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Abstract

We reformulate type II supergravity and dimensional restrictions of eleven-
dimensional supergravity as generalised geometrical analogues of Einstein
gravity. The bosonic symmetries are generated by generalised vectors, while
the bosonic fields are unified into a generalised metric. The generalised tan-
gent space features a natural action of the relevant (continuous) duality
group. Also, the analogues of orthonormal frames for the generalised met-
ric are related by the well-known enhanced local symmetry groups, which
provide the analogue of the local Lorentz symmetry in general relativity.

Generalised connections and torsion feature prominently in the construc-
tion, and we show that the analogue of the Levi-Civita connection is not
uniquely determined by metric compatibility and vanishing torsion. How-
ever, connections of this type can be used to extract the derivative operators
which appear in the supergravity equations, and the undetermined pieces
of the connection cancel out from these, leaving the required unique expres-
sions. We find that the bosonic action and equations of motion can be inter-
preted as generalised curvatures, while the derivative operators appearing
in the supersymmetry variations and equations of motion for the fermions
become very simple expressions in terms of the generalised connection.

In the final chapter, the construction is used to reformulate supersym-
metric flux backgrounds as torsion-free generalised G-structures. This is
the direct analogue of the special holonomy condition which arises for su-

persymmetric backgrounds without flux in ordinary Riemannian geometry.
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1. Introduction

In this thesis, we will present generalised geometrical descriptions of su-
pergravity theories which arise in the study of superstring theory at low
energy. These new formulations write supergravity with the same geomet-
ric structure as Einstein’s theory of gravity and unify the bosonic degrees of
freedom. Simultaneously, the hidden symmetries of supergravity appear in
the construction. In this introductory chapter, we outline the historical de-
velopment and motivations behind this research, and also discuss significant

precursors and related works.

Quantum mechanics and gravity

The central problem of modern theoretical physics is to find a unified quan-
tum theory which describes all observed physical interactions. The stan-
dard model of particle physics describes the microscopic quantum mechan-
ical behaviour of the elementary particles seen in accelerator experiments
to a staggering degree of precision. At its core are the quantisations of
some particular gauge field theories in a fixed special relativistic spacetime
background. However, it does not contain gravity, whose quantisation is
non-renormalisable when viewed as a conventional field theory.

Currently, our best experimentally verified theory of gravity is Einstein’s
theory of general relativity, which explains how gravitational effects are due
to the curvature of spacetime. This curvature is determined, via Einstein’s
field equation, from the configuration of matter and energy it contains, so
spacetime itself becomes a dynamical element, in contrast to its role as a
fixed background in the standard model. The equations governing this dy-
namical spacetime have a geometrical structure, which makes the theory
particularly elegant. However, this is a purely classical deterministic the-
ory and the scales on which gravitational effects are observable reflects this.
Gravity is a very weak force compared to the others in the standard model,

and there is a natural scale at which quantum gravity effects are expected
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to become important. This scale is constructed from the fundamental con-
stants h (Planck’s constant), ¢ (speed of light) and G (Newton’s constant)
which characterise the theory. It can be expressed as the Planck length
(~ 10733cm) or the Planck mass (~ 10!?GeV). As these scales are totally
inaccessible to instruments made with existing technology, it is currently
impossible to probe the quantum nature of gravity directly in experiments.
However, there are situations in which such quantum effects would play
an important role, thus a quantum theory is a requirement on more than
just theoretical grounds. One is the microscopic description of quantum
properties of black holes. A more fundamental problem is how to describe
spacetime correctly in the very early universe and resolve the physics of the
big-bang singularity predicted by general relativity.

The construction of a quantum theory of gravity (even in the absence
of matter) has proved very troublesome. However, before the discovery of
QCD, a model of hadrons was put forward which became known as the
dual resonance model. The plethora of hadrons observed in experiments
appeared to have masses following a Regge slope, with mass squared pro-
portional to the spin, and it seemed conceivable that the tower of spins
extended infinitely. In 1968, Veneziano [4] constructed an amplitude for a
theory containing such an infinite set of spins, featuring an exact crossing
symmetry. This seemed to fit reasonably well with the known experimen-
tal results, but the model was eventually superseded by QCD, which was
favoured by later high energy data.

Prior to this failure, it had emerged that the Veneziano model could be de-
rived by replacing point particles by one dimensional objects, or relativistic
strings, whose vibrational modes gave rise to the tower of spins. A feature
of this theory was that it automatically contained a particle of spin-2 in its
spectrum, and this had been regarded as a difficulty. However, in time, it
was realised that this spin-2 particle could be the elusive graviton and that
this model might give rise to a unified quantum theory including gravity.
The study of string theory [5, 6, 7, 8, 9, 10] as a theory of everything was

born!
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String theories

The earliest work concerned only bosonic strings in flat space, the clas-
sical action of a string being the area of the worldsheet in spacetime. On
quantisation, cancellation of the Virasoro anomaly requires 26 spacetime di-
mensions and even then the spectrum always contains an unwanted tachyon
and does not contain fermions. On the other hand, the first excitations of
the string give massless particles corresponding to a spacetime metric, an
anti-symmetric 2-form gauge field and a scalar field. Further, one can in-
clude background values for these fields as couplings in the two-dimensional
worldsheet action for the string, which is commonly referred to as the string
sigma-model. The vanishing of the corresponding one-loop beta-functions
then leads to Einstein’s equations for the spacetime metric coupled to the
additional 2-form and scalar fields [11]. Thus, maintaining the Weyl in-
variance at the quantum level imposes Einstein’s equations of gravity on
the target spacetime. Since Weyl invariance is associated to tadpole can-
cellation, which in turn means that the vacuum is a classical solution, the
vanishing of the beta-functions must correspond to a solution of the equa-
tions of motion, which are thus also Einstein’s equations. Despite its many
failings, the bosonic string does give hints of a quantum theory of gravity.

Remarkably, all of these shortcomings can be remedied by a single cure.
One considers the addition of fermionic modes on the string such that the
resulting worldsheet theory has N = 1 supersymmetry. In this case, the
anomalies of the super-Virasoro algebra cancel in 10 spacetime dimensions.
On the surface, the resulting spectrum appears to have some problems.
Firstly, it still contains a tachyonic ground state and secondly, it contains
a spin—% particle, the gauge field of local supersymmetry, but cannot have
spacetime supersymmetry as the numbers of fermionic and bosonic degrees
of freedom do not match. Both of these problems are resolved by impos-
ing the GSO projection on the spectrum, which removes even numbers of
fermionic excitations in the Neveu-Schwarz (NS) sector, and odd numbers
in the Rammond (R) sector. These two sectors correspond to taking odd
or even boundary conditions for the worldsheet fermions.

The result is that the NS and R sectors have a massless vector and a
massless Majorana-Weyl spinor, respectively as their ground states. The

massless modes of open strings therefore form vector supermultiplets while
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those of closed strings are the supergravity multiplets. For example, the type
ITA and type IIB supergravity multiplets which feature prominently in this
thesis arise from the ground states of oriented closed superstrings, where
the left- and right-moving R sector ground states have opposite chirality
in ITA and the same chirality in IIB. The massless particle spectrum is
thus made up of the tensor products of the left- and right-handed ground
states. If we label the vector representation of the Lorentz group as v
and the chiral spinor representations as s, these are the representations
v®v (NS-NS), st @ v (R-NS), v ®sT (NS-R) and s™ ® sT (R-R), where
the upper sign is for ITA and the lower for IIB. The NS-NS fields are the
metric, 2-form B(y) and scalar dilaton ¢, while the NS-R and R-NS sectors
provide the two gravitini and the two dilatini. The tensor product for
the RR sector can be decomposed into a sum of odd forms in ITA and
even forms in IIB. Background vacuum expectation values (VEVs) for the
various massless tensor field strengths, such as H = dB and d¢, are known
as fluxes, and these have become important the study of backgrounds of
string theory in recent times. Tree-level amplitudes for superstrings can
be seen to give the tree-level amplitudes of supergravity, so the effective
low-energy approximation gives precisely these theories.

In fact, by taking the various allowed types of superstrings it is possi-
ble to build five different consistent string theories. The type II theories
have closed oriented superstrings. Type I theory has unoriented closed su-
perstrings coupled to open superstrings with gauge group SO(32) and can
be thought of as an orientifold projection of type IIB'. Only one of the
supersymmetries survives this projection, so this theory has N = 1 space-
time supersymmetry. Surprisingly, one can also consider theories of closed
oriented strings which combine the right-moving modes of the superstring
with the left-moving modes of the bosonic string. This give rise to two ten-
dimensional N = 1 supersymmetric theories, with massless modes forming
the supergravity multiplet and a vector supermultiplet in the adjoint rep-
resentation of a gauge group. It was found that only two consistent choices
of gauge group are SO(32) and Eg x Eg. The latter option is attractive
on phenomenological grounds as it naturally contains the standard model
gauge group via the chain of embeddings SU(3) x SU(2) xU(1) C SU(5) C

'More precisely, one considers type IIB with a spacetime filling O9~ plane and 16 D9
branes, which give rise to the open string sector with gauge group SO(32).
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Spin(10) C Eg¢ C E7 C Eg, and has been the starting point of many at-
tempts to build realistic models of physics from string theory.

The low-energy approximations of these string theories are given by ten-
dimensional supergravities, which were shown to be anomaly-free by Green
and Schwarz in a renound paper [12]. As for the bosonic string, the equa-
tions of motion of the supergravity ensure one-loop quantum consistency
of the string theory in question. Many features of low-energy string theory
can be seen in the supergravity limit and historically studying supergravity
has been a fruitful approach to understanding them.

Another important development in string theory was the realisation that
strings are not the only fundamental objects of the theory. D-branes are
hypersurfaces in space on which open strings end. They were first discussed
n [13], but their importance was only brought to light by Polchinski [14],
with the realisation that they are stable BPS states carrying the charges of
the RR fields in type II theories. D-branes thus act as sources of RR fields.
Also, as the ends of open strings are point-like, they can carry the charges of
a vector gauge-field living on the brane. D-branes therefore provide a con-
struction of non-abelian gauge symmetry in string theory, as N coincident
D-branes gives rise to an U(N) gauge theory on their worldvolume.

In addition to D-branes, there are other types of brane with different prop-
erties. The string carries the electric charge of the NS-NS (Kalb-Rammond)
2-form By, as can be seen from the term ~ /.

worldsheet
sigma-model. The magnetic charge is carried by a different object, the

B() in the string

NS5-brane [15]. There are also orientifold planes, which are present when
a string theory is quotiented by the simultaneous action of a spacetime re-
flection of the coordinates on the plane and an orientation reversal of the
string. These carry RR charges and can enhance the gauge symmetry of
N coincident D-branes to SO(2N) if they also coincide with the orientifold
plane. This provides the construction of type I theory from type IIB in
footnote 1. Branes can be seen in the supergravity approximations to string
theories as solitonic solutions or solutions with delta function sources for
the fields to which they couple.
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Dualities

It would certainly be desirable for the fundamental theory of everything to
be unique, so the existence of five different possibilities would seem to be a
drawback. However, much further investigation reveals that the five super-
string theories are not as distinct as they first appear, but are in fact related
by dualities. They are therefore viewed as being different manifestations of
a higher unified theory. This theory is often referred to as M theory, but
in this thesis we will reserve this term for a more specific meaning: the
eleven-dimensional limit of the theory.

This eleven-dimensional limit was first truly recognised in [16, 17]. One
of the celebrated results of early studies of higher dimensional supergravity,
was the discovery of a unique supergravity theory in eleven dimensions [18].
Counting supermultiplet degrees of freedom indicates that this is the highest
dimension in which a supergravity can exist, as more than 32 supercharges
necessitates fields of spin greater than 2. It was immediately recognised
that dimensional reduction on a circle resulted in the non-chiral ITA super-
gravity. The exponential of the VEV of the ten-dimensional dilaton field is
proportional to the radius of this circle, so as this grows large, the space-
time “decompactifies” back to having eleven dimensions. On the other hand,
when one considers strings in background fields, the term which one adds
to the string sigma-model for the dilaton field is Sy ~ [ #RP . Computing
string amplitudes at constant dilaton, this term is topological contributing
a factor exp(—Sy) ~ (€2?)(9=1) where g is the genus of the worldsheet. Each
loop is thus accompanied by a factor of €2?, so that the string coupling con-
stant is e?. Combining these two observations, one is led to suspect that
the strong coupling limit of type IIA string theory is an eleven-dimensional
theory whose low-energy limit is eleven-dimensional supergravity.

One can also see this relation by considering the brane solutions. Eleven-
dimensional supergravity has two fundamental brane solutions, the M2 and
M5 branes [19, 20], and these are conjectured to be the fundamental objects
of M-theory. The dimensional reduction of the M2 brane solution, with one
direction wrapping the circle, gives the fundamental string solution of type
ITA. In fact, it was shown earlier that the classical world-volume actions for
these two objects are also related in this way [21], so one can view the string

as a wrapped M2 brane. Quantum mechanical considerations led to the full
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conjecture that the ITA string theory can arise from supermembranes on a
circle [16]. Similar results have been found for the other objects in type
ITA [22].

Horava and Witten found a similar picture of the Eg x Eg heterotic theory
as a compactification of the same eleven-dimensional theory [23]. In this
case, the compactification is not on a circle, but on a line interval (also
referred to as the orbifold S1/Zs). On the ten-dimensional boundaries of the
space, one adds Eg gauge supermultiplets to cancel the resulting anomalies.
Taking the size of the interval to zero, one recovers a ten-dimensional theory
with Eg x Fg gauge symmetry. Further, the supersymmetry is halved to
N = 1 by the presence of the boundaries. In this picture, the heterotic
string comes about as the zero-separation limit of a cylindrical M2 brane
with each of its circular ends lying on one of the boundaries.

The first duality to be discovered was T-duality [24], a correspondance
between string theories compactified on tori. This can be seen in bosonic
string theory, but in superstring theory it is easiest to discuss as a symmetry
between type IIA and type IIB. In the simplest case, one can see that type
ITA compactified on a circle of radius R gives the same theory as type
IIB on a circle of radius R = o/ /R. Considering the worldsheet oscillator
expansions one can see that the nine-dimensional spectra are the same,
with the transformation exchanging compact momenta with winding modes.
From this it is apparent that this duality is a stringy effect with no field
theory counterpart. In [25], it was shown to be a symmetry of the full
perturbation expansion, order-by-order in the string coupling, provided one
shifts the dilaton such that \/§e_2¢ is invariant.

This symmetry of backgrounds is self-inverse, and so defines the group
Zs ~ O(1,1;Z). It is also clear that, since we have considered no background
fields, the direction around the circle is an isometry of the background. More
generally, one can consider compactification on a d-dimensional torus, with
similar U(1) isometries around the various circles it contains. Each circle
gives a Zso transformation mapping between ITA and IIB.

However, the symmetry of the perturbative spectrum can in fact be ex-
tended to a larger group O(d,d;Z)?. This is easiest to see for the bosonic

string. The allowed left- and right-moving momenta on the string form an

2This group structure was first discovered in toroidal compactifications of the heterotic
string [26, 27].
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even self-dual lattice, and any two such lattices are related by an O(d, d; R)
transformation [26]. The automorphism group of the lattice is O(d, d;Z),
and so this becomes a symmetry of the overall spectrum, though it mixes
the different mass levels of the string. It can be generated by SL(d, Z) trans-
formations, corresponding to large diffeomorphisms of the torus, and the Zo
transformations corresponding to the radial inversion in each circle. For
the type II superstring, one sees that determinant —1 transformations ex-
change ITA and IIB, while determinant +1 transformations relate different
backgrounds of the same theory.

Including constant background fields into the toroidal setup above, one
can derive the the action of M € O(d,d;Z) on their values. For the metric

and B-field, these can be written concisely as
G=MTGM™' for G=1 (

Taking M to correspond to radial inversion of the last direction in the torus,

this gives the well-known Buscher rules [28]

/. 9id9jd—BiaBjd ! _ . 9a[iBja
9ij = 9ij 9dd Bij = Bij +2 9dd
! — Bia I — 9id 1.2
9id = G4a Big 9dd (1.2)
|
Jad = g

where i = 1,...,d — 1. Note that these relations should not be interpreted
as tensor equations, since they relate the components of tensors on different
manifolds, and T-duality does not induce a mapping of points in one mani-
fold onto points in the other. In fact g and B should be regarded as moduli
for the compactification.

With the background fields included, another type of O(d, d; Z) generator

gains a natural interpretation. The O(d, d;Z) element

1 0
we(2) s

has the effect of shifting B by A, and is a discretised version of the gauge
symmetry associated to B. If one also shifts the integer labels of the winding
momenta by A contracted on their corresponding momentum label, one finds

that each point in the lattice is invariant.
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T-duality symmetry has a manifestation in the supergravity approxima-
tion, as type II supergravity compactified on a torus has a global continuous
O(d, d; R) symmetry. The VEVs of the NS-NS internal scalar fields parame-
terise the coset O(d, d; R)/O(d; R) x O(d; R), which is thus the moduli space
of such compactifications with constant internal NS-NS fields.

Considering the spectrum of the string, we see that the possible even self-
dual lattices of momenta are related by O(d, d; R) transformations, while the
mass shell condition depends on the squares of the left- and right-moving
momenta separately and so is stabilised only by O(d;R) x O(d;R). The

moduli space of toroidal string compactifications becomes

O(d,d;R)
O(d;R) x O(d;R) x O(d,d;Z)’

(1.4)

where the additional quotient is by the discrete T-duality symmetry?.

This is an example of the action of a continuous group (O(d, d; R)) moving
the system around in moduli space while a discretised version (O(d,d;Z))
forms an exact symmetry of the quantised spectrum (i.e. a symmetry of
the moduli space). The continuous version of the group is visible in the
supergravity approximation as a global symmetry. This is a pattern which
will recur in the next discussions.

Type IIB supergravity can be written with a manifest global SL(2,R)
symmetry, by pairing the axion with the dilaton and the two 2-form poten-
tials into doublets. One is led to wonder whether this too is the result of a
string duality with quantised group* SL(2,7Z). Unlike T-duality, this duality
must be non-perturbative as it has an action which flips the sign of the dila-
ton, thus inverting the string coupling. One can also see this by considering
that it rotates the doublet of 2-forms into each other, one coupling to the
string and the other to the D1-brane. Due to this non-perturbative nature,
there is no way to prove its existence directly with current understanding.
However, strong evidence for it has been found by considering results which
are believed to be exact in perturbation theory, such as the invariance of

the masses of certain BPS objects [30]. Simpler evidence comes from the

®Note that this coset is defined by identifying A ~ A’AA” where A € O(d,d;R), A’ €
O(d;R) x O(d;R) and A" € O(d,d;Z), as when acting on a fixed reference lattice of
momenta, two elements related in this way give the same physical spectrum.

4This type of duality was also first considered in the context of heterotic string theory [29,
30, 31]. The first discussion for type II strings appeared in [32].
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observation that the tensions of the type IIB strings and branes match up
if one inverts the string coupling.

In a landmark paper [32], Hull and Townsend combined the S- and T-
dualities into a unified U-duality with group Eg;1(411)(Z) for type II the-
ories compactified on a d-dimensional torus. This contains the S and T-
dualities in the subgroup O(d, d;Z) x SL(2,7Z). U-duality must also be non-
perturbative, but was shown to pass the same tests as S-duality [32]. The
continuous exceptional groups had been seen in eleven-dimensional super-
gravity by Cremmer and Julia [33] as early as 1978, and this global symme-
try is now recognised as the U-duality analogue of the O(d, d;R) symmetry
connected to the discussion of NS-NS fields above, i.e. the continuous group
which acts transitively on the full moduli space. However, it is important
to remember that duality transformations mix the different types of modes
in string theory (e.g. they can exchange strings and branes), so there is
no hope that these dualities can be a true symmetry of the (point-particle)
supergravity approximation.

As mentioned above, type I theory can be viewed as an orientifold projec-
tion of type IIB with D-branes added to cancel the total RR charge [13, 14].
It is therefore not so surprising to learn that T-duality of this leads to a
type I’ theory, which is similarly related to type ITA [34]. S-duality on the
type I theory results in the SO(32) heterotic theory [17, 34], and the T-dual
of this is the Eg x Eg heterotic theory [26, 27, 35]. Thus we see that all five
of the superstring theories are connected by a web of dualities.

We should stress that the list of dualities discussed above is in no way the
full picture. Another very important duality was discovered by Maldacena
in 1997 and is known as AdS/CFT duality [36] (see [37] for a review).
This is conjectured to give an exact quantum equivalence between string
theory on an AdS background and a dual superconformal gauge theory in
Minkowski space of one dimension less. It can be viewed as a consequence of
open/closed string duality [38], which intuitively relates a gauge theory with
a gravitational theory. The duality also inverts the coupling constant, so
that a strongly-coupled gauge theory is described by a weakly-coupled string
theory and vice-versa. An enormous literature has emerged on this subject,
not least because of its potential applications in describing the strongly-
coupled systems which appear in more conventional particle physics and

condensed matter systems.
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Backgrounds: Geometric and Non-geometric

One of the apparent drawbacks of string theory is that it does not immedi-
ately give us a four-dimensional model that can be related to the real world.
One way to remedy this is to compactify on a tiny internal manifold such
that the effective physics appears four dimensional. The two length scales
in the problem are then the compactification scale and the string scale, and
if both are suitably small compared to an observable cut-off scale, then only
the lowest modes associated to each survive into the effective theory.

For phenomenological reasons, it is desirable to preserve N = 1 super-
symmetry in the four-dimensional effective theory. This requirement places
strong constraints on the geometry of the internal space, which are discussed
in more detail in chapter 7. Here we merely note that for heterotic strings
with no warping, the constraints imply the vanishing of all internal fluxes
and the background is a Calabi-Yau space [39]. This is an excellent example
of the beauty of the mathematics of string theory.

Calabi-Yau spaces are also related by dualities [40, 41]. It was found
that type IIA compactified on a Calabi-Yau manifold gives the same theory
as type IIB compactified on a different Calabi-Yau. This relation, which
is known as mirror symmetry, gives a mathematically surprising symmetry
between apparently very different manifolds. For example, mirror symme-
try exchanges the hodge numbers h! and h%*! thus relating manifolds of
different topology. This further emphasises that dualities are not mappings
of manifolds in any conventional sense. It has been argued that mirror
symmetry can be thought of as a kind of T-duality [42], though Calabi-
Yau manifolds have no continuous isometries, so the duality must act along
non-isometry directions.

However, Calabi-Yau manifolds are not the whole story. The parameters
which define the continuous deformations of the shape and size of a Calabi-
Yau space (the moduli) have no potential in such a compactification and give
rise to massless scalar fields. The VEVs of these fields are undetermined by
the theory and this causes a loss of predictive power. For example, coupling
constants can be set by the VEVs. This is the moduli space problem.

One therefore wishes to find a mechanism which stabilises the moduli
dynamically. Considering a warped geometry with the addition of internal

fluxes can generate a potential which gives masses to some of the moduli
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fields [43, 44, 45], thus fixing their values at the minimum of the potential.
Fluxes can also provide a mechanism to break supersymmetry [44], and
can even break all the supersymmetry, as required to recover the standard
model at low energies. They can also generate large hierarchies [45].

Flux compactifications are also important in AdS/CFT duality, as the
backgrounds involved generally have non-zero fluxes. For example, the clas-
sic AdS5 x S° background generically has a non-zero RR 5-form flux and
solutions with 3-form flux can provide the string theory duals of confining
gauge theories [46]. Further, they often provide the string theory uplifts of
lower dimensional gauged supergravities (see e.g. [47]).

Another curious feature of string dualities is that they can generate exotic
types of background from ordinary supergravity backgrounds [48]. The
simplest example one can consider is the bosonic string on a rectangular
3-torus with metric ds? = da? +dy? + dz? and B = xdy Adz. Applying the
Buscher rules along the z-direction leads to a twisted torus with vanishing
B-field. A further T-duality along the y-direction leads to a non-geometric
background, with the monodromy in the periodic coordinate x ~ x+1 given
by a T-duality transformation. In a sense, the source of the problem is that
the local Killing vector of the twisted torus d/dy is not globally defined.
It is also worth considering that T-duality will always have a small circle
on one side of the duality, hence the supergravity limit may not be a good
approximation in these cases.

That the CFT description of strings need not have a conventional space-
time target space is made apparent by the construction of the heterotic
string, where the left- and right-movers can be thought to see different
target spaces. This idea is also used in the construction of asymmetric orb-
ifolds in [49]. Early constructions of non-geometric backgrounds as back-
grounds in their own right, motivated by stabilisation of moduli, can be
found in [50, 51, 52].

One class of non-geometric backgrounds are made up of locally geometric
solutions which are patched together by duality transformations. Exam-
ples are local torus fibrations patched together by T-dualities (as in the
example above), which were dubbed T-folds by Hull [53], who also named
backgrounds with S- and U-duality transition functions S-folds and U-folds
respectively. In some ways it seems natural to extend the diffeomorphism

and gauge patching to include the full set of transformations available in
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string theory. However, there are also backgrounds which are not even lo-
cally geometric [54], and conceptually these are harder to grasp. The precise

mathematics of non-geometry is still yet to be fully understood.

Hidden Symmetries and Duality Covariant Formulations

Dualities of string theory and M theory can appear as global symmetries
in the low energy supergravity. In fact, these “hidden symmetries” were
observed in supergravity long before the discovery of dualities in string the-
ory and there is a substantial history of efforts to reformulate the various
theories in such a way that these symmetries become manifest. Here we
will briefly mention the results and proposals of these works and other ap-
proaches to understanding these higher symmetries.

The hidden symmetries of eleven-dimensional supergravity first appeared
in [33]. Here it was found that dimensional reduction of eleven-dimensional
supergravity on a seven-dimensional torus resulted in a four-dimensional
supergravity with global E;(;) and local SU (8) symmetry. The authors
note that this was the first time exceptional groups had appeared naturally
in physics. It was established in [55] that these symmetries were present in
the eleven-dimensional theory with no dimensional reduction, only requiring
the mild assumption of a local product structure on the eleven-dimensional
manifold. The analysis was extended to an eight-dimensional split with
global Egg) and local SO(16) symmetries in [56]. This paper also makes
the observation that the theory does not possess true Eyg) invariance, as
the fermions do not transform in Ey 4y representations and the explicit form
of the “vielbein” written with indices of the larger symmetry group breaks
the symmetry. These works commented on the mysterious origin of the
Eq4(q) group and put forward the idea that these formulations may have an
underlying geometry.

Another line of research was that pursued by Duff [57], who examined
duality at the level of the string worldsheet theory. He constructed a first-
order lagrangian for the sigma-model and also a dual lagrangian, written
in terms of new coordinates dual to the string winding modes. The roles
of equations of motion and Bianchi identities are exchanged for the dual
version. He went on to write classical equations of motion for the string with

a manifest action of the O(d, d) group, which mixes the normal and winding
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coordinates, and also rotates the equations of motion and Bianchi identities
into each other. Independently, Tseytlin [58] worked out a Lagrangian in two
dimensions containing both a scalar field and its dual, and also considered
the addition of interactions containing both fields. When applied to the
string sigma-model on a torus, this Lagrangian was such that the dual fields
could be identified with the dual target space coordinates and the duality
appeared as a symmetry of the worldsheet theory.

Duff’s analysis was also performed for the M2-brane worldvolume theory
in [59]°. The extra coordinates associated with the membrane have the index
structure of a 2-form with respect to the ordinary spacetime coordinates and
are dual to the winding of membranes.

The idea of coordinates dual to winding modes was also adopted by
Siegel [61], who formulated the low-energy effective action and equations
of motion of the NS-NS sector fields as a curvature on a doubled space. The
dependence of fields on the doubled space was restricted to a conventional
space section via the same conditions as in modern approaches to be dis-
cussed. This remarkable work effectively contains many of the results of
more recent research, and we will comment on the precise connections to
the present work in the conclusion.

Later works on the hidden symmetries of eleven-dimensional supergravity
have also featured extra coordinates. In [62], a “generalised vielbein” pa-
rameterising the coset Egg)/ SO(16) is constructed and the authors argue
that this encompasses the propagating degrees of freedom, like the vielbein
in Einstein gravity. They also speculate that there may exist extra coordi-
nates connected to a mixing of diffeomorphisms and gauge transformations.
Further discussion of such extra coordinates can be found in [63].

Much later still, Hillmann [64] considered the problem of hidden E7 7y and
SU(8) symmetries from a new angle. He considered a 4 4+ 56-dimensional
spacetime, as proposed in [63], with a manifest E7) symmetry and con-
structed a Lagrangian for it such that eleven-dimensional supergravity equa-
tions are recovered by restricting to a 447 dimensional spacetime. The La-
grangian is fixed by the requirement that the GL(7,R) subgroup of Ey) is
promoted to full diffeomorphism symmetry on this reduction. His construc-

tion also includes the local SU(8) covariant form of the fermionic sector.

5A nice review can be found in [60], where the formulation was used to study U-duality
of toroidal compactifications of M-theory.
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Hillmann also constructed a particular SU(8) connection with similar prop-
erties to those introduced in this thesis, and demonstrated its relation with
the supersymmetry variations.

More ambitious proposals in which eleven-dimensional supergravity, or
even M theory itself, are claimed to have certain Kac-Moody symmetries
have been put forward in recent times. The idea that the Kac-Moody alge-
bras E, for d > 8 could appear in supergravity goes back to [65]. The mildest
extension of de Wit and Nicolai’s construction to a 2 + 9-dimensional split
with Eyg) replacing Er(7) was examined in [66], and details of the bolder
extension to Ejg were first considered in [67].

A non-linear realisation of the Kac-Moody algebra E1; has been conjec-
tured to be the symmetry underlying M theory by West [68]. In an earlier
work [69], it was observed that eleven-dimensional supergravity can be writ-
ten as a non-linear realisation of an algebra, and in [68] it was conjectured
that this can be extended to a non-linear realisation of E7; for some ap-
propriate reformulation of the supergravity. The author also argues that
a discrete version the symmetry may carry over to M theory and provide
an algebraic tool with which to investigate its fundamental nature. In [70],
the GL(11,R) decomposition of the first fundamental representation of E1q
was shown to have the known central charges (T'M, A>T*M and APT*M)
of the supersymmetry algebra at low levels. At the same time, the remain-
ing infinite tower of representations was conjectured to give the rest of the
fundamental charges present in M theory, the next one along in the series
corresponding to the dual graviton (or KK-monopole) of [71]%. Tt was also
proposed that spacetime must be extended to contain extra coordinates
corresponding to each of these charges. There have been many subsequent
papers exploring this construction [73, 74].

