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Abstract

We obtain new relations between Einstein—Yang—Mills (EYM) amplitudes involving N gauge bosons
plus a single graviton and pure Yang—Mills amplitudes involving N gauge bosons plus one additional vec-
tor boson inserted in a way typical for a gauge boson of a “spectator” group commuting with the group
associated to original N gauge bosons. We show that such EYM amplitudes satisfy U(1) decoupling re-
lations similar to Kleiss—Kuijf relations for Yang—Mills amplitudes. We consider a D-brane embedding of
EYM amplitudes in the framework of disk amplitudes involving open and closed strings. A new set of
monodromy relations is derived for mixed open—closed amplitudes with one closed string inserted on the
disk world-sheet and a number of open strings at the boundary. These relations allow expressing the latter in
terms of pure open string amplitudes and, in the field-theory limit, they yield the U(1) decoupling relations
for EYM amplitudes.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Tree-level Einstein—Yang—Mills (EYM) amplitudes in Yang—Mills (YM) theory with the
energy-momentum tensor (minimally) coupled to Einstein’s gravity offer a useful laboratory for
studying the nature of gravitons. In this paper, we discuss the case of a single graviton emitted (or
absorbed) in a scattering process involving a number of vector bosons. We also discuss a super-
string framework in which gauge bosons appear as massless states of open strings on D-branes
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and the graviton originates from a closed string. In this case, the disk amplitudes describing such
scattering processes include non-minimal couplings generated by the tower of open string states
populating Regge trajectories with the slope «’. At low energies, with all invariant mass scales
M?a’ — 0 one recovers EYM theory with the gravitational coupling k =87 Gy ~ o',

The paper is organized as follows. In Section 2, we start from the recent observation [1,2] that
one-graviton EYM amplitudes can be expressed as linear combinations of pure YM amplitudes
with two additional vector bosons inserted instead of the graviton. We take the soft limit in which
one of these particles gets no momentum while the second one takes over the whole momentum
from the graviton. In this way, we obtain new relations between EYM amplitudes involving
N gauge bosons plus a single graviton and pure YM amplitudes involving N gauge bosons
plus one additional vector boson. We discuss relations between distinct partial amplitudes, in
particular the implications of U(1) decoupling similar to the case of pure gauge amplitudes. In
Section 3, we move to full-fledged superstring disk amplitudes with an arbitrary number of open
strings attached at the boundary and a single closed string inserted on the world-sheet. By using
analytic continuation, we obtain contour integral representations of the amplitudes and discuss
their monodromy properties. As a result, we obtain a new set of monodromy relations for mixed
open—closed amplitudes. The new element is the existence of a novel string “tube” contribution.
In section 4, we discuss the o’ — 0 limit of these monodromy relations and show that U(1)
decoupling does indeed follow in the EYM field-theoretical limit.

2. New relations between Einstein—Yang—Mills and Yang—Mills amplitudes

In Refs. [1,2], we showed that a class of tree-level EYM amplitudes describing decays of a
single graviton into N—2 gauge bosons can be written as linear combinations of pure gauge,
N -particle amplitudes in which the graviton is replaced by the pair {N—1, N} of gauge bosons.
The momenta,

pN—-1=x P, pyn=(1—x) P, 2.1)

are collinear, with one gauge boson carrying the fraction x of the graviton momentum P, and
the second the remaining 1 — x. These gauge bosons carry identical helicities which add up to
graviton’s +2 or —2. The relation reads

Apym(1,2,..., N=2; P*) = 2.2)
kx(1—x)
Z?
r5-1 i
x { (Zsjp> Aym(L, .. i—1, N*.i, .. L.N—1%,141,....N=2)
=2 i=2  j=i
N-3 N-2 i
+ (Z s,-p)AYM(l,...,z,N—li,1+1,...,i,Ni,i+1,...,N—2)},
1:[%] i=l+1 j=Il+1

where « and g are the gravitational and gauge coupling constants, respectively.' On the left hand
side, we have a mixed gauge-gravitational amplitude involving a single graviton of momentum P,

