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Abstract. We have investigated an essential K cluster “K ~pp”, which is the simplest system
of kaonic nuclei, with a coupled-channel Complex Scaling Method (ccCSM). Combining the
ccCSM with Feshbach method we can handle a coupled-channel problem effectively as a single-
channel problem. As a result of a study of the K~ pp with the ccCSM+Feshbach method using
an energy-dependent chiral-theory based potential, it is found that the K~ pp is shallowly bound
with the binding energy of around 20-35 MeV. The mesonic decay width is rather dependent
on the interaction parameters and ansatz; the half decay width is ranging from 20 to 65 MeV.

1. Introduction

In strange nuclear physics and hadron physics, kaonic nuclei (nuclear system with anti-kaons,
K = K~, K°) have been a hot topic since the formation of dense state are interestingly expected
due to strong KN attraction. To consider such an interesting system, let us start with an
excited hyperon A(1405) (J™ =1/27, I = 0). The early work with a quark model succeeded the
reproduction of most spectra of P-wave baryons, except for the A(1405) whose mass was resulted
to be larger than the observed value [1]. Since the A(1405) exists below the K N threshold by just
30 MeV, it is expected to be a K N quasi-bound state. Actually, chiral unitary models, which are
based on a meson-baryon picture, have succeeded to explain various properties of the A(1405)
[2]. Thus, we believe that the A(1405) is a KN quasi-bound state, rather than a genuine three
quark state. Based on this picture, Akaishi and Yamazaki proposed a phenomenological KN
potential, which is nowadays called AY potential [3]. AY potential is quite attractive especially
in the isospin-zero channel. As a result of a fully-microscopic calculation of kaonic nuclei with
antisymmetrized molecular dynamics (AMD) method using AY potential [4], it is found that
a single K~ meson can be deeply bound in various light nuclei with 100 MeV binding energy.
The AMD study shows exotic properties of kaonic nuclei. Due to the strong KN attraction,
nucleons are attracted by a K~ meson to form dense nuclear state; the average density amounts
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Table 1. Summary of theoretical studies of K~ pp. “B(K pp)” and “I'jp;” are the binding
energy and mesonic decay width of K~ pp, respectively. They are in unit of MeV. “Method”
and “Potential” mean a method and a KN potential employed in each calculation, respectively.
In variational calculations two kinds of basis function are used: Gaussian function “(Gauss)”
and Hyperspherical Harmonics “(H.H.)”. In these calculations, phenomenological potentials
(“Pheno.”) and chiral-theory based potentials (“Chiral”) are examined. In the latter
potentials, there are energy-dependent (“(E-dep.)”) and energy-independent (“(E-indep.)”)
versions. “Non-rel.” and “Semi-rel.” indicate non-relativistic and semi-relativistic kinematics,
respectively.

Dote-Hyodo Akaishi Barnea-Gal  Ikeda-Sato  Shevchenko-Gal

-Weise [6]  -Yamazaki [7] -Liverts [8] 9] -Mares [10]
B(K™pp) 20+ 3 47 16 60 ~ 95 50 ~ 70
INY; 40 ~ 70 61 41 45 ~ 80 90 ~ 110
Method Variational Variational Variational Faddeev-AGS  Faddeev-AGS
(Gauss) (Gauss) (H.H.)
Potential Chiral Pheno. Chiral Chiral Pheno.
(E-dep.) (E-dep.) (E-indep.)
Kinematics Non-rel. Non-rel. Non-rel. Semi-rel. Non-rel.

to several times higher than the normal nuclear density. In addition even three protons can be
bound by a single K~ meson with a funny structure. Thus, the kaonic nuclei are expected to
be a exotic system which could be in particular a doorway to dense nuclear matter.

