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Abstract

The joint detection of GW 170817 and the subsequent kilanova between the LIGO Collaboration,
Swift, Fermi, INTEGRAL, and many other observatories heralded our current era of multi-
messenger astronomy. With a non-Gaussian transient causing initial issues with the detection
of GW170817, this detection proved not only the necessity of prompt detection of such
events, but also the importance of low-latency data quality information. However, high-latency
gravitational wave searches continue to uncover further detections in archival data which were
missed in the initial real-time search at the cost of millions of computing hours.

This dissertation focuses on the improvements to both the GstLAL detection pipeline,
and the statistical data quality pipeline iDQ to support the analysis of gravitational waves
exclusively in low-latency. This includes discussion of general improvements to both pipelines
ahead of LIGO’s fourth observing run, and initial results from this period. We then go further to
explore new features of the low-latency GstLAL pipeline which both provide live measures of
its sensitivity, and increase the sensitivity of its final results without re-filtering any of the data
as high-latency pipelines do. We also discuss a new method applied to iDQ which can trace
non-Gaussian transients to their sources in the interferometer, and demonstrate how this can be
applied in low-latency follow-up of gravitational wave events. Finally, we demonstrate how the
sensitivity of future generation of gravitational wave detectors will support the measurement
and constraint of neutron star’s radii and equation of state with gravitational waves alone.
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Chapter 1
Introduction

1.1 Mutli-Messenger Astronomy with Gravitational Waves

With the first detection of gravitational waves in 2015, gravitational wave detectors entered
into a world-wide astronomical effort to study the cosmos across multiple observation types.
In this multi-messenger ecosystem, the scientific return on any recorded event can only be
maximized by combining information from all available diverse observations. Gravitational
waves and neutrinos, for example, can travel unhindered from astrophysical sources like binary
neutron star mergers (BNS) and carry information from the regions of such mergers which
photons and cosmic rays cannot reach. Meanwhile photons and neutrinos can not only create
precise localizations of the source environment, but can study the evolution of sources long
after gravitational waves in the currently detectable regime have ceased [16].

Additionally, gravitational waves are the first messenger of any merger and, along with any
gamma ray burst (GRB), provide initial localization for further observatories to begin searching
for any event. However, gravitational waves alone in current detector networks are unable
to distinguish between a neutron star and a black hole of the same mass, but the addition of
any electromagnetic (EM) counterpart detection would be strong evidence for a neutron star
source. Meanwhile, without the localization from gravitational waves, its challenging for EM
astronomers to locate compact binary sources so soon after their mergers. As sources like BNS
can have a quick evolution in the initial hours, and days following merger, prompt location and
observation of these sources is crucial.

Such was the case with GW 170817 [17], the first BNS detection by gravitational waves and
first multi-messenger observation of such a source. GW170817 was detected first in just a single
detector by the LIGO and Virgo collaborations, and was quickly confirmed to be coincident
with a GRB at the end of the GW inspiral in Fermi [18]. A data quality issue initially caused
this detection to made using Hanford and Virgo data alone, but the full localization of the triple
detector network containing Hanford, Livingston, and Virgo narrowed localization in the sky
to about 31 square degrees, and addition of the Fermi-GBM and Integral localization further
confirmed this. While EM astronomers may have independently observed this source without
this localization, the reduction to just 31 square degrees allowed astronomers to locate the
source within 10 hours of the initial alert from LIGO, Virgo, and Fermi. Astronomers continued
to follow-up on this events in the days, weeks, and even years after the initial discovery. It has



only been with a combination of all of these sources that the full evolution of a binary neutron
star merger was recorded for the first time.

This highlights the importance that low-latency gravitational wave searches play in the
wider global multi-messenger network of observatories. High-latency searches can allow for
the comparison of archival gravitational-wave data with other searches such as GRB catalogues,
but initial EM radiation evolution from relevant sources would have faded by the time any
coincidences are realized. It’s only prompt detection of gravitational waves such as GW170817
that give EM astronomers the full notice they need to fully localize and follow-up on these
exceptional astrophysical events. This drive for low-latency identification is the foundation
for the low-latency GstLAL search discussed in Chapters 2, 3, and 4 and a comparison of
the low-latency pipeline’s sensitivity with the full offline search given in Chapter 5 shows
promising results.

Furthermore, GW170817 highlighted the importance of low-latency data quality informa-
tion and its incorporation into low-latency search pipelines. If a GW170817-like BNS signal
came from a source further away, this event could have initially been ignored because of the
data quality issue in the Livingston data. The need for reliable low-latency data quality products
is then clear and Chapters 6 and 7 are dedicated to this end.

Finally, even with an SNR above 30, current detector sensitivities did not allow for the
accurate measurement of the tidal deformability of the stars in GW 170817, nor in any signal
since. As will be discussed in the following chapter, the tidal deformability plays such a
sub-dominant role in gravitational waveforms that it is extremely difficult to measure accurately.
However, future gravitational wave detector networks promise much higher sensitivities, and
therefore the radii of neutron stars, along with their tidal deformabilities may be measured by
these networks. We show in Chapter 8 that this will lead to constraints on the neutron star
equation of state.

1.2 Gravitational Wave Formalism

1.2.1 General Relativity with Gravitational Waves

Gravitational waves are perturbations in spacetime caused by accelerating mass. Taking g, as
a general spacetime metric, then gravitational waves can be described formally as perturbations
on a Minkowski spacetime metric:

Guy = Ny + gy (1.1)

where h,,, are the small perturbations in the weak field limit such that |,,| << 1, and 7, is the
Minkowski spacetime metric given as:
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Then to simplify what follows, we impose the Lorenz gauge condition which is equivalent
to choosing a set of coordinates. This condition simplifies Einstein’s equations such that:

1 6%
c? o2

(V2 Y =0 (1.3)
This is then equivalent to a wave equation which produces the following solutions:

h = Aexp(i2nft — kir')) (1.4)

where A is the amplitude, f is the frequency, k is the wave number, and the wave is propagating
in k. We then further impose constraints on A, equivalent to a transverse-traceless (TT) gauge
of:

Tr(h) = 0 (1.5)
dihi; = 0 (1.6)
By = hyi =0 (1.7)
(1.8)

where the indices i and j run over the space components. The use of the TT gauge reveals
two polarization states, hereby called the plus and cross states, with amplitudes 4., and A,
respectively. These two amplitudes are identifiable when considering our Minkowski spacetime
metric with a gravitational wave propagating in the Z direction where:

00 0 O
0 hy he O

Ry = . (1.9)
0 hX _h+ O
00 0 O

From this, we see that the plus polarization imposes an equal and opposite effect in the x and y
directions, while the cross polarization is equal in both directions.

Consider a ring of test particles with a diameter given by R, as shown in Figure 1.1. A
gravitational wave passing through in the Z direction with a strain, or amplitude, given by
h = |h, x| will change the shape of the ring. The ring will first stretch along the x direction
by a distance R(1+h), and shrink in the y by R(1-h), thereby forming a flat disk shape. Then,
it will go back to a ring before again stretching, but this time in the y and shrinking in the x.
Meanwhile, the cross polarization does the same but rotated by 45 degrees, thereby stretching
the x and y directions equally making a more diagonal shape. This change in the relative
distance of each direction can then be considered as i = % and it is this which is measured by
gravitational wave detectors as described further in section 1.3.

1.2.2 Gravitational Waves from Compact Binary Systems

The current ground-based generation of gravitational wave detectors have thus far only detected
gravitational waves from compact binary coalescences such as the merger of two black holes

3



s %

:. -.. r..-.. . ..-.}
..:.olin.'..- c.‘ .:.'...-:‘.. . .."'
..-';o....-; o .'l. . l‘.::...lu:' s "c.

..o c: se® : ..'llj

..u..

Figure 1.1. The effect of two polarizations of a gravitational wave traveling in the z-direction on a ring
of test particles. Shown in (a) the plus polarized wave, and in (b) the cross polarized wave. The rings
gets deformed forming one oval of a polarization before returning to the ring state, and then deformed
into the opposite oval. Reprinted from [1]

in a binary system, so we will discuss the compact binary system as a source of gravitational
waves here.

If we consider the gravitational waves from a compact binary source as a muti-pole expan-
sion, the dominant contribution comes from the quadrupole moment of the system, /;;. Then, in
the Post-Newtonian (PN) expansion and considering a locally flat spacetime, the strain is given
as [1]:

_2G &L(my, f)
T RA dP
where R is the distance to the source, m; are the masses of the system, and f is the orbital
frequency. Then, for a system of identical masses, m, at a distance r from one another, the
strain amplitude is further:

hij (1.10)

327°G

Rc*
This shows that the strain has a the strong dependence on the mass, radius, and orbital frequency
of the binary system as well as its distance from the observer. Compact binary sources such
as binary black hole (BBH) systems then will be more easily detected compared to binary
neutron star (BNS) or neutron star black hole (NSBH) systems which are lighter in mass than
a BBH system. The first source of gravitational waves ever detected, GW150914 [19], was
in fact a heavy binary black hole system and the first binary neutron star system detected,
GW170817 [17], merged within just 40Mpc of us.

The most well-measured parameters in binary systems are those that constitute the leading
order terms in the PN expansion of the phase, and therefore appear most strongly in the
strain amplitude [20]. Notably, its parameters which are a combination of the individual
star’s parameters that arise earliest in the PN expansion, and its not until later orders that the
degeneracy can be broken. At leading order, the chirp mass, M plays the leading role and is

x| = mr? 2 (1.11)




given as:

_ (mymp)’P 12
(my +m)'? (112
At first order, the effective mass ratio comes in and is given as:
my +m
n LT (1.13)

" m +m)

At 1.5 order, the effective spin, y.g of the binary appears, and is therefore well measured, but
less so than the chirp mass and can be given as:

mx1 + myx
Xeff = ———— (1.14)
mp + mp
where y; is the dimensionless spin aligned with the angular momentum of each component
mass which come at a higher order. It isn’t until fifth order that the effective tidal deformability,
A of the system appears as:

3 16
A= —+q)5[(1+ 129) Ay +g* (12 + g) A, | (1.15)

where ¢ = my/m; < 1 is the mass ratio, and A; are the individual tidal deformabilities. The
tidal deformability of an object is a measure of how easily it it is deformed in the presence of
tidal forces. Black holes, for example, have a tidal deformability of zero, while neutron star’s
tidal deformability lies in the hundreds to thousands depending on the equation of state used to
govern their mass and radius. The individual tidal deformabilities then only appear on their
own at the sixth order and are given as:

Gm,-

A; o
o G

)~ (1.16)
where m;, r; are the mass and radii of the compact objects.

Unfortunately, this results in low-mass black holes being nearly indistinguishable from
neutron stars at current detector sensitivities since the tidal deformability components come at
such a high order. However, future detector networks may have the sensitivity required to not
only measure the tidal deformability well, but distinguish between theorized equations of state
governing their density and radii as discussed in Chapter 8.

1.3 Gravitational Wave Detectors

1.3.1 Interferometer Design

Ground-based gravitational wave interferometers are large-scale, modified Michaelson inter-
ferometers. The main scientific output of these detectors is the strain data, or the differential
difference of length traveled by light down their arms. Each detector has a high powered laser
which passes through a beam-splitter and then travels down two perpendicular arms up to 4km
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in length. The laser light is reflected back at the end, and then recombined with the light from
the opposing arm. The light down each arm is kept at a phase shift such that when recombined
they exactly de-constructively interfere, resulting in a lack of light on the photodiode monitor-
ing their recombination. As a gravitational wave passes through the detector, it stretches and
squeezes the length of these arms thereby resulting in a measurable change in the phase shift
and interference of the two laser beams.

We can see this following Creighton and Anderson [21] with support from Saulson [22].
We start with the input laser electric field which follows:

E;, = Eye'® /170 (1.17)

where E is the wave amplitude, k is the wave number, f is the frequency of the light, t is time,
and x is distance. The beam splitter is designed to be half reflective and half transmissive, so
the magnitude of the power is equal in both arms. This results in reflection and transmission

coefficients such that r = it = \sz and therefore:

E,=iE, = —E, (1.18)
V2
where E, and E, are the electric fields for the x and y arm respectively. Assuming the mirrors
at the end of each arm have the reflectivity, r, and r,, then the fields recombine at the beam
splitter where the x arm is reflected and the y arm transmitted. This results in the symmetric
and antisymmetric combinations:

i

Eani = «/E(r"E" exp(i2nft — kL)) + ryE, exp(i2nft — kL,))) (1.19)
= éEm(rx exp(i2nft — kL,)) + r, exp(i(2nft — kL,)) (1.20)

E symm = %(erx exp(i2nft — kL,)) — r,E, exp(i2nft — kL,))) (1.21)
= %Ein("x exp(i2nft — kL)) — r, exp(i2nft — kL,))) (1.22)
(1.23)

The anti-symmetric combination is the one which leaves the detector and is measured by
the photodiode at the output, while the symmetric one is sent back toward the input light.
Additionally, under the assumption that r, = r, = 1, then the anti-symmetric field:

Eui = éEin(eprﬂft — kL) + exp2rft — kL)) (1.24)
= iE;, exp(i2nft — k(L. + L,))) cos(k(Ly — L)) (1.25)
(1.26)

Therefore the power recorded by the photodiode measuring the output which is proportional to
E? goes as:

P, o« E; cos*(k(L, — L)) (1.27)
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Figure 1.2. Simplified schematic of the LIGO detectors, from [2], highlighting the Fabry-Perot cavities,
and power recycling cavity.

oc %(1 + cos(2kAL)) (1.28)

where AL = L, — L, is the difference in the distance traveled by the beams down the two arms.

Returning to the plus polarization of a gravitational wave traveling in the Z direction through
the detector, the x direction would be stretched by L,(1 + /) and the y would be squeezed by
L,(1 — h). Therefore their difference would become AL = L,(1 + h) — L,(1 — h). Assuming
L, =L,=L,then AL = 2Lh. It’s clear then that the readout of the detector depends heavily on
both the input power and the length of the two arms.

In order to increase sensitivity, one or both of these could be increased. The LIGO detectors
each have 4km arms, but future upgrades plan on up to 40km ones as discussed in detail in
section 1.5. Therefore, other methods have been created to artificially simulate a physically
longer arm length without actually requiring the additional space. This is achieved by increasing
the path traveled by light in the arm itself, and is the motivation for the design of the Fabry-Perot
cavities currently in place. These cavities live in the x and y arms of the detectors and reflect
light between two mirrors inside, thereby looping it many times over the length of the cavity
before allowing it to be transmitted through the length of the arm. A similar reasoning has
motivated the power recycling cavities which live in the path of the symmetric transmitted light.
These recycling cavities combine the symmetric transmitted light from the arms constructively
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with the original input light thereby increasing the power of the input light. A simplified
diagram showing the Michelson interferometer and these two additional cavities can be seen in
Figure 1.2.

1.3.2 Noise Limitations

The sensitivity of gravitational wave detectors is measured via the range, or the maximum
distance a typical BNS source could be measured with a signal-to-noise ratio of 8. The average
signal-to-noise ratio (SNR) of a signal as measured in a detector with a single-sided power

spectral density, S, (f), is given as [23]:
B2
f i (1.29)
Sa(f )

We can then solve for the distance by Fourier transforming Equation 1.10 for a BNS, plugging
it in here, setting {(p) = 8, and solving for the distance to the source. This horizon distance is by
design for optimally oriented and located sources, so the range is given further for uniformly
distributed sources by averaging across sky locations. This results in the range being the
horizon distance scaled down by a factor of approximately 2.25.

This range value is then heavily impacted by the power spectral density of the detectors,
and various sources of noise change the nature of this function. Despite this, the power spectral
density has reached fundamental noise floor limits in some parts of the spectrum, and quickly
approaches it in others. These limits can be seen plotted in 1.3.

The laser light incident on the mirrors is one of the main sources of noise in the detector. As
light is incident on the mirrors, a small change in the power can change exactly the number of
photons hitting the mirror. The variance in this number of photons limits the minimum change
in power that is measurable and is called photon shot noise. The contribution to the strain in
the detector, or the amplitude strain sensitivity, comes from the square root of the contribution
to the power spectral density from this noise [21]:

ohor = S,/ (1.30)
Ch/llaser 1

= ,/ — 1.31

27rPin L ( )

(1.32)

where L is the length of the arms, P;, is the input power of the laser, and A, is the wavelength.
Increasing the power of the laser decreases the shot noise contribution to the overall noise floor,
and therefore increases the sensitivity of the detector.

However, unlike the shot noise, radiation pressure noise is made worse by an increase in
the power of the laser. At low frequency, the high power of the laser creates radiation pressure
noise from the force of the light particles incident on the mirrors. Given a mirror of mass M,
the force of the light on the mirrors, or the force from the radiation pressure, is related to the
mirror position as [21]:

2P;;
Fraa = hoht

(1.33)
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Figure 1.3. Various noise limits from throughout a gravitational wave detector ahead of O3. Reprinted
from [3].

Md*x
=— (1.34)
Fruq = —4nMf*% (1.35)

where Py, is the power of the light on the mirror. The contribution to /S ,(f), or the strain
amplitude, is then given as:

1 1/2
s n & (1.36)

o« P2 (1.37)

hrad =

where the frequency dependence of this equation makes it dominate at in the low frequency
regime. With this, the trade-off between radiation pressure and shot noise becomes clear. The
optimal frequency for operation is found by setting the two contributions to the strain equal to
one another and solving for the frequency.

The sum quadrature of these two components is labeled as the quantum noise in Figure 1.3
as their smallest values are limited fundamentally by quantum mechanics via the Heisenberg



uncertainty principle. These two can be seen then as the dominant noise source in the detector
across most of the current noise floor range. However, a few other common noise sources will
be mentioned here briefly as next generation detector designs may reach these additional noise
floors.

Seismic noise is the noise caused by the seismic activity surrounding the detectors. Sources
of this seismic noise can be caused by everything from earthquakes, to the force of the ocean
waves and tides on the nearest beaches. However the LIGO Livingston detector in particular is
surrounded by forest which is frequently logged. This logging activity does not generally raise
the noise floor, but instead causes short duration transient noise during logging periods through
the seismic activity.

The coating Brownian noise and suspension thermal noise is caused by the Brownian
motion of the molecules on the source of the mirrors and wires used to suspend the optics in
the arms. This random motion causes a thermal noise source which peaks at frequencies near
the resonance frequency of the mirror suspension systems. Through the right choice of coating
material, this effect can therefore be mitigated.

Finally, movements of the earth and air in and around the detector can change their density,
and therefore the local Newtonian force on the mirror optics. This is known therefore as gravity
gradient noise. By locating detectors underground, the effect from moving air mass can be
somewhat mitigated. Otherwise, simply placing detectors in seismically quiet areas is currently
the only option for mitigating the effect from earth-based sources for ground-based detectors.

1.4 Data Quality

As described in a previous section, gravitational wave detectors are plagued with a variety of
known, constant, noise sources of varying degrees of severity. However, there are additional
noise sources which are neither stationary nor of known origin. Short duration non-stationary
noise, known as glitches, can have negative affects on gravitational wave search pipelines.
Glitches can hinder search pipelines by mimicking real gravitational waves in morphology,
obscuring gravitational wave signals, and simply alter the state of the detector noise floor thereby
dirtying the background noise distribution used by search pipelines to estimate significance.

Therefore classifying, identifying, and mitigating glitches is of upmost importance to
gravitational wave detection, and there are already experts dedicated to this task [24]. Many
common types of glitches have been given classifications via their time-frequency morphology
in the strain channel. GravitySpy [4,25-28], discussed in more detail in section 6.1.4, is a project
built to classify glitches through citizen science efforts, and machine learning. Some of the
most common glitch classes used by the GravitySpy team are shown in Figure 1.4. Classifying
glitches in this manner can assist in enumerating common appearances, and beginning to
identify their sources.

Identifying glitches in the timeseries strain data is also an active area of research. Omicron
[29,30] and SNAX [31], discussed in detail in section 6.1, are both designed to identify non-
Gaussian transients in any timeseries data — not just the strain. Both of these are used to locate
transients in low and high latency, and have been used for many years by the LIGO and Virgo
collaborations.
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Once glitches have been located, however, mitigating their affect on the data quality is yet
another hurdle for detector characterization experts. There are generally three known ways
of handling glitches. First, the source of the glitches could be removed. In order to do so,
the source of the glitch must be identified from its morphology in the strain data, or in some
other manner. This could be done via an extensive set of hardware injections, where certain
subsystems of the detector are artificially stimulated to mimic gravitational waves or glitches.
However, performing hardware injections on every subsystem of the detectors is not feasible.
Instead, glitches could be traced to certain hardware systems via the monitors on those systems,
called auxiliary channels.

There are thousands of auxiliary channels in each detector monitoring the additional degrees
of freedom outside of the strain data. These cover the surrounding physical environment
monitoring the seismic, acoustic, magnetic, and temperature activity to record, for example,
logging activity. They also cover the numerous subsystems within the detector such as those
needed to isolate the mirrors from seismic activity, to keep the detector in lock, the temperature
on the mirrors, the positions of the mirrors, scattered light off of the mirrors, and more.
Sometimes transient noise recorded in these auxiliary channels also appears in the strain data
channel as a glitch, and it is these associations which can be used to potentially identify the
auxiliary channel source of some glitches, and therefore their origin in the detector. Progress in
this direction is detailed in chapter 7.

If the exact waveform of the glitch appearing in the strain data is known, then it could also
be subtracted out of the data entirely. The exact form a glitch will take is entirely dependent on
the detector state which changes not only between observing runs, but sometimes even between
weekly maintenance. There has been progress in this area for glitches which persist across
observing runs [32], and modeling of the form these glitches take in the strain data has begun.
This would not only allow detector characterization experts to begin attempting subtraction
from the strain data, but could also allow detection pipelines to run over large sets of these and
determine their performance. However, work in this direction is ongoing and is not yet at the
maturity required for active use.

That said, generally gravitational wave detection has been dependent on identifying times
of poor data quality, and excluding them from search efforts. As a first order effort, gravitational
wave detectors provide state vectors which contain a variety of bits detailing the state of the
detector. These state vectors describe when the detector is known to be in a observing and
production quality state. Additional information is also contained in the state vector such as
details on whether or not hardware injections or other similar maintenance activities were being
performed, but the production quality state is never set in the presence of these activities.

In addition to the state vector available in low-latency, sets of time known to contain poor
data quality, or vetoes, are created by detector characterization experts in high latency and
there are varying levels of these vetoes [33]. CAT-1 vetoes cover times that are truly corrupted
by poor data quality, or those times when the detector is generally not considered to be in an
observation quality state. CAT-2 vetoes are those which cover times that may contain glitches
from well-known sources and/or couplings between the strain data and auxiliary channels.
CAT-3 vetoes then cover additional times which may contain glitches from less well established
sources and/or couplings. Generally, gravitational wave detection pipelines will use CAT-1 and
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CAT-2 vetoes to excise time around known glitches from their analysis set, thereby removing
any possibility of this glitch data corrupting their analysis. However, very rarely these times
can overlap with true gravitational waves as was the case with GW200129, described in detail
in Chapter 3.

1.5 Future Detector Upgrades and Networks

Although described in detail in Chapter 8, the planned detector upgrades will be briefly
introduced here. The Advanced LIGO detectors in Hanford, Washington and Livingston,
Louisiana are both very close to reaching their design sensitivity goals, and are above-ground
detectors with 4km arms. The Advanced Virgo detector located near Pisa, Italy and is also an
above-ground detector with 3km arms. These three detectors put together are considered the
HLV network, and this network operated during O3, and O4b (HL only during O4a). There are
additionally upgrades planned to the LIGO and Virgo detectors, first A+ and then Voyager [34]
within the next five to ten years.

LIGO-Anundha in India [35] is a joint effort between the US-based LIGO Lab, and three
different institutes in India which recently received funding. The interferometer will be located
in India, and will use most of the same hardware as the LIGO Hanford and Livingston detectors.
It plans to be a similar above-ground detector with 4km arms, but construction has not yet
begun.

KAGRA [36]is the Japanese interferometer, and had plans to join the O4 observing run.
Unfortunately, however, an 7.6 magnitude earthquake hit Japan near its location on New Year’s
Day of 2024. This set back the detector maintenance schedule by about a year, and the current
estimation has operations beginning in 2025. The KAGRA detector is unique in the global
network as it is set more than 200m underground in an old mining facility beneath Kamioka
mountain. It’s arms are the same length as Virgo, but they additionally have implemented
cryogenic cooling to the mirror systems to reduce the coating and thermal noise discussed
previously.

The next generation of ground-based detector networks include the Einstein Telescope
(ET) [37-39] in Europe and Cosmic Explorer(CE) [40] in the US. ET is similar in proposal
to KAGRA i1n that it plans to be underground with cryogenics in place for some of the main
mirrors. However, it plans to have 10km arms, and possibly have 3 sets nestled inside one
another to form a triangle. The CE upgrades will have one 40km detector and one 20km
detector, but above-ground and not cryogenic. The main increase in sensitivity for the CE
upgrades then comes dominantly from the increase in arm length.

How combinations of these detectors will form advanced network sensitivities is discussed
fully in Chapter 8.
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Figure 1.4. Example time—frequency spectrograms for a selection of LIGO glitch classes. The glitch
classes here are relatively common and illustrate the range of morphologies different glitch classes can
have. The spectrograms in each row are shown with a different time duration. Top left: Tomte is a short-
duration glitch with a characteristic triangular morphology. Top right: Blip is another short-duration
glitch, but has a tear-drop morphology. Middle left: Whistles have a characteristic V, U or W shape
sweeping through higher frequencies (128 Hz). Middle right: Fast Scattering appears as one or more
arches, each ~ 0.2-0.3 s in duration. Bottom left: Scattered Light appears as longer-duration (~ 2.0-2.5
s) arches, with multiple arches often being stacked on top of each other. Bottom right: Extremely Loud
are high-SNR triggers that saturate the spectrogram. Reprinted with permissions from [4]
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Chapter 2
Gravitational Wave Search Meth-
ods

2.1 Methodology of the GstLAL Gravitational Wave Detec-
tion Pipeline

The GstLAL gravitational wave detection pipeline has operated since the LIGO Collaboration
began searching for gravitational waves. It relies on matched filtering for the detection of
compact binary mergers between the strain data of a detector as:

zi(1) = xi(1) + iy;(7) 2.1)

where z;(¢) is the signal-to-noise ratio (SNR), x;(¢) is the output of the matched filter with a
template of phase ¢y, and y;(?) is the output of the matched filter with a phase-shifted template
of ¢y + m/4. The output of the matched filter between the whitened strain data, cf( f), and a
whitened pre-computed waveform (or template), /;( f) with phase ¢ is given as:

xi(f) =2 f ) hi(t)d(t)dt (2.2)

In the following section, we will discuss the matched-filtering methods implemented by
the GstLAL pipeline in detail, and show how the pipeline ranks and calculates significance for
possible gravitational wave candidates.

2.1.1 Template Bank Generation & Decomposition

Real gravitational wave signals can come from a variety of sources whose waveforms are
defined by their extrinsic and intrinsic parameters. The goal of a matched filtering analysis is
to maximize the detection output across all of these parameters. The maximization over the
intrinsic parameters, such as masses, spins, etc is done via brute force by match-filtering any
data against a large number of simulated waveforms, called templates. Templates are generated
at discrete points in the intrinsic parameter space, and the set of these templates which covers
the desired search space and which is used in a matched filtering analysis is called a template
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03 Sub-bank Parameter Boundaries
Label my2(Mo) q X1 | X2 | mm
BNS 1-3 0.33-1 | low | low | 0.99
NSBH 3-150 | 0.02-1 | high | low | 0.97
IMBH 3-91 0.1-1 | high | high | 0.99
low-g BBH | 3-392 | 0.02-1 | high | high | 0.97
BBH 9-400 0.1-1 | high | high | 0.99

Table 2.1. The parameter boundaries of the five template sub-banks which combined make the full
template bank used during O3. Here, m ; are the boundaries of the primary masses, q is the mass ratio,
X1, are the dimensionless spins, and mm is the allowable mis-match between adjacent templates in the
bank. The low and high denotion on y 2 represent -0.05 to 0.05 and -0.99 to 0.99 respectively.

bank. How these templates are chosen, organized, and decomposed in a template bank by the
GstLAL analysis is described here.

The template bank used through O3 was generated using a stochastic template placing
method, described in detail in [41,42]. The limits of the parameter space for this bank were
defined ahead of O3 as follows [43]. The primary masses were limited between 1-400M,
generally across the bank. However, the template placement was generated in five distinct parts:
BNS, NSBH, IMBH, low-q BBH, and BBH. These five pieces were then combined after the
fact to generate the full bank with a total of approximately 1.7 million templates. How each
distinct region of the bank was defined can be seen in detail in Table 2.1. In this table, m, , are
the boundaries of the primary masses, q is the mass ratio, y;, are the dimensionless spins, and
mm is the allowable mis-match between adjacent templates in the bank. In addition, the high
mass region of the bank had extra padding added for the offline analysis to add extra support in
the background bins (discussed later in this chapter) in that region. This added an additional
approximately 75,000 templates in that region.

The O4 bank was generated using a new software called Manifold [44], which is discussed
briefly here. The O4 bank is defined by three parameters: log(m,), log(m,), and y.g. These
parameters form a hyper-rectangle in parameter space, and manifold splits this hyper-rectangle
down via a binary tree method.

It does this by first defining a metric based on the pre-determined tolerated mismatch
between templates in the bank. The local volume in our previously defined three dimensional
space can then be calculated from the metric. The number of templates required to cover
that space can then be calculated by dividing the total volume by the volume that a template
occupies in this space.

Then, Manifold proceeds to define template placements iteratively as follows. First, it
defines the initial hyper-rectangle based on the desired coverage in the mass and spin parameter
space. Then, it calculates the metric in the center of that rectangle, and the number of templates
required to cover it. If the number of templates required is greater than one, it splits the
rectangle in half along its longest edge. If the number of templates required is less one, it
calculates a template using the parameters at the center of the hyper-rectangle and places it.
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It then repeats until the entire space is divided into hyper-rectangles with templates at their
centers.

The parameters were defined for the O4 bank [5] as follows . The mass ranges allowed
on both masses in the binary was 1 — 200M,, with no breaks. This range was chosen to cover
the entire sensitivity range of CBC events expected of the detector network in O4. The mass
ratio, m; /m, where m, is the heavier component mass, is limited in a range between one and
twenty. This is motivated by the fact that during O3, the highest mass ratio event recovered had
a mass ratio of 10, so setting a maximum of double that leaves room for new discoveries while
reasonably limiting the parameter space of the search. For masses in the range of 1 — 3M,, the
dimensionless spin in the direction of the angular orbital momentum, or z-axis, of the binary
are restricted to +0.05 while those within 3 — 200M,, are limited in a much larger range of
+0.99. This is because masses in the lower range are expected to correspond to neutron stars.
It has been shown that in order for a binary containing a neutron star to merge within a Hubble
time (aka those binaries we might expect to detect), it must have a spin less this limiting value
of £0.05. Black holes, however, can have a spin of +1, so the heavier masses are unconstrained.
The O4 bank additionally had a minimum template density set in the high-mass BBH region
to support a slight over-population compared to the default in that region. This has the same
motivation as it did for the O3 template bank — the extra templates is not computationally costly,
and supports the background information collection in that region.

The template bank used through O4 with this parameter space contains approximately 2
million templates, or 4 million total waveforms when accounting for the real and imaginary
parts. As will be discussed in detail in section 2.1.4, the GstLAL analysis computes the cross-
correlation between data and the real and imaginary waveforms individually where a single
complex template,/;(¢), is made up of both waveforms. Therefore, the template bank is then
doubled by placing both a real waveform, &, ;(¢) and the corresponding ¢ + 7/4 phase-shifted
imaginary waveform, A, ;(¢) at the center of each rectangle such that the complex template:

hi(t) = hy (1) + ih.. (1) (2.3)

Templates in the bank are additionally whitened and normalized such that [23]:

(P
1=4 d 2.4
fo Sa(f) / -

where /;(f) is the template waveform, and S ,(f) is the single-sided PSD described in section
2.1.2.

The bank is further broken into two halves in a process called checker-boarding for low-
latency analyses. Using Manifold, the smallest hyper-rectangle in any splitting stage is divided
into two equal halves, and such provides a natural location for defining the checker-board
templates as these two halves will have very similar parameters. In this way, one half of the
final splitting of any hyper-rectangle is assigned to one checker-boarded bank, and the other to a
second. Thus, we end up with two checker-boarded banks which cover the full input parameter
space in almost identical ways, but contain very slightly different templates. Typically, each of
these checker-boarded banks is then used to run a low-latency analysis at different computing
sites. This prevents downtime at one computing site from disabling the entire low-latency
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Figure 2.1. Method of splitting the full template bank into smaller bins, and split banks in the uy,u»
parameter space where up,u, are linear combinations of the PN coefficients as given by Equation 2.5. In
a production analysis, X is typically about 20, X, is around 500, and X3 is typically 2 except for the
occasional edge case. Reprinted from [5].

analysis, and the redundancy introduced supports optimal uptime. Its worth noting, however,
that only the combined the results from both halves of the full bank constitute the full sensitivity
of the analysis.

Still, matched filtering on 2 million waveforms at two different computing sites would be
computationally prohibitive, and a two-stage decomposition called the Low-Latency Online
Inspiral Detection (LLOID) method was created to reduce this computational load. The first
stage of the LLOID algorithm sorts the entire template bank parameter space into bins of
templates with similar parameters. This sorting was done in O3 based on two parameters [45]:
the effective spin and chirp mass defined as in Equations 1.12, and 1.14. Templates were first
grouped by y.rr, and then chirp mass such that about 200 templates were in each split bank.

Ahead of O4, however, this splitting method has been updated to be on two combinations,
U1, Mo, of the Post-Newtonian phase coefficients [5], y/°, 2, ¢ given as:

= 0.974y° + 0.209¢* + 0.0840y° (2.5)
w = —0.221y° + 0.823y* + 0.524y° (2.6)
2.7)

Using these sorting parameters instead of chirp mass and effective spin was found to more
efficiently group templates by their morphology [5].

As shown in Figure 2.1, templates are first broken into X; bins in yu,, typically 20 in a
production analysis. Then, they are grouped into X3 split banks in g; per X; bin where the
number of X3 split banks is defined by assigning an X, number of templates per X3 split bank,
typically 500 for a production analysis. Finally, the split banks are grouped together to form
approximately 1000 background bins with typically 2 split banks per background bin, although
some boundary conditions require the occasional single split bank background bin.
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Then, LLOID implements the construction of an orthogonal basis across templates in a
given background bin via time-slicing [46]. Each template can be broken into several pieces
which are each separated in time, called a time slice. Each time slice in the full template does
not overlap whatsoever in time with any of the others, and therefore by construction the full set
of time slices for a template are orthogonal in time. Templates with similar parameters, or those
in a single background bin, additionally have similar evolution in time-frequency space and are
therefore well-suited for similar time slicing boundaries. This allows time slicing boundaries
to be set identically for all templates in a single background bin instead of individually per
template, thereby further reducing the number of computations.

With a series of time slices in hand, the goal is then to decrease the computational cost
of matched filtering any time slice. By default, the sampling rate, and therefore frequency
resolution, of the entire template duration is set as fy, or twice the highest frequency, fpign in
the template. This sampling rate is defined by the Nyquist rate, or the minimum rate required
to avoid aliasing effects at a desired frequency resolution, in this case fii,n. However, in
the quadrupole approximation, the time-frequency relationship is monotonic, f(f) o ¢3/3,
Therefore, earlier parts of the waveform have a maximum frequency considerably less than
Jhign» and therefore do not require this high sampling rate. We then down-sample the earlier
time slices without loss of resolution. The time slices are defined by their time boundaries
[t0, 1), [t1, 12), ..., [tn—1, tn], and their sampling rates fy, fi, ..., fy—1. The sampling rates are twice
the highest frequency of any template’s time slice in the relevant time range. Any template
can easily be reconstructed by lining up their time slices at no loss to the SNR as the SNR
timeseries of the full template is just the summation of the SNR timeseries from each timeslice.

A time slice across templates per background bin is then further decomposed into an
orthonormal basis by applying a Singular Value Decomposition (SVD) [47]. The decomposition
of a time slice for a single template in a bin, A;[¢], is given as:

M-1 L-1
il = > viowiltl & ) vaorwili] (2.8)
1=0 1=0

where v,[] is the matrix of orthonormal basis vectors, o is the vector of singular values
which ranks the importance of each basis vector, v;; is the orthonormal matrix of reconstruction
coefficients, and the combination of o; and v; gives the reconstruction matrix. The right side of
equation 2.8 comes about by truncating the full basis at o, instead of using the full number
of bases vectors, M where M is less than the full number of templates in the bin. L can be
determined by setting a threshold on the acceptable loss in SNR by truncating the set given by

the SVD tolerance (set to 0.99999 during O4):

-1 -1

M-1
SVD Tolerance = [2(01)2] [Z(m)z] (2.9)
=0 =0

This decomposition allows the matched filter to be computed L times per time slice instead of a
number of times equal to the number of templates in the bin. The combination of sorting, time
slicing, and an SVD basis then vastly reduces the number of filters required from the original
number of templates at a minimal loss of SNR.
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2.1.2 PSD Estimation & Whitening

Matched filtering algorithms require the single-sided noise power spectral density, S,(f) to
whiten the data and templates. Complications immediately arise in the gravitational-wave
detection use-case thereby limiting how this value is measured and estimated. As mentioned
previously, gravitational wave noise data frequently contains short duration departures from the
typical noise background. Gravitational wave signals can also appear in the data at both short
and medium duration depending on their source properties. In both cases, we do not want the
PSD to be polluted by the presence of the departures from the typical noise background. We
follow here the logic of the GstLAL analysis’ measurement of the PSD given originally in [23]
with additional support as necessary.

Typically, the PSD can expressed as a function of the Fourier transform of the noise 7(f)
as [23]:

1
O (f)y = ESn(f)5(f—f'),f >0 (2.10)

where the half arrives from using the single-sided PSD, and the (...) is the ensemble aver-
age. However, Equation 2.10 will be negatively affected by the aforementioned presence of
gravitational waves and glitches. Additionally, the PSD of the detector may slowly drift over
time-scales shorter than an observing run or lock segment, and we would like to capture this
behavior. Instead, a combination of the median and geometric mean is used to mitigate the
issues that arise from glitches and gravitational waves, while additionally chunking historical
data into reasonably sized pieces for suitable analysis in low-latency as described in full detail
in [23].