1 (%] is the smallest integer greater than or equal to % Since the graviton is identified by its momentum P, we can
skip in the following the EYM and YM labelings of the amplitudes.
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helicity 42 or —2, as indicated by the superscript, and N —2 gluons. This amplitude is associated
to a single trace color factor with the respective gluon ordering. On the right hand side, we have
a linear combination of pure gauge, partial amplitudes weighted by the kinematic invariants
sjp =2pjP. Here, the graviton is replaced by two gluons in the collinear configuration py_1 =
x P, py = (1 —x)P. Note that on the right hand side, N—1 and N are never adjacent, therefore
the respective YM amplitudes do not contain collinear singularities. In particular, for the lowest
multiplicities N =5, 6, 7, Eq. (2.2) yields:

]_
Aprn(1,2,3 P = XU 2D st 0 4t ) (23)
8
1_
Apyw(1,2,3,4; prey = XU 2.4)
8
x {52pA(1,6%,2,5%,3,4) + 5p A(1,2,3,55,4,65) ],
Apyn(1,2,3,4,5; P*5) 2.5)
kx(1—x)
= T

X {s2pA<1,7*,2,6i,3,4, 5)+s3pA(1,2,7%,3,6,4,5)
+ (s3p +52p)A(1,7%,2,3,6%,4,5) +55pA(1,2,3,4,6%,5, 7*)}.

Since the graviton amplitude of Eq. (2.2) does not refer to any particular x, the r.h.s. must
be x-independent. This observation allows taking the limit x — 0, i.e. py—_; = xP — 0 and
py = (1 —x)P — P.lItis the “soft” limit for the (N — 1)-th gluon, in which the N-th one carries
the whole graviton momentum. In our case, only the leading soft singularity [3] contributes in
x — 0 limit:

(mn)

1 — — [

)}m%)x(l x)A(...,m,xP ,n,...)—g< N n)A(...,m,n,...), (2.6)
li 1—x)A P~ = 7[ n] A ) 2.7)
leox( x)A(..,m,x ,n,...)—g[ Pn] (....,m,n,...). (2.

As a result, after some particle relabeling, we obtain

(Llx| P]

Apym(1.2, .. N: Py =5 Z 0P A(1,2,...,1,PT,I+1,...,N), (2.8)
g
=2
N-—1
__ [11x;| P) _
A 1,2,...N; P~ )=~ A(L,2,...,1,P7,I+1,...,N), 2.9
Evym( ) ; [1P] ( + ) (2.9)

where we used the standard helicity notation [3], with the dual conformal coordinate [4] defined
asx; = Zi: 1 Pk Of course, we could also consider the limit x — 1 in which the other gluon be-
comes soft. This yields expressions that can be shown by using BCJ [5] relations to be equivalent
to the r.h.s. of Egs. (2.8) and (2.9).
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There is another, particularly interesting way of rewriting our result
N-1
Apymu (1.2, N: P =5 Z(e,%-x,)A(l, 2,..., 1, PEI+1,....N), (2.10)
8
=1

where e§ are the spin 1 polarization vectors of a gauge boson with momentum P. Here, the
gauge invariance of the r.h.s. follows from BCJ relations. With the choice of p; as the reference
vector, Eq. (2.10) yields Egs. (2.8) and (2.9). Written in this way, Eq. (2.10) holds in any number
of dimensions. On the r.h.s., the graviton is inserted into partial gauge amplitudes in the same way
as a vector boson of a “spectator” group commuting with the group associated to N gauge bosons.
The factors (e p - x7), which are typical of a gauge boson coupled to a scalar line, are not unfamiliar
to gravitational amplitudes: they have already appeared in the Mason—Skinner [6] representation
of multi-graviton MHV amplitudes. For that reason, we expect that some equations similar to
(2.10) hold also for EYM amplitudes involving more than one graviton.

EYM amplitudes have been studied before in the framework of scattering equations [7]. It
would be very interesting to see how a rather complicated formula written in [7] can reproduce
Eq. (2.10).

By using the explicit representation of Egs. (2.8), (2.9) and (2.10) and the properties of pure
gauge amplitudes it is easy to verify that one-gluon EYM amplitudes have the following reflec-
tion property:

Apym(1,2, ... N; PY=(=DN Agym(N,...,2,1; P) . (2.11)

Furthermore, they satisfy exactly the same U(1) decoupling relations as the well-known Kleiss—
Kuijf relations [8] that hold in the absence of the graviton:

Apym(1,2,3,4,...,N; P)+ Apym(1,3,2,4,...,N; P) +
+Apym(1,3,4,2,...,N;P)+...+Apymu(1,3,4,...,N,2; P) = 0. (2.12)

The above relations reflect the fact that the respective Feynman diagrams can be constructed by
inserting the graviton on all possible internal and external lines of N-gluon diagrams.

