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Abstract. It is shown that the equations of motion of test bodies as well as the
observable quantities of proper time and 3-space distances are invariant under the local gauge
transformations of the fields that determine DISIMb(2) invariant Finslerian metric of a curved
partially anisotropic space-time. The principle of the corresponding local gauge invariance makes
it possible to effectively attack the problem of constructing the field Lagrangian and deriving
the field equations of the Finslerian general relativity.

1. Introduction
The theory of relativity is based on the concept of locally Lorentzian character of space-time.
The distribution and motion of matter determine only the local curvature of the event space,
while leaving the geometry of isotropic pseudo-Euclidean tangential spaces unchanged.

As is known [1], the flat isotropic Euclidean space is a particular case of flat anisotropic,
i.e. Finslerian spaces. Thus, formally, it is possible to relate each point of the matter-curved
space-time to its own tangential flat Finslerian space. These tangential spaces will differ, at
different points, from each other by the magnitude of anisotropy and the preferred direction,
i.e. they will have different flat geometries. It is natural to look for the source of the anisotropy
field, just as the curvature field, in the distribution and motion of matter.

Such a generalization of the relativity theory is particularly stimulated by the possibility to
realize, within relativistic theory of locally anisotropic space-time, the idea of Mach that the
inertial properties of particles depend on the distribution and motion of external matter. In
the general relativity, due to the locally Lorentzian character of space-time, the inertia of a
particle is independent of the particle localization in space-time. The inertial mass is then a
scalar determined only by the properties of the particle itself. A different picture takes place if
space-time is locally anisotropic.

For the first time the Finslerian metric of flat partially anisotropic event space

ds =

[
(dx0 − ndx)2

dx20 − dx2

]b/2√
dx20 − dx2 , (1)

which generalizes the pseudo-Euclidean metric of event space of special relativity, has been
proposed in [2]. In formula (1), the parameter b determines the magnitude of space anisotropy
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and the unit vector n indicates a physically preferred direction in 3D space. Since the parameters
b and n may take on different numerical values, the expression (1) specifies a whole class of flat
anisotropic spaces, with b = 0 corresponding to the isotropic pseudo-Euclidean space.

Instead of the 3-parameter rotation group, the flat anisotropic event space (1) admits
only 1-parameter group of rotations around the unit vector n . Therefore one can speak
of partially broken 3D isotropy. As to relativistic symmetry, it is realized by means of 3-
parameter homogeneous group of the generalized Lorentz transformations (boosts), which link
the physically equivalent inertial reference frames in the flat partially anisotropic space-time and
leave its metric (1) invariant.

The generalized Lorentz boosts have the form

x ′
i

= D(v,n)Rij(v,n)Ljk(v)xk , (2)

where v denotes the velocities of moving (primed) inertial reference frames, the matrices Ljk(v)
represent the ordinary Lorentz boosts, the matrices Rij(v,n) represent additional rotations of
the spatial axes of the moving frames around the vectors [vn] through the angles

ϕ = arccos

{
1− (1−

√
1− v2/c2)[vn]2

(1− vn/c)v2

}
(3)

of relativistic aberration of n ; and the diagonal matrices

D(n,v) =

(
1− nv/c√
1− v2/c2

)b
I (4)

represent additional dilatational transformations of the event coordinates.
Note that, in spite of a new geometry of event space, the relativistic law of addition of 3-velocities
remains unchanged. Note also that the 8-parameter inhomogeneous group of isometries ( group
of motions of the partially anisotropic event space (1) ) and its Lie algebra were scrutinized
in [3-6]. In [7], this 8-parameter group was called DISIM b(2) , i.e. Deformed Inhomogeneous
subgroup of the SIMilitude group that includes 2-parameter Abelian homogeneous noncompact
subgroup.

