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Abstract: The primary purpose of this work is the provision of accurate, analytic, evolutionary

templates for cosmological parameters and fundamental constants in a dynamical cosmology. A flat

quintessence cosmology with a dark energy potential that has the mathematical form of the Higgs

potential is the specific cosmology and potential addressed in this work. These templates, based on

the physics of the cosmology and potential, are intended to replace those parameterizations currently

used to determine the likelihoods of dynamical cosmologies. Acknowledging that, unlike ΛCDM,

the evolutions are dependent on both the specific cosmology and the dark energy potential, the

templates are referred to as specific cosmology and potential (SCP) templates. The requirements

set for the SCP templates are that they must be accurate, analytic functions of an observable, such

as the scale factor or redshift. This is achieved through the utilization of a modified beta function

formalism that is based on a physically motivated dark energy potential to calculate the beta function.

The methodology developed here is designed to be adaptable to other cosmologies and dark energy

potentials. The SCP templates are essential tools in determining the relative likelihoods of a range

of dynamical cosmologies and potentials. The ultimate purpose is the determination of whether

dark energy is dynamical or static in a quantitative manner. It is suggested that the SCP templates

calculated in this work can serve as fiducial dynamical templates in the same manner as ΛCDM

serves for static dark energy.

Keywords: cosmological parameters; fundamental constants; quintessence

1. Introduction

This manuscript examines the evolutions in the late time, matter, and dark energy
dominated epoch between the scale factors of 0.1 and 1.0 for a flat quintessence cosmol-
ogy. This epoch is the primary focus of the upcoming Rubin and Roman observatories
observations. This study does not consider radiation but only matter and dark energy
and is therefore only relevant to late epochs not under the influence of radiation. The
farthest look back time considered here is at a scale factor of 0.1, where radiation has no
measurable effect.

Some preliminary aspects of areas covered in this publication are discussed in [1].
This work, however, expands the study and is intended for both experts in the field and
those who wish an introduction to calculations of the evolution of cosmological parameters
and fundamental constants. The methodology presented here is particular to the specific
cosmology, quintessence, and the evolutionary templates it calculates are for a specific dark
energy potential. The templates from the methodology are therefore referred to as specific
cosmology and potential (SCP) templates.

The nature of dark energy has been declared one of the “grand challenges in both
physics and astronomy” by the Decadal Survey of Astronomy and Astrophysics 2022 [2]. A
major part of that challenge is the question of whether dark energy is static or dynamic.
An important aspect of the question is whether a dynamical cosmology can fit the current
and future observational data as well or better than ΛCDM. This work explores a flat
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quintessence cosmology with current parameter boundary conditions close but not equal
to ΛCDM to provide accurate predictions of parameter and fundamental constant evolu-
tions for comparison with data. The calculation of the evolutions is described in detail,
particularly the use of a modified beta function formalism that produces accurate, analytic
functions of the parameters and constants as a function of the observable scale factor. The
dark energy potential has a natural origin, having the same mathematical polynomial form
as the Higgs potential. It is, however, not the Higgs field and has none of the rich physics
of the Higgs. It is simply a rolling scalar field with quintessence physics that is coupled to
gravity. Since the potential has the same mathematical form as the Higgs potential, it is
referred to as the Higgs inspired or HI potential.

The development of the SCP templates for a flat, minimally coupled quintessence
cosmology takes advantage of the property of minimally coupled systems, that the dark
energy and matter density evolutions are independent of each other. Each can be calcu-
lated separately, as is traditionally done for quintessence [3–6], and then combined when
necessary for the calculation of the cosmological parameters such as the Hubble parameter.

As an example, the evolution of matter density is simply
ρm0

a3 where ρm0 is the current
matter density and a is the scale factor. The evolution of the scalar and other dark energy
functions are calculated in Sections 3–10 without reference to the matter density, except
in the introduction of the Friedmann constraints. The matter density is incorporated in
Section 11, where the Hubble parameter is calculated using the first Friedmann constraint.

An approximation is made in Equation (16), where the
β2

6 term is set to zero to achieve
Equation (17), which is only a function of the dark energy potential and scalar. The approx-
imation is valid for all of the dark energy EoS values in this study but could lose accuracy
for high deviations of w from −1.

Beyond demonstrating the methodology for producing SCP templates for cosmological
parameter evolution, this work also examines the role of fundamental constants in setting
constraints on both static and dynamical cosmologies. Without invoking special symmetries,
it is difficult to prevent a scalar field that couples with gravity from also coupling with
other sectors such as the weak, electromagnetic, and strong forces [7]. The values of the
fundamental constants such as the fine structure constant α and the proton to electron mass
ratio µ are determined by the quantum chromodynamic scale ΛQCD, the Higgs vacuum
expectation value ν, and the Yukawa couplings h [8]. It is assumed here that the HI scalar
responsible for dark energy also interacts with these sectors. The temporal evolution of the
constants produced by the interactions is examined in Section 17 along with the connection
to the dark energy equation of state (EoS) w.

The study utilizes natural units with h̄, c, and 8πG set to 1, where G is the Newton
gravitational constant. The mass units are reduced Planck masses mp. The constant κ is the
inverse reduced Planck mass 1/mp. In the mass units of this study κ = 1, but it is retained
in equations to display the proper mass units.

2. The Need for SCP Templates

The SCP templates generated in this study are candidates for a fiducial set of templates
to compare with the observations in the same way that the well-known static ΛCDM
templates are currently used. Although accurate analytic templates for the static ΛCDM
cosmology exist, similar templates for dynamical cosmologies are exceedingly rare. Cur-
rently, the primary tools for analyzing dynamical cosmologies are parameterizations such
as the Chevallier, Polarski, and Linder (CPL) [9,10] linear parameterization of the dark en-
ergy equation of state (EoS) w(a) = wo + (1 − a)wa. Such parameterizations do not contain
any of the physics of the dynamical cosmology and its dark energy potential. Figure 1
shows the CPL fit to a quintessence cosmology w with the dark energy potential described
in Section 5.



Universe 2023, 9, 172 3 of 27

H0 = 70.0, θ0
= 0.7, δ=3, w0 0.99

CPL a) = 1.02474 + 0.135966 1 a)

SCP

CPL

0.2 0.4 0.6 0.8 1.0

1.00

0.95

0.90

0.85

0.80

0.75

0.70

Scale Factor a

w a)

Figure 1. The dashed line is the CPL linear fit to the w(a) freezing evolution for w0 = −0.99, solid line.

The linear CPL, dashed line, is a poor fit to the true evolution, solid line, and is not
an accurate measure of its likelihood. Beyond producing an erroneous likelihood, the
CPL fit also produces erroneous conclusions. At scale factors greater than 0.8, the CPL
fit is in the phantom region, w < −1, even though the true evolution has no phantom
values. It is well known that it is quite difficult for quintessence to cross the phantom
boundary [11]. Three recent analyses of observational data [12–14] using a MCMC analysis
with a CPL dark energy template find phantom values of w at low redshift. The presence of
phantom values of w can be interpreted as strong evidence against quintessence; however,
Figure 1 clearly shows that for a quintessence cosmology with no phantom values, a
CPL fit erroneously produces phantom values due to fitting a nonlinear evolution with a
linear parameterization. The methodology described here produces templates based on the
action of the quintessence cosmology and a specific dark energy potential for comparison
with the observational data. SCP templates are essential for properly comparing accurate
predictions with the observational data in establishing the true likelihood of the cosmology
and potential.

3. Quintessence

As one of the simplest dynamical cosmologies, flat quintessence provides a straight-
forward example of a methodology for producing SCP templates. Quintessence is a
well-studied [4] and well-known cosmology, but for easy reference some important aspects
of its physics are given here.

The quintessence cosmology is defined by its action Sq.