In the following section we will discuss EYM amplitudes in the framework of superstring
theory. We will derive monodromy relations for disk amplitudes with a single closed string in-
serted on the world-sheet. In this context, Eq. (2.12) will appear in the field theory limit of highly
non-trivial monodromy relations on the string world-sheet.

3. World-sheet monodromy relations for mixed string amplitudes

In [9] tree-level string amplitudes involving both open and closed strings have been expressed
as linear combinations of pure open string amplitudes. This correspondence gives a relation be-
tween amplitudes involving both gluons and gravitons and pure gauge amplitudes at tree-level
[10] with interesting consequences for constructing gravity amplitudes from gauge amplitudes
[11]. In this section by applying world-sheet string techniques we derive new algebraic identi-
ties between mixed string amplitudes involving both open and closed strings and pure open string
amplitudes. In the field-theory limit these relations give rise to amplitude relations between EYM
amplitudes. We shall work at the leading order (tree-level) in string perturbation theory.

Tree-level amplitudes involving both open and closed strings are described by a disk world-
sheet, which is an oriented manifold with one boundary. The latter can be mapped to the upper
half plane:

H, ={zeC|Imz)>0}. 3.1)
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Open string vertex operator V,(x) insertions x are placed at the boundary of the disk and closed
string positions z in the bulk. The techniques for evaluating generic disk integrals involving both
open and closed string states have been developed in [9,10,2]. The amplitudes can be decomposed
as certain linear combinations of pure open string amplitudes. Formally, the computation of disk
amplitudes involving both open and closed strings is reduced to considering the monodromies
on the complex sphere.

Scattering amplitudes of open and closed strings describe the couplings of brane and bulk
fields thus probing the effective D-brane action. In the following we shall consider disk ampli-
tudes with one bulk and N — 2 boundary operators.” This yields the leading order amplitude for
either the absorption of a closed string by a D-brane or the decay of an excited D-brane into a
massless closed string state and the unexcited D-brane [13—15]. Open string vertices with mo-
menta p;, i =1,..., N—2 are inserted on the real axis of (3.1) at x; € R, while a single closed
string vertex operator is inserted at complex z € H, . For the latter we assume different left- and
right-moving space—time momenta ¢ and ¢, satisfying the massless on-shell condition ql.2 =0,
respectively. This is the most general setup for scattering both open and closed strings in the
presence of D-branes and orientifold planes. We refer the reader to [2] for further details.

We shall discuss the mixed amplitude

A(1,2,...,N=2;q1,92) (3.2)

involving N —2 open and one closed string state with different left- and right-moving space—time
momenta g1, g2. The amplitude (3.2) has been computed in [2]. If the closed string momenta are
left-right symmetric, i.e. ¢; = g» reflection symmetry is furnished in the amplitude (3.2) as®:

AL2,....N=2q.9)= (DN A(LN=2,...,2:q.9)* . (3.3)

However, for generic momenta ¢ and g> the relation symmetry (3.3) does not hold. To be most
general this is what we shall assume in the following. In (3.2) any kinematical factor is multiplied
by some form factor described by a complex integral of the form [2]

FQA,2,...,N —2;q1,q)
N-2
= Vg 5(Zl7i+611 +€12>

i=1

N-2
x / <1_[ dxi) 1_[ (xs - xr)20/17rp; (Xr - Xs)n”

X] < <XN_2 i=1 1<r<s<N-2

N-2
* / d*z (z =220 [T (= 2 PO (g — 2 praakii, (3.4)
H, i=1
where we included the momentum—conserving (along the D-brane world-volume)

N-=-2

Y pitai+q=0 3.5)
i=1

2 Disk amplitudes with an arbitrary number of bulk and boundary operators will be considered in [12].
3 Here, complex conjugation * acts at the world-sheet integral, specified in Eq. (3.4), while kinematical factors are
unaffected.
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Fig. 1. Contour integral in the complex x;-plane.

delta function and divided by the volume Vckg of the conformal Killing group. To be specific,
we focus on the amplitude associated to one particular Chan—Paton factor (partial amplitude),
Tr(T'T?...TN=2), with the real iterated integral over the domain x; < x» < ... < xy_». Note,
thatin (3.4), the momenta ¢ and ¢, are assumed to be unrelated. Finally, the powers n,s, n;, n;, n
are some integer numbers specified by the kinematics under consideration.

