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ABSTRACT

It is shown that, in theories of exactly localized
observables, of the type proposed by Araki and Haag, the reac-
tion amplitude for two particles giving two particles is poly-
nomially bounded in s for fixed momentum transfer t«0. The
proof does not need observables localized in space-time regions
of arbitrarily small volume, but uses relativistic invariance
in an essential way. It is given for the case of spinless neu-
tral particles, but is easily extendable to all cases of charge
and spin. The proof can also be generalized to the case of

particles described by regularized products
/ ‘P(x,,...,x_») ?(x-xl)... a(x-x.,._) Ay ... Sx,

of Wightman or Jaffe fields.
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INTRODUCT ION

This paper studies two-particle reaction amplitudes in a theory
of local observables of the type proposed by Araki and Haag {:1]-[4];
it shows that, for fixed momentum transfer +t<¢0, such amplitudes are poly-
nomially bounded functions of s (square of total energy in centre-of-mass
system). In ordinary field theory, the proof of this well-known result
uses in an essential way the assumption that the vacuum expectation values
of the fields behave polynomially at infinity. Although this assumption
seems very reasonable, and is believed to be verified in renormalizable
theories, it is satisfactory that the result can be derived from the inde-
pendent hypotheses of the Araki-Haag theory. Such a theory could exist
without fields in the ordinary sense, but it can also be considered as
underlying any conventional field theory where local observations are pos-
sible (perhaps as a consequence of the self-adjointness of some smeared
field operators). The framework of a theory of local observables can be

briefly described as follows:

1) the physical state vectors are elements of a Hilbert space éﬁ? in
which operates a unitary, weakly continuous, representation of the
Poincaré group 5731 denotea by (a,A)-U(a,N), with U(a,1) =
=expi§”P". The momentum operators P*  are supposed to have their

spectrum in V+, the closure of
+ "RL' ° | -\
AVE = Fe ; P > AE, = -

There is a vector () (with H(}H =1), unique up to a phase
factor, such that, for all (a, )& 931, (a, A)L = £2 (vacuum);
all state vectors orthogonal to L) have masses larger than a certain
strictly positive minimum mass mo>0;

2) to each *) open set & in IR 4 (=Minkowski space = space-time) is
associated a von Neumann algebra Caﬂ(éb), consisting of bounded ope-

rators acting in 3ng, with the following properties

- - - - - - o T - = = ——— - - " o " O " o - - - " e = e o =

Actually, it would be sufficient to ascribe an algebra of local
observable to each element of a collection tg of open sets such
that: @ > a+ NO €& for a1l (a,A)€ gif and containing

some bounded open sets.
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a) if (9, then QUO)c AB,);

b) if @1 and @2 are spacelike separated (i.e., if x1E@1 and
x,& @, >(x,-x,)2<0), then Z(®,) anda (A B,) commute;

¢) for every open (2 and every (a,A)E ?:r

Ula, A) () Uta,A)! = C(arAr®)

a) U & (@)o

@ bounsed

is dense in gg .

These algebras are called "algebras of local observables". An
operator belonging to (X(@) with (@ Dbounded is called a local

operator and is said to be localized in @ .

A local Araki-Haag field will be defined, in this paper, as a
R4 & (K
function x—A(x) from into (#) such that

Acx) = U, 1) Aco) Utx, 1)~ 7

and A(0) €A ®) for some bounded open @ ;

the representation U is reducible. In particular there are four
closed subspaces ?ﬁfj ofétg, with projectors Ej (1< j<4), in-
variant under U, such that the restriction of U +to gj is irre-
ducible,*with mass mj>0 and spin zero. S’g is associated with a
neutral stable particle labelled (1<€j<4). We assume that
there are four local Araki-Haag fields { AJ }1 <j<h such that:

(.n.,AJ-(o).Q)=0,' é;.AJ(O).O_;éO; (1 - £)A; (o)LL

has a mass spectrum > Mj>mj'

Remark:

Note that these conditions imply that the states of the form

&/ Pla,A)Ula,A)A (0) Q2 da dd

We consider neutral spinless particles for simplicity, but the gene-

ralization to arbitrary charge and spin offers no difficulty.

2
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where Y isa %?aa function with compact support on Eiza (aA
being an invariant measure on LI) are dense in 5@% (since any vector

is cyclic for an irreducible representation).

Starting from these assumptions, it is possible E1j to apply the
Haag-Ruelle collision theory, and to define asymptotic states and asymptotic

fields ¢jin and ¢jout for the particles j (1€j<4). Under these

conditions, the S matrix is Lorentz invariant (Eﬁ]).
In particular the reaction amplitude for

particle 3 with momentum -p3‘} particle 1 with momentum P,
—>

+ particle 4 with momentum -p + particle 2 with momentum p
4 2

is an invariant distribution T(p,,P,sPsP,) defined in
17P22P51Py

2 ?

¢
{fu Pos Pus Pyt 4’§ £ =0 ; pi=mp, (dsds i eV
AV, pe VT, p eV
and it can be computed by means of a reduction formula [ﬁj:
4 ¢
2
T ks b )T TG ) = [T G - % pss o)

where

¢ i 2. X AL
21 (P)S(J% /bJ) = 62—_;1—)_‘5— f e 1€js4 /bJ d 21 (x xz,x3,xq)abg...o(xq

12

%0 = PZ x % [[Bx® x5y ) B (xS ~ xRg 1O (x5 ~ x5 )] X

X (-Q-) [[[ A, (<4), Apy ("Pz)]) Aps (X3 )] » Apy ("#9)]‘0-) .

The summation is over all permutations P of 2, 3, 4. The presence of
the function o (defined in Section I) is due to the fact that, for
technical reasons, we use regularized step functions in this paper. It is
not necessary to do so in a theory of local observables, and the reader

can banish ¢ from his mind for the moment.

The "retarded function" r, is actually a tempered distribution

defined on



(p+ 2 p=0}

4=

The fact that ¢

Z;(p) = [U(@.z—me‘)]?, (P

=)

can be restricted to the mass-shell manifold {p: pi::mi, 1skgd4 } is
one of the most important results of the asymptotic theory. But it can
also be understood by studying the analyticity properties of r;. The
latter is indeed the boundary value of a function H', holomorphic in a
certain domain. This domain (the full extent of which is yet unknown) is
the same in a theory of local observables and in a Wightman, or L.S.Z.,
field theory. (In particular, it is invariant under the complex Lorentz
group, even though r; and H' are not invariant and have no simple
covariance properties.) As a consequence, all the analyticity properties
which, in ordinary field theory, can be obtained by geometrical means
(Lehmann ellipses, cut plane in s for fixed %, etc.) remain valid here.
There is, however, an important difference: while in ordinary field theory,
H' is polynomially bounded, at least in the initial domain where it is
given, in the case we consider here, it grows exponentially in complex

directions.

The second important difference with ordinary field theory is the
occurrence of the "intrinsic wave functions" fj in the left-hand side

of the reduction formulae. They are defined on the hyperboloids gpj:
p? =m§ } and given by

(&7., a

1£ ) .. ¢ (@} °
5 [/b) oS (/b)AJ o) ) /’L L >

Lep) = (o, Aje) 5L (-pR) A pr<e

It is well known, [?j, |:5], that they have analytic continuations on the
whole complex hyperboloids {kje (4 : k? =m§ }. Because they can be
shifted by applying real Lorentz transformations to the operators Aj(o),
it is clear that their zeros do not introduce singularities in T. How-
ever they are the source of one of the difficulties in finding the growth

properties of T.



We now describe briefly and heuristically the contents of this
paper; the reader who is not interested in technicalities can read this

outline, the conclusion and Appendix 3, and dispense with the rest.

Let F(s,t) be the expression of T(p1,...,p4) on the mass shell
in terms of the invariant variables s= (p1+p2)2 and t =(p1+p3)2. It has
been shown in [ 6 | that, for t<O0, F(s,t) is analytic in s for Ims#0
and ‘sl)R(t), i.e., in a cut plane with the exclusion of a large, but
finite disk. We first follow the proof of the corresponding analyticity for
H'y, and try to find bounds on the growth of this function at each step.

A good part of the effort is devoted to circumventing a totally unessential
difficulty: Dbecause the retarded functions are distributions, and not
smooth functions, the function H' grows, at finite distances, like an
inverse power of the distance to the boundaries of this domain. The remedy
is to use, instead of H', a high order primitive of this function, which
is continuous at the boundaries, but, at the end, we have to redifferentiate
it to obtain bounds on H'. How to obtain such primitives is explained in
Sections I and II. Just as in E6_—_I, we study the restrictions of H' +to

a certain submanifold v(t) (defined in Section II). This restriction is
analytic and obeys exponential bounds in certain tubes contained in ?/‘—(t).
It is first necessary to obtain the bounds satisfied by H' in the domain
obtained by applying complex Lorentz trsnsformations to these tubes; this
question is answered in Appendix 2. The estimates then proceed in a rather

pedestrian way and the outcome is the following.

We consider the restrictions of H' and fj(pj) to a certain
submanifold of the complex mass shell (in which, in particular, t is
fixed) and denote G(w) and fj(w), respectively, the expressions of
these restrictions in terms of a variable w=s+§—££— +b(t). We find that
.’g'ﬂ is analytic in {w: Imw >0, |w|> R"(t)} and that (omitting growth near

the boundary at finite distance), for some >0,
i
{ w|2
1) lgw) | ~e(t) e vl at infinity;

2) |§“(W)I is polynomially bounded in a half strip along g w real, w >R"(t)}.

We study the "intrinsic wave functions" fj and conclude that for
a proper choice of A.(0), :f\j(w) is an entire function of w such that,
(for a certain ¢£'>0), |ij(w)l< et (t) e t wlz. Using the possibility
of replacing the fields Aj(x) by fields Aj(x;A) =U(x,A)Aj(O)U(x,A)—1
(for real A€ LI), we then prove that V"P\(w) [the expression of F(s,t)

in terms of w, for fixed t] is tempered along the real axis. TLet



Ann J‘.:!
and (for sufficiently large L)
L 7 2) dw’
E(w) = 7 (w) - = L (wr?) g
27 ¢ e w bl (w- w)

€ being the contour following the real axis for |w|>R"(t) and the
semi-circle {w: |w| =R"(t), Imw >0 }.

Then E is an entire function as well as ﬁ(w)E(w). But

(G () - ""’”-'w’"f(w)f T (w?) dw’ .
g wlla (w/_w)

Prawr) E(w) = <

I(m—’) A2’

k = (27z)”’ w-l-f (-ur)/ - y | mcter &
f w’l (/- w)

80 ” /2
[ ¥ (w) Ec)| < crceret 1!

Now, by theorem A3.1 of Appendix 3, if the quotient of two entire
functions of order % is an entire function, then it is also of order 3.
Hence E is of order %. But E is polynomially bounded along the real
axis, so that, by the Phragme'n-Lindele theorem, it is polynomially bounded
everywhere, i.e., it is a polynomial. Hence T 1is polynomially bounded.



I. GENERALIZED RETARDED FUNCTIONS

1 Definition

Let A1(O), A2(0), A3(O), A4(0) be four bounded operators in
7€ belonging to the algebra of local observables attached to the following

region of Minkowski space:
(«0 wiemicpl]
We define the "Araki-Haag fields" Aj(x) by

-1
Aj (x) = U(x,:t) AJ(O) U(x,:t) , (J=1;2/31 4)

The Wightman functions associated with these fields are defined by
s

?J];m = (L, Apy (xpg)eee Apy(xpy,) L)

where P is any permutation of 1, 2, 3, 4. They are bounded and continuous.

Their Fourier transforms ﬁk};(p) are given by
4 _17 ¢ ~r
. = . . ¢ <
S(.%i PJ)?JP(/O) (27 [e=r ‘4%1 /beo‘]wf(x)d"‘i"‘ o,
or

4

—2 3 M
Z}é.(/b) = (27) \/[ex,c ;:Z/: (";"'x4)]&%(x)d%xl"xg)"’va/f(’(g—x)

The generalized retarded functions (g.r.f.) will be defined with the help
of a fixed set of regularized step functions (chosen once and for all in

this paper and independent of the choice of the Aj) by the following rule:

in the usual definition of the g.r.f. (formal in the case of
a Wightman theory, legitimate in the case of Araki-Haag fields) each
geTefo ?S(x) is obtained as
~ [
%S(x)“‘me = 2:‘2‘);/9,? (x°) 2122? (x)
where the sum extends over all permutations of 1, 2, 3, 4, and the
«zfé,P are the characteristic functions of certain open sets (these
open sets are the intersections of finitely many half spaces); they

depend only on the time components xg—xi.



In the definition to be used in this paper, each /b P will be

replaced by its regularized o S,P

NS _ o ~ ~
25 (<) = PZ(«%I},( ) UL o (1)

a o = o ° L4 o
*-)(S,? (x°) /o(a (Xf°-x7%) cee X (%2 - %2 %P(xlo)

a’x;" dx;"c/xg” a/x"o (2)
where o( éo@(R) is chosen once and for all and: OsO( <13 o( (t) =
= (-t); supp. X, = [= f/z, f/z] f°< (t)dt=1. 1In all that follows,
1 is to be regarded as a numerical constant, never to be changed; nor
will the function o be changed. On the contrary [o and the choice

of the operators Aj(x) will vary.

Note: If % is of the form ‘),/1/2 where/ and /2 are charac-

teristic functions, note that < */\./;é (o(*:)()(c( T/Q However, we

have

Supp. (A X' ) = sepp.oc » swpp. = Tepp X F(sapp 2 Osuﬂ,b)/a)

C (sepp. X £ ““"/'/”/a N (sappst + Sepp. X, ) =

= sepp Jse 2 Ne Xy ) ] -

This remark is of some help in finding the support of the g.r.f.

By following the argument leading to the support of the usual
geTefe (see for example E7:|) it is easily found that, for any permutation
j, Xk, £, m of 1, 2, 3, 4, one has (in the notations of [ 7], [8]):

Sapport of gm (=J1"’E1‘£Tm) = —Swppont of ;va =

{x:xq—-x e V- c 7= J, fé)(’}

Seppoaré of’ &”"J (= ;l&?e‘l‘ M) = = Seppoarof ;EI"”'J =
{X : Xi—xmévt- <, X[—Xmevtcl xk —xd» e—-\/—--+c}u

7+ | 7+ =7 |
U{X:xi..XMGV—c)x!—Xmév—c)Xl-j €V+—C}~ (3)



where c¢=(a,0,0,0) and a=9(£1+ {5).

The corresponding tubes of analyticity in momentum space as well
as the Steinmann identities and the coincidence conditions in momentum space
are the same as in the usual case. If we assume that each field A
describes the particle labelled j, the scattering amplitudes are yielded
not by the ;S themselves but by

~ / —_ N ~
amd‘ (K) - Q{? (sz-’— mz)amJ‘(X)

9
~ — 2 A.
a (x) = QZ,T(DX/‘“/""-,L) - (x)

(4)
etc. Also denote
4 ~
o 77 (c :
W) = JIa, wmi )% o
The coincidence conditions are
7 - a’ = 5 2 <
xl, () L (p) =0 f /3</‘3
’ _ ’ _ : 2 2
amJ ) fcé,é (p) = O o (,3. + )< /Z/*
and conditions obtained by exchanging a and r
(5)
Steinmann identities:

We recall that each g.r.f. rS (resp. r's) is the boundary value
of a function analytic in a tube %;:s. All these holomorphic functions are

branches of a single analytic function H (resp. H') with

H' (&) = T (#*_ mj)ﬁ/(z).

U
h
L.
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We also reca11.|:6], |:7], [8:] that, using the local edge-of-the-

wedge theorem, one finds that H' is holomorphic in a primitive domain

which is star shaped with respect to O and contains O. It can also be
shown (by purely geometrical means) that the envelope of holomorphy of the
primitive domain is schlicht, i.e., one sheeted, and moreover invariant

under the complex Lorentz group. This fact was of great importance in [}:j

and is equally important for this paper.

