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Abstract

UV completing a gravitational theory, unlike many non-gravitational effective field theories (EFTs),
is expected to be highly restrictive. This insight is rooted in black hole physics, which imposes a
universality in high-energy behavior. The Swampland program aims to identify anomaly-free EFTs
that lack a gravitational UV completion.

In this dissertation, we review a number of Swampland conjectures, their motivations, and
their implications for low-energy theories. Our analysis will be divided into two main categories:
implications for macrophysics (cosmological data) and implications for microphysics (particle
physics data). Macroscopic data refers to cosmological evolution, while microscopic data include
gauge symmetry and mass spectrum. By exploring the Swampland program, we aim to gain a deeper
understanding of the profound connections between UV physics and its ramifications for EFTs in the
low-energy regime.
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0
Introduction

A great deal of success in modern particle physics is owed to quantum field theory (QFT).

The formulation of quantum field theory is predicated upon a collection of approximately

local physical observables (i.e. fields). The local formulation of QFT allows for arbitrarily

short-scale physical configurations which naivly dominate the quantum amplitudes. In other

words, the local formulation of QFT leads to divergences associated with short-distance

physics in perturbative calculations. However, renormalization (it could be order by order,

such as gravity) allows one to resolve this problem within an energy regime by recasting the

calculations in terms of the low-energy observables. This overall approach can be dubbed as

effective field theory. In short, effective field theory assumes that at low-enough energies, the

theory is described by local observables (fields), and that the physics at low energies can be
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studied independently from that of high energies.

Effective field theory (EFT) comes with theoretical restrictions for consistency. These

are the cancellation of gauge anomalies. However, apart from that, the theory is very flexible.

This is because EFT is defined to only work in an energy window. One might expect that if we

go to higher energies, there is a more complete EFT which becomes valid. This approach has

been very successful in particle physics. However, it breaks down when gravity is added to the

mix. The main problems are lack of locality as well as UV/IR connection in the presence of

gravity, and black holes lie at the core of both of these issues.

Locality

Suppose we want to measure the local operators of an effective field theory using

scattering amplitudes. A natural limitation arises due to the uncertainty principle. The

wavepacket of an ingoing particle of momentum p has a spatial spread of at least∼ ℏ/p.

Therefore, to increase the precision of local measurements, one has to resort to higher and

higher energies. In effective field theory, there is no fundamental limitation to increasing

the precision of local observables by going to higher and higher energies. However, in the

presence of gravity, a fundamental limitation exists. We give three arguments for why locality

can only be an emergent approximation in quantum gravity based on black holes, holography,

and dualities.

Locality: black hole argument

Consider two ingoing neutral particles with a center of mass energyM and a very small

impact parameter b. We will soon clarify what we mean by a very small impact parameter.

Gravity has a universal coupling to mass/energy, and accordingly, the gravitational pull

between the particles will create a curved background which only depends onM and b. In

particular, ifM is large enough and b is small compared to the Schwarzshild radius associated

withM, we expect to have a black hole as an intermediate state. Note that the size of the

corresponding black hole will have a size that increases with the energy. Therefore, beyond the

energy that black holes form, the size that we can probe with scattering experiments increases
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instead of decreasing. The turnaround scale is the mass of the smallest black hole. The above

argument shows that in gravitational theories, the effective field theory breaks down at length

scales smaller than the size of the smallest black hole. The inverse of this length scale is called

the quantum gravity cutoff ΛQG. We can see the connection between ΛQG and the size of the

smallest black hole in a second way which is instructive.

We refer to some point-like states of the theory as particles. But every particle has a mass

and hence curves the spacetime around it. This raises the question of what separates particles

from black holes? The answer lies in wether we can trust the fields (including the metric)

close enough to the center of mass of the particle. In other words, is the horizon far enough

from the center that we can refer to the particle as a black hole? Suppose Λ−1
QG is the smallest

length scale for which an EFT description is valid. Then the heaviest particle is one which has

a Schwarzschild radius smaller than Λ−1
QG. Anything heavier than that would be a black hole.

Therefore, the size of the smallest black hole is Λ−1
QG, which is the same as the length scale at

which the effective field theory breaks down.

Locality: holographic argument

Another argument for why locality is an emergent approximation in quantum gravity

also follows from the holographic principle. What we mean by the holographic principle is the

most conservative form of holography, which states that physical observables in a gravitational

theory must live on the boundary of spacetime which implies that bulk, local operators only

give rise to an emergent description. A simple motivation for the holographic principle is that

in quantum gravity, amplitudes include summation over spacetimes of different topologies.

Therefore, a unique spacetime manifold which is the underlying structure necessary to define

local operators, does not exist. However, a classical approximation can arise when a particular

configuration extremizes the QuantumGravity path integral.

Locality: duality argument

The fact that any classical picture (including a field theory) in quantum gravity is

emergent rather than fundamental is nicely captured by dualities in string theory. For
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example, consider two T-dual descriptions of a spacetime with one compact dimension of

sizeR in one frame and l2s /R in the other frame. Here ls is the string length. As we change

R/ls from very small values to very large values, the semi-classical spacetime that provides the

sharpest approximation to the quantum theory transitions from one description to another.

There is a mapping between the descriptions, but there is no direct mapping between the

point in the two spacetimes. For example, a local wavepacket in the compact dimension in

one picture maps to a winding string with no notion of position in the compact dimension.

Generally, the notion of spacetime and any ”local” operator associated with spacetime are

expected to be emergent in quantum gravity.

Naturalness

As we saw earlier, the presence of gravity strongly implies that the effective field theory

must break down at some energy scale. Therefore, any notion of locality is only emergent and

approximate. This is important because many intuitions that we might build from EFT are

not reliable in quantum gravity. For example, in a truly local theory, every EFT is expected

to have a more UV-complete EFT. One can use the UV theory to estimate a natural order of

magnitude for the observables at lower energies based on the cutoff of the IR theory. This

idea is called naturalness. The idea of naturalness led to a lot of success. However, it also has

created a fair share of puzzles. These puzzles include the electroweak hierarchy problem and

the cosmological constant problem. As we discussed above, the basic assumption that the

cutoff of field theory can always be increased breaks down in quantum gravity.

UV/IR connection

In EFT, we expect low-energy physics to be described independently fromUV physics.

This idea sits at the core of renormalization. However, this idea fails in gravitational theories.

To see why, we go back to black holes and Hawking’s calculation of their entropy. The black

hole entropy calculation uses quantum field theory in curved spacetime. The larger the black

hole, the smaller the curvature of its near-horizon geometry would be. This would also lead to

lower Hawking temperatures. Therefore, Hawking’s calculation becomes more trustable for
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larger black holes as it becomes a more IR calculation. But let us take a step back and ask what

does it actually calculate?

The entropy of a black hole at energyM can be thought of as ln(Ω(E))where Ω(E) is

the number of states with energy E. These are states that generalize the notion of particles

and become black holes due to gravitational screening. Therefore, black hole entropy teaches

us that due to the IR behavior of gravity, the density of states at high energies has a universal

behavior. This suggests that, as opposed to field theory, in quantum gravity, IR physics and

UV physics are deeply connected and our intuition of effective field theory is often misleading.

This brings us to the Swampland program. Let us first define the terminology of landscape

and Swampland.

Swampland and Landscape: the consistent EFTs (i.e. no gauge anomalies) that do not

have a QGUV-completion are said to be in the ”Swampland” while the ones that do are said

to belong in the ”Landscape” of quantum gravity.

The Swampland program

Delineating the landscape of quantum gravities by finding criteria that ensure a theory

belongs to the Swampland. For finding such criteria, we use universal observations in

string theory as well as arguments based on more basic physics (unitarity, black hole

physics, etc.).

Note that, by definition, our universe is in the Landscape. So finding criteria that cut

away corners of the theory of space from the Landscape could lead to direct predictions about

our universe.

In this dissertation, we propose and motivate some principles for quantum gravity based

on string theory, black hole physics, holography, and consistency with more established

Swampland conjectures. Furthermore, we study the implications of these conjectural

principles for macrophysics (e.g. cosmology) as well as microphysics (e.g. gauge theory).

The non-trivial implication of quantum gravity at the micro-level might be less surprising.
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However, as we explained above, due to gravity’s UV/IR connection, it is natural to expect

non-trivial constraints on macrophysics as well.

Macroscopic scales

The observed value of dark energy sets a natural IR scale given by the Hubble parameter.

As we discussed in the introduction, IR physics and UV physics are expected to be connected

in quantum gravity. In particular, the Swampland conjectures aim to capture the conditions

that UV physics imposes in the IR.

If the value of dark energy is explained by a cosmological constant, it suggests that de

Sitter space must be realizable in quantum gravity. However, there is no known construction

of eternal de Sitter space. In particular, in string theory, there is no known de Sitter

construction under parametric control. For example, in any infinite distance limit in which

we expect to have parametric control over the perturbation, the potential is always exponential

in terms of the canonically normalized scalar field expectation value.

Let us very briefly review the challenges of constructing de Sitter space in string theory.

At the tree level, it is known that the potential does not have any local minimum at infinite

distance limits1,2,3,4,5,6. For example, if one considers anM theory compactification on an

arbitrary manifold with arbitrary fluxes, the volume modulus will always find a runaway

direction.

One might expect that the exponential decay of the potential at infinity is due to the

emergence of supersymmetry at the infinite distance limit. However, there are known

non-tachyonic and non-supersymmetric examples in string theory which exhibit the same

behavior, such as theO(16) × O(16)Heterotic string theory7,8. In this example, the non-zero

potential comes from the non-vanishing of the one-loop amplitude, which is common in non-

supersymmetric theories. Even though the one-loop vacuum energy is constant in the string

frame, when going to the Einstein frame, it leads to an exponentially decaying potential in the

dilaton. However, it is important to note that the tree-level contribution vanishes. In fact, this

is always true in any string theory due to the existence of three conformal Killing vectors on
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the sphere9.

There are various scenarios proposed for corrections (quantum and classical) to give rise

to a metastable de Sitter space10,11. However, such constructions are currently under debate

(see12,13 for some examples). The observations from string theory prompted the authors

in14,15 to propose the Swampland de Sitter conjecture, which states that the scalar potential

always satisfies

|∇V| > c1V or |Δ2V| < −c2V, (1)

for some universal positive constants c1 and c2 which only depend on the spacetime

dimension. In particular, this conjecture rules out the existence of a local minimum for a

positive potential which would give rise to a metastable de Sitter.

The main motivation for the de Sitter conjecture comes from the weak coupling

regime of string theory in the asymptotics of the field space. However, the statement of

the conjecture in the interior of the field space is not directly connected to a more physical

principle. Here we propose the Trans-Planckian Censorship Conjecture, which makes the

UV/IR connection concrete in the cosmological setup and provides a physical reasoning for

the de Sitter conjecture in the asymptotics of the field space.

The principle we propose, the Trans-Planckian Censorship Conjecture (TCC), simply

put, states that in an expanding universe that could realize in a consistent quantum gravity

theory, the sub-Planckian quantum fluctuations should remain quantum and can never

become larger than the Hubble horizon and classically freeze1.

In this part, we will study the implications and motivations of Swampland conjectures

that are relevant for cosmology. After formulating TCC in chapter 1, we study its

implications for scalar potentials in 2. Then we study the implications of Swampland

conjectures for early universe and late time cosmology in 3 and 4 respectively. Finally, we

connect TCC to thermodynamic aspects of de Sitter space in 5 and provide a holographic

motivation for it in 6.
1This notion is different from the similarly named phenomenon discussed in 16,17.
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Microscopic implications

As discussed earlier, Effective Field Theory (EFT) is highly flexible in terms of the

theoretical consistency of low-energy physics. For instance, the rank of the gauge symmetry

in EFT can be arbitrarily large, allowing for a wide range of possibilities. However, it is

known that UV physics in gravitational theories is influenced by the number of light degrees

of freedom. For example, the entropy of the smallest black hole must be greater than the

number of light species18. While this argument does not impose a universal bound on the

number of species, as it could be possible that the size of the smallest black hole increases

with the number of species, it does highlight the sensitivity of the UV theory to the number

of light species. In fact, in string theory constructions with sufficient supersymmetry, the

number of particles is strongly constrained. For instance, in theories with 16 supercharges

in d dimensions, the rank of the gauge groups r is always found to be less than 26 − d.

Even in cases with fewer supersymmetries, though the exact bound on the rank may not be

known, the finiteness of the rank is expected. For example, theories with 8 supercharges can

be constructed by compactifying type II theories on Calabi-Yau threefolds. Since the number

of Calabi-Yaus is anticipated to be finite, the number of theories in the Landscape is also

expected to be finite.

Despite the observation of the finiteness in string theory, a more bottom-up approach is

necessary to bolster confidence in the aforementioned intuition. In recent years, significant

progress has been made in this direction through the Swampland program. For instance,

utilizing Swampland principles and the unitarity of the worldvolume theory of the

supergravity string, it was demonstrated that the inequality r ≤ 26 − d holds in all theories

with 16 supercharges. Although such sharp statements are more challenging to establish

with less supersymmetry, the ability to provide a bottom-up rationale in theories with higher

supersymmetries serves as a compelling proof of principle for the finiteness of the landscape.

In this dissertation, we will present a bottom-up classification of all the possible gauge

groups that can arise in supersymmetric gravitational theories in theories with dimension 7

and more. Our arguments are based on Swampland principles as well as black hole physics.
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Additionally, we will utilize Swampland principles to argue for dualities between 10 and 11

dimensional theories. These arguments provide a bottom-up rationale for the existence of

heavy states that are typically not part of the EFT, but become light and hence part of the EFT

in certain corners of the moduli space.
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Part I

The Swampland: macro
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1
The Trans-Planckian Censorship Conjecture

(TCC)

In a quantum gravitational theory, we do not believe that the notion of spacetime as a

continuum would make sense at distance scales smaller than Planck length. However, in such

a theory we can nevertheless have expansions in the background, which raises the question of

what happens to these scales becoming larger than Planck length. In a consistentQG theory, the

quantum fluctuations of this kind should remain quantum, in a way not to be contradictory

with a classical picture of spacetime at larger scales. However, as is known in the context of

inflationarymodels,when sub-Planckianquantumfluctuations become larger than theHubble

horizon 1/H, they can become classical and freeze. This would lead to the classical observation
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of a sub-Planckian quantum mode, which is a bit strange! This is known as the inflationary

trans-Planckian problem27,28,29,30,31. The traditional view of this problem has been that either

we need more information to figure out what happens to these modes or that the structure

of the quantum gravitational theory would give the same answer as if the modes were smooth

even in the trans-Planckian domain. Here we would like to propose an alternative viewpoint:

That such questions should never arise in a consistent quantum gravitational theory! That no

trajectory of a consistent quantum theory of gravity should lead to a classical blow-up of the

sub-Planckian modes to become larger than the Hubble horizon 1/H and that all the QFT’s

that do lead to this scenario belong to the Swampland.

1.1 Statement of TCC

We conjecture that a field theory consistent with a quantum theory of gravity does not lead to a

cosmological expansion where any perturbation with length scale greater than the Hubble radius

trace back to trans-Planckian scales at an earlier time. This could be formulated in terms of initial

and final scale factors, ai and af , and final Hubble parameter Hf as

af
ai

· lpl <
1
Hf

⇒
ˆ tf

ti
Hdt < ln

Mpl

Hf
. (1.1)

Note that if we take lpl → 0 or equivalently Mpl → ∞ this condition becomes trivial, as

it should with any Swampland condition. In the following we set (the reduced Planck mass)

Mpl → 1.1,2

Since the fluctuations growing bigger than the Hubble radius freeze out, if the wavelength

of sub-Planckian quantum fluctuations become larger than the Hubble-radius they turn into

1Perhaps, a more accurate statement would be to say af
ai <

KMpl
Hf

for some O(1) constant K. However,
unlike other Swampland conjectures which depend on someO(1) constants, the consequences of TCC are rather
insensitive to the exact value of K as it usually appears as a logarithmic correction. Therefore, in this chapter, we
setK equal to 1, but one can easily restore theK-dependence in all of the results.

2Under time-reversal, the statement (1.1) of TCC for expanding universes, transforms into the following
statement for contracting universes. A field theory consistent with a quantum theory of gravity does not lead to a
cosmological contractionwhere anyperturbationwith length scale larger than theHubble scale (−1/H) evolve into
the sub-Planckian scales at a later time. This could be mathematically formulated in the form in reduced Planck
units. aiaf < − 1

Hi
.
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classical non-dynamical fluctuations. This leads to the following equivalent statement of TCC

in terms of the quantum fluctuations.

An equivalent statement of TCC:

Sub-Planckian quantum fluctuations should remain quantum.

1.2 Immediate Consequences

Upper bound on H

Perhaps, themost immediate consequence of the conjecture (1.1) is that for the field theory

description to not break down, H must be smaller than 1 at all times. This is natural as the

Hubble parameter is usually proportional to the energy density which must be smaller than

Planck energy density for the field theory description to be valid.

Upper bound on lifetime

Suppose the equation of state w = p/ρ is greater than −1, we can show that the lifetime

of universe beginning from t = ti when it started expanding could be bounded from above

by its current value of Hubble parameter, Hf. Note that for any combination of conventional

matter and radiation, cosmological constant and all of the quintessencemodels the assumption

w ≥ −1 holds3. The rate of change of the Hubble parameter in terms of the energy density ρ

and the equation of state w is given by,

Ḣ = −(1+ w)
ρ

d− 2
. (1.2)

For w ≥ −1, the above equation would imply that H is monotonically decreasing. Therefore,

for every co-moving time interval [ti, tf], we have

HfT ≤
ˆ tf

ti
Hdt = ln

(
af
ai

)
, (1.3)

3This may in principle be violated for phases involving extended objects.
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whereT = tf− ti is the lifetime andHf = H(tf). Using the above inequality to bound the LHS

of (1.1) leads to

T ≤ H−1
f ln

(
H−1

f

)
. (1.4)

Note that this could also be viewed as an upper bound H in terms of lifetime T. The TCC

through the inequality (1.4) provides a prediction for the current age of the universe. ForH ≈

70(km/s)/Mpc this upper bound is∼ 2 trillion years which is consistent with the age of our

universe.

In general, TCC implies that the Hubble parameter must significantly decrease in a

time scale given by H−1 ln(H−1). This statement applies to meta-stable de Sitters as well as

quintessence solutions.