Sq =
∫

d4x
√

−g

[

m2
p

R

2
− 1

2
gµν∂µφ∂νφ − V(φ)

]

, Sm =
ρm0

a3
(1)

where Sq is the dark energy action and Sm is the matter (dust) action. R is the Ricci scalar, g
is the determinant of the metric gµν, φ is the scalar, and V(φ) is the dark energy potential.
The scalar φ is the true scalar with a value on the order of 10−32mp. A second scalar θ is
introduced in Section 5 for the Ratra–Peebles form of the dark energy potential. This scalar
is, therefore, referred to as the Ratra–Peebles, or RP scalar, and has a value on the order
of unity in units of mp. In the matter action, ρm0 is the current matter density and a is the
scale factor. The matter component of the total action Sm is separate from the quintessence
dark energy component Sq resulting in a total action of Stot = Sq + Sm as in Equation (3.1)
of [5]. The matter component is introduced via the first Friedmann constraint in Section 11
in the calculation of the Hubble parameter. In the following, only dark energy is considered
in the derivation of the scalar, since its evolution is not affected by matter. Matter is then



Universe 2023, 9, 172 4 of 27

introduced in Section 11 to derive the proper Hubble parameter that includes both dark
energy and matter.

The kinetic component of Sq is

X = −1

2
gµν∂µφ∂νφ = − φ̇2

2
. (2)

The common kinetic symbol X for − φ̇2

2 is used throughout the manuscript. X is a
function of only time, since the universe is assumed to be spatially homogeneous.

The quintessence dark energy density and pressure are set by the action as

ρφ ≡ −X + V(φ), pφ ≡ −X − V(φ) (3)

In natural units both the density and the pressure have units of m4
p and the time

derivative of the scalar φ̇ has units of m2
p. The dark energy EoS w(φ) is

w(φ) =
Pφ

ρφ
=

−X − V(φ)

−X + V(φ)
, (4)

which is a pure number. Combining Equations (3) gives

Pφ + ρφ = −2X. (5)

It follows that
Pφ + ρφ

ρφ
= w + 1 =

−2X

ρφ
, (6)

giving φ̇ a relationship to the dark energy EoS and the dark energy density.

−2X = ρφ(w + 1) (7)

4. General Cosmological Constraints

Independent of the particular cosmology, there are general constraints on the evolution
of the cosmological parameters. The first are the Friedmann constraints.

4.1. The Friedmann Constraints

The two Friedmann constraints play an important role in calculating the SCP templates.
The forms of the first and second Friedman constraints used here are

3

(

H(a)

κ

)2

= ρφ(a) + ρm(a), 3

(

Ḣ(a)

κ2
+

(

H(a)

κ

)2
)

= −ρ(a) + 3P(a)

2
(8)

where ρφ(a) is the dark energy density, ρm(a) is the matter density, ρ(a) is the sum of the
matter and dark energy densities, and P(a) is the dark energy pressure. In a universe with
only dark energy, the Friedmann constraints are

3

(

Hφ(a)

κ

)2

= 3

(

√

Ωφ H(a)

κ

)2

= ρφ(a), 3

(

Ḣφ(a)

κ2
+

(

Hφ(a)

κ

)2
)

= −
ρφ(a) + 3P(a)

2
(9)

where Hφ denotes the dark energy only Hubble parameter. The critical density is 3H2

and the ratios of the dark energy density and matter density to the critical density are
Ωφ and Ωm that add to one in a flat universe. The dark energy only Hubble parameter is
then

√

ΩφH.
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4.2. The Boundary Conditions

Since we are looking for solutions of differential equations, the second set of con-
straints is imposed by the boundary conditions, the current values of certain cosmological
parameters. Table 1 displays the cosmological boundary conditions chosen for this study.
The range of the scale factor is slightly arbitrary but is set to include the range covered by
the Rubin and Roman observations. The range of w0 is set close to −1 to be near, but not
exactly, −1. The H0 value is set to 73 consistent with the current late time expectations [15].
Ωm0 and Ωφ0 are the current concordance values. All of the boundary conditions appear in
the evolutionary functions of the SCP templates and are therefore easily changed.

Table 1. Boundary conditions and parameter values in this work. H0 is the current value of the

Hubble parameter in units of km/sec
Mpc . Ωm0 and Ωφ0 are the current ratios of the matter and dark energy

densities to the critical density. w0 are the current values of the dark energy equation of state.

H0 Ωm0 Ωφ0 w0 Scale Factor a

73 0.3 0.7 −0.99 −0.995 −0.999 0.1–1.0

5. The Higgs Inspired Potential

The dark energy potential has the mathematical form of the Higgs potential V(φ) ∝

(φ2 − γ2)2, a quartic polynomial with a constant γ. It is chosen for two reasons. The first
is that the mathematical form is identical to the Higgs potential, which gives rise to a
scalar field that is known to exist and is therefore physically motivated, hence the name
Higgs inspired or HI potential. A second reason is that by varying the constant term γ,
it produces dark energy equations of state that are freezing, thawing, and transitioning
between freezing and thawing. This makes it a good choice for a fiducial potential that
covers a wide range of evolutions.

The most convenient form for the potential is a modified Ratra–Peebles format [16,17]
with a scalar field denoted by θ, the RP scalar introduced in Section 3 that has units of mass
in mp. The potential is then

V(κθ) = M4((κθ)2 − (κδ)2)2 = M4((κθ)4 − 2(κδ)2(κδ)2 + (κδ)4), (10)

where the true scalar is φ = Mκθ. M and δ are constants with units of mass, and both (κθ)
and (κδ) are dimensionless; therefore, all of the dimensionality is in the M4 leading term.
Since both arguments are dimensionless, there is no need for the n in the usual M4−nφn

Ratra–Peebles format. The terms θ and δ replace the scalar φ and γ terms to differentiate
them from the true scalar φ and constant γ, which have values on the order of 10−31mp.
The values of θ and δ are of the order unity, and the value of δ is chosen to be greater than
the current scalar θ0 to place the equilibrium point θ = δ in the future. This makes the
constant (κδ)4 the dominant term, followed by the two dynamical terms −2(κθ)2(κδ)2 and
(κθ)4 in descending order.

6. The Quintessence Methodology

The methodology developed here is for the specific quintessence cosmology and only
applies to a cosmology whose action is given by Equation (1). Among the current plethora
of dynamical cosmologies, there are some with quite different names that have the same
action as quintessence where this methodology will apply but not for cosmologies such
as k-essence, which has a different action. The methodology is demonstrated with the
modified Ratra–Peebles HI potential of Equation (10).

6.1. The Modified Beta Function Formalism

The key to producing SCP templates that are accurate analytic functions of the scale
factor is beta function formalism [5,18–20]. The beta function is a differential equation relat-
ing the scalar κθ to the scale factor a, allowing the calculation of an analytic form of κθ(a).
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The analytic form of the scalar is achieved via the approximation of a dominant potential
component of the dark energy density that allows exclusion of the kinetic component to
calculate the beta function given in Equation (17). This, in turn, enables calculation of the
analytic function of the scalar. The cosmological parameters are analytic functions of the
scalar that are quite accurate but not exact. The cosmological parameter templates do not
contain any numerical calculations.

The primary beta function formalism papers relative to this work are [5,18]. The
work by [18] considers a quintessence dark energy only universe, while the work of [5]
considers a quintessence universe with both matter and dark energy, which is the universe
considered in this work. Both [5,18] consider the general physics of the beta function
formalism rather than the explicit evolution of cosmological parameters. Their approach is
therefore modified in this work to provide analytic evolutionary templates for cosmological
parameters. These modifications are noted in the following discussion.

The generalized beta function [19] is defined as

β(κθ) ≡
(

− ∂p

∂X

) 1
2 dκθ

d ln(a)
(11)

From Equation (3) for the quintessence dark energy pressure, it is evident that (− ∂p
∂X )

1
2

is 1, giving a quintessence beta function of

β(κθ) ≡ dκθ

d ln(a)
=

dκθ

da
a. (12)

From Equation (12) and the definition of the quintessence beta function and the
Hubble parameter

dκθ

da
=

β

a
, κθ̇ = βHθ . (13)

The dark energy only Hubble parameter Hφ is used in Equation (13) to be consistent
with the dark energy only derivation of the scalar; however, when the matter density is
introduced in Section 11, the Hubble parameter for both dark energy and matter should be
used since it sets the time evolution of the scale factor da

dt . Equations (7) and (13) provide
the useful relation

β(κθ) =
√

3Ωθ(w + 1). (14)

Since the beta function formalism is developed for dark energy, the first Friedmann
constraint in Equation (9) applies, and

3H2
θ = ρθ = −X + V(θ) =

(βHθ)
2

2
+ V(θ) (15)

where the subscript θ now designates the dark energy density.
In [5,18], the beta function is defined as the negative of the logarithmic derivative of

the dark energy density. To achieve the desired analytic SCP templates, Equation (15) is
rearranged to a slightly modified density

3H2
θ

(

1 − β2

6

)

= V(θ) (16)

noting that
β2

6 ≪ 1 for all of the cases considered here. Using the modified density, the beta
function is then the negative of the logarithmic derivative of the analytic HI potential.