Physically, the anisotropy of event space manifests itself, for example, in the fact that the
time read by the travelling clock, as compared to that read by the synchronized clocks at rest,
will depend not only on the magnitude of the clock’s velocity, but also on its direction. At
certain velocities the moving clock will be even faster than the clock at rest, but on coming back
to the starting point it will inevitably be behind the clock at rest ( the validity of this assertion
was proved rigorously in [8] ). Therefore the action for a free particle in the flat anisotropic
space

S = −mc
f∫
i

ds (5)

( here ds is the metric (1) ) reaches its minimum on the straight world line connecting points
i and f . No less striking is the dependence of the energy of a uniformly moving free particle
upon the direction of its velocity. Since the energy of a freely moving particle is the sum of
the energy of the particle at rest and the work against the inertial force which is done as the
particle is accelerated to a given velocity, it may be concluded that the particle differently resists
acceleration in different directions. Thus the inertial mass of a particle in the anisotropic space
turns out to be a tensor. Writing in tensor form mαβaβ = Fα the equations of nonrelativistic
mechanics, which generalize the Newton second law for the flat anisotropic space, we arrive at



XXI International Meeting of Physical Interpretations of Relativity Theory

Journal of Physics: Conference Series 1557 (2020) 012014

IOP Publishing

doi:10.1088/1742-6596/1557/1/012014

3

the explicit expression [8] for the nonrelativistic inertial mass tensor in terms of the parameters
b and n which determine the space anisotropy

mαβ = m(1− b)(δαβ + b nαnβ) . (6)

Therefore the motion of a nonrelativistic particle in the partially anisotropic Finslerian space (1)
is similar to the motion of a quasiparticle in an axially symmetric crystalline medium. The role
of the axially symmetric medium, which fills 3D space and generates its partial anisotropy,
is played by an axially symmetric (vector-like) relativistically invariant fermion-antifermion
condensate. Such a condensate appears as a vacuum solution of the generalized Dirac equation,
whose Lagrangian

L =
i

2

(
ψ̄γµ∂µψ − ∂µψ̄γµψ

)
−m

(nµψ̄γµψ
ψ̄ψ

)2
b/2 ψ̄ψ (7)

is constructed [9] proceeding from the requirement of DISIM b(2) invariance.
Let us rewrite the initial flat Finslerian metric (1) as

ds =

[
(dx0 − ndx)2

dx20 − dx2

]b/2√
dx20 − dx2 =

[
(nidx

i)2

ηikdxidxk

]b/2√
ηikdxidxk .

Since n is the unit 3-vector, i.e. n2 = 1 , we see that

ni = {1,−n}, ηik = diag{1,−1,−1,−1}, ni = {1,n}, nin
i = 0.

Thus, in this stage of the theory development, we consider ni as the null 4-vector against the
background of the Minkowski space.
Next step consists in the replacement : ηik → gik(x) , ni → ni(x) , b→ b(x) .
As a result we arrive at the following Finslerian metric of a curved locally anisotropic space-time

ds =

[
(nidx

i)2

gikdxidxk

]b/2√
gikdxidxk , (8)

where gik = gik(x) is the Riemannian metric tensor, related to the gravity field; b = b(x) is
the scalar field characterizing the magnitude of local space anisotropy, and ni = ni(x) is the
null-vector field indicating the locally preferred directions in space-time.

At each point of the space-time (8) the flat tangential spaces (1), have, in contrast to
the Riemann case, their own geometry, i.e., at each point they have their own values of the
parameters b and n, which determine anisotropy. These values are nothing else but the values
of the fields b(x) and ni(x) at the corresponding space-time points. Besides, the fields gik(x) ,
b(x) and ni(x) have distributed matter as their source. Therefore, in view of (6) and in
accordance with the Mach principle, the inertia of a test body, and the inertial forces arising
in its acceleration depend on the body’s localization and, eventually, on the distribution and
motion of external matter.