Decelerating expansions are consistent with TCC

Following, we give a general argument why violating TCC requires accelerating expansion

or trans-Planckian energy densityH ≥ 1. The inequality (1.1) could be written as

ȧf < ai. (1.5)

Therefore, violation of TCC requires initial and final points where,

ȧf ≥ ai. (1.6)

SupposeH is smaller than the Planck scale, we know ȧi/ai = H < 1. If we use this inequality

in (1.6), we find

ȧf > ȧi. (1.7)

Therefore,
´ tf
ti ä = ȧf − ȧi must be positive and there has been accelerating expansion

somewhere along the way.
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2
Consequences of TCC for Scalar Potentials

In this section, we find some of the consequences of TCC for scalar fields with a potential

V(φ). We assume V is positive and monotonic. As already noted non-monotonic potentials

with critical points are forbidden classically but are allowedwhenwe take into accountquantum

corrections as wewill discuss in the next section.We divide our analysis in this section into three

parts. First, we study the consequences of TCC for asymptotic behavior (long field ranges) of

the single-field potentials. Next, we generalize some of these results tomulti-fieldmodels. In the

end, we study the short-range predictions of the conjecture for single-field potentials.
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2.1 Long-Range Predictions

Using the definition ofH = ȧ
a , we can rewrite the conjecture (1.1) in the form

ˆ φf

φi

H
φ̇
dφ =

ˆ tf

ti
Hdt < − ln

(
Hf
)
. (2.1)

In d spacetime dimensions, the Friedmann equation takes the form

(d− 1)(d− 2)
2

H2 =
1
2
φ̇2 + V, (2.2)

and the equation of motion takes the form

φ̈ + (d− 1)Hφ̇ + V′ = 0, (2.3)

where V′ indicates the derivative of V with respect to φ. Note that we are working in the units

where the reduced Planck mass (Mpl =
mpl√
8π ) is equal to 1. Since V in the equation (2.2) is

positive, we have

H
|φ̇|

>
1√

(d− 1)(d− 2)
. (2.4)

If we use the above lower bound for the integrand in the equation (2.1), we find

|φf − φi|√
(d− 1)(d− 2)

< − ln
(
Hf
)
, (2.5)

which can be rearranged in the form

Hf < e
−

|φf−φi|√
(d−1)(d−2) . (2.6)
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Due to the positivity of the kinetic term in the equation(2.2), V is bounded from above by

(d− 1)(d− 2)H2/2. If we combine this upper bound with the inequality (2.6), we find1

V(φ) < Ae
− 2√

(d−1)(d−2)
|φ−φi|, (2.7)

where, A = (d− 1)(d− 2)/2 is a constant. For definiteness let us assumeV′ < 0. We can use

the above inequality to find a lower bound for the average of−V′/V over interval [φi, φf] in the

field space.

〈
−V′

V

〉 ∣∣∣∣φf
φi

=
1
Δφ

ˆ φf

φi

−V′

V
dφ =

ln(Vi)− ln(Vf)

Δφ
.

If we combine the upper bound (2.7) forVf with the above identity, we find

〈
−V′

V

〉 ∣∣∣∣φf
φi

> − B
Δφ

+
2√

(d− 1)(d− 2)
, (2.8)

where, B = − ln(Vi) + ln(A) and
〈−V′

V

〉 ∣∣∣∣φf
φi

is the average of −V′

V over [φi, φf].

Onemay worry about the emergence of light states at large distances in field space expected

from the Swampland distance conjecture32. In particular the interactions between φ and other

fields cannot be ignored in this large field limit and the effective field theory of φ ignoring the

other modes would be invalid in such a limit. However, these modifications do not affect the

derivationof the inequalities (2.7) and (2.8) because allweneeded toderive thesewas (d−1)(d−

2)H2/2 > V which is true even if we have additional energy contributions to H. Therefore,

even for values of φ where the effective field theory breaks down due to the emergence of a

tower of light states, the inequalities (2.7) and (2.8) are still valid. By taking the limit φi and
1One may conclude that since we can take φi → −∞ this would imply that V has to vanish. As we shall

discuss one cannot start from arbitrarily negative field value φi to reach arbirary φf, which is a necessity for this
derivation. In other words there is a smallest value of φi one has in the above equation to reach a fixed value of φf
including arbitrarily large values of φ.
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φf → ∞ in the eq(2.8), we find

(
|V′|
V

)∞ ≥ 2√
(d− 1)(d− 2)

, (2.9)

where

(
|V′|
V

)∞ := lim inf
φi→∞

lim inf
φf→∞

〈
−V′

V

〉 ∣∣∣∣φf
φi

. (2.10)

Thus the inequalities (2.7) and (2.9) are valid for every value of φ, even when the effective

field theory breaks down due to the emergence of a tower of light particles. However, in33

it was argued that this would never happen. To summarize, according to the emergent string

conjecture, such light states are always either KK particles or a string tower. In either case, their

mass scale must be greater than the Hubble parameter to make sure the effective equations

of GR do not break down34,35. Therefore, we can assume that the tower of light states at the

infinite distance limit are heavier than theHubble scale andwill not contribute to the dynamics.

The inequality (2.9) shows that the potential decays exponentially fast in the asymptotics. In

the following, we focus on the exponential potentials without the addition of light states. Let

V ∝ e−λφ.

d
dφ

(
V
φ̇2 ) =

1
φ̇
d
dt
(
V
φ̇2 )

=
V′

φ̇2 − 2(
φ̈
φ̇2 )(

V
φ̇2 )

=
V′

φ̇2 (1+ 2(
V
φ̇2 )) +

2(d− 1)H
φ̇

(
V
φ̇2 )

= −(
V
φ̇2 )

√
1+ 2(

V
φ̇2 )(λ

√
1+ 2(

V
φ̇2 )− 2

√
d− 1
d− 2

), (2.11)

where in the third line we used the equation of motion (2.3), and in the fourth line we used the

Friedmann equation (2.2). We can rewrite the equation (2.11) in the form

x′ = −x
√
1+ 2x(λ

√
1+ 2x− 2

√
d− 1
d− 2

), (2.12)
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where x := (V/φ̇2) and x′ represents the derivative of x with respect to φ. The x is related to

the equation of state parameter, w, as

w =
2

1+ 2x
− 1. (2.13)

If λ > 2
√

(d− 1)/(d− 2), the right hand side of the equation (2.12) is always negative

and x decays exponentially to 0 as a function of φ. For λ < 2
√

(d− 1)/(d− 2), the right

hand side of the (2.12) has a positive root at xc = 2(d − 1)λ−2/(d − 2) − 1/2. By checking

the signs one can see that x = xc is an attractor solution and x will converge to xc. Plugging H

from the equation(2.2) into (2.1), leads to the following form for the trans-Planckian censorship

conjecture.

√
2x+ 1

x(d− 1)(d− 2)
V(φf)

1
2 = Hf < e−

´ φf
φi

H
φ̇ dφ = e−

´ φf
φi

√
1+2x

(d−1)(d−2)dφ. (2.14)

If we look at the above inequality in the limit φ → ∞where x goes to xc = 2(d− 1)λ−2/(d−

2)− 1/2, we find

V(φ) ≤ Ae−
4

(d−2)λ (φ−φi), (2.15)

where A = xc(d− 1)(d− 2)/(2xc + 1). SinceV ∝ e−λφ, also decays exponentially, we have

λ ≥ 4
(d− 1)λ

→ λ ≥ 2√
d− 2

. (2.16)

This inequality could be expressed in terms of xc and w as

x < xTC =
d− 2
2

w > wTC =
2

d− 1
− 1. (2.17)

Note that for λ > 2/
√
d− 2, in the attractor solution, aH/ai goes to zero and because of the
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fast convergence of the solution to the attractor solution, it is always bounded from above by

anO(1) number. Thus, TCC implies that λ > 2/
√
d− 2.

Following we find the lower bounds for xc and w in order to have inflation (ä > 0) and we

compare them to xTCC and wTCC in arbitrary dimensions,

q =
(d− 3)ρ+ (d− 1)p
(d− 1)(d− 2)H2 , (2.18)

where q = − äa
ȧ2 is the deceleration parameter, p = 1

2 φ̇
2 −V is the pressure and ρ = 1

2 φ̇
2 +V is

the energy density. For ä to be positive, we must have

xc > xinf =
d− 2
2

, (2.19)

which can be expressed in terms of the equation of state as

w < winf =
2

d− 1
− 1. (2.20)

These are exactly the same values as (2.17). For exponential potentials, it seems that TCC

is equivalent to not having long-field accelerating expansion. This relation is consistent with

the general result that we proved in section 1 that violation of TCC necessitates accelerating

expansion.

Note that in the above analysis we ignored the effects of the creation of light states which

emerge as the field values roll to infinity. These effects would modify both the Friedmann

equation (2.2) and the equation of motion (2.3). In this regard (2.9) is more robust because

it allows for the emergence of a tower of light modes.

2.2 Generalization toMulti-FieldModels

In this section we study the applicability of our results to multi-field models where the fields

take value in an n-dimensional manifoldM. Let {φj}nj=1 be coordinates for a local patch and

20



themetric induced by the kinetic termonM to take the form ds2 = Gijdφiφj in this coordinate

system. For a spatially constant field configuration, the Friedmann equation takes the form

(d− 1)(d− 2)
2

H2 =
Gij∂tφi∂tφj

2
+ V(φ).ViΔφ (2.21)

Let s be the Affine parametrization of the solution path such that

Gij∂sφi(s)∂sφj(s) = 1. (2.22)

We can rewrite (2.21) in terms of s as

(d− 1)(d− 2)
2

H2 =
1
2
(
ds
dt
)2 + V(φ(s)). (2.23)

This is exactly the same as theFriedmannequation in the single field casewhichweused toderive

(2.7) and then (2.17) with φ being replaced with s. Note that we did not need TCC to hold for

all initial conditions to derive (2.17), we only needed TCC to hold for one initial condition.

Therefore, the results (2.17) holds for the multi-field case as well,

V(s) < Ae−
2√
d−2d

s(φi,φf), (2.24)

where A is some constant and ds =
´ φf
φi
ds is the canonical length of the solution path from φi

to φf. Let d(φ, φf) be the canonical length of the geodesic connecting the two points, then we

have d ≤ ds. Therefore, we can replace ds in (2.24) with d to get

V(s) < Ae
− 2√

(d−1)(d−2)
d(φi,φf). (2.25)

The above inequality holds for any two points φi and φf that can be connected through a

solution to the equations of motion such that the potential remains positive along the path.

The derivation of (2.7) and (2.17) extends without any modifications to the multi-field case
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and gives

(
|V′|
V

)∞ ≥ 2√
d− 2

, (2.26)

where ( |V
′|

V )∞ is defined as lim inf si→∞ lim inf sf→∞

〈
−V′(φ(s))
V(φ(s))

〉
[si,sf]

where s is the canonical

Affine parameter for an arbitrary path with infinite length inM.

Note that the inequality (2.25) is only applicable to a pair of points (φi, φf) which are

connected by a classical solution. Following, we further explore this relationship between the

points inM.

One can define a causal structure on themoduli space based onwhich initial conditions can

evolve into other ones in an expanding universe. Suppose x and y are two points in the moduli

space M, we say x causally precedes y, if for some φ̇2
i < O(1) the initial field configuration

φ = x can evolve into φ = y. We show this by x ≺ y. The condition φ̇2
i < O(1)makes sure

that the field theory description does not break.

Due to the dissipative nature of the Friedmann equations, this causal structure is non-

commutative. Generally, to go from a point with a lower potential to a point with a higher

potential, we might need a trans-Planckian initial condition φ̇ to overcome the potential

difference in the presence of dissipation. In fact, by assuming our energy density must be sub-

Planckian (H < 1), which is a much weaker assumption than the TCC, we can find an upper

bound on the field range that the field φ can climb up a potential hill.

Suppose φ(t) is climbing up a positivemonotonically increasing potential V from φi to
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φf, we find an upper bound on Δφ = φf − φi.

φ̈ = −(d− 1)Hφ̇ − V′

< −(d− 1)Hφ̇

< −
√

2(d− 1)V
d− 2

φ̇

< −
√

2(d− 1)Vi

d− 2
φ̇. (2.27)

Integrating the above inequality leads to

Δφ̇ +

√
2(d− 1)Vi

d− 2
Δφ < 0. (2.28)

Since φ̇i <
√

(d− 1)(d− 2)/2 (this results fromH < 1), we find

Δφ <
d− 2
2

√
1
Vi

. (2.29)

Note that the above upper bound only depends on Vi the value of the potential at the initial

point. We can use the full power of TCC to derive another upper bound which also depends

on Vf the final value of the potential. From the equation (2.25), we know that an initial field

value cannot be too far, because other wise the upper bound in (2.25) would be less than Vf.

This gives

Δφ <

√
(d− 1)(d− 2)

2
ln

(
A
Vf

)
. (2.30)

In fact, this has the same nature as the inequality (2.29) since typically going back in the

solution requires climbing up a potential hill. This obstruction for extending the solution in the

field space only in the past direction happens because of the dissipation in our equations. If two

points donot satisfy the inequality (2.30) for anyorder of them, they are causally unrelated.This

couldmean that there is a potential barrier between them that is high enough such that climbing
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it in the presence of dissipation would need trans-planckian initial conditions. Situations like

this can naturally happen for two points in opposite asymptotic regions of theModuli space, as

the potential is highest in the interior and decays exponentially at infinity.

We can use this result to obtain a bound on the asymptotic gradient of the potential. We

divide the moduli space into two parts, the interior MI that contains all the local maxima of

V and the asymptotic region M∞ which is located far enough from MI with respect to the

canonical distance given by themetric defined onM. SinceMI contains the critical points, the

causal paths initiated fromMI can cover all of themoduli space includingM∞. SupposeM∞

can be covered by causal paths {γα}α∈I (with respect to the causal structure defined in 2.2) such

that

• they all initiate inMI.

• the path γα is parametrized by the Affine parameter sα.

We call every α ∈ I an asymptotic direction of the moduli space (fig 2.1). We define

(
|∇IV|
V

)α := lim inf
sα,i→∞

lim inf
sα,f→∞

〈
|∂sαV(γ(sα))|
V(γ(sα))

〉
[sα,i,sα,f]

, (2.31)

where on the right hand side ⟨_⟩[sα,i,sα,f] is the average over [sα,i, sα,f]. This roughly represents the

ratio |V′|/V along the asymptotic direction (∂sαγ(sα)) going outward from the interior.We also

define

(
|∇V|
V

)α := lim inf
sα,i→∞

lim inf
sα,f→∞

〈
|∇V(γ(sα))|
V(γ(sα))

〉
[sα,i,sα,f]

, (2.32)

which roughly represents the limit of |∇V|/V as we go to infinity in the asymptotic direction

α. From the above definitions we know

(
|∇V|
V

)α ≥ (
|∇IV|
V

)α. (2.33)
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Figure 2.1: The curves γα are causal curves that initiate in the interior regionMI and collectively span the asymptotic
regionM∞.

On the other hand, from the inequality (2.26), for every α we have

(
|∇IV|
V

)α ≥
2√
d− 2

. (2.34)

Combining (2.33) and (2.34) leads to

(
|∇V|
V

)α ≥
2√
d− 2

, (2.35)

which has the same form as the dS Swampland conjecture14 but is for the asymptotic region of

the moduli space.

2.3 Short-Range Predictions

In this section, we prove several inequalities from TCC for the short-field-range behavior of

monotonically decreasing positive potentials.
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Obstruction of flatness

The trans-Planckian censorship conjecture clearly forbids a flat potential (V′ = 0) as it can

lead to accelerated expansionwith afixedHubble parameter. In ourfirst result in this subsection,

we find an inequality which puts an upper bound on the length of the field range over which

|V′| is smaller than a constant. Suppose |V′|max is the maximum of |V′(φ)| over φ ∈ [φi, φf],

we have,

dφ̇2

dφ
= 2φ̈ ≤ 2|V′| ≤ 2|V′|max, (2.36)

where we used the (2.3) for the first inequality. For the initial conditions φ̇ = 0 and φ = φi,

integrating the above inequality gives

φ̇(φ) =

√ˆ φ

φi

dφ̇2(φ′)

dφ′ dφ′ ≤
√
2|V′|maxΔφ, (2.37)

where Δφ = φ − φi. Using the above inequality in the TCC leads to

ln

(√
(d− 1)(d− 2)

2V(φ)

)
≥ − ln(H)

>

ˆ φf

φi

H
φ̇
dφ

≥
ˆ φf

φi

√
1

(d− 1)(d− 2)|V′|max

√
V(φi)

φ − φi
dφ

=

√
V(φi)Δφ

4(d− 1)(d− 2)|V′|max

, (2.38)

where in the first and third lines we usedH2(d− 1)(d− 2)/2 ≥ V, in the second line we used

the TCC, and in the third line we used (2.37). We can rearrange the above inequality into the

form

(
|V′|max

Vmax

) >
(φf − φ)

4(d− 1)(d− 2)
ln

(√
(d− 1)(d− 2)

2V(φf)

)−2

. (2.39)
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We used the monotonicity to replaceV(φi)withVmax. Note thatV′ andV are not evaluated at

the same point in (2.39). However, for regions where the potential is stable (V′′ > 0), both V

andV′ attain their maximum at the same point φ = φi, and the LHS in (2.39) becomes a local

quantity.

The integration in the statement ofTCCmakes it a global criterion in terms of the potential.

In fact, it is very challenging to obtain a local statement about the potential fromTCC,which is

why the small field range inequalities are weaker than their long-field-range counterpart derived

in the previous subsection. We now provide the results of some numerical analysis which

supports this observation.

Let C(φf) := Hf
af
ai . For the conjecture to be true, C must be bounded from above by an

O(1) constant for any physically allowed initial condition (one that Vi and |φ̇i| are both less

than 1). The maximum ofC over a field range roughly measures the amount of violation of the

conjecture.

Suppose λ is the decay rate of an exponential potential, we showed for λ < λTC = 2√
d−2 ,

the conjecture gets violated at infinity. Below, are the results of investigating the consistency of

exponential potentials with the conjecture for all field ranges

1) For any value of λ < λTC, even though the conjecture is violated at infinity, it seems that

the conjecture holds for any initial condition over field range Δφ ∼ O(1), which by violation

we mean C > 1. Surprisingly, this is true even for decay rates as small as λ ∼ 10−3 that are in

contradiction with the conjecture at large field values.

2) For decay rates λ > λTC which the conjecture holds at the limit φ → ∞, it seems that it

also holds for all field values. More specifically, in 4 dimensions, there are no physically allowed

initial conditions that would result in a C > 1 for any λ >
√
2+ 0.01.

Conclusions:

1) For exponential potentials, it seems that the conjecture is always satisfied for small field

values (Δφ < O(1)) and their consistency with the conjecture is determined based on their
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large-φ behavior. In other words, the conjecture becomes more non-trivial at large field values.

2) The conjecture does not restrict the value of |V′|/V over very small field ranges. We can

have potentials with arbitrarily small λ that satisfy the conjecture for any physically permissible

initial conditions over sufficiently small field ranges Δφ << O(1). Therefore, this conjecture

does not rule out the quintessence models with small decay rates as long as they only last for

Δφ < O(1). In particular, we have checked that the models discussed in36,37 where 0 < λ ≤

0.6 are compatible with TCC because the field ranges in those models are sufficiently smaller

than Planck.

Accelerating roll

In this part, using a different assumption, we find an inequality very similar to (2.39) for

small field regime behavior of the potential. Suppose we have a rolling scalar field with positive

φ̈ over a field range [φi, φf]. The equation of motion (2.3) implies

(d− 1)Hφ̇ < |V′|. (2.40)

This inequality leads to

ˆ φf

φi

H
φ̇
dφ >

ˆ φf

φi

(d− 1)H2

|V′|
dφ

≥
ˆ φf

φi

2
d− 2

V
|V′|

dφ

=
2

d− 2

〈
V
|V′|

〉
Δφ, (2.41)

where in the first line we used (2.40) and in the second line we usedH2 ≥ 2V
(d−1)(d−2) from (2.2).