β(κθ) = −
∂V(κθ)
∂(κθ)

V(κθ)
=

∂(κθ)

∂ ln a
(17)



Universe 2023, 9, 172 7 of 27

The leading constant, M4, in the dark energy potential does not appear in the log-
arithmic derivative defining the beta function, leaving it as an adjustable parameter to

satisfy the Friedmann constraints. Note that the approximation that
β2

6 ≪ 1 is equivalent

to the statement that the kinetic term X = − (βHθ)
2

2 is small compared with the dark energy
potential. This is roughly equivalent to the slow roll condition often used in evaluating
dynamical cosmologies. In fact, Equation (17) is the negative of the first slow roll condition.
The first slow roll condition is often set to a small constant, e.g., [3], which is only valid for
an exponential potential. Here, the approximation of a small value of X is only used to
calculate the analytic form of the scalar, and the nonconstant time derivative of the scalar is
used in all parameter calculations. The approximation that βHθ is set to 0 in determining
the beta function also means that the Hubble parameter is not used in the derivation of the
scalar and that its value of either Hθ or H is not a factor.

Although the beta density 3H2(1 − β2

6 ) is slightly different than the real density, appli-
cation of the boundary conditions and the Friedmann constraints produces evolutionary
SCP templates of high accuracy as illustrated in Section 15.

The Beta Function for the HI Potential

Using the HI potential in Equation (10), the negative of the logarithmic derivative is

β(κθ) =
−4κθ

(κθ)2 − (κδ)2
=
√

3Ωθ(w + 1) (18)

where the last term is from Equation (14). Solving the equation formed by the last two
terms for the current time yields the current value θ0 for the scalar which is an important
boundary condition.

κθ0 = −
4 −

√

16 + 12Ωθ0
(w0 + 1)(κδ)2

2
√

3Ωθ0
(w0 + 1)

(19)

Since the argument of the square root in the numerator is greater than 16, Equation (19)
is the positive solution of the quadratic equation.

6.2. The Scalar as a Function of the Scale Factor

An essential step in achieving SCP templates as analytic functions of the scale factor
a is finding the scalar κθ as a function of a. From the definition of the beta function in
Equation (17), the differential equation for the scalar as a function of the scale factor is

∂(κθ)

∂ ln a
=

−4κθ

(κθ)2 − (κδ)2
. (20)

Separating the scale factor and scalar terms gives

4d(ln(a)) = − (κθ)2 − (κδ)2

κθ
d(κθ). (21)

An integral of both sides of Equation (21) from 1 to a for the left side and from θ0 to θ
on the right side gives

8 ln(a) = 2(κδ)2 ln(κθ)− (κθ)2 −
(

2(κδ)2 ln(κθ0)− (κθ0)
2
)

. (22)

Equation (19) provides the value of κθ0. The following manipulations from [1]
provide a solution for κθ(a) involving the Lambert W function in terms of a constant
c = 2(κδ)2 ln(κθ0)− (κθ0)

2 and the scale factor. Dividing both sides of Equation (22) by
(κδ)2 gives
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8

(κδ)2
ln(a) +

c

(κδ)2
= 2 ln(κθ)−

(

θ

δ

)2

. (23)

Taking the exponential of both sides of Equation (23) and dividing again by (κδ)2 yields

− a
8

(κδ)2

(κδ)2
e

c
(κδ)2 = −

(

θ

δ

)2

e−(
θ
δ )

2

. (24)

Equation (24) has the mathematical form of the Lambert W function that is the
solution to

χ = W(χ)eW(χ) (25)

where

χ(a) = − a
8

(κδ)2

(κδ)2
e

c
(κδ)2 W(χ) = −

(

θ

δ

)2

. (26)

Equations (25) and (26) provide an analytic solution for κθ(a)

κθ(a) = κδ

√

√

√

√

√−W



− a
8

(κδ)2

(κδ)2
e

c
(κδ)2



 (27)

that is the positive solution for the square root, which is real since W(x) is negative. The
following variable changes produce a concise form for κθ(a).

q = − e
c

(κδ)2

(κδ)2
, p =

8

(κδ)2
, χ(a) = qap, (28)

which yields

κθ(a) = κδ
√

−W(χ(a)). (29)

Equation (29) provides the key to transforming evolutions that are a function of the
scalar into functions of the observable scale factor to produce the SCP templates.

The term (κθ)2 − (κδ)2 appears often in this manuscript. In terms of the Lambert W
function W(χ(a)), it is

(κθ)2 − (κδ)2 = −(κδ)2(W(χ(a)) + 1). (30)

The form of the HI potential is then

V(a) = (Mκδ)4(W(χ(a)) + 1)2. (31)

The beta function also has a compact form in the W function format

β(κθ) =
−4κθ

(κθ)2 − (κδ)2
=

4
√

−W(χ(a))

κδ(W(χ(a)) + 1)
. (32)

6.3. Summary of the Methodology

Although the methodology may appear to be complex, the separate steps of the
quintessence beta function formalism are relatively simple. The quintessence beta function
is given in Equation (12), which connects the scalar κθ to the scale factor a. As stated
in the text, the beta function is defined as the negative of the logarithmic derivative of
the dark energy density, but here it is noted that the kinetic term in the density is small
compared with the potential term, and a legitimate approximation is to ignore it and set
the beta function to the negative of the logarithmic derivative of the potential as given in

Equation (17). This is the only place in the methodology that
β2

6 is set to 0. The kinetic
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term −X, as shown in Equation (15), is used in all subsequent calculations of the templates.
Equation (18) shows the beta function calculated from Equation (17) and is shown in
differential form in Equations (20) and (21). The solution for κθ(a) is achieved through
mathematical manipulation to the simple form in Equation (29). This provides a solution
for a cosmological parameter as a function of the scale factor if the solution as a function of
the scalar is known.

Since the matter (dust) action is separate from the dark energy action, the evolution
dark energy scalar is calculated from the dark energy action as described above. The matter
is included in Section 11 that derives the Hubble parameter, which is a function of the dark
energy and matter. It is added to the total density in Equation (38) for the first Friedmann
constraint and is present in the Hubble parameter template in Equation (40). This is the
Hubble parameter that is used in the calculation of the time derivative of the scalar θ̇ = βH.
Adherence to the Friedmann constraints and inclusion of the matter density in the Hubble
parameter that calculates θ̇ produces accurate SCP templates that are functions of both the
matter and the dark energy densities and conforms to both Friedmann constraints.

7. The Cosmology of W(χ)

Before moving on to consider the evolution of κθ(a), β(a) and other parameters, it is
worthwhile to examine the cosmology embedded in the evolution of W(χ). A thorough
discussion of the mathematical properties of the Lambert W function is in [21]. There, it is
shown that W has negative values if its argument is between − 1

e and 0, which is true for all
cases considered here. This makes the argument of the square root in Equation (29) positive,
producing a real value of the scalar κθ. Figure 2 shows the evolution of the principal branch
of W(χ). The formal designation of the principal branch is W0(χ), but the subscript is
dropped in the following since only the principal branch is used in this work.

Lambert W Function W( )

BB, a=0Now, a=1

Valid

Future

Not

Valid

x

o
-0.4 -0.3 -0.2 -0.1 0.0 0.1

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

W
(

)

Figure 2. The figure shows the valid region with negative χ and invalid regions with positive χ of

the W function for this work. The thin vertical line at χ = 0, a = 0, is the Big Bang. The χ on the track

is the present day location, and the O at the end of the track is when the acceleration goes to zero. A

more detailed description of the figure is given in the text.

