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Abstract

We reformulate type II supergravity and dimensional restrictions of eleven-

dimensional supergravity as generalised geometrical analogues of Einstein

gravity. The bosonic symmetries are generated by generalised vectors, while

the bosonic fields are unified into a generalised metric. The generalised tan-

gent space features a natural action of the relevant (continuous) duality

group. Also, the analogues of orthonormal frames for the generalised met-

ric are related by the well-known enhanced local symmetry groups, which

provide the analogue of the local Lorentz symmetry in general relativity.

Generalised connections and torsion feature prominently in the construc-

tion, and we show that the analogue of the Levi-Civita connection is not

uniquely determined by metric compatibility and vanishing torsion. How-

ever, connections of this type can be used to extract the derivative operators

which appear in the supergravity equations, and the undetermined pieces

of the connection cancel out from these, leaving the required unique expres-

sions. We find that the bosonic action and equations of motion can be inter-

preted as generalised curvatures, while the derivative operators appearing

in the supersymmetry variations and equations of motion for the fermions

become very simple expressions in terms of the generalised connection.

In the final chapter, the construction is used to reformulate supersym-

metric flux backgrounds as torsion-free generalised G-structures. This is

the direct analogue of the special holonomy condition which arises for su-

persymmetric backgrounds without flux in ordinary Riemannian geometry.

5



In loving memory of

Polly Strickland-Constable

6



Acknowledgements

There are many people who have been of great help and support to me

during my studies.

First and foremost, I would like to thank my supervisor, Daniel Wal-

dram, for many enlightening meetings and great patience. It seems rare to

encounter someone who has both amazing insight and the ability to share

their ideas so coherently, and I feel extremely lucky to have had such a great

mentor.

I would also like to thank my colleagues and friends at Imperial. You

have made Imperial a great place to be during my time here. On the

academic front, I should express special thanks to André Coimbra, with
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1. Introduction

In this thesis, we will present generalised geometrical descriptions of su-

pergravity theories which arise in the study of superstring theory at low

energy. These new formulations write supergravity with the same geomet-

ric structure as Einstein’s theory of gravity and unify the bosonic degrees of

freedom. Simultaneously, the hidden symmetries of supergravity appear in

the construction. In this introductory chapter, we outline the historical de-

velopment and motivations behind this research, and also discuss significant

precursors and related works.

Quantum mechanics and gravity

The central problem of modern theoretical physics is to find a unified quan-

tum theory which describes all observed physical interactions. The stan-

dard model of particle physics describes the microscopic quantum mechan-

ical behaviour of the elementary particles seen in accelerator experiments

to a staggering degree of precision. At its core are the quantisations of

some particular gauge field theories in a fixed special relativistic spacetime

background. However, it does not contain gravity, whose quantisation is

non-renormalisable when viewed as a conventional field theory.

Currently, our best experimentally verified theory of gravity is Einstein’s

theory of general relativity, which explains how gravitational effects are due

to the curvature of spacetime. This curvature is determined, via Einstein’s

field equation, from the configuration of matter and energy it contains, so

spacetime itself becomes a dynamical element, in contrast to its role as a

fixed background in the standard model. The equations governing this dy-

namical spacetime have a geometrical structure, which makes the theory

particularly elegant. However, this is a purely classical deterministic the-

ory and the scales on which gravitational effects are observable reflects this.

Gravity is a very weak force compared to the others in the standard model,

and there is a natural scale at which quantum gravity effects are expected
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to become important. This scale is constructed from the fundamental con-

stants h (Planck’s constant), c (speed of light) and G (Newton’s constant)

which characterise the theory. It can be expressed as the Planck length

(∼ 10−33cm) or the Planck mass (∼ 1019GeV). As these scales are totally

inaccessible to instruments made with existing technology, it is currently

impossible to probe the quantum nature of gravity directly in experiments.

However, there are situations in which such quantum effects would play

an important role, thus a quantum theory is a requirement on more than

just theoretical grounds. One is the microscopic description of quantum

properties of black holes. A more fundamental problem is how to describe

spacetime correctly in the very early universe and resolve the physics of the

big-bang singularity predicted by general relativity.

The construction of a quantum theory of gravity (even in the absence

of matter) has proved very troublesome. However, before the discovery of

QCD, a model of hadrons was put forward which became known as the

dual resonance model. The plethora of hadrons observed in experiments

appeared to have masses following a Regge slope, with mass squared pro-

portional to the spin, and it seemed conceivable that the tower of spins

extended infinitely. In 1968, Veneziano [4] constructed an amplitude for a

theory containing such an infinite set of spins, featuring an exact crossing

symmetry. This seemed to fit reasonably well with the known experimen-

tal results, but the model was eventually superseded by QCD, which was

favoured by later high energy data.

Prior to this failure, it had emerged that the Veneziano model could be de-

rived by replacing point particles by one dimensional objects, or relativistic

strings, whose vibrational modes gave rise to the tower of spins. A feature

of this theory was that it automatically contained a particle of spin-2 in its

spectrum, and this had been regarded as a difficulty. However, in time, it

was realised that this spin-2 particle could be the elusive graviton and that

this model might give rise to a unified quantum theory including gravity.

The study of string theory [5, 6, 7, 8, 9, 10] as a theory of everything was

born!
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String theories

The earliest work concerned only bosonic strings in flat space, the clas-

sical action of a string being the area of the worldsheet in spacetime. On

quantisation, cancellation of the Virasoro anomaly requires 26 spacetime di-

mensions and even then the spectrum always contains an unwanted tachyon

and does not contain fermions. On the other hand, the first excitations of

the string give massless particles corresponding to a spacetime metric, an

anti-symmetric 2-form gauge field and a scalar field. Further, one can in-

clude background values for these fields as couplings in the two-dimensional

worldsheet action for the string, which is commonly referred to as the string

sigma-model. The vanishing of the corresponding one-loop beta-functions

then leads to Einstein’s equations for the spacetime metric coupled to the

additional 2-form and scalar fields [11]. Thus, maintaining the Weyl in-

variance at the quantum level imposes Einstein’s equations of gravity on

the target spacetime. Since Weyl invariance is associated to tadpole can-

cellation, which in turn means that the vacuum is a classical solution, the

vanishing of the beta-functions must correspond to a solution of the equa-

tions of motion, which are thus also Einstein’s equations. Despite its many

failings, the bosonic string does give hints of a quantum theory of gravity.

Remarkably, all of these shortcomings can be remedied by a single cure.

One considers the addition of fermionic modes on the string such that the

resulting worldsheet theory has N = 1 supersymmetry. In this case, the

anomalies of the super-Virasoro algebra cancel in 10 spacetime dimensions.

On the surface, the resulting spectrum appears to have some problems.

Firstly, it still contains a tachyonic ground state and secondly, it contains

a spin-3
2 particle, the gauge field of local supersymmetry, but cannot have

spacetime supersymmetry as the numbers of fermionic and bosonic degrees

of freedom do not match. Both of these problems are resolved by impos-

ing the GSO projection on the spectrum, which removes even numbers of

fermionic excitations in the Neveu-Schwarz (NS) sector, and odd numbers

in the Rammond (R) sector. These two sectors correspond to taking odd

or even boundary conditions for the worldsheet fermions.

The result is that the NS and R sectors have a massless vector and a

massless Majorana-Weyl spinor, respectively as their ground states. The

massless modes of open strings therefore form vector supermultiplets while

13



those of closed strings are the supergravity multiplets. For example, the type

IIA and type IIB supergravity multiplets which feature prominently in this

thesis arise from the ground states of oriented closed superstrings, where

the left- and right-moving R sector ground states have opposite chirality

in IIA and the same chirality in IIB. The massless particle spectrum is

thus made up of the tensor products of the left- and right-handed ground

states. If we label the vector representation of the Lorentz group as v

and the chiral spinor representations as s±, these are the representations

v ⊗ v (NS-NS), s+ ⊗ v (R-NS), v ⊗ s∓ (NS-R) and s+ ⊗ s∓ (R-R), where

the upper sign is for IIA and the lower for IIB. The NS-NS fields are the

metric, 2-form B(2) and scalar dilaton φ, while the NS-R and R-NS sectors

provide the two gravitini and the two dilatini. The tensor product for

the RR sector can be decomposed into a sum of odd forms in IIA and

even forms in IIB. Background vacuum expectation values (VEVs) for the

various massless tensor field strengths, such as H = dB and dφ, are known

as fluxes, and these have become important the study of backgrounds of

string theory in recent times. Tree-level amplitudes for superstrings can

be seen to give the tree-level amplitudes of supergravity, so the effective

low-energy approximation gives precisely these theories.

In fact, by taking the various allowed types of superstrings it is possi-

ble to build five different consistent string theories. The type II theories

have closed oriented superstrings. Type I theory has unoriented closed su-

perstrings coupled to open superstrings with gauge group SO(32) and can

be thought of as an orientifold projection of type IIB1. Only one of the

supersymmetries survives this projection, so this theory has N = 1 space-

time supersymmetry. Surprisingly, one can also consider theories of closed

oriented strings which combine the right-moving modes of the superstring

with the left-moving modes of the bosonic string. This give rise to two ten-

dimensional N = 1 supersymmetric theories, with massless modes forming

the supergravity multiplet and a vector supermultiplet in the adjoint rep-

resentation of a gauge group. It was found that only two consistent choices

of gauge group are SO(32) and E8 × E8. The latter option is attractive

on phenomenological grounds as it naturally contains the standard model

gauge group via the chain of embeddings SU (3)×SU (2)×U(1) ⊂ SU (5) ⊂

1More precisely, one considers type IIB with a spacetime filling O9− plane and 16 D9
branes, which give rise to the open string sector with gauge group SO(32).
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Spin(10) ⊂ E6 ⊂ E7 ⊂ E8, and has been the starting point of many at-

tempts to build realistic models of physics from string theory.

The low-energy approximations of these string theories are given by ten-

dimensional supergravities, which were shown to be anomaly-free by Green

and Schwarz in a renound paper [12]. As for the bosonic string, the equa-

tions of motion of the supergravity ensure one-loop quantum consistency

of the string theory in question. Many features of low-energy string theory

can be seen in the supergravity limit and historically studying supergravity

has been a fruitful approach to understanding them.

Another important development in string theory was the realisation that

strings are not the only fundamental objects of the theory. D-branes are

hypersurfaces in space on which open strings end. They were first discussed

in [13], but their importance was only brought to light by Polchinski [14],

with the realisation that they are stable BPS states carrying the charges of

the RR fields in type II theories. D-branes thus act as sources of RR fields.

Also, as the ends of open strings are point-like, they can carry the charges of

a vector gauge-field living on the brane. D-branes therefore provide a con-

struction of non-abelian gauge symmetry in string theory, as N coincident

D-branes gives rise to an U(N) gauge theory on their worldvolume.

In addition toD-branes, there are other types of brane with different prop-

erties. The string carries the electric charge of the NS-NS (Kalb-Rammond)

2-form B(2), as can be seen from the term ∼
∫

worldsheetB(2) in the string

sigma-model. The magnetic charge is carried by a different object, the

NS5-brane [15]. There are also orientifold planes, which are present when

a string theory is quotiented by the simultaneous action of a spacetime re-

flection of the coordinates on the plane and an orientation reversal of the

string. These carry RR charges and can enhance the gauge symmetry of

N coincident D-branes to SO(2N) if they also coincide with the orientifold

plane. This provides the construction of type I theory from type IIB in

footnote 1. Branes can be seen in the supergravity approximations to string

theories as solitonic solutions or solutions with delta function sources for

the fields to which they couple.
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Dualities

It would certainly be desirable for the fundamental theory of everything to

be unique, so the existence of five different possibilities would seem to be a

drawback. However, much further investigation reveals that the five super-

string theories are not as distinct as they first appear, but are in fact related

by dualities. They are therefore viewed as being different manifestations of

a higher unified theory. This theory is often referred to as M theory, but

in this thesis we will reserve this term for a more specific meaning: the

eleven-dimensional limit of the theory.

This eleven-dimensional limit was first truly recognised in [16, 17]. One

of the celebrated results of early studies of higher dimensional supergravity,

was the discovery of a unique supergravity theory in eleven dimensions [18].

Counting supermultiplet degrees of freedom indicates that this is the highest

dimension in which a supergravity can exist, as more than 32 supercharges

necessitates fields of spin greater than 2. It was immediately recognised

that dimensional reduction on a circle resulted in the non-chiral IIA super-

gravity. The exponential of the VEV of the ten-dimensional dilaton field is

proportional to the radius of this circle, so as this grows large, the space-

time “decompactifies” back to having eleven dimensions. On the other hand,

when one considers strings in background fields, the term which one adds

to the string sigma-model for the dilaton field is Sφ ∼
∫
φR(2). Computing

string amplitudes at constant dilaton, this term is topological contributing

a factor exp(−Sφ) ∼ (e2φ)(g−1) where g is the genus of the worldsheet. Each

loop is thus accompanied by a factor of e2φ, so that the string coupling con-

stant is eφ. Combining these two observations, one is led to suspect that

the strong coupling limit of type IIA string theory is an eleven-dimensional

theory whose low-energy limit is eleven-dimensional supergravity.

One can also see this relation by considering the brane solutions. Eleven-

dimensional supergravity has two fundamental brane solutions, the M2 and

M5 branes [19, 20], and these are conjectured to be the fundamental objects

of M-theory. The dimensional reduction of the M2 brane solution, with one

direction wrapping the circle, gives the fundamental string solution of type

IIA. In fact, it was shown earlier that the classical world-volume actions for

these two objects are also related in this way [21], so one can view the string

as a wrapped M2 brane. Quantum mechanical considerations led to the full
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conjecture that the IIA string theory can arise from supermembranes on a

circle [16]. Similar results have been found for the other objects in type

IIA [22].

Horava and Witten found a similar picture of the E8×E8 heterotic theory

as a compactification of the same eleven-dimensional theory [23]. In this

case, the compactification is not on a circle, but on a line interval (also

referred to as the orbifold S1/Z2). On the ten-dimensional boundaries of the

space, one adds E8 gauge supermultiplets to cancel the resulting anomalies.

Taking the size of the interval to zero, one recovers a ten-dimensional theory

with E8 × E8 gauge symmetry. Further, the supersymmetry is halved to

N = 1 by the presence of the boundaries. In this picture, the heterotic

string comes about as the zero-separation limit of a cylindrical M2 brane

with each of its circular ends lying on one of the boundaries.

The first duality to be discovered was T-duality [24], a correspondance

between string theories compactified on tori. This can be seen in bosonic

string theory, but in superstring theory it is easiest to discuss as a symmetry

between type IIA and type IIB. In the simplest case, one can see that type

IIA compactified on a circle of radius R gives the same theory as type

IIB on a circle of radius R̃ = α′/R. Considering the worldsheet oscillator

expansions one can see that the nine-dimensional spectra are the same,

with the transformation exchanging compact momenta with winding modes.

From this it is apparent that this duality is a stringy effect with no field

theory counterpart. In [25], it was shown to be a symmetry of the full

perturbation expansion, order-by-order in the string coupling, provided one

shifts the dilaton such that
√
ge−2φ is invariant.

This symmetry of backgrounds is self-inverse, and so defines the group

Z2 ' O(1, 1;Z). It is also clear that, since we have considered no background

fields, the direction around the circle is an isometry of the background. More

generally, one can consider compactification on a d-dimensional torus, with

similar U(1) isometries around the various circles it contains. Each circle

gives a Z2 transformation mapping between IIA and IIB.

However, the symmetry of the perturbative spectrum can in fact be ex-

tended to a larger group O(d, d;Z)2. This is easiest to see for the bosonic

string. The allowed left- and right-moving momenta on the string form an

2This group structure was first discovered in toroidal compactifications of the heterotic
string [26, 27].
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even self-dual lattice, and any two such lattices are related by an O(d, d;R)

transformation [26]. The automorphism group of the lattice is O(d, d;Z),

and so this becomes a symmetry of the overall spectrum, though it mixes

the different mass levels of the string. It can be generated by SL(d,Z) trans-

formations, corresponding to large diffeomorphisms of the torus, and the Z2

transformations corresponding to the radial inversion in each circle. For

the type II superstring, one sees that determinant −1 transformations ex-

change IIA and IIB, while determinant +1 transformations relate different

backgrounds of the same theory.

Including constant background fields into the toroidal setup above, one

can derive the the action of M ∈ O(d, d;Z) on their values. For the metric

and B-field, these can be written concisely as

G′ = M−TGM−1 for G = 1
2

(
g −Bg−1B Bg−1

−g−1B g−1

)
(1.1)

Taking M to correspond to radial inversion of the last direction in the torus,

this gives the well-known Buscher rules [28]

g′ij = gij −
gidgjd−BidBjd

gdd
B′ij = Bij + 2

gd[iBj]d
gdd

g′id = Bid
gdd

B′id = gid
gdd

g′dd = 1
gdd

(1.2)

where i = 1, . . . , d− 1. Note that these relations should not be interpreted

as tensor equations, since they relate the components of tensors on different

manifolds, and T-duality does not induce a mapping of points in one mani-

fold onto points in the other. In fact g and B should be regarded as moduli

for the compactification.

With the background fields included, another type of O(d, d;Z) generator

gains a natural interpretation. The O(d, d;Z) element

M =

(
1 0

Λ 1

)
(1.3)

has the effect of shifting B by Λ, and is a discretised version of the gauge

symmetry associated to B. If one also shifts the integer labels of the winding

momenta by Λ contracted on their corresponding momentum label, one finds

that each point in the lattice is invariant.

18



T-duality symmetry has a manifestation in the supergravity approxima-

tion, as type II supergravity compactified on a torus has a global continuous

O(d, d;R) symmetry. The VEVs of the NS-NS internal scalar fields parame-

terise the coset O(d, d;R)/O(d;R)×O(d;R), which is thus the moduli space

of such compactifications with constant internal NS-NS fields.

Considering the spectrum of the string, we see that the possible even self-

dual lattices of momenta are related by O(d, d;R) transformations, while the

mass shell condition depends on the squares of the left- and right-moving

momenta separately and so is stabilised only by O(d;R) × O(d;R). The

moduli space of toroidal string compactifications becomes

O(d, d;R)

O(d;R)×O(d;R)×O(d, d;Z)
, (1.4)

where the additional quotient is by the discrete T-duality symmetry3.

This is an example of the action of a continuous group (O(d, d;R)) moving

the system around in moduli space while a discretised version (O(d, d;Z))

forms an exact symmetry of the quantised spectrum (i.e. a symmetry of

the moduli space). The continuous version of the group is visible in the

supergravity approximation as a global symmetry. This is a pattern which

will recur in the next discussions.

Type IIB supergravity can be written with a manifest global SL(2,R)

symmetry, by pairing the axion with the dilaton and the two 2-form poten-

tials into doublets. One is led to wonder whether this too is the result of a

string duality with quantised group4 SL(2,Z). Unlike T-duality, this duality

must be non-perturbative as it has an action which flips the sign of the dila-

ton, thus inverting the string coupling. One can also see this by considering

that it rotates the doublet of 2-forms into each other, one coupling to the

string and the other to the D1-brane. Due to this non-perturbative nature,

there is no way to prove its existence directly with current understanding.

However, strong evidence for it has been found by considering results which

are believed to be exact in perturbation theory, such as the invariance of

the masses of certain BPS objects [30]. Simpler evidence comes from the

3Note that this coset is defined by identifying Λ ∼ Λ′ΛΛ′′ where Λ ∈ O(d, d;R), Λ′ ∈
O(d;R) × O(d;R) and Λ′′ ∈ O(d, d;Z), as when acting on a fixed reference lattice of
momenta, two elements related in this way give the same physical spectrum.

4This type of duality was also first considered in the context of heterotic string theory [29,
30, 31]. The first discussion for type II strings appeared in [32].
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observation that the tensions of the type IIB strings and branes match up

if one inverts the string coupling.

In a landmark paper [32], Hull and Townsend combined the S- and T-

dualities into a unified U-duality with group Ed+1(d+1)(Z) for type II the-

ories compactified on a d-dimensional torus. This contains the S and T-

dualities in the subgroup O(d, d;Z)×SL(2,Z). U-duality must also be non-

perturbative, but was shown to pass the same tests as S-duality [32]. The

continuous exceptional groups had been seen in eleven-dimensional super-

gravity by Cremmer and Julia [33] as early as 1978, and this global symme-

try is now recognised as the U-duality analogue of the O(d, d;R) symmetry

connected to the discussion of NS-NS fields above, i.e. the continuous group

which acts transitively on the full moduli space. However, it is important

to remember that duality transformations mix the different types of modes

in string theory (e.g. they can exchange strings and branes), so there is

no hope that these dualities can be a true symmetry of the (point-particle)

supergravity approximation.

As mentioned above, type I theory can be viewed as an orientifold projec-

tion of type IIB with D-branes added to cancel the total RR charge [13, 14].

It is therefore not so surprising to learn that T-duality of this leads to a

type I′ theory, which is similarly related to type IIA [34]. S-duality on the

type I theory results in the SO(32) heterotic theory [17, 34], and the T-dual

of this is the E8×E8 heterotic theory [26, 27, 35]. Thus we see that all five

of the superstring theories are connected by a web of dualities.

We should stress that the list of dualities discussed above is in no way the

full picture. Another very important duality was discovered by Maldacena

in 1997 and is known as AdS/CFT duality [36] (see [37] for a review).

This is conjectured to give an exact quantum equivalence between string

theory on an AdS background and a dual superconformal gauge theory in

Minkowski space of one dimension less. It can be viewed as a consequence of

open/closed string duality [38], which intuitively relates a gauge theory with

a gravitational theory. The duality also inverts the coupling constant, so

that a strongly-coupled gauge theory is described by a weakly-coupled string

theory and vice-versa. An enormous literature has emerged on this subject,

not least because of its potential applications in describing the strongly-

coupled systems which appear in more conventional particle physics and

condensed matter systems.
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Backgrounds: Geometric and Non-geometric

One of the apparent drawbacks of string theory is that it does not immedi-

ately give us a four-dimensional model that can be related to the real world.

One way to remedy this is to compactify on a tiny internal manifold such

that the effective physics appears four dimensional. The two length scales

in the problem are then the compactification scale and the string scale, and

if both are suitably small compared to an observable cut-off scale, then only

the lowest modes associated to each survive into the effective theory.

For phenomenological reasons, it is desirable to preserve N = 1 super-

symmetry in the four-dimensional effective theory. This requirement places

strong constraints on the geometry of the internal space, which are discussed

in more detail in chapter 7. Here we merely note that for heterotic strings

with no warping, the constraints imply the vanishing of all internal fluxes

and the background is a Calabi-Yau space [39]. This is an excellent example

of the beauty of the mathematics of string theory.

Calabi-Yau spaces are also related by dualities [40, 41]. It was found

that type IIA compactified on a Calabi-Yau manifold gives the same theory

as type IIB compactified on a different Calabi-Yau. This relation, which

is known as mirror symmetry, gives a mathematically surprising symmetry

between apparently very different manifolds. For example, mirror symme-

try exchanges the hodge numbers h1,1 and h2,1 thus relating manifolds of

different topology. This further emphasises that dualities are not mappings

of manifolds in any conventional sense. It has been argued that mirror

symmetry can be thought of as a kind of T-duality [42], though Calabi-

Yau manifolds have no continuous isometries, so the duality must act along

non-isometry directions.

However, Calabi-Yau manifolds are not the whole story. The parameters

which define the continuous deformations of the shape and size of a Calabi-

Yau space (the moduli) have no potential in such a compactification and give

rise to massless scalar fields. The VEVs of these fields are undetermined by

the theory and this causes a loss of predictive power. For example, coupling

constants can be set by the VEVs. This is the moduli space problem.

One therefore wishes to find a mechanism which stabilises the moduli

dynamically. Considering a warped geometry with the addition of internal

fluxes can generate a potential which gives masses to some of the moduli
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fields [43, 44, 45], thus fixing their values at the minimum of the potential.

Fluxes can also provide a mechanism to break supersymmetry [44], and

can even break all the supersymmetry, as required to recover the standard

model at low energies. They can also generate large hierarchies [45].

Flux compactifications are also important in AdS/CFT duality, as the

backgrounds involved generally have non-zero fluxes. For example, the clas-

sic AdS5 × S5 background generically has a non-zero RR 5-form flux and

solutions with 3-form flux can provide the string theory duals of confining

gauge theories [46]. Further, they often provide the string theory uplifts of

lower dimensional gauged supergravities (see e.g. [47]).

Another curious feature of string dualities is that they can generate exotic

types of background from ordinary supergravity backgrounds [48]. The

simplest example one can consider is the bosonic string on a rectangular

3-torus with metric ds2 = dx2 + dy2 + dz2 and B = xdy∧dz. Applying the

Buscher rules along the z-direction leads to a twisted torus with vanishing

B-field. A further T-duality along the y-direction leads to a non-geometric

background, with the monodromy in the periodic coordinate x ∼ x+1 given

by a T-duality transformation. In a sense, the source of the problem is that

the local Killing vector of the twisted torus ∂/∂y is not globally defined.

It is also worth considering that T-duality will always have a small circle

on one side of the duality, hence the supergravity limit may not be a good

approximation in these cases.

That the CFT description of strings need not have a conventional space-

time target space is made apparent by the construction of the heterotic

string, where the left- and right-movers can be thought to see different

target spaces. This idea is also used in the construction of asymmetric orb-

ifolds in [49]. Early constructions of non-geometric backgrounds as back-

grounds in their own right, motivated by stabilisation of moduli, can be

found in [50, 51, 52].

One class of non-geometric backgrounds are made up of locally geometric

solutions which are patched together by duality transformations. Exam-

ples are local torus fibrations patched together by T-dualities (as in the

example above), which were dubbed T-folds by Hull [53], who also named

backgrounds with S- and U-duality transition functions S-folds and U-folds

respectively. In some ways it seems natural to extend the diffeomorphism

and gauge patching to include the full set of transformations available in
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string theory. However, there are also backgrounds which are not even lo-

cally geometric [54], and conceptually these are harder to grasp. The precise

mathematics of non-geometry is still yet to be fully understood.

Hidden Symmetries and Duality Covariant Formulations

Dualities of string theory and M theory can appear as global symmetries

in the low energy supergravity. In fact, these “hidden symmetries” were

observed in supergravity long before the discovery of dualities in string the-

ory and there is a substantial history of efforts to reformulate the various

theories in such a way that these symmetries become manifest. Here we

will briefly mention the results and proposals of these works and other ap-

proaches to understanding these higher symmetries.

The hidden symmetries of eleven-dimensional supergravity first appeared

in [33]. Here it was found that dimensional reduction of eleven-dimensional

supergravity on a seven-dimensional torus resulted in a four-dimensional

supergravity with global E7(7) and local SU (8) symmetry. The authors

note that this was the first time exceptional groups had appeared naturally

in physics. It was established in [55] that these symmetries were present in

the eleven-dimensional theory with no dimensional reduction, only requiring

the mild assumption of a local product structure on the eleven-dimensional

manifold. The analysis was extended to an eight-dimensional split with

global E8(8) and local SO(16) symmetries in [56]. This paper also makes

the observation that the theory does not possess true Ed(d) invariance, as

the fermions do not transform in Ed(d) representations and the explicit form

of the “vielbein” written with indices of the larger symmetry group breaks

the symmetry. These works commented on the mysterious origin of the

Ed(d) group and put forward the idea that these formulations may have an

underlying geometry.

Another line of research was that pursued by Duff [57], who examined

duality at the level of the string worldsheet theory. He constructed a first-

order lagrangian for the sigma-model and also a dual lagrangian, written

in terms of new coordinates dual to the string winding modes. The roles

of equations of motion and Bianchi identities are exchanged for the dual

version. He went on to write classical equations of motion for the string with

a manifest action of the O(d, d) group, which mixes the normal and winding
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coordinates, and also rotates the equations of motion and Bianchi identities

into each other. Independently, Tseytlin [58] worked out a Lagrangian in two

dimensions containing both a scalar field and its dual, and also considered

the addition of interactions containing both fields. When applied to the

string sigma-model on a torus, this Lagrangian was such that the dual fields

could be identified with the dual target space coordinates and the duality

appeared as a symmetry of the worldsheet theory.

Duff’s analysis was also performed for the M2-brane worldvolume theory

in [59]5. The extra coordinates associated with the membrane have the index

structure of a 2-form with respect to the ordinary spacetime coordinates and

are dual to the winding of membranes.

The idea of coordinates dual to winding modes was also adopted by

Siegel [61], who formulated the low-energy effective action and equations

of motion of the NS-NS sector fields as a curvature on a doubled space. The

dependence of fields on the doubled space was restricted to a conventional

space section via the same conditions as in modern approaches to be dis-

cussed. This remarkable work effectively contains many of the results of

more recent research, and we will comment on the precise connections to

the present work in the conclusion.

Later works on the hidden symmetries of eleven-dimensional supergravity

have also featured extra coordinates. In [62], a “generalised vielbein” pa-

rameterising the coset E8(8)/SO(16) is constructed and the authors argue

that this encompasses the propagating degrees of freedom, like the vielbein

in Einstein gravity. They also speculate that there may exist extra coordi-

nates connected to a mixing of diffeomorphisms and gauge transformations.

Further discussion of such extra coordinates can be found in [63].

Much later still, Hillmann [64] considered the problem of hidden E7(7) and

SU (8) symmetries from a new angle. He considered a 4 + 56-dimensional

spacetime, as proposed in [63], with a manifest E7(7) symmetry and con-

structed a Lagrangian for it such that eleven-dimensional supergravity equa-

tions are recovered by restricting to a 4+7 dimensional spacetime. The La-

grangian is fixed by the requirement that the GL(7,R) subgroup of E7(7) is

promoted to full diffeomorphism symmetry on this reduction. His construc-

tion also includes the local SU (8) covariant form of the fermionic sector.

5A nice review can be found in [60], where the formulation was used to study U-duality
of toroidal compactifications of M-theory.
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Hillmann also constructed a particular SU (8) connection with similar prop-

erties to those introduced in this thesis, and demonstrated its relation with

the supersymmetry variations.

More ambitious proposals in which eleven-dimensional supergravity, or

even M theory itself, are claimed to have certain Kac-Moody symmetries

have been put forward in recent times. The idea that the Kac-Moody alge-

bras Ed for d > 8 could appear in supergravity goes back to [65]. The mildest

extension of de Wit and Nicolai’s construction to a 2 + 9-dimensional split

with E9(9) replacing E7(7) was examined in [66], and details of the bolder

extension to E10 were first considered in [67].

A non-linear realisation of the Kac-Moody algebra E11 has been conjec-

tured to be the symmetry underlying M theory by West [68]. In an earlier

work [69], it was observed that eleven-dimensional supergravity can be writ-

ten as a non-linear realisation of an algebra, and in [68] it was conjectured

that this can be extended to a non-linear realisation of E11 for some ap-

propriate reformulation of the supergravity. The author also argues that

a discrete version the symmetry may carry over to M theory and provide

an algebraic tool with which to investigate its fundamental nature. In [70],

the GL(11,R) decomposition of the first fundamental representation of E11

was shown to have the known central charges (TM , Λ2T ∗M and Λ5T ∗M)

of the supersymmetry algebra at low levels. At the same time, the remain-

ing infinite tower of representations was conjectured to give the rest of the

fundamental charges present in M theory, the next one along in the series

corresponding to the dual graviton (or KK-monopole) of [71]6. It was also

proposed that spacetime must be extended to contain extra coordinates

corresponding to each of these charges. There have been many subsequent

papers exploring this construction [73, 74].

Damour, Henneaux and Nicolai [75] proposed that M theory compacti-

fied on all ten space dimensions can be formulated as a gradient expansion,

with the spacial gradients of the fields filling out infinite dimensional rep-

resentations of E10. Since the theory is effectively considered at a point in

space, which becomes causally disconnected from other point in the limit

taken, spacetime is emergent in this construction. Fermions can be included

as representations of the subalgebra KE10 [76], which builds on the earlier

studies [77].

6The has been some debate over the relation of dual gravity and E11 [72].
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Hidden symmetries have also surfaced in the study of supersymmetric

backgrounds. In [78], the derivative appearing in the external gravitino vari-

ation is considered in the context of dimensional splits of eleven-dimensional

supergravity, where the local symmetry is enhanced as in [55, 56]. It is con-

jectured that one can associate a generalised holonomy group to this deriva-

tive and that the number of supercharges preserved by a given solution will

be the number of singlets in the decomposition of the eleven-dimensional

spinor under this subgroup of the usual hidden symmetry group. A related

and extended analysis with no dimensional split was given by Hull in [79].

The full generalised holonomy was shown to be SL(32,R), which contains

the groups considered in [78]7, and solutions with generalised holonomy

falling outside the scope of [78] were exhibited. It was also argued that

SL(32,R) should be a hidden symmetry of M theory as one needs the local

SL(32,R) bundle in order to couple fermions, similarly to the coupling of

spinors in general relativity.

Generalised Geometry and Doubled Formalisms

During the last decade, a new mathematical construction has appeared

named generalised geometry [81, 82]. This is the study of structures on a

vector bundle E ' T⊕T ∗ over a manifold. There is a natural O(d, d) metric

on this bundle and one can think of it as having an O(d, d) structure. One

can also define the analogue of a complex structure to obtain generalised

complex geometry, which contains complex and symplectic geometries as

limiting cases, and this unification was a large part of the original motivation

for the construction.

In the mathematics literature, the basic notion of the generalised tan-

gent space with an O(d, d) metric and a suitable bracket is known as an

exact Courant algebroid (see [83, 84] and references therein). Additional

“generalised geometry” structures on such objects, specifically generalised

complex structures and O(d) × O(d) generalised metrics, were introduced

by Hitchin and Gualtieri [81, 82]. Connections on Courant algebroids were

introduced in [85] (see also [84]) and again in [86, 87], together with a notion

of torsion and compatibility with the generalised metric.

7However, some concerns as to the consistency of the embeddings of the lower dimen-
sional hidden symmetry groups into SL(32,R) have been noted in [80].
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The relevance of generalised geometry for the NS-NS sector of string the-

ory was observed soon after its birth. To date, this construction has largely

been used to describe supersymmetric backgrounds of type II string theory,

which has been a successful and fruitful program [88, 89, 90, 91]. It was also

found [92] that the various potentials of the compactified theories could be

written in terms of Hitchin functionals [93, 94, 81]. Further still, the O(d, d)

group appears and there are links with T-duality, mirror symmetry and non-

geometric backgrounds [95, 96, 97, 98]. Generalised complex geometry has

also been widely used in the study of sigma models and topological string

theory [99].

The extension including RR fields in type II theories and M theory com-

pactifications was found independently by Hull [100] and Pacheco and Wal-

dram [101]. The O(d, d) group of the original generalised geometry is re-

placed by an Ed(d) group, reflecting U-duality. These exceptional gener-

alised geometries have been used to find the superpotentials of M theory

compactifications [101] and study supersymmetric backgrounds of type II

theories with RR fluxes [102, 103]. They were shown to have the structure

of Leibniz algebroids in [104]. This geometry, or in fact an extension of it

containing an R+ factor in the structure group, and a similar extension of

the original generalised geometry are the main subject of this thesis, and we

will show that the low energy supergravity can be completely reformulated

in this language.