Damour, Henneaux and Nicolai [75] proposed that M theory compacti-
fied on all ten space dimensions can be formulated as a gradient expansion,
with the spacial gradients of the fields filling out infinite dimensional rep-
resentations of Fjg. Since the theory is effectively considered at a point in
space, which becomes causally disconnected from other point in the limit
taken, spacetime is emergent in this construction. Fermions can be included
as representations of the subalgebra K Fyq [76], which builds on the earlier
studies [77].

5The has been some debate over the relation of dual gravity and Ei1 [72].
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Hidden symmetries have also surfaced in the study of supersymmetric
backgrounds. In [78], the derivative appearing in the external gravitino vari-
ation is considered in the context of dimensional splits of eleven-dimensional
supergravity, where the local symmetry is enhanced as in [55, 56]. It is con-
jectured that one can associate a generalised holonomy group to this deriva-
tive and that the number of supercharges preserved by a given solution will
be the number of singlets in the decomposition of the eleven-dimensional
spinor under this subgroup of the usual hidden symmetry group. A related
and extended analysis with no dimensional split was given by Hull in [79].
The full generalised holonomy was shown to be SL(32,R), which contains
the groups considered in [78]7, and solutions with generalised holonomy
falling outside the scope of [78] were exhibited. It was also argued that
SL(32,R) should be a hidden symmetry of M theory as one needs the local
SL(32,R) bundle in order to couple fermions, similarly to the coupling of

spinors in general relativity.

Generalised Geometry and Doubled Formalisms

During the last decade, a new mathematical construction has appeared
named generalised geometry [81, 82]. This is the study of structures on a
vector bundle E ~ T'®T™* over a manifold. There is a natural O(d, d) metric
on this bundle and one can think of it as having an O(d, d) structure. One
can also define the analogue of a complex structure to obtain generalised
complex geometry, which contains complex and symplectic geometries as
limiting cases, and this unification was a large part of the original motivation
for the construction.

In the mathematics literature, the basic notion of the generalised tan-
gent space with an O(d,d) metric and a suitable bracket is known as an
exact Courant algebroid (see [83, 84] and references therein). Additional
“generalised geometry” structures on such objects, specifically generalised
complex structures and O(d) x O(d) generalised metrics, were introduced
by Hitchin and Gualtieri [81, 82]. Connections on Courant algebroids were
introduced in [85] (see also [84]) and again in [86, 87], together with a notion

of torsion and compatibility with the generalised metric.

"However, some concerns as to the consistency of the embeddings of the lower dimen-
sional hidden symmetry groups into SL(32,RR) have been noted in [80].
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The relevance of generalised geometry for the NS-NS sector of string the-
ory was observed soon after its birth. To date, this construction has largely
been used to describe supersymmetric backgrounds of type II string theory,
which has been a successful and fruitful program [88, 89, 90, 91]. It was also
found [92] that the various potentials of the compactified theories could be
written in terms of Hitchin functionals [93, 94, 81]. Further still, the O(d, d)
group appears and there are links with T-duality, mirror symmetry and non-
geometric backgrounds [95, 96, 97, 98]. Generalised complex geometry has
also been widely used in the study of sigma models and topological string
theory [99].

The extension including RR fields in type II theories and M theory com-
pactifications was found independently by Hull [100] and Pacheco and Wal-
dram [101]. The O(d,d) group of the original generalised geometry is re-
placed by an Ey4) group, reflecting U-duality. These exceptional gener-
alised geometries have been used to find the superpotentials of M theory
compactifications [101] and study supersymmetric backgrounds of type II
theories with RR fluxes [102, 103]. They were shown to have the structure
of Leibniz algebroids in [104]. This geometry, or in fact an extension of it
containing an R™ factor in the structure group, and a similar extension of
the original generalised geometry are the main subject of this thesis, and we
will show that the low energy supergravity can be completely reformulated
in this language.

Another important development in this area is doubled geometry [53].
In order to describe T-folds, Hull considered backgrounds with a 7™ torus
fibration structure and considered the enlargement of the fibres to 72", Tak-
ing the base of the fibration to be a circle, one can then consider the case
where the transition function joining the ends of the circle is by an O(n, n; Z)
T-duality transformation, so that the background is non-geometric in na-
ture. It was shown that the O(n,n;Z) C GL(2n,Z) transformation could be
viewed as a large diffeomorphism of the doubled fibre 72", and the physical
space (or “polarisation”) as a slice of the doubled torus. The different po-
larisations in 72" are then the T-duality-related backgrounds, and T-folds
arise when there is no global choice of polariasation. The extra coordinates
on T?" are interpreted as the duals of the winding modes of the string, as
in the older works [57, 58, 61]. If the O(n,n;Z) transition function is not
contained in the subgroup GL(n,Z) of large diffeomorphisms of 7™ then it
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mixes the momentum and winding modes of the string, and is thus a truly
stringy effect.

This construction was extended to consider T-duality of the base circles
as well as the T™ fibres [54]. This requires an extension to “generalised
T-duality” (further discussed in [105, 106, 107]) which allows T-dualisation
along non-isometry directions, such as the base circle in question. The coor-
dinates of the base were then doubled in the same way as the fibre. T-duality
around a base circle leads to a new type of non-geometric background which
is not even locally geometric. This is because the geometry has a non-trivial
dependence on the coordinate x around the circle, which under generalised
T-duality is mapped to a dependence on the dual winding coordinate Z. A
nice summary of this is to say that a T" fibration over 7™ is geometric, a
T?" fibration over T™ is a T-fold and a T?" fibration over T2™ is not even
locally geometric.

The relation between doubled geometry and generalised geometry was
neatly summarised in [108]. Essentially, generalised geometry has only tran-
sition functions which are true symmetries of supergravity (diffeomorphisms
and gauge transformations), while doubled geometry includes the more ex-
otic O(d, d;Z) transition functions. However, generalised geometry can be
defined on any manifold, while doubled geometry is only naturally associ-
ated with torus fibrations of the type discussed. Intuitively, this is due to
the fact that string winding is only possible if the topology of the spacetime
has the necessary non-trivial cycles.

Double field theory [109, 110, 111, 112] was introduced as a natural con-
tinuation of doubled geometry inspired by string field theory, studying the
massless fields of closed strings on a doubled torus 72¢. The fields, in prin-
ciple, are allowed to depend on both ordinary and winding coordinates.
However, their dependence is restricted by implementing the level matching
constraint of closed string theory by requiring the fields to be annihilated
by the second order operator n*29,405. In fact, gauge invariance of the

” which asserts that all

resulting expressions requires the “strong constrain
products of fields must also be annihilated. In [111], this is shown to be
equivalent to local dependence only on a d-dimensional isotropic slice of
the doubled torus. Such a null subspace is always related, by an O(d,d)
transformation, to the usual physical subspace in which only the ordinary

physical coordinates vary. Thus the level matching constraint appears lo-
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cally to force recovery of a sensible d-dimensional physical space.

The natural generalised Lie derivative (or Dorfman derivative) and Courant
bracket of generalised geometry naturally carry over to double field the-
ory, when one switches on dependence on the winding coordinates, and the
algebra of the former closes into the latter on imposing the strong con-
straint [112] (this is noted purely in terms of the gauge transformations
in [110]). In [112], an action for the NS-NS fields is constructed from first-
derivatives of the generalised metric (which is built from the metric and
B-field as in generalised geometry), and is shown to be gauge invariant and
equivalent to the standard action up to integration-by-parts on imposing
the strong constraint. It is argued that this first-order expression should
be related to a curvature scalar for the geometry, in the same way that
the Einstein-Hilbert action can be integrated by parts to involve only first
derivatives of the metric, though no geometrical construction of the expres-
sion is offered. This same action was also derived by West in [113].

The analogue of this construction has been worked through for dimen-
sional restrictions of eleven-dimensional supergravity [114]. In this case, the
extra coordinates introduced are those proposed in [63], which are said to
be dual to the winding modes of the membrane and five-brane®. A similar
action to that in [112] is found by brute force methods imposing diffeomor-
phism and gauge invariance. On restricting the dependence of fields to the
usual physical coordinates the expected action is recovered after integration-
by-parts. The analogue of the strong constraint in four dimensions is derived
in [115] by requiring the algebra of generalised Lie derivatives to close. This
agrees with the result given later in this thesis for the case d = 4.

In very recent times, there has been a flurry of activity in this area.
Several papers [116, 117] have appeared which essentially relate the action
of [112] to the much earlier work of Siegel [61]. A discussion of RR fields in
double field theory was made in [118] (see also [119]), resulting in similar ex-
pressions to those presented in this thesis, and a no-go result concerning the
construction of Riemann-squared terms from derivatives of the generalised
metric appears in [120]. Considerations of heterotic theory in this con-
text have appeared in [121, 122], again building on the ideas of Siegel [61].
As suggested in [106, 107, 123], the effective action of compactifications

8The final set in seven dimensions correspond to the Kaluza-Klein monopole as in [100,
101]
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on doubled tori are considered in [124, 125] and the general gaugings® of
N = 4 supergravity are recovered. Interestingly some indication is found
that the strong constraint may not be necessary in these cases. This idea is
also echoed in [128, 129]. Our results for the fermions have been re-cast into
double field theory in [130, 131]. Other recent papers include [132, 133, 134].

The Structure of this Thesis

The main questions raised in the previous discussion concern the under-
standing of dualities and hidden symmetries in string theory and M theory.
Dualities are relatively well understood for torus backgrounds, and mirror
symmetry is well-established, but in other scenarios much less can be said
using present techniques. In particular, the fact that duality can map a
geometric background to a non-geometric configuration suggests that some
new mathematics encompassing both classes needs to be found. While dou-
bled geometry provides such a framework for torus backgrounds and their
duals, little progress has been made for arbitrary solutions.

In this thesis, we use generalised geometry to reformulate the supergrav-
ity limits of type II theories and M theory. While the symmetry of the
theory is still restricted to the geometric subgroup, the fields are organised
into objects which transform under the (continuous) duality group. The dy-
namics becomes geometrical, as for Einstein gravity, answering the question
posed in [55] as to the nature of the geometry of hidden symmetries. The
formulation uncovers surprising new structure in these supergravities and
the geometry of their supersymmetric solutions. The hope is that this new
structure will help to shed light on dualities and non-geometric backgrounds,
as well as providing new tools with which to study geometric ones.

Subjectively, the construction also has a very pleasing naturalness and
elegance, which is usually a sign that one is looking at something in the
right way!

We begin with a brief review of some of the geometrical ideas which will
feature throughout the thesis. We examine the way that these appear in
Einstein gravity and study the bosonic symmetries of the NS-NS sector
of type II supergravity. Comparing the two provides motivation for the

definition of the enlarged tangent space of generalised geometry.

9General gaugings of supergravity have been classified using the embedding tensor for-
malism [126, 127]. The relation to our results is discussed in [2]
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In chapter 3, we briefly review some basic objects one can define on
T @ T*, and then proceed to construct O(d,d) x R* generalised geome-
try. Particular focus here is on generalised connections, torsion and cur-
vatures, and we provide a thorough treatment of these. These results are
used in chapter 4 to give a complete reformulation of type Il supergravity
theories as a generalised geometrical analogue of Einstein gravity, defined
by an O(9,1) x O(1,9) C O(10,10) x R* structure on the generalised tan-
gent space. In this description the NS-NS fields are unified as a generalised
metric, while the RR fields and fermions fall into representations of the en-
larged symmetry groups and their supersymmetry variations and equations
of motion are neatly expressed in terms of the generalised connection.

Chapters 5 and 6 present the Ey(q) xRT generalised geometry description
of dimensional restrictions of eleven-dimensional supergravity. Chapter 5
runs through the definitions of the geometrical structures, which are exactly
analogous to those in chapter 3, though considerably more complicated due
to the exceptional groups involved. The equations are presented under
the GL(d,R) decomposition of Eg(4) xR™ and the O(d) decomposition its
maximal compact subgroup. This allows us to write equations which hold
in all dimensions d.

Chapter 6 begins by defining exactly what we mean by dimensional re-
strictions of eleven-dimensional supergravity. The next section provides
some very abstract equations, which describe how to derive the supergrav-
ity equations from the geometry. In fact, these equations are equally true
in the context of chapters 3 and 4. The realisation of these equations in
Spin(d) representations is then given, resulting in a similar reformulation
of the supergravity to that in chapter 4. However, since in this case the
geometry encompasses all of the bosonic fields, the entire bosonic action is
given simply by the generalised scalar curvature.

Finally, in chapter 7, we apply the formalism to supersymmetric back-
grounds. After reviewing the basics of G-structures, intrinsic torsion and
supersymmetric backgrounds, we demonstrate that the Killing spinor equa-
tions translate into the analogue of special holonomy in generalised geome-
try. Concluding remarks follow in the last chapter.

The appendices describe our general conventions, the necessary Clifford
algebras, the details of the exceptional groups, a group theoretical proof

needed in section 5.2.3 and some spinor decompositions.
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2. Differential Geometry and
Gravity

To set the stage, we review some of the key constructions of ordinary differ-
ential geometry, in particular the notion of a G-structure. We then discuss
the formulation of general relativity in this language, with a view to writing
more complicated supergravity theories in the same elegant way. In the final
subsection, we study some features of type II supergravities to motivate the

introduction of generalised geometry.

2.1. Metric structures, torsion and the
Levi—Civita connection
Let M be a d-dimensional manifold. We write {é,} for a basis of the tangent

space T, M at x € M and {e®} for the dual basis of T;' M satisfying is, e’ =
64" Recall that the frame bundle F is the bundle of all bases {¢%} over M,

F ={(x,{és}): v € M and {é,} is a basis for T,M}. (2.1)

On each fibre of F' there is an action of A%, € GL(d,R), given v = v%é, €
T, M),
ve 0" = A%, b €l = (A1), (2.2)

giving F the structure of a GL(d,R) principal bundle!.
The Lie derivative £, encodes the effect of an infinitesimal diffeomor-

phism. On a vector field w it is equal to the Lie bracket

Low = —Lyv = [v,w], (2.3)

We define a principal G-bundle as a fibre bundle F —— M together with a continuous
action G x F' — F which preserves the fibres of F' and acts freely and transitively on
them. This definition implies that the bundle is equivalent to a bundle with fibre G,
the mapping arising from a choice of local sections to map to the identity in the fibre.
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while on a general tensor field « one has, in coordinate indices,

fi1...p [i1.p
»Cvaul...yqp = 'U'uauaul...qu

+ (DpH) a2 H 4 (9 0M)

ol (24)

— (O, ™) iy — - = (Ou, ") Q) T e

Note that the terms on the second and third lines can be viewed as the
adjoint action of the gl(d,R) matrix a*, = 9d,v* on the particular tensor

field «, i.e. we can write
Lya = Oya — (V) - v (2.5)

This form will have an analogous expression when we come to generalised
geometry.

Let V,v¥ = 0,v" + w#”)\v)‘ be a general connection on T'M. The torsion
T € T(TM ® A*T*M) of V is defined by

T(v,w) = Vyw — Vv — [v,w]. (2.6)

or concretely, in coordinate indices,

TH N =w/ ) —wity, (27)
while, in a general basis where V, 0% = 0,0 + wuabvb, one has
A AlQ
T% = wpc — wep + [ebu ec] . (28)

Since it has a natural generalised geometric analogue, it is useful to define
the torsion equivalently in terms of the Lie derivative. If £Y « is the analogue
of the Lie derivative (2.4) but with 0 replaced by V, and (i,T)*, = v "y,
then

(iyT)a = LY o — Ly, (2.9)

where we view 4,1 as a section of the gl(d, R) adjoint bundle acting on the

given tensor field .
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The curvature of a connection V is given by the Riemann tensor R €
I'(A’T*M ® TM ® T*M), defined by

R(u,v)w = [Vy, Vy]w = V[ yw,

(2.10)
R, w’ = [V, V]t =T,V .
The Ricci tensor is the trace of the Riemann curvature
A
Ruu = RAM v (211)

If the manifold admits a metric g then the Ricci tensor becomes symmetric

in its indices and one can define the Ricci scalar curvature as
R =g"Ruv- (2.12)

A G-structure is a principal sub-bundle P C F with fibre G. In the case of
the metric g, the G = O(d) sub-bundle is formed by the set of orthonormal

bases
P = {(1’, {éa}) €r: g(éaa éb) - (5ab}7 (2'13)

related by an O(d) C GL(d,R) action. (A Lorentzian metric defines a
O(d — 1, 1)-structure and d,y, is replaced by 7n45.) At each point = € M, the

metric defines a point in the coset space
gle € GL(d,R)/O(d). (2.14)

In general the existence of a G-structure can impose topological conditions
on the manifold, since it implies that the tangent space can be patched
using only G C GL(d,R) transition functions. For example, for even d, if
G = GL(d/2,C), the manifold must admit an almost complex structure,
while for G = SL(d,R) it must be orientable. However, for G = O(d) there
is no such restriction.

A connection V is compatible with a G-structure P C F' if the corre-
sponding connection on the principal bundle F' reduces to a connection on
P. This means that, given a basis {é,}, one has a set of connection one-

forms w®, taking values in the adjoint representation of G given by

va/ﬁx/‘éa = wltbaéb- (215)

34



For a metric structure this is equivalent to the condition Vg = 0. If there
exists a torsion-free compatible connection, the G-structure is said to be
torsion-free or equivalently integrable (to first order). In general this can
further restrict the structure, for instance in the case of GL(d/2,C) it is
equivalent to the existence of a complex structure (satisfying the Nijenhuis
condition). However, for a metric structure no further conditions are im-
plied, and furthermore the torsion-free, compatible connection, namely the

Levi-Civita connection, is unique.

2.2. General Relativity

As a motivation for things to come, we will examine FEinstein’s theory of
gravity written in terms of the geometry presented in the previous section.
The eventual goal will be to find a formulation of more complicated super-
gravity theories which have the same geometrical structure.

In general relativity, spacetime is taken to be a d-dimensional differen-
tiable manifold M equipped with a pseudo-Riemannian metric of signature
(—+ ...4). The metric, which makes up the field content of the pure grav-
ity theory, reduces the structure group of the tangent bundle T'M to the
Lorentz group? SO(d — 1,1) C GL(d,R). As stated previously, there is no
obstruction to the existence of a torsion-free connection which is compatible
with this structure. The Levi-Civita connection is the unique torsion-free
compatible connection and this gives rise to the usual measures of curva-
ture (2.10), (2.11) and (2.12). The SO(d — 1,1) structure also provides a
volume element vol, = y/—g, since these transformations have unit deter-
minant.

The Einstein-Hilbert action for the theory is the integral of the scalar

curvature with the volume element

S = /volg R, (2.16)

and varying with respect to the metric we find the vacuum Einstein equation

Ry =0, (2.17)

2We assume that we have an orientation on the manifold.
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expressing the Ricci-flatness of the manifold.

We now review how the number of degrees of freedom of the theory
matches up with these results. The metric can be encoded in a local veilbein
frame {é,} satisfying g(é4,€p) = nap, Where 1y, = diag(—,+,...,+) is the
Minkowski metric. The components of the vielbein (é,)* form a GL(d,R)
transformation matrix with d? components, but any other frame which is
related to this one by a Lorentz transformation encodes the same metric
and thus the same SO(d — 1, 1)-structure. The structure therefore has

dim GL(d,R) — dim SO(d — 1,1) = d* — 3d(d — 1) = 3d(d + 1)  (2.18)

degress of freedom. The metric is a symmetric matrix and thus (unsurpris-
ingly) it has precisely this number of degrees of freedom, as does its equation
of motion (2.17).

We can view this more abstractly as follows. If we denote the frame
bundle of TM as F and the SO(d — 1, 1) principle sub-bundle P, we have

the associated adjoint bundles
ad(F) ~TM ® T*M ad(P) ~ A*T* M. (2.19)

At each point p of the manifold the metric provides an element of the coset

GL(d,R)

SO(d—1,1) (2:20)

glp €
and so for a small fluctuation of the metric dg,,, we have that the Lie

algebra-valued tensor ¢~ !dg is a section of the bundle
ad(P)t = ad(F)/ad(P) ~ S*T* M. (2.21)

Since g~ 1dg is merely a covariant index-raising of 09y we can view dg itself
as a section of ad(P)*. When we vary the action (2.16) with respect to the
metric, the resulting equation of motion must live in the dual of this bundle,
which in this case is equal to ad(P)+. Sure enough, we see that the Ricci
tensor Ry, is indeed a section of ad(P)* ~ S2T*M.

Note that in (pseudo-)Riemannian geometry, one can define the Ricci
tensor of a connection on F' without the need for additional structure, but

that the additional structure P constrains it to be a section of ad(P)+ ~
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S2T*M. This feature will not carry over to generalised geometry, where we
will find that we require the extra structure to write down the analogue of
the Ricci curvature.

We now point out the symmetries of the theory and the role that they
play in the geometry. The equations are tensor in nature so it is clear that
the theory has diffeomorphism symmetry. An infinitesimal diffeomorphism
is parameterised by a vector v € TM and it acts on the fields via the Lie
derivative

0vg = Log (2.22)

It is important to note that the diffeomorphism symmetry and Lie derivative
can be defined prior to the introduction of the metric, and so are present
in the geometry before introducing the physical fields. This connection
between the tangent space, the symmetry generators and the Lie derivative
will be crucial in constructing generalised geometry.

There is also a local Lorentz symmetry relating the vielbein frames for
the metric, which one must introduce if one wishes to couple fermions to
the theory. This is essentially the reduced structure on the tangent bundle
defined by the metric.

2.3. NS-NS Sector of Type II Supergravity

We now make some brief remarks about the NS-NS sector of type II super-
gravity in order to motivate the definitions made in the next section. The
complete equations of type IIA and type IIB supergravity will be presented
in chapter 4. For now we focus on the NS-NS bosonic fields, which are
common to both type IIA and type IIB.

The NS-NS fields are comprised of a metric tensor g,,,,, a two-form gauge
potential B,, and the dilaton scalar ¢. The potential B is only locally
defined, so that, given an open cover {U;} of M, across coordinate patches
U; NUj it can be patched via

Furthermore the one-forms A(;;) satisfy
Agijy + Mgy + Aggiy = dA iy, (2.24)
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on U; NU;j N Uy. This makes B a “connection structure on a gerbe” [136]3.
Thus for the NS-NS sector symmetry algebra we see that, in addition to

diffeomorphism invariance, we have the local bosonic gauge symmetry
/

where the choice of sign in the gauge transformation is to match the gen-
eralised geometry conventions that follow. Given the patching of B, the
only requirement is dA;) = dA;) on U; N U;. Thus globally Ag;) is equiva-
lent to specifying a closed two-form. The set of gauge symmetries is then
the Abelian group of closed two-forms under addition le(M ). The gauge
transformations do not commute with the diffeomorphisms so the NS-NS

bosonic symmetry group Gns has a fibred structure
Q4 (M) — Gns — Diff (M), (2.26)

sometimes written as the semi-direct product Diff (M) x Q2 (M).
One can see this structure infinitesimally by combining the diffeomor-
phism and gauge symmetries, given a vector v and one-form A, into a

general variation
Sorg = Log,  Suprad=Lud,  SpaBau = LoBu —dAg,  (2.27)
where the patching (2.23) of B implies that
dA) = dAg) — LedAgj). (2.28)

Recall that A¢;y and A;) +dg(;) define the same gauge transformation. One

can use this ambiguity to integrate (2.28) and set
Awy = Ag) — ivdA ), (2.29)

on U;NU e
In the NS-NS sector of type II theories, we therefore have two symmetry

generators: a vector field v € TM and a collection of one-forms {\(;)}

3Note that technically the cocycle conditions for the gerbe structure actually only hold
for quantised fluxes where H is suitably related to an integral cohomology class. This
is not required by supergravity, but is necessary in string theory.
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patched according to (2.29). In our discussion of general relativity we saw
that the symmetry generator was a section of the tangent bundle, and that
the geometry of this bundle (Lie derivatives, connections, torsion, metric
and curvature) were the key ingredients of the geometrical formulation of
the theory. The above leads us to wonder whether we can define a new
tangent bundle which also includes the one-forms {\;y}. This is precisely

what we will construct in the next section.
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3. O(d,d) x R" Generalised

Geometry

We describe the construction of O(d,d) x R generalised geometry closely
following [1]. This is motivated by the bosonic symmetry algebra of NS-NS
fields in type II supergravity as discussed in the previous section, but here

we present it purely as a mathematical construction.

3.1. T®T* Generalised Geometry

In this section, following [82], we review some linear algebra and differential
structures on T' @ T which will feature extensively in the construction of

the generalised tangent bundle.

3.1.1. Linear algebra of FF & F* and SO(d, d)

Let F be a d-dimensional vector space and consider the direct sum F @ F™*.
Writing an element of F @ F* asV =v+ Xforv e F, A\ € F*, we find a

natural symmetric inner product
(V.V') = 3(A(@) + X (v)) (3.1)

The union of a basis of I’ and its dual basis for F* form a basis for F @ ™.

In this basis the inner product can be written as a matrix

1/{0 1
77:2(]1 0). (3.2)

The special orthogonal group which preserves this inner product is SO(d, d)

and its Lie algebra is

(T (TV,V"Y+(V,TV'Y=0 YV,V' € F& F*} (3.3)
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A general element can be expressed as a matrix

T= (; —iT> , (3.4)

where a € F @ F*, 3 € A’F and B € A2F* provide the appropriate map-
pings. The exponentials of these can be evaluated individually and their
actions form important types of SO(d,d) transformations. Exponentiating
the action of a, we recover the standard action of A = exp(a) € GL*(d,R)

on F @ F*. The exponential of the action of B gives the B-transformation®

el = (; i) : (3.5)

which sends v + A — v 4+ A — i, B. Similarly, the final part can be exponen-

tiated to give the S-transformation

o (ﬁ ﬁ) | (36)

which sends v + XA — v + igA + A. This transformation will not be as
important to us as the others, as it does not correspond to a supergravity
symimetry.

We now turn to the construction of spinors on F' @ F*. Consider a poly-

form

e A F =) AF. (3.7)
k
We can define a natural action of the Clifford algebra on this object via
V- ®=i,®+ AN (3.8)

which satisfies {V-,V’"-} = 2(V, V') and we see that dim A*F* = 2¢ as one
would expect for a spinor representation in 2d dimensions. We thus have
that S(F @ F*) ~ A*F* and the positive and negative chirality spinors are
encoded as the even and odd degree forms respectively. The action of the

three basic transformations above on the spinor will be important later, so

We use a hat to indicate the embedding of the relevant generator in the O(d, d) algebra.
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we present the details here. Via the Clifford action we have

~

B-®=BA® B-®=—igd (3.9)
for the B- and S-adjoint actions and these exponentiate to
B o= exp(B) A ® D= exp(—ig)® (3.10)

The action of the GL(d,R) subgroup of Spin(d,d) on ® € A*F* is not the
standard one. For a € F ® F* with A = exp(a), we have

R 1
i ®=—-a"®+ Str(a)d = e ® = (det A)2(A7H*®.  (3.11)

This transformation law would be associated more naturally with the vector
space (det F)% ® A*F*.

This leads us to consider instead spinors of Spin(d,d) xRt and we examine
a GL(d,R) subgroup which embeds not only into the Spin(d,d) factor, but
also the RT factor via the determinant. The Spin(d,d) x RT spinor with

weight p under the R™ group then transforms as an element of
1
(det F)27P @ A°F* (3.12)

under this GL(d,R) subgroup. For p = %, the GL(d,R) transformation of
the spinor is given by the usual action on A®*F*. Later, it will be desirable
to have a spinor transforming as a true polyform, as it will allow us to define
an exterior derivative when we consider differential structures.

Finally, one can write a bilinear form on two such spinors (for general p),

the Mukai pairing,

(W, 0) =Y ()t A i), (3.13)

n

This transforms as (det F*)? under the GL(d,R) subgroup.

3.1.2. Differential structures on 7"® T*

We now consider the sum of the tangent and cotangent bundles T' @ T
over a d-dimensional manifold M. The linear algebra results of the previous

section can be implemented here by sending F' — T. We are now wish to
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examine differential structures on T° @ T™.
One can define a natural analogue of the Lie derivative for V, V' € T®T*,

the Dorfman derivative, by
Ly V' = L0 + LN —iyd) (3.14)

where V. = v+ X and V' = v/ + \. As this definition involves only the
ordinary Lie derivative and exterior derivative, this is automatically dif-
feomorphism covariant. However, one finds that it is also covariant under

closed B-transformations, i.e. for B € Q% (M) we have

L, 5o (B V) = eB(Ly V") (3.15)

(eBV)
In fact diffeomorphisms and B-transformations are precisely the symmetries
of the Dorfman derivative [82], and these form the group Gng in (2.26). For

a general two-form B € A?T* we have

L(eB~V)(eB . V’) = eB(LVV’ + iviv’H) (316)

where H = dB.

A second differential structure one can naturally write down is the Dirac
operator on the polyform representation of spinors. The exterior derivative
is the obvious candidate as it is first order and maps even forms to odd
forms and vice-versa, thus mixing the two chiralities as required. However,
for spinors of Spin(d,d) we are faced with the problematic GL(d,R) trans-
formation law (3.11), which means that the exterior derivative does not give
a covariant definition. Again, we see that it is beneficial to consider spinors
transforming under Spin(d,d) x Rt with the appropriate weight p = %
in (3.12). The GL(d,R) transformation is then returned to the conven-
tional transformation of forms, so we have the usual action of the exterior
derivative d : A*T* — A®*T™, which is diffeomorphism covariant.