In the following we shall discuss monodromy properties arising from that part of (3.4)
which has non-integer exponents. The branching is caused by the factors (x, — x) 2 PrPs | (x; —
)X'Piar (x; —7)2'Pi92 and (z — 7)2¥' 192, On the other hand, the monodromy properties are not
affected by the choice of the integer exponents. Hence, the choice of the latter will not enter in the
next steps and the following results are completely independent on the latter. As a consequence
our monodromy properties, which can be stated for any given kinematics referring to particular
choice of integers, hold for the full amplitude (3.2).

Without any restriction in (3.4) we may assume x; = —oo and then consider the real inte-
gration w.r.t. e.g. x7. Analytically continuing the x»-integration to the whole complex plane and
choosing the integration w.r.t. x along the contour integral depicted in Fig. | gives rise to the
following relation

A(1,2,...,N =2:q1,q2) + ™3 A(1,3,2,...,N —2;q1, q2)
+eTITOnEM) A(1,3,4,2,... N —2:q1,q2) (3.6)
4. e Tt AnN-2) A1 3 N—-2,2:91,¢2)=T@3,...,N—2),
with

Sij =85, =20l/ kikj s (3.7)

and the N open string momenta k, = p,, r =1,...,N—2,kny_1 =q1 and ky = ¢> [2]. Eq. (3.6)
gives rise to a new set of monodromy relations for mixed open—closed amplitudes. The new
element is the existence of a novel string “tube” contribution 7(3,..., N — 2) to be specified
below. Without this contribution the relation (3.6) boils down to the open string monodromy
relations discussed in [9,16]. The choice of the contour along the real axis accommodates the
correct branch of the integrand and gives rise to a phase factor each time when encircling one
open string vertex position x;, j=3,..., N — 2. Note that the phases, which are independent
on the integers n,g, n;, n;, n do not depend on the particular values of integration variables, but
only on the ordering of x, with respect to the remaining original vertex positions. On the other
hand, the semicircle can be deformed to infinity by taking into account the infinite tube around
the closed string position z. At infinity the integrand behaves as x, 22 ith hy the conformal
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weight of the vertex operator V,(x3). Since we consider physical states, we have 4y = 1 and thus
there is no contribution from the semicircle. On the other hand, there is one contribution from
the infinite long tube encircling the closed string position z. In fact, after fixing the latter to z =i
this amount can be written as*:

N-2
TG.....N—2)= 3( S pitai+ qz) Sin(Tss y_1) eI

i=1

* N-2
xfdy ly = 1241 [y 152 f (l_[ dxi) [T o=
1 X3<.<xy_g Ni=3 3<r<s<N-2
N-=-2
s [ Iy =iyl xj — 981 [ 4[N (3.8)
j=3

To familiarize with (3.8) let us first discuss the case N =5 and compute 7 (3) contributing at
the r.h.s. of (3.6). Eventually, for this case the latter yields the following relation:

A(1,2,3;q1, q2) + €72 A(1,3,2; 91, 42)
= —2j ¢~i7SsI sin(rso4) sin(mwsss) A(1,2,4,5,3) . (3.9)
The r.h.s. of (3.9) stems from the infinite tube (3.8):
o
T(3) =sin(msy) e /™! f dy |y — 11 |y + 1%
1
0

x f dxs x5 — iy |x3 — i a3 + i[5 . (3.10)

—0Q
The only remaining open string position to be integrated along the real axis is x3. This integration
can conveniently be deformed to the imaginary axis along the contour C depicted in Fig. 2 and
the expression (3.10) becomes (x3 = ix):

00
T(3) = sin(wsyy) ¢ 7! / dy [y = 112 |y + 1] / dx |x — Y [x — 1% [ + 1,
1 c
3.11)
This integral resembles a generic open string integral involving five open strings
T(3) =2i e ™55 sin(msos) {sin(rsza) A(1,5,4,3,2)
+ sin[m (s23 +534)] A(1,5,4,2,3)}, (3.12)

which agrees with the r.h.s. of (3.9) thanks to pure open string monodromy relations [9,16].
Let us now move on to the case N = 6. As in the case of N =5 in (3.8) we would like to
deform the remaining two real integrations w.r.t. x3 and x4 to the imaginary axis. However, due

4 Note, that we have dismissed the integer exponents n,¢, n;, 71;, n, which may easily be reinstalled, cf. the discussion
after Fig. 1.
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Fig. 2. Contour integral in the complex x3-plane.

