

## Disclaimer

This note has not been internally reviewed by the DØ Collaboration. Results or plots contained in this note were only intended for internal documentation by the authors of the note and they are not approved as scientific results by either the authors or the DØ Collaboration. All approved scientific results of the DØ Collaboration have been published as internally reviewed Conference Notes or in peer reviewed journals.

DØ Note: 2978  
Dec 12th, 1995

# Measurement of the Top quark production cross section using *lepton + jets* events

*J. M. Butler, S. Chopra, W. Cobau, H. Greenlee, J. Hobbs  
M. Narain, S. Protopopescu, T. Rockwell, P. Tamburello, H. Zhu*

the DØ Top Lepton+jets Group

## 1 Introduction

In this note we present an updated analysis of  $t\bar{t} \rightarrow \text{lepton} + \text{jet}$  modes which contribute to the measurement of the top production cross section. The data set used for these measurements corresponds to approximately  $100 \text{ pb}^{-1}$ , almost the entire data sample collected during Run IA and Run IB.

In  $t\bar{t}$  decays, we classify events as *lepton+jets* events, if one  $W$  decays leptonically to  $e\nu$  or  $\mu\nu$  and the other hadronically. The branching fraction is 24/81. The dominant source of background for this mode is  $W + \text{jets}$  production. We further distinguish the  $b$  tagged lepton+jets channel, in which a muon from the semileptonic decay of a  $b$  quark was detected ( $\ell + \text{jets}/\mu$ ), and the topological lepton+jets channel, in which the topology of the event is top-like and no  $b$  was tagged ( $\ell + \text{jets}$ ).

## 2 Luminosity

We used the GET\_FILE\_LUM utility to obtain the luminosity corresponding to the streamed data sets used for the analyses, this is labeled as “RAW” lum in table 1. To get the luminosity for the GOOD\_BEAM running condition we apply a correction for MICRO\_BLANK, which is taken from the production database and is denoted as “Microblanked”. Table 1 also lists the luminosities as a function of Pre and Post muon chamber zap running conditions during Run1B.

In order to compute the luminosity for the MAX\_LIVE condition, we used GET\_FILT\_LUM utility and the ELE\_JET\_HIGH filter for Run1B.

All of these have to be corrected by a factor of 1.03 to account for the change in min-bias cross section.

A log file with the details can be found in

TOP2\$HROOT:[EVENT\_SAMPLE.COM.LUM.TOM]AAA-LOG.TXT

## 3 Data Streaming

For the *lepton + jets* analyses, we ran over the entire MDS and MDC sample from Run1B (and only *e + jets* for Run1A) to create smaller event samples which could be located on the top project disks on the Alpha cluster or FNALD0 cluster. These streamed data sets are the starting points for all *lepton + jets* analyses.

We eventually kept only the samples for signal analysis on disk. The background streams were analyzed and copied off to tape. We streamed all MDS and MDC files available until 24th October, 1995 in the D0\$DATA\$DST area.

A document with detailed description of these streams can be found in  
TOP\_DOC\$HROOT:[GENERAL\_INFO.EVENT\_SAMPLE] RESTREAM\_SELECTION.TXT

## 4 Event Cleanup

We reject runs which have known detector problems or pathologies. These runs are listed in D0\$PHYSICS\_UTIL\$GENERAL:BAD\_RUN.RCP. A document describing how the decision was taken to classify these runs as bad can be found in TOP\_DOC\$HROOT:[GENERAL\_INFO.RUN1B]BAD\_RUN.MEM

Table 1: Luminosity in  $\text{pb}^{-1}$  used in *lepton + jet* analyses. The error on the luminosity is 5.4%

| Run1A                                                       |        |        |         |
|-------------------------------------------------------------|--------|--------|---------|
|                                                             | Run1B  | Prezap | Postzap |
| e+jets<br>RAW                                               |        |        | 14.4    |
| e+jets<br>Microblanked                                      |        |        | 13.9    |
| $\mu$ +jets<br>Microblanked                                 |        |        | 9.8     |
| Raw                                                         | 81.132 | 48.438 | 32.694  |
| Remove bad runs - used BAD_RUN.RCP                          |        |        |         |
| Good raw:                                                   | 80.164 | 47.879 | 32.285  |
| Microblanked:                                               | 74.863 | 45.040 | 29.823  |
| Remove bad runs (ignore muon system) - used BAD_RUN_CAL.RCP |        |        |         |
| Good raw cal:                                               | 80.226 |        |         |
| Cal microblanked:                                           | 74.921 |        |         |
| Remove bad runs - used BAD_RUN.RCP                          |        |        |         |
| MAX_LIVE                                                    | 88.369 | 35.877 | 52.492  |

We also reject events which are determined to be pathological. If the difference between the CH-fraction and EM-fraction of any jet in the event is more than 0.5, then the event is classified as “BAD” and rejected from the analysis (see figure 1).

We use the routine D0\$PHYSICS\_UTIL\$GENERAL:TOP\_EVENT\_CLEANUP.FOR for this purpose.

## 5 Particle Identification

### 5.1 Electron-id

In the present analysis, we have switched to using Electron identification based on a likelihood technique. Details of this method can be found elsewhere[1]. We use the Electron-likelihood variable computed using 4 variables. These variables are

$$\chi^2, \quad \text{em-fraction}, \quad \sigma_{trk} \text{ and } \frac{dE}{dx}$$

The cut values for the 4-variable electron-likelihood and isolation parameter are listed below :

- CC :  $\text{elike} \leq 0.25$  (tight);  $\leq 0.5$  (loose)
- EC :  $\text{elike} \leq 0.30$  (tight);  $\leq 0.5$  (loose)
- isolation fraction  $\leq 0.1$

The cut points for the 4-variable electron-likelihood are chosen so as to obtain the same “tight” electron efficiency as we had during the **discovery analysis** (“old”) with better rejection against *fake-electron* backgrounds. This can be seen from table 2, where the efficiencies and rejections of the “old” and “new” electron-id are compared. In this comparison the efficiencies are derived using the  $Z \rightarrow ee$  data and the rejections from the inclusive  $W + \geq 0$  jets sample. The rejections increase slightly as the jet multiplicity in the event increases.

In order to take into account the luminosity dependence of the electron-id efficiency and the probability for finding a track in road (*ie.* PELC finding efficiency), we use exactly the same luminosity for the  $Z \rightarrow ee$  sample while

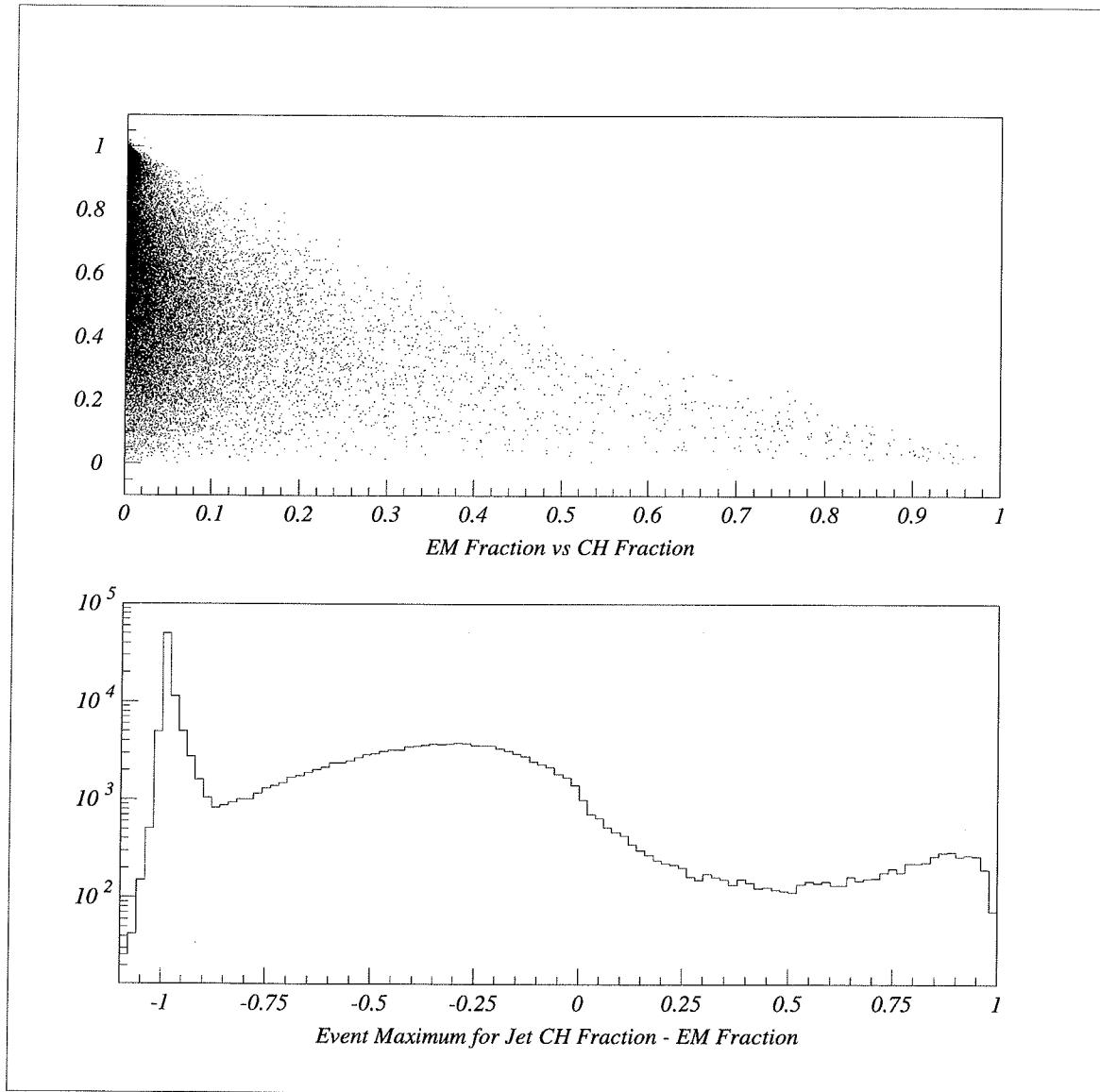



Figure 1: Distribution of CH-fraction vs. em-fraction of jets

Table 2: Comparison of electron-id using 4-var likelihood with “old” electron-id used in top analyses

| Efficiency and Rejections       |                |            |
|---------------------------------|----------------|------------|
| cut                             | Efficiency(%)  | Rejection  |
| new eid : 4-variable likelihood |                |            |
| CC (tight)                      | $81.1 \pm 1.0$ | $46 \pm 1$ |
| EC (tight)                      | $51.4 \pm 1.8$ | $25 \pm 2$ |
| old eid : Conventional Cut      |                |            |
| CC (tight)                      | $82.6 \pm 1.0$ | $36 \pm 1$ |
| EC (tight)                      | $50.9 \pm 1.5$ | $19 \pm 2$ |

deriving the efficiencies as the  $e+jets$  sample used in the analysis. All of the efficiencies obtained using the  $Z \rightarrow ee$  sample are listed in table 3.

Most of the Monte Carlo samples used by the top analyses are generated using the SHOWERLIBRARY MC. While selecting electrons in these MC samples we require an isolated PELC to match with an ISAJET electron. We do not impose the electron-likelihood cut at the Monte Carlo level. They are propagated from those measured from  $Z \rightarrow ee$  events. We also correct the PELC finding efficiencies by the difference between the tracking efficiency observed in  $Z \rightarrow ee$  events in data and those generated using SHOWERLIBRARY MC.

## 5.2 Muon-id

Two types of muon identification are used in this analysis. They correspond to selecting muons arising dominantly from the  $W \rightarrow \mu\nu$  decay and from the decay  $b \rightarrow \mu + X$ . The first class is denoted as *isolated* muons, and the second class is denoted as *astag* muons. The run Ib selection requirements for each type are described separately in the following two sections. The corresponding Ia definitions can be found in reference [4].

Table 3: Electron identification efficiencies used in lepton+jets analyses

|                                                       | Efficiency(%)    |                  |
|-------------------------------------------------------|------------------|------------------|
|                                                       | CC               | EC               |
| 4-var likelihood(tight)<br>+ isolation                | $81.1 \pm 1.0$   | $51.4 \pm 1.8$   |
| SHLB tracking efficiency<br>(monte carlo)             | $94.75 \pm 0.64$ | $90.69 \pm 1.57$ |
| Data tracking efficiency<br>( $\geq 1$ vertex events) | $82.67 \pm 1.07$ | $85.19 \pm 1.02$ |
| Data tracking efficiency<br>( $\geq 2$ vertex events) | $77.08 \pm 1.59$ | $82.23 \pm 1.63$ |
| Data tracking efficiency<br>( $\geq 3$ vertex events) | $69.96 \pm 4.89$ | $81.56 \pm 5.05$ |
| Data tracking efficiency<br>(= 1 vertex events)       | $85.82 \pm 1.06$ | $86.97 \pm 1.22$ |
| Data tracking efficiency<br>(= 2 vertex events)       | $77.89 \pm 1.57$ | $82.32 \pm 1.73$ |

Events taken during the MRBS\\_LOSS gate are used in this analysis after having the calorimeter based quantities corrected for main ring energy. [10] The muon reconstruction efficiency is lower for muons taken during this period because of voltage sag in the muon system. An  $\int L \cdot \epsilon$  correction has been determined using events with identically two jets and one high- $p_t$  non-isolated muon (See below). There are 35891 such events occurring passing the GOOD\\_BEAM requirement, and 3921 events which occur during the MRBS\\_LOSS veto<sup>1</sup> The overall increase in luminosity times efficiency arising from the MRBS\\_LOSS data is thus  $3921/35891 = 10.9 \pm 0.2\%$ .

### 5.2.1 Isolated Muons

The selection requirements for isolated muons in run Ib data are

- Muon Quadrant  $\leq 4 (\leq 12)$  for runs  $< 89,000 (\geq 89,000)$
- IFW4  $\leq 1(0)$  for CF(EF) muons.
- ( $H_{frac} \geq 0.75$  and  $E_{frac\_H}(1) > 0$ ) or  $H_{frac} = 1.0$
- A-stubs vetoed
- $r_{IP} \equiv \sqrt{IP_{BV}^2 + IP_{NB}^2} \leq 20.0$  cm
- $\int \vec{B} \cdot \vec{dl} \geq 0.6$  GeV
- $p_t \geq 20$  GeV/c
- $\Delta R \geq 0.5$

The first item is a fiducial cut corresponding to  $\eta \leq 1.0(1.7)$  for CF(EF). The second item indicates reasonable quality-of-fit of the muon using information from the muon system only. The third item is often referred to as “MTC” [11] and serves both to reject combinatoric fakes and cosmic rays. The fourth item rejects muon tracks having no B/C layer hits. The fifth item provides further protection against cosmic ray muons and misreconstructed muons. Here  $IP_{BV}$  and  $IP_{NB}$  are the 2D distances-of-closest approach between the muon and the associated vertex in the bend and non-bend projections. The

---

<sup>1</sup>The MICRO\\_BLANK period is always explicitly excluded.

| Requirement             | Efficiency (%) |              |
|-------------------------|----------------|--------------|
|                         | CF             | EF           |
| w/good PMUO             | $\equiv 1.0$   | $\equiv 1.0$ |
| w/good PMUO, $p_t > 20$ | $89.6 \pm 0.5$ | $72 \pm 2$   |
| remaining ID cuts       | $80.4 \pm 0.7$ | $68 \pm 2$   |
| $\Delta R$ isolation    | $65.9 \pm 0.8$ | $61 \pm 2$   |

Table 4: Efficiency for muons from  $W$  decay passing the selection requirements. The efficiency is given separately for CF and EF and is normalized to the number of muons passing the IFW4 and MTC requirements. The  $\Delta R$  efficiency is dependent on the physics signal through the jet-multiplicity dependence. The number quoted is for simulated top events.