For any value of the weight p, we can examine the behaviour of the exterior

derivative under a B-transformation. We have

d(e? - @) = P . (d® + H A ®) (3.17)

where H = dB, so for a closed 2-form B, the form of our Dirac operator is
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unchanged. Again, the closed B-transformations are a symmetry. For the
case p = %, where we also have the diffeomorphism symmetry, the full set
of symmetries form the group Gyg from (2.26)

In this section, we have seen the appearance of the symmetry group Gng,
which was the bosonic symmetry group of the NS-NS sector of type II
supergravity, in natural structures on T'® T*. For the Dorfman derivative,
this was immediately present, whereas for the spinors we had to enlarge
the structure group to Spin(d,d) x RT. In the following sections, we will
write down in more detail exactly how to define a geometry with structure
group Spin(d,d) x RT which has the properties we desire. This R factor

has previous appeared in generalised geometry in [98, 113, 135]

3.2. O(d,d) x R" Generalised Geometry

3.2.1. Generalised structure bundle

We start by recalling the generalised tangent space and defining what we will
call the “generalised structure” which is the analogue of the frame bundle
F' in conventional geometry.

Let M be a d-dimensional spin manifold. In line with the patching of
the transformation parameters (2.29), one starts by defining the generalised
tangent space E. It is defined as an extension of the tangent space by the
cotangent space

0—T'M —FE—TM —0, (3.18)

which depends on the patching one-forms A;;. If vy € T(TU;) and A €
L(T*U;), so Vizy = v(;) + Ay is a section of E over the patch Uj, then

vy + Ay = i) + (AG) — vy dA i) ) (3.19)

on the overlap U;NU;. Hence as defined, while the v(;) globally are equivalent
to a choice of vector, the A(;) do not globally define a one-form. The patching
of the A¢;) is the same as that of the symmetry generators in (2.29). Hence,
as promised at the end of section 2.3, our definition has resulted in a new
bundle, sections of which are precisely the generators of Gng from (2.26).
FE is in fact isomorphic to TM @ T*M though there is no canonical iso-

morphism. Instead one must choose a splitting of the sequence (3.18) as
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will be discussed in section 3.2.2. Crucially the definition of F is consistent
with an O(d, d) metric given by, for V.=v 4+ A

(V,V) =iy, (3.20)

since iv(i))\(i) = iv(j))\(j) on U; NU;.
In order to describe the dilaton correctly we will actually need to consider
a slight generalisation of F. We define the bundle E weighted by an R*-
bundle L so that
E=L®E. (3.21)

The point is that, given the metric (3.20), one can now define a natural
principal bundle with fibre O(d, d) x R* in terms of bases of E. We define
a conformal basis {EA} with A =1,...2d on E, as one satisfying

A A 1/{0 1
<EA,EB>:®277AB where 77:2(1 0). (3.22)

That is {E} is orthonormal up to a frame-dependent conformal factor

® € I'(L). We then define the generalised structure bundle
F={(a, {E4}):2z € M, and {E4} is a conformal basis of E.}. (3.23)

By construction, this is a principal bundle with fibre O(d, d) x R*. One can

make a change of basis
VAL VA= MARVE,  Ey s By =Ep(M )5y, (3.24)

where M € O(d,d) x R* so that (M~1)¢ 4(M )P gnep = 0?nap for some
0. The topology of F encodes both the topology of the tangent bundle T'M
and of the B-field gerbe.

Given the definition (3.18) there is one natural conformal basis defined by
the choice of coordinates on M, namely {E4} = {9/8z*} U {dz*}. Given
V € I'(E) over the patch U;, we have V = v#(9/0z") + A\, dzt. We will
sometimes denote the components of V' in this frame by an index M such
that
vt for M =p

v = :
Ay for M =p+d

(3.25)
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Suppose now that we have different coordinates on two patches U; and
U;. The transition functions (3.19) can be written acting explicitly on the
components of the vector and 1-form parts as

T VTR
/U(Z) =M V’U(j),

1 . (3.26)
Ay = (M) Ay — v (dA Gz D),

for MH, = axé)/ﬁxz’j) € GL(d,R).

We now describe the details of the R*-bundle L. The transition func-
tions (3.26) lie in the group GL(d,R) x RU4=1/2 We define L such that,
between the same patches U; and U; considered above, the transition func-
tions acting on the corresponding components of a section of E are

nwoo_ —1 v
Uiy = (det M)~ M* v(), (3.27)
Ay = (det M)"H (MY (NG — vy (A i) aw)-

These transition functions lie in a GL(d, R) x R¥4=1)/2 subgroup of O(d, d) x
R acting on the components V™, and the embedding is such that, under
this subgroup, we can identify L ~detT*M. A section of L is thus equiva-
lent to a section of det T* M.

3.2.2. Generalised tensors and spinors and split frames

Generalised tensors are simply sections of vector bundles constructed from
different representations of O(d,d) x RT, that is representations of O(d,d)
of definite weight under RT. Since the O(d, d) metric gives an isomorphism
between E and E*, one has the bundle

ER=I"®0E® - QE, (3.28)

for a general tensor of weight p.
One can also consider Spin(d, d) spinor representations [82]. The O(d, d)
Clifford algebra
{Ta, T} = 2nas, (3.29)

can be realised on each coordinate patch U; by identifying spinors with
weighted sums of forms W ;) € I'((det T U;)'/? @ A*T*U;), with the Clifford
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action

VATAT () = i Py + Ay A T (3.30)

The patching (3.19) then implies
U = edlai) A T(j). (3.31)

Projecting onto the chiral spinors then defines two Spin(d, d) spinor bundles
isomorphic to weighted sums of odd or even forms S*(E) ~ (det T* M)~ /%@
Aeven/odd T A1 where again specifying the isomorphism requires a choice of
splitting.

More generally one defines Spin(d, d) x RT spinors of weight p as sections
of

Sy = LP © S(E). (3.32)
Note that there is a natural Spin(d,d) invariant bilinear on these spinor
spaces given by the Mukai pairing [81, 82]. For W, ¥’ € F(S(jz)) one has

(U, 0') = ()l DR A g/t e T(LP), (3.33)

n

where U™ and ¥/(") are the local weighted n-form components.

A special class of conformal frames are those defined by a splitting of
the generalised tangent space F. A splitting is a map TM — E. It is
equivalent to specifying a local two-form B patched as in (2.23) and defines
an isomorphism E ~ TM & T*M. If {é,} is a generic basis for TM and
{e“} be the dual basis on T*M, one can then define what we call a split
frame {E 4} for E by

. E, = (dete) (éq +i¢,B) for A=a
By = . (3.34)
E® = (dete)e” for A=a+d

We immediately see that
<EA,E’B> = (det e)QUAB, (3.35)

and hence the basis is conformal. Writing V = ’U“Ea + AN E? € F(E) we
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have
VB = 4%(det €)é, 4 Aa(det e)e®
‘ (3.36)
=) + A6 ~ vy B,
demonstrating that the splitting defines an isomorphism E ~ (det T*M) ®
(TM D T*M) since )‘(z) — iv(i) B(Z) = )‘(j) - iv(].)B(j). )
The class of split frames defines a sub-bundle of F. Such frames are

related by transformations (3.24) where M takes the form

M = (det A)~1 (i i) (gl ( AE)I)T), (3.37)

where A € GL(d,R) is the matrix transforming é, + é,(A~1)?, while w =
%wabe“ A eb transforms B +— B’ = B + w, where w must be closed for B’
to be a splitting. This defines a parabolic subgroup Gspir = GL(d,R) x
RU4=1/2 = O(d,d) x Rt and hence the set of all frames of the form (5.13)
defines a Ggplip principal sub-bundle of F , that is a Ggplig-structure. This
reflects the fact that the patching elements in the definition of E lie only in
this subgroup of O(d,d) x R™.

In what follows it will be useful to also define a class of conformal split
frames given by the set of split bases conformally rescaled by a function ¢
so that

. E, = e (dete) (éq +is,B) for A=a
Ba= : (3.38)
E® = e 2?(det e)e® forA=a+d

thus defining a Gypli, X RT sub-bundle of F. In complete analogy with the

split case, the components of V' € I'(E) in the conformally split frame are

related to those in the coordinate basis by
VB9 — &2 (y + Ay — vy Biy)- (3.39)

We can similarly write the components of generalised spinors in different
frames. The relation between the coordinate and split frames implies that
if \I/g]f)an are the polyform components of W € F(S(ip)) in the split frame
then

\IJ(B) = Z %\Ijt(l?.)..aneal A A ea" = eB(Z) A \I/(Z)7 (340)
n
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demonstrating the isomorphism 5(3;) ~ (detT*M yp=1/2 @ Aeven/oddx pr
since eP® A Uiy = eBu A V(). In the conformal split frame one similarly

has
P(B:#) — o2p00B) A T (3.41)

3.2.3. The Dorfman derivative, Courant bracket and
exterior derivative

We now demonstrate that the generalised tangent space admits a general-
isation of the Lie derivative which encodes the bosonic symmetries of the
NS-NS sector of type II supergravity, as we hoped in section 2.3. Given
V =v+ X €I'(E), one can define an operator Ly acting on any generalised
tensor, which combines the action of an infinitesimal diffeomorphisms gen-
erated by v and a B-field gauge transformations generated by A.

Acting on W = w + ¢ € E,), we define the Dorfman derivative® or

“generalised Lie derivative” as [98]
LyW = Loyw + L, — iydA, (3.42)

where, since w and ( are weighted tensors, the action of the Lie derivative
is
Lywh =" 0wt — w”d,v" 4+ p(d, 0" )wh,

‘CUC}L = Uyaugu + (ay,vy)Cl/ _{_p(aVUV)gN‘

Defining the action on a function f as simply Ly f = L,f, one can then

(3.43)

extend the notion of Dorfman derivative to any O(d,d) x R tensor using
the Leibniz property.

To see this explicitly it is useful to note that we can rewrite (3.42) in a
more O(d,d) x Rt covariant way, in analogy with (2.4). First note that
one can embed the action of the partial derivative operator into generalised
geometry using the map T*M — E. In coordinate indices, as viewed as

mapping to a section of E*, one defines

0, for M =
=< " S (3.44)
0 forM=p+d

2If p = 0 then Ly W is none other than the Dorfman bracket [137]. Since it extends to
a derivation on the tensor algebra of generalised tensors, it is natural in our context
to call it the “Dorfman derivative”.
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One can then rewrite (5.23) in terms of generalised objects (as in [61, 112])
LyWM = vNoywM 4+ oMV N — oNVM) Wy +p (O V) WM, (3.45)

where indices are contracted using the O(d, d) metric (3.20), which, by defi-
nition, is constant with respect to . Note that this form is exactly analogous
to the conventional Lie derivative (2.4), though now with the adjoint action
in o(d, d) @ R rather than gl(d). Specifically the second and third terms are

(minus) the action of an o(d,d) ® R element m, given by

m-W = <_aw _(C)LT) (?) —ptra (12;) , (3.46)

where a/, = 0,v" and wy,, = 9\, — Oy \,. Comparing with (3.37), we see
that m in fact acts in the Lie algebra of the Gy subgroup of O(d, d) x RT.
This form can then be naturally extended to an arbitrary O(d,d) x R*

®n
tensor o € I‘(E(p)) as

LvaMl...Mn — VNaNOéMlmMn + (8M1VN _ anMl) aNMQ...Mn

o QM VN = NV M) QMM g p (A VY WM
(3.47)
again in analogy with (2.4). It similarly extends to generalised spinors

U e F(Sé)) as (see also [118])

Ly¥ =VNoNT + 1 (0mVy — OnVar) TMV O + p(0 VM), (3.48)

where FMN = % (FMFN — FNFM).
Note that when W € I'(E) one can also define the antisymmetrisation of

the Dorfman derivative

[V,W] =1 (LyW — LyV)

(3.49)
= [v,w] + Lo¢ = LouA — 3d (¢ — iwA),

which is know as the Courant bracket [138]. It can be rewritten in an O(d, d)

covariant form as

[0, VIM = UNonvM —vNoNUM — L (UnoMVY — VdMUN) . (3.50)
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which follows directly from (3.45).
Finally note that since S(il J2) = Aever/odd N r the Clifford action of dpy
on ¥ e F(S(i1 /2)) defines a natural action of the exterior derivative. On Uj;
: +
one defines d : F(S(I/Q)) — F(S(TE/Q)) by

(dW) 5y = 310 ¥ = W), (3.51)

that is, it is simply the exterior derivative of the component p-forms. The
Dorfman derivative and Courant bracket can then be regarded as derived

brackets for this exterior derivative [139].

3.2.4. Generalised O(d,d) x Rt connections and torsion

We now turn to the definitions of generalised connections, torsion and the
possibility of defining a generalised curvature. The notion of connection on
a Courant algebroid was first introduced by Alekseev and Xu [85, 84] and
Gualtieri [86] (see also Ellwood [87]). At least locally, it is also essentially
equivalent to the connection defined by Siegel [61] and discussed in doubled
field theory [116]. It is also related to the differential operator introduced
in the “stringy differential geometry” of [117].

Our definitions will follow closely those in [85, 86] though, in connecting
to supergravity, it is important to extend the definitions to include the RT

factor in the generalised structure bundle.

Generalised connections

Here we will specifically be interested in those generalised connections that
are compatible with the O(d,d) x RT structure. Following [85, 86] we can
define a first-order linear differential operator D, such that, given W € F(E),
in frame indices,

DyW4 = oy WA 4+ QuApwh. (3.52)

Compatibility with the O(d,d) x R structure implies

Qus = Quls — A, (3.53)
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where A is the RT part of the connection and €2 the O(d,d) part, so that
we have
QAP =~y PA (3.54)

The action of D then extends naturally to any generalised tensor. In par-

ticular, if o € F(Eggl) we have

DMaAl...An — 8MaA1”'A" + QMAlBaBAQ...An

(3.55)
4ot QMAnBaAl...An_lB —pAMOéAl"'A".
Similarly, if ¥ € T(S(})) then
— 1 AB
Dy¥ = (O + 19" T ap — pAum) 0. (3.56)

Given a conventional connection V and a conformal split frame of the
form (3.38), one can construct the corresponding generalised connection as

follows. Writing a generalised vector W € I'(E) as
W =WA4E,4 = w*E, + (,E°, (3.57)

by construction w = w?(det e)é, € T'((det T*M)RT M) and ¢ = (,(dete)e® €
I'((detT*M) ® T*M) and so we can define V,w® and V,(,. The gener-
alised connection defined by V lifted to an action on E by the conformal

split frame is then simply

(V) Ey 4+ (V,C)E® for M =p

(DY WHE, = _
0 for M =u+d

(3.58)

Generalised torsion

We define the generalised torsion T of a generalised connection D in direct
analogy to the conventional definition (2.9). Let a be any generalised tensor
and LD« be the Dorfman derivative (3.47) with O replaced by D. The
generalised torsion is a linear map T : I'(E) — T'(ad(F)) where ad(F) ~
A2E @ R is the o(d,d) ® R adjoint representation bundle associated to F.
It is defined by

T(V)-a=LYa - Lya, (3.59)
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for any V € I'(F) and where T'(V') acts via the adjoint representation on .
This definition is close to that of [86], except for the additional RT action
in the definition of L.

Viewed as a tensor T' € T'(E ® ad F), with indices such that T(V)M y =
VPTM b we can derive an explicit expression for T'. Let {E4} be a general
conformal basis with <EA, EB> = ®2nyp. Then {fb_lEA} is an orthonormal
basis for E. Given the connection Dy W4 = 9y, W4 + QMABWB, we have

Tapc = —3Qapc) + Q" pnac — O 2(Ey, Ly-1g, Ec), (3.60)

where indices are lowered with n4p.

Naively one might expect that T' € T'((E ® A2E) @ E). However the form
of the Dorfman derivative means that fewer components of (2 actually enter
the torsion and

TeT(AMEQE). (3.61)

This can be seen most easily in the coordinate basis where the two compo-

nents are

T™ py = (T)Mpn — (o) p 6M N, (3.62)
with ~
T; = —-30 = -30 ,
(T)mnP vy [MNP] (3.63)
(To)ar = — Q09w = Ar — Q0%

An immediate consequence of this definition is that for ¥ € F(S(il /2)) the

Dirac operator I'M D,V is determined by the torsion of the connection [85]

I Dy =T (00 + 2QunpT VW — LAY 0)
=TYon ¥ + 19 np DY VP0 — LAy — QYA TV (3.64)

=2d¥ — & (T) v p DY VW — (1) 0 TM 0.

This equation could equally well be used as a definition of the torsion of a
generalised connection. Note in particular that if the connection is torsion-

free we see that the Dirac operator becomes equal to the exterior derivative
™MDy U = 240, (3.65)

As an example, we can calculate the torsion for the generalised connection
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DV defined in (3.58). In general we have
Ly1p,Bp = (Ly15,®) @7 Bp+0(Ly 1, (97 Ep)),  (3.66)
where here

—e 2% (dete) (ip i de® + 2 d for A=a
Lyrp,®= (dete) et +49) . (3.67)
A
0 for A=a+d

and

~ Ca, € iteo.eq B — e ic, H — Le,e®
L iz QflEB — [e 6b] + Z[ as b] ? a/L b ae , (368)
T Ea —L;, e 0
b AB

where H = dB. If the conventional connection V is torsion-free, the corre-

sponding generalised torsion is given by
T, = —4H, Ty = —4do, (3.69)

where we are using the embedding® T*M — E (and the corresponding
T*M — A3E) to write the expressions in terms of forms. This result is
most easily seen by taking é, to be the coordinate frame, so that all but the
H and d¢ terms in (3.67) and (3.68) vanish.

The absence of generalised curvature

Having defined torsion it is natural to ask if one can also introduce a no-
tion of generalised curvature in analogy to the usual definition (2.10), as
the commutator of two generalised connections but now using the Courant
bracket (3.49) rather than the Lie bracket

R (U,V,W) = [Dy, Dy] W — Dy W. (3.70)

However, this object is non-tensorial [86]. We can check for linearity in the

arguments explicitly. Taking U — fU, V — gV and W — hW for some

3Note that with our definitions we have (8A¢)<I‘71EAA = 2d¢ due to the factor % in nap
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scalar functions f, g, h, we obtain

[Dyu, Dgv] AW — Dy gv)hW

(3.71)
= fgh ([Du, DVvIW — DiyygW) — 50(U, V) D(ag—gap)W,

and so the curvature is not linear in U and V.

Nonetheless, if there is additional structure, as will be relevant for super-
gravity, we are able to define other tensorial objects that are measures of
generalised curvature. In particular, let C; C E and Cs C E be subspaces
such that (U, V) = 0 for all U € I'(Cy) and V € I'(C3). For such a U and
V the final term in (3.71) vanishes, and so R € I'((C1 ® C2) ® 0(d,d)) is a
tensor. A special example of this is when C7 = (5 is a null subspace of F.

The condition <U, V> = ( here is reminiscent of the section condition of

double field theory. We will discuss this issue more fully in section 5.1.4.

3.3. O(p,q) x O(q,p) structures and torsion-free

connections

We now turn to constructing the generalised analogue of the Levi—Civita
connection. The latter is the unique torsion-free connection that preserves
the O(d) C GL(d,R) structure defined by a metric g. Here we will be
interested in generalised connections that preserve an O(p,q) x O(q,p) C
O(d,d) x R™ structure on F, where p+ ¢ = d. We will find that, in analogy
to the Levi—Civita connection, it is always possible to construct torsion-free
connections of this type but there is no unique choice. Locally this is same

construction that appears in Siegel [61] and closely related to that of [117].

3.3.1. O(p,q) x O(q,p) structures and the generalised metric

Following closely the standard definition of the generalised metric [82], con-
sider an O(p, ¢) x O(q, p) principal sub-bundle P of the generalised structure
bundle F'. As discussed below, this is equivalent to specifying a conventional
metric g of signature (p, q), a B-field patched as in (2.23) and a dilaton ¢.
As such it clearly gives the appropriate generalised structure to capture the
NS-NS supergravity fields.

Geometrically, an O(p,q) x O(q,p) structure does two things. First it

fixes a nowhere vanishing section ® € I'(L), giving an isomorphism between
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weighted and unweighted generalised tangent space E and E. Second it

defines a splitting of E into two d-dimensional sub-bundles
E=CyaC_, (3.72)

such that the O(d, d) metric (3.20) restricts to a separate metric of signature
(p,q) on Cy and a metric of signature (¢,p) on C_. (Each sub-bundle is
also isomorphic to T'M using the map F — T'M.)

In terms of F we can identify a special set of frames defining a O(p, q) x
O(p, q) sub-bundle. We define a frame {E;} U {E; } such that {E}} form
an orthonormal basis for C'y and {E } form an orthonormal basis for C_.

This means they satisfy

(E}, b*>=<1>2nab,
(B B ) = —®ng, (3.73)
(Ef,E;) =0,

where ® € T'(L) is now some fixed density (independent of the particular
frame element) and 7, and 7,5 are flat metrics with signature (p, ¢). There
is thus a manifest O(p, q) x O(q, p) symmetry with the first factor acting on
E} and the second on Ej .

Note that the natural conformal frame

R Etr forA=a
Ei=1< , (3.74)
ET forA=a+d
satisfies
. oA a 0
(Ea,Ep) = ®*nap, where nap= <770b ) , (3.75)
—Nab

where the form of nyp differs from that used in (3.22). In this section, we
will use this form of the metric nap throughout. It is also important to note
that we will adopt the convention that we will always raise and lower the
C. indices a,b,c, ... with 1y, and the C_ indices a,b,¢,... with 7., while

we continue to raise and lower 2d dimensional indices A, B, C, ... with the
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O(d, d) metric nap. Thus, for example we have

Eta for A=a

EA=T : (3.76)
—FE7% forA=a+d
when we raise the A index on the frame.
One can write a generic O(p, q) x O(q, p) structure explicitly as
Ef=e 2=y (éj e+ z'é;B) ,
(3.77)

E&_ = e 2% /—g (ég —e; + ié;B> ,
where the fixed conformal factor in (3.73) is given by

d=e/—y, (3.78)

and where {é}} and {é; }, and their duals {e™®} and {e~%}, are two inde-
pendent orthonormal frames for the metric g, so that

+a ® e+b _ nal_)eia ® eib,

g = TNab€

5+

- o (3.79)
g(ea » €p ) = Tab, g(ea 765 ) = Nap-

By this explicit construction we see that there is no topological obstruction
to the existence of O(p, q) x O(q,p) structures.
In addition to the O(p,q) x O(q,p) invariant density (3.78) one can also

construct the invariant generalised metric G [82]. It has the form
G=02(y"Ef ® Bf +nE; 9 E5). (3.80)

In the coordinate frame we have the familiar expression

1{g—Bg'B —Bg!
Gun = 3 . ) . (3.81)
g B g MN

By construction, the pair (G, ®) parametrise the coset (O(d, d)xR™)/O(p, q) x
O(q,p) where p+q =d.
Finally the O(p,q) x O(q,p) structure provides two additional chirality
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operators I'* on Spin(d,d)xR" spinors which one can define as [98, 118, 140]
) = Lemeaar, T, 1) = Lemeap, T, (3.82)
Using that, in the split frame, the Clifford action takes the form
Lo B =i 0B 4 Anw® 15008 =i B e AnwP) (3.83)
these can be evaluated on the weighted n-form components of ¥ as

F(H‘I'Ef)) = (=) & ‘I’Ef))» TP = (n)yd ()12, ‘I'Ef))’

(3.84)

and thus we have a generalisation of the Hodge dual on Spin(d,d) x R*
Spinors.

Since GTnG = 7, the generalised metric G4 is an element of O(d, d) and
one can easily check that G? = 1. Connecting to the discussion of [118],
for even dimensions d, one has G € SO(d,d) and T(-) is an element of
Spin(d, d) satisfying

rOpAr)-t = Ao, (3.85)

so that ') is a preimage of G in the double covering map Spin(d,d) —
SO(d,d). In odd dimensions d, I'") is an element of Pin(d, d) which maps
to G € O(d, d) under the double cover Pin(d,d) — O(d,d).

3.3.2. Torsion-free, compatible connections

A generalised connection D is compatible with the O(p, ¢) xO(q, p) structure
PCFif
DG =0, D® =0, (3.86)

or equivalently, if the derivative acts only in the O(p, ¢) X O(q, p) sub-bundle
so that for W € T'(E) given by

W =uwtEf +wEy7, (3.87)
we have
Oyw? + Qb for A=a
Dy WA = { TN T T , (3.88)
opw® + QMal;wb_ for A=a
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with
Qrvrab = — Qb Qprap = —Lspa- (3.89)

In this subsection we will show, in analogy to the construction of the Levi-

Civita connection, that

Given an O(p,q) x O(q,p) structure P C F there always exists
a torsion-free, compatible generalised connection D. Howewver,

1t 15 not unique.

We can construct a compatible connection as follows. Let V be the Levi—
Civita connection for the metric g. In terms of the two orthonormal bases
we get two gauge equivalent spin-connections, so that if v = v} = vié; €
[(TM) we have

V¥ = (0,0 + w:“bvb) (e5)” = (v + w;agvg) (é7)". (3.90)
We can then define, as in (3.58)

Vwg for M = p V,w®  for M =p

Dy,W = ., Dyw®= :
0 for M =p+d 0 for M = pu+d

(3.91)

Since w:ab = —w:ba and w;:aé = _w;:Ba’ by construction, this generalised

connection is compatible with the O(p,q) x O(q, p) structure.

However DV is not torsion-free. To see this we note that, comparing
with (3.38), when we choose the two orthonormal frames to be aligned so
el =e, = e, we have

W =wiEl + v Ey = (W% +w") Eq + (wiq — w_y) EY, (3.92)

and the two definitions of DV in (3.58) and (3.91) agree. Hence from (3.69)

we have the non-zero torsion components
Ty = —4H, Ty = —4de. (3.93)

To construct a torsion-free compatible connection we simply modify DV.

A generic generalised connection D can be always be written as

Dy WA = DYWA £ 5 ApWP. (3.94)
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If D is compatible with the O(p, ¢) x O(q, p) structure then we have ¥3,% =
Y% = 0 and
YMab = —X Mba; Ynab = —Zba- (3.95)

By definition, the generalised torsion components of D are then given by

(Th)apc = —4Hapc — 3% (4B (To)a = —4dda —Sca.  (3.96)

The components H4B¢ and d¢ are the components in frame indices of the
corresponding forms under the embeddings T*M — E and AST*M — A3E.
Given

dz# = 1o~ (é;#Eﬂ - ég“E‘a) , (3.97)
we have, for instance,

d¢ = 10,0 (27'ET) — 10,0 (7'E77). (3.98)
where there is a similar decomposition of H under
NT*M — A3E ~ AN*Cy @ (A*CL 0 C_) @ (Cy @ A*C_) @ A3C, (3.99)

Note also that the middle index on ¥4p¢) in equation (3.96) has also been
lowered with this n4p which introduces some signs. The result is that the

components are

.
%Habc (A, B,C) = (a,b,c)
30,0 A=a tHu: (A, B,C) = (a,b,c+d)
doa =4 ) Hape =4 |
50a0 A=a+d sHge (A, B,C)=(a,b+d,c+d)
%Haéé (A,B,C) = (C_L
(3.100)
and that setting the torsion of D to zero is equivalent to
1 1 a
E[abc] = _gHabm Yabe = _§H&b07 Yo" = —20p9, (3 101)

Siabg = TeHarer Save = taHase Ta'p = —2059-
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Thus we can always find a torsion-free compatible connection but clearly

these conditions do not determine D uniquely. Specifically, one finds

Do’y = Vouwh — LH, cw§ — 2(6,°00¢ — 100" d)ws. + AP cws,

b b 1 b
Daw? = Vaw, — 5Hz cw,

K K ] (3.102)
Dawli = vawli + %Habéwia
Dawli = Vawb_ + %Habg’wi — %(6ab85¢ — nagabQS)wE_ + Ac—:bgwé_,
where the undetermined tensors A% satisfy
+ gt + +a, _
T e TR T
Aspe = A A[al?é] =0, A;% =0,

and hence do not contribute to the torsion.

3.3.3. Unique operators and generalised O(p,q) x O(q,p)

curvatures

The fact that the O(p, q) x O(q, p) structure and torsion conditions are not
sufficient to specify a unique generalised connection might raise ambigui-
ties which could pose a problem for the applications to supergravity we are
ultimately interested in. However, we will now show that it is still possi-
ble to find differential expressions that are independent of the chosen D,
by forming O(p,q) x O(q,p) covariant operators which do not depend on
the undetermined components A*. For example, by examining (3.102) we
already see that

Dauwh = Vauwh — LHzb s,

1 o (3.104)
Dawb_ - Vawli + %Habawc_v

have no dependence on A* and so are unique. We find that this is also true

for
Vows — 2(0,0)ws,

o (6:9) - (3.105)
Vaw? — 2(0z0)w?.

Anticipating our application to supergravity, we will be especially inter-
ested in writing formulae for Spin(p,q) spinors, so let us now assume that
we have a Spin(p, q) x Spin(q,p) structure. If S(C4) are then the spinor

bundles associated to the sub-bundles Cy, v* and ~® the corresponding
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gamma matrices and e* € T'(S(C4)), we have that by definition a gener-
alised connection acts as
Dye™ = Onet + 10" yape™, (3.106)
Dye” = 0y + %QMEE’)/&BE_. '
There are four operators which can be built out of these derivatives that

are uniquely determined

= (V Hapery ) i

- (v Haoe ) - (3.107)
¥ Dget = (7 a Hape” _7a8a¢)
N Dge™ :< VYt & abc'Yabc A a¢)€

The first two expressions follow directly from (3.104). In the final two
expressions, there is an elegant cancellation from ¢ = ab¢ 4 pab~c_pacqb
which removes the terms involving A*.

The restriction that expressions involving generalised connections be de-
termined unambiguously, irrespective of the particular D, now serves as a se-
lection criteria for constructing new generalised objects. In particular, when
defining a generalised notion of curvature, we find that even though we can
actually build a tensorial O(p, q) x O(q, p) generalised Riemann curvature —
by following the example in section 3.2.4 and taking C1 = C4 and Co = C¢
so that the index structure would be (Rabc 7 Ral_)E cZ) and (Rabcd, Rabé J) — it
would not result in a uniquely determined object. However, we can use
combinations of (3.104) and (3.105) to define the corresponding generalised
Ricci tensor as

RY; w} = [Dq, Dy wf, (3.108)

or as

RY, w® = [Dg, Dy w®. (3.109)

Note that the index contractions are precisely what is needed to guarantee

uniqueness.