Another important development in this area is doubled geometry [53].

In order to describe T-folds, Hull considered backgrounds with a Tn torus

fibration structure and considered the enlargement of the fibres to T 2n. Tak-

ing the base of the fibration to be a circle, one can then consider the case

where the transition function joining the ends of the circle is by an O(n, n;Z)

T-duality transformation, so that the background is non-geometric in na-

ture. It was shown that the O(n, n;Z) ⊂ GL(2n,Z) transformation could be

viewed as a large diffeomorphism of the doubled fibre T 2n, and the physical

space (or “polarisation”) as a slice of the doubled torus. The different po-

larisations in T 2n are then the T-duality-related backgrounds, and T-folds

arise when there is no global choice of polariasation. The extra coordinates

on T 2n are interpreted as the duals of the winding modes of the string, as

in the older works [57, 58, 61]. If the O(n, n;Z) transition function is not

contained in the subgroup GL(n,Z) of large diffeomorphisms of Tn then it
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mixes the momentum and winding modes of the string, and is thus a truly

stringy effect.

This construction was extended to consider T-duality of the base circles

as well as the Tn fibres [54]. This requires an extension to “generalised

T-duality” (further discussed in [105, 106, 107]) which allows T-dualisation

along non-isometry directions, such as the base circle in question. The coor-

dinates of the base were then doubled in the same way as the fibre. T-duality

around a base circle leads to a new type of non-geometric background which

is not even locally geometric. This is because the geometry has a non-trivial

dependence on the coordinate x around the circle, which under generalised

T-duality is mapped to a dependence on the dual winding coordinate x̃. A

nice summary of this is to say that a Tn fibration over Tm is geometric, a

T 2n fibration over Tm is a T-fold and a T 2n fibration over T 2m is not even

locally geometric.

The relation between doubled geometry and generalised geometry was

neatly summarised in [108]. Essentially, generalised geometry has only tran-

sition functions which are true symmetries of supergravity (diffeomorphisms

and gauge transformations), while doubled geometry includes the more ex-

otic O(d, d;Z) transition functions. However, generalised geometry can be

defined on any manifold, while doubled geometry is only naturally associ-

ated with torus fibrations of the type discussed. Intuitively, this is due to

the fact that string winding is only possible if the topology of the spacetime

has the necessary non-trivial cycles.

Double field theory [109, 110, 111, 112] was introduced as a natural con-

tinuation of doubled geometry inspired by string field theory, studying the

massless fields of closed strings on a doubled torus T 2d. The fields, in prin-

ciple, are allowed to depend on both ordinary and winding coordinates.

However, their dependence is restricted by implementing the level matching

constraint of closed string theory by requiring the fields to be annihilated

by the second order operator ηAB∂A∂B. In fact, gauge invariance of the

resulting expressions requires the “strong constraint” which asserts that all

products of fields must also be annihilated. In [111], this is shown to be

equivalent to local dependence only on a d-dimensional isotropic slice of

the doubled torus. Such a null subspace is always related, by an O(d, d)

transformation, to the usual physical subspace in which only the ordinary

physical coordinates vary. Thus the level matching constraint appears lo-
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cally to force recovery of a sensible d-dimensional physical space.

The natural generalised Lie derivative (or Dorfman derivative) and Courant

bracket of generalised geometry naturally carry over to double field the-

ory, when one switches on dependence on the winding coordinates, and the

algebra of the former closes into the latter on imposing the strong con-

straint [112] (this is noted purely in terms of the gauge transformations

in [110]). In [112], an action for the NS-NS fields is constructed from first-

derivatives of the generalised metric (which is built from the metric and

B-field as in generalised geometry), and is shown to be gauge invariant and

equivalent to the standard action up to integration-by-parts on imposing

the strong constraint. It is argued that this first-order expression should

be related to a curvature scalar for the geometry, in the same way that

the Einstein-Hilbert action can be integrated by parts to involve only first

derivatives of the metric, though no geometrical construction of the expres-

sion is offered. This same action was also derived by West in [113].

The analogue of this construction has been worked through for dimen-

sional restrictions of eleven-dimensional supergravity [114]. In this case, the

extra coordinates introduced are those proposed in [63], which are said to

be dual to the winding modes of the membrane and five-brane8. A similar

action to that in [112] is found by brute force methods imposing diffeomor-

phism and gauge invariance. On restricting the dependence of fields to the

usual physical coordinates the expected action is recovered after integration-

by-parts. The analogue of the strong constraint in four dimensions is derived

in [115] by requiring the algebra of generalised Lie derivatives to close. This

agrees with the result given later in this thesis for the case d = 4.

In very recent times, there has been a flurry of activity in this area.

Several papers [116, 117] have appeared which essentially relate the action

of [112] to the much earlier work of Siegel [61]. A discussion of RR fields in

double field theory was made in [118] (see also [119]), resulting in similar ex-

pressions to those presented in this thesis, and a no-go result concerning the

construction of Riemann-squared terms from derivatives of the generalised

metric appears in [120]. Considerations of heterotic theory in this con-

text have appeared in [121, 122], again building on the ideas of Siegel [61].

As suggested in [106, 107, 123], the effective action of compactifications

8The final set in seven dimensions correspond to the Kaluza-Klein monopole as in [100,
101]
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on doubled tori are considered in [124, 125] and the general gaugings9 of

N = 4 supergravity are recovered. Interestingly some indication is found

that the strong constraint may not be necessary in these cases. This idea is

also echoed in [128, 129]. Our results for the fermions have been re-cast into

double field theory in [130, 131]. Other recent papers include [132, 133, 134].

The Structure of this Thesis

The main questions raised in the previous discussion concern the under-

standing of dualities and hidden symmetries in string theory and M theory.

Dualities are relatively well understood for torus backgrounds, and mirror

symmetry is well-established, but in other scenarios much less can be said

using present techniques. In particular, the fact that duality can map a

geometric background to a non-geometric configuration suggests that some

new mathematics encompassing both classes needs to be found. While dou-

bled geometry provides such a framework for torus backgrounds and their

duals, little progress has been made for arbitrary solutions.

In this thesis, we use generalised geometry to reformulate the supergrav-

ity limits of type II theories and M theory. While the symmetry of the

theory is still restricted to the geometric subgroup, the fields are organised

into objects which transform under the (continuous) duality group. The dy-

namics becomes geometrical, as for Einstein gravity, answering the question

posed in [55] as to the nature of the geometry of hidden symmetries. The

formulation uncovers surprising new structure in these supergravities and

the geometry of their supersymmetric solutions. The hope is that this new

structure will help to shed light on dualities and non-geometric backgrounds,

as well as providing new tools with which to study geometric ones.

Subjectively, the construction also has a very pleasing naturalness and

elegance, which is usually a sign that one is looking at something in the

right way!

We begin with a brief review of some of the geometrical ideas which will

feature throughout the thesis. We examine the way that these appear in

Einstein gravity and study the bosonic symmetries of the NS-NS sector

of type II supergravity. Comparing the two provides motivation for the

definition of the enlarged tangent space of generalised geometry.

9General gaugings of supergravity have been classified using the embedding tensor for-
malism [126, 127]. The relation to our results is discussed in [2]
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In chapter 3, we briefly review some basic objects one can define on

T ⊕ T ∗, and then proceed to construct O(d, d) × R+ generalised geome-

try. Particular focus here is on generalised connections, torsion and cur-

vatures, and we provide a thorough treatment of these. These results are

used in chapter 4 to give a complete reformulation of type II supergravity

theories as a generalised geometrical analogue of Einstein gravity, defined

by an O(9, 1)× O(1, 9) ⊂ O(10, 10)× R+ structure on the generalised tan-

gent space. In this description the NS-NS fields are unified as a generalised

metric, while the RR fields and fermions fall into representations of the en-

larged symmetry groups and their supersymmetry variations and equations

of motion are neatly expressed in terms of the generalised connection.

Chapters 5 and 6 present the Ed(d)×R+ generalised geometry description

of dimensional restrictions of eleven-dimensional supergravity. Chapter 5

runs through the definitions of the geometrical structures, which are exactly

analogous to those in chapter 3, though considerably more complicated due

to the exceptional groups involved. The equations are presented under

the GL(d,R) decomposition of Ed(d)×R+ and the O(d) decomposition its

maximal compact subgroup. This allows us to write equations which hold

in all dimensions d.

Chapter 6 begins by defining exactly what we mean by dimensional re-

strictions of eleven-dimensional supergravity. The next section provides

some very abstract equations, which describe how to derive the supergrav-

ity equations from the geometry. In fact, these equations are equally true

in the context of chapters 3 and 4. The realisation of these equations in

Spin(d) representations is then given, resulting in a similar reformulation

of the supergravity to that in chapter 4. However, since in this case the

geometry encompasses all of the bosonic fields, the entire bosonic action is

given simply by the generalised scalar curvature.

Finally, in chapter 7, we apply the formalism to supersymmetric back-

grounds. After reviewing the basics of G-structures, intrinsic torsion and

supersymmetric backgrounds, we demonstrate that the Killing spinor equa-

tions translate into the analogue of special holonomy in generalised geome-

try. Concluding remarks follow in the last chapter.

The appendices describe our general conventions, the necessary Clifford

algebras, the details of the exceptional groups, a group theoretical proof

needed in section 5.2.3 and some spinor decompositions.
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2. Differential Geometry and

Gravity

To set the stage, we review some of the key constructions of ordinary differ-

ential geometry, in particular the notion of a G-structure. We then discuss

the formulation of general relativity in this language, with a view to writing

more complicated supergravity theories in the same elegant way. In the final

subsection, we study some features of type II supergravities to motivate the

introduction of generalised geometry.

2.1. Metric structures, torsion and the

Levi–Civita connection

Let M be a d-dimensional manifold. We write {êa} for a basis of the tangent

space TxM at x ∈M and {ea} for the dual basis of T ∗xM satisfying iêae
b =

δa
b. Recall that the frame bundle F is the bundle of all bases {êa} over M ,

F = {(x, {êa}) : x ∈M and {êa} is a basis for TxM} . (2.1)

On each fibre of F there is an action of Aab ∈ GL(d,R), given v = vaêa ∈
Γ(TxM),

va 7→ v′a = Aabv
b, êa 7→ ê′a = êb(A

−1)ba. (2.2)

giving F the structure of a GL(d,R) principal bundle1.

The Lie derivative Lv encodes the effect of an infinitesimal diffeomor-

phism. On a vector field w it is equal to the Lie bracket

Lvw = −Lwv = [v, w] , (2.3)

1We define a principal G-bundle as a fibre bundle F
π−→M together with a continuous

action G× F → F which preserves the fibres of F and acts freely and transitively on
them. This definition implies that the bundle is equivalent to a bundle with fibre G,
the mapping arising from a choice of local sections to map to the identity in the fibre.
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while on a general tensor field α one has, in coordinate indices,

Lvα
µ1...µp
ν1...νq = vµ∂µα

µ1...µp
ν1...νq

+ (∂µv
µ1)α

µµ2...µp
ν1...νq + · · ·+ (∂µv

µp)α
µ1...µp−1µ
ν1...νq

− (∂ν1v
µ)α

µ1...µp
µν2...νq − · · · −

(
∂νqv

µ
)
α
µ1...µp
ν1...νq−1µ.

(2.4)

Note that the terms on the second and third lines can be viewed as the

adjoint action of the gl(d,R) matrix aµν = ∂νv
µ on the particular tensor

field α, i.e. we can write

Lvα = ∂vα− (∂v) · α (2.5)

This form will have an analogous expression when we come to generalised

geometry.

Let ∇µvν = ∂µv
ν + ωµ

ν
λv

λ be a general connection on TM . The torsion

T ∈ Γ(TM ⊗ Λ2T ∗M) of ∇ is defined by

T (v, w) = ∇vw −∇wv − [v, w] . (2.6)

or concretely, in coordinate indices,

Tµνλ = ων
µ
λ − ωλµν , (2.7)

while, in a general basis where ∇µva = ∂µv
a + ωµ

a
bv
b, one has

T abc = ωb
a
c − ωcab + [êb, êc]

a . (2.8)

Since it has a natural generalised geometric analogue, it is useful to define

the torsion equivalently in terms of the Lie derivative. If L∇v α is the analogue

of the Lie derivative (2.4) but with ∂ replaced by ∇, and (ivT )µν = vλTµλν

then

(ivT )α = L∇v α− Lvα, (2.9)

where we view ivT as a section of the gl(d,R) adjoint bundle acting on the

given tensor field α.
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The curvature of a connection ∇ is given by the Riemann tensor R ∈
Γ(Λ2T ∗M ⊗ TM ⊗ T ∗M), defined by

R(u, v)w = [∇u,∇v]w −∇[u,v]w,

R λ
µν ρw

ρ = [∇µ,∇ν ]wλ − T ρµν∇ρwλ.
(2.10)

The Ricci tensor is the trace of the Riemann curvature

Rµν = R λ
λµ ν . (2.11)

If the manifold admits a metric g then the Ricci tensor becomes symmetric

in its indices and one can define the Ricci scalar curvature as

R = gµνRµν . (2.12)

A G-structure is a principal sub-bundle P ⊂ F with fibre G. In the case of

the metric g, the G = O(d) sub-bundle is formed by the set of orthonormal

bases

P = {(x, {êa}) ∈ F : g(êa, êb) = δab} , (2.13)

related by an O(d) ⊂ GL(d,R) action. (A Lorentzian metric defines a

O(d− 1, 1)-structure and δab is replaced by ηab.) At each point x ∈M , the

metric defines a point in the coset space

g|x ∈ GL(d,R)/O(d). (2.14)

In general the existence of a G-structure can impose topological conditions

on the manifold, since it implies that the tangent space can be patched

using only G ⊂ GL(d,R) transition functions. For example, for even d, if

G = GL(d/2,C), the manifold must admit an almost complex structure,

while for G = SL(d,R) it must be orientable. However, for G = O(d) there

is no such restriction.

A connection ∇ is compatible with a G-structure P ⊂ F if the corre-

sponding connection on the principal bundle F reduces to a connection on

P . This means that, given a basis {êa}, one has a set of connection one-

forms ωab taking values in the adjoint representation of G given by

∇∂/∂xµ êa = ωµ
b
aêb. (2.15)
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For a metric structure this is equivalent to the condition ∇g = 0. If there

exists a torsion-free compatible connection, the G-structure is said to be

torsion-free or equivalently integrable (to first order). In general this can

further restrict the structure, for instance in the case of GL(d/2,C) it is

equivalent to the existence of a complex structure (satisfying the Nijenhuis

condition). However, for a metric structure no further conditions are im-

plied, and furthermore the torsion-free, compatible connection, namely the

Levi–Civita connection, is unique.

2.2. General Relativity

As a motivation for things to come, we will examine Einstein’s theory of

gravity written in terms of the geometry presented in the previous section.

The eventual goal will be to find a formulation of more complicated super-

gravity theories which have the same geometrical structure.

In general relativity, spacetime is taken to be a d-dimensional differen-

tiable manifold M equipped with a pseudo-Riemannian metric of signature

(−+ . . .+). The metric, which makes up the field content of the pure grav-

ity theory, reduces the structure group of the tangent bundle TM to the

Lorentz group2 SO(d − 1, 1) ⊂ GL(d,R). As stated previously, there is no

obstruction to the existence of a torsion-free connection which is compatible

with this structure. The Levi-Civita connection is the unique torsion-free

compatible connection and this gives rise to the usual measures of curva-

ture (2.10), (2.11) and (2.12). The SO(d − 1, 1) structure also provides a

volume element volg =
√
−g, since these transformations have unit deter-

minant.

The Einstein-Hilbert action for the theory is the integral of the scalar

curvature with the volume element

S =

∫
volgR, (2.16)

and varying with respect to the metric we find the vacuum Einstein equation

Rµν = 0, (2.17)

2We assume that we have an orientation on the manifold.
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expressing the Ricci-flatness of the manifold.

We now review how the number of degrees of freedom of the theory

matches up with these results. The metric can be encoded in a local veilbein

frame {êa} satisfying g(êa, êb) = ηab, where ηab = diag(−,+, . . . ,+) is the

Minkowski metric. The components of the vielbein (êa)
µ form a GL(d,R)

transformation matrix with d2 components, but any other frame which is

related to this one by a Lorentz transformation encodes the same metric

and thus the same SO(d− 1, 1)-structure. The structure therefore has

dim GL(d,R)− dim SO(d− 1, 1) = d2 − 1
2d(d− 1) = 1

2d(d+ 1) (2.18)

degress of freedom. The metric is a symmetric matrix and thus (unsurpris-

ingly) it has precisely this number of degrees of freedom, as does its equation

of motion (2.17).

We can view this more abstractly as follows. If we denote the frame

bundle of TM as F and the SO(d − 1, 1) principle sub-bundle P , we have

the associated adjoint bundles

ad(F ) ' TM ⊗ T ∗M ad(P ) ' Λ2T ∗M. (2.19)

At each point p of the manifold the metric provides an element of the coset

g|p ∈
GL(d,R)

SO(d− 1, 1)
(2.20)

and so for a small fluctuation of the metric δgµν , we have that the Lie

algebra-valued tensor g−1δg is a section of the bundle

ad(P )⊥ = ad(F )/ ad(P ) ' S2T ∗M. (2.21)

Since g−1δg is merely a covariant index-raising of δgµν we can view δg itself

as a section of ad(P )⊥. When we vary the action (2.16) with respect to the

metric, the resulting equation of motion must live in the dual of this bundle,

which in this case is equal to ad(P )⊥. Sure enough, we see that the Ricci

tensor Rµν is indeed a section of ad(P )⊥ ' S2T ∗M .

Note that in (pseudo-)Riemannian geometry, one can define the Ricci

tensor of a connection on F without the need for additional structure, but

that the additional structure P constrains it to be a section of ad(P )⊥ '
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S2T ∗M . This feature will not carry over to generalised geometry, where we

will find that we require the extra structure to write down the analogue of

the Ricci curvature.

We now point out the symmetries of the theory and the role that they

play in the geometry. The equations are tensor in nature so it is clear that

the theory has diffeomorphism symmetry. An infinitesimal diffeomorphism

is parameterised by a vector v ∈ TM and it acts on the fields via the Lie

derivative

δvg = Lvg (2.22)

It is important to note that the diffeomorphism symmetry and Lie derivative

can be defined prior to the introduction of the metric, and so are present

in the geometry before introducing the physical fields. This connection

between the tangent space, the symmetry generators and the Lie derivative

will be crucial in constructing generalised geometry.

There is also a local Lorentz symmetry relating the vielbein frames for

the metric, which one must introduce if one wishes to couple fermions to

the theory. This is essentially the reduced structure on the tangent bundle

defined by the metric.

2.3. NS-NS Sector of Type II Supergravity

We now make some brief remarks about the NS-NS sector of type II super-

gravity in order to motivate the definitions made in the next section. The

complete equations of type IIA and type IIB supergravity will be presented

in chapter 4. For now we focus on the NS-NS bosonic fields, which are

common to both type IIA and type IIB.

The NS-NS fields are comprised of a metric tensor gµν , a two-form gauge

potential Bµν and the dilaton scalar φ. The potential B is only locally

defined, so that, given an open cover {Ui} of M , across coordinate patches

Ui ∩ Uj it can be patched via

B(i) = B(j) − dΛ(ij). (2.23)

Furthermore the one-forms Λ(ij) satisfy

Λ(ij) + Λ(jk) + Λ(ki) = dΛ(ijk), (2.24)
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on Ui ∩ Uj ∩ Uk. This makes B a “connection structure on a gerbe” [136]3.

Thus for the NS-NS sector symmetry algebra we see that, in addition to

diffeomorphism invariance, we have the local bosonic gauge symmetry

B′(i) = B(i) − dλ(i), (2.25)

where the choice of sign in the gauge transformation is to match the gen-

eralised geometry conventions that follow. Given the patching of B, the

only requirement is dλ(i) = dλ(j) on Ui ∩ Uj . Thus globally λ(i) is equiva-

lent to specifying a closed two-form. The set of gauge symmetries is then

the Abelian group of closed two-forms under addition Ω2
cl(M). The gauge

transformations do not commute with the diffeomorphisms so the NS-NS

bosonic symmetry group GNS has a fibred structure

Ω2
cl(M) −→ GNS −→ Diff(M), (2.26)

sometimes written as the semi-direct product Diff(M) n Ω2
cl(M).

One can see this structure infinitesimally by combining the diffeomor-

phism and gauge symmetries, given a vector v and one-form λ(i), into a

general variation

δv+λg = Lvg, δv+λφ = Lvφ, δv+λB(i) = LvB(i) − dλ(i), (2.27)

where the patching (2.23) of B implies that

dλ(i) = dλ(j) − LvdΛ(ij). (2.28)

Recall that λ(i) and λ(i) + dφ(i) define the same gauge transformation. One

can use this ambiguity to integrate (2.28) and set

λ(i) = λ(j) − ivdΛ(ij), (2.29)

on Ui ∩ Uj .
In the NS-NS sector of type II theories, we therefore have two symmetry

generators: a vector field v ∈ TM and a collection of one-forms {λ(i)}

3Note that technically the cocycle conditions for the gerbe structure actually only hold
for quantised fluxes where H is suitably related to an integral cohomology class. This
is not required by supergravity, but is necessary in string theory.
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patched according to (2.29). In our discussion of general relativity we saw

that the symmetry generator was a section of the tangent bundle, and that

the geometry of this bundle (Lie derivatives, connections, torsion, metric

and curvature) were the key ingredients of the geometrical formulation of

the theory. The above leads us to wonder whether we can define a new

tangent bundle which also includes the one-forms {λ(i)}. This is precisely

what we will construct in the next section.
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3. O(d, d)× R+ Generalised

Geometry

We describe the construction of O(d, d) × R+ generalised geometry closely

following [1]. This is motivated by the bosonic symmetry algebra of NS-NS

fields in type II supergravity as discussed in the previous section, but here

we present it purely as a mathematical construction.

3.1. T ⊕ T ∗ Generalised Geometry

In this section, following [82], we review some linear algebra and differential

structures on T ⊕ T ∗ which will feature extensively in the construction of

the generalised tangent bundle.

3.1.1. Linear algebra of F ⊕ F ∗ and SO(d, d)

Let F be a d-dimensional vector space and consider the direct sum F ⊕F ∗.
Writing an element of F ⊕ F ∗ as V = v + λ for v ∈ F , λ ∈ F ∗, we find a

natural symmetric inner product

〈V, V ′〉 = 1
2(λ(v′) + λ′(v)) (3.1)

The union of a basis of F and its dual basis for F ∗ form a basis for F ⊕F ∗.
In this basis the inner product can be written as a matrix

η =
1

2

(
0 1

1 0

)
. (3.2)

The special orthogonal group which preserves this inner product is SO(d, d)

and its Lie algebra is

{T : 〈TV, V ′〉+ 〈V, TV ′〉 = 0 ∀ V, V ′ ∈ F ⊕ F ∗} (3.3)
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A general element can be expressed as a matrix

T =

(
a β

B −aT

)
, (3.4)

where a ∈ F ⊗ F ∗, β ∈ Λ2F and B ∈ Λ2F ∗ provide the appropriate map-

pings. The exponentials of these can be evaluated individually and their

actions form important types of SO(d, d) transformations. Exponentiating

the action of a, we recover the standard action of A = exp(a) ∈ GL+(d,R)

on F ⊕F ∗. The exponential of the action of B gives the B-transformation1

eB̂ =

(
1 0

B 1

)
, (3.5)

which sends v + λ 7→ v + λ− ivB. Similarly, the final part can be exponen-

tiated to give the β-transformation

eβ̂ =

(
1 β

0 1

)
. (3.6)

which sends v + λ 7→ v + iβλ + λ. This transformation will not be as

important to us as the others, as it does not correspond to a supergravity

symmetry.

We now turn to the construction of spinors on F ⊕ F ∗. Consider a poly-

form

Φ ∈ Λ•F ∗ =
∑
k

ΛkF ∗. (3.7)

We can define a natural action of the Clifford algebra on this object via

V · Φ = ivΦ + λ ∧ Φ. (3.8)

which satisfies {V ·, V ′·} = 2〈V, V ′〉 and we see that dim Λ•F ∗ = 2d as one

would expect for a spinor representation in 2d dimensions. We thus have

that S(F ⊕ F ∗) ' Λ•F ∗ and the positive and negative chirality spinors are

encoded as the even and odd degree forms respectively. The action of the

three basic transformations above on the spinor will be important later, so

1We use a hat to indicate the embedding of the relevant generator in the O(d, d) algebra.
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we present the details here. Via the Clifford action we have

B̂ · Φ = B ∧ Φ β̂ · Φ = −iβΦ (3.9)

for the B- and β-adjoint actions and these exponentiate to

eB̂ · Φ = exp(B) ∧ Φ eβ̂ · Φ = exp(−iβ)Φ (3.10)

The action of the GL(d,R) subgroup of Spin(d, d) on Φ ∈ Λ•F ∗ is not the

standard one. For a ∈ F ⊗ F ∗ with A = exp(a), we have

â · Φ = −a∗Φ + 1
2 tr(a)Φ ⇒ eâ · Φ = (detA)

1
2 (A−1)∗Φ. (3.11)

This transformation law would be associated more naturally with the vector

space (detF )
1
2 ⊗ Λ•F ∗.

This leads us to consider instead spinors of Spin(d, d)×R+ and we examine

a GL(d,R) subgroup which embeds not only into the Spin(d, d) factor, but

also the R+ factor via the determinant. The Spin(d, d) × R+ spinor with

weight p under the R+ group then transforms as an element of

(detF )
1
2−p ⊗ Λ•F ∗ (3.12)

under this GL(d,R) subgroup. For p = 1
2 , the GL(d,R) transformation of

the spinor is given by the usual action on Λ•F ∗. Later, it will be desirable

to have a spinor transforming as a true polyform, as it will allow us to define

an exterior derivative when we consider differential structures.

Finally, one can write a bilinear form on two such spinors (for general p),

the Mukai pairing,

〈
Ψ,Ψ′

〉
=
∑
n

(−)[(n+1)/2]Ψ(d−n) ∧Ψ′(n). (3.13)

This transforms as (detF ∗)2p under the GL(d,R) subgroup.

3.1.2. Differential structures on T ⊕ T ∗

We now consider the sum of the tangent and cotangent bundles T ⊕ T ∗

over a d-dimensional manifold M . The linear algebra results of the previous

section can be implemented here by sending F → T . We are now wish to
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examine differential structures on T ⊕ T ∗.
One can define a natural analogue of the Lie derivative for V, V ′ ∈ T⊕T ∗,

the Dorfman derivative, by

LV V
′ = Lvv′ + Lvλ′ − iv′dλ (3.14)

where V = v + λ and V ′ = v′ + λ′. As this definition involves only the

ordinary Lie derivative and exterior derivative, this is automatically dif-

feomorphism covariant. However, one finds that it is also covariant under

closed B-transformations, i.e. for B ∈ Ω2
cl(M) we have

L
(eB̂ ·V )

(eB̂ · V ′) = eB̂(LV V
′) (3.15)

In fact diffeomorphisms and B-transformations are precisely the symmetries

of the Dorfman derivative [82], and these form the group GNS in (2.26). For

a general two-form B ∈ Λ2T ∗ we have

L
(eB̂ ·V )

(eB̂ · V ′) = eB̂(LV V
′ + iviv′H) (3.16)

where H = dB.

A second differential structure one can naturally write down is the Dirac

operator on the polyform representation of spinors. The exterior derivative

is the obvious candidate as it is first order and maps even forms to odd

forms and vice-versa, thus mixing the two chiralities as required. However,

for spinors of Spin(d, d) we are faced with the problematic GL(d,R) trans-

formation law (3.11), which means that the exterior derivative does not give

a covariant definition. Again, we see that it is beneficial to consider spinors

transforming under Spin(d, d) × R+ with the appropriate weight p = 1
2

in (3.12). The GL(d,R) transformation is then returned to the conven-

tional transformation of forms, so we have the usual action of the exterior

derivative d : Λ•T ∗ → Λ•T ∗, which is diffeomorphism covariant.

For any value of the weight p, we can examine the behaviour of the exterior

derivative under a B-transformation. We have

d(eB̂ · Φ) = eB̂ · (dΦ +H ∧ Φ) (3.17)

where H = dB, so for a closed 2-form B, the form of our Dirac operator is
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unchanged. Again, the closed B-transformations are a symmetry. For the

case p = 1
2 , where we also have the diffeomorphism symmetry, the full set

of symmetries form the group GNS from (2.26)

In this section, we have seen the appearance of the symmetry group GNS,

which was the bosonic symmetry group of the NS-NS sector of type II

supergravity, in natural structures on T ⊕ T ∗. For the Dorfman derivative,

this was immediately present, whereas for the spinors we had to enlarge

the structure group to Spin(d, d) × R+. In the following sections, we will

write down in more detail exactly how to define a geometry with structure

group Spin(d, d) × R+ which has the properties we desire. This R+ factor

has previous appeared in generalised geometry in [98, 113, 135]

3.2. O(d, d)× R+ Generalised Geometry

3.2.1. Generalised structure bundle

We start by recalling the generalised tangent space and defining what we will

call the “generalised structure” which is the analogue of the frame bundle

F in conventional geometry.

Let M be a d-dimensional spin manifold. In line with the patching of

the transformation parameters (2.29), one starts by defining the generalised

tangent space E. It is defined as an extension of the tangent space by the

cotangent space

0 −→ T ∗M −→ E −→ TM −→ 0, (3.18)

which depends on the patching one-forms Λ(ij). If v(i) ∈ Γ(TUi) and λ(i) ∈
Γ(T ∗Ui), so V(i) = v(i) + λ(i) is a section of E over the patch Ui, then

v(i) + λ(i) = v(j) +
(
λ(j) − iv(j)

dΛ(ij)

)
, (3.19)

on the overlap Ui∩Uj . Hence as defined, while the v(i) globally are equivalent

to a choice of vector, the λ(i) do not globally define a one-form. The patching

of the λ(i) is the same as that of the symmetry generators in (2.29). Hence,

as promised at the end of section 2.3, our definition has resulted in a new

bundle, sections of which are precisely the generators of GNS from (2.26).

E is in fact isomorphic to TM ⊕ T ∗M though there is no canonical iso-

morphism. Instead one must choose a splitting of the sequence (3.18) as
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will be discussed in section 3.2.2. Crucially the definition of E is consistent

with an O(d, d) metric given by, for V = v + λ

〈
V, V

〉
= ivλ, (3.20)

since iv(i)
λ(i) = iv(j)

λ(j) on Ui ∩ Uj .
In order to describe the dilaton correctly we will actually need to consider

a slight generalisation of E. We define the bundle Ẽ weighted by an R+-

bundle L̃ so that

Ẽ = L̃⊗ E. (3.21)

The point is that, given the metric (3.20), one can now define a natural

principal bundle with fibre O(d, d)× R+ in terms of bases of Ẽ. We define

a conformal basis {ÊA} with A = 1, . . . 2d on Ẽx as one satisfying

〈
ÊA, ÊB

〉
= Φ2ηAB where η =

1

2

(
0 1

1 0

)
. (3.22)

That is {ÊA} is orthonormal up to a frame-dependent conformal factor

Φ ∈ Γ(L̃). We then define the generalised structure bundle

F̃ =
{

(x, {ÊA}) : x ∈M , and {ÊA} is a conformal basis of Ẽx
}
. (3.23)

By construction, this is a principal bundle with fibre O(d, d)×R+. One can

make a change of basis

V A 7→ V ′A = MA
BV

B, ÊA 7→ Ê′A = ÊB(M−1)BA, (3.24)

where M ∈ O(d, d)×R+ so that (M−1)CA(M−1)DBηCD = σ2ηAB for some

σ. The topology of F̃ encodes both the topology of the tangent bundle TM

and of the B-field gerbe.

Given the definition (3.18) there is one natural conformal basis defined by

the choice of coordinates on M , namely {ÊA} = {∂/∂xµ} ∪ {dxµ}. Given

V ∈ Γ(E) over the patch Ui, we have V = vµ(∂/∂xµ) + λµdxµ. We will

sometimes denote the components of V in this frame by an index M such

that

VM =

vµ for M = µ

λµ for M = µ+ d
. (3.25)
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Suppose now that we have different coordinates on two patches Ui and

Uj . The transition functions (3.19) can be written acting explicitly on the

components of the vector and 1-form parts as

vµ(i) = Mµ
νv
ν
(j),

λ(i)µ = (M−1)νµ(λ(j)ν − vλ(j)(dΛ(ij))λν),
(3.26)

for Mµ
ν = ∂xµ(i)/∂x

ν
(j) ∈ GL(d,R).

We now describe the details of the R+-bundle L̃. The transition func-

tions (3.26) lie in the group GL(d,R) n Rd(d−1)/2. We define L̃ such that,

between the same patches Ui and Uj considered above, the transition func-

tions acting on the corresponding components of a section of Ẽ are

vµ(i) = (detM)−1Mµ
νv
ν
(j),

λ(i)µ = (detM)−1(M−1)νµ(λ(j)ν − vλ(j)(dΛ(ij))λν).
(3.27)

These transition functions lie in a GL(d,R)nRd(d−1)/2 subgroup of O(d, d)×
R+ acting on the components VM , and the embedding is such that, under

this subgroup, we can identify L̃ ' detT ∗M . A section of L̃ is thus equiva-

lent to a section of detT ∗M .

3.2.2. Generalised tensors and spinors and split frames

Generalised tensors are simply sections of vector bundles constructed from

different representations of O(d, d) × R+, that is representations of O(d, d)

of definite weight under R+. Since the O(d, d) metric gives an isomorphism

between E and E∗, one has the bundle

E⊗n(p) = L̃p ⊗ E ⊗ · · · ⊗ E, (3.28)

for a general tensor of weight p.

One can also consider Spin(d, d) spinor representations [82]. The O(d, d)

Clifford algebra

{ΓA,ΓB} = 2ηAB, (3.29)

can be realised on each coordinate patch Ui by identifying spinors with

weighted sums of forms Ψ(i) ∈ Γ((detT ∗Ui)
1/2⊗Λ•T ∗Ui), with the Clifford
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action

V AΓAΨ(i) = ivΨ(i) + λ(i) ∧Ψ(i). (3.30)

The patching (3.19) then implies

Ψ(i) = edΛ(ij) ∧Ψ(j). (3.31)

Projecting onto the chiral spinors then defines two Spin(d, d) spinor bundles

isomorphic to weighted sums of odd or even forms S±(E) ' (detT ∗M)−1/2⊗
Λeven/oddT ∗M , where again specifying the isomorphism requires a choice of

splitting.

More generally one defines Spin(d, d)×R+ spinors of weight p as sections

of

S±(p) = L̃p ⊗ S±(E). (3.32)

Note that there is a natural Spin(d, d) invariant bilinear on these spinor

spaces given by the Mukai pairing [81, 82]. For Ψ,Ψ′ ∈ Γ(S±(p)) one has

〈
Ψ,Ψ′

〉
=
∑
n

(−)[(n+1)/2]Ψ(d−n) ∧Ψ′(n) ∈ Γ(L̃2p), (3.33)

where Ψ(n) and Ψ′(n) are the local weighted n-form components.

