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Abstract We develop an axiomatic geometric approach
and provide an unconventional review of modified/nonlinear
gravity theories, MGTs, with modified dispersion relations,
MDRs, encoding Lorentz invariance violations, LIVs, clas-
sical and quantum random effects, anisotropies etc. There
are studied Lorentz—Finsler like theories elaborated as exten-
sions of general relativity, GR, and quantum gravity, QG,
models and constructed on (co)tangent Lorentz bundles, i.e.
(curved) phase spaces or locally anisotropic spacetimes. An
indicator of MDRs is considered as a functional on vari-
ous type functions depending on phase space coordinates
and physical constants. It determines respective generat-
ing functions and fundamental physical objects (generalized
metrics, connections and nonholonomic frame structures)
for relativistic models of Finsler, Lagrange and/or Hamil-
ton spaces. We show that there are canonical almost sym-
plectic differential forms and adapted (non)linear connec-
tions which allow us to formulate equivalent almost Kéhler—
Lagrange/~Hamilton geometries. This way, it is possible
to unify geometrically various classes of (non)commutative
MGTs with locally anisotropic gravitational, scalar, non-
Abelian gauge field, and Higgs interactions. We elaborate
on theories with Lagrangian densities containing massive
graviton terms and bi-connection and bi-metric modifica-
tions which can be modelled as Finsler-Lagrange—Hamilton
geometries. An example of short-range locally anisotropic
gravity on (co)tangent Lorentz bundles is analysed. We con-
clude that a large class of such MGTs admits a self-consistent
causal axiomatic formulation which is similar to GR but
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involving generalized (non)linear connections, Finsler met-
rics and adapted frames on phase spaces. Such extensions
of the standard model of particle physics and gravity offer
a comprehensive guide to classical formulation of MGTs
with MDRs, their quantization, applications in modern astro-
physics and cosmology, and search for observable phenom-
ena and experimental verifications.
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1 Introduction

Over the past two decades, the literature on classical and
quantum gravity, QG, and accelerating cosmology has been
increased substantially involving spacetime models with
non-Riemannian geometries and modified gravity theories,
MGTs. Various approaches to commutative and noncom-
mutative theories, when Planck-scale features and deformed
classical and quantum symmetries are described by modi-
fied dispersion relations, MDRs, and possible (local) Lorentz
invariance violations, LIVs, have been developed in [4,30,
32,51,71,77,78,90,95,96,142,147-150,155,189,192] and
references therein. Such works have provided a series of
important results on QG and string phenomenology and
physics of relativistic particles propagating and interacting in
effective media with MDRs. There were elaborated models
for doubly-special and/or deformed-special relativity; the-
ories with LIVs, deformed curved phase spacetimes with
(non)commutative and/or (non)associative variables etc. A
subclass of MGTs was formulated as models of (general-
ized) Finsler geometry, see Refs. [15,49,50,79,83,108,116,
153,161,169,175,183,185,194,208] for reviews and critical
remarks.
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The Einstein gravity theory (i.e. general relativity, GR)
has to be modified into a theory on (co)tangent bundles
to Lorentz manifolds if MDRs are stated, for instance,
as small deformations of standard quadratic dispersion
relations in special relativity theory, SRT, and (locally)
in GR, by some indicator functions depending on veloc-
ity/momentum variables. Such constructions were elabo-
rated for generalized spinor, gauge and string gravity mod-
els with Finsler-Lagrange—Hamilton configurations [133,
134,147,149,150,152]. There were studied also models on
higher order (co)tangent bundles with possible supersymmet-
ric/noncommutative variables and almost symplectic struc-
tures. A series of results on MGTs with local anisotropy and
Finsler like modifications were reviewed and presented in
[153,161,169,173,185]. It was shown that such construc-
tions involve MDRs which can be derived for propagation of
point mass classical particles and/or models with quantum
variables and (non)commutative relations describing quan-
tum fundamental field interactions [32,59-63,156,157,168,
174,179,216,217]. Various classes of locally anisotropic
(non)commutative/associative classical and quantum field
and spacetime theories can be described naturally in terms
of nonholonomic variables as some models of commuta-
tive and/or noncommutative geometries. For corresponding
parameterizations and distributions of geometric/physical
objects, we can construct (effective) Lagrange—Finsler, (dual)
Hamilton—Cartan, and/or other type phase space and space-
time models. We cite also some results on Hamilton geom-
etry for generalizations of standard physical theories and
general relativity, GR, contained in Part I of monograph
[161] and papers [8,208].1 Those works contain a number
of original results on relativistic models on (co)tangent bun-

" In our works, we use various terms like pseudo Lagrange/Finsler
space/geometry and/or, equivalently, relativistic Lagrange geome-
try/mechanics. There are also elaborated the concepts of “pseudo,
i.e. relativistic” Finsler, Hamilton or other types non-Riemannian
geometries. The term pseudo-Lagrange is used for a corresponding
Hessian (Lagrange metric) like in pseudo-Euclidean (locally) and/or
pseudo-Riemannian geometry. Mathematicians in many cases write
semi-Riemannian (instead of pseudo-Riemannian) when such a space
is endowed, at least locally and/or effectively, with metric struc-
tures of pseudo-Euclidean signature, which in this work are labeled
(+, +, +, —), on Lorentz manifolds and (+, +, 4+, —; +, +, +, —), on
(co)tangent Lorentz bundle. This encodes a very important experimen-
tal fact that the physical interactions of fields and propagation of parti-
cles are described by a (maximal) constant speed of light and possible
polarizations in certain effective media. (Pseudo) Finsler—Lagrange—
Hamilton geometries (which will be defined and studied rigorously in
next sections) are determined by nonlinear quadratic elements for which
the concept of signature cannot be defined in a general form. Neverthe-
less, we assume and prove that for certain very general conditions and
realistic physical models we can always introduce an associated (effec-
tive) quadratic form uniquely determined by a fundamental nonlinear
quadratic form following certain physically motivated geometric prin-
ciples. For such effective quadratic forms (metrics), we can consider
the concept of signature, classify some small perturbations of physical
fields and propagation of particles to be relativistic, or non-relativistic,

dles and/or on nonholonomic manifolds, with higher order
extensions and, in particular, for constructing new classes
exact solutions in Einstein gravity by introducing non-
holonomic 2+2 (co)fibred structures, see [68,151,158,171,
182,186,188,198,201,203]. Recently, a model of Hamilton
geometry with MDRs was studied in [14].

Planck-scale modifications of dispersion relations are
studied in phenomenological particle models, cosmology,
and astrophysics. There are some indications that Finsler
like generalizations allows us to account for the Planckian
structures of relativistic classical and quantum field inter-
actions by extending theories on conventional configura-
tion space. Various ideas and geometric and physical mod-
els were analyzed in [3-7,33,34,37,69,71,77-81,93,94,96,
119-122,133,134,187,189,192]. In such approaches, the
standard-model extensions originate from the idea of spon-
taneous breaking of the Lorentz and CPT symmetries in the
string theory and involved vacuum expectation values of ten-
sor fields with spacetime indices, all resulting in certain mod-
els with MDRs and LIVs.

The goal of this work is to formulate a self-consistent
geometric approach to MGTs constructed on phase spaces
encoding MDRs and LIV when such theories extend GR on
(co)tangent Lorentz bundles. We show that such models can
be elaborated equivalently as Finsler—Lagrange—Hamilton
gravity theories. Applying N-adapted variational and non-
holonomic geometric methods, there are proved/formulated
generalized Einstein equations. There are derived also
dynamical equations and (effective) matter sources for
locally anisotropic scalar fields, non-Abelian gauge and
Higgs fields and distortions of (non)linear connection struc-
tures. This article provides a general theoretical back-
ground for a series of future partner papers on exact
solutions with Lagrange—Hamilton variables, quantization
of such theories, and applications in modern cosmology
and astrophysics. Such works will develop the anholo-
nomic frame deformation method, AFDM, for construct-
ing exact solutions in MGTs formulated in explicit Hamil-
ton like variables. Various applications of AFDM and
examples of Finsler like generic off-diagonal commuta-
tive and/or noncommutative, supersymmetric/brane/string
and other types of black ellipsoid/hole, wormhole, soli-
tonic and/or cosmological solutions have been elaborated
and reviewed in Refs. [9,68,69,151,153,158-165,168,169,
182,183,186,188-190,196,198,199,201-203]. Alternative

Footnote 1 continued

ones in an effective media (aether, or vacuum spacetime model). In a
number of recent work, the terms “pseudo” and “relativistic” are used
for MGTs with local properties described by an associated quadratic
form are like in Lorentz geometry. In a more general context, there are
considered nonlinear and linear connection structures, nonholonomic
constraints and generalized symmetries, which are different from those
in (pseudo) Riemannian geometry.

@ Springer
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approaches on Finsler gravity theories and attempts to con-
struct physical models and find approximate solutions can
be studied in [25,39,40,53,66,67,84-88,98-100,111,112,
126,136-139,141]. It is considered that readers are famil-
iar with standard results on mathematical relativity, geom-
etry of (non)linear connections in fiber bundles, spinor dif-
ferential geometry, and exact classical solutions in GR (see,
for instance, [48,82,104,213]). On certain technical topics
under consideration, we shall refer to specific monographs
and reviews where details and ample biographic information
can be found. This article is also oriented to open-minded
scholars and young researchers on geometry and physics who
are curious about application of advanced geometric meth-
ods for solving new extraordinary open problems in modern
classical and quantum gravity, cosmology and astrophysics,
and standard and nonstandard particle physics.

The paper is organized as follows: In Sect. 2, we formu-
late a geometric approach to gravity theories with MDRs
and LIVs modelled on relativistic Lagrange—Finsler and
Hamilton—Cartan phase spaces. There are provided impor-
tant motivations and main assumptions which are necessary
for elaborating such geometric and physical models. There
are defined canonical (non)linear connections, metrics and
almost symplectic structures determined by MDRs encoding
LIVs and possible contributions from QG, massive gravity
and bi-metric and bi-connection terms. Corresponding cur-
vature, torsion and nonmetricity tensors (and related Ricci
and Einstein tensors, scalar curvatures of various classes of
Finsler like connections and their distortions) are constructed
in N-adapted forms for (co)tangent Lorentz bundles.

Section 3 is devoted to a study of general principles for for-
mulating MGTs with MDRs on (co)tangent Lorentz bundles.
It is proven that such extensions of the Einstein gravity can
be performed in canonical forms for Lagrange and Hamil-
ton like variables. There are defined minimal actions and
Lagrange densities for Einstein—Yang—Mills—Higgs systems
with MDRs and analyzed possible contributions by mas-
sive gravitons and theories with bi-metric locally anisotropic
structure. Actions and sources are considered for short-range
gravity models with LIVs and anisotropic interactions.

Following geometric and N-adapted variational methods,
we study (in Sect. 4) possible generalizations of the Einstein
equations for theories with MDRs on (co)tangent Lorentz
bundles. There are derived gravitational and matter field
equations for Lagrange—Hamilton spaces, EYMH systems,
massive and bi-metric locally anisotropic MGTs and short-
range phenomenological gravitational theories with LIVs
resulting in locally anisotropic configurations. The construc-
tions are provided both in coordinate-free and N-adapted
coefficient forms. We speculate on axiomatic approaches to
geometrizing MGTs on (co)tangent Lorentz bundles.

In Sect. 5, there are concluded the main results. We spec-
ulate on geometrization of MGTs with MDRs and the phys-

@ Springer

ical picture of Finsler-Lagrange—Hamilton gravity theories.
In brief, we summarize what has been achieved with Finsler
modifications of the GR and discuss what is missing. Open
problems and further perspectives in study cosmological
Einstein—Hamilton and locally anisotropic Einstein-Dirac
configurations determined by MDRs, elaborating quan-
tum gravity models on generalized (non)commutative and
(non)associative phase spaces are analyzed.

Proofs of theorems are sketched in some forms being
accessible both for researchers on mathematical physics and
phenomenology of particle physics. We prefer the so-called
abstract geometric method for proofs and emphasize the pos-
sibility of alternative N-adapted variational approaches. Cer-
tain technical details are given in Appendix A. Through-
out the main part of this article, there are also provided
brief historical comments on “relativistic” Finsler like the-
ories (with effective metrics of local Lorentzian signature)
and generalizations of the Finstein gravity with MDRs on
Lagrange—Hamilton spaces. We note that a historical review
on Finsler geometry and physics and a discussion of con-
ventional 20 main directions of our research activity is
presented Appendix B of [208].? Such surveys of second

2 For reviews on relativistic developments and MGTs, we cite [8,153,
161,169,173,175,185,194] and references therein. Here we note that
for local Euclidean signatures, the main ideas on Lagrange—Hamilton
geometries formulated as generalized Finsler spaces on (co)tangent bun-
dles were proposed and studied in a series of works due to J. Kern, M.
Matsumoto, S. Ikeda, see [54-58,64,65,75,91,92]. There were elab-
orated theories on supersymmetric and higher order generalizations,
almost Kdhler models and applications in particle physics and gravity.
Later, similar constructions and some applications in non-relativistic
geometric mechanics classical field models were developed in a series
of monographs [101-103], see critical remarks in Appendix B of [208].
Those books were based on some hundreds of papers containing as
the main author the name Radu Miron (a member of the Romanian
Academy of Sciences), who falsified and omitted to stipulate a series of
original and important former contributions of a number of researchers
from Japan, former USSR, Hungary, Germany, USA, China etc. and his
former co-authors like G. Atanasiu, A. Bejancu, V. Oproiu, and tenths
others. During last 60 years, more than 250 articles were published (the
first papers contained co-authors who “disappeared” in further devel-
opments) in “not-accessible” Romanian journals and local preprints.
Later those results were re-published by R. Miron (as an individual or
first author, and with various modifications) in more than 30 mono-
graphs. This can be checked, for instance, tracking the names in Math-
SciNet. Contributions of Western authors and even from the former
USSR were censored in Romania. A series of monographs and collec-
tions of works were published by Kluwer, Hadronic Press, Romanian
Academy etc. under the names R. Miron and a few other politically and
ideologically selected (by communists and Ceaugescu’s secret service)
co-authors who sworn as doctor-docents an “absolute devote” to Roma-
nian dictator’s wife, Elena Ceausescu. Those works were on develop-
ments and mechanical applications of (higher order) Lagrange—Finsler—
Hamilton—Cartan geometries. No matter where those articles and books
were published (in Romania, Japan, or in some Western Countries),
the content was elaborated in a style of “higher order hidden plagia-
rism”, with falsification of results and politically/ideologically screened
teams of authors. Unfortunately, none ideological and communist polit-
ical lustration of former communist and secrete service leaders, and
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author’s research (together with his former students and co-
authors) performed beginning 1982 in (former) USSR, the
R. Moldova, and (later) in Romania and Western Countries,
and supported by a number of NATO, DAAD, UNESCO
and CERN fellowships and grants, is important because it
provides evidences that those results anticipated a series of
recent publications on modified Finsler gravity theories and
applications in modern cosmology.

2 Phase spaces with MDRs and
Finsler-Lagrange—Hamilton geometry

This section contains an introduction to the geometry of
nonholonomic (co)tangent Lorentz bundles which is used
for elaborating relativistic Finsler-Lagrange and Hamilton—
Cartan gravity theories. There are developed a series of con-
cepts and constructions considered in Part I of monograph
[161], on relativistic and modified Hamilton spaces, and for
MGTs defined by MDRs and LIVs generalizations of GR as
generalized Finsler theories. For reviews and critical remarks
on Finsler-Lagrange—Hamilton geometry and gravity theo-
ries with nonholonomic Lorentzian manifolds and tangent
bundles, and applications in modern cosmology and astro-
physics, we cite [8,153,161,169,175,183,185,194] and ref-
erences therein.

2.1 Motivations and assumptions

In semi-classical commutative and/or noncommutative mod-
els of MGTs and/or QG theories, a MDR can be written
locally in a general form

=2

APr—E*+*mP =w(E, P.m: Lp). (1)

Anindicator of deformations/modifications w (. . . ) encodes
in a functional form possible contributions of modified geo-
metric and physical theories and LIVs. Such MDRs can be
extended to dependencies on spacetime coordinates x’ =
(x!, x2, x3, x* = ¢t) (one can be introduced extra dimen-
sions) on a standard Lorentz manifold V and/or general-
izations with metric—affine structures. In explicit form, cer-
tain classes of w(xi, E, _p> m; £p) are chosen and studied
following theoretical/phenomenological arguments, deter-
mined experimentally, and/or computed in a generalized clas-
sical/quantum theory of gravity and matter filed interactions.
The formula (1) transforms into a standard quadratic disper-
sion relation for a relativistic point particle with mass m,

Footnote 2 continued

administrators in science, was in Romania (like it was, for instance, in
Eastern Germany or other former “socialist” Countries). There is not a
complete access even to files on the history of physics and mathematics
when “ideology and secret service” were deeply involved.

energy E, and momentum p; (fori = 1, 2, 3) propagating in
a four dimensional, 4-d, flat Minkowski spacetime of signa-
ture (4, +, +, —) if @ = 0. It is supposed that certain modi-
fications of the special relativity theory, SRT, and GR could be
consequences of some (deformed) modified symmetries, for
instance, with (non)commutative deformed Poincaré trans-
forms, quantum groups and interactions, Lorentz invariance
violation etc. Such values involve redefinitions of the phys-
ical energy—momentum p, = (p;, p4 = E), P = {p:},
(fora = 1,2,3,4), at the Planck scale ¢, :== \/iG/c3 ~
10733 cm. In this work, the light velocity is fixed ¢ = 1 for
a respective system of physical units. The type of modifi-
cation @ is considered differently in various approaches to
QG and (non)commutative MGTs, supergravity and (super)
string models etc. Modifications of quantum mechanics
and certain QG theories have been studied also for mod-
els when ¢, is replaced by £s (a string length which is
found in the analysis of high-energy string scattering), for
soliton-like structures known as Dirichlet p-brane and “D-
particles” (Dirichlet O-branes) could probe the structure of
spacetime down to scales higher than ¢;. Here we note that
locally anisotropic MGTs with MDRs are studied also as
candidates for explaining acceleration cosmology and dark
energy, DE, and dark matter, DM, physics, see [15,79,130-
133,175,186,187,194,202] and references therein.

Example 2.1 (MDRs in QG and cosmology) In QG and vari-
ous cosmological scenarios for which the Hamiltonian equa-
tions of motion X' = 9H /8pi (we can consider similarly
some Lagrange equations with possible nonholonomic con-
straints) are still valid at least approximately, quantum effects
are modeled by a deformed dispersion relation for photons,
c?p? = E*[1+ f(E/98E)), where 98 E is an effective quan-
tum gravity scale and the function f is model-dependent.
For E « 98E, one expects a series extension of MDRs,
c?p? = E?[1 + £E/ 98E + O[E/ 98 E]?)], where £ = +1
should be fixed in a dynamical framework for a correspond-
ing theory. Such extensions correspond to energy-dependent
velocities v = % ~ ¢(l — EE/ 18E). These formulas are
analogous to those for a conventional relativistic medium,
such as a gravy-electromagnetic plasma, modeling a grav-
itational aether which is believed to contain microscopic
quantum fluctuations which may occur for Planck values
Cp,ty ~ 1/E,, where E, ~ 10" GeV.

The vacuum in above example is viewed as a non-trivial
medium containing “foamy” quantum-gravity fluctuations
which may include pair creations of virtual black holes,
wormholes etc. One considers that & = 1 and ¢2p? =
(98E)2[1 — £/ "E2 for theories with k -deformation of
Poincaré symmetries. MDRs can be also found in mod-
els with quantization of point particles in a discrete space-
time [51]. The modifications emerging at the level of the
k-Poincaré (Hopf) algebra [89], and other types noncommu-

@ Springer
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tative black holes [168,183], require physical interpretations
on generalized Lorentz manifolds.

Our approach to geometrizing classical and quantum the-
ories on (co)tangent Lorentz bundles (in this work, there are
considered 3-d and, in the bulk, 4-d pseudo-Riemannian base
manifolds) will be elaborated following three assumptions:

Assumption 2.1 (Background quadratic elements on total
spaces of (co)tangent bundles) The are standard gravity
and particle physics theories based on the special relativity
and Einstein gravity principles and axioms. In such theo-
ries, the spacetime geometry is described by a four dimen-
sional, 4-d, Lorentz spacetime manifold V and respective
(co)tangent bundles, TV and/or T*V, enabled with corre-
sponding quadratic elements determined by total phase space
metrics with signature (+ + +—; + + +—),

ds* = gwﬁ(xk)duo‘a’u‘B = gij (ydxidx! + nabdy“dyb,
for y* ~ dx“/dz; and/or 2)
d's* = 'gop(xX)d 'u®d 'uP

= gij(x")dx'dx’ + ydpadpy,  for py ~ dxa/dz. (3)

In formulas (2) and (3), the local frame and dual frame (co-
frame) coordinates are labeled in the forms: u® = (x', y%),
(or in brief, # = (x, y)), on the tangent bundle 7V; and
'u® = (x', pa), (or in brief, 'u = (x, p)), on the cotan-
gent bundle 7*V. The pseudo-Riemannian spacetime metric
g = {gij(x)} can be a solution of the Einstein equations for
the Levi-Civita connection V. In diagonal form, the vertical
metric 74 and its dual n*? are standard Minkowski metrics,
nap = diag[l, 1,1, —1] used for computations in typical
fibers for certain bundle geometric and physical models. The
geometric and physical models are elaborated for general
frame/coordinate transforms in total spaces when the metric
structures can be parameterized equivalently by the same h-
components of gyg (xk) and 'gqg (xk ) = 8ap (xk ) in quadratic
elements (2) and (3). Curves x“(t) on V are parameterized
by a positive parameter 7.

Assumption 2.2 (Nonlinear quadratic elements for model-
ing Finsler—Lagrange—Hamilton geometries on (co)tangent
bundles) MGTs and quasi-classical limits of QG are char-
acterized by MDRs (1) with possible small values of
indicator @ are described by basic Lorentzian and non-
Riemannian total phase space geometries determined by non-
linear quadratic line elements

3 In this work, there are such conventions for indices: the “horizon-
tal” indices, h—indices, run values i, j, k, ... = 1,2, 3, 4; the vertical
indices, v-vertical, run values a, b, c... = 5, 6,7, 8; respectively, the
v-indices can be identified/contracted with h-indices 1, 2, 3, 4 for lifts
on total (co)tangent Lorentz bundles, when o = (i, a), B = (j, b), y =
(k,c),...=1,2,3,...8. We shall use letters labelled by an abstract
left up/low symbol *“ ' (for instance, 'u* and 'g4g) in order to empha-
size that certain geometric/physical objects are defined on T*V.
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ds? = L(x,y), formodelson TV; 4)
d 's%, = H(x, p), formodelsonT*"V. 5)

This assumption involves geometric/physical theories
with an effective phase spacetime modelled by generalized
frame, metric and linear and nonlinear connection struc-
tures defined on (co)tangent Lorentz bundles. For localized
zero indicators in (1), @ = 0, the nonlinear quadratic line
elements (4) and (5) transform correspondingly into linear
quadratic elements (2) and (3).

In modern literature on geometric mechanics, kinetics and
statistical mechanics of locally anisotropic processes, classi-
cal MGTs, and QG, (see [147-150,155,195,197,200]), there
were studied a series of important examples involving such
concepts:

Example 2.2 (Relativistic models of Hamilton geometry and
phase spaces) A 4-d relativistic model of Hamilton space
H*' = (T*V,H(x, p)) is determined by a fundamen-
tal function (equivalently, generating Hamilton function) on
a Lorentz manifold V, constructed as T*V > (x, p) —
H(x,p) € R, whic\lj/ defines a real valued function being
differentiable on T*V := T*V/{0*}, for {0*} being the
null section of T*V, and continuous on the null section of
7* 1 T*V — V. Such a model is regular if the Hessian
(cv-metric)

b 1 0’H

g, p) =3 T

is non-degenerate, i.e. det | ‘E"b | # 0, and of constant sig-
nature.

(6)

For elaborating physical and mechanical models, one fol-
lows different geometric and physical principles in order to
define a (non)relativistic Hamiltonian, i.e generating func-
tion, H (x, p). Such a function may describe propagation of
test particles, or perturbations of scalar fields in an effec-
tive phase space, various noncommutative generalizations,
quantum fluctuations etc.

Remark 2.1 (From MDR-indicators to Hamilton spaces) For
any MDR of type (1), we can construct a Hamilton space H>'!
if the effective Hamilton function is defined

H(p):=E =+(*Pp>+c*'m* —w(E, P,m; Lp)/2
(N
This describes a Hamilton like geometry of relativistic point
particles propagating in a cv-space with MDRs. In general,
such a propagation is in an effective phase space endowed

with local coordinates (x, Pa) and generalized indicator
(' E,p.m;p) (1)

Changing the system of frames/coordinates on total space,
we obtain generating functions of type H (x, p). We can use
for geometric modeling certain general (for simplicity, reg-
ular) generating functions H (x, p) on T*V.
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Example 2.3 (Relativistic Lagrange spaces) A relativistic 4-
d model of Lagrange space L>! = (T'V, L(x, y)) is defined
by a fundamental function (equivalently, generating func-
tion) TV > (x,y) — L(x,y) € R, i.e. areal valued func-
tion which is differentiable on TV := TV /{0}, for {0} being
the null section of 7V, and continuous on the null section

of 7 : TV — V. Such a model is regular if the Hessian

(v-metric)

ab(x, y) L )
X,y) = - ——

8ab y ) aya 3yb

is non-degenerate, i.e. det |g,5| # 0, and of constant signa-
ture.

The values 2,5 and '3? are labeled by tilde “™ in order
to emphasize that such conventional v—metrics are defined
canonically by respective Lagrange and Hamilton generat-
ing functions, which may encode various types of MDRs and
LVs terms. Considering general frame/coordinate transforms
on TV and/or T*V, we can express any “tilde” Hessian in
a general quadratic form, respectively as a vertical metric
(v-metric), gqp(x, y), and/or co-vertical metric (cv-metric),
'g® (x, p). Inversely, prescribing any v-metric (cv-metric),
we can introduce respective (co)frame/coordinate systems,
when such values can transformed into certain canonical
ones, with “tilde” values. In general, a g, is different from
the inverse of 'g”h ,1i.e. from 'g,,. We shall omit tildes on
geometrical/physical objects if certain formulas hold in gen-
eral (not only canonical) forms and/or that will not result in
ambiguities.

Remark 2.2 (Legendre transforms and £-duality of Lagrange
and Hamilton spaces) There are Legendre transforms L —
H, with H(x, p) = pay* — L(x, y) and y* determining
solutions of the equations p, = dL(x, y)/dy“. In a similar
manner, the inverse Legendre transforms can be introduced,
H — L, for

L(x,y) = pay* — H(x, p) )

and p, determining solutions of the equations y¢ =
dH (x, p)/dpa.