4Note that naively one might expect these definitions to give distinct tensors. However
one can check that compatibility with the O(p, g¢) x O(q,p) structure means that the
two agree.
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It is not possible to contract the remaining two indices in the generalised
Ricci. Nonetheless, there does exist a notion of generalised scalar curvature,
but to define it we need the help of spinors and the operators in (3.107).

We can obtain the generalised Ricci again from either

%Rog’yae'i_ = [y* Dy, Dy et

Lo _ (3.110)
sRy e = [Y"Da, Dy) €.
However, now we also find a generalised curvature scalar
—1Re" = (v*Dyy"'Dy — DDy €™, (3.111)
or alternatively,
—LRe™ = (4"Dar" Dy — D*D,) e (3.112)

Again, note the need to use the correct combinations of the operators in
these definitions so that all the undetermined components drop out.

The fact that R is indeed a scalar and not itself an operator might not be
immediately apparent, so it is useful to work out the explicit form of these
curvatures. This can be done by again choosing the two orthogonal frames

to be aligned, e = e, to find
Ry, = Rap — $HacaHy™ + 2V Vit + 560V (e > Hegy), (3.113)
and for the scalar
R=TR+4V?¢ — 4(0¢)* — 5 H>. (3.114)

From these expressions it is clear that we have obtained genuine tensors
which are uniquely determined by the torsion conditions, as desired. Fur-
thermore, comparing with [61] we see that locally these are the same tensors
that appear in Siegel’s formulation. The expressions (3.113) and (3.114) also

appear in the discussion of [117].
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4. Type II Theories as
0(10,10) x R" Generalised

Geometry

In this chapter, we will use the new geometry we have constructed to re-write
the equations of type II supergravity. The NS-NS sector fields are packaged
into the generalised metric, while the fermions fall into Spin (9, 1) x Spin(1,9)
representations. The RR sector fields form a chiral spinor of Spin(d, d) xR™,
which is coupled similarly to matter fields in general relativity. The bosonic
action and equations of motion are written as generalised curvatures, while
the supersymmetry variations and fermion equations have neat expressions
in terms of the generalised connection. The presentation again follows [1]

closely.

4.1. Type II supergravity

Let us briefly recall the structure of d = 10 type II supergravity. We es-
sentially follow the conventions of the democratic formalism [141], as sum-
marised in appendix A, and consider only the leading-order fermionic terms.
We introduce a slightly unconventional notation in a few places in order to
match more naturally with the underlying generalised geometry. It is also
helpful to considerably rewrite the fermionic sector, introducing a particu-
lar linear combination of dilatini and gravitini, to match more closely what
follows.
The type II fields are denoted

{Gr B, &, AT 0 AEY, (4.1)

where g, is the metric, B, the two-form potential, ¢ is the dilaton and

A,(ﬁ),,,un are the RR potentials in the democratic formalism, with n odd for
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type IIA and n even for type IIB. In each theory there is also a pair of chiral
gravitini @Df and a pair chiral dilatini A*. Here our notation is that 4 does
not refer to the chirality of the spinor but, as we will see, denote generalised
geometrical subspaces. Specifically, in the notation of [141], for type ITA

they are the chiral components of the gravitino and dilatino

Yp=vF +¢,  where F10y* =pyk

4.2
A=At 4+ X" where AIONE = £2F (42)

(Note that 1#;[ and AT, and similarly ¥, and A7, have opposite chiralities.)

For type IIB, in the notation of [141] one has two component objects

w _ w/j_ h (10),,+ _ .+
= e where YV =1,

L (4.3)
A
A= ( _> where 7(10))\i = A%
and again the gravitini and dilatini have opposite chiralities.
In what follows, it will be very useful to consider the quantities
P = — X, (4.4)

instead of A*. These are the natural combinations that appear in generalised
geometry and from now on we will use p* rather than A*.

The bosonic “pseudo-action” takes the form

1

Sp =~
B = 9k2

/ V=g [0 (R+4(06)° - H2) =33 H(FD?], (5)

where H = dB and F| ((f)’) is the n-form RR field strength. Here we will use
the “A-basis”, where the field strengths, as sums of even or odd forms, take

the form?!
(B — ZF((S) = ZeB NdA g1y, (4.6)

where e =14+ B + %B A B+ .... This is a “pseudo-action” because the

!Note that in type ITA one cannot write a potential for the zero-form field strength,
which must instead be added by hand in (4.6). Note also that in [141] these field
strengths are denoted G.
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RR fields satisfy a self-duality relation that does not follow from varying
the action, namely,
(B) _ n/2 (B)
Foy = (=) FoZnys (4.7)

where [n] denotes the integer part and * w denotes the Hodge dual of w.
The fermionic action, keeping only terms quadratic in the fermions, can be

written after some manipulation as

Sp = - / Vg [e (20T, — 45TV — 257
— SO — O HM 0 — et HP 0 + et Hp)
72 (2T Vg — 46TV — 257V
-%%i’“ﬂdﬂ-+&;fﬂw%n¢&*+%pff“WAwww§-—%p’ﬂﬁ*)
‘¢(¢IW”FuﬂV”¢J-+p+F”ﬂp‘)]

2k2

(4.8)

where V is the Levi—Civita connection.
To match what follows it is useful to rewrite the standard equations of
motion in a particular form. For the bosonic fields, with the fermions set
to zero, one takes the combinations that naturally arise from the string

B-functions, namely

Ruw — 1HppH, Y + 2V, V0 — FPAn1 —

H)\l Ap_1™ v

Ve (6_2¢H’“”\> 2 Z (n—2)! ,uzz)\l An— QF(B)AIM)\”_Q =0,

V26— (Vo)? + iR — £ H? =0,

dF®) — g A FB) =g,

(4.9)

where the final Bianchi identity for F' follows from the definition (4.6).

Keeping only terms linear in the fermions, the fermionic equations of motion
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read

7 (V0 F JHoy™ = 0,0) 6 £ S, 5| — (V0 F ™) o
n v B
= &e? S ()0 pBy uF,

(Vi F $Hounr™ = 20,0 ) 0% =4 (Vi F 31 Huny™ = 0,0 p*
n (B)
= Tlae¢ Z<i)[( +1)/2]F(n) oF,
(4.10)

The supersymmetry variations are parametrised by are pair of chiral

spinors € where, again, in the notation of [141], for type ITA, we have

=t +e where A0t = 7 (4.11)

)

while for type IIB we have the doublet

+
€= <€_> where (10t = ¢, (4.12)
€

Again keeping only linear terms in the fermions field, the supersymmetry

transformations for the bosons read
defs = eyl + ey,
0B, = 2€+'y[ wy] 2e¢ Y w}
5¢ — j0log(—g) = =36 p" — 5 p7, (4.13)
(e /\5A)/(“) = % ( ¢ Voroopn V€ — e_¢€+7u1,,,unp_)
¥3 ( RGRGTR +e’¢’ﬁ+m...une’> :

where e, is an orthonormal frame for g,,, and in the last equation the upper

sign refers to type IIA and the lower to type IIB. For the fermions one has

v n B
(wi = <V“ + %HW/\’Y A) €+ 16G¢Z H)/Q}an))’yuﬁa
(4.14)
09" =" (Vi F 31 Hun™ = 946
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4.2. Type II supergravity as 0(9,1) x O(1,9)

generalised gravity

Let us now show how the dynamics and supersymmetry transformations of
type II supergravity theories are encoded by an O(9,1) x O(1,9) structure
with a compatible, torsion-free generalised connection. An outcome of this
will be a formulation of type II supergravity with manifest local O(9,1) x
O(1,9) symmetry.

In the following we will consider the full ten-dimensional supergraviy
theory so that the relevant generalised structure is O(10,10) x R*. How-
ever, one can equally well consider compactifications of theory of the form
R9—d1 « Af

ds?y = ds*(R9~%1) 4 ds?, (4.15)

where ds?(R%~%1) is the flat metric on R9~%! and ds?l is a general metric on
the d-dimensional manifold M. The relevant structure is then the O(d) x
O(d) € O(d,d) x RT generalised geometry on M. Below we will focus
on the 0(10,10) x RT case. The compactification case follows essentially
identically, and the supersymmetry of such configurations will be examined

for d = 6 in chapter 7.

4.2.1. NS-NS and fermionic supergravity fields

From the discussion of section 3.3.1 we see that an O(9,1) x O(1,9) C
0(10,10) x R generalised structure is parametrised by a metric g of sig-
nature (9,1), a two-form B patched as in (2.23) and a dilaton ¢, that is, at
each point z € M

0(10, 10)
(9,1) x O(1,9)

{9:B:¢0} € 5 x RT. (4.16)

Thus it precisely captures the NS-NS bosonic fields of type II theories by
packaging them into the generalised metric and conformal factor (G, ®). As
in [98], the infinitesimal bosonic symmetry transformation (2.27) is naturally

encoded as the Dorfman derivative by V = v + A

oy G = Ly G, oy® = Lyd (4.17)
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and the algebra of these transformations is given by the Courant bracket.
The two parts of the generalised tangent space can be identified with the
momentum and the electric charge for the B-field, and these are the gen-
erators of the bosonic symmetries. This relation is more obvious for the
Eya) xR generalised geometry of chapters 5 and 6.

The type II fermionic degrees of freedom fall into spinor and vector-spinor
representations of Spin(9,1) x Spin(1,9)%. Let S(C,) and S(C_) denote the
Spin(9,1) spinor bundles associated to the sub-bundles Cy write v* and %
for the corresponding gamma matrices. Since we are in ten dimensions, we
can further decompose into spinor bundles S*(C,) and S*(C_) of definite
chirality under 19,

The gravitino degrees of freedom then correspond to
Ya € T(C-® ST(CL)), Y, € D(Cy ®ST(CL)), (4.18)

where the upper sign on the chirality refers to type IIA and the lower to
type IIB. Note that the vector and spinor parts of the gravitinos transform
under different Spin(9,1) groups. For the dilatino degrees of freedom one
has

ptET(SH(CL),  pm e T(SHCL)), (4.19)

where again the upper and lower signs refer to IIA and IIB respectively.

Similarly the supersymmetry parameters are sections
et er(ST(Cy)), e e(ST(CL)). (4.20)

In terms of the string spectrum these gravitino and dilatino representations
just correspond to the explicit left- and right-moving fermionic states of
the superstring and, in a supergravity context were discussed, for example,
in [142].

2Since the underlying manifold M is assumed to possess a spin structure, we are free to
promote O(9,1) x O(1,9) to Spin(9,1) x Spin(1,9). Here will ignore more complicated
extended spin structures that can arise in generalised geometry as described in [100].
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4.2.2. RR fields

As is known from studying the action of T-duality, the RR field strengths
transform as Spin(10,10) spinors [32, 142, 143, 144]. Here, the patching®

Ay = e A Ay + dAg, (4.21)

of Ay on U; N U; implies that the polyform F;) = dA;) is patched as

in (3.31), and hence, as generalised spinors,
+
Fe F(S(W)), (4.22)

where the upper sign is for type ITA and the lower for type IIB. Furthermore,
we see that the RR field strengths F’ ((f)) that appear in the supergravity (4.6)

are simply F expressed in a split frame as in (3.40)

FB) — B A Fu) = eBa A ZdAEg_l). (4.23)

Note that the additional gauge transformations dA in (4.21) imply that A,
does not globally define a section of S(ji /2)° This additional gauge symmetry
can be “geometrised” using Ey(q) generalised geometry, which described in
chapters 5 and 6. Since A; is still locally a generalised spinor on the patch
U; we can perform the same operations on it as we do on F' in the remainder
of this subsection.

Given the generalised metric structure, we can also write F' in terms of
Spin(9,1)xSpin(1,9) representations. One has the decomposition Cliff (10, 10; R) ~
Cliff(9, 1; R) ® Cliff (1, 9; R) with

C®1 for A =
ra- {7 i o “ (4.24)
7(10) ® ’y“'y(lo) for A=a-+d
and hence we can identify?

Using the spinor norm on S(C-) we can equally well view F' € T'(S(19)) as

3Here A are a sum of even (odd) forms in type ITA (IIB).
4In fact Sy ~ S(C4)®S(C-) for any p, but here we focus on the case of interest p = %
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a map from sections of S(C_) to sections of S(Cy). We denote the image

under this isomorphism as
E,:S(C-) — S(Cy). (4.26)

We have that F' € I'(S(C4) ® S(C-)) naturally has spin indices F*%, while
F, naturally has indices F'“5. The isomorphism simply corresponds to low-
ering an index with the Cliff(9, 1;R) intertwiner O@B‘ The conjugate map,
Fl':S(Cy) — S(C-), is given by

Fl'=(CE.Cc™HT, (4.27)

which corresponds to lowering the other index on F*® and taking the trans-
pose.

We now give the relations between the components of the Spin(d, d) x R™
spinor in all relevant frames. Note first that if the bases are aligned so that
et = e~ = e then the Spin(9,1) x Spin(1,9) basis (3.77) is a split conformal
basis and we have a Spin(9,1) C Spin(9,1) x Spin(1,9) structure. We can
then use the isomorphism Cliff(9, 1; R) ~ A*T*M to write F(B:?) as a spinor

bilinear

FB9) 1 p(B.) jaran (4.28)

n! al...an7
n

More generally if the frames are related by Lorentz transformations eX =

a
AFPe, and we write AT for the corresponding Spin(9,1) transformations

then we can define F, explicitly as
E, = At B (A1 (4.29)

which concretely realises the isomorphism between F(5:#) and F,.
This map can easily be inverted and so we can write the components of

F €T(5(12)) in the coordinate frame as

Fu = e By A FB) = ¢=%¢=Bu A F(B:9)

-t 3 g G )]

(4.30)

This chain of equalities relates the components of F' in all the frames we

have discussed.

71



Finally, we note that the self-duality conditions satisfied by the RR field
strengths F' € I’(S(i1 /2)) become a chirality condition under the operator
') defined in (3.82)

rOF =—F, (4.31)

as discussed in [118, 119].

4.2.3. Supersymmetry variations

We now show that the supersymmetry variations can be written in a simple,
locally Spin(9,1) x Spin(1,9) covariant form using the torsion-free compat-
ible connection D.

We start with the fermionic variations (4.14). Looking at the expres-
sions (3.107), we see that the uniquely determined spinor operators allow

us to write the supersymmetry variations compactly as

S = Daet + L Fyvae,
0, = Dge™ + 1—16F#T'yae+,
o Dt (4.32)
6p~ =~"Dge”,

where we have also used the results from the previous section to add the
RR field strengths to the gravitino variations.

For the bosonic fields, we need the variation of a generic Spin(9,1) X
Spin(1,9) frame (3.77). Note that this means defining the variation of a
pair of orthonormal bases {e™*} and {e~®} whereas the conventional super-
symmetry variations (4.13) are given in terms of a single basis {e®}. The
only possibility, compatible with the Spin(9,1) x Spin(1,9) representations

of the fermions, is to take

SET = (Slog ®)E + (SAT)E?,
ok (6log )A ( “b)A (4.33)
0E; = (0log ®)E; + (6A,,)ET?,
where
5Aja:6/kaér+€7ag,
Ya¥) Ya¥ (4.34)

6A oz = Evatd + € vaty,
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and
Slog® = —26¢ + L6log(—g) =€ pT +e p . (4.35)

Note that the variation of the basis (4.33) is by construction orthogonal
to the Spin(9,1) x Spin(1,9) action. This is because it is impossible to

construct an Spin(9,1) x Spin(1,9) tensor linear in 17 and 1, with two
indices of the same type, that is L:b or L;E'

The corresponding variations of the frames é* are

?e: S T Y (4.36)
5e;a = E"’vaw: + E_fyuw_a,
which both give
0w = 26,0 + 26,0 (4.37)

as required, but, when setting the frames equal so e™® = e% and e~ % = %

Y

differ by Lorentz transformations from the standard form (4.13)

det® = et — (et yiyptt — €+7b¢1+a e,
} H 2 ( ) ub (438)

5e;a = (567[61 — (Effy&i/fb — Efvbwfa)e;g.

This can also be expressed in terms of the generalised metric Gap as
6Gaa = 0Gaq = 2 (€07 + e vaty ) - (4.39)
The variation of the RR potential A can be written as a bispinor
1604) = (et —pte) F (Ude " + ), (4.40)
where the upper sign is for type ITA and the lower for type IIB.

4.2.4. Equations of motion

Finally, we rewrite the supergravity equations of motion (4.9) and (4.10)
with local Spin(9,1) x Spin(1,9) covariance, using the generalised notions
of curvature obtained in section 3.3.3.

From the generalised Ricci tensor (3.113), we find that the equations of
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motion for g and B can be written as
11
R + 6@ (F,T3F) =0, (4.41)

where we have made use of the Mukai pairing defined in (3.33)° to introduce
the RR fields in a Spin(9,1) x Spin(1,9) covariant manner.
The equation of motion for ¢ does not involve the RR fields, so it is simply

given by the generalised scalar curvature (3.114)
R=0. (4.42)

Using definition (3.51) and equation (3.65) we can write the equation of

motion for the RR fields in the familiar form
IPADAF = dF =0, (4.43)

where the first equality serves as a reminder that this definition of the
exterior derivative is fully covariant under Spin(d,d) x RT.

We also have the bosonic pseudo-action (4.5) which takes the simple form®

1

=53

(2R+H(FTOF)), (4.44)

using the density ®. Note that the Mukai pairing is a top-form which can
be directly integrated.

The fermionic action (4.8) is given by

1 e R
Sk=—55 | 20|67 Dyt + =" Dy
+ 20" Datp + 257 Datp™°
— P Dap™ — p " Dap~

— %(ﬁJrF#P_ + %—Tv“F#V%J)} .

(4.45)

Varying this with respect to the fermionic fields leads to the generalised

Note that (F,I,;F) e (L ®Cy @ C-) so @ YF,T ;F) e T(CL ® C-)
5Up to integration by parts of the VZ¢ term
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geometry version of (4.10)

VP Dypf — Dapt =+ Fyvaty
V' Dyy — Dap™ = +157 Fl vattyf

’ (4.46)
V' Dap™ — DWW = — 5 Fyp”,
" Dap™ — D", = —{5F/ p™,

and it is straightforward to verify that by applying a supersymmetry vari-
ation (4.32) we recover the bosonic equations of motion (4.41)-(4.43).

We have thus rewritten all the supergravity equations from section 4.1
in terms of torsion free generalised connections and these expressions are
therefore manifestly covariant under local Spin(9,1) x Spin(1,9) transfor-

mations.

75



5. Eyq x RT Generalised Geometry

We would now like to extend the generalised geometry developed thus far to
a geometry for eleven-dimensional supergravity, which will also include the
RR fields of type II theories when studied over a manifold of one dimension
less. In the previous chapters we saw that the generalised geometry for the
NS-NS sector of type II theories had an O(d, d) factor in its structure group.
This was reminiscent of the O(d,d) action on the moduli space of NS-NS
fields in compactifications on tori. The corresponding groups for eleven-
dimensional supergravity reductions are the exceptional groups Eg(4). We
are therefore led to consider the structure group Eg(q) xR as the natural
replacement for O(d,d) x R* in this new geometry. As the exceptional
groups are well-understood only in dimensional splits of eleven-dimensional
supergravity, we aim to construct a geometry related to the internal sectors
of these, rather than taking on the full theory.

The E4(q) generalised tangent space was first developed in [100] and in-
dependently in [101], where the exceptional Courant bracket was given for
the first time. Our discussion follows closely that in [2], which also includes
the RT factor known as the “trombone symmetry” [145]. This allows one to
specify the isomorphism between the generalised tangent space and a sum of
vectors and forms. Physically, it is related to the “warp factor” of warped
supergravity reductions. The need for this extra factor in the context of

Er7(7y geometries has previously been identified in [64, 104, 114].

5.1. Eyq xR* generalised tangent space

Following closely the construction given in section 3.2, here we introduce
the generalised geometry versions of the tangent space, frame bundle, Lie
derivative, connections and torsion, now in the more subtle context of an

Eq(q) xR structure.
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5.1.1. Generalised bundles and frames
Generalised tangent space

We start by recalling the definition of the generalised tangent space for
Eya) xRT generalised geometry [100, 101] and defining what is meant by
the “generalised structure”.

Let M be a d-dimensional spin manifold with d < 7. The generalised

tangent space is isomorphic to a sum of tensor bundles
E~TM@®ANT*M & ANT*M & (T*M o A'T* M), (5.1)

where for d < 7 some of these terms will of course be absent. The iso-
morphism is not unique. The bundle is actually described using a specific

patching. If we write

Vi) = vi) +wiy +og) + 70

(5.2)
e D(TU; & N°T*U; & AST*U; @ (T*U; @ A'T*U;)),
for a section of E over the patch U;, then
Vi = oA +dAay) Vij)s (5.3)

on the overlap U; N U; where A(;;) and A(ij) are locally two- and five-forms

respectively. The exponentiated action is given by

V(i) = V(j)s
Wiy = W(j) T+ o dAij),
(i) = () + dhgij) Aw) + 5dN ) At dA ) + du dA ), (5.4)

Ty = T() + JdAj) Aoy — JdA ) Awiy + JdAz) Ao dAy)

where we are using the notation of (C.8). Technically this defines E as a

result of a series of extensions

0 — A*’T*"M — E" — TM — 0,
0 — AST*M — E' — E" — 0, (5.5)
0—T"MANT*M — E— E' —0.
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Note that while the v(;) are globally equivalent to a choice of vector, the
W), 0(;) and T(;) are not globally tensors.

Note that globally A and A(ij) formally define! “connective structures
on gerbes” (for a review see, for example, [136]). This essentially means
there is a hierarchy of successive gauge transformations. For A(;;) on the
multiple intersections we have

Aijy — Nry + Agry = dA iy on U; NU; NU,

(5.6)
A(”k) — A(ijl) + A(ikl) — A(jkl) = dA(ijkl) on U;NU; NU,NU,.

For A, there is a similar set of structures with analogous relations to (5.6)
going down to a septuple intersection U;, N ---NUj,.

The bundle E encodes all the topological information of the supergravity
background: the twisting of the tangent space T'M as well as that of the
gerbes, which encode the topology of the supergravity form-field potentials.

Generalised Ey(q) xRT structure bundle and split frames

In all dimensions? d < 7 the fibre E, of the generalised vector bundle at
x € M forms a representation space of Ey(q) xRT. These are listed in ta-
ble 5.1. As we discuss below, the explicit action is defined using the GL(d, R)
subgroup that acts on the component spaces T, M, AT} M, A>T*M and
T:M ® A"T;M. Note that without the additional RT action, sections of
FE would transform as tensors weighted by a power of det T*M. Thus it is
key to extend the action to Eg(g) xR™ in order to define E directly as the
extension (5.5).

Crucially, the patching defined in (5.3) is compatible with this Ey4) xR*
action. This means that one can define a generalised structure bundle as
a sub-bundle of the frame bundle F for E. Let {E4} be a basis for E,,
where the label A runs over the dimension n of the generalised tangent
space as listed in table 5.1. The frame bundle F' formed from all such bases
is, by construction, a GL(n,R) principle bundle. We can then define the
generalised structure bundle as the natural Eyq) xR™T principle sub-bundle
of F' compatible with the patching (5.3) as follows.

Note that again the gerbe structure actually requires quantised fluxes which are suitably
related to an integral cohomology classes (see e.g. [101]).

2In fact the d < 2 cases essentially reduce to normal Riemannian geometry, so in what
follows we will always take d > 3.
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Eq(q) group Eg(q) XR™ rep.
Eq(7y 561

Eg(6) 27}

Es(5) == Spin(5,5) 164

E3(3) =~ SL(3,R) X SL(Q,R) (3/, 2)1

Table 5.1.: Generalised tangent space representations where the subscript
denotes the RT weight

Let é, be a basis for T, M and e® the dual basis for Ty M. We can use

these to construct an explicit basis of E, as
{Ba} = {ea} U{e™} U {err-om} U {eroron), (5.7)

where e®% = e A ... Ae® and eHM 9T = e @ e A--- Ae?7. A generic

section of F at x € U; takes the form
V =VAE, =%, + %wabe“b + %Uul._,ase‘““'“5 + %Ta7a1_._a7ea’a1"'a7. (5.8)

As usual, a choice of coordinates on U; defines a particular such basis
where {E} = {9/02} U {dz™ A dz"} + .... We will denote the com-
ponents of V in such a coordinate frame by an index M, namely VM =
(V"™ Wi, Omy ..o > Tmgma.me ) -

We then define a Eg(q) xR" basis as one related to (5.7) by an Ey(q) xR*

transformation
VAL VA= MARVE,  Esm By =Eg(M )P, (5.9)

where the explicit action of M is defined in appendix C.1. The action has a
GL(d,R) subgroup that acts in a conventional way on the bases é,, e® etc,
and includes the patching transformation (5.3)3.

The fact that the definition of the Ej;(q) xR action is compatible with the

3In analogy to the definitions for O(d, d) x R generalised geometry from chapter 3, we
could equivalently define an Eq(q4) xR™ basis using invariants constructed from sections
of E. For example, in d = 7 there is a natural symplectic pairing and symmetric quartic
invariant that can be used to define E;(7) (in the context of generalised geometry
see [101]). However, these invariants differ in different dimension d so it is more useful
here to define Ey(4y by an explicit action.
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patching means that we can then define the generalised Ey4) xRT structure

bundle F as a sub-bundle of the frame bundle for E given by
F= {(z, {E}):2z € M, and {E4} is an Ey(qy xR basis of E,}. (5.10)

By construction, this is a principle bundle with fibre Ey(q) xRT. The bundle
F is the direct analogue of the frame bundle of conventional differential
geometry, with Ey4) xR* playing the role of GL(d, R).

A special class of Eyg) XxRT frames are those defined by a splitting of the
generalised tangent space E, that is, an isomorphism of the form (5.1). Let

A and A be three- and six-form (gerbe) connections patched on U; N U; by
~( ) ~(J) ~(J) 1 (5.11)
Agi) = Ag) + dAgj) — 3dAaH A Ag).

Note that from these one can construct the globally defined field strengths

(5.12)
F = dA(Z) — %A(z) A F.

Given a generic basis {é,} for TM with {e®} the dual basis on 7*M and a

scalar function A, we define a conformal split frame {E} for E by

E, = e? (éa + iéaA + iéax‘i + %A N iéaA
+jA/\’l:éaA+%jA/\A/\'L'éaA>,
Eab:eA<eab+A/\€ab_jA/\eab+%jA/\A/\eab), (5.13)
Eal...a5 — eA (eal...a5 +jA /\ eal...as)’

Ea,al...a7 _ eAea,al...cw
7

while a split frame has the same form but with A = 0. To see that A and

A define an isomorphism (5.1) note that, in the conformal split frame,
V(A,A,A) _ e_Ae_A(i)_A(i) V(z’)

as 1 ab 1 ai...a 1 a,ai...a
=V €q + 5Wab€ " + £04q;...a5¢ B 71Ta,a1...a7€ et (5.14)

e T(TM & N*T*M @ A°T*M & (T*M @ ATT*M)),
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since the patching implies e_A(”_A(i)V(i) = e‘AUVA(J')V(j) on U; NU;.
The class of split frames defines a sub-bundle of F

Py = {(, {E4}) 2 € M, and {E4} is split frame} C F. (5.15)

Split frames are related by transformations (5.9) where M takes the form
M = e**4m with m € GL(d,R). The action of a + @ shifts A — A+ a
and A — A+ . This forms a parabolic subgroup Geptit = GL(d,R) x
(a + a)-shifts C Ey(g) xRT where (a + a)-shifts is the nilpotent group of
order two formed of elements M = e%t% Hence Pyt is a Ggpig princi-
ple sub-bundle of F, that is a Ggplit-structure. This reflects the fact that
the patching elements in the definition of E lie only in this subgroup of

Ed(d) XR+.

Generalised tensors

Generalised tensors are simply sections of vector bundles constructed from
the generalised structure bundle using different representations of Eyq) xRT.
We have already discussed the generalised tangent space E. There are four
other vector bundles which will be of particular importance in the following.

The relevant representations are summarised in table 5.2.

dimension  E* adF C E®Q E* NcCcS?2E KcCE*®adF
7 56_1 1339 + 19 1332 912 4

6 27_4 780 + 1o 27, 351",

5 16° 450 + 1o 10, 144°

4 10_4 249 + 19 5’_’_2 40_1 + 15/_1

3 (3,2)_1 (8,1)0+(1,3)0+10 (3,1)42 (3,2)_1+(6,2)_1

Table 5.2.: Some generalised tensor bundles
The first is the dual of the generalised tangent space
E* ~T*M @ A*TM & A°TM & (TM @ ATTM). (5.16)

Given a basis {E4} for E we have a dual basis {E4} on E* and sections of
E* can be written as U = U4 F4.
Next we then have the adjoint bundle ad F associated with the Eya) xRT
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principle bundle F (see (C.3))
adF ~R@ (TM @ T*M) & A3T*M @ AST*M & A3TM @ ASTM. (5.17)

By construction ad ¥ ¢ E ® E* and hence we can write sections as R =

RAREA ® EB. We write the projection on the adjoint representation as
@ad: B*®@F — ad F. (5.18)

It is given explicitly in (C.14).
We also consider the sub-bundle of the symmetric product of two gener-
alised tangent bundles N C S?FE,

N ~T*M @ A*T*M @ (T*M ® AST* M)

(5.19)
O (MT*M @ AN'T*M) @ (AST*M @ A"T* M),
We can write sections as S = SABF, ® Ep with the projection
v : F®E — N. (5.20)

It is given explicitly in (C.17).
Finally, we also need the higher dimensional representation K ¢ E*®@ad F
listed in the last column of table 5.2. Decomposing under GL(d,R) one has

K~T*M®S*TM & AN*TM @ (A*T*M @ TM)o @ (A3TM @ T* M),
OMNT*M & (AM*'TM @ TM)o © A°TM © (A*TM ® A°TM),
AT M@ (TM AN TM)® (A'TM @ ATTM)

©(S’T*M @ A"TM) & (MTM @ A"TM),
(5.21)
where, in fact, the A°TM term is absent when d = 5. Note also that the

zero subscripts are defined such that

amn" =0, if a € T((A*T*M @ TM)y),
A"y =0, if a € D(ATM @ T"M)p), (5.22)
glmimamsmams] _ o if ¢ € T((AYTM  TM),),
((

am™rumeentl — 00 if g e D((A2TM @ ASTM),).
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Since K C E* ® ad F' we can write sections as T = Ty BCEA ® Ep ® E°.
It is interesting to note that, up to symmetries of the £y Dynkin diagram,

the Dynkin labels of the representations £ and N follow patterns as d varies.