2. Regularization in momentum space by division in x space

The contents of this subsection will not be directly used in the
rest of the paper. However, the analogous operation for a set of Wightman
functions and g.r.f., in two-dimensional space-time will be used. This
subsection is intended to make the meaning of the procedure clearer and to

stress its generality.

Our purpose is to give a definition of

-N
[(Xi-xz)q‘—At] 7 , wheee E'MS'(X) = t7__([,[(D)St-/-»zf)fz\'ﬁs'()‘)
and ;S is any one of the g.r.f., the definition being such as to preserve
all the "linear properties" of the ;'S: support properties in x space,
coincidence properties in momentum space, Steinmann identities. (Here A2
is a real number >0.)

Let A and ¥ be two multi-indices and D's, DY

the
corresponding differentiation mcnomials in the variables ng (j =1ye00343
p =0, 1, 2, 3). Denote

~uS A o ¥ oo
z/sy (x) = % (D <><*/P,S (x°)) D %dl;(x)

An examination of the proof of the support properties of the ?S shows
easily that the ?isy(x) have the same x space supports as the 5
and that this property only uses the coincidence properties of the various
DxchfP(x) in x space, i.e., the domain of analyticity of their common
analytic continuation DY w(z). This domain is left unaffected if we

¥ 2 N 2 2
divide D° w(z) by [121-z2) -A“]". 1Indeed the manifold {z: (z1—z2) =A
does not intersect the tube {z: Im(z1-zz)e V+} nor any of its images

under a complex Lorentz transformation. Now the initial tube of analyticity
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of any 7:7'13 is contained either in {z: Im(z1-zz)év+} or in
{z: Im(z1—z2)E‘V-}- and, hence, is not intersectig by the manifold in
question. If two permuted Wightman functions DY‘hQ, and 5¥Qﬁ§” have
their tubes of analyticity in gz: Im(z1-22)éEV+} their region of
coincidence is unaffected by the multiplication by [121-z2)2—A%]-N since
the latter has the same boundary values in either of their tubes. If their
tubes are contained in {z: Im(z1-zz)ev+} and in {z: Im(z1-zz)é 'A },
respectively, then their region of coincidence is contained in

x: (x1-x2)2<0 } where Bz1—zz)2-—A2_-I N is B®. [We have in fact
reobtained the well-known result: the domain of analyticity of w(z) (and
of wa(z)) is contained in the complement of {z: (Zi'zj)2é TR+} for
any pair i£3)d

Hence, if we define
‘ N — ANoXES
[("1 - Xy Y2 AzJ /z,le's; (x) = % (.Z)Po( */PS (x"))[(xi—xn)g—/\"l D Z)'f(")
| (7)

these distributions have, in x space, all the linear properties of the

;S(x). The same holds true for
~ N S 2 27 2 -M 2 -, Ky
~o 2 ~r
IS (x)’c/sx(x)-_-[(x,.‘ Q)= A ] [(xg-xq)—AJ [(xz_x“;z_/i] ’C/ex(")

defined in this way and for 'K‘N(x)?'s(x) defined by appropriate linear
combinations of the 'I\{'N(x);ix (x).

To see the effect of this operation in momentum space, we now

=N ’ _ ~ 5%
study W (x)et);,(x) ._ R (x)iggq (Dxt-f-m;)?();(X).

- ; -1
Aar = [(2- %3)"“—/1"] 1[(23— 2 %A%/ 4[(.32_39)‘-/4‘]

, .
. s s A . _ . +
is analytic in the tube of analyticity of WP' {z-x+iy. ij_yP(j-1 )ev s
i=2, 3, 4} and satisfies the required conditions to coincide in this

_ tube with the Laplace transform of a tempered distribution KP(p) with

support in the cone

S'E:Zy/b: f?‘oévl /b}3+/b?4ev‘. /bpié-v—+§

7

N
On the other hand ‘b)’P being analytic in the same tube, its Fourier
1
transform ?U"P(p) has its support in the same cone SP' More precisely
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P

/ 2
Swpp. fk;’ (- fg'

L 2 -
{f'f?4>MPq 2 fry<9; Cb}4+/>23)2>

2

M (-] (- ) . 2 2 °
(Pe)P3) 1+ Pry *+ Priz <O; /b?1>/‘ffP1 , /bz»t >O}-
Thus

W . S 3
s . <
whp P 7 o P
hence

/\, A
Sepp, (lf}D ) ?L{;/ () ‘%;

We have thus shown that (KP*)NQJ“(p) has the same support
properties as 1&T'(p). Using this fact and following the usual argument
yielding the coincidence properties of the r'S(p) (in momentum space), it
is easy to see that the (K*)Nr's(p) [as we shall denote, by abuse of
notation, the Fourier transforms of the kN(x)?'S(xI] have the same

L. . . S
coincidence regions, in momentum space, as the r' namely (5).
9 1

In fact we have

K_Z-" (p) = - ARet_(£1P1 )’A)Apgé (ézlbz ;A)Aka— (63(/517‘/53)5’4)

* N x N
Pa\

* N ~ . *
o ()= e P AV AL ey, 5 A) B (e (v oy 25 A)

Where

cpx ¢
ARe.é (/b) A) = (278)_4 o A —.e T A:Ifx
%;V‘“ (x-éy)”~

ZSRet(p;A) has its support in V" ang satisfies the equation

(3, + A*)Ape, (s A) = S(p).

»* N . _ -y s . . -
A (p3A) = 70741 oy [ e [eripr a]
1<V’

satisfies
) * N * (V= 1)
(/L]’ +&42)Zﬁket (p; A) = Zjik: Cp; A) oo Vo 1

W
Standard computations show that, for N>2, ZQRﬁt(p;A) is a continuous
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function (in the whole space) with support in -\7+; for N=2 it is a ‘é‘”
function multiplied by ﬁ(po) 6’(p2). For N22 we have

-1
B AN B ) = [ s (o147 0D

In fact

2(wnv-2)
A= s a) = £ 8% 8 (p?) T, (AVp?)
Ret */ 2 @) 2™ (~v-1)! (AVE)N2
and JN_2(Z)/ZN_2 is an entire function of 2° which, for real 1z, satis-
fies

’JN—?.(%)/ '?N-Zl < b (J—N-z(%)/zwcz)

25 O

It follows that, for N 23, A;ﬁt(p;A) is a 2N-5 +times continuously
differentiable function (this is not true in two-dimensional space-time;
see Section II), with polynomial behaviour at @ . Hence (K *)N‘w‘(p) is
for sufficiently large N, a 2N-q times continuously dlfferentiagle
function with the same support as W!. (For a detailed proof see 71,

P
[9].) We have, for any multi-index /e such that l/a |< 2N-q,

A ~ - ~ »
| D% (i %) @d_;’(/,)[< Crl2 =’_ZifZ‘ (/s)]

Hence, for any Ye 55(7/?12)

- / ~ PR ~s
o i O (R ] e

nstB
ogpmss

< CfreElle - Z eI ey

15‘4' <3

0<spmcd
If we restrict ourselves to functions ?ﬁ with support in a fixed compact,
the last quantity can be reexpressed in terms of Iraéxzm,lD'sgg(x)l .« Since
'KN(x)r'S(x) is of the form 2 D'e)/P(x) Dx‘ld' (x), ,aa similar estimate
holds for it and we conclude that, in p space, (Kx) r'S(p) is 2N-q
times continuously differentiable. It is easy to see that its analytic
continuation, the Laplace transform of 'ﬁN(x);'s(x), is bounded, in the

tube where it is initially defined, by

l(W*)NH’( +ig)| < comste (L + Mp i //z)hex 0"2‘4_. .
I P /b3..= DIJI
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[Here H'(p+iq) denotes the common analytic continuation of all the r's(p)
and (K*)NH' denotes (symbolicallyl) the common analytic continuation of all
the (K*)¥2'5(p)] Note that
~ — ~N
Hp)= (-0 -a)Y(-0, -A*)Y O
/6, /62

YV oy
&ﬁa-A ) () HEE)
We have given a very sketchy account of this subject here since the corres-
ponding properties for two-dimensional space-time (the only ones actually
used in this paper) are explained in detail in Section II. It can be
proved that the division process can also be applied to any set of (possibly
"sharp") g.r.f. defined (by any means) in a Wightman theory. This proof will

be given elsewhere.
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II. RESTRICTION TO A SUBMANIFOLD

It was shown in I:6:|, I:B_-_l that it is possible to restrict the
function H' to certain tubes of a certain submanifold W-(t) The latter
is defined, for real negative t<O0, as the set of complex points k1,ooo,k

4
(with of course f‘%kj =0), such that
J =

ii =(‘Tf;_) .2—1_\/? (m;'—m:“—t))a)

£2=(9‘C:2) ..L.(m:—m:'-*ﬁ'), o)
VAG) eve

LB = (-7, , Zj-_?(m;“ m;-_.é),O)

where 91’1 = (9!’?,9'(1) and ‘ﬂ; = (Wg,ﬂ‘;) are arbitrary complex two-vectors.

)
The eight tubes *tJf +A', +tAB, *03 are defined by

Tom (m,+ 7, )€ V7

ae

df—={”" /Imat;_ eV’]

)
dﬁ' = {7{ : I (7t'2—9‘c;)év+} ]m?r; év+;
d.g = {7&' S 4 (”“;4-7?',_)6'(/4', Imoc;ev_}

/_ . -+ _
a3 _{7"- Im(’lc&'—-ﬂ.‘;)év/ .Tm’JtiéV}

They consist of points of analyticity of H'. Since we want to
obtain some estimates on the restriction of H' +to these tubes, we shall

not use the purely geometric methods of [6], f___s:[, but proceed in two steps.
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1. First step

The distributions r'S(p) can be regarded as continuous func-

tions of the two last components of the momenta, {p’“ } __2 5y with

values in the tempered distributions in the variables pJ, pJ

To prove this well-known property, one may introduce, for
j=1, 2, 3, 4, the notation

5 = (7., zJ) | i 7, = (a:/.", wl) = (,c;.",,b.’), anod
%
J

J
- 2 53y = 2 3).
/z._('c;_ ) (/3.,/3)

’
Similarly, in x space, we denote by ij the two-vector (x?,x;)

Consider now, for example, the distribution a4(p)==a4(7r,r) and

define

A A - -€ . 3 2 2 23 3 .
&, (X, %) = (277) /[ex,b -LJ2__I1 [5. ("~ AT G e )]f,\
3
g 2 2 3 kY
X a.4 (=) J/:ji d(:/_ -, ) a(();. - x, ).

For fixed &, +the domain of integration is given by

(x;— =2 )% 4 (ng_qu)z < (%) - N <»~<f—x1)l

& 4 4
Hence

3 A egl
[Dz a, (,’?,/z_)|<@9‘r) TT (lo( | +2)° [(,_x - o) = (. _xgz] -

4 oy oy X
RS o 1. X2
where ||A|’ stands for K=1HAk(O)H and D ==Dr1 Dr2 Dr33.

In particular

la4(),<\,&)|$ 8’221’) /A” T—’; [(x - X, +-a.) - (x - x, )ZJ
d

and similar inequalities hold for the other #5  defined by

as(?, )L) - (Z’Z’)_Gf{&xlb -‘JZI [¢2-()& _X ) -+ /20/3()( —X¢ )]} >
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Tet Y Dbe a function in &0(77\’6) and

g A A
‘?(?) = f{ex,b &2 (:/. -, )75. } ¥ (or) a/ziz; oA P, o ¥xcy

i1
We find
-€ N AN A 2 2, A o
IfS’(ﬂ‘)%(’?', 2) dx] = (2m) |[Feyaez,m) TT o (xd.—x‘,)ls
=t
< w3 (2m)” A l“ch)lTTf(" e ;o) ol 3—7“9)} <
a3°— Ak + :>|*b X:[
<’R"5(29r) [AII II‘P(X)-”— (x —)(4+a.+1) ” 2 (_,sz(%‘a)) X

3/2
x { f (§°+a,+-1>‘4otf°d§‘}

where the last inequality uses Schwarz's inequality.

The integral in the curly brackets is egqual to 1/3%3. Going back to

momentum space we find:

y‘P(:r)a.,,wr, 2) A7 oo | < @VT) emy A ”TT (i 2 5 w1 +a) Por

J

and

The other g.r.f. have similar bounds. The vacuum expectation values of the
"multiple commutators" are linear combinations of appropriate ger.f. (for
example !1 Lg r3, 4]:]] Zi'+1t2¢3¢4) and therefore also obey similar in-
equalities. Finally the permuted Wightman functions ch are obtained ss
linear combinations of expressions of the type (/3t2t3(p°))cj(p) where

C. (p) is a "multiple commutator" V.e.V.; ,)(j is the characteristic func-
tlon of a certain open subset of the space of the components p;; A is a
%3“’ function with compact support and it can be chosen once and for all
in a way depending only on the spectral masses of the theory. Thus we see
that there exists a constant Co, depending only on the masses of the

theory, such that

L¥dr)

, -3 n_-s’ [2_ a 4 t_omt ﬁ
}f‘?(r)aﬁ (7, %) A'x . a/z7f3 |< (2V3 ) “(2) Al "51;5(9/3{’ +a+t) }Z-Z-(fé £) ”)"L‘(dk’)
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12 = 1| 9 ¢
|J“lJP (70, 2) P () dre| < C, I A ”;%s\z | 4+ 3>Po LPW)"L} (olre)

o 5% 5% 53

with o =
F PR (apr )™ (Bl )

The preceding considerations allow us to define, for any real t<«O0, dis-
tributions

25wy 5, EP) M oo, W, oo

N
~

as the restrictions of

J
25 ), 2 n), Y, (7 %), Wy (7, 2)

to the manifold defined by fixing

n o= 2 (m* om0 t) o
* (z\/.7 3 ’ )
2z, = (_ﬁ'__(mz-"'-t*‘t‘)) o
2 2/ 2 )

2, = (2 (mp-m5-2), O)

3

2 y-&
k= ( 1 (mz‘—m‘7'+c£—) O)
2 p)
v gz *

(8)

The distributions we obtain possess all the linear properties of
the set of g.r.f. and Wightman functions of a theory defined in two-dimen-
sional space-time, provided we replace mj by /uj, Mj by c/%;, Ejk
by ‘/‘éjk’ where:

2 c 4 2 2
/u-: = /A—;‘ = m;—_ 4_1;. (m;_ y, -¢)" = -ﬁ.—kmz*mg)'t;[(mfmli)-é]
T o T _4__ 2 R N l__ _ 4 2 ‘Z_g
M =y = 7’72 % (mz—ma +¢) = by [(»zz.;-m?) _é][(ml-m¢) .



/2 2 z
c/ﬁgi = - %ié- %~ ot = &)
A = M7 L (mr -G - 4)T
3 3 4¢
/2 _ 2 1 2 'R T
(/zz - ,72 - Z_é— . -ma—é)
VA z Ed 7—_ 2_ 2
A= A e e
2 2 2
- = — 4 < 2 2
22 34 s s (72~ 75 T )
AL = = M = A ml - =)*
19 28 ¢ P 2 ~ %+ g = 7,
2 2
= M = ME ¢
23 24 73

We also define, for future use

C/% = »n {‘/“1/) V/{‘;} anol Al = n [c/‘é‘; ) a‘é‘:}

1 2
We have
ya PN 3 =
zé (%) = %{«*A’P(xo)] Z);,t(x)
‘
NS A = 777- x Z;uy 2
7 (R) i (U),:\’ +/U)) ¢ R
A 9 ” N
97 2y = T/ (O, + p7 )80 (=)
P ¢ J::l ):/ J ‘Zé

with evident notations; the Dalembertians are two-dimensional.

We can now apply to the functions ?{s the process of "multipli-

. N 5
cation" by Kz(ﬁ)Kg(ﬁ), sketched in Section I, for the four-dimensional
case, with

Rz (%)= [(%_;3)1_,42][(%_;;)2_ 4?]