We begin by chunking historical timeseries data in pieces with N samples which overlap by
N/2 + Z samples where N and Z must be even and Z is typically taken to be N/4. A Discrete
Fourier Transform (DFT) assumes that the data is infinitely periodic, which is not true for
our chunked data as the data at the left boundary is not guaranteed to match the data at the
right of our arbitrary boundary choice. If the DFT is applied to the data as is, it will appear
to the DFT to have periodic discontinuities mimicking the edges of a square wave, thereby
creating false lines, or clicks, in the frequency domain which can themselves mimic the shape of
gravitational waves. Therefore, we first apply a Hann window to these N samples, suppressing
the discontinuities at the boundaries by forcing the series to zero at each end. When Z=0, the
window function w[k] is given as:

w[k] = sin*(7k/N) (2.11)

where k € [0, ..., N — 1] is the time sample index.

To appropriately overlap chunks with the Hann window when Z=0 such that they sum to
unity everywhere, the middle sample of the first chunk, where the function is one, must overlap
with the last sample of a future chunk, where the function is zero. However, N is enforced to be
even for the DFT, meaning there is no odd middle sample. The chunk is therefore padded by a
single sample, the window is applied, and then the last sample is dropped. The result can be
seen in Figure 2.2.
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Figure 2.2. Cartoon overlap of the Hann windows used with timeseries data to suppress discontinuities
at the boundaries. The last sample of each window is dropped, so an even number remains for the DFT.
The sum everywhere is left as unity.

To further mitigate any remaining boundary issues and to increase the frequency resolution,
the chunk is then additionally zero padded by a number of zero samples equal to Z such that
the window function becomes:

0,

wlk] = {sin*(B&2) Z<k<N-Z
0,

(2.12)
N-Z<k<N

k<Z

The full application of the window and DFT to a given chunk of timeseries data, d;[¢] can then
be given as [23]:

_ N N-1 ‘
) = /Wm Z wlk]d;[k] exp(~2mitk/N)

(2.13)
k=0

where ¢ € [0, N/2] is the frequency bin, and At is the time sample step. Additionally, the
window function goes to zero at both zero and N/2, so d;[0] and d;[N/2] are set to zero. Finally,
the PSD can given as:

S i(f) = 2A11d;[ €17 (2.14)
with a frequency resolution Af = 1/(NAt).

Recall, however, the pollution of the PSD by glitches and gravitational wave signals needs
to be mitigated via the implementation of the median and geometric mean. We take the median
of the last n,,.; chunks then as:

S"ed(f) = median{2A fId, [€1P}1=)

e (2.15)
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The median functionally ignores outliers, so if an event like a glitch caused issues during a
single chunk for example, the median would be unaffected. Any polluting event would have to
last for at least half of the chunks covered by the median, or a time period of %navg(N /2)At, to
shift the median in any way. With the typical value of n,,.; = 7, this corresponds to more than 3
seconds, which is much longer than the average glitch duration, but not necessarily longer than
a gravitational wave event.

To account for gravitational-wave event timescales, the geometric mean is introduced.
Under the assumption that the detector noise is stationary and Gaussian, the frequency bins in
the PSD will be randomly drawn from a Gaussian distribution and are therefore y>-distributed.
The geometric mean of any n,,, set of variables is defined as:

Nger—1

Z In(a))) (2.16)

set i=0

(a;) = exp(

where @, is the set, and i € [0, ..., n,, — 1] is the index of the set. Applied to our use case,
ng, = N for any given chunk. As chunks arrive in time, we update the running geometric mean

by weighting the geometric mean of any previous chunks by %‘1 and the geometric mean
avg
1

Navg

of the most recent chunk by
words:

where n,,, is the number of chunks up to this point. In other

Nayg — 1 1

(a) = exp( (@) (2.17)

avg avg

.....

geometric mean of the latest chunk, and [ € [0, ..., n,y,] is the index of all the chunks considered,
and notably not the index of the samples in a single chunk.

The geometric mean of a y-distributed variable is conveniently equal to the median divided
by a proportionality constant 5. Then, Equation 2.17 becomes [23]:
Navg — 1 1 STed[f]

(S -l +

S i[€] = exp
! ( navg navg ﬁ

) (2.18)

where j € [0, ..., ngy] is the chunk index and, again, n,,, is the number of chunks tracked by
this running average, typically 64. As chunks become old enough to no longer be in the time
range of n,,, chunks, their data is dropped from the running mean.

Finally, the arithmetic mean is estimated from the geometric mean and used to whiten the
templates and data. The arithmetic mean of a y?-distributed variable is simply its geometric
mean by e” where vy is Euler’s constant. Then, in this discrete case, a template or stretch of data
in the frequency domain, d ;[£] can be whitened via:

dj[e]

dff) = —2—
S ;[1exp(y)

(2.19)

where the hat denotes whitening, and where S ,,(f) = § j(f)e” is the representation of the PSD
in the continuous case. We can then represent the full whitened data stream in the time domain
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as [23]:

N-1 NJ2 .

djlk] = 2A0Af 4| > wlkP? Y wikld;[€]exp(2rikt/N) (2.20)

n=0 =0
where all of the additional terms ahead of the summation are required for normalization. Ahead
of the fourth observing run, the values of N, and therefore Z were updated in the low-latency
analysis to N = 4f;, and Z = 1f; where f; is the sampling rate. These values were lowered
from their previous settings in order to decrease the latency incurred by the whitener to mere 2
seconds. Additionally, templates in the template bank were previously whitened once at the
start of an observing run, but during the fourth observing run, templates were re-whitened
every week based on the PSD calculated from the previous week’s data in order to keep them
as up-to-date as possible.

2.1.3 Data Conditioning

As introduced in section 1.4, detector data quality is monitored at the coarsest grain by detector
state vector channels which can provide simple information about the state of the detector
during data collection. Frequently, however, even when in lock and in a science-quality state,
the data is not always stationary and Gaussian as we typically assume. While slow, long-
duration changes are tracked by the PSD as discussed in section 2.1.2, the PSD was specifically
designed to be agnostic to short duration variation from Gaussianity. Instead, the detector data
can still be affected by glitches, or short duration noise transients which vary from the usual
background noise levels. There have been a variety of methods employed by different detection
pipelines to mitigate the effect glitches have on detection confidence, and the implementation
in GstLAL is discussed here.

In the GstLAL pipeline, times of poor detector quality are handled in two ways: by
removing them entirely from the data ahead of matched filtering, or by mitigating their effect on
confidence statistics after the fact. The latter is discussed in section 2.1.6, while the former is
described here. Once the data has been whitened, it should have unit variance, but introduction
of glitches changes this. When glitches cause departures that are greater than some number of
standard deviations, o esh, GStLAL excises them via a process called gating. During gating,
some window in time around the glitch is completely removed from the analysis, that is, the
data is identically set to O in the entire region. It’s assumed that glitches which cause the most
extreme departures, and are therefore most likely to mimic a high-mass CBC gravitational
wave signal, are well-localized in time to short durations. During the whitening process, noise
such as this can have its power distributed to a wider duration in time than its original locality,
however, a result called spectral leakage. It has been shown that the typical whitening filter used
by the GstLAL analysis can be approximated as a narrow sinc function in the time domain with
about 98% of its magnitude contained within 10ms [48]. Then, the probability of large amounts
of spectral leakage in a wide window around the original glitch from the application of the
whitener is generally small. Therefore, a quarter second on either side of a signal passing the
threshold is removed which is a conservative estimate under the assumption of short duration
transients.
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Additionally, as its known that heavier-mass CBC systems tend to more closely resemble
the strongest glitches, the GstLAL analysis scales the gating threshold as a linear function of
chirp mass. This is an effort to reduce the number of real astrophysical signals that might be
removed by this gating process, and so the thresholds are set conservatively on a per background
bin basis using the follow scale [9]:

O thresh = RthreshAMco_min (221)

where AM, is the difference in chirp mass between the highest and lowest chirp mass in a
single background bin, o, is a tunable minimum threshold typically set as 15, and Ryyesn 1S
the tunable scaling factor given as a little less than 2 during O4.

Additional times can also be flagged in high-latency as having poor data quality as described
by the CAT-n veto system discussed in 1.4. This is typically done via the analysis of relevant
auxiliary channels, or by times logged after the fact by detector operators. These times are
collated into a set of detector quality vetoes, and during high latency analysis, the GstLAL
pipeline will apply these vetoes to the data. Instead of applying them to the input timeseries,
however, they are applied by setting the whitened timeseries to zero in their durations. As
whitened data is defined as a series of uncorrelated samples, this can be done without any
negative affect to the analysis.

2.1.4 Matched Filtering

The goal of a matched filtering analysis is to maximize the output over the intrinsic and extrinsic
parameters of a source. The extrinsic parameters for aligned spin waveforms come out as an
amplitude factor for the overall waveform, but the intrinsic parameters require more care even
for the simple cases.

The intrinsic parameters are maximized over using the brute force method of maximizing
matches over a template bank. The time of coalescence is maximized by taking the maximum
matched-filter output from that bank in some small window. The result of a matched-filter is
then the SNR given as the cross-correlation between a single whitened template, /;, and the
whitened data, d. For GstLAL, it is calculated in the time domain as:

x(f) =2 f b (0)d(t + 7)dr (2.22)
where the hats denote whitening, and the discrete whitening process is given for a template,
h;, in equation 2.19, and the discrete whitening process for the full data stream, d, in equation
2.20.

However, recall that the template bank is further decomposed using the LLOID method
such that one time slice of a single template in a given background bin is given by Equation 2.8.
Then, the matched-filter output must additionally be calculated per time slice, s, and per SVD
basis vector, v;, as:

Ut = ZIM v(nd(t + T)drt (2.23)

(%)
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where v, 1s the basis vector as defined in 2.8, and the hat again denotes whitening. The output
across basis vectors for a single time slice can then be reconstructed using the reconstruction
matrix following 2.8 with U,(#) in place of v; as [23]:

L-1

(0 = > vie U (o) (2.24)

=0

Each time slice is then upsampled back to the original sample rate, and lined up in time order
end to end to reconstruct the full template’s SNR timeseries as given in 2.22.

As discussed in section 2.1.1, for each set of intrinsic parameters, the GstLAL bank
additionally has two waveforms, one for the real and one for the imaginary parts corresponding
to the plus and cross correlations. The matched-filter output of the two are then combined as:

pi(t) = Jx;(O? + y (1) (2.25)

where x;(¢) is the result of 2.22 for the real part, and y,(¢) the same for the imaginary part, and j
is the template index.

This complex SNR timeseries is of a sample rate of 2048Hz, resulting in a data size far
too large to store on disk for any reasonable amount of time. Therefore, we additionally
maximize over the unknown time and phase of the signal by maximizing the SNR timeseries
per template in one second windows. If the SNR in that window crosses some predetermined
threshold, typically 4, then it is stored to disk as a trigger. Triggers have their associated
template parameters, time of coalescence, SNR, and coalescence phase stored.

To form potential gravitational wave events, triggers are compared across detectors, and
those who have at least one pair within a small time window are considered an event. The time
window used is based on the light travel time between the two detectors with a bit of additional
padding due to noise fluctuations in the detectors, and it is typically taken to be +5ms. If
there is a coincidence, the template from the loudest SNR trigger across all detectors is then
paired with the results from the same template in the other detectors. The template which had
the loudest SNR across detectors may not have had the loudest SNR in each detector, but we
still take that template’s results from each. Although this could result in a small loss of SNR,
keeping the results with the same origin template parameters vastly simplifies the rest of the
pipeline. Carrying multiple sets of possible parameters complicates how properties such as the
significance are calculated, so keeping just one set of source parameters is ideal.

Forming these coincidences drastically decreases the chance that any one trigger could be
due to a glitch as it is far less likely that a loud noise transient occurs simultaneously across
detectors. However, as will be discussed in the following section, the GstLAL pipeline does
additionally allow for single-detector gravitational wave candidates. In this case, triggers in
one detector which do not have a matching trigger in the others are still considered as possible
events and the GstLAL pipeline applies penalty to their significance as discussed in the next
section.
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2.1.5 Ranking & Clustering

Despite the many mitigation plans put into place by GstLAL, glitches can still be present in the
data and analyzed by the pipeline. In these situations, the SNR timeseries itself is not enough
to distinguish between a real signal and a glitch as both could match well with templates in the
bank. Therefore, the GstLAL pipeline also introduces a signal consistency check, &2, which is
a measure of how similar the observed SNR timeseries is to the predicted SNR timeseries of a
signal exactly matching one of the templates [49]. This ideal timeseries can be calculated using
the auto-correlation of the complex template waveform with the measured SNR. The complex
autocorrelation function is then [49]:

* |il+i|2 + |il><i|2 2i
Ri(t) = f L2 7y (2.26)
where 1 is the template index, and # = 0 is chosen to be the peak time, or the time of the peak
SNR, and R;(0) = 1. The signal consistency test £2, is then defined as the amplitude squared of
the difference between the observed SNR timeseries, and the predicted:

&) = i) — piOR(DI (2.27)

where p; is the observed complex SNR timeseries given by equation 2.25. In the limit that the
data is Gaussian noise, or d( f) = ii(f), the expectation value of the test, < &2 >= 2 — 2|R;(1)|*.
In practice, &2 is calculated for some small window around the peak time of the event, typically
about 86ms, and normalized as [49]:

[ loi() = pUOIR (1) Pt

&) = ==
7@ - 2R )Pt

(2.28)

This value is calculated at the time of trigger generation, and is stored along with the other
trigger parameters.

Each trigger individually then has its SNR, &2, and ¢, calculated for each detector. Once
coincidences are formed, or single detector candidates identified, they need to be ranked, and
have a significance assigned. The GstLAL analysis uses the likelihood-ratio, as suggested by
the Neyman-Pearson lemma, to rank events. We follow here the description of the likelihood
ratio following [49], and it can be given generally as:

_ P(Du,0,3,8, A, A7.6| signal)

L > = . 5 5 o2
P(Du, 0,p,&%, A, AT, @ | noise)

(2.29)

where Dy is the horizon distance, O is the set of observing detectors, 6 is the label for the
background bin of the template, and A¢ and Ar are the phase and time difference between
any pair of detectors. “denotes a vector across all detectors e.g. if L1 and H1 are used, then
0 = {011, Op)

The denominator is a measure of how likely it is that the signal is not a true signal and
instead is some kind of noise. It can be factored as follows:

P(..n) = P(tyer,6ln) X P(Oltres, 6,1) X P(AT, §10,1) X P(B,E 1,7, 6, 1) (2.30)
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where t,.; = — At and is the time in the reference detector. P(t,.r,6ln) is the probability that
an event with parameters defined by 6 occurs at time 7, in any detector combination. It is
estimated as the mean rate of coincident events in a single detector combination then summed
across every possible detector combination. The mean rate in a single detector combination is
found assuming Poisson statistics for noise events as the single detector rate for each detector
in the combination multiplied together and times the coincidence window, typically 10ms. For
example, for a coincidence in H1 and L1, the mean rate would be the rate in L1 times the rate
in H1 times the coincidence window. Then P(t,., 8ln) would be the mean rate of coincidence
in H1 and L1 plus the mean rate in H1 plus the mean rate in L1.

P((jltn, +,0,n) is the mean rate of the coincident events in the detector combination which
was operating at the time of the event weighted by the mean rate of all possible combinations
given by P(t,.s, 6|n). P(Kt, $|5, n) is the probability of seeing the data with the specific time
and phase difference between detectors, but for noise the time and phase distributions are
approximated to be uniform and therefore this term is constant.

Finally, P(g, gzlt,e +,0,n), is the background distribution of the SNR and signal consistency
across detectors for noise. This is generated by collecting the SNR and &2 terms of single
detector events during observing time with more than one detector, but not single detector
events during observing time with just one detector. These histograms are constructed for the
noise hypothesis, and so coincident events, and single detector events during single detector
observing time, are not added to them as they are considered to be possible GWs. These
samples are then populated into histograms, and grouped by their background bin, . The
division of these background bins is described in 2.1.1. Each bin’s histogram has a Gaussian
KDE applied to make the likelihood ratio distribution smooth and a plot of a representative bin
can be seen in Figure 2.3. These histograms are recorded on disk every four hours during a
low-latency analysis, so that only up to four hours of data can be lost at any given time. Note
that these histograms are a function of time for low-latency analyses as the histograms are
populated as coincident detector data is available, and it accumulates over time. Low-latency
analyses therefore require a "burn-in" time when they are first launched, while they accumulate
a large enough sample in these histograms to be able to assign a likelihood ratio. The amount
time required depends entirely on the up time of the detectors, but in a typical observing run
takes O(3) days.

The numerator meanwhile is measure of how likely it is that the data observed is a true
signal, and not just noise. It factors as:

P(...|signal) = P(65)X Ptyes, Gre10, )X P(Oltres, $)X P(B, AL, 3|0, 1y, )X P(E2I3, 0, 5) (2.31)

P(6|s) constitutes the prior, and is a measure of how likely the template with parameters
6 is to recover a gravitational wave. This information comes from the population model
which contains information such as how possible sources are distributed in the template bank.
P(tyer, drerl0, 5) 1s taken to be o« D?q(tre +,0) where Dy is the horizon distance. As discussed in
2.1.2, the PSD is calculated and updated continuously by the analysis, so the horizon distance
for each detector is calculated from this value using a fiducial SNR of 8, and stored on disk for
use in this term.

P((jltre £, §) 1s a similar term as in the noise model, except now it is the probability that the
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Figure 2.3. Plot of the SNR, y? distribution for the noise model for the 37th SVD bin of Han-
ford. The y axis shows the y? distribution, the x-axis is the SNR and the color bar is the total
InP(SNR, x%/SNR?|noise term in the likelihood ratio. There is a concentration of high values around
high y? and low-SNR, or the typical noise trigger parameter space. Real gravitational wave events would
then lie outside of these high InP areas in the dark regions of this figure.

data will appear in this set of detectors as a signal, e.g. above an SNR threshold. This is done
by simulating GW sources distributed across the sky and at a variety of horizon distances, and
performing a Monte Carlo integration to find detectable sources up to a horizon distance of
interest. The details of this are given in [50]. P(g, At, & 0.t £, §) gives the probability of having
detected a signal with a given SNR, time difference, and phase shift between the observed
detectors and acts as another signal consistency test. Details on how this term is calculated can
be found in [49]. For single detector candidates, or those GW candidates detected when only a
single detector is in observing mode, this term becomes a tunable penalty to the overall ratio.
Ahead of O4, the term was tuned to be -13 based on participation in Mock Data Challenges as
described in section 4.3.1.

Finally, P(£2|3, 0, s) is again the previously mentioned £ signal consistency check, but this
time under the assumption of a signal instead of noise.

2.1.6 Significance

With the likelihood-ratio of an event calculated, its true significance is also relevant. In other
words, how often would an event with this likelihood ratio occur by chance with noise? If noise
might generate the event frequently, then its less statistically significant say than an event that
might only be generated once per hundred years by noise. This significance is estimated by
tracking the denominator of the likelihood ratio, or the probability of an event occurring given
that it is noise. The value of the entire denominator is recorded per noise event, where a noise
event is defined as a single detector event during multiple detector observing time, as it was
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Figure 2.4. CCDF of a gravitational wave candidate. The x-axis denotes the value of the log-likelihood
ratio of a given gravitational wave event and shows how that value is mapped to the false alarm probability
on the y-axis.

for the P(g, §2|z,e #,0,n) term. These values are collected per background bin during a burn-in
period for an online-analysis, or per relevant time segment in an offline analysis. Once there
are enough samples in the histogram for a given background bin, the posterior density function
(PDF) of this distribution is calculated. This is equivalent to integrating the individual terms
in the denominator over constant likelihood surfaces, and both methods return the probability
of a certain likelihood ratio value being generated by noise in a particular background bin, or
P(L]6, noise).
P(L]6,noise) is then marginalized over all the background bins in the analysis returning
a single P(L|noise). The complimentary cumulative distribution (CCDF) of this PDF is then
given as: N
C(Ln) = P(L = L'In) P(Lin)dL (2.32)
e
where C(/L|n) gives the probability of a random noise event getting a likelihood ratio of £ or
higher. An example of such a CCDF can be seen in Figure 2.4 where the blue line denotes an
example likelihood ratio of an event.
Dividing this by the total observing time up to this point in a low-latency analysis, or the
total time during the entire run for an offline analysis, then gives the false alarm rate (FAR) or
the rate at which events like this one would be generated by noise [23]:

C(Lln)
T

FAR = (2.33)

where T is the observing time.
To account for observing multiple coincidences, one can calculate the false alarm probability
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using the binomial distribution as:

P(X=k) = (Z)p"a —pyt (2.34)
where |
n n!

(k) RG] (233

where X is a random variable, n is the number of trials, k is the number of successes, and p is
the rate. In this case, there would be M tests of detecting a noise event with an likelihood of
L or higher where M is the number of gravitational wave candidates observed with that same
likelihood threshold. For the false alarm probability, then the number of successes would need
to be at least one, in other words, the probability that out of all M events at least one of them
were generated by noise. This can be given as one minus the probability of none of them being
generated by noise. In other words [23]:

P(L|ng, ...ny) =1 — (A(;I)P(L*ln)o(l - P(L )M (2.36)
=1-(1-P LM (2.37)
(2.38)

where the second equation is given by the binomial and following term being identically one.
This value is then updated as more events are detected during a run, whereas the FAR only takes
into account the current event and the noise background without incorporating any knowledge
of other signal events.

2.2 Workflow

The methodology introduced in Chapter 2, will be discussed in the context of both online, or
low-latency, and offline, or high-latency, filtering here. A comparison of the O4 online and
offline sensitivities is discussed in detail in Chapter 5.

2.2.1 Online

The online analysis is by definition required to be low-latency and keep up with real-time data
availability. Therefore, it can only use historical data during the ranking of candidates, and does
not have the benefit that we will see in the offline analysis of using data from future times in its
processing. However, as discussed in section 1.1, the crucial role that the prompt discovery
of gravitational wave events plays in the multi-messenger astronomy ecosystem cannot be
understated and a potential loss in sensitivity is well worth the scientific gain of low-latency
detection.

The template bank, its LLOID decomposition, and a PSD to seed the online analysis are all
pre-computed and supplied as inputs to the low-latency search. The whitening, conditioning,
filtering, background collection, and trigger generation are all completed in parallel processes
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per background bin. Then, a separate process is used to periodically marginalize over the
backgrounds collected by each bin, and combine them for use in FAR assignment. At the
time of a gravitational wave candidate, then, the log-likelihood and FAR are assigned to the
event based on only the background information available at the time to the analysis, while in
offline this is not the case. This fact has been mitigated during O4 with the implementation of a
re-ranking procedure described in Chapter 5.

As many bins may all identify triggers for a single gravitational wave event, an additional
process is required to aggregate these triggers. Only the highest SNR of all triggers in a
small time window (about 0.5 seconds) is uploaded to the Gravitational wave Candidate Event
Database (GraceDB) [14], a interactive database used to aggregate information across detection
pipelines in real-time. There are additionally a handful of support processes which create and
upload plots to GraceDB, collect monitoring, and more.

As a new feature in O4, streams of simulated data are handled by the online analysis in a
similar manner. They follow the same processes as real data, but instead of collecting their own
background, which would be contaminated by the rate of simulated signals, they instead take
a copy of background data calculated by the same bin process which analyzes the real data.
This keeps ranking of the simulated data most similar to the real data, allowing for an accurate
estimate of the sensitivity of the online analysis. How this simulated data is supplied to the
online analysis, and the features surrounding it are discussed in detail in Chapter 5.

2.2.2 Offline

The offline analysis has the benefit of foresight when it comes to ranking gravitational waves,
and therefore can more accurately assign significance to gravitational wave events. The offline
analysis completes each phase of its workflow in stages and is supplied with a list of segments
defining the science quality data from each detector. It starts by calculating the running average
PSD for each of these segments, called a reference PSD. This output can then be used as inputs
to any number of pipelines analyzing the same data, e.g. a single observing run. For example,
there may be many analyses completed which each target a different region of the parameter
space, and they can all use this PSD as inputs.

Any offline analysis then takes the median of the reference PSDs to whiten the input
template bank and generate the full decomposition of the bank following the LLOID method
described in 2.1.1. This bank is then used as in the online case and supplied to a distributed
number of processes which whiten, condition, and filter the data.

However, in the offline case, this data is not ranked by the processes which filter it. Instead,
this is left to a second phase of processes which take a mass model, the filtered data, and a
handful of other data products to produce triggers and rank it. This again is for agility, allowing
for the mass model, for example, to be swapped out and a different ranking applied without
being forced to use the computing resources to completely re-filter the data itself. During this
ranking stage, the offline analysis takes background information collected across the entire
observing run to rank candidates, supplying it with a more informed model and resulting in a
more sensitive search.

Simulated data is again treated in a similar method to the online case. During the ranking
stage, it reads the background collected from the normal filtered data and uses it to rank both
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the injection and non-injection data.
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Chapter 3
Offline Results from LIGO and Virgo’s
Third Observing Run

The LIGO and Virgo Collaboration’s third observing (O3) run ran from April 2019 to March
2020, and was split into two halves O3a, and O3b. The latter half of this observing run,
O3Db, ran from November 1, 2019 to March 27, 2020 with the LIGO Hanford (LHO), LIGO
Livingson (LLO), and Virgo interferometers participating. I contributed to the operation of the
high-latency, offline GstLAL search covering O3b and the results from this half are summarized
here, but full reporting of O3 results can be found at [51], [52], and [13].

We will start with a short description of the upgrades implemented at the LHO and LLO
interferometers ahead of O3, and between O3a and O3b. We then discuss the gravitational wave
candidates found during O3b, highlighting exceptional events and the role GstLAL played in
their discovery. Finally, we summarize the impact these events have on the known rates and
populations of compact binary sources in our universe.

3.1 O3 Detector Upgrades

There were several detector upgrades to the LIGO Hanford and LIGO Livingston interferome-
ters which are discussed in detail in [13], but are summarized here.

At both LHO and LLO, improvements to the mirror systems were made to reduce radiation
pressure while increasing laser input power. The mirrors which reflect light back to the beam
splitter from the arm stations were first replaced. The replacement mirrors had lower scattering
losses, thereby maintaining more laser power after every incidence. An increase in laser power,
however, increases the radiation pressure on the mirrors thereby inducing excitation in the
mirror mechanical modes and increasing the noise. Therefore, ahead of O3a, acoustic mode
dampers were installed at both sites [53]. The acoustic mode dampers attach to the mirrors
with springs to passively damped the excitation modes induced by the radiation pressure. This
allows for an increase in the laser power while mitigating the increase in radiation pressure
noise at low frequency.

The light sources themselves were also renovated ahead of O3 with higher input power
lasers, and the implementation of squeezed light sources. The base state of the detector has
equal uncertainty in the phase and amplitude (e.g. position and momentum) of the light incident
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on the output optics. This results in equal contributions from the photon shot noise and radiation
pressure noise described in section 1.3.2. However, in a squeezed state, the uncertainty in one
is decreased at the expense of increased uncertainty in the other. In this case, the photon shot
noise was reduced with an increase in the radiation pressure noise thereby lowering the noise
floor at high frequency, and increasing it at low frequency. Between O3a and O3b, even higher
sensitivity was achieved at both sites by implementing further improvements to the crystal and
tuning of the system used for squeezing.

Each of the detector sites additionally experienced noise sources unique to their locations.
At LLO, seismic activity created by ocean waves caused the distance between the main mirrors,
and a secondary reaction mirror to vary. This variation caused portions of the laser light
to scatter outside of its intended path by changing the incidence. This scattered laser light
can then reflect off of another surface and back into the main beam with a different phase,
thereby causing scattering noise. Scattering noise causes Scattered Light glitches by resonating
harmonics of the surface motion frequencies of the mirrors. Therefore, at both detectors,
additional hardware was added which prevents the scattered light from re-entering the main
beam. The abundance of this noise at LLO additionally prompted the creation of a new control
linking the movement of the reaction mirror to that of the main mirror during high seismic
times. Both of these improvements were seen to significantly reduce the number of Scattered
Light glitches present between O3a and O3b.

3.2 Resulis

35 new candidates were discovered during O3b, bringing the total number of candidates up
to this point to 90. Inclusion as a candidate gravitational wave is based on FAR and paso
thresholds which vary for low-latency alerts and offline candidacy. As described in section 2.1.6,
FAR is an estimate of how often the candidate may be caused by random noise fluctuations in
the detectors, and is therefore an immediate estimate of the significance of an event. However,
this is highly dependent on the noise events collected by each detection pipeline, and how these
events are collected vary pipeline to pipeline. Additionally, FAR does not take into account any
of our previous knowledge of astrophysical distributions, or of detections made thus far. p,o,
meanwhile, accounts for the probability that an event is of astrophysical origin given what we
know about likely source distributions, and can be informed by previous detections.

For example, an event with a low FAR may appear to come from a source class that has
never been detected before, and which is extremely unlikely given what we previously know
about its properties. This would make this event have a lower p,y.,, despite its high FAR.
Vice-versa an event may have a relatively low FAR, but if it originates from a source population
which is known to frequently generate gravitational waves, then its p,q, would indicate it as
more significant than its FAR alone. Therefore p,y., is useful for comparing events which
could be from any number of possible sources, and represents a more complete estimate of the
probability that a candidate is a real event given its source parameters.

In the low-latency analyses, a strict FAR threshold of 1.2/yr is imposed on alerts so as only
to trigger follow-up from astronomers in the most confident cases. There is no threshold on
Pastro because of a number of technical reasons, and the full accounting of a candidate’s source
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parameters has a high uncertainty in low-latency treatment. This is not the case with offline
analysis, however, and full offline candidates therefore must must instead meet a p,g,o > 0.5
limit. If an event does not meet the p,y., limit offline, but does have a FAR of less than 2 per
year, then it is considered a marginal candidate.

During low-latency, 39 events were reported at a FAR threshold of 1.2/year, but after further
analysis only 18 are considered as offline candidates. Of the lost candidates, 16 were retracted,
meaning that they are believed to be of terrestrial origin. The remaining 5 simply did not meet
the threshold for inclusion as candidates following the offline thresholds. In the offline analyses,
17 new candidate events were found which did not pass the 1.2/yr FAR threshold in the online
searches. All of them are coincident events between at least two detectors, and the majority fall
into the BBH mass regions.

There are a couple reasons that events such as these may be considered as identified offline
and not in low-latency. The data quality is better for offline data which has had the chance
to be more closely cleaned and calibrated than in low-latency, and detection pipelines are
provided with data quality vetoes to remove particularly noisy data. Additionally, as discussed
in section 2.2, low-latency pipelines can only use historical data at the time of ranking an event,
while offline pipelines have the benefit of knowing a priori about data throughout the entire
observation period. This often results in improved background estimates, noise rejection, and
significance estimates. For a discussion on improvements to the GstLAL search to account for
these differences, see Chapter 5.

3.2.1 Gravitational-Wave Candidate List

Table 3.1 contains all of the candidates across offline pipelines for O3b and contains all 35
events considered as gravitational wave candidates during this period. The FAR, SNR, and
Paswo from each pipeline is reported individually along with the active instruments following
the Hanford(H), Livingston(L), and Virgo(V) convention and the event title. The candidate
titles follow a date naming scheme with the year, month, day followed by an underscore with
the hour, minute, second UTC designation. Additionally, those in bold were the 17 candidates
not identified in low-latency, but which were identified for the first time offline. The italics
signify when the italicized pipeline identified it below the threshold for inclusion, but another
pipeline identified it above that threshold.

Five gravitational wave detection pipelines analyzed data using their offline configurations:
cWB [54], GstLAL, MBTA [55], PyCBC [56]. PyCBC additionally operated with two different
configurations, noted as PyCBC-broad and PyCBC-BBH. The SPIIR pipeline [57] participated
in low-latency detections, but did not re-filter data in an offline configuration, and is therefore
not included in the discussion here. GstLAL, MBTA, and PyCBC use matching filtering
with waveform templates to identify candidates, while cWB searches for un-modeled signals.
Additionally, cWB only searches for candidates in detector pairs, while PyCBC and MBTA look
for coincidences in two and three detectors, and GstLAL searches for signals in any detector
combination. GstLAL compares possible candidates to the full background from across O3b,
while the other three pipelines use background from more locally around a candidate. These
differences, and others, result in differences in the estimation of p,y, and FAR, and therefore
pipelines are expected to detect a slightly different subset of events, particularly at low SNR.
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These differences can be seen in practice in the results shown in Table 3.1. Of all 35
candidates, 21 were found by more than one pipeline while only 9 were identified by all
of them. 29 candidates were found by one or both of the PyCBC searches, while GstLAL
identified 21, MBTA found 20, and 10 candidates were recovered by cWB. Additionally, of
these candidates, many were found only by a single pipeline. MBTA and PyCBC contributed
four, and eight candidates unique to their pipelines respectively. The MBTA candidates are
signals from BBH sources, and are included in the candidate list because they have high p,g,
despite also having high FAR estimates. Of the 8 unique PyCBC events, the most notable is
the potential NSBH GW191219_163120, which is described further in the next section. The 7
other unique candidates are from BBH sources, and are generally middling to high FAR with
the highest FAR among them given as 0.46 per year.

GstLAL identified 2 unique candidates. Both of these unique events were from single
detector triggers, or an event found significantly in only one detector when one or more were
operating. In these cases, they were found when Livingston was operating alongside Virgo.
Single detector events in a network of HV or LV are not implausible as the detector sensitivity of
Hanford and Livingston are both approximately double that of Virgo. However, GstLAL is the
only pipeline which searched for these events during O3. Other pipelines do not consider these
times for possible candidate identification to prevent against the likelihood of false detection
claims, but the two events GstLAL recovered during this time provide strong evidence for
the analysis of these times. The first unique event, GW200112_155838 is a BBH event with
masses in the 26 — 42 M, range, with a low spin, but within a redshift of 0.25. The second event,
GW200105_162426 is discussed in more detail in 3.2.1.1 as it is a potential NSBH event.

While differences in sensitivities and configurations creates so many unique pipeline
candidates, there are many more which are discovered in a subset combination of the four
pipelines for the same reasons. However, GW200129_0654580 is unique among them as it
was found only by GstLAL and PyCBC because of a data quality issue and not because of
general differences in pipeline sensitivity. During the time surrounding GW200129_0654580,
a Livingston data issue was flagged, and included in a CAT-2 veto set (described in 1.4)
distributed to search pipelines. Implementation of this veto set caused PyCBC, MBTA, and
cWB to ignore Livingston data around the time of the event. This caused MBTA and cWB to
miss this event, while PyCBC recovered it using just the HV data, but lost SNR compared to
the result from HLV.

GstLAL, however, did not implement CAT-2 vetoes at the time, and its worth noting that
CAT-2 vetoes are not being produced by the collaboration during O4. GstLAL depends on the
pipeline including noise events in the background in order to have an accurate ranking, and
therefore analyzes data normally flagged by CAT-2 vetoes to make the background more robust.
Additionally, GstLAL was using an implementation of iDQ at the time which down-ranked
events based on the data quality it reported [58], and therefore relied on it over the removal of
times via CAT-2 vetoes. This allowed GstLAL to analyze the full set of HLV information, and
demonstrates the power of incorporating additional data quality metrics into search pipelines.