Figure 2 shows the evolution of W(χ) as a solid line for negative χ and a dashed line
for positive χ. The negative portion of the Lambert W function terminates at χ = − 1

e , while
the positive portion continues indefinitely. Only the negative portion has real solutions for
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the scalar. Equation (26) shows that χ is negative for all positive values of the scale factor a.
Evolution in Figure 2 proceeds from right to left as the top arrow indicates. The variable χ
is zero when a = 0; therefore, the Big Bang is at χ = 0 as shown by the vertical thin line.
The dashed vertical line just to the left of the Big Bang shows the maximum excursion of
the greatest evolution case, δ = 3 and w0 = −0.99. All of the cases considered here have
−W(χ) values much less than 1, which means that θ ≪ δ.

Figure 3 shows the detail of the evolution region of Figure 2. The black solid and
dashed lines are the same as in Figure 2 but only for the evolution region between the
thick dashed and thin solid vertical lines. The first case, δ = 3 w0 = −0.99 in red, with the
highest δ and largest deviation of w0 from −1 has the most extensive evolution with the
right end of the evolution, a = 0.1, significantly after the Big Bang. Note the evolutions that
actually overlap the black lines have been shifted downward for visibility. The third case
with the lowest value of δ and the least deviation of w0 from −1 has the least evolution with
its a = 0.1 start χ at −1.312 × 10−12 and its maximum χ of 1.3119 × 10−4 barely visible on
the diagram. The middle excursion with δ = 2 and w0 = −0.995 starts with χ = 2.604 × 10−5

and a current χ of 2.6404 × 10−3. The similar numbers are due to the end scale factor being
ten times the beginning scale factor. Recall that χ is not time so that a small value of χ does
not mean that the scale factor of 0.1 is very near the Big Bang. As hinted at in Figure 2 the
evolution region’s small extent make the evolutionary tracks in χ appear linear. Figure 3
is an indication, verified later on, that the value of δ has a strong influence on the SCP
templates. The upper left of the figure shows the color code of the δ values and the line
styles of the w0 values are maintained throughout the manuscript.

Big Bang*

w0= -0.999 -0.995 -0.99
=1
=2
=3

=3, w0=-0.99a=1

=2
w0=-0.995

a=1

-0.01 -0.005 0.

-0.01

-0.005

0.

W
(

)

Figure 3. The figure shows the region between the Big Bang and the furthest evolution of any of the

cases in this study. This figure initiates a code continued throughout the paper. The δ = 1, 2 and three

cases are displayed in red, green, and blue. The w0 = −0.99, −0.995, and −0.999 cases are displayed

with solid, dashed, and long dashed line styles as shown in the upper left of the figure. The figure

is an expanded view of the region between the thin black vertical line and the thick dashed line in

Figure 2. In this figure, the Big Bang is the black vertical line marked with an asterisk near the bottom.

The right and left ends of the evolutions are the start point at a = 0.1 and the end point at a = 1.0,

respectively. Further discussion of the figure is in the text.

The black sloped solid and dashed line is the same as in Figure 2 for the small expanded
region. The red solid and green dashed line are the evolutions of the δ = 3, w0 = −0.99,
and the δ = 2, w0 = 0.995 cases. The long dashed blue evolution for the δ = 1 w0 = −0.999
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is so short that it appears only as a small dot near χ = 0 below the δ = 3 and 2 evolutions.
The evolutions are offset downward from the black track for visibility.

To aid comprehension of Figure 3, Table 2 gives the value of χ at scale factors of 0.1, 0.5,
and 1.0 for all values of δ and w0. All values of χ are negative The magnitude of χ increases
with increasing values of δ and higher deviations of w0 from −1. The time evolution of the
tracks in Figure 3 is from right to left, the same as in Figure 2. The time extents for all tracks
are the same, a = 0.1 to 1.0, but the evolution of χ has a large variation.

Table 2. The values of χ for all values of δ and w0 for scale factors of 0.1, 0.5, and 1.0. The barely

visible Figure 3 blue δ = 1 and w0 = −0.999 χ values are given by the last row of the δ = 1 χ

values in the table. The equilibrium values of the scale factor aeq, discussed in Section 7.2, are in the

last column.

The Values of χ

Scale Factor a

δ w0 0.1 0.5 1.0 aeq

1. −0.99 −1.307 × 10−11 −5.107 × 10−6 −0.00131 2.024

1. −0.995 −6.550 × 10−12 −2.558 × 10−6 −0.000655 2.206

1. −0.999 −1.312 × 10−12 −5.125 × 10−7 −0.000131 2.698

2. −0.99 −0.0000517 −0.00129 −0.00517 8.437

2. −0.995 −0.0000260 −0.000651 −0.00260 11.885

2. −0.999 −5.243 × 10−6 −0.000131 −0.000524 26.492

3. −0.99 −0.00147 −0.00616 −0.0114 49.776

3. −0.995 −0.000750 −0.00313 −0.00580 106.479

3. −0.999 −0.000152 −0.000636 −0.00118 640.859

7.1. Past Evolution

The main content of this manuscript is the past evolution from the present to a past
scale factor of 0.1, which is a redshift of 9. This encompasses a large fraction of the history
of the universe in the matter and dark energy dominant epochs. An important question is
how far back can the SCP templates be utilized. A hard limit is the onset of the radiation-
dominated epoch, since the radiation density is not included in the present work. A
reasonable limit is when the radiation density is 1% of the matter density. The present
matter density for H0 = 73 and Ωm0 of 0.3 is 3.68 × 10−121 m4

p and a present radiation

density of 6.17 × 10−125 m4
p. The radiation density is 1% of the matter density at a scale

factor of 0.0168 or a redshift of 58.5. This is strictly a physics limit on the validity of the
templates. Figures 2 and 3 plus Table 2 indicate that the template for the scalar θ is valid
back to this limit, but the templates have not been tested for mathematical stability at scale
factors smaller than 0.1. Inclusion of the radiation density is beyond the scope of this work,
but it can probably be included in the same manner as the matter density.

7.2. Future Evolution

A perhaps even more intriguing question is how far in the future can the templates
be extended. The solution of θ is analytic at scale factors greater than 1, which is all of the
region to the left of the dashed vertical line in Figure 2. There is a limit, however, to the
principal branch of the Lambert W function at χ = − 1

e . Figure 2 marks this location with a
O at W(χ) = −1. Equation (29) shows that at W(χ) = −1 θ = δ, which is an equilibrium
point where the dark energy potential is zero. The scale factor, aeq, where this occurs is
given by

aeq = (
−1

qe
)

1
p . (33)
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where p and q are the same as in Equation (28). The values of aeq are listed in the last column
of Table 2. It is beyond the scope of this manuscript to determine whether this is a stable
equilibrium point. If it is a stable equilibrium, with θ̇ also zero, then it would be the end
of dark energy acceleration. The universe would return to a matter-dominated evolution,

with 3H2 =
ρm0

a3 making a graceful exit from acceleration. The speed of expansion would be

ȧ = aH =

√

ρm0

a
. (34)

The universe would then evolve in a classical manner, slowing down to zero expansion
at infinity. Given the past history of the universe it is reasonable that the lowering level of
total density might reveal a new source of accelerated expansion whose density is below
that of the current density.

8. The Evolution of the Scalar and the Beta Function

The scalar κθ(a) and the beta function β(a) influence the evolution of all of the cosmo-
logical parameters in this study. The sections below document their evolution.

8.1. The Evolution of κθ(a)

Figure 4 shows the evolution of the scalar κθ over the scale factors considered in this
work. The colors and line styles are consistent with the previous figure.

H0 = 73.0, θ0
= 0.7

w0= -0.99, -0.995, -0.999

-0.99

-0.995

-0.999

=1

=2

=3

0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Scale Factor a

κθ

Figure 4. The figure plots the evolution of the scalar for all of the δ and w0 values in this study.

The w0 values for the δ = 3 case are labeled on the plot. The order and line styles are
the same for the other two δ values. The evolution is relatively small consistent with a slow
roll. As expected the scalar values are monotonically increasing. The most striking feature
is that the second derivative of the evolution changes from positive for δ = 1 to almost zero
for δ = 2 to negative for δ = 3. The three, seemingly arbitrary, delta values were chosen to
illustrate this transition. The transition has a large effect on some parameters, such as the
dark energy EoS, w, but relatively little effect on the Hubble parameter as is shown later
in Figure 7.