7(\3(;‘) = [ (% - %, )% A* [

By abuse of notation we denote
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AP NNA Gy I SN TR VR J

/’(z(x) Ks(x) Qé (x) , ele, ,
the distributions obtained by the "multiplication" as defined at the begin-
ning of I.2. and by

~ L o,
(g )N ()b 2y, e,

their Fourier transforms. The common analytic continuation of all the

N L_,S . N L
K. * '
( o*) (K3*) r!” will be denoted (Kz*) (K3*) Hl.

We shall now make a detailed study of the behaviour of
N
(KZ*) (KB*)LH% in the initial tubes where it coincides with the Laplace
transforms of the various ﬁgﬁgi's.
aN~AL x/\
a) Bound for K2K3D ‘w'P’t
. . N L o \
We have seen in Section I.2 that (Kz*) (K3*) Zj% ; 1is in effect
N L ’
1 . * :

the convolution: (KZP ) (K3P*) Zdi’t, ices,

b, )Y (H )2 (¥ X, ) =

_ »* N * N .
= “—_/‘é?eé (61 (7, -7} );A) _A_R“_ (g, (7 -7}) ;5 A) X

L
X A%

J . ¥ 2 T ) z
4., (c‘o(z;,pa:;_sr;-rs)JA)?r Z{hé (x) A x] dx] o !y ])

where £j=‘l’1 (3=1, 2, 0); Ej depend only on P. l_lRet('Jr;A) is

the retarded function in two-dimensional space-time given by

- X q_-i 2
Dp, (rsa) =~y bm [ 7T [oip)a] oL’

Ye&Y’+

ek AN
NV N 2 .. — ¢ PN, e ge on
A" s A) = (=) (2x) 7[’:10 fe [[#-p) At %

7€V+
The range of integration is contained in the compact set:
' e V7 o.q¢? 7’ v-© o ) e VT,
P4 ST, T € 5 e V7

w -w e s oo o - ! — Ve e - &V
P4 Py 5 Tyt Tpa Tpy ~ %3z € > p1 T P2 .
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This compact set (of volume %W 72' ( P4)2) is itself

contained in the set defined by

4
wl-xle| L Z: = ° ; g’e Vi o ‘= >
ld 7!;.1 =1t s ‘dlsg;lt—l o y=1,2,3,4;
[t° 7f°—’f’°—7r’°l\<-é 172 | ama 7% )| < S, S, =71 for
d J [4 e-z12 % d ¢ T k-2
al f,—a’ci)

as can be verified by straightforward computations.

Hence, the range of integration is contained in the following set

4
X7+ ° ° )
84(2’4-7(1/)ev ’ |£4(az;_7r; )lsél%‘i,

— 4
Y + o /7 ©
g (x—myy eV, e G- 2
4
’ 7 =7+ g ) o _ /o Jo0 7(° .
éz(”}’”‘i"‘}”"])é‘f, 63(”1*'?{? 7(4"77"1){&2:';'&'
In this set
Xl 2
,,TIX !t ar®
ls(Zl D et (2 o)
On the other hand, detailed calculations show that if 7%+ 7(1=u,
o] 1
T - =V,
N-1-2 N-1-4
2" * N Ble) B(v) A
b., (7;A) < 2 . y
2N~ (a1 )) (NM-a- 1),

2 204
The expression in the right-hand side is the exact value for A =0.

The derivatives (in the sense of distributions) are actually functions

continuous in the whole space, with support V+, provided N-r-s-120,

N-s-2 >0. We can also write

N-r-2 >0,

P 4 (x°)B(x?) 782("/‘1“2"4) (29?")/”“
N LY P ,
e A 2™ (Monag)) (M-A-2)

Hence, if o 1is a bi-index and
_Z)'(_ 9°<°+ ™y
gl (a700)% (2xt)%e

and if N-|& [-120, (|| = o + o) we have
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'_D A (-n'), < Gcrx°) 9(7:'2)7?’2‘{"/'1"“’) (490°) %!
2N nqay-1)] (N =1l -2)!

U

.

< 8 (22) B (nr) 4 1% (gpoyd¥-2)—1xI
2Vt (vo i -1)1]"

Combining this information with our bound for ?I}-P we easily

.t’
?
see that there exists a constant C1, depending only on L and N
and on the spectral masses of the theory, such that, denoting
7 = Z(E ‘7f°l
R=1 £

taking as our independent variables '71’1, 7'(2 and 7(0 = 71’1+ n,, we

have:

4 kz /lo N L Y
12,2 D D (%)™ (1) (T, )] <

< C AT 'Y=y #2011 1=l [, (g cL)T]|z

b)

(9)
for N-|r [-1320, N-|r,|-133%0, I-|r |-1330

One also finds that (Kz*)N(K *)L( ?(xwp 1,’) has continuous
. s 9,
derivatives of orders II‘1|SN~14’ |r2|<N-14, IrOIgL-M.

The Fourier transform of that function is therefore a tempered
distribution which, when regularized by convolution with any test func-
tion in -70 , decreases at o . The same is true for the Y" which
are obtained from the wP,t by multiplication with standard 600
functions and linear combinations. Coming back to momentum space, we
can infer from this regularity properties for the functions
(Kz*)N(K3*)Lr}GS and (Kz*)N(KB*)I‘HJG. We now proceed to do this in
detail.

aNaT,
oK%

Bounds for S
Let §1 = x1-£3, 52 = 22-i4, }'O -2 -‘2 be our independent
variables in x space and denote 0 =( 7(1+ 7c‘3)° Since

x. 7. 2 E, ™
g=t < J k=012 2 %

Ma
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4
(when jz=:1 Tfj =O), 9'(1, ’té and 9(0 are the conjugate variables to

§1 » § and §,.

& 6
Let Y be a function in f(R) and
A
; 2§, o,
(5 ,5.5) = fe‘i=0 Jd Pw,, xS, e, o,

It follows from (9) that
P A N
[[ o= g2 3% PR RS DL (Rt A Y [ =

r® | [ o0 B D DY ()™ (k) w YUY, o) A, oA, A<
1 i o 7

1Yy - 4(N- L(L-1) =\ (-t -l | -
< C A mr)*fT Vo3 A e e A T T ) 1] e

X 1¥ ()| do

where
4
7= 2 IxZl; [a+a)T+2]2< 2 (2+ 1420?27 72),
k=1

2
Defining S =J,Z_-1 2.0 ]’)T‘;|2+|7t‘;|2 we find: T 4S so that the
= lycy
expression under consideration is bounded by

- - - S VEY N RN S
c, la Ilf«S' Wl=39 +4v-2)+2(-1) o / '[1+(1+a_)",s"f]i<f’cx)ld:r/

(C; Ly 11 +3 +4(n-1) +2(L-1) (:),7:«)3C1 ).
This is again majorized by

CONAN S (2059 (14 (24a)2SBT U0 0 o iy <

+ ISR (10522 (10 a)2 @

” R, 2)% |
< /AN fusta (245t Py L’(dr)}'

where R1 |x|‘9+4(N'1)+2(L‘1)‘Ir1"Irzl'lrol
2

- 4
et < CLIf o i ainom |

Let '§2 denote the differential operator
2
~ 2 .-27. D?.
§*= - 2 Syoe t HEi)R
0 (3% ) G&*)

then the last bound can be rewritten
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C) (2o Al {u SR(14+820 0 ) +(1+a) IIS““(1+S‘)2¢H
L‘L

Since the

where Ib’ls 8 and the functions ‘/’\{( are &% functions defined
once and for all, I:in particular, independent of a and of the choice
of the fields Aj(x)___[, with derivatives bounded in the whole space,
there exists a constant 02 depending only on N, 1L and the masses
of the theory, such that:

lfK 1R, %) z" (%) S’(§)(1+//? 1) (2408, 07)" (2« 4E 1*) Far <

KN

< Ca Al (1+/.4-I+/u.:-)4{ I (1+ )2N+L. 1?“ .-

+ (1+a.) "(1 )"N-*L*S"F" }

This holds for 2rg N-13, 2hgL-13. It is important to note that
the norms on "f occurring in this formula are invariant under trans-
lations.

We now choose (once and for all) a function & of one two-vector
ge@(Rz), with support contained in {ﬁ |x°|+|x1|< f } and
g(2) = Jeiwxg('lr )d'n" , with g(0)=1. For any £> 0, € < 1,
define ge (8)=1/€ g(x/e ), and &g (7)=g(em™ ). For 0KEg 1y
0<"ls 1, we define two functions on R 6 by

A A A A
ge,rl(f) = 9 (5, 3€(§’-)31 (%)

G () = UGG

We compute an upper bound for
o o dot, AN A, DL / 2 ’ er/
55 = R GRE IR @05, ) (e 20 ' ) 48| =
s g

, Ao
(1+4E //‘)"(1 UMD Car ¥ 1) X
(A48, W)™ (1408 I2)* (1+0E1F)% : ¢ °

A A )
AN WED Ka‘(s')"c‘;*s'(;') %7 (E-%¥’) d§"
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where I ) IS 2r-4, |°(2| £ 2r-4, |o(ol$ 2h-4 (for future purposes).

Each derivative of a given order of

¥ (1w nE ) (1 HELUNT (L HEL 02T £

has its modulus bounded by a constant multiplied by

(2408 N2)" " (2w 08 0%)" 5 (2w 45/ 1%) 7

s 1l

Moreover, when (- &' is in the support of § there is a

€17 ’
constant »x, independent of & and 7 such that

(1+ //E‘l.’ll‘l)'1 < X (1+ ”5"")—1

Hence there is a constant 03 depending only on the masses of the

theory, on N, I, and g, such that

A A,
e e [e RY I REGIES G0 G, | (op sl s al | <

-

, 12 z )Y 1 .
< G lal@ea) (depgrr) (L5 + .7_1,_2)).\
g1 1261

-z I I1%,1
N (2+08,0%) * (108 0#%) *

- 2 el _
(1+//§;//z) z

with R =4N+2L+10.

This will enable us to estimate

o/, o, <

2* D ) Doe ~ “H’
x, , ¢?£,7 (7) 7, (71;9*) (’%‘*) /é (7r)

in the initial tubes. For this purpose, we must first estimate, in

each of these tubes:

4
Sup |exp < S x|
n A A i=1 Jd J
X €& supp. Qt +Su/b,b.3£7
7
or, equivalently
St fo (_. i ;\Im’k‘) =
£e sapp. 275 4 sepp. 3 e J
T s 3oy
= Seep (_ Z<, x. .[m)'t".) + See (... i x. Imar.)
A g4 d J j J 4

A -
X e Supp. ,kt’& 9&Ju”.§£'7 41
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We first consider the first term. It is sufficient to consider

two special cases:
1) 9'S=sl;' (22 1421344)

N A, A 7+ .
Supp, a, = |x: J;.-XqéV—C/ J_:l)z)s}

In the corresponding tube, Im flsev+ for j=1, 2, 3 and

3 4
_i )/\';Imvr = i(x X)ImTSCZImW: _":.Z lIm"ro’
‘:! £ J=1 J J-'i J 2 i:i ‘
11) #°-a) (142t314)
The support is the union of two parts

19)
{?: 93-}:' & V"'—-c) %—%ev*'-c, %—Qdév*'— c }
Writing

o) A

- é Im"( = —(%—xq)l'm?t’?‘ —(xz—%)zm@t'1+2'&)—

A A
- Gy =%) I, ,

we see that if Im'7r3eV+, Im(’!r1+7t‘2)ev+ and Im 7%, eVy

we have

4
EAT < @ (Tt e Tame) = 2 2 1Ty

2°) The other part of the support is obtained by exchanging 23

and 22 and yields again

2 oz 3 .
- &% I, < %éill':tﬂzl

Let us consider now the expression k‘?1 -fklm 7, When

fe& supp. & 7 and v 1is in one of the initial tubes. We have
b
4
A
& R g = S E e SR I R D

and since in each of the tubes Im ')rje".'v+, j=1, 2, 0, we find:
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4 2
2 % Tmm, 2 2 A Imn?/ (15 + 18] <
fe =1 470 d ¢ ¢

< E!;(/Im‘ﬂ:;ol + /Im)‘z-‘;’,) + V(_{i‘ImTC‘:

Putting together these bounds we obtain:
Lemma 1 If .|<>(1|$N-17, | o<, | < 0-17, | ol € 1-17, there exists a

constant C4, depending only on the masses of the theory, on
N, L and g, such that

. %, )
IZD:; :D,:: 3(5"1)3(57(9.)3(77‘3)1)er (P(z*)N(K3*) I‘/él(ri <
£R

< C, Al (1+°-)12(1+,uf+ 2Y0L - _:;_R)X

4
a 2, lIm.”f:\ -+ 881 ('Im’t':'+|1m7r;l)+7€1 'Im"t’ool

X e 2 ka1

(where R =4N+2L1+10), in any of the initial tubes.

In particular, let €& >0 be such that “”'Cn< £0=>|g(7r)|>%
and set 1= éh/(é(;4|7%||) in the formula of Lemma 1. We

obtain

« .
Iquj Dq::- j(é"k’i)g(é’%‘z)b’:f(Kz*)N(Ka*)L/_/éI<7r_)I<

el
L, 12 ‘
< 2C lAle” ™ (1ra) (1+/~f+ﬁ,’_‘)4[§-g + (2 +@)R_]/’\/

N

4
2 Z A Dnng| + €€, (1Tmnpl + 1Tmny))

X e‘fut



- 28 -

2. Second step: restriction to (%)

Let

o o,
¥i(n) = _Dw; D"’; g (&7, ) g (&7y) (1,2 )™ (4, %)% /-/é/(ar),

Y(+) is defined by: r,+ 7r,=0. To find bounds on ¥ in the tube

1 3
A c? defined by
ot = {7:- : Im(rq+1r;_)eV*) ImarieV"}

we consider the restrictions of e to the two tubes
+ -
% Tnimemye V', Imx eV, Imigem)=V*]

and

- + +
{'lr: Im(a—1+7r3)ev, Im’!’; sV ) I (n-;-/-?r;_)év }

If we fix 9, and 9, such that Im (7, +2,)eV’, Imw,&V™, we have
1 2 1+’ 1

to solve an edge-of-the-wedge problem: the restriction of F to the two

tubes yields two functions of 9r1+'h3= T, respectively analytic in

{R; ¢ Do e:'V"'}

(-

and
P - - +
{7:—0 : .L»pit'oé V , 2>n (yz;_x-:‘)év }

(see Pig. 1).

The boundary values of these functions for real e coincide
2 2
when 7o< 5.

We define

. o= e e = ’ 3
T vo= 2wt (f=0,1,2,3,4),

X

Pou = min { M, [T ey 1 /T o | ] .
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Then '.'P—, as a function of 7ro is analytic in a neighbourhood of

{uu"; J Imu.o> o, Im1];>0 ) I“°,</oz ) l7)’°[</01} U
U?ubl ))‘o ‘ ‘Im L(°<O, IM“I);(o J /é(o/</ﬂ1 ) /1";I</<)1 3 u
Ufw,s : Dre= Imw =0, lai<s , 1%1<~ 7

(10)
Introducing the new variables u!= log(/01-uo)/(/o1+uo) and

v('):log(/o,l-vo)/( /o1+v°) we reduce the problem to the application of the
tube theorem which yields the envelope of holomorphy of the domain;

this
envelope contains in particular the following domain:
-« -2
{u”z);:[a/z.; /2 - ’<.”’£’. ) lMgﬁ______l<2I}
[+ “ N Py o+ 4
(see Fig. 2) which, in turn, contains the polycylinder
{uo,v;: lu,\<f1(vz-i) ) Ivj,l</°1(\/7-'-1)§
(11)

In (10) the function ¥  is bounded by
C4’ A (1+CL)12(1+/«.7‘+ ;‘)4 S-Re(ea+£4)(/r""§°/+ /Imx?_"/)
1

/

' o 4C o (1+ MuR &l
64-4‘,( +_£?)e 1

|Indeed we have at non-real points of (10)

Imw <O ImTr36V+)' Lo (25 +272, )€V 7
50

O< Imm,° <= 2Tmm,° ; Imr, &€ V ; Immnx «sV*
Hence

4
2 IImﬁzol = 2 (Im. e° 4+ Lm0
=4

. ; °) < 4(’Tm7:i°|+ 'IM”?{’D.]
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It follows that ¥ is bounded by the same expression B in the polycylinder
(11); Cauchy's inequalities yield:

2" i
e’ 97{"

B (y,/)‘z
ﬂa)’ (VZ“ 1)2)‘

EZ’-'(rr)I <
=0

so that

I(Dm; + Az)b "I"wr)L(:o < [} Bp

(where /1 depends only on L and A). This means that
0(’. “1 ( se ~N 7 ’ é
'D"q 'qu gemx,) g lem) (KR, =) " HJ () .o
B c:1,(11:»«»:;’( + [ Im 77| ) 4 s 4
E * 2L
(M:tg) IIm I“lZL /Im?):'ll

y - ’
with b=_2a+ s:{i,; B'= PLC“I All (1+a)'2& R, F"L depends only on L and
Az. Here L 217.