Using the above result, in addition toH ≥
√

2V
(d−1)(d−2) in (2.1), one can show

2
d− 2

〈
V
|V′|

〉
Δφ ≤ ln

√
(d− 1)(d− 2)

2V
, (2.42)
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where
〈

V
|V′|

〉
is the average of V

|V′| over [φi, φf].

Strongest consequence of TCC for short-field-range behavior ofV

We finish this subsection by discussing an inequality that is proved in the appendix A. For

every pair of non-negative numbers c1 and c2 such that c22(2+ c21 ) < (d− 2)/(d− 1), we find

min(
V(φ)
|V′(φ)|

c1, c2)A1(c1, c2, φ) < ln

(
A2√

V(φ + A3(c1, c2, φ))

)
, (2.43)

where the identities (A.27), (A.25), and (A.16), provide the definitions of functions A,B and

C. In the derivation of (2.43), we have not weakened the inequalities for obtaining simpler

looking result. That comes at the expense of complexity of our final result which makes it hard

to physically interpret for an arbitrary potential. If one is interested in the consistency of a

specific class of potentials with TCC, by restricting to that class, the inequality might take a

much simpler form. In the appendix A, we discuss how this is the case for convex potentials.

Moreover, unlike the original conjecture which must be checked for every initial conditions,

(2.43) only depends on the potential and could be checked numerically more easily. The (2.43)

is derived by estimating the initial condition that is in most tension with the conjecture and

looking at the TCC for that initial condition.

2.4 Metastable dS

We show that the trans-Planckian censorship conjecture implies that the universe cannot get

stuck in a local minimum forV(φ) for an infinite amount of time.We find an upper bound on

the lifetime τ by which every classical local minimummust decay into another state. Therefore,

according to the trans-Planckian censorship conjecture, the potential cannot have a positive

minimum, or in other words, inf V ≤ 0.
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For meta-stable dS we have Λ = (d− 1)(d− 2)H2
Λ/2. Using (1.4) we find

τ <
1
HΛ

ln

(
1
HΛ

)
, (2.44)

In a quantum theory of gravity, even though dS spaces seem to be impossible to attain as a

vacuum, it is not implausible that sufficiently short-lived transient quasi-dS like phases could

appear, and TCC allows this. The Hubble time of such a background provides a natural time

scale and it is reasonable to expect that the lifetime of such an unstable state to be roughly

proportional to this characteristic time scale. Indeed, if our universe is stuck in a metastable

minimumwithV = Λ ≈ 2.9× 10−122, the TCC predicts an upper bound of τ < 2.4 trillion

years on the lifetime of our universe. Thus also in such a case TCC gives an explanation of the

coincidence problem:Not only the age of our universe is related toHubble time, but its lifetime

also cannot exceed the Hubble time, up to log corrections.2

Note that all the above analysis only applies to local minima with positive values of V. For

example, for aHarmonic potentialV(φ) = φ2, fromnumerical analysiswe found that theTCC

is satisfied over a field range [−0.9Mpl, 0.9Mpl]. As the field oscillates about the localminimum

within this range, the Hubble friction is strong enough that the field does not get stuck in high

V for too long. In other words, thanks to the massless graviton, the energy of φ gets channeled

to the gravity sector fast enough that it does not violate the conjecture.

2.5 Unstable dS

In this subsection,we show that for a potential with anunstable localmaximum, |V′′| cannot be

small over a large field interval. In otherwords, over anyfield interval around the localmaximum,
2There is an interesting similarity between the upper bound on the dS lifetime predicted by TCC and the

scrambling time associated to dS space where we use the scrambling time given by38

τscrambling ∝
ln S
T

,

where T and S denote temperature and entropy. We see that the upper bound for the lifetime of dS space
τdS ∼ τscrambling with the substitutions TdS = H

2π and SdS ∼ 1/H2. We thank J. Maldacena for pointing out
this connection.
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there is a lower bound for |V′′| so that the quantum fluctuations could push the field away

from the extremumpoint. Otherwise, the field could stay close to the local maximum for a long

enough time that leads to a violation of TCC. First, we provide a more heuristic argument to

demonstratewhatwould gowrongwith a quadratic potential over a longfield range.Afterward,

we give a rigorous argument to prove a sharp inequality from TCC.

Suppose we have a quadratic potential given by

V(φ) =
V′′(φ0)

2
(φ − φ0)

2 + V(φ0), (2.45)

where V′′(φ0) < 0. In39, for the case of d = 4, it was shown that a gaussian probability

distribution centered at φ = φ0 solves the Fokker-Planck equation describing the evolution

of quantum fluctuations. That result could be easily generalized to the following solution for

any dimension d > 2.

Pr[φ = φc; t] ∝
exp
[
− φ2c

2σ(t)2

]
σ(t)

, (2.46)

where

σ(t) ∝
H2
(
e
2|V′′(φ0)|t
(d−1)H − 1

)1/2

√
|V′′(φ0)|

. (2.47)

Note that the expectation value of H remains constant and equal to√
2V(φ0)/((d− 1)(d− 2)). If the field range over which (2.45) holds is large enough,

the above equation would hold for large t. As t goes to infinity, σ(t) would exponentially grow

like e|V′′(φ0)|t/[(d−1)H]. This leads to a lifetime of (d − 1)H/|V′′(φ0)|. Comparing this with the

upper bound (2.44) gives

|V′′(φ0)|
V(φ0)

≥ 2
d− 2

ln

(√
(d− 1)(d− 2)

2V

)−1

. (2.48)
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This heuristic argument tells us that either the field range over which the potential is quadratic

is bounded fromabove, or |V′′|/V is bounded frombelow. In the following,we present a similar

but rigorous statement. SupposeV(φ) is a positive potential such thatV′(φ0) = 0 and for every

φ ∈ [φ0,Δφ], we haveV
′(φ) < 0 and |V′′| ≤ |V′′|max. If

Δφ ≥
B1(d)B2(d)

3
4V

d−1
4

maxV
3
4
min ln

(
B3(d)√
Vmin

) 1
2

VminB2(d)− |V′′|max ln
(

B3(d)√
Vmin

)2
, then

|V′′|max

Vmin
≥ B2(d) ln

(
B3(d)√
Vmin

)−2

, (2.49)

whereVmax = V(φ0) andVmin = V(φ0+Δφ) are respectively themaximumand theminimum

ofV over φ ∈ [φ0,Δφ], and B1(d), B2(d), and B3(d) areO(1) numbers given by

B1(d) =
Γ(d+1

2 )
1
221+ d

4

π d−1
4 ((d− 1)(d− 2)) d−1

4
,

B2(d) =
4

(d− 1)(d− 2)
,

B3(d) =
√

(d− 1)(d− 2)
2

. (2.50)

These criteria tell us that if |V′′| is small enough over a long enough field range, then |V′′|/V is

bounded from below by a logarithmic function in V. This result is very similar to the refined

Swampland dS conjecture with a logarithmic correction. For details of the derivation of this

result and its application to quadratic potentials see appendix B.
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3
Early universe cosmology

In this section we study the cosmological implications of TCC in early universe. Cosmological

observations provide detailed information about our universe on the largest observable scales.

Cosmic microwave background (CMB) measurements40,41,42, for instance, demonstrate that

fluctuations in the matter and energy persist on cosmological scales. There is no causal

explanation for the origin of these fluctuations in Standard Big Bang cosmology. Scenarios

of early universe cosmology such as the Inflationary Universe43,44,45,46,47 provide a causal

mechanism to generate these fluctuations. A key aspect of both inflationary cosmology and

of other scenarios that provide an explanation for the origin of structure in the universe (see

e.g.48 for a comparative review) is the existence of a phase in the early universe during which the
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Hubble horizonH−1(t), whereH(t) is theHubble expansion rate as a functionof time t, shrinks

in comoving coordinates. TheHubble horizon provides the limiting length above which causal

physics that is local in time cannot create fluctuations. In both inflationary cosmology and in

the proposed alternatives, comoving length scales which are probed in current cosmological

experiments were inside the Hubble horizon at early times. It is postulated that fluctuations in

both matter49 and gravitational waves50 originate as quantum vacuum perturbations that exit

the Hubble radius during the early phase, are squeezed and classicalize, and then re-enter the

Hubble radius at late times to produce the CMB anisotropies andmatter density perturbations

that we observe today.

In51 (see also52) it was realized that if the inflationary phase lasts somewhat longer than

the minimal period, then the length scales we observe today originate from modes that are

smaller than the Planck length during inflation. This was called the trans-Planckian problem

for cosmological fluctuations (see also53,54,55). This problemwas viewed not somuch as an issue

with a particular model, but more as a question of how to treat trans-Planckian modes in such

a situation. It has been conjectured19, however, that this trans-Planckian problem can never

arise in a consistent theory of quantum gravity and that all the models which would lead to

such issues are inconsistent and belong to the Swampland. This is called the Trans-Planckian

Censorship Conjecture (TCC).

According to the TCC no length scales which exit theHubble horizon could ever have had

a wavelength smaller than the Planck length. In Standard Big Bang cosmology no modes ever

exit the Hubble horizon, and the TCC has no implications (indeed the TCC is automatically

satisfied for all models with a w ≥ −1/3). However, in all early universe scenarios which can

provide an explanation for the origin of structure, modes exit the Hubble horizon in an early

phase. If ai is the value of the cosmological scale factor at the beginning of the new early universe

phase, and af is the value at the time of the transition from the early phase to the phase of

Standard Big Bang expansion, the TCC reads

af
ai

<
Mpl

Hf
, (3.1)
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whereHf is the radius of the Hubble horizon at the final time tf andMpl is the reduced Planck

mass.

In19, the relationship between the TCC and other swampland conjectures32,14,15 which have

recently attracted a lot of attention (see e.g.56 for a recent review) was discussed. Here, we focus

on the consequences of the TCC for inflationary cosmology.

It is clear from the form of (3.1) that the TCCwill have strong implications for inflationary

cosmology. In the case of de Sitter expansion, af is exponentially larger than ai, and hence (3.1)

strictly limits the time duration of any inflationary phase. The implications for some alternative

early universe scenarios are weaker. For example, in String Gas Cosmology57, the early phase is

postulated to be quasi-static.Hence, the condition (3.1) is satisfied: nomodeswhichwere larger

than theHubble scale at the beginning of the StandardCosmology phase ever had awavelength

smaller than the Planck length. The same is true for the various bouncing scenarios (e.g. the

matter bounce58, and the Pre-Big-Bang59 and Ekpyrotic60 scenarios)1, where the initial phase is

one of contraction. This is true as long as the energy scale at the bounce point is smaller than

the Planck scale. In the following we will study the consequences of the TCC for inflationary

cosmology.

The outline of this section is as follows: In the following section we discuss general

constraints imposed by theTCCon the energy scale of inflation and the resulting consequences

for the amplitude of gravitational waves. These conclusions do not depend on what drives

inflation, only that it occurred. In subsection 3, we then specialize to slow-roll inflationmodels,

and show that consistency with the TCC leads requires fine-tuning of the initial conditions.

We will work in the context of homogeneous and isotropic cosmologies with 4 space-time

dimensions. For simplicity, we assume spatially flatness so that the metric can be written in the

form

ds2 = dt2 − a(t)2dx2 , (3.2)

where x are the spatial comoving coordinates and a(t) is the scale factor (which can be
1Of course it is possible that these models have issues related to other Swampland conditions.
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normalized such that a(t0) = 1, where t0 is the present time). The Hubble expansion rate is

H(t) ≡ ȧ
a
, (3.3)

and its inverse is theHubble radius. As is well known (see61 for an in-depth review of the theory

of cosmological fluctuations and62 for an overview), quantum-mechanical fluctuations oscillate

on sub-Hubble scales, whereas they freeze out and become squeezed when the wavelength is

larger than theHubble radius. During a phase of accelerated expansion, the proper wavelengths

of fluctuations initially smaller than the Hubble scale can be stretched to super-Hubble scales.

This transition from sub-Hubble to super-Hubble is referred to as horizon-crossing. The TCC

prohibits horizon-crossing for modes with initial wavelengths smaller than the Planck length.

We will be considering models of inflation in which a canonically normalized scalar field

φ with potential energy V(φ) constitutes the matter field driving the accelerated expansion of

space. We will be using units in which the speed of sound, Boltzmann’s constant and ℏ are set

to 1.

3.1 Implications of the TCC for the Energy Scale of Inflation

In this section we work in the approximation that theHubble expansion rate during the period

of inflation is constant. In order for inflation to provide a solution to the structure formation

problem of Standard Big Bang cosmology, the current comovingHubble radius must originate

inside the Hubble radius at the beginning of the period of inflation (see Fig. 1). This condition

reads
1
H

· eN+ · aR
aend

· TR g∗(TR)
1/3

T0 g∗(T0)1/3
≃ 1

H0
, (3.4)

where H is the Hubble scale during inflation, aend and aR are the values of the scale factor at

the end of inflation and when reheating is completed, and g∗ indicates the number of spin

degrees of freedom in the thermal bath.HereN+ is the number of e-foldings accrued during the

inflation after the CMB-scale modes exit the horizon, T0 is the temperature of the CMB at the
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present time, and TR is the corresponding temperature after reheating. Equation (3.4) can be

summarized as follows. We start with a Hubble horizon scale which at the time of the inflation

is 1/H, by the end of inflation it is magnified by eN+ , by reheating it has grown again by aR/aend,

and between reheating and the present day it grows by the ratio of the TR/T0 (corrected by the

number of degrees of freedom). To solve the horizon problem, this scale should then be larger

than the Hubble scale of the current universe 1/H0. To obtain the order of magnitude of the

constraints, we consider rapid reheating and take the reheating temperature to be given by the

potential energy at the end of inflation, and hence set aR ∼ aend. For simplicity we also assume

that the ratio of g∗’s is 1.

Under the assumption that the period of reheating lasts less than one Hubble time TR is

given by the potential energyV during inflation viaTR ≈ V1/4. Using the Friedmann equation,

the Hubble scale 1/H0 is given by the current energy density ρ0 via

1
H0

=
√
3ρ−1/2

0 Mpl . (3.5)

In turn, ρ0 can be re-expressed in terms of the temperature T0:

ρ0 ≈ T4
0
Teq

T0

1
Ωm

(3.6)

where Ωm is the fraction of energy density in matter and Teq is the temperature at the time of

equal matter and radiation, and we have used the fact that the matter energy density today is

larger than the radiation energy density T4
0 by the factor Teq/T0. Using H = V1/2/(

√
3Mpl),

the condition (3.4) then becomes

eN+ ≃ V1/4

(T0Teq)1/2

√
Ωm ∼ V1/4

(T0Teq)1/2
. (3.7)

In the approximation of constant value ofH during inflation, the TCC condition (3.1) can

be written in the form

eN+ <
Mpl

H
. (3.8)
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λ0(t)
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λ1(t)

H−1(t)

tR

ti

t0 ∼ 1
H0

Figure 3.1: Space‐time sketch of inflationary cosmology. The vertical axis is time, the horizontal axis represents physical
distance. The inflationary period lasts from ti to tR. Shown are the Hubble radiusH−1(t) and two length scales λ0(t)
and λ1(t) (fixed wavelength in comoving coordinates). For inflation to provide a possible explanation for the observed
fluctuations on large scales, the scale λ0(t) corresponding to the current Hubble horizon must originate inside of the
Hubble radius at the beginning of inflation. This leads to the condition (3.4). The TCC, on the other hand, demands that
the length scale λ1(t)which equals the Hubble radius at the end of inflation was never trans‐Planckian. In the sketch, both
conditions are marginally satisfied.

The equation (3.7) for N+ and the upper bound (3.8) on N+ coming from the TCC are

compatible only provided that the condition

V3/4 <
√
3M2

pl(T0Teq)
1/2 (3.9)

is satisfied. Inserting the values of T0, Teq andMpl we obtain

V1/4 < 6× 108GeV ∼ 3× 10−10Mpl . (3.10)

Note that this conclusion is independent of the assumption that quantum fluctuations during

inflation are the seeds for primordial structure formation. While we have used a potential V to

describe the energy density during inflation, our analysis holds for more general scenarios and

Eq. (3.10) can be interpreted as a bound on the energy density during the inflationary epoch.

We now add the assumption that quantum fluctuations of the inflaton are responsible for
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the origin of structure. In this case, the power spectrumP of the curvature fluctuationR (see61)

is given by

PR(k) =
1

8π2ε
(H(k)
Mpl

)2
, (3.11)

where k is the comoving wavenumber of the fluctuationmode andH(k) is the value ofH at the

timewhen themode k exits theHubble radius. The parameter ε determines the deviation of the

equation of state in the inflationary phase compared to pure de Sitter:

ε ≡ 3
2
(p
ρ
+ 1
)
, (3.12)

where p and ρ are pressure and energy densities, respectively. For inflation to provide the source

of structure in the Universe, we need63

PR(k) ∼ 10−9 . (3.13)

Combining (3.10) (3.11) and (3.13) leads to an upper bound on ε

ε ∼ 109
1

8π2

(H(k)
Mpl

)2 ∼ 109
V

24π2M4
pl

< 10−31 . (3.14)

Since the power spectrum of gravitational waves is given by

Ph(k) ∼
(H(k)
Mpl

)2
, (3.15)

the tensor to scalar ratio r is given by

r = 16ε < 10−30 , (3.16)

where the factor 16 comes from the different normalization conventions for the scalar and

tensor spectra. While the discussion above assumed that the inflaton dominated the scalar

perturbations it is important to note that the TCC constrains the absolute amplitude of the
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primordial gravitational waves. The bound on r therefore relies only on the TCC bound on

the energy in Eq. (3.10) and the observed amplitude ofPR. Allowing scalar perturbations from

additional fields or amodified sound speed for the inflaton, for example,will not relax Eq. (3.16).

From (3.16)we draw the conclusion that any detection of primordial gravitationalwaves on

cosmological scales would provide evidence for a different origin of the primordial gravitational

wave spectrum than any inflationary model consistent with the TCC. Note that a number of

cosmological scenarios alternative to inflationdopredict significant primordial tensormodes on

cosmological scales.One example is StringGasCosmologywhich predicts both a scale-invariant

spectrum of cosmological perturbations with a slight red tilt64 and a roughly scale-invariant

spectrum of gravitational waves with a slight blue tilt65.

Note that the above analysis applies not only to single field inflation, but also to multi-field

inflation. The conclusions only depend on the fact that the parameter ε is ≪ 1 which is self-

consistentwithwhatwe found.The constraint also applies towarm inflation66models,models

which can be consistent with the de Sitter swampland conjecture67,68.

In this section, we have been general and have not assumed a slow-roll inflation. In the

following section we will study the consequences of the TCC for slow-roll inflation.