For further details on relativistic Lagrange and Hamil-
ton spaces, with reviews of non-relativistic original results,
readers may consult [8,161,172,184], where theories with
degenerate Hessians are also considered (we omit such con-
structions in this work). Here we cite a very important paper
[75] where an original geometrization of Lagrange mechan-
ics was proposed. The main idea was to drop the homogene-
ity condition for Finsler generating functions and apply in
studies of properties of mechanical systems certain meth-
ods of Finsler and almost K& hler geometry [91,92]. The
geometry of Hamilton spaces consists a natural dualization
on T*V of the Lagrange geometry on 7'V. Nevertheless,

such constructions are not completely dual because of Leg-
endre transforms and “symplectomorphisms”, see details in
the mentioned references. In general, the Hamilton mechan-
ics is not equivalent to the Lagrange mechanics and differ-
ent almost symplectic realizations of such theories can be
elaborated. Using Lagrange or Hamilton geometries, we can
model different types of MGTs on (co)tangent bundles. Only
for certain well-defined conditions such theories and respec-
tive classes of solutions of motion/evolution equations are
equivalent.

Example 2.4 (Finsler—Cartan geometries as particular cases
of Lagrange—Hamilton spaces) A relativistic 4-d model of
Finsler space is an example of Lagrange space when a regular
L = F? is defined by a fundamental (generating) Finsler
function subjected to the conditions: (1) F is a real positive
valued function which is differential on 7V and continuous
on the null section of the projection & : TV — V; (2)itis
satisfied the homogeneity condition F (x, Ay) = |A| F(x, y),
for a nonzero real value A; and (3) the Hessian (8) is defined
by F 2 in such a form that in any point (x(g), y(0)) the v-metric
is of signature (+ + +—). In a similar form, there are defined
relativistic 4-d Cartan spaces C 31— (V,C(x, p)), when
H = C?%(x, p) is 1-homogeneous on co-fiber coordinates p,.

For simplicity, the bulk of geometric constructions in this
work will be performed for (effective and/or generalized)
Lagrange and Hamilton spaces considering that via corre-
sponding frame and Legendre transforms, or homogeneity
conditions, we can generate necessary type Lagrange/Finsler/
Cartan configurations. Nevertheless, a series of important
formulas and proofs will be presented both on tangent and
cotangent bundles in order to emphasize the generality of
our geometric methods which can be applied to a large class
of MGRs with different types of geometrization of classi-
cal and quantum physical theories. Another argument to dub
the formulas will be that in many cases the (non)linear con-
nections and/or almost symplectic structures are constructed
differently on tangent and cotangent bundles. This results
in different geometric and physical models (the (non)linear
symmetries and related conservation laws are also different)
even being written in abstract geometric forms the formulas
are very similar. For certain well-defined geometric/physical
conditions, it is possible to establish certain equivalence
and/or duality of constructions but this is an issue of addi-
tional assumptions and a more rigorous analysis for geomet-
ric structures and fundamental geometric/physical equations.

Definition 2.1 (Nonlinear connections and nonholonomic
h—v and/or h—cv splitting) A nonlinear connection, N-
connection, structure for 7V, or T*V, is defined as a Whit-
ney sum of conventional . and v-distributions, or 4 and cv-
distributions,

N:TTV =hTV &@vTV or

@ Springer
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'N:TT*V =hT*V & vT*V. (10)

There were formulated different equivalent definitions of
N-connections on (co)tangent bundles and fibred manifolds,
studied in [8,161,172, 184].4 In local form (parameterizing
the corresponding N-connections by coefficients N = {N{'}
and 'N = {'N;,} with respect to coordinate (dual) bases),
one prove by explicit constructions:

Lemma 2.1 (N-adapted (co)frames) A N-connection (10)
defines respective systems of N-adapted bases

o 5 5
ey = ei:ﬁ—Ni (an)W,ebZW ,

e = (¢! =dx', e’ =dy" 4 N/ (x, y)dx"), (11)

4 The concept of N-connection is equivalent to that of Ehresmann
connection in differential geometry [44]. In coordinate form, N-
connections are used in the first monograph on Finsler geometry
[27]. The N-connection and Finsler geometries were studied orig-
inally in [72,73]. The formalism of N-connections was introduced
and developed in the Einstein/string/brane/gauge theories [42,149—
151,158,166,168,171,175]. On 4-d pseudo-Riemannian manifolds, a
N-connection can be defined as a conventional nonholonomic 2+2 split-
ting by considering certain local (N-adapted) bases e, = (e;, e,) and
their duals e’ = (ej, eb),

il c 0 a
e =——Ni—,e,=0,=— and
ax! ay° ay4

el = dx’, e’ = dyh + N,i’dxk.

In this footnote, indices run values i, j, k... =1,2;a,b,c,... =3,4
anda, B,...=1,2,3,4 for ut =t being a time like coordinate. Such
frames are called nonholonomic satisfying, in general, the relations
[eq, ep] = e,e5 — egey, = Wojl/ﬁe,g. If the anholonomy coefficients

W,.Z = aazv}’, le.’l. = Qijh = ej(Nl.b) — ei(Nj’) are zero, we get
holonomic bases which allows to consider some coordinate transforms
when e, — 9, and e/ — du®. On 8-d (co)tangent Lorentz bundles,
the N-connections and respective N-adapted frames are defined in the
forms (10) and (11) and (12). With respect to N-adapted bases, one say
that a vector, a tensor and other geometric objects are represented by
N-adapted coefficients and called correspondingly as a distinguished
vector (d-vector), a distinguished tensor (d-tensor) and distinguished
objects (d-object).

The geometry of N-connections is related to the geometry of
nonholonomic manifolds in the sense considered by G. Vrinceanu
[211,212], see a review of former results in [19]. In brief, a non-
holonomic manifold is a usual one endowed with a nonholonomic
distribution, for instance, defined by a nonholonomic frame struc-
ture. N-connection and nonholonomic geometric methods were used
for elaborating the AFDM. Coordinate free and global approaches to
Finsler geometry and various relativistic/string/brane/gauge generaliza-
tions were developed in [153,161,169,219].
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and/or 'e, = 'e-:i— 'Niq(x, p) 9 'ebzi
o 1 axl ra ’ apav apb ’
‘e =('e'=dx', 'es=dpa + 'Nia(x, p)dx").

12)

In our works, boldface symbols are used in order to
emphasize that certain geometric/physical objects are con-
sidered in N-adapted form for certain spaces enabled with
N-connection structure and when the coefficients of tensors,
spinors, and fundamental geometric objects can be computed
with respect to N-elongated bases of type (11) and/or (12). A
splitting (10), and respective N-adapted bases, defines cor-
responding non-integrable (equivalently, nonholonomic, or
anholonomic) structures on (co)tangent Lorentz bundles and
transforms such spaces into nonholonomic manifolds, see
details in Refs. [19,171,175,186,211,212].

The sets of N-connection coefficients and necessary types
of (co)frame/coordinate transforms can be used for construct-
ing lifts of metric structures (V, g) to respective nonholo-
nomic (co)tangent bundles, (TV, N, g) and (T*V, 'N, 'g).

Assumption 2.3 (d-metrics on (co)tangent Lorentz bundles)
The total spaces of tangent, TV, and cotangent, T*V, Lorentz
bundles used for elaborating physical theories with MDRs
and LVs generalizations of the Einstein gravity are enabled,
respectively, with pseudo-Riemannian metric, g, and 'g,
structures. Such metrics can be parameterized by frame trans-
forms in N-adapted form, i.e. as distinguished metrics (d-
metrics)

g = op(x, y)e” @’
= gij(x)e' ® ¢/ + gup(x, y)e’ ® e* and/or (13)

g= 'Bapx. p) e ® ¢
=gij(e @el + 'gP(x, p) e, ® e (14)

In this paper, we shall work with metrics on 8-d man-
ifolds of signature (+, 4+, +, —, +, +, +, —)). A pseudo-
Riemannian metric g;;(x) can be subjected to the condi-
tion that it defines a solution of the standard Einstein equa-
tions in GR and a corresponding Lorentz manifold V. Such
constructions for the base spacetime manifold V are possi-
ble for the Levi—Civita connection completely determined
by gij(x) by imposing the metric compatibility and zero
torsion conditions. Working with more general classed of
geometric/physical models with general MDRs and non-
holonomic (co)frame structures elaborated on (co)tangent
Lorentz bundles, we have to introduce into consideration
non-Riemannian geometries with more general metric and
connection structures. There are necessary additional geo-
metrically and physically motivated assumptions on how
nonlinear quadratic elements of type (4), or (5), and/or (13),
or (14), encode MDRs.
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2.2 Canonical N-connections, metrics and almost
symplectic structures

We shall follow a coordinate-free formalism for nonholo-
nomic manifolds and bundles enabled with N-connection
structure. Certain important formulas and results will be
formulated in coefficient forms, with respect to N-adapted
frames, which is important for constructing in explicit form
exact and parametric solutions following the AFDM.

2.2.1 MDR, Hamilton—Lagrange generating functions and
N-connections

Let us consider a spacetime Lorentzian manifold V mod-
eled as a pseudo-Riemannian manifold endowed with a met-
ric hg = {g;;j(x)} of signature (3, 1). Such metrics can be
deformed by off-diagonal/nonholonomic transforms to met-
rics depending on velocity/momentum coordinates.

Proposition 2.1 A MDR (1) defines naturally canonical data
for a v-metric (Hessian) gu»(x, p) (8) and a nonlinear
quadratic element (5) determining a relativistic model of
Hamilton space H3! = (T*V, ﬁ(x, p)).

Proof Let us fix a point x[0) € V, with a ﬁber space of
co-vectors in this point 'u[xjo;] = (x[o}, p) € xw V, and
consider an effective Hamilton function H (x[o}, p) (7) deter-
mined by a nontrivial MDR (1) with nontrivial indicator @ .
The generating Hamilton function is defined as a union of
all points x € Uy, C V, ﬁ(x, p) = UX’U H (x0], p) for
an atlas of unions of carts Uy covering V. Tilde “~.” on
symbols will be used in this work in order to emphasize that
certain spaces and geometric/physical values are written in
a “canonical” adapted form determined by certain MDR and
associated Hamilton, H, and/or Lagrange, L, structures. In
a constructive approach, one prescribes a necessary smooth
class (for instance, analytic or of some finite class of differen-
tiability) fundamental function H (x, p) on T*V determining
for any fixed x = x[9) a MDR. Such a relativistic Hamilton
space is regular a point 'u = (x, p) if g,p is not degenerate
in this point. For @ = 0 (1), the cotangent bundle admits
frame/coordinate transforms when the nonlinear quadratic
element (5) can be parameterized as a linear quadratic ele-
ment (3). Considering arbitrary frame/coordinate transform
on V and/or T*V, the geometric objects transforms into gen-
eral ones which can be parameterized by symbols without
tilde. O

Consequence 2.0 (Canonical Lagrange—Hamilton spaces
determined by MDRs) A MDR (1) defines L-dual, i.e. related
via Legendre transforms, canonical relativistic models of
Hamilton space H3! = (T*V, ﬁ(x, p)) and Lagrange
space L3 = TV, Z(x, ).

Proof Ttfollows from ainverse Legendre transform (9), when
L(x,y) := pay* — H(x, p) and p, taken as a solution of
the equations y* = 0 H (x, p)/dpq,. O

Let us consider a regular curve c(t) defined ¢ : 7 €
[0,1] — xi(t) Cc U C V, for a real parameter t.
Such a curve can be lifted to 7~ '(U) C TV defining
a curve in the total space, when ¢(t) : 7 € [0,1] —
(x' (1), y'(t) = dx' /dt) with a nonvanishing v-vector field
dx'/drt.

There are on 7*V a canonical symplectic structure 6 :=
dp; A dx' and a unique vector filed

defined by i, following the equationiy, 6 = —d H .Inabove
formulas A is the antisymmetric product and ig, denotes
the interior produce defined by X 1. In result, we can formu-
late and prove using an explicit calculus for any functions
Uf(x,p)and 2f(x, p)on T*V :

Conclusion 2.1 A MDR (1) determines a canonical Poisson
structure { 1f, 2f} = 9(X|f, Xzf).

Motion of probing point particles in a phase space modeled
by an effective H> H31 are described by an effective relativistic
Hamilton mechanics induced by MDRs as follows from

Corollary 2.1 Forany effective Hamilton phase space model
onT*V, one holds the canonical Hamilton—-Jacobi equations

dx’ d ~
(A1) and (A ),
dt
Proof 1Tt follows from the previous Conclusion. O

Following a standard variational calculus (see similar
details, for instance, in Ref. [8]), one obtains the proof of

Theorem 2.1 (Semi-sprays induced by MDRs and canon-
ical Hamilton—Jacobi and Euler-Lagrange equations) The
dynamics of a probing point particle in L-dual effective phase
spaces H3 and L3 is described by fundamental generating
functions H and L determined canonically by MDRs (1) and
satisfy the Hamilton—Jacobi equations written equivalently
as

dxi  9H nd dpi OH

—=— and — =——,
dt opi dt ax!

or as Euler—Lagrange equations,
d 3L dL _

dray  oxi

which, in their turn, are equivalent to the nonlinear geodesic
(semi-spray) equations
2 xi

—= +2G'(x,y) =0,

12 (15)
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for G = %gi/(f’ Lk _ ) with 3V being inverse to gij

8)’ y 3x’
(®).

It should be noted that the equations (15) emphasize that
point like probing particles move not along usual geodesics
as on Lorentz manifolds but follow some nonlinear geodesic
equations determined by MDRs and/or LIVs.

Using above Theorem and by construction on open sets
covering V, TV and T*V (see Definition 2.1), one proves

Theorem 2.2 (Existence of canonical N-connections deter-
mined by MDRs and pseudo Hamilton and/or Lagrange gen-
erating functions) There are canonical N-connections deter-
mined by MDRs in L-dual form following formulas
dproxt
3G }

~ 2 q
S
82H ~ ~
'Gik and N = {N?
Bpkaxl !

0°H .
[{ 8ij» } ; ‘gjk
where 'g;j is inverse to 'g" (6).

oy

Hereafter we shall consider that using necessary type
frame/coordiante transforms we can always establish (if nec-
essary) certain nonholonomic frames and geometric vari-
ables determined by MDRs and respective L-dual relations
between geometric/physical values on tangent and cotangent
Lorentz bundles.

Introducing the canonical N-connection coefficients defi-
ned by this Theorem, respectively, into formulas (11) and
(12) introduced by Lemma 2.1, we prove

Proposition 2.2 (Canonical N-adapted frames determined
by MDRs and/or Lagrange—Hamilton generating functions)
The N-connection structures N and 'N define respective
systems of N-adapted (co)frames

~ ~ a 0
€y = e,-:axi— b:W ,onTV;

@ =dx!, & =dy* + /V.“(x y)dx'), on (TV)*;

~ ad
N,*a(X, y)W,

(16)

~ - )
and '€, = <‘e, =oqT Nia(x, p) Bpu el = E) onT*V;
T = (e =dx', 'eq =dpy + 'Nia(x, p)dx') on (T*V)*.

a7
We note that we can introduce canonical N-splitting

N:TTV =hTV @vTV andlor
'N:TT*V = hT*V @ vT*V,

respectively, on any tangent Lorentz bundle and cotangent
Lorentz bundle by prescribing a system of so-called nonholo-
nomic variables with N-adapted frames of type (16) and (17).
In such cases, probing point like particles are described by
some effective models of Lagrange and/or Hamilton mechan-
ics for the total phase spaces. If arbitrary frame and coordi-
nate transforms are considered on such spacetime manifolds
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and phase (co)tangent bundle, the values with tilde transform
correspondingly into arbitrary ones, i.e. into (10), (11) and
(12).

Conclusion 2.2 (Canonical geometric data for Lagrange—
Hamilton spaces) The nonholonomic structure of a Lorentz
manifolds and respective (co)tangent bundles canl be descri-
bed in equivalent forms using canomcal data (L N; eo,, € )
with effective Lagrange density L (correspondlngly, (H 'N;
"€, '€%), with effective Hamilton density H) or by a general
N-splitting without effective Lagrangians (Hamiltonians),
i.e. in terms of geometric data (N; ey, €*) (correspondingly
('N; 'ey, '€)). Such structures are determined by a MDR
(1) if, for instance, H is chosen following the procedure
stated by Proposition 2.1. Such an analogous Lagrange
(Hamilton) like interpretation of the geometry of phase
spaces is “hidden” into the structure of nonholonomic mani-
folds/bundles endowed with N-connection splitting if general
frame/coordinate transforms are considered on respective
relativistic spacetimes and phase spaces.

The geometric constructions can be performed in equiv-
alent forms for various nonholonomic data. For instance,
we can consider arbitrary frame/coordinate transforms on
(co)bundle spaces and write formulas without “tilde”, i.e.
in general (non canonical) forms, emphasizing certain N-
splitting, or in coordinate forms. Nevertheless, some classes
nonholonomic variables can be more convenient for decou-
pling physically important systems of nonlinear PDEs, gen-
erating new classes of exact/parametric solutions, and other
classes of nonholonomic variables can be more convenient
for elaborating and effective/analogous geometric mechanics
interpretation, or (for instance) for deformation quantization
of MGTs and the Einstein gravity, see Refs. [8,174,184], and
next sections.

Vector fields on nonholonomic (co)tangent bundles are
called d-vectors if they are written in a form adapted to a
prescribed N-connection structure. For instance, we decom-
pose

X = ia’éa = )’Zi’é} + Xbeb
= X%, = X'e; + XPe, € TTV,

X — |5(‘oc€a — |§i \’éfi + ‘Xb |eb
— X% Iea — \Xi ‘ei + IXb |eb c TT*V,

for decompositions with respect to canonical, or arbitrary, N-
adapted bases. In brief, one considers such h—v and/or h—cv
decompositions, X* = X* = (X!, X?) = (X, Xb), 'X* =
X — ( |)~(i, 'Xp) = ( 'Xi, 'Xp).

We can write X and 'X as 1-forms and N-adapted canon-
ical, or arbitrary, coefficients,

X =Xy e = X; ¢ + X%, = Xpe*
= X;¢' + X%, € T*TV
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X — |)’Za e — lXi |ei + |§Za %‘a — |§a e
='X;'"e + 'X?'e, € T*T*V,

or,inbrief, Xy = Xy = (X;, X%) = (X;,X9), Xy =Xy =
('X;, |)’Za) = ('X;, 'X%).

Considering tensor products of N-adapted (co)frames, we
can parameterized in N-adapted forms (canonical or general
ones) arbitrary tensors fields, called as d-tensors.

2.2.2 Locally anisotropic metrics on (co)tangent Lorentz
bundles

We can introduce canonical metric structures determined
by MDRs and respective Lagrange and/or Hamilton effec-
tive functions using the so-called Sasaki lifts [218] from a
base manifold to the total (co)tangent bundles. Using for-
mulas (8) and (6), Theorem 2.2 (on existence of canonical
N-connections ) and Proposition 2.2 (on canonical geometric
data for Lagrange—Hamilton spaces) and by construction, we
prove the

Theorem 2.3 (Existence of canonical d-metrics completely
defined by MDR and generating Lagrange—Hamilton func-
tions) There are canonical d-metric structures § and 'g
completely determined by a MDR (1), respectively for data
(L, N;&. &2, 375 andsor (H, 'N; &, & '3,
'Sab), metrics (d-metrics)

8 =80, )T @

= 2ij(x, Vet @ el + Zap(x, y)E @€ and/or (18)
T= Bopr.p) T

= T pd e + F0p) €% G (19

One follows:

Corollary 2.2 By frame transforms, the canonical d-metric
structures (18) and (19) [with tildes] can be written,
respectively, in general d-metric forms (13) and (14) [without
tildes].

This Corollary motivates the Assumption 2.3 on met-
ric properties of (co)tangent Lorentz bundles endowed with
MDRs.

There are also possible general vierbein transforms e, =
% u)d/ou® and f = ¢ 8 (u)du®, where the local coor-
dinate indices are underlined in order to distinguish them
from arbitrary abstract ones. In such formulas, the matrix
P 8 is inverse to ¢% for orthonormalized bases. For Hamil-

ton like configurations, one writes 'ey = 1%, ( '")d/o 'u®*
and 'ef = 'eﬂ ﬂ( 'u)d 'ul. 1t should be noted that there
are not used boldface symbols for such transforms because
an arbitrary decomposition (for instance, one can be consid-
ered as particular cases certain diadic 24+2+2+2 splitting) is

not adapted to a N-connection structure. Introducing formu-
las of type (16) and (17), respectively, into (13) and (14) and
regrouping with respect to local coordinate bases, one proves

Corollary 2.3 (Equivalent re-writing of d-metrics as off-
diagonal metrics) With respect to local coordinate frames,
any d-metric structures on TV and/or T*V,

g = gup(x, 1)e* @ = gup(x, y)du @ dul and/or
\g — Igaﬂ(x» p) e ® |el3 — Iggé(xv p)d "W ®d |Mé7

. . B
can be parameterizedvia frame transforms, g5 = % € p8up

and 'gup = 'e%, 'e% '8ap, in respective off-diagonal forms:

up = [gij () +8ab 0, YN 06, YINT(x, ¥) ae e, ING (x, y)] and/or
22 8be (X, Y)N{ (x, y) 8ab(x, )

g :[ "gij )+ '8 (x, p) 'Nig(x, p) 'Njp(x, p) 'g%€ 'Nje(x, p)}
Qﬁ \gbe ‘N;e(x, P) |gab(x’ ]7) .

(20)

Parameterizations of type (20) are considered, for instance,
in the Kaluza—Klein theory. Such metrics are generic off-
diagonal if the corresponding N-adapted structure is not inte-
grable (see footnote 4). For MDR-generalizations of the Ein-
stein gravity, we can consider that the h-metrics g;;(x) =
'gij(x) are determined by a solution of standard Einstein
equations but the terms with N -coefficients are determined
by solutions of certain generalized gravitational field equa-
tions on nonholonomic phase spaces. In general, such solu-
tions are not compactified on velocity/momentum like coor-
dinates, y*/p, like in standard Kaluza—Klein models. For
decompositions with respect to coordinate bases of canoni-
cal d-metrics (18) and (19), we obtain coefficients of type (20)
when (following a formal notation procedure) the geometric
objects are labeled with tilde and gj; (x, y) # 'gij(x, p). In
result, we obtain

Conclusion 2.3 (Definition by MDRs of canonical frames
and noncompactified Kaluza—Klein metrics for phase space-
times with equivalent Lagrange—Hamilton interpretation) A
MDR-structure determines on (co)tangent Lorentz bundles
nonholonomic generalized frame structures and equivalent
d-metric and off-diagonal metric structures with dependen-
cies on velocity/momentum type coordinates. For respective
sets of nonholonomic variables, such locally anisotropic
gravitational models admit analogous Lagrange and/or
Hamilton mechanics interpretation, or as a generalized
(nonholonomic) Kaluza—Klein theory without compactifica-
tion on extra dimension (phase) coordinates.

Remark 2.3 (Two general classes of phase spaces and MGTs
encoding MDTs and LIVs) There are two general classes
of MGTs (on tangent and/or cotangent bundles) constructed
with total metric structures determined by MDRs. In this
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work, we shall study with priority theories on cotangent
Lorentz bundles T*V but also provide and compare important
formulas for tangent Lorentz bundles (on TV and conven-
tional fibered nonholonomic manifolds, such theories were
studied in Refs. [31,35-38,68,201].

The type of MGT on a nonholonomic (co)tangent bundle,
or nonholonomic manifold, depend on the type of metric and
nonlinear and linear connection structures (see below) are
involved for such constructions.

Remark 2.4 (Frame transforms, nonholonomic frame trans-
forms and equivalence of canonical and noncanonical d-
metric structures) If we fix a metric structure of type 'g (19),
we can elaborate equivalent models with 'g (14) determined
by certain classes of frame transforms. Inversely, prescribing
a d-metric 'g, we can define nonholonomic variables when
this metric structure can be represented as a 'g. In such a
model, 'g ='g. Nevertheless, we can elaborate on bi-metric
(and even multi-metric theories) if we consider that 'g and
'g are related via certain generalized transforms considered,
for instance, in bi-metric, bi-gravity, and/or massive gravity
[68,69,200-202].

Instead of (canonical) metric structures, we can define
on nonholonomic (co)tangent bundles equivalent (canonical)
almost symplectic structures (in both cases, the constructions
are determined by a MDR (1)) as in next subsection.

2.3 Almost Kihler Lagrange—Hamilton structures and
MDRs

Spacetime models encoding MDRs and LIVs and formu-
lated as almost Kihler geometries for relativistic Lagrange—
Hamilton configurations were studied in [8,161]. Further
developments were elaborated for almost symplectic (alge-
broid, commutative and noncommutative) models of defor-
mation/geometric quantization and/or geometric flow the-
ories [140,172,174,177,184,197,204,206] and references
therein. Fundamental ideas on almost Kéhler realisation of
Finsler and Lagrange geometry were proposed in [75,91,92].
In nonrelativistic form, K. Matsumoto and J. Kern results
were applied in geometric mechanics by a series of Roma-
nian authors whose works were summarized in monographs
[101,102] (see footnote 2 on ethical and political issues
related to publication of those books).

2.3.1 Canonical almost complex structures and Neijenhuis

fields

Fundamental (generating) Lagrange—Hamilton functions and
MDRs determine canonical models of almost Kéhler geom-
etry. Such nonholonomic variables can be introduced in clas-
sical and quantum MGTs on (co)tangent bundles. One holds:
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Proposition 2.3 (Existence of canonical almost complex
structures for Lagrange—Hamilton spaces) MDRs (1) deter-
mining canonical N-connections N and 'N following con-
ditions of Theorem 2.2 define respectively canonical almost
complex structures J,onTV, and 'J, on T*V.

Proof Let us introduce the linear operator J acting on €, =
(€;, ep) (16) a as follows: j(e,-) = —€,.; and j(en+,-) =7;.
This operator defines globally an almost complex structure
(joj = —I for I being the unity matrix) on TV completely
determined for Lagrange spaces by a L (x, y).

On T*V, we can consider a linear operator 'J acting
on'e, = ('e;, 'e?) (17) following formulas ‘J( e) =

‘et and 'J('e"T) = 'e;. Then 'J defines globally an
almost complex structure ( Jo 'J=-Iforl being the
unity matrix) on T*V completely determined for Hamilton
spaces by a H(x, D). O

We note that J and 'J are standard almost complex
structures only for the Euclidean signatures, respectively, on
TV and T*V. Considering arbitrary frame/coordinate trans-
forms, we can omit tildes and write J and 'J. Inversely,
we can state certain almost complex nonholonomic variables
prescribing a MDR inducing respective canonical structures.