Let us choose |°(2|< 1 and

Vt DL‘- ¢ ’
-D,,, = g . WA ls2t+2, €c2tl+2,
2 du, 20,

(meaning, of course, differentiations at fixed %, and 92'0). (This choice
forces N >»21+4L. We can take L =17 so that we must take N >89.) Then,
by successive integrations over u, and v,, we find (see Appendix 1):
Lemma 2 Let N>89, I°‘1|£1; |0(2|s1. There exists a constant 05
depending on N, g, and the masses of the theory, such that
when 7r 1is in any one of the tubes tot, * o', *@B, *+d3' of

(4,

| B .D’:: g (c2,) g(ex, Y)Y A’ (x)| <

1

\< CS HA Il (1+a)8q€_R ('{_‘_/‘:_‘./‘_:)466(/13"*«‘9/-&/.5" 1!20’)

where b=2a+ &f ; and R=4N+44.

The estimates provided by Lemma 2 are very far from optimal, but

they are of the right form for our purposes.
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EXPONENTIAL BOUNDS IN THE SUBMANIFOLD W-

In this Section we shall study a function F of two complex
two-vectors, 7'(1 and 4oy defined and holomorphic in the union of the
eight tubes t.¢, top', 1B, tAB or %Y and of open sets given by:

(A+t')N ,/ff’ where ./f? is a complex connected neighbourhood of the
real points such that 7!'? <,/Y.'f, TC f<./46'§

(e)f-@)n,/fqz where ,/}/%’2 is a complex connected neighbourhood of the
real points such that (9r1+ ?r2)2< :/“fz

(,)g'-ds')n,_/{ﬂm where A9, 1is a complex connected neighbourhood of the
real points such that ( 'It’1- "f'2)2<¢/‘é4

(03-(8')”:/’2’ where yf; is a complex connected neighbourhood of the
real points such that *rr§<f/t;§, 7r§<¢/'(p'i.

We know that the envelope of holomorphy of the domain so described
is schlicht and invariant under the complex Lorentz group of two-dimensional

space-time, i.e., the group of all transformations [A] given by E)\]"t’ =

= (0] 7, ] 7(2) and:

=1
in characteristic co-ordinates (uj = w§+ 7(‘;, vy= W‘;- 7(3.). Here A is

any complex number #£ O.

Moreover we assume that F is continuous at the boundaries of

the domain just described, and that, in the tubes, it is bounded by

| Tm %2 Tre 7°
[.'D“F(ar,,w;)\geb( m x| + 1T 7,0 1)

for a certain b>0, and for any o Wwith |o<ls1.

i = + =u. *t =v. +tv_.
We use the notation Qri_ ”*1-"3_’ uy u, Ty, vt v v,



1« Bounds in the extended tubes

We first prove the following

Lemma 3 For every o =( 7(1 , orz) such that, for some complex A\ £0
o= [A:I ', 7' Dbelonging to one of the eight tubes I of,
tog, t®d, ta@', the following bound holds:

IDYF m) <exp b (1Tmu,l + [T |+ 1 Imw_ |+ [Im 1),

Il g 1.

A consequence of this Lemma is that F 1is continuous at the

boundaries of the "extended tubes" )% [:Ajr/t, etc.
Proof We apply Lemma A2.1 of Appendix 2, with n=2, k1 = -27t"1,
k2 = ( 7t.‘1+ ”2)’ and obtain that, with our previous notations, when

e [X]ot, A£O,

,:D"‘,c‘(a_)'< exp %(/Im u.+/+ | T+ 1{;/4—2/1—»1:41/4- -&/Imz);/) <

<¢,x,¢.é(/1mu+/+/Im 7&/+/Im”:./+ /1;"“_’)

The last bound clearly remains true if <% 1is replaced by any of the eight

tubes.

2. Definition of new variables and analytic completions

We are now in a position to follow step by step the analytic
completions described in [6], and compute bounds for the continuation of

F.

Notations:
e, = (’1’¢+’t‘z)l = 14+I)‘
zi:“z";=’rzl ; za=“‘z7’?.=1z:z
Moreover we define
2 = 2(2, -p7) +2(a,_‘/-:')—@

T - - % (“'1"/‘":“2 +,u75 Y(2M + V-2 )



A = 1 & _ 2 _ 2
23 + (/_t- (ml m“ + mo )
where
D = Gomin (MEmi) = S omin (HE )
1< j<¢ d 4 4= L2 7 3
and /-z 1is defined in the cut plane z,d7li+ and Re \/~z3»0; M=_, min M
7 1)< 4]

2.1‘

First completions

%e start by considering points of the form |:A:l7r where A £0

and 7 is such that

w, = ¥ =0 > I >(¢/‘61”“-"%z)

For the justification of our subsequent use of these points see ES:I,
(p.252-25%). 1In the case treated here, note that, for fixed A #O0,

= & r AJ(n £ ¢ .
F_;([/\]”') 'I.'Tb ([ ](+ “?’ —))
-+
»ZeV
is a continuous function of #_ and o , holomorphic in Jr_ in

the forward and backward tubes: I { J: Imu S0, Imv_>0 _}; the

boundary values from these tubes at real 7r_ coincide when

(U + TNV, + T) < 4(.-‘6.;

[
(u =T Jovn — o) ~ 4<%,

(12)
Since we need estimates of the continuation of I'y, we do not use the
full Jost-Lehmann-Dyson domain (which is the solution of this edge-of-
the-wedge problem). We first extract from the region of coincidence

the real open set defined by:

(o + T/ )(aw o) N 4K

(x = T?)(a-77) < 4 e

(1%)

where

y A= g

»
]
i
q|S 9 9>

A4
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AL = man(pie D, e )2,

AP > max (b, pt) > \Al

It can be checked that the set (13) is contained in the set defined
by (12). It can further be checked that the region defined by (13)
contains the angular domains @ and -ﬂ, given by:

ﬂ:féjo {N,/ﬁ Real ; lﬂ—m_/:'</osim.€,

lp+ Vo2 _semt +/°|</o:.£.~6°}

ioe.,

R ={=, p i Iapl< [xp-2Vrre qops ]8 ]

with

: M
sen b < %:1 o/t M , (c:.-r&o > 3.?__)

[ R is the angle defined by the tangents to the hyperbolas
(x£a’)(a +0’) = 4 A2

at the point & =-pA = \/ 0"2-4¢/£2.:] For 0> e/{+</é, we have

0'> 2 Mo and ‘7'2> (/14-/42)2) |A| hence a'-= a+|A |/ is an

increasing function of & . From now on we restrict our attention to

values of ¢ such that

) et ;o lal . e,
o/>a , T>9% , T =%+ C>eM | T > A +A .

We then choose

in the preceding definition of R,

The first definition of (R displays it as the union of a family
of squares (double-cones).' To each of these squares we associate the

following set D/, :
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'DP: {o(,/s : Id—m-fl</°‘¢n9¢, s l/s+m+/°\</°""’ﬂ;}n

n[{xﬂg i Tma >0, Tmp> 0} U {x,p: Ime 20, I@A<O}Uﬂ<2:’ .
Ft([,\]oe) is holomorphic in % _ (hence in « and A4 ) ina

neighbourhood of D/’ . It is bounded, in D/o by

|\F (Cadm)|< exp b { [ Im du_i+ | T A2 |+ I T o (A - ‘%)]}
hence (usingl V0"2-4¢/‘t2<0‘)' by

\E ([a]7) | < exp b [Iate X ][20 + p (s § + 2]]
(14)

The envelope of holomorphy of D/o contains, (as we have already seen

in Section II.2), the polycylinder P/, given by
/7::{;‘,/6-' /o(~V‘7'jZ-4u‘61—/°/</°"‘"-’o (6—1)1
Ja+ VT2 4 g™ 40| <P 8 (‘/Z‘i)}

/

As a consequence the bound (14) also holds when Tt &P .
(A0

We now show that (for ¢'> cr'o) the conditions

= = O
u+...7f

+
/ 2
2 =5 - (1L +) *+ ¢)2_4V4‘1_] +(7'/2—-40-¢(f
/0>0 , lwil<zr |, O0<T < L
2
1Zl< ReEM , e>o0
(15)

imply, for sufficiently smell ¢ and % , (u,,e)é i’P/, .

From
=&
T (z2M « V-7 )

<>(+ﬁ = 4+ 2 - 24 _ .a‘?’__(-zi_ez«A> = ’

- S—
o

2= Wy +r? _zulozul- P
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we deduce

A;E 12 |
~ = + & -’ 447
r o2 (2M +V-2)
and
2'_/_(0(__/3)7_: a2p? A=

— _ 2 +a’? -4 M7
Yot (2m ez )? -2 (2/M +V-2)

We assume, for definiteness, that Re (o —/3);>O.

From (15) it follows that

2 =

. .
—//0(1+ w“)[,o(~1+w—) + 2 V"a-”_zn.l(,z]

and that Re z<0. We distinguish two cases:

2
1°) o<p< T4 M
We have

la| </° (1+‘c‘)(g+.'t')\/cr’2—-4 M < 8/0 Vo2 | 4. 4% ,
Re (271 +V-2) >2mM ,
hence

T a2
< Bp&
T (2M + Vo2 ) I re

l 22g? I A% a
4-2(2M+V2)? T (eM+V=2)

R P |

|5 (-1 = [pcxewns ek <

.2
The denominator has a real part > U"“-4u%?, so this expression
is majorized by

. . 1A\ . . 2
/6/06 + BEP ———————== X Ep& ¢ I 0&
e VA= LR AN / '

i

Hence

|t = VT?2 —ackt =0 < p (T r12e +16?)

';’3 + Vol cg4 ot + o </o(1~— r12 & +16€?)
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2%) P> Va2 4M?

12l < (1+2)(2+7T)p% < 8p*,

lt‘l\/‘_;l < ?:5/0,

, 52 <
T (aM+Voa) | a
Re‘,n(:t+uf)>/o(1~’t')

Re —‘2 (d—3)+lp(1+w)4-\/° ‘.4 M J ,>/
M
g -

) 2_7
: 0
J¢ +~ 3¢&p
ol ot

\
!%(.».(—/S)—l,o(z»«ufﬂ m]ls $p(21-7) Lo

1-*>1-1/V2 >1/4, and VU"2-40M3>I-AI/°—’ the

Since
expression is majorized by: /3(98 2+3€ )e Finally

lﬁ(—"o—)z“‘(/‘(’t—"/)l</o(?+ _955 +9£?.)

l/s+V0‘)2—4c/L'- +/°|</o (v «

3 & + ge2)

Thus, for all values of /o > 02

o= Vo?2_ 4em2 —p| < p (T + 126 + 1662)
|/3+ Vore gy g2y ol <p(r +i12e vk £2)

have been chosen so that:

provided <7 and €&

and (o(,/e)eplo
T+ 126 4+ 16€2 < sin8 (V2 -1)

Let us choose
. r— . _ 4 1
Sm%(é _-1):-1. ) S—v—\ﬂo— L"-— )
4 4
T = 2‘— ) £ = = S
S 1000

then T +12& +16¢ 2=O.212O16<O.25.

This choice corresponds to
oS “
Conéi = 3-2vz at> _4ckt
16 / ° cos?d,
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Finally we see that

e, =V, = T o= 9 ,

Voar ortoack™ — Voot - aunt = pl1+w),

151 28 __ lwl<é , p>0

1000
(with Re V -z+ o124l >0) imply (eo¢, )€ P and, as a
Vv pl=13
consequence

| Fealm)| s exp b(/AI+/ALl)(za-'+/o (2+5/n8,)).

Let x+iy provisionally denote the quantity

x*[y: V—E-&-U-)z—‘lc/‘év' - Tl 4t

(the square root being defined with a positive real part). A
necessary condition for x+iy to be of the form /o(1+u7'), /o >0,

|w| <1/5, 1is that
. /
Iaa.: (x+£3)l<51 = Afzcs:n.si , el 0<-9— 7_= 9.

This condition is also sufficient; if it is satisfied, we can

take /o=x/005201, since

Ix.H-%—-il ,_Sm.ﬁ + c'-;#-eos"d,_fs-‘"'lz .

/O

On the other hand, with this choice

/o= X [‘/—ff’l“""é?— -\/cr”-_qytg’-'

cost s c.:.:"-s

Since

, V—e- +T M - Vo2 aa(:lg |\[a~ st G M+ \/a"i_ ng"l,
we have:

4/2
P A i-el < -2l
cos6, cost8,

Moreover

1+ Sin8, 25 V7
= 14+ Y2 -1
Co:"‘ﬁ, 24 ( & ) <2
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the subset of the 2z plane defined by:

'CUL; { Ve +022_ ettt — Vo2 _ qulg"-}l <%

contains the subset given by

| arg (-2)l < 8§,

Collecting our information we get

Lemma 4 F+([}]7f) is analytic in u., v. at the points 9 such that
: ' » )
u+ = 7.)": =0 29 = 26/‘6((30.(80) , wriéd -f'fh’; = \/-3—4-1- ,
and 03:>°4ﬁ+°4§’
- y / = Z
18l < 2 ; loag (-2)<§, , w néy = L,
1000

and, at these points:

1/2 4/.
| £ ([a17)| < exp b (IA1+ a2z 120 7 + 2121 2]

By identical arguments, we can estimate F([,\'] x') for
points r' satisfying

L(,I=7)_'_I=V'Lea'e>0:

| arg (-2)| <8,

[El< 2M. 1072
(16)

For such points

IFE (LN ]w’)| @ exp & (/»\’I+/—j7-l)(éy+e,/zl"/")
Now set
)y =2 -4
)\IU._;_ = AT ) A 7);’ = A a
s-2 -1
Ny = /\l-<_ ) A y = A sl
which implies:
/ v .
“E s T T =
. v e v
Vo= Ve o S
e - (17)
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In these formulae we define

Vu_v- as a holomorphic function in
fu_v_ e G:-IR_} positive when u-v.>0. In this domain (17)
displays A', uj, Vi and »

as analytic functions of A,
U.,

V-.y O « From

L«
»2 = 3—0‘2+2/~t+e/u§+f
o2 =

2 — (u2—4u462+2»14\)

it follows that, in the set defined by (16),

Reo?2< - (#2942 r2lAal)< — (T2 4em®) - 2 /A1

Reo2c Rea <o

Im G'z: Ime

jT2) > 12 5 Tl > 2 1Al

Similarly Re (2M+ V-z)>Re V-z>0 and |24+ V=z| >V|z|.