In what follows, the Hamilton equations of motion of test bodies in the curved Finslerian
space-time (8) are obtained and their invariance, as well as the invariance of some other observ-
ables under the local gauge transformations of the fields gik(x) , b(x) , ni(x) that determine the
metric (8), is established. For brevity, the set of these fields will be called “gravianon” field.
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2. Hamilton’s equations of motion
According to the results of preceding section, the action for a particle in the external gravianon
field has the form

S = −mc
f∫
i

ds ,

where ds is the metric (8) of curved locally anisotropic space-time. Let us calculate the variation
of this action :

δS = −mculδxl |fi

+mc

f∫
i

{
dul
ds
−
[
∂b

∂xl
ln

(
nidx

i√
gikdxidxk

)
+b

∂ni
∂xl

dxi

nkdxk
+

(1−b)
2

∂gik
∂xl

dxidxk

gjndxjdxn

]}
δxlds. (9)

In this expression

ul =

(
nidx

i√
gikdxidxk

)b√
gikdxidxk

[
(1−b) gljdx

j

gikdxidxk
+ b

nl
nidxi

]
. (10)

If the variation of a path is found on the assumption (δxl)|i = (δxl)|f = 0 , the principle of least
action yields, according to (9), the equations of motion or geodesics

dul
ds

=
∂b

∂xl
ln

niv
i√

vkvk
+ b

∂ni
∂xl

vi

nkvk
+

(1−b)
2

∂gik
∂xl

vivk

vnvn
. (11)

Obviously, the length of the geodesic is chosen as its parameter and the symbol vi = dxi/ds is
introduced for the kinematic 4-velocity. From the definition (8) it then follows that[

niv
i√

vkvk

]b√
vkvk = 1 . (12)

Under this condition, the expression (10) takes on the form

ul = (1−b) vl
vkvk

+ b
nl
nkvk

. (13)

It is reasonable to refer to ul as the dynamic 4-velocity, because, owing to (9), it is related to
the 4-momentum by the formula

pl = mcul = − ∂S
∂xl

. (14)

Equations (11), in which ul is given by formula (13), are four second-order-in-xi(s) equations.
They are the Euler-Lagrange equations for the variational problem at hand. Obviously, (12) is
conserved by force of these equations.

Let us now go over, in equations (11)–(13), from the dynamical variables (xi; vj) to (xi; uj) .
Bearing in mind that the field ni is the null-vector one, i.e. nin

i = 0 , we find from (13) that

vi = (1+b)
ui

ukuk
− b ni

nkuk
. (15)
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Substituting (15) in (11), we write the equations of motion as eight equations of first order in
quantities (xi; uj) :

dui
ds

=
1

2

[
∂b

∂xi
ln

(1+b)(nkuk)
2

(1−b)glmulum
+
∂np

∂xi
2bup
nkuk

− ∂gnl

∂xi
(1+b)unul
gjkujuk

]
, (16)

dxi

ds
=

(1+b)gikuk
glmulum

− b ni

nkuk
. (17)

Taking account of (15), from (12) it follows that

H(xi; uj)
def
= (1+b)−(1+b)/2(1−b)−(1−b)/2

[
nlul√
ukuk

]−b√
ukuk = 1 . (18)

The expression (18) is conserved because of (16), (17). Equations (16) and (17) are the Hamilton
equations and can be written as

dui
ds

= −∂H
∂xi

,
dxi

ds
=
∂H

∂ui
(19)

with the Hamilton function H(xi; uj) defined by (18). From (16) it can be seen that, in a static
gravianon field, the total energy E = mc2u0 of a particle is conserved.
Using (14), we substitute −(∂S/∂xl)/mc for ul in (18) to obtain the Hamilton-Jacobi equation[

(nl∂S/∂xl)2

gkj(∂S/∂xk)(∂S/∂xj)

]−b
gkj

∂S

∂xk
∂S

∂xj
= m2c2(1+b)(1+b)(1−b)(1−b) . (20)

Hence, for a zero-mass particle, we have the standard eikonal equation

gik
∂S

∂xi
∂S

∂xk
= 0 . (21)