$\int \vec{B} \cdot \vec{d}l$  requirement insures that muons have traversed enough field to give an acceptable  $p_t$  measurement. The  $p_t$  and  $\Delta R$  requirements select muons characteristic of those from  $W$  decay. Here  $\Delta R$  is the distance in  $\eta, \phi$  space between the muon and the nearest 0.5 cone jet.

The muon reco efficiency is expressed as the product of three components. The first is the probability that a real muon gives rise to a PMUO bank passing the IFW4 and MTC requirements assuming ideal hit finding efficiencies. The second component is a correction factor accounting for the true hit-reconstruction efficiency. The third component is the efficiency for passing all other requirements.

The uncorrected “PMUO” efficiency is determined using Monte Carlo and is found to be  $75 \pm 1\%$  for high- $p_t$  muons in the CF and  $85 \pm 1\%$  for high- $p_t$  muons in the EF. The correction factor is determined using  $\mu$ smeared Monte Carlo and is  $90 \pm 2(\text{sys})\%$  for untriggered high- $p_t$  muons in the CF and 95% for triggered CF muons. The EF post-zap “PMUO” efficiency correction is  $85 \pm 2$ .

The efficiency for the remaining requirements is determined from Monte Carlo. Table 4 shows the efficiencies derived from simulated  $t\bar{t}$  events.

### 5.2.2 Tag Muons

The selection requirements for tag muons in run Ib data are

- Muon Quadrant  $\leq 4(12)$  for runs  $< 89,000(\geq 89,000)$
- IFW4  $\leq 1(0)$  for CF(EF) muons
- $(H_{\text{Frac}} \geq 0.75 \text{ and } E_{\text{Frac\_H}}(1) > 0) \text{ or } H_{\text{Frac}} = 1.0$
- A-stubs vetoed
- $p_t \geq 4 \text{ GeV}/c$
- $\Delta R < 0.5$

The first item is a fiducial cut corresponding to  $\eta \leq 1.0(1.7)$  for CF(EF). The second item indicates reasonable quality-of-fit of the muon using information from the muon system only. The third item is often referred to as “MTC” and serves both to reject combinatoric fakes and cosmic rays. The fourth item rejects muon tracks having no B/C layer hits. The  $p_t$  and  $\Delta R$  requirements select muons characteristic of those from heavy flavor decay. Here  $\Delta R$  is the distance in  $\eta, \phi$  space between the muon and the nearest 0.5 cone jet.

The muon reconstruction efficiency is expressed as the product of three components. The first is the probability that a muon gives rise to a PMUO bank passing the IFW4 and MTC requirements for ideal hit reconstruction efficiency. The second component is a correction factor accounting for losses introduced by hit-finding inefficiencies. The final piece is the efficiency for passing all other requirements.

The “PMUO” efficiency for muons arising from the decay of heavy quarks is determined using Monte Carlo and ranges from 38% to 55% depending on top mass. The mass dependence arises because the average tag  $p_T$  increases with increasing top mass, thereby causing more muons to penetrate the iron of the toroids and pass the 4 GeV  $p_T$  threshold. The efficiencies are the same for the CF and EF regions. The hit-finding efficiency-correction factor is found to be  $90 \pm 2(\text{sys})\%$  for tag muons in the CF, and  $84 \pm 2\%$  for tag muons in the post-zap EF.

The efficiency for the remaining requirements is determined from both Monte Carlo and data. These results are contained reference [2]. Table 5 shows final the efficiencies and background from this document.

| Detector Region | Efficiency(%)  | Background(%) |
|-----------------|----------------|---------------|
| CF              | $94.7 \pm 0.4$ | $3.9 \pm 1.9$ |
| EF              | $88.5 \pm 3.3$ | $7.9 \pm 4.2$ |

Table 5: Tag muon efficiency and background for CF and EF(Run $\geq$ 89,000) muons.

### 5.3 Jets and Missing Et

Jets are reconstructed with a fixed cone algorithm. We use a cone size of  $dR = 0.5$ . All the jets are corrected with CAFIX V5.0. These jets are required to have a minimum  $E_t$  of 15GeV and be within  $|\eta| \leq 2.0$ .

Two different definitions of  $\cancel{E}_T$  (corrected using CAFIX) is used :

- $\cancel{E}_T^{cal}$  : the calorimeter missing  $E_T$ , (PNUT4)
- $\cancel{E}_T$  : the muon corrected missing  $E_T$ , (PNUT5)

In D0RECO we suppress the hot cell in the events using two different algorithms. One of them suppresses the calorimeter cells which were detected to be 'HOT' due to known hardware problems. The other algorithm, AIDA suppresses cells which are 'HOT' due to random discharges in the event. Since AIDA only uses the longitudinal energy deposition pattern to determine if the cell is isolated, it often finds cells in a jet as hot. These falsely suppressed 'HOT' cells in events then give rise to false  $\cancel{E}_T$ . Therefore we further correct the calorimeter missing  $E_T$  (PNUT4) in the event to account for this problem. If a hot cell classified in the CAID bank is within  $\delta R$  of 0.25 of a jet then it is added back vectorially to the calorimeter  $\cancel{E}_T$  of the event. In all the analyses in this note we use this corrected definition of  $\cancel{E}_T$

## 6 Triggers

### 6.1 Electron Triggers and Efficiency

The trigger efficiency for  $W +$  jet events has been estimated from the data as a function of jet multiplicity. The present analyses in the Run 1b

e+jet channels use 2 triggers, ELE\\_JET\\_HTGH and EM1\\_EISTRKCC\\_MS. ELE\\_JET\\_HIGH required at level 1, 1 em tower  $E_T \geq 12$  GeV,  $|\eta| \leq 2.6$ , and an additional jet tower,  $E_T \geq 5$  GeV,  $|\eta| \leq 2.6$ , and at level 2, an ELE electron,  $E_T \geq 15$  GeV, an additional jet,  $E_T \geq 10$  GeV and 14 GeV of Missing Transverse Energy. EM1\\_EISTRKCC\\_MS required required at level 1, 1 em tower  $E_T \geq 12$  GeV, and at level 2, an EIS electron with a track, and 15 GeV of Missing Transverse Energy. The additional jet requirement in ELE\\_JET\\_HIGH, introduces a jet multiplicity bias in this trigger.

To measure the trigger efficiency of the two trigger and then to do a joint trigger efficiency, we will factor triggers into electron,  $\cancel{E}_T$  and jet parts, measure the efficiency of a given part for  $W$  events and then combine the results, making the assumption that the trigger efficiency factorizes.

Table 6: ELE\\_JET\\_HIGH jet trigger efficiency. Tabulated is the efficiency for ELE\\_JET\\_HIGH to trigger on the additional jets in a  $W + n$  jets events. Tabulated is the fraction of  $W$  events passing EM1\\_EISTRKCC\\_MS which also pass ELE\\_JET\\_HIGH as a function of jet multiplicity. This is the trigger efficiency for the Level 1 requirement of one jet tower,  $E_T \geq 5$  GeV and the Level 2 requirement of 1 jet, 0.3 cone Jet with  $E_T \geq 10$  GeV. Offline reconstructed jets are required to be within  $|\eta| \leq 2.0$  and pass either a 15 or 20 GeV transverse energy cut.

| Multiplicity | Eff ( $E_{Tj} \geq 15$ GeV) | Eff ( $E_{Tj} \geq 20$ GeV) |
|--------------|-----------------------------|-----------------------------|
| 0            | $1.6 \pm 0.1\%$             | $3.6 \pm 0.1\%$             |
| 1            | $60.2 \pm 0.6\%$            | $77.5 \pm 0.6\%$            |
| 2            | $84.4 \pm 1.0\%$            | $95.1 \pm 0.8\%$            |
| 3            | $94.8 \pm 1.4\%$            | $99.2 \pm 0.8\%$            |
| 4            | $96.5 \pm 2.4\%$            | $100.0 \pm 4.6\%$           |

### 6.1.1 Electron Trigger Efficiency

To measure the electron efficiency, we require a trigger without any electron requirement. We require a  $W$  (i.e. a good electron and  $\cancel{E}_T$ ) and then ask if the electron has satisfied the trigger. To get a sample of  $W$ 's, we start by requiring the MISSING\\_ET filter with requires 35 or 40 GeV of  $\cancel{E}_T$ . We

then ask if the electron for the  $W$ 's found satisfies, the ELE or EISTRKCC requirement of the trigger. We find that the ELE (EISTRKCC) is  $98.7 \pm 0.1\%$  ( $95.6 \pm 0.2\%$ ) (statistical error only) efficient for 20 GeV Electron passing top electron id requirements.

### 6.1.2 $\cancel{E}_T$ Trigger Efficiency

To measure the  $\cancel{E}_T$  trigger efficiency, we start with a monitor trigger, require a  $W$ , and impose the level 2  $\cancel{E}_T$  requirement. For a level 2  $\cancel{E}_T$  requirement of 15 GeV, we find the efficiency is  $99.1 \pm 0.1\%$  ( $99.6 \pm 0.1\%$ ) (statistical error only) for an offline  $\cancel{E}_T$  cut of 20 (25) GeV.

### 6.1.3 Jet Trigger Efficiency

To measure the ELE\\_JET\\_HIGH efficiency as a function of jet multiplicity, we require a  $W$  passing EM1\\_EISTRKCC\\_MS and then observe (as a function of jet multiplicity) how many  $W$  events pass ELE\\_JET\\_HIGH. The results of this analysis are shown in table 6

### 6.1.4 Overall Trigger Efficiency

The overall trigger efficiency is shown in table 7. The errors shown are combined statistical and systematic. A flat 3% systematic error has been assumed for the individual trigger efficiencies.

## 6.2 Muon Triggers and Efficiency

The following triggers were used in the  $\mu$ +jets analyses:

- MU\\_JET\\_xxxx family:
  - MU\\_JET\\_HIGH
  - MU\\_JET\\_CAL
  - MU\\_JET\\_CENT and
  - MU\\_JET\\_CENCAL
- JET\\_3\\_xxxx family:

Table 7: Electron + Jet Trigger Efficiencies. Shown are the efficiencies for EM1\_EISTRKCC\_MS & ELE\_JET\_HIGH and their combination. The efficiency of EM1\_EISTRKCC\_MS is assumed to be independent of jet multiplicity.

| #j | Filter                   | EFFICIENCY (%)                   |                                  |                                  |                                  |
|----|--------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|    |                          | $E_{Tj} \geq 15$                 | $E_{Tj} \geq 20$                 | $E_{Tj} \geq 15$                 | $E_{Tj} \geq 20$                 |
|    | EM1_EISTRKCC_MS          | 94.7 $\pm$ 2.8                   | 94.7 $\pm$ 2.8                   | 95.2 $\pm$ 2.9                   | 95.2 $\pm$ 2.9                   |
| 0  | ELE_JET_HIGH<br>COMBINED | 1.6 $\pm$ 0.2<br>94.8 $\pm$ 2.8  | 3.5 $\pm$ 0.3<br>94.9 $\pm$ 2.8  | 1.6 $\pm$ 0.2<br>95.3 $\pm$ 2.8  | 3.5 $\pm$ 0.3<br>95.3 $\pm$ 2.8  |
| 1  | ELE_JET_HIGH<br>COMBINED | 58.9 $\pm$ 1.9<br>96.6 $\pm$ 2.3 | 75.8 $\pm$ 2.4<br>97.1 $\pm$ 2.5 | 59.2 $\pm$ 1.9<br>97.1 $\pm$ 2.3 | 76.2 $\pm$ 2.4<br>97.6 $\pm$ 2.5 |
| 2  | ELE_JET_HIGH<br>COMBINED | 82.6 $\pm$ 2.7<br>97.3 $\pm$ 2.9 | 93.1 $\pm$ 2.9<br>97.7 $\pm$ 3.0 | 83.0 $\pm$ 2.7<br>97.8 $\pm$ 2.9 | 93.5 $\pm$ 2.9<br>98.2 $\pm$ 3.0 |
| 3  | ELE_JET_HIGH<br>COMBINED | 92.8 $\pm$ 3.1<br>97.7 $\pm$ 3.4 | 97.0 $\pm$ 3.0<br>97.8 $\pm$ 3.1 | 93.2 $\pm$ 3.1<br>98.1 $\pm$ 3.4 | 97.5 $\pm$ 3.0<br>98.3 $\pm$ 3.1 |
| 4  | ELE_JET_HIGH<br>COMBINED | 94.4 $\pm$ 3.7<br>97.7 $\pm$ 4.4 | 97.8 $\pm$ 5.5<br>97.8 $\pm$ 7.0 | 94.9 $\pm$ 3.7<br>98.2 $\pm$ 4.4 | 98.3 $\pm$ 5.5<br>98.3 $\pm$ 7.0 |

- JET\_3\_MISS\_LOW
- JET\_3\_MU and
- JET\_3\_L2MU

The MU\_JET\_xxxx triggers are based on a single high  $p_t$  muon and a single jet. Both muon and jet are required at level one and level two. The JET\_3\_xxxx family is based on jet multiplicity at level 1 and level 2 with  $E_T^{cal}$  and loose muon requirements added at level 2. The trigger efficiency is computed separately for both families and the two efficiencies are then convoluted to determine the overall efficiency.

The series of triggers in each family exist because the initial trigger definitions proved unable to cope with increasing instantaneous luminosity. In all cases, the existing triggers were tightened to reduce rate, and a prescaled version of the original definition was kept to allow monitoring. For runs prior to 83213, only the MU\_JET\_HIGH and MU\_JET\_CAL triggers existed. Starting with run 83213, the JET\_3\_xxxx filters were added. Starting with run 89,000, the muon acceptance was extended to include the EF region and CF-restricted MU\_JET\_CENT and MU\_JET\_CAL triggers were added.<sup>2</sup>

In addition to these fiducial changes, the muon identification used in the mu+jets filter also changed. The loosest version (that used at the beginning of the run) had no calorimeter confirmation, allowed muons in either CF or EF and used the MUCTAG algorithm for cosmic rejection. The tightest version of the unprescaled trigger used standard calorimeter confirmation, restricted muons to the CF region and used scintillator+MUCTAG for cosmic ray rejection.

The tightest member of each family was unprescaled for all luminosities. The variation in trigger efficiency for the loosest and tightest members of each family is less than 10% [3].<sup>3</sup> At this time, the overall trigger efficiency is not determined more precisely than this level.

The MU\_JET\_xxxx triggers are  $70 \pm 7\%$  efficient for  $W + \text{jet}$  and top events having three or more jets. The inefficiency comes almost exclusively from the level 1 muon requirement. For one- and two-jet events the level one trigger-tower requirement introduces a significant inefficiency. The bias is dependent

---

<sup>2</sup>The original MU\_JET\_HIGH and MU\_JET\_CAL filters allow both CF and EF but were prescaled at the higher luminosities for runs occurring after 89,000.

<sup>3</sup>This statement is true for the MU\_JET\_xxxx family only if the changed fiducial acceptances are ignored.

| Run Range    | Integrated Luminosity ( $\text{pb}^{-1}$ ) | Trigger Efficiency |
|--------------|--------------------------------------------|--------------------|
| $< 83213$    | 15.1                                       | $0.70 \pm 0.07$    |
| $\geq 83213$ | 60.0                                       | $0.90 \pm 0.09$    |

Table 8: The total trigger efficiency for three or more jet  $t\bar{t} \rightarrow \mu + \text{Jets}$ ,  $t\bar{t} \rightarrow \mu + \text{Jets} + \mu(\text{tag})$  and  $W + \text{jet}$  events satisfying all other analysis requirements. The split into two periods reflects the addition of the JET\_3\_xxxx filters at run 83213.

on the jet thresholds and is measured where needed using a prescaled muon-only trigger as described below in section 9.0.3.

The efficiency for the JET\_3\_xxxx triggers is less well known. Monte Carlo studies indicate an efficiency for top and  $W + \text{jet}$  events in excess of 85%. Preliminary data-based studies place a strict lower bound of 70% on the efficiency.<sup>4</sup> In further calculations, the JET\_3\_xxxx efficiency is taken as 70%. The source of the inefficiency is not fully understood.