We have
% 2 Z2A
Uu_ +22 = = — -+
T(er + V—e) 7
hence
Tz -
IL+—2‘.I< 152] +2"A' $103+E<2
N NS violleM e V-2 | (S|
As a consequence
/’
I%|<e+s/§‘ Aol ‘%—!<3+‘/§—

+ +
Lemma 5 For u =V =0 and:

(2 -T2 r2pml v2pl + &) 2ecl > %,
larg (-2)I< 8, , (sin8, = 2),
IS < 2M /1000

the boundary values of F([A]or) are bounded by:

IF(ATm)| < axp 56 (IAl+ 1A~ D121 212,177 4+ 4%
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We now consider points of the form [Af] ' where A'#0,

and ' is such that

w) = -v) = V-2, >0 (i &y < O)
("'z, v = e, zeald < O (18)
Setting zy= (u%+u')(v'+v'), we have
/—'—“ a 784

V-2
2
1 1. 1 1
When uj describes the upper half plane {uz. Im u >O}, v
describes {vé: Im vé >O} and Z describes the whole cut
. + + 7
plane {ZB- 2 ¢z1+z2_(2 Vz1z2+]R ) . Thus all values of 2
such that Im z3;£ 0 are obtained by varying ué in the upper
half plane (or in the lower half plane), This corresponds to
values of 7r' 1lying on the boundary of ot , but which are, in
fact, contained in the domain of holomorphy of F, since these
points can be carried into ot by a Lorentz transformation [«\],

A= 1-112 , 0< 7z sufficiently small. Applying Lemma 3 we get
|F (I 1)< exp b[1Zm X [+ 1Tom |4 lImA'u'|+lIm‘!éﬂ
A/ - A’

We again apply this to the case when

Nl = Ao , Y . o
b\ A
New = re , =
Y A

(19)

We then obtain
|FCEIm)| < exp b [|Brae |+ 1Tm % |+ [ Tmaol+ 1 Tn 2| ]

at the points under consideration. At such points, z, and zZ,

are real and negative so that
2 z
z = 2(%14-'3,_)—-?_/4.1—2/4.2— §

is real negative and

i.'-<—2/u.:-‘2/u:‘—§ = —4V‘Gz+2/d,

We shall restrict our attention to real values of =z and & such

that:
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I 2, #£O
a-<_8c/'(=>2

17| < 2Me = 2M/1000.

These inequalities, and

2

2, +2, = %[e-pl:c/% —Q,lA\]
23

2 -2, = A —

-2 2(2M 4+ V-2 )

imply |z1-z2|<-(z1+z2), hence z,<0 and z,<0. Any point
with such invariants can be expressed as EA':[ 7' with  \'#£0

and conditions (18) satisfied.

Under these conditions

L le.+vl= |[& - 2% ! lA) - Me 1212
< T 2T (2M+V=3) Vo | \o-|
“'L‘v:l:|&"¢2+4‘/¢1—2|A||<|2l+10‘2|+4a“z

12
-é-'“---”’..|< Al Melal ™ +lél4/2+\°'|+2"/‘é
\o-\ 1o-|

so that

4/2
le_| o= 1221 L "?"IAI| + 2M£|3‘| + lz-li/z + o] + 24
g \o

and we obtain:

Lemma 6 For any point 72¢ such that:
2) .
u_+=74_’;_ =0 I 23#01 (23:.(7"))

z rea1<-8u‘62; & real and | & |< 2Me =21/1000, one has

| F([217)| < exp b(IA1+ IA1T) (210 + z:\l N zm‘i_:rl‘/zﬂuuz“‘%)

Conclusion

We see that

-1 112 1/ lal Me a2
[F([A]’".’),< CXP Sb('kl-ﬁ-'A‘ )(4 EY] 4—2'?3' Z+4U‘g+'e3l1’z+ 'E%jila )
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holds for any complex A and any point 2 such that u =v, = a and one of

the three following situations is realized:

1) z 1is real negative <-8.}(°2 ;
U, {|)5i<2Me = 2M /1000 , & real;

Imz-3>o.

(20)
2)
Iaaﬁ (-2)l<8, , sinb, = é__ 3
V29 121 < 2 /1000
Im =2, =0 , 9> T
(21)
3)
‘Mg(—a')l<91 3
U< 1E1 < 2M /1000 ;
2, -2 -4 M 2141 real < - T2
(22)

Remark

The set described by (21) is not a set where F([A]7r) is ana-
lytic in all variables. But every point of this set is the centre of a poly-
cylinder in which F([A:IR) is analytic except where Imz,= 0. A similar
situation holds for (22). This presents no difficulty (see [6])-

2.2 Further completions

The three sets U1, U2, U3 are contained in the topological

product:

{=s5 %) 3 i larg(-2)|<d, , B1<2M/1000 , o<anrg =, <'Jr+61}
We shall study the behaviour of certain functions in the above domain:

a) the function |/-z is defined with a cut along the positive real

axis and is positive along the negative real axis.
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V-2 = Vial e‘@/z Y = arg (-2)

/

Vizl Vo= Ny )
12] 2> Re V-2 = 12| Cos% > Vizl Cos?i

b) the function -i \/:'Lz3 is defined with a cut along the negative
imaginary axis, and so as to be real > O along the positive ima-
iV

ginary axis. Hence if z,= lz |e y = 7f/2<4’< 37¢/2 we have

3
¥ x
— Vi, = /a3|‘/3 ez - F)

in the domain we consider, - */4< Y/2- 7(/4<7l'/4+91/2 hence

Re (- iVia, ) > 121" cos (x4 b1)
2

¢) the function l/-i\/ izg is the inv?rse of the preceding, its real
part is |23|-§cos(4’/2- /4)> !ZBI-§COS(W/4+91/2)

d) the function \/-_z(--i\/iz3

)"1 is given by
1/2 (P ¢ ™
et F+%)

‘_*_

*3
with, in the domain we consider, —01/2< ‘P/2<91/2 and

-6,/2-7/4< 7x/4- ¥/2 <7/4, so that cos(P/2- ¥/2+7/4) >cos(01+ TT/4).
(Note that O+ /4 < 7/2.) Hence

~1 1/2
Re Vo2 (-iViz, ) > |-§—3] cos (8, +Z)

It is easy to verify that cos(7t’/4+01/2)>cos('7f/4+01)>%
and cos 0,/2> 3. Let us define

y) = 1 (2 4V 2llAl  2MeV-=
ﬁ(iaail’\) = 554 (/,\/+/A_’)[3ﬁ 4 l/_e; +4 M + (.'a..; - }

: 3
Then we have

- s A .
'e K(‘3)E) ) /_—([AJW)'S 1
for any A% 0 and any 7 such that u, =v, and (ZB’Z’ C)eU,
U=U1UU2UU3.

Let us denote

(jﬁ a neighbourhood (arbitrarily thin) of u, (in the space of the variables
ZS’Z’ c );



- 45 -
V’Z the intersection of a neighbourhood of U2 and {Z’ZB’ g: Im z3 >0 } H
f//; the intersection of a neighbourhood of U3 and {z,z. , G : Im(zs-z)>0} H
and for j=1, 2, 3, Mf“?:y{fﬂ{z,zy{: §=O}.

The analytic completions carried out in I:(S], Section 5, show that
any function of z; and z analytic in W? U(//‘g UuV’g has an analytic
continuation in

A
Te = U {ea,é,§: g=0, ‘*3‘>R“‘))Imés>’z)‘3+<§/<vz$
o<7l<7°

where YI.O>O and R(t)>0 are certain functions of t.

Using the conformal map
2Me - &
T - §l = eog -_— -
2Mg + &
to transform the disc {§: REPS ZMF_} into the strip {§'= [Im ' |< ?t/Z} ,
and following the arguments in [b], it is easy to see that: any function

f(z3,z, Z) analytic in (/VTU,/V"QU(/}? has an analytic continuation in
N /
= U fe,ex: 1Tl<y, , 121>RE), Tz, >0, 1Beel<
o<n< .

PN
= U°X {§ : |§|<7’(,1} , where rU>O is some function of t

(with 1a < 2M /1000 ; To < % ; Ree) = 4 T2y ).

Let o Dbe the manifold {7( : u+=v+} (in which we shall use

the co-ordinates u,, u_, v ) and < =N {iImu+>0}. We denote

o )
Jy the mapping from 081 into € 5
(u+,u_,zr_)~> (él)z'?.)e.'s))

&, = «? =
Z z

b||..

. 4
(&, +«_ ) (e, + 2 ), 2z, = z.(q+_u__)(“+_ ),

and J the map
(an ‘2 53) — (25, 2, <)
defined (and biholomorphic) in the domain

z = Z(el_—/u-f)+2(<.<—-/u.:')—d; & R
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by the formulae of the beginning of Section III.2. Let J+=J1J:. Let
Vz3 be defined with a cut along the positive real =z aa-:is, and such

3
that Im \/z—3>0.

In °<‘f+ we have

w, = V2,
/ — 1
z(‘«-_*-v:) = = (2,-2,)
3
2
Lt -2+ )= —;—(if+z-z7‘+ aaz_aa-iaz—Zz‘z-a-a—za-aiﬂ_)
3

Now let W(u+, (u+v_), (u_-v_)) be a function analytic in

J_:1 (A Ut qu/%) =E. This domain is invariant under the reflection

g —» @™ defined by: (ww)‘;:'n";, (@x)!=o) (5=1,2), that is, in

<Z: u_e>v_. If W depended on (u_-v_) only through (u_-v_)z, it
would define an analytic function of z3, Z, § in c/f’;uufz UVV;.

It is therefore natural to introduce

W, (e, , (u_+v), («.-2)?) =

= 3 {V(u+ , (wo+vo), (. =-v2)) + Wi, , & +v2) ;<ir_~u_))§,

V/«-.(“u.z (e +2), (“-'v:)i):’

= 1 {V(u.‘_) (u_+v), ca_-v;))_W(u+,(«_4-:):),(1}__4.4._))}
2u_~-21)

Ws(w) can be written as fs(ZB,Z, &) end Wa('lr) as fa(zs,z,g'), £
and fa being analytic in «/i"’1 Uu}"‘zuf/lg. These functions can be continued

in U. Therefore W=Ws+(u_-v_)wa can be continued into J'1(fl).
We have thus proved that:

the envelope of holomorphy of J;1(M’:Ud’;Ugf’;) contains J:1(f1). The
same is true if J+ is replaced by J_.
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We apply this result to the function defined in °Zf+ (resp. %_),

for any fixed A , by

- 2 (= 2 s A )
T —» A (LX) e 3272

Since this function is continuous at J;1(U1u U2UU3) and is bounded there by

1 in modulus, and since J+ is open, it is clear that we can choose c/ff',

f/”;, Uf% thin enough so that the above function is bounded in modulus by

1+ in J:_1(</V1°Udtﬁ2 (/(/f';), /° being an arbitrary positive number. As

a consequence, the analytic continuation of this function in J;1 (T) is

bounded by 1+/° for every /0> 0, hence by 1, and the analytic continua-

tion of PF([A]7r) is bounded by:

Re ﬂ(%s,e)-)\)

| F(La]m)l< e o e T N0

+-

the same holds for are J:1(fl). We have proved:

Lemma 7 F([AJ]x) is analytic in A and o for any A A0 and any
7 such that u, =v, and (z3,z,§)é f]. At such points it satis-
fies the inequality:

'F(L'»\]n')l< exp Sb(‘A‘+ﬁ—\)[8|*|i/z+4c/‘C+ 4 "Esli/z-o-
214l 2 Mizl?? ]
\33\1/2 1000 |33|1/z

Since, in U, |&+z] <No< &y end |z5| >R(%), it is clear that
there exists a constant T"(t))O such that, at the points mentioned

above:

|F(2]%)] < exp Bb(ir1+ - Y[412,0*% + Tte) ]

1
T'(t) depends only on t and on the masses of the theory. More-

over

| F(IAIm)| < exp 5B+ 4 ) [61e0" v 16 VF ]

Unfortunately we need yet another estimate. Let (9(1, 7(2) be a
real point such that: 7?? =/u’3, ’7(2 =/-4-§, 71'1, T2é v'. This point can

be surrounded by a real cube (or "double-cone") of the form

{'R":luj -l <p ey, 1V = Vil p o), i=1,21

lying in the region {'R": 7(32<c/%§, j=1, 2 }; the latter is the

region of coincidence of the boundary values of F(7%') from the tubes
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oA = {n": Im(7r4{+7r£)év+, Imvz;’eV"}
and
®B= {m': Imin!snwi)eV? Imx eV 7|

In each of these tubes F(sc') is bounded by
b(I1Imaw??| + ! Im/°|
|F (=) < e s ARy

1
7t’5=(7z'g, 7t‘5) or, in

- 7° 1 - 7° 1
ug, Vg (u5_7r5+7r5, v _TC-7C5) and
b

We introduce a new two-vector variable denoted

characteristic co-ordinates:

5 5
(denoting ¥ the real two-vector with ¥°-=v, b’1 =0) consider the
function
: o — < ¥, -1
5
G(x,, = ,6 =) = [e _F_(vri,ar,_)]

where x>0,

It is analytic in the two tubes

A
— ? ? ’ .
ot = dw), w7

) F) * 7 V] -
s - Im(?c;,,.n'a_)c—'-.:vl L 7 eV,

—_— +
Dm(wl -7 + 7)<V i

A
_ / / V4 + -
a3 = {7(11%’1_,7?’5 Do (x] v} )V 7, Ima) eV,

-
Im(m's’—')r';-,«-?r;)él/}

It is continuous at the boundaries of these tubes.

A A\
from b and J3 coincide at real '7(.;, 77.‘2', <

Its boundary values
é such that

/a:{—uJ/</olur) ) /v;'-v;./</oz(,r) , q{:d,Z.

Let us denote, for real ='=(71, %}, wg):

fr'f = e {lu.;-l, l‘ﬂjl}
J:i'Z’s

Then the local edge-of-the-wedge theorem (see for example [8]) indicates
that G has an analytic continuation in

{Q”.—. (7(; , 1:"” 7(5’) &e Convex enve[o,be o{

[(a?uog)n {k‘”: fke_ " 7r§<31/01(7r) , ffmvr‘"§<5";—/g(’f)}]}
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It is easy to see that this domain contains all 7! =(72:'%, n-é, 71‘%) such
that
0 < Tomn () + «}) O < I Imeflr [T o) | < T <f;ﬁ1cw);

Vs r o/ < 2. ;
0 < Im (I)';-f-v';’j) D(/JMZ)’;““ /Imz‘(‘lm%\eq /01()?‘))

é/?e.%"—-’k’§< —'é- o (7).

/

This means that F(sc') 1is analytic at all 2'= (2!, x!) such

1”72
that
i P i - .
| Re a_df—u;'\<-§/o1uc') , l/<e1j’—zjtl<_§l,o1(1r) s j=1,2;
O« Im ((4.;,4- wl ) { Ton a_i/ + /.Imu.;/ < 2—3’—/% () j

0< D () + V7)) 1 Im )| + /Imu:q’l<£12p1 () ;

J
and at such a point
o)< exp & (1Dm il | + 1 Bom )+ 1Dm ][ + T o 1)

There remains to estimate /01( 7). One finds

() >
/1 LV + (e« + ;)

so that:

X o 2 2 22 p oyt
Lemma 8 If fn’:(ﬂ'1,7(2) is real and 7r1=/u1, ”2“/“2’ )z'1eV ’
T,<V’, then F is analytic at every point 7' = ( 2, xé)

such that

| Re (w? - e )] < %/01(”) ;IR (vl =l < Lol
O< Im e’ « 2L - O< T’ <« L 5 (i),
+<24:.>1c1r), ey, 24 /2 ‘))

’, 4 . o~ 2 L0 :
Jw’ u_/<2__<:_,_% () ; o2 - | < i ~r k’))
where -4
our) = T[eVF + 4 s )]
At such points

[Fer?)] < exp .:_’[»zu;x 2.1—»4 u:_ , /I lx._’_/} + mmx(ffml,:-/} [1m ;,:’/{].