Definition 2.2 (Curvatures of canonical N-connections and
almost complex structures) The canonical Neijenhuis tensor
fields determined by MDRs for respective canonical almost
complex structures j on TV and/or ‘j on T*V, are considered
as curvatures of respective N-connections

2X.Y) = —[X.Y] + (0X. JY] - JUX. Y]
—j[i j?] and/or
\ﬁ(\i’ \?) — _[IX |Y]+[|J i 'j’?]

~JUTX Y- X TV @D

for any d-vectors X, Y and 'X, 'Y.

For arbitrary N-connection splitting, the formulas (21) can
be written in general form without tilde values. Applying the
left label ', we can rewrite geometric formulas on TV into
respective ones on T*V (if necessary, for £-dual values and
with, or not “tildes”). One follows:

Corollary 2.4 In local coordinate form, a N-connection on
TV, or T*V, is characterized by such coefficients of Neijen-
huis tensors (21), i.e. N-connection curvature,

. aN!.a 8N“ baN” » 0N
Qij = o oxi +Nl oyb NJ b or
‘ ' Nia 3'Nja . 3'Nja
Qija = Ta. T T a ib
dx/ dax! app
0 'Niq4
—'Nip . (22)
7 dpe
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Some almost complex structures J and 'J transform into
standard complex structures for Euclidean signatures if £ =
0 and/or 'R = 0.

Remark 2.5 For almost complex structures determined by
MDRs, formulas (22) can be written (using frame transforms)
in respective canonical forms with “tilde” values determined
by N= (N2} and 'N = { 'Nis}.

Using Proposition 2.2 (see also the footnote 4 on anholo-
nomic frames and N-connections), by straightforward N-
adapted calculus using formulas €, = (€, ep) (16), '€, =
('€, 'eP) (17) and (22), we prove

Consequence 2.1 (Existence of MDR-induced canonic
anholonomic frame structures) MDRs and respective canon-
ical N-connections induce canonical nonholonomic frame
structures on TV and/or T*V characterized by correspond-
ing anholonomy relations

[€n. €p] = €85 — T8, = W1,E, (23)

with (antisymmetric) anholonomy coefficients Wl}; = 0,4 Nib
and W]‘.ll. = Qf] and

[C. l= &G — T @W= "W, T, (24)

with anholonomy coefficients ‘Wl% =0 ‘~ib/3Pa and

Wiia = 'Qija
We note that we obtain holonomic (integrable) frame con-

figurations if respective anholonomy coefficients (23) and/or
(24) are zero.

Remark 2.6 (Generic off-diagonal metric structures canon-
ically induced by MDRs) Canonical d-metric structures g
(18)and 'g (19) are described by generic off-diagonal metrics
(20) if respective anholonomy coefficients (23) and (24) are
not trivial. This means that MDRs (1) generate off-diagonal
metric structures on TV and T*V if certain special conditions
for integrability of respective frame structures and diagonal-
ization (on some finite, or infinite phase space regions) are
not imposed. It is necessary to elaborate more advanced and
sophisticate geometric and numeric methods for constructing
exact, parametric and approximate solutions with generic off-
diagonal metrics and generalized connections (for instance,
BH, or cosmological type) in MGTs with MDRs.

2.3.2 Canonical almost symplectic structures determined
by MDRs

The geometry of N-connections and d-metric structures
determined by MDRs and LIV's on nonholonomic (co)tangent
Lorentz bundles can be described equivalently in terms of
canonical almost symplectic variables. For relativistic gen-
eralizations and models of geometric flows and deforma-
tion and A-brane complexified quantization of Einstein—
Lagrange—Hamilton and generalized Finsler spaces, such

constructions were elaborated in a series of our works
[8,12,161,172,174,177,184,197,204,206] ; on preliminary
geometric ideas see [45,75,91,92].

Definition 2.3 Almost symplectic structures on TV and
T*V are defined by respective nondegenerate N-adapted 2—
forms

1 1
0 == Oup(u) e“Anef and ' = 3 "Oup () ‘e A 'eP.
One holds the following

Proposition 2.4 For any 6 and '0 on respective tangent and
cotangent Lorentz bundle, there are unique N-connections
N = {Nj?} and 'N = {'N,,} satisfying the conditions:

0 =hX,vY) =0, when 6 = h6 +v0, and

"9 =h'X,cv'Y)=0, when '6 =h'0 +cv'0, (25)

or an = + vX, = + vY an = +
. yX = hX+vX,Y = hY +vY and 'X = h 'X

cv'X, ' Y=h'Y+cv'Y, where

ho(X,Y) :=0(hX,hY),v0(X,Y) :=0(wX,vY); and
h'0('X,'Y) := '"9(h'X,h'Y), cv'0('X, 'Y)
= '9(cv 'X,cv''Y).

Proof Let us sketch the proof on T*V for '6 (the construc-
tions are similar on TV).

For 'X = 'e, =('e;, 'e?)and 'Y = 'eg = ('e;, 'eby,
as in (17), where 'e, is a N-adapted basis of type (12), we
write the first equation in (25) in the form

a a
9 — ‘9(‘ei, \ea)= 9| —, —
ax! dp,

a a
Cwo( ) o
opy 0pa

These conditions uniquely define 'N;, if '6 is non-
degenerate, i.e. rank| '9(3%, %H = 4. Setting locally

I 1 I i j 1 1nab | |
6 = 3 0;j(we' A e’ +§ 0 (u) 'e; N 'ep, (26)

where the first term is for 4 '@ and the second term is cv '0,
we get the second formula in (25). O

In above Proposition, the constructed N-connections are
not canonical ones as in Theorem 2.2. There are necessary
additional nonholonomic frame deformations/transforms in
order to generate almost symplectic structures in canoni-
cal N-adapted forms: A N-connection 'N defines a unique
decomposition of a d-vector 'X = X h 4 1 xev on T*V, for
X" = h'X and 'X’ = cv 'X, where the projectors &
and cv defines respectively the dual distribution 'N on V.
They have the properties & + cv = I, h> = h, (cv)? =
cv, hocv = cvoh = 0. This allows us to construct on 7*V
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the almost product operator 'P :=1 — 2cv = 2h — I acting
on 'e, = ('e;, 'eé?) following formulas

'P('e;) = 'e; and IP('gb)Z_ 1o

In a similar form, a N-connection N induces an almost
product structure P on 7'V.

In geometric and physical models, there are used also the
almost tangent (co)operators

9 .
J(e;)) =eqs; and J(e,) =0, or J= a_y’ ®dx';
'J(e;) = 'gl!heb and 'J ('eb> =0, or

Qdx'.

d
T .
J='gia e
The operators 'P, 'J and 'J are respectively £L-dual to P, J
and J if and only if 'N and N are £-dual and there are con-
structed respective (co)frame transforms to canonical values
['P, T, Tland [P,J. 1.
For the above-introduced almost complex and almost
product operators, we can check by straightforward com-
putations the properties:

Proposition 2.5 Let (N, 'N) be a pair of L-dual N-conne-
ctions. Then, we can construct canonical d-tensor fields
(defined respectively by L(x, y) and H (x, p) related by Leg-
endre transforms, see Remark on (9)):

J= 8¢, @e +5ie ®e,
IJZ_Igia e ® |ei+ |gia ‘ei® ‘ea

corresponding to the L-dual pair of almost complex struc-
tures (J, 'J) ,
P = lei ® |ei _

P=¢ ®e —e¢, @e, "' ® 'e,

corresponding to the L-dual pair of almost product structures
(P, ‘P) , and almost symplectic structures

0 = gaj(x,y)e" Ael and '0 =8 'eg A el (27)

The formulas in this Proposition can be re-written in
canonical form by considering canonical N-adapted bases
with tilde. For instance, one re-writes (using frame trans-
forms) (27) as 6 = Za;(x, y)& A el and '§ = 8¢ & A ‘el

For modeling of (co)tangent bundle N-connection and
almost symplectic geometries on (co)tangent bundles with
total dimension 8, we introduce the

Definition 2.4 An almost Hermitian model of a tangent
Lorentz bundle TV (or a cotangent Lorentz bundle 7*V)
equipped with a N-connection structure N (or 'N) is defined
by a triple H® = (TV,0,)), where 6(X,Y) := g(JX,Y)
(or by a triple 'H® = (T*V, '0, ')), where '0('X, 'Y) :=
'g ('J'X, 'Y)). A space H® (or 'H®) is almost Kihler and
denoted K¥ if d 6 = 0 (or 'K3ifd '6 = 0).
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The following theorem holds:

Theorem 2.4 (MDR-induced canonical almost Kéhler—
Lagrange/~Hamilton spaces) The Lagrange and Hamilton
spaces (including those determined by MDRs (1)) can
be represented respectively as canonical almost Kdhler
spaces (called almost Kihler—Lagrange and almost Kdhler—
Hamilton) on TV and T*V.

Proof Tt follows from the existence on TV and T*V of canon-
ical N-connections under conditions of Theorem (2.2) and 1—
forms, respectively, defined by a regular Lagrangian L and

Hamiltonian H (related by a Legendre transform), @ = %e"

and '@ = p;dx’, for which® = d& and '0 = d '@. As a
result, we get that d@ = 0 and d '6 = 0 corresponding to the
Definition 2.4. O

There are almost Kihler models on (co)tangent bundles
defined canonically by (pseudo) Riemannian metrics on base
manifolds with nonholonomic deformations to MGTs mod-
eled as (effective phase) regular Lagrange and/or Hamilton
spaces and respective almost Hermitian/Kéhler spaces. In
particular, we can consider almost Kéhler—Finsler spaces
originally elaborated in [91,92].

2.4 Lagrange—Hamilton connections and curvatures

The geometry of a (pseudo) Riemannian spacetime (V,
{gij(x)}) is completely determined by its metric structure
{gis}. There is a uniquely defined by {g;,} linear connection
called the Levi-Civita (LC) connection, V, which by defini-
tion is torsionless and metric compatible. In GR, geodesic
equations and auto parallel curves are described by equiv-
alent systems on PDEs. For nontrivial MDRs and/or LIVs,
point like probing particles and small perturbations of wave
equations and scalar field equations do not move along
usual geodesics (as in GR, on Lorentz manifolds) but fol-
low certain curves described by nonlinear geodesic equations
(15). In non-relativistic form, there were developed certain
approaches related to Finsler geometry and semi-spray con-
figurations [16, 124,125], where the priority was given to the
Chern connection for Finsler spaces. Such a connection is
not compatible with the metric structure on the total bundle.
This creates a number of ambiguities related to elaborating
metric noncompatible Finsler gravity theories (including def-
inition of spinors, definition of compatible motion equations
and conservation laws), see explicit results, critics and dis-
cussions in Refs. [169,173,185,193].

The Theorem 2.2, Proposition 2.2 and Consequence 2.1
state explicitly that MDRs and LIVs define on (co)tangent
Lorentz bundle certain generic off-diagonal metric structures
(20) and related N-connection (10) and anholonomic frame
structures characterized by respective Neijenhuis tensors
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(21). Elaborating on different types of Hamilton-Lagrange—
Finsler models encoding (1), we are not able to perform the
constructions in N-adapted anholonomic form if we work
only with generalized (Finsler like) metrics determined by
nonlinear quadratic forms L(x, y) (4) and/or H(x, p) (5).
The geometry of nonholonomic (co)tangent Lorentz mani-
folds encodes new types of fundamental geometric/physical
objects and more rich geometric structures. Physically viable
nonholonomic deformations of GR on TV and T*V can be
elaborated for locally anisotropic gravity and matter field the-
ories if there are used certain well defined geometrically and
physically motivated linear connection structures.

The goal of this subsection is to analyze which classes of
linear connections and respective covariant derivative opera-
tors can be generated canonically by fundamental nonlinear
quadratic forms and applied for formulating classical and
quantum gravity and matter filed theories.

2.4.1 Distinguished connections, N-adapted distortions
and curvatures

Let D be a linear connection on TV when a £ -duality
between the tangent and corresponding cotangent bundles
can be defined by pull-back and push—forward maps (we
omit geometric details on constructing such maps from/to
base space to total space, considered, for instance, in Ref
[8]). One defines a linear connection 'D on T*V as follows:
'D x 'Y := (DxY)* = '(DxY), for any vector fields 'X
and 'Y on T*V. Inversely, considering a linear connection

'D on T*V, we construct a linear connection °D on TV,
following the rule °DxY := ('D x 'Y)®°, for any vector
fields X and Y on TV.

On (co)tangent bundles, we can elaborate a geometry of
affine (linear) connections and respective covariant deriva-
tives in certain forms being (or not) adapted to a N-connection
structure.

Definition 2.5 (d-Connections as N-adapted linear connec-
tions) A distinguished connection (d-connection) is a linear
connection D on TV (or 'D on T*V) which is compatible
with the almost product structure DP = 0 (or 'D 'P = 0). In
equivalent form, such a d-connection is defined to preserve
under parallelism a respective N-connection splitting (10).

For aMDR (1), it is possible to construct £-dual Lagrange
and Hamilton spaces when DP = 0 induces 'D 'P = 0,
and inversely. In general, we can define and study respective
independent N- and/or P-structures on TV, or T*V.

The coefficients of d-connections can be defined in corre-
sponding N-adapted forms with respect to N-adapted frames
(11) and (12),

Deye) = F"‘ﬁyea and 'D e ‘e, 1= 'Faﬁy ey,

where (for a h—v splitting)
Deke]’ = L’jke,-, Dekeb = Labkea,
D..e; := C’jce,-, D, ep := C9.eq

and (for a h—cv splitting)
| [P 2 A B b 2]
D 'ej:= "L ‘e, De e :=—"L ¢,
D e = ‘éij" ‘e;, 'D e el = — ‘Cab" lef.

So, the N-adapted coefficients of d-connections on (co)
tangent Lorentz bundles are respectively parameterized

r%, ={L', L%, C';., C%.} and

Iraﬂy — { ILijk? II:ahlw |C’-ijc, ‘Cabc}'
Such values can be used for computations of h— and/or v—
splitting, cv-splitting, of covariant derivatives

D=(D, D) andlor 'D= ('hD, ;n),

where D = {L';,, L%}, D = {C',,,C% }and | D =

{ ILijk’ Ii’abk}’ IvD = Iéijc’ |Cabc}.

je

Lemma 2.2 (Distortion of linear connection structures) Let
us consider on TV a linear connection D (which is not oblig-
atory a d-connection) and a d-connection D. Such values on
T*V, are respectively denoted ' D and 'D and can be related
by corresponding distortion d-tensors

Z :=D-D andfor 'LZ:= 'D—'D. (28)

Proof Fixing respective N-adapted frames, such distortion
d-tensors
o« _ o _ o
Z By — I By r By
i i i a
= {ij =L Jjk —ij’ bk
fa 2L 2 i A1 a
=LY% —Ly.2;,=C;.—C be

je & je
_ a a
= C%e = C%} and

Zgy = T%, — 'Ly
={ lZijk = ILijk - 'Lijka IZabk
= L= Ly 2
_ ‘C'ijc _ ‘g’i;, zbe = ¢ be — i bey,

can be constructed in explicit form by considering corre-
sponding differences of N-adapted coefficients for linear and
d-connections. O

Using similar definitions and theorems as for linear con-
nections, we can prove for d-connections:
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Definition 2.6 -Theorem? (Curvature, torsion and non-
metricity of d-connections) Any d-connection D, or 'D, is
characterized by respective curvature (R, or 'R), torsion
(7, or 'T), and nonmetricity, (Q, or 'Q), d-tensors defined
and computed in standard forms:

R(X,Y) := DxDy — DyDx — Dx v},
T(X,Y) := DxY — DyX — [X, Y] and
Q(X) := Dxg,
or 'R('X, 'Y):= 'Dix Dy~ Diy'Dx— D x 1y
'T('X, 'Y):= D x'Y= 'Dy'X—['X, 'Y] and

\Q( Ix) = ID X Ig‘ (29)

The N-adapted coefficients for the curvature, torsion and
nonmetricity d-tensors (29) are provided in Appendix, see
Corollary A.1.

2.4.2 The Ricci and Einstein d-tensors

The Ricci tensor for a d-connection on a (co)tangent bun-
dle can be constructed in standard form by contracting, for
instance, the first and forth indices of respective curvature
d-tensors R and/or "R (29).

Definition 2.7 -Theorem (Ricci tensors for d-connections)
The Ricci d-tensors are defined and computed as Ric =
{Ryp = Rfaﬁr},forad—connection D,and 'Ric = {'Ryp :=

'R’aﬁr }, for a d-connection 'D.

In N-adapted form using formulas (A.1), one proves

Corollary 2.5 (Computation of Ricci d-tensors) The N-
adapted coefficients of the Ricci d-tensors of a d-connection
in a (co)tangent Lorentz bundle are parameterized in h-
and/or v-, or cv-form, by formulas

Rop = {Ryj := R',j;, Rja:=—P'

Jjia’

Rok = Py Rbe = 8%}, or (30
IRaﬂ — { IRh/ = Ithjl', |Rja T IPlll tl’
IRbk = IPabk a’ IRbC — \Sabc‘a}' (31)

If a(co)tangent bundle is enabled both with a d-connection,
D (or 'D), and d-metric, g (13) (or 'g (14)), [in particular, we
can consider canonical d-metrics g (18) and/or 'g (19) encod-
ing MDRs], we can introduce nonholonomic Ricci scalars:

Definition 2.8 -Theorem (Scalar curvature of d-connection)
The scalar curvature of a d-connection D, or 'D, can be
defined and computed for the inverse d-metric g*#, or 'g*?,

R :=g"PRaup = ¢ Rij+ g"’Riy =R +S, or

> In mathematical physics, there are used terms like Definition—
Theorem/-Lemma/—Corollary etc. for such definitions (new ideas, con-
cepts, or conventions) which motivated by certain explicit geomet-
ric constructions and/or requesting formulation of some theorems and
respective mathematical proofs.
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;R:: |gc(/3 IRaﬂz ‘gij‘Rij‘i‘ ‘gab‘Rab: 'R+ 'S,

with respective h- and v-components R = g/R;;, S =
g“bSab, or 'R = \gij ‘Rijy IS = ‘gab |Sab.

Using above Definitions-Theorems and Corollaries, we
formulate

Definition 2.9 -Theorem (the Einstein tensors for d-connec-
tions) By constructions, the Einstein d-tensors on TV and/or
T*V are defined:

1
En= {Eaﬂ =Ryp — Eg"‘ﬂ sR} and/or

1
'En = { 'Eaﬂ = 'Raﬂ 3 Igotﬁ LR} .
Proof Such proofs follow from explicit constructions on
regions of some atlases covering respectively TV and/or T*V
using N-adapted coefficients (A.1) and (30) and/or (31). O

It should be noted that nonholonomic Einstein-Cartan
models on (co)tangent Lorentz bundles can be elaborated
for respective data (g, D) and/or ( 'g, 'D) considering,
for instance, generalized spinning liquid models for effec-
tive matter as sources of d-torsions 7 and '7, see (A.2)
and imposing the metricity conditions. How to formulate
such nonholonomic Riemann—Cartan and metric—affine and
generalized Lagrange—Hamilton—Finsler theories with non-
trivial nonmetricities @ and/or 'Q, see formulas (A.3),
was studied in monograph [169].5 For g = § and/or
'g = 'g determined by MDRs, we can model gen-
eralized Lagrange—Finsler and/or Hamilton—Cartan phase
spaces with nonmetric backgrounds extending the class of
(co)Finsler geometries with the Chern and/or Berwald type
connections [16,20,21,124,125]. Such geometric models
result in a number of ambiguities for constructing physically
self-consistent theories of locally anisotropic interactions
for gravitational, gauge, scalar and spinor fields (and fur-
ther (super) string/noncommutative, quantum etc. general-
izations) as it is concluded in Refs. [169,175,185,193,194].

An axiomatic approach to Finsler like generalizations
of GR on (co)tangent Lorentz bundles [187,194] can be
formulated for theories when a triple consisting from a
N-connection, a d-metric (or almost symplectic) and a d-
connection structures are canonically and metric compatible
determined (following certain minimal geometric and physi-
cal principles) by a fundamental generating Lagrange and/or
Hamilton function. In next subsections, we construct and
study some canonical and physically important d-connection
structures which allows us to elaborate physically viable clas-
sical and quantum models of locally anisotropic gravitational

6 See Chapter 1 and references therein related to Lagrange—Hamilton—
Finsler generalizations of the metric—affine gravity elaborated by F. W.
Hehl’s group.
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and matter field interactions. Such theories encode respective
MDRs of type (1), with a fixed point on a base spacetime
manifold, or for a generalized phase spacetime modelled on
a (co)tangent Lorentz bundle.

2.4.3 Physically important (Filsler like) d-connections on
(co)tangent bundles

For elaborating MGTs and geometric mechanics models, one
considers more specials classes of d-connections on which
can be defined completely by a d-metric/almost symplec-
tic structure determined by a respective Lagrange—Finsler
and/or Hamilton—Cartan fundamental form.

Definition 2.10 -Theorem (Physically important d-connec-
tions) The Almost Kéhler—Lagrange and/or almost K& hler—
Hamilton phase spaces (determined, or not, by respective
MDRs (1) and a possible £-duality) are characterized respec-
tively by such geometric and physically important linear con-
nections and canonical/almost symplectic connections:

[g.N] ~ [g.N1~[0:=80J-,),P.JJl
[

e The definition and proofs of existence of D and 'D are
provided by globalizing the constructions from Corol-
lary A.2 and respective N-adapted coefficients (A.4)
and/or (A.4). Such canonical d-connections play a crucial
role for decoupling and solving in general off-diagonal
forms for various types of Finsler like d-connections of
gravitational and matter filed like equations in MGTs, i.e.
for elaborating the AFDM.

e The fundamental Lagrange—Finsler generating functions
(which may be, or not, induced by MDRs and LIVs)
can be used for modeling almost Kihler models of gen-
eralized Lagrange and/or Hamilton spaces. In relativis-
tic form, such theories were elaborated and applied to
deformation quantization of gravity theories and possi-
ble noncommutative generalizations in Refs. [8,12,161,
172,174,177,184,197,204,206] , where there are pro-
vided necessary proofs and N-adapted coefficients for the
almost symplectic connections D and 'D. There are not
considered such models and solutions in this work (even

\% Vg =0; T[V] =0, Lagrange LC—connection;
— D: D g=0; hT =0, vT =0 canonical Lagrange d-connection; (32)
D D6 =0,D0 =0 almost symplectic Lagrange d-connection.;
and/or
['g. 'Nl =~ ['§ Nl~['9:= §('T.), P, T, T
'V . 'V'g=0; 'T['V]=0, Hamilton LC-connection;
— ! D: D g=0; h T = 0, cv T =0. canonical Hamilton d-connection; (33)
D: DH=0 D'Gd=0 almost symplectic Hamilton d-connection.

Proof Tt is sketched step by step by a respective linear
connection/d-connection determined by the same fundamen-
tal geometric objects up to frame transforms:

e Both variants of LC-connections on (co)tangent bundles,
V and/or 'V, are defined and constructed in standard
abstract, coordinate, or N-adapted forms using (respec-
tively) g (13) and 'g (14). We have to consider g (18) and

"g (19) if we work in not N-adapted form with generic
off-diagonal metrics of type (20). Here, we note that LC—
connections can be defined without N-connection struc-
tures, i.e. such linear connections are not d-connections.
Nevertheless, such values may encode Lagrange and/or
Hamilton structures if they are computed for metrics/d-
metrics encoding, for instance, MDRs and respective
Hessians (modelling Lagrange and/or Hamilton spaces,
see (8) and/or (6)).

D was used for finding commutative and noncommutative
Finsler black hole solutions [183,189,196]). It is impor-
tant to analyze formulas with D and 'D because such d-
connections transform into standard Finsler—Cartan ones
for respective nonholonomic parameterizations of the
generating functions, Sasaki type induced d-metrics and
canonical N-connection structures. O

It is well-known Chern’s definition [17,41] that Finsler
geometry is an example of geometry when the assumption
on quadratic linear elements is dropped and (we emphasize
additionally) there are elaborated new geometric construc-
tions determined by nonlinear quadratic line elements. Vari-
ous mathematical approaches were developed for respective
Finsler generalized norms and metric structures. We need
additional assumptions and have to performed more sophis-

@ Springer



969 Page 18 of 52

Eur. Phys. J. C (2018) 78:969

ticate geometric constructions involving N-connection and
d-connection structures in order to formulate self-consistent
and physically viable Finsler like generalizations of Einstein
gravity for theories with MDRs and LIVs.

Remark 2.7 (Complete and self-consistent models of Finsler
geometry) The first self-consistent model of Finsler geometry
(with local geometric constructions with generalized metric,
N-connection and d-connection structures, and associated N-
frames) was elaborated before 1935 by E. Cartan [27] and
citations therein. In those works, there were used coordinate
transforms of nonlinear and linear connections and developed
the original constructions with nonlinear quadratic elements
due to the famous habilitation thesis of B. Riemann defended
in 1854, see [115]; and introduced the term of Finsler geom-
etry using the original work [46]. Conventionally, that model
of Finsler—Cartan geometry, which is metric compatible, can
be described on tangent bundles (or on manifolds with fibred
structure) by a triple of fundamental geometric structures
(F : g, N, ]3) all determined by a so-called Finsler metric
(generating function) F' which can be associated to a class
of MDRs and LIVs subjected to certain homogeneity condi-
tions.

One of the most important nontrivial characteristics of a
Finsler geometry model is that it posses, in general, a nontriv-
ial nonholonomic structure determined by a N-connection
structure. Even for certain additional geometric/physical
assumptions, all geometric objects on a Finsler space can be
determined by a F'(x, y) on a tangent bundles, such a theory
is with a triple of fundamental geometric objects. The geo-
metric and physical models related to (generalized) Finsler
theories are very different from the (pseudo) Riemann geom-
etry which is completely determined by the metric structure.

2.4.4 Distortion tensors for connections and curvature and
Ricci tensors

MGTs with MDRs on (co)tangent bundles are characterized
by multi-connection structures which, in principle, can be
derived by a metric structure (induced by a fundamental

(2.N.D) = (L : g.N,D)
$ possible L-duality &

MDRs
indicator w
see (1)

~

is most convenient to work with the canonical d-connections
D and 'D. Following the conditions of Lemma 2.2, we
prove

Theorem 2.5 (Existence of unique and physically impor-
tant distortions of connections) There are unique distortions
relations

ﬁ:V—l—i,ﬁ:V—i—Z, and

D=D + Z, determined by (g, N);

D= 'V+'Z D= 'V+ 'Z and

D = 'D+ 'Z, determined by ('g, 'N); (34)

for distortion d-tensors 2, Z, and Z., on TTV, and '2, 'Z,
and 'Z, on TT*V.