The total trigger efficiency given by the Monte Carlo approaches 100% for both top and  $W + \geq 4$  jet events. If one assumes uncorrelated inefficiencies between the two families and uses the measured efficiencies, the total trigger efficiency is  $\epsilon_{\text{trig}} = 90 \pm 10 \text{ (sys)\%}$ .

### 6.3 Muon Acceptance Corrections and Run Dependence

In addition to the changes to the  $\mu + \text{jets}$  analyses triggers, the muon hit-finding efficiency also changed during the run. Significant inefficiency existed in the EF<sup>5</sup> system for the first portion of run Ib. The chambers were cleaned (“zapped”) during a shutdown, and the resulting EF chamber efficiency approached the CF efficiency. The pre-zap luminosity for the  $\mu + \text{jets}$  channels

<sup>4</sup>The limiting behaviour of the JET\_3\_xxxx turn-on curves derived from the data is not yet understood. The plateau occurs at roughly 70% efficiency instead of the expected 95%. Several biases in the selection could account for this effect, and a cleaner study is underway.

<sup>5</sup>The EF muon system covers roughly  $1.0 < |\eta| < 1.7$ .

| Run Conditions            | Run Range     | $f L$ (pb $^{-1}$ ) | Total Trigger Efficiency | Relative Acceptance |
|---------------------------|---------------|---------------------|--------------------------|---------------------|
| CF only, MU_JET_xxxx only | <83213        | 15.1                | 0.7                      | $\equiv 1.0$        |
| CF only, all triggers     | 83213 – 89000 | 29.2                | 0.9                      | 1.0                 |
| CF+EF muons, all triggers | >89000        | 31                  | 0.9                      | 1.5                 |

Table 9: Trigger efficiency and relative geometrical acceptance for top and  $W+jets$  events passing analysis requirements.

is 44 pb $^{-1}$ . The post-zap luminosity is 31 pb $^{-1}$ . As indicated in sections 5.2.1 and 5.2.2, muons in the EF region are explicitly excluded from the analysis for the pre-zap period.

Rather than build a variety of Monte Carlo samples to simulate the changing trigger efficiency and analysis acceptance, only the MU\_JET\_xxxx trigger efficiency and pure CF acceptance is calculated wherever Monte Carlo is used for normalization. A multiplicative correction is then applied to account for the increased efficiency and geometrical acceptance in the later data. The advantage of this method is that ratios of trigger efficiencies are used and that only the luminosity breakdown is required to derive the correction.

Given the changes in trigger and reconstruction efficiency, run Ib is divided into three periods as shown in table 9. The overall multiplicative correction  $f$  is given by a sum of efficiencies for the three periods. The correction factor  $f$  is given by

$$f = f_1 + f_2 \times (\epsilon_2/\epsilon_1) + f_3 \times (\epsilon_3/\epsilon_1)$$

Here,  $\epsilon_1$ ,  $\epsilon_2$  and  $\epsilon_3$  are the trigger efficiency\*geometrical acceptance for each of the three periods in table [reft-mjcorr.  $f_i$ ,  $i=1,3$  is the fractional luminosity for the  $i$ -th period. As defined here, this correction can never fall below 1.0 ( $f_1 = 1.0$ ). The maximum allowed value arises when  $f_2 = 0$ ,  $f_3 = 1.0 - f_1$ . Using the trigger efficiencies and luminosity ratios above and the 2:1 split into CF:EF exhibited by both top and  $W+jets$ , a maximum value of  $f_{max} = 1.6$  is derived. For the actual luminosity division, using the efficiencies derived from data,

$$f = 1.5 \pm 0.0 \text{ (stat)} \pm 0.3 \text{ (sys)}.$$

A 20% systematic error is currently assigned to this fraction<sup>6</sup>. The largest uncertainty in the correction factor is the EF muon reconstruction efficiency. The above value of 1.5 is based on the assumption that the EF post-zap efficiency is similar to CF. The systematic error of 20% is derived assuming EF efficiency is identically zero.

---

<sup>6</sup>This is likely to be significantly reduced in the near future.

## 7 Optimization of Cuts using Random Grid Search

Our goal in this analysis is to measure the top production cross section as accurately as possible. With this goal in mind and the fact that the improvements in *lepton – id* since the **discovery analysis** significantly reduces the contributions from *fake – lepton* backgrounds, rendering some of the optimized cuts (*e.g. Aplanarity*) obsolete, we embarked on the re-optimization of “Standard Cuts” used to enhance the top contribution in  $W + \geq 3\text{jet}$  events. Also during the last year, there has been major progress made in defining new variables which distinguish top events from backgrounds[5].

The optimization was carried out by using the Random Grid Search. Detailed discussion of this technique can be found in various writeups[6]. We use the  $t\bar{t}$  sample generated with  $M_{top}=180$  GeV as the sample which provides the threshold values for the variables under investigation as well as the sample to compute the expected signal. For the backgrounds we use the appropriate combinations of  $W + \text{jets}$  and QCD backgrounds. These backgrounds are derived from data for the  $e + \text{jets} + \mu\text{tag}$  case, whereas for the  $e + \text{jets}(\text{notag})$  analysis it is a combination of data (qcd) and MC ( $W + \text{jets}$ ). An integrated luminosity of  $77\text{pb}^{-1}$  was assumed for the optimization.

We attempt to differentiate between  $t\bar{t}$  signal and background using the variables  $\mathcal{A}(W + \text{jets})$ ,  $\mathcal{A}(\text{jets})$ ,  $P_T(W)$ ,  $\cancel{E}_T$ ,  $H_T(\text{jets})$ ,  $H_T(\text{all}) = H_T(\text{jets}) + P_T(W)$ ,  $h = \frac{E_T(\text{lepton}) + \cancel{E}_T}{H_T(\text{jets}) + P_T(W)}$ ,  $N_{\text{jets}}$ . Results of the grid search using these variables or a combination thereof are shown in figures 2 through 5, where the expected number of signal events versus the expected backgrounds are plotted for each threshold value for the variable combination under consideration. A clear boundary that maximizes the expected signal for a given background level is visible and is termed as the ‘optimal boundary’. The upper edge of the ‘optimal boundary’ defines a family of threshold values for various values of signal to background separation. By comparing these optimal boundary contours for various combinations of variables, we find that the variables  $\mathcal{A}(W + \text{jets})$  and  $H_T(\text{jets})$  give the best Signal to Noise ratio for a given signal efficiency.

After having chosen the best two parameters for differentiating the top signal, we now have to choose the threshold value for them from the collection of values which lie on the optimal boundary. This is achieved by comparing

the optimal boundary curve to a set of contours which give us constant error in the top production cross section, with the goal of minimizing the error on the cross section measurement as well as contours of constant expected statistical significance. For the smallest achievable error we choose the threshold value which gives us the best expected statistical significance of the signal.

From figure 2 we find the following cuts (“New Standard” = NS) optimize the Signal to background while keeping the cross section error small in the *lepton + jets (notag)* channels :

- $H_T(\text{jets}) \geq 180 \text{GeV}$
- $\mathcal{A}(W + \text{jets}) \geq 0.065$

In addition in this channel to further reduce the QCD background we require that

$$E_T^W = (E_T + E_t(\text{lepton})) \geq 60 \text{GeV}$$

For *lepton + jets (mu tag)* channel, from figure 6, we find the NS cuts to be

- $H_T(\text{jets}) \geq 110 \text{GeV}$
- $\mathcal{A}(W + \text{jets}) \geq 0.04$

## Grid Search Results for $e+jets$ (notag)

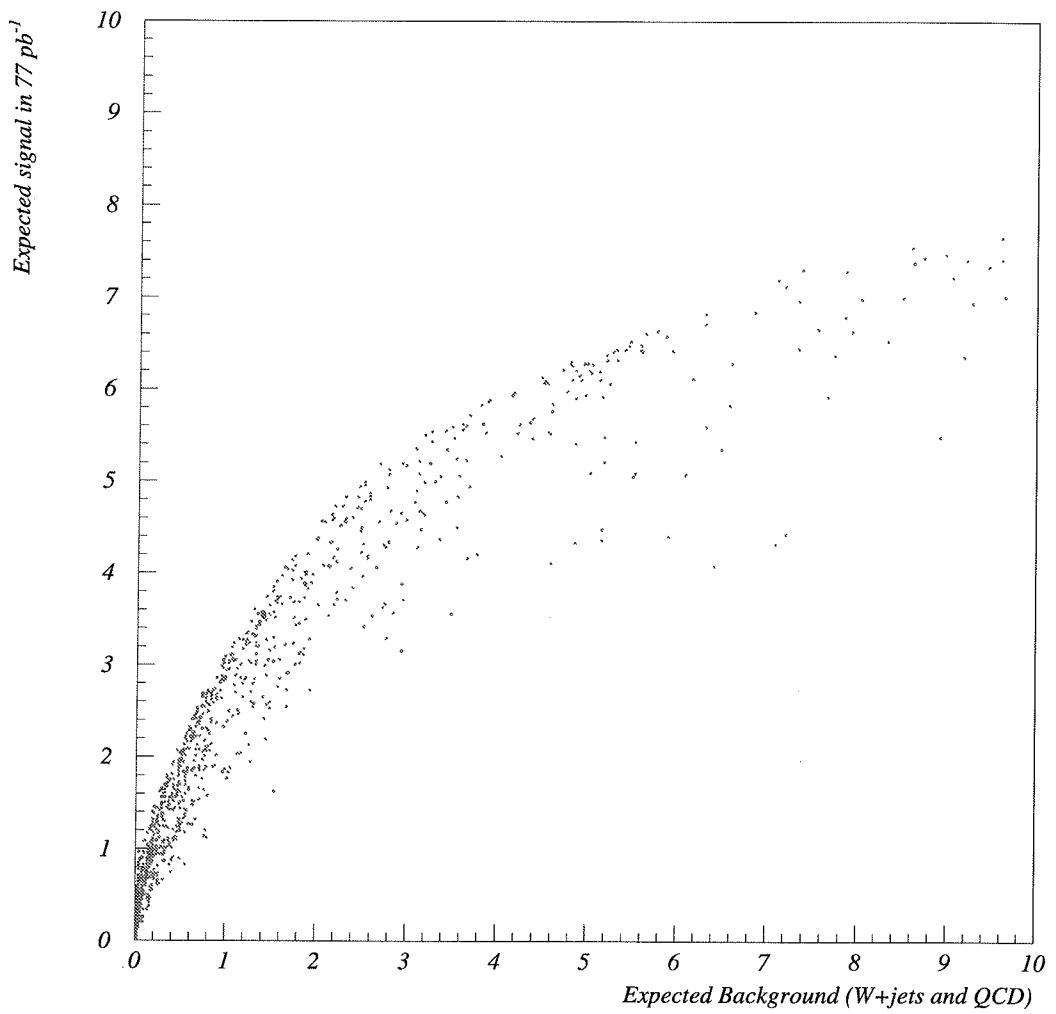



Figure 2: Grid Search results for  $e+jets$  channel using variables  $H_T(\text{jets})$  and  $\mathcal{A}(W+\text{jets})$

## Grid Search Results for $e+jets$ (notag)

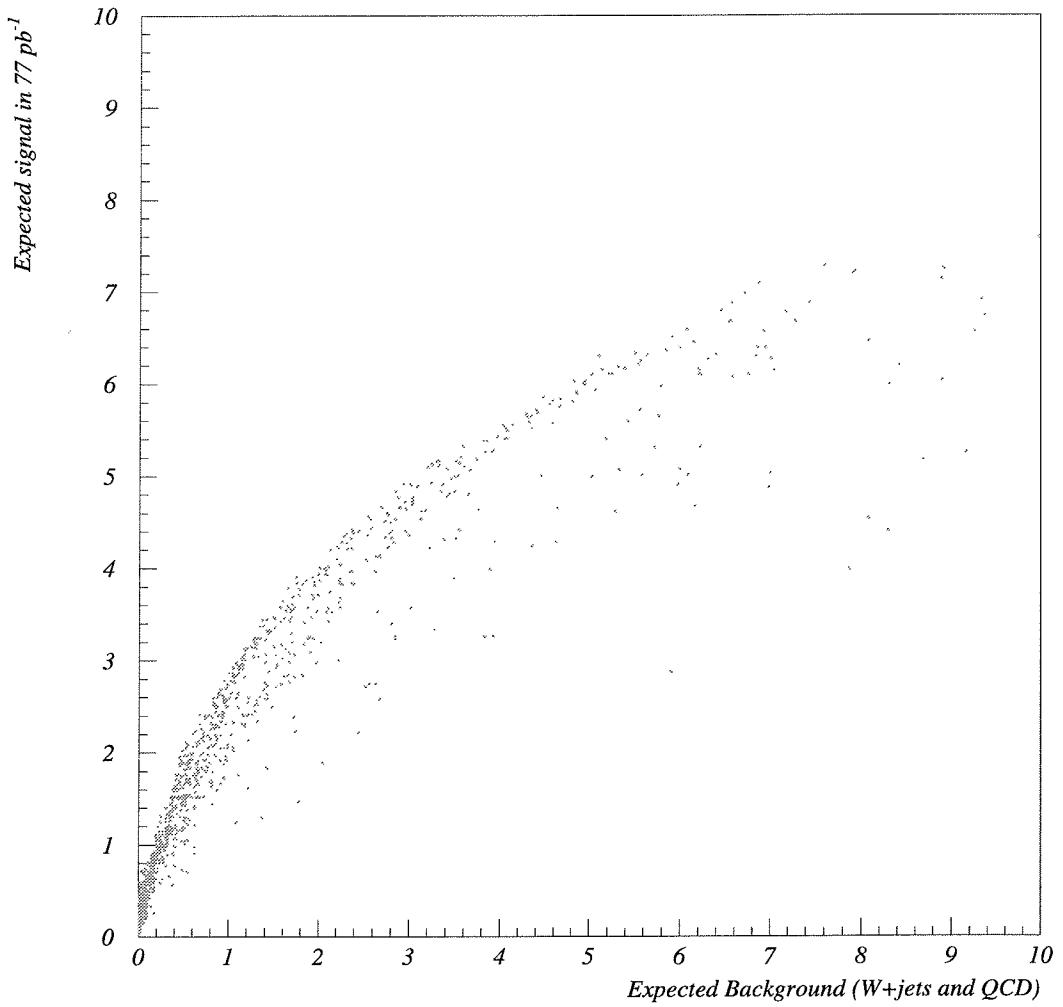



Figure 3: Grid Search results for  $e+jets$  channel using variables  $H_T(jets)$  and  $\mathcal{A}$