8.2. The Evolution of β(a)

The beta function evolution is shown in Figure 5.
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H0 = 73.0, θ0
= 0.7

δ=1δ=3 δ=2

0.99

0.995

0.999

0.2 0.4 0.6 0.8 1.0 1.2

0.00

0.05

0.10

0.15

Scale Factor

β(a)

Figure 5. The figure shows the evolution of the beta function for all cases in this study.

Although the general nature of the evolution of the beta function is different from
the scalar, it shows the same change in the second derivative of the evolution, positive
for δ = 1, almost zero for δ = 2, and negative for δ = 3. The absolute value of β is small
and decreases as w0 approaches −1. The current value of beta, β0, is identical for a given

value of w0 due to Equation (14), which sets β0 at
√

3Ωθ0
(w0 + 1), where the subscript 0

indicates the current values. The beta function appears in many cosmological parameters
due to Equation (13) that links κθ̇ and the Hubble parameter.

9. The Value of M in the Dark Energy Potential

At this point, the value of M in Equation (10) has not been calculated. The Friedmann
constraints and Equation (3) provide the means of calculating M. The dark energy density is

ρθ =
(κθ̇)2

2
+ M4((κθ)2 − (κδ)2)2 = 3Ωθ H2. (35)

Using κθ̇ = βH

3Ωθ H2 =
(βH)2

2
+ M4((κθ)2 − (κδ)2)2. (36)

Since M is a constant it can be set using the current boundary conditions which insures
adherence to the first Friedmann constraint at a scale factor of 1. This eliminates any
constant offsets due to the approximation in Equation (17) further improving the accuracy
of the templates.

Rearranging Equation (36) and using the current values of the parameters gives

3H2
0(Ωθ0

− β2
0

6
)− M4((κθ0)

2 − (κδ)2)2, M = 4

√

√

√

√

3H2
0

((κθ0)2 − (κδ)2)2

(

Ωθ0
− β2

0

6

)

. (37)

10. The Evolution of the HI Dark Energy Potential

The evolution of the dark energy potential can now be calculated. Figure 6 shows the
evolution of the HI dark energy potential for all of the cases.
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Figure 6. The figure shows the evolution of the HI dark energy potential for all cases in this study.

Figure 6 shows that there is only a small evolution of the potential between scale
factors of 0.1 and 1.0, again consistent with a slow roll. The maximum evolution is 1.7%
for the δ = 3 w0 = −0.99 case. The δ = 1 evolutions are essentially constant, mimicking
ΛCDM, until a scale factor of ≈0.7, and then decrease slightly to the a = 1.0 value for
w0 = −0.99 and −0.995. The δ = 2 cases deviate from constant evolution earlier than the
δ = 1 cases, and the δ = 3 cases have almost linear evolution and have the highest values,
particularly at small scale factors. All of the w0 = −0.999 cases have a very flat evolution.
For a given value of w0, the current value of the potential is the same for all δ values. From

Equations (10) and (37) the potential at a scale factor of one is 3H0(Ωθ0
− β2

0
6 ). Equation (14)

shows that the value of the beta function at a scale factor of 1 is
√

3Ωθ0
(w0 + 1), making V0

the same for a given w0.

11. The Hubble Parameter

The calculation of the Hubble parameter for the real universe requires the inclusion
of both dark energy and matter. In [5], matter is introduced via a differential equation
involving the Hubble parameter and the beta function. Here, the Friedmann constraints
are the primary tools for deriving the Hubble parameter in a universe with both matter
and dark energy. The first Friedmann constraint gives

3H2(a) = ρθ + ρm =
(κθ̇)2

2
+ M4((κθ)2 − (κδ)2)2 +

ρm0

a3
. (38)

Here, ρm0 is the current matter density and
ρm0

a3 is the mass density as a function of the

scale factor. Using Equation (13), βH is substituted for κθ̇ in Equation (38) to obtain

3H2(a)(1 − β(a)2

6
) = M4((κθ)2 − (κδ)2)2 +

ρm0

a3
. (39)

The Hubble parameter is therefore

H(a) =

√

√

√

√

√

M4((κθ)2 − (κδ)2)2 +
ρm0

a3

3
(

1 − β(a)2

6

) . (40)
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11.1. The Time Derivative of the Hubble Parameter

The second Friedmann constraint in Equation (9) provides the method for calculating Ḣ.

Ḣ = −
(

ρθ(a) + ρm(a) + 3P(a)

6
+ H2

)

= −1

2

(

(Mκ)4θ̇2 +
ρm0

a3

)

(41)

where φ̇ = M2κ2θ̇ in units of the reduced Planck mass.

11.2. The Evolution of the Hubble Parameter

Figure 7 shows the evolution of the Hubble parameter for all values of δ and w0 plus
ΛCDM. At the resolution of the figure, all of the tracks overlap each other to the thickness
of the line.

H0 = 73.0, θ0
= 0.7 All Cases plus ΛCDM

10 x a


H

0.2 0.4 0.6 0.8 1.0

200

400

600

800

1000

1200

Scale Factor a

H
k
m
s
e
c
M
p
c
]

Figure 7. The figure shows the evolution of the Hubble parameter for all cases in this study and

ΛCDM. The evolution of the time derivative of the scale factor is also shown in the dashed line to

indicate the onset of the acceleration of the expansion of the universe. The scale of its evolution has

been magnified by 10 to make it visible in the plot.

The dashed line on Figure 7 shows the time derivative of the scale factor ȧ to show the
transition to acceleration of the expansion of the universe. It occurs at a scale factor of ≈0.6
consistent with current observations, e.g., [22]. The ȧ track has been multiplied by 10 to
remove its overlap with the H parameter track. The following section shows the percentage
deviation of the HI Hubble parameters from ΛCDM for all of the cases.

11.3. The Percentage Deviation from ΛCDM

The fractional deviation of the HI Hubble parameters from ΛCDM is given by

dev =
HHI − HΛCDM

HΛCDM
(42)

Figure 8 shows the percentage deviation of the HI H parameters from the ΛCDM H
parameter.
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Figure 8. The percentage deviation from ΛCDM for the HI Hubble parameter. The negative numbers

at the peaks and valleys in each panel are the values of w0.

The figure readily shows that the percentage deviation of the HI Hubble parameter
from ΛCDM is exceedingly small. The highest deviation is 0.17% for the δ = 3, w0 = −0.99
and the smallest deviation is 0.005% for the δ = 1, w0 = −0.999 case. All of the δ = 1 cases
have a negative deviation, indicating that the HI Hubble parameter is slightly less than
ΛCDM, while the other δ values have positive deviations with the HI Hubble parameter
slightly higher than ΛCDM. The maximum deviations occur at scale factors between 0.6
for δ = 3 and 0.8 for δ = 1, where dark energy begins to dominate. The overall shape
of the deviations are reasonable. The deviation is zero at a = 1, since it is set by the H0

boundary condition. After the peak, the deviation drops again as the density becomes
matter-dominated. Currently, the deviations of the w0 = −0.999 cases are impossible
to detect observationally, and the highest deviation is below the detection limit of the
proposed near-future facilities. Further discussion of the implications of the HI quintessence
cosmology appears in Section 16.

12. The Scale Factor and Time Derivatives of the Scalar

The scale factor and time derivatives of the scalar are not observables but are essential
for the calculation of the SCP templates. The starting point is the derivative of the Lambert
W function in Equation (43).

dW(x)

dx
=

W(x)

x(1 + W(x))
(43)

From this base, the derivative of the scalar (κθ) with respect to the scale factor a is

dκθ

da
=

d(κδ
√

−W(qap))

da
= κδ

p
√

−W(qap)

2a(1 + W(qap))
. (44)

The derivative of the scalar with respect to time is then

dκθ

dt
=

dκθ

da

da

dt
=

dκθ

da
Ha = κδ

p
√

−W(qap)

2(1 + W(qap))
H. (45)

Equation (45) gives the same answer as Equation (13).
Figure 9 shows the evolution of φ̇ = M2κ2θ̇ in units of m2

p for all of the cases along
with a more detailed plot of the region between a scale factor of 0.4 and 1.0.
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Figure 9. The (left) panel shows the evolution of M2κ2 θ̇ for all cases and the (right) panel shows the

evolution at scale factors between 0.4 and 1.0 in more detail.