For each value of d, the Dynkin label for FE can be represented on the Dynkin

diagram as

& O----O i O—O

while N has the label

O—O0----0O I oO—e

5.1.2. The Dorfman derivative and Courant bracket

As in O(d,d) x R* generalised geometry, we find that our construction
admits a generalisation of the Lie derivative which encodes the bosonic
symmetries of the supergravity. Given V =v+w + o + 7 € I'(E), one can
define an operator Ly acting on any generalised tensor, which combines the
action of an infinitesimal diffeomorphism generated by v and A- and A-field
gauge transformations generated by w and o. Formally this gives E the
structure of a “Leibniz algebroid” [104].

Acting on V! =/ +w' + o' + 7' € T'(E), one defines the Dorfman deriva-

tive* or “generalised Lie derivative”

LyV' =L, + ([,vw’ - iv/dw) + (Eva' —iydo — W' A dw)

(5.23)
+ (ﬁvT/ —jo’ Adw — jw' A dcr) .

Defining the action on a function f as simply Ly f = L,f, one can then
extend the notion of Dorfman derivative to a derivative on the space of
Eq(q) xR tensors using the Leibniz property.

To see this, first note that we can rewrite (5.23) in a more Eq(g) xR™
covariant way, in analogy with the corresponding expressions for the con-
ventional Lie derivative (2.5) and the Dorfman derivative in O(d,d) x R

4We follow the nomenclature of O(d,d) x R" generalised geometry, as this directly
corresponds to the definition given there.
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generalised geometry (3.45). One can embed the action of the partial deriva-
tive operator via the map T*M — E* defined by the dual of the exact se-
quences (5.5). In coordinate indices M, as viewed as mapping to a section
of E*, one defines

Om for M =m

Oy = (5.24)

0 otherwise
Such an embedding has the property that under the projection onto N* we
have
df @n+ 0g =0, (5.25)

for arbitrary functions f,g. We will comment on this observation in sec-
tion 5.1.4.

One can then rewrite (5.23) in terms of generalised objects as
Ly VM = VNoN VM (9 @,q V)M NV, (5.26)

where ®,q denotes the projection onto ad F given in (5.18). Concretely,
from (C.14) we have
0QuV =r+a+a, (5.27)

where r"™,, = 9,v™, a = dw and a = do. We see that the action actually lies
in the adjoint of the Gypiit C Eg(a) xRT group. This form of the Dorfman
derivative can then be naturally extended to an arbitrary Eyg) xR tensor
by taking that appropriate adjoint action on the Ey(q) xRT representation.

Note that we can also define a bracket by taking the antisymmetrisation
of the Dorfman derivative. This was originally given in [101] where it was

called the “exceptional Courant bracket”, and re-derived in [104]. It is given
by

[V.V'] =5 (LyV' — Ly V)
= [v,0'] + Lo — Lyw — %d (z’vw’ - ivrw)
+ Lo’ — Lyo — %d (ivo’ — iv/a) + %w Adw — %w’ A dw
+ %ﬁqﬂ'/ — %ﬁv/T + %(jw Ado’ — jo' A dw) — %(jw’ ANdo — jo A dw').
(5.28)

Note that the group generated by closed A and A shifts is a semi-direct
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product le(M ) X QSI(M ) and corresponds to the symmetry group of gauge
transformations in the supergravity. The full automorphism group of the
exceptional Courant bracket is then the local symmetry group of the super-
gravity Gsugra = Diff (M) x (Q2,(M) x QG (M)).
For U,V,W € T'(FE), the Dorfman derivative also satisfies the Leibniz
identity
Ly(LyW) — Ly (LyW) = Li,vW, (5.29)

and hence E is a “Leibniz algebroid”. On first inspection, one might ex-
pect that the bracket of [U, V] should appear on the RHS. However, the

statement is correct since one can show that
L[[U,V]]W =Lr,vW, (5.30)
so that the RHS is automatically antisymmetric in U and V.

5.1.3. Generalised Eyq) xRT connections and torsion

We now turn to the definitions of generalised connections and torsion. Def-
initions of derivative operators in E7(7) geometries of a similar type have
been considered in [64, 103]. Here, for the Eyq) xR* case, we follow the

same procedure as in chapter 3.

Generalised connections

We first define generalised connections that are compatible with the Ej(q) xRT
structure. These are first-order linear differential operators D, such that,

given W € FE| in frame indices,
DMWA = 8MWA + QMABWB. (5.31)

where 2 is a section of E* (denoted by the M index) taking values in
Eq(q) xR* (denoted by the A and B frame indices), and as such, the action
of D then extends naturally to any generalised Ey4) xR™T tensor.

Given a conventional connection V and a conformal split frame of the
form (5.13), one can construct the corresponding generalised connection as
follows. Given the isomorphism (5.14), by construction v*é, € I'(T'M),
%wabeab € T(A2T*M) etc and hence V,,,v® and V,,wq, are well-defined.
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The generalised connection defined by V lifted to an action on E by the

conformal split frame is then simply

DYV =1+ 5(VinOaras) B + 5 (VinTaay g ) BV

0 otherwise.
(5.32)

for M = m,

Generalised torsion

We define the generalised torsion T of a generalised connection D in direct
analogy to the conventional definition, as we did for the O(d,d) x RT case.

Let a be any generalised Ey(g) xR tensor and let Lea be the Dorfman
derivative (5.26) with O replaced by D. The generalised torsion is a linear
map T : T(E) — ['(ad(F)) defined by

T(V)-a=Lba - Lya, (5.33)

for any V' € I'(E) and where T'(V') acts via the adjoint representation on a.
Let {E4} be an Eq(q) xR" frame for E and {E4} be the dual frame for E*
satisfying EA(E B) = 64 5. We then have the explicit expression

T(V) =V Q" = Qp'c — EA(Ly Ep)| Ea ©ua B (5.34)

Note that we are projecting onto the adjoint representation on the A and

B indices. Note also that in a coordinate frame the last term vanishes.
Viewed as a generalised Eyq) XxRT tensor we have T € T'(E* ® ad F ).

However, the form of the Dorfman derivative means that fewer components

actually survive and we find
Tel(Ka®E"), (5.35)

where K was defined in table 5.2. Note that these representations are ex-
actly the same ones that appear in the embedding tensor formulation of
gauged supergravities [126], including gaugings [127] of the so-called “trom-
bone” symmetry [145]. The relation between the embedding tensor and the
generalised torsion can be made concrete by examining identity structures

on the generalised tangent space [2], but we do not give further details here.
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As an example, we can calculate the torsion of the generalised connection
DV defined by a conventional connection V and a conformal split frame as

given in (5.32). Assuming V is torsion-free we find

T(V) = A (—z‘vdA—i—v@dA—ivF—i—dA/\w—z'vF—l—w/\F—i—dA/\a),

(5.36)
where we are using the isomorphism (5.17), and F and F are the (globally
defined) field strengths of the potentials A and A given by (5.12).

5.1.4. The “section condition”, Jacobi identity and the
absence of generalised curvature

Restricting our analysis to d < 6, we find that the bundle N given in (5.19)
measures the failure of the generalised tangent bundle to satisfy the proper-
ties of a Lie algebroid. This follows from the observation that the difference
between the Dorfman derivative and the exceptional Courant bracket (that
is, the symmetric part of the Dorfman derivative), for V.V’ € T'(E), is
precisely given by®

LyV'=[V.V'] = 4d (i + iyw — iy0’ —iyo +wAw') = 0xE(V @n V'),

(5.37)
where the last equality stresses the Eyq) X R* covariant form of the exact
term. Therefore, while the Dorfman derivative satisfies a sort of Jacobi
identity via the Leibniz identity (5.29), the Jacobiator of the exceptional
Courant bracket, like that of the O(d,d) Courant bracket, does not vanish

in general. In fact, it can be shown that
Jac(U,V,W) = [[U,V],W] +c.p. = 20 ®g ([U,V]®x W +c.p.), (5.38)

where W € T'(E) and c.p. denotes cyclic permutations in U,V and W. We
see that both the failure of the exceptional Courant bracket to be Jacobi
and the Dorfman derivative to be antisymmetric is measured by an exact
term given by the ®y projection. The proof is essentially the same as the

one for the O(d, d) case, see for example [82], section 3.26.

5For d > 7 the RHS can no longer be written as a derivative of an object built from U
and V in an Eg4q) X RT covariant way. Similar complications occur in the discussion
of the curvature below. This is the reason for the restriction to d < 6 in this section.

5Note that N ~ R in the O(d, d) case.
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Similarly, and as was the case with O(d, d) x RT generalised connections,
one finds that the naive definition of generalised curvature [Dy, Dy | W —
DyyyyW is not a tensor and its failure to be covariant is measured by the
projection of the first two arguments to N. Explicitly, taking U — fU,
V — gV and W — hW for some scalar functions f, g, h, we obtain

[Dyu, Dgv] AW — Dy gv1hW

(5.39)
= fgh ([Du, Dv]W — DyyyiW) = 5hD(sog-go5)0svenv)W-

Note, however, that it is still possible to define analogues of the Ricci tensor
and scalar when there is additional structure on the generalised tangent
space, as we will see in section 5.2.3.

Finally, we note that from the point of view of “double field theory”-like
geometries [61, 109, 112, 114, 115], the equation

Of @n+ g =0, (5.40)

for any functions f and g acquires a special interpretation. In these theo-
ries, one starts by enlarging the spacetime manifold so that its dimension
matches that of the generalised tangent space. The partial derivative das f
is then generically non-zero for all M. However, the corresponding Dorfman
derivative does not then satisfy the Leibniz property, nor is the action for
the generalised metric invariant. One must instead impose a “section condi-
tion” or “strong constraint”. In the original O(d, d) double field theory the
condition takes the form (04 f)(dag) = 0. Tt implies that, in fact, the fields
only depend on half the coordinates [111]. For exceptional geometries, the
d = 4 case was thoroughly analysed in [115], and is given by (5.40). Again
it implies that the fields depend on only d of the coordinates.

It can be shown that satisfying (5.40) always implies the Leibniz property
for the Dorfman derivative. Thus it gives the section condition in general
dimension. In generalised geometry it is satisfied identically by taking Ops
of the form (5.24). However given the Eyq) xRT covariant form of the
Dorfman derivative (5.26), any subspace of E* in the same orbit under
Eya) xRT will also satisfy the Leibniz condition. Note further that any

such subspace, like T*, is invariant under an action of the parabolic subgroup

Gsplit .
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5.2. H; structures and torsion-free connections

We now turn to the construction of the analogue of the Levi-Civita connec-
tion by considering additional structure on the generalised tangent space.
Again, this closely follows the constructions in O(d,d) x RT generalised
geometry from chapter 3.

We consider Hy structures on E where Hy is the maximally compact-
subgroup of E;g). These, or rather their double covers” Hy are listed in
table 5.3. We will then be interested in generalised connections D that pre-
serve the Hy structure. We find it is always possible to construct torsion-free
connections of this type but they are not unique. Nonetheless we show that,
using the Hy structure, one can construct unique projections of D, and that
these can be used to define analogues of the Ricci tensor and scalar curva-

tures with a local Hy symmetry.

Eq(q) group H,; group adPL =adF/ad P
E7(7) SU(8) 35+35+1

E6(6) Sp(8) 4241

Es(5) =~ Spin(5,5) Spin(5) x Spin(5) (5,5)+ (1,1)

Eyay ~ SL(5,R) Spin(5) 1441

Es3) ~ SL(3,R)) x SL(2,R)  Spin(3) x Spin(2) (5,1)+ (1,2)+(1,1)

Table 5.3.: Double covers of the maximal compact subgroups of E;4) and
H,; representations of the coset bundle

5.2.1. H; structures and the generalised metric

In Eyq) xRT generalised geometry, the analogue of a metric structure is an
H, structure, i.e. a principal sub-bundle P, with fibre Hy, of the generalised
structure bundle F'. The choice of such a structure is parametrised, at each
point on the manifold, by an element of the coset (Eq(4) xRT)/ Hq. The
corresponding representations are listed in table 5.3. Note that there is

always a singlet corresponding to the R factor.

"We give the double covers of the maximally compact group, since we will be interested
in the analogues of spinor representations. A necessary and sufficient condition for the
existence of the double cover is the vanishing of the 2nd Stiefel-Whitney class of the
generalised tangent bundle [100]. As the underlying manifold is spin by assumption,
this is automatically satisfied.
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One can construct elements of P concretely, that is, identify the analogues
of “orthonormal” frames, in the following way. Given an H, structure, it is

always possible to put the Hy frame in a conformal split form, namely,

A

E, = eA (éa + ’iéaA + iéaA + %A VAN iéaA
+jA/\z‘éaA+%jAAA/\z‘éaA>,
Eab:eA<eab+AA6ab_jA/\eab+%J-A/\A/\eab), (5.41)

Eal...a5 — eA (ea1...a5 —|—]A A eal...ar))’

Ea,al...m — eAea,al...w

Any other frame is then related by an Hy transformation of the form given
in appendix C.2. Concretely given V = VAE, € I'(E) expanded in such a

frame, different frames are related by
VAL VA=HARVE  Ea— By = Eg(H )Py, (5.42)

where H is defined in (C.22). Note that the O(d) C Hy action simply
rotates the é, basis, defining a set of orthonormal frames for a conventional
metric g. It also keeps the frame in the conformal split form. Thus the set

of conformal split Hy frames actually forms an O(d) structure on F, that is
(P N Pyie) C F with fibre O(d). (5.43)
One can also define the generalised metric acting on V € I'(F) as

G(V,V) = [o]* + [wf* + |of* + | 7|%, (5.44)

where [v]? = v0?, |w|? = Fwaw®, [o]* = £04,..0;0"% and |7> =
%Taﬂl,_aﬂ'“’al'“w evaluated in an Hy frame and indices are contracted us-
ing the flat frame metric d,, (as used to define the H; subgroup in ap-
pendix C.2). Since, by definition, this is independent of the choice of Hy
frame, it can be evaluated in the conformal split representative (5.41). Hence
one sees explicitly that the metric is defined by the fields g, A, A and A
that determine the coset element.

Note that the Hy structure embeds as Hy C Eqq) C Eq(q) xRT. This mir-

rors the chain of embeddings in Riemannian geometry SO(d) C SL(d,R) C
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GL(d,R) which allows one to define a det T*M density that is SO(d) in-
variant, \/g. Likewise, here we can define a density that is Hy (and Ey(q))
invariant, corresponding to the choice of R™ factor which, in terms of the

conformal split frame, is given by
volg = \/§e(9_d)A, (5.45)

as can be seen from appendix C.1.1. This can also be defined as the deter-

minant of G to a suitable power.

5.2.2. Torsion-free, compatible connections

A generalised connection D is compatible with the Hy structure P C F if
DG =0, (5.46)

or, equivalently, if the derivative acts only in the H; sub-bundle. In this
subsection we will show, in analogy to the construction of the Levi—-Civita

connection, that exactly as for the O(d, d) x RT geometry

Given an Hy structure P C F there always exists a torsion-free,

compatible generalised connection D. However, it is not unique.

We construct the compatible connection explicitly by working in the con-
formal split H, frame (5.41). However the connection is Hy covariant, so
the form in any another frame simply follows from an H; transformation.

Let V be the Levi-Civita connection for the metric g. Via the conformal
split frame, we can lift this connection to a generalised connection DV as
in (5.32). Since V is compatible with the O(d) C Hy subgroup, it necessarily
gives rise to an Hg-compatible connection. However, the generalised torsion
of DV is given by equation (5.36), and thus DV is not generically torsion-
free.

To construct a torsion-free compatible connection we simply modify DV .

A generic generalised connection D can always be written as

DyWA = DY, WA + 5, W5, (5.47)
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If D is compatible with the Hy structure then
YeTl(E*®adP), (5.48)

that is, it is a generalised covector taking values in the adjoint of Hy. The
problem is then to find a suitable ¥ such that the torsion of D vanishes.
Fortunately, decomposing under Hy one finds that all the representations
that appear in the torsion are already contained in 3. Thus, as in the
O(d,d) x R case, a solution always exists, but is not unique®. The relevant

representations are listed in table 5.4. As H; tensor bundles one has
E*®@adP~ (K ®E*)a®U, (5.49)

so that the torsion T' € T'(K @ E*) and the unconstrained part of ¥ is a

section of U.

dimension K @ E* U~ (E*®adP)/(K & E*)
7 28 + 28 + 36 + 36 + 420 + 420 1280 + 1280

6 27 + 36 + 315 594

5 (4,4) + (4,4) + (16,4) + (4,16) (20,4) + (4, 20)

4 1+5+10+14+ 35 35

3 (1,2)+(3,2) + (3,2) + (5,2) -

Table 5.4.: Components of the connection X that are constrained by the
torsion, 7T', and the unconstrained ones, U, as H; representations

The solution for ¥ can be written very explicitly as follows. Contracting
with V € T'(E) so X(V) € ad P and using the basis for the adjoint of Hy
given in (C.20) and (C.21) we have

E(V)ab = eA (2 (%) U[aab]A + %wchCdab + %001...C5F61..'05ab + C(V)ab) ;

E(V>abc = eA <m(dA A w)abc + %UdFdabc + C(V)abc) s

E(V)al...ag = eA (%’prbal...aﬁ + C(V)al...a6> s
(5.50)

8In d = 3 all the components of ¥ are contained in the torsion representations, E* ®
ad P ~ K ® E*, and so, in that particular case, the generalised connection is in fact
completely determined.
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where the ambiguous part of the connection C' € I'(E* ® ad P) projects to

zero under the map to the torsion representation K @ E*, that is
CeT(U). (5.51)

Using the two possible embeddings of Hy in Cliff(d,R) given in (C.26), we

can thus write the full connection as

Dy = e (Vo t 3(I2) @A) = 3 Funiast — S Funy " + €1
Duaz — A (%%Falazblw,yhbz + m(abA),yamzb + ¢«a1a2) :
(i%ﬁwal...a5b1b2ryb1b2 + ¢,a1...a5) ’

a

Da,al‘..a7 — eA (@ :al--~a7) ,
(5.52)

where + corresponds to the choice of embedding and

_1(1 ab 1 ajaza 1 at...a
@m ) (Tcm,ab’y + ﬁCm,alaQagv 1 — @Cm,m...ae’y ! 6) ’
mimz 1 (1 ~mims ab 1 ~ymims a1a2a3 1 ~mimo ai...ag
¢ =3 (jc TRy £ ?C Y asasY ’ = @C Y ag) )

etc.
(5.53)

is the embedding of the ambiguous part of the connection.

5.2.3. Unique operators and generalised H; curvatures

We now turn to the construction of unique operators and curvatures from
the torsion-free and Hy-compatible connection D constructed in the pre-
vious section. We give a fairly abstract discussion of the overall structure
of these operators in this section. However, the entire construction can
be made very concrete. In chapter 6 we will present explicit expressions for
these unique operators and curvatures in terms of the SO(d) decompositions
of the H, representations involved.
Given a bundle X transforming as some representation of Hy, we define
the map
Ox:U®X — EF" ®X, (5.54)

via the embedding U C E* ® ad P and the adjoint action of ad P on X. We
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then have the projection

EroX

EFoX _
Px (= — ImOx

(5.55)
Recall that the ambiguous part C of the connection D is a section of U,
which acts on X via the map Qx. If a € T'(X), then, by construction,
Px (D ® «) is uniquely defined, independent of C'.

We can construct explicit examples of such operators as follows. Consider
two real Hy bundles S and J, which we refer to as the “spinor” bundle and
the “gravitino” bundle respectively, since the supersymmetry parameter and
the gravitino field in supergravity are sections of them. The relevant Hy

representations are listed in table 5.5. Note that the spinor representation

Hy S J

SU(8) 8+8 56 + 56

USp(8) 8 48

USp(4) x USp(4) (4,1) + (1. 4) (4,5) + (5,4)
USp(4) 4 16

SU(2) X U(l) 2:1+2_1 41+4 1+23+2_3

Table 5.5.: Spinor and gravitino representations in each dimension

is simply the Cliff(d, R) spinor representation using the embedding (C.26).
One finds that under the projection Py we have”

Ps(E*®S)~S®J,

(5.56)
PiE*®J)~S®J

The details of the group-theoretical proof of this can be found in appendix D.
Therefore, for any € € I'(S) and ¢ € I'(J), one has that the following are

unique for any torsion-free connection

D®je, D ®g e,

(5.57)
D ®J w7 D ®S ¢7

where ® x+ denotes the projection of Px onto the X’ bundle.

9Note that there is an exception for d = 3 since, as was previously mentioned, in that
case the entire metric compatible, torsion-free connection is uniquely determined, and
so Px is just the identity map and Px(E* ® X) = E* ® X for any bundle X.
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One can show that the first two expressions encode the supersymmetry
variation of the internal and external gravitino respectively, while the latter
two are related to the gravitino equation of motion.

We would now like to define measures of generalised curvature. As was
mentioned in section 5.1.4, the natural definition of a Riemann curvature
does not result in a tensor. Nonetheless, for a torsion-free, ﬁd—compatible
connection D there does exist a generalised Ricci tensor Rap, and it is a

section of the bundle
adPt =adF/adP C E* ® E*, (5.58)

where the last relation follows because, as representations of Hy, F ~ E*.
It is not immediately apparent that we can make such a definition, but Rap
can in fact be constructed from compositions of the unique operators (5.57)
as

Do;(D®je)+ Doy (Dose) =R ¢,

(5.59)
D®s(D®je)+D®s(D®se) = Re,

where R and RY%p provide the scalar and non-scalar parts of Rap respec-
tively!?. The existence of expressions of this type is a non-trivial statement.
By computing in the split frame, it can be shown that the LHS is linear
in €, and since € and the LHS are manifestly covariant, these expressions
define a tensor. We will write the components explicitly in section 6.4, equa-
tion (6.49). This calculation further provides the non-trivial result that Rap
is restricted to be a section of ad P, rather than a more general section
of (S® J) @ R. In the context of supergravity, this calculation exactly
corresponds to the closure of the supersymmetry algebra on the fermionic
equations of motion. Finally, since it is built from unique operators, the
generalised curvature is automatically unique for a torsion-free compatible
connection.

The expressions (5.59) can be written with a different sequence of pro-
jections. This helps elucidate the nature of the curvature in terms of cer-
tain second-order differential operators. In conventional differential geome-
try the commutator of two connections [V, V] has no second-derivative

term simply because the partial derivatives commute. This is a neces-

1°Note that ad P* € (S®J) ®R and the Hy structure gives an isomorphism S ~ S* and
J ~ J*. Thus, as in the first line of (5.59), we can also view R" as a map from S to J.

95



sary condition for the curvature to be tensorial. In Egy(4) indices one can
similarly write the commutator of two generalised derivatives formally as
(D A D)ap = [Da, Dp]. More precisely, acting on an Ey4) xRt vector
bundle X we have

(DAD): X — A’E*® X. (5.60)

Since again the partial derivatives commute, this operator contains no second-
order derivative term, and so can potentially be used to construct a cur-
vature tensor. However, in Egy(g) xRT generalised geometry, we also have
Of @+ 0g = 0 for any f and g, and so we can take the projection to the

bundle N* defined earlier, giving a similar operator
(Den+D): X - N*"® X, (5.61)

which will again contain no second-order derivatives. One thus expects
that these two operators, which can be defined for an arbitrary Eyg) xRT
connection, should appear in any definition of generalised curvature. Given
an H, structure and a torsion-free compatible connection D, they indeed

enter the definition of R4p. Using Hy covariant projections one finds

(DAD)®je+ (D@n+D)®ye=R’-¢,

(5.62)
(DAD)®se+ (D®n«D) ®ge = Re.

This structure suggests there will be similar definitions of curvature in terms
of the operators (DA D) and (D®y+D) independent of the representation on
which they act, and potentially without the need for additional structure.
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6. Dimensional restrictions of
D =11 Supergravity as ;) xR"

Generalised Geometry

In this chapter, we show how to formulate dimensional restrictions of eleven-
dimensional supergravity in terms of the geometry described in chapter 5.
After reviewing the equations of eleven-dimensional supergravity, we begin
the main discussion by giving a general set of relations which recover these
equations elegantly from generalised geometry. In fact, these relations also
apply in the case of O(10,10) x R™ generalised geometry from chapter 4, if
one views type II supergravity fields in terms of the corresponding represen-
tation structure. In the case of restricted eleven-dimensional supergravity,
these abstract equations can be realised concretely using the decomposition
of Hy under SO(d), detailed in appendix C.2, and by writing the action on
the spinors using an embedding into Cliff(10, 1; R). This results in a set of
equations with H; symmetry which hold for any chosen reduced dimension
d<T.

6.1. Dimensional restrictions of

eleven-dimensional supergravity

6.1.1. Eleven dimensional supergravity

Let us start by reviewing the action, equations of motion and supersym-
metry variations of eleven-dimensional supergravity, to leading order in the
fermions, following the conventions of [146].

The fields are simply
{g,ul/aA,uupaw,u}, (6.1)

where g, is the metric, A,,, the three-form potential and v, is the grav-
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itino. The bosonic action is given by
1
SBzM/(volgn—;fA*f—gAAfAf), (6.2)

where R is the Ricci scalar and F = d.A. This leads to the equations of
motion
1 1 2
RMV 12 (fuplmpafuplmpg - ﬁglw"r ) =0,

(6.3)
d«F+3FAF =0,

where R, is the Ricci tensor.
Taking T'* to be the Cliff (10, 1;R) gamma matrices, the fermionic action

is

1 - -
Se = 3 [ VEI(BA IV BTN N F o #12F, 0 T, ),

(6.4)
so the gravitino equation of motion is
DAV + g5 (DA My o+ 12F5 5, Ty, = 0. (6.5)
The supersymmetry variations of the bosons are
59 = 26T ().
2 (n¥#v) (66)
6A/Ll/)\ = _3<§F[uuw)\]a

and the supersymmetry variation of the gravitino is

Sty = Ve + s (D07 = 85, T2V Fy €, (6.7)

where ¢ is the supersymmetry parameter.

6.1.2. Restriction to d dimensions

We will be interested in “restrictions” of eleven-dimensional supergravity
where the spacetime is assumed to be a product R19=%1 x M of Minkowski
space with a d-dimensional spin manifold M, with d < 7. The metric is

taken to have the form

ds?; = e?2ds?(R1O-41) + ds2 (M), (6.8)
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where ds?(R19~%1) is the flat metric on R19~%1 and ds3(M) is a general
metric on M. The warp factor A and all the other fields are assumed to be
independent of the flat R19=%1! space. In this sense we restrict the full eleven-
dimensional theory to M. We will split the eleven-dimensional indices as
external indices 4 = 0,1,...,¢c— 1 and internal indices m = 1,...,d where
c+d=11.

6.1.3. Action, equations of motion and supersymmetry

In the restricted theory, the surviving fields include the obvious internal
components of the eleven-dimensional fields (namely the metric g and three-
form A) as well as the warp factor A. If d = 7, the eleven-dimensional Hodge
dual of the 4-form F' can have a purely internal 7-form component. This
leads one to introduce in addition a dual six-form potential A on M which

is related to the seven-form field strength F by
F=dA-1ANF, (6.9)
The Bianchi identities satisfied by F = dA and F are then

dF =0,
- (6.10)
dF + 1F ANF =0.
With these definitions one can see that F' and F are related to the eleven

dimensional 4-form field strength F by

Fm1...m4 - fm1...m4 ; Fm1...m7 = <*11f)m1...m7 . (611)

F and F are invariant under the gauge transformations of the potentials
given by
A= A+ dA,

R (6.12)
A= A+dA - LdA A4,

for some two-form A and five-form A.

In order to diagonalise the kinetic terms in the fermionic Lagrangian, one
introduces the standard field redefinition of the external components of the
gravitino

U, =+ 250l . (6.13)
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We then denote its trace as
p= %F“wl’l, (6.14)

and allow this to be non-zero and dependant on the internal coordinates.

The surviving degrees of freedom are thus

{gmn7AmnpyAml...m(;,A,wm,p}, (615)

One obtains the internal bosonic action

1

%8 =52

%FQ) ., (6.16)

N[ —

/\/§ A (R +e(e—1)(0A)? — 4 F? -

by requiring that its associated equations of motion
Ronn — Von VA — (0 A) (0pA) — 11 (4Fmplp2p3 Fypivops 1 gmnFQ)

34 (B P = 300 F%) =0,

R—2(c—1)V2A — c(c — 1)(9A)2 — L1 F2 —

ds* (ePF) —e“®(*xF)AF =0,

(6.17)
are those obtained by substituting the field ansatz into (6.3). Similarly, to

quadratic order in fermions, the action for the restricted fermion fields (for
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d<T)is

Sp = — M / \/§eCA<
(¢ — )Yy D™V by, — c(c — 3) Y™ T Vb — (D" Ty Vi h" + ™ T, V™)
+ (Pl Vp — pU Vi) — (e — 2)8,, I (9,4) p
+ele =)W Vip = V") — c(c = 1)(c = 2)9™ (OmA)p
+ (e — 1) (pI"Vp + 1pFp — 15F p)
LAy PP, 4 Sl — 1A T,
G 4>zz?mrm"pl~-f’4Fm...p4wn +gelc = 3) iy
P T TP, — LL(262 — Be 4 4)ahy, F™, TP,

C(C - 1)7:[}771 p1-. pGFpl pﬁp + 4616(6 - 1)¢mﬁ(mp1...pgrn)plmp6¢n

l\’)\»—t

N

+
+

N[ =
c.o‘,_.

l\’)\»—t
=

— 112 — e+ 4)«,z7m13m”p1,,,p5rp1---P5¢n).

.J;\,_.