To clarify exotic properties, which are expected, involved with kaonic nuclei, we have
investigated the most simplest kaonic nucleus “K~pp” before considering complicated many-
body systems. The K~ pp seems to be an essential cluster of kaonic nuclei, while the A(1405)
(= a quasi-bound state of K~ p) can be regarded as a building block of kaonic nuclei. Since the
K~ pp is only a three-body system composed of two protons and a single K~ meson, it has been
investigated with various ways as summarized in Table 1. The binding energy and decay width
are rather dependent on approaches and employed potentials. However, all theoretical studies
show that the K~ pp can be bound with less than 100 MeV binding energy. Since there is 7% N
threshold at 103 MeV below K NN threshold, these calculations indicate that the K ~pp should
be a resonant state between the two thresholds. In addition, we know the fact that the KN
is strongly coupled with the 7% through the study of the A(1405) [2]. Thus, we consider that
1. Resonance and 2. Coupled-channel problem are key ingredients in the theoretical study of
the K~ pp. We, here, employ a coupled-channel Complex Scaling Method (ccCSM) since this
approach can simultaneously treat these two ingredients. It should be noted that the complex
scaling method has greatly succeeded in the study of resonances of unstable nuclei [11]. In our
previous study [12], we applied the ccCSM to the two-body system of KN-7Y. (Y means A
and ¥ hyperons.) Since that study shows that the ccCSM is a useful tool also for the study of
hadronic system, we now tackle the three-body system of K~ pp.

2. Methodology
In this section, we explain our method to investigate the K~ pp resonance shortly. At first,
we remark that the K ~pp is considered as a coupled-channel system of K N N-rXN-rAN with
J™ =07 and I =1/2 in theoretical studies.

Basically, we follow the usual prescription of the complex scaling method [11] to calculate
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complex eigenvalues of the three-body system of K~ pp. The Hamiltonian for the K pp
is complex-scaled, with a complex-scaling operator U(f) the coordinate and the conjugate
momentum is transformed as r — e’ and p — pe~, respectively. Diagonalizing the complex-
scaled Hamiltonian with a basis function, complex eigenvalues are obtained. Among those
eigenvalues, the eigenvalues which are independent of the scaling angle 6 are those of resonant
states. In our study we employ the correlated Gaussian function [13] as a basis function. We
give detailed explanation on important points of our study as below.

2.1. A chiral-theory based KN potential and treatment of its energy dependence
In our previous work [12], we proposed a chiral-theory based K N-7Y potential which is a local
potential with a single-range Gaussian form factor in the coordinate space so that we can easily
handle it with Gaussian basis function:
Vi () — Cij .
ii(r) = _87”2(% + wj) x [flux factor] x (Gaussian form factor), (1)
s

where w; indicates the meson energy in the channel 7 and Cj; is the Clebsch-Gordan coefficient in
the SU(3) algebra. In the present study we use one of non-relativistic versions of our potential,
which is denoted as NRv2 potential. Detail of the NRv2 potential is given in Eq. (8) in Ref.
[12]. Note that the pion decay constant fr in Eq. (1) is treated as a parameter in our potential.

Here, we mention the recent progress of our study. According to many studies based on the
chiral SU(3) theory, there appear two poles in s-wave and I = 0 channel, which corresponds to
the A(1405), when we use the energy-dependent chiral potential [2]. However, such a double-pole
structure of the A(1405) was not clearly observed in our previous work [12], though the potential
was constructed based on the chiral SU(3) theory. Recently, we have successfully confirmed the
double-pole structure in our potential by using the improved Gaussian basis function [14], as
shown in Fig. 1. Analyzing the norm of KN and 7% components in each pole state, we have
found that the higher-pole state is dominated by the KN component since the KN norm is a
large magnitude. On the other hand, in the lower pole the 73 component is found to be a major
component.