- 50 -

IV. APPLICATION TO H%

1. Application of Lemma 7

We apply Lemma 7 of Section III to the case when

Cormas, F (7w) = 3(87"1)5(""'4)(“;_*),\/”;("‘)

Then substituting € = é‘o/( £o+2H 71’1” +2 || 71‘2|| ), we find:

Lemma 9 There exists a positive integer N, a constant C6 and functions

R(t)> 0, Vlo(t)>0, 711(t)>0, all depending only on the masses
of the theory, |[with R(t)> 40'3’('5), ‘r(o(t)<<§/2], such that if
[1-x <3, w =v, [T]< q,(8), lz5I>R(t), Imzg>|P+z],

|€ +2]< M (t), then (Kyx)Mui([2]x) is analytic at this point
and

KK;*)N H; ([)\]'R’)l < CG "A " (1_‘_&)84(1_‘_ ‘E3‘)6N+)_G' X

X exp 85&.[6123/1/2 + /6 V@']

Qur purpose is now to obtain, by differentiation, a bound on H.[';
itself. Indeed we have:

Hi)= (O AN g +a2)™ (kY 1/ x)
¢ 2 7, &

2 2
= 49 o = ___4_.2._-——-
D';. Qa_‘ CLA ’ a2 9«,_ 9:’2

At points 7 of the form 7 =[X]=x', with u!=v!, and satisfying the

inequalities of Lemma 9, we can consider wu,, v, as functions of

A=u/V Z5= \/u+/v+ and of the invariants z5, 2z and

W= 2(x, -2, )-2A = &,V o+ v, -4
*)
and we can write
2 J 2 p=]
u, L ¥ oz 50 7 I/E oA
3__ - u._/_ _‘:)_— + (,¢+ 59__ + e 2 - “Loy A 2

The notation w=2(z1-z2)-2A is used only in this Section; the

letter w denotes a different variable in the Introduction and
Section VI.
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2 )

D¢ _ Ja M 220
)

S = w2, w, 2
v Da * D

Hence, applying to (K.,*)hH% a monomial of degree <« 4 1in the operators

2/, 2/ v,,
function with respect to z3,
V_y A and z; .

one obtains a linear combination of derivatives of that
multiplied by polynomials in

z, W and A ,
4N,

The derivatives are at most of order

wr

U.+, V+1 U_,
We now try to estimate such derivatives at a point 7 such that

u, =v, = Vz.j, (iceey, A =1), z=-9P, &=0, by using the Cauchy inequal-

ities. For this purpose we find a polycylinder (in the variables A, Zz9 Z,

w) lying in the domain of Lemma 9 and centered at the point we study.

Let 7' be such that uj= AV z!, vl= z'/ \' and
2
(z

2 2

[ [ 1 _é. (- 1ot ) .
z -2(z1 /J.1)+2(22 /42) ;oW 2(z1 22) 2A;
can easily check that the inequalities

[)\’—1\<% 5o W < o e S

! Im_Z-s})'

la’+ | <« min { 7° (¢) , 5

\a;_éz\< m-'n,{ i-l'ma-$ 5 /-1131-—7<(£-):‘z

imply that ' is in the domain of Lemma 9.

Hence, by Cauchy's inequalities and Lemma 9, at the point =

)e-lq. (5?;)-(2_ (%)“(3 (_;S)Nq(Kz*)NH; (7:‘)! <

[

X

<ottt (L 2 )"(z( 1 L2 )"3(/0M o
Yo Yot b, ! Jo 1
1 3 o Ima, lagl = R(¢) Im 2, ) 4

x C AN (e ) (2e2ie,)®™ anp 25 a [915%% 4 16 VE ]

If R(t) is redefined by adding a constant to the former R(t),

we obtain:



Lemma 10 There exist positive functions /7(t), R(t), and a positive
integer N', all depending only on the masses of the theory, such
that H,'c is analytic at every point 7 satisfying u =v, = ﬁ;;
g, = o, 7= gl |z,] >R(t); Imz, >0; at such a point
1 - /“‘11 2 - /"'29 3 > 9 3 > ? p

V! o)< Fee) 1A N (1 ea)®™ (e 2g)V (2 + 2 )V x

Ime,

X exp Q,’Sa_[ﬁla:sli/z-klé\[@_]

2. Application of Lemma 8

Combining Lemma 8 of Section III and Lemma 2 of Section II we find
that, if 7™ and % ' are as in Lemma 8,

—(4~+332)

lgceay) g em] )i, )N H/ ()< Cs A (1+00%% e (1+pel+ ,u})"x

X exp (a+ g1)[”1ax {Imui , MImec? /} + max {Im LAgY 1 1m v’ /}].

setting € = £ /(& +2| =yl +2l x|l ), we get:

el
I(Kz*)N H:(ﬂt”)l < CS I(A"(i+°~)8qe— ° 1(14-/.-.,';_4-/‘:‘)" x

4N+y
X (1 + € *(2zurl+202 1)) exl;no, masx § Tom ee] | Tm a;lg+m4x{1,n»+',|1m»_'l}].

In order to estimate H! we note that

t’

2(P+Q) . _ .

° [9 9]?9 p) JQ[;’ +2_]P[9 _?_]Q
= _— e — e = e — — —

2P 327 9,‘2@9,5 @ ou, Ju | lon, wu 27 " 2n v, 9

and that

Hi(my = (-‘-’9—1—- + Ai)N(_"_?_z__ + AZ)N(KZ* WH! (%)

9'44.191’;_ 9«2?2?;_
Let o Dbe such that:
+ + 2 2 r
eVt meV’, x = . "E = o, and
w, =9, = Va, > 2F(&) , w_-—- v >O0.

(23)



Let x' verify:

2 _ 2, r2 _ 2, ;) Y TR "
Tty 5 Ty T =My o, =V = VE Ka'/é;
Im§;>0; Re (! -’ ) 2 O

The conditions (23) imply that

2 1/2
w’ = L . [ 2! _4.37 - 2 gy + g )]

- ,—;; =
! = 4

2 0 1/2
- [a-g + ﬁ\_’ _2(,4-:’+/~;')J
- Vf;Z' 3

where the square root is defined with a positive real part;
positive imaginary part

7 given by

g [ 17

2 . 4
1 z
if we denote

2
’ A
x+£3= 2, +

e

rvali 2.Qu:4-/4:)

/
3
Setting

3

. 141 Y2
X/—I-L(t}: (\/;—;‘I‘—V;;Z)

we have O<3x'/4<x<x' so that
/
2 4 4 < = .i I (/~7 -+ .ng
1 < 5 Im Vx’+ y 3 é3 ég
and vl<2Im Vz:',). Hence
| Im e’ | < 3 Im Vo) ) ITmo’! | < 3Im v,
On the other hand
Lot 1Al Trm V¥,
R T

and

- , 2 1Al 4 Ty Yo
,lnmlAi ’) lIth”ll > ( Im fgg )(1 - —fzr‘) > = V:;

We now assume that 7r!

jw? - w_ | < 4

’ -
478—/01("-) , 12 < L

o2 /%(ﬂj )
o< :r».u;‘<;;/o1 ), [Re ) —u+l<4—§———/"1 ()

> 2 (¢);

(24)

it then has a

verifies the following conditions

(25)
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Then the polycylinder centered at a':
{7 jwlcwli< gIBnal | | 107 - v |< L 1 Dma |,
” 7 4
/u.+_u+l<e_" Ime) /1’;’—1);'[<2'Im7);:}
is in the domain of Lemma 8, and for any ox" in this polycylinder

O< Im w)l <c2Im V2! , o< Lom 2" < 2 Tm V2

ITm e«” |< 6 Iom va] [Tom v ? | < € Iim vaj

Finally, applying the Cauchy inequalities in this polycylinder, we find that
(23), (24) ana (25) imply

IH (""),< (N')(' 8{ C A //(1+au)gl'(/+,«.,_ + pag )4 (2 +10 '/—é‘“i)l"v*“')(

X[A&+144( ‘/__) ] exp /20_.?'»;\/_7

Moreover, if = satisfies (23) and if ' satisfies (24), it is easy to

see that, for O<'c-'<M2,

(12~ 2 1< v) = {Iu._—u.i/< B /v_-__v_’l<5g e wllc & }
2, 2, Va,

Noting that /01(7c) > /9 \/Z; we obtain:
Lemma 11 Let G(z3,t;A1(O),A2(0),A3(O),A4(O))=G(z3,t; {Aj(o)}) denote
the value of H%z
/,4.1, /42, Re (u -V )>O.
Then, for every real z3>40 (t), G(z3,t {A (O)} ) is analytic
in the half disc

at a point 7 such that u, =v = \/23,

7] . -
{%3 : Ime-;>0 , 1% *3l<’t'}

provided O< < 5/2500; moreover there exists a positive integer
N" and a constant C7>O, depending only on the masses of the

theory, such that, in this half-disc

/G(‘é)t; fAJ (0)})’< C, Al (1+a )% (14 es)N”(i..&. 1 )'\/"e 12a Im Vay

s
Im 23

Remarks on Lemma 11

10) In case ™ satisfies u, =v, = VZB’ Isz>O, 7z'§= /u.i (j=1, 2),
Re '/z_;>0, we have seen that



29)

‘Re (u_-v_)>0 defines u_ and v_ as analytic functions of =z
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2 a
(=)' = 2y B 2(urepl)
3

2 2 2 . .
For |z3i slal, Im (z.), +A /z3-2(/u.1+/4-2))>0. Hence, imposing
3 for
|23|>|A|, Imz,; >0 and G(za,t; {Aj(o)} ) is holomorphic in Z
for |231>R(t), Imz; >0.

The constant C7 is, in particular, independent of the choice of
the operators’ AJ.(O) and of the size, characterized by a, of the
space~-time region where the AJ(O) are localized. This freedom of
choice will be used later (Section VI).
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PROPERTIES OF THE "INTRINSIC WAVE FUNCTIONS" OF LOCAL OPERATORS

Let ¢1(x) and ﬂ%(x) denote Areki-Haag fields describing particle
1, such that £, (0) and ¢;(o) be localized in the region

{x: Ix°l + \x |l< ﬁﬁ}
~ 2
The intrinsic wave functions of these fields (considered as des-
cribing particle 1) are respectively given, on the half-hyperboloid
o 2 2 )
{p:p)O, P =m1}, by
>
PR
L opy = (g (p52, & (0% )
Vs *
ﬁi(p)z ( «

1 e

P
(piSL ,(251(0)11)
where aT in (p) is the creation operator associated with the incoming field
of particle 1. Another definition [2:], I:B:] is the following: assumption
3) of the Introduction implies the existence of a unitary map Wj of
x, =Ejg@ onto the space L2(d3p/2po) of square integrable functions on

3
the half-hyperboloid {p: p°>0, p° =m§ } such that

(W, U(a,m)E)(p) = e PE(W ENAp)
for every (a,.A.)é j?f and every ':Pé?@j, With these notations

Vé . /
4 - W £, F(0)SL , R = W, £ 2o,

1 1 2 1

In accordance with assumption %) of the Introduction, we assume that h
and h; do not vanish identically. It is well known [2:[, [5], that these
functions are restrictions of functions (again denoted h and h1') defined
and holomorphic on the whole complex hyperboloid {ké Cl k2 =m§ }. The
purpose of this Section is to investigate the growth properties at ® of
h1 on this complex hyperboloid.

We need a remark on functions holomorphic on {kécd': k2 =m§ }.
On this complex manifold the space components of k define local co-ordinates
except where k°=0. In the neighbourhood of a point where k°=0 one can
take as co-ordinates x° and the first two space components of k after
having performed 2 suitable real rotation on the axes. ZLet F be holomorphic

on the hyperboloid and
- 2 ( F(%° F(-%° )
k) = 2(F& 4D+ , %))

Aan

A (k)

@

SAF(E, k)= F £, & )



- 57 -

In each co-ordinate patch F_ (resp. Fa) can be expressed as a holomorphic
function of .}5. and this defines a unique entire function of }& We shall

S Tenv

denote it P (k) (resp. Fa(l{-—)) by abuse of notation.

Thus,

Fct) = E°E(R) + F(£)

Adan

and this provides an extension of F as an entire function on C 4.

Let
-4 . .
n(p) = (&) fe /b)‘(()_)[ cf;'*{o) , ‘é (x )] 2) >, * Bixe) ofix

agpr = 7t (o, [ £™%(c), & a] ) e 0 ]

where X, is the same function as in Section I. All our considerations
will be identical to those of Sections I, II, III, but applied to the much

simpler case of the two-point function.

2 2 2 2
Let r'(p)=(p -m1)r(p), a'(p) = (p -m1)a(p). As was mentioned
in [5], r'(p) and a'(p) are the boundary values of a single function
h', holomorphic in {ké C4, k2¢ Mf+R+} , and the restriction of the

2

function h' to the complex hyperboloid {k: k =m$} is exactly

B} ()n, (x).

We leave it to the reader to verify that, either by applying to
the two-point function the methods used in the preceding 3ections to study
the four-point function, or (more simply) by using the Jost-Lehmann-Dyson

representation, one obtains the following result:

TLemma 12 There exists a positive integer N"' and a constant K depending
only on the masses of the theory such that, for any complex
ké(4 with real ]r:2=p2 and k3=p3, satisfying k2=m$, the

following inequality holds

1R @< K 1B OB s 8)" 1tk DY exp & (1Tmic) 41T )

where u=k0+k1, v=kO-k1, b' = £2+ f1.
Note that if k satisfies the conditions of the Lemma, it can be

written

£ = [2]p cr0 , p=(Vmieas, 0, p°, F), R = (p2) %+ (p)>
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(Here [t denotes the usual Lorentz transformation: u- Gu, v-— §'1v,

2 3

k and k unchanged.)

I1f, for any ,AeLi, we replace ¢1(x) by ¢1(x,A)=U(x,A)¢1(O)
U(x,A)-1, the same estimate holds provided we replace £2 by a length
fz(.A) such that 165(0) and ¢1(O,A) are localized in

fx clegi< L L]

In the case when A = EA] for some A >0, it is easy to see that
{Z(E).]) = {zmax() y1/X) (A+1/X) ‘£2. The intrinsic wave function of
1'61(0, A) 1is given by h1A(p) =h1(_A_-1p). Finally, we get, for any X\ > O
and complex & #£0,

p/

|2, ([TI6) A (IAEIB)l < K B NIB N (25 15,1 + 15,0 (1514154

/

X (1+(»\+'§j)b')N”le"P (+ ) ’:; Vgt 22 (1To S+ 1 T &77)

(where $ is as above, K, 1is a new constant).

Since E;([E]ﬁ) is an entire function of ¥ , which we assume
£ 0, for any € > O, one can find a number a, 1<?T< 1+& such that this

function has no zero on { g IC l = ‘t'} and, for all real ©
| 2, ([~e®1p) > » >0

Hence there is a positive function Kz(ﬁ) such that, for all A > O and
all real ©

. o Nz
1R, ([xee®]p)< Ky (B IR (2 (14 (ae 7)) X
X exp e a ) ezt VB (0 8
Denoting k= [ A "t'eig]ﬁ , we have (for a suitable choice of & )
AI (aer—t)2+ ATt )1sin &1 \/?‘qz-l-'l"‘ < 31';('&',\ +’:—A-)|$~'n9l\/m:‘+ 2% =

= 35 | To &%

Thus, for all k of the form [& P, & being arbitrary #0,

L ’ 4
| £, (%) < WK, (F)(arn &) o 31 Tm &
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Note that K.j(ﬁ), as a function of P, depends only on the two last (real)

components of k. It follows that similar bounds hold for
4 ° o
{i (é): g‘[{i(f/é)'*{:t("z,\é)]

and

“(2) = 2 2 g) - £, (-%°, %)]
fz (£) zﬁo[,{;(ﬁm . X

As a consequence, the partial Fourier transforms of hf and h? with

respect to the variable p1 have their support in

{xi.‘ Ixtl< 3b'}

Since, of course, the above argument could be applied after exchanging the
roles of the various spacelike axes, the supports of the Fourier transforms
of h? and h? (in all variables) are contained in {.’ff |xj|\<3b',

i=1, 2, 3 } and even in {3& |35\|\< 3b'} since one could have rotated

the axese.