The units of θ̇ are m2
p, since θ has the units of mass and time has units of inverse mass.

In Figure 9, κ2θ̇ is multiplied by M2 to show the value of the time derivative of the true
scalar φ̇. In the left panel, the full evolution of θ̇ is shown for the scale factors between 0.1
and 1.0. Unlike the scalar, the magnitude of θ̇ is decreasing for δ = 3 but increasing for
δ = 1 with corresponding differences in the second derivative. The right hand panel shows
the evolution between scale factors of 0.4 and 1.0 in more detail. Close inspection of the
δ = 2 and w0 = −0.99 track show that it was initially decreasing but is currently increasing.
This nonmonotonic evolution is also present in the dark energy EoS described later.

13. The Dark Energy Density and Pressure

Several cosmological parameters depend on the evolution of the dark energy density
and pressure. Equation (3) gives the functions for them in terms of the kinetic term X and
the dark energy potential. Figure 10 shows the evolution of the dark energy density for all
of the cases.
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Figure 10. The evolution of the dark energy density for all of the cases in this study.

As usual, the δ = 1 evolutions have a different character from the other two. The
density evolution for w0 = −0.999 is essentially flat, and the highest evolution case,
w0 = −0.99, only changes by 0.3%. For all values of w0, the δ = 1 density has a slight rise
near a scale factor of 1. For scale factors less than 0.6, the densities are essentially constant
acting like a cosmological constant in the matter-dominated epoch. For δ = 2 and 3, the
density is monotonically decreasing with increasing scale factor. The second derivative of
the decrease of density for the δ = 2 case changes from negative to positive with increasing
scale factor similar to the scalar. The decrease in density for the δ = 3 case is larger than for
the other two cases but is still only on the order of 20% for the maximum case. Unlike the
δ = 2 case, the second derivative of the evolution is negative at all scale factors.

Figure 11 shows the evolution of the dark energy pressure.
The dark energy pressures have their characteristic negative values and, although

more than the density, the absolute evolution is relatively small. The δ = 1 and 3 evolutions
are monotonically positive and negative, respectively, but the δ = 2 pressure evolutions
have stronger transitions from negative to positive than the density. As in the dark energy
density, the w0 = −0.999 evolution is quite flat, as would be expected for a w0 value so
close to −1.
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Figure 11. The evolution of the dark energy pressure for all of the cases in this study.

14. The Dark Energy Equation of State

By definition, the dark energy EoS is the ratio of the dark energy pressure to the dark
energy density. Figure 12 shows the evolution of w = pθ

ρθ
.
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Figure 12. The evolution of the dark energy equation of state for all of the cases in this study.

The δ = 1 w evolution is the classic thawing evolution, where w is initially near −1
and then thaws to the less negative values of w0. The δ = 3 case is the classic freezing
case, where w starts at values less negative than −1 and then freezes toward −1. The δ = 2
evolution, however, is nonmonotonic, starting as a freezing solution and then transitioning
to a thawing evolution. These evolutions mirror the evolution of the dark energy pressure
in Figure 11, since the magnitude of the pressure evolution is greater than the evolution
of the density. The author does not know of any similar case in the literature but suggests
that it may be called the freeze and thaw evolution. Figure 12 demonstrates the motivation
for the simple choices of 1, 2, and 3 for the δ values. The δ = 3 cases have late time
evolutions very similar to ΛCDM but significant and observable deviations at early times.
The δ = 1 evolutions of w are indistinguishable from ΛCDM at early times and only slightly
deviant from ΛCDM at late times due to the purposely chosen w0 values very near −1. The
w0 = −0.999 evolution of w would not be distinguishable from ΛCDM using the current
analysis techniques. These aspects are discussed more thoroughly in Section 16, where the
HI quintessence is considered as a candidate for a fiducial dynamical cosmology in the
same way that ΛCDM is a fiducial static cosmology.

15. The Accuracy of the Cosmology and Dark Energy Potential

At this point, the SCP evolutionary templates of all of the cosmological parameters
considered in this work are calculated. It is appropriate then to consider the accuracy of
the cosmology and HI potential as a whole. The metric for the accuracy utilized here is
the accuracy of the two Friedmann constraints that contain the Hubble parameter and
its time derivative, the dark energy density, and pressure plus the matter density and HI
potential. Other parameters, such as the dark energy equation of state, are functions of the
parameters in the Friedmann constraints. The first and second Friedmann constraints are
given in Equation (8). The two constraints are considered separately below.

15.1. The Accuracy of the First Friedmann Constraint

The left and right sides of the first Friedmann constraint should be equal; therefore,
the accuracy, f racerr, is determined by

f racerr =
3H2 − (ρθ + ρm)

3H2
. (46)
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The results for all of the cases are similar in the overall magnitude but of course
dissimilar in detail. The results for w0 = −0.995 and the three values of δ are shown
in Figure 13.
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Figure 13. The fractional error for the first Friedmann constraint with w = −0.995 and δ = 1, 2, and 3.

It is obvious that the first Friedmann constraint is satisfied to better than one part
in 1016. This is on the order of the digital accuracy of the Mathematica code used in
the calculation.

15.2. The Accuracy of the Second Friedmann Constraint

The second Friedmann constraint explicitly covers more parameters including the
time derivative of the Hubble parameter. The fractional error for the second Friedmann
constraint is given by

f racerr =
3(Ḣ + H2) + (ρθ+ρm+3P)

2

3(Ḣ + H2)
. (47)

Unlike the first Friedmann constraint, where all of the terms are positive, the second
Friedmann constraint has a mixture of positive and negative terms. Both the left and right
hand term in the numerator of the constraint transition between positive and negative
values. The left hand term is the denominator in Equation (47), which means that it goes
through zero, making the fractional error infinite. The transition occurs at a scale factor of
approximately 0.6. Since the calculations in Mathematica are digital, true zero rarely occurs,
but the fractional error does spike at the transition point. Figure 14 shows the fractional
error for the same cases considered in the first Friedmann constraint.
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Figure 14. The fractional error for the second Friedmann constraint with w = −0.995 and δ = 1, 2,

and 3. The spikes at a ≈ 0.6 are due to the denominator passing through zero.

The regions away from the spike have similar fractional errors as for the first Fried-
mann constraint but build slightly before the spike. Even including the spike, the second
Friedmann constraint is satisfied to a high accuracy, indicating that the SCP evolutionary
templates also have a high degree of accuracy, exceeding the accuracy of the observations
by a high degree.

16. The HI Quintessence as a Fiducial Dynamical Cosmology

In most likelihood, examinations of cosmological data ΛCDM are considered the
fiducial static cosmology. A fiducial dynamical cosmology, however, has not been identified.
This may be due in part to the multitude of dynamical cosmologies and the number of
possible dark energy potentials. This leads to the use of parameterizations and their
incumbent pitfalls as discussed in Section 2. HI quintessence may be a good candidate for a
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fiducial dynamical cosmology for comparison with ΛCDM. This confronts the question of
whether dark energy is static or dynamic, with the canonical scientific method of comparing
physics-based predictions with the data to measure the likelihood of the predictions.

There are compelling reasons for picking HI quintessence as one of perhaps several
fiducial dynamical cosmologies. A particularly compelling reason is that the HI potential
has a natural physical basis, since its mathematical form is the same as the only confirmed
isotropic and homogeneous field, the Higgs field. It should be emphasized again here that
the HI scalar is not the Higgs field. It is just a quintessence scalar field with the mathematical
form of the Higgs potential. Another compelling reason is that, unlike monomial potentials,
the HI potential covers a wide range of possible evolutions by simply varying the value of
δ in the potential. Section 14 showed that both freezing and thawing evolutions of the dark
energy EoS, w, are easily obtained as well as evolutions that transition between freezing
and thawing. The SCP templates for all of these evolutions are physics-based and test real
predictions for discriminating between static and dynamic dark energy plus determining
the nature of a dynamical dark energy.