By the way, as mentioned above our KN potential has an energy dependence. We need to
take into account the self-consistency for KN energy when we treat bound and resonant states.
But, the definition of the KN energy in the K~ pp is non-trivial because the two-body KN is a
subsystem of the three-body K NN system. We define the KN energy (Exy) in such a way as
proposed in an earlier study [6]. In that study the Fxn is defined in two ways by considering
extreme two pictures; The antikaon is regarded as a field (Ansatz 1) or it is considered as a
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particle (Ansatz 2). Details of calculation of the Fx  is given in Egs. (20) and (21) in Ref. [6].
Also in the present study, we examine these two ansatz. We remark that this self-consistency is
realized for the complex KN energy since the complex energy of the resonance pole is directly
treated in the current work, while the real KN energy is considered in in the earlier work with
a variational approach [6].

2.2. Essence of the ccCSM+Feshbach method

The K~ pp system is a coupled-channel system of K NN, 7~ N and 7AN. We treat such a multi-
channel problem as a single-channel problem with help of Feshbach method [15]. In Feshbach
method, we set a model space (P space) and outer space of the model space (@ space). Then,
the Schrodiner equation is given as a coupled-channel equation of wave functions for P and @
spaces. Eliminating the Q-space wave function, we can construct a Schrédiner equation only for
the P-space wave function ®p as [Tp + UE“(E)]‘DP = E®p. (Tp is a kinetic-energy operator
for the P space.) Here, the effective potential for P space, Ugf ! (E), is formally given as

1

USTI(E) = Vep 4+ Vpo Go(E) Vop  with Go(E) = B Hag'

(2)

where Gg(F) is the Green function for the @ space and {Vxy} indicates the coupled-channel
potential for the P and @ spaces with (X,Y)=P or Q.

Certainly, we can eliminate the @-space component with the Feshbach method. However,
the problem is how to express the Gg(F) in actual calculations. We overcome this matter
with an interesting nature of the complex scaling method. The closure relation is proven
to hold also in the CSM, including resonant states explicitly in addition to bound and non-
resonant continuum states. (Eztended Closure Relation, ECR [11]). The ECR is known to be
well described approximately with a set of finite number of the eigenstates {|x?)} which are
obtained by the diagonalization of a complex-scaled Hamiltonian H? with a Gaussian basis
function; 3, [x?)(X%| ~ 1 [16].

With help of the ECR, the complex-scaled Green function G%(E) = (E - Hg)Q)_l is
represented as

IXQn) XQml .
GH(E) = > ==t with HygIxon) = €Ixgn), 3)
n

where the energy eigenvalue ez and eigenstate | ng,n> are obtained by the diagonalization of
the complex-scaled Hamiltonian H %Q with Gaussian basis functions. Since the original Green
function for the @ space is obtained from G% (E) as Go(E) = U (0) G% (E)U(9), the effective
potential for the P space is

UZI(E) = Vpp + Vg Go(E) U1(0) GLH(E)U(6) Vor. (4)

Here, the G%(E) is given as Eq. (3) and is represented with Gaussian functions. Therefore,
since the effective potential U;f ! (E) is also composed of Gaussian functions, it can be used as
usual in the complex scaling method with Gaussian basis function.

We apply this technique to the calculation of the K ~pp system. Setting the KN channel
as P space and the 73 and wA channels as Q) space, we construct an effective KN potential
U%f ]é(E) In other words, the 7Y channels are eliminated at the step of two-body calculation.

The U;—{f]([ (E) plugged in the three-body Hamiltonian of the K NN, we solve the single-channel
problem of the K NN system with the complex scaling method.
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Figure 2. (Left) Complex-energy eigenvalue distribution when KN energy for the effective
potential is fixed to the A* energy. (Right) Pole position of K~ pp obtained by self-consistent
calculation, where f; is varied from 90 MeV to 120 MeV and two ansatz for KN energy are
examined.

3. Result
We show our result of the K ~pp calculated with the ccCSM+Feshbach method. Here, we employ
a version of our potential, NRv2, in which the f; value is set to be 110 MeV as a typical case.