It should be noted that the d-tensor Z in above formulas
is an algebraic combination of coefficients Tya s [g, N] com-
puted by introducing formulas (A.4) into (A.2) (similarly
for cotangent bundles). Such values can be induced by corre-
sponding nonholonomic structures (23 ) and (24) determined
by MDRs. This proves:

Consequence 2.2 MDRs (1) are characterized by respec-
tive canonical and/or almost symplectic distortion d-tensors
2[@, ﬁ], ng, N], and Z[g, N], for (almost symplectic)
Lagrange models, and '2[ 's, 'N], ‘Z[ 's, 'N], and
'Z['g, NI, for (almost symplectic) Hamilton models.

Using nonholonomic frame transforms and distortions,
we can elaborate equivalent models of phase spaces and
MGTs formulated in terms of “preferred” for certain pur-
poses geometric data. In the geometric “language” of “tilde”
objects, we obtain relativistic mechanical like formulations
for the geometry of phase spaces (locally anisotropic ether)
with straightforward procedures for performing deformation
quantization. For “hat” objects, we obtain many possibilities
for decoupling and integrating physically important systems
of nonlinear PDEs.

Conclusion 2.4 (Equivalent canonical geometric data for
modeling phase spaces with MDRs) The phase space geom-
etry can be described in equivalent forms (up to respective
nonholonomic deformations of the linear connection struc-
tures and nonholonomic frame transforms) by such data

~ o~~~

«~ (6,P,]),],D)
symplectomorphislns [8]
N ('g, N D)S(H: g 'N, D) < ('0,'P, '], '], 'D) < [('gl'N], 'V)], onT*V.

< [(g[N], V)], on TV

$ not N-adapted (35)

Lagrange—Hamilton function) as we proved in Definition-
Theorem 2.10. One fixes a (non)linear connection structure
following certain physical/geometric principles resulting in
a self-consistent and experimentally verified physical theory.
In order to construct exact solutions following the AFDM, it
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In brief, we shall say that certain geometric construc-
tions are canonical (i.e. formulated in canonical nonholo-
nomic variables) if they are performed for “hat”, or “tilde”, d-
connections and related geometric objects uniquely derived
for certain Lagrange—Hamilton fundamental generating func-
tions (in particular, for a Finsler metric F).
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Convention 2.1 (Existence of a preferred d-connection for
decoupling (modified) Einstein equations and generating off-
diagonal solutions) We can work with canonical d-connection
structures on (co)tangent bundles, D and/or 'D which allows
us to decouple and integrate in most general exact and para-
metric forms (with generic off-diagonal metrics and general-
ized connections and effective matter sources depending, in
principle, on all spacetime and phase space coordinates) the
gravitational and matter field equations in MGTs and GR,
see details and proofs for above presented references for the
AFDM (in the proof of Definition-Theorem 2.10) and next
sections.

Lagrange—Finsler variables can be introduced on 4-d, and
higher dimension, (pseudo) Riemann spaces and in GR, see
details and a number of examples in Refs. [68,70,149,150,
152,153,158,161,169,171,173,186,188] .

Remark 2.8 (Lagrange—Hamilton variables in Einstein grav-
ity, GR) Prescribing a generating function L (x!, x2, y3, y* =
t), [in this remark, « = (i,a), fori = 1,2 and a =
3, 4] on a Lorentz manifold (*V, gup) , dim(*V), endowed
with a metric of local signature (+ + +—) and conven-
tional splitting, we can construct a canonical N-connection

22N T(4V) = h(*V) @ v( *V), see Theorem 2.2.
Respectively, it is defined an N-adapted frame structure with
2+2 splitting of type €, = (€1, €2, e3,e4), see (16). Via
frame/coordinate transforms, we can express the pseudo-
Riemannian metric as a canonical d-metric, gy >~ Eaﬁ (18),
and/or in off-diagonal form (20). Following conditions (32),
we can construct in unique form three types of linear con-
nections V[g ~ §], D[g ~ §] and/o D[g ~ §]. This way,
the pseudo-Riemannian geometry can be formulated equiva-
lently in standard form with data (g, V), and/or in Lagrange—
Finsler like variables (g, N, ﬁ) and/or (g, N, ]3), withrespec-
tive distortion relations, D=V + ZandD =V + Z. Such
geometric models (we can say “toy” Lagrange—Finsler mod-
els on manifolds with conventional nonholonomic 2+2 split-
ting) are elaborated for (pseudo) Riemannian manifolds with
prescribed nonholonomic fibered structure. Fibered splitting
is of type A( *V) @ v( *V) but the “standard” Lagrange—
Finsler geometrise are constructed for TTV = hTV GvT V.

An important example is that when imposing certain (in
general nonholonomlc) constraints of type Z = 0, we obtain
DIZ _o = V even D # V.7 If such conditions are satisfied,
we can extract (pseudo) Riemannian LC-configurations from
more (general) nonholonomic metric—affine structures.

7 The frame/coordinate transformation laws of nonlinear and distin-
guished/linear connections are different from that of tensors. It is possi-
ble to define such a frame structure when different connections may be
determined by the same set of coefficients with respect to such a special
frame and by different sets in other systems of reference.

Corollary 2.6 (Extracting LC-configurations by additional
(non)holonomlc constralnts) One extracts LC- conﬁguratzons
from D and/or 'D for respective zero distortions, Z and/or

'Z, if there are imposed zero torsion conditions for T =
(T4} = O andlor 'T = {'T',} = 0, see (A2). Such
conditions are satisfied if

]b =0,Q% =0 and ZZ; = ea(N§);
'CiP =0, 'Qgji =0and 'LE; = 'e"('N).
Proof Let us sketch such a proof on TV (the constructions

on T*V are similar). Introducing (32) in (A.2), we can check
that one obtains zero values for

(36)
37)

T/k_ ij,T’ _C,b, z—Q“ﬁ,
THC/ = LZ/ ~Ca (Nj)’ T = Chc ch'
if the conditions (36) are satisfied. m]

In a series of works [15,79,133,175,186,187,194,202] ,
we proved that the equations (36) can be solved in explicit
form for manifolds/bundle spaces of dimensions 4-10. Sim-
ilarly, the equations (37) can be integrated on T*V.

Introducing distortions from Theorem 2.5 into formulas
(29), we can prove in abstract and N-adapted forms:

Theorem 2.6 (Existence of canonical distortions of Rie-
mannian and Ricci d-tensors determined by MDRs) There are
canonical distortion relations encoding MDRs for respective
Lagrange—Finsler nonholonomic variables:

e For the curvature d-tensors,

Rlg,.D =V +Z] = Rlg, V] + Zlg, Z],
Rl'g, D= "'V+ 'ZI= "Rl'g, 'VI+ 'Z['g, 'ZI,

with respective distortion d-tensors Z, on TV, and 'Z,
on T*V;
e For the Ricci d-tensors,

Riclg.D =V +Z] = Riclg, V] + Zic[g. Z1,
'Ric['g, D= 'V+ 'Z]
= 'Ric['g, 'V1+ 'Zicl'g, 'Z1,
with respective distortion d-tensors Zi c, on TV, and
'Zic, on T*V;
e Forthe scalar curvature of canonical d-connection D, or

,D=V+Z]=Rlg V]+ ,Zlg Z],
D= V4 Z= 'R['g, 'VI+ |Z['g, 'ZI,

with respective distortion scalar functionals ;Z, on'TV,
and (Z, on T*V.
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Proof We omit such tedious abstract and/or frame compu-
tations in this work. In [9,68,69,164,165,168,169,182,183,
186,188-190,196,198,199,201-203], there are provided
details of similar proofs for Lagrange—Finsler spaces and on
(pseudo) Riemannian manifolds with nonholonomic fibered
structure. In this work, we shall construct exact solutions
for MGTs encoding MDRs working with the canonical
d-connection ﬁ, or ‘ﬁ, which can be restricted to LC-
configurations by solving, respectively, the equations (36),
or (37). O

Remark 2.9 (MDR-distortions of canonical almost symplec-
tic Lagrange—Hamilton structures) The conditions of above
Theorem can be reformulated for distortions of the almost
symplectic Lagrange, or Finsler, d-connections, for instance,
considering

RIE~0,D=V+Z =R[E~0,V]+ Z[E~0,7Z
‘73,[ E: \’9"7 |ﬁ= ‘V—}— \Z]
= RI'Ex~ 0, 'VI+ 'Zl'g~ 9, 'Z],

and any similar geometric objects with “tilde” symbols. Sim-
ilar distortions can be defined and computed, for instance,
for the Chern d-connection, Berwald d-connection and
any d-connection structure which can be constructed in
unique forms by the same d-metric and N-connection struc-
tures [193]. Working with “hat” distortions stated in The-
orem 2.6, we can prove the decoupling property of modi-
fied/generalized Einstein equations on TV and T*V.

2.4.5 On Akbar-Zadeh definition of the Ricci tensor for
Finsler like spaces

In a series of geometric models, it is applied an alternative
concept of Ricci tensor for Finsler spaces which by defini-
tion does not involve the concept of N-connection and/or
d-connection, see [1,2]. Following Akbar-Zadeh construc-
tions for a base manifold M, it in used as the curvature for
Finsler geometry a value

o o 0
R =R} dx*® W'X ‘T M — T M,

defined for any point x € M. This type of “curvature” is not
with an associated 2-form for a linear connection like in (29),
but constructed directly from the data for nonlinear geodesic
equations (15) and respective semi-spray G*, when

. aG! - 32G! - 9*G'  3G' oG/
R, =2— —y/ — T — - — .
dxk dxJ/ dyk dyiayk  9ys ayk
Contracting indices in this formula, we can define and com-
pute a scalar function R(x, y) := F_Zle. By definition, the
scalar R is positive homogeneous of degree 0 in v—variables
y“. Such values are convenient for constructing and studies
of geometric objects in 7x M for a point x € M.
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The Ricci tensor “a la Akbar-Zadeh” is introduced by
, R

dyJayk’
which is different from the (30) and other types of Ricci
d-tensors constructed in explicit form, for instance, using
the Finsler—Cartan d-connection. This geometric object is
induced by the Finsler metric F via inverse Hessian g%/ and
G*. In Ric ik (38), there are not involved definitions for a
N-connection structure, lifts of metrics on total space tan-
gent bundle, and d-connections. For similar construction on
a Lorentz manifold, M — V, such values may character-
ize certain MDRs (1) for g;; encoding such modifications.
It is possible also to introduce a variant of Einstein like
equation, Ric ik = A(X)gjk, i.e. when the scalar function
R(x, y) = A(x) is afunction only on h—variables xk. Another
important property of Ri cjk (38)is that it is always symmet-
ric (by definition) which provides a “simplified” model to
study Ricci fields and/or evolution dynamics in any point
T. M, see [17].

Nevertheless, we consider that is not possible to define
a complete, self-consistent and physically viable Finsler
like MGT on TV and/or T*V working only with geometric
objects generated by fundamental metric structures and do
notinvolving additional constructions with N-connection and
d-connection structures. In order to introduce matter fields
(tensor and spinor ones) and define geometric flows (with
Perelman’s functionals), we need covariant and local deriva-
tives which are positively defined by some (non)linear con-
nection objects, see critics in Refs. [185,193,194]. We can
distinguish in physical theories certain configurations with
Ric jk for the h-components of a distortion relation like in
Theorem 2.6 computing distortion relations, for instance,

Ricj == F (38)

Riciklg D1 = Ricjxlgij] + Zicij(g, Z).

Such constructions can not be complete without additional
assumptions on v - and/or cv-components and it is not pos-
sible to integrate in certain general forms modified Einstein
equations with Ric ik and/or Zic.Inour works, we shall work
with Ricci tensors for d-connections, of type (30), which
allow certain nonholonomic transforms and constraints on /-
subspaces in order to reproduce geometric structures related
to Ric k-

3 Geometric and physical principles for gravity theories
on (co)tangent bundles

In this section, we formulate and analyse a set of geomet-
ric and physical principles which are necessary for self-
consistent causal formulations of MGTs defined by (gen-
eralized) Finsler multi-connection and/or bi-metric struc-
tures. For metric compatible d-connections, the geometric
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constructions are similar to the GR theory but extended on
nonholonomic phase space manifolds or (co)tangent bundles.
Physically important Lagrange densities are postulated as in
the Einstein gravity theory but in terms of respective data with
triples of fundamental geometric objects (i.e. some metric
compatible d-metric, d-connection, and N-connection struc-
tures) on base Lorentz manifolds and their total (co)tangent
bundles. Applying formal geometric and/or N-adapted vari-
ational methods, we derive formulas for (effective) sources
of matter fields on curve phase spacetimes. There are con-
structed and studied explicit models with MDRs and locally
anisotropic gauge and Higgs field interactions, modified
massive and bi-metric theories, short-range models with
LIVs.

3.1 Principles for extending GR to
Finsler—Lagrange—Hamilton gravity theories

The concept of flat Minkowski spacetime (with pseudo-
Euclidean signature) and the postulates which are necessary
for formulating the special relativity theory, SRT, allow us
to unify in a relativistic manner the classical mechanics and
the Maxwell electromagnetic field theory. The approach was
formulated in agreement with various types of Michelson—
Morley experiments proving the existence of a constant
maximal speed of light. Such logical and explicit exper-
iments prove and involve certain fundamental properties
of local spacetime local isotropy and homogeneity under
the assumption that the concept of ether is not necessary
for describing vacuum configurations. The most important
symmetries in SRT are those of Lorentz (pseudo-rotation)
and Poincaré (with additional translations) invariance with
respect to linear group transforms. Such groups of automor-
phism of the Minkowski spacetime determine the conserva-
tion laws for energy and momentum (rotation momentum)
values.

The GR theory was formulated in a standard (pseudo)
Riemannian form using geometric data (g, V) for a Lorentz
manifold V with causality structure. That approach preserves
locally the symmetries of SRT following certain fundamen-
tal principles and axioms which can be extended for a large
class of generalized theories with MDRs and LIVs. In this
subsection, we speculate on modifications of GR for met-
ric compatible Finsler like connections on TV and T*V of
the principle of equivalence, with a partial realisation of
the Mach principle; and of the general covariance princi-
ple. It is discussed the relation of equations of motion and
conservation laws to Bianchi relations and nonholonomic
deformations of d-connections. We elaborate on equiva-
lent geometric and variational formulations in N-adapted
variables of generalized Einstein equations for MGTs with
MDRs.

3.1.1 Modified equivalence principles

The experimental data show that the Newtonian gravitational
force on a body is proportional to its inertial mass. This sup-
ports a fundamental idea that all bodies and fields are influ-
enced in a similar “manner” by gravity and, indeed, point
masses, light and small perturbations of scalar fields fall pre-
cisely in the same way in gravitational fields. Considering
that motion of probing bodies and linearized interactions of
classical fields are independent of the nature of the bodies,
the paths of freely falling bodies define a preferred set of
lines on a curved spacetime which locally is just as in SRT.

The world lines of freely falling bodies and small perturba-
tions of electromagnetic/scalar fields in a gravitational field
in GR are simply described by the geodesics of the (curved)
spacetime metric. This suggests the possibility of ascrib-
ing the properties of the gravitational field to the structure
of spacetime itself. Because MDRs on a Minkowski space-
time can be associated with metrics of type g;;(y) and/or
gij(p), when GR is defined by metrics of type g;;(x), we
suppose that one can be formulated a generalized equiva-
lence principle on some generalized Finsler spacetimes with
metrics of type Fg; j(x,y) and/or Fg, j(x, p). For general
coordinate transforms, we can omit the left label F and con-
sider structures on certain (co)tangent spaces. Such locally
anisotropic metrics can be related to Hessians (8) and/or (6)
of respective nonlinear quadratic elements (4) and/or (5) and
corresponding N-connection structures. For small values of
an indicator of MDRs (1), we suppose that it is possible to
preserve the ideas of Universality of Free Fall (and simi-
lar Universality of the Gravitational Redshift, or propagation
of small perturbations of light/scalar fields etc.) in a Finsler—
Lagrange—Hamilton type generalized spacetime modelled by
data (N, g, D) and/or ( 'N, 'g, 'D). These geometric data
can be stated on nonholonomic manifolds with fibred struc-
ture and/or on nonholonomic (co)tangent bundles. In such
phase spaces (i.e. locally anisotropic spacetime models), the
paths of freely falling bodies, and propagation of small per-
turbations of scalar fields, are not usual geodesics but certain
nonlinear (semi-spray) curves which are different from auto-
parallels of D and/or 'D. For models of generalized Finsler
spacetimes, it is important to study the geometry of semi-
spray configurations (15) as N-connection generalizations
of auto-parallel and geodesic curves. In certain sense, semi-
sprays characterize via N-connections and respective adapted
nonholonomic variables certain MDRs effects on “physical
paths” of test particles.

Working with metric compatible d-connections D and/or
'D completely determined by some metric and N-connection
structures on respective (co)tangent bundles, we can establish
a 1-1 correspondence between one type of preferred curves
(semi-sprays) and respective auto-parallels. This way, we can
encode equivalently the experimental (curvature deviation)
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data with respect to both types of congruences. To derive
important physical equations for a Finsler gravitational
and matter fields, covariant derivatives determined by a d-
connection D, or 'D, must be considered. For canonical con-
structions, we can work equivalently ﬁ or ﬁ and respective
generalizations for locally anisotropic spinors, see details in
Refs. [147,152,153,159,161,162,167,169,170,179]. Such a
d-connection can be used for defining generalized Dirac, d’
Alembert and other physically important operators which
allows us to compute the light and particle propagation and
study classical and quantum field interactions in a Finsler
spacetime and/or Lagrange—Hamilton type modifications.

Principle 3.1 (Modified equivalence principle) In a MGT
with an indicator w (x', E, _p>, m; £p) (1) modeling MDRs
and LIVs on (co)tangent bundles, there are nonholonomic
variables when point masses, light and small perturbations
of scalar fields fall precisely in the same way in an effective
phase spacetime along semi-spray configurations (15) and
associated auto-parallel equations on TV or T*V. Using
canonical nonholonomic variables, we can describe such
a phase space by L-dual Lagrange and Hamilton geome-
tries (35) with respective canonical d-connections (ﬁ and
D, or 'D and 'l~)). Such canonical and/or almost symplectic
d-connections are related by canonical distortion relations
(34) and can be used for definition of N-adapted covariant
derivative operators, Dirac operators for locally anisotropic
spinors and/or almost symplectic models.

This Principle can be formulated in more general forms
for nonholonomic configurations modeling noncommutative
and/or supersymmetric MGTs for various types of metric,
frame and (non)linear connection structures derived for cer-
tain fundamental geometric objects on generalized/analogous
manifolds and (co)tangent bundles. Geometrically, such pos-
sibilities are motivated by the fact that complex/
noncommutative/supersymmetric configurations can be mod-
elled by certain nonholonomic distributions on real mani-
folds and/or bundle spaces. In results, we suppose that it
can be provided always a self-consistent physical interpreta-
tion for theories constructed as nonholonomic deformations
of GR and standard particle physics models. Such geomet-
ric models can be elaborated for some general data of type
(N, g, D) which in explicit and non-explicit form involve cer-
tain MDRs (1) or in other nonlinear and non-quadratic forms.

3.1.2 Generalized Mach principles

The Einstein gravity theory was formulated using a second
much less precise set of ideas which goes under the name of
Mach*s principle. There were involved various philosophi-
cal speculations on properties of space and time (in unified
forms, spacetime) aether and associated models of contin-
uum mechanics for such an aether media. For elaborating
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pre—relativity notions of spacetime and classical field the-
ories and in STR, the geometric structure of spacetime is
given once and for all and is considered to be unaffected by
the material bodies or certain field interactions that may be
present. In particular, it was stated that the properties of “iner-
tial motion” and “non-rotating” space are not influenced by
matter and fields in the universe.

Mach supposed that all matter in the universe (in a modern
fashion, we can include nonlinear effective/observational/
dark matter field interactions and evolution of certain mate-
rial and fundamental fields configurations) should contribute
to the local definition of “non-acceleration” and ‘“non-
rotating” of the fundamental space (in a modern approach,
spacetime) structure. Einstein accepted this idea and was
strongly motivated to formulate a theory where, unlike SRT,
the spacetime geometry is influenced by the presence of
matter. Such purposes were achieved only partially in GR:
the influence of matter was encoded in the right part of the
Einstein equations via energy—momentum tensor. In a more
general context, we can consider certain effective sources
determined cumulatively by generalized connections and/or
generic off-diagonal configurations and nonholonomic grav-
itational distributions and non-minimal coupling to mat-
ter fields, for stochastic/kinetic processes, geometric evo-
lution processes etc. Such generalized and nonholonomic
spacetime configurations encode more richer geometric vac-
uum and nonvacuum structures with nontrivial topology,
(non)linear symmetries and modified conservation laws. For
such off-diagonal gravitational solutions and related space-
time models, the Max principle is extended to a more general
set of ideas (still less precise) defining a gravitational space-
time ether with rich structure encoding nonlinear processes
(relativistic evolutions and nonlinear interactions) and non-
holonomic configurations.

For generalized Finsler gravity theories on (co)tangent
bundles derived from classical and/or quantum MDRs, we
have to formulate a generalized Mach principle stating that
the quantum energy and (non)linear fluctuations, motion
of (effective) particles and fields, background metrics and
generalized hidden/(non)linear symmetries should all con-
tribute to the spacetime structure modifying it into a nonholo-
nomic phase space. We argue that generalizations to effec-
tive phase spaces extending the concept of Lorentz mani-
folds is motivated by the presence of the quantum world,
by kinetic and diffusion processes, by nonlinear off-diagonal
interactions and modified symmetries. The influence of such
(non)linear effects is encoded both into the nonholonomic
structure for data (N, g, D) and/or ( 'N, 'g, 'D) and into
energy—momentum tensors for matter fields embedded self-
consistently in a spacetime aether characterized additionally
by velocity, and/or momentum, coordinates y* and/or p,.
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Principle 3.2 (Generalized Mach principle) An effective
phase space with MDRs on (co) tangent bundles (i.e. a
locally anisotropic spacetime modelled as a generalized
Finsler—Lagrange—Hamilton geometry) encodes contribu-
tions of nonlinear and nonholonomic distortion structures
andvarious types of evolution effects, nonlinear interactions,
kinetic and diffusion processes, various nonlinear models
with complex structure, nonlinear information, fractional
derivative and pattern structure process etc. This consists ina
less precise concept of generalized Finsler—Mach principles
which can be stated by additional assumptions for explicit
models with respective MDRs; certain canonical geometric
data and distortions of (N, g, D) and/or ('N, 'g, 'D); and
effective sources of matter.

Such Finsler-Lagrange—Hamilton generalized Mach prin-
ciples can be re-formulated, restricted and/or generalized in
various forms encoding not only MDRs but also character-
izing information processes, complex structures, evolutions
of ecological and biophysical systems. The Principle 3.2
can be correlated to more richer geometric structures (com-
mutative and noncommutative ones, algebroids and gerbes,
supersymmetric generalizations) in classical and quantum
theories, for models of geometric flows, off-diagonal solu-
tions quasi-periodic and/or pattern forming structures etc.
Various examples of such constructions determined by exact
and parametric solutions were provided and studied in Refs.
[8,9,12,23,69,170,179,191,195,206].

3.1.3 Principle of general covariance and equivalent
geometrization of MGTs

In GR and various classes of MGTs, the principle of gen-
eral covariance is a natural consequence of geometrization of
physical and spacetime models constructed on (pseudo) Rie-
mannian manifolds and metric—affine generalizations. Such
theories can be constructed for different Lagrange densities
for gravitational and matter fields. This reflects the idea that
the geometric and physical constructions should not depend
on the type of frames of reference (observers) and coordinate
transforms (local parameterizations on some finite, or infi-
nite, regions consisting an atlas covering a spacetime mani-
fold/bundle spaces).

In the definitions of Finsler-Lagrange—Hamilton geome-
tries, the concept of manifold is also involved. For cer-
tain classes of MGTs extending the GR to models with
MDRs, such manifolds are stated as Lorentz (co)tangent
bundle spaces. So, the principles of general covariance has
to be extended on some nonholonomic V, TV and/or T*V.
The N-connection structures for such spaces can be defined
in coordinate-free forms encoding MDRs. We can intro-
duce certain “preferred” N-adapted systems of reference
and respective coordinate transforms when a fixed h—v —

decomposition is prescribed. This does not prohibit us to state
respective principles of general covariance for total phase
spaces endowed with geometric structures (N, g, D) and/or
('N, 'g, 'D).Forinstance, itis possible to define certain non-
holonomic canonical variables modeling a pseudo Hamilton
space, (H : 'g, 'N, ']~)), but such a model can be re-defined
by general frame/coordinate transforms and nonholonomic
deformations into some general data ('N, 'g, 'D), or certain
special ones with equivalent almost symplectic variables or
allowing a general integration of certain physical important
systems of PDE:s.

Using not N-adapted frame transforms, all canonical and
noncanonical N-adapted constructions can be transformed
into certain general frame/coordinate ones, with “hidden”
N-connection structures (encoding MDRs) on V', TV and/or
T*V.In such cases, we can work without boldface symbols
and use generic off-diagonal metrics parameterized, respec-
tively, in the forms (20).

The principle of general covariance in GR and MGTs
with MDRs can be generalized to a principle of equiva-
lent geometrization of gravitational theories in terms
of canonical geometric/physical objects (35) and respec-
tive distortion relations (34). Distortions of all geometric and
physical objects can be computed following geometric meth-
ods (see, for instance, Theorem 2.6). Such distortions of will
modify, for instance, the definition of (effective) sources of
matter fields and corresponding gravitational an matter filed
equations (as we shall prove in next section). Nevertheless,
a “dictionary and instructions” for an equivalent geometric
formulation of different physical models can be always for-
mulated if the distortions are uniquely determined by the
N-connection and metric structures. For instance, perform-
ing general nonholonomic frame transforms and deforma-
tions, we can geometrize physical theories in general form in
terms of geometric objects without “tilde”, “hats” etc and
work with N-adapted, or not N-adapted, (non)holonomic
variables. Such theories can be related to GR and certain
classes of MGTs induced on base manifolds via nonholo-
nomic constraints on distortions, when Z = O and/or 'Z = 0,
respectively, for Djz—o =~ V and/or ‘D‘ z—o =~ 'V,
even D # V and/or 'D # 'V. For canonical nonholo-
nomic distortions, we have to impose conditions of type (36)
and/or (37).

Principle 3.3 (General covariance and equivalent nonholo-
nomic geometrizations of gravitational theories) On (co) tan-
gent Lorentz bundles and nonholonomic Lorentz manifolds
endowed with N-connection structures (encoding MDRs), it
is possible to model geometrically MGTs following princi-
ples of general covariance on total and base space manifolds.
Using (canonical) distortions such geometric models can be
described equivalently for different classes of nonholonomic
variables and (nonlinear) connection structures. Imposing
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additional nonholonomic constraints, we can define/extract
Levi-Civita configurations with generic off-diagonal metrics.