Table 3.2 shows the marginal candidates, or those with FAR below 2.0 per year, but a
Paswo above the threshold of 0.5 for inclusion in the main candidate table. Those in this table
without the GW prefix, 200121_031748, 200214_224526 and 200219_201407, were found
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Name Inst. CWB GstLAL MBTA PyCBC-broad PyCBC-BBH
FAR  SNR pasro  FAR  SNRpasro FAR  SNRpaswo FAR  SNR pasre FAR  SNR pastro

Y rh rhH rhH Y
GW191103_012549 HL - - - 27 90 013 48 93 077 046 93 094
GWI91105_143521HLV - 24 100007 014 107>099 0012 98>099 0036 9.8 >0.99

GW191109_010717 HL < 0.0011 15.6>0.99 0.0010  15.8>0.99 1.8x 107 152>0.99 0.096 132>099 0.047 14.4>0.99

GW191113_071753HLV - - - - - - 26 92 068 1.Ix10" 83<001 12x10° 85<00I
GW191126_115259 HL - - - 80 8.7 0.02 59 85 030 22 85 039 32 8.5 0.70
GW191127_050227HLV - - - 0.25 10.3 0.49 12 9.8 0.73 20 9.5 047 4.1 8.7 0.74
GW191129_134029 HL - - - <10x107133>099 0013 12.7>0.99< 2.6 x 1075 12.9> 0.99< 2.4 x 107> 12.9> 0.99
GW191204_110529 HL - - - 21 9.0 0.07 1.3x10* 8.1 <001 980 8.9 <0.01 33 8.9 0.74

GW191204_171526 HL < 8.7 x 107417.1> 0.99 < 1.0 x 10~% 15.6> 0.99< 1.0 X 1075 17.1> 0.99< 1.4 X 1075 16.9> 0.99< 1.2 x 1075 16.9> 0.99
GW191215_223052HLV ~ 0.12 9.8 095 <1.0x1075109>0.99 022 108>099 00016 103>099 028  10.2>0.99
GW191216_213338 HV = - - <10x107518.6>0.99 93x10™* 17.9>0.99 0.0019 183> 0.99 7.6x 107* 183> 0.99
GW191219_163120HLV - - - - - - - - - 40 89 082 - - -
GW191222_033537 HL < 8.9 x 10 11.1> 0.99 < 1.0x 10~ 12.0>0.99 0.0099 10.8>0.99 0.0021 11.5>0.99 9.8 x 105 11.5> 0.99
GW191230_180458HLV ~ 0.050  10.3 0.95 0.13 103 0.87 8.1 9.8 0.40 52 96 029 042 99 096
GW200112_155838 LV = - - <10x10°7176>099 - = = = = = = = =
GW200115_042309 HLV - - - <10x1075115>099 00055 11.2>0.99<1.2x107410.8> 0.99 - - -

GW200128_022011 HL 1.3 8.8 0.63 0.022 10.1 0.97 33 9.4 098 0.63 9.8 095 0.0043 9.9 >0.99

GW200129_065458 HLV - - - <1.0x1075265>0.99 - - - <23x1079163>0.99< 1.7x 1075 16.2> 0.99
GW200202_154313HLV = - - <10x107 11.3>0.99 = = = = = = 0.025  10.8> 0.99
GW200208_130117HLV - - - 0.0096 107 099 046  104>099 0.8 9.6 098 3.1x10™* 10.8>0.99
GW200208_222617HLV = = = 160 82<001 420 89 0.02 = = = 4.8 7.9 0.70
GW200209_085452HLV - - - 0.046  10.0 0.95 12 9.7 097 550 9.2 0.04 12 9.2 0.89
GW200210_092254HLV = = = 12 9.5 042 = = = 17 8.9 0.53 7.7 8.9 0.54
GW200216_220804HLV - - - 0.35 94 077 24x10° 88 0.02 970 9.0<001 18 8.7 0.54

GW200219_094415HLV ~ 0.77 9.7 0.85 99x10™* 10.7>099 0.18 10.6> 0.99 1.7 9.9 0.89 0.016  10.0> 0.99
GW200220_061928HLV - - - - - - - - - - - - 6.8 75 0.62
GW200220_124850 HL - - - 150 82 <001 18x10° 82 0.83 - - - 30 7.8 0.20
GW200224_222234HLV< 8.8 x 1074 18.8> 0.99 < 1.0 x 1075 18.9> 0.99< 1.0 x 1075 19.0> 0.99< 8.2 x 107> 19.2> 0.99< 7.7 x 107 18.6> 0.99

GW200225_060421 HL < 8.8x 107413.1>0.99  0.079 129 0.93 00049 12.5>0.99< 1.1 x 1072 123> 0.99 4.1 x 1075 12.3> 0.99

GW200302_015811 HV - - - o.11f 10.6 0.91 - - - - - - - - -
GW200306_093714 HL - - - - - - 410 8.5 0.81 34x10° 7.8<0.01 24 8.0 0.24
GW200308_173609HLV - - - 680 8.1 <001 69x10* 83 0.24 770 7.9 <0.01 2.4 8.0 0.86

GW200311_115853HLV< 8.2 x 107416.2> 0.99 < 1.0 x 1075 17.7> 0.99< 1.0 X 1073 16.5> 0.99< 6.9 X 107> 17.0> 0.99< 7.7 x 1075 17.4> 0.99
GW200316_215756HLV - - - <10x10°101>099 12 95 030 020 93 098 058 9.3 098

GW200322_091133HLV - - - - - - 450 9.0 0.62 14x10° 80 <001 140 7.7 0.08

Table 3.1. Candidate GW signals over the course of O3b. The time (UTC) of the signal is encoded in
the name as GWYYMMDD_hhmmss (e.g., GW200112_155838 occurred on 2020-01-12 at 15:58:38).
The names of candidates not previously reported by the low-latency analyses are given in bold. The
detectors observing at the merger time of the candidate are indicated using single-letter identifiers (e.g.,
H for LIGO Hanford); these are not necessarily the same detectors that contributed triggers associated
with the candidate. Where a candidate was found with p,s o above the threshold value of 0.5 by at least
one analysis but below the threshold by others, we include in ifalics the results from the other analyses,
where available. A dash (-) indicates that a candidate was not found by an analysis. The 2 candidates
labeled with a dagger (1) were found only above threshold in a single detector with the GstLAL analysis,
and the FAR estimates were made using significant extrapolation of the background data, meaning that
single-detector candidates have higher uncertainty than coincident candidates. Reprinted from [13].
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Name Inst. CWB GstLAL MBTA PyCBC-broad

FAR SNR Pastro FAR SNR Pastro FAR SNR Pastro FAR SNR Pastro

or™hH o o o
GWI191118 212859 LV = = = = = = 74%10° 80 <001 13 9.1 0.05
GW200105_162426 LV - - - 0.20" 13.9 0.36 - - - - - -
200121_031748* HV = = = 58 9.1 0.02 1.1 10.7 0.23 = = =
GW200201_203549  HLV - - - 14 9.0 0.12 850 89 <001 10x10° 83 <001
200214_224526* HLV 013 13.1 091 = = = = = = = = =
200219_201407 HLV - - - - - - 0.22 13.6 0.48 - - -
GW200311_103121  HL = = = 110 90 <00l 13 9.0 0.03 13 9.2 0.19

Table 3.2. Marginal candidates found by the various analyses. The candidates in this table have a FAR
below a threshold of 2.0 yr™! in at least one analysis, but were not found with pago that meets the
threshold for Table 3.1. Detector-identifying letters are the same as given in Table 3.1. The instruments
for each candidate are the ones which were operating at the time of the trigger, and are not necessarily
the same as those which participated in the detection. The candidates are named according to the same
convention as in Table 3.1 except that here we omit the GW prefix for the candidates found to be likely
caused by instrumental artifacts, indicated with an asterisk (). Where a candidate was seen below the
FAR threshold in at least one analysis but above threshold in others, we include in ifalics the information
on that trigger from the other analyses as well where available. As in Table 3.1, the dagger (}) indicates
a candidate found by a single detector with the GstLAL analysis. Reprinted from [13]

to be from instrumental artifacts. During all three events, one or both of the detectors were
known to contain loud glitches during or around the trigger time. During 200121_031748,
LHO contained a loud blip glitch and this glitch was recovered by GstLAL and PyCBC at a
FAR of 58 and 1.1, respectively. The low FAR from PyCBC caused this event to be classified as
a marginal event and highlights the uncertainty of the events in this category. 200214_224526
was recovered only by cWB, and during this event LLO and LHO both contained fast scattering
glitches. MBTA alone recovered 200219_201407, and LHO had many loud glitches present in
a small range around the event time.

Of the remaining four marginal candidates, a subset of three of them were recovered by
PyCBC, MBTA, and GstLAL. As a potential NSBH detection during single detector time by
GstLAL, GW200105_62426 will be discussed further in the next section. GW200311_103121
is a potential BNS event recovered significantly by MBTA and PyCBC at a FAR of 1.3 per
year, and with a less significant trigger from GstLAL with a FAR of 110 per year. If real, this
event has a template consistent with a chirp mass of only 1.17M making it an extremely light
system. However, its p,qo Of less than 20% from either pipeline make it a marginal event, and
only more observations will better inform the origin of this candidate. The other two events
GW191118_212859 and GW200201_203549 have templates consistent with a BBH source,
but are only included here because of the significance reported in a single pipeline and full
parameter estimation has not been done on these events.

There are additionally 1041 more events which do not pass the p,y, or FAR thresholds for
inclusion in either the candidate or marginal event table, but do pass a FAR threshold of 2 per
day. These sub-thresholds events have generally not been followed-up on, or examined further
by the collaboration, but are used in some rate estimates as discussed further in the next section.
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3.2.1.1 Potential NSBH Events

Of the 35 candidates in O3b, GW191219_163120, GW200115_042309, GW200210_092254
and GW200105_162426 were the only which were consistent with a NSBH system, that is with
one mass less than three solar masses. As introduced in section 1.2.2, the shape of a neutron
star can be changed in the presence of tidal forces from its companion in a binary. How easily
the neutron star is deformed is governed by its tidal deformability, A, and its value is imprinted
on gravitational waveforms at fifth PN order. Therefore, it may be possible to determine if any
GW binary contains a neutron star simply by measuring its tidal deformability as imprinted on
the waveform. Unfortunately, at current detector sensitivities the SNR of any event containing
a neutron star would have to be quite large in order to constrain the tidal deformability since it
enters at such a high order. This has been the case for GW170817 [17], and continues to be so
here. Therefore, these events are considered to be NSBH solely by their inferred mass ranges.

GW200115_042309 in particular has the lowest total mass of all binaries in O3b. Its

source masses are estimated at m; = 5.9%) M, and m, = 1.44°%., and a chrip mass of
M, = 2.43°05 M, [13]. At these masses, the primary is consistent with a black hole while the

secondary is consistent with a neutron star. The black hole primary additionally has a 29%
probability of having a smaller than 5M; mass [59] where 5M,, is the theorized lower black
hole mass gap [60]. However, despite the 31 GCN Circulars reporting follow-up observations
for this event, none of them, to date, claim an EM counterpart [59].

GW200105_162426 is a possible NSBH candidate, detected only by GstLAL as a single
detector candidate with a FAR of 0.2/yr. Its primary masses are quoted at just m; = 9.1{'17.7M@
and my = 1.91°%33, M, [59], making it the second-lightest total mass system in the catalogue.
Its paswo €Stimate, however, causes it to appear in the marginal event table instead of the full
candidate list. At the time of detection, Livingston and Virgo were operating, but the signal
was only recovered in Livingston. While PyCBC, MBTA, and GstLAL all have triggers from
Livingston at that time, only GstLAL considered it as a candidate because of its single-detector
status. However, both in real-time and offline GstLAL recovered it with a significant FAR of
0.36/yr and 0.2/yr respectively. The event is a clear departure from the background noise, and
is distinct from all other noise events across the entirety of O3 — including other single detector
events [59]. As there has only been O(1) NSBH event up to this point, it is possible that the
uncertainties in the p,y, estimate cause it to falsely fall below the threshold for full inclusion.
Unfortunately, there is no way to currently know whether this event will ever be promoted to a
full candidate as improved merger rates and more accurate population models can only come
from more detections. Additionally, of the 21 GCN circulars for this event, no EM counterpart
has been reported [59].

GW200210_092254 seems to be another potential NSBH, but is thought to be more
consistent with a high mass ratio BBH. Its primary source mass is easily consistent with
a black hole at m; = 24.11'2.6Mo, while its secondary mass is of more uncertain classification
at my = 2.83%" M. The secondary mass has a probability of 76% for being less than 3M,,
and therefore sits above the hypothesized maximum NS mass of approximately 2M,, [61], but
below the lower mass bound on black holes [60]. This is in similarity to GW 190814, whose
component masses followed a similar pattern. However, given the more stringent bound on the
upper mass limit now known for neutron stars, it is more likely that the the secondary mass is
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an extremely light black hole.

GW191219_163120 has a secondary mass which is the lightest in the catalogue. Its primary
masses are inferred as m; = 31.172 M, and mp = 1.17%0 0! M. This secondary mass is so light
that it is consistent with some of the lightest known neutron stars and makes the mass ratio
of the binary at ¢ = 0.038*0% so extreme that it is difficult to model. Otherwise, its primary
mass is consistent with a black hole. This candidate was recovered only by the PyCBC-broad
analysis at a FAR of 4 per year. As this FAR does not meet the traditional threshold, it is not
included when calculating astrophysical implications in many analyses such as the ones done
for GW200105_162426 and GW200115_042309 in [59].

This leaves two significant and confident NSBH events. Previously, there were only two
potential NSBH events recorded with signficance: GW190814, and GW190426. However,
GW190814 is now believed to be a BBH with a significantly light secondary mass and no
longer consistent with a NS. These two events then contribute significantly to the total number
of NSBH events observed to date by gravitational waves, and this has impacts on the rate and

populations of both compact binaries of this source type.

3.3 Impact on Merger Rates and Mass Populations

The additional 35 events discovered during O3b have had an impact on the estimated rates
and populations of CBC sources — particularly those with asymmetric mass ratios. Here,
we summarize the results of [6], but a full treatment can be seen there. We classify three
populations by dividing the mass parameter space. NS masses lie between 1 —2.5M,, and BH
between 2.5 — 100M,, where a BNS has two NS components, an NSBH one NS and BH, and a
BBH has two BH. Note that this division is slightly different than the one used to label p,, €.2.
in the previous section where the NS range was 1 — 3M,,. The merger rates are calculated as:

dN
dV.dt

where R, is the local merger rate density at z=0, and « is the parameter which controls the
evolution of R at higher redshift. Generally, because of the sensitivity of our detectors, most
BNS and NSBH detections only go out to a modest redshift, and therefore rates are calculated
at k = 0. However, for BBH populations this is not the case and so merger rates must be
discussed as both a function of mass and redshift.

With these classifications, the BNS merger rate including the new GWTC-3 data is given
as 105.57%*Gpc~?yr~". In this calculation, it was assumed that the merger rate is constant
out to z=0.15, and spin magnitudes are less than 0.4. This is only about a third the rate of the
previously quoted 320"530G pc~>yr~! which considered data through GWTC-2 [62]. However,
as there were no BNS detections during this period, this is to be expected.

For the NSBH population, we discuss a few different methods for a rate calculation
following [59], constituting the first direct measurements of the NSBH merger rate. First, we
only consider the two confident NSBH events GW200105 and GW200115 and treat each as one
Poisson distributed count in the observing time up to the end of O3b. The two event-based rates
for these events are then given as Ropoi0s = 16*75Gpcyr™!, and Ropor11s = 36*5:Gpe—yr™

R(z) =

(2) = Ro(1 +2)" (3.1)
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assuming an uninformative prior. Combining the two, the total event-based rate is then
RnseH = 45f;§GPC_3W_1-

Second, we consider not just these two events but additionally all less significant triggers
who fall into the mass ranges of m; € [2.5,40]M, and m, € [1,3]M, such as GW191219.
Then, using the population of GstLAL triggers which fall in that range, the VT is calculated for
the NSBH region, and the joint likelihood on Poisson parameters in the NSBH region, Axspy-
The rate is then given by the joint likelihood over the VT as Rysgu = 130%35°Gpc~>yr™". This
rate is higher than the event-based rate, but includes more events as NSBH detections than the
event-based rate does and events like GW 190814 fall into this region.

Additionally, the mass population of NS specifically in binaries can be calculated using
events up to the end of O3b. The mass distribution for these NS shows a flatter shape with
more broad support up to a higher mass than the double-peaked Galactic NS distribution.
Additionally, the maximum mass in the population is around two solar masses, while the
galactic distribution supports up to 2.2 solar masses. However, the error in this measurement
remains large, and more detections are needed to reduce the errors.

The excess of large mass ratio events in this catalog contribute significantly to the merger
rate for masses between 1 — 10M,,. They cause a drop off in the event-based rate after BNS-like
masses, with a further peak around high mass ratios consistent with NSBH masses, and then
a final peak around equal mass BBH events. This structure can be seen clearly in Figure
3.1 for three models used in this analysis: Mulit-Source (MS), Power-Dip-Break (PDB) [63],
and Binned-Gaussian-Process(BGP) [64] as well as a Fisher Matrix (FM) implementation for
comparison. Because the NSBH rate occurs at a rate higher than BBH, but lower than BNS, it
increases the rate of objects in the low mass BH region. This makes the event-based rates for
mergers with one component in the mass gap between 2.5 — 5M,, constrained to be less than
that of the BN'S merger rate, but consistent with the BBH rate.

Additionally, the BBH rate as a function of redshift and mass has been affected by the
detections in this catalogue. First, the sub-structure in the merger rate as a function of primary
mass posited in GWTC-2 [51] has been confirmed by the clustered mass of the BBH events
discovered in O3b. This shows an over-density in the merger rate at primary masses around
my = 10703 M., and again, although with less intensity, at m; = 35} M. Additionally, the
mass spectrum as a whole decays more rapidly than what was seen in GWTC-2 as the new
observations in O3b contain more low mass systems.

The evolution of the BBH rate as a function of redshift following equation 3.1 also changes
with these new detections. This can be seen in Figure 3.2 along with the equivalent calculation
from GWTC-2 in the top panel, and the Madau—Dickinson star formation rate model in
the bottom panel. We measure the merger rate the best around z = 0.2 as R(z = 0.2) =
19 - 42Gpc~?yr~'. Additionally, we characterize « using these latest observations as k = 2.9* 2
which is a higher values than that assumed from GWTC-2.
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Figure 3.1. Rate density versus component masses for different models inferred from events with FAR <
0.25yr~!. Top left panel: Rate density computed with the FM model assuming no redshift evolution, for
binary black holes only. Top right panel: Rate density inferred with the BGP model using all compact
objects. Bottom left panel: Rate density inferred with MS. For mergers involving typical BH, this model
strongly favors equal-mass mergers. Bottom right panel: Rate density inferred with PDB. Reprinted

from [6]
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Figure 3.2. Constraints on the BBH merger rate with redshift. Top: Posterior on the power-law index «
governing the BBH rate evolution, which is presumed to take the form given in equation 3.1. The blue
histogram shows our latest constraints using GWTC-3 , while the dashed distribution shows our previous
constraints under GWTC-2. Bottom: Central 50% (dark blue) and 90% (light blue) credible bounds
on the BBH merger rate R(z). The dashed line, for reference, is proportional to the rate of cosmic star
formation [7]; we infer that R(z) remains consistent with evolution tracing star formation. Reprinted

from [6]
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Chapter 4

Real-Time Gravitational Wave De-
tection During LIGO, Virgo, and
KAGRA'’s Fourth Observing Run

The LIGO and Virgo collaboration’s fourth observing run began on May 24th, 2023 with a
planned end date of February 2025. The observing run was split into two halves. The first
half, O4a, ran from May 24th, 2023 to January 16th, 2024 with a preceding engineering
run from April 26th to May 23rd, 2023. During this time, the LIGO Livingston (LLO) and
LIGO Hanford (LHO) detectors operated on average between 140 and 150 Mpc, and the Virgo
interferometer did not participate. The second half, O4b, started on April 10th, 2024 and with a
preceding engineering run from March 20th to April 10th of the same year. LIGO Hanford,
LIGO Livingston, and Virgo plan to participate with LHO and LLO at similar or slightly better
sensitivities than O4a, and Virgo operating at around 50Mpc. Unfortunately, KAGRA’s plans
of joining O4b have been set back due to the January Ist, 2024 earthquake which caused
considerable damage in the region, and they now plan to begin operations in 2025.

The same gravitational wave detection pipelines which searched for a wide range of compact
objects (AllSky) in O3 are now also participating in O4 including GstLAL [9], PyCBC [56],
MBTA [55], SPIIR [57], and cWB [54]. New to O4, however, are low-latency targeted searches
for sub-solar mass objects (SSM), operated by GstLAL and MBTA, and early-warning (EW)
detection, operated by GstLAL and PyCBC. In addition, PyCBC and MBTA began analyzing
single detector candidates for low-mass sources, while GstLAL continues to analyze all single
detector data for any source.

Ahead of O4, I worked on the development team for the GstLAL pipeline and for the data
quality pipeline iDQ (see Ch 6) implementing bug fixes, general improvements, and more in
preparation for the observing run. I additionally lead the effort on operating the pre-engineering
analyses discussed in detail in section 4.2.2 before the run began. During O4, I was a lead
member of the low-latency operating team for both GstLAL and iDQ, ensuring optimal uptime
and accurate scientific output during live data collection. As part of this effort, I spear-headed
the implementation of low-latency injection recovery with GstLAL for the first time in O4a,
including adding the infrastructure necessary for availability of these injections, as discussed in
more detail in Ch 5.

The following chapter summarizes the initial results of the low-latency O4 gravitational
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wave search using information available to the public at the time of writing. We begin by
describing detector upgrades ahead of O4, and the improvements to the GstLAL All-Sky
detection pipeline. We then briefly discuss the implementation of a GstLAL analysis which
operated before the official start dates of the observing run. Finally, we summarize the
performance of the GstLAL All-Sky analysis ahead of the fourth observing run, and discuss
initial publicly-available detection results from O4a.

4.1 Detector Upgrades

The LIGO Hanford (LHO) and Livingston (LLO) detectors both experienced hardware upgrades
between O3 and the start of O4. These are discussed in detail in [8], but a summary is provided
here. Both sites increased the input laser power, and replaced and upgraded a subset of mirrors
and mirror coatings. As discussed in section 1.3.2, increasing the input laser power increases
sensitivity at high frequencies and decreases it at lower frequencies. To combat this effect,
frequency dependent squeezing was implemented at both sites.

Ahead of O3, squeezed light sources were introduced as discussed in Chapter 3. These
squeezed light sources reduced the photon shot noise at the expense of increasing radiation
pressure noise across the frequency spectrum. Radiation pressure noise dominates at low
frequency, so increasing its effects in that regime decreases the overall sensitivity of the detector
in that region. A frequency-dependent squeezer mitigates this effect, and was implemented
at both LHO and LLO ahead of O4a. Frequency-dependent squeezing reduces the radiation
pressure noise at low frequency and increases the shot noise at that frequency. Unlike frequency-
independent squeezing, however, the opposite is implemented at higher frequencies resulting in
an improvement in sensitivity across the frequency spectrum.

Each of the detector sites also face unique challenges, and therefore additional unique
improvements were made at each as well. At Livingston, glitches caused by logging were one
of the most frequent noise transients present in the detector as classified by GravitySpy [25].
The ground motion created by logging practices caused resonances in the optics designed to
prevent scattered light from recombining back into the main laser beam. Therefore, dampeners
were added to these optics in order to decrease the response of these resonances.

At Hanford, meanwhile, electronic noise from changes in the local electric field was
mitigated. The system suspending the main mirrors in the interferometer has four stages and
the final stage of this system implements electrostatic drives (ESDs) to hold the mirror in place
via electric force. However, changes in the local electric field can make the force applied by the
ESDs vary, resulting in slight variations in the positions of the main mirrors. The wires attached
to the ESD systems were grounded, making then more insensitive to these local variations.

The improvements resulted in an increase in sensitivity at both sites between O3 and O4.
The differences between the PSD of the detectors representing this improvement can be seen in
Figure 4.1.
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Figure 4.1. Noise sensitivity curves of LIGO-Hanford(H1) and LIGO-Livingston(L.1) at the end of the
third observing run (0O3), and at the start of the fourth (O4a). Reprinted from [8].

4.2 Methodology of the Real-Time GstLAL Analysis ahead
of O4

4.2.1 Improvements Ahead of O4

4.2.1.1 Signal Contamination Removal

As discussed in 2.1.5, histograms of single detector events during coincidence time are pop-
ulated to support the calculation of the P(g, 52|9, n) term in the likelihood ratio. However,
occasionally only a single detector will register a real gravitational wave event during observing
time when more than one detector is collecting science quality data. This can happen if, for
example, an event is in one detector’s blind spot, or if one of the detectors participating has a
higher sensitivity than another. In this case, the analysis by default marks this event as noise,
and adds the corresponding samples to the noise histogram. Samples corresponding to a real
signal fall into a space in the noise histogram that is sparsely populated, and application of a
KDE exacerbates this effect. An example of this can be seen in the left of Figure 4.2.

The noise background histograms track the frequency at which noise events lie in the SNR,
&£ space. Therefore, adding true-signals to the noise histogram makes it appear that noise events
occur in the same SNR, &2 space as real gravitational waves. If not rectified, this contamination
from real events can therefore result in a decrease of the likelihood ratio for true gravitational
wave events by falsely inflating the P(g, §3|9, n) term.

To mitigate this, a new feature was added to the analysis which allows these samples to be
removed by the operating team [49]. Now, any time an event is uploaded to GraceDB, a record
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Figure 4.2. Noise background distribution from a single background bin in the GstLAL analysis. Left:
The bin when contaminated with a real gravitational wave event, thereby extending the background
support outside of its regular space. Right: The same background bin which has had the counts removed
for the gravitational wave event in question.

of the samples added to histograms around the event time is kept. Then, if a single-detector
candidate is registered with a significance above the open public alert threshold, operators can
manually mark these event times for signal contamination removal. Times flagged following
this method have samples removed in a ten second window around the event time across
template bins thereby removing the effects of real signals from the noise background. The end
result of sample removal can be seen on the right of Figure 4.2.

4.2.1.2 Combo-¢? Implementation

Recall the £ signal consistency check from 2.1.5, denoted as &2 here. This was a consistency
check in the time domain and compared the SNR timeseries of the incoming signal when
matched with a template to the SNR timeseries expected from the template. However, there can
also be signal consistency checks in other domains. The f,%, or bank-&2, check compares the
complex SNR timeseries (defined in 2.25) from the signal and template in question with same
result from the signal and other templates in the same bin. While £ implemented the residual
SNR from the auto-correlation of the template, &; estimates the residual SNR from the match
of the template a with its neighbors weighted by the peak of the detected SNR timeseries in
template a, or [49]:

) _ <O 105101 = palO1(Chglha)
&= T 2 ylho P &
where
(hglha) = ) hglelhy 7] (4.2)

Note that the summation here is over the nearby templates in the bank, and not time as it was
for &2.
& can then provide complimentary information to &, and the two were combined ahead of
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04 to make one &? variable [49]. This combination, called ffb is given as:

1
& = o, N+ Noti) (4.3)

where N, and N, are the denominators, or normalization factors, of 4.1 and 2.28, respectively.
This new fb value was tracked over the course of O4a, but was not implemented in the
likelihood ratio. There are plans to do a full comparison of the likelihood ratio with and without

the implementation of & using this data to determine if it will be used in the future.

4.2.2 Pre-Engineering Analyses

Ahead of an observation run, before even an engineering run begins, detector commissioners
perform maintenance, implement features, and test configuration changes. During this pre-
engineering time, detectors may be operational, but the quality of the data and the detector’s
sensitivity is not guaranteed. Pre-engineering data has never historically been utilized by
detection pipelines because of the data quality and availability uncertainty associated with it.

However, gravitational waves can arrive at any time and another event like GW 170817
could occur during this under-utilized observing time. An exceptional gravitational wave
detection during this time would require additional vetting and verification which exceeds
that of any detection made during production-quality observing time, but the cost would not
outweigh the scientific gains of another multi-messenger event detection. Therefore, ahead
of both halves of O4, the GstLAL pipeline dedicated resources to running one half of the
full checker-boarded analysis during these pre-engineering times. The considerations for data
availability and quality required for analysis of this data as well as preliminary findings are
discussed in the following sections.

4.2.2.1 Data Acquisition

Ahead of O4, the architecture of data streaming changed for the low-latency analysis use case.
Data is now streamed from the detectors to RAM on computing clusters in gravitational wave
frame files (.gwf) files. Each file contains a variety of information about the strain data, detector
state, and data quality in one second durations. The GstLAL analysis was updated to read this
data as it becomes available and extract the relevant information.

Typically, it is guaranteed that these data files arrive from every detector for every second
of the observing run — even when the detector is not producing science quality data. During
pre-engineering times, however, the detectors and data distribution system are not guaranteed
to be fully functional. Intermittently, then, there can be data distribution issues which cause
data from one, or many, detectors to either arrive at some delay, or stop arriving all together.

In these cases, it’s desirable that detection pipelines continue to produce scientific output
on any remaining available data. Ahead of O4, functionality was added to the GstLAL analysis
that adds support for this case. If the analysis does not receive new data for longer than a
tunable wait time, then it creates null data in its place. In this way, the pipeline as a whole can
continue to produce output with an additional latency equal to the wait time instead of halting
production all together. Ahead of O4, this wait time was set to one minute to allow for minor
fluctuations in data availability, while maintaining optimal uptime.
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4.2.2.2 Data Quality Considerations

Gravitational wave data contains state vectors which provide information about whether or not
the data is considered production-level quality. During pre-engineering times, the state vector is
never set to indicate that the data is ready for analysis, so the GstLAL pre-engineering analysis
must operate ignoring this state vector information. Without this, however, all information
about the state of the detector is lost and the data is analyzed no matter the detector state.

Frequently, commissioning activities cause extremely loud and long duration glitches which
would typically not be present during this time. The internal gating scheme in GstLAL is
designed to handle brief departures from the norm as described in 2.1.3, and it handles the
majority of these transients well. However, when these transients are extremely frequent, the
frequency spectrum of the data can have large amplitude spikes at the frequency corresponding
to the local glitches. Then, when whitened, the average must come to 1, meaning that the
power in this one frequency bin is spread into the surrounding bins. This can cause the noise
floor of the detector to seem artificially inflated, thereby creating a range much smaller than
expected. Additionally, the calibration of the strain data during these times is highly uncertain.
The calibration is typically not yet tuned to any changes made to the detector since the last
observing run, and commissioning activities cause highly irregular behavior in the output
channels used to reconstruct the strain. These combined effects can make the calibration errors
large, and therefore introduce systematic error of factor a few in the range calculation (see Eq
1.29) as well.

A skewed range calculation then has a cascading effect into the likelihood ratio and sig-
nificance estimations. Therefore, an additional gate was added specifically for use during this
pre-engineering time which removes data based on the calculated range, effectively acting as
a state vector for the analysis. A minimum range of 10Mpc was enforced with a maximum
of 600Mpc. For reference, the standard range of the detectors during O4 was between 100
to 150Mpc, so this was a fairly conservative implementation mainly used to bound the most
extreme calibration uncertainties.

Maintenance activities and atypical glitches can also pollute the noise background his-
tograms in a similar method as real gravitational wave signals. The noise triggers generated
during these times will not accurately represent the typical noise parameter space, and can
therefore skew the likelihood ratio and FAR calculations for any real gravitational wave. Ahead
of O4b, however, this effect was mitigated by initially populating the background histograms
with data collected over the course of O4a. This allowed the bulk of the histogram to be
representative of typical detector behavior, and then adjusted by the most recent data over time.
Therefore, the likelihood ratio and FAR estimations were more robust for the duration of the
analysis.

4.2.2.3 Pre-Engineering Results

During the pre-engineering analysis ahead of O4a, three possible candidates were identified.
Two of these generated a significant SNR in one of the two detectors operating at the time,
and without further follow-up, this increases the chance that these are false alarms. The third
candidate, however, was coincident between the detectors on April 24th, 2023 with a FAR that
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crossed the threshold for typical inclusion as a gravitational wave candidate. A spectrogram of
this event similarly shows the chirp morphology of a GW in both detectors at the event time.
Unfortunately, this pre-engineering analysis was not configured to upload candidate events
to GraceDB for analysis, and so no notification of this candidate was distributed to the wider
community. As none of these events were thought to contain exceptional source properties,
there was no additional follow-up by the collaboration, and none is expected. During the
engineering run itself, the pre-engineering analysis also identified two additional candidates,
along with other search pipelines running at the time. Both candidates passed the typical FAR
threshold, and recovering events in coincidence with other searches validates the effectiveness
of the pre-engineering search. At the time of writing, details of these pre-engineering events
are unfortunately not publicly available, and therefore not discussed in more detail here.

The pre-engineering analysis ahead of O4b is ongoing at the time of writing. It is currently
configured to upload findings to GraceDB, and has been bootstrapped with the noise background
from O4a, making it more likely to accurately recover events. Before the engineering run
began, it recovered 5 significant candidates and initial follow-up of these events is promising.

4.3 Od4a results

4.3.1 Performance of GstLAL Ahead of O4a

As discussed in the previous sections, the low-latency GstLAL All-Sky search pipeline received
several updates ahead of O4a. We will summarize here the performance of those updates on a
known set of data following [9]. In the preparation for O4, a Mock Data Challenge (MDC) was
designed to replay data from O3 as if it were live from the detectors. The original strain data was
available alongside simulated waveforms with known parameters embedded in strain data, or
an injection set. This allowed searches like GstLAL to operate their low-latency configurations
over this data as if it were real-time thereby testing the sensitivity and performance of their
pipelines.

Here, we test the GstLAL analysis using an MDC covering forty days originally recorded
from Jan 5th, 2020 to Feb 14th, 2020 and replayed in April of 2023. This data contains strain
information from LHO, LLO, and Virgo, and we report on operation by GstLAL analyzing
strain data from all three detectors, despite O4a only have LHO and LLO participation. The
details of the injection set used in this MDC can be found in [65], but it generally mimics the
expected astrophysical distribution. This results in a total of 5,000 injections throughout the
duration which lie in the parameter space covered by the template bank (see section 2.1.1) and
beyond it.

The sensitivity of searches is typically measured in terms of the sensitive time-volume, or
(VT). In order calculate (VT), we first define the efficiency, € of a search. The efficiency is
calculated per FAR threshold, and per luminosity distance bin, D;, as [9]:

Niowna(FAR, D
e(FAR, D) = — dz(v L) (4.4)
total

where Nyouna(FAR, Dp) is the number of recovered injections at the FAR and D, bin, Ny 1S
the total number of injections irrespective of FAR and distance, and the D; bins are created
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Figure 4.3. (VT) for the GstLAL analysis over the course of an MDC in each source class for a variety
of FAR thresholds. Note that the drop in (VT) in the BNS and NSBH regions are not due to their
efficiency, but their source classes. Reprinted from [9]

by dividing the total injection set by the luminosity distance of the injected waveforms. We
additionally enforce that the injections counted in Ny, and Niyung have an injected decisive
SNR of at least 8 where the decisive SNR is given by the SNR of the second most sensitive
detector participating. This ensures that injections which we would not expect to recover, such
as distance BNS, are not included in this estimate. The (VT) is then given as:

Dhign
(VT(FAR)) = 47T f €(FAR, D,)D?dD; (4.5)

Diow

where Dy, and Dy, are the nearest, and farthest luminosity distances in the injection set, and
T is the observing time. In the limiting case of e(FAR, D;) = 1, then this returns the expected
(VT) of the injection set, (VT);,;. The (VT) of the analysis is then split into multiple source
classes by only considering injections in the mass range given by the source classification. The
result of this over the course of the entire MDC can be seen in Figure 4.3.

This figure shows that the (VT) decreases with the increasing FAR threshold. Fewer
injections will be found at increasing confidence of the increased FAR threshold, and therefore
the fraction of found injections will decrease along with the (VT). A decreasing (VT) with
decreasing source class mass is also clear in the figure. Heavier mass systems at similar
distances radiate more energy in gravitational waves, and therefore induce a larger strain in the
detectors and a generally larger SNR in searches. A heavier mass system then can be detected at
a larger distance with the same SNR as a lower mass system at a smaller distance. This results
in the (VT);,; for lower mass systems being smaller at the outset, so even if the efficiency in
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FAR(Hz) | BNS | NSBH | BBH
278e-4 | 095 | 0.77 | 0.87
231e-5 | 094 | 0.71 | 0.84
3.85e-7 | 0.89 | 0.65 | 0.75
3/16e-8 | 0.86 | 0.62 | 0.69

Table 4.1. Injection efficiency of several source classes by the GstLAL analysis at a variety of FAR
thresholds. Re-created from [9]

that mass range is higher, the (VT) will still be worse. Such was the case here, as can be seen
in Table 4.1 which shows the efficiency of these same source classes.

Table 4.1 shows that the efficiency of the recovered injections decreased with increasing
FAR, again because of the increasing confidence. It also shows that our analysis had the highest
efficiency for BNS systems, and the worst efficiency for NSBH systems. We found over the
course of the MDC that there were several high SNR injections which we would expect to
recover that were actually missed by the analysis. These typically lived in the high mass BBH
and NSBH space, and therefore negatively affect the efficiency of the NSBH and BBH regions.

Follow-up showed that these injections fell outside of the SNR-£? region used in the signal
model of the likelihood ratio. As described in 2.1.5, the &2 test depends on a mismatch between
a template from the bank and the recovered SNR timeseries, but the template bank is sparse in
the high mass region. Therefore, the allowed mismatch had evidently been set to a range small
enough that it was excluding these events. As a result, this mismatch range was tuned ahead
O4a to allow for more dissimilarities in these regions while taking care not to make it so wide
as to allow noise to fall within it.

There are additionally nine known gravitational wave events previously published in GWTC-
3 [13] which occur during the time period covered by this MDC. Details of the recovery of
these events are given in [9], but we will discuss a summary here. Three of these events were
detected by the original GstLAL online analysis operating during O3 at a FAR threshold of less
than one per year. Two others were detected by the O3 online analysis at a FAR too high for
significance, but low enough to be uploaded to GraceDB.

Seven events, including all those detected by the O3 online analysis, were recovered by the
MDC analysis ahead of O4 at or above the significant FAR threshold showing a performance at
par or better than the O3 online analysis. Of the two remaining events, both were recovered by
the MDC analysis, but not significantly. However, the fact that either were recovered, even at
low significance, is an improvement over the O3 online search.

4.3.2 Public O4a Results

There were 81 total low-latency public events during O4a which were uploaded to GraceDB
[14], and which all had subsequent Gamma-ray Coordinate Network (GCN) notices sent
to the public. If all pass the candidacy thresholds, these nearly double the total number of
gravitational wave candidates to date. There were additionally 11 retractions over the course
of O4a, as displayed in Table 4.2. A retraction is an event for which there was a public alert
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Superevent ID Pipeline P(astro) FAR(Hz) | Time to Retraction (Hours) | GCN
S231112ag GstLAL Allsky 1.0 BBH 1.061e-14 2 [66]
S231030av SPIIR EW 0.93 BNS | 4.215e-08 0.33 [67]
S$230918aq PyCBC EW 0.79 BNS | 5.418e-08 0.66 [68]
S$230830b SPIIR Allsky 0.8 NSBH | 1.148e-10 1 [69]
S230810af SPIIR EW 0.99 BNS | 2.905e-08 0.66 [70]

S$230808i c¢WB BBH 0.99 Terr | 6.851e-11 4 [71]
S230715bw SPIIR Allsky | 0.91 NSBH | 7.843e-09 11 [72]
S230712a GstLAL Allsky | 0.99 BBH | 3.269e-15 1 [73]
S230708bi GstLAL Allsky | 0.99 BBH | 1.113e-09 0.66 [74]
S230622ba MBTA 0.87 BBH | 5.180e-08 0.5 [75]
S$230524x PyCBC EW 0.75 BNS | 7.224¢-08 10 [76]

Table 4.2. Retracted public alerts over the course of O4a labeled by their GraceDB [14] superevent ID.

sent, but which was later confirmed to be of terrestrial origin. GstLAL contributed 3 of these,
while SPIIR EW, SPIIR AlISky, and PyCBC EW all contributed 2, and cWB and MBTA
just one. Of these retractions, only one was labeled confidently as a terrestrial event via its
low-latency p.qro and five of the eleven were labeled as potential binaries containing a neutron
star. Gravitational waves from binaries containing neutron stars are the sources most likely
to produce EM radiation and are therefore of particular interest to astronomers and external
laboratories. It’s especially important then that event alerts for these binaries which are found
to be of terrestrial origin are quickly retracted by the LIGO collaboration when possible. From
Table 4.2, we see that this is generally the case and that most retracted events were retracted
within an hour of their original notice. This table highlights the importance of prompt vetting
by experts for any low-latency event.

Of the events which were not retracted, there were 81 above the public alert threshold, and
these results can be seen in Table 4.3. The participating pipelines each recovered a different
number of events at or below this threshold. GstLAL, PyCBC, cWB, MBTA, and SPIIR
recovered 62, 38, 36, 19, and 19 events respectively below a FAR threshold of 2 per year
and a trials factor of 5 where this threshold is chosen following the latest GW catalogue,
GWTC-3 [13]. Above the same FAR threshold, GstLAL, PyCBC, cWB, MBTA, and SPIIR
recovered 19, 19, 21, 43, and 34 respectively, and these events are marked in italics in Table 4.3.
Note that FAR threshold for public alerts is 2/day and so there will be some events reported in
Table 4.3 which no pipeline recovered above the 2 per year threshold.