At first, we consider the case where the K N energy in the energy-dependent K N potential is
fixed to that for the A(1405). In other words, the KN energy is not self-consistent in the K~ pp,
but it is self-consistent for the isolated two-body system of K N-7X which forms the A(1405)
resonance. The obtained complex-energy eigenvalue distribution is shown in the left panel of
Fig. 2. In the figure the origin of the real energy axis corresponds to the K NN three-body
threshold. It is known that in the complex scaling method the continuum states appear on
so-called 20 line (tan~!(Im E/Re E) = —26) when the scaling angle is 6 [11]. Therefore, the
eigenvalues along the 20 line running from the origin indicate the continuum states of K NN
three-body system. There are eigenvalues on the other line. The starting point of this line
is (—16.7, —17.5) MeV which is almost identical to the complex energy of the A* [12]. (A*
denotes the higher pole of the A(1405).) So, the eigenvalues on the second line indicate the A* N
two-body continuum states. We can see a point which is isolated from the two lines mentioned
above, as marked with a red circle in the figure. This point means the K ~pp resonance. In this
case where the KN energy is fixed at that of the A*, the pole energy of the K~ pp resonance is
found to be (=B(K " pp), —I'ar/2) = (—28.6, —21.6) MeV.

Next, we take into account the self-consistency for the KN energy in the three-body system
K~ pp, following the two ansatz as explained in the section 2.1. Searching a self-consistent
solution, we have succeeded to find such a solution of the K~ pp resonance. The resonance
energy is obtained to be (—B(K " pp), —I'as/2) = (—25.6, —11.6) MeV for Ansatz 1 and (—27.3,
—18.9) MeV for Ansatz 2. The binding energy B(K pp) is not so dependent on the ansatz,
whereas the decay width I'j; strongly depends on it. Compared with the earlier work of the
variational calculation with a chiral potential [6], the present calculation gives slightly deeper
binding and narrower width.

We examine several fr values, since the fr value is a parameter of our KN potential. We
have found the pole of the K~ pp resonance when the f; value is varied from 90 MeV to 120
MeV, as depicted in the right panel of Fig. 2. As a result, the binding energy is found to be
small, 20-35 MeV. The decay width is obtained to spread widely, 20-65 MeV. We note on the
dependence of the ansatz. Both ansatz give similar binding energy. However, they give rather
different decay width; Ansatz 1 tends to give small decay width, compared to Ansatz 2.
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4. Summary and future plans

We have investigated the essential K cluster, K~ pp, with a coupled-channel Complex Scaling
Method combined with Feshbach method. In the method, we reduce a coupled-channel problem
to a single-channel problem in order to handle the system more easily, by utilizing the extended
closure relation in the complex scaling method. Applying this method to the K~ pp, we have
confirmed that the method works well to find the resonant pole clearly on the complex energy
plane. Using a chiral SU(3)-based K N potential with a local Gaussian form, we have found that
the binding energy and the mesonic decay width of K~ pp are roughly 20-35 MeV and 20-65
MeV, respectively. We consider that the K ~pp is shallowly bound as suggested by the early
studies with variational methods using an energy-dependent chiral potential.

On the experimental side, there are several reports related to the K~ pp. According to the
reports of Refs. [17, 18], if the observed state is a K~ pp state, the binding energy is more than
100 MeV. However, the situation is still controversial [19]. Recently, two experimental results
on the K~ pp have been reported from J-PARC [20, 21]. Further analysis of these results will
help to reveal the detailed nature of the K~ pp, compared with theoretical studies.

In the present study, we have incorporated the 73 and mA components into the effective
KN potential. In our future, we will consider the K NN-rXN-tAN coupled-channel problem
without any channel elimination. By the explicit treatment of 7% and wA channels we will obtain
more accurate result on the K~ pp. In addition, the role of the 7Y N three-body dynamics is
expected to be clarified as well as that of the K NN dynamics.
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