Above formulated Principles 3.1, 3.2, and 3.3 may involve
in a less explicit form various possible multi-connection
structures of MGTs with MDRs. In a more general con-
text, considering generic off-diagonal metrics and d-metrics
encoding certain background configurations (for instance,
like in bi-metric theories, with massive gravitons etc.), we
can construct MGTs with multi-metric structures.

3.1.4 Principles of analogy of N-adapted operators defined
by d-metrics and d-connections

Minimal extensions of GR to (co)tangent Lorentz bundles
for models embedding MDRs can be performed by analogy
with constructions in pseudo-Riemann geometry (in a more
general case, we can use metric—affine and vierbein/spinor
geometry) but applying nonholonomic geometric methods
and performing respective N-adapted variational, differen-
tial, and integral calculi. In abstract forms, there are consid-
ered respective Lagrange densities

LN(u), g(u), D@); )
= SL(N,g, D)+ "L(N,g,D; 4¢) onTV;
LONCw), 'g('w), 'DCu); Lo('u)
= SL('N, 'g, ' D)+ ™L('N, 'g, 'D; A¢) on T*V.
(39)

In these formulas, 8L and jg L are corresponding (on total
spaces of tangent and cotangent bundles) Lagrange densities
for modified gravitational fields without matter fields. One
can be constructed certain effective matter sources and mod-
eled matter field interactions via distortions of d-connections
and/or by introduced bi-/multi-metric structures. Such effec-
tive matter terms can be included as additional terms to stan-
dard matter Lagrange densities. The respective matter fields
A and 14¢ are labeled by an abstract index A. Such fields
can be scalar, gauge, fermion/spinor fields etc. The explicit
constructions of "' £ and/or "L depend on the type of the-
ories and phenomenological models we have to elaborate
and should be support by a set of experimental and/or obser-
vational data which are considered for verifying respective
MGTs. In general, (effective) matter Lagrangians are func-
tionals of certain background geometric data (N, g, D) and/or
('N, 'g, 'D) and encode certain fundamental constants and
MDRs, prescribe (non)linear symmetries, assumptions on
topological configurations etc. We shall analyze some exam-
ples of £ and £ in Sect. 3.2.

Formulas (39) can be written in canonical variables for
respective Finsler/~Lagrange/~Hamilton spaces, i.e. with
“tilde” values like ’"E(ﬁ,'g, D; A¢~>) and necessary type
tildes on other Lagrange densities and geometric objects.
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Such variables allow and effective Lagrange—Hamilton inter-
pretation of the total phase space/spacetime model, which
is convenient for elaborating quantum models. Using gen-
eral frame and/or coordinate transforms (i.e. Principle 3.3),
“tilde” Lagrange densities can be transformed into “hat”
Lagrange densities (in such variables, it is possible to decou-
ple and integrate physically important PDEs in general
forms). For additional nonholonomic zero distortion condi-
tions, it is possible to extract LC-configurations and project
on base Lorentz manifolds in order to find new classes
of exact solutions in GR encoding certain information, for
instance, about MDRs.

Principle 3.4 (Principle of analogy of Lagrange densities)
Gravitational and matter field Lagrange densities considered
in GR and MGTs for metric—affine manifolds admit gener-
alizations on (co)tangent Lorentz bundles using nonholo-
nomic variables and deformations of fundamental geomet-
ric/physical objects which can be transformed into canon-
ical ones modeling pseudo Finsler/-Lagrange/~Hamilton
geometries.

We note that Principles 3.1-3.4 can be formulated in gen-
eral form for any d-connection D and/ 'D (it can be met-
ric compatible or not) related in a unique form via dis-
tortion relations to any prescribed LC-connection, canon-
ical d-connection, or almost symplectic connection struc-
tures. There are a number of conceptual and technical dif-
ficulties in elaborating physical theories with metric non-
compatible connections. For instance, there are problems
with definition of spinors and Dirac operators, conservation
laws, geometric flows etc., see details in Refs. [185,193,194]
and references therein. Nevertheless, self-consistent phys-
ical models can be constructed for any well-defined geo-
metrical data generating metric compatible configurations
and then distorting in certain unique forms the fundamen-
tal physical objects and equations. For more general geo-
metric models and MGTSs, we can consider theories with
multi-/metric/connection/measure structures. Certain real-
istic geometric data (35), distortions (34), and Lagrange
densities (39) should be fixed in such forms which can
be verified by experimental/observational/theoretical sim-
ulation data. Such theories for nonholonomic manifolds
and tangent bundles (for instance, T*V) were studied
in details, see some series of geometric and mathemat-
ical physics works with applications in modern cosmol-
ogy and astrophysics [9,13,68,70,117,134,144,145,153,
161,169,175,176,179,181,185,193,194,199-202,207]. The
constructions be can elaborated (generalized, re-defined) on
“dual” spaces like T*V following certain £-dual, almost
symplectic and other type principles.
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3.2 Lagrange densities and energy—momentum tensors on
(co)tangent Lorentz bundles

In this subsection, we state the conventions on Lagrange
densities and derive respective energy—momentum tensors
which will be used for formulating three classes of MGTs
with MDRs. We shall consider arbitrary metric compatible
d-connections D and/or 'D.

3.2.1 Scalar fields on (co)tangent Lorentz bundles

Let us consider examples of Lagrange densities for matter
fields with locally anisotropic interactions:

Convention 3.1 (Scalar fields with MDRs on (co)tangent
bundles) Scalar field interactions on phase spaces with
MDRs can be modeled by Lagrange densities

me = ?L(g:p) on TV and/or

"e=?L('g; \¢) onT*V (40)

depending only on d-metrics, g, and/or ' 2P (this allows
to construct exact off-diagonal solutions in explicit form, see
discussion and references for Direction 10 in Appendix B of
[208], and on scalar fields Aqb = ¢(u) and ‘A¢> = ¢('u).

Performing a N-adapted variational calculus, we prove

Consequence 3.1 (Energy—momentum d-tensors for locally
anisotropic interacting scalar fields) The symmetric energy—
momentum d-tensors for scalar fields on (co)tangent bundles
derived for respective Lagrange densities (40) are computed
for possible h- and v-, or cv-splitting

op 2 3G/l ¢£)_¢,£g L300
o V18uvl sgep °r sgop
Nop 2 8(/Im0l D)
Y Vgl sgl
o ep, o 2 5(/Igwml °L) |
N T o R
op 2 3/TEwl VO
| Lap /ﬁ ‘gMV| S'g“ﬂ
5 L)
= ?ngaﬁ+2 8|g|oz/3
o 2 8Tl TO)
i LA m 5|gij
_ eqa___ 2 3Gl )
‘ V1'guvl 8 '8ap
:} (41)

Scalar field equations can be re-defined by an additional
3+1 splitting on base and fiber spaces as certain moving equa-
tions for ideal fluids. For instance, we can consider a veloc-
ity v, d-vector subjected to the conditions v,v* = 1 and
v¥Dgv, = 0, for ?L£ := —p in a corresponding local
N-adapted frame.

Remark 3.1 (Energy—momentum d-tensors for locally aniso-
tropic perfect liquids) Conventionally, the sources (41) can be
approximated as a perfect liquid matter (we use a left abstract
index “1” for liquid) with respective density and pressure

leg = (p + p)VaVg — p8ap and/or
Tap = ("0 + 'P) 'Va 'Vg = 'p 'gap. 42)

It should be noted that formulas (41) do not depend in
explicit form on d-connections. Nevertheless, such depen-
dencies should be considered if ¢ (1) and/or ¢ ( 'u) are sub-
jected to the conditions to be solutions of some general-
ized scalar field equations (Klein—Gordon, or other types, for
instance, certain hydrodynamical equations). Using respec-
tive nonholonomic variables, we can re-write these formulas
in terms of “tilde/hat” variables.

3.2.2 Lagrange densities for Einstein—Yang—Mills—Higgs
systems with MDRs

Various models of locally anisotropic gravitational and gauge
field interactions on modified Finsler spaces, nonholonomic
Lorentz manifolds, and higher order Lagrange—Hamilton
spaces were studied in a series of our works [10,18,23,142—
146,153,161,169,173,175,190,203,209]. That research was
on twistor and spinor methods for generalized geometries,
with nearly autoparallel maps and generalized connections,
for formulating models of Finsler gravity as gauge like theo-
ries, for supersymmetric generalizations and, more recently,
superstring and supergravity theories. Those directions were
related also to the theory of spinors in Finsler—Lagrange—
Hamilton spaces and modelling such configurations, for
instance, in brane gravity, with Clifford-algebroids, non-
commutative Finsler geometry and locally anisotropic Dirac
operators [147,159,162,179]. We shall present a detailed
study of Einstein-Dirac systems with MDRs resulting in
Clifford—Lagrange—Hamilton geometries, and constructed
exact solutions and quantum models, in other partner works
(see also Directions 3 and 7, respectively, in Appendix B of
[208]. In this subsection, we define Lagrange densities and
corresponding energy—momentum tensors for certain mod-
els of Yang—Mills-Higgs, YMH, interactions on (co)tangent
Lorentz bundles.

Let us consider YMH systems modeled on nonholo-
nomic Lorentz manifolds, or on their (co)tangent bundles,
by respective geometric data (N, g, D; Al (u), ¢>‘3 (1)) and/or
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('N, 'g, 'D; 'A%u), '¢%( 'u)) for matter fields parame-
terized in the form ¢ = [A%(u), $?(u)] and/or ¢ =
(LAY 'u), ,¢‘v‘( 'u)]. In these formulas, the non-Abelian
gauge fields A = {A%(u)} can be defined by a 1-form
A = Asdu® when coefficients Ag take values in a Lie alge-
bra A of so-called internal gauge symmetries. The index a
labels elements of such Lie algebra and related groups. For
A = su(2) and base Minkowski spaces, we obtain standard
Yang—Mills fields. The scalar-multiplet (complex) field P9 is
called the Higgs field. The model is elaborated on (co)tangent
bundles with respective 1-forms

A= AgduS, for As = A‘grg,, and
‘A= 'Asdu®, for'As = 'Alq,

where t; are generators of \A. We consider summation on
repeating indices ¢ in all cases “up-low”, “up-up”, and “low-
low”. In this work, we consider gauge theories with the
same gauge group both for tangent and cotangent bundles,
extended to respective vector bundles with typical fibers and

respective adjoint representations of Lie algebra of A.

Convention 3.2 (Covariant derivatives of gauge fields in
(co)tangent bundles) The non-Abelian gauge fields (on
(co)tangent bundles enabled with respective metric compat-
ible d-connections D and 'D) define covariant derivatives in
the associated vector bundles,

Ds =Ds +ie[As, ] and/or 'Ds = 'Ds+iel['As, -],

where ¢é is the coupling constant, i2=—1, and [+, -] is used
for the commutator.

We note that such values should be written with “hat”
or “tilde” symbols if the phase space d-connections are of
respective type, for instance, ﬁg = ]35 + ié[K(;, -]. All
formulas derived with “hat/tilde” operators are labeled by
“hat/tilde” symbols.

By a standard differential form calculus, we prove

Definition 3.1 -Theorem (Strengths of gauge fields in curved
phase spaces) The d-vector fields As and 'A,, are charac-
terised by respective curvatures
Fpu :=DgA; — D Ag + ié[Aﬂ, Aul
'"Fpu = 'Dg'A, — 'D,Ag +ié['Ag, 'ALl (43)
Following Principle 3.4, we formulate:

Convention 3.3 (Lagrange densities for YMH interactions
on (co)tangent Lorentz bundles) Non-Abelian gauge—Higgs,
YMH, interactions on phase spaces with MDRs can be mod-
eled by Lagrange densities

1 . .
AL = — 7 F, and

1 . . .
Hr = —5(Dug) (D¢ = V(g");
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AL = —;‘ A ']-'l‘iv and
1 . o v
Hp - =5 "Dy ¢ ('DH 1Y) — V( 9, (44)

were V(@) = JA(gl, 1> — ¢"¢D? and 'V('¢7)
%):(5?0@{70] — ‘Ea '¢‘3)2 are respective potentials for nonlin-
ear interactions of Higgs fields with corresponding vacuum

. ; —i g ; i | g
expectations |¢>["0]|2 = P1oP[0) and | ‘¢["0]|2 = 1) 'P[0
and self-integration constant .

Above considered constants can be related to physical
ones, for instance, in the Weinberg—Salam theory when
vacuum expectation of the Higgs field which determines a
masse T M = \/)7\77; the mass of W-bosons is W M = ev.

Performing a N-adapted variational calculus, we prove

Consequence 3.2 (Energy—momentum d-tensors for YMH
fields with locally anisotropic interactions) The symmetric
energy—momentum d-tensors for scalar fields on (co)tangent
bundles derived for respective Lagrange densities (44) are
computed for locally anisotropic gauge fields,

ATﬂ5 = 2(g“vf§uf§5 - %gﬂs}"‘z““]—"; ) and

v

. . 1 . .
|AT/38 =2 |gHV |]_—/§1H IF\?(S _ Z \g}% | Fany ‘}—Zv)v (45)

and for Higgs fields,

Hpgs = % (7955& Dﬁ¢& + Dﬁ? D)
—igﬁm?’ D¢ — g5V (¢%);

Ty = 3 (DF D'+ Dy E Dy 9

_% ‘gﬂé "Dy \6‘1 1D |¢é _ ‘gﬂé V( \¢Zt) (46)

Similar formulas can be derived for models of quan-
tum chromodynamics, QCD, with MDRs generalized on
(co)tangent Lorentz bundles. In this work, we omit geometric
constructions with the gauge Lie algebra A = su(3) result-
ing in locally anisotropic interactions of gluonic and quark
fields on (co)tangent Lorentz bundles.

3.2.3 Actions for minimal MDR—extensions of GR and
YMH theories

In GR, the Lagrange density for gravitational fields is postu-
lated in the form

Pl ys2
M
8L(gij. V) =

R, (47)

where R is the Ricci scalar of a Lorentz manifold V and
the Planck mass /M is determined by the Newton con-
stant V¥ G. In the units NYG = 1/167 with /M =
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@ NewG)=1/2 = /2, one states a constant x for the mat-
ter source Yy; = x(T;; — %gijT), where T := g"/T;;, for

5(/lIgijl ML) . .
Ty = ——~— L,Jl) with Lagrange density of matter
1gijl g

fields L. The Einstein equations with the Ricci tensor for
Va

Rij = ij, (48)

can be derived by a variational calculus on V using action
S= 884 "S =1 [d*x/Igij|(L+"L).

Letus consider on 7'V ametric compatible d-connection D
completely defined by a d-metric g and with the property that
for respective nonholonomic constraints Dj7—¢ = V (such
constraints may be non-integrable and or may not have a
smooth limit). Following Principle 3.4, we consider that min-
imal extensions of GR to tangent Lorentz bundles enabled
with data (N, g, D) should be determined by nonholonomi-
cally deformed Einstein equations of type

1
Rup[D] =T gy :=x (Taﬂ - EgaﬁT) ;

where T := g*¥T,z and the constant x may take different
values on h- and v-subspaces (this should be defined by exper-
imental/observational data). Similar geometric formulas can
be written on T*V, for instance, as 'Rgg[ 'D] = 'Tg,
(when splitting into /- and cv -components can be consid-
ered with, or not, L-duality and with additional requests on
possible almost symplectic symmetries, see below necessary
details).

Summarizing Lagrange densities introduced in previous
subsections, we formulate:

Principle 3.5 -Convention (Actions for minimally MDR-
modified EYMH systems) Locally anisotropic interactions
of Einstein gauge and Higgs fields on (co)tangent Lorentz
bundles (endowed with metric compatible d-connections
uniquely determined by respective d-metric structures and
admitting nonholonomic variables for distinguishing Finsler—
Lagrange—Hamilton phase spaces) are described by respec-
tive actions

S=85+98+ A5+ 1S

1
= 1o | duVlgasl(BL + L+ AL+ Moy

S=25+%s+ As+ s

1
=1 | o sl (BL+ 7L+ AL+ Hp),
where 8L := ‘R = g¥Ry[D], 8L = R =

‘gaﬁ 'Regl 'D] and the Lagrange densities for scalar-YMH
fields are given by corresponding formulas (40) and (44).

Performing a N-adapted variational calculus and sum-
marizing previous Consequences on energy—momentum d-
tensors, we prove

Consequence 3.3 (Sources for locally anisotropic YMH
fields) On (co)tangent Lorentz bundles, minimal modifica-
tions of scalar and YMH systems encoding MDRs are char-
acterized by respective sources

7Y gy = ( HTup — 5 8 |HT) ,

where the energy—momentum tensors are given respectively
by formulas (41), (45) and (46).

In GR, the sources of matter fields are approximated (for
instance, for quantum fluctuations or certain summarized
contributions) to (effective) cosmological constants. Follow-
ing Principle 3.4, we consider

Assumption 3.1 (Effective cosmological constants for
locally anisotropic YMH sources) Generalized sources for
matter fields (including possible effective sources defined by
distortion tensors of d-connections) can be approximated by
respective cosmological constants A and/or |A,

B — AsB B
T},_ASV and/or Y7

= ‘Aaﬂy,

when, correspondingly, T g, = ¢y gy + Ay gy + Hy By
and/or Y g, = ?T gy + IAT gy + IHT gy~ considering
that such sources are subjected to relations of additivity,

A= %A+ AA+ 7A andlor

A=A+ AN+ HA. 49)

We note that all such cosmological constants can be zero,
positive, or negative. They may compensate each other and
result in (fictive) vacuum configurations, or take different
values in certain /-, v-, and/or cv -subspaces.

Remark 3.2 (Effective cosmological constants as nonlin-
ear superpositions of associated cosmological constants for
locally anisotropic YMH fields) In certain MGTs with quasi-
classical corrections, renormalizations, nonlinear MDRs,
nonlinear symmetries of generating functions and/or (effec-
tive) sources, nonlinear vacuum polarizations etc., one
can be considered nonlinear functionals of type A =
A[PA, AN, HA]andlor A = A[?A, AN, HA]L We
do not study such theories in this work.
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3.2.4 Actions for MGTs with massive gravitons, bi-metric
structures and MDRs

A large class of MGTs are constructed with modifications
of Lagrange density (47) to a general functional depend-
ing on Ricci scalar, torsion, energy—momentum and other
fundamental geometric/physical values. For instance, there
are considered modifications of type $L(g;;,V) ~® R —
f(R), where R is a scalar curvature determined by the LC-
connection or a generalized metric—affine connection. Dur-
ing last 20 years, it was elaborated a paradigm of f-modified
gravity theories attempting to explain the universe accelera-
tion and solve the dark energy and dark matter problems. In
a more general context, this paradigm involves theories with
infra—red (IR) modifications of the GR theory and ultra-violet
(UV) corrections expected to be of quantum origin. Vari-
ous studies were on understanding possible physical impli-
cations of the massive spin—2 theory, MDRs and LIVs, gen-
eralized Finsler gravity theories, commutative and noncom-
mutative/nonassociative and/or supersymmetric generaliza-
tions etc. A series of recent our works [68,69,198-203,207]
is devoted to elaborating nonholonomic f-modified the-
ories and study of cosmological implications of massive
gravity and bi-metric gravity with local anisotropy. Such
constructions were inspired by papers on holonomic mod-
els of nonlinear massive gravitational theories including
f(R) modifications [24,76,106]. Here we emphasize that
locally (an)isotropic massive gravity theories contain the
benefits of the so-called dRGT model and generalizations,
see [113,114,135,210], being free of ghost modes [22,47].
Advantages are those that by tuning the f(R) and various
MDR-deformed functionals (for holonomic configurations,
see reviews [26, 105]), we can relate locally anisotropic black
hole solutions, stabilize cosmological backgrounds, elabo-
rate various types of locally anisotropic cosmological evolu-
tion scenarios and provide for MGTs an unified description
of inflation and late-time acceleration etc. In this paper, we
geometrize specific models of massive f(R) gravity with
MDRs and (see subsections below) the corresponding sys-
tems of modified gravitational equations.

We extend the approaches elaborated in [68,69,200-
203,207] and [24,76,106] and consider theories on nonholo-
nomic (co)tangent Lorentz bundles enabled with a common
N-connection structure N for two d-metrics where g = {gup)
is a dynamical d-metric and q = {qqg} is a non-dynamical
reference metric. For Lagrange theories, we work with a met-
ric compatible d-connection D (instead of the LC—connection
V) and a corresponding Ricci scalar sR both computed for
g. On a base Lorentz manifold, the nonzero graviton mass is
denoted by w, the constant M p is the Planck mass and such
constants are lifted with re-definition on fiber space (on total
phase spaces, such values have to be defined experimentally).
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For elaborating Hamilton massive and bi-metric gravity
theories, there are considered corresponding values: a N-
connection structure N for g = { 8,4} being the dynamical
d-metricand ,q = {,qqg} being the so-called non-dynamical
reference (fiducial) d-metric, when respective \D and (R are
computed for ,g. Let us consider the d-tensor

() = () (), e
(Vara) =((Vera) (Vema))

a

ie. (\/ |g_1 \(I) = (\/h( |g_1 |Q)7\/U( |g_1 |Q)>s and/or
<\/ g ! \‘1) = <\/h( g1 |4),\/CU( T |¢I)> ,

where the square roots are computed respectively for g/ q,,
and/or ,g"* q,,, when

i Y y
<\/g_lq> (‘/g_lq> =¢"qjk. and
j k
4

> ip hej (x/h(glq)) =3—1r\h(g”'q)

k=0

—det/h(g'q):
a b
(\/8161> <\/8161> = g’qpe, and
b c
4

> EBe <\/v(g‘q)> =3—1tryv(g~'g)

k=0

—dety/v(g~1q);
and/or <\/.g“ lq)l <\/.g‘1 q>j = 8" qjk. and
j k

4 o

> B e (Jh( g ! q)) =3—r\/h( g7 q)

k=0

b c

<\/ g .q) <\/ 8! .q) = ga» ¢"", and

b
4

a

Iczwﬁ cvi€} (\/ cv( \g_l Q)) =3- ”’\/ cv( |g_l q)

0
— det v cv( |871 q);

for respective coefficients ],; B, ﬁ B, ’,‘“ B and ’;vl B. The values

ey, veg and/or pep, oy ep canbe computed correspondingly

=~

for any d-tensor X/, = (X! j» X9) with trace
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X= "X+ "X=["X]1+["X] :=tr(X)
=tr("X) +1r('X) = X" = X', + X4,

and/or any d-tensor ,X“p =(X Xab) with trace

jv |

X= "X+ "X =["X1+["X]:=1r( X)
=tr('X)+1r(X) = Xt = X'+ X1

Such d-tensors are parameterized as “lifts” of certain h-

objects to v -objects and/or cv-objects. The respective for-
mulas are:

for e;(X): el "X)=1,e1( "X)= "X,
2e( "X) = "X*—[ "X,
6es( "Xy = "x3 -3 "x[ "x?1+2[ "X,
2464( hX) — hX4_6 hX2[ hX2]+3[ hX2]2
+8 X[ "X —6[ "X*); ¢("X) =0
for k > 4;
for ye;(X):  eo( 'X)=1l,e1( 'X) = "X,
2e2( 'X) = VX2 —[ VX?], 6e3( 'X)
vx3 3 vx[ X214+ 2[ 'X3].

2des( VX) = vx4 6 X[ VX2 +3[ X2
+8 VX[ VX1 -6 VX' ep( X) =0
for & > 4;
for pey((X): e "X)=1,e1( "Xx)= "X,
2e( 1X) = TX*—[ X%, 6e3( |'X)
X3 =3 XX 2L X,
2es( "Xy = "x*—6 "X X+ 3] "x?)?

+8 1XLIX] =6l X' e (1X) =0
for k > 4;

for coiep( X): e PX)=1e1( X)= "X,

2e2( "X) = X2~ VX%, Ges( {'X)
v v 3 v v 2 3
= X3 -3 X[ X +2[ VX7,
24e4( IC‘Ux) — ‘ch4 -6 ICUXZ[ ‘ch2]+3[ |ch2]2

+8 VX[ VX3 —6[ “UX;
e X) =0,k > 4.

Following [24,68,69,76,106,200-203,207], we state for
locally anisotropic gravity theories the

Principle 3.6 -Convention (Actions for MDR-modified
massive gravity theories) We introduce the mass—deformed
scalar curvatures

R:= (R+2 "u? (3—trm—det h(g‘q)>
22 (3ot ) e s )

and/or

\R = .IS‘R+2 ‘hMZ (3—lr\/h(|g_1 1q) _det\/h( \g_l |5])>

+2 UuP@ —tryfev( g7l g)
—det/cv(,g71 q)),

with (MDR-induced, or other variants of N-connection

: h h : v
structures) horizontal, " w and/or | |1, and (co)vertical, * 1
cv . . . .
and ', masses for locally anisotropic gravitons in respec-
tive phase spaces. Using such values, we construct respec-
tive f -modified Lagrange densities, 8L = f(R) and/or
%M L = f(,R), and respective actions on cotangent Lorentz
bundles,

1
S = gﬂS_‘_ "ns Zﬁfauwlgalﬂ(guﬁ"'mﬁ)
T

and/or
1
_ 8u meg __ ~ | | gu m
S =S+ 5_1671 8 uy/ '8l L+TL),

where the Lagrange densities for matter fields, ™ L and/or
"L, can be taken in as for scalar fields (40), or generalized
to YMH and/or fermion configurations.

Performing a N-adapted variational calculus for above
introduced Lagrange densities and actions for massive grav-
ity models, with 'f(R) := df(R)/dR and _I'f(\R) =
d if( ,Ié)/d ‘Ié, we prove:

Consequence 3.4 (Sources in massive gravity with MDRs
on (co)tangent bundles) On (co)tangent Lorentz bundles,
massive gravity models encoding MDRs are characterized
by respective (effective) sources

fMT;LU — gﬂ‘r'uv + fY;LV +m Yll,l)y

gﬂT/w = (gMTijv S 4p),  where

sy = =2 "’ [3 —tr\[h(g71q)
1
+§ det \/h(g_ICI))] 8gij
hMZ -1
5 ik <\/h(g‘1q))
ik
+qik [(\/h(g_lq)) :| ,
j
T [3 —tryv(g~"q)

1
+5 det v(g‘q))} gij

k

J

c

b
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f D2 'f D,D, 't
f S v B
Yo = (21f It )g“”+ T
1
Y = W’"TW; (50)
P

or (for sources) on cotangent bundles

fu
| T;Lv = gu’r;w + fTMV+ (e Y7
z\guTuv = (gMle’ | Tab) where
Sy = =2 I [3 - "\/m
1
+5 detm)] 8ij
hMZ -1
J
_17k
J
siapab — _p cvy2 [3 — tr\/CU(lg—)

1
+§ det m)] 18ij

cv'u2 —1 b
+ |2 |61ac |:<\/ cv( \g_l |‘])) :|
c
70
+ ‘qac |:(\/ cv( |g_1 |(*I)> :| ,
c
21 1
f _ £ D= 't ‘DM D, ‘f.
Y = (Z_}f - T) 8Buy + i
1
m m
YT = — Ty (29
| ZMP |

In 4-d massive MGTs [24,76,106], there are considered
values of type S’ =g 77[ jeksf e;s/, with the Minkowski
metric N = diag(l 1,1, —-1), generated by four scalar

Stiikelberg fields s/, which is necessary for restoring the dif-
feomorphism invariance. Similar values can be considered
for fiducial fields q = {,qug} and/or q = { qup} for mas-
sive and bi-metric locally anisotropic theories when the St
iikelberg fields are introduced also on (co)fiber spaces, see
details and examples in [68,200-203,207].