The pasuo value displayed in Table 4.3 corresponds to the with the highest SNR out of all
the participating pipeline’s triggers for each superevent. All but two of the public events were
confidently classified with a p,, consistent with a BBH. S230529ay, aka GW230529, will be
discussed in detail in the following section. S230627c, meanwhile, has a p,y., of 49% NSBH
and 48% BBH reported by PyCBC, but a greater than 99% chance of being a BBH as reported
by GstLAL. More follow-up will need to be done on this event to discover its true nature, but
the differing reports between pipelines decreases the certainty of a NSBH origin.
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Superevent Instruments  pastro FAR (Hz) GCN
GstLAL PyCBC SPIIR MBTA CWB
$240109a H1 0.995 BBH 7.35e-09 [77]
$240107b HI,L1 0.966 BBH 5.83e-08  4.76e-06  2.16e-06  1.28¢-06  7.34e-08  [78]
$S240104bl1 H1 1.0 BBH 3.55e-17 [79]
S231231ag H1 1.0 BBH 8.35e-15 [80]
S231226av H1,L1 1.0 BBH 1.11e-50  3.17e-10 1.58e-09  6.65e-11  [81]
S231224e HI,L1 0.996 BBH 7.46e-26  3.17e-10 1.53e-09 [82]
$231223j HI,L1 0.999 BBH 1.11e-09  3.01e-08 6.15¢-08  4.31e-09  [83]
S231213ap HI,L1 1.0 BBH 6.08e-12  6.34e-10  1.27e-08  9.73e-08  3.26e-09  [84]
S231206cc H1,L1 1.0 BBH 1.93e-35  3.17e-10  5.09e-16  1.58e-09  6.35e-11  [85]
S231206ca H1,L1 1.0 BBH 7.49-21 3.17e-10  1.29e-10  2.65e-08  4.45e-10  [86]
S231129ac HI,L1 0.986 BBH 1.76e-08 7.64e-05 3.5e-06 [87]
S231127cg H1,L1 0.996 BBH 5.81e-09  1.83e-07  2.03e-06  8.82e-07  4.4e-09 [88]
S231123cg H1,L1 1.0 BBH 0.000186  3.17e-10 6.48e-11  [89]
S231119u HI1,L1 0.955 BBH 7.43e-08 7.7e-05 0.000103  2.12e-06  [90]
S231118an HI,L1 0.743 BBH 1.71e-12  3.17e-10  7.48e-08  1.56e-09 [91]
S231118ab HI,L1 0.985 BBH 2.82e-10  9.44e-07 1.9¢-08 1.07¢e-07  1.67e-09  [92]
S231118d H1,L1 1.0 BBH 1.33e-12  3.17e-10  3.23¢-08 1.27e-05  [93]
S231114n H1,L1 1.0 BBH 7.06e-12  3.17e-10 3.1e-09 9.38e-09 [94]
S231113bw | HI,L1 0.789 BBH 7.17e-11 1.36e-08 9.1e-07 1.57e-09  4e-05 [95]
S231113bb | HI,L1 0.965 BBH 5.6e-08 3.21e-06 [96]
S231110¢g H1,L1 0.968 BBH 2.58e-14  3.17e-10  1.93e-08 1.5e-09 [97]
S231108u H1,L1 1.0 BBH 7.03e-25  3.17e-10 8.1e-08 1.34e-09  6.56e-11  [98]
S231104ac HI,L1 0.996 BBH 5.8e-18 3.17e-10 [99]
S231102w HI,L1 1.0 BBH 1.68e-15  3.17e-10  5.84e-23 1.68e-09  6.47e-11  [100]
$231029y L1 1.0 BBH 2.16e-10 [101]
S231028bg | HI,L1 1.0 BBH 7.63e-31  3.17e-10 1.7e-11 6.42e-11  [102]
S$231020bw | HI,L1 1.0 BBH 3.45e-10 [103]
$231020ba HI,L1 0.912 BBH 3.31e-17 1.27e-09  6.38e-13  2.84e-08 [104]
S231014r HI,L1 0.992 BBH 1.03e-08 5.2e-07 4.08e-06  1.98¢-06  [105]
$231008ap H1,L1 0.999 BBH 1.53e-09  4.56e-07 2.8e-07 1.01e-06  9.54e-05  [106]
$231005ah H1,L1 0.998 BBH 2.05e-09  2.18e-05  7.75¢-05  2.79¢-06  5.24e-07  [107]
S231005j HI,L1 0.978 BBH 3.22e-08  1.39e-05 2.79e-06  5.7e-09 [108]
S231001aq HI,L1 0.996 BBH 4.97e-09  6.34e-10  7.49¢-06 4.2e-07  2.6e-10 [109]

( To be continued)
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Superevent Instruments  pastro FAR (Hz) GCN
GstLAL PyCBC SPIIR MBTA CWB
$230930al H1,L1 0.994 BBH 7.38¢-09  0.000145 1.51e-06  7.13e-07  [110]
$230928cb H1,L1 1.0 BBH 1.24e-12 9.5e-10 2.99¢-07  1.71e-05 3.27e-10  [111]
$230927be HI,L1 1.0 BBH 4.56e-43  3.17e-10  1.65e-24  1.35e-09  6.64e-11  [112]
$2309271 HI,L1 0.976 BBH 2.8e-14 3.17e-10  1.08e-08  5.4/e-08  1.31e-10  [113]
$230924an HI,L1 1.0 BBH 1.21e-21  3.17e-10  3.82e-09  1.49¢-09  6.59%-11 [114]
$230922q H1,L1 1.0 BBH 7.72e-13  3.6le-10 3.97e-05 1.98e-10 [115]
$230922¢ H1,L1 1.0 BBH 1.93e-24 1.91e-08  1.98e-10  [116]
$230920al HI,L1 1.0 BBH 5.19-13  3.17e-10  2.49¢-05  1.42e-08  6.6%e-11  [117]
$230919bj HI,L1 1.0 BBH 5.67e-42  3.17e-10  4.72e-09  1.49e-09  6.69e-11  [118]
$230914ak H1,L1 0.992 BBH 1.43e-20  3.17e-10 9e-10 6.5e-11 [119]
S230911ae H1 1.0 BBH 1.89e-12 [120]
$230904n HI1,L1 0.991 BBH 6.16e-13  3.17e-10  2.64e-06  2.25e-09 [121]
S230831e HI,L1 0.985 BBH 1.98e-08  1.66e-05  5.84e-05  7.93e-07  9.45¢-06  [122]
$230825k HI,L1 0.998 BBH 2.39e-09 2.67e-06  1.7e-07 [123]
$230824r H1,L1 1.0 BBH 6.17e-12  3.17e-10  1.64e-11 6.18e-11  [124]
$230822bm | HI1,LI 0.981 BBH 2.58e-08 1.09¢-06  [125]
$230820bq | HI,L1 0.958 BBH 2.41e-08 2.1e-06 4.23e-08  6.06e-06  9.01e-09  [126]
$230819ax HI1,L1 0.993 BBH 8.84e-09 4.57e-06  2.76e-06  5.58e-09  [127]
S230814ah | L1 1.0 BBH 1.85e-21 [128]
S230814r H1,L1 0.932 BBH 7.63e-10  3.17e-09  4.81e-08 9.31e-11  [129]
S230811n H1,L1 1.0 BBH 2.13e-25  3.17e-10  4.63e-21 1.39¢-09  6.81e-11  [130]
$230807f HI,L1 0.953 BBH 7.14e-08  5.56e-05  5.75e-05 3.6e-05  3.06e-06 [131]
$230806ak H1,L1 0.997 BBH 2.96e-09 1.1e-06 3.82e-05  4.89e-06  1.41e-08 [132]
$230805x H1,L1 1.0 BBH 2.72e-10  9.19e-09  3.08e-05 3.1e-08 2.81e-06  [133]
$230802aq H1 0.903 BBH 2.23e-08 [134]
S230731an HI,L1 0.814 BBH 4.57e-27  3.17e-10  39le-12  1.43e-09 4.8/e-05 [135]
$230729z HI,L1 0.997 BBH 3.3%-09  8.56e-07 1.94e-05 [136]
S230726a L1 1.0 BBH 3.83e-14 [137]
$230723ac HI1,L1 0.867 BBH 5.61e-10 4.57¢-05  5.33e-08 [138]
$230709bi HI,L1 0.997 BBH 3.06e-09  1.85¢-06  2.35¢-05  6.47e-07  4.93e-09  [139]
$230708ct HI,L1 0.989 BBH 1.55e-08 6.63e-06  3.48e-06  2.11e-05  [140]
$230708z H1,L1 0.954 BBH 7.03e-08 3.37e-06  4.53e-08  [141]
$230708t H1,L1 0.973 BBH 4.33e-08 6.19¢-07 [142]

( To be continued)
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Superevent Instruments  pastro FAR (Hz) GCN
GstLAL PyCBC SPIIR MBTA CWB
$230707ai HI,L1 0.951 BBH 1.53e-08  4.59¢-08  6.49¢-06  1.38e-08  3.84e-10  [143]
$230706ah H1,L1 0.973 BBH 4.26¢-08 2.5e-06 0.000101  2.08e-06 [144]
$230704f HI,L1 0.997 BBH 2.82e-09 8.56e-08  9.37e-06  [145]
$230702an HI,L1 1.0 BBH 1.53e-12 7.92e-09  1.74e-06  7.61e-07  5.65¢-09  [146]
$230630bq | HI,L1 0.968 BBH 2.66e-09  1.55¢-08  3.39¢-06  7.73e-09 [147]
$230630am | HI,L1 0.983 BBH 2.41e-08 6.78¢-05  1.62¢-07  [148]
$230628ax HI1,L1 1.0 BBH 6.6e-32 3.17e-10  1.82e-13 1.39e-09  5.72e-10  [149]
$230627c HI,L1 0.492NSBH  9.59e-45  3.17e-10  1.23e-28  8.64e-08  3.98e-10  [150]
S230624av HI,L1 0.953 BBH 2.96e-11 6.16e-07 1.3e-08 3.98e-10  [151]
$230609u H1,L1 0.961 BBH 298e-15  6.97¢-09  2.96¢-07 le-08 1.35e-09  [152]
$230608as H1,L1 1.0 BBH 1.37e-10 3.36e-06  1.34e-07  8.58e-10  [153]
$230606d HI1,L1 0.999 BBH 5.53e-08  1.14e-08 4.4e-07 1.34e-08  1.75e-08  [154]
$2306050 HI,L1 0.988 BBH 1.71e-12  6.34e-10  2.67e-09  4.52¢-09 [155]
$230601bf HI,L1 1.0 BBH 5.07e-11  3.17e-10  1.71e-15 9.8¢-08  3.93e-10  [156]
$230529ay L1 0.624 NSBH 3e-08 1.98e-10 [157]

Table 4.3: Gravitational-wave triggers which received public
alerts in low-latency over the course of O4a from all partic-
ipating pipelines. Italics denote where a pipeline uploaded
an event to GraceDB [14], but it did not pass the 2/year FAR
threshold.

Additionally, of these 81 events, 17 of them (or 21%) were identified only by GstLAL above
the FAR threshold of 2 per year, and 8 of these were found only by GstLAL. These GstLAL
events are shown again in Table 4.4 for ease of the reader. Of the 8 events which only had
GstLAL uploads, 7 of them were single detector events. In O3, GstLAL was the only pipeline
which searched for these events in low-latency, but in O4, PyCBC and MBTA also began
analyzing events during single detector time for systems under SM,. The only event discovered
during single detector time in that mass range was the NSBH S230529ay, found by GstLAL
and PyCBC, and it is discussed in further detail in the following section. Otherwise, GstLAL
continues to be the only pipeline searching for single detector events at high mass, and we
report 7 events in this mass range all with above a 90% probability of being from a binary black
hole source.

Of the other 10 events which were identified above threshold by GstLAL and below thresh-
old by others, all were detected during coincident time between LHO and LLO. Differences in
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the sensitivities of the pipelines and how they estimate FAR may account for the differences in
significance assigned by pipelines for these events, as was the case in O3.

Superevent ID | Instruments Pastro FAR(Hz) | Sub-threshold events?
S240109a H1 0.995 BBH | 7.35e-09 No
S240104bl H1 1.0BBH | 3.55e-17 No
S231231ag H1 1.0BBH | 8.35e-15 No
S231029y L1 1.0BBH | 2.16e-10 No

S231020bw H1,L1 1.0BBH | 3.45e-10 No
S231014r H1,L1 0.992 BBH | 1.03e-08 Yes
S231008ap HI1,L1 0.999 BBH | 1.53e-09 Yes
S231005ah HI1,L1 0.998 BBH | 2.05e-09 Yes
S$230930al H1,L1 0.994 BBH | 7.38e-09 Yes
S230911ae H1 1.0BBH | 1.89e-12 No
S230825k HI1,L1 0.998 BBH | 2.39e-09 Yes
S230814ah L1 1.0BBH | 1.85e-21 No
S230806ak H1,L1 0.997 BBH | 2.96e-09 Yes
S230729z H1,L1 0.997 BBH | 3.39e-09 Yes
S230726a L1 1.0BBH | 3.83e-14 No
S230723ac HI1,L1 0.867 BBH | 5.61e-10 Yes
S230704f HI1,L1 0.997 BBH | 2.82e-09 Yes

Table 4.4. GW candidates identified in low-latency by only GstLAL, or by only GstLAL above a FAR
threshold of 2 per year.

4.3.2.1 Od4a NSBH Events: GW230518 & GW230529

There have been two events over the course of O4a which have a p(astro) with significant
contribution in the BNS or NSBH class: GW230518 & GW230529. GW230518 was detected
in low-latency by GstLAL, MBTA, and PyCBC. The FAR from GstLAL and PyCBC were
1.956e-22 and 3.218e-10, respectively, well above the threshold of public alerts and inclusion in
previous GW catalogues. Additionally, the p,g. of this event was reported as 86% probability
of being an NSBH, and 10% of Terrestrial with a 100% probability of having a NS component
if real. Unfortunately, this event occurred during the engineering run ahead of O4a, and so
has been delayed while a full analysis of the data quality is complete. Initial tests show that
despite being during an engineering run, the data quality during this time is good and so we
will consider it here as a possible detection.

Of the 81 candidates during the official observing run, GW230529 is the only one reported
as having a p,y., with significant contribution in the BNS or NSBH class. This event was
the first to cross the public alert threshold during the official observing run, and was a single

56



Primary mass m; /M 3.6°03
Secondary mass m; /M, 14459
Mass ratio g = m,/m, 0.39701
Total mass M/M,, 5-1i8j2
Chirp mass M/M, 194704
Detector-frame chirp mass (1 + 2)M/M,, | 2.026*55%
Primary spin magnitude y 0.44+039
Effective inspiral-spin parameter y.r; | —0.10*012
. . . 0.39
Effective precessing-spin parameter y, 0.40%:3,
Luminosity distance D; /M pc 201450
Source redshift z 0.04+502

Table 4.5. Source properties of GW230529, as quoted in [15].

detector event in Livingston, again enforcing the importance of analyzing single detector
candidates. A full publication dedicated to this event’s analysis and significance is given in [15],
and we highlight key results here.

The inferred source properties of GW230529 are shown in Table 4.5. This candidate is
an asymmetric event with primary masses solidly in the < 5M,, regime. The primary mass is
consistent with a black hole living in the low mass gap at a 99% certainty that it is less than
five solar masses while the secondary mass is consistent with a neutron star. The second mass
has a peak around 1.4M,, but has a large upper confidence limit leading up to 2M,.

Additionally, an analysis of the tidal effects which would be present in a GW signal from a
neutron star are unfortunately inconclusive. As will be discussed in detail in Chapter 8, the
tidal deformability of a neutron star tells us how much its shape will be deformed in tidal fields.
If the tidal deformability is high, this corresponds to stars that deform easily, while compact
objects like black holes have a tidal deformability of zero. The tidal deformability comes in
at high PN order, and is a very sub-dominant effect, so extraordinary sensitivity is required to
measure its affect on a waveform to any accuracy. Unfortunately, the sensitivity of the detectors
limits our ability to constrain the tidal deformability in this case, and its tidal deformability is
completely unconstrained — that is, its distribution is uninformative [15].

Treating this event as its own class of CBCs, we can also calculate the rate of mergers
like it by considering it a single Poisson distributed event over the course of Ol to the first
two weeks of O4a. This gives a rate of Rozoso9 = 55%,7’Gpc~yr~' [15]. We can then use
the same treatment, but treat this event with the two NSBH events in O3, GW200105 and
GW200115, as three Poisson distributed events over the same duration. This gives a rate of
NSBH to this point as Rnsgn = 8571°Gpe=yr~! [15]. Additionally, we can also include a
population of sub-threshold GstLAL triggers which fall in the NSBH mass parameter space for
a full accounting of all potential NSBH up to this point. This gives a slightly higher rate of
Rnsen = 94719 [15].

We can further examine the effects of this event on the NSBH and CBC population prop-
erties. In the first analysis, we consider the NSBH-POP model [158], a parametric model
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designed to specifically constrain the mass and spins of the NSBH distribution assuming that
all binaries considered have a black hole primary and neutron star secondary mass. With
this model, the inferred minimum masses of black holes in NSBH systems decreases when
including GW230529. GW230529 contains the lightest BH component of NSBH events
recorded to date, so a decrease on the minimum BH components in NSBH systems is a natural
conclusion with the inclusion of this event. Additionally, of particular interest is the mass
range between 3 and 5 which represents the mass gap between neutron star and black hole
populations. If we instead implement mass models which represent the full CBC space without
assuming classifications, the merger rates of CBCs with one component in this mass gap range
is increased with inclusion of GW230529. This, again, is a natural result as there have been very
few detections with masses in this range, the other most notable event being GW190814 [159].
However, GW230529 is mostly consistent with the population from previous CBC candidates
while GW 190814 was an outlier for BBHs because of its small secondary mass. That said,
GW190814 was one of the first events to suggest that the mass gap space is populated with
black holes, and GW230529 strengthens this claim.
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Chapter 5
Towards Exclusive Low-Latency
Analysis of Gravitational Waves

5.1 Introduction

As discussed in Chapter 1, the low-latency analysis of gravitational waves is a crucial part
of the multi-messenger astronomy ecosystem. Prompt notification on any gravitational wave
event involving a neutron star is key to capturing the full electro-magnetic evolution of such an
event by astronomers. To this end, the LIGO collaboration dedicates years of person-power and
millions of computing hours over the course of each observing run operating these real-time
gravitational wave detection pipelines. After an observing run ends, the data is calibrated,
cleaned and then re-filtered with offline detection pipelines in an effort to re-analyze the entire
set with improved sensitivity. This effort is effective, as demonstrated by the 17 additional
gravitational wave candidates identified offline in O3, but it incurs further computational and
person-power costs.

However, if data were originally filtered in low-latency with minimal loss of both sensitivity
and uptime, offline re-filtering of the data would be redundant and this additional cost could be
mitigated. To this end, we propose two changes to the GstLAL online analysis infrastructure
as well as a new method for re-assigning the significance of online candidates without any
re-filtering of the data. We then investigate the performance of these methods compared to a
full offline treatment and show that initial results prove promising.

5.2 Low-Latency Injection Availability

Offline detection pipelines analyze a simulated injection set embedded in real strain data to
compare the performance of the pipeline to what is expected based on the properties of the
injection set. Historically, low-latency detection pipelines were not able to do the same because
the infrastructure to support it was not available. Some pipelines, such as MBTA [55], have
developed strategies to read injection data off of disk, and insert them into their analysis in real-
time. While functional for a single pipeline, there are many detection pipelines simultaneously
analyzing data in low-latency during a given observing run. Each pipeline could implement
their own methods and injections such as MBTA, but the results would be difficult to compare
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across pipelines as uniformity would not be guaranteed. However, a process upstream of the
detection pipelines which made and distributed injection files to all pipelines would mitigate
these issues.

The injection streamer proposed here functions as that upstream process. This software
requires two inputs: low-latency strain data, and injection waveform data. With this method, the
injection data can be made well ahead of an observing run, and timestamped to cover the entire
observation period. For example, in preparation for O4b, these injection frames for the entire
observing run were made months in advance to reduce workload during low-latency operations.
The low-latency strain data required is the same as that typically analyzed by detection pipelines
and is available in one second files distributed to a computing center from the detector sites.
The injection streamer then adds this real-time strain data to the appropriately timestamped
injection from disk, and outputs one second files containing the injections embedded in the
real-time data. These output files are formatted identically to a typical strain data, and contain
the original strain data, the new injection data, and copies of the original state vectors, and
data quality information. The entire process takes a second, so the injection files are available
at a one second delay compared to the strain. The output files are then distributed like the
original strain data to remote computing nodes across the LIGO Collaboration via the IGWN
Low-latency Data Distribution Common.

Any injection set can be distributed in this manner which opens up avenues of low-latency
analysis not previously available. Not only can detection pipelines assess the performance of
their pipelines in real time, but full injection sets necessary for rates and population estimates
could also be analyzed in this manner. Additionally, injection sets targeting particular sources
such as sub-solar mass or intermediate black hole sources could be made available separately,
thereby supporting a wide variety of detection pipelines at once during an observation run.

5.3 Methodology

5.3.1 Re-ranking Procedure

As described throughly in Chapter 2, the GstLAL analysis implements a likelihood-ratio to
assess the significance of gravitational-wave candidate events based partially on the background
noise information collected. In the low-latency online operating mode, each candidate event is
only ranked based on the background information collected up to that point by the analysis. In
the high-latency offline mode, each gravitational wave candidate is ranked with the background
noise information from the detectors during the entire observing time. Previously, in order to
get a more accurate ranking of candidates, an offline analysis had to be performed, incurring
a large computational cost to re-filter all of the available data. In this work, and in the fourth
observing run, we instead apply a re-ranking procedure to re-assess the significance of the
candidates produced by the online analysis.

The online analysis filters data based on a template bank of waveforms divided into
background bins. When the SNR output of a background bin crosses a threshold of 4, a
triggered is produced. The result of filtering in low-latency then is a collection of triggers
created by each background bin. The re-ranking procedure takes in thousands of these triggers
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over the entire analysis time, combines them into one file, and assigns the significance via the
log-likelihood.

The low-latency analysis assigns the log-likelihood of gravitational wave candidates at
the time of the event using the background available at the time. To calculate FAR, these
background statistics are marginalized over across all background bins every few hours and
written to disk. The most recent marginalized distribution is used at the time of the candidate
event to assign a FAR estimation. In the re-ranking procedure, however, the latest cumulative
background distribution for each bin, or that which contains background collected over the
entire analysis time, is used to rank any trigger. Then, the latest available marginalized
distribution across background bins is used to estimate the FAR of that event.

After the significance is re-calculated for all these triggers per background bin, they are
merged and reduced across bins. Between any two background bin trigger files, triggers
within a coincidence window of eight seconds are compared, and the one with the maximum
log-likelihood is kept. The eight second window is chosen to ensure that any triggers which
likely correspond to the same candidate are clustered, while also optimally reducing the dataset.
We assume that two real gravitational wave events are unlikely to arrive within eight seconds of
one another, and use this large window to reduce the number of triggers due to noise in the set.
The end result is one file containing the optimal triggers from across background bins in eight
second windows for the duration of the analysis. This is then converted to a list of possible
gravitational wave candidates similar to those obtained during a full offline re-filtering of the
analysis.

The effect of this process is more robust estimation of the significance as it accounts for
statistics collected over a longer time span than the original rank assigned in real-time. A trigger
collected close to the end of the observing period, for example, is likely to be assigned a similar
rank in real-time as the one assigned with the re-ranking procedure because the background
used in real-time would contain almost all of the same information as the one used during
re-rank. However, a trigger observed early in the observation period would be ranked with
a background containing very little of the full observation time, so its rank may vary more
significantly compared to the one calculated with this method.

5.3.2 Description of Injection Population

The injections used here follow the distribution of [65], but were made using a new file format,
and we will summarize these properties here. The model used to generate the waveforms was
IMPRPhenomXPHM [160]. Individual mass ranges were taken between 1-100 M, with a limit
on the maximum mass ratio given as m;/m; of 20. The primary masses were then distributed
using a Salpeter IMF model, and the secondary masses uniformly between the minimum and
the primary mass as show in figure 5.1. We consider only spins which are aligned with the
angular momentum, with a maximum of 0.2 for each individual mass, and a maximum y.g of
0.4. Injections are then placed up to a maximum redshift of two, no matter the mass range. The
SNR of the waveforms for injections is estimated using the injection parameters, and assuming
an IMRPhenomD [161] waveform, the waveform used to generate the templates in our template
bank. Then the measured PSD from O3 is used along with a min(max) frequency of 15(1500)
to approximate the expected SNR.
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Injection Parameter Distribution (IMRPhenomXPHM Injections)
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Figure 5.1. Mass distribution of the injected waveforms using a Salpeter IMF mass model for primary
masses, followed by a uniform draw of the secondary mass between the minimum allowed mass and
the primary mass. Waveforms were made using the IMPRPhenomXPHM waveform model with the
minimum(max) individual mass ranges set to 1(100) M

5.4 Resulis

In this work, we compare a low-latency analysis over approximately three weeks of O3 data
covering January 23rd to Febuary 14th, 2020. This data is replayed as if it were live for
analysis by the low-latency pipeline configuration as described in 4.3.1 However, there were
intermittent data distribution issues during low-latency operations which caused only a subset
of this data to be analyzed. While we can expect small amounts of data distribution problems
during any low-latency analysis, typically there are methods to mitigate such issues such as the
checkerboard method described in [5]. In this work, we use only one-half of the full template
bank, or one checker-boarded bank, and therefore any data outages at the computing center
caused full loss of that data.

Under the assumption that the checker-board method would be implemented in a real
analysis, any periods of data unavailability to the low-latency analysis which affected the entire
analysis, we remove from the data set analyzed by the offline pipelines as well. This ensures
that the offline and low-latency analyses are analyzing the same dataset, and therefore most
closely comparable. Using this method, we lose a total of 1.25 days in the three weeks of
observing time.

It’s worth noting that the CAT-1 vetoes applied to the offline analysis are not applied to the
online re-rank. A typical re-rank would be completed periodically throughout an observing run,
well before CAT-1 veto definitions are available, so we do not apply them here. Additionally,
the time segments removed from the analyzed dataset do not also excise the noise and signal
background events collected during those times in each analysis. We do not expect, however,
that events collected in the 1.25 days should have a large affect the full 23 day distribution, and
therefore likely a negligible affect on the sensitivity of the analyses.

The low-latency analysis also suffered from three additional constraints. Due to technical
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restrictions on uploads to GraceDB servers at the time of the analysis, neither gravitational
waves nor injections found by the online analysis were uploaded to GraceDB, and therefore
the signal contamination feature described in Chapter 4 was not used. However, this has the
added benefit of making online processing more closely resemble that of offline, and reduces
the differences between the two.

There was additionally a technical error in a single background bin of this analysis and
neither background nor events were collected by this bin. As there are 920 background bins,
we do not expect this issue to severely impact the results of this analysis, but this loss may
slightly reduce the sensitivity.

Finally, each background bin process in the online analysis writes triggers and noise
background information to disk every four hours. If these processes are interrupted or restarted
between these four hour snapshots, then all of that information is lost — including the recovered
triggers. This kind of intermittent data loss is difficult to account for, but can possibly add up
over time to small percentage losses in the sensitivity between the online and offline analyses.
This has been fixed ahead of O4b, but the online analysis implemented here suffers from these
issues.

All of these caveats are examples of the potential pitfalls that come with real-time analyses.
Network issues, computing cluster maintenance, and human error can cause small differences
in a real-time analysis compared to what would be expected from a full offline re-filtering
where all of these variables are controlled, or correctable. The results we present here then
are a true comparison of what might be expected from a typical real-time analysis and the full
offline treatment.

5.4.1 Comparison of Re-ranked Low-Latency & Offline Analyses

54.1.1 Known Gravitational Wave Events

Here we discuss the gravitational wave candidates which occur during the stretch of data
analyzed here, and which were previously published in the GWTC3 catalogue. Of the nine
events which fall during the full 40 days of the MDC replay, seven of them occur during the
three weeks analyzed by this analysis. The first known gravitational wave events mentioned
in [9], GW200112_155838, and GW200115_042309, and the additional retraction occur during
the replay before the time covered in this analysis, and so are not discussed here. The results
for these seven events can be seen in Table 5.1.

In both analyses, the events GW200202_154313, GW200208_222617, and GW200210_092254
do not meet the FAR threshold of 2 per year for inclusion as gravitational wave candidates,
while all other events do. The FAR in the re-ranked analysis is always larger than that of the of
fline analysis except for two marginal candidates GW200202_154313 and GW200208_222617
where it is slightly larger in the offline case. However, the gains are small — in all events except
for GW200129_065458, the differences in FAR are under an order of magnitude and can be
accounted for by the differences in the analyzed data and background distributions, as discussed
more fully in the following section.

Note that these results differ from those quoted in [9]. The analysis performed in that work
covered a full five week duration of MDC data, while the data here covers a fraction of that time.
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Recovered Known GW Events
Re-ranked MDC Offline
Event Name SNR FAR LnL FAR LnL FAR Ratio
GW200128_022011 || 9.913 | 5.356e-13 23.33 | 3.927e-13 23.14 | 1.36
GW200129_065458 || 26.29 | 2.371e-44 92.01 | 5.841e-45 93.5 4.06

GW200202_154313 || 10.87 | 4.767e-6 8.637 | 5.15e-6 8.156 | 0.93
GW200208_130117 || 9.826 | 3.988e-13 23.6 3.503e-13 2326 | 1.14
GW200208_222617 || 7.662 | 1.078e-5 7.657 | 1.176e-5 7.189 | 0.92
GW200209_085452 || 9.652 | 6.444e-10 17.06 | 6.332e-10 16.66 | 1.02
GW200210_092254 || 8.709 | 1.864e-5 6.958 | 1.434e-5 6.923 | 1.30

Table 5.1. The recovery of known gravitational wave events by the re-ranked online analysis, and the
offline analysis over the same period.

Additionally, all of the caveats mentioned at the start of this section apply to the differences
here as well. Therefore, it is expected that the sensitivity and recovery of events would differ
significantly between the two.

5.4.2 Injection Recovery

In the time covered by this analysis, injections were added every ten seconds in the data
resulting in a total of 191,180 injections. However, we do not expect the analyses to recover all
of these. For example, only 80,674 (23,539) events have a network SNR of 6(10) and of those,
many were not during time when Hanford and Livingston were both active, or those times
when we expect our recovery to be best. Additionally, there was an issue with the recovery of
low-mass systems in the online analysis for this set, which is an ongoing area of work to rectify,
so we will discuss the BBH recovery only. Out of all the injections with a network SNR of 8 or
above, there were 13,806 total BBH events where the decisive SNR is given as the SNR in the
second most sensitive detector in the network, or the SNR of the only detector operating. This
results in 8,264 injections in the chirp mass range of 4.5 — 45M,, (low-mass BBH), and 5,542
in the chirp mass range 45 — 450M(high-mass BBH).

The differences in the SNR recovery of these BBH injections for the online and offline
analyses can be seen in Figure 5.2 where the label is the standard deviation of the set, and the
dashed red lines correspond to +2 standard deviations. The bulk of this distribution lies well
localized around zero with a standard deviation of just 0.004, or 0.4% of the injected SNR.
However, there are a few edge cases as seen in the extremes of this figure.

The limits of this data span out to +50% at the edges. A difference in SNR of 50% could
mean the difference between a recovered injection and a missed one, particularly in low SNR
cases. An event with an SNR of 3, for example, is not considered a trigger, but an event with
an SNR of 4, or a difference of 33%, would be. Only O(20) events live near these extremes, or
0.1% out of over 13,000 total injections in this mass space, but they are unusual for the data set
analyzed.

Typically, we would expect differences between an online and offline analysis’ SNR
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Figure 5.2. Recovery difference of SNR (left) and M, (right) parameters of approximately 20,000 BBH
injections in an online and offline GstLAL analysis. The label denoted the standard deviation and the
red dashes denote + two standard deviations.

recovery due to differences in the data. Ahead of offline analyses, the strain data is re-calibrated,
and additional data cleaning is performed in addition to the availability of vetoes. Additionally,
in a typical offline and online analysis, the template used may be the same, but they are whitened
with different PSDs, and the online template is now re-whitened weekly based on the data.
In this test case, however, the online and offline analyses analyzed the same data from O3
embedded in the same noise realization, and the same whitened template bank was used in both
to purposefully reduce differences such as these. Therefore any differences in SNR cannot be
attributed to differences in data cleaning, or the template bank. Outside of any data distribution
anomalies not yet accounted for, then, any differences in SNR must be due to differences in the
PSD used to whiten the data as it is collected.

How the GstLAL analysis tracks the PSD is summarized in section 2.1.2. In the low-latency
implementation, data is whitened with the PSD available based on only the historical data
of the analysis, with information from up to 64 seconds earlier being tracked. In the offline
implementation, the data is divided into known segments based on the lock state of the detectors.
Then, the PSD is calculated for each segment individually, and the median is used to seed the
PSD calculation when performing whitening. Therefore, the PSD used for whitening can vary
slightly between the online and offline analyses, especially around the segment boundaries.
Typically, we expect this effect to be sub-dominant, but with injections every ten seconds, we
are much more likely to catch and probe these most extreme edge cases, and its possible that
those most extreme cases seen in Figure 5.2 are created around these segment boundaries.

Differences in the SNR recovery will propagate throughout the rest of the analysis from
injection source parameter recovery to FAR estimation, and we can already begin to see
its effects in the recovered chirp masses in Figure 5.2 where the label and red dashed lines
denote the standard deviation as before. The bulk of this distribution is centered around zero
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with a standard deviation of 9%, similar to the distribution from a typical offline analysis. It
additionally has long tails, however, out to above three at the most extreme end, with the bulk
of the tail within one. This shows that while the main distribution is well recovered, the outliers
in the online case can become quite large when compared to their offline counterparts, likely a
symptom of the outliers in SNR.

Changes in the SNR will also affect the FAR assignment in an non-linear way. Differences
in the SNR change likelihood ratio of the recovered injections by altering several terms in
both the noise and signal models which are dependent on the SNR. The signal and noise
background histograms used by the InP(SNR, £2/SNR?) likelihood ratio term, for example,
are both parameterized in part by the SNR and these will be affected by this recovery. A
simple change in the SNR will change the distributions of these histograms, and if the SNR is
particularly smaller then normal, some events which would go into the background could also
be missing entirely. Both of these effects will shift the parameter space covered by the noise
and signal distributions, and therefore change the likelihood ratio.

While changes in the SNR will change the noise background distributions, the timeslide
used to generate background samples in the offline analysis will cause entirely unique samples
to be added in the offline case. In the offline analysis implementation, we perform a single
time-slide operation which generates these samples. This operation takes foreground triggers,
or those with a net SNR above 7, in Livingston and Virgo and shifts them just once by 66% and
33%, respectively. The time-shifted sets are then used to form new coincidences between one
another and the original Hanford foreground samples. This effectively forms false coincidences
between foreground triggers and noise triggers in the detectors, giving a measure of whether
your foreground model would match the noise model if paired with random noise.

If the network SNR of these coincidences is less than 7, but the individual detector SNR
is greater than 4, then a new sample is added to the background distribution corresponding to
this trigger with the new coincidence’s ranking. The false coincidences will retain the same
properties as the original noise triggers in each detector such as SNR and &2, but will now have
a different log-likelihood as the log-likelihood is based on the combined parameters of the
triggers in each detector, and the properties of the coincidence itself. The samples generated for
the noise distribution in this method are then kept when assigning significances to the original
data, thereby changing the samples present in the background, as well as increasing the number
of total samples. An example of how this changes the background distributions for a single bin
can be seen in Figure 5.3.

The additional samples from the timeslide alone will cause a change in distribution of the
background thereby affecting the SNR, &% term assigned to the noise and signal models as a
result. However, the signal and noise histograms also both have a KDE applied before use in the
likelihood ratio. The KDE implemented follows Silverman’s rule which tunes the bandwidth
based on the number of samples in the set. Therefore, a change in the total number of samples
will cause the KDE bandwidth to be tuned to be smaller offline than online, which will further
affect the likelihood ratio assigned to events. As the FAR depends both on the likelihood ratio
assigned to the event and the bulk of likelihood ratios assigned to noise events through the CDF,
even small differences in likelihood ratio assignment and background propagate to the FAR
calculation.
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Figure 5.3. left: The noise model distribution of the InP(SNR, )(2 /SNR?|noise) term in the first back-
ground bin in H1 for an online analysis. right: The same as in the left figure, except for an offline
analysis.

Although we saw few changes between the FAR of the gravitational wave events in this
dataset due to these changes, the injections probe the full depth of the differences between
online and offline as shown in Figure 5.4. The left figure shows a limited axis in order to
highlight the features around zero, while the right figure shows more of the total distribution
with about 1% of the tail not shown for clarity, as it extends with outliers out to past 1e25. This
long tail shows that offline events are more frequently recovered with a lower FAR than the
online events, as was expected with a few particularly extreme samples. However, the median
of the set is 1.12, or a difference of two orders of magnitude between the online and offline
results for the bulk of the distribution.

5.5 Search Sensitivity

The differences in FAR from the previous section will have a large affect on the sensitivity of
the online pipeline as a whole. If the FARs are systematically higher, then fewer injections will
be recovered above the typical FAR thresholds, and the pipeline will suffer in both efficiency
and (VT).

The efficiency is a measure of how well the pipeline recovers injections, and is given as:

Niound(FAR, M
e(FAR, M) = f]\;‘( D ) (5.1)
tota

where M represents the dependency on the chirp mass range. The results of the offline and
online recovery using this measure can be seen in Table 5.2. There is a natural decrease in
efficiency with increasing FAR threshold, and an order one percent loss in the online analysis
across FAR thresholds. This loss is in part due to the skewed FAR recovery seen in the previous
section, however, it could also be due to differences in observing time between the analyses.
As discussed in previously, each of the online analysis bins can lose triggers if the process
happens to be interrupted. These can add up over time to a percentage loss in observing time as
seen in Figure 5.5. Here, the number of bins out of 912 for each interferometer is counted on
the y-axis, and the percent of time missing from that bin compared to the total time observed
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Figure 5.4. The false alarm rate (FAR) estimate differences between an online and offline analysis
analyzing approximately 20,000 BBH injections over the course of 23 days. Left: A subset of the
distribution with about 25% of the total distribution cut out of the tail. Right: The full distribution with
1% of the tail not displayed.

by the offline analysis is shown on the x-axis. For each online bin process, there is anywhere
between 0.5 and 2% missing on average.