A special class of conformal frames are those defined by a splitting of

the generalised tangent space E. A splitting is a map TM → E. It is

equivalent to specifying a local two-form B patched as in (2.23) and defines

an isomorphism E ' TM ⊕ T ∗M . If {êa} is a generic basis for TM and

{ea} be the dual basis on T ∗M , one can then define what we call a split

frame {ÊA} for Ẽ by

ÊA =

Êa = (det e) (êa + iêaB) for A = a

Ea = (det e)ea for A = a+ d
. (3.34)

We immediately see that

〈
ÊA, ÊB

〉
= (det e)2ηAB, (3.35)

and hence the basis is conformal. Writing V = vaÊa + λaE
a ∈ Γ(Ẽ) we

47



have
V (B) = va(det e)êa + λa(det e)ea

= v(i) + λ(i) − iv(i)
B(i),

(3.36)

demonstrating that the splitting defines an isomorphism Ẽ ' (detT ∗M)⊗
(TM ⊕ T ∗M) since λ(i) − iv(i)

B(i) = λ(j) − iv(j)
B(j).

The class of split frames defines a sub-bundle of F̃ . Such frames are

related by transformations (3.24) where M takes the form

M = (detA)−1

(
1 0

ω 1

)(
A 0

0 (A−1)T

)
, (3.37)

where A ∈ GL(d,R) is the matrix transforming êa 7→ êb(A
−1)ba while ω =

1
2ωabe

a ∧ eb transforms B 7→ B′ = B + ω, where ω must be closed for B′

to be a splitting. This defines a parabolic subgroup Gsplit = GL(d,R) n
Rd(d−1)/2 ⊂ O(d, d)× R+ and hence the set of all frames of the form (5.13)

defines a Gsplit principal sub-bundle of F̃ , that is a Gsplit-structure. This

reflects the fact that the patching elements in the definition of Ẽ lie only in

this subgroup of O(d, d)× R+.

In what follows it will be useful to also define a class of conformal split

frames given by the set of split bases conformally rescaled by a function φ

so that

ÊA =

Êa = e−2φ(det e) (êa + iêaB) for A = a

Ea = e−2φ(det e)ea for A = a+ d
, (3.38)

thus defining a Gsplit × R+ sub-bundle of F̃ . In complete analogy with the

split case, the components of V ∈ Γ(Ẽ) in the conformally split frame are

related to those in the coordinate basis by

V (B,φ) = e2φ
(
v(i) + λ(i) − iv(i)

B(i)

)
. (3.39)

We can similarly write the components of generalised spinors in different

frames. The relation between the coordinate and split frames implies that

if Ψ
(B)
a1...an are the polyform components of Ψ ∈ Γ(S±(p)) in the split frame

then

Ψ(B) =
∑
n

1
n!Ψ

(B)
a1...ane

a1 ∧ · · · ∧ ean = eB(i) ∧Ψ(i), (3.40)
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demonstrating the isomorphism S±(p) ' (detT ∗M)p−1/2 ⊗ Λeven/oddT ∗M ,

since eB(i) ∧ Ψ(i) = eB(j) ∧ Ψ(j). In the conformal split frame one similarly

has

Ψ(B,φ) = e2pφeB(i) ∧Ψ(i). (3.41)

3.2.3. The Dorfman derivative, Courant bracket and

exterior derivative

We now demonstrate that the generalised tangent space admits a general-

isation of the Lie derivative which encodes the bosonic symmetries of the

NS-NS sector of type II supergravity, as we hoped in section 2.3. Given

V = v+λ ∈ Γ(E), one can define an operator LV acting on any generalised

tensor, which combines the action of an infinitesimal diffeomorphisms gen-

erated by v and a B-field gauge transformations generated by λ.

Acting on W = w + ζ ∈ E(p), we define the Dorfman derivative2 or

“generalised Lie derivative” as [98]

LVW = Lvw + Lvζ − iwdλ, (3.42)

where, since w and ζ are weighted tensors, the action of the Lie derivative

is
Lvwµ = vν∂νw

µ − wν∂νvµ + p(∂νv
ν)wµ,

Lvζµ = vν∂νζµ + (∂µv
ν)ζν + p(∂νv

ν)ζµ.
(3.43)

Defining the action on a function f as simply LV f = Lvf , one can then

extend the notion of Dorfman derivative to any O(d, d) × R+ tensor using

the Leibniz property.

To see this explicitly it is useful to note that we can rewrite (3.42) in a

more O(d, d) × R+ covariant way, in analogy with (2.4). First note that

one can embed the action of the partial derivative operator into generalised

geometry using the map T ∗M → E. In coordinate indices, as viewed as

mapping to a section of E∗, one defines

∂M =

∂µ for M = µ

0 for M = µ+ d
. (3.44)

2If p = 0 then LVW is none other than the Dorfman bracket [137]. Since it extends to
a derivation on the tensor algebra of generalised tensors, it is natural in our context
to call it the “Dorfman derivative”.
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One can then rewrite (5.23) in terms of generalised objects (as in [61, 112])

LVW
M = V N∂NW

M +
(
∂MV N − ∂NVM

)
WN + p

(
∂NV

N
)
WM , (3.45)

where indices are contracted using the O(d, d) metric (3.20), which, by defi-

nition, is constant with respect to ∂. Note that this form is exactly analogous

to the conventional Lie derivative (2.4), though now with the adjoint action

in o(d, d)⊕R rather than gl(d). Specifically the second and third terms are

(minus) the action of an o(d, d)⊕ R element m, given by

m ·W =

(
a 0

−ω −aT

)(
w

ζ

)
− p tr a

(
w

ζ

)
, (3.46)

where aµν = ∂νv
µ and ωµν = ∂µλν − ∂νλµ. Comparing with (3.37), we see

that m in fact acts in the Lie algebra of the Gsplit subgroup of O(d, d)×R+.

This form can then be naturally extended to an arbitrary O(d, d) × R+

tensor α ∈ Γ(E⊗n(p) ) as

LV α
M1...Mn = V N∂Nα

M1...Mn +
(
∂M1V N − ∂NVM1

)
αN

M2...Mn

+ · · ·+
(
∂MnV N − ∂NVMn

)
αM1...Mn−1

N + p
(
∂NV

N
)
WM ,

(3.47)

again in analogy with (2.4). It similarly extends to generalised spinors

Ψ ∈ Γ(S±(p)) as (see also [118])

LV Ψ = V N∂NΨ + 1
4 (∂MVN − ∂NVM ) ΓMNΨ + p(∂MV

M )Ψ, (3.48)

where ΓMN = 1
2 (ΓMΓN − ΓNΓM ).

Note that when W ∈ Γ(E) one can also define the antisymmetrisation of

the Dorfman derivative

JV,W K = 1
2 (LVW − LWV )

= [v, w] + Lvζ − Lwλ− 1
2d (ivζ − iwλ) ,

(3.49)

which is know as the Courant bracket [138]. It can be rewritten in an O(d, d)

covariant form as

JU, V KM = UN∂NV
M − V N∂NU

M − 1
2

(
UN∂

MV N − VN∂MUN
)
. (3.50)

50



which follows directly from (3.45).

Finally note that since S±(1/2) ' Λeven/oddT ∗M the Clifford action of ∂M

on Ψ ∈ Γ(S±(1/2)) defines a natural action of the exterior derivative. On Ui

one defines d : Γ(S±(1/2))→ Γ(S∓(1/2)) by

(dΨ)(i) = 1
2ΓM∂MΨ(i) = dΨ(i), (3.51)

that is, it is simply the exterior derivative of the component p-forms. The

Dorfman derivative and Courant bracket can then be regarded as derived

brackets for this exterior derivative [139].

3.2.4. Generalised O(d, d)× R+ connections and torsion

We now turn to the definitions of generalised connections, torsion and the

possibility of defining a generalised curvature. The notion of connection on

a Courant algebroid was first introduced by Alekseev and Xu [85, 84] and

Gualtieri [86] (see also Ellwood [87]). At least locally, it is also essentially

equivalent to the connection defined by Siegel [61] and discussed in doubled

field theory [116]. It is also related to the differential operator introduced

in the “stringy differential geometry” of [117].

Our definitions will follow closely those in [85, 86] though, in connecting

to supergravity, it is important to extend the definitions to include the R+

factor in the generalised structure bundle.

Generalised connections

Here we will specifically be interested in those generalised connections that

are compatible with the O(d, d) × R+ structure. Following [85, 86] we can

define a first-order linear differential operatorD, such that, givenW ∈ Γ(Ẽ),

in frame indices,

DMW
A = ∂MW

A + Ω̃M
A
BW

B. (3.52)

Compatibility with the O(d, d)× R+ structure implies

Ω̃M
A
B = ΩM

A
B − ΛMδ

A
B, (3.53)
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where Λ is the R+ part of the connection and Ω the O(d, d) part, so that

we have

ΩM
AB = −ΩM

BA. (3.54)

The action of D then extends naturally to any generalised tensor. In par-

ticular, if α ∈ Γ(E⊗n(p) ) we have

DMα
A1...An = ∂Mα

A1...An + ΩM
A1
Bα

BA2...An

+ · · ·+ ΩM
An

Bα
A1...An−1B − pΛMαA1...An .

(3.55)

Similarly, if Ψ ∈ Γ(S±(p)) then

DMΨ =
(
∂M + 1

4ΩM
ABΓAB − pΛM

)
Ψ. (3.56)

Given a conventional connection ∇ and a conformal split frame of the

form (3.38), one can construct the corresponding generalised connection as

follows. Writing a generalised vector W ∈ Γ(Ẽ) as

W = WAÊA = waÊa + ζaE
a, (3.57)

by construction w = wa(det e)êa ∈ Γ((detT ∗M)⊗TM) and ζ = ζa(det e)ea ∈
Γ((detT ∗M) ⊗ T ∗M) and so we can define ∇µwa and ∇µζa. The gener-

alised connection defined by ∇ lifted to an action on Ẽ by the conformal

split frame is then simply

(D∇MW
A)ÊA =

(∇µwa)Êa + (∇µζa)Ea for M = µ

0 for M = µ+ d
. (3.58)

Generalised torsion

We define the generalised torsion T of a generalised connection D in direct

analogy to the conventional definition (2.9). Let α be any generalised tensor

and LDV α be the Dorfman derivative (3.47) with ∂ replaced by D. The

generalised torsion is a linear map T : Γ(E) → Γ(ad(F̃ )) where ad(F̃ ) '
Λ2E ⊕ R is the o(d, d) ⊕ R adjoint representation bundle associated to F̃ .

It is defined by

T (V ) · α = LDV α− LV α, (3.59)
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for any V ∈ Γ(E) and where T (V ) acts via the adjoint representation on α.

This definition is close to that of [86], except for the additional R+ action

in the definition of L.

Viewed as a tensor T ∈ Γ(E ⊗ ad F̃ ), with indices such that T (V )MN =

V PTMPN , we can derive an explicit expression for T . Let {ÊA} be a general

conformal basis with
〈
ÊA, ÊB

〉
= Φ2ηAB. Then {Φ−1ÊA} is an orthonormal

basis for E. Given the connection DMW
A = ∂MW

A + Ω̃M
A
BW

B, we have

TABC = −3Ω̃[ABC] + Ω̃D
D
BηAC − Φ−2

〈
ÊA, LΦ−1ÊB

ÊC
〉
, (3.60)

where indices are lowered with ηAB.

Naively one might expect that T ∈ Γ((E⊗Λ2E)⊕E). However the form

of the Dorfman derivative means that fewer components of Ω̃ actually enter

the torsion and

T ∈ Γ(Λ3E ⊕ E). (3.61)

This can be seen most easily in the coordinate basis where the two compo-

nents are

TMPN = (T1)MPN − (T2)P δ
M
N , (3.62)

with
(T1)MNP = −3Ω̃[MNP ] = −3Ω[MNP ],

(T2)M = −Ω̃Q
Q
M = ΛM − ΩQ

Q
M .

(3.63)

An immediate consequence of this definition is that for Ψ ∈ Γ(S±(1/2)) the

Dirac operator ΓMDMΨ is determined by the torsion of the connection [85]

ΓMDMΨ = ΓM (∂MΨ + 1
4ΩMNPΓNPΨ− 1

2ΛMΨ)

= ΓM∂MΨ + 1
4Ω[MNP ]Γ

MNPΨ− 1
2(ΛM − ΩN

N
M )ΓMΨ

= 2dΨ− 1
12(T1)[MNP ]Γ

MNPΨ− 1
2(T2)MΓMΨ.

(3.64)

This equation could equally well be used as a definition of the torsion of a

generalised connection. Note in particular that if the connection is torsion-

free we see that the Dirac operator becomes equal to the exterior derivative

ΓMDMΨ = 2dΨ. (3.65)

As an example, we can calculate the torsion for the generalised connection
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D∇ defined in (3.58). In general we have

LΦ−1ÊA
ÊB =

(
LΦ−1ÊA

Φ
)

Φ−1ÊB + Φ
(
LΦ−1ÊA

(Φ−1ÊB)
)
, (3.66)

where here

LΦ−1ÊA
Φ =

−e−2φ(det e)
(
iêaiêbde

b + 2iêadφ
)

for A = a

0 for A = a+ d
, (3.67)

and

LΦ−1ÊA
Φ−1ÊB =

(
[êa, êb] + i[êa,êb]B − iêaiêbH Lêaeb

−Lêbea 0

)
AB

, (3.68)

where H = dB. If the conventional connection ∇ is torsion-free, the corre-

sponding generalised torsion is given by

T1 = −4H, T2 = −4 dφ, (3.69)

where we are using the embedding3 T ∗M → E (and the corresponding

T ∗M → Λ3E) to write the expressions in terms of forms. This result is

most easily seen by taking êa to be the coordinate frame, so that all but the

H and dφ terms in (3.67) and (3.68) vanish.

The absence of generalised curvature

Having defined torsion it is natural to ask if one can also introduce a no-

tion of generalised curvature in analogy to the usual definition (2.10), as

the commutator of two generalised connections but now using the Courant

bracket (3.49) rather than the Lie bracket

R (U, V,W ) = [DU , DV ]W −DJU,V KW. (3.70)

However, this object is non-tensorial [86]. We can check for linearity in the

arguments explicitly. Taking U → fU , V → gV and W → hW for some

3Note that with our definitions we have (∂Aφ)Φ−1ÊA = 2dφ due to the factor 1
2

in ηAB
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scalar functions f, g, h, we obtain

[DfU , DgV ]hW −DJfU,gV KhW

= fgh
(
[DU , DV ]W −DJU,V KW

)
− 1

2h
〈
U, V

〉
D(fdg−gdf)W,

(3.71)

and so the curvature is not linear in U and V .

Nonetheless, if there is additional structure, as will be relevant for super-

gravity, we are able to define other tensorial objects that are measures of

generalised curvature. In particular, let C1 ⊂ E and C2 ⊂ E be subspaces

such that
〈
U, V

〉
= 0 for all U ∈ Γ(C1) and V ∈ Γ(C2). For such a U and

V the final term in (3.71) vanishes, and so R ∈ Γ((C1 ⊗ C2) ⊗ o(d, d)) is a

tensor. A special example of this is when C1 = C2 is a null subspace of E.

The condition
〈
U, V

〉
= 0 here is reminiscent of the section condition of

double field theory. We will discuss this issue more fully in section 5.1.4.

3.3. O(p, q)×O(q, p) structures and torsion-free

connections

We now turn to constructing the generalised analogue of the Levi–Civita

connection. The latter is the unique torsion-free connection that preserves

the O(d) ⊂ GL(d,R) structure defined by a metric g. Here we will be

interested in generalised connections that preserve an O(p, q) × O(q, p) ⊂
O(d, d)×R+ structure on F̃ , where p+ q = d. We will find that, in analogy

to the Levi–Civita connection, it is always possible to construct torsion-free

connections of this type but there is no unique choice. Locally this is same

construction that appears in Siegel [61] and closely related to that of [117].

3.3.1. O(p, q)×O(q, p) structures and the generalised metric

Following closely the standard definition of the generalised metric [82], con-

sider an O(p, q)×O(q, p) principal sub-bundle P of the generalised structure

bundle F̃ . As discussed below, this is equivalent to specifying a conventional

metric g of signature (p, q), a B-field patched as in (2.23) and a dilaton φ.

As such it clearly gives the appropriate generalised structure to capture the

NS-NS supergravity fields.

Geometrically, an O(p, q) × O(q, p) structure does two things. First it

fixes a nowhere vanishing section Φ ∈ Γ(L̃), giving an isomorphism between
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weighted and unweighted generalised tangent space Ẽ and E. Second it

defines a splitting of E into two d-dimensional sub-bundles

E = C+ ⊕ C− , (3.72)

such that the O(d, d) metric (3.20) restricts to a separate metric of signature

(p, q) on C+ and a metric of signature (q, p) on C−. (Each sub-bundle is

also isomorphic to TM using the map E → TM .)

In terms of F̃ we can identify a special set of frames defining a O(p, q)×
O(p, q) sub-bundle. We define a frame {Ê+

a } ∪ {Ê−ā } such that {Ê+
a } form

an orthonormal basis for C+ and {Ê−ā } form an orthonormal basis for C−.

This means they satisfy 〈
Ê+
a , Ê

+
b

〉
= Φ2ηab,〈

Ê−ā , Ê
−
b̄

〉
= −Φ2ηāb̄,〈

Ê+
a , Ê

−
ā

〉
= 0,

(3.73)

where Φ ∈ Γ(L̃) is now some fixed density (independent of the particular

frame element) and ηab and ηāb̄ are flat metrics with signature (p, q). There

is thus a manifest O(p, q)×O(q, p) symmetry with the first factor acting on

Ê+
a and the second on Ê−ā .

Note that the natural conformal frame

ÊA =

Ê+
a for A = a

Ê−ā for A = ā+ d
, (3.74)

satisfies

〈
ÊA, ÊB

〉
= Φ2ηAB, where ηAB =

(
ηab 0

0 −ηāb̄

)
, (3.75)

where the form of ηAB differs from that used in (3.22). In this section, we

will use this form of the metric ηAB throughout. It is also important to note

that we will adopt the convention that we will always raise and lower the

C+ indices a, b, c, . . . with ηab and the C− indices ā, b̄, c̄, . . . with ηāb̄, while

we continue to raise and lower 2d dimensional indices A,B,C, . . . with the

56



O(d, d) metric ηAB. Thus, for example we have

ÊA =

Ê+a for A = a

−Ê−ā for A = ā+ d
, (3.76)

when we raise the A index on the frame.

One can write a generic O(p, q)×O(q, p) structure explicitly as

Ê+
a = e−2φ√−g

(
ê+
a + e+

a + iê+a B
)
,

Ê−ā = e−2φ√−g
(
ê−ā − e−ā + iê−ā

B
)
,

(3.77)

where the fixed conformal factor in (3.73) is given by

Φ = e−2φ√−g, (3.78)

and where {ê+
a } and {ê−ā }, and their duals {e+a} and {e−ā}, are two inde-

pendent orthonormal frames for the metric g, so that

g = ηabe
+a ⊗ e+b = ηāb̄e

−ā ⊗ e−b̄,

g(ê+
a , ê

+
b ) = ηab, g(ê−ā , ê

−
b̄

) = ηāb̄.
(3.79)

By this explicit construction we see that there is no topological obstruction

to the existence of O(p, q)×O(q, p) structures.

In addition to the O(p, q)× O(q, p) invariant density (3.78) one can also

construct the invariant generalised metric G [82]. It has the form

G = Φ−2
(
ηabÊ+

a ⊗ Ê+
b + ηāb̄Ê−ā ⊗ Ê−b̄

)
. (3.80)

In the coordinate frame we have the familiar expression

GMN =
1

2

(
g −Bg−1B −Bg−1

g−1B g−1

)
MN

. (3.81)

By construction, the pair (G,Φ) parametrise the coset (O(d, d)×R+)/O(p, q)×
O(q, p) where p+ q = d.

Finally the O(p, q) × O(q, p) structure provides two additional chirality
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operators Γ± on Spin(d, d)×R+ spinors which one can define as [98, 118, 140]

Γ(+) = 1
d!ε

a1...adΓa1 . . .Γad , Γ(−) = 1
d!ε

ā1...ādΓā1 . . .Γād . (3.82)

Using that, in the split frame, the Clifford action takes the form

Γa ·Ψ(B) = iê+a Ψ(B) +e+
a ∧Ψ(B), Γā ·Ψ(B) = iê−a Ψ(B)−e−a ∧Ψ(B), (3.83)

these can be evaluated on the weighted n-form components of Ψ as

Γ(+)Ψ
(B)
(n) = (−)[n/2] ∗Ψ

(B)
(n) , Γ(−)Ψ

(B)
(n) = (−)d(−)[n+1/2] ∗Ψ

(B)
(n) ,

(3.84)

and thus we have a generalisation of the Hodge dual on Spin(d, d) × R+

spinors.

Since GT ηG = η, the generalised metric GAB is an element of O(d, d) and

one can easily check that G2 = 1. Connecting to the discussion of [118],

for even dimensions d, one has G ∈ SO(d, d) and Γ(−) is an element of

Spin(d, d) satisfying

Γ(−)ΓAΓ(−)−1 = GABΓB, (3.85)

so that Γ(−) is a preimage of G in the double covering map Spin(d, d) →
SO(d, d). In odd dimensions d, Γ(+) is an element of Pin(d, d) which maps

to G ∈ O(d, d) under the double cover Pin(d, d)→ O(d, d).

3.3.2. Torsion-free, compatible connections

A generalised connection D is compatible with the O(p, q)×O(q, p) structure

P ⊂ F̃ if

DG = 0, DΦ = 0, (3.86)

or equivalently, if the derivative acts only in the O(p, q)×O(q, p) sub-bundle

so that for W ∈ Γ(Ẽ) given by

W = wa+Ê
+
a + wā−Ê

−
ā , (3.87)

we have

DMW
A =

∂Mwa+ + ΩM
a
bw

b
+ for A = a

∂Mw
ā
− + ΩM

ā
b̄w

b̄
− for A = ā

, (3.88)

58



with

ΩMab = −ΩMba, ΩMāb̄ = −ΩMb̄ā. (3.89)

In this subsection we will show, in analogy to the construction of the Levi–

Civita connection, that

Given an O(p, q) × O(q, p) structure P ⊂ F̃ there always exists

a torsion-free, compatible generalised connection D. However,

it is not unique.

We can construct a compatible connection as follows. Let ∇ be the Levi–

Civita connection for the metric g. In terms of the two orthonormal bases

we get two gauge equivalent spin-connections, so that if v = vaê+
a = vāê−ā ∈

Γ(TM) we have

∇µvν =
(
∂µv

a + ω+
µ
a
bv
b
)
(ê+
a )ν =

(
∂µv

ā + ω−µ
ā
b̄v
b̄
)
(ê−ā )ν . (3.90)

We can then define, as in (3.58)

D∇MW
a =

∇µwa+ for M = µ

0 for M = µ+ d
, D∇MW

ā =

∇µwā− for M = µ

0 for M = µ+ d
.

(3.91)

Since ω+
µab = −ω+

µba and ω−
µāb̄

= −ω−
µb̄ā

, by construction, this generalised

connection is compatible with the O(p, q)×O(q, p) structure.

However D∇ is not torsion-free. To see this we note that, comparing

with (3.38), when we choose the two orthonormal frames to be aligned so

e+
a = e−a = ea we have

W = wa+Ê
+
a + wā−Ê

−
ā =

(
wa+ + wa−

)
Êa + (w+a − w−a)Ea, (3.92)

and the two definitions of D∇ in (3.58) and (3.91) agree. Hence from (3.69)

we have the non-zero torsion components

T1 = −4H, T2 = −4dφ. (3.93)

To construct a torsion-free compatible connection we simply modify D∇.

A generic generalised connection D can be always be written as

DMW
A = D∇MW

A + ΣM
A
BW

B. (3.94)
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If D is compatible with the O(p, q)×O(q, p) structure then we have ΣM
a
b̄ =

ΣM
ā
b = 0 and

ΣMab = −ΣMba, ΣMāb̄ = −ΣMb̄ā. (3.95)

By definition, the generalised torsion components of D are then given by

(T1)ABC = −4HABC − 3Σ[ABC], (T2)A = −4dφA − ΣC
C
A. (3.96)

The components HABC and dφA are the components in frame indices of the

corresponding forms under the embeddings T ∗M ↪→ E and Λ3T ∗M ↪→ Λ3E.

Given

dxµ = 1
2Φ−1

(
ê+
a
µÊ+a − ê−ā µÊ−ā

)
, (3.97)

we have, for instance,

dφ = 1
2∂aφ

(
Φ−1Ê+a

)
− 1

2∂āφ
(
Φ−1Ê−ā

)
. (3.98)

where there is a similar decomposition of H under

Λ3T ∗M ↪→ Λ3E ' Λ3C+ ⊕ (Λ2C+ ⊗ C−)⊕ (C+ ⊗ Λ2C−)⊕ Λ3C−, (3.99)

Note also that the middle index on Σ[ABC] in equation (3.96) has also been

lowered with this ηAB which introduces some signs. The result is that the

components are

dφA =

1
2∂aφ A = a

1
2∂āφ A = ā+ d

, HABC =



1
8Habc (A,B,C) = (a, b, c)

1
8Habc̄ (A,B,C) = (a, b, c̄+ d)

1
8Hab̄c̄ (A,B,C) = (a, b̄+ d, c̄+ d)

1
8Hāb̄c̄ (A,B,C) = (ā+ d, b̄+ d, c̄+ d)

,

(3.100)

and that setting the torsion of D to zero is equivalent to

Σ[abc] = −1
6Habc, Σābc = −1

2Hābc, Σa
a
b = −2∂bφ,

Σ[āb̄c̄] = +1
6Hāb̄c̄, Σab̄c̄ = +1

2Hab̄c̄, Σā
ā
b̄ = −2∂b̄φ.

(3.101)
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Thus we can always find a torsion-free compatible connection but clearly

these conditions do not determine D uniquely. Specifically, one finds

Daw
b
+ = ∇awb+ − 1

6Ha
b
cw

c
+ − 2

9

(
δa
b∂cφ− ηac∂bφ

)
wc+ +A+

a
b
cw

c
+,

Dāw
b
+ = ∇āwb+ − 1

2Hā
b
cw

c
+,

Daw
b̄
− = ∇awb̄− + 1

2Ha
b̄
c̄w

c̄
−,

Dāw
b̄
− = ∇āwb̄− + 1

6Hā
b̄
c̄w

c̄
− − 2

9

(
δā
b̄∂c̄φ− ηāc̄∂ b̄φ

)
wc̄− +A−ā

b̄
c̄w

c̄
−,

(3.102)

where the undetermined tensors A± satisfy

A+
abc = −A+

acb, A+
[abc] = 0, A+

a
a
b = 0,

A−
āb̄c̄

= −A−
āc̄b̄
, A−

[āb̄c̄]
= 0, A−ā

ā
b̄ = 0,

(3.103)

and hence do not contribute to the torsion.

3.3.3. Unique operators and generalised O(p, q)×O(q, p)

curvatures

The fact that the O(p, q)×O(q, p) structure and torsion conditions are not

sufficient to specify a unique generalised connection might raise ambigui-

ties which could pose a problem for the applications to supergravity we are

ultimately interested in. However, we will now show that it is still possi-

ble to find differential expressions that are independent of the chosen D,

by forming O(p, q) × O(q, p) covariant operators which do not depend on

the undetermined components A±. For example, by examining (3.102) we

already see that

Dāw
b
+ = ∇āwb+ − 1

2Hā
b
cw

c
+,

Daw
b̄
− = ∇awb̄− + 1

2Ha
b̄
c̄w

c̄
−,

(3.104)

have no dependence on A± and so are unique. We find that this is also true

for
Daw

a
+ = ∇awa+ − 2(∂aφ)wa+,

Dāw
ā
− = ∇āwā− − 2(∂āφ)wā−.

(3.105)

Anticipating our application to supergravity, we will be especially inter-

ested in writing formulae for Spin(p, q) spinors, so let us now assume that

we have a Spin(p, q) × Spin(q, p) structure. If S(C±) are then the spinor

bundles associated to the sub-bundles C±, γa and γā the corresponding
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gamma matrices and ε± ∈ Γ(S(C±)), we have that by definition a gener-

alised connection acts as

DM ε
+ = ∂M ε

+ + 1
4ΩM

abγabε
+,

DM ε
− = ∂M ε

− + 1
4ΩM

āb̄γāb̄ε
−.

(3.106)

There are four operators which can be built out of these derivatives that

are uniquely determined

Dāε
+ =

(
∇ā − 1

8Hābcγ
bc
)
ε+,

Daε
− =

(
∇a + 1

8Hab̄c̄γ
b̄c̄
)
ε−,

γaDaε
+ =

(
γa∇a − 1

24Habcγ
abc − γa∂aφ

)
ε+,

γāDāε
− =

(
γā∇ā + 1

24Hāb̄c̄γ
āb̄c̄ − γā∂āφ

)
ε−.

(3.107)

The first two expressions follow directly from (3.104). In the final two

expressions, there is an elegant cancellation from γaγbc = γabc+ηabγc−ηacγb

which removes the terms involving A±.

The restriction that expressions involving generalised connections be de-

termined unambiguously, irrespective of the particular D, now serves as a se-

lection criteria for constructing new generalised objects. In particular, when

defining a generalised notion of curvature, we find that even though we can

actually build a tensorial O(p, q)×O(q, p) generalised Riemann curvature –

by following the example in section 3.2.4 and taking C1 = C± and C2 = C∓

so that the index structure would be
(
R c
ab̄ d

,R c̄
ab̄ d̄

)
and

(
R c
āb d,R

c̄
āb d̄

)
– it

would not result in a uniquely determined object. However, we can use

combinations of (3.104) and (3.105) to define the corresponding generalised

Ricci tensor as

R0

ab̄w
a
+ = [Da, Db̄]w

a
+, (3.108)

or as4

R0
ābw

ā
− = [Dā, Db]w

ā
−. (3.109)

Note that the index contractions are precisely what is needed to guarantee

uniqueness.

4Note that naively one might expect these definitions to give distinct tensors. However
one can check that compatibility with the O(p, q)× O(q, p) structure means that the
two agree.
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It is not possible to contract the remaining two indices in the generalised

Ricci. Nonetheless, there does exist a notion of generalised scalar curvature,

but to define it we need the help of spinors and the operators in (3.107).

We can obtain the generalised Ricci again from either

1
2R

0

ab̄γ
aε+ = [γaDa, Db̄] ε

+,

1
2R

0
ābγ

āε− =
[
γāDā, Db

]
ε−.

(3.110)

However, now we also find a generalised curvature scalar

−1
4Rε

+ =
(
γaDaγ

bDb −DāDā

)
ε+, (3.111)

or alternatively,

−1
4Rε

− =
(
γāDāγ

b̄Db̄ −DaDa

)
ε−. (3.112)

Again, note the need to use the correct combinations of the operators in

these definitions so that all the undetermined components drop out.

The fact that R is indeed a scalar and not itself an operator might not be

immediately apparent, so it is useful to work out the explicit form of these

curvatures. This can be done by again choosing the two orthogonal frames

to be aligned, e+
a = e−a , to find

R0
ab = Rab − 1

4HacdHb
cd + 2∇a∇bφ+ 1

2e2φ∇c(e−2φHcab), (3.113)

and for the scalar

R = R+ 4∇2φ− 4(∂φ)2 − 1
12H

2. (3.114)

From these expressions it is clear that we have obtained genuine tensors

which are uniquely determined by the torsion conditions, as desired. Fur-

thermore, comparing with [61] we see that locally these are the same tensors

that appear in Siegel’s formulation. The expressions (3.113) and (3.114) also

appear in the discussion of [117].
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4. Type II Theories as

O(10, 10)× R+ Generalised

Geometry

In this chapter, we will use the new geometry we have constructed to re-write

the equations of type II supergravity. The NS-NS sector fields are packaged

into the generalised metric, while the fermions fall into Spin(9, 1)×Spin(1, 9)

representations. The RR sector fields form a chiral spinor of Spin(d, d)×R+,

which is coupled similarly to matter fields in general relativity. The bosonic

action and equations of motion are written as generalised curvatures, while

the supersymmetry variations and fermion equations have neat expressions

in terms of the generalised connection. The presentation again follows [1]

closely.

4.1. Type II supergravity

Let us briefly recall the structure of d = 10 type II supergravity. We es-

sentially follow the conventions of the democratic formalism [141], as sum-

marised in appendix A, and consider only the leading-order fermionic terms.

We introduce a slightly unconventional notation in a few places in order to

match more naturally with the underlying generalised geometry. It is also

helpful to considerably rewrite the fermionic sector, introducing a particu-

lar linear combination of dilatini and gravitini, to match more closely what

follows.

The type II fields are denoted

{gµν , Bµν , φ,A(n)
µ1...µn , ψ

±
µ , λ

±}, (4.1)

where gµν is the metric, Bµν the two-form potential, φ is the dilaton and

A
(n)
µ1...µn are the RR potentials in the democratic formalism, with n odd for
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type IIA and n even for type IIB. In each theory there is also a pair of chiral

gravitini ψ±µ and a pair chiral dilatini λ±. Here our notation is that ± does

not refer to the chirality of the spinor but, as we will see, denote generalised

geometrical subspaces. Specifically, in the notation of [141], for type IIA

they are the chiral components of the gravitino and dilatino

ψµ = ψ+
µ + ψ−µ where γ(10)ψ±µ = ∓ψ±µ

λ = λ+ + λ− where γ(10)λ± = ±λ±.
(4.2)

(Note that ψ+
µ and λ+, and similarly ψ−µ and λ−, have opposite chiralities.)

For type IIB, in the notation of [141] one has two component objects

ψµ =

(
ψ+
µ

ψ−µ

)
where γ(10)ψ±µ = ψ±µ

λ =

(
λ+

λ−

)
where γ(10)λ± = −λ±.

(4.3)

and again the gravitini and dilatini have opposite chiralities.

In what follows, it will be very useful to consider the quantities

ρ± := γµψ±µ − λ±, (4.4)

instead of λ±. These are the natural combinations that appear in generalised

geometry and from now on we will use ρ± rather than λ±.

The bosonic “pseudo-action” takes the form

SB =
1

2κ2

∫ √
−g
[
e−2φ

(
R+ 4(∂φ)2 − 1

12H
2
)
− 1

4

∑
n

1
n!(F

(B)
(n) )2

]
, (4.5)

where H = dB and F
(B)
(n) is the n-form RR field strength. Here we will use

the “A-basis”, where the field strengths, as sums of even or odd forms, take

the form1

F (B) =
∑
n

F
(B)
(n) =

∑
n

eB ∧ dA(n−1), (4.6)

where eB = 1 + B + 1
2B ∧ B + . . . . This is a “pseudo-action” because the

1Note that in type IIA one cannot write a potential for the zero-form field strength,
which must instead be added by hand in (4.6). Note also that in [141] these field
strengths are denoted G.
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RR fields satisfy a self-duality relation that does not follow from varying

the action, namely,

F
(B)
(n) = (−)[n/2] ∗ F (B)

(10−n), (4.7)

where [n] denotes the integer part and ∗ ω denotes the Hodge dual of ω.

