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In view of increasing data volume of existing and upcoming telescopes/detectors we here
apply the 1-dimensional convolutional neural network (CNN) to estimate the redshift of
(high-)redshifts quasars in Sloan Digital Sky Survey IV (SDSS-IV) quasar catalog from
DR16 of eBOSS. Our CNN takes the flux of the quasars as an array and their redshift as
labels. We here evidence that new structure of the network, and augmenting the training
set, provide a high precision result in estimating the redshift of quasars.
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1. Introduction

Quasars are the most luminous active galactic nuclei(AGN) which are powered by
accretion disk around supermassive black holes at centers of their host galaxies.
Thanks to their high luminosity, they can be observed across the universe in wide
range of redshift from z = 0 to z ~ 7. Thus, quasars give us important information
about the early universe, the structure formation and evolution.':?

Nowadays, astronomy and astrophysics have been brought into the big data era
through the construction and development of ground-based and space telescope.
Since huge amount of data, ranging from gamma-ray, x-ray, ultraviolet, optical,
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infrared and radio bands of quasars is available in sky surveys, various challenges
and opportunities are created for scientific discoveries.? ¢

In recent years, machine learning (ML) and deep learning (DL) have been uti-
lized in astronomy and astrophysics in order to deal with the big data surveys
and as well extract the new physical understanding. The goal in ML and DL is to
diagnose, by optimization, common characteristics and features in data.'® These
interesting branch of computer science have been used in estimating the physical
parameters and classification of celestial objects; for example the morphological
classification of galaxies,!® 16:20 estimation of photometric redshift,!? 25 33,34
sification of star/galaxy,* 2732 spectral classification of stars.> 7 17:35

This article is mainly dedicated to train a CNN to predict the redshift of Quasi-
stellar radio source (quasars) or quasi stellar objects (QSO) in Sloan Digital Sky
Survey IV (SDSS-IV) quasar catalog from Data Release 16 (DR16) of the extended
Baryon Oscillation Spectroscopic Survey (eBOSS), which is the most comprehensive
catalog of spectroscopically collected quasars to date.?%

clas-

2. Dataset

In this paper, we exploit dataset from the quasar spectra obtained by the Sloan
Digital Sky Survey-4(SDSS-4). They are provided by the Sixteenth Data Release
(DR16) of SDSS extended Baryon Oscillation Spectroscopic Survey (eBOSS).1* Ac-
cording to the technical details of eBOSS, namely the wavelength coverage in range
of 361nm—1014nm with the resolution R = 2000, where R = ﬁ, more than 700,000
quasar spectra have been detected in the redshift range 0 < z < 7.1.

The distributions of detected quasars redshift in the DR16 catalog is shown in
Fig. 1. As can be seen, the number of quasars reaches its maximum around z = 2.5;

at earlier epochs i.e., higher redshifts, they are comparatively rare.

2.1. Redshift

The observed quasar spectra contain broad emission lines, often time-variable flux
both in the continuum and in the emission lines and UV flux; see e.g.!! The shift
and deformation of the various lines and specific characteristic of different fluxes
in the spectra of quasars, due to the cosmological redshift, makes quasars a proper
tool to invest the deep learning method and extract the common features hidden in
their spectra (flux).

In DR16Q catalog, redshifts obtained for quasars by different methods, such as
principal component analysis (PCA) and QuasarNET are reported. In this work we
use “primary” redshift or best redshift for quasars which has been selected from
the available visual inspection redshifts,® or, alternatively, the SDSS automated
pipeline redshift;, see?3 24
option is exploiting only the visual inspection redshifts which will be presented in
the forthcoming papers.

and references therein for more information. The best
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Fig. 1. The distributions of “primary” redshift of quasars in the DR16 catalog.

3. Convolutional neural network (CNN)
3.1. CNN architecture

Since the spectra of quasars are represented by flux versus the wavelength, namely
141 dimensional set of data, they can be considered as as time-series. For this rea-
son, the neural network model in this work is designed to be a 1-dimensional CNN.
It operates like a combination of some mathematical functions, which optimizes
through several filters, and transforms the input data; here flux of quasars, to the
output data, here redshift of quasars, by extracting the hidden features from the
quasars’ fluxes.

The physical information, such as redshift are hidden in the observed flux, and
CNNs, as a regressor, are supposed to estimate the redshift through the train-
ing process. The CNN in the current work is a combination of convolutional and
fully-connected layers. The convolutional layers are initialized with He Normal ini-
tializer.2? If the model requires to access the non-linear modes in data he Rectified
Linear Unit (ReLU) activation function is implemented.3%

The filters in each convolutional layer scans each row (flux) and extract the
prominent features from the raw input for the specific redshift. The feature-
extraction layers have a repeating pattern of the convolutional layers whereas the
pooling layers reduce the dimensions and concentrate only on the most promi-
nent features. This process recognizes the non-linear correlation within the dataset.
Finally, the fully-connected feed-forward layers connect and assign the extracted
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features to the output layer (redshift). All free parameters in the model change dy-
namically as the algorithm finds the best solution, achieved by the back-propagation
learning algorithm.

Many free parameters, such as the number of layers, layer specifications, and
their arrangement can be changed while one constructs a neural network model;
known as model architecture. The architecture selection affects optimization and
quality of the performance; this process is called hyperparameter optimization.'®
The hyper-parameter optimization process is necessary in order to ensure that nei-
ther underfits nor overfits of the training set happens.

In the hyper-parameter optimization process, the number and length of filters of
convolutional layers, the number of nodes in fully-connected layers, and the kernel
size of the Maxpooling layer are considered and finally the “Mean Squared Error”
(MSE), as the loss function, is utilized in our CNN.