T3y Tg

(,ﬂ,.ﬁ ﬁ
x,z
— 1 1
~ T AT

Fig. 3. Contour integral in the complex x3- and x4-planes.

to the iterated integral structure respecting x3 < x4 this procedure is not as straightforward as
in the N = 5 case. On the other hand, the tube contribution (3.8) itself satisfies monodromy
relations. By relating the iterated integrations over the open string positions x3, x4 to contours in
the complex plane we find

o
T(3,4) + 7753 T (4,3) =: R(3, 4) = sin(s25) e*"“w/dy ly = 11°2 |y + 1]
1
x [dr [dzlz = ey = 1 L 110 - 1 2 1
Cy C,

Z

(3.13)

with the two contours C, and C, depicted in Fig. 3 and the Heaviside step function ®. Simi-
larly to (3.11) the contour integrals can be decomposed into a sum over open string six-point
amplitudes yielding the following expression:

R(3,4) = —4 sin(wsas) e 7516 (3.14)

4 j—1
xZHsin T sj,5+2sﬂ Ol '(jH—a 1|} A(1,6,5,0(2,3,4)).
=2

oeS3 j=3

Eventually, considering also the monodromy relation (3.13) with 3 and 4 permuted allows to gain
an explicit expression for the tube:

) | '
TG 4)=—5 ——— [ ™ RG,H-RAD) | (3.15)

2 sin(mws34)
Successively considering contour deformations in the positions x3, ..., xy—2 and applying mon-

odromy relations for (3.8) yields

> TI ee|-imol™'G) - o OV} TG, N =2)

pESN_43<j<I<N-2
=R@3,...,N-2) (3.16)

for generic N with
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_\N—4 —insi N o
R@3,...,N —=2)=(2i) e N sin(wsa, N—1)

N-2 j—1
x Y [1sindr | sivo1+ Y su@l () -0~ O]
oceSy_3 j=3 =2

xA(A,N,N—-1,0(2,...,N =2)), (3.17)

which reduces to (3.12) for N =5 and to (3.14) for N = 6, respectively. Considering all equa-
tions obtained from (3.16) by permuting the labels 3,..., N — 2 provides (N — 4)! linear
equations for as many unknown tube contributions T (p(3,..., N — 2)). Hence, the resulting
system allows to determine the latter in terms of (3.17) and permutations thereof. This has been
demonstrated for the case N = 6 in (3.15). Furthermore, for N = 7 we find:

1

1
T(3,4,5) =- — - - (3.18)
4 sin(ms34) sin(ms45) sin[m (s34 + 535 + $45)]

x [ e/ TS (sinf7r (s34 + s45)] R(3,4,5) +sin(s34) R(3,5.4)
+ sin(msas) R(4,3,5)} +sin(ws3q) R4, 5, 3)
+ sin(ws45) R(5,3,4) — sin[w (s34 + s45)] R(5,4,3) ] .

One can verify, that the relations® (3.6) and (3.19) are fulfilled by the mixed amplitudes
computed in [2]. Of course, by analytically continuing any other open string position x;, j =
3,..., N — 2 we can generate further relations of the type (3.6), which allow for expressing all
mixed subamplitudes (3.2) in terms of pure open string amplitudes. Note, that the proof of the
relation (3.6) and its permutations does neither rely on any kinematical properties of the sub-
amplitudes, on the amount of supersymmetry nor on the space—time dimension. Moreover, (3.6)
holds for any type of massless string states both from the NS and R sector. Hence, these rela-
tions are valid in any space—time dimension D, for any amount of supersymmetry and any gauge

group.
4. Relations for EYM subamplitudes from string world-sheet monodromies

The amplitude (3.2) assumes the following powers series expansion around o’ =0

A(L....N=2.q1.q2) = Y o' A1, .. N=-2.q1.92)
>0

+i Yy PP AR N —2,91,92),
>0

A.1)

with its lowest order denoted by A?) and higher orders by A®). Then, the field-theory limit of
(3.6) is given by taking (4.1), and replacing the exponentials by e'™% ~ 1 + O(a’)
5 An alternative relation other than (3.6) can be obtained by inserting the latter into (3.16) giving rise to the relation