3. Local gauge invariance
Consider a test body falling freely in the gravianon field. The motion of the test body relative
to a fixed reference frame xi is given by the equations of motion in the form (16), (17), or
in the form (11), (13). At a given space-time point P , through which the world line of the
body passes, the local acceleration of the body relative to the reference frame xi is, generally
speaking, nonzero, i.e. d2xi/ds2(P ) 6= 0 . Accordingly, the 4-force acting upon the body is
nonzero, too, i.e. mcdui/ds(P ) 6= 0 . It is, however, evident that we may go over to other
reference frames xi

′
which have relative to the frame xi the same local acceleration at P as

has the test body, but differ in values of their velocities local at P . In such a case, the test
body will not (relative to xi

′
, naturally) have an acceleration local at P , but will have values

of local velocities vi
′

at P which will be different in each reference frame. Thus, in xi
′
, in a

close vicinity of P , the motion of the test body will be uniform. The various reference frames
xi

′
are related by linear transformations, whereas the frames xi

′
and xi , by nonlinear.

The aforesaid is also valid in the Einstein theory of gravitation. The new circumstance is that
the transformations from xi to xi

′
now depend on the velocity vi of the body at P . Here the

turning to zero of the acceleration d2xi
′
/ds2(P ) and the force mcdui ′/ds(P ) does not mean

that the partial field derivatives also turn to zero. There is simply the complete compensation,
at a given velocity vi

′
(P ) , of the forces generated by the fields gik , b , ni and acting upon the

body. It is therefore clear that if a suitable choice of a reference frame will make possible a
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locally uniform motion with velocity vi(P ) , no such motion may take place at another velocity
ṽi(P ) .

Now we shall find the explicit form of the transformation to the reference frame xi
′

in which
the motion will be uniform. We shall proceed from the equations of motion written by means
of the Finslerian Christoffel symbols ( they are related to the Finsler metric tensor by the same
relations as those of the Riemann geometry ) :

d2xi

ds2
+ Γikj(x; v)vkvj = 0 , (22)

dui
ds
− Γk,ji(x; v)vkvj = 0 . (23)

The problem is evidently to turn to zero the quantities Γi
′
k ′j ′(P ; v′)vk

′
vj

′
and

Γk ′,j ′i ′(P ; v′)vk
′
vj

′
. Whereas the law of transformation of the Finslerian Christoffel symbols

is more complex their convolutions with vkvj are transformed as in the Riemann geometry.
Therefore, for the quantities of interest to turn to zero, it is sufficient to choose the coordinate
transformation in the form

xl
′

= al
′
i

[
(xi − xiP ) +

1

2
Γikj(P ; v)(xk − xkP )(xj − xjP )

]
, (24)

where al
′
i is an arbitrary nonsingular numerical matrix, xiP the coordinates of point P . Thus

the motion of the body in a close vicinity of P turns out uniform relative to the reference frame
xl

′
, the 4-momentum mcui ′ of the body being conserved.
In the locally anisotropic event space (8), the proper time dτ is related to dx0 by

cdτ =

[
n2
0

g00

]b/2
√
g00dx

0 (25)

and, due to the fact that the equation describing the propagation of a light signal is the same
as in the general theory of relativity, the 3-space geometry is Riemannian, determined [10] by
the quadratic form

dl2 =

[
n2
0

g00

]b (
−g

αβ
+
g0αg0β
g00

)
dxαdxβ . (26)

The transformation (24) is the product of the non-linear transformation in brackets, which leaves
unchanged the values of the tensors at P , and the linear transformation that relates, generally
speaking, the various reference frames, relative to which the motion of the body in the close
vicinity of P is uniform.

Remaining in the reference frame given by the brackets in (24), we now go over, using
the matrix al

′
i to such coordinates xl

′
that x0

′
be the proper time and xα

′
the rectangular

coordinates that determine the spatial distances by the formula dl2 = (dx1
′
)2+(dx2

′
)2+(dx3

′
)2 .