We also use Adam optimizer to optimize the loss function, which is an algorithm
for the first-order gradient-based optimization of stochastic objective functions. We
here set the learning rate as 0.0001 and the coefficients for computing the averages
of gradient and its square as 0.5 and 0.9, the weight decay of L2 penalty is set
as 0'28,29

Figure 2 demonstrates the CNN pipeline of this work. It takes a quasar spectrum
as a 1-dimensional array and predicts the redshift. We have tested different samples
of training set, and the addition of more layers to this configuration does not enhance
the prediction accuracy presented in this paper for different redshift intervals.
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Fig. 2. Structure of 1-dimensional CNN developed in this work to learn higher-order features
hidden in the input spectrum. The CNN goes through the spectrum via a convolutional layer of
kernel size = 200, 200, 32, respectively in order to search for the global and local pattern. The
fully connected layers output the redshift.
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3.2. Pre-processing the data

Data pre-processing is crucial in two aspects: (1) to provide an understandable
dataset for DL networks, and (2) to increase the speed and accuracy of process-
ing. As the first step of the pr—eprocessing procedure in the present work, a two-
dimensional matrix of the dataset is created. In the matrix each row represents the
quasar flux and each column relates to a flux a certain wavelength. At the second
step, the flux of every spectrum is normalized via the Zero-Mean Normalization
method. Moreover, the normalized fluxes are stored in a Numpy array and applied
as features dataset, their corresponding redshifts are collected for labels dataset as
well.
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Fig. 3. Redshift predicted by our CNN for 3 < z < 5. Top: The predicted redshift vs. the redshift
reported in the DR catalog. Bottom: The relative error and their distribution. As it can be seen

the distribution of relative error follows a Gaussian distribution with mean, ¢ = 0.0042 and a
standard deviation of o = 0.014.

4. Prediction in the 3 <z < 5 interval

As an example, we use the quasars in the 3 < z < 5 interval as sources to test
our CNN. In general, there are 51,100 quasars in this interval,75% of them, namely
38832 spectra are taken as the sample in order to train our CNN (training set) and
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Fig. 4. Redshift predicted by our CNN for 3 < z < 5 with training set in 2.9 < z < 5.2 interval.
Top: The predicted redshift vs. the redshift reported in the DR catalog. Bottom: The relative
error and their distribution. The distribution of relative error follows a Gaussian distribution with
mean, g4 = 0.0038 and a standard deviation of ¢ = 0.012.

25%, namely 12776 as sources to testify our CNN (test set). In the whole paper, the
test set has not been used to train the CNN. Moreover, no limit on the S/N ratio
of spectra is imposed.

The predicted redshift by our CNN for 3 < z < 5 together with their relative
errors distribution and the best fit is shown in Fig. 3. The distribution of relative
error, RE,

RE = m7 (1)

Z

which z is the redshift reported by SDSS and zpreq is the redshift predicted by
our CNN, follows a Gaussian distribution with mean, u = 0.0042 and a standard
deviation of o = 0.014. The method used for smoothing the scatterplot is locally
weighted regression (LWR).

As it can be seen in Fig. 3, the fit in the lower and upper edges of the prediction,
namely 4.5 < z < 5 and 3 < z < 3.1 intervals, is not as significant as other time
intervals.
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This problem can be due to:

(1) the lack of data in z < 3 and z > 5 and consequently the failed LWR in the
aforementioned intervals.
(2) the deficiency of training sample in 4.5 < z < 5.

In order to solve the first issue, we extend our training set to 2.9 < z < 5.2. By
adding this extra data to the train set we make sure that there is no bias in the
LWR fitting presented in Fig. 3 at its lower and upper part; see Fig. 4.

In order to accommodate the second issue and increase the number of spectra of
the training set in 4.5 < z < 5 we first convert the observed spectra in 4 < z < 4.5
interval, where there are enough spectra to produce a reliable training set, into their
cosmological rest-frame by dividing their wavelength by 14z then we convert data
set to 4.5 < z < 5 by multiplying the wavelengths by a factor of 14+2z+0.5.

Figure 5 represents the results when extra samples from 2.9 < z < 3 and 5 <
z < 5.2 as well as the redshifted sample from 4 < z < 4.5 to 4.5 < z < 5 have
been added to the original training set. The distribution of relative error follows a
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Fig. 5. Redshift predicted by our CNN for 3 < z < 5 with training set in 2.9 < z < 5.2 interval
together with the converted observed spectra in 4 < z < 4.5 interval into 4.5 < z < 5. Top: The
predicted redshift vs. the redshift reported in the DR catalog. Bottom: The relative error and its
distribution which follows a Gaussian distribution with mean, 1 = 0.0030 and a standard deviation
of o = 0.010.
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Gaussian distribution with mean, p = 0.003 and a standard deviation of o = 0.01.
The prediction is clearly improved in 4.5 < z < 5 comparing to initial result shown
in Fig. 3.

5. Conclusions

N31,37

Deep learning, especially CN is promising in the future Astrophysical studies.

CNN can be utilized, owing to its several convolutional and fully connected layers
to find the common deep hidden patterns in the spectrum, in provision for improv-
ing our astrophysical knowledge of distant objects. In this regard, we showed that
exploiting a CNN leads to a statistically significant prediction of the redshift of
quasars. We also showed that augmentation of dataset, which depends on the sta-
tistical and physical features of samples improves the prediction of redshift. Since
CNN finds the physical characteristics of the spectra and these characteristics are
deformed by the cosmological redshift the results presented here can be extended
to the other energy bands like, X-ray, Infrared, UV, Gamma-ray and etc.
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