3.2 Application to Slow-Roll Inflation

The equation of motion of a canonically normalized scalar field φ in a homogeneous and

isotropic metric of the form (3.2) is

φ̈ + 3Hφ̇ + V′ = 0 , (3.17)

where the prime indicates the derivative with respect to φ. Here, we have assumed that there is

no important coupling of φ to other matter fields during inflation. Thus, the analysis in this

section applies to cold inflation but not to warm inflation. The Friedmann equation takes the
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form

3H2M2
pl =

1
2
φ̇2 + V , (3.18)

In the case of single field slow-roll inflation, the slow-roll parameter ε is

ε ≃
M2

pl

2
(V′

V
)2

. (3.19)

The slow-roll equation of motion is

3Hφ̇ = −V′
. (3.20)

The field range Δφ which the inflaton field φmoves during the period of inflation is given

by

|Δφ| ≃ |φ̇Δt| , (3.21)

where Δt is the time period of inflation. We will show that Δφ is very small compared to the

Planck mass. In this case, it is self-consistent to assume that H and φ̇ are constant. In this case

using the TCC

Δt = H−1N < H−1ln
(Mpl

H
)
, (3.22)

and, making use of (3.19), the field range becomes

|Δφ| <
√
2ε1/2ln

(Mpl

H
)
Mpl

<
109/2V1/2

Mpl
ln

(
M2

pl√
V

)

<10−13Mpl , (3.23)

where in the last inequality we used the monotonicity of [x ln(1/x)] for x < e to substitute

the upper bound on V from (3.10). As first studied in69, in the case of large field inflation, i.e.

|Δφ| ≫ Mpl, the inflationary slow-roll trajectory is a local attractor in initial condition space,
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even taking into account metric fluctuations70,71,72. Small field inflation as is the case here, on

the other hand, is not an attractor in initial condition space, as reviewed in73. If the field range

for slow-roll inflation is constrained by theTCCconjecture to obey (3.23), then the inflationary

scenario is faced with an initial condition problem. The expected initial field velocity is

φ̇2
i ∼ V (3.24)

and hence
φ̇SR
φ̇i

∼ ε1/2 < 10−15 , (3.25)

and it takes fine tuning of the initial velocity in order to be sufficiently close to the slow-roll

trajectory.

In the followingwe propose amodelwhich can consistently explain observations, including

the observational value of the tilt. We consider an inverted parabola potential V(φ) = V0 −

|V′′|φ2/2 over a small field range [φi, φf] such that δV/V ≪ 1 over the field range. Given the

smallness of ε from (3.14), we have

M2
pl
V′′

V
≃ ns − 1

2
, (3.26)

wherens = 1+2η−6ε is the tilt parameter and η = M2
plV′′/V is the second slow-roll parameter.

This fixesV′′ from observation. From the equations (3.11) and (3.19) we find

V0

12π2M2
plφ2

CMB
≃ P(k)(

ns − 1
2

)2. (3.27)

where φCMB is the value of the field when the modes on CMB scales exited theHubble horizon.

AssumingH remains almost constantH ≃
√
V0/3M2

pl during the slow-roll inflation, one can

show

ln

(
φ2
φ1

)
≃ |η|N(φ1 → φ2), (3.28)
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whereN(φ1 → φ2) is the number of e-folds accrued as φ goes from φ1 to φ2. If we plug φ1 =

φCMB and φ2 = φf into the above identity and use the equation (3.7), we find

φf

φCMB
= e|η|N+ ≃ V

|η|
4
0 Ω

|η|
2m

(T0Teq)
|η|
2

. (3.29)

Plugging φCMB from (3.27) into (3.29) leads to

φf ≃
V

1
2+

|η|
4

0 Ω
|η|
2m

M2
pl(T0Teq)

|η|
2 12 1

2P 1
2 π|η|

≃ 3.9× 105 ·
(

V0

Mpl

)0.505

, (3.30)

where in the last step we substituted |η| ≃ 0.02, P ≃ 2 · 10−9, T0 ≃ 3K, Teq ∼ 104K, and

Ωm ≃ 0.3. This fixes the end of the field range φf in terms of the energy scaleV0. The only free

parameters left areV0 and φi.

Nowwe impost the TCC for the slow-roll trajectory to find a constraint in terms of φi and

V0. Plugging φ1 = φi and φ2 = φCMB in (3.28) gives

φCMB ≃ φie
1−ns
2 N− , (3.31)

where N− is the number of e-folds accrued before the modes on CMB scales exit the horizon.

The total number of e-foldings isNtotal = N− +N+. From (3.7) we find

eN ≃ eN−
V1/4

(T0Teq)1/2
. (3.32)

On the other hand, from the TCC, we know that the total number of e-folds is bounded by

eN < Mpl/H. Using (3.31), this can be expressed as

(
φCMB
φi

)
2

1−ns <
(3M4

plT0Teq)
1
2

V
3
4
0

. (3.33)

Plugging φCMB from (3.27) in (3.33) withP ≃ 2 · 10−9, ns ≃ 0.96,T0 ≃ 3K, andTeq ∼ 104K

43



leads to

(
V0

M4
pl
)1.03 < 6.6× 10−12 · (

φi
Mpl

)2. (3.34)

The above inequality is necessary for the potential to be consistent with the TCC, but it is

not sufficient. This is because a potential is consistent with the TCC if the inequality (3.1) is

satisfied for every expansionary trajectory, not just one particular trajectory.

For energy scale V1/4
0 = 10−10Mpl the potential V0(1 − 0.02φ2) defined over the field

range [φi, φf] = [9.7 × 10−16Mpl, 2.4 × 10−15Mpl] satisfies all the criteria (3.10), (3.30), and

(3.34). These criteria were imposed by observation and consistency with (3.1) for the slow-roll

trajectory. By numerical analysis, we further verified the consistency of this potential with the

inequality (3.1) for every expansionary trajectory. This is an example of a simple potential that

can explain the observation and be consistent with the TCC at the same time, however, due to

its short field range, it suffers from the fine-tuning problem.

3.3 Conclusions andDiscussion

We have studied the implications of the recently proposed the TCC for inflationary cosmology.

Demanding that theTCCholds and that the largest scales thatwe currently probe in cosmology

are sub-Hubble at the beginning of the inflationary phase (a necessary condition for the causal

generation mechanism of fluctuations of inflationary cosmology to work) leads to an upper

bound on the energy scale of inflation which is of the order of 109GeV. Demanding that the

amplitude of the cosmological perturbations agree with observations then leads to an upper

bound on the generalized slow-roll parameter ε of the order of ε < 10−31. As a consequence,

the tensor to scalar ratio is predicted to be smaller than 10−30. A detection of primordial

gravitational waves via B-mode polarization, pulsar timing measurements or direct detection,

assuming the TCC, would then imply that the source of these gravitational waves is not due to

quantum fluctuations during inflation.
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The above conclusions are independent of any assumptions on the possible single-field

nature of inflation. If we then specialize the discussion to the case of single field slow-roll

inflation with a canonically normalized inflaton field, we find that the range Δφ which the

inflaton field traverses during the inflationary phase is of the order of ε1/2Mpl. This raises an

initial condition problem formost of themodels since the expected field velocity is much larger

than the field velocity along the slow-roll trajectory.

We proposed an inverted parabola potential as a simple example that is consistent with the

TCC and can explain the observation at the same time.
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4
Late time cosmology and dS bubbles

One of the major challenges facing present-day cosmology is understanding the nature of the

observed dark energy. The simplest model is to assume that the dark energy is the energy of

the minimum energy state of a theory. An example of this is represented by scalar fields with

a potential. In such a scenario the minima of such scalar potential, if such points exist, would

be (meta)-stable solutions to dark energy, leading to de Sitter spaces which seem to be a good

approximation to the cosmological observations. Whether such a scenario would be absolutely

stable or only metastable would depend on whether there are lower values of energy at other

points in field space.

Trans-Planckian Censorship Conjecture (TCC) broadly leads to the dS swampland
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conjecture which forbids metastable de Sitter, however it is less restrictive. In particular does

allow for the existence of metastable dS spaces, as long as their lifetime is short. The short-lived

dS spaces decay by transitioning to a state with lower energy. In this chapter, we study the

consequences of such short-lived dS spaces. In particular, we consider a sequence of transitions

from one metastable dS space to the next, nucleated by membranes, and capture this in terms

of a dual effective theory of a scalar whose rolling in discrete steps captures these transitions.

This scenario is reminiscent of the inflationary models in74,75, which also involve a cascade of

metastable dS vacua.

The transitions between nearby dS vacua are severely restricted by swampland conditions.

In particular, TCCputs a strong upper bound on the lifetime of such a transition. Additionally,

we can ask how do other swampland conjectures such as the Weak Gravity Conjecture (WGC)

restrict the possibilities. IndeedWGC leads to the statement that the tension of themembranes

which nucleate the decay cannot be too large. Surprisingly, we find that the fast decay implied by

TCC already implies this as a consequence. Moreover, TCC leads to light enough membranes

which in some limits can be viewed as localized excitations. For sufficiently small cosmological

constant the generalized distance conjecture leads to predictions of themass of the tower of such

light states. We find that the TCC is again compatible with this prediction. This interwoven

relationshipbetweendifferent Swampland conjectureswhich is also seen inmanyother contexts

is indeed reassuring.

One could ask whether the resulting dual effective potentials that emerge are of the generic

type allowed by TCC or the fact that they are generated by dS transitions makes them more

restrictive. Indeed we find that they are more restrictive. In particular eternal inflation which

naively is compatible with TCC is marginally ruled out as being dual to such transitions. This

points to the possibility that eternal inflation is never allowed and is in the swampland as has

been suggested in39.

The organization of this section is as follows: In subsection 2 we review the membrane

dynamics which lead to decays of the dS space.We also derive effective dual potentials capturing
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such transitions. In section 3 we apply WGC and TCC to the membrane dynamics. In

subsection 4we study the emergent potential and study its properties, and in particular, observe

that eternal inflation is not compatible in this dual formulation. In subsection 5 we discuss the

cosmological implications of our observations. In subsection 6 we end with some conclusions.

Some of the technical aspects are presented in the appendices.

4.1 Membrane nucleation in metastable de Sitter

The basic point of this chapter is to study Swampland constraints in a de Sitter space whose

cosmological constant changes via non-perturbativemembranenucleationprocesses. Sowefirst

need to understand how this process takes place, and how it translates to an “effective potential”.

We do both things in this section, relegating most details to the appendices.

Review: Thin-wall membrane nucleation Let us assume the existence of some metastable

de Sitter vacuum. This vacuum should eventually decay to some lower energy configuration.

The most standard decay channel is via Coleman-de-Luccia bubble nucleation76,77, in which a

bubble of true vacuum nucleates inside the false vacuum and starts expanding in an accelerated

fashion, almost at the speed of light. This is a non-perturbative semiclassical instability whose

transition rate can be estimated in terms of a Euclidean instanton solution,

Γ = P e−S (4.1)

where S is the euclidean classical instanton action and P is some prefactor involving the

quantum fluctuations. For the bounce solution to exist, the bubble needs to nucleate with a

critical radius R such that the cost of energy of expanding the bubble (the surface tension)

is smaller than the energy gain associated with the difference of energies outside and inside

the bubble. The result for S and P can be computed in the thin wall approximation, which

neglects the physical width of the domain wall in comparison to its critical radius. This is done

in appendix D, while here we will only present the results when gravitational corrections are
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negligible1.

The critical radiusR of the bubble in de Sitter is given by

(RH)2 ≃ 1
1+ (R0H)−2 , R0 =

T
ΔΛ

(4.2)

whereH = Λ1/2 is the Hubble scale and throughout the chapter, we will be working in Planck

units. Here T is the tension of the domain wall and ΔΛ is the difference of vacuum energies on

the two sides of the bubble. Note thatR is smaller than the Hubble length,R ≤ H−1, and that

in the flat space limit whereH → 0 we getR = R0. The instanton action in (4.1) is given by

S ≃ T
H3w(R0H) ,

w(q)
2π2 =

1+ 2/q2√
1+ 1/q2

− 2
q

(4.3)

while the instanton prefactor, up to order one factors, reads

P ≃ T2R2 ≃ T2R2
0

1+ (R0H)2
(4.4)

More details of the computation of the prefactor can be found in78. Due to the gravitational

effects, it is also possible to have up-tunneling in de Sitter space, but it is muchmore suppressed

if ΔΛ < Λ (see appendix D).

In the flat space limit, i.e. when the critical radius of the bubble is much smaller than the

Hubble scale, the instanton action and prefactor can be approximated by

S ≃ 2π2T4

ΔΛ3 , P ≃ T4

ΔΛ2 (4.5)

whileR ≃ R0.

Our analysis will be mostly in the thin wall approximation, which we just described. In the

opposite limit, when the membrane becomes very thick, there is a decay channel known as the
1Gravitational corrections are negligible when the tension os the bubble T is much smaller than the Hubble

scale
√
Λ in Planck units. This approximation will be sufficient for this chapter, as we will see that larger values of

T are not consistent with the swampland constraints.
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Hawking-Moss transition79, which dominates over the thin wall Coleman-de-Luccia bubble

nucleation. While we focus on the thin wall approximation, we can also put some constraints

on the Hawking-Moss scenario, which we describe in appendix F.

We finish the review with a couple of comments. In subsequent sections, we study a

sequence of successive mild tunnelings that could be effectively described by a smoothly

evolving scalar field with a potential. This can be a good approximation only if we assume that

the physical observables do not drastically change fromone vacuum to the next. Because of that,

in the following,we focus on caseswhere the de Sitterminimumdecays to a less energetic nearby

local de Sitter minimumwith positive energy. This, in particular, implies that

ΔΛ < Λ. (4.6)

Depending on themodel, this process could be repeatedmultiple times, going throughdifferent

metastable dS vacua until reaching either an AdS supersymmetric vacuum or decaying to

nothing2.

In both cases, we expect a drastic change of the physical observables, either by suffering a

Big Crunch or because the vacuum annihilates to nothing. In fact, a drastic change when ΔΛ

becomes of order Λ is also motivated by a generalization of the swampland distance conjecture

applied to the space of metric configurations83 since the flat space limit Λ → 0 is at infinite

distance in this field space. Therefore, we will not discuss these final transitions here but focus

on the chain ofCdL transitions thatwill discharge the positive vacuumenergy little by little, but

staying on a quasi-de Sitter phase and assuming that the physics does not significantly change

in the process.

Let us finally remark that in the following we will use the above Coleman De Luccia

formulae even if the action (4.3) is of order one and there is no exponential suppression. This
2It has been shown in certain setups of AdS flux vacua80,81,82 that there is an alternate decay channel where

all of the flux is eaten up all at once and spacetime just ends at a “bubble of nothing”. It would be interesting to
study if the bubble of nothing in dS can also be understood as a limiting process of the thin-wall transitions we are
describing here, and whether this can be used to put an interesting upper bound on the decay rate of a de Sitter
vacuum.
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is justified because the coupling of the domain wall is small, as argued in detail in appendix D.

4.1.1 The effective potential

We have just discussed the dynamics of a universe in which bubbles nucleate and expand in

an accelerated fashion. But what precisely does a single observer see, on average? Sitting at the

center of her very own static patch, things will not change much and will look approximately

de Sitter, until she is hit by a bubble, which nucleated somewhere else.

After the bubble hits, the vacuum energy has changed by a little bit. Averaging over many

transitions, we can replace these discrete jumps in the value of the cosmological constant by

an effective scalar φ with a potential V(φ). The characteristics of this potential are in turn

determined solely by the fundamental parameters of the membrane picture, T and ΔΛ.

This allows us to connect directly with the usual quintessence/slow-roll inflation literature,

and indeed, over large distances and times the two descriptions are interchangeable3.

A detailed derivation of the potential can be found in appendix E. The basic idea is that to

compute the vacuum energy one only needs to compute howmany bubbles reach the observer

per unit time. At first, it would seem one needs to integrate the bubble production rate over the

past lightcone of the observer. However, a bubble will not reach the observer if it hits another

bubble and annihilates with it first. As a result, we only need to integrate the bubble production

rate over some spherical effective volume Veff. Thus, the number of bubbles per unit of proper

time is
dN
dt

= ΓVeff. (4.7)

Equation (4.7) is all we needed to compute the potential explicitly since

dV
dt

= ΔΛ
dN
dt

= ΔΛΓVeff ∼
(V′)2√

V
, (4.8)

3There are twomain differences with the standard picture: at short enough times or length scales, the changes
in the vacuum energy are discrete as we just discussed; and as we will see later on, we cannot get just anyV(φ) from
the membrane perspective; the potential gets additional constraints.
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where the last equality is a slow-roll expression. That is, we assumed that the vacuum energy

can be described by a slow-rolling scalar with potential V(φ), and then equated the slow-roll

expression for dV/dt from what we get frommembranes. Rearranging, one gets

(
V′

V

)2

∼ ΔΛ
Λ3/2ΓVeff, (4.9)

which determines the potential completely once we know Veff. A detailed derivation of this

effective volume can be found in appendix E (see (E.15) for the general result for Veff.). Here,

we will only note the two limiting cases that are relevant for our constraints:

• It is intuitively obvious that Veff cannot grow larger than the Hubble horizon. In case

that Veff is this large, we find
V′

V
=

ΔΛ1/2

Λ3/2 Γ1/2. (4.10)

This corresponds to the case where collisions are rare (Γ ≪ H4) and basically all

membranes which are produced in the past lightcone reach the observer.

• On the other hand, when the critical radius is much smaller than the Hubble scale and

collisions are common (Γ ≫ H4), the effective volume is determined by the distance to

the closest nucleating event, which is of order Γ−1/4. So in this case

V′

V
=

ΔΛ1/2

Λ3/4 Γ1/8. (4.11)

So to sum up, we have membranes that discharge the background cosmological constant,

and a convenient description in terms of an effective potential. Without any further

assumptions, this could take a very long time, the effective potential would be extremely flat,

and the de Sitter could be extremely long-lived. In this chapter, we will see that Swampland

conditions such as TCC andWGC place constraints on just how fast these decays can happen.
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4.2 Swampland constraints on bubble nucleation

The goal of this section is to investigate the swampland constraints on the decay rate of bubble

nucleation in metastable de Sitter vacua. We will see that, in particular, the Weak Gravity

Conjecture and theTransplanckianCensorshipConjecture implynon-trivial constraints on the

properties of the bubbles/membranes. It will be very convenient from now on to parametrize

the scaling of the tension of the bubble and the difference in the vacuum energy in terms of Λ

as follows,

T ∼ Λα , ΔΛ ∼ Λβ. (4.12)

For the time being,we can think of α, β as constants althoughwewill later allow them to depend

on Λ as well.

4.2.1 TheWeak Gravity Conjecture

The Weak Gravity Conjecture84 states that, given a theory with a p-form gauge field weakly

coupled to Einstein gravity, there must exist an electrically charged state satisfying

γ T ≤ Q (4.13)

where Q = gpq is the physical charge (including the gauge coupling gp), T is the tension and γ

is the charge to tension ratio of an extremal black brane in that theory. We will be applying this

to a codimension-1 object, a membrane coupled to a 3-form gauge field with gauge coupling

g3. Since our primary interest is weakly curved de Sitter space, we will be ignoring potential

corrections to the WGC bound from the positive cosmological constant4.

The interpretation of the WGC for codimension-one objects is a bit subtle as the

backreaction of these objects is very strong and destroys the asymptotic structure of the vacuum.

Hence, they should not be understood as normalizable states around a given vacuumbut rather
4See85,86,87 for work on the (particle) version of the WGC in dS.
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as defects sourcing localized EFT operators88—a perspective that has been recently analyzed

in89 in relation to the Swampland conjectures—. The 4d backreaction away from the object

translates then into a classical RG flow to low energies that makes the tension scale-dependent.