## Grid Search Results for $e + jets$ (notag)

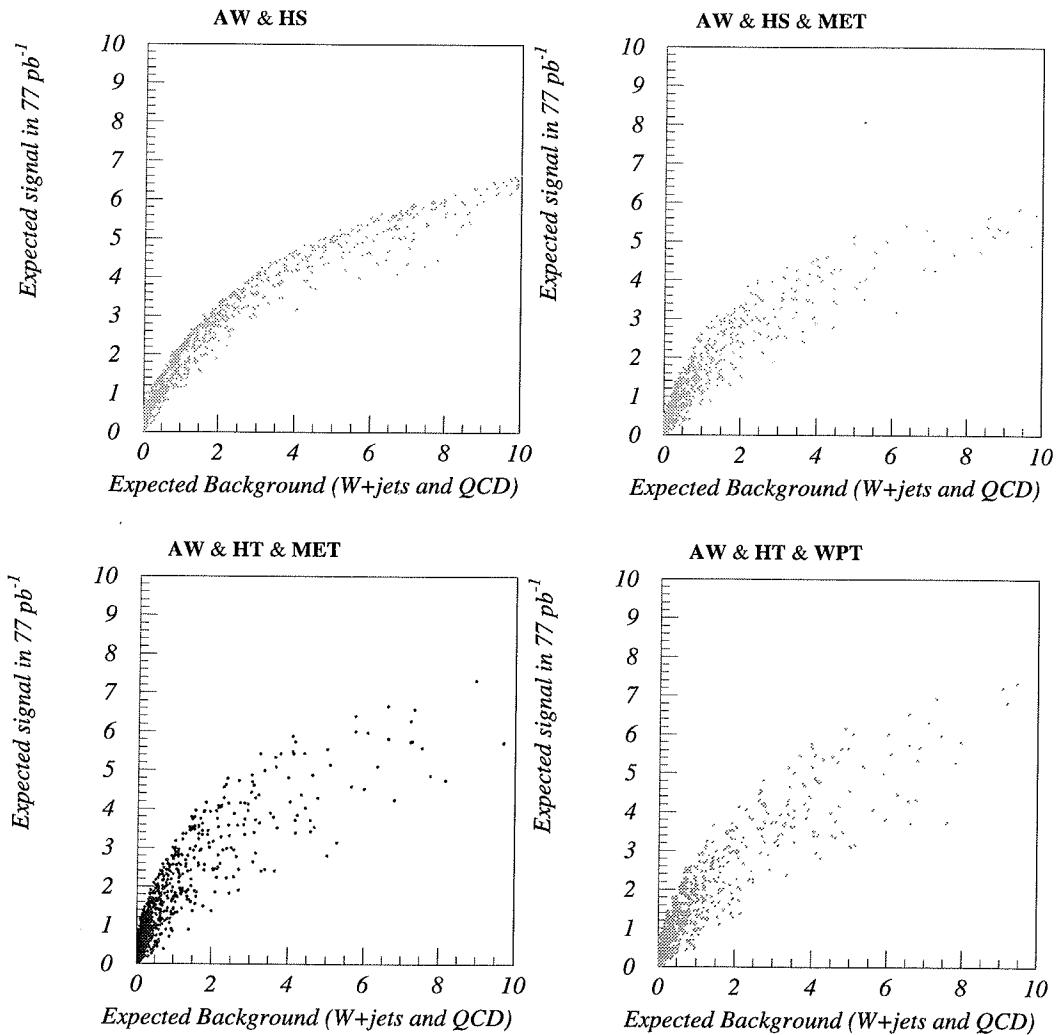



Figure 4: Grid Search results for  $e + jets$  channel

## Grid Search Results for e+jets (notag)

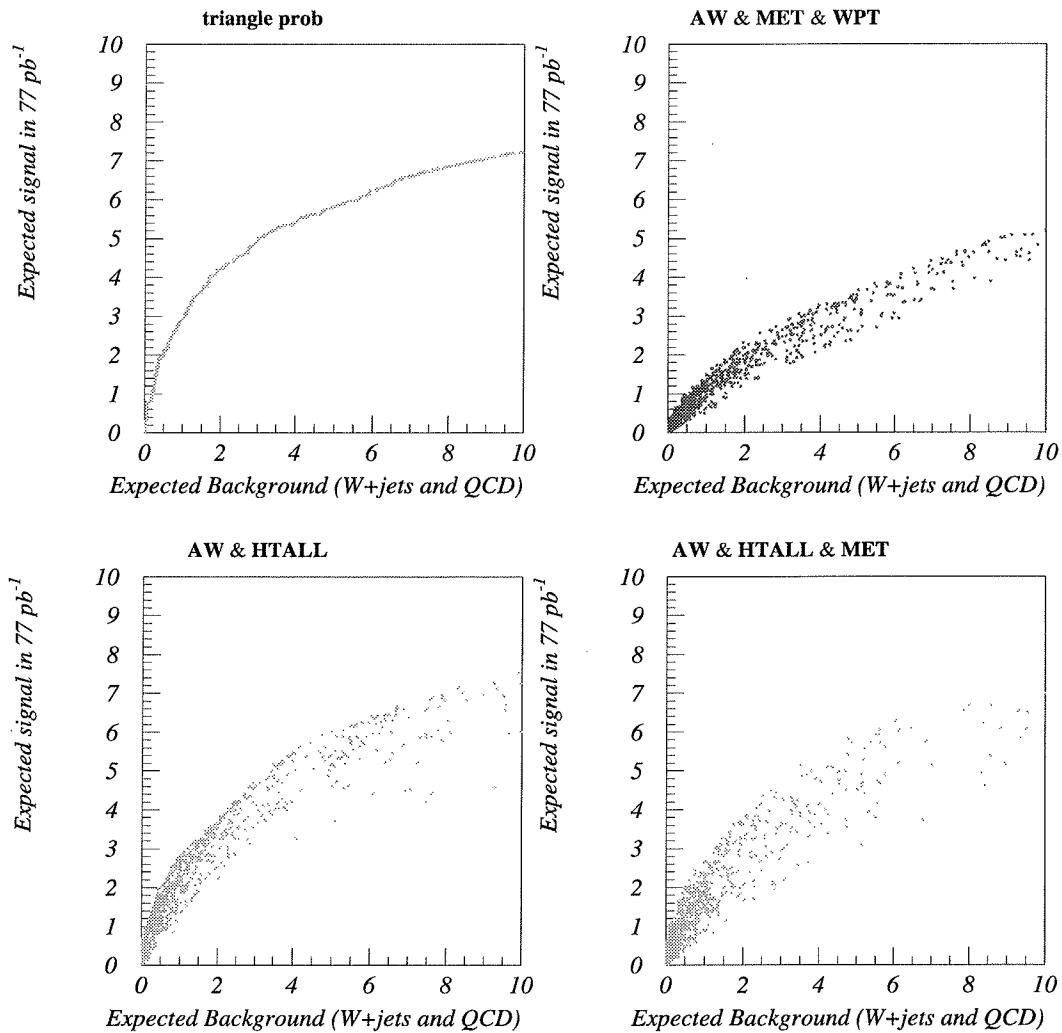



Figure 5: Grid Search results for  $e + jets$  channel

## Grid Search Results for e+jets (tag)

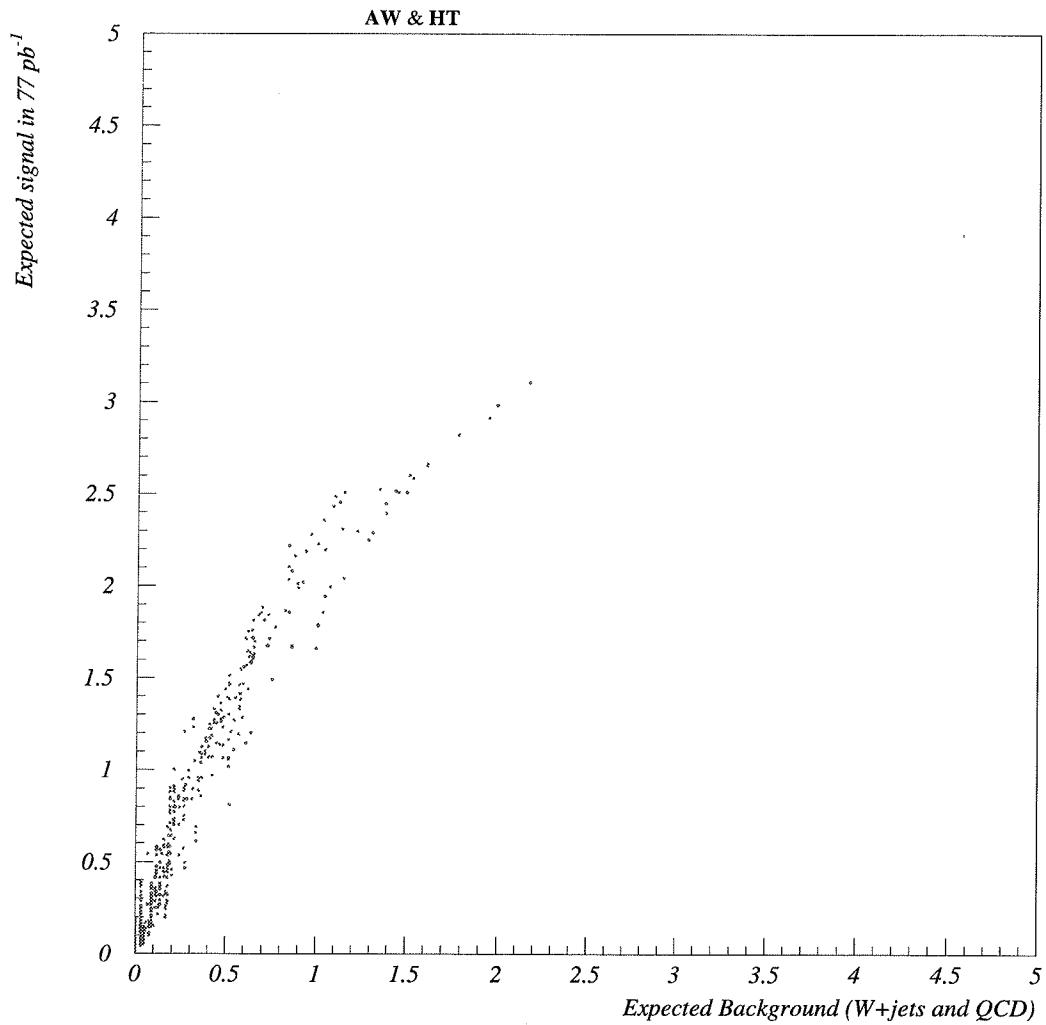



Figure 6: Grid Search results for  $e + jets(\mu tag)$  channel using variables  $H_T(jets)$  and  $\mathcal{A}$

## 8 Electron+jets (no $\mu$ -tag) Analysis

### 8.1 triggers

The triggers used in this analysis are listed in table 10. The efficiency for the combination is  $99.7 \pm 0.5\%$  as derived in section 6.1.4.

Table 10: Triggers Used

| Run1A    | Run1B           |
|----------|-----------------|
| ELE_HIGH | ELE_JET_HIGH    |
| ELE_JET  | EM1_EISTRKCC_MS |

### 8.2 $e$ +jets event Selection

After the trigger and event cleanup requirements, we select events which satisfy the following requirements :

- one tight electron with  $E_t \geq 20\text{GeV}$
- $|\eta(\text{electron})| \leq 2.0$
- veto events with on soft muon tags
- $E_T^{cal} \geq 25\text{GeV}$
- 1 or more jets with  $E_t \geq 15\text{GeV}$
- $|\eta(\text{jets})| \leq 2.0$

In tables 11 through 13 the jet multiplicity spectrum of these events is shown for combined Run1A+Run1B sample, Run1B and Run1A samples separately. This base sample is used to obtain the  $W$ +jets background in events with at least four jets via Berend's scaling. Details will be provided later in the section 8.5.

For the final signal analysis in this channel, we demand the presence of at least four jets with  $E_t \geq 15\text{GeV}$  and  $|\eta| \leq 2.0$ . At this stage of selection, we find 45 events in Run1B and 10 events in Run1A.

In order to increase signal contribution and reduce the background further in this sample we use the event topology variables  $\mathcal{A}(W + \text{jets})$ ,  $H_T(\text{jets})$  and  $E_T^W$ . The cut values are listed below.

- $E_T^W = (\cancel{E}_T + E_t(\text{lepton})) \geq 60\text{GeV}$
- $H_T(\text{jets}) \geq 180\text{GeV}$
- $\mathcal{A}(W + \text{jets}) \geq 0.065$

After the above cuts, we observe 6 events in Run1B and 2 events in Run1A. If we include events in the Main Ring gates, 2 more events pass the above cuts (one each during MRBS\\_LOSS gate and MICRO\\_BLANK).

Distributions in  $\mathcal{A}(W + \text{jets})$  vs.  $H_T$  for Data,  $W+4\text{jets}$ , top ( $M_t = 180$  GeV) and QCD background are shown in figure 7. This plot is after the cut on  $E_T(W)$ .

A run/event list for events in the Base-sample with at least four jets is given below. The events passing the Base-sample and “NS” cuts are indicated by the marker **X**. We also list the  $\cancel{E}_T^{\text{cal}}$ ,  $\mathcal{A}(W + \text{jets})$  and  $H_T(\text{jets})$  of these events. In this list the eighth column denotes the events which pass the Ultra-loose sample. The Ultra-loose sample is a super set of the Base-sample, the only difference being that it contains all events with at least 4 jets within  $|\eta(\text{jets})| \leq 2.5$ .

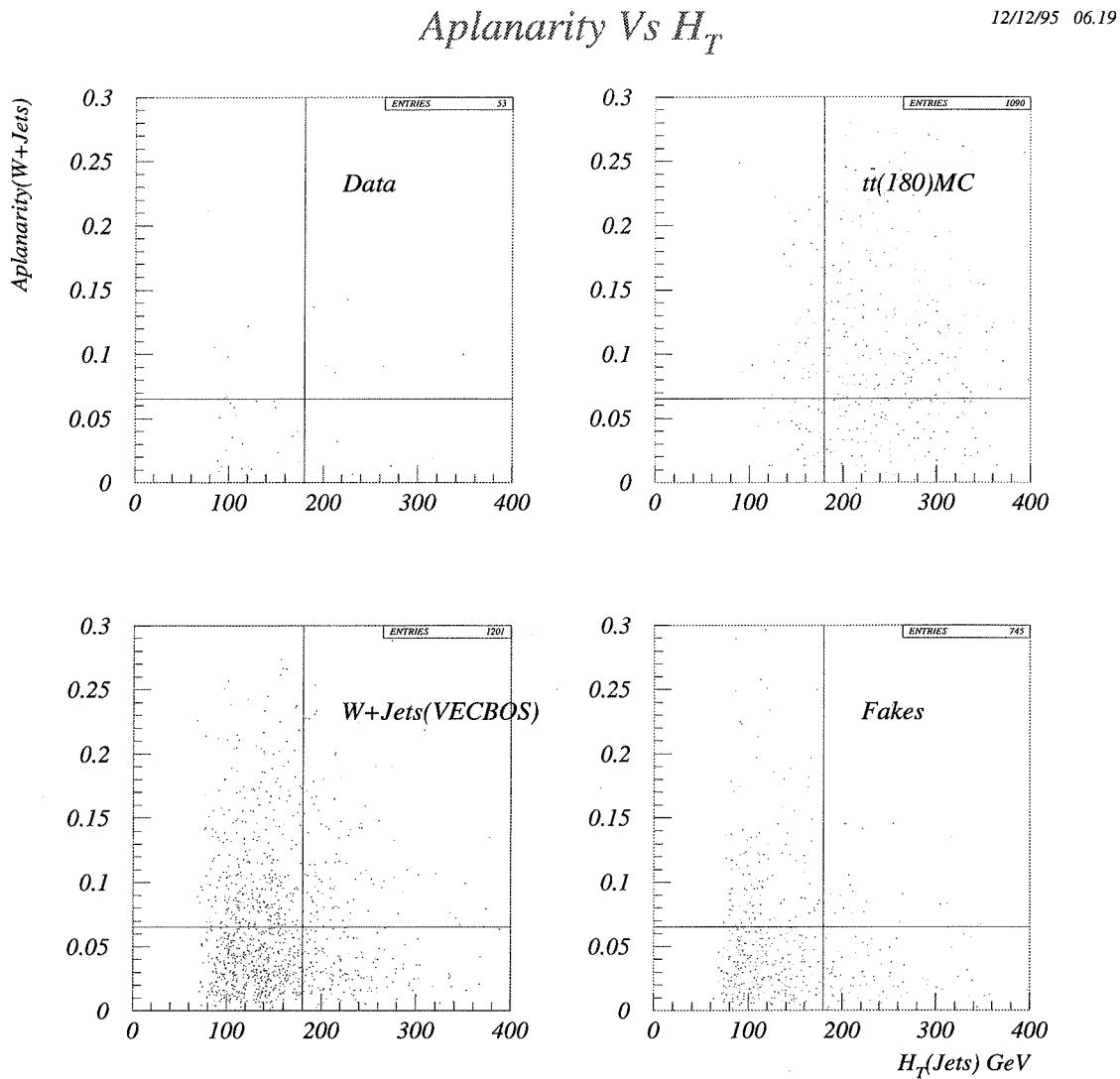



Figure 7: Distributions in  $\mathcal{A}(W + \text{jets})$  vs.  $H_T$  for Data,  $W+4\text{jets}$ , top ( $M_t = 180$  GeV) and QCD background for  $e + \text{jets}$  analysis