The union of covered segments across bins is used when calculating the number of injections
which are recoverable, so these small differences will not be accounted for the total number of
injections, but can cause a loss in the number actually recovered. That is, if 911 of the 912 bin
processes were not collecting data, then all injections in that time would be counted in Ny
despite it being highly unlikely that a single bin would recover all injections. This is an extreme
example, and typically not more than a handful of bins are ever interrupted simultaneously
except during cluster maintenance times, but clusters of bin interruptions could affect recovery,
particularly with the frequency of injections used here.

Re-ranked MDC Offline
FAR low-mass BBH | high-mass BBH | low-mass BBH | high-mass BBH
2.78e-4 0.927 0.900 0.935 0.905
2.31e-05 || 0.904 0.876 0.913 0.883
3.85e-07 || 0.866 0.834 0.875 0.839
3.16e-08 || 0.840 0.804 0.849 0.807

Table 5.2. Efficiency of the re-ranked online and offline analyses using a decisive SNR threshold of 8
on a full population of over 13,000 BBH injections using multiple FAR thresholds to consider these
injections recovered. The FAR thresholds correspond to one per hour (the GraceDB upload threshold),
two per day (the public alert threshold), one per month, and two per year. The low-mass range described
here accounts for masses in 4.5 — 45M, while the high-mass range is 45 — 450M;,.
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Figure 5.5. The amount of time missing from individual background bin processes compared to the
total time observed in each ifo over the course of 23 days.

The differences in efficiency between the two analyses go on to have a direct impact on the
measured (VT as seen in Figure 5.6. This figure shows the (VT') ratio between the online and
offline analyses for the BBH mass ranges where the (VT') is given by Equation 4.5. The (VT
ratio between the two analyses in these mass ranges is similar to the loss in efficiency at those
FAR values, but is typically higher than from the efficiency alone. Notably, the online analysis
occasionally outperforms the offline analysis, particularly at the smaller mass range. Although
the efficiency does not account for this improvement over offline, the (VT') also depends on the
luminosity distances of the sources which each analysis recovered. The two analyses will have
recovered a slightly different subset of all of the injections which causes different weightings
by the luminosity distances. The different luminosity distances will result in a varying (VT)
compared to the efficiency alone and likely accounts for the few percent differences shown
when taking into account thousands of injections.

When considering the computational cost and person-power required for offline analyses,
a O(1%){VT) loss at high FAR is an acceptable one. This reinforces just how minute the
differences between these analyses are, and that small improvements the offline analysis gains
in SNR, and FAR account for a very small number of injections in the larger picture. With
all of the caveats in the online analysis discussed here, however, this result still has room for
improvement. The changes made ahead of O4b to rectify the individual bin losses, as well as
the implementation of a checker-boarded analysis will both increase the overall uptime of the
online analysis and the availability of accurate scientific output. In addition, improvements
can be made to the background collection method of the online analysis. Collecting more
background samples would of course increase the sensitivity, but other methods for tuning the
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Figure 5.6. (VT ratio of the online and offline analysis sensitivities in two BBH mass ranges.

bandwidth estimation in the KDE could also be investigated. While this is an open area of
research, these initial results are promising and demonstrate the the near-future attainability of

the exclusive low-latency analysis of gravitational waves.
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Chapter 6
Data Quality in Gravitational Wave
Interferometers with iDQ

6.1 Noise Transient Searches

6.1.1 Background

For any gravitational wave signal, the strain and amplitude are defined in the time domain as in
Chapter 1. Of interest for short duration noise transient detection pipelines is additionally the
signal in the frequency domain given by:

h(f, A) = Ah(f) (6.1)

where fz( f) represents the Fourier transform. Then, the characteristic time, #,, and characteristic
frequency, fy can be expressed as the expectation values:

fo = f 1lh(p)|dt

fo= f AP

The bandwidth of the signal is calculated using the variance in frequency as:

or= f (f = (NP f (6.2)
Q, or the quality factor of a signal, is then the ratio of the characteristic frequency to the
bandwidth:
0= fo (6.3)
or

Signals with high Q have a well defined bandwidth and therefore low uncertainty in their
frequency, or many oscillations per envelope and are therefore narrow-banded. Meanwhile, low
Q signals have a high uncertainty in their frequency and few oscillations per envelope.
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6.1.2 Omciron

Omicron [29] uses the Q transform of the time-frequency space around signals to identify
regions of excess SNR, and therefore potential glitches. They use sine-Gaussian signals to
define a basis and apply a Bisquare window to limit the sine-gaussians in time from the true
infinity of gaussian distributions. The resulting window distribution used is defined as [30]:

22
_[_fo foVil
B(f, fy, O) = N(l (m)) f>" 6.4)

0 otherwise

where N is a normalization factor, Q is the quality factor, f; is the characteristic frequency
defined above, and the factor of V11 appears here from use of the Bisquare window instead
of a true gaussian. Then, the Q transformation is performed by projecting the known signal
onto the sinusoidal basis per tile where one tile corresponds to one basis sinusoid with a given
central frequency, central time, and Q. However, signals are limited in their uncertainties by the
classic relation: !

oo >= e (6.5)
This results in low Q tiles having a small duration and wide bandwidth while high Q tiles have a
long duration and small bandwidth. The projection for a single tile, X, is done as follows [30]:

00

X, f.,0) = f x(Ow(t — 7, f., Q) " dt (6.6)

—00

where 7 is the central time of the tile, f. is the central frequency of the tile, x(¢) is the timeseries
of the signal, and w is the window function in time. The projection is then cast into the
frequency domain as [30]:

00

X(r. o Q) = f 5+ )T foo QS d f ©67)

where the window @ can then be taken from 6.4 and X is the Fourier transform of the timeseries.
Then, for an entire set of tiles covering the full time-frequency plane of a given Q, f. and 7
must be iterated over for each tile in the plane. The tiling distribution used by Omicron in a
single Q plane is defined by an acceptable energy loss due to mismatch between the tiles. This
tiling strategy leads to sets of tiles defined logarithmically in central frequency and Q, and
linearly in central time [30].

With this, the excess energy in any given tile in the Q transform, X (7, f., Q), as the ratio of
the energy in that tile to the mean expected energy of all tiles in a given Q plane,(X(Q)?) [30]:

2 — |X(T9 .fC’ Q)|2 _ 1
(X2
P’ =X . QF -2 (6.9)
where the subtraction of one results in tiles which match the expectation giving an excess power

of zero, and the expectation value for white noise is 2 giving the latter result. This value is
taken as an estimate of the SNR, p.

(6.8)
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When the excess power is defined for every tile, Omicron then down-selects tiles to produce
triggers by keeping only those tiles which have an SNR of 5.5 or greater. Omicron then further
clusters these triggers into events as there could be triggers from many tiles corresponding to
the same glitch or gravitational wave. This is done by clustering all triggers, despite frequency
or Q value, in a rolling 0.1 second window. That is, any down-selected trigger and its neighbor
are considered to correspond to the same event if their central times are within 0.1 seconds of
one another. This can result in a varying duration of a single cluster, taken as the difference
between the minimum and maximum central time of triggers in that cluster. For example, if
there are only two nearby triggers, then the cluster duration would be 0.1 seconds, but if there
are many, this could increase indefinitely. In reality, the longest known clusters are up to order
10 seconds in length.

For each of these clusters, the peak time, peak frequency, and SNR of the cluster is assigned
as those from the highest SNR tile in the cluster. Then each cluster is assigned a start time,
or the central time the earliest tile in the cluster, an end time, or the central time of the latest
tile in the cluster, SNR, peak frequency, peak time, the frequency limits of tiles in the cluster,
and finally additional information about the highest SNR tile in the cluster. These clusters
are added to the Omicron database periodically when being generated offline, or continuously
when generated automatically online. In Omicron’s online configuration, this clustering process
combined with the runtime of the package incurs an order thirty second latency compared to
real time data. Any outages of Omicron online are manually back-filled to keep full coverage
of available observing time.

6.1.3 SNAX

SNAX [31] is a toolkit inspired by Omicron, but with the added benefit of processing data in
near real-time for use by downstream processes such as iDQ.

Similarly to Omicron, SNAX builds a basis on windowed sinusoids, but implements a
Gaussian window. These basis waveforms can be expressed as:

h(t) = Aw(t — T, f, Q) cosQn ft + ) (6.10)

where A is the normalized amplitude, 7 is the central time, Q is the quality factor as defined
previously, f. is the central frequency, ¢ is the phase, and w is the Gaussian window. In this
case, a typical Gaussian window is used with a tapered acausal component to minimize latency
defined by [31]:

exp (_2+r,2(t_7)2) t<0

exp (—2%2(; - T)Z) exp (—log(E)(t_T))

lma.\:

w(t -1, fe, Q) = (6.11)

where [, is the maximum desired incurred latency from the matched filter, € is a pre-
determined tolerance for truncation on the Gaussian waveform, given as 5e - 3 in a typical
analysis, and o2 is the variance on time given by:

,_ @

7= g (6.12)
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Thus, a template bank of the sine-gaussian basis vectors is constructed and parameterized
on central frequency, f. and the quality factor, Q. SNAX analyzes thousands of auxiliary
channels in addition to the strain channel, so templates are placed in a bank per auxiliary
channel subsystem in a frequency range appropriate to that sub-system. In the general use case,
they are alternatively placed by default in the gravitational wave search frequency range and in
a Q range with a minimum set for anti-aliasing effects and a maximum based on computing
constraints.

Using these templates, each target channel’s timeseries is resampled, whitened, and then
matched-filtered with the corresponding template bank. The output is an SNR timeseries
per template in the bank which is then aggregated across templates, similarly to the GstLAL
analysis, by keeping the template and SNR corresponding to the highest SNR in some small
window, t,. This results in one SNR timeseries per desired channel along with information
about the template parameters per t,. Then, the results are bundled and synchronized across
channels, so the output contains results from all channels of interest across some window
of time, typically one second in low-latency operations. These synchronized series are then
ingested by downstream processes such as iDQ.

6.1.4 GravitySpy

While other detector characterization pipelines like Omicron contribute by identifying glitches
in the timeseries strain data, GravitySpy contributes classifications to those times. As discussed
in section 1.4, there are variety of glitch classes defined by their morphology in the time
frequency space. GravitySpy uses a CNN machine learning algorithm [27] to classify a time of
interest based on spectrograms of the time with four durations: 0.5s, 1s, 2s, and 4s. The variety
of durations is required to expose the morphology of glitch classes with varying duration. The
output of GravitySpy for a time of interest is a list of all glitch classes considered each with
an assigned probability, or confidence. The confidence across classes is not required to sum
to one, and instead each class is assigned a value between 0 and 1 individually. For example,
GravitySpy could be confident that there was a scattering-like glitch present, but be unable
to distinguish whether it was a Fast Scattering glitch or Scattered Light. In this case, you
could expect high confidence values in those two classes and lower confidence values across all
others.

The training set for GravitySpy has evolved with time through observing runs as more
glitches are discovered, and more morphological classes are defined. As of LIGO’s third
observing run, the training data consisted of 9631 labeled glitch samples across 23 morphologies.
Of note, one class included is the "No Glitch" class which was trained to correspond to times
when there was no glitch present. However, as discussed in more detail in Chapter 7, this class
is frequently assigned by GravitySpy to glitch glitches which don’t match any of the other
known morphologies — even at high confidence.

During active LIGO observing runs, GravitySpy classification is triggered on new Omicron
event times uploaded to the database with SNR of 7.5 or greater. This allows for medium-latency
identification and classification of glitches which informs detector maintenance.
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Figure 6.1. Cartoon example of how OVL identifies and counts correlations between an auxiliary
channel (top), and the strain channel (bottom). For each auxiliary channel (vchan), a window (vwin)
and threshold (vthr) is assigned to create a veto. A variety of statistics are then calculated based on how
these two combine to remove glitches from the strain data. Reprinted from [10]

6.1.5 OVL

OVL [10] identifies correlations between transients in the strain data, and auxiliary channels
by constructing an Ordered Veto List. To do so, OVL leverages the use of a labeled dataset.
By default, it uses the Kleine-Welle algorithm to label a given dataset, but in theory any glitch
finding algorithm can be used which provides a time and significance estimate. For example,
when implemented in iDQ, it is supplied feature vectors from SNAX or Omicron containing
time, frequency, and SNR.

OVL then searches for correlations by setting windows and thresholds on transients in the
auxiliary channel data and searching for coincidences in the strain data. A cartoon example of
this is shown in Figure 6.1.

A variety of windows and thresholds are set on the auxiliary channels to account for the
varying morphology of glitch types and classes. A veto in an Ordered Veto List is then defined
by three characteristics: the auxiliary channel, the window, and the threshold. Segments
representing the time removed by application of the veto are constructed by applying the
window around any time that crosses the threshold. In this way, the dead-time, ¢;, introduced
by application of a veto is simply a sum of these segments, and the fractional dead-time, fg, is
the dead-time over the total livetime observed, or f; = t;/T. The efficiency, € of the veto is
calculated as € = n./Ngin Where n, is the number of coincidences between the strain data and
the auxiliary channel transients above the threshold, and N, is the total number of transients
in the strain data. Assuming that glitches are generated by Poisson processes, the efficiency
over dead-time ratio for each veto is calculated as follows [10]:

ne / N, strain

T (6.13)

€/fa =
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where Agin 1 the expected rate of glitches in the strain data for a Poisson process, and T
is the total observing time. This is the number of coincidences observed over the expected
number from a Poisson process and is used the main measure of significance in OVL. Its worth
noting that this measure can be large even with a small number of coincidences identified if the
deadtime introduced is also small. For example, if an auxiliary channel is an excellent witness
for a single rare glitch type, then n. may be small, but if it witnesses these glitches precisely, #;
could also be small and still form coincidences. In this case, the efficiency-deadtime ratio may
not vanish even though the channel witnesses only a small number of coincident events.

The efficiency-deadtime ratio is calculated for each of the vetoes using all of the time in
the dataset as an initial significance estimation. Vetos are then ordered from largest to smallest
significance to construct the first ordered-veto-list iteration. Then, the vetoes are applied to
the original dataset one-by-one from the top of the list to the bottom and the significance
calculated where the time covered by each subsequent veto is removed from the dataset before
applying the next. In this way, each veto is actually being applied to a different dataset, but
the significance of any redundant vetoes goes to zero. After ordering, the list is pruned by
a set threshold on the efficiency-deadtime ratio, and the Poisson significance. The Poisson
significance is taken as the probability of observing as many glitches at the Poisson expected
rate, Agy,in Or more and is given as [10]:

o k
p= <rll€”,> exp (=(n.)) (6.16)
k=n. '
0 k
= 3 ORI exp nefute) (6.17)
k=n, '

where (n.) = t;Aqin 1S glven as the expected number of coincident counts from a Poisson
process. Note that this is not the same as the efficiency-deadtime ratio and prefers vetoes with
large coincident numbers at a given efliciency-deadtime ratio. By requiring vetoes to pass both
the efficiency-deadtime ratio and Poisson significance threshold during pruning, OVL requires
both correlation strength and large coincident numbers. As mentioned previously, requiring
only high efficiency-deadtime ratio can allow for veto configurations with small numbers of
coincidences and small deadtimes to be kept. After initial ordering and first pruning, the vetoes
are then re-ordered by the calculated significance and the process is repeated until the list
converges. The act of pruning allows for this process to converge more rapidly. In this way,
correlations between any number of auxiliary channels and any strain dataset can be identified
and ranked by their significance.
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6.2 iDQ Methodology

iDQ identifies non-Gaussian noise via auxiliary channels, and provides probabilistic statements
on the likelihood of evaluated strain data containing a glitch. Full details on iDQ are given in
[11]. Anoverview is provided in the following section following that work along with additional
detail on how this methodology changes between the online and offline implementations.
iDQ uses a two-class classification scheme to define glitches, and any time that is not a
glitch, or is clean, such that:
p(G)+ p(C) =1Vt (6.18)

Additionally, iDQ does not further classify glitch times like GravitySpy, instead just assigning
them to the generic glitch class. However, as will be discussed in section 7.4.1.1, the classifica-
tions of GravitySpy can be combined with the results of iDQ to both further classify the times
iDQ identifies, and extend this to trace glitches back to their auxiliary channel sources.

Labels for iDQ’s training set are derived from the strain data via SNR thresholds on Omicron
and SNAX triggers as described in detail in 6.2.2. The determination of classification by iDQ,
however, is dependent only on the auxiliary channels in each interferometer. iDQ analyzes
only the safe auxiliary channels in each, or those that are insensitive to genuine gravitational
wave signals. This prevents iDQ from identifying gravitational waves, making it ideal for
incorporation into gravitational wave detection pipelines as a veto or similar data quality flag.
How 1iDQ processes safe auxiliary channels to assign the glitch classification is discussed
throughout the duration of this section.

6.2.1 Data Discovery and Division

The main input to iDQ is a set of features represented by tabular data on auxiliary channels. iDQ
could, in theory, ingest the raw detector data, but using a feature extractor allows for upstream
data handling, and transformation thereby simplifying the iDQ pipeline. There are a variety
of feature extractors which each report their own feature sets using their own methodology.
Omicron, see 6.1.2, for example uses Q transformed tiles to estimate SNR, frequency, central
time, and duration of noise transients in the target channel. Whereas SNAX, see 6.1.3, uses
matched filtering to detect noise transients and estimate the SNR, frequency, and time. Offline
production of iDQ currently implements Omicron, while online production implements SNAX
as the upstream feature extractor.

The cadence at which feature extractors report features on individual channels may change
with time, and there could be too many or too few features for iDQ to use in the analysis.
Therefore, ahead of ingesting the data, iDQ converts features from the upstream feature extractor
into feature vectors. This is done by taking the features for any single channel within some
window (typically about 100ms) and taking the maximum SNR feature in the set, or reporting
default values if no feature is available. This allows for a consistent dimensional input to the
pipeline at all times.

With this, there are two methods for dividing data for training and evaluation: acausal and
causal. The acausal scheme is used exclusively for the offline iDQ analysis and can be seen in
Figure 6.2.
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Figure 6.2. Schematic diagram showing data segmentation for acausal batch operation. Each row
corresponds to one of N bins, and each column corresponds to one of N X M segments. Across all
bins, only one segment is used for evaluation, but across bins they add to cover the full time of interest.
Reprinted from [11].

It first chooses N bins into which to divide the data with M segments in each bin. Then,
the entire time of interest is divided into N x M segments. The first segment is assigned to the
first bin, the second to the second, and so on until the (N+1)segment is again assigned to the
first bin, the (N+2)segment to the second, etc. This process is repeated until each bin has M
segments in it. The Nth segment of all M segments in a bin is then used for training while all
others are used for evaluation. This system creates N bins each with information from a wide
distribution of the total observing time for use in training. Additionally, across each of the N
bins for any time segment of interest, there is only one bin which uses that time segment in
evaluation, resulting in a unique and continuous output timeseries. It does require, however,
that the entire duration of interest be available at the time of analysis which is why it lends
itself exclusively to offline, and high latency usage.

The causal method, however, does not have such constraints. In this method, all data before
some recent history is used as training data for the current time cumulatively. This requires
an initial look-back in order to collect the data for first training set, but afterwards incurs no
additional latency and is constantly updated with the latest information from the dataset. This
works well for real-time analysis as any changes in the detector characteristics are consistently
folded into the analysis at with a cadence equal to the segment length, typically 3 hours.

6.2.2 Training

In order to evaluate a desired dataset, iDQ must first train a classifier to identify glitch times.
Although iDQ is constructed such that any classifier can be used, OVL has been the classifier
used exclusively up to this point for production-level iDQ analyses, and this implementation
will be discussed in the most detail here. Training datasets for iDQ consist of labeled feature
vectors from times chosen via the binning scheme discussed in the previous section. The labels
for these vectors are assigned based on a threshold on the significance of the vector. In a typical
production analysis, the glitch label is applied to vectors with an SNR of 10 or greater, while
the clean label is applied to those with an SNR of 5.5 or less. Vectors with significance between
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the two labels are considered dirty, and are not used in training. Additionally, clean vectors are
required to be a full second away from any glitch vector thereby ensuring independence of any
two samples.

A classifier takes these labeled vectors and generates a model, or a mapping from the
input parameter space of any arbitrary feature vector to a rank space between zero and one.
The details of each mapping is unique to each classifier and which of the input feature vector
parameters are used and considered relevant is entirely unique to each. Additionally, the chosen
rank space between zero and one is an arbitrary one made for iDQ. What matters is the ordering
of the results within the rank space, and the range of zero to one was chosen for convenience
while any range would contain the same information. This mapping from input parameter space
to rank space is then stored as a trained model, and given a unique hash for usage in evaluation
later in the pipeline.

In its application within iDQ, the OVL classifier has been modified to use the efficiency-
deadtime ratio, the Poisson significance, or the use percentage to order the vetoes in its lists.
The efficiency-deadtime ratio and Poisson significance are as described in section 6.1.5, and the
use percentage is the number of coincident glitch events identified at a certain threshold over
the total number of transients in the auxiliary channel which pass that threshold, or U = n./N;.
Whichever metric is chosen, the value of the metric is mapped from the possible [0,inf) space
to the [0,1] space of the rank, R, via a scaling factor as [11]:

R, = —nttm (6.19)

1+ 5, *x,

where s, is the scaling factor for the metric and x,, was the value of the metric itself. No matter
the metric chosen, the rank is now used to order the vetoes in lists. Pruning of the lists is
designed to allow enforcement of a minima on any of the statistics which are available for use
in the rank. In the production iDQ online analysis, for example, minima are set on Poisson
significance, use percentage, and the efficiency-deadtime ratio as 5, 0.05, and 5 respectively
while the rank is based solely on efficiency-deadtime ratio. However, as will be discussed in
section 7.3 changes to the available ranks were made ahead of the fourth observing run to allow
for a wider variety of considerations.

6.2.3 Evaluation

After training, the models are then available for application to data of interest, as assigned in
section 6.2.1. During the evaluation phase, the models made from the training data are applied
to validation data and the result is stored, along with a reference to the original model hash.
In offline running, all of the data for evaluation per bin is loaded in at once and has the single
model for that bin applied. This process is repeated across bins resulting in an evaluated dataset
for every time in the input range. During online running, a stride’s worth of data (typically
about 900s) 1s loaded in, the most recent model is applied, and the result is written to disk as a
ranked dataset. Then this process is constantly repeated in a cadence equal to the stride length.

To apply the model, the feature vectors for each channel are compared to the ordered veto
list stored in the model. In offline operation, the model used here is the one created by the bin

79



in question, while in online it is the latest model. The vetoes in the OVL are applied in order as
described in 6.1.5, and the result is a rank value for every time in the stride.

Note that the output of this evaluation process is not the deliverable timeseries data, but
it is instead classified datasets of a stride’s length. These resulting datasets are passed on to
calibration map processes for use in calibrating the log-likelihood and FAP, but are not reported
as the output timeseries. As discussed in section 6.2.5, artifacts in timeseries generation can
cause the ranks calculated here to mismatch those reported by the actual timeseries process.

6.2.4 Calibration

The calibration processes form maps from rank to probabilistic statements, called calibration
maps. While the rank could be the only output of iDQ, probabilistic statements are not only
more human-friendly, but can be implemented directly in downstream gravitational wave
detection pipeline ranking statistics. The timeseries which iDQ currently calibrates are a
log-likelihood, and a false alarm probability, although there will be discussion on a glitch
probability statement in section 7.4.1.1. The likelihood-ratio is given via the Neyman-Pearson

lemma as:
¢ _ p(datalG)

¢ p(dataC)

where p(data|G) is the probability of getting the data given that the time given has a glitch
label, and p(data|C) is the same for clean labels. To calculate each of these probabilities, clean
and glitch times are taken from the training and evaluated datasets. All of the glitch samples
are taken and used to generate a histogram of glitch ranks, while only a random sampling of
the clean times is taken as there are frequently two orders of magnitude more clean samples
available than glitch samples. Probability density functions (PDF) of these histograms are
modeled using a Gaussian kernel density estimate (KDE) with reflected values at the rank =0/1
boundaries to avoid edge effects. The log-likelihood is calculated from these PDFs as the ratio
of the log of the glitch PDF over the log of the clean PDF at a given rank value.

This same clean PDF is then also used to calculate the false alarm probability (FAP) statistic
taken as [11]:

(6.20)

1
FAP = f p(M(data) >= x|C)dx (6.21)

where M(data) is the output rank of the model on the data and therefore p(M(data) >= x|C)
is the probability of the rank assigned by the model being greater than the rank threshold
given that the data is not a glitch. To obtain this, the PDF of the clean samples is integrated
cumulatively to form a cumulative distribution function (CDF). The FAP can then be taken as
FAP =1 - CDF(r), or one minus the CDF at a given rank to obtain the integration from that
rank to 1.

Thus, any calibration map contains the PDF of the clean and glitch samples from the
training data up to that point as well as the CDF of the clean data. It can then be applied to
any time of interest in order to immediately calculate the calibrated log-likelihood and FAP.
In offline production, this calibration map only needs to be calculated once per segment, like
the evaluated data. In online mode, the calibration map is updated as soon as new evaluated
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data is available, and is calculated from scratch when new models are available. It is therefore
dependent on the training and evaluated data cadences, but is typically updated every few
minutes, and calculated anew every few hours.

6.2.5 Timeseries

For any given time of interest, iDQ applies the latest model and calibration map to obtain
the rank, log-likelihood, and false alarm probability through the timeseries processes of the
analysis. Timeseries processes poll for feature vectors in a stride’s length, one second in online
processing and 1800 seconds in offline processing. Models are applied to this data in the same
manner as the evaluation process as described in 6.2.3 to obtain a rank timeseries. These rank
values are then converted to log-likehood and FAP by applying the calibration maps calculated
as described in section 6.2.4. The resulting timeseries of all three are written to disk for the
stride length in question as the main output of iDQ. Then, a new stride’s worth of data is loaded
and the process is repeated.

One weakness of this process is revealed in the online operating mode which uses the
short stride of one second in order to keep up with real time. However, information about the
veto segments and windows are not kept between strides. That is, if a veto with a half second
window is active at time 0.99s, the analysis does not record that it should be marked as active
at time 1.01s. Similarly if it is active at 1.01s, it does not retro-actively apply the veto to 0.99s.
The latter follows because these times have already been written to disk, and in the online mode,
distributed to downstream users. However, discarding the information before being applied to
future times is a shortcoming of the current configuration which can cause a mis-match between
the information represented in the timeseries and the information represented in the datasets
output by the evaluation processes. The evaluation processes are set with a significantly longer
stride than that of the timeseries procceses, meaning this lack of memory affects the timeseries
more significantly than the evaluated datasets. The impact is that the classified datasets made
by the evaluation processes differ from the ranked timeseries on disk.

This effect is mitigated in offline processing as a significantly longer stride (about 1800s) is
used to calculate the timeseries, so these edge effects will be much more rare. Mitigation of this
issue online is left to future work, and the speed and computing performance of the analysis
will have to balanced with the benefits of keeping longer stretches of data in memory.

6.2.6 Online vs offline running

Although discussed intermittently in the previous sections, we collate the many differences
in the iDQ process when run in the online, low-latency configuration versus in the offline,
high-latency configuration here. In these two modes, the biggest difference is the latency
incurred and the cost of that latency.

In the most common configuration of offline mode, Omicron is used to create input feature
vectors, and the data is binned using the acausal scheme described in section 6.2.1. This
necessitates the availability of data covering the entire time range of interest from the start of
the analysis, and therefore incurs a minimum latency of the duration of the time of interest.
It also, however, accounts for data from across the observing time of interest instead of only
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the data up to the time analyzed. For example, the training data is taken as shown in Figure
6.2 from both before and after the evaluated data segment, and all of the evaluated data in a
segment is available for use in the calibration maps. This naturally results in more accurate
vetoes, ranking, and significance.

In addition, the different stages of the analysis must be performed in sequence, that is the
training is completed before the evaluation which is completed before the calibration and so
on. The strides of data input to these different stages is longer than in the online case as well,
mitigating the edge effects that occur when handling small data sets as discussed in the previous
section. In reality, this mode is most frequently used for re-analysis of previous observing run
data when the timescale of data availability is large.

The online configuration, however, uses SNAX for input feature vectors, and data is
binned in the causal scheme described in section 6.2.1. This scheme allows for asynchronous
production of trained models, evaluated datasets, calibration maps, and timeseries, but can only
assign significance to data based on historical data. The models are trained every O(3) hours
and keep information about historical data up to three days to inform the datasets, although this
parameter is configurable. If there is a sharp change in the behavior of the detector, however,
these models will mis-represent the current detector state. The data kept and used by the
training processes to inform models are not weighted in any way by age, so keeping a long
history of data for training makes the models and the calibration maps stable.

The calibration maps initialize the glitch and clean histograms with samples present in the
training datasets from the latest model. Then, this is updated every few minutes with more
recent samples from the evaluation processes which calculate ranks for new data in real time.
If the look-back time for the training processes is decreased, then both the models and the
histograms made by the calibration maps will update more rapidly with changing detector
behavior, but when a new model is available and applied, the result could vary drastically
from the previous one. This would make the output timeseries discontinuous which is itself
undesirable. Therefore, a three day look-back is chosen as the balance between these two
extremes for the models.

The timeseries processes then produce data in one second strides, continuously polling
for the latest calibration map and model. This comes with issues discussed previously where
information from vetoes is not kept across the one second strides, causing edge effects. Most
frequently, the timeseries processes get a new model every few hours and a new calibration
map shortly after. Thus, timeseries data is available at incredibly low latency, but could contain
edge effects and is generated using models that are at worst a few hours old.

6.3 Support of Real-time Gravitational Wave Detection with
iDQ

Ahead of the fourth observing run, iDQ was integrated into the live data quality reports (DQR)
generated in real time for gravitational wave candidates, and the gravitational-wave analysis
pipeline, PyCBC, integrated iDQ timeseries data into its real-time detection pipeline [162]. The
DQRs cycle through a variety of data quality checks for each instrument in production as an
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Figure 6.3. Example of iDQ follow-up task contained within the real-time data quality reports ahead of
O4b. Left: A spectrogram of the auxiliary channel which ranked highest in model applied at the time.
Right: The triggers from the auxiliary channel which ranked highest in the model applied at the time
with the SNR assigned to them by SNAX. Below both figures is a vector accounting for when the veto
corresponding to this channel was active.

immediate follow-up to a gravitational wave event. This includes checks on spectrograms of
the strain data for glitch morphologies and on excess energy outside of the gravitational wave
track, as well as initial checks on active auxiliary channels at the time. If the gravitational wave
candidate fails any of these checks, a data quality expert is appointed to manually follow-up.

Most recently, iDQ was added to this list of checks. Now, iDQ information in a three second
range around the time of interest is thresholded, and if the iDQ timeseries passes that threshold
the check is failed. All previous data quality checks in the DQR only looked in the immediate
vicinity, or about a second, around the time of the candidate. Adding this additional search
from iDQ at a longer range enables data quality experts to estimate whether a glitch is present
throughout the track of gravitational wave event. For example, in the case of GW170817, a
glitch a few seconds before the merger time caused issues in detection pipelines, and this iDQ
check could flag a similar situation.

Additionally, ahead of O4b, the iDQ report was improved to contain a spectrogram of the
auxiliary channel which ranked highest in the model applied at the time of the event, and a
corresponding plot of feature vectors SNAX generated from that channel as seen in Figure 6.3.
While previously the auxiliary channel information was available via a list of the vetoes and
their ranks, this additional step provides an immediate visual representation of that auxiliary
channel allowing for verification of the auxiliary activity at a glance.

In support of both of these integrations, two additional changes were made to the online
configuration of the iDQ analysis. A state vector was added which provides real-time infor-
mation on whether or not the state of iDQ pipeline is production ready, and is used to alert
downstream users of the quality of the iDQ timeseries. The state vector may indicate that iDQ
is not production quality for a few reasons. In the first few hours of an analysis, there is not yet
enough data collected in order to generate informed models or populate the histograms used
by the calibration maps. Therefore, the number of samples in the training datasets must past a
certain threshold for the state vector to reflect a production quality state. Additionally, models
from the training data can become stale due to computing issues preventing the training pro-
cesses from running. This can happen when there are issues in data distribution and discovery,
or for a variety of reasons during maintenance on the computing center where iDQ runs. To
mitigate this, we also apply a check on the age of the latest model, and if its stale then the state
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Figure 6.4. An example of one view available on the live monitoring dashboards implemented for each
of the detector analysis during O4. It displays the live and historical timeseries output from the iDQ
analysis along with the status of the IDQ_OK state vector.

vector is again set to reflect this.

With integration of the low-latency iDQ timeseries into downstream analyses, it also became
prudent to have real-time monitoring of the entire analysis. We therefore integrated the use
of Kafka, a low-latency event streaming platform, into the iDQ pipeline. This allows for
diagnostic information such as the state vector, the output timeseries, and more to be passed
asynchronously by any process to kafka, and stored in a database. The data is then pulled from
this database and displayed with real time updates, and look-back capabilities via a Grafana
dashboard.

Currently, all of the output timeseries from each of the monitored detectors is displayed
with an overlay of the IDQ_OK state vector. This allows for a check on the state each analysis
at a quick glance, and dynamic follow-up for any event time of interest that may appear in the
low-latency analyses. An example of this can be seen in Figure 6.4.
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Chapter 7

Performance of iDQ ahead of LIGO,
Virgo, and KAGRA'’s Fourth Observ-
ing Run

7.1 Introduction

The detection of 90 gravitational wave candidates [43] by the LIGO Scientific Collaboration
and the Virgo Collaboration has been made possible via gravitational wave detectors, Advanced
LIGO [3] and Advanced Virgo [163]. The detectors are modified large-scale Michaelson
interferometers whose main output, called strain data, is the differential difference in distance
traveled by laser light between its two arms. As gravitational waves pass through the instrument,
these paths change a minute amount, resulting in a recorded signal in the strain data measured
to lengths as small as 10~'° meters. While this remarkable sensitivity allows for the detection
of gravitational waves, it also allows for the easy detection of transient noise sources arising
from the environment or the instrument itself. Such non-stationary noise sources are commonly
referred to as glitches.

Glitches can arise from a variety of both known and unknown sources [24, 164—166] and
pose a challenge to the accurate detection and analysis of gravitational wave signals [167-170].
Some glitches can manifest in the strain data in a similar manner to genuine gravitational
wave signals, and can possibly be mistaken for them if present simultaneously across multiple
detectors. Glitches can additionally overlap with true signals thereby obfuscating them, and
making parameter estimation of the true signal difficult. Such was the case with the detection
of the binary neutron star merger signal GW 170817 where there was a large glitch overlapping
with the Livingston detector data causing some initial concerns with the data quality [171,172].
Therefore identifying and characterizing glitches is a key part of increasing the overall sensitivity
of the entire detection system.

While the detection of gravitational waves is possible using the strain data alone, there are
also thousands of supplementary data outputs produced by the detectors. These supplementary
outputs, called auxiliary channels, record additional degrees of freedom in the detector outside
of the strain data and act as monitors on everything from mirror deformation, to environmental
recordings [166,173—176]. Some of these auxiliary channels monitor systems which produce
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signals in the presence of gravitational waves. These channels are not ideal for use in identifica-
tion of glitches as signals there could be genuine gravitational waves signals. Safe auxiliary
channels then are defined those which are insensitive to gravitational waves, and therefore
any signal present in these channels is by definition a glitch. Glitches witnessed by these safe
auxiliary channels may also appear in the strain channel. If only monitoring the strain channel
in such a case, information is lost that could easily identify the present signal as a glitch. iDQ
is a statistical inference framework which uses safe auxiliary channels to identify these cases
and make statistical statements about the presence of glitches in the strain channel based solely
on activity in the auxiliary channels [11,31].

iDQ is trained on activity in safe auxiliary channels labeled by the presence of glitches in
the strain data to identify correlations between the two. If an auxiliary channel is identified to
be strongly correlated with the strain data, then any new activity in that auxiliary channel can be
used to predict if a signal in the strain data is of terrestrial origin. Additionally, by monitoring
only the safe auxiliary channels, iDQ can safely identify glitches without also flagging real
gravitational waves making it ideal for incorporation into gravitational wave detection pipelines.
The output of the iDQ analysis then consists of two probability statements that indicate the
likelihood that the gravitational wave data is contaminated by a glitch monitored by one of
these auxiliary channels.

There are thousands of these safe auxiliary channels sampled at high rates available for
analysis by iDQ. In order to reduce the computing cost and latency of analyzing so many
channels at such high rates, iDQ relies on two sources for the extraction and downsampling
of relevant information. In low-latency operation, the Stream-based Noise Acquisition and
eXtraction pipeline (SNAX) [31], is implemented for this purpose, but in high latency Omicron
[29,30] is used and it is the latter which will be discussed in this work. Omicron reports on
the presence of excess power, measured by the signal-to-noise ratio (SNR), in both strain and
auxiliary channel data via the Q transform, a wavelet decomposition parameterized by a quality
factor (Q). Times which are noted to have an estimated SNR greater than 5.5 are then passed
on to iDQ for analysis. High SNR times from the strain channel are used to label glitches in
iDQ training sets, while all times from auxiliary channels are used to find correlations.

Correlations identified by iDQ can then be further classified by the type of glitches present
in the correlation. Glitches are separated into classes based on how they appear in the strain
data and those which have the same morphology as gravitational wave signals, for example,
are of particular interest and are targeted for further study. Although classification of glitches
can be done by eye, the frequency at which glitches appear has motivated the development
of GravitySpy [4,25-27,177] which can automatically classify any time of interest using a
convolutional neural network (CNN). In this work, the correlations iDQ finds between auxiliary
channels and strain data are extended using the classifications assigned by GravitySpy to find
relationships between auxiliary channels and glitch classes. These relationships then reveal
which glitch classes appear most frequently in which auxiliary channels. If an auxiliary channel
frequently witnesses a particular glitch class, then the detector system the auxiliary channel
monitors can be investigated as a possible source of that glitch class.