The fermionic action, keeping only terms quadratic in the fermions, can be

written after some manipulation as

SF = − 1

2κ2

∫ √
−g
[
e−2φ

(
2ψ̄+µγν∇νψ+

µ − 4ψ̄+µ∇µρ+ − 2ρ̄+ /∇ρ+

− 1
2 ψ̄

+µ /Hψ+
µ − ψ̄+

µH
µνλγνψ

+
λ −

1
2ρ

+Hµνλγµνψ
+
λ + 1

2ρ
+ /Hρ+

)
+ e−2φ

(
2ψ̄−µγν∇νψ−µ − 4ψ̄−µ∇µρ− − 2ρ̄− /∇ρ−

+ 1
2 ψ̄
−µ /Hψ−µ + ψ̄−µH

µνλγνψ
−
λ + 1

2ρ
−Hµνλγµνψ

−
λ −

1
2ρ
− /Hρ−

)
− 1

4e−φ
(
ψ̄+
µ γ

ν /F
(B)
γµψ−ν + ρ+ /F

(B)
ρ−
)]
.

(4.8)

where ∇ is the Levi–Civita connection.

To match what follows it is useful to rewrite the standard equations of

motion in a particular form. For the bosonic fields, with the fermions set

to zero, one takes the combinations that naturally arise from the string

β-functions, namely

Rµν − 1
4HµλρHν

λρ + 2∇µ∇νφ− 1
4e2φ

∑
n

1
(n−1)!F

(B)
µλ1...λn−1

F (B)λ1...λn−1
ν = 0,

∇µ
(

e−2φHµνλ

)
− 1

2

∑
n

1
(n−2)!F

(B)
µνλ1...λn−2

F (B)λ1...λn−2 = 0,

∇2φ− (∇φ)2 + 1
4R−

1
48H

2 = 0,

dF (B) −H ∧ F (B) = 0,

(4.9)

where the final Bianchi identity for F follows from the definition (4.6).

Keeping only terms linear in the fermions, the fermionic equations of motion
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read

γν
[(
∇ν ∓ 1

24Hνλργ
λρ − ∂νφ

)
ψ±µ ± 1

2Hνµ
λψ±λ

]
−
(
∇µ ∓ 1

8Hµνλγ
νλ
)
ρ±

= 1
16eφ

∑
n

(±)[(n+1)/2]γν /F
(B)
(n) γµψ

∓
ν ,(

∇µ ∓ 1
8Hµνλγ

νλ − 2∂µφ
)
ψµ± − γµ

(
∇µ ∓ 1

24Hµνλγ
νλ − ∂µφ

)
ρ±

= 1
16eφ

∑
n

(±)[(n+1)/2] /F
(B)
(n) ρ

∓,

(4.10)

The supersymmetry variations are parametrised by are pair of chiral

spinors ε± where, again, in the notation of [141], for type IIA, we have

ε = ε+ + ε− where γ(10)ε± = ∓ε±, (4.11)

while for type IIB we have the doublet

ε =

(
ε+

ε−

)
where γ(10)ε± = ε±. (4.12)

Again keeping only linear terms in the fermions field, the supersymmetry

transformations for the bosons read

δeaµ = ε̄+γaψ+
µ + ε̄−γaψ−µ ,

δBµν = 2ε̄+γ[µψ
+
ν] − 2ε̄−γ[µψ

−
ν],

δφ− 1
4δ log(−g) = −1

2 ε̄
+ρ+ − 1

2 ε̄
−ρ−,(

eB ∧ δA
)(n)

µ1...µn
= 1

2

(
e−φψ̄+

ν γµ1...µnγ
νε− − e−φε̄+γµ1...µnρ

−
)

∓ 1
2

(
e−φε̄+γνγµ1...µnψ

−
ν + e−φρ̄+γµ1...µnε

−
)
,

(4.13)

where eµ is an orthonormal frame for gµν and in the last equation the upper

sign refers to type IIA and the lower to type IIB. For the fermions one has

δψ±µ =
(
∇µ ∓ 1

8Hµνλγ
νλ
)
ε± + 1

16eφ
∑
n

(±)[(n+1)/2] /F
(B)
(n) γµε

∓,

δρ± = γµ
(
∇µ ∓ 1

24Hµνλγ
νλ − ∂µφ

)
ε±.

(4.14)
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4.2. Type II supergravity as O(9, 1)×O(1, 9)

generalised gravity

Let us now show how the dynamics and supersymmetry transformations of

type II supergravity theories are encoded by an O(9, 1)×O(1, 9) structure

with a compatible, torsion-free generalised connection. An outcome of this

will be a formulation of type II supergravity with manifest local O(9, 1) ×
O(1, 9) symmetry.

In the following we will consider the full ten-dimensional supergraviy

theory so that the relevant generalised structure is O(10, 10) × R+. How-

ever, one can equally well consider compactifications of theory of the form

R9−d,1 ×M
ds2

10 = ds2(R9−d,1) + ds2
d, (4.15)

where ds2(R9−d,1) is the flat metric on R9−d,1 and ds2
d is a general metric on

the d-dimensional manifold M . The relevant structure is then the O(d) ×
O(d) ⊂ O(d, d) × R+ generalised geometry on M . Below we will focus

on the O(10, 10) × R+ case. The compactification case follows essentially

identically, and the supersymmetry of such configurations will be examined

for d = 6 in chapter 7.

4.2.1. NS-NS and fermionic supergravity fields

From the discussion of section 3.3.1 we see that an O(9, 1) × O(1, 9) ⊂
O(10, 10) × R+ generalised structure is parametrised by a metric g of sig-

nature (9, 1), a two-form B patched as in (2.23) and a dilaton φ, that is, at

each point x ∈M

{g,B, φ} ∈ O(10, 10)

O(9, 1)×O(1, 9)
× R+. (4.16)

Thus it precisely captures the NS-NS bosonic fields of type II theories by

packaging them into the generalised metric and conformal factor (G,Φ). As

in [98], the infinitesimal bosonic symmetry transformation (2.27) is naturally

encoded as the Dorfman derivative by V = v + λ

δVG = LVG, δV Φ = LV Φ (4.17)
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and the algebra of these transformations is given by the Courant bracket.

The two parts of the generalised tangent space can be identified with the

momentum and the electric charge for the B-field, and these are the gen-

erators of the bosonic symmetries. This relation is more obvious for the

Ed(d)×R+ generalised geometry of chapters 5 and 6.

The type II fermionic degrees of freedom fall into spinor and vector-spinor

representations of Spin(9, 1)×Spin(1, 9)2. Let S(C+) and S(C−) denote the

Spin(9, 1) spinor bundles associated to the sub-bundles C± write γa and γā

for the corresponding gamma matrices. Since we are in ten dimensions, we

can further decompose into spinor bundles S±(C+) and S±(C−) of definite

chirality under γ(10).

The gravitino degrees of freedom then correspond to

ψ+
ā ∈ Γ(C− ⊗ S∓(C+)), ψ−a ∈ Γ(C+ ⊗ S+(C−)), (4.18)

where the upper sign on the chirality refers to type IIA and the lower to

type IIB. Note that the vector and spinor parts of the gravitinos transform

under different Spin(9, 1) groups. For the dilatino degrees of freedom one

has

ρ+ ∈ Γ(S±(C+)), ρ− ∈ Γ(S+(C−)), (4.19)

where again the upper and lower signs refer to IIA and IIB respectively.

Similarly the supersymmetry parameters are sections

ε+ ∈ Γ(S∓(C+)), ε− ∈ Γ(S+(C−)). (4.20)

In terms of the string spectrum these gravitino and dilatino representations

just correspond to the explicit left- and right-moving fermionic states of

the superstring and, in a supergravity context were discussed, for example,

in [142].

2Since the underlying manifold M is assumed to possess a spin structure, we are free to
promote O(9, 1)×O(1, 9) to Spin(9, 1)×Spin(1, 9). Here will ignore more complicated
extended spin structures that can arise in generalised geometry as described in [100].
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4.2.2. RR fields

As is known from studying the action of T-duality, the RR field strengths

transform as Spin(10, 10) spinors [32, 142, 143, 144]. Here, the patching3

A(i) = eΛ(ij) ∧A(j) + dΛ̂(ij) (4.21)

of A(i) on Ui ∩ Uj implies that the polyform F(i) = dA(i) is patched as

in (3.31), and hence, as generalised spinors,

F ∈ Γ(S±(1/2)), (4.22)

where the upper sign is for type IIA and the lower for type IIB. Furthermore,

we see that the RR field strengths F
(B)
(n) that appear in the supergravity (4.6)

are simply F expressed in a split frame as in (3.40)

F (B) = eB(i) ∧ F(i) = eB(i) ∧
∑
n

dA
(n−1)
(i) . (4.23)

Note that the additional gauge transformations dΛ̂ in (4.21) imply that A(i)

does not globally define a section of S±(1/2). This additional gauge symmetry

can be “geometrised” using Ed(d) generalised geometry, which described in

chapters 5 and 6. Since A(i) is still locally a generalised spinor on the patch

Ui we can perform the same operations on it as we do on F in the remainder

of this subsection.

Given the generalised metric structure, we can also write F in terms of

Spin(9, 1)×Spin(1, 9) representations. One has the decomposition Cliff(10, 10;R) '
Cliff(9, 1;R)⊗ Cliff(1, 9;R) with

ΓA =

γa ⊗ 1 for A = a

γ(10) ⊗ γāγ(10) for A = ā+ d
. (4.24)

and hence we can identify4

S(1/2) ' S(C+)⊗ S(C−). (4.25)

Using the spinor norm on S(C−) we can equally well view F ∈ Γ(S(1/2)) as

3Here Λ̂(ij) are a sum of even (odd) forms in type IIA (IIB).
4In fact S(p) ' S(C+)⊗S(C−) for any p, but here we focus on the case of interest p = 1

2

70



a map from sections of S(C−) to sections of S(C+). We denote the image

under this isomorphism as

F# : S(C−)→ S(C+). (4.26)

We have that F ∈ Γ(S(C+)⊗S(C−)) naturally has spin indices Fαᾱ, while

F# naturally has indices Fαᾱ. The isomorphism simply corresponds to low-

ering an index with the Cliff(9, 1;R) intertwiner C̃ᾱβ̄. The conjugate map,

F T# : S(C+)→ S(C−), is given by

F T# = (C̃F#C̃
−1)T , (4.27)

which corresponds to lowering the other index on Fαᾱ and taking the trans-

pose.

We now give the relations between the components of the Spin(d, d)×R+

spinor in all relevant frames. Note first that if the bases are aligned so that

e+ = e− = e then the Spin(9, 1)×Spin(1, 9) basis (3.77) is a split conformal

basis and we have a Spin(9, 1) ⊂ Spin(9, 1)× Spin(1, 9) structure. We can

then use the isomorphism Cliff(9, 1;R) ' Λ•T ∗M to write F (B,φ) as a spinor

bilinear

/F
(B,φ)

=
∑
n

1
n!F

(B,φ)
a1...anγ

a1...an . (4.28)

More generally if the frames are related by Lorentz transformations e±a =

Λ±ba ea and we write Λ± for the corresponding Spin(9, 1) transformations

then we can define F# explicitly as

F# = Λ+ /F
(B,φ)

(Λ−)−1, (4.29)

which concretely realises the isomorphism between F (B,φ) and F#.

This map can easily be inverted and so we can write the components of

F ∈ Γ(S(1/2)) in the coordinate frame as

F(i) = e−B(i) ∧ F (B) = e−φe−B(i) ∧ F (B,φ)

= e−φe−B(i) ∧
∑
n

[ 1

32(n!)
(−)[n/2] tr

(
γ(n)(Λ

+)−1F#Λ−
)]
.

(4.30)

This chain of equalities relates the components of F in all the frames we

have discussed.
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Finally, we note that the self-duality conditions satisfied by the RR field

strengths F ∈ Γ(S±(1/2)) become a chirality condition under the operator

Γ(−) defined in (3.82)

Γ(−)F = −F, (4.31)

as discussed in [118, 119].

4.2.3. Supersymmetry variations

We now show that the supersymmetry variations can be written in a simple,

locally Spin(9, 1)×Spin(1, 9) covariant form using the torsion-free compat-

ible connection D.

We start with the fermionic variations (4.14). Looking at the expres-

sions (3.107), we see that the uniquely determined spinor operators allow

us to write the supersymmetry variations compactly as

δψ+
ā = Dāε

+ + 1
16F#γāε

−,

δψ−a = Daε
− + 1

16F
T

# γaε
+,

δρ+ = γaDaε
+,

δρ− = γāDāε
−,

(4.32)

where we have also used the results from the previous section to add the

RR field strengths to the gravitino variations.

For the bosonic fields, we need the variation of a generic Spin(9, 1) ×
Spin(1, 9) frame (3.77). Note that this means defining the variation of a

pair of orthonormal bases {e+a} and {e−ā} whereas the conventional super-

symmetry variations (4.13) are given in terms of a single basis {ea}. The

only possibility, compatible with the Spin(9, 1)× Spin(1, 9) representations

of the fermions, is to take

δ̃Ê+
a = (δ log Φ)Ê+

a + (δΛ+
ab̄

)Ê−b̄,

δ̃Ê−ā = (δ log Φ)Ê−ā + (δΛ−āb)Ê
+b,

(4.33)

where
δΛ+

aā = ε̄+γaψ
+
ā + ε̄−γāψ

−
a ,

δΛ−aā = ε̄+γaψ
+
ā + ε̄−γāψ

−
a ,

(4.34)
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and

δ log Φ = −2δφ+ 1
2δ log(−g) = ε̄+ρ+ + ε̄−ρ−. (4.35)

Note that the variation of the basis (4.33) is by construction orthogonal

to the Spin(9, 1) × Spin(1, 9) action. This is because it is impossible to

construct an Spin(9, 1) × Spin(1, 9) tensor linear in ψ+
ā and ψ−a with two

indices of the same type, that is L+
ab or L−

āb̄
.

The corresponding variations of the frames ê± are

δ̃e+a
µ = ε̄+γµψ

+a + ε̄−γaψ−µ ,

δ̃e−āµ = ε̄+γāψ+
µ + ε̄−γµψ

−ā,
(4.36)

which both give

δ̃gµν = 2ε̄+γ(µψ
+
ν) + 2ε̄−γ(µψ

−
ν), (4.37)

as required, but, when setting the frames equal so e+a = ea and e−ā = eā,

differ by Lorentz transformations from the standard form (4.13)

δ̃e+a
µ = δe+a

µ −
(
ε̄+γaψ+b − ε̄+γbψ+a

)
e+
µb,

δ̃e−āµ = δe+ā
µ −

(
ε̄−γāψ−b̄ − ε̄−γ b̄ψ−ā

)
e−
µb̄
.

(4.38)

This can also be expressed in terms of the generalised metric GAB as

δGaā = δGāa = 2
(
ε̄+γaψ

+
ā + ε̄−γāψ

−
a

)
. (4.39)

The variation of the RR potential A can be written as a bispinor

1
16(δA#) =

(
γaε+ψ̄−a − ρ+ε̄−

)
∓
(
ψ+
ā ε̄
−γā + ε+ρ̄−

)
, (4.40)

where the upper sign is for type IIA and the lower for type IIB.

4.2.4. Equations of motion

Finally, we rewrite the supergravity equations of motion (4.9) and (4.10)

with local Spin(9, 1) × Spin(1, 9) covariance, using the generalised notions

of curvature obtained in section 3.3.3.

From the generalised Ricci tensor (3.113), we find that the equations of
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motion for g and B can be written as

R0

ab̄ + 1
16Φ−1

〈
F,Γab̄F

〉
= 0, (4.41)

where we have made use of the Mukai pairing defined in (3.33)5 to introduce

the RR fields in a Spin(9, 1)× Spin(1, 9) covariant manner.

The equation of motion for φ does not involve the RR fields, so it is simply

given by the generalised scalar curvature (3.114)

R = 0. (4.42)

Using definition (3.51) and equation (3.65) we can write the equation of

motion for the RR fields in the familiar form

1
2ΓADAF = dF = 0, (4.43)

where the first equality serves as a reminder that this definition of the

exterior derivative is fully covariant under Spin(d, d)× R+.

We also have the bosonic pseudo-action (4.5) which takes the simple form6

SB =
1

2κ2

∫ (
ΦR+ 1

4

〈
F,Γ(−)F

〉)
, (4.44)

using the density Φ. Note that the Mukai pairing is a top-form which can

be directly integrated.

The fermionic action (4.8) is given by

SF = − 1

2κ2

∫
2Φ
[
ψ̄+āγbDbψ

+
ā + ψ̄−aγ b̄Db̄ψ

−
a

+ 2ρ̄+Dāψ
+ā + 2ρ̄−Daψ

−a

− ρ̄+γaDaρ
+ − ρ̄−γāDāρ

−

− 1
8

(
ρ̄+F#ρ

− + ψ̄+
ā γ

aF#γ
āψ−a

)]
.

(4.45)

Varying this with respect to the fermionic fields leads to the generalised

5Note that
〈
F,Γab̄F

〉
∈ Γ(L̃⊗ C+ ⊗ C−) so Φ−1

〈
F,Γab̄F

〉
∈ Γ(C+ ⊗ C−)

6Up to integration by parts of the ∇2φ term
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geometry version of (4.10)

γbDbψ
+
ā −Dāρ

+ = + 1
16γ

bF#γāψ
−
b ,

γ b̄Db̄ψ
−
a −Daρ

− = + 1
16γ

b̄F T# γaψ
+
b̄
,

γaDaρ
+ −Dāψ+

ā = − 1
16F#ρ

−,

γāDāρ
− −Daψ−a = − 1

16F
T

# ρ+,

(4.46)

and it is straightforward to verify that by applying a supersymmetry vari-

ation (4.32) we recover the bosonic equations of motion (4.41)-(4.43).

We have thus rewritten all the supergravity equations from section 4.1

in terms of torsion free generalised connections and these expressions are

therefore manifestly covariant under local Spin(9, 1) × Spin(1, 9) transfor-

mations.
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5. Ed(d) ×R+ Generalised Geometry

We would now like to extend the generalised geometry developed thus far to

a geometry for eleven-dimensional supergravity, which will also include the

RR fields of type II theories when studied over a manifold of one dimension

less. In the previous chapters we saw that the generalised geometry for the

NS-NS sector of type II theories had an O(d, d) factor in its structure group.

This was reminiscent of the O(d, d) action on the moduli space of NS-NS

fields in compactifications on tori. The corresponding groups for eleven-

dimensional supergravity reductions are the exceptional groups Ed(d). We

are therefore led to consider the structure group Ed(d)×R+ as the natural

replacement for O(d, d) × R+ in this new geometry. As the exceptional

groups are well-understood only in dimensional splits of eleven-dimensional

supergravity, we aim to construct a geometry related to the internal sectors

of these, rather than taking on the full theory.

The Ed(d) generalised tangent space was first developed in [100] and in-

dependently in [101], where the exceptional Courant bracket was given for

the first time. Our discussion follows closely that in [2], which also includes

the R+ factor known as the “trombone symmetry” [145]. This allows one to

specify the isomorphism between the generalised tangent space and a sum of

vectors and forms. Physically, it is related to the “warp factor” of warped

supergravity reductions. The need for this extra factor in the context of

E7(7) geometries has previously been identified in [64, 104, 114].

5.1. Ed(d)×R+ generalised tangent space

Following closely the construction given in section 3.2, here we introduce

the generalised geometry versions of the tangent space, frame bundle, Lie

derivative, connections and torsion, now in the more subtle context of an

Ed(d)×R+ structure.
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5.1.1. Generalised bundles and frames

Generalised tangent space

We start by recalling the definition of the generalised tangent space for

Ed(d)×R+ generalised geometry [100, 101] and defining what is meant by

the “generalised structure”.

Let M be a d-dimensional spin manifold with d ≤ 7. The generalised

tangent space is isomorphic to a sum of tensor bundles

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M), (5.1)

where for d < 7 some of these terms will of course be absent. The iso-

morphism is not unique. The bundle is actually described using a specific

patching. If we write

V(i) = v(i) + ω(i) + σ(i) + τ(i)

∈ Γ(TUi ⊕ Λ2T ∗Ui ⊕ Λ5T ∗Ui ⊕ (T ∗Ui ⊗ Λ7T ∗Ui)),
(5.2)

for a section of E over the patch Ui, then

V(i) = edΛ(ij)+dΛ̃(ij)V(j), (5.3)

on the overlap Ui ∩ Uj where Λ(ij) and Λ̃(ij) are locally two- and five-forms

respectively. The exponentiated action is given by

v(i) = v(j),

ω(i) = ω(j) + iv(j)
dΛ(ij),

σ(i) = σ(j) + dΛ(ij) ∧ ω(j) + 1
2dΛ(ij) ∧ iv(j)

dΛ(ij) + iv(j)
dΛ̃(ij),

τ(i) = τ(j) + jdΛ(ij) ∧ σ(j) − jdΛ̃(ij) ∧ ω(j) + jdΛ(ij) ∧ iv(j)
dΛ̃(ij)

+ 1
2jdΛ(ij) ∧ dΛ(ij) ∧ ω(j) + 1

6jdΛ(ij) ∧ dΛ(ij) ∧ iv(j)
dΛ(ij),

(5.4)

where we are using the notation of (C.8). Technically this defines E as a

result of a series of extensions

0 −→ Λ2T ∗M −→ E′′ −→ TM −→ 0,

0 −→ Λ5T ∗M −→ E′ −→ E′′ −→ 0,

0 −→ T ∗M ⊗ Λ7T ∗M −→ E −→ E′ −→ 0.

(5.5)
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Note that while the v(i) are globally equivalent to a choice of vector, the

ω(i), σ(i) and τ(i) are not globally tensors.

Note that globally Λ(ij) and Λ̃(ij) formally define1 “connective structures

on gerbes” (for a review see, for example, [136]). This essentially means

there is a hierarchy of successive gauge transformations. For Λ(ij) on the

multiple intersections we have

Λ(ij) − Λ(ik) + Λ(jk) = dΛ(ijk) on Ui ∩ Uj ∩ Uk,

Λ(ijk) − Λ(ijl) + Λ(ikl) − Λ(jkl) = dΛ(ijkl) on Ui ∩ Uj ∩ Uk ∩ Ul.
(5.6)

For Λ̃, there is a similar set of structures with analogous relations to (5.6)

going down to a septuple intersection Ui1 ∩ · · · ∩ Ui7 .

The bundle E encodes all the topological information of the supergravity

background: the twisting of the tangent space TM as well as that of the

gerbes, which encode the topology of the supergravity form-field potentials.

Generalised Ed(d)×R+ structure bundle and split frames

In all dimensions2 d ≤ 7 the fibre Ex of the generalised vector bundle at

x ∈ M forms a representation space of Ed(d)×R+. These are listed in ta-

ble 5.1. As we discuss below, the explicit action is defined using the GL(d,R)

subgroup that acts on the component spaces TxM , Λ2T ∗xM , Λ5T ∗xM and

T ∗xM ⊗ Λ7T ∗xM . Note that without the additional R+ action, sections of

E would transform as tensors weighted by a power of detT ∗M . Thus it is

key to extend the action to Ed(d)×R+ in order to define E directly as the

extension (5.5).

Crucially, the patching defined in (5.3) is compatible with this Ed(d)×R+

action. This means that one can define a generalised structure bundle as

a sub-bundle of the frame bundle F for E. Let {ÊA} be a basis for Ex,

where the label A runs over the dimension n of the generalised tangent

space as listed in table 5.1. The frame bundle F formed from all such bases

is, by construction, a GL(n,R) principle bundle. We can then define the

generalised structure bundle as the natural Ed(d)×R+ principle sub-bundle

of F compatible with the patching (5.3) as follows.

1Note that again the gerbe structure actually requires quantised fluxes which are suitably
related to an integral cohomology classes (see e.g. [101]).

2In fact the d ≤ 2 cases essentially reduce to normal Riemannian geometry, so in what
follows we will always take d ≥ 3.
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Ed(d) group Ed(d)×R+ rep.

E7(7) 561

E6(6) 27′1
E5(5) ' Spin(5, 5) 16c1
E4(4) ' SL(5,R) 10′1
E3(3) ' SL(3,R)× SL(2,R) (3′,2)1

Table 5.1.: Generalised tangent space representations where the subscript
denotes the R+ weight

Let êa be a basis for TxM and ea the dual basis for T ∗xM . We can use

these to construct an explicit basis of Ex as

{ÊA} = {êa} ∪ {eab} ∪ {ea1...a5} ∪ {ea,a1...a7}, (5.7)

where ea1...ap = ea1 ∧ · · · ∧ eap and ea,a1...a7 = ea ⊗ ea1 ∧ · · · ∧ ea7 . A generic

section of E at x ∈ Ui takes the form

V = V AÊA = vaêa + 1
2ωabe

ab + 1
5!σa1...a5e

a1...a5 + 1
7!τa,a1...a7e

a,a1...a7 . (5.8)

As usual, a choice of coordinates on Ui defines a particular such basis

where {ÊA} = {∂/∂xm} ∪ {dxm ∧ dxn} + . . . . We will denote the com-

ponents of V in such a coordinate frame by an index M , namely VM =

(vm, ωmn, σm1...m5 , τm,m1...m7).

We then define a Ed(d)×R+ basis as one related to (5.7) by an Ed(d)×R+

transformation

V A 7→ V ′A = MA
BV

B, ÊA 7→ Ê′A = ÊB(M−1)BA, (5.9)

where the explicit action of M is defined in appendix C.1. The action has a

GL(d,R) subgroup that acts in a conventional way on the bases êa, e
ab etc,

and includes the patching transformation (5.3)3.

The fact that the definition of the Ed(d)×R+ action is compatible with the

3In analogy to the definitions for O(d, d)×R+ generalised geometry from chapter 3, we
could equivalently define an Ed(d)×R+ basis using invariants constructed from sections
of E. For example, in d = 7 there is a natural symplectic pairing and symmetric quartic
invariant that can be used to define E7(7) (in the context of generalised geometry
see [101]). However, these invariants differ in different dimension d so it is more useful
here to define Ed(d) by an explicit action.
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patching means that we can then define the generalised Ed(d)×R+ structure

bundle F̃ as a sub-bundle of the frame bundle for E given by

F̃ =
{

(x, {ÊA}) : x ∈M , and {ÊA} is an Ed(d)×R+ basis of Ex
}
. (5.10)

By construction, this is a principle bundle with fibre Ed(d)×R+. The bundle

F̃ is the direct analogue of the frame bundle of conventional differential

geometry, with Ed(d)×R+ playing the role of GL(d,R).

A special class of Ed(d)×R+ frames are those defined by a splitting of the

generalised tangent space E, that is, an isomorphism of the form (5.1). Let

A and Ã be three- and six-form (gerbe) connections patched on Ui ∩ Uj by

A(i) = A(j) + dΛ(ij),

Ã(i) = Ã(j) + dΛ̃(ij) − 1
2dΛ(ij) ∧A(j).

(5.11)

Note that from these one can construct the globally defined field strengths

F = dA(i),

F̃ = dÃ(i) − 1
2A(i) ∧ F.

(5.12)

Given a generic basis {êa} for TM with {ea} the dual basis on T ∗M and a

scalar function ∆, we define a conformal split frame {ÊA} for E by

Êa = e∆
(
êa + iêaA+ iêaÃ+ 1

2A ∧ iêaA

+ jA ∧ iêaÃ+ 1
6jA ∧A ∧ iêaA

)
,

Êab = e∆
(
eab +A ∧ eab − jÃ ∧ eab + 1

2jA ∧A ∧ e
ab
)
,

Êa1...a5 = e∆ (ea1...a5 + jA ∧ ea1...a5) ,

Êa,a1...a7 = e∆ea,a1...a7 ,

(5.13)

while a split frame has the same form but with ∆ = 0. To see that A and

Ã define an isomorphism (5.1) note that, in the conformal split frame,

V (A,Ã,∆) = e−∆e−A(i)−Ã(i)V(i)

= vaêa + 1
2ωabe

ab + 1
5!σa1...a5e

a1...a5 + 1
7!τa,a1...a7e

a,a1...a7

∈ Γ(TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M)),

(5.14)
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since the patching implies e−A(i)−Ã(i)V(i) = e−A(j)−Ã(j)V(j) on Ui ∩ Uj .
The class of split frames defines a sub-bundle of F̃

Psplit =
{

(x, {ÊA}) : x ∈M , and {ÊA} is split frame
}
⊂ F̃ . (5.15)

Split frames are related by transformations (5.9) where M takes the form

M = ea+ãm with m ∈ GL(d,R). The action of a + ã shifts A 7→ A + a

and Ã 7→ Ã + ã. This forms a parabolic subgroup Gsplit = GL(d,R) n
(a+ ã)-shifts ⊂ Ed(d)×R+ where (a+ ã)-shifts is the nilpotent group of

order two formed of elements M = ea+ã. Hence Psplit is a Gsplit princi-

ple sub-bundle of F̃ , that is a Gsplit-structure. This reflects the fact that

the patching elements in the definition of E lie only in this subgroup of

Ed(d)×R+.

Generalised tensors

Generalised tensors are simply sections of vector bundles constructed from

the generalised structure bundle using different representations of Ed(d)×R+.

We have already discussed the generalised tangent space E. There are four

other vector bundles which will be of particular importance in the following.

The relevant representations are summarised in table 5.2.

dimension E∗ ad F̃ ⊂ E ⊗ E∗ N ⊂ S2E K ⊂ E∗ ⊗ ad F̃

7 56−1 1330 + 10 133+2 912−1
6 27−1 780 + 10 27′+2 351′−1
5 16c−1 450 + 10 10+2 144c−1
4 10−1 240 + 10 5′+2 40−1 + 15′−1
3 (3,2)−1 (8,1)0 + (1,3)0 + 10 (3′,1)+2 (3′,2)−1 + (6,2)−1

Table 5.2.: Some generalised tensor bundles

The first is the dual of the generalised tangent space

E∗ ' T ∗M ⊕ Λ2TM ⊕ Λ5TM ⊕ (TM ⊗ Λ7TM). (5.16)

Given a basis {ÊA} for E we have a dual basis {EA} on E∗ and sections of

E∗ can be written as U = UAE
A.

Next we then have the adjoint bundle ad F̃ associated with the Ed(d)×R+
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principle bundle F̃ (see (C.3))

ad F̃ ' R⊕ (TM ⊗ T ∗M)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM. (5.17)

By construction ad F̃ ⊂ E ⊗ E∗ and hence we can write sections as R =

RABÊA ⊗ EB. We write the projection on the adjoint representation as

⊗ad : E∗ ⊗ E → ad F̃ . (5.18)

It is given explicitly in (C.14).

We also consider the sub-bundle of the symmetric product of two gener-

alised tangent bundles N ⊂ S2E,

N ' T ∗M ⊕ Λ4T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M)

⊕ (Λ3T ∗M ⊗ Λ7T ∗M)⊕ (Λ6T ∗M ⊗ Λ7T ∗M).
(5.19)

We can write sections as S = SABÊA ⊗ ÊB with the projection

⊗N : E ⊗ E → N. (5.20)

It is given explicitly in (C.17).

Finally, we also need the higher dimensional representationK ⊂ E∗⊗ad F̃

listed in the last column of table 5.2. Decomposing under GL(d,R) one has

K ' T ∗M ⊕ S2TM ⊕ Λ2TM ⊕ (Λ2T ∗M ⊗ TM)0 ⊕ (Λ3TM ⊗ T ∗M)0

⊕ Λ4T ∗M ⊕ (Λ4TM ⊗ TM)0 ⊕ Λ5TM ⊕ (Λ2TM ⊗ Λ6TM)0

⊕ Λ7T ∗M ⊕ (TM ⊗ Λ7TM)⊕ (Λ7TM ⊗ Λ7TM)

⊕ (S2T ∗M ⊗ Λ7TM)⊕ (Λ4TM ⊗ Λ7TM),

(5.21)

where, in fact, the Λ5TM term is absent when d = 5. Note also that the

zero subscripts are defined such that

amn
n = 0, if a ∈ Γ((Λ2T ∗M ⊗ TM)0),

amnpp = 0, if a ∈ Γ((Λ3TM ⊗ T ∗M)0),

a[m1m2m3m4,m5] = 0, if a ∈ Γ((Λ4TM ⊗ TM)0),

am[n1,m2...,n7] = 0, if a ∈ Γ((Λ2TM ⊗ Λ6TM)0).

(5.22)
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Since K ⊂ E∗ ⊗ ad F̃ we can write sections as T = T B
A CE

A ⊗ ÊB ⊗ EC .

It is interesting to note that, up to symmetries of the Ed Dynkin diagram,

the Dynkin labels of the representations E and N follow patterns as d varies.

For each value of d, the Dynkin label for E can be represented on the Dynkin

diagram as

while N has the label

5.1.2. The Dorfman derivative and Courant bracket

As in O(d, d) × R+ generalised geometry, we find that our construction

admits a generalisation of the Lie derivative which encodes the bosonic

symmetries of the supergravity. Given V = v + ω + σ + τ ∈ Γ(E), one can

define an operator LV acting on any generalised tensor, which combines the

action of an infinitesimal diffeomorphism generated by v and A- and Ã-field

gauge transformations generated by ω and σ. Formally this gives E the

structure of a “Leibniz algebroid” [104].

Acting on V ′ = v′+ω′+ σ′+ τ ′ ∈ Γ(E), one defines the Dorfman deriva-

tive4 or “generalised Lie derivative”

LV V
′ = Lvv′ +

(
Lvω′ − iv′dω

)
+
(
Lvσ′ − iv′dσ − ω′ ∧ dω

)
+
(
Lvτ ′ − jσ′ ∧ dω − jω′ ∧ dσ

)
.

(5.23)

Defining the action on a function f as simply LV f = Lvf , one can then

extend the notion of Dorfman derivative to a derivative on the space of

Ed(d)×R+ tensors using the Leibniz property.

To see this, first note that we can rewrite (5.23) in a more Ed(d)×R+

covariant way, in analogy with the corresponding expressions for the con-

ventional Lie derivative (2.5) and the Dorfman derivative in O(d, d) × R+

4We follow the nomenclature of O(d, d) × R+ generalised geometry, as this directly
corresponds to the definition given there.
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generalised geometry (3.45). One can embed the action of the partial deriva-

tive operator via the map T ∗M → E∗ defined by the dual of the exact se-

quences (5.5). In coordinate indices M , as viewed as mapping to a section

of E∗, one defines

∂M =

∂m for M = m

0 otherwise
. (5.24)

Such an embedding has the property that under the projection onto N∗ we

have

∂f ⊗N∗ ∂g = 0, (5.25)

for arbitrary functions f, g. We will comment on this observation in sec-

tion 5.1.4.