| e+jets Run and Event List from Run1A |       |             |                                |                    |             |    |             |         |
|--------------------------------------|-------|-------------|--------------------------------|--------------------|-------------|----|-------------|---------|
| Run                                  | Event | $H_T^{cal}$ | $\mathcal{A}(W + \text{jets})$ | $H_T(\text{jets})$ | Base sample | NS | Ultra-loose | MR gate |
| 54703                                | 9114  | 27.345      | 0.033                          | 147.969            | X           |    | X           |         |
| 58381                                | 5028  | 32.362      | 0.016                          | 88.615             | X           |    | X           |         |
| 58766                                | 23    | 25.502      | 0.010                          | 113.130            |             |    | X           |         |
| 61608                                | 9359  | 30.502      | 0.010                          | 152.861            |             |    | X           |         |
| 61668                                | 7799  | 39.923      | 0.010                          | 124.727            |             |    | X           |         |
| 62159                                | 2798  | 35.253      | 0.017                          | 174.704            | X           |    | X           |         |
| 62199                                | 15224 | 81.848      | 0.013                          | 270.551            | X           |    | X           |         |
| 62303                                | 905   | 28.683      | 0.010                          | 104.242            |             |    | X           |         |
| 62431                                | 788   | 31.927      | 0.093                          | 202.051            | X           | X  | X           |         |
| 62793                                | 920   | 27.370      | 0.010                          | 62.771             |             |    | X           |         |
| 63066                                | 13373 | 56.600      | 0.144                          | 226.721            | X           | X  | X           |         |
| 64464                                | 21611 | 79.783      | 0.058                          | 105.339            | X           |    | X           |         |
| 65288                                | 24705 | 28.585      | 0.067                          | 113.996            | X           |    | X           |         |
| Total                                |       |             |                                |                    | 8           | 2  | 13          |         |

| events during Main Ring activity |       |             |                                |                    |             |    |             |         |
|----------------------------------|-------|-------------|--------------------------------|--------------------|-------------|----|-------------|---------|
| Run                              | Event | $H_T^{cal}$ | $\mathcal{A}(W + \text{jets})$ | $H_T(\text{jets})$ | Base sample | NS | Ultra-loose | MR veto |
| 82985                            | 10584 | 38.487      | 0.119                          | 200.980            | X           | X  | X           | MB      |
| 82996                            | 24461 | 88.587      | 0.163                          | 170.322            | X           |    | X           | MRBS    |
| 86255                            | 9525  | 35.082      | 0.010                          | 88.795             |             |    | X           | MRBS    |
| 87063                            | 39091 | 92.877      | 0.085                          | 189.519            | X           | X  | X           | MRBS    |
| 88321                            | 4597  | 31.884      | 0.038                          | 268.949            | X           |    | X           | MRBS    |
| 90468                            | 17922 | 36.871      | 0.100                          | 177.735            | X           |    | X           | MRBS    |
| 90544                            | 4354  | 56.072      | 0.010                          | 133.811            |             |    | X           | MB      |
| 92670                            | 18843 | 42.391      | 0.010                          | 95.692             |             |    | X           | MRBS    |
| 92746                            | 39292 | 32.647      | 0.005                          | 101.671            | X           |    | X           | MRBS    |
| 84537                            | 37655 | 26.014      | 0.065                          | 110.324            | X           |    | X           | MB MRBS |
| 88060                            | 14635 | 33.297      | 0.004                          | 223.451            | X           |    | X           | MRBS    |
| 91959                            | 5350  | 48.239      | 0.037                          | 89.773             | X           |    | X           | MB      |
| Total                            |       |             |                                |                    | 9           | 2  | 12          |         |

| e+jets Run and Event List from Run1B |       |             |                                |                    |             |    |             |         |
|--------------------------------------|-------|-------------|--------------------------------|--------------------|-------------|----|-------------|---------|
| Run                                  | Event | $E_T^{cal}$ | $\mathcal{A}(W + \text{jets})$ | $H_T(\text{jets})$ | Base sample | NS | Ultra-loose | MR veto |
| 76143                                | 14180 | 25.658      | 0.011                          | 114.711            | X           |    | X           |         |
| 80932                                | 41    | 54.277      | 0.010                          | 260.591            |             |    | X           |         |
| 81543                                | 21845 | 42.982      | 0.013                          | 93.869             | X           |    | X           |         |
| 81949                                | 12380 | 36.583      | 0.040                          | 172.557            | X           |    | X           |         |
| 82024                                | 44002 | 49.895      | 0.008                          | 91.990             | X           |    | X           |         |
| 82220                                | 20012 | 32.217      | 0.032                          | 112.880            | X           |    | X           |         |
| 82254                                | 30713 | 29.882      | 0.005                          | 140.521            | X           |    | X           |         |
| 82343                                | 28594 | 82.375      | 0.010                          | 66.525             |             |    | X           |         |
| 83040                                | 2635  | 28.902      | 0.010                          | 72.580             |             |    | X           |         |
| 84331                                | 13271 | 30.264      | 0.108                          | 87.413             | X           |    | X           |         |
| 84890                                | 28925 | 47.686      | 0.026                          | 96.602             | X           |    | X           |         |
| 85287                                | 16834 | 60.334      | 0.010                          | 141.727            |             |    | X           |         |
| 85439                                | 40481 | 47.554      | 0.010                          | 51.587             |             |    | X           |         |
| 85689                                | 24599 | 72.568      | 0.007                          | 228.344            | X           |    | X           |         |
| 85782                                | 2046  | 26.550      | 0.010                          | 105.002            |             |    | X           |         |
| 85917                                | 22    | 54.582      | 0.027                          | 395.691            | X           |    | X           |         |
| 86211                                | 14712 | 40.027      | 0.073                          | 118.830            | X           |    | X           |         |
| 86214                                | 17756 | 27.860      | 0.033                          | 103.430            | X           |    | X           |         |
| 86217                                | 10075 | 31.049      | 0.011                          | 125.907            | X           |    | X           |         |
| 86518                                | 11716 | 89.392      | 0.064                          | 285.286            | X           |    | X           |         |
| 86601                                | 33128 | 33.044      | 0.086                          | 215.863            | X           | X  | X           |         |
| 87070                                | 30533 | 38.021      | 0.101                          | 346.467            | X           | X  | X           |         |
| 87104                                | 25823 | 26.875      | 0.027                          | 179.435            | X           |    | X           |         |
| 87329                                | 13717 | 27.833      | 0.091                          | 260.692            | X           |    | X           |         |
| 87446                                | 14294 | 53.686      | 0.098                          | 99.779             | X           |    | X           |         |
| 87448                                | 15723 | 41.789      | 0.010                          | 77.476             |             |    | X           |         |
| 87910                                | 10959 | 28.904      | 0.010                          | 96.210             |             |    | X           |         |
| 88018                                | 29752 | 35.889      | 0.010                          | 61.149             |             |    | X           |         |
| 88038                                | 14829 | 36.325      | 0.210                          | 79.377             | X           |    | X           |         |
| 88044                                | 9807  | 46.403      | 0.033                          | 165.652            | X           |    | X           |         |
| 88045                                | 35311 | 95.529      | 0.135                          | 189.952            | X           | X  | X           |         |
| 88125                                | 15437 | 48.765      | 0.123                          | 123.929            | X           |    | X           |         |
| 88463                                | 3627  | 30.307      | 0.048                          | 91.120             | X           |    | X           |         |
| 88532                                | 33633 | 43.117      | 0.010                          | 85.818             |             |    | X           |         |

| e+jets Run and Event List from Run1B (cont'd) |       |             |                                |                    |             |    |             |         |
|-----------------------------------------------|-------|-------------|--------------------------------|--------------------|-------------|----|-------------|---------|
| Run                                           | Event | $E_T^{cal}$ | $\mathcal{A}(W + \text{jets})$ | $H_T(\text{jets})$ | Base sample | NS | Ultra-loose | MR gate |
| 88588                                         | 15993 | 39.167      | 0.068                          | 99.056             | X           |    | X           |         |
| 88600                                         | 864   | 34.217      | 0.010                          | 56.670             |             |    | X           |         |
| 89484                                         | 11741 | 34.866      | 0.065                          | 146.011            | X           |    | X           |         |
| 89550                                         | 18042 | 36.290      | 0.064                          | 92.250             | X           |    | X           |         |
| 89708                                         | 24871 | 92.620      | 0.075                          | 177.718            | X           |    | X           |         |
| 89815                                         | 17253 | 60.733      | 0.097                          | 202.490            | X           | X  | X           |         |
| 89936                                         | 6306  | 59.109      | 0.033                          | 215.294            | X           |    | X           |         |
| 89972                                         | 13657 | 42.467      | 0.086                          | 177.588            | X           |    | X           |         |
| 90108                                         | 31611 | 35.847      | 0.035                          | 165.298            | X           |    | X           |         |
| 90435                                         | 32258 | 69.148      | 0.065                          | 131.525            | X           |    | X           |         |
| 90439                                         | 12802 | 34.840      | 0.010                          | 54.074             |             |    | X           |         |
| 90455                                         | 1247  | 60.556      | 0.010                          | 264.127            |             |    | X           |         |
| 90496                                         | 28296 | 31.967      | 0.071                          | 115.028            | X           |    | X           |         |
| 90693                                         | 8678  | 25.693      | 0.152                          | 66.143             | X           |    | X           |         |
| 90795                                         | 14246 | 32.246      | 0.023                          | 155.059            | X           |    | X           |         |
| 90804                                         | 6474  | 54.428      | 0.052                          | 106.275            | X           |    | X           |         |
| 91855                                         | 23647 | 28.699      | 0.019                          | 312.589            | X           |    | X           |         |
| 91923                                         | 502   | 71.801      | 0.059                          | 150.441            | X           |    | X           |         |
| 92013                                         | 11825 | 28.887      | 0.033                          | 127.946            | X           |    | X           |         |
| 92081                                         | 4086  | 54.997      | 0.002                          | 125.809            | X           |    | X           |         |
| 92143                                         | 28632 | 104.778     | 0.010                          | 159.929            |             |    | X           |         |
| 92217                                         | 109   | 45.416      | 0.280                          | 103.600            | X           |    | X           |         |
| 92278                                         | 21744 | 50.633      | 0.005                          | 118.386            | X           |    | X           |         |
| 92673                                         | 4679  | 38.641      | 0.109                          | 422.136            | X           | X  | X           |         |
| 92673                                         | 30298 | 27.525      | 0.062                          | 102.279            | X           |    | X           |         |
| Total                                         |       |             |                                |                    | 45          | 6  | 59          |         |

### 8.3 Distributions of $e+jets$ events

| $\mathcal{A}(W + \text{jets})$<br>$\downarrow$ | $H_T(\text{jets})$ |                   | $H_T(\text{jets})$                  |            | $H_T(\text{jets})$ |                                                | $H_T(\text{jets})$ |            |
|------------------------------------------------|--------------------|-------------------|-------------------------------------|------------|--------------------|------------------------------------------------|--------------------|------------|
|                                                | $< 180$            | $\geq 180$        | $< 180$                             | $\geq 180$ | $< 180$            | $\geq 180$                                     | $< 180$            | $\geq 180$ |
| $< 0.065$                                      | 21                 | 5                 | 610                                 | 198        | 385                | 109                                            | 101                | 367        |
|                                                | 13                 | 6                 | 395                                 | 124        | 215                | 41                                             | 110                | 680        |
|                                                |                    | <b>Data Run1B</b> | <b><math>W+4j(\text{VB})</math></b> |            | <b>QCD Run1B</b>   | <b><math>t\bar{t} (180) \text{ GeV}</math></b> |                    |            |
|                                                |                    |                   |                                     |            |                    |                                                |                    |            |
| $\geq 0.065$                                   | 4                  | 1                 |                                     |            | 34                 | 15                                             |                    |            |
|                                                | 1                  | 2                 |                                     |            | 12                 | 5                                              |                    |            |
|                                                |                    | <b>Data Run1A</b> |                                     |            | <b>QCD Run1A</b>   |                                                |                    |            |
| <b>After <math>E_T(W)</math> cut</b>           |                    |                   |                                     |            |                    |                                                |                    |            |
| $\mathcal{A}(W + \text{jets})$<br>$\downarrow$ | $H_T(\text{jets})$ |                   | $H_T(\text{jets})$                  |            | $H_T(\text{jets})$ |                                                | $H_T(\text{jets})$ |            |
|                                                | $< 180$            | $\geq 180$        | $< 180$                             | $\geq 180$ | $< 180$            | $\geq 180$                                     | $< 180$            | $\geq 180$ |
| $< 0.065$                                      | 21                 | 5                 | 593                                 | 194        | 223                | 71                                             | 95                 | 361        |
|                                                | 13                 | 6                 | 380                                 | 120        | 102                | 18                                             | 108                | 663        |
|                                                |                    | <b>Data Run1B</b> | <b><math>W+4j(\text{VB})</math></b> |            | <b>QCD Run1B</b>   | <b><math>t\bar{t} (180) \text{ GeV}</math></b> |                    |            |
|                                                |                    |                   |                                     |            |                    |                                                |                    |            |
| $\geq 0.065$                                   | 4                  | 1                 |                                     |            | 21                 | 13                                             |                    |            |
|                                                | 0                  | 2                 |                                     |            | 8                  | 5                                              |                    |            |
|                                                |                    | <b>Data Run1A</b> |                                     |            | <b>QCD Run1A</b>   |                                                |                    |            |

## 8.4 Comparison of Inclusive Jet Multiplicity Spectra

In figure 12 we plot the inclusive jet multiplicity distribution observed in Run1B as a function of two minimum jet  $E_T$  cut off at 15 GeV and 25 GeV. For guiding the eye we draw a straight line through the first two multiplicity points for each jet  $E_T$  threshold. Even at this stage of analysis, where we are swamped by  $W + jets$  backgrounds, we can observe a slight excess of events with at least 4 jets.

In this plot one can clearly notice a feature of the data, *ie.* the exponential decrease of the number of events as a function of jet multiplicity. This is also expected from Theoretical predictions.[9] This behaviour is also seen in Monte Carlo generation of  $W + jets$  events. [9] Figure 13 shows the inclusive jet multiplicity distribution both for our data sample and the predictions of the VECBOS MC as function of three different jet  $E_T$  thresholds. VECBOS predictions are computed using the cross sections obtained from MC itself. From this figure we conclude that the agreement between our observation and the MC predictions are very good.

## 8.5 Backgrounds

There are two sources of major backgrounds in this channel

- A. non- $W$  background (also known as QCD or *fake – electron* background)
- B.  $W(\rightarrow e\nu) + jets$

For estimating the non- $W$  background (or QCD background) for a given jet multiplicity we use three different methods :

1.  $E_T$  scaling method (QCD fraction)
2. four quadrant fit to electron quality and  $E_T^{cal}$
3. Ratio of good to bad electrons in the signal region

Detailed description of these methods can be found in various notes.[8] The contribution from QCD background to various jet multiplicity for all samples are listed in the third column of tables 11 – 13.

Table 11: Inclusive Jet multiplicity for  $e+jets$  events (Run1A and Run1B)

| Run1A & 1B data, $\int \mathcal{L} dt = 90.9 \text{ pb}^{-1}$ |            |                    |                           |
|---------------------------------------------------------------|------------|--------------------|---------------------------|
| minimum no. of jets                                           | #of events | # QCD bkg          | Total - QCD ( $N^{obs}$ ) |
| 1                                                             | 9014       | $287.54 \pm 16.69$ | $8726.46 \pm 105.62$      |
| 2                                                             | 1620       | $238.29 \pm 14.25$ | $1381.71 \pm 46.13$       |
| 3                                                             | 298        | $60.57 \pm 6.95$   | $237.43 \pm 18.58$        |
| 4                                                             | 55         | $12.53 \pm 3.11$   | $42.47 \pm 8.06$          |

We fit the number of  $W$ 's (see table) for different jet multiplicities, to the equation

$$N_i^{obs} = N_1^W * \alpha^{(i-1)} + f_i * N^{top}$$

Where,

$N_i^{obs}$  : # of events observed at Jet Multiplicity 'i' after removing contribution from non- $W$  backgrounds (last column of tables 11 – 13).