In this chapter, we will assume that the WGC applies to any energy scale and will impose the

WGC to the domain wall solutions in the IR (an approach already taken in90 when using the

WGC to argue for a bubble instability for any non-supersymmetric vacuum).

In order to apply the WGC to the domain walls, we are assuming that the CdL bubble

nucleation corresponds to a Brown-Teitelboim transition91 in the sense that the domain

wall contains a localised membrane on its core charged under a 3-form gauge field. This is

characteristic for example of vacua arising from compactifications with internal fluxes. When

crossing oneWGC domain wall of quantized charge q, the quantized background 4-form field

strength F4 changes by q units. Since this field strength parametrises the vacuum energy, the

charge of the domain wall roughly corresponds to the difference of vacuum energies in the

tunneling transition. Consider for instance a single 3-form, with a (possibly field-dependent)

gauge coupling g3. The vacuum energy is such that the potential reads

Λ =
1
2
g23n2. (4.14)

We allow g3 to depend on n polynomially, and assume that any other contribution to the

vacuum energy is subleading with respect to (4.14). Then, one has that

Q = g3 Δn ≃ Δ(
√
Λ). (4.15)

By plugging (4.15) into (4.13) we get that the WGC for domain walls implies

T ≲ ΔΛ
Λ1/2 (4.16)

where we have assumed that the variation of vacuum energy is small. We have also neglected an

order one factor coming from the extremality factor γ in (4.13) as we will only be interested
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in the scaling of the tension with the vacuum energy. Upon using (4.12), the above inequality

translates into the following constraint on α, β,

α − β+
1
2
≥ 0 . (4.17)

It is interesting to note that (4.16) is equivalent to imposingR0 ≲ H−1whereR0 is the flat space

radius defined in (4.2). Recall from section 4.1 that the decay rate can be written as a function

of two variables, T andR0 in Hubble units. TheWGC boundR0 ≲ H−1 makes the instanton

action small, so ameliorates the exponential suppression, but also decreases the prefactor, as can

be checked using (4.3) and (4.4). Hence, for a given value of the tension, the WGC implies an

upper bound on the decay rate of bubble nucleation. This is reminiscent of the situation in86,

where WGC-like considerations led to an upper bound on how fast black holes should decay.

4.2.2 Transplanckian censorship conjecture

dS space seems to be difficult to realize in controllable regimes of String Theory. An example

of this tension is a class of no-go theorems that forbid a metastable dS in the asymptotic

of the field space which motivated the dS Swampland conjecture14 (for related Swampland

ideas see92,93,15,94,95,96,97,98,99,100,83,86,89 ). This key observation has led to multiple Swampland

conditions that aim to find a more general principle that could explain the tension between

the dS space and consistent quantum theories of gravity. One of such Swampland conditions,

the Trans-Planckian Censorship Conjecture (TCC), states that the expansion of the universe

must slow down before all Planckianmodes are stretched beyond theHubble radius19. If TCC

gets violated, the Planckian quantum fluctuations exit the Hubble horizon, freeze out and

classicalize which is, at the very least, strange. A variety of non-trivial consequences of TCC for

scalar field potentials were studied in19 and shown to be consistent with all known controllable

string theory constructions. In this chapter, we will not enter into motivating the TCC, but

simply study its implications for the case of metastable de Sitter vacua in more detail. A survey

of the motivations for TCC can be found in22.
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For metastable de Sitter spaces where the Hubble parameter stays constant, the TCC

imposes an upper bound on the lifetime as follows19,

τ ≲ 1
H

1
log(1/H)

. (4.18)

We will be referring to this upper bound as the TCC time τTCC. In the rest of this chapter, we

focus on the leading terms inour computations andwill ignore the logarithmic correction factor

above.Wewill comeback anddiscuss the effect of the subleading corrections in subsection 4.3.4.

Let us now study the consistency of the TCC with the CdL decay mechanism reviewed in

section 4.1. In particular, we will momentarily see that thin-wall tunneling could be consistent

depending on the characteristics of the domain wall. In appendix F we also discuss the

Hawking-Moss transition to show that when it is the dominant decay channel it is (marginally)

inconsistent with the TCC.

In section 4.1 we provided Γ = Pe−S in terms of T and ΔΛ for thin-walls. By plugging

(4.12) into (4.3) and (4.4), we find the TCC takes the following form in terms of α and β,

Γ > H4 → Λ4α−2β−2

1+ Λ2α−2β+1 exp
(
−Λα−3/2w(Λα−β+1/2)

)
≳ 1. (4.19)

When Λ is very small, the above inequality can be approximated by

Λ4α−2β−2 exp
(
−Λ4α−3β) ≳ 1, (4.20)

which can also be derived by using the flat space approximations for P and S in (4.5).

4.2.3 Constraints on domain walls

In the previous two subsections, we discussed how the Swampland conditions could be applied

to thedomainwalls. In this subsection,we combine those results andperforma systematic study

of what domain walls belong to the Swampland.
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Figure 4.1 showshowtheWGC(eq. (4.17)) and theTCC(eq. (4.19)) constrain the values of

α and βwhich characterize thin-walls to lie in a confined blue region.We only present the results

β > 1 as this is implied by (4.6), taking into account that in Planck units Λ < 1. An interesting

feature is that TCC imposes a stronger constraint than WGC; in other words, in most of the

parameter space, TCC implies WGC for domain walls. There is a region near (2, 3/2) where

the two curves intersect.Which one imposes the stronger constraint is sensitive toO(1) factors;

we will comment on these in section 4.3.4.

The boundary of the blue region, which represents the TCC condition (4.19), does not

have a simple analytic form in α and β for a general Λ. However, for exponentially small values

of Λ, such as would be in our universe, the blue region given by Γ = Pe−S ≳ H4 can be well

approximated by a triangle whose boundaries can be easily determined by looking at (4.20),

from which we can extract P ≃ Λ4α−2β and S ≃ Λ4α−3β. The triangle is delimited by two

lines, one corresponding to P ≳ H4, and another to S ≲ O(1) to eliminate the exponential

suppression, as follows

S ≤ 1 → 4α ≥ 3β, (4.21)

P ≥ H4 → 4α − 2β ≤ 2 (4.22)

These two lines provide a fairly accurate envelope of the numerical blue region if Λ is very small,

except for the region at the tip of the triangle. The point where the triangle almost touches the

WGC line corresponds to eternal inflation potentials, as wewill discuss inmore detail in section

4.3.3.

We also note in passing that for the whole approach to be valid, we should impose that the

radius of the bubbles is above the cutoff of the EFT. Choosing the cutoff to be at the Planck

scale, this just removes the point (α, β) = (1, 1), as all the bubbles inside the blue region have a

subplanckian radius. Lowering the cutoff from thePlanck scale to e.g.GUT scalewould remove

a very small region around this point, but this does not affect our constraints verymuch and the

qualitative features of the plot remain unaltered.
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Figure 4.1: Allowed regions in the (α, β) plane for Λ = 10−120. The left hand side of the red line is allowed by the
WGC for membranes (4.17), while the light blue region corresponds to the TCC allowed region (4.19). The purple region
corresponds toV′/V > 1 and points above the horizontal dotted line have T ≤ Λ3/2, which are disfavoured by the
Higuchi bound and Distance Conjecture.

We have also added a few more lines in figure 4.1. First, the horizontal dotted grey line

represents membranes with T = Λ3/2. In the next section, we will provide some arguments

thatmotivate us to only allowmembranes below this line. Finally, we have highlighted in purple

the region corresponding to V′/V > 1 by using the full derivation of the effective potential

in terms of the decay rate in (4.9). This region is excluded by observational constraints in our

universe. The line bounding this region and the rest of the blue triangle can be simply derived

from (4.11), which is a good approximation since Γ > H4 inside the blue region. Hence, by

plugging Γ ≃ P ≃ Λ4α−2β into (4.11) we get

V′

V
= 1 → 2α +

β
4
− 3

4
= 0 . (4.23)

4.2.4 Comments onHiguchi bound andDistance Conjecture

In figure 4.1 we have drawn a horizontal dotted line at the value associated with T = Λ3/2.

Here we will provide three different arguments in favor of imposing α ≤ 3/2 which,

even if not completely conclusive, motivates this upper bound. These arguments involve
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(1) the breakdown of effective field theory (2) applying Higuchi bound to the membrane

and (3) the application of membrane excitations as leading to light states predicted by the

generalized distance conjecture83. Note that the combination of this upper bound with the

WGC constraints implies a finite region on the (α, β)-plane, which implies by itself an upper

bound on the decay rate (independently of the TCC). Interestingly, this upper bound is a bit

less restrictive but still consistent with the TCC.

Our domain wall solutions contain fundamental membranes on their core, which mediate

transitions between different flux vacua. Often in string compactifications, the domain wall

solutions involve additional scalar fields which get a nontrivial profile in the membrane

background. If we go high up in energies, the membranes can be seen as localized free

objects with a tension Tmem which can differ from the tension of the domain wall due to the

contribution from the scalar flow driven by the membrane backreaction, so that T ≥ Tmem.

For the semiclassical description of these membranes not to break down, we need the tension

to be above the cut-off of the EFT, Tmem ≥ Λ3/2
cutoff

89. Otherwise, it would not be possible to

describe the membrane within a local EFT. Since this cut-off is associated with the membrane

sector, it can be disconnected from the SM of particle physics and could, in principle, take any

value. However, it seems reasonable to impose that it is above theHubble scale in an expanding

universe, Λcutoff > H.

Hence, we get that Tmem ≥ Λ3/2 so there is a lower bound for the membrane tension in

terms of the cosmological constant, which in turn implies a lower bound for the domain wall

tension in the IR as T ≥ Tmem ≥ Λ3/2, implying

α ≤ 3/2 . (4.24)

This is also consistent with the fact that in dS space, anymass scale less thanHubble is physically

not measurable in the current phase of the universe. In other words, having the mass scale

associated with the membrane T1/3 ≤ Λ1/2 will be unobservable. So we may as well restrict

to α ≤ 3/2. To sum up, as long as the domain wall has a fundamental membrane on its core
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which can be described semiclassically with a local EFT, and the EFT cut-off is bigger than the

Hubble scale, then one needs to impose (4.24). Of course, not every CdL transition needs to

have the interpretation of a Brown-Teitelboim flux transition with a fundamental semiclassical

membrane on its core, but otherwise, the justification of applying theWGCto the domainwalls

is less clear. If the membrane cannot be described semiclassically, then the EFT is non-local and

it is not clear how to even start defining a charge under a gauge field and how to apply theWGC

then.

The second argument comes from applying theHiguchi bound to the membranes. First of

all, notice that it is not possible to apply the Higuchi bound directly to the IR domain walls,

as the membranes are confined and the mass scale of the excitation modes is not associated

with T1/3. In fact, if the bubble is expanding, the volume contribution in E ∼ TR2 − ΔΛR3

dominates over the tension surface, and themodes are tachyonic as they are describing a vacuum

instability. However, it is possible to apply the Higuchi bound to the localized membranes at

the core of the domain walls as long as the relevant energy scale is above the confinement scale

and they behave as free objects. Indeed, the condition Tmem ≥ Λ3/2
cut−off guarantees that there is

a regime in energies in which very small spherical membranes behave as semiclassical unstable

particles with a lengthscale at least of the order of their Compton length lc ∼ T−1/3
mem .

In other words, there are small unstable pockets that contract as soon as they are formed,

with an energy that it is well approximated by E ∼ Tmeml2c ∼ T1/3
mem since Tmeml2c ≫ ΔΛ l3c if

Tmem ≥ Λ3
cutoff and ΔΛ ≪ Λcutoff

5. By applying the Higuchi bound to these small spherical

membranes, we get that T1/3
mem ≥ Λ1/2 implying again (4.24).

The last argument ismore a proposal for an interpretation of the role of thesemembranes in

case they satisfy (4.24). Interestingly, thesemembranes are candidates to fulfill theAdSDistance

Conjecture inde Sitter space83. The conjecture states that there should an infinite tower of states
5Notice that Tmeml3c ≫ ΔΛ l3c is equivalent to require S ∼ T4

mem/ΔΛ
3 ≫ 1. Thanks precisely to the scalar

contribution due to the backreaction induced by the membrane, we can satisfy this condition for the membranes
but still violate it for the domain wall in the IR (so that the domain wall will be consistent with the TCC later on).
For this to happen one needs to have T/Q|DW < (T/Q)mem, which is expected by theWGC if we have a vacuum
which breaks spontaneously supersymmetry but the membranes were originally BPS.
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with a mass of order

m ∼ Λδ (4.25)

since the flat space limit Λ → 0 is at infinite distance in the space of metric deformations.

In de Sitter space, the Higuchi bound forces δ to be δ ≤ 1/2, which is equivalent to having

Tmem ≥ Λ3/2. The conjecture does not specify what is the origin of the tower of states. In AdS

space, they usually correspond to particles, KK towers for concreteness, underlying the absence

of scale separation typically observed inAdS vacua. An interesting possibility is that, in de Sitter

space, the tower of states comes frommembranes and it is, therefore, eventually underlying the

instability of these vacua. We could turn the argument around and say that, if the membranes

provide the states satisfying the AdS Distance Conjecture, then they need to satisfy (4.24).

4.3 Emergent Potential and the Swampland

In the previous section, we studied how the Swampland conditions constrain the domain wall

parameter space. As we saw in subsection 4.1.1, successive tunnelings between neighboring

vacua can be effectively described by a smooth rolling of an emergent scalar field in a potential.

We can either apply TCC in the membrane perspective or directly to the emergent effective

potential without taking its microscopic origin into account. We will find that the membrane

perspective leads to a restrictive class of emergent potentials that could not be obtained

otherwise. This seems to extend the meaning of TCC and in particular, leads to essentially

forbidding eternal inflation.

4.3.1 Flat potentials and TCC

The TCC implies the general statement that a quasi-deSitter phase cannot last more than
1
H ln(1/H). We will now tailor this statement to the particular case of very flat (|V′| ≪ V

| ln(V)| )

monotonic potentials. As we will see in subsection 4.2, these are the kind of potentials we

get from the membrane picture on a range of parameter spaces. We aim to find the strongest
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condition that TCC alone imposes on this kind of potential.

First, we show that the TCC implies the field range needs to be sub-Planckian. We prove

this by contradiction. Suppose the field range is trans-Planckian. Consider a slow-roll trajectory

over anO(1) sub-interval of the field range. For the slow-roll trajectory we have

dφ ≃ |V′|√
3V

dt. (4.26)

Since |V′| ≪ V, the change in V over this field range is negligible and V can be taken to be

constant. From the TCC, we find Δt < 1
H ln
( 1
H

)
∼ | ln(V)|√

V . Plugging this and |V′| ≪ V
| ln(V)|

in equation (4.26) gives

Δφ ∼ |V′ ln(V)|
V

≪ 1, (4.27)

which is in contradiction with our assumption. Thus, the field range must be sub-Planckian.

This fact combined with the fact that the potential is very flat, allows us to take V andH to be

nearly constant in our computations. Given that H is almost constant, the consistency of the

slow-roll trajectory with TCC would imply that any other trajectory is consistent with TCC

as well. This is because it only takes one Hubble time for a trajectory to become slow-roll and

TCC upper bound for the duration of the inflation is 1
H ln
( 1
H

)
which for small values of the

cosmological constant is much greater than the Hubble time. So the first part of the trajectory

before the slow-roll is negligible. In any case, note that the derivation of the effective potential

(4.9) in appendix E assumes slow-roll.

This can also be expressed in terms of the potential alone, without referring to the slow-roll

trajectory. By rearranging (4.26) and imposing TCC, we get

√
3V
ˆ

dφ
|V′|

=

ˆ
dt <

√
3
V
ln

(√
3
V

)
→ 2V

ˆ
dφ
|V′|

≲ | ln(V)|. (4.28)

In short, TCC only imposes that the potential must get steep (|V′| ≳ V) after the time
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τTCC ∼ 1
H ln
( 1
H

)
. When the potential is induced by successive tunnelings as in section 4.1.1,

this constraint could be interpreted as a statement about the time evolution in the α − β plane

in figure 4.1. TCC is equivalent to requiring the trajectory in α − β plane to reach the purple

region (|V′| ≳ V) in less than τTCC time, and nothing else. In particular, it does not lead to

any pointwise constraints on the potential. As we will now see, combining with the membrane

picture, it is possible to do better.

4.3.2 Swampland constraints on the membrane effective potential

We start by finding the characteristics of the effective potentials that can arise from membrane

tunneling. Suppose we have a nearly flat (|V′| ≪ V) monotonic potential. We investigate the

possibility of dividing up the field range into small enough intervals (Δφ)i such that each piece

can be approximated by a linear function, and each discrete jump can be realized by an allowed

membrane nucleation. We define parameters θn and γn for the n-th piece as follows.

Vθn
n =

|V′
n|

Vn
,

Vγn
n = (Δφ)n, (4.29)

where Vn and V′
n are the potential and its slope at the n-th interval. Supposing Δφ is small

enough we find

Vβn
n = (ΔV)n ≃ |V′

n|(Δφ)n (4.30)

which gives the following relation for β,

βn = θn + γn + 1. (4.31)

63



Applying the slow-roll condition gives

(Δt)n ≃
(ΔV)n
|V′

n|φ̇n
∼ (ΔV)n

√
Vn

|V′
n|2

= Vβn−2θn− 3
2n . (4.32)

Plugging β in terms of θ and γ leads to

(Δt)n ∼ Vγn−θn
n

1
H

(4.33)

Note that the derivation of the effective potential in section 4.1.1 allows us to compute θ as a

functionof α and βdefined in (4.12).Using this aswell as (4.31),we can translate the swampland

constraints on the (α, β)-plane of figure 4.1 to the (θ, γ)-plane instead, as shown in figure 4.2.

It is very important that not every point in the (θ, γ) is the image of a point in the (α, β) plane;

points that are not in the image (green region in the figure) are not physically meaningful from

the point of view of the membranes. In addition, the map is 2-to-1; two different points in the

(α, β) plane map to the same point on (θ, γ)6. The blue region in figure 4.1 “folds over itself”

along S ∼ 1 to be mapped to the blue region in figure 4.2. Every point in the blue region in

figure 4.2 has two preimages; one with S > 1 and the other with S < 1. More generally, the

entire (α, β) plane folds over itself along the curve ∂α(Γ) = 0, which is very close to, but not

exactly at, the lower boundary of the TCC region in figure 4.1, and after the vertex of the TCC

triangle it goes on to a line of almost constant α. The folding line gets mapped to the boundary

of the green region in figure 4.2, which is approximately described by the following function:

γ =


1
5 (1+ 3 θ) θ ≲ 1/2

θ− 0.013 θ ≳ 1/2
. (4.34)

This provides, for each value of θ, the maximum value of γ consistent with a membrane origin

of the effective potential. Notice that γ = 1
5(1 + 3 θ) is equivalent to the condition for the

instanton action to be S ∼ 1 in the flat space limit.
6This is related to the fact that the lifetime of the dS can be unchanged if while themembrane action increases

the prefactor increases in a way to compensate this.
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Figure 4.2: Allowed regions in the (γ, θ) plane for Λ = 10−120. Not all of the (θ, γ) plane corresponds to a valid
membrane picture (i.e. the map from the (α, β) plane to (θ, γ) is not onto); we have shaded in light green the region which
is not part of the image. The purple region corresponds toV′/V > 1, while the light blue region corresponds to the TCC
allowed region. The red line saturates the WGC for membranes and the region above the upper red branch is forbidden by
the WGC. The region to the right of the grey dotted line one has T < Λ3/2 and is disfavoured by the Higuchi bound and
Distance Conjecture. The black line represents the “eternal inflation” locus, defined by |V′| = V3/2.