In this work, we first provide a background of the iDQ framework, the Omicron package it
relies on, and the GravitySpy package which provides classifications. We additionally review
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changes to the iDQ framework from the LSC’s third observing run to current day, as well as
the performance of these changes. We then continue to quantify iDQ’s current performance,
including a new measure of glitch probability, and report on a new method using iDQ to track
glitch types back to their possible origins in the detectors.

7.2 Background

7.2.1 Omicron

Omicron is designed to detect and characterize transient signals through the use of the Q
transform, which decomposes the detectors’ time-series data into a time-frequency basis.
The Omicron implementation of the Q transformation relies on the tiling of a signal’s time-
frequency space where one tile is defined by the projection of the signal onto a Bisquare
windowed sinusoid basis with a given central time, central frequency, and quality factor, Q [29].
The distribution of tiles used by Omicron in a single Q plane is defined by an acceptable
energy loss due to mismatch between the tiles, and this strategy leads to sets of tiles defined
logarithmically in central frequency and Q, and linearly in central time.
The excess energy of any given tile is then used as an estimation of the SNR, p and is given
as [30]:
s X@ 0P
< X(0)?>

where X(7, f., Q) is a single tile, < X(Q)? > is the mean expected energy of all tiles in a given
Q plane, and 2 is the result expected from white noise. In order to form events, any two tiles
with positive excess energy which have less than 0.1 seconds between their central times are
considered to be identifications of the same event and are clustered. After a cluster is formed,
the SNR, central time, and central frequency of the tile in the cluster with the highest SNR are
assigned as the event’s parameters. Similarly, the start and stop time of the event are taken as
the earliest and latest central time of tiles in the cluster [30]. This clustering results in events
with non-uniform duration from as little as 0.1 seconds and up to 10 seconds, with the bulk of
the distribution around at O(0.1) seconds.

Any event with an SNR of at least 5.5 in the strain channel is then recorded in the Omicron
database along with its relevant parameters. High SNR events from the strain channel could
indicate the presence of a glitch, but could just as easily identify a real gravitational wave signal.
For the purpose of this paper, events with an SNR greater than 10 in the strain channel which
do not correspond to known gravitational wave signals are treated as the identification of a
glitch. Events identified in safe auxiliary channels, meanwhile, are used as inputs to the iDQ
analysis.

(7.1)

7.2.2 GravitySpy

While other detector characterization pipelines like Omicron identify glitches in the strain
data, GravitySpy contributes classifications to those times. There are variety of glitch classes
defined by detector characterization experts based on their morphology in the time frequency
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space of the strain channel [25]. GravitySpy uses a combination of human volunteers and
a CNN machine learning algorithm [4,27,28, 177] to classify any time of interest based on
spectograms of the strain data with four different durations. Four durations are used in order
to expose morphologies which are present at varying timescales. The output of GravitySpy
then is a probability, or confidence, that a given time is of each glitch class considered. The
confidence across classes is not required to sum to one, and instead each class is assigned a
value between 0 and 1 individually. For example, GravitySpy could be confident that there was
a scattering-like glitch present, but be unable to distinguish whether it was Fast Scattering or
Scattered Light. In this case, you could expect high confidence values in those two classes and
lower confidence values across all others.

The training set for GravitySpy has evolved with time as more glitches are discovered, and
more morphological classes are defined. As of LIGO’s third observing run, the training data
consisted of 9631 labeled glitch samples across 23 morphologies [25]. There has since been an
update to the GravitySpy model for LIGO’s fourth observing run [27], but this paper focuses
on data from the third and therefore uses classification from the GravitySpy model available
during that time.

During active LIGO observing runs, GravitySpy classification is triggered on new Omicron
event times uploaded to the database with SNR of 7.5 or greater. This allows for medium-
latency identification and classification of glitches which can then be used by detector engineers
to inform detector maintenance. However, Omicron experts frequently add new events to
the database which were not identified in low-latency. These additional times are not always
assigned classifications by GravitySpy, and therefore in this work, we consider an additional
category of "Unclassified" to represent these times.

7.2.3 iDQ

Although well-described in [11], we will give a brief summary of the iDQ framework leading
into the LSC’s third observing run. iDQ runs in two modes — streaming and batch. We
summarize the batch, or high-latency, implementation here as it is what is used to measure the
performance of the pipeline in the later sections of this work.

iDQ begins by taking in events produced by Omicron on O(10?) auxiliary channels. As
discussed in section 7.2.1 triggers are equivalent to tabular data on transients in these channels
and contain information on the signal-to-noise-ratio (SNR), frequency, central time, etc of these
transients. The events for each channel reported by Omicron are then downsampled further
by iDQ into feature vectors. A feature vector represents the maximum SNR event reported by
Omicron in any one second window.

These vectors are then labeled as glitch or clean based on the SNR value reported by
Omicron on the strain data at the same time. If the SNR of the strain channel is greater than
10, then the transient is considered a glitch. If the strain channel SNR is less than 5.5, then its
considered clean. Any feature that falls in between those two thresholds is neither clean nor a
glitch and is not used in training data.

To construct training datasets, the entire time of interest is first divided into segments. The
majority of these time segments are used for training, and one is reserved for evaluation, as
described in detail in Section IV of [11]. The times in training segments are then used to
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construct the training datasets iDQ needs for its classifiers. For training, all the times labeled as
glitch, and a random selection of clean times at least one second away from a labeled glitch
are used. The additional one second window for clean sampling enforces that the times in
the glitch and clean datasets are uncorrelated as most glitches are shorter than one second in
duration. This limits the training dataset based on the Omicron SNR threshold in strain, but it
is ultimately the auxiliary channel features at the times of interest, and not strain information
that iDQ is trained on.

iDQ uses these datasets to then train the classifier(s) chosen. The only limit to the choice of
classifier is that it must map the high-dimensional input feature vector space into a single rank
value between 0 and 1. This mapping, called a model, is unique to the classifier and to the time
it was trained on. For batch production during O3, the classifier OVL was used.

The OVL classifier is well-described in [10], but, in short, models produced by OVL consist
of an Ordered Veto List, a list of vetoes on the auxiliary channels which were active at the
time of interest. To form this model, OVL creates a list of possible veto configurations based
on auxiliary channel, threshold, and time window and then evaluates them based on a chosen
metric. OVL previously supported the choice of one of three different metrics for this process:
efficiency-deadtime ratio, Poisson significance, or use percentage, although as we describe
in section 7.3.1, additional options have been added. The use percentage is the fraction of
auxiliary channel glitches which can be associated with a strain channel glitch where a glitch
in the auxiliary channel is defined by having an amplitude above the threshold set by the veto.
The Poisson significance is the probability of observing as many or more coincidences between
two series of random events than actually observed between the auxiliary channel and strain as
described in detail in [178]. The efficiency-deadtime ratio is given by the efficiency of the veto
over the deadtime introduced by the application of the veto. In other words, the fraction of total
glitches in strain removed over the fractional livetime removed by applying the veto.

1DQ requires that these metrics produce ranks that fall in the space of [0,1) rank space in
order to comparable between one another. If only used individually, the choice of [0,1) is an
arbitrary one and what is more important is the ordering. However, as will be discussed in
section 7.3, it can be desirable to combine information across several metrics in order to give
preference to vetoes with a certain combination of properties. Therefore, a simple scaling factor
was applied to their values with a map from the metric space of [0, inf) to rank space of [0, 1)
as show below:

S * Xy

Rank,, = —— (7.2)
1+ s, *Xx,

where s,, 1s the scaling factor for the metric and x,, was the value of the metric itself.

After the initial rank evaluation, the vetoes are ordered from highest to lowest, and then the
rank is re-calculated applying the highest veto first, and ending in the lowest. Any veto falling
under a threshold for that metric is removed, and the process is repeated. In this way, OVL
produces a final Ordered Vetoed List for any given training time, thereby making a model. The
model for OVL is then applied to a time of interest by first removing any veto configuration
which doesn’t apply. Then, the rank of the highest ranked veto from the resultant list is applied
as the rank of the time of interest.

The rank values alone, however, do not have any physical meaning and it is only the ordering
that truly matters. Therefore, ranks must be transformed to log-likelihood and false alarm
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probabilities through calibration. To for this calibration, the rate of clean and glitch samples
must be determined, and a PDF generated. Through O3, the glitch and clean distributions
for this calibration were populated by the glitch and clean samples from the training datasets,
although this has changed recently as described later in section 7.3.2. The rates of clean samples
and glitch samples can then be calculated directly from these distributions as described in [11],
and a Gaussian kernal-density-estimate (KDE) can be applied to the distributions to obtain
a posterior-density-function (PDF). These rates, along with the PDF from the KDE, create
the calibration maps needed to convert any given rank to a log-likelihood and false alarm
probability as described in detail in [11].

In summary, for any time of interest, a model made by OVL and trained using Omicron
labels on the strain is applied to the full feature vector set. The result is a single rank. The rank
is then transformed to log-likelihood and false alarm probability statistics via a calibration map
generated by sampling the clean and glitch distributions of the training datasets and applying a
Gaussian KDE. This process can then be repeated for any number of times, thereby creating a
full timeseries.

7.3 Pipeline Improvements

The methods described in 7.2 were applied uniformly through O3. However, between the end
of O3 and the beginning of O4 in May 2023, several changes were implemented into the iDQ
analysis to improve calibration, and the dynamic range of its outputs. These changes were
applied to batch offline re-analysis of O3 data in order to prepare detection pipelines for the
fourth observing run (O4) and then applied to both the batch and streaming iDQ analyses
during the first half of O4. In the following three sections, we describe in detail the changes
and the motivations behind them. In 7.3.4, we report on the performance of these changes and
show that they lead to the desired effects.

7.3.1 Change of Rank

The first of these changes was to the calculation of the rank assigned to times of interest by
OVL.

The metrics of use percentage, Poisson significance, and efficiency-deadtime ratio indi-
vidually are useful, but previously it was difficult to compare results across them as they did
not behave similarly across the rank space. A similar behavior of increasing metric leading
to increasing rank with support throughout the [0, 1) rank range was needed for each metric.
To get this behavior, the scaling factors described in Equation 7.2 for the efficiency-deadtime
ratio and Poisson significance were altered but otherwise the rank is calculated identically.
Meanwhile, the use percentage to rank map was changed entirely to have no scaling factor or
map at all. That is, the rank is exactly the use percentage.

With this change, we then offer the option to combine ranks from multiple sources at once
to obtain weighted ranks. This is done via a weighted average of the three individual metrics as
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shown below:
2 rm * wln

2 Wi
where w,, is a configurable parameter and is weight for a given metric, and r,, is the value of the
rank from a given metric. In a typical offline analysis, the veto efficiency and use percentage
of the veto are used with a weight of one third and two thirds respectively. This configuration
down-ranks vetoes with high efficiency but poor use percentage. Vetoes which follow this trend
flag auxiliary channels with rare departures above the threshold but in the process veto large
periods of quiet time in the strain channel making the likelihood of false alarms increase. By
prioritizing the use percentage metric, these veto configurations are suppressed in favor of those
which are less likely to report false alarms.

(7.3)

7.3.2 Use of all data for background collection

In order to calibrate the rank from iDQ’s classifiers into statistical information such as the false
alarm probability and log-likelihood, a model of the underlying distribution of clean and glitch
samples is generated as described in 7.2 using a Gaussian KDE. However, the KDE can only
be as accurate as the underlying distribution it relies on.

As described previously, when using the binning and segment scheme developed for the
offline batch mode of iDQ, the clean distribution used in calibration is populated only with
times from the training datasets. This results in populating the clean distribution only with
times at most one half of a segment’s width away from the time of interest, or typically O(3)
days. When there are few segments for a wide time range, or the segment width is large, the
clean distribution used for calibration can be very different from the true distribution which the
time of interest resides in. This is a natural result of the time-evolving nature of the detectors as
the noise background one day can vary significantly from the noise background the next.

This results in the output timeseries jumping between segment boundaries as the calibration
between those segment boundaries reflects the change in the underlying noise distribution. By
allowing sampling of the clean distribution within the time segment of the time of interest
in addition to sampling outside of it, the resulting clean distribution more accurately reflects
the local distribution, and the output timeseries becomes more seamless between segment
boundaries.

7.3.3 Bounding of KDE Bandwidth

As mentioned in section 7.2, iDQ applies a Gaussian KDE to the discretely sampled clean and
glitch histograms to create smooth posterior density functions. These distributions are then
converted to cumulative distributions in order to calculate the false alarm probability (FAP) and
log-likelihood. The accuracy of this KDE then has a direct impact on the timeseries output of
iDQ.

Previously, the discrete nature of the clean and glitch distributions caused the automatic
bandwidth optimization of the KDE to rail to extremely narrow Gaussians as shown in the top
half of Figure 7.1. This left large regions of the rank space without proper support from the
KDE, especially as rank goes to one. This caused scaling of the log-likelihood and FAP to
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Figure 7.1. In the bottom row, the KDE of the glitch distribution (left) and clean distribution (right) of
samples collected over about two weeks of O3b time after the most recent changes were implemented.
In the top row, the cumulative distribution function calculated based on the corresponding KDE in the
bottom row. Note how the KDE is significantly smoother than before and provides a wide range of
support across the rank space. This results in the output statisitics based on this KDE being more evenly

scaled across the entire rank space.

be uneven, and the log-likelihood in particular to have a large dynamic range. Bounding the
lower end of the bandwidth range forces support in those portions of rank-space without many
samples in its underlying histogram as seen in the bottom half of Figure 7.1. This results in a
more evenly scaled output statistics, with a smaller dynamic range.

Improvements in the distribution and bounding of the timeseries can be seen in Figure 7.2.
Here, we only show the results for Hanford because the Livingston timeseries show similar
behavior changes. The top half of this plot shows the histogram of the log likelihood ratio
between the glitch and clean models with the original timeseries shown in orange and the
improved version in blue. The dynamic range of the log-likelihood ratio has been severely
reduced from thirteen orders of magnitude to just six with the updates.

7.3.4 Performance of Pipeline Changes

In order to show the improvements made in the pipeline, we compared results from iDQ’s
analysis of O3b, which spans from November 2019 to March 2020. We compare the results
from the original offline analysis done concurrently with O3b observations and from a re-
analysis using the newly updated pipeline code. For simplicity we will refer to the different
code versions as being "before’ and after’ respectively.

Figure 7.3, shows the false alarm probability (FAP) plotted against the efficiency of the
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Figure 7.2. Histograms showing the count of samples with log likelihood ratio between the glitch and
clean models (top) and false alarm probability (bottom) observed by iDQ at Hanford during O3b both
before code changes were implemented (yellow) and after (blue). Notably, there is a vast improvement
in the dynamic range of the log-likelihood distribution after the code changes as desired.

iDQ pipeline at Hanford (red) and Livingston (blue) with original code (solid) and the updated
version (dashed). In these receiver operating characteristic (ROC) curves, we can already see a
stark contrast between the two code versions — particularly in the performance at the Hanford
detector. Both at Hanford and Livingston, there is a doubling of the efficiency of the pipeline
at a false alarm probability (FAP) of 1072 after the updates and a general improvement across
the range of FAP 107 to 10~!. At larger FAP, the model for Hanford previously did worse
than an uninformed one, or a model built on random chance, but after the updates this is no
longer the case. However, the Livingston performance is slightly worse at high FAP than before.
Generally, this slight decrease in performance at high FAP is seen as a more than fair trade-off
for the wide improvement in the middle range. At high FAP, iDQ loses its distinguishing power
as there is a gap in the rank output of OVL between 0, and the lowest ranked veto configuration
as can be seen in Figure 7.2. This means that iDQ already does not have distinguishing power
in the FAP range, so a small loss of sensitivity there is not a large loss to the power of the
analysis. Instead, its the middle ranges of the FAP where we see the most improvements which
are the most crucial to the distinguishing power of the analysis.

7.4 Use of IDQ

iDQ’s main purpose is to identify glitches apparent in the strain data by monitoring the auxiliary
channels of the detectors. Omicron strives for the same end goal, but via excess power in the
strain channel itself. In this section, we use the glitch times flagged by Omicron as a benchmark
for comparison for the output of iDQ and then analyze the results broken down by glitch class
and auxiliary witness channel.
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Figure 7.3. Receiver operating characteristic curve of iDQ at the Hanford (red) and Livingston (blue)
gravitational wave detectors over the time period of O3b. The dashed lines represent the original results
from iDQ and the solid lines show the re-analysed results after code improvements. A dashed grey line
was added to represent an uniformed classifier. The analyses at both detectors show improvement in the
important mid-FAP range where the bulk of iDQ’s distinguishing power.

In Section A, we discuss how Omicron and iDQ identify glitches, how we construct
coincident events between the analyses, and how the results break down by glitch class. In
Section B, we show how iDQ can provide additional auxiliary channel information about
identified glitches, and possibly identify physcial sources of glitch classes.

7.4.1 Glitch Presence ldentification

7.4.1.1 Methods

In this work, we compare iDQ’s performance against that of Omicron broken down by glitch
type as classified by GravitySpy. In order to define a glitch as identified by iDQ, we first apply
a threshold on the log-likelihood ratio. In this work, we’ve chosen two thresholds to examine —
two and five. We have chosen to analyze both of these because we found certain glitch classes
ring up frequently in the 2 to 5 range, but the lower confidence threshold additionally results
in more false alarms. The nature of veto application causes the output timeseries of iDQ to
be step-wise with steps at most the width of the largest veto window, but typically less than
a second. Therefore, after application of the threshold, we cluster any points with identical
adjacent neighbors by keeping only the central point in time from series of identical points. This
is equivalent to identifying the center of any veto window as the central time of the event. We
then further cluster these points by keeping the maximum log-likelihood point in a clustering
window, w;po, of one second, or a half second on either side. Using this large clustering window
allows us to assume that any two event times identified by iDQ are not caused by the same
glitch, and are uncorrelated.

We then compare these events identified by iDQ to all times identified by Omicron in the
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Figure 7.4. Qscans of three times identified by both Omicron, and iDQ as being a possible glitch, but
which was classified by GravitySpy as the category "No Glitch". The left-most plot shows a correct
classification of a No Glitch time while the middle and right show incorrectly classified times. The
leftmost figure shows excess power, but fairly evenly distributed with no clear concentration — a true No
Glitch classification. The middle shows a clear time of excess power in a distinct shape, but not in a
morphology that matches any other glitch class. The right most plot shows a time which is clearly an
Extremely Loud glitch, but was just mis-classified by the model.

strain channel as having an SNR of ten or greater. The threshold of ten on Omicron SNR
is chosen to match the SNR threshold used in iDQ training datasets, and we calculate the
Omicron glitch rate, o, as the number of events crossing this threshold by the observing
time. Any iDQ event within a coincidence window, w.,;.., of a half second on either side of
a glitch identified by Omicron we assume is an identification of the same glitch and call this
event coincident between the analyses. We can then count the number of these events for the
entire observing time, and call that number N, ;.

To classify these coincident glitch events, we find the classification reported by GravitySpy
for the Omicron event in the strain channel and enforce that the confidence of the classification
is greater than 0.9. We then assume that this classification applies to the Omicron event, and
the relevant coincident iDQ event as well. In addition to known morphological glitch classes,
GravitySpy additionally includes one classification called "No Glitch". This class is meant
to truly classify times without glitches present, but the GravitySpy model used in this work
has recently been found to confidently assign this label to times which clearly have excess
power in their spectrograms that does not necessarily match any of the other classes. Three
examples of this classification can be seen in Figure 7.4. The leftmost panel shows a correct
classification of No Glitch. While there may be some excess power, it is not noticeable above
the noise background nor well-localized and is therefore not a glitch. The middle panel shows
a time which is a glitch, but which does not match the morphology of any glitch class known to
GravitySpy, and is instead mis-classified into the No Glitch category. In the far right panel, we
show a clear Extremely Loud glitch that mis-classified into the No Glitch class. It’s possible
that the overlap of the Extremely Loud glitch with loud repeating whistle glitches confused the
classifier, but it is certainly not devoid of a glitch. In order to avoid confusion, we therefore
throughout this paper will reference this "No Glitch" category as simply "Unknown" as these
times may or may not contain glitches.

Any iDQ event which crosses the log-likelihood chosen, but which does not coincide with
an Omicron event with SNR greater than 10, we assume to be identification of a time which
does not contain a glitch and is therefore a false alarm. The iDQ training sets meanwhile use
times with an Omicron threshold less than 5.5 or no Omicron event at all, for identification of
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times which do not contain glitches. Times which fall in the range of Omicron SNR 5.5 and 10
are not confidently true glitches, but do contain excess power in their spectograms as identified
by Omicron. Thereby assigning false alarms in this work to be any event not coincident with an
Omicron event with SNR greater than ten is a conservative estimate. We then calculate a false
alarm rate as the number of false alarms in a given time period over the total detector observing
time during that period.

We then additionally calculate the rate at which these coincidences would appear for two
Poisson event generators. If the rate at which coincidences actually appear is greater than
the Poisson rate, then we can conclude a true correlation between the events which iDQ and
Omicron report with a estimate of the significance as the ratio of the coincident rate to Poisson
rate. We calculate this Poisson rate as follows:

O-P(L) = O omic * O-iDQ(-E) x T (74)

where o, is the rate of omicron events with SNR greater than 10, o;pp(L) is the rate of iDQ
events above the chosen log-likelihood threshold, £, and T is the total observing time.

We further construct a probability on the data being a glitch given what we have observed
using Bayesian statistics:

P(glitch)P(datalglitch)

P(glitch|data) = P(data)

(7.5)

Where P(glitch) is the prior and P(data) the normalization. P(glitch) can be taken as the
probability of observing a glitch independent of iDQ and in this study is the probability of any
time being flagged by Omicron with an SNR greater than 10. Assuming glitches are Poisson
distributed, and that Omicron is effective at identifying them, we can calculate the probability
of observing at least one glitch per coincidence window as:

P(ghtCh) = (1 - exp(o-omic * wcoinc)) (76)

where 0, 1s the omicron glitch rate rate, and w,,;,. is the half second coincidence window as
described before. P(data) is then the probability of seeing iDQ data above the threshold we
chose, or the probability that the time of interest has been flagged by iDQ. We can calculate
this probability similarly:

P(data) = (1 — exp(igg(L) * Wigq)) (7.7)

where again o4,(L) is the rate of iDQ events above the rank threshold, and w;,, is the clustering
window as described previously. Finally, P(data|glitch) is then the probability of having seen
the iDQ data given that a glitch is present, or the probability of the iDQ data occurring given
that there is also an Omicron glitch flagged. In our study, this must be dependent on the ratio of
total time covered by coincident events, and the total time covered by glitch events. In other
words:

P(datalglitch) = (1 — exp(1coinc(L))) (7.8)
where Neoine ( £) — O-coinc(-g) * Weoine — O-coinc(l:) (79)
T omic * Weoine T omic
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Glitches found by iDQ and Omicron in 1256655642 to 1269561618
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Figure 7.5. Glitch classification of event times in O3b. In blue and orange, the coincident times between
Omicron triggers with snr greater than 10, and the times which pass two different thresholds on iDQ
log-likelihood. In green, the times in strain data where Omicron reported SNR greater than 10, but not
passing the log-likelihod threshold in iDQ. As shown by the orange and blue bars closely matching the
green, there are several glitch classifications which iDQ seems particularly good at identifying including
Scattered Light, Whistle, Extremely Loud, and Low Frequency Burst. This means that during O3b,
iDQ likely had extremely effective witnesses for these glitch types, while there may not have been good
auxiliary witness channels for others, like Tomte glitches.

The final probability can then be constructed as:

(1 - exp(o-omic * wcoinc)) * (1 - exp(ncoinc(L)))

P(glitch|data) = (1 — exp(Tigg(L) * wigy))

(7.10)

This estimate of the probability has the benefit of being based solely on counting statistics,
meaning the underlying distributions can be collected cumulatively for real-time analysis
without loss of latency. This estimate has the downside, however, of being dependent on the
coincidence, and clustering windows chosen to estimate the duration of glitches identified
by iDQ and Omicron. As constructed, the maximum P(glitch|data) obtainable is dependent
on the ratio of the coincident and idq clustering windows. For example, implementing a
coincident window half the size of the idq clustering window results in a maximum obtainable
P(glitch|data) of one half. To mitigate this, the constant windows could instead be replaced by
time-based segments flagged by iDQ constructed with the un-clustered iDQ timeseries, and by
Omicron constructed with the individual glitch durations. Then, the time covered by coincident
events could be given as the overlap between the two sets. The implementation for low-latency,
and this definition using segment logic, has been left to future work.
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7.4.1.2 Results

We take our results over all of O3b, or November 2019 to March 2020 from the LIGO Livingston
detector. During this time, there were 100,512 number of departures identified by Omicron
with a SNR greater than 10 available in the Omicron database. 78,436 of these additionally had
available classifications by GravitySpy with a confidence greater than 0.9. Using the clustering
and coincidence methods described in section 7.4.1.1, iDQ identified 39,398 (39 percent) at a
log-likelihood threshold of 2, and 11,915 (12 percent) at a threshold of 5. It is then evident that
iDQ identifies only a fraction of the total number glitches identified by Omicron, but this is
expected. iDQ can only identify glitches for which there are auxiliary channels that reliably
predict their presence. If there is no auxiliary channel activity in any of iDQ’s witness channels
at the time of a glitch, then iDQ can never report on it. This can be the case for glitch types
whose source channels are not currently monitored by an auxiliary channel in the witness list,
whose source may only register quietly in the currently monitored channels, or whose source is
not monitored at all by any current auxiliary channel.

The classifications of these coincident events can be seen in Figure 7.5 in blue and orange
while all of the Omicron events are shown in green. As mentioned previously, the Unclassified
category comes from coincident events which did not have a classification from GravitySpy
with a confidence of more than 0.9. During O3b, it is clear from Figure 7.5 that Scattered
Light glitches were the main category of glitches plaguing the detectors with over 30,000
present while Tomte and Fast Scattering glitches are closely tied for second. Additionally, this
figure shows that iDQ identifies a large fraction of some of the most common glitch types
like Scattered Light, Whistle, Extremely Loud, and Low Frequency Burst while it struggles to
identify others like Tomte, Fast Scattering and Koi Fish. As previously mentioned, this likely
means that there are auxiliary channels which reliably record the presence of Scattered Light,
and Whistle glitches while there may have been a lack of such channels for Tomtes and Blips.

Additionally, the fact that iDQ does not report on a single Chirp glitch at either threshold
is, in fact, a feature. Chirps, as labeled here, are times in the strain channel which have a high
SNR and whose morphology mimics a chirp shape. In other words, these are times which could
very well be real gravitational waves as real gravitational wave events also follow the chirp
morphology in strain data. As a data quality product, it is desirable that iDQ does not identify
these times. For example, if the output of iDQ were used to generate vetoes for search pipelines,
we would not want times which could be gravitational waves to be included in the vetoed set.
This is an advantage of using software like iDQ which depends only on the auxiliary channels
of the detector, and which therefore is insensitive to gravitational waves versus software like
Omicron which directly analyzes the strain channel and identifies both real gravitational waves
and glitches without delineation.

In Figure 7.6, we show the false alarm (blue star), Poisson (green circle), and coincident
glitch (orange triangle) rates at a log-likelihood threshold of two (top) and five (bottom) as a
function of time during the course of O3b. Although this data covers all of O3b, it was broken
into shorter chunks for evaluation, defined by convention within the LIGO Collaboration. Each
chunk of data corresponds to about two weeks of coincident observing time, and three bins
were in the offline analysis resulting in evaluation segments, or each x tick, being between
2-4 days apart. Every three points then correspond to the same chunk of data, and the start
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Figure 7.6. True glitch (orange triangle), false alarm (blue star), and Poisson (green circle) rates as
reported by iDQ at a log-likelihood threshold of two (top) and five (bottom) over the course of O3b
broken up by approximately five day periods. A true glitch is considered to be an iDQ time crossing
the threshold which is coincident with an SNR greater than 10 Omicron time while a false positive is
one not coincident with such an event. More details on this delineation are discussion in 7.4.1. Notably
across time periods, the true glitch, or coincidence, rate is always at least an order of magnitude more
than the poission rate implying a true correlation between iDQ and Omicron triggers. Additionally, the
false alarm rate is about the same as, or higher than the glitch rate at the log-likelihood threshold of 2.
However, at a threshold of 5, the this relationship begins to switch for some time periods.

of a new chunk is delineated with a GPS time label. At both thresholds, the coincident glitch
rate is always at least one order of magnitude larger than that of the Poisson rate. This shows
that the coincidences formed between iDQ and Omicron are more significant than random
chance, and are truly correlated. As the log-likelihood threshold for iDQ is increased, both the
glitch and false alarm rates decrease - a natural result of the increasing confidence a higher
log-likelihood corresponds to. Additionally, as the threshold increases, the true glitch rate is
more frequently higher than the false alarm rate than at the lower threshold, again showing the
increase in confidence.

At the higher log-likelihood threshold, the variation over time is especially notable. The
difference in time between points is only a couple days, and there are occasional jumps in rate
more than an order of magnitude between neighboring points. This highlights the occasionally
extreme variation in the noise background of the detectors even over the course of just a
few days and the challenges that detector characterization experts face in characterizing this
behavior. Additionally, the latter half of this plot reveals an interesting behavior change in both
the detectors and iDQ. The glitch rate peaks at both thresholds just before 1264528208, or
February 2020. Just after, however, the variation in rate at the detectors settles significantly and
at both thresholds the false alarm rate is always higher than the coincident rate. This could point
to some notable change in the underlying behavior of the detectors around that time which is
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propagating into the effectiveness of the auxiliary channels which iDQ uses.

In Figure 7.7, we show the results of Equation 7.10 using data from the entire course of O3b
on the left and over about a two week period on the right. The x-axis in both plots represents
the varying threshold applied to the iDQ event times used in the calculation of coincidence
and data rates with the combined rank shown in equation 7.3 as the metric. The plot shows
the steadily increasing probability of a glitch time with increasing rank up to a rank 0.8, or
log-likelihood of about 200. This is expected as the increasing log-likelihood corresponds to an
increasing confidence by iDQ of a glitch presence. The plateau at the smallest ranks between 0
and about 0.1 are because events with log-likelihood values less than two, or about a rank of
0.1, were not included in this analysis and therefore we see a plateau extending to O at the logl
2 value.

After rank 0.8, there is additionally a dip for higher threshold times where we would expect
a continuation of the upward trend. This is because the current implementation of the combined
rank with a 2/3 weight on use percentage favors vetoes which activate as few as a single time
during the training period which happens to coincide with a glitch time. This gives the veto
a use percentage of 100% as it correctly flagged a glitch during the single time it was active,
and is therefore highly ranked. However, vetoes such as these do not generally predict glitch
presence, and therefore cause false alarms when applied to real data, causing the turn we see at
high rank.

To mitigate this, we enforce that vetoes must also have a minimum Poisson significance to
be considered. The image on the right of Figure 7.7 shows the results for a single chunk, or
about two weeks, out of a total 17 chunks of data from O3b with a variety of Poisson minima
enforced. At the smallest minmum Poisson significance value, we see the highest rank P(glitch)
values go to what we would expect, but with those at slightly lower rank still being affected.
As you increase the minimum Poisson significance, however, we see the effect extend to the
lower rank values as well until eventually at a minimum of 20, the slope extends fully across
all ranks. While the minimum Poisson significance has not been implemented across the O3b
data in this work, this change will not affect the results shown here as the thresholds applied
were at low log-likelihood values which live at an equivalent rank much smaller than 0.8.

Compared to the prior probability given by Omicron of 3% for this same data, the P(glitch)
values across the rank space are an improvement over using Omicron information alone. At
the lowest threshold considered in this paper of a log-likelihood of 2, or equivalently rank of
around 0.1, P(glitch) already sits at a value of 14%. This shows the power in combining results
from across both data quality products.

7.4.2 Auxiliary Channel Witness Identification

An additional benefit of an iDQ identification is that we can glean further insight into these
glitch types through the auxiliary channels which monitor them. While GravitySpy allows us
to classify times identified by iDQ and Omicron, we further this classification by combining
the GravitySpy label with feature information on auxiliary channels used by iDQ. Each time
analyzed by 1DQ is assigned a rank via an Ordered Veto List by OVL as described in section
7.2. In this analysis, we take the model applied at a time of interest and then look at all of the
vetoes which pass the log-likelihood threshold in the relevant Ordered Veto List to discover
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P(glitch|data) using O3b Data P(glitch|data) from 1262192988 to 1262946475 .

.« 10 ‘e
15 ooz

1.0¢

. 20 eossseed
0.8 ———. 0.8

0.6

\

P(glitch|data)
X,
2
2
P(glitch|data)

'S

0.0 02 04 0.6 0.8 10 00700 02 04 0.6 0.8 1.0

Rank Threshold Rank Threshold

0.0+

Figure 7.7. P(glitch|data) as defined in equation 7.10 using coincident events over the entire course
of O3b (left) and one approximately two week period (right) between Omicron with SNR > 10 and
iDQ events at a variety of thresholds on rank. On the left, this plot demonstrates the steadily increasing
probability of a time being a glitch with increasing iDQ rank up to a certain point around a rank of
0.8. After this, the implementation of use-percentage in the combined rank value causes a number of
vetoes with very small Poisson significance to be ranked highly, thereby causing a sharp increase in false
alarms at high rank. On the right, a demonstration of how enforcing a minimum Poisson significance on
vetoes mitigates this behavior. Already at a threshold of 10 on the Poisson significance, the turning point
is mitigated. Then at a threshold of 20, the turning is completely removed.

which correlated auxiliary channels were active.

The channels associated with the vetoes which pass the log-likelihood threshold are then by
definition those which make the most effective vetoes, or those whose activity often corresponds
to excess power in the strain channel. It is not unreasonable then to assume that the channels
which made the best vetoes for a certain glitch class at the very least frequently record instances
of it, and at best could monitor the subsystem which is a possible source of that glitch class.
Under this assumption, we look across all times of interest and count how often individual
channels are active during a particular class of glitch.

In Figure 7.8, we show this correlation using a log-likelihood threshold of two and weighting
by the total number of glitches recorded by Omicron. In Figure 7.9, we show this same
correlation at the same threshold, but weighted only by the total number of glitches recovered
in coincidence by iDQ and Omicron at that threshold. The former gives an overview of channel
performance relative to all glitches of that class and identifies channels which are particularly
good witnesses of most glitches in that class. It is possible, however, that there are multiple
sources for the same class of glitch, so the latter plot focuses only on the sources which iDQ
identifies instead of on the general performance of these channels. Additionally, we choose the
lower log-likelihood threshold of two in this case to use as much information available to us as
possible, and include information on clean samples and false alarms as a protection against the
lower confidence.

On the y-axis of both plots are the channels which are active at least 50% of the time for at
least one glitch class. On the x-axis are the glitch classes with at least ten coincident events,
and which have at least one channel that appears at least 20% of the time for at least one glitch
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class. In Figure 7.8 we additionally include one column which reports on the auxiliary channel
presence during the false alarms recorded by iDQ and weighted by the total time not covered
by coincident glitches e.g. clean time, as there is by definition not coincident Omicron triggers
available for False Alarms. This is a stand-in for the probability that the channel was active
during a random non-glitch time.

In Figure 7.9 we again include an additional column of auxiliary channel presence during
false alarms, but weighted by the total number of false alarms across all channels. In both plots,
the Clean and False Alarm columns are to exclude the possibility that a channel seems to be a
good witness for glitches simply because it is almost always active. As described in Section
7.2, channels which are active the majority of the time generally get down-ranked by the OVL
ranking scheme because the high activity introduces a large deadtime and low use-percentage to
the veto. Therefore, we wouldn’t expect these kinds of channels to appear highly ranked in the
veto lists and in these plots, but we consider all vetoes passing the log-likelihood threshold in
the OVL list without weighting them. Therefore channels could be frequently ranked middling
to low across glitch types, but appear in these plots to have the same significance as one
which constantly appears with the highest rank thereby inflating its apparent significance. The
inclusion of auxiliary witnesses for clean and false alarm samples is a sanity check on this
possibility. If a channel is frequently present across glitch types, and during clean or false
alarm times then we know that its possible this channel is just generally active. However, if it
is present during glitch times and not during clean or false alarm ones then we can be confident
that it a true witness for glitches.

The auxiliary channel ASC-X_TR_A_NSUM_OUT_DAQ, for example, seems to be one of
these extremely active channels. In both Figure 7.8 and 7.9, this channel appears incredibly
frequently across glitch types. In Fig 7.9, however, it appears at over 70% during the False
Alarm events as well. This is the perfect example of one of these generally active channels
which results in a veto with a high efficiency, but middling use percentage. In other words,
it creates an efficient veto which flags many glitch classes, but also can flag false alarms and
we’re seeing that trade-off here. This kind of veto may appear at middling to low rank in the
ordered veto lists, but still cross the log-likelihood threshold of two and therefore appear in this
analysis.

The three channels below that one in Figure 7.8, however, are good examples of the opposite.
ASC-X_TR_A_PIT_OUT_DQ, ASC-X_TR_B_NSUM_OUT_DQ, and ASC-X_TR_B_PIT_OUT_DQ
each appear over 50% of the time for all Scattered Light glitches, or more than 90% of the time
for all coincident Scattered Light glitches over the course of O3b in Fig 7.9 while appearing
significantly less frequently for all other glitch types including only a little more than a third of
the time for False Alarms. This implies that while these auxiliary channels may be excellent
witnesses of one source of Scattered Light glitches, and therefore are present in 90% of the
ones flagged by iDQ, there are likely other sources which do not have good auxiliary witnesses
contributing to the overall number flagged by Omicron. These three channels specifically
monitor different pieces of the same subsystem in the Livingston detector. They are each part
of the angular sensing and control subsystem (ASC) in the direction of the X arm, particularly
monitoring the transmitted light (TR) on two different photodiodes (A/B). It follows that
channels detecting transmitted light on one of the major axes of the detector would observe a
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large fraction of scattered light from the high powered lasers passing through the main mirrors,
and indeed Scattered Light glitches are known to be caused by this system. Its interesting
though that while one channel in this susbsystem set, ASC-X_TR_A_NSUM_OUT_DQ, is
active across glitch classes and false alarms, three others catch more exclusively true Scattered
Light glitches and this demonstrates the power of this method. From this information, its
safe to say that X arm beam in particular at Livingston during O3b was a source of one of
the most common glitches plaguing the detector at the time, particularly the three origins of
the specific channels mentioned above. In fact, this is known to be the case as discussed in
detail [24]. Halfway through O3, ground motion was found to cause variation in the differential
difference between mirrors in the arms, and therefore cause scattered-light to rejoin the main
beam registering as Scattered Light glitches. During the commissioning break between O3a
and O3b, maintenance was performed to mitigate this issue which drastically decreased the
total number of Scattered Light glitches recorded during O3b comparatively to O3a, but as is
clear from this data, some glitches persisted from this source.