$f_i$  : Fraction of  $t\bar{t}$  events expected at multiplicity 'i'

$\alpha$  : ratio of multiplicities

$N_1^W$  : Number of  $W+1$ jet events

$N^{top}$  : Number of top events in our sample

The last three variables are results of the fit. These are listed in table 14 for the different data samples. The QCD background subtracted inclusive jet multiplicity spectra for run1A and Run1B with the fit superposed are shown in figures 14 and 15.

From these fits, we compute the contribution in the base  $e+4$ jets from  $W+4$ jets background and its error using the following equations :

Table 12: Inclusive Jet multiplicity for  $e+jets$  events in Run1A

Run1A data,  $\int \mathcal{L} dt = 13.6 \text{ pb}^{-1}$

| minimum no. of jets | #of events | # QCD bkg        | Total - QCD ( $N^{obs}$ ) |
|---------------------|------------|------------------|---------------------------|
| 1                   | 1675       | $53.43 \pm 5.03$ | $1621.57 \pm 57.56$       |
| 2                   | 296        | $40.22 \pm 3.32$ | $255.78 \pm 24.39$        |
| 3                   | 54         | $11.16 \pm 1.11$ | $43.84 \pm 7.22$          |
| 4                   | 10         | $2.28 \pm 0.61$  | $7.72 \pm 3.19$           |

$$N_4^W = N_1^W * \alpha^3$$

$$\delta N_4^W = N_4^W * \sqrt{\left(\frac{\delta N_1^W}{N_1^W}\right)^2 + 3 * \left(\frac{\delta \alpha}{\alpha}\right)^2}$$

Finally, the component for each species of background in the NS sample is derived by folding the “NS” cut survival probability of these backgrounds to the contribution from each of them to the base  $e+4\text{jets}$  sample.

$$N_{total}^{bkg} = N^{QCD} * f_{QCD} + N^W * f_W$$

where,

$$N^{QCD} = N * (\text{amount of QCD}) \text{ from table}$$

$$N^W = N - N^{QCD}$$

$$f_W = \text{“NS” cut survival probability for Vecbos } W+4\text{jet sample}$$

$$= 0.091$$

$$f_{QCD} = \text{“NS” cut survival probability for } fake-electron+4\text{jets sample.}$$

$$= 0.025$$

Table 13: Inclusive Jet multiplicity for  $e+jets$  events in Run1B

| Run1B data, $\int \mathcal{L} dt = 77.3 \text{ pb}^{-1}$ |            |                    |                           |
|----------------------------------------------------------|------------|--------------------|---------------------------|
| minimum no. of jets                                      | #of events | # QCD bkg          | Total - QCD ( $N^{obs}$ ) |
| 1                                                        | 7339       | $234.11 \pm 22.19$ | $7104.89 \pm 88.49$       |
| 2                                                        | 1324       | $198.07 \pm 14.44$ | $1125.93 \pm 39.15$       |
| 3                                                        | 244        | $50.41 \pm 7.01$   | $193.59 \pm 17.12$        |
| 4                                                        | 45         | $10.25 \pm 3.11$   | $34.75 \pm 7.40$          |

Table 14: Results of the Berends fit to  $e+jets$  data sample

| Data Sample | $\alpha$          | $N_1^W$             | $N^{top}$       |
|-------------|-------------------|---------------------|-----------------|
| Run1A       | $0.159 \pm 0.02$  | $1611.2 \pm 151.55$ | $2.8 \pm 8.4$   |
| Run1B       | $0.162 \pm 0.007$ | $7088.2 \pm 88.26$  | $15.1 \pm 16.8$ |

The final background estimations are summarized in table 15. Wherever there are two errors quoted in table 15, the first is statistical and the second is systematic. The systematic error analysis is described in the next section.

## 8.6 Systematic Error sources in Background determination

The major sources of systematic errors in the estimate of the backgrounds to the  $e+jets$  channel are :

- Berend's scaling(i.e. how well the data follows this rule)
- Jet energy Scale
- Difference in  $H_T$  distribution for data and VB

Table 15: Estimated backgrounds in  $e+jets$  sample before and after “NS” cuts

| Run | Base sample      |                  |                 | “NS” sample              |                 |                       |
|-----|------------------|------------------|-----------------|--------------------------|-----------------|-----------------------|
|     | $W+4\text{jets}$ | QCD              | total           | $W+4\text{jets}$         | QCD             | total                 |
| 1A  | $6.20 \pm 4.49$  | $2.28 \pm 0.65$  | $8.5 \pm 4.5$   | $0.56 \pm 0.41 \pm 0.10$ | $0.06 \pm 0.02$ | $0.6 \pm 0.4 \pm 0.1$ |
| 1B  | $26.62 \pm 11.0$ | $10.25 \pm 3.11$ | $36.5 \pm 11.4$ | $2.40 \pm 0.99 \pm 0.45$ | $0.25 \pm 0.10$ | $2.7 \pm 1.0 \pm 0.5$ |

Table 16: Estimated backgrounds in  $e+jets$  sample after “NS” cuts scaled to MAX\_LIVE luminosity

| Run | “NS” sample              |                 |                          |
|-----|--------------------------|-----------------|--------------------------|
|     | $W+4\text{jets}$         | QCD             | total                    |
| 1A  | $0.60 \pm 0.44 \pm 0.11$ | $0.06 \pm 0.02$ | $0.66 \pm 0.44 \pm 0.11$ |
| 1B  | $2.83 \pm 1.17 \pm 0.53$ | $0.30 \pm 0.12$ | $3.13 \pm 1.18 \pm 0.53$ |

### 8.6.1 Berend’s Scaling

We examine variety of data sets( $W+jets$ , QCD multijet,  $Z+jets$  and VEC-BOS  $W+jets$ ), to estimate this error. We see how well we can predict the number of events with  $\geq N$  jets by using the number of events with minimum jet multiplicity  $N-1$  and  $N-2$ .

$$Events(N) = [Events(N-1)]^2 / [Events(N-2)]$$

for  $W+jets$  Events :

From table 17, the difference in observed and Predicted number of  $W$ ’s is :

- for  $\geq 3$  jets  $[193.59 - (176.16 + 12.36)]/193.59 = 0.026$

Table 17: Data W+jets Events

| Jet Mult. | Observed # of W's   | Predicted # of W's<br>(From fit to Berends Scaling) | # of TOPs |
|-----------|---------------------|-----------------------------------------------------|-----------|
| $\geq 1$  | 7104.89 $\pm$ 88.49 | 7088.17 $\pm$ 94.16                                 | 15.06     |
| $\geq 2$  | 1125.93 $\pm$ 39.15 | 1117.44 $\pm$ 72.42                                 | 14.58     |
| $\geq 3$  | 193.59 $\pm$ 17.12  | 176.16 $\pm$ 15.98                                  | 12.36     |
| $\geq 4$  | 34.75 $\pm$ 7.40    | 27.22 $\pm$ 3.07                                    | 8.06      |

- for  $\geq 4$  jets  $[34.75 - (27.22 + 8.06)]/34.75 = 0.031$

The maximum difference here for  $\geq 4$  jets is 3.1%.

*QCD Fakes :*

The QCD fakes are selected as events with a fake electron and  $E_T > 25$  GeV. The number of events observed at jet multiplicity are then corrected for the probability of jet to fake as an electron. To obtain this correction factor we count the the number of jets with  $E_t > 20$  GeV are counted.

Correction Factor = [<# of jets with  $E_t > 20$  GeV]/[# of Events observed]

This factor is normalized to make it 1 for  $\geq 1$  jet events.

Table 18: QCD Fakes

| jet Mult. | # of Events Observed | Correction Factor | Corrected # of Events | Predicted # of events |
|-----------|----------------------|-------------------|-----------------------|-----------------------|
| $\geq 1$  | 21566                | 1.0               | 21566.0               |                       |
| $\geq 2$  | 8925                 | 1.6               | 5578.1                |                       |
| $\geq 3$  | 2796                 | 1.9               | 1471.6                | 1442.8                |
| $\geq 4$  | 774                  | 2.2               | 351.8                 | 388.2                 |

From table 18, we note that maximum difference between the corrected and predicted number of events is  $< 10\%$ .

*Z+jets Events:*

Table 19: Z+jets Data

| jet Mult. | # of Events Observed | # of Events Predicted |
|-----------|----------------------|-----------------------|
| $\geq 0$  | 1697                 |                       |
| $\geq 1$  | 265                  |                       |
| $\geq 2$  | 40                   | 41.4                  |

Here the difference in observed and predicted # of events is  $< 4\%$ .

*VECBOS W+jets :*

Table 20 shows # of events/ $\text{pb}^{-1}$ . We use these numbers to verify the Berend's scaling predictions.

Table 20: VECBOS W+jets events/ $\text{pb}^{-1}$

| jet Mult. | # of Events/ $\text{pb}^{-1}$ | Predicted # of events |
|-----------|-------------------------------|-----------------------|
| $\geq 2$  | 11.6                          |                       |
| $\geq 3$  | 2.4                           |                       |
| $\geq 4$  | 0.5                           | 0.5                   |

Table 20 shows that VECBOS sample follows Berend's scaling to better than 1%.

In addition to these data sets we also looked at the Photon+jets sample and there also the prediction of Berend's scaling hold to better than 5%.

In all the above data sets, the QCD fakes shows maximum difference between observed and predicted values, and we assign 10% Berend's scaling systematic error to our W-Bkg.

### 8.6.2 Jet Energy Scale

The jet energy scale can effect the e+jets analysis in two ways : first, it can effect the fraction of  $t\bar{t}$  events at jet multiplicity and second, it can effect the fraction of VECBOS W+jets events passing the  $A - H_T$  cut.

To estimate this uncertainty, we apply the CAFIX nominal, Hi(1 sigma above nominal) and Low(1 sigma below nominal) corrections to our monte carlo sample. Table 21 shows the ratio of 3 to 4 jets events for  $t\bar{t}$  montecarlo and table 22 change the fraction if events passing the  $A - H_t$  cut for the VECBOS W+jets sample. For this study we have used only  $t\bar{t}(180\text{GeV})$  sample and VB W+4jet sample.

*For  $t\bar{t}(180\text{GeV})$  :*

Table 21: Effect of Energy Scale on  $t\bar{t}$  acceptance

| jet<br>Mult.                     | # of Events after CAFIX corrections |         |      |
|----------------------------------|-------------------------------------|---------|------|
|                                  | LOW                                 | Nominal | Hi   |
| $\geq 3$                         | 1626                                | 1639    | 1648 |
| $\geq 4$                         | 1078                                | 1090    | 1108 |
| N3/N4                            | 0.66                                | 0.67    | 0.67 |
| # of Evts<br>passing<br>all Cuts | 567                                 | 582     | 595  |

Thus change in N3/N4 is  $< 1\%$ , and change in acceptance is  $< 5\%$ .

*For VECBOS W+4jets:*

Table 22: Effect of Energy scale on fraction of events passing  $A - H_t$  cut for VECBOS

|                                             | Low   | Nominal | Hi    |
|---------------------------------------------|-------|---------|-------|
| Fraction of Events passing<br>$A - H_t$ cut | 0.092 | 0.093   | 0.096 |

Maximum change(table 22) in the fraction of events passing  $A - H_t$  cut is 4.3%.

Thus we assign 5% systematic error to W-bkg for jet energy scale.

Table 23: Percent difference in the fraction of events passing the  $H_T/\text{jet}$  between data and predicted bkg

| Jet multi.                              | % difference |
|-----------------------------------------|--------------|
| $\geq 2$ jets                           | 6%           |
| $\geq 3$ jets                           | 10%          |
| $\geq 4$ jets                           | 15%          |
| (Extrapolated using 2 and 3 jet points) |              |

### 8.6.3 $H_t$ Difference between data and VECBOS

To determine the systematic error due to difference in the  $H_T$  shapes distribution for data and VECBOS, we compare the  $H_T/\text{jet}$  distribution for the  $\geq 2$  and  $\geq 3$  jets events for data and VECBOS, after adding the contributions from TOP and QCD to the VECBOS sample in the appropriate proportion. We also looked at the means of  $H_T$  distribution for these data sets. To look at the difference in the distributions, we pick a point on  $H_T/\text{jet}$  plot which give same Signal/Bkg ratio as the  $H_T$  Cut(180GeV). This point is around  $H_T/\text{jet} = 44\text{GeV}$ . (See figures 8- 11).

The differences that we observe between data and monte carlo predicted shapes for  $H_T/\text{jet}$  cut of 4 GeV are listed in table 23.

Thus we assign an error of 15% to the W Bkg for difference in  $H_T$  distribution.

## 8.7 Top yields and Acceptance

We have used events generated using ISAJET to compute the expected yields from top decays to  $e+jets$ . These event samples were generated to include all the possible decay modes for  $t\bar{t}$ . These are then processed through SHOWERLIBRARY simulation of the D $\emptyset$  detector and reconstructed using D $\emptyset$  RECO V12.20. We then analyze these events ( $N_{tot}$ ) in exactly the same way as the data to obtain the number of events which pass all the cuts ( $N_{pass}$ ). The  $\epsilon * BR$  thus obtained for this analysis are listed in table 24, which includes a correction for difference in electron-id efficiencies between the SHOWERLIBRARY MC and data derived efficiencies using collider  $Z \rightarrow ee$  events and

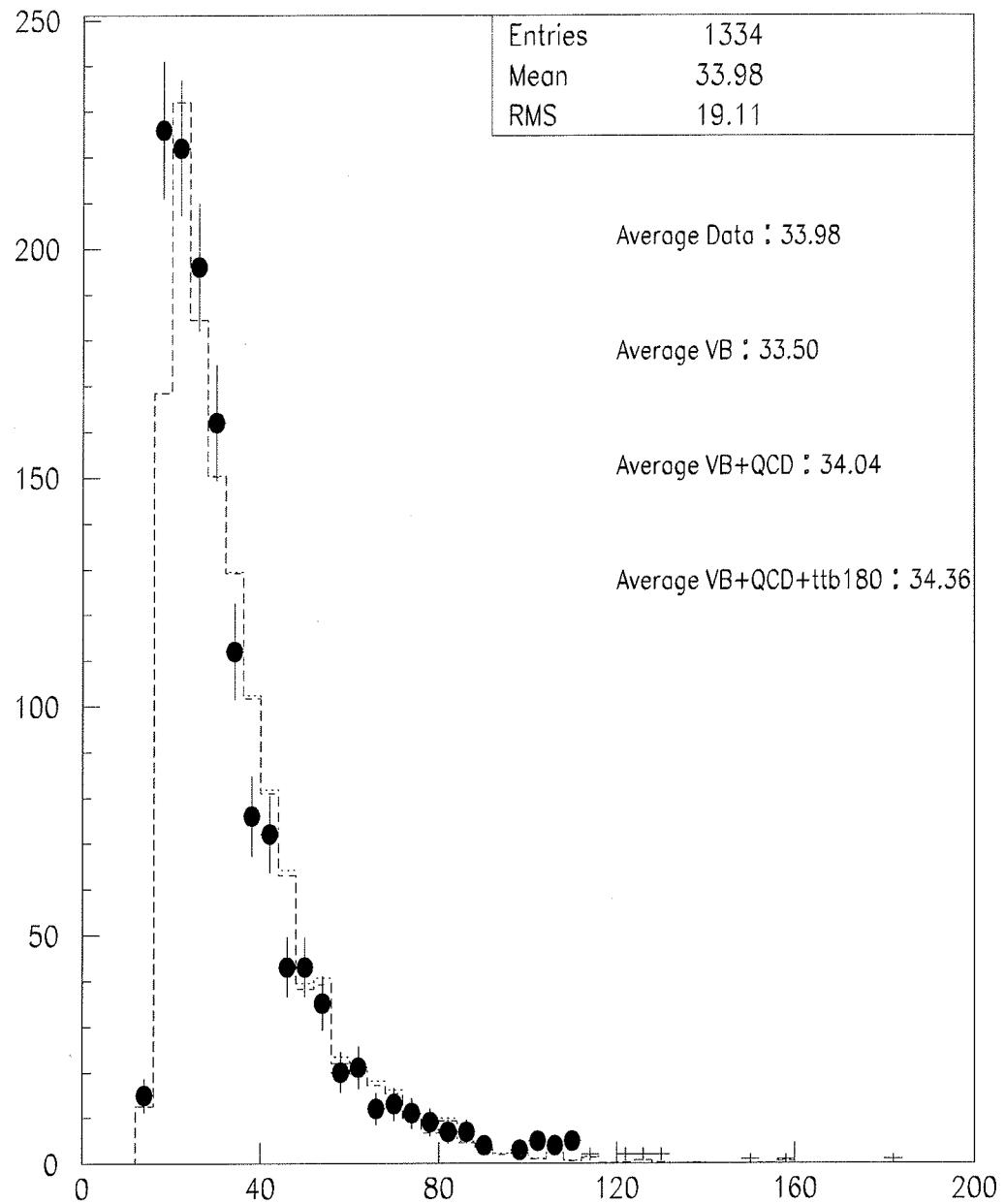



Figure 8: Comparison of  $H_T/\text{jet}$  distribution for Data and Monte Carlo, for  $\geq 2$  jets. Solid histogram is data, dashed is VECBOS+QCD fakes and dotted is VECBOS+QCD+TOP.