If we define a new field ¢'1' by
¢1"(x) = ¥ é (x) = fSP(X-X’)%C"') ofx’

where ¥ is infinitely differentiable with support in {x: |x°|+|x]< 52/4
then the intrinsic wave function hY of ﬂ';(o) is given by hj ='§5h1

(where Y is the Fourier transform of '70 3 1t can be chosen to have no

real zeros). ¢‘1'(O) is localized in {x: |X0]+I'3§‘|< [2 _} and

L2/ (%) = RIA (kY + RTA[T (L)

n"%’%  are Fourier transforms of ‘@0" functions with support in
| n
{ x: |x|< b" } , b"=3( /1+2 £2). For complex Xk, lh'{s’a(_k)l< const. e’ ”-}i”.

We can now exhibit an entire function on ([,\4 which coincides with

h" on {k: k2 =m? and is the Fourier transform of a ‘6‘” function

]
with support in {x: H x||< b"} . We first choose an entire function ¥
of one complex variable 2z which (for real =z) 1is the Fourier transform
~o
of a 8“’ function ¥ with support in {t: |t|< b"/2} , with, moreover

\/’(0) =1. For all complex z, |¥(z)|< const.expib"|z|.

The function ¥ defined over € * by
T (B)= L(R%w (B2 mP)) + FCE- (£ m2)) - Y (2F)
Bkl

is entire in k, equal to 1 for k2=m3. For all k, |1P'(ﬂ)l<conn’.€ .
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Let .= (k) =?(k)l21’1's(k)+koh'1'a(k):[. For any integer L >0, there
an o

is a constant (depending on L) such that, for all real p

—n - L . -
'._:_,(/,)l < Con.ré.[i-l-(/lb"/—-vlbi_;. m:‘ )2_] {/54.,. mi’) <
< consé. ['/zz.,u /62 + ”’I-: )_

The function E has thus been proved to be the Fourier transform of a

@m function BN with support in {x: “ x|| < b" }.

If we now convolute the field ﬂl;(x) with the function é*(-x),
we again obtain an Araki-Haag field, whose intrinsic wave function is the
restriction to the upper sheet of the real mass hyperboloid of X (xen) 2 (k)
and is therefore non-negative. We now choose a positive €% function
on the real Lorentz group L* with support in { NAe LT ||_A.H< 2 } such
that ‘/k(A)dA and that, for every real J/\ and every real rotation
R, F(R.A. /o(.A), we define:

¢"’(x)~ /alA /o(A)U(xA)/dx =

[recall that U(x, A) =U(x,1)U(0,A); here dA 1is a Haar measure on Lﬂ.

(J'{'(O) is localized in {x: H x||< 4p" E. Its intrinsic wave function is

) ‘ﬁ"(x’) Ux, £)”

the restriction to the real hyperboloid of
—

f/om)f_j (A PRE) (A ) AN = (R
and has no real zero. i (k) is the Fourier transform of

f/O(A) :_.. (A (K ""))s——-t _'lxl) dx’dA = L,__.&(x) .

Clearly = 0 is rotationally invariant. Ffinally we define

B:t(x) e /\E_:z()‘/-x) ¢1 (x’) Ax’

B1(O) is localized in {x: | x|l < 8b"} < éx: |x0|+[£|< 161" % . The
intrinsic wave function of the field B1 is the restriction to the upper
sheet of the real mass hyperboloid of an entire function = 3 such that
: (k) = ‘__,.2(—:{).__, (k). Since '::‘:3 is rotationally invarient, we have
(k k) = = (-k k). Its restriction to {k: K° =m? } defines a
rotatlonally 1nvar1ant entire function of k. Therefore, by a classical
theorem DOI this function can be written g,l(k ) where 8, is an entire

function of one complex variable. Moreover for all z,

lg, ()l comse. @np € b7 12|
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for positive real values of its argument, 8, is strictly positive and of

rapid decrease at @ .

Conclusion

It is possible to construct four Araki-Haag ficlds Bj(x);

(1€ j<4), with the following properties:

1)

N
~—

for every j, Bj(O) is localized in {x: | x°+| x| < /4 } ,
X Dbeing a certain length > 0;

for each j, (1< <4) the Tield Bj(x) describes the particle J,
with an intrinsic wave function of the form
V.ot B (O) 5L ) = . 2
(Wo £, B,(0))(pi= g p*)

Here gj denotes an entire function of one complex variable, which

satisfies, for all ze€ C:

lgj(e)|< f;' exp w121 *?

For real z 320, g.(z) is strictly positive and decreases at infinity

faster than any power of (1+|Zl)-1~

We shall denote, for any A> 0, and any Jj=1, 2, 3, 4:

B.(0;5) = U0, LAJ)BJ(G)U(O,LAJ>‘1.
]
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GROWTH PROPERTIES OF THE SCATTERING AMPLITUDE

The scattering amplitude has at least the same analyticity domain
as H! restricted to the mass shell. In particular let T(ZS) denote
the value taken by the scattering amplitude at a point of W(t) such that
u, =v, = \/z_3, z, =/u$, z2=/u§, Re (u -v_)>0. Then the remarks following
Lemma 11 (Section IV) show that T(zB) is an analytic function of z3 in
{23: |z3|>R(t), Im 23>O }. For the same reason, for each A >0 and j
(1€ 3g4) we can define a function ij(z3;,\) analytic in z; in the
same domaint (Pj(zz’;)\) is the value taken at the same point of ?f(t)
by the intrinsic wave function of Bj (O; A ). In other words

YA = 92 ( (4w = S2) 2 L (m2mpee)?)
1

and similar formulae for sz’ Prs '704. In particular, for A\ 1 =1:

Sf(zg;i)= 31("104._—#_)"— 4«_1[(”’:‘ &+ )*)

Then, with the notations of Lemma 11:
4
7_(*3)/:7; f(*gs»\d—) = G(a,, ¢; B, (0; 3, )5 (0;2,)B,(0;,), B (0,),)

3 )
and we shall choose )«1 = )\3, A2= )\4.

We shall assume, for simplicity that, for the particular value of
t to be considered in the following, Bj(O) has been so normalized that
’ 2 |2 2 - | B | - 1 - | -
gj --(m‘_j -mj +t)°/4t =1 (we have denoted m) =Mz, Mj=Wm,, Mmy=m,, m4-—m2).
Let £ 1>O be such that |¢ |< 81 implies

. 1 ° 2 2 1
19j (8 = 2 Cmromt2e 6)%)1 > 3

2
' = = . = =
Let o, real, and 7 be such that u =v, = Vz3>200'(t), 1‘11v1 /41
H

. . _ 2_ 1. - . —_ _ . -
=ulvi; o uyv, = M =udvi; (u_-v_) >0; ul=v!= \/zé Imzé)O, Re (u' -v'_)> 0;

]
!
Izé-—z3l<t-‘<' @ /2500. Then [see (26) in Section IV]

>~ 3 ’ 3z 22
e - e, | < 3_.. V-V, <€ —= (e ~ « ] < —— /2)-/_-‘) <Z=.
smsal< = RIS EE s Ve, 2 2! /=,

Let
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Then
U./ 2 2 4 2 ,t,?.
B L P T T e LI N DR o
1 A V! 3
and since
- 1 v = A
lw, +v; | = .z-lz e34-u_+7’:.\ We3+\—/—_;—;‘<2\/ea >
’ 2 2 2
|):lv-4'. - 42 '< 26,:’ ) ane r—"rm‘éme ’sz;—’__ “;_ < 26 vt
T
A , - Xe =

Therefore, with 2 <%—/Aj €1 (j=1, 2), we have

l“Pd-(vz;;,\-

J)\>§

Our choice of Aj is such that

2 Va,
)‘1+4< 3

Ao+ A 2V
A

4 2
1 V" AZ Vaad 3

In the formula (Lemma 11) giving a bound for G(z3,t; {Aj(O) } ) we insert
Aj(O) =Bj(0; }‘j)' In this case we have

o= I +€ )< 18 (xn /;)(/;‘— + L )We,

1 Yot} 12 [

I
OP
~

|

+
|»~x
.}]

and applying Lemma 11, we find that

IT ()< 16 Cy IBY [1+2,]1V [1 +a,</{; +71:)l/a_3]“ x

4 )v" e 2% (2 + 2 )Va Dmiay
1 2
Imal

P (14-

But, of course, T(zB) is the expression in the variable z3=( 7+ 7:'2)2
of the invariant scattering amplitude (at fixed t). A similar study could
have been carried out in the crossed channel where the role of z3 is held
by ('fr1- 7(2)2 =2(/Af+/¢§)-z3. Finally, |abolishing for the future the

special assumption made about the normalization of BJ.(O)] we see that:

Lemma 13 T is analytic in

{a-s: O0< Tmay < ¥C4) | [Re 2,1 > 7{(4-)7I

where it satisfies

3

~ N & T

| 7)) < S(e) (24 720)Y (24 2—) e oTH®
I 2z,

Here S (t)>0 and 2 (t)>0 are certain functions of t; the

positive integer N"' and the positive constant b0 are independent

of te.
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To £ind bounds on T(z;) in the rest of {z3: |25/>R(t), Imz, >0},
we shall apply Lemma 10 of Section IV, choosing Aj(O) =B~j(0), (1<cj<ct).
We have seen that

% P 1 = . 1 __v:_)"—_’i._. T ome2 4 )
P(251) = 3, (4 (« A (et #€)%)

- 2 4 T 2 2
jd' (Eg.f.f;_zlu.:_z/u:—zz_(n:, 2 + ¢) )

We use the new variable

and define

I(u)‘) = 7—(3-3) 5 ZJ (20) = (5(2-3;1)‘;£(w)= G(aa)t;{%.(o)})

We note that the mapping z3—~»z3+ A2z;1 maps (biholomorphically)
the domain )tz3: |z3|>|A |, Im z3>0} onto {w: Imw >0 } « Since
R(t)>2|A |, the domain {23: Imz, >0, ]z3| >R(t) } is mapped biholo-
morphically onto a certain subdomain of the upper half plane, containing
in particular {Aw: Imw >0, |w|>R(t)+ A2/R(t).&. Taking into account
that Imz,30, |z3'>R(t) imply
A&

3
IS U R

)Ime3 < Imw < Ima, |

we see that:

1) T and G are analytic in
o haanl 2

R 12| (&) +
{w’. Imw>0) >R R(é)}

where

IE("")I< f‘((_—)(1+lvl)N’{1+_1__)Nlex/b L )wr1*?

Lo

Here 'I'(t) >0 is some function of t3 /:1350(x+ (1) is independent
of t3

2) in the intersection of the above domain with the strip
{wri 0< mwr < 3 0(e))
4

we have

4 Bo Im o

w)

\I(w)l < K (e)(1+|ur|)’vm(1 g )’V”'e

Lm0

(27)
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%) h\fj(w) can be continued as an entire function of w which satisfies

l"L’C‘J ('AJ")‘< C,/(é)Exf;x_hd.\i/z.

We denote L =1+max(N',N"') and:

oy A

w—LI(W) =I(k)') 3 w—“"G(w-) = E(u)—).
4

i(,v) = ,:ZZ éf‘/,{w_)

satisfies _for some ¥ (t)> 0]:
1/2.
19 (o)l < Y(e)e?=!™!

Let f(é‘) be the contour (pictured in Fige. 3) composed of an arc of a
circle {w: Iw] =R(t)+|A I+£ y Imw )E} and of the two half lines given
by {w: Imw= &, |w|2R(t)+|A |+e} . Here € satisties O<&< (3/4)T.

Detine Ut w;e) o v i abow ECe)

A
] dw‘ T(w[) =
2 W’ - 20 ha

U—[w-;g) :.{14)':4 s olan 2:(5)

Clearly U'(w;e ) and U (w;e ) are holomorphic in their domains
of definition and UY(w;e )=U(w; &') wherever they are both defined.
Hence U'(w;e&) and U (wje ) are respectively restrictions of two func-

tions:

vt holomorphic in {w i Tmawr>cC, ho|>R(E) + 14] }
U  holomorphic in ;w': I W< 3-4—'1-' cr |1wi< R(t)+ 1A + %‘f}

In the intersection of these two domains
> A
U wr) = U () = I o)

Hence i(w)—U+(w) and -U"(w) coincide with the same entire function which

we denote E(w). Note that, if U< & < 3%/8 then UT(w)=U%(w; &/2) 1is
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bounded in § w: Imwye , |w|3>R(t)+[A [+ e 1, while UT(w)=UT(wj2e ) is
bounded in { w: Imwgé or |w|<R(t)+|A|+£'}. We can now estimate
the entire function ﬁ(w)E(w)z there is a constant (depending on t)

c(t) such that

1) if Imwy 3%/8 and |w|-R(t)-|A |» 3= /8,

l:\:(w) E)| = lé(w') - "f(w) U"'(w-)\ <

4/2 1/2
< C(é)[ct’lwl & e ¥ ]

2) if Imwg3%/8 or |w| <R(t)+|A|+3%/8

4 % frr)2?

|:£(w)E(w)\ = | i(w) U o) < Clt)e

In other words the product of the two entire functions E and i

is bounded by

2C(¢t) exp ({+4x)/w-/‘/"'

while

[For)< ¥(e) exp 4 x ] 272

Applying theorem A3.1 of Appendix 3 we obtain the existence of two constants
¢'(t)>0 and %x'>0 such that ’

|E )] < Cte) e

> )] 1/2

But since |E(w)| 1is bounded along the line {w: Inw=3%/8 | it follows
from the Phragmén-Lindeldf theorem that E is bounded in the whole complex
plane, i.e., E 1is a constant. Since Uv" is bounded in {w: Imw > €,
|w|» R($)+|A|+e } for 0<eg 3v/8, T is bounded in the same domain.
This, combined with (27) shows that

\T o)< KICE) (14 1301)% (14 4+ 2 )L
Zrn 20

for

Dmaw >0 awot lw) > R(¢) + 4 + %".

This is easily translated in terms of the variable

= 4 a < < 2 )2

and we finally obtain
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Theorem In a theory of local observables, the scattering amplitude F(s,t)
is holomorphic, at fixed negative t, 1in a domain {s: ls’>R(t),

Ims#Z O } where it satisfies
P4 L

(Feq, )] < CCE) (24 1a1)* (2+ 2

Here R(t) and C(t) are certain positive functions of t, and

L20 1is a positive integer.
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CONCLUS ION

For certain favourable values of the masses [i{], F(s,t) is
analytic in s (for fixed t, tostgo) in a full cut-plane. The
theorem just proved then shows that F(s,t) satisfies a finitely subtracted
dispersion relation. This result is well known to hold (for the same favour-
able values of the masses) in a theory where each particle may be described
by a Wightman field [3{1. The present paper has thus extended this property
to theories of local observables. It is easy to verify that the methods used
here can be straightforwardly generalized to the case when the fields Aj(x),

instead of being bounded operators, are given by

AJ(O) =f ‘5.(::1,...)1(,") ‘é(xxj... ﬁ(x“) dxﬁ... dxn

where 93 is a test function with compact support, and ¢1,...,¢n are
Wightman fields (or even Jaffe fields) whose vacuum expectation values have

polynomial growth at infinity (in x space).

Thus, all relativistic and "strictly local" theories (in which the
commutator of two fields exactly vanishes at sufficiently large spacelike
distances) have as a common feature the polynomial behaviour of the scattering
amplitude and its consequences ([_32]) number of subtiractions g 2, Froissart

bounds, etco.