One can then rewrite (5.23) in terms of generalised objects as

LV V
′M = V N∂NV

′M − (∂ ⊗ad V )M NV
′N , (5.26)

where ⊗ad denotes the projection onto ad F̃ given in (5.18). Concretely,

from (C.14) we have

∂ ⊗ad V = r + a+ ã, (5.27)

where rmn = ∂nv
m, a = dω and ã = dσ. We see that the action actually lies

in the adjoint of the Gsplit ⊂ Ed(d)×R+ group. This form of the Dorfman

derivative can then be naturally extended to an arbitrary Ed(d)×R+ tensor

by taking that appropriate adjoint action on the Ed(d)×R+ representation.

Note that we can also define a bracket by taking the antisymmetrisation

of the Dorfman derivative. This was originally given in [101] where it was

called the “exceptional Courant bracket”, and re-derived in [104]. It is given

by

q
V, V ′

y
= 1

2

(
LV V

′ − LV ′V
)

= [v, v′] + Lvω′ − Lv′ω − 1
2d
(
ivω
′ − iv′ω

)
+ Lvσ′ − Lv′σ − 1

2d
(
ivσ
′ − iv′σ

)
+ 1

2ω ∧ dω′ − 1
2ω
′ ∧ dω

+ 1
2Lvτ

′ − 1
2Lv′τ + 1

2

(
jω ∧ dσ′ − jσ′ ∧ dω

)
− 1

2

(
jω′ ∧ dσ − jσ ∧ dω′

)
.

(5.28)

Note that the group generated by closed A and Ã shifts is a semi-direct
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product Ω3
cl(M)nΩ6

cl(M) and corresponds to the symmetry group of gauge

transformations in the supergravity. The full automorphism group of the

exceptional Courant bracket is then the local symmetry group of the super-

gravity Gsugra = Diff(M) n (Ω3
cl(M) n Ω6

cl(M)).

For U, V,W ∈ Γ(E), the Dorfman derivative also satisfies the Leibniz

identity

LU (LVW )− LV (LUW ) = LLUVW, (5.29)

and hence E is a “Leibniz algebroid”. On first inspection, one might ex-

pect that the bracket of JU, V K should appear on the RHS. However, the

statement is correct since one can show that

LJU,V KW = LLUVW, (5.30)

so that the RHS is automatically antisymmetric in U and V .

5.1.3. Generalised Ed(d)×R+ connections and torsion

We now turn to the definitions of generalised connections and torsion. Def-

initions of derivative operators in E7(7) geometries of a similar type have

been considered in [64, 103]. Here, for the Ed(d)×R+ case, we follow the

same procedure as in chapter 3.

Generalised connections

We first define generalised connections that are compatible with the Ed(d)×R+

structure. These are first-order linear differential operators D, such that,

given W ∈ E, in frame indices,

DMW
A = ∂MW

A + ΩM
A
BW

B. (5.31)

where Ω is a section of E∗ (denoted by the M index) taking values in

Ed(d)×R+ (denoted by the A and B frame indices), and as such, the action

of D then extends naturally to any generalised Ed(d)×R+ tensor.

Given a conventional connection ∇ and a conformal split frame of the

form (5.13), one can construct the corresponding generalised connection as

follows. Given the isomorphism (5.14), by construction vaêa ∈ Γ(TM),
1
2ωabe

ab ∈ Γ(Λ2T ∗M) etc and hence ∇mva and ∇mωab are well-defined.
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The generalised connection defined by ∇ lifted to an action on E by the

conformal split frame is then simply

D∇MV =


(∇mva)Êa + 1

2(∇mωab)Êab

+ 1
5!(∇mσa1...a5)Êa1...a5 + 1

7!(∇mτa,a1...a7)Êa,a1...a7
for M = m,

0 otherwise.

(5.32)

Generalised torsion

We define the generalised torsion T of a generalised connection D in direct

analogy to the conventional definition, as we did for the O(d, d)×R+ case.

Let α be any generalised Ed(d)×R+ tensor and let LDV α be the Dorfman

derivative (5.26) with ∂ replaced by D. The generalised torsion is a linear

map T : Γ(E)→ Γ(ad(F̃ )) defined by

T (V ) · α = LDV α− LV α, (5.33)

for any V ∈ Γ(E) and where T (V ) acts via the adjoint representation on α.

Let {ÊA} be an Ed(d)×R+ frame for E and {EA} be the dual frame for E∗

satisfying EA(ÊB) = δAB. We then have the explicit expression

T (V ) = V C
[
Ω A
C B − Ω A

B C − EA(LÊC ÊB)
]
ÊA ⊗ad E

B. (5.34)

Note that we are projecting onto the adjoint representation on the A and

B indices. Note also that in a coordinate frame the last term vanishes.

Viewed as a generalised Ed(d)×R+ tensor we have T ∈ Γ(E∗ ⊗ ad F̃ ).

However, the form of the Dorfman derivative means that fewer components

actually survive and we find

T ∈ Γ(K ⊕ E∗), (5.35)

where K was defined in table 5.2. Note that these representations are ex-

actly the same ones that appear in the embedding tensor formulation of

gauged supergravities [126], including gaugings [127] of the so-called “trom-

bone” symmetry [145]. The relation between the embedding tensor and the

generalised torsion can be made concrete by examining identity structures

on the generalised tangent space [2], but we do not give further details here.
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As an example, we can calculate the torsion of the generalised connection

D∇ defined by a conventional connection ∇ and a conformal split frame as

given in (5.32). Assuming ∇ is torsion-free we find

T (V ) = e∆
(
−ivd∆ + v ⊗ d∆− ivF + d∆ ∧ ω − ivF̃ + ω ∧ F + d∆ ∧ σ

)
,

(5.36)

where we are using the isomorphism (5.17), and F and F̃ are the (globally

defined) field strengths of the potentials A and Ã given by (5.12).

5.1.4. The “section condition”, Jacobi identity and the

absence of generalised curvature

Restricting our analysis to d ≤ 6, we find that the bundle N given in (5.19)

measures the failure of the generalised tangent bundle to satisfy the proper-

ties of a Lie algebroid. This follows from the observation that the difference

between the Dorfman derivative and the exceptional Courant bracket (that

is, the symmetric part of the Dorfman derivative), for V, V ′ ∈ Γ(E), is

precisely given by5

LV V
′−

q
V, V ′

y
= 1

2d
(
ivω
′ + iv′ω − ivσ′ − iv′σ + ω ∧ ω′

)
= ∂⊗E

(
V ⊗N V ′

)
,

(5.37)

where the last equality stresses the Ed(d) × R+ covariant form of the exact

term. Therefore, while the Dorfman derivative satisfies a sort of Jacobi

identity via the Leibniz identity (5.29), the Jacobiator of the exceptional

Courant bracket, like that of the O(d, d) Courant bracket, does not vanish

in general. In fact, it can be shown that

Jac(U, V,W ) = JJU, V K ,W K + c.p. = 1
3∂ ⊗E (JU, V K⊗N W + c.p.) , (5.38)

where W ∈ Γ(E) and c.p. denotes cyclic permutations in U, V and W . We

see that both the failure of the exceptional Courant bracket to be Jacobi

and the Dorfman derivative to be antisymmetric is measured by an exact

term given by the ⊗N projection. The proof is essentially the same as the

one for the O(d, d) case, see for example [82], section 3.26.

5For d ≥ 7 the RHS can no longer be written as a derivative of an object built from U
and V in an Ed(d) × R+ covariant way. Similar complications occur in the discussion
of the curvature below. This is the reason for the restriction to d ≤ 6 in this section.

6Note that N ' R in the O(d, d) case.
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Similarly, and as was the case with O(d, d)×R+ generalised connections,

one finds that the naive definition of generalised curvature [DU , DV ]W −
DJU,V KW is not a tensor and its failure to be covariant is measured by the

projection of the first two arguments to N . Explicitly, taking U → fU ,

V → gV and W → hW for some scalar functions f, g, h, we obtain

[DfU , DgV ]hW −DJfU,gV KhW

= fgh
(
[DU , DV ]W −DJU,V KW

)
− 1

2hD(f∂g−g∂f)⊗E(U⊗NV )W.
(5.39)

Note, however, that it is still possible to define analogues of the Ricci tensor

and scalar when there is additional structure on the generalised tangent

space, as we will see in section 5.2.3.

Finally, we note that from the point of view of “double field theory”-like

geometries [61, 109, 112, 114, 115], the equation

∂f ⊗N∗ ∂g = 0, (5.40)

for any functions f and g acquires a special interpretation. In these theo-

ries, one starts by enlarging the spacetime manifold so that its dimension

matches that of the generalised tangent space. The partial derivative ∂Mf

is then generically non-zero for all M . However, the corresponding Dorfman

derivative does not then satisfy the Leibniz property, nor is the action for

the generalised metric invariant. One must instead impose a “section condi-

tion” or “strong constraint”. In the original O(d, d) double field theory the

condition takes the form (∂Af)(∂Ag) = 0. It implies that, in fact, the fields

only depend on half the coordinates [111]. For exceptional geometries, the

d = 4 case was thoroughly analysed in [115], and is given by (5.40). Again

it implies that the fields depend on only d of the coordinates.

It can be shown that satisfying (5.40) always implies the Leibniz property

for the Dorfman derivative. Thus it gives the section condition in general

dimension. In generalised geometry it is satisfied identically by taking ∂M

of the form (5.24). However given the Ed(d)×R+ covariant form of the

Dorfman derivative (5.26), any subspace of E∗ in the same orbit under

Ed(d)×R+ will also satisfy the Leibniz condition. Note further that any

such subspace, like T ∗, is invariant under an action of the parabolic subgroup

Gsplit.
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5.2. Hd structures and torsion-free connections

We now turn to the construction of the analogue of the Levi–Civita connec-

tion by considering additional structure on the generalised tangent space.

Again, this closely follows the constructions in O(d, d) × R+ generalised

geometry from chapter 3.

We consider Hd structures on E where Hd is the maximally compact-

subgroup of Ed(d). These, or rather their double covers7 H̃d are listed in

table 5.3. We will then be interested in generalised connections D that pre-

serve the Hd structure. We find it is always possible to construct torsion-free

connections of this type but they are not unique. Nonetheless we show that,

using the Hd structure, one can construct unique projections of D, and that

these can be used to define analogues of the Ricci tensor and scalar curva-

tures with a local Hd symmetry.

Ed(d) group H̃d group adP⊥ = ad F̃ / adP

E7(7) SU(8) 35 + 3̄5 + 1

E6(6) Sp(8) 42 + 1

E5(5) ' Spin(5, 5) Spin(5)× Spin(5) (5,5) + (1,1)

E4(4) ' SL(5,R) Spin(5) 14 + 1

E3(3) ' SL(3,R))× SL(2,R) Spin(3)× Spin(2) (5,1) + (1,2) + (1,1)

Table 5.3.: Double covers of the maximal compact subgroups of Ed(d) and

Hd representations of the coset bundle

5.2.1. Hd structures and the generalised metric

In Ed(d)×R+ generalised geometry, the analogue of a metric structure is an

Hd structure, i.e. a principal sub-bundle P , with fibre Hd , of the generalised

structure bundle F̃ . The choice of such a structure is parametrised, at each

point on the manifold, by an element of the coset (Ed(d)×R+)/Hd . The

corresponding representations are listed in table 5.3. Note that there is

always a singlet corresponding to the R+ factor.

7We give the double covers of the maximally compact group, since we will be interested
in the analogues of spinor representations. A necessary and sufficient condition for the
existence of the double cover is the vanishing of the 2nd Stiefel-Whitney class of the
generalised tangent bundle [100]. As the underlying manifold is spin by assumption,
this is automatically satisfied.
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One can construct elements of P concretely, that is, identify the analogues

of “orthonormal” frames, in the following way. Given an Hd structure, it is

always possible to put the Hd frame in a conformal split form, namely,

Êa = e∆
(
êa + iêaA+ iêaÃ+ 1

2A ∧ iêaA

+ jA ∧ iêaÃ+ 1
6jA ∧A ∧ iêaA

)
,

Êab = e∆
(
eab +A ∧ eab − jÃ ∧ eab + 1

2jA ∧A ∧ e
ab
)
,

Êa1...a5 = e∆ (ea1...a5 + jA ∧ ea1...a5) ,

Êa,a1...a7 = e∆ea,a1...a7 .

(5.41)

Any other frame is then related by an Hd transformation of the form given

in appendix C.2. Concretely given V = V AÊA ∈ Γ(E) expanded in such a

frame, different frames are related by

V A 7→ V ′A = HA
BV

B, ÊA 7→ Ê′A = ÊB(H−1)BA, (5.42)

where H is defined in (C.22). Note that the O(d) ⊂ Hd action simply

rotates the êa basis, defining a set of orthonormal frames for a conventional

metric g. It also keeps the frame in the conformal split form. Thus the set

of conformal split Hd frames actually forms an O(d) structure on E, that is

(P ∩ Psplit) ⊂ F̃ with fibre O(d). (5.43)

One can also define the generalised metric acting on V ∈ Γ(E) as

G(V, V ) = |v|2 + |ω|2 + |σ|2 + |τ |2, (5.44)

where |v|2 = vav
a, |ω|2 = 1

2!ωabω
ab, |σ|2 = 1

5!σa1...a5σ
a1...a5 and |τ |2 =

1
7!τa,a1...a7τ

a,a1...a7 evaluated in an Hd frame and indices are contracted us-

ing the flat frame metric δab (as used to define the Hd subgroup in ap-

pendix C.2). Since, by definition, this is independent of the choice of Hd

frame, it can be evaluated in the conformal split representative (5.41). Hence

one sees explicitly that the metric is defined by the fields g, A, Ã and ∆

that determine the coset element.

Note that the Hd structure embeds as Hd ⊂ Ed(d) ⊂ Ed(d)×R+. This mir-

rors the chain of embeddings in Riemannian geometry SO(d) ⊂ SL(d,R) ⊂
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GL(d,R) which allows one to define a detT ∗M density that is SO(d) in-

variant,
√
g. Likewise, here we can define a density that is Hd (and Ed(d))

invariant, corresponding to the choice of R+ factor which, in terms of the

conformal split frame, is given by

volG =
√
g e(9−d)∆, (5.45)

as can be seen from appendix C.1.1. This can also be defined as the deter-

minant of G to a suitable power.

5.2.2. Torsion-free, compatible connections

A generalised connection D is compatible with the Hd structure P ⊂ F̃ if

DG = 0, (5.46)

or, equivalently, if the derivative acts only in the Hd sub-bundle. In this

subsection we will show, in analogy to the construction of the Levi–Civita

connection, that exactly as for the O(d, d)× R+ geometry

Given an Hd structure P ⊂ F̃ there always exists a torsion-free,

compatible generalised connection D. However, it is not unique.

We construct the compatible connection explicitly by working in the con-

formal split Hd frame (5.41). However the connection is Hd covariant, so

the form in any another frame simply follows from an Hd transformation.

Let ∇ be the Levi–Civita connection for the metric g. Via the conformal

split frame, we can lift this connection to a generalised connection D∇ as

in (5.32). Since∇ is compatible with the O(d) ⊂ Hd subgroup, it necessarily

gives rise to an Hd -compatible connection. However, the generalised torsion

of D∇ is given by equation (5.36), and thus D∇ is not generically torsion-

free.

To construct a torsion-free compatible connection we simply modify D∇.

A generic generalised connection D can always be written as

DMW
A = D∇MW

A + ΣM
A
BW

B. (5.47)
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If D is compatible with the Hd structure then

Σ ∈ Γ(E∗ ⊗ adP ), (5.48)

that is, it is a generalised covector taking values in the adjoint of Hd . The

problem is then to find a suitable Σ such that the torsion of D vanishes.

Fortunately, decomposing under Hd one finds that all the representations

that appear in the torsion are already contained in Σ. Thus, as in the

O(d, d)×R+ case, a solution always exists, but is not unique8. The relevant

representations are listed in table 5.4. As Hd tensor bundles one has

E∗ ⊗ adP ' (K ⊕ E∗)⊕ U, (5.49)

so that the torsion T ∈ Γ(K ⊕ E∗) and the unconstrained part of Σ is a

section of U .

dimension K ⊕ E∗ U ' (E∗ ⊗ adP )/(K ⊕ E∗)
7 28 + 2̄8 + 36 + 3̄6 + 420 + ¯420 1280 + ¯1280
6 27 + 36 + 315 594
5 (4,4) + (4,4) + (16,4) + (4,16) (20,4) + (4,20)
4 1 + 5 + 10 + 14 + 35′ 35
3 (1,2) + (3,2) + (3,2) + (5,2) -

Table 5.4.: Components of the connection Σ that are constrained by the
torsion, T , and the unconstrained ones, U , as Hd representations

The solution for Σ can be written very explicitly as follows. Contracting

with V ∈ Γ(E) so Σ(V ) ∈ adP and using the basis for the adjoint of Hd

given in (C.20) and (C.21) we have

Σ(V )ab = e∆
(

2
(

7−d
d−1

)
v[a∂b]∆ + 1

4!ωcdF
cd
ab + 1

7!σc1...c5F̃
c1...c5

ab + C(V )ab

)
,

Σ(V )abc = e∆
(

6
(d−1)(d−2)(d∆ ∧ ω)abc + 1

4v
dFdabc + C(V )abc

)
,

Σ(V )a1...a6 = e∆
(

1
7v

bF̃ba1...a6 + C(V )a1...a6

)
,

(5.50)

8In d = 3 all the components of Σ are contained in the torsion representations, E∗ ⊗
adP ' K ⊕ E∗, and so, in that particular case, the generalised connection is in fact
completely determined.
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where the ambiguous part of the connection C ∈ Γ(E∗ ⊗ adP ) projects to

zero under the map to the torsion representation K ⊕ E∗, that is

C ∈ Γ(U). (5.51)

Using the two possible embeddings of H̃d in Cliff(d,R) given in (C.26), we

can thus write the full connection as

Da = e∆
(
∇a + 1

2

(
7−d
d−1

)
(∂b∆)γa

b ± 1
2

1
4!Fab1b2b3γ

b1b2b3 − 1
2

1
7! F̃ab1...b6γ

b1...b6 + /Ca

)
,

Da1a2 = e∆
(

1
4

2!
4!F

a1a2
b1b2γ

b1b2 ± 3
(d−1)(d−2)(∂b∆)γa1a2b + /C

a1a2
)
,

Da1...a5 = e∆
(

1
4

5!
7! F̃

a1...a5
b1b2γ

b1b2 + /C
a1...a5

)
,

Da,a1...a7 = e∆
(
/C
a,a1...a7

)
,

(5.52)

where ± corresponds to the choice of embedding and

/Cm = 1
2

(
1
2!Cm,abγ

ab ± 1
3!Cm,a1a2a3γ

a1a2a3 − 1
6!Cm,a1...a6γ

a1...a6

)
,

/C
m1m2 = 1

2

(
1
2!C

m1m2
abγ

ab ± 1
3!C

m1m2
a1a2a3γ

a1a2a3 − 1
6!C

m1m2
a1...a6γ

a1...a6

)
,

etc.

(5.53)

is the embedding of the ambiguous part of the connection.

5.2.3. Unique operators and generalised Hd curvatures

We now turn to the construction of unique operators and curvatures from

the torsion-free and H̃d -compatible connection D constructed in the pre-

vious section. We give a fairly abstract discussion of the overall structure

of these operators in this section. However, the entire construction can

be made very concrete. In chapter 6 we will present explicit expressions for

these unique operators and curvatures in terms of the SO(d) decompositions

of the H̃d representations involved.

Given a bundle X transforming as some representation of H̃d , we define

the map

QX : U ⊗X −→ E∗ ⊗X, (5.54)

via the embedding U ⊂ E∗⊗ adP and the adjoint action of adP on X. We
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then have the projection

PX : E∗ ⊗X −→ E∗ ⊗X
ImQX

. (5.55)

Recall that the ambiguous part C of the connection D is a section of U ,

which acts on X via the map QX . If α ∈ Γ(X), then, by construction,

PX(D ⊗ α) is uniquely defined, independent of C.

We can construct explicit examples of such operators as follows. Consider

two real H̃d bundles S and J , which we refer to as the “spinor” bundle and

the “gravitino” bundle respectively, since the supersymmetry parameter and

the gravitino field in supergravity are sections of them. The relevant H̃d

representations are listed in table 5.5. Note that the spinor representation

H̃d S J

SU (8) 8 + 8̄ 56 + 5̄6
USp(8) 8 48
USp(4)× USp(4) (4,1) + (1,4) (4,5) + (5,4)
USp(4) 4 16
SU (2)× U(1) 21 + 2−1 41 + 4−1 + 23 + 2−3

Table 5.5.: Spinor and gravitino representations in each dimension

is simply the Cliff(d,R) spinor representation using the embedding (C.26).

One finds that under the projection PX we have9

PS(E∗ ⊗ S) ' S ⊕ J,

PJ(E∗ ⊗ J) ' S ⊕ J.
(5.56)

The details of the group-theoretical proof of this can be found in appendix D.

Therefore, for any ε ∈ Γ(S) and ψ ∈ Γ(J), one has that the following are

unique for any torsion-free connection

D ⊗J ε, D ⊗S ε,

D ⊗J ψ, D ⊗S ψ,
(5.57)

where ⊗X′ denotes the projection of PX onto the X ′ bundle.

9Note that there is an exception for d = 3 since, as was previously mentioned, in that
case the entire metric compatible, torsion-free connection is uniquely determined, and
so PX is just the identity map and PX(E∗ ⊗X) = E∗ ⊗X for any bundle X.
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One can show that the first two expressions encode the supersymmetry

variation of the internal and external gravitino respectively, while the latter

two are related to the gravitino equation of motion.

We would now like to define measures of generalised curvature. As was

mentioned in section 5.1.4, the natural definition of a Riemann curvature

does not result in a tensor. Nonetheless, for a torsion-free, H̃d -compatible

connection D there does exist a generalised Ricci tensor RAB, and it is a

section of the bundle

adP⊥ = ad F̃ / adP ⊂ E∗ ⊗ E∗, (5.58)

where the last relation follows because, as representations of Hd , E ' E∗.

It is not immediately apparent that we can make such a definition, but RAB

can in fact be constructed from compositions of the unique operators (5.57)

as
D ⊗J (D ⊗J ε) +D ⊗J (D ⊗S ε) = R0 · ε,

D ⊗S (D ⊗J ε) +D ⊗S (D ⊗S ε) = Rε,
(5.59)

where R and R0
AB provide the scalar and non-scalar parts of RAB respec-

tively10. The existence of expressions of this type is a non-trivial statement.

By computing in the split frame, it can be shown that the LHS is linear

in ε, and since ε and the LHS are manifestly covariant, these expressions

define a tensor. We will write the components explicitly in section 6.4, equa-

tion (6.49). This calculation further provides the non-trivial result that RAB

is restricted to be a section of adP⊥, rather than a more general section

of (S ⊗ J) ⊕ R. In the context of supergravity, this calculation exactly

corresponds to the closure of the supersymmetry algebra on the fermionic

equations of motion. Finally, since it is built from unique operators, the

generalised curvature is automatically unique for a torsion-free compatible

connection.

The expressions (5.59) can be written with a different sequence of pro-

jections. This helps elucidate the nature of the curvature in terms of cer-

tain second-order differential operators. In conventional differential geome-

try the commutator of two connections [∇m,∇n] has no second-derivative

term simply because the partial derivatives commute. This is a neces-

10Note that adP⊥ ⊂ (S⊗J)⊕R and the H̃d structure gives an isomorphism S ' S∗ and
J ' J∗. Thus, as in the first line of (5.59), we can also view R0 as a map from S to J .
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sary condition for the curvature to be tensorial. In Ed(d) indices one can

similarly write the commutator of two generalised derivatives formally as

(D ∧ D)AB = [DA, DB]. More precisely, acting on an Ed(d)×R+ vector

bundle X we have

(D ∧D) : X → Λ2E∗ ⊗X. (5.60)

Since again the partial derivatives commute, this operator contains no second-

order derivative term, and so can potentially be used to construct a cur-

vature tensor. However, in Ed(d)×R+ generalised geometry, we also have

∂f ⊗N∗ ∂g = 0 for any f and g, and so we can take the projection to the

bundle N∗ defined earlier, giving a similar operator

(D ⊗N∗D) : X → N∗ ⊗X, (5.61)

which will again contain no second-order derivatives. One thus expects

that these two operators, which can be defined for an arbitrary Ed(d)×R+

connection, should appear in any definition of generalised curvature. Given

an H̃d structure and a torsion-free compatible connection D, they indeed

enter the definition of RAB. Using H̃d covariant projections one finds

(D ∧D)⊗J ε+ (D ⊗N∗D)⊗J ε = R0 · ε,

(D ∧D)⊗S ε+ (D ⊗N∗D)⊗S ε = Rε.
(5.62)

This structure suggests there will be similar definitions of curvature in terms

of the operators (D∧D) and (D⊗N∗D) independent of the representation on

which they act, and potentially without the need for additional structure.
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6. Dimensional restrictions of

D = 11 Supergravity as Ed(d)×R+

Generalised Geometry

In this chapter, we show how to formulate dimensional restrictions of eleven-

dimensional supergravity in terms of the geometry described in chapter 5.

After reviewing the equations of eleven-dimensional supergravity, we begin

the main discussion by giving a general set of relations which recover these

equations elegantly from generalised geometry. In fact, these relations also

apply in the case of O(10, 10)×R+ generalised geometry from chapter 4, if

one views type II supergravity fields in terms of the corresponding represen-

tation structure. In the case of restricted eleven-dimensional supergravity,

these abstract equations can be realised concretely using the decomposition

of Hd under SO(d), detailed in appendix C.2, and by writing the action on

the spinors using an embedding into Cliff(10, 1;R). This results in a set of

equations with H̃d symmetry which hold for any chosen reduced dimension

d ≤ 7.

6.1. Dimensional restrictions of

eleven-dimensional supergravity

6.1.1. Eleven dimensional supergravity

Let us start by reviewing the action, equations of motion and supersym-

metry variations of eleven-dimensional supergravity, to leading order in the

fermions, following the conventions of [146].

The fields are simply

{gµν ,Aµνρ, ψµ}, (6.1)

where gµν is the metric, Aµνρ the three-form potential and ψµ is the grav-
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itino. The bosonic action is given by

SB =
1

2κ2

∫ (
volgR− 1

2F ∧ ∗F −
1
6A ∧ F ∧ F

)
, (6.2)

where R is the Ricci scalar and F = dA. This leads to the equations of

motion
Rµν − 1

12

(
Fµρ1ρ2ρ3F ρ1ρ2ρ3

ν − 1
12gµνF

2
)

= 0,

d ∗ F + 1
2F ∧ F = 0,

(6.3)

where Rµν is the Ricci tensor.

Taking Γµ to be the Cliff(10, 1;R) gamma matrices, the fermionic action

is

SF =
1

κ2

∫ √
−g
(
ψ̄µΓµνλ∇νψλ+ 1

96 ψ̄µ(Γµνλ1...λ4Fλ1...λ4+12Fµνλ1λ2Γλ1λ2)ψν

)
,

(6.4)

so the gravitino equation of motion is

Γµνλ∇νψλ + 1
96(Γµνλ1...λ4Fλ1...λ4 + 12Fµνλ1λ2Γλ1λ2)ψν = 0 . (6.5)

The supersymmetry variations of the bosons are

δgµν = 2ε̄Γ(µψν),

δAµνλ = −3ε̄Γ[µνψλ],
(6.6)

and the supersymmetry variation of the gravitino is

δψµ = ∇µε+ 1
288(Γµ

ν1...ν4 − 8δµ
ν1Γν2ν3ν4)Fν1...ν4ε, (6.7)

where ε is the supersymmetry parameter.

6.1.2. Restriction to d dimensions

We will be interested in “restrictions” of eleven-dimensional supergravity

where the spacetime is assumed to be a product R10−d,1 ×M of Minkowski

space with a d-dimensional spin manifold M , with d ≤ 7. The metric is

taken to have the form

ds2
11 = e2∆ds2(R10−d,1) + ds2

d(M), (6.8)
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where ds2(R10−d,1) is the flat metric on R10−d,1 and ds2
d(M) is a general

metric on M . The warp factor ∆ and all the other fields are assumed to be

independent of the flat R10−d,1 space. In this sense we restrict the full eleven-

dimensional theory to M . We will split the eleven-dimensional indices as

external indices µ = 0, 1, . . . , c− 1 and internal indices m = 1, . . . , d where

c+ d = 11.

6.1.3. Action, equations of motion and supersymmetry

In the restricted theory, the surviving fields include the obvious internal

components of the eleven-dimensional fields (namely the metric g and three-

form A) as well as the warp factor ∆. If d = 7, the eleven-dimensional Hodge

dual of the 4-form F can have a purely internal 7-form component. This

leads one to introduce in addition a dual six-form potential Ã on M which

is related to the seven-form field strength F̃ by

F̃ = dÃ− 1
2A ∧ F, (6.9)

The Bianchi identities satisfied by F = dA and F̃ are then

dF = 0,

dF̃ + 1
2F ∧ F = 0.

(6.10)

With these definitions one can see that F and F̃ are related to the eleven

dimensional 4-form field strength F by

Fm1...m4 = Fm1...m4 , F̃m1...m7 = (∗11F)m1...m7
. (6.11)

F and F̃ are invariant under the gauge transformations of the potentials

given by

A′ = A+ dΛ,

Ã′ = Ã+ dΛ̃− 1
2dΛ ∧A,

(6.12)

for some two-form Λ and five-form Λ̃.

In order to diagonalise the kinetic terms in the fermionic Lagrangian, one

introduces the standard field redefinition of the external components of the

gravitino

ψ′µ = ψµ + 1
c−2ΓµΓmψm. (6.13)
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We then denote its trace as

ρ = c−2
c Γµψ′µ, (6.14)

and allow this to be non-zero and dependant on the internal coordinates.

The surviving degrees of freedom are thus

{gmn, Amnp, Ãm1...m6 ,∆, ψm, ρ}, (6.15)

One obtains the internal bosonic action

SB =
1

2κ2

∫
√
g ec∆

(
R+ c(c− 1)(∂∆)2 − 1

2
1
4!F

2 − 1
2

1
7! F̃

2
)
, (6.16)

by requiring that its associated equations of motion

Rmn − c∇m∇n∆− c(∂m∆)(∂n∆)− 1
2

1
4!

(
4Fmp1p2p3Fn

p1p2p3−1
3gmnF

2
)

−1
2

1
7!

(
7F̃mp1...p6F̃n

p1...p6 − 2
3gmnF̃

2
)

= 0,

R− 2(c− 1)∇2∆− c(c− 1)(∂∆)2 − 1
2

1
4!F

2 − 1
2

1
7! F̃

2 = 0,

d ∗ (ec∆F )− ec∆(∗F̃ ) ∧ F = 0,

d ∗ (ec∆F̃ ) = 0.

(6.17)

are those obtained by substituting the field ansatz into (6.3). Similarly, to

quadratic order in fermions, the action for the restricted fermion fields (for
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d ≤ 7) is

SF =− 1

κ2(c− 2)2

∫
√
g ec∆

(
(c− 4)ψ̄mΓmnp∇nψp − c(c− 3)ψ̄mΓn∇nψm − c(ψ̄mΓn∇mψn + ψ̄mΓm∇nψn)

+ c(ψ̄mΓmn∇nρ− ρ̄Γmn∇mψn)− c(c− 2)ψ̄mΓmn(∂n∆)ρ

+ c(c− 1)(ψ̄m∇mρ− ρ̄∇mψm)− c(c− 1)(c− 2)ψ̄m(∂m∆)ρ

+ c(c− 1)(ρ̄Γm∇mρ+ 1
4 ρ̄ /Fρ−

1
4 ρ̄
/̃Fρ)

− 1
2

1
4!cρ̄Γmp1...p4F

p1...p4ψm + 1
2

1
3!c(c− 1)ρ̄FmpqrΓ

pqrψm

+ 1
4

1
4!(c− 4)ψ̄mΓmnp1...p4Fp1...p4ψn + 1

4c(c− 3)ψ̄m /Fψ
m

+ 1
2

1
3!cψ̄mF

(m
pqrΓ

n)pqrψn − 1
4

1
2!(2c

2 − 5c+ 4)ψ̄mF
mn

pqΓ
pqψn

− 1
2

1
6!c(c− 1)ψ̄mF̃

m
p1...p6Γp1...p6ρ+ 1

4
1
6!c(c− 1)ψ̄mF̃

(m
p1...p6Γn)p1...p6ψn

− 1
4

1
5!(2c

2 − 5c+ 4)ψ̄mF̃
mn

p1...p5Γp1...p5ψn

)
.

(6.18)

This action leads to the equation of motion for ψm,

(c− 4)Γm
np(∇n + c

2∂n∆)ψp − c(c− 3)Γn(∇n + c
2∂n∆)ψm

− c(Γn(∇m + c
2∂m∆)ψn + Γm(∇n + c

2∂n∆)ψn)

+ cΓm
n(∇n + ∂n∆)ρ+ c(c− 1)(∇m + ∂m∆)ρ

+ 1
4c

1
4!Γmp1...p4F

p1...p4ρ+ 1
4c(c− 1) 1

3!Fmp1p2p3Γp1p2p3ρ

+ 1
4(c− 4) 1

4!Γmn
p1...p4Fp1...p4ψ

n + 1
4c(c− 3)/Fψm

+ 1
2c

1
3!F(m

p1p2p3Γn)p1p2p3
ψn − 1

4(2c2 − 5c+ 4) 1
2!FmnpqΓ

pqψn

− 1
4c(c− 1) 1

6! F̃mn1...n6Γn1...n6ρ+ 1
4c(c− 1) 1

6! F̃(m
p1...p6Γn)p1...p6ψ

n

− 1
4(2c2 − 5c+ 4) 1

5! F̃mnp1...p5Γp1...p5ψn

= 0,

(6.19)
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and the equation of motion for ρ,

− ( /∇+ c
2(/∂∆) + 1

4
/F − 1

4
/̃F )ρ

+ (∇m + (c− 1)∂m∆)ψm + 1
c−1Γmn(∇m + (c− 1)∂m∆)ψn

+ 1
4

1
c−1

1
4!Γ

m
p1...p4F

p1...p4ψm − 1
4

1
3!F

m
p1p2p3Γp1p2p3ψm

− 1
4

1
6! F̃

m
p1...p6Γp1...p6ψm

= 0.

(6.20)

The supersymmetry variations of the fermion fields are given by

δρ = [ /∇− 1
4
/F − 1

4
/̃F + c−2

2 (/∂∆)]ε,

δψm = ∇mε+ 1
288(Γm

n1...n4 − 8δm
n1Γn2n3n4)Fn1...n4ε− 1

12
1
6! F̃mn1...n6Γn1...n6ε,

(6.21)

and the variations of the bosons by

δgmn = 2ε̄Γ(mψn),

(c− 2)δ∆ + δ log
√
g = ε̄ρ,

δAmnp = −3ε̄Γ[mnψp],

δÃm1...m6 = 6ε̄Γ[m1...m5
ψm6].

(6.22)

In what follows the fermionic fields will be reinterpreted as representations

of larger symmetry groups. To mark that distinction, the fermions that have

appeared in this section will be denoted by εsugra, ρsugra and ψsugra. In the

absence of this label, the fields are to be viewed as “generalised” objects as

shall be clarified in section 6.2.