(6.18)
This action leads to the equation of motion for ,,,
(c =" (Vn + 50,A)0, — c(c = 3) " (Vy + 50,A) Y
— c(Tn(Vi + §0m A" + T (Vi + 59,A)9")
+ 'y (Vi + 00A)p+c(c = 1) (Vi + 0mA)p
+ 1t Dmprp FP P p + Te(e = 1) 31 Frprpops TP p
+ 2(e— ) FT P P, b + 1c(c — 3) P (6.19)
+ 3 ed FnP PP ) pape ™ — (267 — 5+ 4) o Frppg lP20"
—te(e = D&y ms I "0 p + Se(c = DEE 7T yprpe "

(262 = B¢+ 4) & Frppy . ps TP P57

AN

Il
o
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and the equation of motion for p,

— (Y +5@A) + 1F — 1F)p

+ (Vi + (¢ = 1) 0 D)™ + 5T (Vi + (¢ = 1) 0 D) b
A s FP P o — T papaps TP (6.20)
— 15 F o1 e TP P

= 0.

The supersymmetry variations of the fermion fields are given by

5p =Y — ¥ — 1F + (@A),

1 1 1 77 .16
5wm = Vne+ @(anl — 85mnlrn2n3n4)Fn1...n45 - ﬁaanl.“nanl n657

(6.21)
and the variations of the bosons by
dgmn = 281 (;p),
(¢ —2)0A + 6 log\/g = ép,
(6.22)

5Amnp = _3§F[mnwp] )

5Am1...m6 = 65F[m1...m5¢m6] .

In what follows the fermionic fields will be reinterpreted as representations
of larger symmetry groups. To mark that distinction, the fermions that have
appeared in this section will be denoted by £%"8 pS'&'2 and *"¢'. In the
absence of this label, the fields are to be viewed as “generalised” objects as

shall be clarified in section 6.2.

6.2. Supergravity degrees of freedom and H;

structures

We now explain how one can view the supergravity fields as generalised
geometry objects. Broadly speaking, the bosons form the generalised metric,

which defines an Hy structure on the generalised tangent space F, while
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the fermions can be promoted to representations of the double covering
group Hy. The general structure of what is said here applies equally well
to the O(d,d) x R™ generalised geometry for the NS-NS sector of type II

supergravity.

Bosons

It is well known [147] that the bosonic fields of the reduced supergravity
parametrise an (Eq(q) xR1)/Hy coset, that is, at each point z € M,
7 Bawy o+
{9,A, A, A} ¢ —— x R™". (6.23)
Hy
Thus giving the bosonic fields is equivalent to specifying a generalised metric
G. Furthermore, as in [98], the infinitesimal bosonic symmetry transforma-

tion is naturally encoded as the Dorfman derivative by V € I'(E)
ovG = Ly G, (6.24)

and the algebra of these transformations is given by the Leibniz prop-
erty (5.29). Thus, we see that the GL(d,R) representations which make
up the generalised tangent space correspond to the fundamental charges of
the theory. These are the momentum, the charges of the gauge fields A and
A and the Kaluza-Klein monopole (or dual graviton) charge, which generate

the bosonic symmetries’.

Fermions

The fermionic degrees of freedom fall into spinor representations of Hy, the
double cover of Hy. Let S and J denote the representations of H, listed in
table 5.5. The fermion fields ¥, p and the supersymmetry parameter ¢ can

then be thought of as sections of these bundles
Y eT'(J), p eT(9), e eI'(9). (6.25)

However, in the supergravity equations of section 6.1 the fermion fields

were viewed as Cliff(10,1;R) objects. It is therefore preferable to follow

Note that the Kaluza-Klein monopole does not generate a gauge transformation for
d < 7. This will be discussed further in the conclusion.
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the chain of embeddings H; C Cliff(d;R) c Cliff(10,1;R) explained in
appendix C.2.2 and uplift ¥, p and ¢ to representations of Spin(10—d, 1) x
H,2. This will allow us to write expressions directly comparable to the ones
in section 6.1. There exists a complication, in that there are actually two
distinct ways of realising the action of Hy on Cliff (d; R) spinors, related by

a change of sign of the gamma matrices
NE = § (3ma™ £ Fbaser™ = barac?™ ), (6.26)

and so one finds that in general the spinor bundles split into S* and J*.
Putting it all together, in order to recover the original supergravity formu-
lation we are led to consider the four Spin(10 — d, 1) x Hy bundles listed in
table 6.1 (see also [78]).

Table 6.1.: Spinor and gravitino as Spin(10—d, 1) x H, representations. Note
that when d is even the positive and negative representations are
equivalent.

We then find that the supergravity fields can be identified as

& = e—A/Q gsugra F(S’_),
ot o= B2 e ¢ p(§, (6.27)
1[]; _ eA/Q Zugra c F(j*)

Note that, due to the warping of the metric, the precise maps between the
fermion fields as viewed in the geometry and in the supergravity description
involve a conformal rescaling. This is of course purely conventional, since
one could just as easily perform field redefinitions at the supergravity level.
We choose, however, to maintain the conventions in section 6.1 as familiar

as possible and so it is important to account for this subtlety.

2The alternative is to decompose the eleven-dimensional spinors which necessarily leads
to dimension dependent expressions.
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7 (2,8) +(2,8) (2,8) +(2,8) (2,56) + (2,56) (2,56) + (2,56)
6 (4,8) (4,8) (4,48) (4,48)

5 (4,4,1)+(4,1,4) (4,1,4)+ (4,4,1) (4,4,5)+ (4,5,4) (4,5,4)+ (4,4,5)
4 (8,4) (8,4) (8,16) (8,16)



6.3. Supergravity equations from generalised

geometry

We now present the main result, a complete rewriting of the supergrav-
ity equations in the language of generalised geometry, to leading order in
fermions. In this section, we provide an abstract treatment describing the
theory in complete generality.

The equations presented here are intended to be schematic, capturing the
essence of the structure, but ignoring details such as numerical factors and
the precise details of the representations involved. This presentation is easily
seen to reproduce the NS-NS sector equations for type II theories given in
chapter 4. In section 6.4, we apply the same prescription to Egy(g) xR+
generalised geometry, using the SO(d) decomposition of H; described in
appendix C.2. This will provide more explicit expressions for the restricted
eleven-dimensional supergravity setup in this language.

We begin by looking at the supersymmetry algebra. Remarkably, the vari-
ations of the two fermion fields match precisely the two unique differential
operators which act on spinors that were found in section 5.2.3. Therefore,
the supergravity equations (6.21) can be written concisely as the Hy covari-
ant projections (5.57) of the torsion-free compatible connection acting on

the supersymmetry parameter €

(WJ:D@JE,

op=D ®ge.

(6.28)

Since the bosons arrange themselves into the generalised metric, one ex-
pects that their supersymmetry variations (6.22) be given by the variation of
G. Indeed, denoting projections to the bundle ad P+ (defined in table 5.3)
by ®,4 pL, one finds that the equations can be rewritten in the Hy covariant

form
0G = (Y ®aq pt €) + (p Daq pr €)- (6.29)

In order to describe the dynamics, an important first step is to realise the

fermionic equations of motion (6.19) and (6.20). Using the unique projec-
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tions (5.57) once again, they become simply

(D®y)+(D&yp) =0,
(6.30)
(D ®s ) + (D ®sp)=0.

The bosonic equations of motion (6.17) are naturally given by the van-

ishing of the generalised Ricci curvature (5.59)
Rup = 0. (6.31)

Note again that the form of the generalised Ricci in (5.59) can be interpreted
in a physical way — it reflects the closure of the supersymmetry algebra
on (6.30) which, by virtue of (6.28), can be examined at an Hy level.

The bosonic action (6.16) is given by the generalised curvature scalar,

integrated with the volume form (5.45)

Sp /volG R. (6.32)

Finally, the fermionic action (6.18) can be written using the natural invari-

ant pairings of the terms in (6.30) with the fermionic fields

Sp ox / volg: ({6, (D @, )+ 2p. (D ©50) + (p. (D@5 ). (6.33)

6.4. Realisation in SO(d) representations

We now use the expressions of appendix C.2.2 to write explicit versions
of the abstract relations in the previous section. The resulting equations
are written in terms of Cliff(10,1;R) spinors and match exactly those in

section 6.1.3 when evaluated in the split frame.

Supersymmetry Algebra

The supersymmetry variations (6.21) of the two fermion fields take the form

A~

)T =D®;_ ¢,
! (6.34)
6pT =D ®g &
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For clarity we will demonstrate how to evaluate one of these expressions in

the split frame. Using (C.34), we see that the projection can be written

(D ®@gy 67) =TDaé™ + HT"Doyé™ + ZT5Dey 6™ + HI9D? 4,

(6.35)
Substituting in the connection components from (5.50) and the expression

a— efA/26sugra

é we have

(D @y, &7) = /2 (W +959(pA) — Lp - iﬁ)gwgra, (6.36)

which is the supersymmetry variation of pT = e®/2p"8"  The other dif-
ferential operators in this section are derived similarly. The result for the

supersymmetry variation of the gravitino comes out as

(D@5 & )a = e (Va + g (Dt — 80, T By,

Fabl e Fb1 ...bg > gsugra
(6.37)

Since the bosons arrange themselves into the generalised metric, one ex-

11
12 6!

pects that their supersymmetry variations (6.22) be given by the variation
of G. In fact, the most convenient object to consider is G~'6G which is
naturally a section of the bundle ad(P)* listed in table 5.3. In this context,

the isomorphism (C.23) becomes
ad(P)t ~R & S?°T*M & A3T*M & AST* M (6.38)

and in this notation, the variation of the generalised metric can be written
in the split frame as
(G716G)o = —20A,
(G710G) ab = 0gan,
(G™10G) abe = 0 Agie,
(G7'6G)ay. a5 = —0Aay ..aq-

(6.39)

Comparing this with (C.38) and (C.39), one finds that the supersymmetry
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variations of the bosons (6.22) can be written in the H, covariant form

G_léG - (1;_ ®ad pL é_) + (ﬁ+ ®ad pL é_)7 (640)

where ®,4 p. denotes the projection to ad(P)*.

Generalised Curvatures and the Equations of Motion

Being more careful about numerical factors, the fermion equations of mo-
tion (6.19) and (6.20) become

~(D@jd7) - YD ey ph) =0,
R (6.41)

(D®g- ™)+ (D®g_p7) =0.
/3+
terms in these projections are different to those involving é~. We have

is embedded with a different conformal factor to €7, so the warp factor

and
(D @i p1)a = €02 (Vo + 0u8) = ol (D, — 88, T=H0) By,

1 17 b1...b sugra
126! (Zbl...bﬁl_‘ ! 6i|p &

(6.43)
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The projections involving ¢~ are evaluated using (C.36) and (C.37). The

result is
(D@g ) = e*2[(V 4 (10 — )P A) + 7=, (Va + (10 — D)9, A)
+ iTl—d%qummFClm&l . %%F6010203F010263
_ i;pqu%rcl...cﬂ ¢Zugra,
(D ®ji 7)o = =2 |D(Ve + HF10:0)00" + 5231 (Vo + H70aA)
— 153+ g2 Fda” + 3 5 P cal ™

1 1 c1...cab 110—d 1 rbcy...cs
39— d?TF P s + 6 9—d ﬁF | P

_ %ﬁ%qu%Fabq...q + %é ~ab61mcsrc1...(;5 wzugra'

(6.44)

The gravitino equation as written here does not exactly match that in
section 6.1.3. This is due to the presence of additional gamma matrices in
the inner product (C.31) which is used to write the fermion action. Using
the expressions (C.31) and (C.32) for the spinor bilinears, we find that (6.18)

can be rewritten as

SFZé/Volc[—<¢_,D®j+ ) = ST, D@L pt) (6.45)

+ 45t Dag 07)+ 800t Dag ph].

When this is varied with respect to zﬂ_, the equation of motion comes out

in the form

(00, (D@ ") —H=d(Dwj, ph)) =0, VoY~ (6.46)

If one merely removes d¢p~ from the left side of the expression, the form of

the inner product (C.31) gives the equation
(64 +;rﬂ)—w®ﬁ&%—%ﬁw®ﬂﬁﬂza (6.47)

Some algebra reveals that this equation does exactly match equation (6.19),

multiplied by an overall factor of —(9 — d)~2
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From the fermion equations of motion we can find explicit expressions for
the generalised Ricci tensor R4p, which is a section of the bundle ad P+ =
ad F /ad P C E* ® E*. Using the closure of the supersymmetry algebra
on (6.41) which, by virtue of (6.34), can be examined at an Hy level, we
define

—D®j, (D®; ¢ )-4=4D®; (D&g ) =R"-£,
P (L)
De (D®j ")+ D®g (D®gy €7) = g5-gRE,

for any £~ € T'(S~) and where R and R  provide the scalar and non-scalar
of Rap respectively. Explicitly, via the Hy covariant projection (C.29), the

action of the curvatures on the spinor are given by

c1...C3

(RO : é_) ( RObe + 3 QuRachbc — %%RO Fa61...63

ll bi1..bs 11 p0 C1...Cc6 | ~sugra
+ 535 Rab1 L sl Ty €

C1...C6 )
RE™ = (R = 2(c— DV?A — (e~ 1)(0A)? — JHF2 = LLF?)eme,
(6.49)
where ¢ = 11 — d and
RO, = A [Rmn Vi VA — (O A) (00 A)
B %% (4Fmplp2p3F pipaps — %gmnF2>
— 7 <7Fmp1 ool P — %gmnﬁ2> } (6.50)
RY,. = %ezA [ef‘:A s d s (eAF) — x((xF) A F)} "
aoc
Rgl ag = %ezA [e_CA wd * (eCAF)L1 »

The generalised Ricci tensor is manifestly uniquely determined and the

bosonic equations of motion (6.17) become simply
Rap = 0. (6.51)

Finally, the bosonic action (6.16) is given by the generalised curvature scalar,
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integrated with the volume form (5.45)

1

S8 =92

volg R. (6.52)

We have now rewritten all of the supergravity equations from section 6.1.2
in terms of generalised geometry. Though we have chosen to write them out
under an SO(d) decomposition, the abstract equations have manifest H,
symmetry. This formulation has the advantage that we were able to write

formulae which hold true in any dimension d < 7.

6.5. Comments on type II theories

The O(d,d) x R" generalised geometry of chapter 3 was only able to in-
corporate the gauge symmetry of the NS-NS sector in the structure of the
generalised tangent space. Here, we will briefly discuss how one may use
Eq(q) XR* generalised geometry over a (d — 1)-dimensional manifold to in-
clude also the RR gauge symmetry (4.21), an idea we have alluded to at
various points. This has previously been described in [100, 102, 103, 148].

The (Eq(q) XxRT)/ Hq coset structure can equally well describe the fields
type II theories in d — 1 dimensions. Specifically

~ E
{g>B>B7¢7 A:taA} € # X R+, (653)
d

where B is the NS-NS two-form field, B is the six-form potential dual to B,
¢ is the dilaton and AT are the RR potentials (in a democratic formalism)
where A~ is a sum of odd-degree forms in type ITA and A" is a sum of even-
degree forms in type IIB. All the fields now depend on a d — 1 dimensional
manifold M’.

The genearlised tangent space for the corresponding generalised geometry
is twisted by the gauge transformations of all of these tensor gauge poten-
tials. In particular the generalised tangent space takes the form [100, 102,
103, 148]

E~TM @T*M &N T*M' & (T*M' @ AST* M") @ A/ M’ (6.54)

where “even” refers to type IIB and “odd” to ITA. The pieces of this can be
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identified as the charges for the momentum, fundamental string, NS5-brane,
Kaluza-Klein monopole and D-branes.

The ITA case is given simply by the decomposition under the obvious
GL(d — 1,R) subgroup of GL(d,R) we have used so far (this was first dis-
cussed in [100]). One can see from the Dynkin diagram of Ey(4) that there
is another embedding of GL(d — 1,R), and the decomposition under this
gives the corresponding result for type IIB. There are similarly two differ-
ent realisations of H,; in terms of Spin(d — 1) which can be used to describe
the ﬁd structures and fermions.

We do not work through the details of these decompositions here (some
are given in the appendix of [2]). However, we note that the construction
of the torsion-free compatible connections, unique operators and curvatures
will go through in exactly the same way. Also, the partial derivative operator
as embedded in E* will still satisfy the condition O® y+ 9 = 0, however, it no

longer spans a maximal dimension subspace (which would be d dimensional).
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7. Supersymmetric backgrounds

as generalised G-structures

In this chapter, we discuss supersymmetric backgrounds of the theories we
have considered thus far, in the language of generalised G-structures. First,
we review the standard construction of G-structures in detail. In the next
section we recall the basic equations of four dimensional Minkowski com-
pactifications of type II theories and M-theory, and how these equations
lead to the appearance of G-structures. In the presence of fluxes, we see
that these G-structures have intrinsic torsion, so integrability is lost. Also,
we see that for each level of preserved supersymmetry there are several dif-
ferent structure groups that can appear. A valuable review which we follow
in part is [149].

Generalised geometry is able to combine these different classes of ordinary
G-structure so that each level of preserved supersymmetry corresponds to
a single generalised structure group. Furthermore, in the relevant cases,
the Killing spinor equations become precisely the statement that this gen-
eralised G-structure is torsion-free. This is the main result of this section,
and it is proposed as a major application of the technology. We prove these
statements in some important cases, by direct computation of the represen-

tation structure of the intrinsic torsion.

7.1. Holonomy, G-structures and Intrinsic Torsion

In the very first section of chapter 2, we reviewed some differential geometry,
introducing the notion of a G-structure on a manifold. We briefly mentioned
that there might be some barrier to the existence of a torsion-free connection
which was compatible with a given G-structure. We expand on this here,

reviewing the concepts of holonomy and intrinsic torsion.
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Holonomy

First, consider a vector bundle E, with structure group G, over a base
manifold M. Suppose we have a connection D on E with connection one-
form A, so that if {é;} is a local basis for E then

Dojornéj = Ay’ jéi. (7.1)

Consider a curve ¢ : [0,1] — M, for convenience, assumed to lie within
a single coordinate chart of M and a single local trivialisation of E, with
tangent vector v(t) € TM. A section X € I'(F) is said to be parallel
transported along c if

DyX =0 (7.2)

Given an element X of E at the point ¢(0) € M, we can then find the
parallel transport of X along c as X! = (gc)ing where

(9:) = Pexp ( - / Audit) € G, (7.3)

where P is the path-ordering symbol. The new element X is located above
the point ¢(1) in the manifold. Considering the case of a closed loop, (g.) €
G gives an endomorphism of the fibre of E at the point p = ¢(0) = ¢(1) € M.
The set

H, ={(9;) € G:cisaclosed curve at p} C G (7.4)

forms a group called the holonomy group at p, with the group operation
given by concatenation of curves. Simple arguments show that for any
p,p' € M one has Hy, ~ Hy, so that the holonomy group is independent of
the point p. In fact, we will take the holonomy group to be what is more
precisely referred to as the restricted holonomy group, which includes only
contractible curves.

If one takes E' to be the tangent bundle of a Riemannian manifold (M, g)
and V to be the Levi-Civita connection, the resulting holonomy group is
commonly referred to as the holonomy of M. If the holonomy of the man-
ifold is a proper subgroup of SO(d)!, the manifold is said to have special

holonomy. The requirement of special holonomy turns out to be a very

IParallel transport preserves the metric length of a vector, and the holonomy group can
only have one connected component as it is built up from infinitesimal actions.
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strong condition. Riemannian special holonomy manifolds were classified
by Berger [150] and it turns out that only a short list of holonomy groups is
possible. The details can be found in [151]. Similar results have also been
obtained for Lorentzian manifolds ([152] discusses the status of this area of
research as well as highlighting the distinction between full and restricted

holonomy).

Intrinsic Torsion

Recall that a G-structure is a principal sub-bundle of the frame bundle on

a manifold, that is

P = {(z,{é,}) € F : different frames {é,} related by G-transformations} .
(7.5)
Using these special frames, or equivalently the invariant tensors of G, all
tensors on the manifold can then be decomposed into irreducible parts under
G C GL(d,R). A connection V is compatible with a G-structure P C
F' if the corresponding connection of the principal bundle F' reduces to a
connection on P. This means that, given a basis {é,}, one has a set of
connection one-forms w®, taking values in the adjoint representation of G
given by
Vo ouna = Wi aby. (7.6)

Let ad(P) be the associated adjoint bundle, then a connection one-form

wy, on P can locally be represented as a section
weT*M ® ad(P). (7.7)

The torsion of V will still be a section of the bundle TM ® A?T*M, and
in general both of these bundles can be decomposed into irreducible parts
under G.

The intrinsic torsion of P can be defined as follows. Consider two such
connections V and V', both compatible with the structure P, and let T'(V)
and T(V') be their respective torsions. The difference of these AT =
T(V') —T(V) is a section of W := TM ® A?T*M. However, it can happen
that, varying V' for fixed V, AT fills out only a subspace of the fibre of
W at each point of M. Let ¥ € T*M ® ad(P) be the difference of the two
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connections, which is a tensor such that for v € TM
¥, =V, —V,. (7.8)

AT depends linearly on ¥. Therefore, if the dimension of T*M ® ad(P)
is less than the dimension of TM ® A?>T*M, it is clear that AT must be
restricted to a subspace. Label the image of the torsion map on 7% M ®ad(P)
as Wp, then we can define the bundle

w

W= —.
I W

(7.9)
Now, given any compatible connection V on P, its torsion defines an element
of Wi, which is independent of which connection one chooses. This element
of W7 is the intrinsic torsion of P, and if it is non-zero, then there does not
exist a torsion-free connection which is compatible with P. G-structures
with vanishing intrinsic torsion are said to be integrable.

In general, the vanishing of the intrinsic torsion is a first-order differ-
ential constraint on the structure. Suppose the structure is defined by a
G-invariant tensor ®, and let V/ = V + X, where this time V is torsion-free

and V'’ is assumed to be torsion-free and compatible. This implies that
0=Vd=Vo+3%. .0 (7.10)

We must therefore be able to solve the equation V& = —% - ® for 3, subject
to the constraint that 7'(X) = 0, and in general this constrains which irre-
ducible parts of V® can be non-zero. Thus we have first-order differential
constraints on the invariant tensor ® which defines the structure.

For example, in the case of an almost complex structure J on a real

manifold, the above condition becomes
gy = X"y ==V, ], (7.11)

where V is an arbitrary torsion-free connection on T'M. Using ¥,," ) = 0,
we have

Eqn[qup] = —V[ an] (7.12)

m

However, contracting (7.11) with J twice and then anti-symmetrising results
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in a different expression

B Iy = —J"TJs[me]Jrs (7.13)
Together these become
V[mJ"p] — J”TJS[me]JTS =0 (7.14)

which is the well-known Nijenhuis condition for a complex manifold. Con-
sidering a torsion-free shift of ¥ in the above argument reveals that the
left-hand side is unique for a torsion-free connection, so that one can re-
place V with 0. This is generally true of such integrability conditions when
written as a first order differential constraint.

We now connect the notions of intrinsic torsion and special holonomy.
If one considers a Riemannian manifold M equipped with a metric g, this
defines an O(d) structure on M, given by the orthonormal frames of g. The
holonomy of a connection compatible with this structure will be contained
in SO(d) (as the holonomy group is necessarily in the identity component
of the structure group).

Now suppose we have a G-structure P on M, which is a sub-bundle of the
orthonormal frame bundle of the metric, so that G C O(d). A connection
V compatible with P will thus also be compatible with the metric, i.e.
Vg = 0. If the intrinsic torsion vanishes, then the torsion-free connection
will be the unique Levi-Civita connection on (M, g). The holonomy of the
Levi-Civita connection is then contained in the group Gy C SO(d), where
Gy is the identity component of G, so the manifold has special holonomy.
However, in the more general context of P being an arbitrary G-structure
on the frame bundle of a differentiable manifold, there may be a family of

torsion-free compatible connections.

7.2. Supersymmetric Backgrounds of String
Theory and M Theory

An important class of backgrounds of string theory and M-theory are the
solutions of the low-energy classical supergravity approximation. Such a

solution is said to be supersymmetric if there exists a nowhere-vanishing
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choice of supersymmetry parameter on the manifold such that the super-
symmetry variations of all of the background fields vanish. Since we are
interested in classical solutions, the background fermionic fields are zero.
The variations of the bosonic fields always have a fermionic factor, so these
are automatically zero. Therefore, the non-trivial condition for supersym-
metry is the vanishing of the variations of the fermionic fields, and we need
only consider the lowest order terms in fermions.

A family of such solutions, used to attempt to construct physically real-
istic models, are manifolds of the form M = My X My i.e. the product of a
four-dimensional Minkowski space with a compact internal manifold M.
Other popular choices are for the external space to be anti-de-Sitter, im-
portant for studying AdS/CFT, or de-Sitter, which has an observationally
appealing positive cosmological constant. Together with Minkowski space,
these are the maximally symmetric spaces.

We will focus on solutions with an external Minkowski factor. For the

bosonic fields, one takes a metric ansatz of the form
ds?y = e*2ds?(R*Y) + ds?(Min), (7.15)

where the warp factor A depends only on the internal coordinates?. Other-
wise, one can only keep those components of the fields which are scalars on
the external space, as any other components would violate maximal sym-
metry. One also must take all background fields to depend only on the
coordinates of M, for the same reason.

Schematically, we take the higher-dimensional supersymmetry parameter
to have a tensor product form é = 1 ® &, where 7 is a covariantly constant
spinor on the external Minkowski space and ¢ is an internal spinor field
on Mint. The expressions for the vanishing of the higher-dimensional su-
persymmetry variations are known as Killing spinor equations, and these
induce lower-dimensional Killing spinor equations on the internal spinor e.
The number of real supercharges which preserve the background is equal to
the number of real degrees of freedom of the spinor n times the number of

independent solution of these equations on Miy;.

2With non-trivial warp factor, this ansatz can also describe solutions with an external
anti-de-Sitter factor of one dimension higher, as in e.g. [153].
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7.2.1. 4D Minkowski compactifications of type II theories

We consider Minkowski compactifications of type II theories on six-dimensional
internal manifold M. We will set up our analysis for backgrounds preserving
N =1 supersymmetry in the resulting four dimensional theory, though we
will see that the restricted cases we eventually consider will actually permit
N = 2. For type ITA the two supersymmetry parameters have opposite
chirality and we can use the ansatz
t oo et Lot e
e =n ®e +n Qe
(7.16)
e =nTRd +n Qe
For type IIB the two supersymmetry parameters have the same chirality

and so we take . L

ET =R +n Q€ (7.17)

=t +n ®e
In both of these decompositions n and ¢; are Majorana spinors in four and
six dimensions respectively. On the right-hand sides, the superscripts + in-
dicate the chirality of the spinor as viewed in its respective dimension. On
the left-hand sides they have they label the two ten dimensional supersym-
metry parameters as in section 4.1. We take the Majorana representations
of Cliff(3,1;R) and CIliff(6; R) so that we have n~ = (n7)* and ¢; = (¢;)*.
(See appendix E for full details of conventions for the decomposition.) Each
€; thus has eight real degrees of freedom overall, so the components of ¢;
transform in the 4 + 4 representation of SU(4) ~ Spin(6) where the Majo-
rana condition relates the two parts to be complex conjugate.

The background values of the bosonic fields are chosen such that only
quantities which are scalars on the external spacetime are non-zero. In this
case we have an internal metric g, and internal fluxes H,,,, and Op,¢.
We set the warp factor to zero® and neglect RR fluxes for simplicity. The

vanishing of the 10 dimensional supersymmetry variations, for either the

3We use the string-frame metric. If one took the Einstein frame metric, supersymmetry
requires an overall warp factor equal to the dilaton, which essentially returns the
discussion to the string-frame [154, 155].
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ITA or IIB case, then imply the Killing spinor equations

Vel — %Hmnp'ynpel =0 Wel - %Hfl + ($¢)€1 =0

(7.18)
Vimez + § Hpnpy™e2 = 0 Yeo + jHex + (Pp)ea = 0

for the spinors €1 2 on the internal manifold M.

An important point to raise immediately is that such a configuration will
not give an N = 1 compactification of a type II theory. This is because one
can introduce a second four-dimensional supersymmetry parameter and use

the spinor ansatz

et=nr @+ @€ 7.19)
e = 06 tny O

for the ITA case and . L
e = e+ ®e (7.20)
e = O+, O
for the IIB case. In the absence of RR fluxes, these will still solve the ten-
dimensional Killing spinor equations on imposing (7.18). To obtain an N =
1 vacuum, one would need to have non-zero RR fluxes as these introduce
terms mixing the spinors €™ and ¢~. This would then spontaneously break
the N = 2 supersymmetry down to N = 1.

Our task is to determine the consequences of equations (7.18) for the
properties of the internal manifold. The first obvious property is that it
must possess two non-vanishing spinor fields €; 2. This imposes a topolog-
ical condition condition on the manifold, reducing the structure group to
a subgroup of SU(4). Firstly, the spin-frames in which €/ = (|e],0,0,0)
(viewed as a 4-component Weyl spinor) form an SU(3) structure. If the
two spinors are parallel, then eo provides no further reduction of the struc-
ture group. If they are non-parallel then, in similar fashion, the second
spinor ez reduces the structure group further to SU(2). There are hybrid
cases in which the spinors are parallel at some points of the manifold and
non-parallel at others.

The second set of conditions on Mj, come from the differential equa-
tions (7.18). These are far more complicated to analyse in general. One
property which is easy to derive from them is that the norms of the Killing

spinors are constant. The equations on the left of (7.18) relate V,,¢; with
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Hoppnpy™e;. Since Hpppy™P rotates the spinor by an SU(4) algebra element,
this will preserve any SU(4) covariant norm, so we see that V,,(€¢;) = 0
for each ¢ = 1,2. In fact, using generalised geometry methods it is easy to
see that all Killing spinors have constant norm in the systems we will study
(see section 7.4).

With regards to further investigation of (7.18) at this stage, we will split
our discussion in two, first considering the simplified case in which the fluxes
vanish, and then commenting on how the fluxes spoil the nice properties

obtained in that case.

The case without fluxes

In the absence of internal fluxes, the Killing spinor equations (7.18) become
the statement that the spinors €12 are covariantly constant. This means
that the Levi-Civita connection is compatible with the reduced structure
they define, which therefore has vanishing intrinsic torsion. The manifold
is thus a special holonomy manifold.

Suppose Mi, has a non-vanishing covariantly constant spinor e. This
defines an SU(3) structure on Mj,; with vanishing intrinsic torsion. As re-
viewed below, this implies that the internal manifold is Calabi-Yau. Since
the observation that compactifications of heterotic string theory on such
manifolds could lead to phenomenologically viable models [39], these mani-
folds have received much attention in the literature.