It is comewhat surprising that the proof given in this paper does
not need operators localized in arbitrarily small space-time regions (as

one might expect from certain examples in potential scattering). This is
due to the fact that, applying Lorentz transformations to a given region in
spacetime, one can render it arbitrarily thin in certain spacelike directions

(without, however, changing its volumel).
Finally, we note that, although we have restricted our attention to
neutral scalar particles, there are no essential complications in the case

of particles with arbitrary spin and charge.
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APPENDIX 1

Lemma A1 Let :tE‘1 be a function of two complex variables z, =x1+iy and
z2=x2+iy2, holomorphic in {z1,22= yy> o, y2>0 } and such
that, for a certain b>0,

L ¢ by, + 32) 4 4
| D% = £ (2,50l < = (2 + 22)
d1 32
for every ({1,82) with 0 < £<n+2, 0< 45n+2, and
_Dzﬂ.)gz _ ) ( )
- 9@1 Da, :
Then, for [151 and 25
£, ¢ 2(n+e 4
ll)’. a{(é)l < (b+1) )(2+22n+3)¢ (92* 32
Proof
Let
f( e£$(31+a-2) ) ,
L J 3 = Y 2>
2 s %2 ) (1+6)2(n+3) 4 "1 2 T2
&,6 . e, ¢
‘Di) “F(%i’ét)\s (1+b) (1+b) (1——.*—— —+’-
(1+6)2(:n+z) 3:— iy 91 ‘3‘_
(o$e14n+g, o« Qs n+2).
We have, for O<y1g1, O<y2g1 0 e

f(x1+£y‘ ,)121-«'31_)

1
olay

n+d

(4 =44)

n+1)!
A G

Hence

| Feay, e g 22773 /0(4 f,q

2n+y

< € ~2 .

t 'F(xii»i., i)

> L, D>

(aye-2)5t (gem2)

0gé,sm+1t £ E)
) P IR I
oS fzs n+1
3
4
(y, -4, )" (n+2), (n+2) .
ol L D 2 7C(x1+£41)x7_+c4,_).

)'7-1-1

(4 n+1

<
2 =
[(n+1).’] ), 42"

J1 de
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But actually, a similar evaluation yields, for f;g‘u {_251
¢ , ¢
\Di' eﬁ('}z: z7.)( < 22

which is the desired result.
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APPENDIX 2

We consider, in the topological product of n copies of two-
dimensional complex Minkowski-space the two tubes

X + .
?;L = '4:{£=(i1)"')£ﬂ.): I é.e-V )J:z,z,...)n.}
. . 1 2
and the set Jn ~of Jost points, given byt gn=gn Uéln
1 2 ) . .
;Zn=—-gn ={£=(£,r--a£n)"’-“‘e- c§.>0, v, <o, J=—112,...,n.?
. o,.1 o .1 .
Here, and in the following, u, =kj+kj’ vy =kj-kj, (j=1yeeeyn)e Let
/= I R
= = Uy el
A#0

where [A___l is the transformation uy Auj, vy A-1vj, 1< j<n.

Lemma A2.1 Let G be a function, holomorphic in %;Ut’;, and such that

in these tubes

1G k) < exp b2 12m &7 (6>0)
¢°1

2

Suppose that the two boundary values of G at the real points,
from °C§, (in the sense of distributions) coincide in gn'
Then

1) G has an analytic continuation in aéor'l;

2) for any k €T

k<B o 1
'G(£)|<ex,b {lg_; max (/Im‘fl-/, [Im f/ /)
Proof

The statement 1) is well known [13]. It will be reobtained in the
course of proving 2). To do this, consider, the function & of n#1
complex two-vectors defined by

o

- _[Zk( -1
G (K, k ,., % )=[¢e - Gf‘,;---,ﬂ)]
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This function is analytic in

A = { '& = (ii‘".) Q“)) K : IM éév*‘) J':il...’ns Im K—_i I’hﬁ, éV"‘}

U{ﬁ,l'(: Imé’[ev—)o,'::()...)n)- IMK*'iLImf’,éV"'}U
U-lf)W:‘éeg"_ , _Z‘my(ev-l-}

A is a (generalized) semi-tube since: (k,K)e A and (K-K') real =>
(k,K')e A . Moreover, if (k,K)& A and Im(K-X')e V" then (k,K')eA.
It follows that the envelope of holomorphy A  of A has the same pro-

perty. We now proceed to determine A .

For this purpose we introduce redundant variables §5€CZ,
;'3'64:2, Zécz, (j=19000,n) and set

gJ.: §3—§; R (4':1,2,...,»7.))
"
K: Z(I‘.’+3’,")+Z
J:i J J

We use the "characteristic co-ordinates" u5 = §'5°+ §‘51, v3 = {'30- §51,
u‘j' = Z,":'.°+C'51, v'J! = ng—Cg1, (1€ jgn). We seek the envelope of holomor-
phy of '

ll—

{§" T¥ : Im ud{>0, _Im»;‘>0 , Im «!= Im;j‘/:o) 15J'sn}U

U ,{K', r//'. ]m “‘; = jm‘)?';'= O, T ‘:;1>0, Im?“/,/l.>0/1\<J'én}U

U )&"Mxl’”e«ﬁ: w!>0 , »'< 0, «??<O, »” >0
J %y / J\ 47 > }

[Clearly, if (&', &") is a point of the envelope of holomorphy
of this set, and if ImZ&V', then § is analytic at (k,K) for

k,= Ct-8" K=2Z(F1+Z")+z].
3= 838 7 3]+ 842
The above set is transformed into a (flattened) tube by setting

zd,’ = {o; uj ) 74-';/ = - {"; (- 7:;)

Zfl =—‘€a (—"‘-’-/) w? = é 7}.”
J Iy J 7y

L, J=1,2,.., ).
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Here the function log 1is defined, in the complex plane cut along R™, as

having its imaginary part between - 7r and 7.

The above set becomes:

O< Irma?<r7w » O< Im w;f<7r; T aj’: I’"”‘}”: O}U
Jd

V] ] » ”
!a"u'la-)xd’, ;

” v o,
L Lo 27 = Iom w’ = 0)- o< Imzj’<n'/- [oX's .Zmu;,”(a-}(/

U{zll""/*) :

U{w& real /;o;_.&a}.

Its envelope of holomorphy is its convex hull; it is given by

’ gil

{“) wh 2% w? i O< Imala 0<z””¢;~'<’l’; O< I 5.”(1:'; O0< I w—.”<1r]//)
J

d J
OgBgoe
ﬁ-ﬂ'(l’né‘;.'<5; O-»x€x < [mu:;;’<£}
That is, in the variables u:'], u:j', v:'], vg:

/“,’ v, w”, . Im >0, Im z{/.’>€/ Lo ﬁf'>a, I p;.">0}f)

. " -1
N fur, o wyvn Tmaw/>0, Ima'ni>0, Tndufi<o, In zj.”<o}.
Ae C .
DnA>0
We have obtained the domain

L/ {;; ¢ 2 ¥ e AT, T TNITT, Z e t“}

Ae €
DnA>C
Using now real points of coincidence where u!<0, vs >0, u'J! >0,
v" < 0, one can suppress the restriction Im A> 0, Finally we see that,
for every A £0, A contains
"
r_ = D, ’ ”)+ .
A_—_{ﬁ)a/(: k. L9 §~1K‘i;.2(a*3:j) Z/
A J J d /

¥/ e T N1TT, ?;J." e TTV[AITT, (asjsn)s Ze"g"*-}_



We now show that AA = '\; , With
A A " A A

N - ,_ ” 1= M =Z. (§f+§.”)'
AA = {i) W {j = CJ EJ ) J"i)"')ni K J=J‘ 4 J 4

A A A A

TleT™, Cdf’e v, §;—CJ." e CA]Z"*}.

~ ~o

It is obvious that A’\C A, . To prove that AA < 4, , we consider

A A

vectors {'5, q'j' verifying:
A A A A .
ex®t, c;{é T, ch—cj’e[,\J"z:*, (2 /<70,

and try to determine !, §"J!, such that
e TNITT, & e TInlAIT"

i

/__ ” /‘./_ A'l
Cci CJ T d <J
S (Tr+ 87 -t-g)e T
Jzi J d 4

If ImX#£0, we can take as independent unknowns:

£y -1 /_A( = .
]m(é;f_g.)—/j. , I [ A ](z;. c‘/) 7

We must now find /oj and 't'j such that:

A
I g +/oJ e V* Im §J.” +/<‘>/. e V?*

/

M .év_
Z /

g Im[A'1]£j + T e V7

T,
J
A —
Im.[,\"‘]é".’ r .V
d dJ
The two first conditions can be satisfied by taking eV~ very small;

T A A
the two last conditions can be satisfied by taking 7T, = 4Im [ 1]( §3+»§';j')'
We have proved:
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Lemma A2.2
»” . . p
A={&)K: 6.:4‘;—%, (15an),KJ-§;(§’+§'),

A AR AR E N el

(Indeed we have proved that A contains the right-hand side;
but the latter is a domain of holomorphy, since %r'l is a

domain of holomorphy in the case of two space-time dimensions

[14].)

Let k €%}, J-(uj,v ), (1< j<n). The set of K= (U,V)
such that (k,K)€& A is given by

Im U= 2 (x ¥?) ; Im V = .z (5’ §’)
J=t I J1 s
where X', ¥, 35, S:]" are positive numbers such that X;j - X':; =Im u;

and 33-3'3!=Imvj.

This is equivalent to
- n
Im U > = [Trmew| , [,,,V>z I Tmw |
N § Jd . J 1
¢
(These conditions are clearly necessary. To see that they are sufficient,
take !=Imu "=0 if Imu, >0 or '=0 "=.Imu, if
j XJ j > U, XJ ’ 3’3 3

Imu, < O.
muy < )

j ?

Lemma A2.3

2{ = {", 2O && ?/ I Z/'>.Z?-/Imu-/) Im—\/>2':‘/[ml7‘/
~/ /=t o J 1 J

We have thus proved that, if keof', kg-i-k;. =uj, kg-k; =vj,

" £

(Im U > 2;' /Zmay.// 1mV>Z /Imz"l)‘—} e~ CE UV _ G(L) # O

J= 41

This implies:

( Z (/D! /Irry 2>

IGit )< & % = ) + ” 2 /).
For, if the contrary were true, we could find

]mZz’>.~._, /Im.u.'/ Al ImT/>Z'/IrnL"/
d-—l J-
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such that |G(k)|=e €im (U+V)/2 , then determine Re U+v)

-1 f(U+V)/2.

so that G(k) =e Since

/Im qu + /Imz:,./ = 2 ma.x(/Imé,o/} /__z'm;;j‘/))

Lemma A2.1 is proved.



APPENDTIXKX 3

Though we need only a theorem about the ratio of two entire func-

tions of order %, we shall consider a somewhat more general case.
Theorem A3.1

Let E(z)=N(z)/D(z) where E, N and D are entire functions,
N and D being of order less or equal to P, O\<P {1, Then E is of
order at most P . If N 1is of order /O and of type T~
of order less than f) or of order /o and type ’C’E:

N? E is either

x Pdx

N 2
o Cl+x)

e <

£

Proof

We remind the reader that the order /:\ of an entire function F

b b3 1y 10 [l = 1

r— oo

is given by

(43.1)
where M(r) is the maximum modulus of F in |z| <r. If the function is

of order f the type i;given by

(notice that T may be O or infinity).

(A3.11)

A function F of order less than unity is of genus 0 [:15:], ieee,
it can be written as an absolutely convergent product over its zeros. From
now on all the functions we consider have no zeros at the origin and take

the value unity at this point:
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Qo
z=
F(Q;): r-{ (’ - 2‘{>
t= | (A3.1II)
Now we shall need two important inequalities
a. Jensen's inequality
Define n(r), the number of zeros for Izl\<ro Define
X
/
mir )dr
NG = | eer
r [}
o (A3.IV)
then
M(D> N(r)
% = (a3.V)

be we need an inequality which goes in the other direction, i.e., which

controls the maximum modulus when the radial distribution of zeros

1-&

is given. Here we assume that n(r)<Cr y an assumption which is
always satisfied by functions of order strictly less than unity. We
can write DGJ

dg |l < Z ’%(Héﬂ

t=|

= SA’.&O}(H’ FV."> Adn(r')
;, m(r)de’

5 P"(r'+r)

L
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So
N de !
(V’—f—r)a—

In the last two steps we have used integration by parts. In that
argument n(r) <Cr1 -£

= T
(A3.vI)
is essential.,
Consider now the function

NRY/D(2) = E(2)

N, D and E are entire and N and D are of order ()s f <ﬁ. Then

we are allowed to write
!
D(&) M- 2
— iJ'
(A3.vII)
where, clearly, the zj's form a subset of the zi's.
It is clear that E(z) is also a function of genus zero since
the products in (A3.VII) are absolutely convergent. Hence the order

of E(z) is less or equal to unity.

Now we define nN(r), nD(r), nE(r), number of zeros of N, D

and E for |z|<:r, with nN(r)==nD(r)+nE(r)o

N ()= N, ()+ I\)E (v)

Let us now apply (A3.VI) to E. It is legitimate to do so
even though we have not yet established that E is of order strictly

less than unity. Indeed E is of genus zero and NE(r)<:NN(r) which
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by Jensen's inequality and the definition of the order implies
+ £
N (r)<C r P
£

for r Dbig enough. So Qo

M () V’j-’v e (r)de "
Lo [M_ (] < R

Ny(r')de’
\< [(V +—V‘)

If we now use Jensen's inequality for N we get

Loy Mg (] A

(V‘+V‘>
(A3.VIII)
If N 1is or order we have
f
+& i
%(MN(P>{< C F + g
for E;. positive arbitrarily small, and therefore
pPHeE |
L}/Mf(“)KcaKp«Pa‘p +Cg
(A3.1X)

where

k x 7 X |
- = - (43.X)
; (] +x)



- 81 -

Since (A3.IX) holds for &— arbitrarily small it means that E is
of order less or equal to ;3 .

If, more specifically, we know that N, being of order f7, is also

of type 'tg, we can make a more accurate statement: then we have
A}IMN(V‘)I < (Tvn"'é) r f‘f‘ Ca
and hence

/

bom |, (]t lg P

where K is defined by (A3.X).

F

So if E 1is of order , it is of type ’C’EQ{ ZN, which
N

concludes the proof of our theorem.

(A3.XI)

In particular, if r =%+ (our case)

/C-E' \< ”-ZI.IT;/ (A3.X1II)

We want now to take this opportunity to extend our considerations to

the case of functions of exponential type (order 1.

Theorem A3,2

If the ratio of two entire functions of order 1, E=N/D, is

an entire function, it is of order 1, at most. If it is of order 1 its

type is majorized by

t. & TE+T3)

N\
where tN and LU are the types of the numerator and the denominator.

D
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Proof

Consider

Na) DL)+DRINCE)
& (y=2)=€(@)+E(-2)= D(2)D(-2)

e (4)
d+ (%)

n, and d+ are of order % in the variable y, and the type of n, is

‘t.r

Iy

most, and, if it is of order 3, its type is at most

T (Tt T)

+'V5. Hence, by application of Theorem A3.1 h+(y) is of order 3 at

Similarly, we can consider

ﬁ.(%) _ E=)-ECD)

=

and get analogous results.

If one reconstructs E from h+ and h_ one gets that

i) E is at most of order 1;

ii) if E 1is of order 1 its type l'E satisfies

N~
T ¢ T (ty+7Tp)
E N > N
Notice that this result may not be the best possible one. However,

there is an obvious example where T'E=?§+ ‘t'];:

E(2) = e—uf@w 2)/&%(- pe)
I'inally, one can restate theorem A3.2 in a new way:

Theorem A3.3

The type ) of the product of two entire functions of order one

and types 1:1 and ’C'2 is such that



If L1 and T2 are sufficiently different, this is a non-trivial
and possibly new result (according to Ref. [15], p. 126).



1)

2)
3)
4)

11)

13)

14)

15)
16)
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FIGURE CAPTIONS

Tubes of analyticity in = = for fixed ')TaeV_

gt
and 7r1+9r2<=V .

The domain of analyticity of Y~ in ‘)‘% contains

the topological product of the shaded domainse.

The contour %'(t‘- )
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FIG.2

FIG.3



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