6.2. Supergravity degrees of freedom and Hd

structures

We now explain how one can view the supergravity fields as generalised

geometry objects. Broadly speaking, the bosons form the generalised metric,

which defines an Hd structure on the generalised tangent space E, while
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the fermions can be promoted to representations of the double covering

group H̃d . The general structure of what is said here applies equally well

to the O(d, d) × R+ generalised geometry for the NS-NS sector of type II

supergravity.

Bosons

It is well known [147] that the bosonic fields of the reduced supergravity

parametrise an (Ed(d)×R+)/Hd coset, that is, at each point x ∈M ,

{g,A, Ã,∆} ∈
Ed(d)

Hd
× R+. (6.23)

Thus giving the bosonic fields is equivalent to specifying a generalised metric

G. Furthermore, as in [98], the infinitesimal bosonic symmetry transforma-

tion is naturally encoded as the Dorfman derivative by V ∈ Γ(E)

δVG = LVG, (6.24)

and the algebra of these transformations is given by the Leibniz prop-

erty (5.29). Thus, we see that the GL(d,R) representations which make

up the generalised tangent space correspond to the fundamental charges of

the theory. These are the momentum, the charges of the gauge fields A and

Ã and the Kaluza-Klein monopole (or dual graviton) charge, which generate

the bosonic symmetries1.

Fermions

The fermionic degrees of freedom fall into spinor representations of H̃d , the

double cover of Hd . Let S and J denote the representations of H̃d listed in

table 5.5. The fermion fields ψ, ρ and the supersymmetry parameter ε can

then be thought of as sections of these bundles

ψ ∈ Γ(J), ρ ∈ Γ(S), ε ∈ Γ(S). (6.25)

However, in the supergravity equations of section 6.1 the fermion fields

were viewed as Cliff(10, 1;R) objects. It is therefore preferable to follow

1Note that the Kaluza-Klein monopole does not generate a gauge transformation for
d ≤ 7. This will be discussed further in the conclusion.

103



the chain of embeddings H̃d ⊂ Cliff(d;R) ⊂ Cliff(10, 1;R) explained in

appendix C.2.2 and uplift ψ, ρ and ε to representations of Spin(10− d, 1)×
H̃d

2. This will allow us to write expressions directly comparable to the ones

in section 6.1. There exists a complication, in that there are actually two

distinct ways of realising the action of H̃d on Cliff(d;R) spinors, related by

a change of sign of the gamma matrices

N± = 1
2

(
1
2!nabγ

ab ± 1
3!babcγ

abc − 1
6! b̃a1...a6γ

a1...a6

)
, (6.26)

and so one finds that in general the spinor bundles split into S± and J±.

Putting it all together, in order to recover the original supergravity formu-

lation we are led to consider the four Spin(10− d, 1)× H̃d bundles listed in

table 6.1 (see also [78]).

d Ŝ− Ŝ+ Ĵ− Ĵ+

7 (2,8) + (2̄, 8̄) (2, 8̄) + (2̄,8) (2,56) + (2̄, 5̄6) (2, 5̄6) + (2̄,56)
6 (4,8) (4,8) (4,48) (4,48)
5 (4,4,1) + (4̄,1,4) (4,1,4) + (4̄,4,1) (4,4,5) + (4̄,5,4) (4,5,4) + (4̄,4,5)
4 (8,4) (8,4) (8,16) (8,16)

Table 6.1.: Spinor and gravitino as Spin(10−d, 1)×H̃d representations. Note
that when d is even the positive and negative representations are
equivalent.

We then find that the supergravity fields can be identified as

ε̂− = e−∆/2 εsugra ∈ Γ(Ŝ−),

ρ̂+ = e∆/2 ρsugra ∈ Γ(Ŝ+),

ψ̂−a = e∆/2 ψsugra
a ∈ Γ(Ĵ−).

(6.27)

Note that, due to the warping of the metric, the precise maps between the

fermion fields as viewed in the geometry and in the supergravity description

involve a conformal rescaling. This is of course purely conventional, since

one could just as easily perform field redefinitions at the supergravity level.

We choose, however, to maintain the conventions in section 6.1 as familiar

as possible and so it is important to account for this subtlety.

2The alternative is to decompose the eleven-dimensional spinors which necessarily leads
to dimension dependent expressions.
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6.3. Supergravity equations from generalised

geometry

We now present the main result, a complete rewriting of the supergrav-

ity equations in the language of generalised geometry, to leading order in

fermions. In this section, we provide an abstract treatment describing the

theory in complete generality.

The equations presented here are intended to be schematic, capturing the

essence of the structure, but ignoring details such as numerical factors and

the precise details of the representations involved. This presentation is easily

seen to reproduce the NS-NS sector equations for type II theories given in

chapter 4. In section 6.4, we apply the same prescription to Ed(d)×R+

generalised geometry, using the SO(d) decomposition of Hd described in

appendix C.2. This will provide more explicit expressions for the restricted

eleven-dimensional supergravity setup in this language.

We begin by looking at the supersymmetry algebra. Remarkably, the vari-

ations of the two fermion fields match precisely the two unique differential

operators which act on spinors that were found in section 5.2.3. Therefore,

the supergravity equations (6.21) can be written concisely as the H̃d covari-

ant projections (5.57) of the torsion-free compatible connection acting on

the supersymmetry parameter ε

δψ = D ⊗J ε,

δρ = D ⊗S ε.
(6.28)

Since the bosons arrange themselves into the generalised metric, one ex-

pects that their supersymmetry variations (6.22) be given by the variation of

G. Indeed, denoting projections to the bundle adP⊥ (defined in table 5.3)

by ⊗adP⊥ , one finds that the equations can be rewritten in the H̃d covariant

form

δG = (ψ ⊗adP⊥ ε) + (ρ⊗adP⊥ ε). (6.29)

In order to describe the dynamics, an important first step is to realise the

fermionic equations of motion (6.19) and (6.20). Using the unique projec-
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tions (5.57) once again, they become simply

(D ⊗J ψ) + (D ⊗J ρ) = 0,

(D ⊗S ψ) + (D ⊗S ρ) = 0.
(6.30)

The bosonic equations of motion (6.17) are naturally given by the van-

ishing of the generalised Ricci curvature (5.59)

RAB = 0. (6.31)

Note again that the form of the generalised Ricci in (5.59) can be interpreted

in a physical way – it reflects the closure of the supersymmetry algebra

on (6.30) which, by virtue of (6.28), can be examined at an H̃d level.

The bosonic action (6.16) is given by the generalised curvature scalar,

integrated with the volume form (5.45)

SB ∝
∫

volGR. (6.32)

Finally, the fermionic action (6.18) can be written using the natural invari-

ant pairings of the terms in (6.30) with the fermionic fields

SF ∝
∫

volG

(
〈ψ, (D ⊗J ψ)〉+ 2〈ρ, (D ⊗S ψ)〉+ 〈ρ, (D ⊗S ρ)〉

)
. (6.33)

6.4. Realisation in SO(d) representations

We now use the expressions of appendix C.2.2 to write explicit versions

of the abstract relations in the previous section. The resulting equations

are written in terms of Cliff(10, 1;R) spinors and match exactly those in

section 6.1.3 when evaluated in the split frame.

Supersymmetry Algebra

The supersymmetry variations (6.21) of the two fermion fields take the form

δψ̂− = D ⊗Ĵ− ε̂
−,

δρ̂+ = D ⊗Ŝ+ ε̂
−.

(6.34)
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For clarity we will demonstrate how to evaluate one of these expressions in

the split frame. Using (C.34), we see that the projection can be written

(D ⊗Ŝ+ ε̂
−) = ΓaDaε̂

− + 1
2!Γ

abDabε̂
− + 1

5!Γ
c1...c5Dc1...c5 ε̂

− + 1
6!Γ

c1...c6Dd
,dc1...c6 ε̂

−.

(6.35)

Substituting in the connection components from (5.50) and the expression

ε̂− = e−∆/2εsugra we have

(D ⊗Ŝ+ ε̂
−) = e∆/2

(
/∇+ 9−d

2 (/∂∆)− 1
4
/F − 1

4
/̃F
)
εsugra, (6.36)

which is the supersymmetry variation of ρ̂+ = e∆/2ρsugra. The other dif-

ferential operators in this section are derived similarly. The result for the

supersymmetry variation of the gravitino comes out as

(D ⊗Ĵ− ε̂
−)a = e∆/2

(
∇a + 1

288(Γa
b1...b4 − 8δa

b1Γb2b3b4)Fb1...b4

− 1
12

1
6! F̃ab1...b6Γb1...b6

)
εsugra.

(6.37)

Since the bosons arrange themselves into the generalised metric, one ex-

pects that their supersymmetry variations (6.22) be given by the variation

of G. In fact, the most convenient object to consider is G−1δG which is

naturally a section of the bundle ad(P )⊥ listed in table 5.3. In this context,

the isomorphism (C.23) becomes

ad(P )⊥ ' R⊕ S2T ∗M ⊕ Λ3T ∗M ⊕ Λ6T ∗M (6.38)

and in this notation, the variation of the generalised metric can be written

in the split frame as

(G−1δG)0 = −2δ∆,

(G−1δG)ab = δgab,

(G−1δG)abc = −δAabc,

(G−1δG)a1...a6 = −δÃa1...a6 .

(6.39)

Comparing this with (C.38) and (C.39), one finds that the supersymmetry
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variations of the bosons (6.22) can be written in the H̃d covariant form

G−1δG = (ψ̂−⊗adP⊥ ε̂
−) + (ρ̂+⊗adP⊥ ε̂

−), (6.40)

where ⊗adP⊥ denotes the projection to ad(P )⊥.

Generalised Curvatures and the Equations of Motion

Being more careful about numerical factors, the fermion equations of mo-

tion (6.19) and (6.20) become

−(D ⊗Ĵ+ ψ̂
−)− 11−d

9−d (D ⊗Ĵ+ ρ̂
+) = 0,

(D ⊗Ŝ− ψ̂
−) + (D ⊗Ŝ− ρ̂

+) = 0.
(6.41)

ρ̂+ is embedded with a different conformal factor to ε̂−, so the warp factor

terms in these projections are different to those involving ε̂−. We have

(D ⊗Ŝ− ρ̂
+) = −e3∆/2

(
/∇+ 11−d

2 (/∂∆) + 1
4
/F − 1

4
/̃F
)
ρsugra (6.42)

and

(D ⊗Ĵ+ ρ̂
+)a = e3∆/2

[
(∇a + ∂a∆)− 1

288(Γa
b1...b4 − 8δa

b1Γb2b3b4)Fb1...b4

− 1
12

1
6! F̃ab1...b6Γb1...b6

]
ρsugra

(6.43)
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The projections involving ψ̂− are evaluated using (C.36) and (C.37). The

result is

(D ⊗Ŝ− ψ̂
−) = e3∆/2

[
(∇b + (10− d)∂b∆) + 1

10−dΓab(∇a + (10− d)∂a∆)

+ 1
4

1
10−d

1
4!Γ

b
c1...c4F

c1...c4 − 1
4

1
3!F

b
c1c2c3Γc1c2c3

− 1
4

1
6! F̃

b
c1...c6Γc1...c6

]
ψsugra
b ,

(D ⊗Ĵ+ ψ̂
−)a = −e3∆/2

[
Γc(∇c + 11−d

2 ∂c∆)δa
b + 2

9−dΓb(∇a + 11−d
2 ∂a∆)

− 1
12(3 + 2

9−d)/Fδa
b + 1

3
10−d
9−d

1
2!Fa

b
cdΓ

cd

− 1
3

1
9−d

1
3!Fa

c1...c3Γbc1...c3 + 1
6

10−d
9−d

1
3!F

bc1...c3Γac1...c3

− 1
6

1
9−d

1
4!Fc1...c4Γa

bc1...c4 + 1
4

1
5! F̃a

b
c1...c5Γc1...c5

]
ψsugra
b .

(6.44)

The gravitino equation as written here does not exactly match that in

section 6.1.3. This is due to the presence of additional gamma matrices in

the inner product (C.31) which is used to write the fermion action. Using

the expressions (C.31) and (C.32) for the spinor bilinears, we find that (6.18)

can be rewritten as

SF = 1
κ2

∫
volG

[
− 〈ψ̂−, D ⊗Ĵ+ ψ̂

−〉 − c
c−2〈ψ̂

−, D ⊗Ĵ+ ρ̂
+〉

+ c(c−1)
(c−2)2 〈ρ̂+, D ⊗Ŝ− ψ̂

−〉+ c(c−1)
(c−2)2 〈ρ̂+, D ⊗Ŝ− ρ̂

+〉
]
.

(6.45)

When this is varied with respect to ψ̂−, the equation of motion comes out

in the form

〈δψ̂−,−(D ⊗Ĵ+ ψ̂
−)− 11−d

9−d (D ⊗Ĵ+ ρ̂
+)〉 = 0, ∀δψ̂− (6.46)

If one merely removes δψ̂− from the left side of the expression, the form of

the inner product (C.31) gives the equation

(δa
b + 1

9−dΓaΓ
b)
[
− (D ⊗Ĵ+ ψ̂

−)b − 11−d
9−d (D ⊗Ĵ+ ρ̂

+)b

]
= 0. (6.47)

Some algebra reveals that this equation does exactly match equation (6.19),

multiplied by an overall factor of −(9− d)−2.
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From the fermion equations of motion we can find explicit expressions for

the generalised Ricci tensor RAB, which is a section of the bundle adP⊥ =

ad F̃ / adP ⊂ E∗ ⊗ E∗. Using the closure of the supersymmetry algebra

on (6.41) which, by virtue of (6.34), can be examined at an H̃d level, we

define

−D ⊗Ĵ+ (D ⊗Ĵ− ε̂
−)− 11−d

9−d D ⊗Ĵ+ (D ⊗Ŝ+ ε̂
−) = R0 · ε̂−,

D ⊗Ŝ− (D ⊗Ĵ− ε̂
−) +D ⊗Ŝ− (D ⊗Ŝ+ ε̂

−) = 1
4

9−d
10−dR ε̂

−,
(6.48)

for any ε̂− ∈ Γ(Ŝ−) and where R and R0
AB provide the scalar and non-scalar

of RAB respectively. Explicitly, via the H̃d covariant projection (C.29), the

action of the curvatures on the spinor are given by

(R0 · ε̂−)a =
(

1
2R

0
abΓ

b + 1
3

1
2!R

0
abcΓ

bc − 1
6

1
3!R

0
c1...c3Γa

c1...c3

+ 1
6

1
5!R

0
ab1...b5Γb1...b5 − 1

3
1
6!R

0
c1...c6Γa

c1...c6
)
εsugra,

R ε̂− = e2∆
(
R− 2(c− 1)∇2∆− c(c− 1)(∂∆)2 − 1

2
1
4!F

2 − 1
2

1
7! F̃

2
)
εsugra,

(6.49)

where c = 11− d and

R0
ab = e2∆

[
Rmn − c∇m∇n∆− c(∂m∆)(∂n∆)

− 1
2

1
4!

(
4Fmp1p2p3Fn

p1p2p3 − 1
3gmnF

2
)

− 1
2

1
7!

(
7F̃mp1...p6F̃n

p1...p6 − 2
3gmnF̃

2
) ]
,

R0
abc = 1

2e2∆
[
e−c∆ ∗ d ∗ (ec∆F )− ∗((∗F̃ ) ∧ F )

]
abc
,

R0
a1...a6

= 1
2e2∆

[
e−c∆ ∗ d ∗ (ec∆F̃ )

]
a1...a6

.

(6.50)

The generalised Ricci tensor is manifestly uniquely determined and the

bosonic equations of motion (6.17) become simply

RAB = 0. (6.51)

Finally, the bosonic action (6.16) is given by the generalised curvature scalar,
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integrated with the volume form (5.45)

SB =
1

2κ2

∫
volGR. (6.52)

We have now rewritten all of the supergravity equations from section 6.1.2

in terms of generalised geometry. Though we have chosen to write them out

under an SO(d) decomposition, the abstract equations have manifest H̃d

symmetry. This formulation has the advantage that we were able to write

formulae which hold true in any dimension d ≤ 7.

6.5. Comments on type II theories

The O(d, d) × R+ generalised geometry of chapter 3 was only able to in-

corporate the gauge symmetry of the NS-NS sector in the structure of the

generalised tangent space. Here, we will briefly discuss how one may use

Ed(d)×R+ generalised geometry over a (d− 1)-dimensional manifold to in-

clude also the RR gauge symmetry (4.21), an idea we have alluded to at

various points. This has previously been described in [100, 102, 103, 148].

The (Ed(d)×R+)/Hd coset structure can equally well describe the fields

type II theories in d− 1 dimensions. Specifically

{g,B, B̃, φ,A±,∆} ∈
Ed(d)

Hd
× R+, (6.53)

where B is the NS-NS two-form field, B̃ is the six-form potential dual to B,

φ is the dilaton and A± are the RR potentials (in a democratic formalism)

where A− is a sum of odd-degree forms in type IIA and A+ is a sum of even-

degree forms in type IIB. All the fields now depend on a d− 1 dimensional

manifold M ′.

The genearlised tangent space for the corresponding generalised geometry

is twisted by the gauge transformations of all of these tensor gauge poten-

tials. In particular the generalised tangent space takes the form [100, 102,

103, 148]

E ' TM ′⊕T ∗M ′⊕Λ5T ∗M ′⊕ (T ∗M ′⊗Λ6T ∗M ′)⊕Λeven/oddT ∗M ′, (6.54)

where “even” refers to type IIB and “odd” to IIA. The pieces of this can be
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identified as the charges for the momentum, fundamental string, NS5-brane,

Kaluza-Klein monopole and D-branes.

The IIA case is given simply by the decomposition under the obvious

GL(d − 1,R) subgroup of GL(d,R) we have used so far (this was first dis-

cussed in [100]). One can see from the Dynkin diagram of Ed(d) that there

is another embedding of GL(d − 1,R), and the decomposition under this

gives the corresponding result for type IIB. There are similarly two differ-

ent realisations of Hd in terms of Spin(d− 1) which can be used to describe

the H̃d structures and fermions.

We do not work through the details of these decompositions here (some

are given in the appendix of [2]). However, we note that the construction

of the torsion-free compatible connections, unique operators and curvatures

will go through in exactly the same way. Also, the partial derivative operator

as embedded in E∗ will still satisfy the condition ∂⊗N∗ ∂ = 0, however, it no

longer spans a maximal dimension subspace (which would be d dimensional).
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7. Supersymmetric backgrounds

as generalised G-structures

In this chapter, we discuss supersymmetric backgrounds of the theories we

have considered thus far, in the language of generalised G-structures. First,

we review the standard construction of G-structures in detail. In the next

section we recall the basic equations of four dimensional Minkowski com-

pactifications of type II theories and M-theory, and how these equations

lead to the appearance of G-structures. In the presence of fluxes, we see

that these G-structures have intrinsic torsion, so integrability is lost. Also,

we see that for each level of preserved supersymmetry there are several dif-

ferent structure groups that can appear. A valuable review which we follow

in part is [149].

Generalised geometry is able to combine these different classes of ordinary

G-structure so that each level of preserved supersymmetry corresponds to

a single generalised structure group. Furthermore, in the relevant cases,

the Killing spinor equations become precisely the statement that this gen-

eralised G-structure is torsion-free. This is the main result of this section,

and it is proposed as a major application of the technology. We prove these

statements in some important cases, by direct computation of the represen-

tation structure of the intrinsic torsion.

7.1. Holonomy, G-structures and Intrinsic Torsion

In the very first section of chapter 2, we reviewed some differential geometry,

introducing the notion of a G-structure on a manifold. We briefly mentioned

that there might be some barrier to the existence of a torsion-free connection

which was compatible with a given G-structure. We expand on this here,

reviewing the concepts of holonomy and intrinsic torsion.
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Holonomy

First, consider a vector bundle E, with structure group G, over a base

manifold M . Suppose we have a connection D on E with connection one-

form Aµ, so that if {êi} is a local basis for E then

D∂/∂xµ êj = Aµij êi. (7.1)

Consider a curve c : [0, 1] → M , for convenience, assumed to lie within

a single coordinate chart of M and a single local trivialisation of E, with

tangent vector v(t) ∈ TM . A section X ∈ Γ(E) is said to be parallel

transported along c if

DvX = 0 (7.2)

Given an element X0 of E at the point c(0) ∈ M , we can then find the

parallel transport of X0 along c as Xi
1 = (gc)

i
jX

j
0 where

(gc) = P exp
(
−
∫
c
Aµdxµ

)
∈ G, (7.3)

where P is the path-ordering symbol. The new element X1 is located above

the point c(1) in the manifold. Considering the case of a closed loop, (gc) ∈
G gives an endomorphism of the fibre of E at the point p = c(0) = c(1) ∈M .

The set

Hp = {(gc) ∈ G : c is a closed curve at p} ⊂ G (7.4)

forms a group called the holonomy group at p, with the group operation

given by concatenation of curves. Simple arguments show that for any

p, p′ ∈M one has Hp ' Hp′ , so that the holonomy group is independent of

the point p. In fact, we will take the holonomy group to be what is more

precisely referred to as the restricted holonomy group, which includes only

contractible curves.

If one takes E to be the tangent bundle of a Riemannian manifold (M, g)

and ∇ to be the Levi-Civita connection, the resulting holonomy group is

commonly referred to as the holonomy of M . If the holonomy of the man-

ifold is a proper subgroup of SO(d)1, the manifold is said to have special

holonomy. The requirement of special holonomy turns out to be a very

1Parallel transport preserves the metric length of a vector, and the holonomy group can
only have one connected component as it is built up from infinitesimal actions.
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strong condition. Riemannian special holonomy manifolds were classified

by Berger [150] and it turns out that only a short list of holonomy groups is

possible. The details can be found in [151]. Similar results have also been

obtained for Lorentzian manifolds ([152] discusses the status of this area of

research as well as highlighting the distinction between full and restricted

holonomy).

Intrinsic Torsion

Recall that a G-structure is a principal sub-bundle of the frame bundle on

a manifold, that is

P = {(x, {êa}) ∈ F : different frames {êa} related by G-transformations} .
(7.5)

Using these special frames, or equivalently the invariant tensors of G, all

tensors on the manifold can then be decomposed into irreducible parts under

G ⊂ GL(d,R). A connection ∇ is compatible with a G-structure P ⊂
F if the corresponding connection of the principal bundle F reduces to a

connection on P . This means that, given a basis {êa}, one has a set of

connection one-forms ωab taking values in the adjoint representation of G

given by

∇∂/∂xµ êa = ωµ
b
aêb. (7.6)

Let ad(P ) be the associated adjoint bundle, then a connection one-form

ωµ on P can locally be represented as a section

ω ∈ T ∗M ⊗ ad(P ). (7.7)

The torsion of ∇ will still be a section of the bundle TM ⊗ Λ2T ∗M , and

in general both of these bundles can be decomposed into irreducible parts

under G.

The intrinsic torsion of P can be defined as follows. Consider two such

connections ∇ and ∇′, both compatible with the structure P , and let T (∇)

and T (∇′) be their respective torsions. The difference of these ∆T =

T (∇′)− T (∇) is a section of W := TM ⊗Λ2T ∗M . However, it can happen

that, varying ∇′ for fixed ∇, ∆T fills out only a subspace of the fibre of

W at each point of M . Let Σ ∈ T ∗M ⊗ ad(P ) be the difference of the two
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connections, which is a tensor such that for v ∈ TM

Σv = ∇′v −∇v. (7.8)

∆T depends linearly on Σ. Therefore, if the dimension of T ∗M ⊗ ad(P )

is less than the dimension of TM ⊗ Λ2T ∗M , it is clear that ∆T must be

restricted to a subspace. Label the image of the torsion map on T ∗M⊗ad(P )

as WP , then we can define the bundle

WI =
W

WP
. (7.9)

Now, given any compatible connection∇ on P , its torsion defines an element

of WI , which is independent of which connection one chooses. This element

of WI is the intrinsic torsion of P , and if it is non-zero, then there does not

exist a torsion-free connection which is compatible with P . G-structures

with vanishing intrinsic torsion are said to be integrable.

In general, the vanishing of the intrinsic torsion is a first-order differ-

ential constraint on the structure. Suppose the structure is defined by a

G-invariant tensor Φ, and let ∇′ = ∇+ Σ, where this time ∇ is torsion-free

and ∇′ is assumed to be torsion-free and compatible. This implies that

0 = ∇′Φ = ∇Φ + Σ · Φ (7.10)

We must therefore be able to solve the equation ∇Φ = −Σ ·Φ for Σ, subject

to the constraint that T (Σ) = 0, and in general this constrains which irre-

ducible parts of ∇Φ can be non-zero. Thus we have first-order differential

constraints on the invariant tensor Φ which defines the structure.

For example, in the case of an almost complex structure J on a real

manifold, the above condition becomes

Σm
n
qJ

q
p − Σm

q
pJ

n
q = −∇mJnp, (7.11)

where ∇ is an arbitrary torsion-free connection on TM . Using Σ[m
n
p] = 0,

we have

Σq
n

[mJ
q
p] = −∇[mJ

n
p] (7.12)

However, contracting (7.11) with J twice and then anti-symmetrising results

116



in a different expression

Σq
n

[mJ
q
p] = −JnrJs[p∇m]J

r
s (7.13)

Together these become

∇[mJ
n
p] − JnrJs[p∇m]J

r
s = 0 (7.14)

which is the well-known Nijenhuis condition for a complex manifold. Con-

sidering a torsion-free shift of Σ in the above argument reveals that the

left-hand side is unique for a torsion-free connection, so that one can re-

place ∇ with ∂. This is generally true of such integrability conditions when

written as a first order differential constraint.

We now connect the notions of intrinsic torsion and special holonomy.

If one considers a Riemannian manifold M equipped with a metric g, this

defines an O(d) structure on M , given by the orthonormal frames of g. The

holonomy of a connection compatible with this structure will be contained

in SO(d) (as the holonomy group is necessarily in the identity component

of the structure group).

Now suppose we have a G-structure P on M , which is a sub-bundle of the

orthonormal frame bundle of the metric, so that G ⊂ O(d). A connection

∇ compatible with P will thus also be compatible with the metric, i.e.

∇g = 0. If the intrinsic torsion vanishes, then the torsion-free connection

will be the unique Levi-Civita connection on (M, g). The holonomy of the

Levi-Civita connection is then contained in the group G0 ⊂ SO(d), where

G0 is the identity component of G, so the manifold has special holonomy.

However, in the more general context of P being an arbitrary G-structure

on the frame bundle of a differentiable manifold, there may be a family of

torsion-free compatible connections.

7.2. Supersymmetric Backgrounds of String

Theory and M Theory

An important class of backgrounds of string theory and M-theory are the

solutions of the low-energy classical supergravity approximation. Such a

solution is said to be supersymmetric if there exists a nowhere-vanishing
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choice of supersymmetry parameter on the manifold such that the super-

symmetry variations of all of the background fields vanish. Since we are

interested in classical solutions, the background fermionic fields are zero.

The variations of the bosonic fields always have a fermionic factor, so these

are automatically zero. Therefore, the non-trivial condition for supersym-

metry is the vanishing of the variations of the fermionic fields, and we need

only consider the lowest order terms in fermions.

A family of such solutions, used to attempt to construct physically real-

istic models, are manifolds of the form M = M4×Mint i.e. the product of a

four-dimensional Minkowski space with a compact internal manifold Mint.

Other popular choices are for the external space to be anti-de-Sitter, im-

portant for studying AdS/CFT, or de-Sitter, which has an observationally

appealing positive cosmological constant. Together with Minkowski space,

these are the maximally symmetric spaces.

We will focus on solutions with an external Minkowski factor. For the

bosonic fields, one takes a metric ansatz of the form

ds2
10 = e2∆ds2(R3,1) + ds2

d(Mint), (7.15)

where the warp factor ∆ depends only on the internal coordinates2. Other-

wise, one can only keep those components of the fields which are scalars on

the external space, as any other components would violate maximal sym-

metry. One also must take all background fields to depend only on the

coordinates of Mint for the same reason.

Schematically, we take the higher-dimensional supersymmetry parameter

to have a tensor product form ε̂ = η ⊗ ε, where η is a covariantly constant

spinor on the external Minkowski space and ε is an internal spinor field

on Mint. The expressions for the vanishing of the higher-dimensional su-

persymmetry variations are known as Killing spinor equations, and these

induce lower-dimensional Killing spinor equations on the internal spinor ε.

The number of real supercharges which preserve the background is equal to

the number of real degrees of freedom of the spinor η times the number of

independent solution of these equations on Mint.

2With non-trivial warp factor, this ansatz can also describe solutions with an external
anti-de-Sitter factor of one dimension higher, as in e.g. [153].
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7.2.1. 4D Minkowski compactifications of type II theories

We consider Minkowski compactifications of type II theories on six-dimensional

internal manifold M . We will set up our analysis for backgrounds preserving

N = 1 supersymmetry in the resulting four dimensional theory, though we

will see that the restricted cases we eventually consider will actually permit

N = 2. For type IIA the two supersymmetry parameters have opposite

chirality and we can use the ansatz

ε+ = η− ⊗ ε+1 + η+ ⊗ ε−1
ε− = η+ ⊗ ε+2 + η− ⊗ ε−2

(7.16)

For type IIB the two supersymmetry parameters have the same chirality

and so we take
ε+ = η+ ⊗ ε+1 + η− ⊗ ε−1
ε− = η+ ⊗ ε+2 + η− ⊗ ε−2

(7.17)

In both of these decompositions η and εi are Majorana spinors in four and

six dimensions respectively. On the right-hand sides, the superscripts ± in-

dicate the chirality of the spinor as viewed in its respective dimension. On

the left-hand sides they have they label the two ten dimensional supersym-

metry parameters as in section 4.1. We take the Majorana representations

of Cliff(3, 1;R) and Cliff(6;R) so that we have η− = (η+)∗ and ε−i = (ε+i )∗.

(See appendix E for full details of conventions for the decomposition.) Each

εi thus has eight real degrees of freedom overall, so the components of εi

transform in the 4 + 4̄ representation of SU (4) ' Spin(6) where the Majo-

rana condition relates the two parts to be complex conjugate.

The background values of the bosonic fields are chosen such that only

quantities which are scalars on the external spacetime are non-zero. In this

case we have an internal metric gmn, and internal fluxes Hmnp and ∂mφ.

We set the warp factor to zero3 and neglect RR fluxes for simplicity. The

vanishing of the 10 dimensional supersymmetry variations, for either the

3We use the string-frame metric. If one took the Einstein frame metric, supersymmetry
requires an overall warp factor equal to the dilaton, which essentially returns the
discussion to the string-frame [154, 155].
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IIA or IIB case, then imply the Killing spinor equations

∇mε1 − 1
8Hmnpγ

npε1 = 0 /∇ε1 − 1
4
/Hε1 + (/∂φ)ε1 = 0

∇mε2 + 1
8Hmnpγ

npε2 = 0 /∇ε2 + 1
4
/Hε2 + (/∂φ)ε2 = 0

(7.18)

for the spinors ε1,2 on the internal manifold M .

An important point to raise immediately is that such a configuration will

not give an N = 1 compactification of a type II theory. This is because one

can introduce a second four-dimensional supersymmetry parameter and use

the spinor ansatz

ε+ = η−1 ⊗ ε
+
1 + η+

1 ⊗ ε
−
1

ε− = η+
2 ⊗ ε

+
2 + η−2 ⊗ ε

−
2

(7.19)

for the IIA case and
ε+ = η+

1 ⊗ ε
+
1 + η−1 ⊗ ε

−
1

ε− = η+
2 ⊗ ε

+
2 + η−2 ⊗ ε

−
2

(7.20)

for the IIB case. In the absence of RR fluxes, these will still solve the ten-

dimensional Killing spinor equations on imposing (7.18). To obtain an N =

1 vacuum, one would need to have non-zero RR fluxes as these introduce

terms mixing the spinors ε+ and ε−. This would then spontaneously break

the N = 2 supersymmetry down to N = 1.

Our task is to determine the consequences of equations (7.18) for the

properties of the internal manifold. The first obvious property is that it

must possess two non-vanishing spinor fields ε1,2. This imposes a topolog-

ical condition condition on the manifold, reducing the structure group to

a subgroup of SU (4). Firstly, the spin-frames in which ε+1 = (|ε|, 0, 0, 0)

(viewed as a 4-component Weyl spinor) form an SU (3) structure. If the

two spinors are parallel, then ε2 provides no further reduction of the struc-

ture group. If they are non-parallel then, in similar fashion, the second

spinor ε2 reduces the structure group further to SU (2). There are hybrid

cases in which the spinors are parallel at some points of the manifold and

non-parallel at others.

The second set of conditions on Mint come from the differential equa-

tions (7.18). These are far more complicated to analyse in general. One

property which is easy to derive from them is that the norms of the Killing

spinors are constant. The equations on the left of (7.18) relate ∇mεi with
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Hmnpγ
npεi. Since Hmnpγ

np rotates the spinor by an SU (4) algebra element,

this will preserve any SU (4) covariant norm, so we see that ∇m(ε̄iεi) = 0

for each i = 1, 2. In fact, using generalised geometry methods it is easy to

see that all Killing spinors have constant norm in the systems we will study

(see section 7.4).

With regards to further investigation of (7.18) at this stage, we will split

our discussion in two, first considering the simplified case in which the fluxes

vanish, and then commenting on how the fluxes spoil the nice properties

obtained in that case.

The case without fluxes

In the absence of internal fluxes, the Killing spinor equations (7.18) become

the statement that the spinors ε1,2 are covariantly constant. This means

that the Levi-Civita connection is compatible with the reduced structure

they define, which therefore has vanishing intrinsic torsion. The manifold

is thus a special holonomy manifold.

Suppose Mint has a non-vanishing covariantly constant spinor ε. This

defines an SU (3) structure on Mint with vanishing intrinsic torsion. As re-

viewed below, this implies that the internal manifold is Calabi-Yau. Since

the observation that compactifications of heterotic string theory on such

manifolds could lead to phenomenologically viable models [39], these mani-

folds have received much attention in the literature.

Suppose ε is normalised so that ε̄+ε+ = ε̄−ε− = 1. The tensor Jm
n =

iε̄+γm
nε+ then defines an almost complex structure, since a Fierz identity

reveals that Jm
pJp

n = −δmn. Furthermore it is integrable because∇mJnp =

0 and so it’s Nijenhuis tensor vanishes. This guarantees that one can find

local complex coordinates {za} on Mint such that Ja
b = iδa

b and Jā
b̄ =

−iδāb̄ are the only non-vanishing components. The complex coordinates

also allow us to define the Dolbeault operators ∂ : Λp,q(M) → Λp+1,q(M)

and ∂̄ : Λp,q(M)→ Λp,q+1(M) such that d = ∂+ ∂̄. The metric is hermitian

with respect to the complex structure, since gmn = Jm
pJn

qgpq, and the

simple statement Jmn = Jm
pgpn leads immediately to Jab̄ = igab̄.