ASC-REFL_A_RF9_Q_PIT_OUT_DQ is another excellent witness, particularly of Whistle
glitches. This channel appears in over 70% of all Whistle glitches recovered during O3b, and in
almost 95% of the ones recovered in coincidence while only appearing in 11% of false alarms
recorded by iDQ. It’s sister channel ASC-REFL_A_RF9_Q_YAW_OUT_DQ is also highly
active at over 55% of all Whistle glitches and 60% of the coincident ones. Both channels again
monitor the angular sensing and control grouping, but particularly monitor the reflected light
(REFL) of the power recycling cavity landing on a particular photodiode (A) in the pitch (PIT)
and yaw (YAW) directions. It’s interesting that these Whistle glitches are be observed so well
by a channel monitoring reflected light, as reflected light is more often attributed to various
kinds of scattering glitches. It’s possible that this channel just happens to be downstream of
the system which is actually generating the glitches, and so it is being monitored here despite
not being the origin. However, the very similar monitoring channels on photodiode B show
extremely similar correlations to the Whistle glitch types as these two channels, so it becomes
even more convincing that a Whistle glitch source lies either in or upstream of these reflected
light monitors.

These four channels are additionally active for a handful of other glitch classes as well such
as the Blip and Repeating Blip class, although with a weaker correlation. Blip glitches could
have the same sources as Repeating Blips as arguably one is just a more frequent version of the
other. It would be new information though to also include Whistle glitches in that mix. It is
possible that this could be a false correlation if the GravitySpy model, for example, frequently
misclassified Whistle glitches as Blips and vice versa, but there is no evidence that that is
the case. Instead, this could be the result of a couple different configurations. This channel
could monitor the physical sources of multiple glitch classes, meaning it could be downstream
from other parts of the detector system which individually generate these glitch types. It could
also be that there is one source which this channel monitors that creates many different kinds
of glitches. Generally, we assume that glitch classes are generated by distinct sources, but
if this latter situation is true it could hint at correlations between glitch classes previously
unconsidered. With this information alone, it is hard to tell which may be the true case, but
either way it demonstrates the usefulness of this method in further characterizing detector
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behavior.

7.5 Conclusion

In this work, we’ve discussed improvements to the iDQ batch pipeline and we’ve demonstrated
iDQ’s ability to not only identify glitches in strain based solely on auxiliary channel behavior,
but also shown its usefulness in identifying auxiliary channels which frequently report on the
presence of glitches.

During O3b, it has been shown that iDQ had particularly powerful witness channels
Scattered Light, Whistle, and Extremely Loud glitches. The correlation of these recovered
events with the events that Omicron finds has been shown to be frequently two orders of
magnitude greater than random chance, confirming that Omicron and iDQ are truly recovering
the same events. Additionally, by analyzing the auxiliary channels alone, iDQ does not identify
chirps, or likely real gravitational waves, to be glitches which Omicron reports in the same
manner as any other glitch class. This not only proves the effectiveness of iDQ’s identification
scheme, but also the worth of its results alongside other glitch identification tools.

We have also introduced a method for calculating the probability that any time is a glitch
based on iDQ data. We have seen that using the current method, the probability peaks at about
70%, or three orders of magnitude above probability given by Omicron identification alone.
This demonstrates the power of combining results across multiple glitch identification tools,
and could be a useful measure of data quality for inclusion in gravitational wave detection
pipelines. The authors hope to implement this method in the near-future for use in real-time
analyses.

We have demonstrated the effectiveness in examining the correlations identified by iDQ
between auxiliary channel activity and certain glitch classes. These correlations hint at possible
sources of these glitch types, and when combined with follow-up from commissioners, could be
a powerful tool in tracking down the origins of some glitch classes. Unfortunately, there is no
way to know for sure whether any unique channel points to a true origin or whether a subsystem
somewhere else in the detector is causing a glitch which then may propagate until witnessed
by an unrelated auxiliary channel. Either way, channels like the ones we have mentioned
could point to possible starting points for commissioners and detector characterization experts
to begin looking for the sources of these extremely common glitches. If this analysis had
been performed during an observing run, follow-up could have been done by commissioners
on these channels, and these glitches could have been potentially mitigated during regular
maintenance, or even during a longer commissioning break. The authors hope to make
the auxiliary channel information available in low-latency in order to potentially impact
maintenance and commissioning on the detectors moving forward.

As the detectors, glitch types, and auxiliary channels evolve between observing runs, iDQ
will evolve with them, and the need for robust data quality information will only grow and
sensitivity of the detectors increase. While this work demonstrates iDQ’s past performance, it
is heavily reliant on the quality of its auxiliary witnesses and as these change, so too will the
types of glitches iDQ can identify and the efficiency at which it does so. Already, the LIGO
Scientific and Virgo Collaborations have begun a fourth observing run in which the group
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has made many changes to the detectors and have a planned commissioning break before the
second half in which more changes will be made. While results from the current observing run
will of course vary the ones shown, iDQ has proven to be a reliable pipeline providing both
probabilistic glitch identification, as well as glitch source identification, and it will continue to
do so throughout O4 and beyond.
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ASC-REFL_A_RF9_Q_PIT_OUT_DQ

ASC-REFL_A RF9_Q_YAW_OUT_DQ

ASC-X_TR_ANSUM_OUT_DQ

ASC-X_TR_A_PIT_OUT_DQ

ASC-X_TR_ BNSUM_OUT_DQ

ASC-X_TR_B_PIT_OUT_DQ

ASC-X_TR_B_.YAW_OUT_DQ

LSC-POP_A_RF9_I_ERR_DQ

LSC-REFL_A_LF_OUT_DQ

OMC-PZT2_ MON_AC_OUT_DQ

Figure 7.8. Auxiliary channels that form vetoes in the associated OVL model at least 20% of the time at
a log-likelihood of 2 or more for a variety of glitch classes. The included glitch classes are caught in
coincidence by iDQ and Omicron at least ten times over the course of O3b with an iDQ log likelihood of
at least 2 and an Omicron SNR of 10 or greater. Additionally included are the auxiliary channel results
for the false alarms flagged by iDQ weighted by the total time not covered by Omicron glitches for
comparison. Note that the majority of channels which are present in glitch veto lists, are not frequently
present in clean veto lists.
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ASC-X_TR B_NSUM_OUT.DQ
ASC-X_TR B_PIT_OUT_DQ
ASC-X_TR_B_YAW_OUT DQ
ASC-Y_TR B NSUM_OUT_DQ
LSC-POP_A LF OUT DQ
LSC-POP_A _RF45 1 ERR DQ
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LSC-POP_A RF9_Q ERR DQ
LSC-PRCL OUT DQ

LSC-REFL_A LF.OUT DQ
OMC-PZT2 MON_AC OUT DQ

PEM-EY _VMON _ETMY_ESDPOWER18.DQ

Figure 7.9. Auxiliary channels which appear in the top 10 vetoes of the associated OVL model at least
20% of the time for a variety of glitch classes which are caught in coincidence by iDQ and Omicron at
least ten times over the course of O3b with an iDQ log likelihood of at least 2 and an Omicron SNR of
10 or greater. Additionally included are the auxiliary channel results from a random set of clean samples
for comparison. Even at the higher log likelihood threshold cut-off, the majority of channels present
witness some combination of glitch types, but mostly exclude clean samples. A sign that these channels
are truly good witnesses of glitches, and not just frequently active.
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Chapter 8

The Accuracy of Neutron Star Ra-
dius Measurement with the Next
Generation of Terrestrial
Gravitational-Wave Observatories

8.1 Introduction and Background

An outstanding problem in nuclear astrophysics is the equation-of-state of neutron star (NS)
cores, believed to contain matter at several times the nuclear saturation density [179—181]: near
the core the density reaches 4 to 6 times the nuclear saturation density and in the outer core it
would be twice the nuclear saturation density. This makes them the densest objects anywhere
in the Universe. Decades after their discovery, the radii of neutron stars are still uncertain'
by about ~ 10% [182-188], and the composition of their dense cores likely depends on the
neutron star mass and could be composed of hadrons or deconfined quarks [181, 189-192].
Indeed, it is not clear whether the matter at such densities undergoes a phase transition from a
hadronic phase to quark-gluon plasma and the critical neutron star mass and temperature at
which the transition might occur [181, 189, 190, 190-194].

Neutron stars in binaries are studied either as radio pulsars or X-ray sources and both have
helped in our understanding of the structure of neutron stars [195-201]. The Neutron Star
Interior Composition Explorer (NICER) space observatory is providing precision X-ray data
on neutron stars [202]. Precise general relativistic modeling of the X-ray pulsation of neutron
stars has been used to constrain their masses and radii as well as the equation-of-state (EOS) of
their dense cores [182, 188,203-207]. The best-measured NICER radius errors are about 1 km.

At the same time, advances in gravitational-wave observations from merging neutron stars
are allowing new approaches to resolve this puzzle. Indeed, the detection of binary neutron
stars (BNSs) [17,208-211] and neutron star-black hole binaries (NSBHs) [212] by the Laser
Interferometer Gravitational-Wave Observatory (LIGO) and Virgo has opened up a new and

Note that some authors, who claim a 5% uncertainty in the radius, are quoting one-sided, one-o credible
intervals. The 10% to which we refer corresponds to a two-sided, 90% credible interval, which is the standard in
LIGO-Virgo Collaboration publications.
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independent window for exploring neutron stars. Gravitational waves emitted in the final tens
of milliseconds of the inspiral and coalescence of BNSs can be used to explore the composition
and EOS of dense matter in neutron star cores [213-217]. Encoded in the phase evolution of
the waves is the (dimensionless) tidal deformability A, ; of the two stars, which is a measure
of the quadrupole deformation imparted on the stars due to the tidal field of their companions.
The leading order finite size effect in the post-Newtonian (PN) approximation of the waves’
phase evolution is a highly sub-dominant effect. In terms of the post-Newtonian expansion
parameter (v/c) < 1, it is, in fact, an order O(v/c)'? effect beyond the dominant quadrupole
term [216-219], yet it is significant when the instantaneous gravitational-wave frequencies are
~ 100 Hz or greater (v/c ~ 0.16 or larger) for a typical BNS system comprising a pair of 1.4
M, companions [220].
The tidal deformability goes as the inverse fifth power of the star’s compactness, i.e.
Ay oc [Gmy/(APR)1, k = 1,2, where my and R;, are the masses and radii of the companion
stars in a binary system [218,221]. Matched filtering the data with gravitational-wave templates
calibrated to numerical relativity simulations [222-229] of BNS mergers can be used, in
principle, to measure the tidal deformabilities of the companions, in addition to their masses?.
In practice, however, it is not possible to accurately measure the individual tidal deformabilities,
but only a certain linear combination of the two called effective tidal deformability A, defined
by:
A= m[(l +129) Ay +q* (12 + ) A, (8.1)

where g = m,/m; < 1 is the mass ratio [216,219,221,230]. Although the dominant tidal effect,
which depends only on A, is measured accurately, the PN correction, required to measure the
individual tidal deformabilities, cannot be inferred with any accuracy. This is because of two
reasons: On the one hand, it is a higher order PN correction, an O(v/c)'? effect, compared to
the dominant quadrupole term and, on the other hand, the PN correction vanishes for binaries
with comparable masses. In fact, the tidal PN correction depends on 6A defined by:

. 13272 8944 L\ (A, + A,
on = vl 4'7(1 1319’7+1319’7)( )

2
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1 - n+ N+ n ;
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where 7 = mymy/(m; + my)? = q/(1 + g)* is the symmetric mass ratio. For BNS systems
in general, companion masses are similar, and hence ¢ ~ 1 and A; ~ A,, giving A ~ A,
and hence 6A =~ 0. Additionally, the tidal deformability of a neutron star depends not only
on its mass, but also the (unknown) EOS. For neutron stars of 1.4M,, and over a wide range
of equations-of-state (EOSs), typical values are A; ~ 200-2000 [221]. While the first post-
Newtonian correction is already sub-dominant as a sixth post-Newtonian order effect compared
to the leading order quadrupole [221], this range of A, also results in the term being at least two
orders of magnitude smaller compared to the leading order tidal term. These effects combined

*Neutron stars in merging binaries are not expected to have large spins. Consequently, the only intrinsic
parameters that we will consider in this paper are the masses and the tidal deformabilities.
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make the term difficult to measure. Consequently, only the leading order tidal term, is readily
available, making it necessary to supplement gravitational-wave observations with other input
in order to infer the individual tidal deformabilities and the radii of neutron stars. Several such
approaches have been proposed in the literature and applied to GW 170817 [210,231].

The BNS coalescence event GW170817, at ~ 40 Mpc and a signal-to-noise ratio (SNR) of
33, provided the first opportunity to constrain the tidal deformabilities from gravitational-wave
observations, and hence the radii, of neutron stars [17,210,211]. Theoretical models of the
EOS of neutron stars are plenty and varied and they allow tidal deformabilities in the range of
10 < A2 < 10000 [217,218], depending on the mass, being larger for lighter neutron stars
and stiffer EOSs. Analysis of the event GW 170817 found that the 90% credible range of the
companion masses were 1.36 My, < m; < 1.89 M, for the primary and 1.00 My < m, < 1.36 M,
for the secondary [17], the effective tidal deformability had a 90% credible upper bound of
A < 600 and the radius was constrained to be R; = 11.9*4 km [210, 232]. Unfortunately,
the second BNS event GW 190425 [233] was farther and had a significantly lower SNR than
GW170817 and did not yield tighter constraints on the tidal deformability on its own.

However, constraints have also been derived by combining LIGO-Virgo results of GW 170817
and GW 190425 with additional observations. Including NICER observations [182, 183, 188,
203-207] bound the radius of a 1.4 M, neutron star to the range R 4 = 12.33*)-1° km. Likewise,
combining nuclear physics experiments and gravitational-wave data has found R, 4 = 11.0i8:2
km [234], and R 4 = 12.75*)¢; km [235] while combining data from GW170817, its compan-
ion gamma-ray burst GRB170817A, and subsequent kilonova AT2017gfo, the same radius was
determined to an accuracy of less than about a km at 90% credible interval [236]. However,
see [237] for sensitivity of NICER results on model hypotheses.

The planned upgrades of LIGO and Virgo, the addition of observatories currently under
construction, KAGRA [36] in Japan and LIGO-Aundha in India [35], and new, longer-arm
facilities that are currently being conceived, have the potential to make new discoveries of both
sources and science. In this study, we explore the accuracy with which future observatories
are able to measure the radii of neutron stars, an important step in constraining their equation
of state. The networks considered in this work include the imminent upgrade of LIGO and
Virgo over the next five years called A+ [208,209], the Voyager upgrade to LIGO detectors that
would be possible within the next ten years [34], and the next-generation (XG) observatories
such as the Einstein Telescope (ET) [37-39] or Cosmic Explorer (CE) [40] that are expected to
operate in the mid-2030s in tandem with the fully upgraded versions of current observatories.
Given the rate of BNS mergers as determined by the events GW 170817 and GW 190425,
we expect the future observations to constrain the neutron star radius to within 600 m (A+
generation), 400 m (Voyager generation), 200 m (one XG observatory) and < 100 m (two or
more XG observatories), with the high-fidelity events observed by the respective networks of
observatories. At the same time, neutron star masses will be measured to better than 10%, 5%,
3% and 0.5% [238]. The mass-radius relation is a proxy to the EOS of ultra-dense matter in
neutron-star cores that will be tightly constrained with high-precision measurements of the
masses and radii with future networks of gravitational-wave observatories (see, e.g., [239]).

When combining information from a multiple set of events it is necessary to employ a
population model for the observed sources in addition to the unknown equation of state. For
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binary neutron stars, the population model will involve the astrophysical distribution of neutron
star masses (or, equivalently, the neutron star central densities), the pairing probability as a
function of the total mass and mass ratio and the distribution of neutron star spins. Moreover,
gravitational-wave detectors and the analysis pipeline used to detect binary neutron stars have
selection effects. For example, it is easier to detect equal-mass systems compared to mass-
asymmetric systems of the same total mass. Likewise, binaries with a larger total mass produces
a larger signal-to-noise ratio compared to a binary of smaller total mass but the same mass
ratio. Bayesian inference of the source parameters for a single event will also be affected
by the unknown hyper parameters of the population model since the posterior distribution
depends on the assumed prior model. Thus, one has to simultaneously determine the population
model and the EOS. For the EOS, this means one has to marginalize over the population model.
Additionally one must also account for the selection effects to assure that the model selection
of EOS is unbiased.

We are ignoring these effects in this work since our Fisher matrix approach currently does not
allow for the inclusion of systematic biases. We also envisage that in the XG era the selection
effects would have been better understood. Our goal, instead, is to provide the statistical
uncertainty that we expect in the determination of the EOS. We are currently in the process of
preparing a mock data challenge for XG observatories. The mock data challenge will allow us
to address the aforementioned issues.

We also note that the estimation of intrinsic source masses requires the use of a cosmological
model. Since we detect BNS events to a significant cosmological distance, cosmological
parameters must be inferred together with the parameters of a BNS event [240, 241]. As
explained in Sec. 8.5.5, we find that the bias introduced due to an unknown cosmological model
is negligible.

The rest of the paper is organized as follows. In Sec. 8.2 we describe the cosmic BNS
population used in this study together with the distribution of companion masses, the merger
rate and its variation with redshift and the waveform model used. This is followed by a
brief summary of detector networks considered in Sec. 8.3, focusing on the efficiency of the
networks in detecting BNS systems. In Sec. 8.4 we present the capabilities of the different
observatories in characterizing the source properties. We describe in Sec. 8.5 the method to
infer the radii of neutron stars from the measurement of effective tidal deformability using a
set of EOS independent universal relations with corrections and how we combine the results
from a population to obtain joint bounds. In Sec. 8.6 we present the application of the methods
to events expected to be observed in detector networks considered in this study. The results
are obtained by combining radius measurements of a small sub-population of observed events:
either the loudest 100 events or the 100 events for which tidal deformability is best measured,
to infer the radii of neutron stars. A summary of the results and conclusions is presented in
Sec. 8.7.

8.2 Neutron Star Population and Waveform Model

In this section, we describe the neutron star population and the waveform approximations used
in the study. We begin by recalling how the redshift dependence of the merger rate is computed
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using the observed star formation rate as a function of redshift as a proxy for the redshift
evolution of the rate. The redshift dependence is not exactly the same as the star formation rate
since binaries that form from stars only merge after a certain time delay, which is essentially
the gravitational radiation back reaction timescale. This is followed by a summary of the
distribution of neutron star masses used in the study. We conclude the section with a description
of the waveform model used, which is built upon the point-particle approximation but includes
finite-size tidal effects with the waveform model parameters calibrated to hydrodynamical
numerical relativity simulations of BNS mergers.

8.2.1 BNS Merger Rate

The merger rate density r( in the local Universe (i.e., at zero redshift) inferred from LIGO-
Virgo observations of BNS coalescences during the second and third observing runs is ry =
10 — 1700 yr! Gpc™ [6]. The two BNS events observed during this period, GW 170817 and
GW190425, were localized to luminosity distances of 40 Mpc and 159 Mpc, respectively, and
corresponding redshifts of z ~ 0.01 and z ~ 0.036. Thus, the LIGO-Virgo rate is essentially the
local merger rate density, i.e. at redshift z = 0. In this work, we will consider mergers up to a
redshift of z = 1. The merger rate density over this redshift range is expected to increase since
the rate of star formation ¥(z), from which compact binaries form, increases with redshift up to
about z = 2 [7].

To model the variation of the merger rate with redshift, we assume that it follows the star
formation rate except that a binary that forms at redshift z; merges at redshift z < z;. This is
because there could be a significant time-delay 7, between the binary’s initial formation and
eventual merger as driven by gravitational radiation back reaction. The time delay ¢, for a
specific binary depends on a number of astrophysical processes that take place between the
formation of the companion stars, their common evolution, and survival following supernova
kicks they receive. Therefore, t; will not be the same for every binary and the time delay
distribution is not well known either due to the complexity of how the progenitors of compact
binaries evolve. However, making reasonable assumptions about the intervening processes, i.e.
neutron stars form with no delay after the formation of their progenitor stars, their orbit decays
due to the emission of gravitational waves only, and the semi-major axis of their orbit follows a
uniform in log-space distribution, z, follows the distribution P(;) o 1/t; [242,243]. Thus, the
merger rate density in the source’s frame® r.(z) is given by:

% (2) d
r(2) = A f Y(z = 1a(2)) P(ta(2)) d—tZd dz, (8.3)

7(2)

where a subscript z is included to clarify that r,(z) is the rate density with respect to an observer
at z, tg‘i“ and 77" are the minimum and maximum time delays, A is a normalization constant
(see below), and ¥(z) denotes the star formation rate (whose dimensions are not important to us
but only its dependence on redshift). For ¢/(z) we use the fit proposed in Ref. [244]:

3In what follows lower case letters are used to denote the merger rate densities while capital letters are used to
denote the merger rates.
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where a = 2.8, b = 2.46, and z,, = 1.72. For the minimum time-delay we use tg‘i“ = 0.2 Gyr
and for the maximum we use £;** = 10 Gyr. The normalization constant A is determined so
that this expression is consistent with the local rate density, i.e. ro(z = 0) = ry. The merger rate,
r.(z), peaks at a slightly lower redshift than /(z) because of the time-delay. The dependence of
the cosmic time ¢ on redshift is determined by the Planck 2015 Cold Dark Matter cosmology:

dt 1
- = s (8'5)
dz Hy(1 +2) \Qa + Qu(1 + 2)?
with the Hubble constant Hy = 69.6kms™! Mpc™!, Q, = 0.714 and Q,, = 0.286.
Next, the merger rate (as opposed to rate density) in a redshift interval dz is given by:
dv
dR.(2) = r:(2) -~ dz (8.6)

where dV = (dV/dz) dz is the comoving volume element corresponding to redshift range dz. To
convert this to the rate as measured by an observer at z = 0 we must divide by (1 + z) to take
into account the redshift of the rate due to cosmological expansion: dRy(z) = dR,(z)/(1 + 2).
The cumulative merger rate is given by:

(o (P rE) v
R(z)—deR(z)—ﬁ Q1) d7 dz. (8.7)

Within z = 1 the merger rate is about ~ 10° per year. Not all of these mergers would be
detectable by a gravitational-wave detector (or a network) but only a certain fraction depending
on its sensitivity which we will discuss in Sec. 8.3.

8.2.2 Waveform Models and Mass Distribution

In order to characterize the capability of various detector networks to measure the tidal deforma-
bility and the companion masses, it is important to choose an appropriate waveform model that
includes the relevant physical effects. As in the case of binary black holes, BNS waveforms are
based on approximate solutions to Einstein equations. They include the dominant tidal effects
and incorporate additional parameters in the phase evolution which are calibrated by matching
the analytical solution against numerical relativity simulations. We chose the frequency-domain
phenomenological waveform model IMRPHENOMPV2NRTIDALV2 [224-226] for the generation
of simulated signals as well as templates for Fisher-matrix based inference. This model is based
on the IMRPuENOMPV2 BBH waveform [245,246] with tidal effects up to 7.5 post-Newtonian
order (or to O(v/c)"? beyond the leading quadrupole term), making it appropriate for use in BNS
analysis. An earlier version of this waveform was used for the analysis of GW170817 [12].
The waveform model takes as input the intrinsic masses of the companions and their tidal
deformabilities. In this paper, the companion masses are drawn from a uniform distribution
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over a range of masses whose lower limit is 1 M and the upper limit is the maximum allowed
by the EOS used in the simulation (see below): 1y, my ~ U(1 Mg, MESS). Although the masses
of neutron stars in the Milky Way seem to be concentrated around 1.4 M, there is a priori no
physical reason to assume that this is the preferred value in other galaxies. Theoretically, neutron
star masses are allowed to be as large as 2.9 M, [247], although the largest measured masses
tend to be significantly lower. The heaviest neutron stars among astronomical observations are
in range 2.01-2.35 M, [248-250], while from gravitational-wave observations the companion
masses in BNS systems are as large as 1.6 M, and 1.4 M, in the case of GW170817, and
1.9 M, and 1.7 M, in the case of GW190425. Neutron-star masses in neutron star-black hole
systems GW200105 and GW20015 [59] are both 2.2 M,,. In this small population there seems
to be no preference for the Galactic value of ~ 1.4 M, and it would be more prudent to assume
a wider range for the mass distribution. We have chosen the widest range allowed by the model
EOSs considered in this paper.

We assume, however, that the dimensionless spin magnitudes of neutron stars are negligible.
The fastest-spinning Galactic pulsar has a rotational frequency of just over 700 Hz. Its
dimensionless spin angular momentum is still roughly a = cI2wrw/Gm?* ~ 0.4—far smaller than
the maximum spin neutron stars could, in principle, have; here [ is the principal moment-of-
inertia of the star (roughly equal to %mRZ, where m and R are the neutron star’s mass and radius,
respectively), and w is its spin angular frequency. Neutron star spins in other galaxies could be
far greater than those in the Milky Way but the waveform models that are currently available
are calibrated against numerical relativity simulations of BNSs with small spins (dimensionless
spin, y < 0.1) [224-226].

In addition to masses and spins, we also have to specify the distance to the source, its
orientation relative to the detector frame, and its position in the sky. Sources are assumed
to follow the redshift distribution determined by Eq. (8.6) and uniformly distributed over the
angular parameters describing the sky position and orientation of the binary.

Given the mass, the radius of the neutron star is calculated for a given EOS by solving the
Tollmann-Oppenheimer-Volkoft (TOV) equations [251,252]. In practice, this is computationally
too expensive since our simulations have to deal with hundreds of thousands of systems. Thus,
it is more practical to solve the TOV equations to obtain radii for a set of masses and then use
an interpolating function to find the radius for an arbitrary value of mass. We have confirmed
that the fractional difference in the radius, for a given mass, obtained from numerical solution to
the TOV equation and the interpolating function are below 0.1% over the full range of neutron
star masses allowed by the EOS.

We consider three EOS used for injection, and an additional seven EOS used for reference
that are still allowed by X-ray and gravitational-wave data: the injection set of ALF2, APR3,
APR4 and reference set of DD2, H4, S220, PP2, PP5, SFHo, and SLy. We then plot the
corresponding mass-radius curves in Fig. 8.1. ALF2 (APR4) represents a stiffer (softer) EOS
allowing for larger (smaller) radii, while APR3 allows intermediate radii. The reference EOS
then provide good coverage of the mass-radius parameter space between the three, allowing for
stronger model discrimination tests with our methods. Given the mass M; and radius R;, the
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Figure 8.1. Mass-Radius curves for EOS used in this paper. Please note that our choice of three
injections EOS here (ALF2, APR3, APR4 shown with thicker lines) are motivated by the conservative
constraint on A 4 < 800 as put forward by [12]. We also consider the fact that these three EOS covers
a significant range in the maximum masses while the inclusion of addtional seven EOS provide good
coverage of the rest of the mass radius space.

dimensionless tidal deformability is computed using the expression:

A

) (2R;\

3 Gml-

where k,(R) is the tidal Love number, which also depends on the radius of the neutron star and
is fixed for a given mass and EOS [218].

8.3 Future Observatories and Their Reach for the Binary
Neutron Star Population

Advanced LIGO (aLIGO) and Advanced Virgo (AdV) are currently taking data and are expected
to reach their design sensitivity goals (see Fig. 8.2) in late 2023* [208]. At that sensitivity, the
network of LIGO-Hanford, LIGO-Livingston, and Virgo (HLV) [209] could detect ~ 40 BNS
mergers per year from within a distance of about 400 Mpc. Both projects have concrete plans
to upgrade their sensitivity over a period of two years, which we will refer to as the HLV+
network, enhancing the detection rate by about a factor ~ 5 by about 20274.

“For up to date schedule of the runs see https://rtd.igwn.org/projects/userguide/en/latest/
capabilities.html.
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Figure 8.2. Strain sensitivity of three generations of ground-based gravitational wave detectors: (i)
Advanced Virgo (AdV), Advanced LIGO (aLIGO) and A+, (ii) Voyager, and (iii) Einstein Telescope
(ET) and Cosmic Explorer (CE). In the case of ET the sensitivity shown is that of an L-shaped detector
with 10 km arms. The three V-shaped arms make the effective strain sensitivity a factor 3/2 better (and
the noise floor lower by the same factor).

8.3.1 Upgrades and New Facilities

The Japanese KAGRA detector, currently being commissioned, and LIGO-India are expected
to join the HLV+ network over the 2020-2030 decade and the five detectors would be together
referred to as the HLVKI+ network. HLV+ and HLVKI+ networks will begin to observe events
with SNRs large enough to facilitate accurate measurement of the tidal deformability.

Further upgrades to LIGO beyond A+ have been studied and they involve the development
of new technology to mitigate thermal noise and gravity gradient background. Voyager [253] is
one such concept that could lead to a further increase in the sensitivity by a factor of ~ 2-5
over the frequency range 10 Hz to a few kHz (see Fig. 8.2. At the moment we are not aware of
any plans to upgrade Virgo or KAGRA and hence we will consider a network of five detectors:
the three LIGO detectors operating with Voyager technology and Virgo and KAGRA in A+
mode. We will refer to this as the Voyager network, which will have access to several loud
binary merger events. The Voyager network could constrain neutron star radius to within about
5% or roughly 500 m for neutron stars between 1.5M and 2.0M,,, as seen in Figure 8.8.

Improvements in sensitivity beyond the level of Voyager would require, among other
technologies, longer arms and/or underground facilities, neither of which would be possible
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Table 8.1. Upgraded and future gravitational-wave detectors whose ability to measure the EOS of matter
in neutron star cores is evaluated in this study. The time-scale of operation of the various networks is our
best guess estimate of when a given network is likely to operate; they do not correspond to any official
projections.

Detectors Network Name
LIGO (HLI+), Virgo+, KAGRA+ HLVKI+
LIGO (HLI-Voy), Virgo+, KAGRA+ VK+HLIv
ET, LIGO (HLI+), KAGRA+ HLKI+E
CE, Virgo+, KAGRA+ LIGO-1+ VKI+C

ET, CE, KAGRA+, LIGO-I+ KI+EC

ET, CE, CE-South ECS

with the infrastructure that exists at the location of current detectors. The boldest of the new
concepts are the Einstein Telescope (ET) in Europe and Cosmic Explorer (CE) in the US and,
possibly, Australia. ET is an underground facility hosting three V-shaped detectors at the
vertices of an equilateral triangle of 10 km sides [39], while CE is a over-ground, L-shaped
detector with 40 km arms [40]. ET and CE will be roughly 10 to 30 times more sensitive than
advanced detectors (cf. Fig. 8.2) with the capability to observe hundreds of thousands BNSs
mergers each year, many with SNRs larger than 100.

8.3.2 Detector Networks

Advanced LIGO, Advanced Virgo and KAGRA (LVK) have been taking data, albeit inter-
mittently, since 2015, 2017 and 2019, respectively. They are expected to operate at design
sensitivity during 2023-2024. We have not included the measurement capability of this network
as the number of loud (i.e., SNRs in excess of 25) BNS coalescences expected to be detected
during the next science run (O4) is only ~ few.

LIGO-India, currently under construction, could join the upgraded A+ versions of the
LVK network in the latter half of this decade; we shall call this the HLVKI+ network. Both
LIGO and Virgo are planning for a further upgrade beyond 2030, referred to as Voyager in the
US. A network in which Virgo and KAGRA operate at A+ sensitivities and LIGO-Hanford,
LIGO-Livingston and LIGO-India operate at Voyager sensitivity, will be called VK+HLIv.
This network will have the same performance as the one in which any three of 5 detectors are
upgraded to Voyager and the remaining two operate at A+ sensitivity and we do not consider
them separately.

Beyond 2035 one or more next generation observatories could begin to operate. To un-
derstand the relative merits of operating one or more such observatories we consider four
different networks in which a subset of the current detectors operate at A+ sensitivity at the
same time as one CE (which we shall denote VKI+C), one ET (denoted HLKI+E), one each of
CE and ET (denoted KI+EC) and a network consisting of one ET, one CE in the US and one
CE in Australia (denoted ECS) without any A+ detectors. In all, we consider six networks as
enumerated in Table 8.1. For the ET and CE, we use fiducial locations and orientations as given
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in Ref. [254]. We will next discuss the expected performance of various detector networks in
detecting signals from and measuring the parameters of BNSs.

8.3.3 Network Efficiency

Gravitational wave detectors have a wide field of view of the sky but they are not equally
sensitive to all directions. An interferometric detector like LIGO has a quadrupole antenna
pattern and is able to detect only a fraction of all the sources from within a given distance. A
network of non-collocated detectors increases the sky coverage and the five-detector network
of HLVKI+ has an almost isotropic response.

The efficiency of a detector network is a function of the luminosity distance (or redshift)
and is defined as the fraction of all sources within a certain luminosity distance that can be
(confidently) detected by the network, say with an SNR above a threshold SNR. In order to
compute the efficiency of a detector network we simulate BNS events with their parameters
distributed as described in Sec. 8.2.2. The network SNR of an event is simply the quadrature
sum of the SNRs in each detector:

S A ()1
2= 20k =4 df, 8.9
P A§:1 Pa»  Pa S3(7) f (8.9)

where 7(f) is the Fourier transform of the response of detector A to an incident gravitational
wave [cf. Eq. (8.12)], S EA)( f) is the one-sided noise power spectral density of detector A as in
Fig. 8.2, p4 is the matched filter SNR of the signal in detector A, np is the number of detectors
in the network, and p is the network SNR. The efficiency of a detector is then defined as:

1
€@ = ) @) = pr). (8.10)
k

where N is the total number of simulated events, p;(z) is the network SNR for the k™ event,
pr is the SNR threshold and IT is the step function, II(x) = 0, if x < 0 and II(x) = 1, if x > 0.
The SNR of an event depends not just on the redshift but on all other parameters of the source.
In computing the network efficiency, we bin the SNR by redshift and ignore its dependence
on all other parameters. The SNR threshold p; serves as a proxy for detection confidence,
larger SNRs are generally detected with greater confidence. We choose the threshold to be
pr = 12—the minimum SNR required for a network of detectors to make a confident detection.
While the SNR of 12 used here is required for a confident detection, it is not necessarily the
SNR at which we can make the accurate measurements of tidal deformability necessary to
determine a neutron star’s radius and its EOS. In later sections, we will choose the best subset
of all events to evaluate how well a network is able to measure the radii of neutron stars.

The efficiency of a network then also determines its detection rate. Within a given redshift,
a network does not observe all the possible sources, but only a fraction Dy given by:

“r(7) dV

Dg = "d7. 8.11
k= (1+Z')dZ'€(Z) z (8.11)
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We call Dy the detection rate of a network and it is essentially the same as Eq. (8.7) except that
the integrand is weighted with the efficiency of the network.

Table 8.2 lists the number of events detected over a period of two years, as a function of
detection threshold. An SNR of 12 is required for a confident detection, and at that level, the
A+ network would observe about 800 sources over two years while the Voyager network would
observe almost ten times as many. Meanwhile, a network containing at least one XG detector
would observe about half all the sources within z = 1, (70,000 if XG is ET and 100,000 if XG
is CE) (see Table 8.2), and a network containing one ET and one CE would observe 30% more
sources than that. The ECS network would additionally observe about 10% more sources than
a network containing two XG detectors and 50% more than a network containing a single XG
detector.

8.4 BNS Measurement Capability of Future Detector Net-
works

In this Section we assess the measurement capabilities of different networks of gravitational-
wave detectors introduced in Sec. 8.3. We begin with a brief discussion of the distribution of
the SNR in various detector networks followed by the accuracy with which parameters can be
measured, in particular the effective tidal deformability.

In the rest of the paper, we will only consider sources up to a redshift of z = 1. Within this
redshift, we expect about 150,000 BN'S mergers over a two-year period but the current rate
uncertainty means this number could be 50% larger or 25% smaller. This is a redshift that is far
greater than the horizon distance of A+ and Voyager networks while a network containing one
or more of XG detectors would observe a vast majority of mergers within it. However, only a
small fraction of them will have large enough SNRs to be useful for measuring the EOS.

8.4.1 Signal to Noise Ratio Distribution for Nearby BNS Mergers

Figure 8.3 plots the cumulative distribution of the SNR for the population of BNS mergers
up to a redshift of z = 1. The VKI+C network should observe 10% of the events with SNRs
greater than 30 and 1% of the events with SNRs greater than 60. In contrast, in the A+ network
less than 0.1% of events will have SNRs greater than 10. Cosmic Explorer and its southern
counterpart operating along with Einstein Telescope would observe thousands of events each
two years with SNRs greater than 100.

One must multiply the expected number of mergers within this redshift with the correspond-
ing value of the CDF to get the number of sources expected to be observed each year. An
estimate of actual number of events along with their SNR distribution is also given in Table
8.2.