> I1 exp{fin@[p‘](j)fp‘l(ms_,z}A(l,p(z ..... N-2):q1.9)=R3.....N-2),
PESN_32=<j<I<N-2

which gives (3.9) for N = 5. Note, that the r.h.s. of (3.19) starts at the order o' N3,
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AQ1,2,. . N =291,90)+ A0(1,3,2,...,N =2 q1, ) (4.2)
+A91,3,4,2,.... N=2;q1,9)+...+AQ1,3,...,N=2,2;¢1,42) =0,

since the infinite tube contribution (3.8) is a string effect of higher order. More precisely, its real
part is of order 3, while its imaginary part is of order o’2. For ¢ = ¢, = %P the real part of
(3.2) provides the corresponding amplitudes in the double cover, whose field-theory limit gives
the EYM amplitudes [10,2]:

1
—— Agym(1,...,N—=2; P). 4.3)

Re AQ1,....N-2:91, 0 =
( q1 Q)q1=q2=%P 2

Note, that thanks to (3.3) the amplitude (4.3) enjoys (2.11). Then, (4.2) yields the relation
Apym(1,2,...,N=2; P)+ Agym(1,3,2,...,N = 2; P) 4.4)
+Apym(1,3,4,2,...,N=2; P)+ ...+ Agyu(1,3,...,N —=2,2; P) =0,
which exhibits Kleiss—Kuijf [8] relations in the gluon sector, e.g. for N =5 we have
Apym(1,2,3; P)+ Apym(1,3,2; P) =0, (4.5)
while for N = 6 we obtain:
Apym(1,2,3,4; P)+ Apym(1,3,2,4; P)+ Apym(1,3,4,2; P)=0. (4.6)

Considering the higher orders of (3.6) gives rise to various equations relating field-theory
amplitudes to their string corrections. In particular, that linear combination of EYM amplitudes
which would vanish in YM theory (i.e. in the absence of graviton) as a result of BCJ relations [5]
is non-vanishing because it obtains corrections from the tube contribution (3.8). E.g. for N =6
we have:

AV 1,2,3,4P)+AD1,3,2,4,P)+AD(1,3,4,2; P)
— (us23) Apym(1,3,2,4; P) =7 (523 +504) Apym(1,3,4,2; P) = Im T (3,4) 2 .
4.7)

On the other hand, by considering different permutations of (3.6) we can solve for explicit
expressions for EYM amplitudes in terms of the lowest order of the tube contribution (3.8), e.g.
for N =5 this yields:

1 s
5 Apyn (1,23, P)=——Im [T@) - "™ T)|| |
T o
=27 {s24s535 A(1,2,4,5,3) — 534505 A(1,3,4,5,2)} (4.8)
=7 573524 A(1,5,2,4,3) .

5. Conclusions

According to Egs. (2.8), (2.9) and (2.10), the single-trace amplitude involving one graviton
and N gauge bosons can be expressed as a linear combination of partial gauge amplitudes in
which one additional gauge boson is inserted instead of the graviton. This additional particle
couples in a way typical for a gauge boson of a “spectator” group commuting with the group
gauged by the original vector bosons.
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In Refs. [17], we showed that at the tree-level, multi-graviton supergravity amplitudes can be
mapped, by using a particular type of Mellin transformation, into full-fledged open string ampli-
tudes in which each graviton is replaced by a vector boson. For one-graviton EYM amplitudes
written in Eq. (2.10), a similar transformation yields open string amplitudes with the graviton
replaced by a “spectator” vector boson and the original vector particles substituted by scalar par-
ticles, cf. (ep - x;) coefficients. Thus Mellin correspondence reduces spin by one unit at the cost
of introducing Regge excitations of lower spin particles.

The results obtained in this paper, together with earlier Refs. [10,11,18], color—kinematic du-
ality [5] and results in string theory [19-21], combine to an intriguing collection of observations
indicating the existence of some yet unknown, deep connections between gravity and gauge theo-
ries. We believe that even more insight will be obtained by studying more complex multi-graviton
EYM amplitudes [12].
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