There is a potential ambiguity in the definition of the decay time that needs to be addressed.

The time Δt in (4.33) is the time it takes for the transition to occur everywhere in the Hubble

patch which is different from the lifetime associated to an individual bubble7 used when

applying the TCC in section 4.2.3. Applying the TCC to the former time, i.e. Δt ≤ H−1

simply implies the condition γ ≥ θ, which a priori might seem different (even weaker) than

the constraint coming from applying the TCC to the membrane picture (Γ > H4) represented

as the blue region in figure 4.1.However, aswe see from the figure, in practice applying theTCC

to the effective potential provides the same constraints as applying the TCC to the individual

membranes as long as we restrict ourselves only to those potentials that can be interpreted
7The lifetime associated to an individual membrane is the time scale for only one bubble to form somewhere

in the universe and shift the value of the potential byΔVwithin that bubble. Imposing that this time scale is smaller
than Hubble time is equivalent to the TCC constraint for membranes imposed in section 4.2.2, i.e. Γ > H4. The
homogeneous time scale Δt in (4.33) is when the average of V over the whole Hubble patch decreases by ΔV and
is given by Δt = Γ−1V−1

eff , where the effective volume Veff is derived in (E.14).
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as originating from averaging over a cascade of membrane nucleation transitions8. This is

because the top boundary of the blue region coincides with the limit of the region admitting a

membrane origin.

In figure 4.2, there is a maximum value of θ allowed by TCC9. In subsection 4.3.1 we saw

that TCC by itself does not bound θ in general, so the constraint comes from the assumption

that the potential has a fundamental description in terms of membranes. The membrane

picture strengthens TCC, turning it into a constraint on the potential.

Finally, it is important to note that while γ is a physical observable since it quantifies

inhomogeneities in the bubble nucleation process, this is a piece of information that gets lost in

the effective potential description,whichonly tracks theHubble scale evolution. In otherwords,

the only constraint that determines whether a potential can be chopped into pieces generated

by membranes is the upper bound on θ.

4.3.3 No Eternal Inflation

So what general lessons can we learn from the membrane picture? We will now argue that the

eternal inflation point is marginally excluded by our constraints.

As could be seen in figure 4.2, themaximumallowed values for γ and θ are realizedwhen the

TCCand/or theWGCget saturated andhit the boundary of the no-membrane origin region, so

that the lower boundary of the blue region and/or the red line intersect (4.34). The intersection

of these three curves nearly happens at the same point which, by using (4.33), satisfies

γmax = θmax + . . . (4.35)

where the “. . . ” denote subleading corrections that go away in the limit Λ → 0. From equation
8Using (E.14) one could analytically check the equivalence between Δt = Γ−1V−1

eff < H−1 and Γ > H4 by
noting thatVeff takes values in betweenH−3 (when the decay rate is small) and Γ−3/4 < H−3 (when the decay rate
is large).

9This feature is sensitive to O(1) factors, but we will show in the next subsections that the TCC in
combination with theWGC always implies an upper bound on θ.
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(4.31), we find that β is maximized at this point as well,

θmax ≃
βmax − 1

2
+ . . . (4.36)

As discussed in subsection 4.2.1, applying the WGC to the βmax point implies α ≥ β − 1
2 ,

while the saturation of TCC implies P ∼ H4, where P is the prefactor of the decay rate defined

in (4.4) as discussed in section 4.19. Using (4.4) we find

P ∼ H4 → Λ4α−2β

1+ Λ2α−2β+1 ∼ Λ2. (4.37)

For Λ small, the denominator becomes an order one factor 1+ Λ2α−2β+1 ∼ O(1). Plugging in

α ≥ β− 1
2 gives

Λ2βmax−2 ≳ O(1)× Λ2 → βmax ≲ 2+ . . . (4.38)

The sign of the next to leading term above depends on the value of order one factors coming

from the prefactor as well as corrections to the TCC and the WGC. We will comment on the

effect of these corrections in section 4.3.4.

Plugging the above inequality in (4.36) leads to the following inequality for the potential

|V′| > CV
3
2 , (4.39)

for some constantC. Interestingly, the constraint |V′| > CV 3
2 is also the standard condition for

no-eternal inflation39 (see101 for an alternate scenario which is able to provide eternal inflation

even if this condition is not satisfied). This is consistent with the results of figure 4.2, where we

can see that the TCC-allowed region excludes the eternal inflation locus represented as a black

vertical line.

It is worth noting that the setup is generally sensitive to O(1) factors which get hidden

on the value of the constant C. For example, the actual curve of θ = 1/2 in figure 4.1 gets a
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logarithmic correction θ = 1/2+ log(C)
log Λ if we keep track ofC in calculating θ, whereC can even

get a mild dependence on Λ. Hence, eternal inflation is only marginally ruled out, and some

models with a large enough constantCmight still be allowed.Wewill discuss this inmore detail

in subsection 4.3.4.

Reference39 also proposed that eternal inflation might be in the Swampland; here, we have

derived this condition on the effective potential from applying TCC to metastable de Sitter

vacua. As explained in39, a metastable dS scenario is only compatible with eternal inflation if

Γ/H4 ≤ O(1); this is the exact opposite of what TCC requires. We have also seen that this

condition maps exactly to the usual V′ ≳ V3/2 for the effective potential. This is evidence that

the dual description we have constructed correctly captures the physics and it is a non-trivial

consistency check for our computations.

This relation between TCC and no-eternal inflation is actually intriguing from the

perspective of the effective potential, since as shown in subsection 4.3.1 there is no obvious

a priori reason why the TCC should imply (4.39). This result comes about only when we

include membranes in the picture. One might have tried to show that TCC forbids eternal

inflation by arguing that if inflation is eternal, there will be some patch where Planckian modes

will be stretched beyond the Hubble horizon, naively leading to a violation of TCC, and thus,

to the conclusion that TCC forbids eternal inflation. There are two problems with this naive

argument:

• To violate TCC, an inflationary patch with a homogenous Hubble parameter must

contain a mode as it goes from Planckian toHubble size. Such a patch does not typically

exist in eternal inflation since bubbles of true vacuum are constantly appearing.

• Since inflation lasts forever, one could argue that all sorts of unlikely things will happen

somewhere eventually, including aTCC-violatingHubble patch.This illustrates that the

current formulation of TCC is a semiclassical statement in terms of expectation values

of quantum operators that only deals with what happens “on average”, and it might be

violated statistically, like the second law of thermodynamics, and point towards a more
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fundamental quantummechanical version of TCC that is absolute.

To sum up, TCC is a statement about the overall shape of the potential, but assuming the

potential effectively describes tunneling between nearby vacua, we can get an additional point-

wise result which implies eternal inflation is marginally ruled out.

4.3.4 Subleading corrections

Throughout most of this chapter, we have been cavalier regarding O(1) factors and other

subleading corrections. For instance, we have neglected the log(1/H) logarithmic term in the

TCC bound, or the WGC extremality factor in (4.13). The reason for this is that we cannot

compute some of these in complete generality, such as O(1) corrections to the prefactor in

(4.4). Although the qualitative results and conclusions we present in this chapter are insensitive

to such subleading corrections, they become important when determining the fate of effective

potentials satisfying

|V′| ∼ CV3/2 . (4.40)

The region near the tip of the TCC-allowed blue triangle in figure 4.2 is sensitive to these

numerical factors, and might get extended to cross the vertical line at θ = 1/2 marginally

allowing potentials satisfying (4.40) for a certain value10 of C.

For concreteness, dS gravitational corrections to theprefactor and instanton actionpush the

TCC-allowed region to the left, moving it away from the eternal inflation locus by introducing

a negative correction to βmax in (4.38) of order O(1/| logΛ|) that increases the value of C in

(4.39).Contrarily, the logarithmic term in theTCCbound, Δt < H−1/ logH implies a positive

correction to βmax of order O(log(logΛ)/| logΛ|) that pushes the TCC+WGC-allowed

region to the right. Depending on the exact value of this correction, the TCC-allowed region

might get extended to parametrically large values of β, as illustrated in figure 4.3. However, the

WGCwill always cut this region providing, even in this case, a maximum value of θ. Hence, in
10The proposed values for C in the condition for eternal inflation in the literature varies, e.g. C = 1√

2π in39

and 1
2π

√
3 in

102.
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this case, the bound (4.39) is still valid but the value of C will be smaller than one and depend

logarithmically on Λ. Other corrections coming from the prefactor or the WGC could also in

principle push the bound in one direction or another.

In any case, we can conclude that potentials satisfying |V′| ≤ CV3/2 are forbidden by

the swampland constraints for a certain factor C that is sensitive to all these corrections and

could have a logarithmic Λ dependence. Therefore, any attempt to rule out a concretemodel of

eternal inflation would require a better knowledge of all possible subleading corrections. This

is certainly an interesting avenue to further study in the future. At the moment, we can only

conclude that eternal inflation ismarginally forbidden by the swampland constraints.

4.3.5 Higher dimensions

We showed that the TCC marginally implies WGC and the no-eternal inflation condition

in 4 dimensions. One can generalize all the calculations to show the same holds in higher

dimensions as well. Following is a naive computation to demonstrate how this plays out int

higher dimensions. In d-dimensions, the equations (4.21) and (4.22) change to

S ∼ Td

(ΔΛ)d−1 ≲ 1 → α ≥ d− 1
d

β,

P ∼ Td

(ΔΛ)d−2 ≳ Hd → α ≤ d− 2
d

β+
1
2
. (4.41)

These two lines constraints together imply α ≥ β− 1
2 which is theWGC.Moreover, the above

inequalities set an upper bound d
2 on β. Plugging that upper bound into (4.9) leads to

(
|V′|
V

)2

∼ Λβ− 3
2ΓVeff ≳ Λβ−1 ≳ Λ

d
2−1, (4.42)
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where we used TCC in the second equation. We can write the above inequality as |V′| ≳

V d+2
4 which is the no-eternal inflation condition in d dimensions11. Therefore, we find TCC

marginally implies WGC and no-eternal inflation condition in all higher dimensions as well.

This points to a deeper relationship between TCC and WGC as this result holds in all

dimensions and not just 4.
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Figure 4.3: Allowed regions in the (α, β) plane (left panel) and (γ, θ) (right panel) for Λ = 10−120 taking into account the
logarithmic correction on the TCC. The light blue TCC region now grows an extra “tube” that makes it consistent with any
value of θ. The red curve correspond to WGC, purple region corresponds toV′/V > 1. Eternal inflation is marginally ruled
out by TCC and WGC, but not by either on its own.

4.4 Cosmological implications

In this section, we study the cosmological implications of our results assuming that the relevant

potentials are dual to a fast decaying dS. In particular, we are interested in the consequences of

our results for the emergent inflationary models and the dark energy.
11The no eternal inflation condition derived in 39 could be generalized to higher dimensions as follows.

In higher dimensions, the Fokker Planck equation (2.11) in39 takes the form Ṗ[φ, t] = A∂i∂iP[φ, t] +
B∂i((∂iV(φ))P[φ, t]) where A ∼ Hd−1 and B ∼ H−1. This modifies the Gaussian solution (3.7) in39 to
Pr[φ > φc, t] ∼ exp

[
− t

σ2
]
where σ ∼ H

d+1
2 /|V′|. In order to have eternal inflation, the Hubble expansion

must beat this exponential decay i.e.H ≳ |V′|2
Hd+1 . This results in the no eternal inflation condition |V′| > KV

d+2
4

for some constantKwhich depends onO(1) factors in computation of A and B.
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4.4.1 Inflation

In20 it was shown that the simplest TCC-compatible potential that could fit the observations

such as theCMBpower spectrum is an inverted parabola. A similar hilltopmodel was discussed

in103. A concrete example of this can be taken to beV = V0(1− 0.02φ2) defined over [φi, φf]

where φf is fixed by observation to be

φf ≃ 3.9× 105 ·
(

V0

Mpl

)0.505

. (4.43)

Plugging this into the potential gives

|V′|(φf) ≃ 8× 103 V1.505
0 . (4.44)

For small enough V0 and large enough φi the above potential is consistent with the no-eternal

inflation condition as well as the TCC. Even though the potential is consistent with the TCC,

it still suffers from a severe fine-tuning problem due to its short-field-range. This is because the

field range is not long enough that a generic trajectory converges the slow-roll attractor. This

initial condition problem seems to be an unavoidable consequence of the TCC for inflationary

models20. As discussed in22 there is an additional fine-tuning problem that goes back to the

freedom in choosing the dS vacuum among the α-vacua. The only α-vacuum that can produce

the scale-invariant CMB fluctuations is the Bunch-Davis (BD) vacuum. It was argued that if

the dS space lives long enough the fine-tuning problem goes away because any α-vacuum will

thermalize into the BD vacuum30. This argument does not apply toTCC-compatible dS spaces

due to their short lifetime.

4.4.2 Dark Energy

Suppose the evolution of the cosmological constant is given by a scalar field whose potential

comes from the successive short inter-vacua tunneling as discussed in this chapter. As the scalar
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field rolls down, the characteristics of the domain wall corresponding to the potential evolve.

We can view the rolling of the scalar field as a trajectory in the α − β plane in the membrane

picture. TCC tells us that in the asymptotic of the field space |V′|
V ≳ O(1). Thus, the trajectory

in the α − β plane (figure 4.1) eventually reaches the purple curve. In fact, this must happen

within a TCC time. This is because before we hit the purple curve the potential is very flat

(|V′| ≪ V) and theHubble parameter is almost constant. From observations we know that the

equation of state parameterw is close to−1whichmeans the quintessence potential is not steep,

i.e. |V′| ≲ V. This leaves two possibilities for the current state of our universe: we are very close

to the purple curve where the potential begins to steep down, or we are still wandering in the

blue region with a plateau potential while moving toward the purple curve.

Case 1: Near the |V′| ∼ V curve

In that case, the universe while remaining in the blue region must be close to the purple

curve. That means we are close to the line that connects (α, β) ≃ (1, 1) to (α, β) ≃ (0.9, 1.2).

All these points correspond to the same slope |V′|
V ∼ O(1), however they differ in the scale

of the bounce radius. From the equation (D.7) we find R ≃ R0 ∼ Λα−β. This gives a range

1 ≲ R ≲ Λ−0.3 for the bounce radius in Planck units. After restoring the Planck length, it

implies lpl ≲ R ≲ 1035lpl ∼ 1m.

This scenario is also phenomenologically appealing as it provides a cosmological relaxation

mechanism to generate a small cosmological constant, consistent with the current expansion of

our universe. As long as we are close the to the purple boundary with V′/V ∼ O(1), it is just

a matter of time to lower the cosmological constant by bubble nucleation to a very small value,

even if the initial value at the beginning of the cosmological evolution was very big. This is very

similar to the dynamical neutralization of the cosmological constant by Brown-Teitelboim and

Bousso-Polchinski, whenever we have a landscape of flux vacua. If we are close to β = 1, the

variation of vacuum energy ΔΛ becomes very close to Λ, so after a few transitions, one would

end up with a very small value for the cosmological constant. The drawback is that the effective

description in which we can average over the discrete jumps breaks down and one would need
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Figure 4.4: The graph shows a generic effective potential that would emerge from successive inter‐vacua tunnelings. In the
plateau part of the graph which is drawn in green, we have |V′| ≪ V. This corresponds to part of the cosmic evolution
spent in the blue region of the figure 4.1. The steep part of the potential drawn in red has |V′| ≳ V. This corresponds to
the part of the cosmic evolution spent inside or near the purple region in the figure 4.1.

a very finely grained landscape in order not to miss our current tiny value of Λ. In any case,

regardless of where we are in the (α, β)-plane, as long as it is close to the purple region, it is

always possible to find some effective potential that reaches a tiny value of the cosmological

constant in less than the Hubble time since the whole blue region is consistent with the TCC.

This scenario could also explain the cosmological coincidence problem if something drastic

happens when we reach a small value of Λ. A tantalizing possibility is that the effective field

theory drastically breaks down precisely when getting a small value of Λ and entering into the

purple region, becausewe could get then access to transplanckianfield ranges and infinite towers

of states should become light according to the SDC.

Case 2: Far from the |V′| ∼ V curve

Suppose our universe in the blue region the α−β plane in figure 4.1 sufficiently far from the

purple curve. In that case, we have |V′| ≪ Vwhichmeans the potential is so flat that effectively

behaves like a cosmological constant. This is consistent with observations. Moreover, the TCC

is also satisfied because as discussed in subsection 4.3.1, the only constraint that TCC imposes

on nearly flat potentials is that the age of the universe must be less than 1
H ln
( 1
H

)
which is true

in our universe. The drawback is the usual naturalness problem of the cosmological constant
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since onewould need to start originally with a very tiny cosmological constant as themembrane

nucleation transitions will not modify its value in a significant way.

4.5 Conclusions

In this chapter, we applied some of the Swampland conjectures to short-lived de Sitter spaces

and described the resulting decay in terms of an effective theory. We saw that WGC and the

generalized distance conjecture lead to a restricted region in parameter space which surprisingly

includes the full region implied by the TCC. In other words, TCC in this context seems

to “know” about WGC and the generalized Distance Conjecture. This relationship between

different Swampland conjectures which is frequently encountered, reinforces the belief in their

validity. In studying the resulting effective theory, we found that they lead to a scalar field with

a restricted type of potential. In particular, even though a potential allowing eternal inflation

is consistent with TCC, the resulting potentials we obtain from dS membrane picture are

marginally inconsistentwith eternal inflation.However eternal inflation is not completely ruled

out by our considerations and there is a small region in parameter space that may in principle

allow it depending on subleading corrections we have neglected in our analysis. This is an

interesting question that should be explored in the future.

Our results apply to situations that can be described as a cascade of non-perturbative

nucleation of bubbles in de Sitter space.Wehave constructed an effective potential that provides

a dual description of the low-energy physics of the cascading membranes, connecting the

membrane and cascade pictures. Our methods can be extended to a variety of interesting

situations, e.g. when the membranes are charged under multiple 3-form gauge fields or

the membranes are unstable and can grow holes in their surface corresponding to strings

magnetically charged under axions coupled to the 3-form gauge fields.

So how general is the membrane picture? On a more speculative note, we could take the

radical position that any quasi-dS potential consistent with string theory always admits such

a membrane origin. If so, the conclusion that eternal inflation is in the Swampland, which we
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got here from the membrane picture, would be general. In particular, near the infinite distance

boundaries of the field space in string theory compactifications, the scalar potential is known

to exhibit a runaway behavior towards the asymptotic limit that typically satisfies the de Sitter

conjecture. Such a runaway could be explained if it is actually the effective description of a

cascade ofmembranenucleationwith a tension approaching the regionV′ ≥ V in figure 4.1.To

determine whether this is a sensible scenario, we would need a better understanding of possible

constraints on the dynamics on the (α, β)-plane in addition to the ones studied in this chapter.