The sources of (effective) matter fields are approximated
(for instance, for quantum fluctuations or certain summarized
contributions) to (effective) cosmological constants. Follow-
ing Principle 3.4, we consider

@ Springer

Assumption 3.2 (Effective cosmological constants in mas-
sive gravity on (co)tangent bundles) Generalized sources for
matter fields (including possible effective sources defined by
distortion tensors of d-connections) can be approximated by
respective cosmological constants A and/or | A,

fuB —  f B franB
”Ty— "A(SV and/or 7YY

f
=" AP,
when, correspondingly, /4 Y ;,, = $4Y i+ I Xy + " Y
and/or If”T,w = ‘g“T,w + IfT,w + "™, considering that
such sources are related to relations of additivity,

FHA = $HA + FA 4 "Aandlor THA = A
+/A+ A

Bi-metric and/or massive gravity LC—configurations can
be extracted by imposing additional (non)holonomic con-
straints when D7—_y — V.

3.2.5 Lagrange densities for short-range locally
anisotropic gravity with MDRs and LIV

In [11] (see also references therein), a systematic study of
LIVs for dimensions dim > 5 (with explicit formulas for a
class of effective MGTs of dimensions dim = 4, 5, 6) was
initiated. In this subsection, we elaborate on toys models
of Lagrange—Hamilton gravity theories of dimension dim =
343, with signatures of local metrics of type (++—; ++—),
and indices running values i, j,...=1,2,3and a, b, ... =
4,5,6,fora = (i,a),B=(j,b),...

Following Principle 3.4, we change the LC—connection
into a metric compatible d-connection completely deter-
mined by the same metric structure and formulate:

Principle 3.7 -Convention (Lagrange densities for MDR-
modified short-range gravity and LIV) The Lagrange den-
sities of underlying actions for effective gravity theory with
short-range, sr, locally anisotropic interactions with spon-
taneous LIVs are determined by such sums:

STL=8L4+ "L+ kL4 VL, where

8L =R =2A, "L ="L see (40),

ke =is for the dynamics of fields triggering

spontaneous LIVs

lv£: lv£[4]+ lv£[5]+ lv£[6]+.“ , for
e = ng,Jy5<x YR7[D],
IU£[5] = aﬁy&r (x, y)DtRaﬁya
1 l
2 aﬁyérv

+ Kaﬂyérw\e (x, y)RTM RV, (52)

Wee = (x,y) (D'D” + D"D") R*7?
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and/or
L= 84+ e+ FLtre
L =R—2,A, "L ="L see (40),
f‘ﬁ = is for the dynamics of fields triggering
spontaneous LIVs
VL= "L+ "Lis+ ("Ligy - for

{U£[4] |K(5‘3]),5(X7 ) ‘Raﬂyﬁ[ D],
{U‘C[S] = |K53]y5r(xz p) D° |Raﬂy87
1
{Uﬁlﬁl — 5 \thgz%JySrv(xv P) ( |Dr ‘DU + |Du ‘Dr) IRaﬁys

2 6] 10 )
=+ Kaﬁygkag(x’ p) R™ |Raﬂy s
where Kk-coefficients are taken as in [11] (see also references

therein) but with h—v- and/or h—cv-decompositions.

The h-components of above formulas transform into holo-
nomic ones for D7_y — V.

Performing respective N-adapted variational calculuses
for actions

ST — g8+n18+ k8+lv8

1
= ——— [ su/Igapl(BL+ "L+ *L+ 'L
167TGdim./u I8upl(PL+ "L+ "L+ L)
and/or

S =ES4 S+ {S+ 'S
1
- | s I gpymp kp lv£7
167Z|Gdim/ uy1'8apl (FLA TL+ LA L)

with conventional Newton constants Ggim, and 'Ggim one
proves:

Consequence 3.5 (Effective matter energy—momentum d-
tensors in short-range gravity on (co)tangent Lorentz bun-
dles) The symmetric energy—momentum d-tensors for matter
fields and sources induced by LIV on (co)tangent bundles
derived for respective Lagrange densities (52) are computed

S'Tps = "Tps + " Tgs, for "Tgs as in (41) and

1 1 ~
lv o =
= E — —uE
= Gam. P T T6nGam M
1—[6] PN IZ)
+87TGdim Ka(uvpys® € R
LT @ Braydet
+27TGdim Ka(uvpysec® € R ’
and/or
S'Tgs = "Tps + " Tgs, for "Tgs as in (41) and
1 1 ~
lv =ap =
Tgs = ———"'5 " 'E ——'u'E
| ﬁé‘ 47_[ lGdim a(ﬂ”)ﬁ 167TGd1m ny
a 1—[6] ¥ |e/3 \R}’6

87 Gy | @un)Bys

L e

12 B Yot
+—27T‘Gdim Kaupysec € € R (53)

The coefficients and operators in (53) are computed in
certain forms which are similar to formula (6) in [11]®
when 0 — e* and V — D on TV.Here we note that
the double dual of the Riemannian d-tensor Eug,s :=
%eaﬂx r€psuv R MY the symmetrization of indices is denoted
by “(aB)” and a is an integration constant. Similar values for
T*V are labeled by “'”.

The sources of (effective) matter fields are approximated
(for instance, for quantum fluctuations or certain summarized
contributions) to (effective) cosmological constants. Follow-
ing Principle 3.4, we consider

Assumption 3.3 (Effective cosmological constants for
short-range locally anisotropic interactions) Generalized
(effective) sources for matter and fields (including possi-
ble effective sources defined by distortion tensors of d-
connections) in short-range locally anisotropic gravity can
be approximated by respective cosmological constants *" A
and/or " A, when effective sources

sranB __ sr B sranB __ sr B
Ty_ ASV and/or ITV—‘ASV

are taken respectively *"Y,, = "Y,, + l”le and/or
Yy = " Yo + fUT,w, for relations of additivity

1 1
A="A+"A and TA="A+ VA,

Short-range LC-configurations (in general, parameterized
by off-diagonal metrics) can be extracted by imposing addi-
tional (non)holonomic constraints when D7—_y — V. The
constructions can be performed in similar forms, for instance,
if respective energy—momentum tensors for YMH fields are
considered instead of ™Tpgs, or there are studied massive
gravity effects and bi-metric structures.

3.2.6 The equations of motion and nonholonomic
conservation laws for (effective) sources

The conservation laws
. 1 .
% (Rij - ngR) =0 and ViTU =0 (54)

in GR are consequences of the Bianchi relations. Such laws
involve the idea that the Einstein’s equations actually imply
the geodesic hypothesis when the world lines of test bodies
are geodesics of the spacetime metric. However, it should be
noted that bodies which are “large” enough to feel the tidal
forces of the gravitational field will deviate from geodesic
motion. Such deviations may be caused by internal symme-
tries and (non)linear interactions and certain nonholonomic
constraints on the dynamics of gravitational and matter fields.

8 Readers may see that paper and references therein for details on sym-
metries of LIV coefficients, definition of operators and sources etc.
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Nevertheless, the equations of motion of “large and/or com-
plex structure” bodies in GR also can be found from the
condition V,T% = 0.

For a Finsler d-connection D (even it can be chosen to met-
ric compatible, Dagﬁy = 0), we have D, T* =# 0, which
is a consequence of non-symmetry of the Ricci and Einstein
d-tensors; see explanations for formulas (30) and (31) and
Definition-Theorems 2.9 and generalized Bianchi identities.
Such a property is also related to nonholonomic constraints
on the dynamics of Finsler gravitational fields. It is not sur-
prising that the “covariant divergence” of (effective) matter
sources does not vanish even for canonical d-connections D
and/or D (on nonholonomic manifolds and/or (co)tangent
bundles) see formulas (32) and (33). In such cases, the con-
servation law became more sophisticate because of nonholo-
nomic constraints and differences between the autoparallels
of D and/or 'D and nonlinear geodesic (semi-spray) equa-
tions (15). Nevertheless it is possible to compute effective
nonholonomic tidal forces of locally anisotropic gravitational
fields using distorting relations of type D = V —Z (28), see
Lemma 2.2 and, for canonical distortions, formulas (34).

Assumption 3.4 (Energy—-momentum d-tensors for (non)
massive gravity theories on (co)tangent Lorentz bundles)
The (effective) energy momentum d-tensors on (co)tangent
Lorentz bundles are defined by all possible components (41),
(45), (46), (50), (51) and (53) constructed by respective geo-
metric principles and N-adapted variational calculuses,

Top = *Tap + “Top + "Tap + 8 Top
+ Top + "Tap + ...
Top = "Top+ ATop+ TTap + HTop
+ Top+ PTup+ ... (55)

Dots in these formulas contain possible other types
contributions of locally anisotropic spinor fields, from
(super) string gravity, noncommutative deformations, frac-
tional, diffusion and kinetic processes etc., see examples
in Refs. [13,23,68-70,147,149,150,152,153,161,167,169,
170,173,179,189,192,206,207,209] . The sources in such
works were considered in the bulk for nonholonomic man-
ifolds and tangent bundles. But analogy, the constructions
can re-defined for cotangent Lorentz bundles. In this work,
we omit cumbersome formulas for the Bianchi identities and
conservation laws with nonholonomic constraints written in
variables (g, N, D) and/or ('g, 'N, 'D).

We note that the Bianchi identities for some data (g, N,ﬁ)
can be computed by introducing nonholonomic deformations
V = D—Z into the standard relation}s\V"‘ (Rop— %galg R)=0
and V¥Tyg = 0. Even, in general, D*Tyg = Qg # 0, such
a Qglg. N]is completely defined by the d-metric and chosen
N-connection structure. This is a consequence of the non-
holonomic structure. A similar “problem” exists in Lagrange
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mechanics with non-integrable constraints when the standard
conservation laws do not hold true. A new class of effective
variables can be introduced using Lagrange multiples.

Principle 3.8 (Nonholonomic deformations by MDRs of
conservation laws on (co)tangent Lorentz bundles) Pos-
tulating for respective LC-connections V and/or 'V on
(co)tangent Lorentz bundles conservation laws of type

1
A% (Ralg - EgaﬂR> =0 and V*T,g =0; and/or

1

we define unique nonholonomic conservation laws
DTop = Qp #£0 andlor 'D* 'Tup = 'Qp #0,  (56)

with d-tensors Qg and/or 'Qg uniquely determined by
respective data with unique distortion relations (g, N,D =
V —Z) and/or ('g, 'N, 'D= "'V — 'Z).

Nonholonomic deformations of conservation laws (56) are
similar to modifications of conservation laws in nonholo-
nomic Lagrange and/or Hamilton mechanics. The motion
of probing point particles in phase spaces with MDRs are
modeled by canonical data for Finsler-Lagrange—Hamilton
spaces with respective d-connections (32) and (33) and
canonical distortions (34). Nonholonomic canonical defor-
mations ﬁ“’ix/g = (~)ﬁ # 0 and ‘D "T‘aﬁ = '6,3 # 0 are
considered also in almost symplectic classical and (defor-
mation) quantum models, commutative and noncommuta-
tive, of gravity. Finally, we note that Principle 3.8 has to be
re-formulated and stated in model dependent forms for theo-
ries with multi-metric structure, in metric—affine spaces with
nontrivial nonmetricity, nonlocal interactions etc.

4 Modified field equations with MDRs and
Lagrange—Hamilton gravity

The goal of this section is to formulate the gravitational and
matter field equations in MGTs with MDRs and LIVs. Such
systems of nonlinear PDEs can be derived in abstract and/or
N-adapted (in general, coordinate free) forms following Prin-
ciples 3.3 and 3.4 and applying geometric and variational
methods using Lagrange densities on (co)tangent Lorentz
bundles postulated in previous section.

4.1 Generalized Einstein equations on nonholonomic
(co)tangent Lorentz bundles

We shall analyse modified gravitational field equations for
d-metrics (13) and (14) (see Assumption 2.3 and equiv-
alent to off-diagonal metrics (20)) and metric compati-
ble d-connections. The (effective) matter sources Y g, =
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#(Top — %gmgT) and/or 'Y g, = x('Tep — % ‘8o 'T)
are determined by energy—momentum d-tensors of type (55),
see Assumption 3.4. Such sources are defined both by dis-
tortion d-tensors of respective d-connections and generalized
energy—momentum d-tensors.

4.1.1 Nonholonomic Einstein equations with general
(effective) sources

Following a N-adapted variational calculus for data (T'V,
N, g, D) and source Yg,,, we motivate and prove:

Principle 4.1 -Theorem (Nonholonomic modifications of
Einstein equations on tangent Lorentz bundles) The modified
Einstein equations for the Ricci d-tensor (30) corresponding
to some metric compatible data (g, Dg = 0) and an effective
source Y g, computed for (55) on a tangent Lorentz bundle
TV are

Ryg[D] = Yop. (57)

Considering distortion d-tensors, D — D=D + Z deter-
mined in unique forms by data (N, g) following certain geo-
metric principles, the equations (57) can be re-defined for
metric non-compatible d-connections, ﬁg # 0. Such theo-
ries determined by different types of (effective) sources Yop,
and examples of exact solutions, are studied in details in
monograph [161]. Using frame transforms g,g = e"‘oie’3 ﬁ: 8u'p'
and distortion relations of type (34), we prove

Corollary 4.1 (Canonical form of locally anisotropic Ein-
stein equations on tangent bundles) The modified Einstein
equations (57) on TV can be written equivalently for a
canonical d-connection D

Rus[D] = Yop. (58)

Imposing additional (non)holonomic constraints for zero
torsion, Dﬁ':() =V, we extract LC-configurations when

T=o0. (59)

The equations (59) can be solved in exact form for con-
figurations subjected to the conditions (36).

Remark 4.1 (Nonholonomic Lagrange—Finsler variables for
locally anisotropic Einstein equations) The system of non-
linear PDEs (57) and (59) can be considered on (pseudo)
Riemannian manifolds with nonholonomic fibered 4 -and
v-structures. Prescribing N-connection structures, we can
reformulate the GR theory and the Einstein equations using
data (g, V) and/or in terms of nonholonomic variables with
data (g,D).

Variables (g,ﬁ) with corresponding parameterizations
for 2 4+ 2 4+ 2 + --- splitting of spacetimes and phase

spaces play a preferred role in elaborating the AFDM
for decoupling and integrating (modified) Einstein equa-
tions, see Refs. [9,68,69,151,153,158-165,168,169,188—
190,196,198,199,201-203]. Certain classes of generic off-
diagonal solutions can be constructed in explicit form for the
canonical data (g, ]3) [182,183,186] and (in almost Kéhler
variables) for performing deformation quantization of grav-
ity theories [8,172,174,177,184,197,206].

4.1.2 Gravitational equations on Lorentz cotangent bundles

For geometric data (T*V, 'N, 'g, 'D) and prescribed source
'Y gy, we derive

Principle 4.2 -Theorem (Nonholonomic modifications of
Einstein equations on cotangent Lorentz bundles) On T*V,
the modified Einstein equations, when ('g, 'D'g = 0), an
effective source 'Yqp is computed for d-tensors (55) and
Ricci d-tensor (31) are

‘Raﬂ[ ‘D] = ap - (60)

Considering distortion d-tensors, 'D — D= 'D + 'Z
and nonholonomic deformations, we prove

Corollary 4.2 (Canonical form of locally anisotropic Ein-
stein equations on cotangent bundles) The analog of modified
Einstein equations (57) on TV can be derived on T*V for a
canonical d-connection ‘ﬁ,

Rupl Dl = 'Top. 61)

We extract LC-configurations from solutions of such
equations if there are imposed additional zero-torsion con-
straints (37).

Remark 4.2 (Nonholonomic Hamilton—Cartan variables for
locally anisotropic Einstein equations) The system of non-
linear PDEs (60) can be re-written equivalently in terms
of nonholonomic canonical variables with data ('g, 'ﬁ), or
('g, ‘]3). Such equations can be used for constructing generic
off-diagonal solutions, or for performing deformation quan-
tization.

In general, theories with gravitational field equations (57)
are different from theories determined by systems of type (60)
because the corresponding phase spaces and d-connection
and d-metric structures are different. Some subclasses of
solutions can be transformed mutually in equivalent forms
for different theories if canonical variables with L-duality
are introduced.

4.2 Modified Einstein equations for pseudo
Lagrange—Hamilton spaces

Using geometric and N-adapted variational methods, we

can derive gravitational field equations for different mod-
els of Lagrange and Hamilton gravity theory respectively
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constructed on (co)tangent Lorentz bundles. If the geomet-
ric objects and fundamental field equations are written in
canonical variables, there are obtained systems of nonlinear
PDEs containing forth and higher order partial derivatives of
generating functions. This makes technically impossible to
find physically important exact solutions using standard ana-
lytic methods for some reduced nonlinear systems on ODEs.
Nevertheless, we can construct very general classes of exact
solutions in Einstein—Finsler/~Lagrange/~Hamilton theories
considering nonholonomic frame transforms and distortion
of connections to certain configurations with decoupling and
general integrability properties. In this section, the gravi-
tational field equations are formulated in terms of canon-
ical, i.e. “tilde”, variables because such equations can be
re-defined in straightforward forms in almost symplectic
variables. Such almost Kéhler models are important for
geometric/deformation quantization and in order to study
locally anisotropic kinetic and stochastic processes on rel-
ativistic curved spacetimes and phase space generalizations
[148,153-155,172,174,177,178,184,195,197].

4.2.1 Einstein—Finsler—Lagrange gravity

We consider canonical d-metric, g (18), N-connection, N,
see Theorem (2.2), and d-connection, D (32), structures (all
defined by a Lagrange generating function L, which can be
determined by a MDR (1)). Possible sources ’?ﬁy are pre-
scribed by energy—momentum d-tensors of type (55), see
Assumption 3.4, being compatible and constructed by anal-
ogy to GR but for such canonical data. In such nonholonomic
variables, the Principle-Theorem 4.1 transforms into

Principle 4.3 -Corollary (Generalized canonical Einstein
equations for Lagrange gravity) For the canonical data
(Z, ﬁ,@, ﬁ), the gravitational field equations for the
Einstein—Lagrange phase spaces are

Rus[D] = Yop. (62)

Considering distortion d-tensors of type D>D=D+
Z determined in unique forms by (N, g), the equation (62)
can be re-defined for metric non-compatible d-connections,
13§ = 0. For instance, we can consider the Chern [16,41] or
Berwald [20,21] d-connections. Such constructions result in
systems of PDEs which can not be integrated in general forms
and with ambiguities in introducing spinor fields on pseudo
Lagrange spaces, see critics [185,194]. It is more efficient
to consider frame transforms correlated to distortions to the
canonical d-connection, D-D=D + Z.Tn result, we prove

Corollary 4.3 (A general integrable canonical form of
locally anisotropic Einstein equations on tangent bundles)
The modified Einstein equations (62) for Einstein—Lagrange
phase spaces can be written equivalently using the canon-
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ical d-connection ﬁ see Eq. (58), with re-defined sources,
Tﬂy — Tﬂy.

We conclude that the gravitational field equations for the
Einstein—Lagrange phase space geometry can be transformed
into certain systems of nonlinear PDEs with decoupling prop-
erties. In particular, such transforms can be considered for
pseudo Finsler spaces with L = F? as in Example 2.4.

4.2.2 Einstein—Hamilton gravity

The constructions for Einstein—Lagrange phase spaces can
reproduced on cotangent Lorentz bundles taking canoni-
cal data for Hamilton geometries. In result, the Principle—
Theorem 4.1 transforms into

Principle 4.4 -Corollary (Generalized canonical Einstein
equations for Hamilton gravity) For canonical data (H, N,
's, 'ﬁ), the gravitational field equations on the Einstein—
Hamilton phase spaces are written

‘Rosl DI = 'Yop. (63)

Considering frame transforms distortions to the canonical
d-connection, 'D— 'D = 'D 4+ 'Z, we prove

Corollary 4.4 (A general integrable canonical form of
locally anisotropic Einstein equations on cotangent bundles)
The modified Einstein equations (63) for Einstein—Hamilton
phase spaces can be written equivalently in terms of the
canonical d-connection 'ﬁ, see Eq. (61), with re-defined
sources, ' By — '8 By-

We conclude that the gravitational field equations for the
Einstein—Hamilton phase space geometry can be transformed
into certain systems of nonlinear PDEs with decoupling prop-
erties. Examples of exact solutions are discussed in Direc-
tions 10-12, 18, 19 in Appendix B of [208]. Such solutions
have been constructed by applying the AFDM for the case
Einstein—Lagrange spaces and various modifications on non-
holonomic manifolds. In dual form, the method can be devel-
oped for (modified) Einstein—Hamilton spaces.

Remark 4.3 ((Non)equivalence of Einstein—Lagrange and
Einstein—Hamilton theories) The models of locally anisotr-
opic gravity defined by equations (62) and (63) are different
because they are derived on different phase spaces and for
different types of d-metric and d-connection structures. Nev-
ertheless, the geometric and physical data can be transformed
equivalently from a tangent bundle to a cotangent bundle, and
inversely, if a well-defined L-duality map (9) is considered.

Finally, we note that the locally anisotropic gravitational
field equations (63) (with d-metric coefficients transformed
into almost symplectic structures) can be studied in defor-
mation quantization theories as in Refs. [8,161].
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4.3 MDRs and the Einstein—Yang—Mills—Higgs equations

We can define such equations in abstract geometric form
by extending the analogy Principle 3.4 both to Lagrange
densities and gravitational and matter field equations on
(co)tangent Lorentz bundles. All formulas can be derived
alternatively applying the Principle-Convention 3.5 and Con-
sequence 3.3.

4.3.1 EYMH systems on pseudo Lagrange spaces

Modeling locally anisotropic gravitational and matter fields
interactions on TV determined by geometric and physi-

cal data (N, g, D; Ad (u), gbé (u)) with a metric compatible
d-connection D, we prove following geometric and/or N-
adapted variational methods:

Theorem 4.1 (MDR-modified EYMH equations on pseudo
Lagrange phase spaces) Nonholonomic gravitational — scalar-
gauge fields—Higgs field interactions on tangent Lorentz bun-
dles can be described by such a system of nonlinear PDEs:

Rys[Dl = ?Yop + 2 Yop + T4,
. 1 - .
D (y/|glF) = Eww , DY¢ ],
DDy, (/Iglo) = 1/ Igll (16> — ¢

with sources determined by the energy—momentum tensors
(41), (45) and (46).

(64)

Equation (64) can be integrated in general off-diagonal
forms for configurations with D = D and, if neces-
sary, for further restrictions to ﬁﬁ’:o = V. Exact clas-
sical and quantum solutions with generalized connections
and for nonholonomic configurations have been studied
in a series of works [143,144,146,152,153,156,157,161,
166,169,180, 181]. Recently, such solutions were found for
locally anisotropic interactions of gravitational fields and
effective matter fields, EYMH systems in GR and string grav-
ity, for nonholonomic quantization of gauge models of grav-
ity etc., see [23,190,198,203,209] and references therein. We
note also that having constructed a class of solutions for Ditis
possible to define nonholonomic configurations with D gen-
erating new classes of solutions via nonholonomic transforms
and distorting nonlinear and linear connections. In such case,
contributions of MDRs can be computed in explicit form.

4.3.2 EYMH systems on pseudo Hamilton spaces

On cotangent Lorentz bundles, we consider the data ('N, 'g,
'D; 'A%(u), '¢“('u)). Applying the analogy Principle 3.4,
we formulate and prove

Theorem 4.2 (MDR-modified EYMH equations on pseudo
Hamilton phase spaces) Nonholonomic gravitational — scalar-
gauge fields—Higgs field interactions on cotangent Lorentz
bundles are defined by a system of nonlinear PDEs with
“dual” geometric data:

Rupl DI = "Top+ Yup + HY0p,

|
. 1 — M
Du(V1'gl F) = Siey/ el '$7, D9, (65)
DDy gl '¢h) = i1 gl by — B o) 9,
with sources determined by the “dual” formulas for energy—
momentum tensors (41), (45) and (46). For simplicity, we

can consider the same interaction constants for the h-, v-,
and cv-subspaces.

The solutions for EYMH systems with MDRs on tan-
gent Lorentz bundles and nonholonomic manifolds in GR
and extra dimensions can be re-defined in cotangent bun-
dle variables for L-dual (9) configurations when D—> D
are correlated with respective nonholonomic transforms and
distortions for D — 'D. The symmetries of systems (65)
encode more general symplectomorphisms of d-connection
structures (for Hamilton systems) which usually are not con-
sidered for Lagrange type phase space models.

4.4 Massive and bi-metric MGTs as Lagrange—Hamilton
geometries

We speculated on geometric principles for formulating
MGTs with f-deformations, massive gravitons, bi-metric
structures and MDRs in Sect. 3.2.4. In this subsection, we
provide main Theorems on such modifications of the Einstein
equations on nonholonomic (co)tangent Lorentz bundles.

4.4.1 Generalized Einstein equations with massive
graviton on tangent Lorentz bundles

Following a N-adapted variational calculus for the action in
Principle-Convention 3.6, we prove

Theorem 4.3 (MDR-modified massive bi-metric gravity on
tangent Lorentz bundles) Nonholonomic f-modified and/or
massive gravitational with bi-metric configurations on tan-
gent Lorentz bundles are defined by such a system of nonlin-
ear PDEs:

Ros[Dl = H0, = 8% + Y0 + ™Yy, (66)
with sources determined by (50).

The equations (66) can be integrated following the AFDM
for configurations withD = D and nonholonomic constraints
for extracting LC-configurations, ﬁﬁ':o = V. A series of
locally anisotropic wormhole and cosmological solutions
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were constructed and analyzed in Refs. [200-202,207]. The
right side of (66) can be completed with additional sources
EYMH systems and/or modifications from string gravity, for
nonholonomic quantization of gauge models of gravity etc.
like we generated cosmological and black hole like solutions
in [23,190,198,203,209] and references therein. Such gener-
alizations can be defined following Assumption 3.1 when the
contributions of gauge and Higgs fields can be approximated
with respect to N-adapted frames to certain effective cos-
mological constants. In general frame/coordinate systems,
such solutions are generic off-diagonal and for generalized
connections with coefficients depending, in principle, on all
phase space coordinated. In order to compute contributions
of MDRs, we have to re-define the physical equations and
solutions for ﬁ-conﬁgurations.