An additional reason for utilizing HI quintessence as a fiducial cosmology is that it
comes arbitrarily close to ΛCDM by varying the constant in the HI potential and adjusting
the boundary conditions, such as w0, without invoking a cosmological constant. The best
example of a ΛCDM type of evolution in this work is the δ = 1 and w0 = −0.999 case,
examined more closely in the next section.

A ΛCDM-like Dynamical Cosmology

Due to the many successes of the ΛCDM cosmology in matching the observational
data, the dark energy EoS w0 values were purposely set close to but not equal to −1. The
δ = 1 and w0 = −0.999 case is the closest one to ΛCDM. All of the δ = 1 cases are thawing,
which means that the maximum value of w is w0, and the early time values of w are very
close to −1. It is this dynamical case, of all studied in this work, that has the best chance
of having a likelihood close to that of ΛCDM. In earlier plots that show evolutions for
all cases, the evolution of this case is often hard to discern, since it is much smaller than
the maximum evolution case in the plots. To better illustrate the δ = 1, w0 = −0.999
evolutions, Figure 15 plots the fractional deviations from ΛCDM of this case only for the
Hubble parameter, the dark energy density, and the dark energy EoS.
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Figure 15. The evolution of the δ = 1, w0 = −0.999. Hubble parameter, dark energy density, and

dark energy EoS. Note that unlike Figure 8, the fractional deviation of the HI Hubble parameter from

ΛCDM is shown rather than the percentage.

The left panel shows the fractional, not percentage as in Figure 8, deviation of the
HI Hubble parameter from ΛCDM. The maximal fractional deviation is only −0.00005,
which is below any current or expected near-term detectable limit. The center panel shows
the ratio of the dark energy density to the cosmological constant, black line at 1.0, with
a maximum deviation of 0.00025 at small scale factors. The boundary conditions set the
deviation at a = 1 to zero. The first panel of Figure 10 indicates that the deviation for
scale factors smaller than 0.6 is constant at the a = 0.1 value. It is unlikely that the small
deviation produces any detectable effects. The right hand panel shows the dark energy EoS
w which has a maximum deviation from −1 of 0.001. This also is below current or expected
near-term detection limits. It is clear that any constraint on the deviation of w can be met
by moving w0 closer to −1, which also lowers the deviations of the other two parameters.
This indicates that it is very difficult to falsify a dynamical cosmology or to confirm ΛCDM.
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On the other hand, a confirmed deviation from the ΛCDM predictions can falsify it but
not necessarily confirm a dynamical cosmology. It would, however, produce a higher
likelihood for a dynamical cosmology than for ΛCDM.

17. Temporal Evolution of Fundamental Constants

Constraints on the temporal and spatial variance of fundamental constants are ex-
cellent, but seldom used, discriminators between static and dynamic dark energy. They
are also sensitive tests of the validity of the standard model of physics. Fundamental
constants are dimensionless numbers whose values determine the laws of physics. Primary
examples are the fine structure constant α and the proton to electron mass ratio µ that are
cosmological observables. Both are measured by spectroscopic observation of atomic and
molecular transitions, respectively. As discussed briefly in the introduction, the same scalar
that produces the late time inflation by interacting with gravity most likely interacts with
other sectors producing changes in the values of the fundamental constants. Since the same
scalar is determining the value of the dark energy EoS and the values of the constants,
there is a relationship that makes the fundamental constants w meters in the universe. The
summation of the interactions of the scalar with the quantum chromodynamic scale ΛQCD,
the Higgs vacuum expectation value ν, and the Yukawa couplings h produce a net coupling
constant ζx, where x can be either µ or α. In the absence of any knowledge of the coupling,
it is assumed to be linear as in Equation (48), which can be thought of as the first term of a
Taylor series of the real coupling.

∆x

x
= ζx(κθ − κθ0) (48)

Current limits on the temporal variation of the constants are ∆α/α = −(1.3 ± 1.3stat ±
0.4sys)× 10−6, 1σ [23] at z = 1.15, and ∆µ/µ ≤ ±1.1 × 10−7 2σ [24,25] at z = 0.89. The
redshifts for both of these measurements are look back times greater than half the age of the
universe. The α constraints are from optical spectroscopy of multiple atomic fine structure
lines, and the µ constraints are from radio observations of methanol absorption lines in cold
molecular clouds along the line of sight to a quasar. In the following, the tighter constraint
on the temporal variation of µ is used as an example.

Figure 16 shows the evolution of
∆µ
µ for δ = 1 and 3 for all three w0 values and

ζµ = 10−6.
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Figure 16. The evolution of
∆µ
µ for δ = 1 and 3 for all three values of w0. The error bar at a scale

factor of 0.5303 is the 2σ constraint on the temporal variation of µ.
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The δ = 1 cases represent the least evolution, and the δ = 3 cases represent the most
evolution with the δ = 2 lying between the two. All of the cases satisfy the constraint,
mainly because of the small deviations of w0 from −1. Only a small tightening of the
constraint would start to eliminate some of the δ = 3 cases. The proposed fiducial case of
δ = 1 and w0 = −0.999 is well within the observational constraint. Additionally restrictive
observational constraints can always be cosmologically accommodated by making w0 closer
to −1 or by lowering the value of the particle physics parameter ζµ.

The last sentence in the above paragraph indicates that a constraint on the temporal
variance of either µ or α is a constraint on a cosmology–particle physics plane defined by w
and ζµ. An earlier analysis [26] determined the relationship between ζµ and w as

ζµ =
±∆µ

µ

κθ(aob, w0, Ωθ0
)− κθo(1, w0, Ωθ0

)
(49)

where aob is the scale factor of the observation. Equation (19) for θ0 is the source of the
Ωθ0

term in Equation (49). Equation (49) defines regions in the ζµ − (w0 + 1) plane that
satisfy the observational constraint and those that do not. Figure 17 shows the allowed and

forbidden area for the
∆µ
µ constraint.
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Figure 17. The forbidden and allowed regions in the w0 − ζµ plane determined by the constraints on

the temporal deviation of the proton to electron mass ratio µ. Areas inside the two boundary lines for

a case are allowed, while areas outside the two boundary lines are forbidden.

The positive and negative tracks for each δ case are due to the positive and negative
values for ζµ in Equation (49). The δ = 3 more restricted allowed area is due to the greater

evolution of
∆µ
µ as shown in Figure 16, which requires a smaller ζµ to meet the constraint

than the δ = 1 case. The ΛCDM point in the figure is the 0, 0, origin where ζµ = 0 and
(w0 + 1) = 0. A confirmed observation of (w0 + 1) 6= 0 with no detected variance of µ
would place a hard limit on the particle physics parameter ζµ but would also require new
physics to account for the deviation of w from −1.

18. Conclusions

This study addresses the question of whether dark energy is static or dynamic by first
pointing out that the use of parameterizations to represent dynamical cosmologies results
in not only erroneous likelihoods but also in erroneous conclusions about the validity of
dynamical cosmologies such as quintessence. The study then presents a methodology for
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creating accurate analytic templates of the evolution of cosmological parameters and funda-
mental constants for the flat quintessence dynamical cosmology. The methodology utilizes
a modified beta function formalism to determine the evolution of the quintessence scalar
as a function of the observable scale factor. Solutions for the evolution of parameters and
constants that were previously only functions of the unobservable scalar are then translated
to templates that are functions of the scale factor for direct comparison with the current and
expected cosmological observations. Recognizing that dynamical cosmologies can have a
multitude of dark energy potentials the study introduced the concept of specific cosmology
and potential (SCP) templates to replace the parameterizations with SCP evolutionary
templates based on the physics of the cosmology and dark energy potential. For this reason,
the study is concentrated on the methodology to produce SCP templates that can embrace
a broad range of analytic physics based potentials.

To demonstrate the formalism in the study, the SCP templates of several observable
and some necessary but not observable parameters, such as the time derivative of the scalar
that appear in the functions of many observable parameters, were then calculated. An
important aspect of the study is the example quartic polynomial dark energy HI potential.
The modified beta function formalism applied to flat quintessence with the HI potential
resulted in a scalar that is a simple function of the Lambert W function. This step provides
the means to produce accurate analytic SCP templates as a function of the scale factor.