It would be interesting to see if other Swampland conjectures can also be brought to play

in this context. For example, the cobordism conjecture104 predicts that there is always a bubble

of nothing in a quantum theory of gravity.What is the relation of our “minimal bubble” to the

bubble of nothing?Can this place an upper bound on the lifetime of dSwhich is even stronger?

Given the importance of a deeper understanding of dark energy for the future evolution of our

universe, it is worthwhile pursuing aspects of short-lived dS from all possible perspectives.
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5
TCC and scrambling

It is remarkably more challenging to construct a de Sitter vacuum in string theory than a flat

or an Anti-de Sitter vacuum. TCC is one of several Swampland conjectures that have been

proposed to pinpoint a mutual property among theories in the Landscape that could explain

this hurdle in string theory14,15,19. However, string theory is not the only place where de Sitter

space sets itself apart from flat and Anti-de Sitter spaces. Another notable example is its finite-

sized Hilbert space and thermal properties, which are absent from other backgrounds. It is

natural to think that all the unique features of de Sitter space should be fundamentally inter-

connected. If true, there should be some relation between the Swampland program and the

thermodynamic features of de Sitter space.
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Interestingly, TCC provides a strange coincidence which is strongly suggestive of such a

connection. The maximum allowed de Sitter space lifetime by TCC matches the scrambling

time of de Sitter space! However, we need to make a comment on what wemean by scrambling

time here. Recent works105 have suggested that the scrambling time in de Sitter space is given by

1/H rather than 1/H ln(1/H). A key ingredient in this argument is that the majority of the

degrees of freedom of de Sitter space in the static patch must be localized near the Hubble

horizon. Therefore, a generic perturbation does not need any time to get to theHubble horizon.

However, for generic field theory perturbations inside the static patch, this is not the case.

Therefore, by scrambling time in this section, we refer to the scrambling time of degrees of

freedom that can penetrate inside the static patch and admit an EFT description at low energies.

At first, the coincedence between the scrambling time and the TCC time scale might

seem strange as one time-scale is motivated by string theory, and the other comes from de

Sitter complementarity. However, as we discussed earlier, this connection is natural since both

contexts study a feature of de Sitter space, which sets it apart from flat and Anti-de Sitter

backgrounds.

We investigate this non-trivial coincidence to find a thermodynamic interpretation for

TCC.The goal of this section is to take a small step in bridging the gap between the Swampland

program and the extensive literature about thermal aspects of de Sitter space.

The organization of the section is as follows. In subsection 5.1, we study the consequences

of the Swampland conditions for the de Sitter space with a particular focus on TCC. However,

before that, we mention some of the motivations for TCC that lend support to those results.

In section 5.2, we study de Sitter space from the lens of de Sitter complementarity and

other perspectives that view de Sitter space as a thermal background. We show that all those

ideas point towards the same result that if de Sitter space lives long enough, it would be a

thermal background with a thermalization time of ∼ 1
H ln
( 1
H

)
. In subsection 5.3, we put the

Swampland picture next to the other pictures to arrive at a thermodynamic interpretation of

TCC. We argue that TCC, in its essence, tells us that de Sitter space is not stable enough to be
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viewed as a thermal background. We elaborate on the physical meaning of this interpretation

and support it by other Swampland conditions. Finally, we show in subsection 5.4 that TCC

imposes a severe initial condition problem on inflation.

5.1 Swampland picture

This section explores the picture that Swampland conditions, especially TCC, offer of de

Sitter space. We begin by reviewing TCC and some motivations for it that lend support to its

implications. We then study the implications of Swampland conditions for different possible

realizations of de Sitter space.

TCC and its motivations

Trans-Planckian censorship conjecture (TCC) postulates that in a consistent quantum

theory of gravity, an expansionary universe in which Planckian modes exit the Hubble horizon

cannot be realized19. What is special about the Hubble radius is that when a mode exits

the Hubble horizon, it becomes non-dynamical and freezes out51,106,29. Moreover, super-

Hubble modes undergo decoherence which makes them equivalent to stochastic classical

perturbations107 and the modes will remain classical even if/when they re-enter the Hubble

horizon. As shown in figure 5.1, a violation of TCC would lead to the classicalization of all

dynamical quantum fluctuationsH < k < l−1
P .
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Figure 5.1: The curved lines denote the expansion of wave‐lengths of two comoving modes. These two modes correspond
to the greatest, and smallest dynamical modes at time tf. As shown in the figure, if TCC is violated over some time interval
[ti, tf], no comoving mode would stay dynamical throughout that time window.

Following we review some of the arguments in favor of TCC.

5.1.1 Central node in the Swamplandweb

The TCC implies some versions of several Swampland conditions. These versions have shown

to be true in known controllable string theory constructions. These non-trivial consistencies

strongly support TCC. The connections between TCC and other Swampland conditions

suggest that TCC is a central node in the web of Swampland conditions. One that brings many

of them together and provides a simple physical explanation for them. Following, we review

some of the non-trivial implications of TCC that resemble other Swampland conditions and

their consistency with string theory.

The de Sitter Conjecture: One of the most notable implication of TCC is that in d-non-

compact dimensions, |∇V|
V ≥ 2√

(d−1)(d−2)
in the asymptotics of the field space. This is similar to

the de Sitter conjecture14, but it provides a definite lower bound which is remarkably satisfied

in multitudes of string theory constructions19,96.
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dS Conjecture

Weak Gravity Conjecture

Refined dS Conjecture

AdS Distance Conjecture
Distance Conjecture

No eternal Inflation Conjecture

TCC

Figure 5.2: TCC non‐trivially implies some version of a number of Swampland conditions. This is remarkable given how
simple the physical idea behind TCC is.

Distance conjecture : As proposed in96, TCC suggests a definite lower bound 1√
6 for the

order one constant λ in the distance conjecture in 4d32. This bound could also bemotivated by

the following heuristic argument. Supposeφ1 andφ2 are canonically normalized fieldswhereφ2

is a scalar field in a tower of light states emerging as φ1 → ∞. As φ1 goes to infinity, mass of φ2

exponentially decays. After some point, φ2 becomes light enough to be added to the spectrum

of the low energy field theory. In this regime, the potential depends on both φ1 and φ2 and

the mass of φ2 is roughly given bym ∼
√

∂2
φ2
V. In conventional string theory constructions,

the potential decays exponentially in asymptotic directions. Suppose the potential behaves as

V ∼ f(φ2) exp
(
−g(φ2)φ1

)
for large φ1, the mass scalem would decay like∼ exp

(
− g(φ2)

2 φ1

)
as φ1 goes to infinity. From TCC, we know that g(φ2) ≥

2√
(d−1)(d−2)

19 which leads to

λ ≥ λTCC =
1√

(d− 1)(d− 2)
. (5.1)

In108, authors found a lower bound for λ

λ ≥
√

1
10− d

d
2
= even

λ ≥
√

2
10− d

d
2
= odd, (5.2)
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for single modulus limit in various Calabi-Yau compactifications. Remarkably, this bound is

stronger than the TCC-motivated bound (5.1) for every d ≥ 4. The TCC-motivated bound

has been checked more generally in a variety of 4d string theory constructions in109,96.

Refined de Sitter conjecture: The refined de Sitter conjecture states that there is a

universal O(1) lower bound for |ΔV|/V at local maxima15,93. Interestingly, TCC implies a

logarithmically corrected version of this condition for local maxima19. Themodified condition

roughly is |ΔV|
V > 16

(d−1)(d−2) ln(V)2 .

Weak gravity conjecture (WGC) and generalized distance conjecture: Consider a flux

generated potential with a charged co-dimension 1 brane. The brane serves as the domain wall

for tunneling between neighbouring vacua. TCC implies both the WGC and the generalized

distance conjecture for the brane in all dimensions21.

No eternal inflation: Suppose tunnellings between neighbouring vacua are non-drastic

enough that a monotonic quintessence potential could effectively describe the universe’s

evolution. In that case, one can show TCC marginally forbids eternal inflation in any

dimension21.

Figure 5.2 shows all the Swampland conjectures that, in some form, are implied by TCC.

5.1.2 Coincidence problem

An immediate consequence ofTCC is that the age of the dark energy dominated epochTΛmust

be less than 1
H ln
( 1
H

)
which is true in our universe. This consistency already provides a simple,

yet non-trivial, experimental test for TCC. Perhaps themore interesting fact is that our universe

only marginally satisfies this inequality thanks to the logarithmic term ln
( 1
H

)
. This ”accident”

is precisely the coincidence problem in cosmology. If the cosmological constant is a constant, i.e.

the universe is stuck in a local minimum of the potential, there is no apriori reason forTΛ ∼ 1
H .
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Statistically speaking, for most of the lifetime of a metastable universe, its age is of the order of

its lifetime, and TCC relates that lifetime to the Hubble time. In fact, according to TCC, no

matter the universe is in metastable equilibrium, or it is rolling, the coincidence of T ∼ 1
H is

anticipated, which is another non-trivial consistency with observation.

5.1.3 TCC as gravitational renormalizability

Weargue thatTCCcouldbe viewed as a naturalmodificationof the renormalizability condition

for gravitational theories where the conventional notion of renormalizability does not apply. To

see this, let us review what renormalizability means in field theories.

Quantum field theories typically come with UV divergences that prevent them from being

effective descriptions at all energy scales. We usually resolve this issue by restricting to the low-

energy modes. To obtain a low-energy field theory, we integrate out the high-energy modes.

This procedure effectively sets the high-energy modes in their ground states and gives us a

unitary theory for the remaining low-energy modes. Renomalizability is the condition that

makes it possible to have a closed theory for the low-energy modes. The implication of such

scale separation for the classical theory is that UV perturbations must not significantly impact

or be impacted by the time evolution of low-energy classical modes. Therefore, in flat space,

renormalizability naively implies that there exists amomentum cutoff Λ such that classical high

momentum perturbations with k > Λ do not influence the dynamics of low energy modes

with K < Λ. However, this naive notion of scale separation does not apply to GR since any

expansion of the universe stretches some modes with k > Λ into modes with k < Λ. The

above naive argument is a simple way of understanding why GR is non-renormalizable.

Similar to how quantum field theory’s consistency imposes renormalizability, it is natural

to expect a UV-complete quantum theory of gravity must satisfy some renormalizability-like

condition. As we saw earlier, the naive scale separation (renormalizability) does not hold in

gravitational theories. The simplest relaxation to a scale separation between classicalmodeswith

k > Λ and k < Λ, is to postulate that there are two energy scales ΛUV ≫ ΛIR such that the

83



deep UV modes k > ΛUV do not stretch into deep IR modes k < ΛIR. There are natural

candidates for these energy scales in any de Sitter background; the Planck scale and the Hubble

scale. Using these scales, our candidate for gravitational renormalizability takes the following

form.

Modes with k > 1
lP
or equivalently λ < lP cannot evolve into modes with k < H or

equivalently λ > 1
H .

In otherwords, sub-Planckianmodes cannot exit theHubble horizon,which is precisely the

statement of TCC. In a sense, TCC is a natural gravitational analogue of the renormalizability

condition in field theory.

5.1.4 Initial condition problem for inflation

We want to take this opportunity to clarify a possible confusion that a particular initial

condition problem for inflation, has been a motivation for TCC. A violation of TCC poses

two apparent initial condition problems for inflation.We briefly review each of these problems,

the resolutions proposed in the literature, and how they relate to TCC.

First initial condition problem:

If some fluctuations, e.g. Hubble sized CMB fluctuations, trace back to trans-Planckian

fluctuations, it seems part of the needed initial condition is inaccessible to the field theory. This

raises a practical question.What initial state shouldwe consider for thosemodes as they become

sub-Planckian and enter the range of field theory?

Resolution:

Requiring the vacuum to be like theMinkowski vacuumat short distances fixes the de Sitter

vacuum at Planckian momenta30. Essentially, the equivalence principle naturally screens the

trans-Planckian physics from sub-Planckian observers. This argument resolves the problem for

as long as de Sitter space is stable as a semi-classical background. This ”problem” has not been a
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motivation for TCC, and the mentioned resolution is not affected by TCC.

Second initial condition problem:

In contrary to the Minkowski space, the de Sitter space does not have a unique vacuum.

There is a family of vacua called α-vacua that all are invariant under symmetries of de Sitter

space. However, the only α-vacuum that would give scale-invariant CMB fluctuations is the

Bunch-Davies (BD) vacuum. Why did the universe choose this particular vacuum state in the

inflationary era?

Resolution:

The authors in30 argued that any deviation from the BD vacuum eventually exits the

Hubble horizon and disappears. Therefore, inflation automatically sets the universe in the BD

vacuum.We revisit the de Sitter vacua and this argument in section 5.2, and we contrast it with

TCCin section5.3.We showthat the argument in30makes an assumption that is fundamentally

inconsistentwithTCC. In otherwords, a violationofTCC is baked in the argument.Assuming

TCC is correct, this argument no longer works. We will come back to this initial condition

problem later in section 5.4.

de Sitter space and the Swampland

Swampland conditions suggest that the de Sitter space is in tension with a UV-complete

theory of gravity. The de Sitter conjecture forbids the de Sitter space all-together, but TCC

allows it as long as it is sufficiently short-lived. TCC requires the de Sitter space to undergo some

significant transformation by τTCC = 1
H ln
( 1
H

)
so that the Planckain fluctuations do not exit

the Hubble horizon. This transformation could be a significant drop in cosmological constant,

tunnelling to a different vacuum, quantum breaking of spacetime, or the effective field theory’s

breakdown. Following, we study each of these possibilities separately.

Suppose the cosmological constant continuously discharges (quintessence), TCC tells us

that amajor part of Λ have tobe dischargedby τTCC. This implies that the quintessence potential

could not be too flat. For monotonic potentials, this leads to |V′|
V ≳ 2√

(d−1)(d−2)
in asymptotics
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of the field space and |V′|
V ≳ O(ln(V)−2) in the interior of the field space19. For local maxima

on the other hand, TCC roughly implies |V′′|
V ≳ 16

(d−1)(d−2) ln(V)2
19.

Suppose the universe undergoes tunnelling, i.e. a bubble of amore stable vacuum forms and

expands until it takes over the Hubble patch. TCC implies the metastable vacuum’s lifetime

must be less than τTCC. This has important implications for the domain wall of the bubble. In

particular, the domain wall must satisfy bothWGC and the generalized distance conjecture21.

Another way to avoid violating TCC is that the QFT in curved background description

breaks down. This could happen in twoways; 1) Break down of the classical background, often

referred to as quantum breaking, 2) Break down of the EFT due to the emergence of new light

states in the theory. Whichever happens first, TCC tells us that it must take place by τTCC.

Authors in110,111,112 argued that the quantumbreaking time for de Sitter space is∼ H−3, which

is greater than τTCC. However, the de Sitter and the distance conjectures show that the EFT

breaks down by τTCC in the asymptotics of the field space113.

All in all, we expect the de Sitter space to undergo some significant physical transformation

before τTCC. No matter which scenario happens, we come across the same timescale τTCC, after

which the initial de Sitter description should no longer work.

5.2 Complementarity picture

In this section, we study the de Sitter space from the complementarity perspective. First, we

review black hole complementarity fromwhichmost of the ideas for de Sitter complementarity

have originated. As we will see, black holes do not share some of the strange features of de Sitter

space, which makes black hole complementarity simpler and easier to understand than its de

Sitter counterpart.

Review of black hole complementarity

In nutshell, the black hole complementarity is a partial resolution to a tension betweenwell-

established physical principles. We briefly review the argument in114 that leads to the idea of

86



complementarity.

We assume the following postulates1:

1) Unitary semi-classical QFT in curved spacetime: We treat gravity classically and other

fields quantum mechanically. We assume every spacelike Cauchy surface has an associated

Hilbert space for the quantum fields living on it. The time evolution between any two such

Cauchy surfaces is given by a time-dependent unitary operator dependent on the gravitational

background.

2) Equivalence principle: Every free-falling observer must be unable to distinguish the

spacetime fromMinkowski space through performing local experiments.

3)No remnant: We assume the black hole will completely evaporate at a finite time.

Consider amater distribution that collapses into a black hole and evoporates in a finite time.

Suppose Σ− andΣ+ are twoCauchy surfaces in the far past and the far futurewith respect to the

black hole as shown in figure 5.3. Cauchy surface ΣBH passes through the formal intersection of

the horizon and the singularity in the Penrose diagram 5.3. Σin and Σout denote the parts of ΣBH

that are respectively inside and outside of the black hole. Suppose
∣∣ψ−
〉
,
∣∣ψ+

〉
, and

∣∣ψBH

〉
are

the state of the quantum fields respectively on Σ−, Σ+, and ΣBH, and ρin and ρout are the density

matrices associated to the quantum fields inside and outside the black hole given by

ρin = TrHout

∣∣ψBH

〉 〈
ψBH

∣∣ ,
ρout = TrHin

∣∣ψBH

〉 〈
ψBH

∣∣ .
(5.3)

From postulate 1, we know that some unitary transformation maps
∣∣ψ−
〉
to
∣∣ψ+

〉
.

∣∣ψ+

〉
= U1

∣∣ψ−
〉
. (5.4)

1Our list of postulates is slightly different from that of 114, but the following argument is almost identical.
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∣∣∣ψ+

〉

∣∣∣ψ−

〉

Cauchy surface Overall quantum state

∣∣ψBH
〉

Σ+

ΣBH

Σ−

Σin

Σout
∣∣ψout

〉
∣∣ψin
〉

Region I

Figure 5.3: Penrose diagram of evaporating black hole.

Similarly, since Σ+ and Σout are both Cauchy surfaces of region I in figure 5.3, ρout is related

to
∣∣ψ+

〉 〈
ψ+

∣∣ by a unitary transformation. Therefore, there must be a pure state
∣∣ψout

〉
which

satisfies ρout =
∣∣ψout

〉 〈
ψout

∣∣ and is related to ∣∣ψ+

〉
via some unitary transformationU2.

∣∣ψout

〉
= U2

∣∣ψ+

〉
. (5.5)

Combining (5.4) and (5.5) gives

∣∣ψout

〉
= U3

∣∣ψ−
〉
, (5.6)

whereU3 = U2U1. Postulate 1 tells us that
∣∣ψ−
〉
is unitarily mapped to

∣∣ψBH

〉
as well. The only

way
∣∣ψ−
〉
could be unitarily mapped to both

∣∣ψBH

〉
and

∣∣ψout

〉
is that

∣∣ψBH

〉
=
∣∣ψin

〉
⊗
∣∣ψout

〉
for some constant state

∣∣ψin

〉
∈ Hin. This however would mean that if a free falling observer

falls into the black hole and hit Σin, they would see a fixed state
∣∣ψin

〉
independent from the

initial state
∣∣ψ−
〉
. This is different from what an inertial observer would see in flat spacetime

and therefore is a violation of the equivalence principle.

The black hole complementarity is a principle to get around this paradox. The principle is
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Figure 5.4: The black hole complementarity allows us to isolate the black hole’s exterior and study the evolution in it
independently.

that there are two different but complementary descriptions for the physics depending on the

observer’s trajectory. For outside observers at fixed distance from the black hole, the evolution

couldbe studied independently from the interior of the black hole as shown infigure 5.4.All the

black hole interactions with the exterior are explained by a real physical membrane at Planckian

distance from the horizon. This membrane is called the stretched horizon. The falling of matter

inside the black hole could be viewed as the stretched horizon absorbing its energy. For outside

observers, the Hawking radiation is the thermal radiation of the stretched horizon.