This means that, according to (25) and (26), at the point P

[
n2
0
′

g
0 ′0 ′

]b/2
√
g
0 ′0 ′ = 1 , (27)

[
n2
0
′

g
0 ′0 ′

]b(
−g

α′β ′ +
g
0 ′α ′g0 ′β ′

g
0 ′0 ′

)
= δ

α′β ′ . (28)
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As is known [11] , the matrices al
′
i which transform coordinates in a fixed frame of reference,

should satisfy the condition aµ
′

0
= aα

0
′ = 0 , where µ′ , α = 1, 2, 3 . Using such matrices, we shall

carry out the transformation to the rectangular coordinates in two stages. First we shall go over
to coordinates in which the Riemannian metric tensor will assume the form

gik = diag ( 1, −1, −1, −1 ) . (29)

The Finslerian metric (8) will then be written as follows

ds =

[
(nidx

i)2

dx2
0
− dx2

]b/2√
dx2

0
− dx2 , (30)

where nin
i = 0 , i.e.

n2
0
−

3∑
α=1

n2α = 0 . (31)

Generally speaking, n2
0

is not here equal to unity and, in spite of (29), such coordinates

may not be regarded as rectangular, because formulae (25) and (26) yield cdτ = n b
0
dx0 ,

dl2 = n 2b
0

[ (dx1)2 + (dx2)2 + (dx3)2] . Using a suitable Lorentz transformation it is of course
possible to go over subsequently to coordinates in which n0 will turn to unity and gik will
naturally retain the form (29). In these coordinates, the Finslerian metric will take on the form
(1) and from (25) and (26) we obtain cdτ = dx0 , dl2 = (dx1)2 + (dx2)2 + (dx3)2 . However, the
use of the Lorentz transformation means that we go over to a new frame of reference, whereas
we wish to go over to rectangular coordinates within the given frame of reference. The only
possibility to do so is to apply in the second stage, after gik has been brought to the form (29),
a suitable scale transformation of coordinates

xi
′

= Dδi ′i xi ; ai
′
i = Dδi ′i ; aii ′ = D−1δii ′ . (32)

Then
ni ′ = D−1ni ; gi ′k ′ = D−2gik = D−2diag ( 1, −1, −1, −1 ) . (33)

Substituting (33) in (27) and (28), we obtain

D = n b
0
. (34)

It will be recalled that the values of all fields are taken at the point P . Thus, at P , xα
′

are the
rectangular space coordinates, i.e. dl2 = (dx1

′
)2 + (dx2

′
)2 + (dx3

′
)2 , x0

′
is the proper time,

d2xi
′
/ds2 = 0 the equation of motion of a test body. For the metric (30) referred to coordinates

xi
′
, we write, using (33) and (34), the following equalities

ds =

[
(ni ′dx

i ′)2

gi ′k ′dxi ′dxk ′

]b/2√
gi ′k ′dxi ′dxk ′ =

[
D−2(nidxi

′
)2

D−2gikdxi ′dxk ′

]b/2√
D−2gikdxi ′dxk ′

=


(
ni
n0
dxi

′
)2

gikdxi
′dxk ′


b/2√

gikdxi
′dxk ′ . (35)

Remembering (29), (31) and the last expression in (35) it may be stated that the metric is
formally reduced to the form (1). Here, however, one should mention the following important
circumstance : ni ′ and gi ′k ′ in the first expression of (35) are the components of the initial
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vector and tensor fields in coordinates xi
′
, whereas ni/n0 and gik in the last expression of (35)

represent the components of other vector and tensor fields yet expressed in the same coordinates
xi

′
. Indeed, on the basis of (33) and (34) we have at the point P

ni/n0 = D(b−1)/bni ′ = eσ(b−1)/bni ′ = ñi ′ ; (36)

gik = D2gi ′k ′ = e2σgi ′k ′ = g̃i ′k ′ , (37)

where the new quantity σ has been introduced using the definition eσ = D . Thus (35)
means that at the point P the metric is invariant under the transformations : ni ′ → ñi ′ ;
gi ′k ′ → g̃i ′k ′ , given by formulae (36), (37).