Given the many observational successes of the ΛCDM static cosmology, boundary con-
ditions close to ΛCDM were chosen in the study. In particular, w0 values close but not equal
to −1 were adopted. This choice produced a simplification of the beta function formalism,
where the beta function for quintessence is the negative of the logarithmic derivative of a
slightly modified dark energy density. The beta function was then accurately approximated
by the logarithmic derivative of the potential. Care should be taken in using the formalism
for w values significantly different than −1. Equation (7) shows that the kinetic term X
is directly proportional to (w + 1). If (w + 1) becomes too large, the approximation can
break down, and other means must be employed. The SCP templates are calculated by
imposing the Friedmann constraints on the parameters. Since the studied epoch included
only the matter-dominated and dark energy-dominated epochs, radiation is not included
in the calculations. This precludes utilization of the templates for scale factors smaller than
0.016, such as the CMB-dominated epoch, that have significant radiation densities.

The polynomial HI potential provided a significantly larger range of evolutions than
the often used monomial potentials. In particular, small changes of the constant term δ in
the potential produced dark energy EoS evolution that were both freezing and thawing
plus evolutions that transitioned from freezing to thawing. Given the naturalness of the HI
potential and the large range of evolutions, the study suggests that the HI SCP templates
become a fiducial dynamical cosmology in the same way as ΛCDM is for static cosmologies.
Several of the studied cases are indistinguishable from ΛCDM with the accuracy of the
present and near-future observations, even though their dark energy density arises from
a dynamical scalar field rather than a cosmological constant. Given this and the relative
rigidity of the predicted evolutions, it appears that ΛCDM is easy to falsify but hard
to confirm and that flat HI quintessence is hard to falsify but easy to confirm if new
observations confirm predictions such as a dynamical dark energy EoS (Appendix A).

The study concluded with an examination of the role of fundamental constants in the
discrimination between static and dynamical cosmologies. The scalar in a dynamical dark
energy that interacts with gravity will most likely interact with other sectors, which pro-
duces temporal variations in the fundamental constants. To date, no confirmed variations
of either α or µ have been found at the one part in 107 level. For all of the cases in this study,
the predicted variations are less than the current limits. Future observations may, however,
lower the limit, which would make it difficult to meet the constraints or find a variation
that is consistent with the dynamical predictions.
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Appendix A. Flat HI Quintessence Abridged Templates

This is an abridged set of evolutionary templates for flat HI quintessence. The
unabridged template set contains significantly more information including code for im-
plementing the templates. The templates developed in the main text are gathered here to
provide a convenient listing for community use. The appendix thus repeats information
provided in the text in gathering most of the relevant material in a single location.

Units: Natural units are utilized with h̄, c, and 8πG set to 1. The units of mass are the
reduced Planck mass mp.

General constants: The constant κ = 1
mp

. In the mass units utilized here, κ = 1, but it

is retained to provide the proper mass units for the templates.
Primary variable: The primary variable is the scale factor a. All templates are functions

of the observable scale factor.
Special functions: The Lambert W function W(x) is used extensively in the templates.

See [21] for a comprehensive description of the function.
The Ratra–Peebles, RP scalar: The RP scalar is used in all of the templates. Its

functional form is

κθ(a) = κδ
√

−W(qap) = κδ
√

−W(χ(a))

in terms of the Lambert W function with q and p as constants given below.
The Higgs Inspired, HI, dark energy potential: The dark energy potential is

V(κθ) = M4((κθ)2 − (κδ)2)2 = M4((κθ)4 − 2(κδ)2(κδ)2 + (κδ)4)

where M is a constant with units of mass in mp. The constant δ also has units of mp. Both
V(a) and κθ(a) will be repeated below along with the definitions of the constants q, p and M.

Assigned constants: The HI potential constant δ is assigned the constants 1.0, 2.0, and
3.0 in this work.

Changeable cosmological constants: These constants are assigned values in this work
and appear in the templates; thus, they can be assigned different values according the the
desired boundary conditions for the cosmological parameters. The boundary conditions
are set at the current epoch hence the subscript 0 on their designations.

H0 the Hubble parameter

Ωθ0
=

ρθ0

3H2
0

Ωm0 =
ρm0

3H2
0

w0 The dark energy equation of state

Cosmological parameter templates: The cosmological parameter template formats
include, where possible, the parameter first in terms of the RP scalar (κθ), second, the
parameter in terms of the Lambert W function, third, its magnitude at a scale factor of 1 for

H0 = 73 kmsec−1

Mpc , w0 = −0.995, and κδ = 2, and, fourth, any associated constants.

The Ratra–Peebles scalar κθ

κθ(a) = κδ
√

−W(χ(a)

χ(a) = qap

c = 2(κδ)2 ln(κθ0)− (κθ0)
2
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q = − e
c

(κδ)2

(κδ)2

p = 8
(κδ)2

κθ0 = −
4−
√

16+12Ωθ0
(w0+1)(κδ)2

2
√

3Ωθ0
(w0+1)

κθ(1.0) = 0.102202

The beta function β

β(a) = − 4κθ(a)
(κθ(a))2−(κδ)2

β(χ(a)) =
4
√

−W(χ(a))

κδ(W(χ(a))+1)

β(1.0) = 0.10247

The dark energy potential V

V(a) = (Mδ)4((κθ(a))2 − (κδ)2)2

V(χ(a)) = (Mδ)4(W(χ(a) + 1)2

M = 4

√

3H2
0

((κθ0)2−(κδ)2)2

(

Ωθ0
− β(1)2

6

)

V(1.0) = 8.56409 × 10−121 m4
p

The Hubble parameter

H(a) =

√

√

√

√

(Mδ)4((κθ)2−(κδ)2)2+
ρm0
a3

3

(

1− β(a)2

6

)

H(χ(a)) =

√

√

√

√

√

√

√

(Mδ)4(W(χ(a))+1)2+
ρm0
a3

3









1−

(

4
√

−W(χ(a))
κδ(W(χ(a))+1)

)2

6









H(1.0) = 6.39403 × 10−61 mp

The derivative of the scalar with respect to the scale factor dθ
da

dθ(a)
da = κδ

p
√

−W(χ(a))

2a(1+W(χ(a)))

κ
dθ(1.0)

da = 0.10247

The derivative of the scalar with respect to time dθ
dt

dθ(a)
dt = θ̇(a) = dθ(a)

da H(a)a
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dθ(χ(a))
dt = κδ

p
√

−W(χ(a))

2(1+W(χ(a)))

√

√

√

√

√

√

√

(Mδ)4(W(χ(a))+1)2+
ρm0
a3

3









1−

(

4
√

−W(χ(a))
κδ(W(χ(a))+1)

)2

6









dθ(1.0)
dt = 6.55193 × 10−62 m2

p

The kinetic term X = − θ̇2

2

X(a) = − θ̇(a)2

2 = − 1
2 (

dθ(a)
da )2H(a)2a2

X(χ(a)) =

(

κδ
p
√

−W(χ(a))

2(1+W(χ(a)))

)2



















(Mδ)4(W(χ(a))+1)2+
ρm0
a3

3









1−

(

4
√

−W(χ(a))
κδ(W(χ(a))+1)

)2

6



























The dark energy density

ρθ(a) = θ̇2(a)
2 + (Mδ)4((κθ(a))2 − (κδ)2)2

ρθ(χ(a)) = −X(χ(a)) + (Mδ)4(W(χ(a) + 1)2

ρθ(1) = 8.58555 × 10−121 m4
p

The matter density

ρm(a) =
ρm0

a3

ρm is not a function of W(χ(a))

ρm(1) = ρm0 = 3.67852 × 10−121 m4
p

The dark energy pressure

pθ(a) = θ̇2(a)
2 − (Mδ)4((κθ(a))2 − (κδ)2)2

pθ(χ(a)) = −X(χ(a))− (Mδ)4(W(χ(a) + 1)2

pθ(1) = −8.54262 × 10−121 m4
p

The dark energy equation of state w

w(a) =
θ̇2(a)

2 −(Mδ)4((κθ(a))2−(κδ)2)2

θ̇2(a)
2 +(Mδ)4((κθ(a))2−(κδ)2)2

w(χ(a)) = X(χ(a))−(Mδ)4(W(χ(a)+1)2

X(χ(a))+(Mδ)4(W(χ(a)+1)2

w(1) = −0.995
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