Suppose € is normalised so that e"e™ = e e~ = 1. The tensor J,," =
i€ty e then defines an almost complex structure, since a Fierz identity
reveals that J,,PJ," = —0,,". Furthermore it is integrable because V,J,P =
0 and so it’s Nijenhuis tensor vanishes. This guarantees that one can find
local complex coordinates {z%} on My such that J,* = id," and JaB =
—iéaB are the only non-vanishing components. The complex coordinates
also allow us to define the Dolbeault operators 9 : AP4(M) — APTL4(M)
and 0 : AP4(M) — AP4H1(M) such that d = 9+ 9. The metric is hermitian
with respect to the complex structure, since gmn = Jn?Jn%9pe, and the
simple statement J,,,, = J;nPgpn leads immediately to J; = ig,3-

Clearly Jipn = Jjyp) defines a 2-form J = igagdz“/\dél_’ with dJ = 0 (since
VJ =0 and V is torsion-free), so the manifold is Kahler with Kahler form
J.
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One can also construct a holomorphic 3-form with non-vanishing compo-
nents Qgpe = € Yape€ . Again, since Ve = 0 we have Vg Qpeq = 050 0Q =0
and dQ2 = (0 + 9)Q2 = 0. Q is thus a holomorphic (3,0)-form. However,

is not exact as
QAQ=—LQPTAJT AT = —i]|Q|[* vol, (7.21)
is a constant multiple of the volume form, since

19211 = §9°"9" ¢ Qe (7.22)

abe
is constant.

The existence of a non-vanishing holomorphic (3,0)-form implies that the
Ricci form is exact. Recall that the Ricci form is defined as R = iR ;dz* A
dz for R 5 the components of the Ricci tensor, and that R = i99 log /g for
the Levi-Civita connection of a hermitian metric. Since 2 is holomorphic
we must have Qg = f(2)€qpe Where €gpc is the Levi-Civita symbol, and f

is a non-vanishing holomorphic function. This leads to the relation

aa bb cé ab f z 2
1912 = 17() Peapecarag™s™ = (=) det(g™) o (ﬂ)’ (7.23)
so that the Ricci form is
R = id0log \/g = —iddlog ||Q|[* (7.24)

This is exact since ||Q2]|? is a globally defined (non-zero) scalar, so the man-
ifold has vanishing first Cern class. Kahler manifolds with vanishing first
Cern class are called Calabi-Yau manifolds. Using the further property that
) is defined as above, we have that ||©2||? is constant and so the Ricci form
is zero. This illustrates the powerful existence theorem [156] stating that
Calabi-Yau manifolds always admit a Ricci-flat metric.

The mathematically nice properties of Calabi-Yau spaces enable exam-
ples to be constructed and studied. The two crucial points are that the
manifold is complex, allowing the use of algebraic geometry machinery, and
the existence theorem for the metric, which guarantees that as long as the
Ricci form is exact there exists a Ricci-flat metric. As a result, the physical

consequences of many examples have been computed, especially in the con-
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text of heterotic string theory where Calabi-Yau compactifications directly
give N = 1 supersymmetry (and physically reasonable examples have been
found, e.g. [157, 158]). However, our goal is to shed light on the broader

class of solutions which do include fluxes.

The case with fluxes

The inclusion of fluxes complicates the picture significantly. The globally
non-vanishing spinor fields give rise to G-structures exactly as before, but
these structures are no longer integrable, as the Killing spinors are not
covariantly constant?. This is the general problem posed by the inclusion
of fluxes in such compactifications.

In actual fact, it is possible to make some of the same statements in these
cases. Focusing on one of the two Killing spinors, we can again build a
complex structure and, after a slightly more involved calculation, it is inte-
grable [39, 154]. However, the manifold is not Kahler, the obstruction being
that dJ is related to H. This also ignores the constraints on Mj,; imposed
by the other set of Killing spinor equations, and so is not particularly useful
here.

If one assumes the internal manifold has an SU(3) structure, so that we
have a decomposition of the form

et =n" @bt + T @be”
(7.25)
e =nT®@aet +n" @ae

for ITA or B
e =nT@bet + 17 ®@be”
(7.26)
e =nt®aet +n Qae
for IIB, where a, b are complex functions on M, then it is possible to clas-
sify the solutions in terms of intrinsic torsion classes of the SU(3) structure
(see [149] for a review). This approach has assumed an SU(3) structure
from the outset, so it does not present the most general solution. If €1
are nowhere parallel then we will have an SU(2) structure, while if they are
parallel at some points of Miy; we obtain an interpolating SU(2) and SU(3)

structure.

4They are preserved by a connection with skew-symmetric torsion [154, 155], but this
connection (obviously) has non-zero torsion.
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Therefore, it would seem that the inclusion of fluxes presents a departure
from the nice mathematical properties of the fluxless case. In particular, the
structures are no longer integrable, and we have the possibility of different
local structures appearing at different points in the manifold. However, as
we will see, when viewed as a generalised geometry, there is only one type
of structure that can appear and the analogue of integrability continues to
hold.

Before moving on, we must discuss a no-go theorem [159] (see also the
earlier works [160]) concerning the existence of purely geometrical compact

solutions with flux. The bosonic equations of motion imply that
2.2 1,-26772 | 1 1 2
n

If Myt is compact without boundary, the integral over M, of the LHS
vanishes, while the terms on the RHS are positive semi-definite. Therefore,
we deduce that H and F' must vanish on Mj,, implying that the LHS of
the above equation must also vanish. This in turn gives V2¢ = 2(9¢)? and
a similar integration argument reveals that ¢ must be constant.

We have therefore deduced that no purely geometrical solution with com-
pact Miy and non-vanishing fluxes exists. In type II string theory, this
can be remedied by the addition of orientifold planes, which crucially have

negative tension, thus circumventing the no-go theorem [14].

7.2.2. 4D warped Minkowski solutions of M-theory

We now examine solutions of eleven-dimensional supergravity with the same

metric ansatz used in chapter 6
ds?; = e?2ds?(R1O-41) + ds2 (M), (7.28)

and we keep exactly the same internal fluxes as we did there.
Again, we must discuss a no-go theorem. The bosonic equations of motion

imply the equation

|~

V2 () = ceCA(% F? 4 %FQ) (7.29)

N
Wl

!

If M is compact without boundary, the integral over M of the LHS vanishes,
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while both terms on the RHS are positive semi-definite. Therefore, we
deduce that the fields F and F must vanish on M. One way to proceed
from this is to consider solutions with non-compact M and non-zero internal
fluxes. Such solutions include those which can be viewed as an external AdSs
factor times a compact internal space, which are important in AdS/CFT.
However, it is still possible to have compact solutions with non-zero flux in
M theory if one adds appropriate negative tension objects (which we do not
discuss, see [161]), as for the type II case.

We employ the spinor decomposition of appendix E, first with only one

external spinor so as to obtain an N = 1 vacuum
e=nTQe+n @ (7.30)

taking the Majorana representations of Cliff(3,1;R) and Cliff(7;R). Note
that the internal spinor € is complex, which can be thought of as a pair of
real Spin(7) spinors € = R(e) + i3 (e)

The relevant parts of the eleven-dimensional supersymmetry variations
are precisely (6.21), which under the spinor decomposition become the

Killing spinor equations

0=[V -3 —3F+ (@A),

1 ni...n ni ., n2n3n. 1 1 7 ni...n
0= vm5+ @(’Ym ! - 85m 17 27 4)Fn1...n45 — 12% mni...ng"Y ! 667

(7.31)

If we wish to extend to more supersymmetries, we merely insist on the
existence of more internal non-vanishing spinors ¢; and gain multiple copies
of the above equations.

The case of vanishing fluxes again forces M to have special holonomy as
the Killing spinor equations become V,,¢; = 0. Since Levi-Civita is real, the
real and imaginary parts of the complex spinors ¢; are preserved separately.
The stabiliser of the single internal complex spinor depends upon its form.
Each of the real and imaginary parts is a real Spin(7) spinor, which defines
a Go structure. If both parts are non-zero and they are not parallel, the pair
defines an SU(3) structure. However, if they are parallel (or one of them
is zero) we have a Gg strcture on M. Again, the full class of cases includes

the possibility that they are parallel at some points of M but not others.
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For the case of a Gg structure, the vacuum has N = 1 supersymme-
try. The local existence of Gy holonomy metrics was shown in [162] and
non-compact examples were presented. The first construction of compact
manifolds with G2 holonomy was achieved in [163] (see [151] for a review).
For the flux-less SU(3) structure case, one can use each of the real and
imaginary parts of € to build different eleven-dimensional spinors, so one
actually obtains an N = 2 vacuum.

As before, the inclusion of fluxes introduces great complications to the
picture. Firstly, the flux terms mix the real and imaginary parts of the
complex spinors in the equations, so that one can have different structure
groups at each level of preserved supersymmetry. More importantly, they
spoil the integrability of the G-structures defined by the Killing spinors. In
the next section we will show how generalised geometry will restore this
integrability and unify all of the different G-structures one could have for

each value of V.

7.3. Generalised Complex Geometry and

Supersymmetric Vacua

The first generalised geometry formulations of supersymmetric backgrounds
were given in [88] for type II theories. These papers approached the problem
from a different (but equally elegant) angle, which we briefly discuss and
summarise, following [82, 149, 153].

We have included several structures familiar from differential geometry
into generalised geometry. However, there are yet more such structures
which carry over naturally. One is the almost complex structure [81, 82], if
the manifold has even dimension d. In generalised geometry, one can define a
generalised almost complex structure to be an O(d, d) norm-preserving map
J : E — E with J? = —1. This defines a U(d/2,d/2) = O(d,d) N GL(d, C)
structure on E. The integrability condition on J is that the Courant bracket
closes on its £i eigenbundles in Ec = £ ® C.

At the two extremes of generalised almost complex structures (on TG T™)
are those built from either an ordinary complex structure or an ordinary
sympletic form. The integrability condition then matches the normal in-

tegrability conditions for those ordinary structures. A generalised complex
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manifold therefore interpolates between complex manifolds and symplectic
manifolds.

A generalised almost complex structure on E is equivalent to a complex
pure spinor line bundle. A pure spinor is a definite chirality complex O(d, d)

spinor ® such that the annihilator
Ly = {V € T'(Eg) : VAT 4@ = 0} (7.32)

is maximally isotropic. This annihilator is identified with the +i eigenbundle
of J. Such a globally non-vanishing pure spinor defines an SU(d/2,d/2)
structure. In the coordinate frame, the integrability condition becomes
d® =V - ® for some V € E. If db = 0, the manifold is called generalised
Calabi-Yau [81].

A pair of generalised almost complex structures [J;2 is said to be com-
patible if they commute and their product G = — 71 J» defines a generalised
metric. The pair then defines an SU(d/2) x SU(d/2) structure, which is
integrable, or generalised Kahler, if both complex structures are integrable.

The same structure can be defined by a generalised metric and two
Spin(d) spinors. For the relevant case of d = 6, we can use two chiral

spinors eiz to build the two pure spinors (also in the coordinate frame)
T =e e PA(] @) P =e e PA(] @) (7.33)

where the tensor products are expanded in forms using the usual Clifford
algebra isomorphism, in which the A*T*M components of ef & E;t are given
by

(GT ® gét)ml---mk = %(_1)[k+l/2} (Eétfymy--mkef) (7.34)

Schematically, the differential conditions for N = 1 supersymmetry become
d®, =0 d®_ = Frr (7.35)

where & = &% for ITA and ®; = ®T for IIB. For vanishing RR flux,
these conditions express the integrability of the SU(3) x SU(3) structure, or
equivalently the integrability of both of the generalised complex structures.
This result is essentially equivalent to the result we give using our generalised

connections formalism in the next section.
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7.4. Killing Spinor Equations and Generalised

Holonomy

In generalised geometry language, we have seen that the vanishing of the
supersymmetry variations of the fermions can be encoded concisely in the
equations

D®yje=0 D®se=0 (7.36)

where D is a torsion-free generalised H; connection and the supersymmetry
parameter e is viewed as a section of the H; bundle S. In the present context,
€ is a globally non-vanishing section, so its components are stabilised by
transition functions in some subgroup G() of Hy. In other words, those
H,; frames in which the components of ¢ are fixed define a generalised G(©)-
structure. A generalised connection is compatible with this structure if
De = 0.

One can easily extend the above to higher supersymmetry. Here, one
merely has several background spinors {€'}, which are stabilised by a group
Gy H,, and the compatibility condition becomes De’ = 0 for each value
of 4.

The equations (7.36), which hold for any torsion-free H,; compatible D,
appear weaker than the compatibility condition as they constrain only two
of the irreducible parts of De'. However, one can show that, for low num-
bers of supersymmetries, one can always construct some (more restricted)
torsion-free connection D such that the full compatibility condition Det =0
is satisfied®. The generalised G{<'}structure then has vanishing intrinsic tor-
sion and we have the generalised analogue of special holonomy. The Killing
spinor equations are thus equivalent to special generalised holonomy in these
cases. We will demonstrate this statement for some important examples in

the next sections.

7.4.1. SU(3) x SU(3) structures in type II theories

We will now explain how this works for the six-dimensional SU(3) x SU(3)
compactifications of type II theories. As said in section 7.3, these have been

studied extensively in the context of generalised complex geometry in [88].

5Note that this also provides a simple proof that the norm of a Killing spinor is constant
in these setups
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Here we explain how they are described equally well by our formalism, which
can also incorporate more supersymmetries.

We consider an O(6,6) x Rt generalised geometry on the internal mani-
fold. The spin group associated to the generalised metric is then Spin(6) x
Spin(6) ~ SU(4) x SU(4) and we can consider a generalised spinor bundle
S =8(Cy) @ S(C-). Here the spinor bundles S(C4) are taken to include
both chiralities such that the fibre of each is the 4 + 4 representation of
SU(4). For Majorana spinors the 4 and 4 parts are related by complex
conjugation. The fibre of S is thus the (4 +4,1) + (1,4 + 4) representation
of SU(4) x SU(4), and the direct sum of two spinors e* € I'(S(Cy)) gives
a section of S.

In six dimensions, our two supersymmetry parameters et = ¢; and e~ =
€2 on My can therefore be promoted to sections of S(Cy) and then com-
bined into a single object € € I'(S). The components of € are stabilised by an
SU(3) x SU(3) subgroup of SU(4) x SU(4), so € defines an SU(3) x SU(3)
structure. Note that we have not assumed that €™ and €~ are non-parallel,
only that they are non-vanishing. The generalised geometry sees them as
transforming under different spin groups and thus combines all possible
cases into one unified description.

In the absence of RR fluxes, the supersymmetry variations of the fermions

can be equated to zero via the generalised geometry expressions

Daet =0 Y*Daet =0
) (7.37)
Dyem =0 v*Dge” =0

where D is any torsion-free SU(4) x SU(4) connection. These are the unique
operators (3.107) for the Spin(6) x Spin(6) case, and so they are independent
of the choice of torsion-free compatible D.

The equations (7.37) do indeed imply the existence of a torsion-free
SU(3) x SU(3) connection D with De = 0. We will demonstrate this in
the section 7.4.3 after discussing the relationship between these projected
derivatives and the intrinsic torsion of the structure. An alternative proof
comes from considering a connection of the form D = D+ Y where D is
an arbitrary torsion-free SU(4) x SU(4) connection and ¥ is an extra con-
nection piece. One can then show that it is always possible to solve for the

components of ¥ in terms of De such that D is torsion-free and De = 0,
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and in the process one constructs a family of these connections.

We could also look at cases with more supersymmetry, simply by insisting
that further (4+4,1) + (1,44 4) spinors are annihilated by the above
operators. We do not discuss this in detail, but it can be shown that the
group theory works in the same way, so that there is again an integrable
generalised G-structure.

Also, note that if we had non-zero RR fluxes on My, these would gen-
erate non-zero terms on the right had sides of equations (7.37). This would
mean that even our generalised structure would not be integrable, and this
is a consequence of not including the symmetries and charges of the RR
fields in the generalised geometry. This is remedied in Eyg) xRT gener-
alised geometry, which, when decomposed under a GL(d — 1,R) subgroup
as outlined in section 6.5, does include a “geometrisation” of the RR sector.
The integrability of backgrounds with RR fluxes is then restored. Previ-
ously, N =1 and N = 2 compactifications of type II theories with RR flux
have been studied in exceptional generalised geometry in [102, 103].

At this point, it is also worth mentioning that the solution correspond-
ing to an NS5-brane wrapped on a Kahler 2-cycle in a Calabi-Yau man-
ifold [164], falls outside the classification of [88], as this is an N = 1
background with vanishing RR fields. For this solution, one sets the sec-
ond spinor €2 to zero, so the pure spinors vanish identically. However, in
our formalism, where we do not take the tensor product of the spinors,
this supersymmetry parameter still gives a non-vanishing section of S ~
(44+4,1) + (1,4 +4), describing an SU(3) x SU(4) structure. This is a

case which we have ignored up until now, but it is included in the framework.

7.4.2. SU(7) and SU(6) structures in M-theory

Here we provide the same treatment for M-theory compactifications on
seven-manifolds with Eyg) xRT generalised geometry. We find that the
logical structure of this case is the same as that in section 7.4.1. The cor-
responding results for type II theories with RR fluxes can be obtained by
considering the results presented here over a six-dimensional manifold as
outlined in section 6.5.

In this case, a single internal complex spinor € is a section of the gener-
alised spinor bundle S. The fibre of this bundle is the representation 8 + 8
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of SU(8), where the two parts are related by complex conjugation. There-
fore € is stabilised by SU(7) C SU(8) and so defines an SU(7) structure.
This statement unifies all of the different subgroups of Spin(7) which can
stabilise both the real and imaginary parts of . The Killing spinor equa-
tions take the abstract form (7.36), which can be written out explicitly in
SU(8) indices if required. Again, we will find in the next section that these
equations precisely correspond to the vanishing of the intrinsic torsion of
the SU(7) structure.

If we introduce a second complex spinor €2, which is not parallel to the
other spinor ¢!, the pair define an SU(6) structure and will lead to an N = 2
vacuum. The Killing spinor equations become two copies of (7.36), one for
each spinor. We find that these equations express the vanishing of the
intrinsic torsion of the SU(6) structure, so that a torsion-free compatible
connection exists.

We remark that the torsion-free compatible connections for these struc-
tures can be found by the constructive method outlined for SU(3) x SU(3)
structures in the previous section. This provides an alternative proof of

integrability.

7.4.3. Computation of the Intrinsic Torsion

One can show directly that the intrinsic torsion of the above structures is
related to the Killing spinor derivatives. We calculate the representation in
which the intrinsic torsion transforms and, assuming that certain maps are
non-degenerate, we demonstrate that the Killing spinor equations annihi-
late precisely this representation. In this section, we study only the linear
algebra involved at a single point in the manifold, so that we may discuss
representations rather than bundles. In fact, we will use a slight abuse of
notation in which we do not distinguish between the two.

Let D and D’ be two H,; compatible connections. Their difference ¥ =
D’ — D is then a section of E* ® ad(P). At a point in the manifold, denote
the vector space of such tensors by & ~ E* @ ad(ﬁd), and the correspond-
ing space for G-compatible connections by ¥/ ~ E* ® ad(G). These are
(reducible) representations of H; and G respectively, and they split into

two (also in general reducible) representations

S=TaU Y =TaU (7.38)
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where T and T” are the components constrained by the torsion, and U and
U’ are unconstrained by the torsion. Clearly ¥ ¢ X, T/ ¢ T and U’ C U.

Under the decomposition of H, representations under G, we have
T=T a&T; (7.39)

where T; ~ T/T" is the (reducible) representation of G under which the
intrinsic torsion transforms. This can be found as we know T and T’ =
>'NT.

The Killing spinor equations transform under the representation S @ J of
H,, and the projections that give rise to them from the generalised connec-

tion define a map
P:X o SaJ
(7.40)
Yo (E®se)d(XE®y¢)
Now, G is the stabiliser of € so for ¥ € ¥’ we have ¥ - € = 0. Since we have
the decomposition ¥ = T/ & T; ® U and the projection depends only on

torsion components of 3, we can restrict to a map
Ply, :Tr = SeJ (7.41)

If D is an H; compatible connection then, writing D as a G-compatible
connection plus a connection piece 3, we see that (D®ge)® (DR je) € S J
is a linear function of the intrinsic torsion of the structure defined by e.

In the cases considered, we will show that T; and S @ J have the same
decomposition into irreducible representations of G. We make the plausible
assumption that the map P|T’1 is an isomorphism, and coupled with the
previous statement this proves that the Killing spinor equations precisely
set the intrinsic torsion to zero. Our assumption could easily be checked
by explicit calculations coupled with Shur’s lemma. It is also supported by
the results in appendix D where it is seen that the projections appear to

depend on all components of the torsion at Hy level.
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For SU(3) x SU(3) structures in type II compactifications without RR
flux, we have the SU(4) x SU(4) representations

SeoJ=(4+4,1)+(1,4+4)+(6,4+4)+ (4+4,6),

T = (6,1)+ (1,6) + (10 + 10,1) + (1,10 + 10) + (15,6) + (6,15),
(7.42)
and the SU(3) x SU(3) decompositions

Se&J=4x(1,1)+2x [(3+3,1)+(1,3+3)]
+2x(3,3)+2x[(3,3)+(3,3)] +2x (3,3),
T=(2x[1]+2x[3+3]+[6+6],1)
+(1,2x[1]+2x [3+3]+[6+6])
+(8,3+3)+ (3+3,8)
> = E®ad(SU(3) x SU(3))
=(3+3+6+6+15+151)+(1,3+3+6+6+15+15)

+(8,3+3)+ (3+3,8).
(7.43)
After inspection of these we immediately write

T'=([3+3]+[6+6],1)+ (1,[3+3]+[6+6]) + (8,3+3)+(3+3,8).
(7.44)
In fact, we cannot quite deduce this from what is written above. It is
possible that the torsion map could vanish on some of the representations
appearing in the SU(3) x SU(3) connection, which also appear in (7.44). To
be fully watertight, one should check explicitly that this does not happen,
which is easy to do, though we do not give details here. We then have

+2x(3,3)+2x[(3,3)+(3,3)] +2x (3,3) (7.45)

=5 J,

establishing that the desired relation.

133



We can go through the same procedure for the SU(7) and SU(6) struc-

tures in section 7.4.2. Here we have the SU(8) decompositions

S®J=8+8+56+ 56,

5 B B B (7.46)
T =28 4 28 4 36 + 36 + 420 + 420.
The next step is to calculate the SU(7) decompositions
S®J=2x1+T7+7+21+21+35+ 35,
T=2x[1+7+7+21+21] + [28 + 28]
+ [35 + 35 + [140 + 140] + [224 + 224], .47
5 7.47
S = E®ad(SU(T))
= [7+7] + [21 + 21] + [28 + 28] + [140 + 140
+ [189 + 189] + [224 + 224] + [735 + 735].
from which we see that
Tr=2x14+74+74+21+21+35+35
(7.48)

=SaJ

Again, technically we need to check that the torsion map is not zero on the
relevant representations appearing in the SU(7) connection in order to be
sure of this.

Now let us examine SU(6) case, where the relevant decompositions are

S®&J=4x1+2x[6+6+15+15] + [20+ 20],
T=8x1+6x[6+6]+5x [15+15] + [21 + 21]
+2 % [20 + 20 + 84 + 84] + [35 + 35| + [105 + 105],
> = E®ad(SU(6))
=2x [6+ 6+ 84 + 84 4 120 + 120]
+ [15+15] + [21 + 21] + [35 + 35]

+ [105 4 105] + [384 + 384],
(7.49)
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so, modulo the same checks as in the previous cases, we can write

Ty =8x1+4x [6+6+15+15] +2x [20 + 20]

7.
=2x(SaJ). (7:50)

Thus, again we see that the Killing spinor equations precisely set to zero

the irreducible representations corresponding to the intrinsic torsion.
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8. Conclusion and Outlook

In this thesis, we have seen that generalised geometry is able to provide
an extremely neat, geometrical formulation of the supergravities we have
studied. The “geometrised” bosonic degrees of freedom are packaged as a
generalised metric, which is equivalent to a G-structure on the generalised
tangent bundle. The bosonic action and equations of motion are then given
by curvatures of a torsion-free connection compatible with this structure.
This is the exact analogue of Einstein gravity in the formulation of chap-
ter 2. This formalism also realises the hidden symmetries of supergravity,
so we can claim to have finally answered the question in [55] concerning
the geometry underlying them. However, as mentioned previously, the only
true symmetries are the geometric subgroup and the local group, which
correspond to the diffeomorphism and local Lorentz symmetries of general
relativity. The Ey(q) xR group is only a symmetry in the sense that it re-
lates different frames in the generalised frame bundle, in much the same way
that tensors can be evaluated in any (not necessarily coordinate induced)
frame in general relativity.

Our formalism has very naturally included the fermions and supersym-
metry. The latter should come as a surprise, as we did not put this in
by hand. In fact the torsion-free generalised connection D has precisely
the properties necessary for the supersymmetry algebra to close. The com-
mutator of two supersymmetries acting on the generalised metric is given
by a Dorfman derivative with the connection D inserted. However, the
torsion-free property is exactly the condition for this to be equal to the reg-
ular Dorfman derivative, which gives the infinitesimal action of the bosonic
symmetries. Furthermore, the generalised curvatures we have constructed
can be thought of as coming from the closure of the supersymmetry algebra
on the fermionic equations of motion. These curvatures are unique and ten-
sorial only if one takes a torsion-free connection. Thus there appears to be

a strong relation between the vanishing of the generalised torsion and the
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closure of the supersymmetry algebra.

We should discuss the connections to other works noted in the introduc-
tion. Siegel [61], in particular, considered connections very similar to those
of chapter 3. He proposed a separate conventional GL(d,R) connection for
each of the left- and right-moving sectors of the string, in contrast to our
O(p,q) x O(q,p) connection. However, he goes on to impose compatibility
with the O(d,d) metric and the volume measure ® = \/ge”2?, which in
fact imposes compatibility with O(p, q) x O(q,p) (the common subgroup of
GL(d,R) x GL(d,R) and O(d,d) x RT). Therefore, Siegel’s results for the
generalised Ricci curvature and scalar curvature are in fact identical to ours
(and also those in [116, 117]). Siegel also constructs a Riemann-like tensor,
but has to add extra terms involving the connection components by hand in
order to recover a tensor (again this is repeated in [116, 117]). This reflects
that our construction (3.70) does not result in a tensor.

Another point we wish to highlight, is that the strong constraint imposed
in “double field theory”-like geometries [61, 109, 112, 114, 115, 116, 117]
always locally reduces the dependence of fields to the coordinates of a regular
manifold. Thus, once the strong constraint is imposed, these geometries are
locally equivalent to the corresponding generalised geometries. The results
given here thus carry over directly to these setups, for example, providing
the main results of [130, 131].

We also believe that the “section conditions” provided by the projection
to the bundle N, as described in section 5.1.4, will provide the appropri-
ate generalisation of the strong constraint for the exceptional geometries,
though this has only explicitly been shown for d = 4 [115]. It guaran-
tees the Leibniz identity for the Dorfman derivative, implying the closure
of the algebra, and the condition U ®x V = 0 forces linearity of the cur-
vature (5.39), suggesting that it reduces it to an ordinary curvature. The
O(d, d) section condition has an interpretation as the level matching condi-
tion of the string [109]. It would be interesting to investigate whether some
corresponding interpretation could be found for the M theory cases.

An obvious question to ask for Ey) xRT geometries is whether they
can be extended to d > 7. Statements about Kac-Moody symmetries
for d > 8 are mostly in the realm of speculation, but the construction of
eleven-dimensional supergravity with Fgg) and SO(16) appearing is well-

understood [56]. There has also been success in considering these cases
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in the embedding tensor formalism (see [47] and references therein). One
might therefore expect that it should be easy to extend our construction
to an Egg) X R* generalised geometry. Indeed, in appendix D, we demon-
strate that the algebraic properties of the torsion and projections go through
exactly as one would hope. However, there is clear indication that the con-
struction cannot work in exactly the same way for d = 8. The most im-
mediate barrier is the absence of the Dorfman derivative in this case: the
expression Oy V' — (0 ®,q V') - V' is not diffeomorphism covariant. This is

because there is no natural diffeomorphism covariant mapping
0:T*@N'T* — T* @ AST* (8.1)

constructed using only partial derivatives, which would be required in this
definition. This would seem to be related to the lack of a non-linear theory
of dual gravity, as this charge should be associated to the symmetries of the
dual graviton [71].

As there is currently no known resolution of this issue, we do not dwell on
the point. However, we do briefly note that in most approaches to the local
symmetry in higher dimensions, the action of the three-form piece (the
b term in (C.21)) generates the entire algebra by multiple commutators.
Therefore, whatever expressions one may eventually be able to write down
in higher dimensions, our formulae in SO(d) representations look likely to
provide at least the first few terms. The fact that several expressions in
appendix C.2 agree precisely with the low-level decompositions of Eiq is a
consequence of this statement.

One might also wonder whether integrability of the generalised metric
structure (which is guaranteed in the cases examined) could impose dif-
ferential constraints on the fields in other possible cases. This is one idea
of how the seemingly infinite number of fields present in Kac-Moody con-
structions could be truncated to the finite number of degrees of freedom in
supergravity, within the framework of generalised geometry. This would fit
well with the recent paper [165], which claims that all but a finite number
of these fields are auxiliary.

A different line of thought would be to explore the possibility of construct-
ing generalised geometries in this way for other supergravities. Some work

has been done for the case of N =1 d = 4 supergravity in the formulation
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of [166]. It appears that similar statements may be possible, though no final
conclusion has yet been reached. It is noteworthy that we have an abstract
prescription for the extraction of supergravity equations from generalised
geometry, and one might hope that this was applicable in other cases which
might exist.

Clearly the most concrete application of the technology is the descrip-
tion of supersymmetric backgrounds given in section 7. The unification
of backgrounds with different (possibly interpolating) structure groups at
each level of supersymmetry, and the equivalence of integrability and Killing
spinor equations is no doubt a very pleasing result. One would hope that
this could help in the ultimate goal of classification of all supersymmetric
backgrounds, though obviously this could only provide a first step. How-
ever, special holonomy of a Riemannian manifold proved to be a very strong
constraint, so one might hope that its generalisation would too. At the very
least, one could hope to find new solutions similarly to those resulting from
conventional G-structure analysis in e.g. [167]. It may also be interesting to
understand the integrable G C SU(8) structures for d = 7 in terms of ex-
tensions of the generalised complex structures and pure spinors used in [88]
(much of the ground work for this has already been done in [102, 103]).