Clearly Jmn = J[mn] defines a 2-form J = igab̄dz
a∧dz̄b̄ with dJ = 0 (since

∇J = 0 and ∇ is torsion-free), so the manifold is Kahler with Kahler form

J .
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One can also construct a holomorphic 3-form with non-vanishing compo-

nents Ωabc = ε̄+γabcε
−. Again, since ∇ε = 0 we have ∇āΩbcd = 0 so ∂̄Ω = 0

and dΩ = (∂ + ∂̄)Ω = 0. Ω is thus a holomorphic (3, 0)-form. However, Ω

is not exact as

Ω ∧ Ω̄ = − i
3! ||Ω||

2J ∧ J ∧ J = −i||Ω||2 volg (7.21)

is a constant multiple of the volume form, since

||Ω||2 = 1
3!g

aāgbb̄gcc̄ΩabcΩ̄āb̄c̄ (7.22)

is constant.

The existence of a non-vanishing holomorphic (3,0)-form implies that the

Ricci form is exact. Recall that the Ricci form is defined as R = iRab̄dza ∧
dz̄b̄ for Rab̄ the components of the Ricci tensor, and that R = i∂∂̄ log

√
g for

the Levi-Civita connection of a hermitian metric. Since Ω is holomorphic

we must have Ωabc = f(z)εabc where εabc is the Levi-Civita symbol, and f

is a non-vanishing holomorphic function. This leads to the relation

||Ω||2 = 1
3! |f(z)|2εabcεāb̄c̄gaāgbb̄gcc̄ = |f(z)|2 det(gab̄) ∝ |f(z)|2

√
g

(7.23)

so that the Ricci form is

R = i∂∂̄ log
√
g = −i∂∂̄ log ||Ω||2 (7.24)

This is exact since ||Ω||2 is a globally defined (non-zero) scalar, so the man-

ifold has vanishing first Cern class. Kahler manifolds with vanishing first

Cern class are called Calabi-Yau manifolds. Using the further property that

Ω is defined as above, we have that ||Ω||2 is constant and so the Ricci form

is zero. This illustrates the powerful existence theorem [156] stating that

Calabi-Yau manifolds always admit a Ricci-flat metric.

The mathematically nice properties of Calabi-Yau spaces enable exam-

ples to be constructed and studied. The two crucial points are that the

manifold is complex, allowing the use of algebraic geometry machinery, and

the existence theorem for the metric, which guarantees that as long as the

Ricci form is exact there exists a Ricci-flat metric. As a result, the physical

consequences of many examples have been computed, especially in the con-
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text of heterotic string theory where Calabi-Yau compactifications directly

give N = 1 supersymmetry (and physically reasonable examples have been

found, e.g. [157, 158]). However, our goal is to shed light on the broader

class of solutions which do include fluxes.

The case with fluxes

The inclusion of fluxes complicates the picture significantly. The globally

non-vanishing spinor fields give rise to G-structures exactly as before, but

these structures are no longer integrable, as the Killing spinors are not

covariantly constant4. This is the general problem posed by the inclusion

of fluxes in such compactifications.

In actual fact, it is possible to make some of the same statements in these

cases. Focusing on one of the two Killing spinors, we can again build a

complex structure and, after a slightly more involved calculation, it is inte-

grable [39, 154]. However, the manifold is not Kahler, the obstruction being

that dJ is related to H. This also ignores the constraints on Mint imposed

by the other set of Killing spinor equations, and so is not particularly useful

here.

If one assumes the internal manifold has an SU (3) structure, so that we

have a decomposition of the form

ε+ = η− ⊗ bε+ + η+ ⊗ b̄ε−

ε− = η+ ⊗ aε+ + η− ⊗ āε−
(7.25)

for IIA or
ε+ = η+ ⊗ bε+ + η− ⊗ b̄ε−

ε− = η+ ⊗ aε+ + η− ⊗ āε−
(7.26)

for IIB, where a, b are complex functions on Mint, then it is possible to clas-

sify the solutions in terms of intrinsic torsion classes of the SU (3) structure

(see [149] for a review). This approach has assumed an SU (3) structure

from the outset, so it does not present the most general solution. If ε1,2

are nowhere parallel then we will have an SU (2) structure, while if they are

parallel at some points of Mint we obtain an interpolating SU (2) and SU (3)

structure.

4They are preserved by a connection with skew-symmetric torsion [154, 155], but this
connection (obviously) has non-zero torsion.
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Therefore, it would seem that the inclusion of fluxes presents a departure

from the nice mathematical properties of the fluxless case. In particular, the

structures are no longer integrable, and we have the possibility of different

local structures appearing at different points in the manifold. However, as

we will see, when viewed as a generalised geometry, there is only one type

of structure that can appear and the analogue of integrability continues to

hold.

Before moving on, we must discuss a no-go theorem [159] (see also the

earlier works [160]) concerning the existence of purely geometrical compact

solutions with flux. The bosonic equations of motion imply that

∇2(e2φ) = 1
6e−2φH2 + 1

4

∑
n

1
(n−1)!F

2
(n) (7.27)

If Mint is compact without boundary, the integral over Mint of the LHS

vanishes, while the terms on the RHS are positive semi-definite. Therefore,

we deduce that H and F must vanish on Mint, implying that the LHS of

the above equation must also vanish. This in turn gives ∇2φ = 2(∂φ)2 and

a similar integration argument reveals that φ must be constant.

We have therefore deduced that no purely geometrical solution with com-

pact Mint and non-vanishing fluxes exists. In type II string theory, this

can be remedied by the addition of orientifold planes, which crucially have

negative tension, thus circumventing the no-go theorem [14].

7.2.2. 4D warped Minkowski solutions of M-theory

We now examine solutions of eleven-dimensional supergravity with the same

metric ansatz used in chapter 6

ds2
11 = e2∆ds2(R10−d,1) + ds2

d(M), (7.28)

and we keep exactly the same internal fluxes as we did there.

Again, we must discuss a no-go theorem. The bosonic equations of motion

imply the equation

∇2(ec∆) = cec∆(1
6

1
4!F

2 + 1
3

1
7! F̃

2) (7.29)

If M is compact without boundary, the integral over M of the LHS vanishes,

124



while both terms on the RHS are positive semi-definite. Therefore, we

deduce that the fields F and F̃ must vanish on M . One way to proceed

from this is to consider solutions with non-compact M and non-zero internal

fluxes. Such solutions include those which can be viewed as an external AdS5

factor times a compact internal space, which are important in AdS/CFT.

However, it is still possible to have compact solutions with non-zero flux in

M theory if one adds appropriate negative tension objects (which we do not

discuss, see [161]), as for the type II case.

We employ the spinor decomposition of appendix E, first with only one

external spinor so as to obtain an N = 1 vacuum

ε = η+ ⊗ ε+ η− ⊗ ε∗ (7.30)

taking the Majorana representations of Cliff(3, 1;R) and Cliff(7;R). Note

that the internal spinor ε is complex, which can be thought of as a pair of

real Spin(7) spinors ε = <(ε) + i=(ε)

The relevant parts of the eleven-dimensional supersymmetry variations

are precisely (6.21), which under the spinor decomposition become the

Killing spinor equations

0 = [ /∇− 1
4
/F − 1

4
/̃F + (/∂∆)]ε,

0 = ∇mε+ 1
288(γm

n1...n4 − 8δm
n1γn2n3n4)Fn1...n4ε− 1

12
1
6! F̃mn1...n6γ

n1...n6ε,

(7.31)

If we wish to extend to more supersymmetries, we merely insist on the

existence of more internal non-vanishing spinors εi and gain multiple copies

of the above equations.

The case of vanishing fluxes again forces M to have special holonomy as

the Killing spinor equations become ∇mεi = 0. Since Levi-Civita is real, the

real and imaginary parts of the complex spinors εi are preserved separately.

The stabiliser of the single internal complex spinor depends upon its form.

Each of the real and imaginary parts is a real Spin(7) spinor, which defines

a G2 structure. If both parts are non-zero and they are not parallel, the pair

defines an SU (3) structure. However, if they are parallel (or one of them

is zero) we have a G2 strcture on M . Again, the full class of cases includes

the possibility that they are parallel at some points of M but not others.
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For the case of a G2 structure, the vacuum has N = 1 supersymme-

try. The local existence of G2 holonomy metrics was shown in [162] and

non-compact examples were presented. The first construction of compact

manifolds with G2 holonomy was achieved in [163] (see [151] for a review).

For the flux-less SU (3) structure case, one can use each of the real and

imaginary parts of ε to build different eleven-dimensional spinors, so one

actually obtains an N = 2 vacuum.

As before, the inclusion of fluxes introduces great complications to the

picture. Firstly, the flux terms mix the real and imaginary parts of the

complex spinors in the equations, so that one can have different structure

groups at each level of preserved supersymmetry. More importantly, they

spoil the integrability of the G-structures defined by the Killing spinors. In

the next section we will show how generalised geometry will restore this

integrability and unify all of the different G-structures one could have for

each value of N .

7.3. Generalised Complex Geometry and

Supersymmetric Vacua

The first generalised geometry formulations of supersymmetric backgrounds

were given in [88] for type II theories. These papers approached the problem

from a different (but equally elegant) angle, which we briefly discuss and

summarise, following [82, 149, 153].

We have included several structures familiar from differential geometry

into generalised geometry. However, there are yet more such structures

which carry over naturally. One is the almost complex structure [81, 82], if

the manifold has even dimension d. In generalised geometry, one can define a

generalised almost complex structure to be an O(d, d) norm-preserving map

J : E → E with J 2 = −1. This defines a U(d/2, d/2) = O(d, d)∩GL(d,C)

structure on E. The integrability condition on J is that the Courant bracket

closes on its ±i eigenbundles in EC = E ⊗ C.

At the two extremes of generalised almost complex structures (on T ⊕T ∗)
are those built from either an ordinary complex structure or an ordinary

sympletic form. The integrability condition then matches the normal in-

tegrability conditions for those ordinary structures. A generalised complex
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manifold therefore interpolates between complex manifolds and symplectic

manifolds.

A generalised almost complex structure on E is equivalent to a complex

pure spinor line bundle. A pure spinor is a definite chirality complex O(d, d)

spinor Φ such that the annihilator

LΦ = {V ∈ Γ(EC) : V AΓAΦ = 0} (7.32)

is maximally isotropic. This annihilator is identified with the +i eigenbundle

of J . Such a globally non-vanishing pure spinor defines an SU (d/2, d/2)

structure. In the coordinate frame, the integrability condition becomes

dΦ = V · Φ for some V ∈ E. If dΦ = 0, the manifold is called generalised

Calabi-Yau [81].

A pair of generalised almost complex structures J1,2 is said to be com-

patible if they commute and their product G = −J1J2 defines a generalised

metric. The pair then defines an SU (d/2) × SU (d/2) structure, which is

integrable, or generalised Kahler, if both complex structures are integrable.

The same structure can be defined by a generalised metric and two

Spin(d) spinors. For the relevant case of d = 6, we can use two chiral

spinors ε+1,2 to build the two pure spinors (also in the coordinate frame)

Φ+ = e−φe−B ∧ (ε+1 ⊗ ε̄
+
2 ) Φ− = e−φe−B ∧ (ε+1 ⊗ ε̄

−
2 ) (7.33)

where the tensor products are expanded in forms using the usual Clifford

algebra isomorphism, in which the ΛkT ∗M components of ε+1 ⊗ ε̄
±
2 are given

by

(ε+1 ⊗ ε̄
±
2 )m1...mk = 1

4(−1)[k+1/2](ε̄±2 γm1...mkε
+
1 ) (7.34)

Schematically, the differential conditions for N = 1 supersymmetry become

dΦ+ = 0 dΦ− = FRR (7.35)

where Φ± = Φ± for IIA and Φ± = Φ∓ for IIB. For vanishing RR flux,

these conditions express the integrability of the SU (3)×SU (3) structure, or

equivalently the integrability of both of the generalised complex structures.

This result is essentially equivalent to the result we give using our generalised

connections formalism in the next section.
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7.4. Killing Spinor Equations and Generalised

Holonomy

In generalised geometry language, we have seen that the vanishing of the

supersymmetry variations of the fermions can be encoded concisely in the

equations

D ⊗J ε = 0 D ⊗S ε = 0 (7.36)

where D is a torsion-free generalised H̃d connection and the supersymmetry

parameter ε is viewed as a section of the H̃d bundle S. In the present context,

ε is a globally non-vanishing section, so its components are stabilised by

transition functions in some subgroup G(ε) of H̃d . In other words, those

H̃d frames in which the components of ε are fixed define a generalised G(ε)-

structure. A generalised connection is compatible with this structure if

Dε = 0.

One can easily extend the above to higher supersymmetry. Here, one

merely has several background spinors {εi}, which are stabilised by a group

G{ε
i} ⊂ H̃d , and the compatibility condition becomes Dεi = 0 for each value

of i.

The equations (7.36), which hold for any torsion-free H̃d compatible D,

appear weaker than the compatibility condition as they constrain only two

of the irreducible parts of Dεi. However, one can show that, for low num-

bers of supersymmetries, one can always construct some (more restricted)

torsion-free connection D̂ such that the full compatibility condition D̂εi = 0

is satisfied5. The generalisedG{ε
i}-structure then has vanishing intrinsic tor-

sion and we have the generalised analogue of special holonomy. The Killing

spinor equations are thus equivalent to special generalised holonomy in these

cases. We will demonstrate this statement for some important examples in

the next sections.

7.4.1. SU (3)× SU (3) structures in type II theories

We will now explain how this works for the six-dimensional SU (3)× SU (3)

compactifications of type II theories. As said in section 7.3, these have been

studied extensively in the context of generalised complex geometry in [88].

5Note that this also provides a simple proof that the norm of a Killing spinor is constant
in these setups
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Here we explain how they are described equally well by our formalism, which

can also incorporate more supersymmetries.

We consider an O(6, 6)× R+ generalised geometry on the internal mani-

fold. The spin group associated to the generalised metric is then Spin(6)×
Spin(6) ' SU (4)× SU (4) and we can consider a generalised spinor bundle

S = S(C+) ⊕ S(C−). Here the spinor bundles S(C±) are taken to include

both chiralities such that the fibre of each is the 4 + 4̄ representation of

SU (4). For Majorana spinors the 4 and 4̄ parts are related by complex

conjugation. The fibre of S is thus the (4 + 4̄,1)+(1,4 + 4̄) representation

of SU (4) × SU (4), and the direct sum of two spinors ε± ∈ Γ(S(C±)) gives

a section of S.

In six dimensions, our two supersymmetry parameters ε+ = ε1 and ε− =

ε2 on Mint can therefore be promoted to sections of S(C±) and then com-

bined into a single object ε ∈ Γ(S). The components of ε are stabilised by an

SU (3)× SU (3) subgroup of SU (4)× SU (4), so ε defines an SU (3)× SU (3)

structure. Note that we have not assumed that ε+ and ε− are non-parallel,

only that they are non-vanishing. The generalised geometry sees them as

transforming under different spin groups and thus combines all possible

cases into one unified description.

In the absence of RR fluxes, the supersymmetry variations of the fermions

can be equated to zero via the generalised geometry expressions

Dāε
+ = 0 γaDaε

+ = 0

Daε
− = 0 γāDāε

− = 0
(7.37)

where D is any torsion-free SU (4)×SU (4) connection. These are the unique

operators (3.107) for the Spin(6)×Spin(6) case, and so they are independent

of the choice of torsion-free compatible D.

The equations (7.37) do indeed imply the existence of a torsion-free

SU (3) × SU (3) connection D̂ with D̂ε = 0. We will demonstrate this in

the section 7.4.3 after discussing the relationship between these projected

derivatives and the intrinsic torsion of the structure. An alternative proof

comes from considering a connection of the form D̂ = D + Σ where D is

an arbitrary torsion-free SU (4)× SU (4) connection and Σ is an extra con-

nection piece. One can then show that it is always possible to solve for the

components of Σ in terms of Dε such that D̂ is torsion-free and D̂ε = 0,
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and in the process one constructs a family of these connections.

We could also look at cases with more supersymmetry, simply by insisting

that further (4 + 4̄,1) + (1,4 + 4̄) spinors are annihilated by the above

operators. We do not discuss this in detail, but it can be shown that the

group theory works in the same way, so that there is again an integrable

generalised G-structure.

Also, note that if we had non-zero RR fluxes on Mint, these would gen-

erate non-zero terms on the right had sides of equations (7.37). This would

mean that even our generalised structure would not be integrable, and this

is a consequence of not including the symmetries and charges of the RR

fields in the generalised geometry. This is remedied in Ed(d)×R+ gener-

alised geometry, which, when decomposed under a GL(d − 1,R) subgroup

as outlined in section 6.5, does include a “geometrisation” of the RR sector.

The integrability of backgrounds with RR fluxes is then restored. Previ-

ously, N = 1 and N = 2 compactifications of type II theories with RR flux

have been studied in exceptional generalised geometry in [102, 103].

At this point, it is also worth mentioning that the solution correspond-

ing to an NS5-brane wrapped on a Kahler 2-cycle in a Calabi-Yau man-

ifold [164], falls outside the classification of [88], as this is an N = 1

background with vanishing RR fields. For this solution, one sets the sec-

ond spinor ε2 to zero, so the pure spinors vanish identically. However, in

our formalism, where we do not take the tensor product of the spinors,

this supersymmetry parameter still gives a non-vanishing section of S ∼
(4 + 4̄,1) + (1,4 + 4̄), describing an SU (3) × SU (4) structure. This is a

case which we have ignored up until now, but it is included in the framework.

7.4.2. SU (7) and SU (6) structures in M-theory

Here we provide the same treatment for M-theory compactifications on

seven-manifolds with Ed(d)×R+ generalised geometry. We find that the

logical structure of this case is the same as that in section 7.4.1. The cor-

responding results for type II theories with RR fluxes can be obtained by

considering the results presented here over a six-dimensional manifold as

outlined in section 6.5.

In this case, a single internal complex spinor ε is a section of the gener-

alised spinor bundle S. The fibre of this bundle is the representation 8 + 8̄
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of SU (8), where the two parts are related by complex conjugation. There-

fore ε is stabilised by SU (7) ⊂ SU (8) and so defines an SU (7) structure.

This statement unifies all of the different subgroups of Spin(7) which can

stabilise both the real and imaginary parts of ε. The Killing spinor equa-

tions take the abstract form (7.36), which can be written out explicitly in

SU (8) indices if required. Again, we will find in the next section that these

equations precisely correspond to the vanishing of the intrinsic torsion of

the SU (7) structure.

If we introduce a second complex spinor ε2, which is not parallel to the

other spinor ε1, the pair define an SU (6) structure and will lead to an N = 2

vacuum. The Killing spinor equations become two copies of (7.36), one for

each spinor. We find that these equations express the vanishing of the

intrinsic torsion of the SU (6) structure, so that a torsion-free compatible

connection exists.

We remark that the torsion-free compatible connections for these struc-

tures can be found by the constructive method outlined for SU (3)× SU (3)

structures in the previous section. This provides an alternative proof of

integrability.

7.4.3. Computation of the Intrinsic Torsion

One can show directly that the intrinsic torsion of the above structures is

related to the Killing spinor derivatives. We calculate the representation in

which the intrinsic torsion transforms and, assuming that certain maps are

non-degenerate, we demonstrate that the Killing spinor equations annihi-

late precisely this representation. In this section, we study only the linear

algebra involved at a single point in the manifold, so that we may discuss

representations rather than bundles. In fact, we will use a slight abuse of

notation in which we do not distinguish between the two.

Let D and D′ be two H̃d compatible connections. Their difference Σ =

D′ −D is then a section of E∗ ⊗ ad(P ). At a point in the manifold, denote

the vector space of such tensors by Σ̃ ∼ E∗ ⊗ ad(H̃d ), and the correspond-

ing space for G-compatible connections by Σ̃′ ∼ E∗ ⊗ ad(G). These are

(reducible) representations of H̃d and G respectively, and they split into

two (also in general reducible) representations

Σ̃ = T̃ ⊕ Ũ Σ̃′ = T̃ ′ ⊕ Ũ ′ (7.38)
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where T̃ and T̃ ′ are the components constrained by the torsion, and Ũ and

Ũ ′ are unconstrained by the torsion. Clearly Σ̃′ ⊂ Σ̃, T̃ ′ ⊂ T̃ and Ũ ′ ⊂ Ũ .

Under the decomposition of H̃d representations under G, we have

T̃ = T̃ ′ ⊕ T̃I (7.39)

where T̃I ' T̃ /T̃ ′ is the (reducible) representation of G under which the

intrinsic torsion transforms. This can be found as we know T̃ and T̃ ′ =

Σ̃′ ∩ T̃ .

The Killing spinor equations transform under the representation S⊕J of

H̃d , and the projections that give rise to them from the generalised connec-

tion define a map

P : Σ̃→ S ⊕ J

Σ 7→ (Σ⊗S ε)⊕ (Σ⊗J ε)
(7.40)

Now, G is the stabiliser of ε so for Σ ∈ Σ̃′ we have Σ · ε = 0. Since we have

the decomposition Σ̃ = T̃ ′ ⊕ T̃I ⊕ Ũ and the projection depends only on

torsion components of Σ, we can restrict to a map

P|T̃I : T̃I → S ⊕ J (7.41)

If D is an H̃d compatible connection then, writing D as a G-compatible

connection plus a connection piece Σ, we see that (D⊗S ε)⊕(D⊗J ε) ∈ S⊕J
is a linear function of the intrinsic torsion of the structure defined by ε.

In the cases considered, we will show that T̃I and S ⊕ J have the same

decomposition into irreducible representations of G. We make the plausible

assumption that the map P|T̃I is an isomorphism, and coupled with the

previous statement this proves that the Killing spinor equations precisely

set the intrinsic torsion to zero. Our assumption could easily be checked

by explicit calculations coupled with Shur’s lemma. It is also supported by

the results in appendix D where it is seen that the projections appear to

depend on all components of the torsion at H̃d level.
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For SU (3) × SU (3) structures in type II compactifications without RR

flux, we have the SU (4)× SU (4) representations

S ⊕ J = (4 + 4̄,1) + (1,4 + 4̄) + (6,4 + 4̄) + (4 + 4̄,6),

T̃ = (6,1) + (1,6) + (10 + 1̄0,1) + (1,10 + 1̄0) + (15,6) + (6,15),

(7.42)

and the SU (3)× SU (3) decompositions

S ⊕ J = 4× (1,1) + 2×
[
(3 + 3̄,1) + (1,3 + 3̄)

]
+ 2× (3,3) + 2×

[
(3, 3̄) + (3̄,3)

]
+ 2× (3̄, 3̄),

T̃ =
(
2× [1] + 2× [3 + 3̄] + [6 + 6̄],1

)
+
(
1, 2× [1] + 2× [3 + 3̄] + [6 + 6̄]

)
+ (8,3 + 3̄) + (3 + 3̄,8)

Σ̃′ = E ⊗ ad(SU (3)× SU (3))

=
(
3 + 3̄ + 6 + 6̄ + 15 + 1̄5,1

)
+
(
1,3 + 3̄ + 6 + 6̄ + 15 + 1̄5

)
+
(
8,3 + 3̄

)
+
(
3 + 3̄,8

)
.

(7.43)

After inspection of these we immediately write

T̃ ′ =
(
[3 + 3̄] + [6 + 6̄],1

)
+
(
1, [3 + 3̄] + [6 + 6̄]

)
+
(
8,3 + 3̄

)
+
(
3 + 3̄,8

)
.

(7.44)

In fact, we cannot quite deduce this from what is written above. It is

possible that the torsion map could vanish on some of the representations

appearing in the SU (3)×SU (3) connection, which also appear in (7.44). To

be fully watertight, one should check explicitly that this does not happen,

which is easy to do, though we do not give details here. We then have

T̃I = 4× (1,1) + 2×
[
(3 + 3̄,1) + (1,3 + 3̄)

]
+ 2× (3,3) + 2×

[
(3, 3̄) + (3̄,3)

]
+ 2× (3̄, 3̄)

= S ⊕ J,

(7.45)

establishing that the desired relation.
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We can go through the same procedure for the SU (7) and SU (6) struc-

tures in section 7.4.2. Here we have the SU (8) decompositions

S ⊕ J = 8 + 8̄ + 56 + 5̄6,

T̃ = 28 + 2̄8 + 36 + 3̄6 + 420 + ¯420.
(7.46)

The next step is to calculate the SU (7) decompositions

S ⊕ J = 2× 1 + 7 + 7̄ + 21 + 2̄1 + 35 + 3̄5,

T̃ = 2×
[
1 + 7 + 7̄ + 21 + 2̄1

]
+
[
28 + 2̄8

]
+
[
35 + 3̄5

]
+
[
140 + ¯140

]
+
[
224 + ¯224

]
,

Σ̃′ = E ⊗ ad(SU (7))

=
[
7 + 7̄

]
+
[
21 + 2̄1

]
+
[
28 + 2̄8

]
+
[
140 + ¯140

]
+
[
189 + ¯189

]
+
[
224 + ¯224

]
+
[
735 + ¯735

]
.

(7.47)

from which we see that

T̃I = 2× 1 + 7 + 7̄ + 21 + 2̄1 + 35 + 3̄5

= S ⊕ J.
(7.48)

Again, technically we need to check that the torsion map is not zero on the

relevant representations appearing in the SU (7) connection in order to be

sure of this.

Now let us examine SU (6) case, where the relevant decompositions are

S ⊕ J = 4× 1 + 2×
[
6 + 6̄ + 15 + 1̄5

]
+
[
20 + 2̄0

]
,

T̃ = 8× 1 + 6×
[
6 + 6̄

]
+ 5×

[
15 + 1̄5

]
+
[
21 + 2̄1

]
+ 2×

[
20 + 2̄0 + 84 + 8̄4

]
+
[
35 + 3̄5

]
+
[
105 + ¯105

]
,

Σ̃′ = E ⊗ ad(SU (6))

= 2×
[
6 + 6̄ + 84 + 8̄4 + 120 + ¯120

]
+
[
15 + 1̄5

]
+
[
21 + 2̄1

]
+
[
35 + 3̄5

]
+
[
105 + ¯105

]
+
[
384 + ¯384

]
,

(7.49)
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so, modulo the same checks as in the previous cases, we can write

T̃I = 8× 1 + 4×
[
6 + 6̄ + 15 + 1̄5

]
+ 2×

[
20 + 2̄0

]
= 2×

(
S ⊕ J

)
.

(7.50)

Thus, again we see that the Killing spinor equations precisely set to zero

the irreducible representations corresponding to the intrinsic torsion.
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8. Conclusion and Outlook

In this thesis, we have seen that generalised geometry is able to provide

an extremely neat, geometrical formulation of the supergravities we have

studied. The “geometrised” bosonic degrees of freedom are packaged as a

generalised metric, which is equivalent to a G-structure on the generalised

tangent bundle. The bosonic action and equations of motion are then given

by curvatures of a torsion-free connection compatible with this structure.

This is the exact analogue of Einstein gravity in the formulation of chap-

ter 2. This formalism also realises the hidden symmetries of supergravity,

so we can claim to have finally answered the question in [55] concerning

the geometry underlying them. However, as mentioned previously, the only

true symmetries are the geometric subgroup and the local group, which

correspond to the diffeomorphism and local Lorentz symmetries of general

relativity. The Ed(d)×R+ group is only a symmetry in the sense that it re-

lates different frames in the generalised frame bundle, in much the same way

that tensors can be evaluated in any (not necessarily coordinate induced)

frame in general relativity.

Our formalism has very naturally included the fermions and supersym-

metry. The latter should come as a surprise, as we did not put this in

by hand. In fact the torsion-free generalised connection D has precisely

the properties necessary for the supersymmetry algebra to close. The com-

mutator of two supersymmetries acting on the generalised metric is given

by a Dorfman derivative with the connection D inserted. However, the

torsion-free property is exactly the condition for this to be equal to the reg-

ular Dorfman derivative, which gives the infinitesimal action of the bosonic

symmetries. Furthermore, the generalised curvatures we have constructed

can be thought of as coming from the closure of the supersymmetry algebra

on the fermionic equations of motion. These curvatures are unique and ten-

sorial only if one takes a torsion-free connection. Thus there appears to be

a strong relation between the vanishing of the generalised torsion and the
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closure of the supersymmetry algebra.

We should discuss the connections to other works noted in the introduc-

tion. Siegel [61], in particular, considered connections very similar to those

of chapter 3. He proposed a separate conventional GL(d,R) connection for

each of the left- and right-moving sectors of the string, in contrast to our

O(p, q) × O(q, p) connection. However, he goes on to impose compatibility

with the O(d, d) metric and the volume measure Φ =
√
ge−2φ, which in

fact imposes compatibility with O(p, q)×O(q, p) (the common subgroup of

GL(d,R) × GL(d,R) and O(d, d) × R+). Therefore, Siegel’s results for the

generalised Ricci curvature and scalar curvature are in fact identical to ours

(and also those in [116, 117]). Siegel also constructs a Riemann-like tensor,

but has to add extra terms involving the connection components by hand in

order to recover a tensor (again this is repeated in [116, 117]). This reflects

that our construction (3.70) does not result in a tensor.

Another point we wish to highlight, is that the strong constraint imposed

in “double field theory”-like geometries [61, 109, 112, 114, 115, 116, 117]

always locally reduces the dependence of fields to the coordinates of a regular

manifold. Thus, once the strong constraint is imposed, these geometries are

locally equivalent to the corresponding generalised geometries. The results

given here thus carry over directly to these setups, for example, providing

the main results of [130, 131].

We also believe that the “section conditions” provided by the projection

to the bundle N , as described in section 5.1.4, will provide the appropri-

ate generalisation of the strong constraint for the exceptional geometries,

though this has only explicitly been shown for d = 4 [115]. It guaran-

tees the Leibniz identity for the Dorfman derivative, implying the closure

of the algebra, and the condition U ⊗N V = 0 forces linearity of the cur-

vature (5.39), suggesting that it reduces it to an ordinary curvature. The

O(d, d) section condition has an interpretation as the level matching condi-

tion of the string [109]. It would be interesting to investigate whether some

corresponding interpretation could be found for the M theory cases.

An obvious question to ask for Ed(d)×R+ geometries is whether they

can be extended to d > 7. Statements about Kac-Moody symmetries

for d > 8 are mostly in the realm of speculation, but the construction of

eleven-dimensional supergravity with E8(8) and SO(16) appearing is well-

understood [56]. There has also been success in considering these cases
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in the embedding tensor formalism (see [47] and references therein). One

might therefore expect that it should be easy to extend our construction

to an E8(8) × R+ generalised geometry. Indeed, in appendix D, we demon-

strate that the algebraic properties of the torsion and projections go through

exactly as one would hope. However, there is clear indication that the con-

struction cannot work in exactly the same way for d = 8. The most im-

mediate barrier is the absence of the Dorfman derivative in this case: the

expression ∂V V
′ − (∂ ⊗ad V ) · V ′ is not diffeomorphism covariant. This is

because there is no natural diffeomorphism covariant mapping

∂ : T ∗ ⊗ Λ7T ∗ → T ∗ ⊗ Λ8T ∗ (8.1)

constructed using only partial derivatives, which would be required in this

definition. This would seem to be related to the lack of a non-linear theory

of dual gravity, as this charge should be associated to the symmetries of the

dual graviton [71].

As there is currently no known resolution of this issue, we do not dwell on

the point. However, we do briefly note that in most approaches to the local

symmetry in higher dimensions, the action of the three-form piece (the

b term in (C.21)) generates the entire algebra by multiple commutators.

Therefore, whatever expressions one may eventually be able to write down

in higher dimensions, our formulae in SO(d) representations look likely to

provide at least the first few terms. The fact that several expressions in

appendix C.2 agree precisely with the low-level decompositions of E10 is a

consequence of this statement.

One might also wonder whether integrability of the generalised metric

structure (which is guaranteed in the cases examined) could impose dif-

ferential constraints on the fields in other possible cases. This is one idea

of how the seemingly infinite number of fields present in Kac-Moody con-

structions could be truncated to the finite number of degrees of freedom in

supergravity, within the framework of generalised geometry. This would fit

well with the recent paper [165], which claims that all but a finite number

of these fields are auxiliary.

A different line of thought would be to explore the possibility of construct-

ing generalised geometries in this way for other supergravities. Some work

has been done for the case of N = 1 d = 4 supergravity in the formulation

138



of [166]. It appears that similar statements may be possible, though no final

conclusion has yet been reached. It is noteworthy that we have an abstract

prescription for the extraction of supergravity equations from generalised

geometry, and one might hope that this was applicable in other cases which

might exist.

Clearly the most concrete application of the technology is the descrip-

tion of supersymmetric backgrounds given in section 7. The unification

of backgrounds with different (possibly interpolating) structure groups at

each level of supersymmetry, and the equivalence of integrability and Killing

spinor equations is no doubt a very pleasing result. One would hope that

this could help in the ultimate goal of classification of all supersymmetric

backgrounds, though obviously this could only provide a first step. How-

ever, special holonomy of a Riemannian manifold proved to be a very strong

constraint, so one might hope that its generalisation would too. At the very

least, one could hope to find new solutions similarly to those resulting from

conventional G-structure analysis in e.g. [167]. It may also be interesting to

understand the integrable G ⊂ SU (8) structures for d = 7 in terms of ex-

tensions of the generalised complex structures and pure spinors used in [88]

(much of the ground work for this has already been done in [102, 103]).

A less encouraging result arises from considering more supersymmetries.

By the same calculations, one can see that our algebraic proof no longer

holds for three or more Killing spinors, as the intrinsic torsion becomes

larger than the representation content of the Killing spinor equations. For

example, the existence of a torsion-free SU (5) ⊂ SU (8) structure would

appear to impose further constraints on the three Killing spinors and the

fluxes. It would be easy to check this condition for known solutions, for

example the pure (non-compact) M5 brane background, and it may hold in

general, though this would be future work.

Probably the most interesting question comes back to possible links with

doubled geometry and non-geometric backgrounds. Our formalism has dis-

cussed only supergravity, and makes no direct claims about dualities or

non-geometry. However, unlike doubled geometry it is applicable to gen-

eral manifolds, and features of supergravity can sometimes give us hints of

stringy physics. Some recent papers [132, 133] have considered the eval-

uation of actions in different generalised frames. Roughly, they choose to

use the β-transformation in O(d, d) to construct their frame, instead of tak-
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ing the globally defined B-transformed frame as we do. The evaluation of

the curvature in this new frame gives a Lagrangian in which the so-called

“non-geometric fluxes” appear. The frame is not globally defined on an

ordinary manifold, but maybe it is somehow globally defined on a non-

geometric space. Other intriguing works [168] have observed links between

non-geometric backgrounds and non-commutative spaces, and the connec-

tion to generalised geometry and T-folds is discussed in [169]. It would be

very interesting to see if there exists a generalisation of our results which

moves away from conventional manifolds, but retains the same notions of

connections and curvatures, in such a way as to include these exotic geome-

tries.
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A. General Conventions

Euclidean signature conventions in d dimensions

The d dimensional metric is positive definite. We use the indices m,n, p, . . .

as the coordinate indices and a, b, c . . . for the tangent space indices. We

take symmetrisation of indices with weight one. Our conventions for forms

are

ω(k) = 1
k!ωm1...mkdxm1 ∧ · · · ∧ dxmk ,

ω(k) ∧ η(l) = 1
(k+l)!