Figure 9: Comparison of  $H_T/\text{jet}$  distribution for Data and Monte Carlo, for  $\geq 3\text{jets}$ .

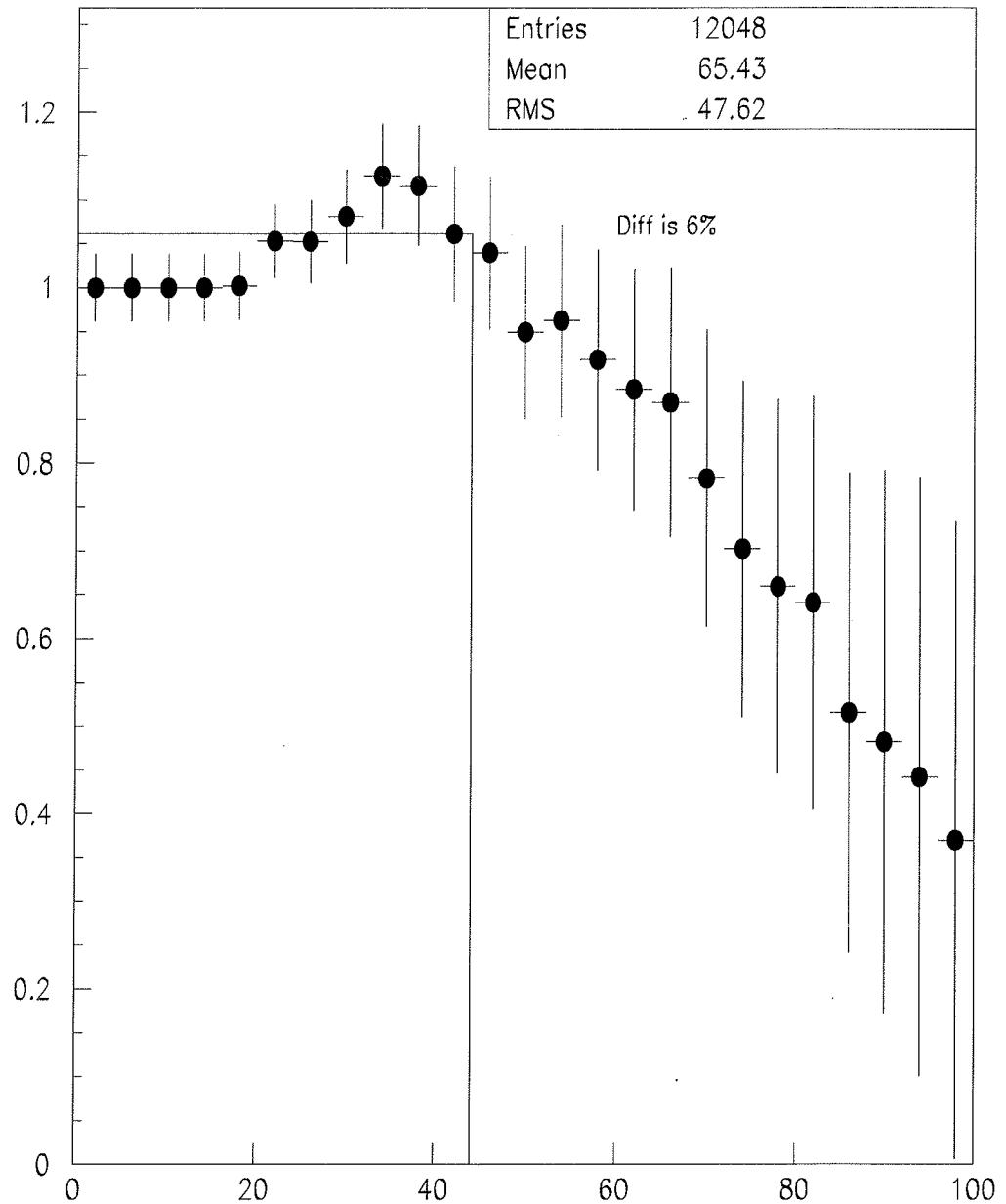



Figure 10: Ratio of # of events passing the  $H_T$ /jet cut for Data and Monte Carlo, for  $\geq 2$  jets

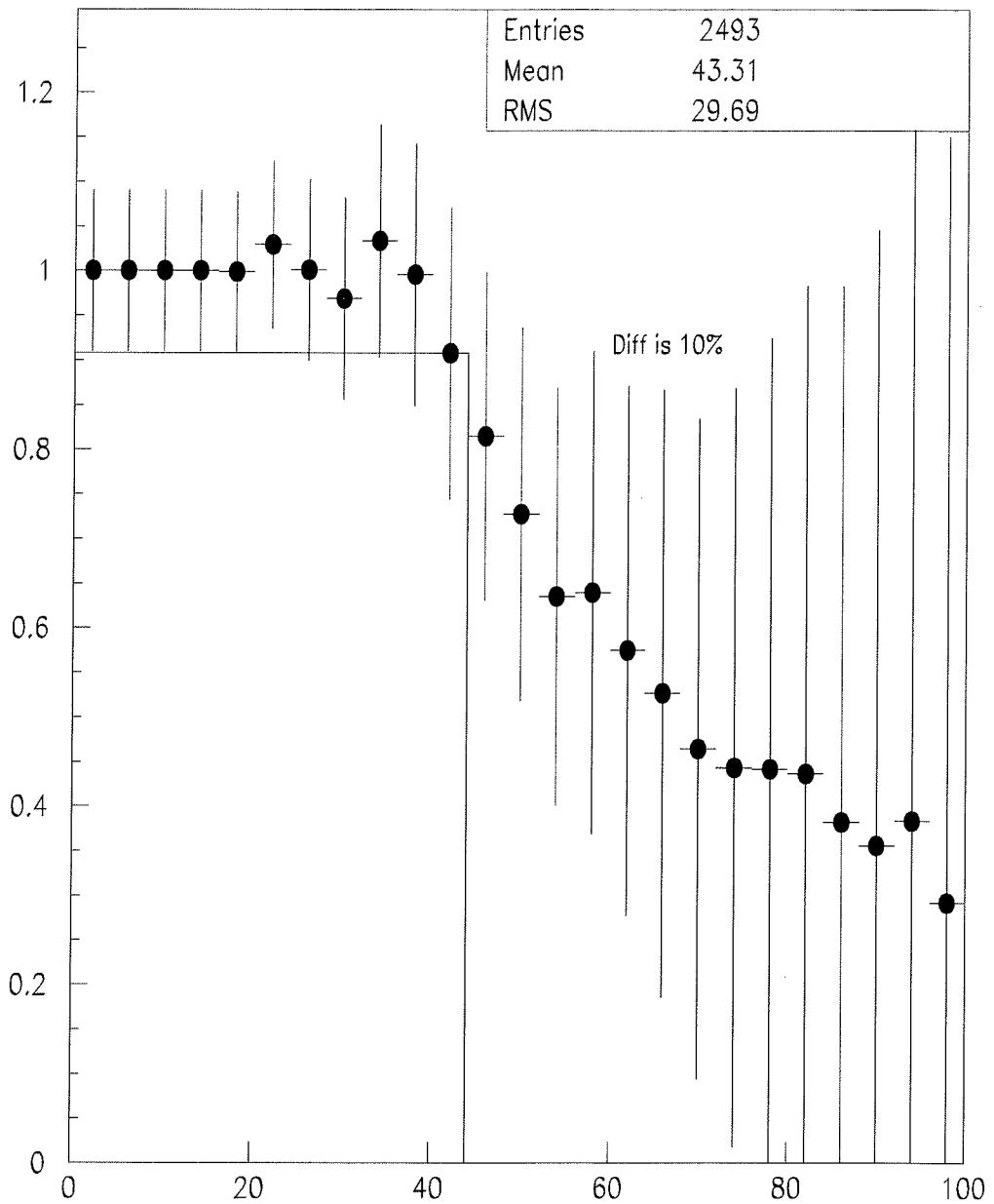



Figure 11: Ratio of # of events passing the  $H_T$ /jet cut for Data and Monte Carlo, for  $\geq 3$  jets

trigger efficiency.

The top yields listed in table 24 are computed using the standard model cross section for top production and corresponds to  $\int \mathcal{L} dt = 105.9 pb^{-1}$ . This includes MAX\_LIVE luminosities from both Run1A and Run1B which includes luminosity accumulated during Main Ring activity.

Table 24:  $\epsilon * BR$  and  $\langle N_{top} \rangle$  for various top masses for “NS” cuts

| $M_{top}$ (GeV) | $N_{tot}$ | $N_{pass}$<br>All (CC ele, EC ele) | $\epsilon * BR$ | $\langle N_{top} \rangle$ |
|-----------------|-----------|------------------------------------|-----------------|---------------------------|
| 140             | 29998     | 359 (358,1)                        | $0.90 \pm 0.22$ | $16.1 \pm 4.0$            |
| 160             | 29995     | 451 (428,23)                       | $1.09 \pm 0.24$ | $9.5 \pm 2.1$             |
| 180             | 28995     | 582 (543,39)                       | $1.45 \pm 0.34$ | $6.4 \pm 1.6$             |
| 200             | 29994     | 653 (610,43)                       | $1.57 \pm 0.35$ | $3.5 \pm 0.8$             |

## 8.8 Systematic Error sources in Top acceptance

The sources of systematic error on Top acceptance, are listed in table 8.8.

Table 25: Systematic error sources in top accepatance determination for e+jets( $\mu$ -tag).

| Source of uncertainty                                 | % Error |
|-------------------------------------------------------|---------|
| Trigger Efficiency                                    | 1%      |
| Eid efficiency                                        | 2%      |
| Energy Scale                                          | 10%     |
| Top Generator<br>(Difference in<br>ISAJET and HERWIG) | 5%      |
| Luminosity<br>(Only for $\langle N_{top} \rangle$ )   | 5.4%    |

Here we determine Energy scale error by looking at the change in acceptance for different jet energy corrections(CAFIX Hi,Low and nominal) for different top masses(between 140GeV an 220 GeV). The mote carlo generator error was determined by looking at difference in acceptance for events

generated using ISAJET and HERWIG for same top mass(180 GeV and 200 Gev).

*e+jets events (QCD subtracted) : Run 1b data*

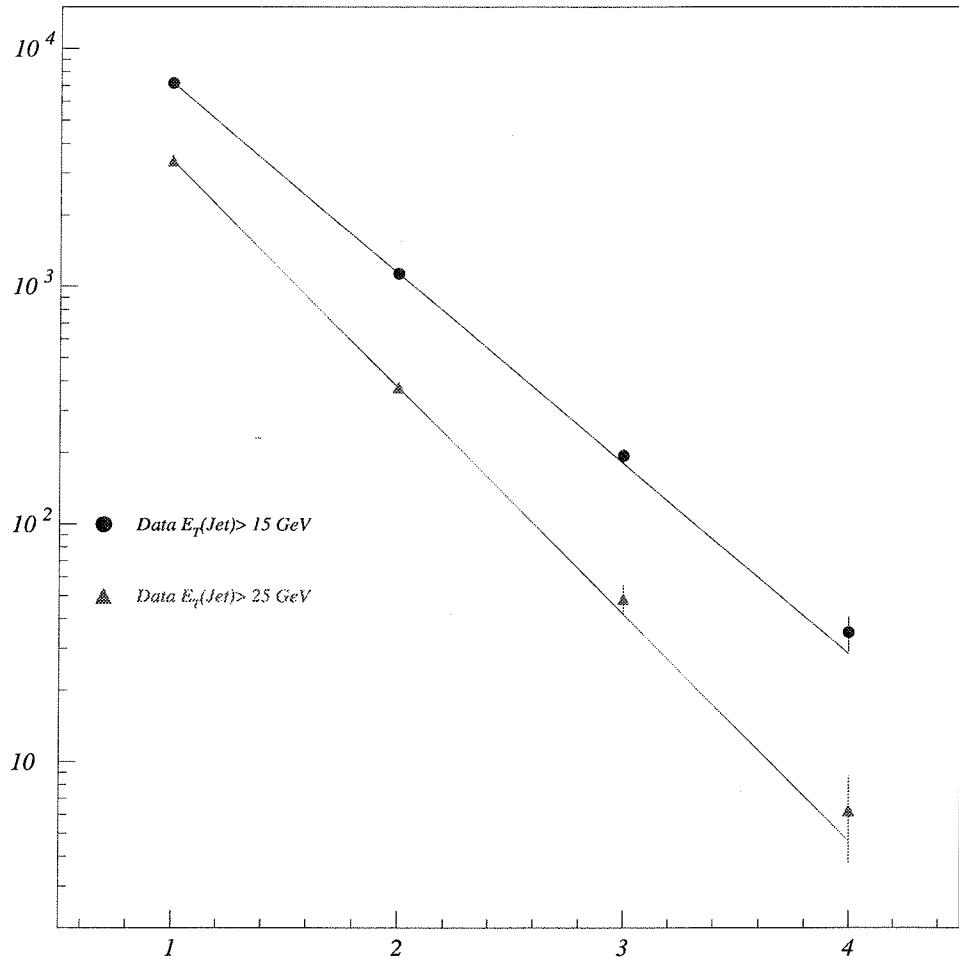



Figure 12: Inclusive Jet Multiplicity distribution (after QCD background subtraction) for Run1B data for two different jet  $E_T$  thresholds. Both the lines show the expected events with at least 3 and 4 jets events using the predicted exponential behaviour and our observation of number of events at the two lowest multiplicity points