4.4.2 Massive gravitational equations on cotangent
Lorentz bundles

On cotangent Lorentz bundles, the main result for f-modified
massive/bi-metric gravity is stated by

Theorem 4.4 (MDR-modified massive bi-metric gravity
on cotangent Lorentz bundles) Nonholonomic f-modified
and/or massive gravitational with bi-metric configurations
on tangent Lorentz bundles are defined by such a system of
nonlinear PDEs:

Rop[ DI = /Yy = Yy + I+ Xy, (67)
with sources determined by (51).

Examples of exact solutions for the system (67) are dis-
cussed in Directions 10, 18, 19 in Appendix B of [208]. Such
solutions exist at least as L-dual ones which have been con-
structed for (66).

4.5 Short-range locally anisotropic gravity

In this section, we formulate the gravitational filed equa-
tions for short-range gravitational toy models determined by
MDRs with LIVs on (co)tangent Lorentz bundles with total
phase spaces of 3+3 dimension. Such models are constructed
following the Principle-Convention 3.7.

4.5.1 Field equations for short-range gravity with MDRs

Following a N-adapted variational calculus of actions (52)
on tangent bundle, we prove

Theorem 4.5 (Gravitational field equations for short-range

gravity with MDR and LIV on tangent bundles) Nonholo-
nomic short-range gravitational equations on tangent bun-
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dles determined by MDRs and LIVs can be written in the
form

Rps[D] = *"Yps = "Yps + " Ygs, (68)

with sources determined by energy—momentum d-tensors
(53).

Examples of exact solutions for the system (68) for D = D
will be provided in our future partner works. Such solu-
tions consist some particular 6-d examples (with short range
effective source and associated cosmological constants, see
Assumption 3.3) of 8-d and 10-d solutions constructed in
Refs. [23,68,209].

4.5.2 Field equations for short-range co-gravity with
MDRs

Following geometric methods (considering the dual of the
short range gravity equations from tangent to cotangent bun-
dles) and N-adapted variational calculus of actions (52) on
cotangent bundle, we prove

Theorem 4.6 (Gravitational field equations for short-range
gravity with MDR and LIV on cotangent bundles) Nonholo-
nomic short-range gravitational equations on cotangent bun-
dles determined by MDRs and LIVs can be written in the form

‘Raﬁ[ 'D] = ]fMT;w = ?MT;,LV + ',pr,v +|m Tp,v: (69)

with sources determined by energy—momentum d-tensors
(53) with labels “"'”.

The systems (68) and/or (69) can be extended to 8-d and
10-d phase spaces. Such black hole and cosmological type
solutions (in general, with nontrivial torsion) in Directions 18
and 19 of Appendix B in [208]. Using nonholonomic frame
transforms and distortions of d-connections, the short-range
gravitational equations and respective exact/parametric solu-
tions can be re-defined equivalently as Finsler-Lagrange—
Hamilton systems of higher order. Geometrically, such
generic off-diagonal equations are equivalent, or can be
imbedded, into certain classes of physically important solu-
tions constructed in [23,190,198,203,209] and references
therein.

4.6 Towards axiomatic formulation of MGTs with MDRs
on (co)tangent bundles

A constructive—axiomatic approach to GR was proposed in
1964 by Ehlers et al. [43] (the system of so-called EPS
axioms). It was completed with a series of conventions and
results on physically important exact solutions and funda-
mental singularity and topological censorship theorems in
gravity theories (for reviews, see monographs [48,82,104,
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213]). The concept of EPS spacetime, as a physically moti-
vated model of spacetime geometry and locally isotropic
gravitational interactions, was studied in a series of pub-
lications in the early 1970’s, see original results and refer-
ences in [97,107,110,215]. That EPS axiomatic approach
led to an “orthodox” belief that the underlying spacetime
geometry can be only pseudo-Riemannian. It resulted in the
paradigmatic concept of “Lorentzian 4—manifold” described
by a metric structure g with pseudo-Euclidean signature
(+ 4+ +—) and a corresponding unique metric compatible
and torsionless (Levi Civita) LC-connection V. It was pos-
tulated that the geometric data (g, V) are determined by a
well-defined physical solution of the Einstein equations. For
gravitational and matter field interactions, it was imposed a
local causality condition that there are preserved locally all
postulates of the special relativity theory, SRT.

All constructions in GR (on finite, or infinite, spacetime
regions) are based on a well-defined physical principle of
propagation of light along null geodesics. This way, a causal
structure for massive particles and fields can be established
if the speed of interactions is smaller than the maximal speed
of light. The EPS axiomatic formalism is not valid, and has
to be revised, for MGTs developed with the aim to explain
acceleration and dark matter and dark energy in cosmology.
Here we note that the ESP axiomatic approach has to be also
extended in order to include in the scheme QG theories with
MDRs and LIVs effects.

In this subsection, we conclude on how the axiomatic
EPS scheme can be modified and generalized for Finsler
like gravity theories. Such an approach was proposed in
Refs. [187,194] for locally anisotropic spacetimes mod-
eled on nonholonomic manifolds and vector/tangent bun-
dles and can be performed in similar forms for MGTs with
MDRs constructed on cotangent Lorentz bundles. In previ-
ous two sections, we have shown that the Lorentzian man-
ifold geometric formulation of GR can be extended on TV
and T*V for geometric data (35) defining models of gen-
eralized Einstein—Finsler/~Lagrange/~Hamilton gravity on
phase spaces with MDRs and LIVs. We proved that using
geometric and physical data for a large class of indica-
tor functionals and respective canonical nonholonomic vari-
ables, w(xi, E, _p) m;Lp) — ('g, 'N, ‘ﬁ) = (H
's, 'ﬁ, 'IN)) < [('g[ 'N], 'V)] is possible to elaborate
well-defined physical models in certain forms which are
very similar to GR. In a more general context, the approach
allows us to include in such a scheme various classes of
MGTs with MDRs. There were considered models with
multi-connection/-metric structure and motion equations for-
mulated as effective Einstein—Yang—Mills—Higgs equations
determined by equivalent geometric data (g, N, ﬁ) and/or
('g, 'N, ‘ﬁ). We argue that such gravitational and matter
field equations possess certain generalized nonlinear sym-
metries with respect to redefinition of (effective) sources and

distortion of distinguished (Finsler like) connections and fun-
damental geometric data.

Perhaps, the first attempt to formulate an axiomatic
approach to Finsler gravity theories was considered in the
early 80ths in the former URSS by Pimenov [109] in his
habilitation thesis. In parallel, it was proposed also a minimal
set of axioms for Finsler geometry due to M. Matsumoto, see
a summary of work in [92]. Those works were not devoted to
theories with multi-connection and multi-metric structures
and had not studied how a corresponding Finsler axiomatic
formalism should be related to the set of EPS axioms for
GR. Recently, we proved [187,194] that the EPS approach
can be generalized for a class of so-called Einstein—Finsler/—
Lagrange gravity theories. That geometric scheme was elab-
orated for nonholonomic deformations of fundamental geo-
metric objects, (g, V) — (g, N, ﬁ) S(L:g, N, ﬁ), work-
ing on nonholonomic manifolds, or tangent bundles, with
N-adapted splitting of total spacetime dimensions, n +m =
24+1,242,242+1,....Suchlocally anisotropic spacetimes
(phase space gravity theories) are endowed with metrics of
local pseudo-Euclidean signature and generalized Finsler
connections, when probing point mass particles and light fol-
low along semi-spray equations stating a causal structure at
least for small nonholonomic deformations. Corresponding
geometric methods and physical models were elaborated and
studied in our monographs and articles on locally anisotropic
black ellipsoid, wormhole, cosmological and other type solu-
tions, see [68,151,153,158,161,169,171,173,182,185,186,
188,198,201,203] and references therein. Various issues
on geometrization and axiomatic formulation of locally
anisotropic  relativistic/supersymmetric/noncommutative/
quantum deformed/string like/gauge like and other type
theories (including corresponding types of MDRs) were
studied in [133,134,147,149,150,152], see recent results
[23,70,117,207,209].

A set of assumptions, conventions and principles which
could be formalized into a complete system of axioms should
be formulated for a generalized Finsler like theory (as a gen-
eralized Lagrange and/or Hamilton type) must be verified by
experimental and observational data. This is a task for future
research and theoretical constructions. In next subsection, we
summarize key points and speculate only on structural blocks
which have to be elaborated in detail for respective geometric
models on tangent and/or cotangent Lorentz bundles:

4.6.1 Assumptions on metrics, nonlinear quadratic line
elements and d-metrics

Let us discuss the assumptions considered in Sect. 2.1:

Assumption 2.1 (Background quadratic elements on total
spaces of (co)tangent bundles) is important for theories with
MDRs and LIVs which have a limit to a base Lorentz
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manifold with a typical Minkowski fiber for a correspond-
ing tangent bundle.® Using nonholonomic frame transforms
and deformations of geometric structures, such background
quadratic elements are transformed into general ones on
(co)tangent Lorentz bundles. Intuitively, this assumption
allows us to elaborate a causality structure on total phase
space (at least for small nonholonomic deformations).

Assumption 2.2 (Nonlinear quadratic elements for modeling
Finsler—Lagrange—Hamilton geometries on (co)tangent bun-
dles) states a natural relation between the indicators of MDRs
and respective generalized Finsler generating functions. For
MDRs on cotangent Lorentz bundles, we can parameterize
the construction in a form when the effective Hamiltonian
can be considered as a generating function. Considering nec-
essary type nonholonomic variables, we construct Legendre
transforms to effective Lagrange generating functions. Rela-
tivistic and non-relativistic Finsler metrics can be considered
for some particular cases when certain homogeneity condi-
tions are imposed. It should be emphasized that such nonlin-
ear quadratic line elements can be transformed into (pseudo)
Riemannian ones only for very special “quadratic” configu-
rations (as in the B. Riemann habilitation thesis [115]). We
can consider some “simplified” examples of Randers type
geometries, with applications in gravity and cosmology, see
for instance, [15,61,63,127-129]. Nevertheless, a general
assumption relating indicators with generating functions and
nonlinear quadratic line elements is important for formulat-
ing an axiomatic approach to theories with MDRs.

Assumption 2.3 (d-metrics on (co)tangent Lorentz bundles)
is motivated for physical theories geometrized with linear
quadratic elements when nonlinear contributions are consid-
ered for certain small parameters, nonholonomic constraints
and certain linearizable symmetries. We are not able to con-
struct self-consistent and viable physically theories working
only with nonlinear generating functions. Sasaki lifts of geo-
metric objects from the base to total spaces (see details in
monograph [218]) allows us to define a total metric structure
completely defined by a generating (for instance, Finsler)
function. More than that, we can perform such a construc-
tion in N-adapted form and consider equivalent variants for
nonholonomic Kaluza—Klein theories. In result, the concept
of d-metric allows us to encode geometrically contributions
for MDRs into generating functions and respective quadratic
elements in frame/coordinate free forms.

Above assumptions should be completed with additional
ones for Clifford bundles with N-connections and spinor
metric structures if MDRs are considered for spinor fields
and generalized Dirac operators [147,152,153,161,167,170,
179].

9 It is not obligatory defined in a smooth form and one could be con-
sidered nonholonomic constraints and various singular structures.
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4.6.2 Geometric and physical principles for
Finsler—Lagrange—Hamilton gravity extensions

Principles 3.1-3.3 formulated in Sect. 3.1 consist a set
of main principles for extending GR to Finsler-Lagrange—
Hamilton theories. We should add the Principle 3.4 if it is
supposed that the locally anisotropic interactions of matter
fields are modelled by Lagrange densities for a gravity the-
ory with MDRs when the vacuum Finsler like gravitational
fields are supposed to be described in a variational form (with
minimal action).

Principle 3.1 (Modified equivalence principle) states that we
can extend the fundamental equivalence principle for GR
in self-consistent forms for certain classes of generalized
Finsler theories. The constructions on (co)tangent Lorentz
bundles are natural ones and allow “simplest causal” real-
izations of theories with MDRs. In such locally anisotropic
spacetimes, free propagating particles and small pertur-
bations of fields do not only follow certain (nonlinear)
geodesic equations. They are described additionally by
certain autoparallel equations which should be analyzed
together with experiments and observational data for deter-
mining which linear connection is more appropriate for
covariant derivatives. One can be constructed MGTs with
multi-metric and multi-connection structures when a linear
connection can be considered for one type of gravitational-
matter filed interactions and another type of linear connec-
tions taken for other types of matter field equations. Some
metric structures can be considered as “hidden/un-physical”
ones but one of them must be defined as the physical one. This
allows us to define a Levi-Civita connection which should be
completed with distorting tensors for respective linear con-
nections and nonholonomic frame effects. A modified equiv-
alence principle can be formulated and verified in a “minimal
form” for metric compatible linear connections which are
adapted to certain physically motivated N-connection struc-
tures. In such a case, a causality structure can be established
in a self-consistent form. It is not clear how such a principle
could be formulated for general metric noncompatible con-
nections. Nevertheless, if such a noncompatible connection
is described by a unique distortion tensor from, for instance,
the Levi-Civita connection, a modified equivalence princi-
ple can be reconsidered for certain congruences of special
classes of curves determined by distortion relations.

Principle 3.2 (Generalized Mach principle) can be realized in
more complex forms on generalized phase spaces modelled
on (co)tangent Lorentz bundles. The geometric structure of
such nonholonomic spaces is more richer and encodes more
sophisticate correlations of spacetime properties and general
locally anisotropic interactions with various noncommuta-
tive, stochastic, fractional configurations etc. In principle,
we elaborate on certain models of generalized spacetime and
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phase space aether for different types of MGTs. The approach
with nonholonomic bundles and manifolds allows us to for-
mulate theories with MDRs and LIVs. For such theories,
a generalized Mach principle can be verified by local and
global observational and experimental data.

Principle 3.3 (General covariance and equivalent nonholo-
nomic geometrizations of gravitational theories) states explic-
itly that the formulation of geometric models and physical
theories should be performed in general frame and coordi-
nate free forms. The nonholonomic and multi-connection
structures of such locally anisotropic spacetime and phase
spaces involve more sophisticated geometric constructions. If
there are distortion relations for linear connections uniquely
defined by the metric and N-connection structure, all physi-
cally viable theories must admit an equivalent reformulation
for any admissible and well-defined linear connection struc-
ture. Certain experimental/observational data may allow us
choosing a physical connection for certain classes of matter
filed interactions. Nevertheless, we shall be always able to
distort in an equivalent form the physical data if a unique
distortion connection structure can be defined. This is a con-
sequence of the fact that theories with MDRs and LIVs are
naturally geometrized on spaces with three fundamental geo-
metric objects (N-connection, d-metric and d-connection)
which is very different from (pseudo) Riemannian geome-
try determined completely by the metric structure.

Principle 3.4 (Analogy principle for Lagrange densities)
has to be considered additionally to the previous ones
if we attempt to construct variational physical models.
For instance, we can substitute the LC-connection on a
Lorentzian manifold by a metric compatible d-connection
in the total space for all respective Lagrangians in GR. This
way the constructions are naturally extended on (co)tangent
Lorentz bundles and admit a self-consistent causal formula-
tion.

Principle 3.4 has to re-formulated if spinor fields are intro-
duced into consideration, see discussions for Direction 3 in
Appendix B of [208].

4.6.3 Conventions on Lagrangians and energy—momentum
tensors on (co)tangent bundles

The conventions, principles and assumptions formulated in
Sect. 3.2 are necessary for constructing models with locally
anisotropic gravitational and matter field interactions and
MDRs in N-adapted variational form. An explicit formula-
tion of the main principles depends on the type of gravity
and matter field theory we elaborate. For certain classes of
canonical d-connections, such models can be elaborated to
be exactly integrable in some general forms and/or quantized
following methods of geometric/deformation quantization.

On scalar field interactions and MDRs:

Convention 3.1 (Scalar fields with MDRs on (co)tangent bun-
dles) is for models of gravitational and matter field inter-
actions with minimal coupling but extended on generalized
phase spaces. In a similar form, we can postulate Lagrange
densities with non-minimal coupling, complex scalar fields
etc. when corresponding Lagrangians for MGTs on some
manifolds are lifted by using Sasaki lifts with N-connections
and d-metrics on total spaces of (co)tangent bundles.

EYMH systems with MDRs on cotangent bundles:

Convention 3.2 (Covariant derivatives of gauge fields in
(co)tangent bundles) states that a metric compatible d-
connection on a phase space can be elongated by a gauge
field potential for describing interactions with gauge fields
in locally anisotropic spacetimes. In a simplest approach, we
can consider canonical d-connections on (co)tangent bundles
which allows us to integrate in some general forms respective
gravitational — gauge filed equations with MDRs.

Convention 3.3 (Lagrange densities for YMH interactions
on (co)tangent Lorentz bundles) is necessary for formulating
Yang-Mills and Higgs theories with MDRs. The construc-
tions are similar to those in GR but for respective metric com-
patible d-connection structures nonholonomically extended
on total (co)bundle spaces.

Principle-Convention 3.5 (Actions for minimally MDR-
modified EYMH systems) defines a model of locally anisotr-
opic EYMH theory with minimal coupling on generalized
Finsler-Lagrange—Hamilton spaces. MDRs and LIVs are
encoded in respective generating functions via corresponding
indicators. In a similar way, we can construct such theories to
be with non-minimal coupling, for instance, in certain limits
of (super) string theory.

Assumption 3.1 (Effective cosmological constants for locally
anisotropic YMH sources) concerns both the possibility to
construct self-dual gauge like configurations and to encode
such configurations into an effective cosmological constant.
For generalized Finsler spacetimes, this assumption allows
us to consider a new class of nonlinear symmetries for gen-
erating functions, effective matter sources and effective cos-
mological constants.

Massive gravity theories with MDRs:

Principle-Convention 3.6 (Actions for MDR-modified mas-
sive gravity theories) is necessary for formulating massive
gravity theories with MDRs and LIVs on (co)tangent Lorentz
bundles. In particular, we can model a new class of locally
anisotropic theories which similar GR on base spacetime but
extended to effective massive gravity on phase space.

Assumption 3.2 (Effective cosmological constants in massive
gravity on (co)tangent bundles) reflects the existence of a new
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class of nonlinear symmetries for generating functions and
effective sources and cosmological constants.

MDR-modified short-range gravity:

Principle-Convention 3.7 (Lagrange densities for MDR-
modified short-range gravity and LIV) is important for for-
mulating a self-consistent extension of such short-range theo-
ries on (co)tangent bundles. This allows us to construct exact
solutions in corresponding canonical variables by applying
the AFDM.

Assumption 3.3 (effective cosmological constants for short-
range locally anisotropic interactions) is based on nonlin-
ear symmetries of generating functions and effective matter
fields and cosmological constants which can introduces for
a large class of theories.

Conservation laws (effective) sources and MDRs:

The equations of motion and nonholonomic conservation
laws for (effective) sources are discussed in Sect. 3.2.6. Addi-
tionally, we conclude:

Assumption 3.4 (energy—momentum d-tensors for (non)
massive gravity theories on (co)tangent Lorentz bundles)
allows us to define such values as in GR and MGTs on metric—
affine manifolds but redefining the covariant derivatives into
respective ones on (co)tangent bundles.

Principle 3.8 (nonholonomic deformations by MDRs of con-
servation laws on (co)tangent Lorentz bundles) reflects the
properties that nonholonomic deformations and distortions
result in theories for which the covariant derivative of the
energy—momentum tensor is not zero. This is typical for non-
holonomic systems, for instance, in nonholonomic mechan-
ics when the variational problem is solved by using addi-
tional Lagrange multiples. In gravity theories constructed
on nonholonomic manifolds and/or (co)tangent bundles, this
issue is encoded into generalized Bianchi identities when
distortions of covariant derivatives result in unique effective
sources for nonzero covariant derivatives of energy momen-
tum tensor. We can define distortions to LC-configurations
resulting in effective sources which allows us to define con-
servation laws with covariant derivatives as in GR but on
(co)tangent Lorentz bundles.

4.6.4 Principles and main theorems for modified field
equations with MDRs

A series of principles stated in Sect. 4 can be formulated
and derived as some main theorems which can be proven
by respective N-adapted variational calculus for respective
actions and Lagrange densities outlined in previous subsec-
tion. Alternatively, such gravity theories can be formulated
following only geometric principles like in the original A.
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Einstein works, see details monograph [104]. For “pure” geo-
metric constructions, the Principles-Theorems/-Corollaries
and certain important Theorems discussed below can be con-
sidered as postulates for respective modified gravitational
equations.

Principle-Theorem 4.1 (Nonholonomic modifications of Ein-
stein equations on tangent Lorentz bundles) and Principle-
Theorem 4.2 (Nonholonomic modifications of Einstein equa-
tions on cotangent Lorentz bundles) can be formulated for the
gravitational field equations on corresponding (co)tangent
bundles. In general, such theories can be constructed in
terms of triples (N-connection, d-connection and d-metric)
without any assumptions on the properties of indicators
of MDRs and/or related generating functions. The mono-
graphs [153,161,169] and review [173] summarize such con-
structions for generalized Finsler and metric—affine spaces
endowed with N-connection structure.

Principle-Corollary 4.3 (generalized canonical Einstein equa-
tions for Lagrange gravity) and Principle-Corollary 4.4 (Gen-
eralized canonical Einstein equations for Hamilton grav-
ity) are considered for canonical Lagrange and/or Hamil-
ton variables which allow almost symplectic formulations.
Such systems of nonlinear PDEs are equivalent if nonsin-
gular Legendre transforms are defined. In general, such
theories are not equivalent because they are described by
different types of symmetries, different almost symplec-
tic forms and symplectomorphisms, and non-equivalent d-
connections. They have different classes of solutions and/or
noncommutative/nonassociative and supersymmetric gener-
alizations.

Theorem 4.1 (MDR-modified EYMH equations on pseudo
Lagrange phase spaces) and Theorem 4.2 (MDR-modified
EYMH equations on pseudo Hamilton phase spaces) show
how we can formulate generalizations of EYMH theories
with MDRs on pseudo Lagrange and/or Hamilton phase
spaces. The constructions can be performed in canonical non-
holonomic variables admitting decoupling and integration of
fundamental field equations; using almost symplectic forms
which is more suitable for deformation quantization; or in
locally anisotropic spinor variables which allow twistor for-
mulations and twistor quantization [143,153,161,169].

Theorem 4.3 (MDR-modified massive bi-metric gravity on
tangent Lorentz bundles) and Theorem 4.4 (MDR-modified
massive bi-metric gravity on cotangent Lorentz bundles)
derive generalized Einstein equations for massive bi-metric
gravity theories with MDRs on phase spaces. Such theories
and exact solutions have been studied recently in a series
of works [24,68,76,113,114,123,135,200-202,207,210]. In
this paper, the gravitational field equations are proven orig-
inally for bi-metric and connection structures depending on
momentum type coordinates.
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Theorem 4.5 (Gravitational field equations for short-range
gravity with MDR and LIV on tangent bundles) and Theo-
rem 4.6 (Gravitational field equations for short-range gravity
with MDR and LIV on cotangent bundles) provide proofs
how short-range gravity theories with MDRs [11] can be
geometrized on (co)tangent Lorentz bundles.

Principles analyzed in this subsection have to be extended
for new classes of nonholonomic distributions with N- and
d-connections if spinor fields and twistors are introduced
into consideration [143,161,205]. It is possible to elaborate
a N-adapted Palatini formalism [104], quasi-classical exten-
sions, noncommutative and nonassociative generalizations,
deformation quantization, gauge like gravity theories etc.,
see Refs. [32-34,37,38,42,146,147,152,156,157,159,162,
167,168,170,179,190,206].

5 Conclusions, achievements and perspectives

In this work, we have presented a unified geometric perspec-
tive on modified gravity theories, MGTs, with modified dis-
persion relations, MDRs, encoding Lorentz invariance vio-
lations, LIVs. We omitted technical aspects but attempted
to formulate an axiomatic background and elaborate on new
geometric methods, and discuss solutions to conceptual and
fundamental problems in such ways we understand them. As
this article is not intended to be a complete review of gen-
eralized Finsler geometries and applications we were able
to mention only the sources which are most relevant to our
research interests. We discussed the most important funda-
mental contributions of various international schools and
individual researchers, provided main bibliographic sources
but we should note that citations on possible applications are
not comprehensive. This work also contains original results
on geometric, variational, and axiomatic formulations of a
series of relativistic models of Hamilton-Lagrange geometry
and commutative MGTs elaborated on (co)tangent Lorentz
bundles. We emphasize that relevant historical remarks being
important for understanding the logic and motivations for
developing such directions in modern geometry and physics
are presented in Appendix B of [208] (see also there a sum-
mary of the main achievements and results, and a discussion
of open problems and perspectives).

5.1 On geometric models of MGTs with MDRs and
generalized relativistic Finsler spaces

As we have shown in Sect. 2, a large class of MGTs can
be geometrized as models of relativistic Finsler-Lagrange—
Hamilton spacetimes elaborated on nonholonomic (co)
tangent Lorentz bundles/manifolds. The fundamental geo-
metric objects (defined as d-metrics, N-connections, and d-
connections) in such generalized phase spacetimes are with

generic dependence on “velocity or momentum’” type coor-
dinates and determined by respective generating functions.
The first examples of such nonlinear quadratic linear ele-
ments (i.e. Finsler metrics which can be modelled as some
particular examples with homogeneous Lagrange generat-
ing functions (4), see also Example 2.4) was considered in
the famous habilitation thesis (B. Riemann, 1854) [115].
That author emphasized that for simplicity his research was
restricted only to geometries with linear quadratic elements
which allowed an axiomatic formulation for Riemann geom-
etry and, later, for pseudo-Riemannian (Lorentz spacetime)
geometry.

The term Finsler geometry was introduced due to
(E. Cartan, 1935), see [27] and references therein. That
monograph was devoted to further developments of locally
anisotropic geometric models proposed in (P. Finsler, 1918)
[46]. E. Cartan contributions in elaborating the fundamentals
of Finsler geometry were crucial. He understood that such a
geometry is determined not only by a (nonlinear) quadratic
line element with certain homogeneity conditions but that
there are also two other important fundamental geometric
objects. It was used in a coefficient form a new geometric
object later called the N-connection (10) and introduced in
Finsler geometry a metric compatible and N-adapted dis-
tinguished connection (the so-called Cartan d-connection).
A series of fundamental books [27-29] with definition of
bundle spaces, spinors, torsion fields and Riemann—Cartan
geometry, Pfaff forms for systems of partial differential equa-
tions, PDEs, etc. were translated in many languages and had
a substantial influence for thousands of researchers on devel-
opments of Finsler geometry by research schools in France,
Germany, the USA, Czech Republic, Romania, Hungary,
Poland, Russia, Japan, China, India, Greece, Iran, Egypt etc.