8.4.2 Fisher Information Approach for Measurement Accuracy

Our goal is to estimate the accuracy with which parameters of an event can be measured by
gravitational-wave detector networks. To this end, we employ the Fisher information matrix
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pr | HLVKI+ | VK+HLIv | HLKI+E VKI+C KI+EC ECS
12 840 7400 | 67,000 | 100,000 | 130,000 | 146,000
30 50 600 | 10,000 | 25,000 | 40,000 | 65,000
50 10 100 2,500 8000 | 12,000 | 23,000
100 0 10 300 1000 1,800 3800
300 0 0 10 50 70 150
500 0 0 1 5 10 30

Table 8.2. We list the number of events expected to be detected as we increase the SNR of events. Even
with one Cosmic Explorer and/or Einstein Telescope, the number of BNS detections increases by an
order of magnitude. In the bulk of this work, we focus our analysis on top 100 events with the highest
SNR for each detector network. This cut corresponds to SNR of 100 or more for networks with at least
on XG-era detector and about 50 or below for A+ detectors.

approach [255], which allows a reliable estimation of errors when the SNRs large (say more
than about 30 or 50). We use the open source software GWBENCH [254] to generate and sample
posteriors for a set of randomly selected signals. GWBENCH is a software package that computes
the Fisher information matrix (FIM) ¥ whose inverse gives the variance-covariance matrix.
The starting point of the computation is the response of a detector to incident gravitational
wave with polarizations A, and hy:

WAL, 0) = FA(t, @, 6, Y)h,(t, 1) + Fo(t, a, 6, Y)hy(t, i) (8.12)

where A is an index denoting the detector in question. Here F, , are the plus and cross antenna
pattern functions of the detector that depend on the right ascension @ and declination ¢ of the
source, and the polarization angle . The time dependence of the antenna pattern functions
are only important when the motion of the detector relative to the source is perceptible, and
for sources that last for more than 30 minutes. The polarization amplitudes 4, and A, depend
on the intrinsic parameters of the sources such as the masses m; and m, of the companion
stars, > and the effective tidal deformability A, but also the extrinsic parameters that include the
orientation ¢ of the binary’s orbit relative to the line-of-sight from the Earth to the source and the
source’s luminosity distance D;. These are all combined in the parameter u = { M, 1, A,., D),
where instead of the companion masses we have used the symmetric mass ratio n = m;m,/M?,
and the chirp mass M= v*’>M (M = m; + m,). The parameter set 6 captures all the parameters
describing the response of a detector to an incoming gravitational wave (see below for the full
list of parameters).

Given the Fourier domain representation i%( f; 6) of the detector response, the Fisher matrix
is given by:

A

(8.13)

A _ [OH(f) OH'(f)
T\ e e |

3In principle the companions can have spin angular momenta, but neutron stars are not expected to have large
spins and they are not included in this study.
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where the inner product of any two functions a(f) and b(f) is defined as

figr a(£)*b(f) + a(f)b(f)*
,b =2
(@), b)) ff ) 0

where a*(f) denotes the complex conjugate of a(f). The Fisher matrix of a network of detectors
is simply the sum of the matrices corresponding to individual observatories in the network, i.e.

df. (8.14)

Fii= ) Fir (8.15)
A

Given the Fisher matrix, the covariance matrix C;; among the parameters is the inverse of
the Fisher matrix, i.e. C;; = Tl;l

To construct the Fisher likelihood surface, we choose a low-frequency cutoff, fi,w, of 10 Hz
for A+ and Voyager detectors and 5 Hz for XG detectors. The high-frequency limit is taken to
be the maximum allowed frequency given the sampling rate (typically chosen to be 4096 Hz),
but the signal model never extends to such high frequencies even for the lowest-mass neutron
stars considered in this paper. We then compute a 10-dimensional Fisher likelihood consisting
of the parameter set @ = { M, 1, A,D;, W, cost, @, 0, g, t.}, where t., and ¢, are the fiducial time
of coalescence, and the gravitational-wave phase at coalescence, respectively.

8.4.3 Measurement Accuracy of Simulated Population

Fig. 8.3 plots the errors on the parameters of the simulated population in the form of distribution
functions. We have shown the results for a subset of all the parameters that are relevant to the
measurement of the mass-radius curves. These are the chirp mass M, the symmetric mass
ratio i and the effective tidal deformability A. We see a clear delineation in the measurement
capabilities of current and upgraded networks and XG observatories. The precise measurement
of the parameters is, of course, accomplished by tracking the phase evolution of the binary. The
chirp mass and mass ratio are most accurately measured if the number of cycles in the band is
large (i.e. if the signal’s phase can be tracked over longer periods) and a good improvement
in low-frequency sensitivity for XG detectors is responsible for this vast improvement in the
measurement of the mass parameters. The reduced tidal deformability measurement comes
from the signal’s phase evolution close to merger, or the high-frequency part of the signal,
which will be clearly visible in XG detectors.

The remaining parameters—sky position, distance, and orientation of the binary in the plane
of the sky—also show a clear delineation between detector generations, except the instance
where the addition of CE without ET performs similar to Voyager networks®.

8.4.3.0.1 Sky localization For very short transient signals, the sky localization is measured
using the gravitational-wave travel times between different detectors and, therefore, depends on
the number of non-collocated detectors. Thus, the 5-detector network of VK+HLIv, achieves

The performance equivalence argued here is for a fraction relative to the total number of detected events. In
absolute terms, even a single CE will have outstandingly more events with a given measurement error.
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Figure 8.3. This plot shows the distribution of the measurement accuracy of the chirp mass M, combined
tidal deformability A, symmetric mass ratio 77, and the SNR for 160 000, events expected over a two
year period, up to a redshift of z = 1. The source parameters are distributed as described in Sec. 8.2.2.

greater precision than a 4-detector XG network VKI+C, although the signal strengths in
the latter are much greater. For longer signals that make a discernible trail on the sky, the
variation of the antenna response across the sky can be used to improve the sky position of
the source. Since ET is more sensitive between 5 Hz and 8 Hz, where a typical BNS signal
(1.4 Mg + 1.4 Mp) spends more than an hour (~ 75 minutes), a trail spanning more than 15°
on the sky (or, a fifth of the total variation in the antenna pattern) is clearer in the presence of
an ET detector. Moreover, HLKI+E is composed of five detectors, which accentuates the sky

resolution.

8.4.3.0.2 Inclination angle The measurement of the inclination angle is dependent on the
distinguishability of the two gravitational-wave polarizations. Since ET is a triangular detector
that measures three independent strains, each strain has different polarization content, leading
to an accurate estimate of the polarization content and, thereby, the inclination angle. A CE
detector alone cannot distinguish between the two gravitational-wave polarizations and it is the
2G background (inclined with respect to each other and CE) that provides crucial assistance to
the VKI+C network in the polarization measurement. However, a mutually inclined 5-detector
network VK+HLIv still achieves greater precision than a 4-detector VKI+C network.
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8.4.3.0.3 Luminosity distance The luminosity distance parameter is most correlated with
the inclination angle. Hence, a precise measurement of the inclination angle also leads to
an accurate measurement of the luminosity distance. Thus, the measurement trends for the
luminosity distance across networks follows the trends in the inclination angle.

8.5 Inferring Neutron Star EOS from Mass-Radius Curves

The Bayesian inference of the chirp mass M, and symmetric mass ratio 7 of the BNS events
detected by LIGO and Virgo are the most precise measurements among all parameters of
BNS events. While the effective tidal deformability is not measured as precisely, upcoming
gravitational-wave detector networks promise vastly improved measurements (cf. Fig.8.3). To
measure the radii of component stars, however, it is necessary to know what the individual tidal
deformabilities A; and A, are as well as the tidal Lover number k, (cf. Eq. 8.1). Unfortunately,
gravitational-wave observations can only provide a reliable estimation of the linear combination
A. This problem has been resolved temporarily via the proposal of a set of quasi-universal
relations for neutron stars, which are approximately obeyed by hundreds of current models of
the EOS [256].

In this set, there are basically two universal relations. The first of these relates the asym-
metric combination of the individual tidal deformabilities’ A, = (A, — A;)/2 to the symmetric
combination Ay = (A, + A;)/2 via the mass ratio g

3 2 j —-i/5
a+ Yo X bijg! AT

A, = Fn( )As - s (816)
! 1+ 37, Z?:l i/ AP
where the function F,(g) is given by
1 — g0/G-n

The fitting parameters b;;, ¢;;, a and n are given in Table I of Ref. [257]. The second universal
relation [258] relates the compactness C = GM/(c*R) of an individual neutron star to its tidal

deformability:
2

C(A) = > ax(in AY, (8.18)
k=0
where the fitting parameter a; are also given in Table I of Ref. [257] (also see Ref. [259] for
similar relationships).

The first of the universal relations Eq. (8.16) can be used to decouple the effective tidal
deformability into individual tidal deformabilities. Then the second universal relation Eq. (8.18)
can be used to compute the radius. These universal relations, however, have been shown
to introduce systematic errors [260] that must be corrected in order to obtain an unbiased
estimation of the EOS [261]. In the rest of this section, we describe our simulation method
to assess the radii measurements for a set of future gravitational-wave observatories with
corrections for these errors.

"We follow the convention m; > m, and, consequently, A} < Aj.
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8.5.1 From Gravitational Wave Measurements to Neutron Star Radii

We begin with the Fisher information matrices (FIM), computed using the GWBENCH software,
for the entire simulated BNS population and all the detector networks described in Sec. 8.2
for a set of three EOS models and the IMRPHENOMPV2NRTIDAL Waveform model. Diagonal
elements of the covariance matrix (inverse of the FIM) are the standard deviations of the
source parameters: (M, n, A, dc,te, Dp,cost, a, d,y). In order to obtain radii of the companion
stars from the parameters measured via gravitational-wave observation, we simulate posterior
samples by generating a multi-dimensional Gaussian sample using the injection values as
mean values and the inverse of the FIM as the covariance matrix. We need only three of
these parameters (M, 77, A) for the estimation of radii. To break the degeneracy between two
tidal deformabilities and get individual radii, we follow the procedure described in [261] (see
also [12] for an alternative method), which is briefly described below.

First, in the expression for A we eliminate A, and A, in terms A, and A,. We then use the
first universal relation in Eq. (8.16) to replace A, with A, in the expression for A , thereby
writing A as a function of only A, and ¢. Since gravitational-wave observations measure
A, we can invert the expression for A = A(Ay, q) to get A (A, g). Thus, from gravitational-
wave measurements of the mass ratio and the effective tidal deformability we can extract the
symmetric combination A, and then, using Eq. (8.16), also A,. These two are then inverted
to obtain the individual tidal deformabilities of the component stars. Thereafter, we use the
C-A universal relation in Eq. (8.18) to derive the compactness and, with the individual masses,
obtain the posterior probability distribution of the radii for component neutron stars.

8.5.2 Correcting Systematic Errors in Neutron Star Radii

Universal relations introduce systematic errors in the estimation of individual tidal deformabili-
ties and radii which will dominate the source of errors in the era of XG observatories [261].
Due to the fact that SA cannot be measured accurately, it is not possible to obtain a truly,
arbitrarily precise, model-agnostic measurement of neutron star radii or compactness using only
gravitational-wave measurements®. However, it turns out that for the purpose of EOS model
selection the systematic errors can be corrected as we will briefly argue below (see Ref. [261]
for details).

As discussed before, the GwBENCH framework is used to create a population of BNS events
in which the tidal deformability A of each neutron star of mass m is computed for a specific
EOS model (one of ALF2, APR3 or APR4). Out of the 150,000 simulated events, we choose
100 events that have either the greatest SNR or the best-measured tidal deformability. For
the 100 events, we will have 200 mass-radius posteriors, one for each of the companion stars.
We then sample a discretized mass-radius curve containing 200 points by randomly sampling
each star’s mass-radius curve and repeat the process to generate a large number of realizations,
representing the mass-radius curve supported by the 100 chosen events. Sampling in this
manner can form mass-radius curves which violate causality, and thermodynamic constraints.
However, we note that this makes our estimates more conservative, and curves which differ

8Note that even if A; and A, are measured by gravitational-wave observations the tidal Love numbers of the
two neutron stars will still be unknown and hence the radii cannot be inferred
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greatly from the true EOS as a result of this will be rejected by the chi-square statistic described
in the following section. The radii used to construct these mass-radius curves then contain the
systematic errors introduced by our use of the universal relations, so the resultant mass-radius
curve will also be biased. Given an EOS, we can determine the exact value of this bias by
comparing the mass-radius curve for an EOS generated using the TOV equations to that of a
curve generated using the universal relations. With this in hand, we can calculate the correction
necessary to account for the systematic errors introduced by the universal relations which, when
applied to a mass-radius curve, will closely match the exact TOV curve.

In this work, we thus correct for these systematic errors by applying these corrections to the
calculated mass-radius curves per EOS. For example, if we would like to determine whether
the underlying equation of state of our mass radius curve is ALF2, we first apply the known
correction for ALF2 to our mass-radius curves and then complete the comparison described
in the next section. If the true underlying EOS is not the one for which we have applied the
correction, then the correction will not correctly account for the systematic errors and we can
only assume that most similar resulting mass-radius curve is the closest to the excluded true
model.

We will consider the true model in turn to be one of the 10 EOS models shown in Fig. 8.1
and show how the corrected-mass-radius curves compare with the true EOS model. In practice,
one has to compare the curves with the full set (of millions) of curves. In order to clearly
illustrate the power of the method, we have not done so and instead reserved a more detailed
and careful Bayesian statistical analysis of model selection in an upcoming publication.

8.5.3 EOS Model Selection Using y* Statistic

After generating a mass radius curve as described in the previous section, we must compare it
to a set of EOS models in order to determine the true EOS of the population. We complete this
comparison with the following statistic:

2 RN (r = 1]
Xen =7, = (8.19)

Here, N is the number of events, k stands for one of the realizations constructed from the
mass-radius posterior and o; are 1—o uncertainty in the radii calculated after applying the
systematic bias correction. We generate 500 realizations of the mass-radius curve and obtain a
distribution of the y? statistic for each of the 10 EOS models.

If a realization of the mass-radius curve is close to the model to which it is compared to, the
numerator of Eq. (8.19) becomes zero. If, however, the uncertainties in the tidal deformability
are large, the y* again becomes small regardless of the position of m-A posterior distribution
with respect to the model m-A curve. This is a drawback in our model and leads to the
underestimation of near-future LVK upgrades in distinguishing EOS models. Therefore, when
comparing against a collection of EOS, the smallest y? value should correspond to the injected
EOS for XG detector configurations in which statistical errors are much smaller and recovery
of EOS in the data is more accurate, but for near-LVK upgrades, this may not be true due to
the large errors in tidal deformability. We discuss our results in the next section and defer the
improvement to the Bayesian formulation of our y?> method to future studies.
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8.5.4 Combining Results from Multiple Events

The accuracy of radii posteriors depends to a large extent on the accuracy of tidal deformability
measurements, which in turn depends on mass-posteriors. Heavier component masses have
smaller tidal deformabilities, which are difficult to measure. The low accuracy of the tidal
deformabilities results in poorer radii measurements, which constrain the high-density regime
of the EOS, while lighter component masses typically result in better measurement of the
radii. The correct reflection of the radii uncertainty, therefore, cannot be at some fiducial mass
but will be a function of the companion mass. Having measured the radii of several hundred
neutron stars, it is possible to get a better handle on the radius at a fixed mass.

Evidence from the observation of multiple events, in principle, can be combined to give us
integrated evidence of the constraints on neutron star radii. In this paper, we bin the selected set
of events over the range of companion masses from 1.0 M, to the maximum mass supported by
the EOS in steps of 0.05 M wide bins and assume that all neutron stars in a given bin have the
same radius. The uncertainty in the radius in each bin is computed as the quadratic harmonic
sum of individual 1-o0- uncertainties in the radius of individual neutron stars that lie within the
bin. This procedure is equivalent to combining the posteriors of radii corresponding to all the
NSs in a particular mass bin assuming priors are the same for all NSs. While not ideal, this
method improves upon the method used in [232], which assumes that radii of neutron stars over
the entire mass range from 1.1 Mg to 1.6 M, are the same. We note that this latter assumption
could introduce an intrinsic systematic error of 200 m (Eq.-6 of [232]) — a value much larger
than the measurement uncertainty we find in the case of XG detectors. We report the results of
this calculation in the next section. The accuracy of radii measurements can be translated to the
accuracy in the estimation of nuclear physics parameters [262,263] which we defer for future
work.

8.5.5 Impacts of assumed cosmology

To obtain the error in the radius measurement, we need to convert the uncertainties in the
detector-frame chirp mass to that of the source-frame chirp mass. In doing so, we have
assumed that the cosmological parameters, like the Hubble constant (H,), are known exactly
(see Sec. IIA). Although advancements in gravitational-wave detector networks are expected to
achieve sub-percent precision in measuring cosmological parameters [264-269], the associated
uncertainties may still impact radius measurements.

Note that the two most precise measurements of Hy, from the Planck mission [270] and the
SHOES project [271], are in disagreement at the 5 — o~ level, which is called the Hubble tension.
To obtain a liberal estimate of how the uncertainty in H, can affect radius measurements, we
perform Bayesian parameter estimation with BILBY [272,273] for a (1.45, 1.35) My BNS
system, at 400 Mpc, with APR4 as the assumed EOS. For this zero noise analysis, the system is
injected in a network with one Einstein Telescope and two Cosmic Explorer observatories (SNR
330). The injected system is made to obey the SHOES estimate of Hy = 73.3kms™' Mpc ™',
whereas the recovery is performed assuming the Planck18 value of Hy = 67.4kms™ Mpc™',
i.e., a fractional error in Hy of ~ 8%. Employing the same analysis as in the current study,
we obtain the 68%-credible region for radius estimate to be 370m (AR/R 3%). In contrast,
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Figure 8.4. TOV mass-radius curves of ALF2(blue), APR3(orange), and APR4(green) overlaid with the
bias-corrected recovered mass and radius as well as their errors (grey bars) in a subset of near-future
and XG detector networks, for a set of 100 random events drawn from the 500 loudest SNR. There is
a clear trend of improving radius error as the detector networks improve left to right, top to bottom.
Additionally, in the best detector networks, radius errors also improve with decreasing mass, as is to be
expected with higher accuracy in the measurement of higher tidal deformability.

the bias in the estimate due to inference with the incorrect cosmology is 60m. Thus, even at
an exaggerated uncertainty of 8% in H,, we see that the statistical uncertainty in the radius
measurement outweighs the resulting bias. Therefore, at the forecasted precision levels of
cosmological parameter measurement with next-generation observatories, we do not expect the
uncertainty in their estimation to play a significant role in the estimation of the radius of the
neutron star.

8.6 Results from a Population Study

In this section, we present the accuracy of radius measurements inferred from a sub-population
of 100 best events, for six different detector networks and three different EOS models. The
sub-population is chosen to be either events with the best-measured tidal deformabilities or
the largest SNRs. In order to gauge Monte Carlo errors, we start with a set of 500 events
satisfying the aforementioned criteria and then bootstrap several realizations of 100 events. We
present the results in a series of plots that compare the measured mass-radius curves to those
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Figure 8.5. Same as Fig. 8.4 except the 100 out of 500 events with best measured tidal deformability
are chosen. Again, there is a clear trend of improving radius error as the detectors network improves left
to right, top to bottom. Note that the trend of improved radius error with decreased mass is not clear
here as it was with the loudest in the SNR set. This is a natural result from the selection of only the best
measured combined tidal deformability systems as opposed to those with the best SNR as in Fig 8.4.

derived from different EOS models, the y? histogram between the measured and model radii,
and precision with which radius can be measured by combining events in 0.05M-wide mass
bins for different EOS models.

8.6.1 Radius Measurement

Figures 8.4 and 8.5 plot the uncertainties in the measurement of masses and bias-corrected
radii for 100 random events drawn from the 500 events, with the largest SNR and the best-
measured tidal deformability, respectively, for a population of BNS described in section 8.2.
The cumulative distribution of the measurement uncertainties in the parameters used in this
calculation are shown in Fig 8.3. Multiple realizations of the 100 events (out of 500) do not
show significant differences in the mass-radius curves and hence we have shown the plots
for just one realization. Results are shown for the six different detector networks. In each
case, the true model is in turn chosen to be ALF2 (blue), APR3 (orange), or APR4 (green). In
these plots, we show the bias-corrected radii using only the injected models as described in
8.5.2. Otherwise, the plot would be too busy; the chi-square plots, to be discussed below, will
compare the bias-corrections applied to radii assuming the true EOS model to be any one of
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the three candidates. Measurement uncertainties in mass and radius are plotted in grey.

Figures 8.10 and 8.11 in Appendix 8.8.1 show the same result but plotted in the chirp
mass-symmetric mass ratio space, while Figures 8.12 and 8.13 show the results in the chirp
mass-combined tidal deformability space. Figures 8.10 and 8.12 are for events with the best-
measured tidal deformability while Figures 8.11 and 8.13 are for events with the largest SNRs.
The color shade of the dots in these plots represents the radius uncertainties while the size of
the dots is a measure of the SNR of the events as shown in the legend.

Note that these results are based on the Fisher Matrix calculation of the measurement
uncertainty. Therefore, the results we see here can be taken as a lower bound of what we might
actually expect from a full Bayesian analysis of parameter estimation of these events.

From Figs. 8.4 and 8.5, there is an evident trend of marked improvement in the measurement
of the radii as the detector networks themselves improve. The recovered radii fall closer to
the injected EOS curve, and the measurement uncertainties vastly decrease as the number
of XG observatories in a network rises from O to 3. Notably, the maximum uncertainty in
the radii, most easily read from the color bars of Figures 8.10-8.13, vary from, in the worst
detector, about 2500 m to, in the best network, only about 300 m. At low masses, the disparity
is especially clear, and this is a natural result for these networks— particularly the improvement
once at least one XG detector added to the network.

It is notable that in networks which contain just one XG detector, the HLKI+E network
slightly outperforms that of VKI+C in the measurement of radius error. This is expected for
two reasons. First, the HLKI+E network contains one additional detector than that of VKI+C,
which inherently improves its sensitivity. Second, the ET sensitivity curve, as seen in Fig. 8.2,
contains a long tail in the low-frequency regime not present in the CE curve. This increases
the time neutron star signals spend in the band, and results in a better-measured chirp mass
and, therefore, better-measured radii. The evidence of this can be seen in the chirp mass and
radii CDFs of Figure 8.3. There, the HLKI+E chirp mass CDF shows clearly a smaller relative
error than that of VKI+C, and where the HLKI+E tidal deformability CDF shows on level or
slightly smaller relative error than that of VKI+C.

In the data set with the loudest SNR events (Figures 8.4, 8.11, and 8.13), higher-mass
systems are less constrained—especially in radius—than lower-mass systems, while this is
not necessarily true for the set of best-measured tidal deformability events (Figures 8.5, 8.10,
8.12). Again, this is an expected result, as we accumulate most SNR for BNS systems during
the low-frequency inspiral phase, while the best measurements of tidal deformability come
from the high-frequency part of the waveform during the merger. Thus, a high SNR does not
beget a well-measured tidal deformability or radius. Additionally, although gravitational-wave
amplitudes for high-mass systems tend to be larger compared to low-mass ones, the value of
their tidal deformability tends to be smaller. These small values combined with short inspiral
times result in larger relative errors in the measurement of tidal deformability and radii despite
the boost in SNR from higher amplitudes. This trend is especially clear in Figs. 8.12 and 8.13
where in Fig. 8.13 the highest radii errors for each panel (in yellow) are always seen in the
right, or the high mass and low tidal deformability, portion of the plot while in Fig. 8.12 the
worst measured events (again in yellow) are spread throughout parameter space.

Similarly, in Figs. 8.10 and 8.11, it appears that a high symmetric mass ratio, and high
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chirp masses may result in poorly measured tidal deformability for the highest SNR events,
but not necessarily for those with the best measured tidal deformability. In Figure 8.11, large
radii errors (in yellow) are typically grouped in the upper right-hand corner of most plots,
with a small spread along the right-hand edge in the ALF2 and APR4 EOS, and a small line
along the upper-edge in the VKI+C network of ALF2. This is again due to the previously
discussed issue with taking the loudest SNR events, but whether this is individually caused by
either the high symmetric mass ratio or the large chirp masses is not immediately clear. As
previously mentioned, a high chirp mass comes with a small tidal deformability and therefore
large relative error. However, a high symmetric mass ratio can also decrease the inspiral time,
or time in a frequency band, and therefore again the accuracy of the measurements becomes
low. Notably, in the set of best measured tidal deformability shown in Fig. 8.10, the large errors
are distributed more evenly throughout the plot and have lower maximums than their high SNR
equivalent.

8.6.2 Model Selection

Figures 8.6, and 8.7 show the primary results from our model selection procedure. Here we
plot the distribution of the y? statistic defined in Eq. (8.19) between the observed mass-radius
curve and the one predicted by the chosen EOS model. The separation of the distribution for
any two EOS signifies the effectiveness of a detector in distinguishing between the injected and
test EOS models. In these figures, each row corresponds to a particular detector network, while
each column corresponds to a specific injected EOS (label at the top of the column). The y?
histograms in each panel are additionally colored to match the EOS color scheme as in Fig. 8.1,
with the count on the y-axis and the y? (in log-scale) on the x-axis.

For detector networks in the top two rows the inferred radius r* is very different from
that predicted radius 7™ by any of the models (see top left and middle panels in Figs. 8.4 and
8.5) which would cause y* to be large. However, at the same time, the uncertainties in the
measurement (o-;) are also large. Consequently, for networks with poorer sensitivity, the y?
will tend to be equally small no matter which EOS model the events are compared to.

The story is different when the radius uncertainty o of a detector network is small. For
such detectors, the bias-corrected radius differs significantly from the predicted radius found
using a model other than the true one, but agrees very well with the predicted radius of the true
model. Consequently, the ratio within the sum in Eq. (8.19) is small only when the set {r}
corresponds to the true EOS. This is the reason why the y? distributions for the models other
than the true one have far greater values than they are for the true model in the bottom two
rows. We find that the method accurately recovers the injected EOS model among a larger set
of models than was used for injection. In addition, we have also used a much larger sample of
events for our work compared to previous studies [239,274-276].

We stress that the power of the y? statistic introduced lies in discriminating between the
different EOS models when measurement uncertainties are small; with less sensitive detector
networks there is no way to distinguish one EOS model from another. The absolute value of
the )(2, however, has no significance.

Across different detector networks, when the injected EOS is close in the M-R parameter
space to the comparison EOS, the distribution is most often confused with the true EOS as
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Figure 8.6. Chi-square histograms for 100 events from those 500 with the smallest error in combined
tidal deformability. The injected EOS is listed along the top, and the colored histograms represent
the result assuming a second EOS model, including the original injection. Detector networks are
organized by sensitivity row-wise with the most sensitive network at the bottom. In every EOS and
network scenario including at least one XG detector, the injected EOS is recovered correctly and easily
distinguishable from the other nine via this test. In our two least sensitive and nearest future detector
networks, HLVKI+ and VK+HLIvc, the opposite is clearly true and all models are indistinguishable.
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tidal deformability. The injected EOS is listed along the top, and the colored histograms represent the
result assuming a second EOS model, including the original injection. Detector networks are organized
by sensitivity row-wise with the most sensitive network at the bottom. While the peak of the injected
EOS histogram is generally recovered with the smallest y? value despite detector sensitivity, in the two
networks which do not contain at least one XG detector, the histograms are not distinguishable and we
cannot claim that this test is effective in distinguishing EOSs at loud SNRs. However, in networks with
at least one XG detector, the correct EOS is consistently recovered with its distribution clearly separated
from other EOS models. The same trend is also seen in Fig 8.6.
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show by the proximity of its histogram to the true one. For example, in the least sensitive
detector networks, or top rows of Fig 8.7 and 8.6, the overlap between the resultant three
distributions of ALF2, SLy, and PP5 is total, and even with one XG detector, they still overlap
significantly. It is only in the best detector networks (bottom two rows) that they begin to
become indistinguishable. Meanwhile, comparing ALF2 to APR4 or H4, even in some of the
least sensitive networks, their distributions already diverge from the true ALF2 one. This follow
from the simple fact that at low mass in the mass-radius curve, ALF2 lies very close to PP5 and
at high mass close to SLy and would therefore naturally match more closely with its nearest
neighbors while the distance between ALF2 and APR4 or H4 is significant and therefore not
well matched (Kashyap et al. [261] discuss how distinguishability of EOS models changes with
respect to the L, distance between them).

In general, as the sensitivity of the networks increases, so too does the separation of the
posterior distributions. In the lower sensitivity networks from both the highest SNR and best
measured tidal deformability data sets, the distributions overlap significantly, and it is only with
the inclusion of at least one XG detector that the distributions become at all distinguishable.
Across EOS and data sets in networks with at least one XG detector, the smallest )(2 value
always corresponds to the injected EOS and its peak is distinguishable from the EOS with the
next smallest y? value. There is not a significant separation of the true EOS from its neighbors,
however, until we begin to include at least two XG detectors in the network. In these most
sensitive networks, the true EOS centers around one, effectively recovering the EOS, and there
are an order of one hundred separations between it and its neighbors, giving hope that XG
detector networks may be able to distinguish clearly between these, and other EOSs.

8.6.3 Combining Radii Errors from Multiple Events

In Fig. 8.8, we present the results of combining the radius uncertainties of multiple events
binned in individual masses of neutron stars in the range 1.0 Mg to the maximum mass
supported by the EOS used for the injection, using the method described in Sec. 8.5.4. We
plot the effective errors in the radii of a particular mass bin for three EOS models, with the
colors the same as in Fig. 8.1. The color bands show the variation in the combined error due
to bootstrapping while selecting 100 events out of 500 best events according to two different
criteria (best SNR and best measured A) as described in the previous sections. We’ve found
that this selection of events does not make a significant difference to the results.

One of the crucial features of these plots is the increase in the effective radius uncertainty
with the increase in the masses of the individual neutron stars. This is again due to the small
tidal deformability of heavy neutron stars and poor accuracy in their measurements irrespective
of the EOS and the detector network, leading to the poor measurement of radii via the C-A
universal relation. Smaller radii and tidal deformabilities at higher masses result in poorer
constraints of the EOS at higher densities, which is usually near the neutron star core. As
expected, we find an improvement in the radii uncertainties for all mass bins according to the
v/N law, where N is the number of events combined in each mass bin.

We find the uncertainties to be smaller than 1 km by combining 5 or more events in any
mass bins irrespective of the network chosen. The HLVKI+ network has typical errors to
be around 1 km for all masses and becomes as large as 3 km even after combining multiple
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events. The addition of one XG detector to the network improves the radii uncertainties by an
order-of-magnitude with a typical value of 100 m, the smallest value of 30 m, and the largest
value of 1 km. The best radius measurement, however, is accomplished by combining both
ET and CE. We show the results for two such networks of detectors where uncertainties could
be as small as 20 m with almost all of the bins having uncertainties smaller than 100 m (i.e.,
~ 1 %). We emphasize again that in these calculations, we use Fisher Information Matrix to
approximate the uncertainties, which are a lower bound. We defer the work of accurate analysis
using Bayesian Monte Carlo methods to future work.

8.6.4 Discussion

The result of our analysis for the best-SNR and best-measured tidal deformability data sets
is promising for networks including XG observatories. Advanced LIGO and Virgo and their
upgrades in the near future are expected to observe tens of events with moderate SNR (i.e.,
SNR> 40) and a handful of high-fidelity (SNR> 100) events over a two-year period (cf.
8.2, columns 2 and 3). Without any XG observatories, the best fractional uncertainty in
radii measurements for the top 100 events with best measured tidal deformability is 5-10%,
with more than half above 10%, as seen in Fig 8.9. This means it will be difficult for these
networks to distinguish between even the most disparate set of EOS models considered in this
paper. However, with the inclusion of just one XG detector, the best results show only a 0.8%
uncertainty in radii, with half of the events reporting only 6% or less, allowing EOS to become
partially distinguishable. Meanwhile, networks with at least two XG detectors tell a completely
different story.

In our most sensitive networks, we will be able to measure the radii of neutron star sources
to 0.5%, with half at 3% or less, as seen in Fig 8.9. However, we have not taken into account
the models of the crust of neutron stars which themselves can be 100 m (i.e., 1% of the radius),
so further work is required to better characterize the meaning of measurement accuracies below
this accuracy. These precise measurements, however, result in y? distributions that are easily
distinguishable, well separated, and centered for both the loudest SNR and best-measured
tidal deformability event sets. Consequently, XG networks will be able to distinguish between
different EOS models (even ones that are sufficiently close to each other in L, measure of
distance) and place stringent constraints. Overall, the results of these data sets reveal an avenue
for future research that deserves to be pursued further.

8.7 Summary and Conclusions

In this work, we report on the improvements in the inference of the dense matter equation of
the state of neutron stars with the current and next-generation gravitational-wave detectors
based on their expected design sensitivity curves. We evaluate the measurement uncertain-
ties for hundreds of thousands of events and consequently, it is not possible to carry out a
Bayesian inference analysis of the events as that would currently take a formidable amount of
time. Instead, we use the Fisher matrix approximation to compute the 1-0- uncertainties and
correlations of the binary neutron star parameters, including the companion masses and the
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effective tidal deformability A using the IMRPHENOMPYV2NRTmAL waveform. The multivariate
distributions of the binary parameters obtained from gravitational-wave observations, together
with two universal relations, namely, Egs.(8.16) and (8.18), allow us to infer the mass-radius
posteriors of companion neutron stars. Since the universal relations are not exact, the inferred
radii posteriors have systematic biases. We have shown that these systematic biases can be
corrected for when comparing the measured mass-radius posteriors with that predicted by
a specific equation-of-state model. Our bias-correction method is equivalent to comparing
the model mass-tidal deformability predictions directly with the gravitational-wave data but
computationally inexpensive since bias corrections are known a priori and don’t need to be
generated on the fly. Moreover, the method avoids having to repeat the likelihood calculations
and computations of posteriors for every plausible equation-of-state.

We employed this new method to compare three disparate model equations of state with
simulated gravitational-wave measurements for assuming the true equation of state to be one
of the 10 models. Our results demonstrate that the method can uniquely identify the correct
equation-of-state when the detector network contains at least one XG observatory (either
Einstein Telescope or Cosmic Explorer). It will be difficult to distinguish between different
plausible equations of state with the current network of LIGO, Virgo and KAGRA observatories
or their proposed improvements (A+ or Voyager). However, with the addition of at least one
XG observatory, it will be possible to draw firm conclusions about the true equation-of-state
describing dense matter in neutron star cores. Moreover, we find vast improvements in the
measurement uncertainties of neutron star radii with two or more next-generation observatories
in the network. More specifically, we find that radius uncertainties are a few hundred meters
for networks with one or more next-generation observatories, while this would be 1 km in a
network with the LIGO-Virgo-KAGRA network and their future upgrades. However, we found
that the overall accuracy of radii measurements decreases with increasing neutron star mass.
This is because tidal deformabilities are smaller and more difficult to measure for more massive
neutron stars.

Building more sensitive gravitational-wave observatories is crucial to constraining plausible
EOS models—measurements that can inform not only the gravitational-wave community but
also the nuclear physics and astronomy communities at large. In this light, the radius of a
typical NS can be constrained to better than 30 m, at the lower end of the expected range of
neutron star masses, with joint detections of events over two years in Einstein Telescope and
Cosmic Explorer.

8.8 Appendix

8.8.1 Miscellaneous plots

In this section we assemble a list of four additional plots to gain a better understanding of the
results presented in the main body of this paper. These plots show the measurement uncertainty
in radius either as a function of chirp mass and symmetric mass ratio in Figs. 8.11 (for 100
randomly chosen events out of the 500 loudest events) and 8.10 (for 100 randomly chosen
events out of 500 events with the best measured tidal deformability) or as a function of the
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chirp mass and tidal deformability in Figs. 8.13 (for 100 randomly chosen events out of the
500 loudest events) and 8.12 (for 100 randomly chosen events out of 500 events with the best
measured tidal deformability).
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Figure 8.8. Cumulative radius error in each mass bin by square harmonic sum assuming constant radii
in each mass bin. The upper panel shows the 100 events randomly selected from the 500 events with the
best measurement of A while the bottom panel shows the same result for 100 events randomly selected
from 500 events with the best SNR. The band for each EOS shows the uncertainty due to random
sampling. The color encodes the results for each EOS and is the same as Fig. 8.1. We find generically
that errors in radii are larger for larger masses across detector networks and data sets due to smaller

accuracy in the measurement of smaller tidal deformability.
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Figure 8.9. Upper Panel: Cumulative histograms of the uncertainty in neutron star radii in km (top
two panels) and masses in solar mass (bottom two panels) multiplied by the total number (860) of
neutron stars in the 430 selected BNS events. The left panels are for events with the best measured
tidal deformability and the right panels are for events with the highest SNRs. The different curves
correspond to different detector networks considered in this study. These plots show that even the
inclusion of just one XG detector (VKI+C or HLKI+E) leads to a vast improvement in the precision of
radii measurements. Such detectors could measure the radius to within about 200 m for several events.
A network containing two or three XG detectors would improve by a factor of a few. On the other hand,
companion masses are better measured by a network that has ET (0.01 Mg to 0.001 M) whose lower
frequency performance helps in more accurate determination of the chirp mass and the mass ratio.
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Figure 8.10. The plot shows the radius error (in color) for 100 events with the smallest error in the
combined tidal deformability as a function of the symmetric mass ratio and chirp mass. Results are
shown for the six detector networks (labelled in each panel) and and three different EOSs (labelled at
the top of each column). We recover an approximate trend of increasing radii error with increasing chirp

mass and symmetric mass ratio.
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Figure 8.11. Radius error (in color) for 100 random events out of the 500 which are loudest in SNR
for our six 3G detectors and three EOS of choice: left ALF2, middle APR3, right APR4. Detectors are
ordered top to bottom as follows: ESa4cCadc, KI+ECa4c, VKI+Cadc, HLKI+E, VK+HLIve, HLVKI+.
We see the same trend of increasing radii error with increasing chirp mass and symmetric mass ratio as
seen in Fig 8.10, but it appears more clearly in this data set, especially in increasing chirp mass.
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Figure 8.12. Radius errors (in m) are shown in color for 100 random events out of the 500 which are
best measured in tidal deformability for our six 3G detectors and three EOS of choice: left ALF2, middle
APR3, right APR4. Detectors are ordered top to bottom as follows: ESa4cCa4c, KI+ECa4c, VKI+Ca4c,
HLKI+E, VK+HLIvc, HLVKI+. The relative error in radius naturally decreases for systems with larger
combined tidal deformability, and again we see larger radii errors at higher chirp mass. Additionally, we
naturally see the largest radii errors and smallest SNRs in near-future detector networks, and significantly
better ones in networks with XG detectors.
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Figure 8.13. Radius error (in color) for 100 random events out of the 500 which are loudest in SNR
for our six 3G detectors and three EOS of choice: left ALF2, middle APR3, right APR4. Detectors are
ordered top to bottom as follows: ESa4cCadc, KI+ECa4c, VKI+Cadc, HLKI+E, VK+HLIve, HLVKI+.
The same trends appear here as in Fig 8.12. Radius error increases with chrip mass, and decreases with
combined tidal deformability. Additionally, as the detector networks themselves improve, we see clear
improvements radius error and SNR.
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