A less encouraging result arises from considering more supersymmetries.
By the same calculations, one can see that our algebraic proof no longer
holds for three or more Killing spinors, as the intrinsic torsion becomes
larger than the representation content of the Killing spinor equations. For
example, the existence of a torsion-free SU(5) C SU(8) structure would
appear to impose further constraints on the three Killing spinors and the
fluxes. It would be easy to check this condition for known solutions, for
example the pure (non-compact) M5 brane background, and it may hold in
general, though this would be future work.

Probably the most interesting question comes back to possible links with
doubled geometry and non-geometric backgrounds. Our formalism has dis-
cussed only supergravity, and makes no direct claims about dualities or
non-geometry. However, unlike doubled geometry it is applicable to gen-
eral manifolds, and features of supergravity can sometimes give us hints of
stringy physics. Some recent papers [132, 133] have considered the eval-
uation of actions in different generalised frames. Roughly, they choose to

use the S-transformation in O(d, d) to construct their frame, instead of tak-
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ing the globally defined B-transformed frame as we do. The evaluation of
the curvature in this new frame gives a Lagrangian in which the so-called
“non-geometric fluxes” appear. The frame is not globally defined on an
ordinary manifold, but maybe it is somehow globally defined on a non-
geometric space. Other intriguing works [168] have observed links between
non-geometric backgrounds and non-commutative spaces, and the connec-
tion to generalised geometry and T-folds is discussed in [169]. It would be
very interesting to see if there exists a generalisation of our results which
moves away from conventional manifolds, but retains the same notions of
connections and curvatures, in such a way as to include these exotic geome-

tries.
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A. General Conventions

Euclidean signature conventions in d dimensions

The d dimensional metric is positive definite. We use the indices m,n,p, ...
as the coordinate indices and a,b,c... for the tangent space indices. We
take symmetrisation of indices with weight one. Our conventions for forms

are

Wik) = FWmrmp 2™ A - Ada™,

L <(’“+”! ) dz™ A - A da™eH,

B0 Wima.my g ome)

1 1/ -
*W(k) = (d—k)! (H |g|€m1~~~md—knl--~nkwn1 nk) da™ A Ada™d k,

Wy = Wiy ™, (A1)

where ¢, g = ¢!¢ = +1. We also use the j notation from [101, 2]

. 7!
]W(erl) /\ 77(77p) = ﬁwm[ml...mpnmp.,_l...mﬂdwm ® d.’]:ml /\ . o /\ dxm7.
pi(7 = p)!
(A.2)
Let V0" = 0,,v" +wy," pvP be a general connection on T'M. The torsion
T € T(TM ® A*T*M) of V is defined by
T(v,w) = Vyw — Vyv — [v,w]. (A.3)
or concretely, in coordinate indices,
Ty =wnp —wp''n, (A4)
while, in a general basis where V,,v® = 9,,v% + wm%v?, one has
Tabc = wbac — wcab =+ [éb, éc]a . (A5)
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The curvature of a connection V is given by the Riemann tensor R €
D(A2T*M @ TM @ T*M), defined by

R(u,v)w = [Vu, Vylw = Vi yw,

(A.6)
Rl qv? = Vi, Vo oP = T9,,,V 0P
The Ricci tensor is the trace of the Riemann curvature
Rmn = Rpmpn. (A7)

If the manifold admits a metric g then the Ricci scalar is defined by
R =9g""Rmn. (A.8)

Lorentzian signature conventions in 10 dimensions

Our conventions largely follow [141] but we include a list for completeness.
The only difference which is not purely notational is that we take the oppo-
site sign for the Riemann tensor. The metric has the mostly plus signature
(— 4+ +---+). We use the indices p,v, ... as the spacetime coordinate
indices and a, b, c. .. for the tangent space indices. We take symmetrisation

of indices with weight one. Our conventions for forms are

1
Wk = FWnp ezt Ao A datE,

o 1 (k+1)!
Wik ANy = (k+1)! (Ww[ﬂl---ﬂknﬂk+l---ﬂk+l]> Azt A A daf,

1 1 _
*W(k) = T0-R)! (H \% _geul---ulo—le---kayl Vk) dat A Adzhromh,

Wiy = Wag i, (A.9)

where €y g = —e91-?

= +1. The formulae for connections, torsion and
Riemann tensor are the same as for Euclidean signature in the previous

section.

Lorentzian signature conventions in 11 dimensions

We follow the conventions of [146] precisely. This differs from the conven-

tions used in ten dimensions in that here the square of a k-form is defined

2 _ 1 M-
as Wiy = W W .
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B. Clifford Algebras

Conventions for all Clifford algebras

The following conventions are applied to all clifford algebras used in this
thesis. Here the indices are taken as m,n,p,.... but are intended to be
replaced by any other set of indices as necessary.

The gamma matrices satisfy

{,ym7,yn} _ 2gmn7 ,le...mk — ,.y[ml B "Ymk]' (Bl)
The top gamma is defined as

»y(d) — ,YO,Yl .. .fyd = iemlmmdfyml”'md. (B.2)

We use Dirac slash notation with weight one so that for w € T'(A*T*M)

Y= %wml.._mk'yml"'mk. (B.3)

Where needed we will introduce SU(2) indices A, B,... = 1,2 for sym-
plectic Majorana spinors. The convention for raising and lowering these

indices is taken as

x4 = €apx’ x4 = ePxp. (B.4)

The symplectic Majorana condition will always be taken as one of

nt=eB(DnPy or ot =AP(DnP) (B.5)

where D or D is the chosen complex-conjugation intertwiner for the Clifford

algebra in question.
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Cliff (9, 1; R)

Our conventions match [141]. We use the anti-symmetric transpose inter-

twiner
C”Y“éil = _(’YH)T7 CT =-C, (B6)
to define the Majorana conjugate as € = €/ C. This leads to the formulae

éf,yul...uké—l _ (_)[(k+1)/2] (,.)/m...;uc)T7

Eryht bk = (_)[(k+1)/2]>wu1--~uk67 (B.7)
where the spinors € and y are anti-commuting. We have
7#1-'~Nk7(10) = (_)[k/Z}ﬁ\/jgful-~~ukl/1.--V1o—k’YV1mV10_k7 (B.8)
which is also commonly written as
7(’6)7(10) - (_)[k/Q] " 7(10—k)_ (B.9)
We use Dirac slash notation with weight one so that for ¥ € I'(A*T* M)

W= E W (B.10)
k

Cliff (10, 1; R)

We use the transpose intertwiner C = —C7 and a complex conjugation
intertwiner D with D*D =1 and

CTMC™! = —(rM)HT, DTMp~t = (TM)* (B.11)

The Majorana condition can be written as
e = (De)*, (B.12)

and the Majorana conjugate is defined by

e=cIC. (B.13)
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This then satisfies
_ k+1

Following the conventions of [146] we take the representation with

r —ropt o= 1. (B.15)
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C. Details of F;,; xR" and Hj

C.1. Ed(d) xR™ and GL(d, R)

C.1.1. Construction of E,4) xRt from GL(d,R)

In this section we give an explicit construction of Eg4(4) xR* for d < 7 based
on the GL(d,R) subgroup.
We start with the Lie algebra. If GL(d, R) acts linearly on the d-dimensional

vector space F', consider first the space
Wi =F®&ANFoANF o (F*oAF). (C.1)

We can write an element of V € Wy as
V=v+w+o+r, (C.2)

where x € F etc. If we write the index a for the fundamental GL(d,R)
representation note that 7 has the index structure 7,4, 5,, where a labels
the F* factor and by ...b; the ATF* factor.

To define the Lie algebra we introduce
W =R&(FQF)®ANF @A F* ¢ AFaA°F, (C.3)
with elements R € Ws
R=c+r+a+a+a+a, (C.4)

with ¢ € R, r € F ® F* etc. The Lie algebra of E;g) xRT can be defined
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by an action of R € Wy on V € W7 as follows. We take

Rv=co+r-v+asw—a.lo,

R w=cw+r-w+viat+aso+air,
R-o=co+r-o+via+ahw+aarT,
R-t=cr+r-7+jaNoc—jaAw.

Our notation here is that r - v, etc. are the usual action of gi(d,R) on the

relevant tensor. Thus

(T : U)a = rabvb7 (’r ) w)ab == _rcawcb - rcbwtlc, etC (0.6)

Note that the Ey(4) sub-algebra is generated by setting ¢ = ﬁr“a.

For completeness, note that the contraction of forms and polyvectors in
our conventions, given w € APF. A € AYF* and 7 € F* ® ATF*, are given
by

1 .
(U) - )‘)al...aq,p = qumcpAq.,.cpal,..aq,p lfp S q,
1
(w . )\)al..‘ap—q = awal-..ap—qcl...CLI)\Cl".Cq lfp > q, (C’?)
. 1 c1..-Cp
(w ) = w Te1,02...CpaL ... G8—p

A ]
while for A € APM1F* and € AT"PF* we define jJAA p € F* @ ATF* as

7!

(JAA N)a,al...m = m)\“[al--ﬂpuawl-ua?]' (C.8)

The E4(4) xR Lie group can then be constructed starting with GL(d, R)
and using the exponentiated action of a, @, « and &. The GL(d,R) action

by an element m is standard so

(m-0v)* =m0,  (m-w)ew = m HD%m N%we, ete.  (C.9)

The action of a and a form a nilpotent subgroup of nilpotency class two.
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One has

TV = v 4 (w + iya)
+(c+aAw+taniya+iya)
(C.10)
+ (T—l—ja/\a—jd/\w—i—%ja/\a/\w
+ 1ja Niyd — 3ja Niya+ sja Aa Niya),
with no terms higher than cubic in the expansion. The action of a and &
form a similar nilpotent subgroup of nilpotency class two with
ety = (v+a_:w—&_na+%oz_na_na

+%OJJO~4JT+%6C_1C¥_IT+%04_IOCJOZ_IT)

(C.11)
+wH+asot+asT+asaso)
+(c+aaT)+T
A general element of Egy(q) xRT then has the form
M-V =e*ett@ettim . v, (C.12)

where e with A € R is included to give a general Rt scaling.

C.1.2. Some tensor products

We can also define tensor products between representations in terms of the

GL(d,R) components. Given the dual space

Wi =FeANFeANFe(FRAF),
(C.13)
Z=C+u+s+te W,
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the map into the adjoint W7 ® W{ — Ws is given by

__1 _2 _
C=—3UJWw—35510—1.T,

r=v®(—jusjw+i(usw)l —jssjo+ 3(sa0)l—jtjT,

a=CANw+uio+saT,

(C.14)
a=vANu+siw+tio,
a=C(No+uarT,
a=—-vAs—1tlw,
where we are using the notation that, given w € APF and A € APF*,
. i), = 1 aci...cp—1
(jw—‘j ) b= (p—].)'w bcy...cp—1>
. . NG, 1 a,ci...cy
(]t —‘JT) b= ﬁt Th,cy...crs
’ ] (C.15)
(t E A)al...ag_p — Wtcl,cz...cpal...ag_p)\qmcp7

1
(t _ 7') = ﬁta’bl'“b”'a’bl__br

We can also consider the representations that appear in the bundle N as

given in table 5.2. We consider
Ws=F*OANF @ (FroAF)o (MBF oA F*)e (AF* o ATF),

Y=A++p+v+m.

(C.16)
The symmetric map W7 ® W7 — W3 is given by
A=viw +7v Jw,
H:’U_IO'/-{—U/_IO'—W/\OJ/,
u:(jw/\al—l—jw'/\a —Lon +o Aw
)=l ) 1

+(’U_|j7')+(UJjT/)—i(U_IT/—FUI_IT),

v=73wAT + 53 AT — 30 Ao,

7 =j% AT + 5% AT,
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where, for w € APF*, 0, 0’ € ASF* and 7 € F* ® ATF*,

o1 -
(]p wA T)al.‘.ap+1,b1...b7 T (p + 1)w[“1~~~7—‘1p+1]7blmb7’

-3 / 1 /
(‘7 ohao )al...ag,b1...b7 T ﬁaal---a3[blb20----b7]7 (C18)

('U N ]T)mnl‘..ng = Up'rm,pnl...ns-

C.2. H; and O(d)

C.2.1. Construction of H, from SO(d)

Given a positive definite metric g,, on F', which for convenience we take to

be in standard form d4;, we can define a metric on Wy by

G(V.V) = o] + |w]? +|o|* + |72, (C.19)

’2_

= 0%, ]w|2 — %wabwab, |0‘2 — %galu.asaal...as

where |v and =|7|> =

1 a,ai...ay

#1Ta,ar...ar T . The subgroup of Ey) xRT that leaves this metric in-

variant is Hy, the maximal compact subgroup of Ej4) (see table 5.3). The

corresponding Lie algebra is parametrised by
N=n+b+be A’F*® A F* ¢ ASF*, (C.20)

and embeds in W5 as

c=0,
Mab = Nab, (C 21)
Aabec = —CUgbc = babc’

aal...aﬁ = dal...ae = Ea1...a67
where indices are lowered with the metric g. Note that n,, generates the
O(d) € GL(d,R) subgroup that preserves g. Concretely a general element
can be written as

H.-V =e¥foeotip .y (C.22)

where h € O(d) and a and « and a and & are related as in (C.20).
An important representation of H,; is the complement of the adjoint of Hy

in Eq(q) xR, which we denote as H+. An element of H' be represented
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as
Q=c+h+q+GecR®S*F* o A3F* @ A°F*, (C.23)

and it embeds in W5 as

c=c,

Mab = hab,
(C.24)

Gabec = Cgbc = Gabe

Agq...a6 — —Qaq...ag = qaq...a¢"

The action of Hy on this representation is given by Ejy(g) xRT Lie algebra.
Writing Q" = [N, Q] we have

d = —%b_nq— %B_lg,
izb =n-h)aw— %b(aCde)cd - %b(a

¢ =(n-q)—(h-b)+ (b9 +(q20),

q=(nq—(h-b)—(Aq),

C1...C5 ~

qb)cl...05 + (%b 449 + %E - g)dab,

(C.25)
where we are using the GL(d, R) adjoint action of hg) on A3F* and ASF*.
The Hy invariant scalar part of @) is given by ¢ — gfldh‘la.

Finally we note that the double cover H, of H; has a realisation in terms of
the Clifford algebra Cliff(d; R). Consider the gamma matrices v* satisfying
{7%,7%} = 2¢%. The H; Lie algebra can be realised on Cliff(d;R) spinors

in two ways

NE=1 (%nawab + Lbapey™ — ébalm%fyal'”aﬁ) . (C.26)

Again ng, generates the Spin(d) subgroup of H,;. The two representations
are mapped into each other by v* — —~%. As such, they are inequivalent

in odd dimensions, while in even dimensions they are related by
A DNt D=1 = N (C.27)

We denote as Zli the spinor representation of Hy transforming under N*.

One also finds two different actions on the vector-spinor representations
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oF € ZF with!
N - oF = N*oF —rbopf F 20,27 %0F F L0 caraeft

2!
ci...c4, £ 2
Y, T3

S (C.28)

+ %%ba cr..ca”Y 5lb c1...csVa Pp -

We will also need the projections H* & Zli — Z5 , which, for Xt e Zf[,
is given by

ci...c3 .t

(Q ®Z§F Xi)a = %hab’}’bxi +3 QIQabc'YbCX + 3 6 31 dei...c3Va X

b1...bs ., £

11~ 11~ c1...c6 .t
+ G 51aby...bsY X — 3p14c1...csVa

X -
(C.29)

C.2.2. H; and Cliff(10,1;R)

One can also find two embeddings of H; in Cliff(10,1;R) which are gen-
erated using the internal spacelike gamma matrices I'* for ¢ = 1,...,d.
Combined with the external spin generators I'*”, this gives us an action of
Spin(10 — d, 1) x H,; on eleven-dimensional spinors. The adjoint of Hy is
embedded similarly as
N% = (70l & Hbanel ™ = dbay..agT ) (C.30)
Since the algebra of the {I'*} is the same as Cliff(d;R) all the equations
of the previous section translate directly into this presentation of Hy. The
advantage of the direct action on eleven-dimensional spinors is that it allows
us to write Hy covariant spinor bilinears in a dimension independent way.
Let Z fc be the eleven-dimensional spinors transforming under H via N*.
Let also Z}i be the representations with one eleven-dimensional spinor index
and one internal vector index which transform as (C.28) (with I'* in place of
~v*). One can construct the singlet projections ZA; ® ZAQi — 1. For ¢F € Z}i

these are given by?
(97, %) = 3L (0 + g T") gy (C.31)

The eleven-dimensional spinor conjugate provides the relevant inner prod-

!The formula given here matches those found in [76, 77] for levels 0, 1 and 2 of K (E1o).
A similar formula also appears in the context of F11 in [74].
2Setting d = 10 in this reproduces the corresponding inner product in [76].
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ucts leF ®21i — 1 as
xX7x") =x"x", (C.32)

where Y € ch

We now also give the decompositions of the Hy-covariant projections

VXt VX,

! 2 (C.33)
At + '
V®Z“1i@ ) V®Z3FSO )

where V € Wy, {* € Zf: and pF € Z;E These are

(V®ZAl¥>A(i) <:|:Uar 21wabrabi5l Oay.. a5Fa1..'a5_éTbbal...agFal..uG)Xiv
(C.34)

% ®ZA§: )A(:t)a = vaf(:t + %Fbwabf(i + 3 QIF dech %%Fclmalo'acl...a;x

+ .Faqmcsacl...cg,f(i + %PCI"‘C7Ta,cl...C7>A<i7 (035)

Wb
S

(V @z $%) = v"Pa + 1=Vl P £ 1omg sl RT £ g TRy

1 1 bi...bsa ~ 8—d 1 b1...bg »
— 1552510 T % b P — Tomg a0 bba DB

:F7117— b1 b7Fb1 b7§0a :F;l;g}lT ,C b1 b5rbl b590a7 (036)

(V@7 ¢$F)a = 0T pE £ 52T VT — Lweal 0T + dwo o

~+d 4 1 b ~ 1 1 bed At
— Jwala®¢™ — g gtqwal"TG; + 3 gtgmwncla " T0]

1 c1...c5 ok b cicac3 2t 41 b c1...c4 2%
+ ﬁacl...%r oL F 33|Ua cregesl 2 3()01, F 340 erocala™ 4S0b

1 d A+ 4 1 1 d ~+
o—a i (Taq e Ler &7 £ 59-351%¢1..c5 L a.-esp "y

03\[\’)

:F

+ ’%Tc di.. 0l7FCFd1 d790a + %Taycl---ﬁrqmwrd@(:it' (037)
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Another projection we will need is the projection Zli ® Z;E — H*+, which

for x* e ch and ¢F € ZQi, is given by
o
hap = 2;(:|: (agélzs
dabc = :FS;(:‘:F[ab@ci],
(jal...aa - _6>€i1—\ pE

[(ll ...as5 (paﬁ} ’

(C.38)

Note that the image of this projection does not include the H, scalar part
of H+, as ¢ — gfldhaa = 0. We also define a projection Zf ® Zf — H' by

_ 2 3
€= 93X

X"

(C.39)

where YT € Zli and all other components of H* are set to zero. The image

of this map is clearly the Hy scalar part of H~.
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D. Group Theory Proof of

Uniqueness of Operators

In this appendix we supply a group theoretical proof of the uniqueness of
the operators (5.57). As in section 7.4 we need only consider linear algebra
at a point in the manifold and so we do not distinguish between bundles and
their fibres in this section. Since the proof we give here uses the particular
details of the Hy group in each dimension, we run through the dimensions
in a case-by-case fashion. As we comment in the conclusion, this group
theoretical structure would be the same for an Fg(g) X R* geometry in eight
dimensions, so we include the details of the relevant representations here.

Of course, this is not the only way to prove this uniqueness. Indeed,
one could demonstrate by explicit calculation that the relevant irreducible
parts of the connection cancel looking at the SO(d) decomposition of the
generalised connection. This would be extremely long-winded. One could
also do this using a decomposition under a larger subgroup. For example,
in seven dimensions, it is lengthy but possible to do this looking at the
Spin(8) decomposition of the SU(8) representations, though we do not give
the details of the calculation here.

The main Eg(q) xRt generalised tensors we need are listed in table 5.2
and the representations appearing in the compatible connection under the
H,; subgroup are given in table 5.4. The representations for the spinor and
gravitino are given in table 5.5. The general method to establish uniqueness
is outlined in section 5.2.3, and here we run through this argument in each

dimension.

4 dimensions

For the Spin(5) ~ Sp(4) case we have the representations

E~10 S~4 J ~ 186, (D.1)
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and the components of an Sp(4) compatible connection lie in the space
E* x ad(Sp(4)) ~10 x 10 =1+ 5+ 10 + 14 + 35 + 35’ (D.2)

Here we have labeled the 35 to be that which has the index symmetries of
the Young diagram [T 1] and the 35’ to have the symmetries Bjj
For x € S we have

D -x€E10x4=4+16+20 (D.3)

We are interested in the projection onto the S and J parts. The irreducible
parts of the compatible connection which appear in these projections must
therefore be those parts which can also be embedded in the tensor product

S ®S* and J ® S* respectively. These tensor products decompose as

SRS *=4x4 =1+5+10
(D.4)
J®S*=16x4 =5+10+ 14+ 35

Clearly, all of the representations appearing here are those in the torsion of

the connection which has the decomposition
E*®OK~1+5+10+14+ 35 (D.5)

and so the projection only depends on the torsion components of the com-
patible connection. If one considered the projection to the other possible

representation, the 20, one would examine
200 5* =20x4=10+ 35+ 35 (D.6)

which contains the non-torsion representation 35 of the connection. There-
fore, this projection is not uniquely determined by the torsion of the con-
nection. In this case, this is obvious since D -y does depend on all parts of
the connection, so by process of elimination the final part must depend on
the 35.

Similarly J ~ 16 so for p € J

D-9el0x16=5+2x 16+ 20 + 40 + 64 (D.7)
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Looking to project onto the S and J parts we consider

SJ*=4x16=5+10+ 14 + 35’
J®J* =16 x 16 (D.8)
=1+5+2x10+14+35+2x 35 +30+81

This case actually has a complication which does not appear in any of the
remaining cases. The decomposition (D.7) contains two copies of J, while
the tensor product J ® J* seems to contain the non-torsion 35 components
of the connection. In this instance one therefore choses the unique linear
combination of the projections onto the two J parts of D - ¢ such that
this non-torsion component cancels. This also turns out to be the correct
projection to recover the supergravity equations, and is the one we use in

section 6.3.

5 dimensions

For the Hs ~ Spin(5) x Spin(5) ~ Sp(4) x Sp(4) case we have the represen-

tations

E~ (4,4) S~ (4,1)+(1,4) J~(4,5)+ (5,4)
(D.9)
and the components of an Sp(4) x Sp(4) compatible connection lie in the

space

E* x ad(Sp(4) x Sp(4)) ~ (4,4) x ((10,1) + (1,10))

(D.10)
— (4,4) + (4,4) + (16,4) + (4,16) + (20,4) + (4, 20)
So for x € S we have
D-xe(4,4)x ((4,1)+ (1,4)) (D.11)

=(4,1)+(1,4)+ (4,5) + (5,4) + (10,4) + (4,10)

We are interested in the projections onto S and J, so again we look at the
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tensor products

S®S" =((4,1)+(1,4)) x ((4,1) + (1,4))
= (14+5+10,1)+ (1,1+5+10) +2 x (4,4)
J® 85" =((4,5)+(5,4)) x ((4,1) +(1,4))
=(145+10,5)+ (5,1+5+10) +2 x (4,4) + (16,4) + (4,16)

(D.12)
Clearly, all of the representations appearing here which are common with
the connection are those in the torsion of the connection which has the

decomposition
E*®o K ~(4,4)+ (16,4) + (4,16) + (4,4) (D.13)

and so the projection only depends on the torsion components of the com-
patible connection.
Similarly for ¢ € J
=(14+5+10,4+16)+ (4+16,1+5+10)

(D.14)

Looking to project onto the S and J parts we consider

S®J = ((4,1)+(1,4)) x ((4,5) + (5,4))
=(1+5+10,5)+ (5,1 +5+10) + 2 x (4,4) + (16,4) + (4, 16)
J®J"=((4,5)+(5,4)) x ((4,5) + (5,4))
—(14+5+10,1+10+14) + (1 +10+ 14,1+ 5+ 10)

+2x (4+16,4+16)
(D.15)

Again, these projections cannot depend on the undetermined pieces of the
connection (i.e. the (20,4) + (4, 20) parts).

6 dimensions

For the Hg ~ Sp(8) case we have the representations

E ~27 S~8 J ~ 48 (D.16)
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and the components of an Sp(8) compatible connection lie in the space
E* x ad(Sp(8)) ~ 27 x 36 = 27 + 36 + 315 + 594 (D.17)

For y € S
D-x €27 x8=81+48 +160 (D.18)

We are interested in the projections onto S and J, so again we look at the

tensor products

S®S*=8x8=1+27+36
(D.19)
J®S5* =48 x 8 = 27+ 42 + 315

Clearly, all of the representations appearing here which are common with
the connection are those in the torsion of the connection which has the
decomposition

E*® K ~ 27+ 36+ 315 (D.20)

and so the projection only depends on the torsion components of the com-
patible connection.

Similarly for ¢ € J
D €27 x 48 = 8 4 48 + 160 + 288 + 792 (D.21)

Looking to project onto the S and J parts we consider

S®J* =8 x 48 = 27 + 42 + 315
(D.22)
J®J* =48 x 48 = 1 + 27 + 36 + 315 + 308 + 792 + 825

Again, these projections cannot depend on the undetermined part of the

connection (i.e. the 594 part).

7 dimensions

For the H7 = SU(8) case we have the representations

E ~ 28+ 328 S~8+8 J~56+56 (D.23)
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and the components of an SU(8) compatible connection lie in the space

E* x ad(SU(8)) ~ (28 + 28) x 63
B B B B (D.24)
— 28 + 28 + 36 + 36 + 420 + 420 + 1280 + 1280

Looking at the projections, we may focus on the 8 C S and 56 C J, as
the other parts follow as the complex conjugate representations (the tangent

space and connection are real representations). So for x € 8 we have
D-x € (28+28)x8=8+56+ 168+ 216 (D.25)

Our interest is in the 8 and 56 projections, so we look at

8 x 8 =28 + 36
B (D.26)
56 x 8 =28 + 420
and as all of these representations are contained in the torsion
E*® K ~ 28 + 28 + 36 + 36 + 420 + 420 (D.27)

the projection only depends on the torsion components of the compatible

connection. Similarly for ¢ € 56
D-pe(28+28)x56=8+56+ 216+ 504+ 1008 + 1344 (D.28)

Looking to project onto the 8 and 56 parts we consider

8 x 56 = 28 + 420
(D.29)

56 x 56 = 28 4420 41176 + 1512

Again, the representations which are common between these and the con-
nection are all contained in the torsion, so these projections are uniquely
determined by the torsion of the connection.

8 dimensions ?

For an Egg) X R* generalised geometry, the natural local symmetry group
is Hy = SO(16) [56]. Inspired by our GL(d,R) decompositions and the
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embedding tensor formalism, we would guess the Egg) X R representations

B~ 248, N ~ 38755 K~1_1+3875_4
(D.30)
Some decompositions and some more guesses lead us to the Hg = SO(16)
representations
E ~120 + 128" S~16 J~128"  (D.31)

and the components of an SO(16) compatible connection then lie in the

space

E* x ad(S0(16)) ~ (120 + 128") x 120

=1+ 120+ 135 + 1820 + 5304 + 7020 + 128" 41920~ + 13312"
(D.32)

We would then have for y € S
D-x e (120 +128") x 16 = 16 + 128~ + 560 + 1344 + 19207 (D.33)

Our interest is in the 16 and 128~ projections, so we look at

16 x16 =1+120+ 135

(D.34)
128~ x 16 = 128" + 1920~
The torsion decomposes under SO(16) as
E*@® K ~ (120 + 128%) + (1 + 135 + 1820 + 1920 ") (D.35)

while the undetermined parts of the connection have the decomposition
U ~ 5304 + 7020 + 133127 (D.36)

As for the d < 7 cases, we see that the projection only depends on the

torsion components of the compatible connection. Similarly for ¢ € 128~

D-pe (120 +128") x 128~ = 16 + 560 + 4368 + 11440 : )
D.37
+128 +1920" + 13312~
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Looking to project onto the 16 and 128~ parts we consider

16 x 128~ = 128" + 1920~
(D.38)
128 x 128~ =1+ 120 + 1820 + 8008 + 6435~

Again, the representations which are common between these and the con-
nection are all contained in the torsion, so these projections are uniquely

determined by the torsion of the connection.
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E. Spinor Decompositions

In this appendix the details of the spinor decompositions used in chapter 7
are presented. For the purposes of looking at supersymmetric backgrounds,
the spinors on the external Minkowski space are taken to be Grassman

valued, while the internal spinors are commuting.

Spin(3,1) x Spin(6) C Spin(9,1)

We can use a complex decomposition of the (real) Cliff(9, 1; R) gamma ma-
trices as
T =~t®1, "™ = iy® g™, (E.1)

Choosing the real representation of the Cliff (4, R) and the imaginary anti-
symmetric representation of the Cliff(6;R) gamma matrices v, we have

the chiral spinor decompositions

et=ntexT+n ®x, E2)
— ot o v L vt ’
e =ntex +n ®xt,

where 7O x+ = ix*, /Wt = —int, x~ = (x1)* and n~ = (nT)*.

Spin(3,1) x Spin(7) C Spin(10,1)

We take essentially the same complex decomposition of the Cliff(10,1;R)

gamma matrices
T =~t®1, " =iy @™, (E.3)

Choosing the real representation of the Cliff(4,R) and the imaginary anti-
symmetric representation of the Cliff(7;R) gamma matrices 7™, we have

the spinor decompositions

et=ntTeox+n @x* (E.4)
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where v
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