One can readily check by direct substitution the more general statement, namely, the metric
(8), depending on the fields gik(x) , b(x) , ni(x) and thereby determining a curved partially
anisotropic Finslerian space-time, is invariant under the following local transformations of these
fields 

gik(x) → g̃ik(x) = exp{2σ(x)} gik(x) ,
ni(x) → ñi(x) = exp{σ(x)[b(x)−1]/b(x)}ni(x) ,

b(x) → b̃(x) = b(x) ,
(38)

where σ(x) is an arbitrary function.
From the invariance of metric (8) under the local transformations (38) it follows that the

Lagrangian and the action

S = −mc
f∫
i

[
(ni(x)ẋi)2

gik(x)ẋiẋk

]b(x)/2√
gik(x)ẋiẋkdλ (39)

( here ẋi is the generalized velocity, λ is a parameter on a world line ) for a particle in the
external gravianon field, i.e. in the fields gik(x) , b(x) and ni(x) , are also invariant under
the above transformations, which entails the invariance of the equations of motion (16), (17).
Moreover, it can readily be seen that the observable quantities of proper time (25) and 3-
space distances (26) are invariant under (38). All this suggests that the fields connected by
the transformations (38) describe the same physical situation and that the transformations (38)
themselves have the meaning of local gauge transformations.

4. Conclusion
At present the problem of Lorentz symmetry violation is widely debated in the literature, in
which case the Finslerian approach to the problem is becoming more and more popular. It is
based on some Finslerian geometrical models of space-time. For example, in [12-13] equations are
given for the metric function of the Finsler space-time, in analogy with Einstein’s equations, but
using the Finsler curvature tensors. Unfortunately, the physical significance of such equations
and the concepts like internal gravitational constant, internal energy-momentum tensor, etc.
remains obscure. Although the other relevant works and, in particular, the phenomenological
ones [14-16] are more advanced from the physical viewpoint, it should be noted that, in all
probability, one cannot construct a physically meaningful generalization of the Einstein theory
of gravitation without going beyond the framework of the purely geometrical Finsler objects.

The point is that apart from Minkowski ( pseudo-Euclidean ) event space there exist [17]
only two types of the flat Finslerian event spaces ( and, respective to them, the curved ones )
which possess local relativistic symmetry, i.e. symmetry corresponding to the Lorentz boosts.
Finslerian event space of the first type is the space with partially broken local 3D isotropy, i.e.
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the space with local axial 3D symmetry, while the second one exhibits an entirely broken local
3D isotropy.

In the present work we have considered Finslerian space model of the first type, i.e the model
(8) of a curved partially anisotropic event space. The distinguishing feature of this model consists
in following : the dynamics of Finslerian space-time (8) is fully determined by the dynamics of
interacting fields gik(x), b(x), ni(x) , in which case these fields form along with the matter fields
a unified dynamic system. Therefore, in contrast to the existing purely geometric approaches
[18] to Finslerian generalization of the Einstein equations, our approach to the same problem is
based on the use of the methods of conventional field theory. The key role in constructing the
equations, which generalize the corresponding Einstein equations, is played by the property of
invariance of Finslerian metric (8) under the local gauge transformations (38). Gauge-invariant,
in particular, is the action

S = −1

c

∫
µ∗
(

ni v
i√

gik vi vk

)4b√
−g d 4x ,

for a compressible fluid in our Finslerian space. In this formula µ∗ is the invariant fluid energy
density, vi = dxi/ds, and ds is Finslerian metric (8).

In connection with the above-mentioned gauge invariance note at last that the dynamic
system consisting of the fields gik(x), b(x), ni(x) and the compressible fluid ( as the matter
representative ) must be complemented with an Abelian vector gauge field Bi which under the
local gauge transformations (38) transforms as follows Bi → Bi + l[(b− 1)σ(x)/b]; i , where l is
a constant with dimension of length.
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