(
(k+l)!
k! l! ω[m1...mkηmk+1...mk+l]

)
dxm1 ∧ · · · ∧ dxmk+l ,

∗ω(k) = 1
(d−k)!

(
1
k!

√
|g|εm1...md−kn1...nkω

n1...nk
)

dxm1 ∧ · · · ∧ dxmd−k ,

ω2
(k) = ωm1...mkω

m1...mk , (A.1)

where ε1...d = ε1...d = +1. We also use the j notation from [101, 2]

jω(p+1) ∧ η(7−p) =
7!

p!(7− p)!
ωm[m1...mpηmp+1...m7]dx

m ⊗ dxm1 ∧ · · · ∧ dxm7 .

(A.2)

Let ∇mvn = ∂mv
n+ωm

n
pv
p be a general connection on TM . The torsion

T ∈ Γ(TM ⊗ Λ2T ∗M) of ∇ is defined by

T (v, w) = ∇vw −∇wv − [v, w] . (A.3)

or concretely, in coordinate indices,

Tmnp = ωn
m
p − ωpmn, (A.4)

while, in a general basis where ∇mva = ∂mv
a + ωm

a
bv
b, one has

T abc = ωb
a
c − ωcab + [êb, êc]

a . (A.5)
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The curvature of a connection ∇ is given by the Riemann tensor R ∈
Γ(Λ2T ∗M ⊗ TM ⊗ T ∗M), defined by

R(u, v)w = [∇u,∇v]w −∇[u,v]w,

R p
mn qv

q = [∇m,∇n]vp − T qmn∇qvp.
(A.6)

The Ricci tensor is the trace of the Riemann curvature

Rmn = R p
pm n. (A.7)

If the manifold admits a metric g then the Ricci scalar is defined by

R = gmnRmn. (A.8)

Lorentzian signature conventions in 10 dimensions

Our conventions largely follow [141] but we include a list for completeness.

The only difference which is not purely notational is that we take the oppo-

site sign for the Riemann tensor. The metric has the mostly plus signature

(− + + · · ·+). We use the indices µ, ν, λ . . . as the spacetime coordinate

indices and a, b, c . . . for the tangent space indices. We take symmetrisation

of indices with weight one. Our conventions for forms are

ω(k) = 1
k!ωµ1...µkdxµ1 ∧ · · · ∧ dxµk ,

ω(k) ∧ η(l) = 1
(k+l)!

(
(k+l)!
k! l! ω[µ1...µkηµk+1...µk+l]

)
dxµ1 ∧ · · · ∧ dxµk+l ,

∗ω(k) = 1
(10−k)!

(
1
k!

√
−gεµ1...µ10−kν1...νkω

ν1...νk
)

dxµ1 ∧ · · · ∧ dxµ10−k ,

ω2
(k) = ωµ1...µkω

µ1...µk , (A.9)

where ε01...9 = −ε01...9 = +1. The formulae for connections, torsion and

Riemann tensor are the same as for Euclidean signature in the previous

section.

Lorentzian signature conventions in 11 dimensions

We follow the conventions of [146] precisely. This differs from the conven-

tions used in ten dimensions in that here the square of a k-form is defined

as ω2
(k) = 1

k!ωµ1...µkω
µ1...µk .
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B. Clifford Algebras

Conventions for all Clifford algebras

The following conventions are applied to all clifford algebras used in this

thesis. Here the indices are taken as m,n, p, . . . . but are intended to be

replaced by any other set of indices as necessary.

The gamma matrices satisfy

{γm, γn} = 2gmn, γm1...mk = γ[m1 . . . γmk]. (B.1)

The top gamma is defined as

γ(d) = γ0γ1 . . . γd = 1
d!εm1...mdγ

m1...md . (B.2)

We use Dirac slash notation with weight one so that for ω ∈ Γ(ΛkT ∗M)

/ω = 1
k!ωm1...mkγ

m1...mk . (B.3)

Where needed we will introduce SU (2) indices A,B, . . . = 1, 2 for sym-

plectic Majorana spinors. The convention for raising and lowering these

indices is taken as

χA = εABχ
B χA = εABχB. (B.4)

The symplectic Majorana condition will always be taken as one of

ηA = εAB(DηB)∗ or ηA = εAB(D̃ηB)∗, (B.5)

where D or D̃ is the chosen complex-conjugation intertwiner for the Clifford

algebra in question.
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Cliff(9, 1;R)

Our conventions match [141]. We use the anti-symmetric transpose inter-

twiner

C̃γµC̃−1 = −(γµ)T , C̃T = −C̃, (B.6)

to define the Majorana conjugate as ε̄ = εTC. This leads to the formulae

C̃γµ1...µkC̃−1 = (−)[(k+1)/2](γµ1...µk)T ,

ε̄γµ1...µkχ = (−)[(k+1)/2]χ̄γµ1...µkε, (B.7)

where the spinors ε and χ are anti-commuting. We have

γµ1...µkγ
(10) = (−)[k/2] 1

(10−k)!

√
−gεµ1...µkν1...ν10−kγ

ν1...ν10−k , (B.8)

which is also commonly written as

γ(k)γ(10) = (−)[k/2] ∗ γ(10−k). (B.9)

We use Dirac slash notation with weight one so that for Ψ ∈ Γ(Λ•T ∗M)

/Ψ =
∑
k

1
k!Ψµ1...µkγ

µ1...µk . (B.10)

Cliff(10, 1;R)

We use the transpose intertwiner C̃ = −C̃T and a complex conjugation

intertwiner D with D∗D = 1 and

C̃ΓM C̃−1 = −(ΓM )T , DΓMD−1 = (ΓM )∗. (B.11)

The Majorana condition can be written as

ε = (Dε)∗, (B.12)

and the Majorana conjugate is defined by

ε̄ = εT C̃. (B.13)
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This then satisfies

ΓM1...Mkε = (−1)b
k+1

2 cε̄ΓM1...Mk (B.14)

Following the conventions of [146] we take the representation with

Γ(11) = Γ0Γ1 . . .Γ10 = −1. (B.15)
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C. Details of Ed(d)×R+ and Hd

C.1. Ed(d)×R+ and GL(d,R)

C.1.1. Construction of Ed(d)×R+ from GL(d,R)

In this section we give an explicit construction of Ed(d)×R+ for d ≤ 7 based

on the GL(d,R) subgroup.

We start with the Lie algebra. If GL(d,R) acts linearly on the d-dimensional

vector space F , consider first the space

W1 = F ⊕ Λ2F ∗ ⊕ Λ5F ∗ ⊕
(
F ∗ ⊗ Λ7F ∗

)
. (C.1)

We can write an element of V ∈W1 as

V = v + ω + σ + τ, (C.2)

where x ∈ F etc. If we write the index a for the fundamental GL(d,R)

representation note that τ has the index structure τa,b1...b7 , where a labels

the F ∗ factor and b1 . . . b7 the Λ7F ∗ factor.

To define the Lie algebra we introduce

W2 = R⊕ (F ⊗ F ∗)⊕ Λ3F ∗ ⊕ Λ6F ∗ ⊕ Λ3F ⊕ Λ6F, (C.3)

with elements R ∈W2

R = c+ r + a+ ã+ α+ α̃, (C.4)

with c ∈ R, r ∈ F ⊗ F ∗ etc. The Lie algebra of Ed(d)×R+ can be defined
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by an action of R ∈W2 on V ∈W1 as follows. We take

R · v = cv + r · v + α y ω − α̃ y σ,

R · ω = cω + r · ω + v y a+ α y σ + α̃ y τ,

R · σ = cσ + r · σ + v y ã+ a ∧ ω + α y τ,

R · τ = cτ + r · τ + ja ∧ σ − jã ∧ ω.

(C.5)

Our notation here is that r · v, etc. are the usual action of gl(d,R) on the

relevant tensor. Thus

(r · v)a = rabv
b, (r · ω)ab = −rcaωcb − rcbωac, etc. (C.6)

Note that the Ed(d) sub-algebra is generated by setting c = 1
(9−d)r

a
a.

For completeness, note that the contraction of forms and polyvectors in

our conventions, given w ∈ ΛpF . λ ∈ ΛqF ∗ and τ ∈ F ∗ ⊗ Λ7F ∗, are given

by

(w y λ)a1...aq−p
:=

1

p!
wc1...cpλc1...cpa1...aq−p if p ≤ q,

(w y λ)a1...ap−q :=
1

q!
wa1...ap−qc1...cqλc1...cq if p ≥ q,

(w y τ)a1...a8−p
:=

1

(p− 1)!
wc1...cpτc1,c2...cpa1...a8−p ,

(C.7)

while for λ ∈ Λp+1F ∗ and µ ∈ Λ7−pF ∗ we define jλ ∧ µ ∈ F ∗ ⊗ Λ7F ∗ as

(jλ ∧ µ)a,a1...a7
:=

7!

p!(7− p)!
λa[a1...apµap+1...a7]. (C.8)

The Ed(d)×R+ Lie group can then be constructed starting with GL(d,R)

and using the exponentiated action of a, ã, α and α̃. The GL(d,R) action

by an element m is standard so

(m · v)a = ma
bv
b, (m · ω)ab = (m−1)ca(m

−1)dbωcd, etc. (C.9)

The action of a and ã form a nilpotent subgroup of nilpotency class two.
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One has

ea+ãV = v + (ω + iva)

+
(
σ + a ∧ ω + 1

2a ∧ iva+ ivã
)

+
(
τ + ja ∧ σ − jã ∧ ω + 1

2ja ∧ a ∧ ω

+ 1
2ja ∧ ivã−

1
2jã ∧ iva+ 1

6ja ∧ a ∧ iva
)
,

(C.10)

with no terms higher than cubic in the expansion. The action of α and α̃

form a similar nilpotent subgroup of nilpotency class two with

eα+α̃V =
(
v + α y ω − α̃ y σ + 1

2α y α y σ

+ 1
2α y α̃ y τ + 1

2 α̃ y α y τ + 1
6α y α y α y τ

)
+ (ω + α y σ + α̃ y τ + α y α y σ)

+ (σ + α y τ) + τ.

(C.11)

A general element of Ed(d)×R+ then has the form

M · V = eλ eα+α̃ ea+ãm · V, (C.12)

where eλ with λ ∈ R is included to give a general R+ scaling.

C.1.2. Some tensor products

We can also define tensor products between representations in terms of the

GL(d,R) components. Given the dual space

W ∗1 = F ∗ ⊕ Λ2F ⊕ Λ5F ⊕
(
F ⊗ Λ7F

)
,

Z = ζ + u+ s+ t ∈W ∗1 ,
(C.13)

148



the map into the adjoint W1 ⊗W ∗1 →W2 is given by

c = −1
3u y ω − 2

3s y σ − t y τ,

r = v ⊗ ζ − ju y jω + 1
3(u y ω)1− js y jσ + 2

3(s y σ)1− jt y jτ,

a = ζ ∧ ω + u y σ + s y τ,

α = v ∧ u+ s y ω + t y σ,

ã = ζ ∧ σ + u y τ,

α̃ = −v ∧ s− t y ω,

(C.14)

where we are using the notation that, given w ∈ ΛpF and λ ∈ ΛpF ∗,

(jw y jλ)a b :=
1

(p− 1)!
wac1...cp−1λbc1...cp−1 ,

(jt y jτ)a b :=
1

7!
ta,c1...c7τb,c1...c7 ,

(t y λ)a1...a8−p :=
1

(p− 1)!
tc1,c2...cpa1...a8−pλc1...cp ,

(t y τ) :=
1

7!
ta,b1...b7τa,b1...b7 .

(C.15)

We can also consider the representations that appear in the bundle N as

given in table 5.2. We consider

W3 = F ∗ ⊕ Λ4F ∗ ⊕ (F ∗ ⊗ Λ6F ∗)⊕ (Λ3F ∗ ⊗ Λ7F ∗)⊕ (Λ6F ∗ ⊗ Λ7F ∗),

Y = λ+ κ+ µ+ ν + π.

(C.16)

The symmetric map W1 ⊗W1 →W3 is given by

λ = v y ω′ + v′ y ω,

κ = v y σ′ + v′ y σ − ω ∧ ω′,

µ =
(
jω ∧ σ′ + jω′ ∧ σ

)
− 1

4

(
σ ∧ ω′ + σ′ ∧ ω

)
+ (v y jτ) + (v y jτ ′)− 1

4(v y τ ′ + v′ y τ),

ν = j3ω ∧ τ ′ + j3ω′ ∧ τ − j3σ ∧ σ′,

π = j6σ ∧ τ ′ + j6σ′ ∧ τ,

(C.17)
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where, for ω ∈ ΛpF ∗, σ, σ′ ∈ Λ5F ∗ and τ ∈ F ∗ ⊗ Λ7F ∗,(
jp+1ω ∧ τ

)
a1...ap+1,b1...b7

:= (p+ 1)ω[a1...τap+1],b1...b7 ,(
j3σ ∧ σ′

)
a1...a3,b1...b7

:= 7!
5!·2!σa1...a3[b1b2σ

′
...b7],

(v y jτ)mn1...n6 := vpτm,pn1...n6 .

(C.18)

C.2. Hd and O(d)

C.2.1. Construction of Hd from SO(d)

Given a positive definite metric gab on F , which for convenience we take to

be in standard form δab, we can define a metric on W1 by

G(V, V ) = |v|2 + |ω|2 + |σ|2 + |τ |2, (C.19)

where |v|2 = vav
a, |ω|2 = 1

2!ωabω
ab, |σ|2 = 1

5!σa1...a5σ
a1...a5 and =|τ |2 =

1
7!τa,a1...a7τ

a,a1...a7 . The subgroup of Ed(d)×R+ that leaves this metric in-

variant is Hd , the maximal compact subgroup of Ed(d) (see table 5.3). The

corresponding Lie algebra is parametrised by

N = n+ b+ b̃ ∈ Λ2F ∗ ⊕ Λ3F ∗ ⊕ Λ6F ∗, (C.20)

and embeds in W2 as

c = 0,

mab = nab,

aabc = −αabc = babc,

ãa1...a6 = α̃a1...a6 = b̃a1...a6 ,

(C.21)

where indices are lowered with the metric g. Note that nab generates the

O(d) ⊂ GL(d,R) subgroup that preserves g. Concretely a general element

can be written as

H · V = eα+α̃ ea+ã h · V, (C.22)

where h ∈ O(d) and a and α and ã and α̃ are related as in (C.20).

An important representation of Hd is the complement of the adjoint of Hd

in Ed(d)×R+, which we denote as H⊥. An element of H⊥ be represented
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as

Q = c+ h+ q + q̃ ∈ R⊕ S2F ∗ ⊕ Λ3F ∗ ⊕ Λ6F ∗, (C.23)

and it embeds in W2 as

c = c,

mab = hab,

aabc = αabc = qabc,

ãa1...a6 = −α̃a1...a6 = q̃a1...a6 .

(C.24)

The action of Hd on this representation is given by Ed(d)×R+ Lie algebra.

Writing Q′ = [N,Q] we have

c′ = −2
3b y q −

4
3 b̃ y q̃,

h′ab = (n · h)ab − 2
2!b(a

cdqb)cd − 2
5! b̃(a

c1...c5 q̃b)c1...c5 + (2
3b y q + 4

3 b̃ y q̃)δab,

q′ = (n · q)− (h · b) + (b y q̃) + (q y b̃),

q̃′ = (n · q̃)− (h · b̃)− (b ∧ q),
(C.25)

where we are using the GL(d,R) adjoint action of h(ab) on Λ3F ∗ and Λ6F ∗.

The Hd invariant scalar part of Q is given by c− 1
9−dh

a
a.

Finally we note that the double cover H̃d of Hd has a realisation in terms of

the Clifford algebra Cliff(d;R). Consider the gamma matrices γa satisfying

{γa, γb} = 2gab. The Hd Lie algebra can be realised on Cliff(d;R) spinors

in two ways

N± = 1
2

(
1
2!nabγ

ab ± 1
3!babcγ

abc − 1
6! b̃a1...a6γ

a1...a6

)
. (C.26)

Again nab generates the Spin(d) subgroup of H̃d . The two representations

are mapped into each other by γa → −γa. As such, they are inequivalent

in odd dimensions, while in even dimensions they are related by

γ(d)N+γ(d)−1 = N−. (C.27)

We denote as Z±1 the spinor representation of Hd transforming under N±.

One also finds two different actions on the vector-spinor representations
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ϕ±a ∈ Z±2 with1

N · ϕ±a = N±ϕ±a − rbaϕ±b ∓
2
3ba

b
cγ
cϕ±b ∓

1
3

1
2!b

b
cdγa

cdϕ±b

+ 1
3

1
4! b̃a

b
c1...c4γ

c1...c4ϕ±b + 2
3

1
5! b̃

b
c1...c5γa

c1...c5ϕ±b .
(C.28)

We will also need the projections H⊥ ⊗ Z±1 → Z∓2 , which, for χ± ∈ Z±1 ,

is given by

(Q⊗Z∓2 χ±)a = 1
2habγ

bχ± ∓ 1
3

1
2!qabcγ

bcχ± ± 1
6

1
3!qc1...c3γa

c1...c3χ±

+ 1
6

1
5! q̃ab1...b5γ

b1...b5χ± − 1
3

1
6! q̃c1...c6γa

c1...c6χ±.

(C.29)

C.2.2. H̃d and Cliff(10, 1;R)

One can also find two embeddings of H̃d in Cliff(10, 1;R) which are gen-

erated using the internal spacelike gamma matrices Γa for a = 1, . . . , d.

Combined with the external spin generators Γµν , this gives us an action of

Spin(10 − d, 1) × H̃d on eleven-dimensional spinors. The adjoint of H̃d is

embedded similarly as

N̂± = 1
2

(
1
2!nabΓ

ab ± 1
3!babcΓ

abc − 1
6! b̃a1...a6Γa1...a6

)
. (C.30)

Since the algebra of the {Γa} is the same as Cliff(d;R) all the equations

of the previous section translate directly into this presentation of H̃d . The

advantage of the direct action on eleven-dimensional spinors is that it allows

us to write H̃d covariant spinor bilinears in a dimension independent way.

Let Ẑ±1 be the eleven-dimensional spinors transforming under H̃d via N̂±.

Let also Ẑ±2 be the representations with one eleven-dimensional spinor index

and one internal vector index which transform as (C.28) (with Γa in place of

γa). One can construct the singlet projections Ẑ∓2 ⊗ Ẑ
±
2 → 1. For ϕ̂± ∈ Ẑ±2

these are given by2

〈ϕ̂∓, ϕ̂±〉 = ¯̂ϕ∓a (δab + 1
9−dΓaΓb)ϕ̂±b . (C.31)

The eleven-dimensional spinor conjugate provides the relevant inner prod-

1The formula given here matches those found in [76, 77] for levels 0, 1 and 2 of K(E10).
A similar formula also appears in the context of E11 in [74].

2Setting d = 10 in this reproduces the corresponding inner product in [76].
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ucts Ẑ∓1 ⊗ Ẑ
±
1 → 1 as

〈χ̂−, χ̂+〉 = ¯̂χ−χ+, (C.32)

where χ̂± ∈ Ẑ±1 .

We now also give the decompositions of the Hd -covariant projections

V ⊗ Ẑ∓1
χ̂±, V ⊗ Ẑ±2

χ̂±,

V ⊗ Ẑ±1
ϕ̂±, V ⊗ Ẑ∓2

ϕ̂±,
(C.33)

where V ∈W1, χ̂± ∈ Ẑ±1 and ϕ̂±a ∈ Ẑ±2 . These are

(V⊗Ẑ∓1 χ̂
±) =

(
±vaΓa− 1

2!ωabΓ
ab± 1

5!σa1...a5Γa1...a5− 1
6!τ

b
ba1...a6Γa1...a6

)
χ̂±,

(C.34)

(V ⊗Ẑ±2 χ̂±)a = vaχ̂
± ± 2

3Γbωabχ̂
± ∓ 1

3
1
2!Γa

cdωcdχ̂
± − 1

3
1
4!Γ

c1...c4σac1...c4χ̂
±

+ 2
3

1
5!Γa

c1...c5σc1...c5χ̂
± ± 1

7!Γ
c1...c7τa,c1...c7χ̂

±, (C.35)

(V ⊗Ẑ±1 ϕ̂±) = vaϕ̂a + 1
10−dvaΓ

abϕ̂b ± 1
10−d

1
2!ωbcΓ

abcϕ̂+
a ± 8−d

10−dω
a
bΓ
bϕ̂+

a

− 1
10−d

1
5!σ

b1...b5Γab1...b5ϕ̂
+
a − 8−d

10−d
1
4!σ

a
b1...b4Γb1...b4ϕ̂+

a

∓ 1
7!τ

a
,b1...b7Γb1...b7ϕ̂+

a ∓ 1
3

1
5!τ

c
,c
a
b1...b5Γb1...b5ϕ̂+

a , (C.36)

(V ⊗Ẑ∓2 ϕ̂±)a = ±vcΓcϕ̂±a ± 2
9−dΓcvaϕ̂

±
c − 1

2!ωcdΓ
cdϕ̂±a + 4

3ωa
bϕ̂±b

− 2
3ωcdΓa

cϕ̂±d − 4
3

1
9−dωabΓ

bΓcϕ̂±c + 2
3

1
9−d

1
2!ωbcΓa

bcΓdϕ̂±d

± 1
5!σc1...c5Γc1...c5ϕ̂±a ∓ 2

3
1
3!σa

b
c1c2c3Γc1c2c3ϕ̂±b ∓

4
3

1
4!σ

b
c1...c4Γa

c1...c4ϕ̂±b

∓ 2
3

1
9−d

1
4!σac1...c4Γc1...c4Γdϕ̂±d ±

4
3

1
9−d

1
5!σc1...c5Γa

c1...c5Γdϕ̂±d

+ 1
7!τc,d1...d7ΓcΓd1...d7ϕ̂±a + 1

7!τa,c1...c7Γc1...c7Γdϕ̂±d . (C.37)
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Another projection we will need is the projection Ẑ±1 ⊗ Ẑ
±
2 → H⊥, which

for χ̂± ∈ Ẑ±1 and ϕ̂±a ∈ Ẑ±2 , is given by

c = 2
9−d

¯̂χ±Γaϕ̂±a ,

hab = 2¯̂χ±Γ(aϕ̂
±
b)

qabc = ∓3 ¯̂χ±Γ[abϕ̂
±
c] ,

q̃a1...a6 = −6 ¯̂χ±Γ[a1...a5
ϕ̂±a6],

(C.38)

Note that the image of this projection does not include the H̃d scalar part

of H⊥, as c− 1
9−dh

a
a = 0. We also define a projection Ẑ−1 ⊗ Ẑ

+
1 → H⊥ by

c = 2
9−d

¯̂χ−χ̂+, (C.39)

where χ̂± ∈ Ẑ±1 and all other components of H⊥ are set to zero. The image

of this map is clearly the H̃d scalar part of H⊥.
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D. Group Theory Proof of

Uniqueness of Operators

In this appendix we supply a group theoretical proof of the uniqueness of

the operators (5.57). As in section 7.4 we need only consider linear algebra

at a point in the manifold and so we do not distinguish between bundles and

their fibres in this section. Since the proof we give here uses the particular

details of the H̃d group in each dimension, we run through the dimensions

in a case-by-case fashion. As we comment in the conclusion, this group

theoretical structure would be the same for an E8(8)×R+ geometry in eight

dimensions, so we include the details of the relevant representations here.

Of course, this is not the only way to prove this uniqueness. Indeed,

one could demonstrate by explicit calculation that the relevant irreducible

parts of the connection cancel looking at the SO(d) decomposition of the

generalised connection. This would be extremely long-winded. One could

also do this using a decomposition under a larger subgroup. For example,

in seven dimensions, it is lengthy but possible to do this looking at the

Spin(8) decomposition of the SU (8) representations, though we do not give

the details of the calculation here.

The main Ed(d)×R+ generalised tensors we need are listed in table 5.2

and the representations appearing in the compatible connection under the

H̃d subgroup are given in table 5.4. The representations for the spinor and

gravitino are given in table 5.5. The general method to establish uniqueness

is outlined in section 5.2.3, and here we run through this argument in each

dimension.

4 dimensions

For the Spin(5) ' Sp(4) case we have the representations

E ∼ 10 S ∼ 4 J ∼ 16, (D.1)
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and the components of an Sp(4) compatible connection lie in the space

E∗ × ad(Sp(4)) ∼ 10× 10 = 1 + 5 + 10 + 14 + 35 + 35′ (D.2)

Here we have labeled the 35 to be that which has the index symmetries of

the Young diagram and the 35′ to have the symmetries .

For χ ∈ S we have

D · χ ∈ 10× 4 = 4 + 16 + 20 (D.3)

We are interested in the projection onto the S and J parts. The irreducible

parts of the compatible connection which appear in these projections must

therefore be those parts which can also be embedded in the tensor product

S ⊗ S∗ and J ⊗ S∗ respectively. These tensor products decompose as

S ⊗ S∗ = 4× 4 = 1 + 5 + 10

J ⊗ S∗ = 16× 4 = 5 + 10 + 14 + 35′
(D.4)

Clearly, all of the representations appearing here are those in the torsion of

the connection which has the decomposition

E∗ ⊕K ∼ 1 + 5 + 10 + 14 + 35′ (D.5)

and so the projection only depends on the torsion components of the com-

patible connection. If one considered the projection to the other possible

representation, the 20, one would examine

20⊗ S∗ = 20× 4 = 10 + 35′ + 35 (D.6)

which contains the non-torsion representation 35 of the connection. There-

fore, this projection is not uniquely determined by the torsion of the con-

nection. In this case, this is obvious since D · χ does depend on all parts of

the connection, so by process of elimination the final part must depend on

the 35.

Similarly J ∼ 16 so for ϕ ∈ J

D · ϕ ∈ 10× 16 = 5 + 2× 16 + 20 + 40 + 64 (D.7)
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Looking to project onto the S and J parts we consider

S ⊗ J∗ = 4× 16 = 5 + 10 + 14 + 35′

J ⊗ J∗ = 16× 16

= 1 + 5 + 2× 10 + 14 + 35 + 2× 35′ + 30 + 81

(D.8)

This case actually has a complication which does not appear in any of the

remaining cases. The decomposition (D.7) contains two copies of J , while

the tensor product J ⊗ J∗ seems to contain the non-torsion 35 components

of the connection. In this instance one therefore choses the unique linear

combination of the projections onto the two J parts of D · ϕ such that

this non-torsion component cancels. This also turns out to be the correct

projection to recover the supergravity equations, and is the one we use in

section 6.3.

5 dimensions

For the H5 ' Spin(5)×Spin(5) ' Sp(4)×Sp(4) case we have the represen-

tations

E ∼ (4,4) S ∼ (4,1) + (1,4) J ∼ (4,5) + (5,4)

(D.9)

and the components of an Sp(4) × Sp(4) compatible connection lie in the

space

E∗ × ad(Sp(4)× Sp(4)) ∼ (4,4)× ((10,1) + (1,10))

= (4,4) + (4,4) + (16,4) + (4,16) + (20,4) + (4,20)
(D.10)

So for χ ∈ S we have

D · χ ∈ (4,4)× ((4,1) + (1,4))

= (4,1) + (1,4) + (4,5) + (5,4) + (10,4) + (4,10)
(D.11)

We are interested in the projections onto S and J , so again we look at the
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tensor products

S ⊗ S∗ = ((4,1) + (1,4))× ((4,1) + (1,4))

= (1 + 5 + 10,1) + (1,1 + 5 + 10) + 2× (4,4)

J ⊗ S∗ = ((4,5) + (5,4))× ((4,1) + (1,4))

= (1 + 5 + 10,5) + (5,1 + 5 + 10) + 2× (4,4) + (16,4) + (4,16)

(D.12)

Clearly, all of the representations appearing here which are common with

the connection are those in the torsion of the connection which has the

decomposition

E∗ ⊕K ∼ (4,4) + (16,4) + (4,16) + (4,4) (D.13)

and so the projection only depends on the torsion components of the com-

patible connection.

Similarly for ϕ ∈ J

D · ϕ ∈ (4,4)× ((4,5) + (5,4))

= (1 + 5 + 10,4 + 16) + (4 + 16,1 + 5 + 10)
(D.14)

Looking to project onto the S and J parts we consider

S ⊗ J∗ = ((4,1) + (1,4))× ((4,5) + (5,4))

= (1 + 5 + 10,5) + (5,1 + 5 + 10) + 2× (4,4) + (16,4) + (4,16)

J ⊗ J∗ = ((4,5) + (5,4))× ((4,5) + (5,4))

= (1 + 5 + 10,1 + 10 + 14) + (1 + 10 + 14,1 + 5 + 10)

+ 2× (4 + 16,4 + 16)

(D.15)

Again, these projections cannot depend on the undetermined pieces of the

connection (i.e. the (20,4) + (4,20) parts).

6 dimensions

For the H6 ' Sp(8) case we have the representations

E ∼ 27 S ∼ 8 J ∼ 48 (D.16)
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and the components of an Sp(8) compatible connection lie in the space

E∗ × ad(Sp(8)) ∼ 27× 36 = 27 + 36 + 315 + 594 (D.17)

For χ ∈ S
D · χ ∈ 27× 8 = 8 + 48 + 160 (D.18)

We are interested in the projections onto S and J , so again we look at the

tensor products

S ⊗ S∗ = 8× 8 = 1 + 27 + 36

J ⊗ S∗ = 48× 8 = 27 + 42 + 315
(D.19)

Clearly, all of the representations appearing here which are common with

the connection are those in the torsion of the connection which has the

decomposition

E∗ ⊕K ∼ 27 + 36 + 315 (D.20)

and so the projection only depends on the torsion components of the com-

patible connection.

Similarly for ϕ ∈ J

D · ϕ ∈ 27× 48 = 8 + 48 + 160 + 288 + 792 (D.21)

Looking to project onto the S and J parts we consider

S ⊗ J∗ = 8× 48 = 27 + 42 + 315

J ⊗ J∗ = 48× 48 = 1 + 27 + 36 + 315 + 308 + 792 + 825
(D.22)

Again, these projections cannot depend on the undetermined part of the

connection (i.e. the 594 part).

7 dimensions

For the H7 = SU (8) case we have the representations

E ∼ 28 + 2̄8 S ∼ 8 + 8̄ J ∼ 56 + 5̄6 (D.23)
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and the components of an SU (8) compatible connection lie in the space

E∗ × ad(SU (8)) ∼ (28 + 2̄8)× 63

= 28 + 2̄8 + 36 + 3̄6 + 420 + ¯420 + 1280 + ¯1280
(D.24)

Looking at the projections, we may focus on the 8 ⊂ S and 56 ⊂ J , as

the other parts follow as the complex conjugate representations (the tangent

space and connection are real representations). So for χ ∈ 8 we have

D · χ ∈ (28 + 2̄8)× 8 = 8̄ + 56 + 168 + ¯216 (D.25)

Our interest is in the 8̄ and 56 projections, so we look at

8̄× 8̄ = 2̄8 + 3̄6

56× 8̄ = 28 + 420
(D.26)

and as all of these representations are contained in the torsion

E∗ ⊕K ∼ 28 + 2̄8 + 36 + 3̄6 + 420 + ¯420 (D.27)

the projection only depends on the torsion components of the compatible

connection. Similarly for ϕ ∈ 56

D · ϕ ∈ (28 + 2̄8)× 56 = 8 + 5̄6 + 216 + 504 + 1008 + 1344 (D.28)

Looking to project onto the 8 and 5̄6 parts we consider

8× 5̄6 = 2̄8 + ¯420

5̄6× 5̄6 = 28 + 420 + 1176 + 1512
(D.29)

Again, the representations which are common between these and the con-

nection are all contained in the torsion, so these projections are uniquely

determined by the torsion of the connection.

8 dimensions ?

For an E8(8) × R+ generalised geometry, the natural local symmetry group

is H8 = SO(16) [56]. Inspired by our GL(d,R) decompositions and the
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embedding tensor formalism, we would guess the E8(8)×R+ representations

E ∼ 248+1 N ∼ 3875+2 K ∼ 1−1 + 3875−1

(D.30)

Some decompositions and some more guesses lead us to the H8 = SO(16)

representations

E ∼ 120 + 128+ S ∼ 16 J ∼ 128− (D.31)

and the components of an SO(16) compatible connection then lie in the

space

E∗ × ad(SO(16)) ∼ (120 + 128+)× 120

= 1 + 120 + 135 + 1820 + 5304 + 7020 + 128+ + 1920− + 13312+

(D.32)

We would then have for χ ∈ S

D · χ ∈ (120 + 128+)× 16 = 16 + 128− + 560 + 1344 + 1920+ (D.33)

Our interest is in the 16 and 128− projections, so we look at

16× 16 = 1 + 120 + 135

128− × 16 = 128+ + 1920−
(D.34)

The torsion decomposes under SO(16) as

E∗ ⊕K ∼ (120 + 128+) + (1 + 135 + 1820 + 1920−) (D.35)

while the undetermined parts of the connection have the decomposition

U ∼ 5304 + 7020 + 13312+ (D.36)

As for the d ≤ 7 cases, we see that the projection only depends on the

torsion components of the compatible connection. Similarly for ϕ ∈ 128−

D · ϕ ∈ (120 + 128+)× 128− = 16 + 560 + 4368 + 11440

+ 128− + 1920+ + 13312−
(D.37)
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Looking to project onto the 16 and 128− parts we consider

16× 128− = 128+ + 1920−

128− × 128− = 1 + 120 + 1820 + 8008 + 6435−
(D.38)

Again, the representations which are common between these and the con-

nection are all contained in the torsion, so these projections are uniquely

determined by the torsion of the connection.
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E. Spinor Decompositions

In this appendix the details of the spinor decompositions used in chapter 7

are presented. For the purposes of looking at supersymmetric backgrounds,

the spinors on the external Minkowski space are taken to be Grassman

valued, while the internal spinors are commuting.

Spin(3, 1)× Spin(6) ⊂ Spin(9, 1)

We can use a complex decomposition of the (real) Cliff(9, 1;R) gamma ma-

trices as

Γµ = γµ ⊗ 1, Γm = iγ(4) ⊗ γm, (E.1)

Choosing the real representation of the Cliff(4,R) and the imaginary anti-

symmetric representation of the Cliff(6;R) gamma matrices γm, we have

the chiral spinor decompositions

ε+ = η+ ⊗ χ+ + η− ⊗ χ−,

ε− = η+ ⊗ χ− + η− ⊗ χ+,
(E.2)

where γ(6)χ+ = iχ+, γ(4)η+ = −iη+, χ− = (χ+)∗ and η− = (η+)∗.

Spin(3, 1)× Spin(7) ⊂ Spin(10, 1)

We take essentially the same complex decomposition of the Cliff(10, 1;R)

gamma matrices

Γµ = γµ ⊗ 1, Γm = iγ(4) ⊗ γm, (E.3)

Choosing the real representation of the Cliff(4,R) and the imaginary anti-

symmetric representation of the Cliff(7;R) gamma matrices γm, we have

the spinor decompositions

ε+ = η+ ⊗ χ+ η− ⊗ χ∗ (E.4)
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where γ(4)η+ = −iη+ and η− = (η+)∗.
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