features to the output layer (redshift). All free parameters in the model change dy-

namically as the algorithm finds the best solution, achieved by the back-propagation

learning algorithm.

Many free parameters, such as the number of layers, layer specifications, and

their arrangement can be changed while one constructs a neural network model;

known as model architecture. The architecture selection affects optimization and

quality of the performance; this process is called hyperparameter optimization.18

The hyper-parameter optimization process is necessary in order to ensure that nei-

ther underfits nor overfits of the training set happens.

In the hyper-parameter optimization process, the number and length of filters of

convolutional layers, the number of nodes in fully-connected layers, and the kernel

size of the Maxpooling layer are considered and finally the “Mean Squared Error”

(MSE), as the loss function, is utilized in our CNN.

We also use Adam optimizer to optimize the loss function, which is an algorithm

for the first-order gradient-based optimization of stochastic objective functions. We

here set the learning rate as 0.0001 and the coefficients for computing the averages

of gradient and its square as 0.5 and 0.9, the weight decay of L2 penalty is set

as 0.28, 29

Figure 2 demonstrates the CNN pipeline of this work. It takes a quasar spectrum

as a 1-dimensional array and predicts the redshift. We have tested different samples

of training set, and the addition of more layers to this configuration does not enhance

the prediction accuracy presented in this paper for different redshift intervals.

Fig. 2. Structure of 1-dimensional CNN developed in this work to learn higher-order features
hidden in the input spectrum. The CNN goes through the spectrum via a convolutional layer of
kernel size = 200, 200, 32, respectively in order to search for the global and local pattern. The
fully connected layers output the redshift.
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3.2. Pre-processing the data

Data pre–processing is crucial in two aspects: (1) to provide an understandable

dataset for DL networks, and (2) to increase the speed and accuracy of process-

ing. As the first step of the pr–eprocessing procedure in the present work, a two-

dimensional matrix of the dataset is created. In the matrix each row represents the

quasar flux and each column relates to a flux a certain wavelength. At the second

step, the flux of every spectrum is normalized via the Zero-Mean Normalization

method. Moreover, the normalized fluxes are stored in a Numpy array and applied

as features dataset, their corresponding redshifts are collected for labels dataset as

well.

Fig. 3. Redshift predicted by our CNN for 3 ≤ z ≤ 5. Top: The predicted redshift vs. the redshift
reported in the DR catalog. Bottom: The relative error and their distribution. As it can be seen
the distribution of relative error follows a Gaussian distribution with mean, μ = 0.0042 and a
standard deviation of σ = 0.014.

4. Prediction in the 3 ≤ z ≤ 5 interval

As an example, we use the quasars in the 3 ≤ z ≤ 5 interval as sources to test

our CNN. In general, there are 51, 100 quasars in this interval,75% of them, namely

38832 spectra are taken as the sample in order to train our CNN (training set) and
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Fig. 4. Redshift predicted by our CNN for 3 ≤ z ≤ 5 with training set in 2.9 ≤ z ≤ 5.2 interval.
Top: The predicted redshift vs. the redshift reported in the DR catalog. Bottom: The relative
error and their distribution. The distribution of relative error follows a Gaussian distribution with
mean, μ = 0.0038 and a standard deviation of σ = 0.012.

25%, namely 12776 as sources to testify our CNN (test set). In the whole paper, the

test set has not been used to train the CNN. Moreover, no limit on the S/N ratio

of spectra is imposed.

The predicted redshift by our CNN for 3 ≤ z ≤ 5 together with their relative

errors distribution and the best fit is shown in Fig. 3. The distribution of relative

error, RE,

RE ≡ z− zpred
z

, (1)

which z is the redshift reported by SDSS and zpred is the redshift predicted by

our CNN, follows a Gaussian distribution with mean, μ = 0.0042 and a standard

deviation of σ = 0.014. The method used for smoothing the scatterplot is locally

weighted regression (LWR).13

As it can be seen in Fig. 3, the fit in the lower and upper edges of the prediction,

namely 4.5 � z ≤ 5 and 3 � z ≤ 3.1 intervals, is not as significant as other time

intervals.
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This problem can be due to:

(1) the lack of data in z < 3 and z > 5 and consequently the failed LWR in the

aforementioned intervals.

(2) the deficiency of training sample in 4.5 � z ≤ 5.

In order to solve the first issue, we extend our training set to 2.9 ≤ z ≤ 5.2. By

adding this extra data to the train set we make sure that there is no bias in the

LWR fitting presented in Fig. 3 at its lower and upper part; see Fig. 4.

In order to accommodate the second issue and increase the number of spectra of

the training set in 4.5 � z ≤ 5 we first convert the observed spectra in 4 ≤ z ≤ 4.5

interval, where there are enough spectra to produce a reliable training set, into their

cosmological rest-frame by dividing their wavelength by 1+z then we convert data

set to 4.5 ≤ z ≤ 5 by multiplying the wavelengths by a factor of 1+z+0.5.

Figure 5 represents the results when extra samples from 2.9 ≤ z ≤ 3 and 5 ≤
z ≤ 5.2 as well as the redshifted sample from 4 ≤ z ≤ 4.5 to 4.5 ≤ z ≤ 5 have

been added to the original training set. The distribution of relative error follows a

Fig. 5. Redshift predicted by our CNN for 3 ≤ z ≤ 5 with training set in 2.9 ≤ z ≤ 5.2 interval
together with the converted observed spectra in 4 ≤ z ≤ 4.5 interval into 4.5 ≤ z ≤ 5. Top: The
predicted redshift vs. the redshift reported in the DR catalog. Bottom: The relative error and its
distribution which follows a Gaussian distribution with mean, μ = 0.0030 and a standard deviation
of σ = 0.010.
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Gaussian distribution with mean, μ = 0.003 and a standard deviation of σ = 0.01.

The prediction is clearly improved in 4.5 ≤ z ≤ 5 comparing to initial result shown

in Fig. 3.

5. Conclusions

Deep learning, especially CNN31, 37 is promising in the future Astrophysical studies.

CNN can be utilized, owing to its several convolutional and fully connected layers

to find the common deep hidden patterns in the spectrum, in provision for improv-

ing our astrophysical knowledge of distant objects. In this regard, we showed that

exploiting a CNN leads to a statistically significant prediction of the redshift of

quasars. We also showed that augmentation of dataset, which depends on the sta-

tistical and physical features of samples improves the prediction of redshift. Since

CNN finds the physical characteristics of the spectra and these characteristics are

deformed by the cosmological redshift the results presented here can be extended

to the other energy bands like, X-ray, Infrared, UV, Gamma-ray and etc.
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