*W events : Run 1b data and Monte Carlo(VECBOS)<sup>12/95 06.22</sup>*

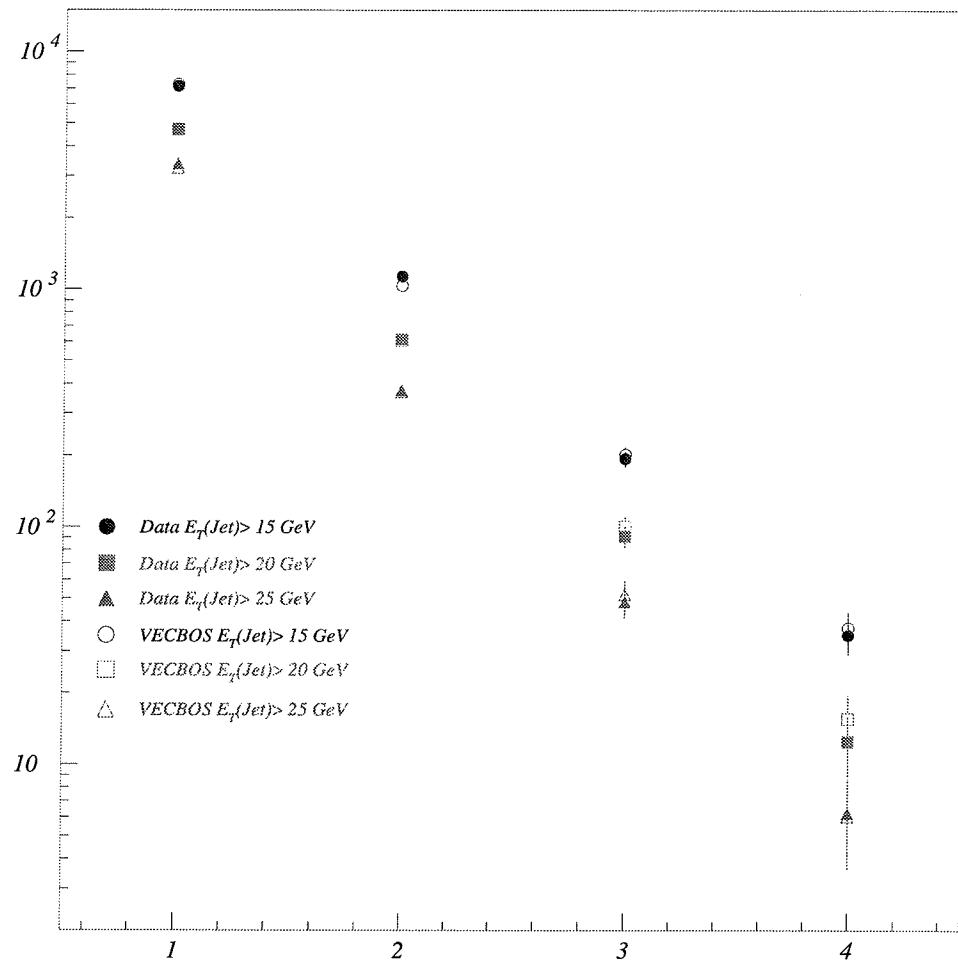



Figure 13: Inclusive Jet Multiplicity distribution (after QCD background subtraction) for Run1B data and those predicted by VECBOS MC for three different jet  $E_T$  thresholds.

### electron+jets (notag) - 1A

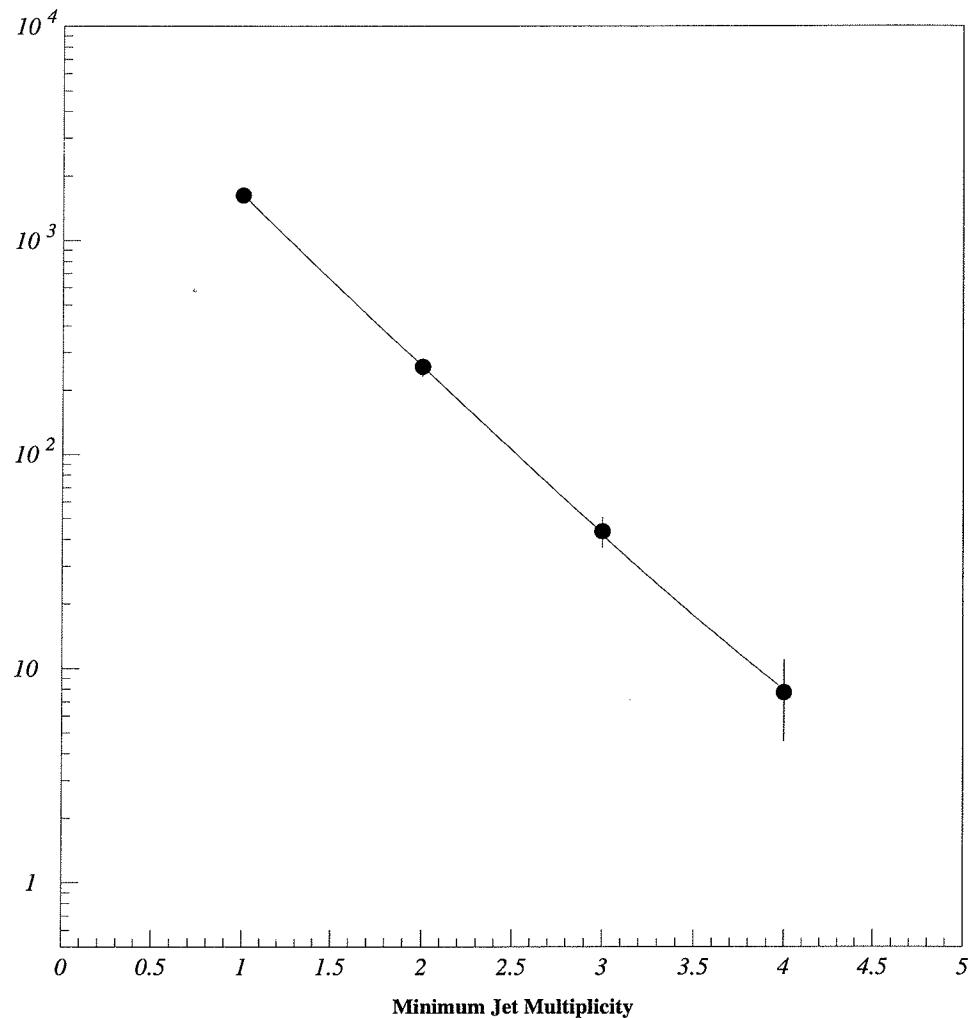



Figure 14: Inclusive Jet Multiplicity distribution (after QCD background subtraction and Berends fit to  $e+$ jets Run1A data sample

### electron+jets (notag) - 1B




Figure 15: Inclusive Jet Multiplicity distribution (after QCD background subtraction and Berends fit to  $e+jets$  Run1B data sample

## 9 Muon+jets (no $\mu$ -tag) Analysis

From: SMTPTo: MEENA CC: Subj: Fixed up Aspen note. Changed pages also on your desk

Date: Fri, 24 May 1996 10:04:01 -0500 From: hobbs@d0sgi4.fnal.gov (John Hobbs) Message-Id: j199605241504.KAA19921@d0sgi4.fnal.gov; To: meena@fnald0.fnal.gov Subject: Fixed up Aspen note. Changed pages also on your desk

### 9.0.1 Selection Requirements

The selection requirements for the basic  $t\bar{t} \rightarrow \mu + \text{ Jets}$  analysis are

- One isolated muon and trigger (as above)
- Standard top group event cleanup
- $E_T^{cal} \geq 20 \text{ GeV}$
- $E_T \geq 20 \text{ GeV}$
- $N_{\text{Jets}} \geq 4, (p_t \geq 15 \text{ GeV}, |\eta| < 2.0)$
- no tag muon(s)

The cross-section or “standard” analysis also requires

- $E_T^W \geq 60 \text{ GeV}$
- $A_W \geq 0.065$
- $H_T \geq 180 \text{ GeV}$

Here  $E_T^W$  is the transverse energy of the  $\mu$  and  $E_T$ ,  $A_W$  is the aplanarity calculated using all jets  $p_t \geq 15 \text{ GeV}, |\eta| < 2.0$  and  $H_T$  is the sum of the scalar energies of the jets used in computing  $A_W$ . Table 26 shows the number of events remaining as the analysis requirements are applied.<sup>7</sup> Tables 27

---

<sup>7</sup>Many of the detailed tables for the Ia data are not given explicitly in this section. The missing tables can be found in appendix A.

and 28 give the candidate events for the ultra loose <sup>8</sup> and standard cuts for both  $t\bar{t} \rightarrow \mu + \text{ Jets}$  and  $t\bar{t} \rightarrow \mu + \text{ Jets} + \mu(\text{tag})$  channels. The first table is for Ia data. The second is for Ib data.

### 9.0.2 Multi-jet Background

The multi-jet (QCD) background at  $N$  jets is calculated by multiplying the number of  $N+1$ -jet non-isolated muon events satisfying all analysis requirements by the probability that a  $\mu+\text{jet}$  system appears as an isolated muon. A non-isolated muon is a muon which satisfies all requirements for an isolated muon except that  $\Delta R < 0.5$ . Such events arise dominantly from  $p\bar{p} \rightarrow q\bar{q} + X$  processes. The QCD background is calculated separately for the CF and EF for events passing a MU\_JET\_xxxx filter and events passing either a MU\_JET\_xxxx or JET\_3\_xxxx filter.

The false isolation probability for  $N$  jets is the ratio of the number of isolated muon events having  $N$  jets and  $\cancel{E}_T < 20$  GeV to the number of non-isolated muon events having  $N+1$  jets and  $\cancel{E}_T < 20$  GeV. The results are shown in tables 29 to 32. The number of selected  $N+1$  jet non-isolated muon events and the predicted QCD background is shown as a function of jet multiplicity in table 33.

### 9.0.3 $W+\text{jets}$ Background

The  $W+\text{jets}$  background at four or more jets is computed using low jet-multiplicity  $W$  events and the hypothesis exponentially decreasing cross-section as a function of jet multiplicity. This can be formally expressed as  $\sigma(W \rightarrow l\nu_l + N\text{jets}) = \sigma(W \rightarrow l\nu_l + 1\text{jet}) \times \alpha^{(N-1)}$ . Here  $\alpha$  is the exponential decay constant, and  $N$  is the number of jets. The number of four-jet  $W \rightarrow \mu = nu$  events  $N_4^W$  is thus found using the expression

$$N_4^W = N_2^W \cdot \alpha^2$$

Here  $N_i^W$  is the number of  $i$ -jet  $W$  events. The decay constant  $\alpha$  is estimated using the ratio  $N_2^W/N_1^W$ . The number of  $W$  plus one- and two-jet events are found by subtracting the QCD background at each multiplicity from

---

<sup>8</sup>The ultra-loose cuts are identical to the basic requirement except that the jet counting includes jets satisfying the looser requirement  $|\eta| \leq 2.5$ .

| Requirement             | Number of Events |     |       |       |
|-------------------------|------------------|-----|-------|-------|
|                         | Ia               |     | Ib    |       |
|                         | CF               | EF  | CF    | EF    |
| —                       | 2009             | 407 | 9526  | 3609  |
| MU_JET_xxxx             | 1104             | 133 | 6092  | 1834  |
| Clean up                | 1096             | 132 | 6068  | 1831  |
| $\cancel{E}_T > 20$ GeV | 494              | 46  | 3097  | 473   |
| $\cancel{E}_T > 20$ GeV | 274              | 23  | 1970  | 278   |
| $N_J \geq 1$            | 274              | 23  | 1970  | 278   |
| $N_J \geq 2$            | 88               | 8   | 490   | 93    |
| $N_J \geq 3$            | 15               | 2   | 112   | 24    |
| $N_J \geq 4$            | 4                | 1   | 26(3) | 6(0)  |
| $E_T^W$                 | 3                | 1   | 20(3) | 6     |
| $A_W > 0.065$           | 2                | 1   | 11(2) | 3     |
| $H_T \geq 180$ GeV      | 2                | 1   | 4(1)  | 0     |
| All filters             | —                | —   | 31    | 20    |
| $N_J \geq 4$            | —                | —   | 31(3) | 20(0) |
| $E_T^W$                 | —                | —   | 25(3) | 18    |
| $A_W > 0.065$           | —                | —   | 15(2) | 5     |
| $H_T \geq 180$ GeV      | —                | —   | 7(1)  | 0     |

Table 26: Number of events passing analysis requirements. The initial selection requirement is one isolated muon, at least one jet ( $|\eta| < 2.0, p_t > 15$  GeV), no tag muons and GOOD\_BEAM. The number in parentheses is number of additional events coming from the MRBS\_LOSS periods. There was no  $\cancel{E}_T$  based filter for the Ia analysis.

| Run   | Event | Standard | Tag | MRBS |
|-------|-------|----------|-----|------|
| 58203 | 4980  | X        | X   |      |
| 61275 | 9188  | X        |     |      |
| 61514 | 4537  |          |     |      |
| 62953 | 2932  |          |     |      |
| 63183 | 13926 | X        |     |      |
| 63740 | 14197 | X        |     |      |

Table 27: The list of Ia candidate events for the  $t\bar{t} \rightarrow \mu + \text{Jets}$  and  $t\bar{t} \rightarrow \mu + \text{Jets} + \mu(\text{tag})$  analyses. All events not marked as “Standard” pass the top group ultra loose requirement of at least four jets having  $|\eta| < 2.5$  and  $p_t > 15 \text{ GeV}$ .

the number of observed events and multiplying the difference by a trigger correction, and only events with CF muons selected using the MU\_JET\_xxxx triggers are used in this the exponential scaling calculation.

The trigger correction is needed because the trigger efficiency depends on the number of jets for low multiplicity events. Table 34 shows the trigger bias as a function of multiplicity. The bias is calculated by comparing the number of events selected using a muon-only trigger with the number passing both the muon-only trigger and the MU\_JET\_xxxx triggers as a function of multiplicity. The events are required to pass all other analysis cuts.

The number of observed events, QCD background and number of  $W$ +jet events are shown as a function of jet multiplicity in table 35 and for Ib in table 36. For the Ib data,  $\alpha = 0.21 \pm 0.02$ . For Ia,  $\alpha = 0.25 \pm 0.04$ . These errors are statistical only. Figure 16 shows the exponential fall-off of cross section with jet multiplicity for simulated  $W$  events, and figure 17 shows the same quantity for QCD subtracted data. The curves also illustrate the effect of jet thresholds on the  $\alpha$  parameter.

The resulting  $W+4$  jet background is then corrected by 1.5 as described above to account for the additional trigger efficiency of the JET\_3\_xxxx triggers and the additional acceptance provided by the EF region. This then gives the total  $W+\text{jets}$  background for the basic analysis. The result is given in table 39.

| Run   | Event | Standard | Tag | MRBS |
|-------|-------|----------|-----|------|
| 77304 | 8028  |          |     |      |
| 78121 | 2325  |          |     |      |
| 80703 | 31477 |          |     |      |
| 80887 | 5976  |          |     |      |
| 81909 | 11966 | X        |     | X    |
| 82639 | 11573 |          |     |      |
| 82694 | 25595 | X        |     |      |
| 83074 | 22558 |          |     |      |
| 84470 | 32527 |          |     |      |
| 84492 | 22977 |          |     |      |
| 84534 | 15306 |          |     |      |
| 84695 | 29699 | X        | X   |      |
| 84696 | 29253 | X        |     |      |
| 85888 | 28599 | X        |     |      |
| 85915 | 24726 |          |     |      |
| 86072 | 8462  | X        | X   |      |
| 87063 | 14368 |          |     |      |
| 87329 | 8787  |          |     |      |
| 87448 | 3192  |          |     |      |
| 87820 | 6196  |          |     |      |
| 87880 | 18470 |          |     |      |
| 88464 | 2832  |          |     |      |
| 88530 | 7800  |          |     |      |
| 88597 | 1145  |          |     |      |
| 88603 | 2131  |          |     |      |
| 89452 | 1810  |          |     |      |
| 89463 | 14233 |          |     |      |
| 89681 | 3196  |          |     |      |
| 89706 | 13481 |          |     |      |
| 89751 | 27345 |          |     |      |
| 89943 | 19016 |          |     |      |

Table 28: The list of Ib candidate events for the  $t\bar{t} \rightarrow \mu + \text{Jets}$  and  $t\bar{t} \rightarrow \mu + \text{Jets} + \mu(\text{tag})$  analyses. All events not marked as “Standard” pass the top group ultra loose requirement of at least four jets having  $|\eta| < 2.5$  and  $p_t > 15$  GeV.