We mention here certain very important contributions to
Finsler geometry due to (L. Berwald, 1926, 1941) [20,21].
He introduced new types of N- and d-connection structures
completely determined by a semi-spray generating functions.
His d-connection is not metric compatible but also admits a
semi-spray geometric formulation in terms of certain non-
linear geodesic congruences. Here, we note that the con-
cept of N-connection is equivalent to that of (C. Ehresmann,
1955) [44]. A rigorous and original study of N-connections
in Finsler geometry was performed due to (A. Kawaguchi,
1937, 1952) [72,73].

A very important concept for geometrizing theories with
locally anisotropic interactions and/or MDRs is that of
nonholonomic manifold. Such a space is defined as a
real or complex (super) manifold with prescribed non-
integrable distributions, in particular, with N-connections,
which are very important in Finsler geometry and gener-
alizations. In certain sense, any geometric and/or physical
model involve nonholonomic structures/constraints/frames
and correspondingly adapted geometric objects and for-
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mulas. The approach was elaborated by (G. Vrdnceanu
1931, 1957) [211,212], see references therein and [19] on
relevant papers beginning 1926).19 We cite also an inde-
pendent research and similar results due to (Z. Horak,
1927) [52]. The geometry of nonholonomic manifolds may
encode and/or model via respective classes of distributions
various complex/noncommutative/supersymmetric Finsler,
Lagrange, Hamilton and other type nonholonomic spaces.
Certain methods of the geometry of nonholonomic manifold
(generalizing also various constructions in nonholonomic
mechanics and classical and quantum field theories with non-
integrable constraints) were very important for elaborating
the AFDM [153,161,169,173,185] for generating exact and
parametric solutions in MGTs.

Then, a very important contribution in Finsler geome-
try was due to (S. -S. Chern, 1948) [41]. He introduced a
new type of d-connection which is N-adapted, with zero tor-
sion, and coincides with the Levi-Civita connection on the
base manifold. But the Chern d-connection is metric non-
compatible on the total tangent bundle. Here we note that
there is also a Chern connection for complex manifolds which
is different from that in Finsler geometry. In certain sense,
Finsler—Chern spaces consist examples of the Weyl geom-
etry [214] which is defined, in general, with metric—affine
noncompatible metric and linear connection structures. In
a detailed form with various applications and noncommuta-
tive modifications, Finsler—/Lagrange—/Hamilton-affine geo-
metric and physical theories were studied both on nonholo-
nomic manifolds and (co)tangent bundles endowed with gen-
eralized Finsler like metric and N-connection structure, see
monograph [169]. Chern’s d-connection was re-discovered
by Rund [118]. That monograph played a very important
international role in the education of a new generation of
researchers on Finsler geometry and applications. Later (after
a number of Finsler books appeared in the former USSR,
Romania and R. Moldova, due to G. Asanov, A. Bejancu, R.
Miron and co-authors, S. Vacaru), it was published a series
of important geometric books developing the Finsler—Chern
geometry, see Bao et al. [16] and Shen [124] and references
therein. Those three monographs, and mentioned above E.

10 Historically, it is interesting to note that G. Vriinceanu was taught
mathematics at the University of Iasi (the first University in Romania)
and studied at G ottingen under D. Hilbert; then at Rome under Levi-
Civita; and at Paris, where he worked with E. Cartan. His PhD was
validated by an examining board consisted of 11 professors headed by
V. Volterra. He was awarded a Rockefeller scholarship to study in France
and the USA. In 1929, G. Vra nceanu was appointed as a professor at
the Cernauti University which was one of the most important (at that
time) in Romania, where he became one of the leading geometers (at
that time) in the World. At present, his name is almost not known at the
Chernivtsi State University, Ukraine. During his career as an university
professor and leading member of the Romanian Academy of Sciences,
Vranceanu published more than 300 articles in all branches of modern
geometry (till the end 1990).
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Cartan and H. Rund books, are most cited and known books
on Finsler geometry. Unfortunately, the style, methods and
results of such works written by mathematicians, and respec-
tive geometric methods, are quite sophisticated for applica-
tions in modern physics and elaborating MGTs admitting
limits to standard particle theories and GR. We had to elabo-
rate our “metric compatible” approach to relativistic gener-
alized Finsler theories, locally anisotropic gravity and cos-
mology as it was performed in [8,12,153,161,161,169,172—
174,177,184,185,197,204,206].

Experts in geometry and physics know Chern’s approach
to Finsler geometry when the quadratic conditions are not
imposed on linear quadratic elements and metric noncom-
patible d-connection structures are derived for nonlinear
quadratic elements. Some authors consider that the Chern’s
d-connection is “the most appropriate one to study such
locally anisotropic geometries and possible physical impli-
cations”.!'! We emphasize that it is a very difficult technical
task and less physically motivated to elaborate well-defined
Finsler—Chern/-Berwald (and other not metric compatible)
modifications of standard physical theories. In brief, the main
problems with applications in physics of such “noncom-
patible” geometries are those that the nonmetricity of a d-
connection does not allow a self-consistent and generally
accepted definition of spinors and Dirac operators and that
formulation of some physically motivated conservative laws
seems to be not possible. This creates a number of conceptual
and technical difficulties for constructing physically viable,
for instance, Finsler—Chern generalizations of GR; to for-
mulate locally anisotropic (super) string and brane theories,
noncommutative gravity and nonholonomic flow theories,
EYMH and Einstein-Dirac system with MDRs; to study of
locally anisotropic kinematic, stochastic and thermodynamic
processes etc. Readers may consider critics of metric non-
compatible physical models and alternative developments on
Finsler MGTs in a series of works due to S. Vacaru and co-
authors (almost all such works have been dubbed in arXiv.org
and inspirehep.net or reviewed in MathSciNet and Zentral-
blatt'?). The main conclusions of those works were that there

I For applications in physics and mechanics, it is more constructive
to elaborate (generalized) Finsler geometry models defined in a self-
consistent physical and axiomatic mathematical form for certain funda-
mental metric, nonlinear and/or linear connection structures, vierbein
and/or spinor like variables, etc. The N-adapted coefficients of such
geometric objects are with generic dependence both on some basic
spacetime coordinates and fiber (ed) type variables. We conclude that a
Finsler space can be constructed as a nonholonomic geometric model
with a nonlinear quadric line element, inducing certain fundamental
metric and/or almost symplectic structures and generalized connections
depending on velocity/momentum type coordinates on a (co)vector bun-
dle or a nonholonomic fibered manifold. In explicit form, such Finsler—
Lagrange—Hamilton theories can be elaborated for certain additional
geometric and/or physical assumptions.

12 During 1987-1995, there were a series of original publications in the
former USSR, the R. Moldova, and Romania. Here, we cite also some
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are natural extensions and/or equivalent realizations of GR
and standard theories of particle physics, and various quan-
tum models like loop quantum gravity/deformation quan-
tization/noncommutative geometry etc. In a more general
context, the constructions can be extended on (co)tangent
Lorentz bundles enabled with d-metric N-connection and
Cartan d-connection (or other types metric compatible) struc-
tures determined by MDRs and respective fundamental gen-
erating Finsler—Lagrange—Hamilton functions. The funda-
mental field and/or evolution field equations in such theo-
ries can be transformed into systems of nonlinear PDEs with
general decoupling property.

Some very influent schools on Finsler geometry, during 40
years after the second World War, were created in Japan. Such
a research on pure and applied mathematics is related to two
prominent geometers (A. Kawaguchi, 1937, 1952) [72,73]
and (M. Matsumoto, 1966, 1986) [17,91,92] and their co-
authors. In this work, we emphasized the importance of a
class of Finsler metric compatible geometric models which
can be described in terms of almost Kéhler variables, see The-
orem 2.4 (they are important for deformation and geometric
quantization [8,12,161,172,174,177,184,197,204,206]).

It should be noted that in Finsler geometry a symmetric
variant of Ricci tensor can be constructed (H. Akbar Zadeh,
1988) [1,2]). The idea was to derive such a value directly
from the fundamental generating function (Finsler metric)
and semispray equations and do not enter in the ambiguities
related to multi-connection character of such geometries. For
applications in physics, such an approach remains incom-
plete because we can not elaborate viable theories without
“covariant derivatives”, i.e. without introducing a Finsler d-
connection, on total bundle spaces (see discussions related
to formula (38)).

5.2 The physical picture of Finsler-Lagrange—Hamilton
gravity theories

The special relativity, SR, and general relativity, GR, theo-
ries have modified our understanding of causal and space-
temporal structure of classical reality in a way admitting
an axiomatic formulation but whose consequences have not
been fully explored yet. Various directions of research in QG
and, for instance, modern accelerating cosmology with DE
and DM problem result in fundamental problems on formu-
lating theories with MDRs and possible LIVs. Our explo-
ration of foundational issues for geometrizing MGTs with
MDRs give rise to the conclusion that classical and quan-
tum physical models can be described in a self-consistent
axiomatic form on (co)tangent Lorentz bundles. This way

further original and review articles and books published by Western Edi-
tors beginning 1995 [153,161,169,173,185,193,194], see references
therein and Appendix B in [208].

we have to revise a series of fundamental and conventional
physical ideas and principles for locally anisotropic phase
spaces and work with more rich geometric structures and
advanced mathematical methods. We keep a lot from a cred-
ible physical intuition which is similar to that in standard
theories of physics and do not need any drastic conceptual
elaborations, for instance, on absolutely new and different
Finsler causality and axiomatic approaches which cannot be
elaborated, in principle, for general generating functions and
indicators of MDRs. Nevertheless, various possible nonlin-
ear symmetries/classifications/conservation laws of locally
anisotropic and inhomogeneous interactions and modifica-
tions of standard theories determined by a (generalized)
Finsler metric (nonlinear quadratic element) can be encoded
into respective data for effective d-metrics, N-connections
and d-connections. We also emphasize that our approach
allows to analyze and compute explicit classical and quantum
MDRs and LIVs effects, to find exact solutions and quantize
in both perturbative and non-perturbative forms such MGTs.

The SR theory is based on the idea that the concepts
of Newton space and independent time can be unified par-
tially for physical models on a flat Minkowski spacetime
as a consequence of experimentally verified constant speed
of light and homogeneous and isotropic properties of light
propagation. This allows a self-consistent formulation of rel-
ativistic mechanics together with Maxwell electrodynam-
ics and such a unification can be realized with a respec-
tive Poincaré/Lorentz invariance both the fundamental flat
spacetime, main physical equations and respective conserva-
tion laws. The physical meaning of GR is that the concept
of curved spacetime, modelled as a Lorentz manifold, and
the gravitational field are the same entity when the causality
structure is determined in any point (for instance, along with
a light geodesic) as in SR. If any MDRs of type (1) is con-
sidered (as a modification from QG, a generalized commuta-
tive or noncommutative theory etc.), the geometric construc-
tions are naturally extended to a (co)tangent Lorentz bundle.
For elaborating such approaches, it is always invoked the
concept of a generalized spacetime aether (phase space, or
locally anisotropic spacetime) with rich geometric structure
depending both on space, time and velocity/momentum type
coordinates.

In a locally anisotropic spacetime, the fundamental con-
cepts of space and time of Newton, the Minkowski space-
time in SR with electromagnetic but without gravitational
interactions, and the GR curved spacetime (the gravitational
field, in our approach with zero MDR indicator) can be rein-
terpreted for respective configurations of locally anisotropic
gravitational and matter field in a conventional phase space.
Such a locally anisotropic picture implies also physical enti-
ties - particles, propagating dynamically and under nonholo-
nomic constraints, and perturbations of locally anisotropic
interacting real and effective fields - are not all immersed
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in a space moving in time or falling along curved pseudo-
Riemannian geodesics and/or causal curves. All they do not
live only in a (generalized) spacetime. The dynamics and
evolution of particles and field are mutually correlated (let
say, live on one another) via a locally anisotropic aether for
a nonholonomic phase space. It is a matter of convention
which type of (generalized) Finsler—Lagrange—Hamilton, or
their almost symplectic models, we use for modelling such
geometries and physical theories. This approach presents a
natural generalization of curved spacetime geometry for any
MDRs and LIVs encoded in a nonlinear quadratic element
L(x,y) (4) and/or H(x, p) (5). Such fundamental generat-
ing functions can be of any nature and with very general
nonlinear symmetries. It is not possible to formulate a self-
consistent and viable causal-axiomatic approach in terms
of general nonlinear quadratic elements (for instance, con-
sidering that they may describe certain nonlinear geodesics
with space, time, or null-like interpretation). We can elabo-
rate axiomatic approaches as in GR but for Finsler general-
ized metrics/connections/nonholonomic frames if we make
one natural assumption: for a nontrivial indicator @ of
MDRs, the dynamics and evolution of particles and field
is geometrized by respective nonholonomic structures on
(co)tangent Lorentz bundles.

5.3 What has been achieved in mathematical and
theoretical physics with Finsler methods?

The problem of formulating realistic Finsler MGTs and appli-
cations in classical and quantum physics and mechanics has
many aspects. There is a great number of important ideas,
results, and methods scattered in the literature. In this work,
we have attempted to collect the most important and perspec-
tive mathematical and theoretical physics results and geomet-
ric methods and to present an overall perspective on classical
and quantum theories with generic local anisotropy, MDRs
and LIVs. We argue that such theories can be constructed
on Lorentz manifolds with nonholonomic fibered structure
and/or on (co)tangent Lorentz bundles enabled with non-
linear connection structure. The nonholonomic geometric
scheme (with nonlinear quadratic elements and generalized
(non)linear connections can be preserved for various non-
commutative/supersymmetric/quantum/fractional etc. mod-
ifications and generalized symmetries when the Lorentz sym-
metries are restricted, modified, or generalized.

The strategy of almost 35 years research activity and
author’s points of view were both personal but also adapted
to a temporary state of art evolution of main directions in
modern mathematical and theoretical physics. The choice of
subjects was determined by own interests and skills in geom-
etry and physics but also oriented to solve important prob-
lems in modern gravity, non-standard particle physics and
modified cosmology. He apologizes to colleagues in math-
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ematics and physics for what is missing and omitted from
considerations (see Appendix B in [208] for a historical sur-
vey of achievements due to other authors, and references
therein). So much is missing and the reason was author’s
intellectual and time limits and restrictions on lengths of this
article: It is not a book and not a general or status review
report but an attempt to formulate an axiomatic unifica-
tion of main principles and results based on most impor-
tant 20 directions of research in modern Finsler MGTs and
applications.

Conventionally, main achievements on generalized Finsler
geometry and applications in modern physics correlated to
author’s research activity, experience, and important publi-
cations can be structured into Seven Strategic Directions:

1. MGTs with MDRs and LIVs and Finsler-Lagrange—
Hamilton geometry, with applications in modern cosmol-
ogy and astrophysics

2. Geometric methods for constructing exact and para-
metric off-diagonal solutions in GR, MGTs and geo-
metric flow theories

3. Geometric and almost Kéhler deformation quanti-
zation, perturmative and nonperturbative quantiza-
tion methods for models with nonlinear and/or nonholo-
nomic dynamics and locally anisotropic field interactions

4. Nonholonomic Clifford structures, spinors and twistors,
and Dirac operators for Lagrange—Hamilton and Rie-
mann
—Finsler spaces and analogous/modified gravity

5. (Non) commutative/associative Finsler geometry
and gravity related to locally anisotropic (super) string/
gravity theories

6. Kinetic, stochastic, fractional, and geometric and
statistical thermodynamical processes with local
anisotropy, classical and quantum gravity theories,
quantum geometric informatics

7. Nonholonomic geometric flow evolution, modified
Ricci solitons and field equations in supersymmetric,
commutative and noncommutative, fractional (modified)
gravity theories

In a more general context, including author’s collabo-
rations with scholars and young researchers from West-
ern Countries, Romania and R. Moldova, mentioned above
seven strategic directions are related to Twenty Main
Research Directions outlined and discussed in Appendix
B of [208] (in general, there are considered there more than
100 sub-directions of research in modern Finsler-Lagrange—
Hamilton geometry and applications). We present also a syn-
opsis of related works published by Western Editors but also
by less known (former) Editors in Eastern Europe. A part
of such works were usually reviewed in MathSciNet and
Zentralblatt, partially dubbed in arXv.org, but they are still
un-known and (in many cases) not cited correctly in mod-
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ern literature of particle physics, gravity, and cosmology and
astrophysics.

5.4 What is missing in the scheme and further perspectives

The main ambition of this work was to formulate a general
axiomatic approach to Finsler-Lagrange—Hamilton MGTs.
To elaborate and study of such classical and quantum theo-
ries is inevitable if we consider generic nonlinear interactions
and evolution models with MDRs. This results in Finsler like
generalizations of Einstein gravity, standard particle physics,
astrophysics and cosmology theories. A number of papers
involves research on locally anisotropic thermodynamics,
statistics and kinetics, and quantum information theories with
applications of a series of concepts and methods from quan-
tum mechanics, QFT, and QG. The main aspects that are still
missing or not sufficiently developed in our scheme are the
following:

1. What type of Finsler like MGTs should we elabo-
rate? MDRs arise naturally in various QG theories, for
instance, non perturbative effects dominate at the Plank
scale and yield to a discrete structure of spacetime. But
we can also consider nonlinear interactions in classical
physics with locally anisotropic stochastic and kinetic
processes, nonholonomic dynamics and evolution mod-
els. For geometric modeling of such processes, MDRs
and LIVs can be considered as certain effective ones, or
as some fundamental relations imposed by experimen-
tal/observational data. Another important question is if
Finsler like theories could solve fundamental problems of
accelerating cosmology and DE and DM physics? Hav-
ing a well-defined axiomatic of a theory (we proved that
this is possible for very general assumptions of Finsler—
Lagrange—Hamilton theories) is not enough for knowing
how to extract physics from it and provide logical and
experimental tests. What is missing is a systematic analy-
sis and experimental data which would allow us to decide
if theories with generic local anisotropy are generic quan-
tum ones, and/or for certain locally anisotropic media
(classical and/or quantum), or a respective Finsler MGT
provides a well defined approach in modern cosmology.

2. Nonholonomic (co)tangent Lorentz bundles or other type
modifications? As we shown, self-consistent axiomatic
approaches with well-defined causal structure can be nat-
urally elaborated by extending the main principles of ST
and GR. But certain interesting geometric and physical
models can be elaborated for restricted/deformed/duble
etc. linear and nonlinear symmetries. What physical
implications may have Finsler-Lagrange—Hamilton the-
ories with “very radical” modifications of the Ein-
stein/string gravity theory, quantum mechanics etc. and

how to treat such new concepts of locally anisotropic
spacetime?

. Difference between Finsler—Lagrange—Hamilton and

almost symplectic variables. In general, such variables
are described by different nonholonomic structures. For
certain well defined conditions such classical theo-
ries are equivalent. But noncommutative/nonassociative/
quantum/string/fractional/stochastic ...MGTs are pos-
itively elaborated differently for different classes of
nonholonomic variables. Such theories are described
by different Lagrangians/Hamiltonians with correspond-
ing generalized topological and geometric structures/
symmetries. In principle, we have to elaborate rigorously
on all 20 directions (and various sub-directions) outlined
in Appendix B of [208] in order to distinguish the con-
structions on (co)tangent bundles, nonholonomic mani-
folds, with effective velocity/momentum variables etc.

. Physically important solutions on (co)tangent bundles

should be constructed explicitly and distinguished in
velocity and momentum type variables, in particular, for
Hamilton like configurations. Further partner works will
be devoted to:

(a) Generalization of the AFDM for generating exact
solutions with noncommutative/nonassociative/
supersymmetric and stochastic/fractional Hamilton
like and entropic variables

(b) Exact and parametric black hole and cosmologi-
cal solutions with modified dispersions in Finsler—
Lagrange—Hamilton theories on (co)tangent Lorentz
bundles

(c) Modified dispersion relations for Einstein—Dirac sys-
tems and pseudo Finsler—Hamilton geometry on
(co)tangent Lorentz bundles

(d) Exact and parametric solutions for Einstein—Yang—
Mills—Higgs systems with modified dispersion and
pseudo Finsler—Hamilton geometry

(e) Cosmological solutions in Hamilton variables and
quantum effects

. Quantization of Finsler—Lagrange—Hamilton MGTs. At

present we have a quite well developed scheme of defor-
mation quantization of such theories. For future research,
it is very important to elaborate on

(a) Quantum (non)commutative gauge like Lagrange—
Hamilton MGTs

(b) Geometric quantization of generalized Finsler grav-
ity theory

(c) Loop Quantum Gravity, LQG, with MDRs.

(d) Perturbative and semiclassical limits of quantum
Finsler—Lagrange—Hamilton theories

. Quantum geometric informatics and computations and

generalized entropic methods, entanglement etc. con-
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sist a series of recent developments in modern infor-
matics, physics, and cosmology. Some series of works
involve nonholonomic classical and quantum geometric
methods, entropic dynamics, geometric thermodynam-
ics etc. How such constructions should be generalized
for Finsler-Lagrange—Hamilton variables?

Finally, we conclude that there are many problems that
we have to understand and then solve in order to get cred-
ible, viable and physically important theories of locally
anisotropic spacetime and gravitational and matter field
interactions, nonholonomic evolution processes, quantiza-
tion and cosmological applications. The author of this article
hopes that some readers that have followed the formulated
axiomatic scheme for Finsler—Lagrange—Hamilton MGTs
will develop the research and new directions.
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Funded by SCOAP?.

A Two important corollaries for N-adapted formulas
We provide some examples and technical results, formulas
and proofs which are similar to those used for elaborating

the AFDM and applications to MGTs in Refs. [68,151,153,
158,161,169,171,173,182,186,188,198,201,203].

A.1 Curvatures and torsions of d-connections on
(co)tangent bundles

By explicit computations for X = ey, Y = eg, D = {l"yaﬂ}
and 'X = 'ey, 'Y = 'eg, 'D={ 'I'yaﬁ} in (29), we prove

Corollary A.1 For a d-connection D or 'D, there are com-
puted corresponding N-adapted coefficients:

@ Springer

— o _ i a i c
d—{curvature, R = {R Bys = (R hjk® R bik: Phja’ ija,
l C
S hba’ N bea)}’ for
Ry =elLl'y; —eL'y + L7 L', — L L', — C Q%

a fa fa fc fa _ fc ja _ a c
R = exL%; — ;L + L% L — L% L; — C 2%,

i _ i AQ AQ b
iju = el Jjk DiC ja + Cijku’
Phra = €alp — DkCy + Cha Ty

i _ AQ AQ Sho A She Ai
Sjbc = eCCjb —eijc-i-CjbChc —ijchb,

‘bea = €dChe = €cClhq + CCly = CHC", (A.D

ec’

or 'R ={ Rigy5 = ('Rl 'Ry
'S5}, for
IRihjk — ‘ek ILihj _ ‘ej lLihk + ILW}lzj ILimk

fym iyi 1ioa
_LhkLmj_ Cy Qarjs

IPihja’ 'p ba ISihba’

cj

Ipb 7 b in. 17 b 'y b 17 c
RYjw="e LY, — 'ej Lo+ 'L LS,

a | a
i b 17 c 1 be
— L. L, i Co™ Qekjs

\Pijka — 1 ILijk — 'Dy \éija + |C'vijb ITbka’
IPcbka = et II:cbk — 'Dy |cha + ‘cha’ l 7«1’
|Sijbc = ¢ \C’wijb _ |eb |éijc + Iéhjb |C'wihc
_ |C’hjc 'éihb,
\Sabcd — \ed |Cabc — 1€ ICabd + |Cabc |Cbed
_ Icebd ICaec;
d-torsion, T = {Tzﬁ = (Til-k, T’:/a, T4 T T}, for

lek = Lljk - ij’ thb = C}bv T{;i = _Qaji’
Ta‘] = ng - ea(N]‘f), T4, =Cp.—C2, (A.2)
or 'T={"T, =T, T Tui, 'T S, T, for
I ijk _ ! ;k _ ‘L;;j’ |Tija — |C;'_a, ITaji — _ lQajis
ITCaj — ILCaj o |ea( |ch)’ |Tabc — |Cabc _ \Cacb;
-nonmetricity, Q = aB = (Qkij»> Okab> Qcij> Qcab)}s
d-nonmetricity, Q = {Q,q5 = (Quij» Qkab» Qcij» Qean)}
for
Okij = Di&ij» Qkab = Dk&ab,
Ocij = Dcgij» Qcab = Dc8ab
or IQ = { ‘anﬂ = (leij7 IQkub» ‘Qcijv IQCub)}5f0r
'Quij = 'Di'gij, 'O = 'Di g,

I cij = 'pC ‘gij, \Qcab — D€ \gah.

(A.3)

A.2 The coefficients of canonical Lagrange and Hamilton
d-connections

Such d-connections are very important for elaborating MGTs
on (co)tangent bundles because they allow a very general
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decoupling and integration of generalized Einstein and mat-
ter field equations. By explicit computations in N-adapted
frames, we can prove that necessary conditions for defin-
ing and constructing, respectively, D (32) and D (33), are
satisfied following

Corollary A.2 The N-adapted coefficients of canonical

Lagrange and Hamilton d-connections are computed

respectively:

on TTV, D= {fzﬁ = (Zj.k, A‘gk, 6;6 61‘,’6)}, where ,
for [ga,B = (gjr’ 8ab), N = {Nla}]

= [Eotﬁ = (gjr, g;ab)a N? = Nl'a]y

o~
1

1 .
k= Eg" (exgjr + €8k — €rgjk)

- | .
Ly = ep(NY) + 58

2
(ex8bc — &dc €be — &db ecN]fl),
N 1.
C.l/'c = Eglkngjka

~a 1 ad
Che = 58" (ecgbd + ep&ed — €dgbe) (A4)

2
and, on TT*V, 'D = {‘fyaﬂ =( ‘Zi-k, ‘i,j’k, ‘67, ‘aijc)}, where,
for['gap = ('gjr, '8,
'N = { |A’ai}]
=~ ['Zep = (Zjrr 'T), 'Nai = 'Nail,
1\ irg | | | | |
58 ('ex 'gjr + '€ 'Skr — '€ 'gjk),
‘zabk — \eb( INak)

TP
ij =

1
+5 \gnﬂ(\ek\gbc‘_ |gdc Ieb‘Ndk
_\gdb IfC‘Ndk),
~: 1 .
\Czjc — E\glk 1€ Igjk»
~ 1 . . .
\Cl;t, — E ‘gad(‘ec |gbd+ \eb \gcd_ \ed \gbL).

(A.5)

In a similar form, we can prove that all N-adapted coef-
ficient formulas necessary formulating and finding solutions
of physically important field and evolution equations in the-
ories with MDRs and LIVs.
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