In contrast to the accelerating observers at a fixed distance from the black hole, a free-falling

observer falling into the black hole will not see the stretched horizon. This leads to two different

descriptions of the physical events on a given Cauchy surface that extends to the inside of the

black hole. This might seem paradoxical at first; however, since the two observers are causally

disconnected, they cannot communicate their different narratives to each other. In other words,

no observer can experience both physics 2.

As we mentioned above, the black hole’s Hawking radiation could be interpreted as the

stretched horizon’s thermal radiation. When an object falls in the black hole, it perturbs the

stretched horizon and causes a small deviation from the equilibrium. After some time, the
2Such an observer is often called a superobserver in the literature.
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system’s information thermalizes and canbe radiated away in the formof thermal radiation.The

time it takes for external perturbations to thermalize is called the scrambling time. Following, we

give a more rigorous definition of it and study it in more detail.

The scrambling time of a system is the time that it takes for the information of a generic

pure state to disperse among all microscopic degrees of freedom. More precisely, it is the time

by which the density matrix ρ = TrHs |ψ⟩ ⟨ψ| becomes thermal for almost every subsystem

Hs with half the degrees of freedom. In115, it was conjectured that for any quantum system at

inverse temperature β, the scrambling time τS is bounded from below by

τs > f(β) ln(S), (5.7)

where f(β) captures the interaction strength and S is the total entropy. The systems that saturate

the abovebound for some function f(β) are called fast scramblers. Basedon the complementarity

principle, it was conjectured that both black holes and de Sitter space are fast scramblers with

the scrambling time given by115,38

τs ∼
1
T
ln(S). (5.8)

It is worth taking a while to review the argument that bounds the black hole scrambling time

from below.We review a thought experiment presented in115 that shows if the scrambling time

is too short, the no-cloning theorem could be violated.

Suppose we have two observers Alice and Bob each carrying a q-bit that are fully entangled

with each other. Bob jumps in the black hole, and right after he passes the horizon by a Planck

length3, he measures the q-bit. Then, he sends a null signal in the outward radial direction

that carries the measurement’s outcome information. On the other side, Alice waits at a short

distance outside the horizon until the black hole radiates away Bob’s q-bit information. She
3smaller distances are not meaningful to a semi-classical observer.
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then collects the Hawking radiation that contains Bob’s q-bit’s information4.

Bob
AliceBob

’s
sig

na
l

Figure 5.5: If Alice’s worldline (the red curve) could meet Bob’s signal (blue wavy curve), no‐cloning theorem would be
violated.

The timeAlice needs towait is precisely the scrambling time.As soon asAlice receives a copy

of Bob’s q-bit’s information through Hawking radiation, she jumps in to catch Bob’s signal

(figure 5.5). If she succeeds, she will have two copies of Bob’s information, which violates the

no-cloning theorem.Moreover, both copies are fully entangledwithAlice’s q-bit,which violates

the monogamy theorem. The scrambling time must be long enough so that Alice’s future light

cone and Bob’s signal do not intersect to avoid these contradictions. This gives a lower bound

of∼ 1
M log(M) for the scrambling time115.

In the next subsection, we apply the ideas we covered in this subsection to de Sitter space to

develop the de Sitter complementarity.

de Sitter complementarity

Several authors118,119,120,121,122,123,124,125,126 have proposed a complementarity principle for

de Sitter space similar to the black hole version that we discussed in the previous subsection.

The proposal is that the physics inside the Hubble horizon could be described independently
4The experiment is done after the Page time so that Alice can retrieve Bob’s q-bit’s informationwithO(1) bits

of Hawking radiation116,117.
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Figure 5.6: Penrose diagram of de Sitter space. The left side is the world line of a comoving observer A and the dashed
blue curve denotes its corresponding stretched horizon. B is a system that exits A’s Hubble horizon. The information of B
thermalizes over the stretched horizon after the scrambling time τs and is partially radiated by the Hawking radiation in the
red region.

from the outside of the Hubble patch. Similar to the black hole version, there is a stretched

horizon located a Planck distance from the Hubble horizon. The stretched horizon disappears

from free-falling observers crossing the Hubble horizon. When a system crosses the Hubble

horizon of a comoving observer, the information of that system thermalizes over the stretched

horizon and gets radiated toward the observer after a scrambling time (see figure 5.6).

A key difference between black hole complementarity and its de Sitter counterpart is in

information recovery. In order to recover the information of a system that has crossed the

black hole’s horizon, one needs to wait out the Hawking-Page transition116. This is to ensure

that half of the black hole’s entropy is radiated away so that Hayden-Perskill protocol117 could

be implemented. Another way to think about the Page time is when the radiated matter is

maximally entangled with the remaining of the black hole. The significant role of the maximal

entanglement is especially evident in ER=EPRduality127. Suppose one collapses themaximally

entangled radiated matter into a second black hole. It was conjectured that this would create a

wormhole geometry, which makes the information recovery possible128,129.

Information recovery is a bit trickier in de Sitter space. For starters, there is no Hawking-

Page transition in de Sitter space. This is due to the fact that the maximum entropy that can
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be stored in the Hubble patch is a third of de Sitter entropy130. At first, this might seem to

suggest that information in de Sitter space is irretrievable. However, collecting half the entropy

is unnecessary as long as we have access to a maximally entangled state with the stretched

horizon. In that case, the information can be recovered as soon as it is scrambled. As we will

discuss in more detail in subsection 5.2, after the scrambling time, the vacuum evolves into

the Bunch-Davies vacuum, which is maximally entangled across the horizon. Therefore, after

the scrambling time, all the necessary ingredients to recover information are in place. Authors

in131 present an elegant method to recover information after scrambling time with the use of

shockwaves5.

For de Sitter space, the conjectured value (5.8) for the scrambling time takes the form

τs ∼
1
H

ln

(
1
H

)
, (5.9)

whereH ∝
√
Λ is the Hubble parameter. As pointed out earlier, the scrambling time matches

TCC time τTCC. In this section we focus on de Sitter scrambling time and try to understand

(5.9) better. We try to find an argument similar to the thought experiment we mentioned for

black holes that justifies (5.9). In Appendix G, we present a thought experiment analogous to

the one we discussed for black holes. We show that τs must be greater than∼ 1
H ln
( 1
H

)
to avoid

a violation of the no-cloning principle. Here, we propose a different thought experiment that

offers a clear insight into the relation between the scrambling time and the maximum lifetime

from TCC.

Thought experiment: Observational consistency

In the framework of complementarity, different observers experience different physics. The

comoving observers see a stretched horizon while the free-falling observers crossing theHubble

horizon do not. This is consistent as long as observers who experience different physics cannot

communicate their different narratives to each other. This is trivially satisfied for black holes,
5Bycomputingout-of-time-order correlators, they show that de Sitter space is a fast scrambler (τs ∼ 1

H ln
( 1
H
)
).

A similar argument for fast scrambling in de Sitter space was discussed in132.
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but in de Sitter space, the situation is more tricky. We consider a thought experiment to check

if observers who experience different physics can communicate their experience to each other.

We show that the consistency of complementarity imposes a lower bound 1
H ln
( 1
H

)
on the

scrambling time.

Consider two comoving observersAlice andBobwith initial positions of rA = 0 and rB = l

at t = 0.Consider a q-bit crosses Alice’s horizon at t = 0, but it accelerates afterwards such that

it never crosses Bob’s horizon. SupposeAlice and Bob continue to stay on their comoving paths

until t = τs. From Alice’s perspective, Hawking radiation carrying part of (even if very small)

the q-bit’s information radiates inward. However, from Bob’s point of view, that would not

happen since the q-bit has never exited his horizon. If Bob is still withinAlice’sHubble horizon

at this time, Alice can catch the radiation with the q-bit’s information and communicate her

different narrative to Bob (see figure 5.7). Alice and Bob must have exited each other’s Hubble

horizon by the scrambling time to prevent these inconsistent narratives from ever meeting each

other. Therefore, scrambling time should be longer than the time it takes for a comoving length

l to stretch beyond the Hubble radius.

τs >
1
H

ln

(
1
Hl

)
. (5.10)

∼ lP

Bo
b

A
lic

e

Δt ∼ τs

C

Bob’s HorizonAlice’s Horizon

Figure 5.7: Setup of the thought experiment. System C exits Alice’s Hubble horizon but stays inside Bob’s Hubble patch.
The dashed blue line is Alice’s stretched horizon and the red squiggly line is the Hawking radiation which carries part of C’s
information.
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We set l to the smallest possible meaningful distance lmin.

τs >
1
H

ln

(
1

Hlmin

)
. (5.11)

If lmin = lP, the above lower boundmatchesTCCtime.This thought experiment elucidates the

relation between scrambling time and TCC time. They are both the time it takes for Planckian

lengths to stretch beyond the Hubble radius. What is nice about this argument is that it tells us

that the two times would match even if the smallest physical length scale lmin were different

from Planck length6. It is reasonable to believe that in such a background, TCC time scale

as the maximum lifetime of de Sitter space gets replaced with 1
H ln
(

1
Hlmin

)
. This is because

the fundamental idea behind TCC time scale is to ensure that the smallest physical quantum

fluctuations do not exit the Hubble horizon and classicalize7.

Thermalization in de Sitter space

In theprevious subsection,we studied thermalization in the frameworkof complementarity

and showed that it takes t ∼ 1
H ln
( 1
H

)
to happen. In this subsection, we support that result

by studying the de Sitter vacua. We review quantum backgrounds with approximate de Sitter

symmetries (de Sitter vacua) and an argument that shows in a time of order τTCC all of them

evolve into a particular one called theBunch-Davies (BD) vacuum.The BDvacuum is a thermal

background, which is why we call this process thermalization.

If we have a de Sitter vacuum |Ω⟩ the Wightman two-point functions ⟨Ω| φ(x)φ(y) |Ω⟩

must respect the isometries of the de Sitter space. Additionally, they are Green’s functions of

the free scalar field equation of motion. All such functions can be parametrized by a complex

number α with a negative real part (see133 for the analytic expression). The states |α⟩ for which

Gα(x, y) = ⟨α| φ(x)φ(y) |α⟩ , (5.12)

are called α-vacua. For α = −∞, the Green’s function matches the thermal Green’s
6For example, the size of the compact dimensions could set a greater lower bound for physical lengths.
7We thankMatthew Reece for sharing this insight.
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function133,134. This vacuum is called the Bunch-Davis vacuum. A review of the mode

expansions that lead to these vacua can be found in135. The modes φ±(k) corresponding to

the BD vacuum have a special property that

as k → ∞ ⇒ φ±(k) ∼ Hη 1
2

k
ei⃗k·⃗x∓ikη, (5.13)

where (⃗x, η) are comoving coordinates. Equation (5.13) tells us that at large momenta (short

distances) the BDmodes exhibit the same behavior as theirMinkowski counterparts. Therefore,

the BD vacuum looks like the Minkowski vacuum at short distances which is consistent with

the equivalence principle. The creation and annihilation operators for the rest of α vacuua do

not share this property. The annihlation operators for α vacua are related to the ones for the BD

through Boguliobov transformations136,

aαk =
1√

1− eα+α∗
(aBDk − aBD †

k eα∗). (5.14)

The stability of de Sitter space is built in the symmetry group of it. So the instability of de

Sitter space must manifest in the form of the impossibility of defining states that respect all de

Sitter symmetries, i.e. de Sitter vacua. Following, we mention several issues with α-vacua that

are closely related to the instability of the de Sitter space.

• We use adiabatic approximation as we assume that for a comoving mode k, the state

satisfying ak |ψ⟩ = 0 will continue satisfying it at later times. However, in137, it was

shown that this assumption does not hold. In other words, quantum effects make it

impossible to find a true de Sitter vacuum that respects this symmetry.

• Due to the previous point, the time at which the condition aαk |ψ⟩ = 0 is imposed for a

given comovingmodematters. In97, it was argued that the BD vacuum is the state we get

by imposing these conditions at t = −∞. This makes BD unphysical since, at that time,

all the comoving modes are trans-Planckian. Physically, we can impose the annihilation

conditions only after the modes enter the sub-Planckian regime. In138, this issue was
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resolved by introducing a more physical alternative to the BD vacuum by imposing the

annihilation condition of eachmode at the time it enters the sub-Planckian regime. This

state is called the Instantaneous Minkowski Vacuum (IMV). It was showed that this

modification leads to decay of Λ with a lifetime of∼ H−1 139,140.

• Equation (5.14) tells us that all α-vacua (except BD) areUVdivergent. This is because any

α-vacuum other than the BD vacuum has arbitrarily high momentum excitations with

respect to the BD vacuum, which leads to a divergent energy-momentum tensor. The

fact that the short distance behavior of α-vacua are different from Minkowski violates

the equivalence principle.

The α-vacua must be regulated at short distances to avoid the last problem. This could be

done by introducing a cutoff Λ and imposing aBDk |α⟩reg = 0 for k > Λ and aαk |α⟩reg = 0 for

k < Λ. Note that the two-point function at scale∼ 1/Λ is no longer invariant under de Sitter

space isometries. This is another example that preserving the symmetries of de Sitter space at all

scales is impossible.

The regulated α-vacua |α⟩reg differ fromBDonly formodes with k < Λ.All of thesemodes

exit theHubble horizon in 1
H ln
(Λ
H

)
. In otherwords, after 1

H ln
(Λ
H

)
any de Sitter vacuumevolves

into the BD vacuum which is a thermal background. This result is identical to what we found

in the previous subsection from de Sitter complementarity.

Complementarity in de Sitter space

Bothof theperspectives thatwediscussedpoint towards the same expression 1
H ln
( 1
H

)
for de

Sitter thermalization/scrambling time which matches the conjectured value in38. The thought

experiment in 5.2 gives us a unique insight into complementarity. It tells us that after the

scrambling time, all the Hubble patch information exits the Hubble horizon and gets radiated

back in the form of Hawking radiation. Let us say we have put observers on a comoving lattice

with the initial spacing of Planck length. After a scrambling time, all observers exit each other’s

respective Hubble horizons. In a sense, each observer gets their own universe! Each observer
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will see all the other ones exit their horizon and receive their information in Hawking radiation

after the scrambling time. Therewill bemany isolated universes, each having a copy of the initial

information in the form of Hawking radiation of everything else that crossed their Hubble

horizon. This is the complementarity picture of de Sitter space.

5.3 Complementarity and the Swampland

In the last section, we provided arguments from different standpoints that the scrambling time

in a de Sitter background is of the order of TCC time. The Swampland conditions suggest

that the de Sitter space cannot be viewed as an equilibrium thermal background. This, however,

does not mean that the de Sitter space does not have any statistical interpretation. For instance,

the de Sitter entropy is still a meaningful quantity that counts the number of quasi-stable ds

microstates. However, this should be viewed as a fine-grained entropy not to be confused with

the thermodynamic entropy, which satisfies the second law of thermodynamics (see141 for a

review of fine and coarse-grained entropies). For the thermodynamic entropy to make sense,

the system must be able to reach equilibrium. In a sense, the complementarity picture breaks

down according to TCC.

It is worth mentioning that de Sitter space, if viewed as a thermal background, has some

strange features. For example, the number of particles in the thermal radiation is O(1)142. So

in a sense, the de Sitter space would be the minimal thermodynamical system that quantum

mechanically could make sense.

There are some key differences between black hole complementarity and de Sitter

complementarity. For example, Hawking-Page phase transition has no analogue in de Sitter

space130. Another fundamental difference between the two is that the horizon is real and

observer-independent in the black hole version. In contrast, in de Sitter space, the horizon is

apparent and observer dependent that could significantly differ from the real horizon. The

difference between real and apparent horizons is significant especially for fastly decaying de

Sitter spaces such as those predicted by TCC. It is intriguing to see if there is a modified version
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of the complementarity principle that applies to all real horizons and is consistent with the

Swampland picture.

A nice demonstration of the tension between Swampland conditions other than TCC

and thermal aspects of de Sitter space can be found in113. The number of light degrees of

freedom in a 4d de Sitter space is given by the de Sitter entropy NΛ ∼ 1
Λ . Applying the de

Sitter conjecture and the distance conjecture to a rolling quintessence potential shows that the

number of accessible degrees of freedom increases by more thanNΛ over a scrambling time113.

Therefore, the low energy EFTbreaks before the de Sitter space can thermalize any non-thermal

perturbation.

5.4 Cosmological implications

The fluctuations of CMB are scale-invariant. The only α-vacuum that generates scale-invariant

fluctuations is theBDvacuum.This poses a fine-tuning problem for inflation’s initial condition

unless there is a natural mechanism that sets the vacuum to BD. As discussed in the last section,

if the de Sitter space lasts more than the scrambling time, any initial vacuum would eventually

evolve toBD.However,we saw that the Swampland conditions forbid this. Following, assuming

a lifetime τ for the de Sitter space, we find the range of the α vacua that get turn into BDvacuum

within the lifetime of de Sitter space. The smallness of this range determines the severity of the

initial condition problem for inflation.

Suppose |ψ⟩k is the projection of |α⟩ over the Fock space of particles withmomentum k. Let

|ψ⟩k =
∑

n cn |n⟩, where |n⟩ is the n-particle state with respect to BDmodes. Since aα |ψ⟩k = 0,

from (5.14) we find

c2i+1 = 0 and c2i =
(2i− 1)!!√

(2i)!
eiα∗ . (5.15)
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Therefore, the average excitation number of the momentum-kmode is

nk ≈

∑
i≥0 2i

(2i−1)!!√
(2i)!

e2iRe(α)∑
i≥0

(2i−1)!!√
(2i)!

e2iRe(α)
. (5.16)

For large nwe have

ln
(2n− 1)!!√

(2n)!
=

1
2

n∑
i=1

ln

(
2i− 1
2i

)
=

1
2

n∑
i=1

ln

(
1− 1

2i

)
≈ 1

2

n∑
i=1

− 1
2i

= − 1
4
H(n)

≈ − 1
4
ln(n), (5.17)

whereH(n) is the harmonic series. Therefore, from exponentiating the above equation we find,

(2n− 1)!!√
(2n)!

≈ n−1/4. (5.18)

Plugging this into (5.16) leads to

nk ≈
∑

i≥0 2i3/4e2iRe(α)∑
i≥0 i−1/4e2iRe(α) . (5.19)

This can be expressed in terms of the polylogarithm functions as

nk ≈ f(ξ), (5.20)

where ξ = exp(2Re(α))measures the deviation from the Bunch-Davis vacuum and

f(x) := 2
Li− 3

4
(x)

Li 1
4
(x)

. (5.21)
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Figure 5.8: Plot of ξmax versus eH(τ−τs)/Λ.

The average momentum is

⟨k⟩ ∼

´
|k|<Λ d

D−1k nkk´
|k|<Λ dD−1k

∼ Λf(ξ). (5.22)

where Λ is the field theory cut-off andD is the dimension of space-time. The time that it takes

for these excitations to freeze out (thermalize) is

τξ =
1
H

ln

(
Λf(ξ)
H

)
. (5.23)

For the fluctuations to be scale invariant at the end of inflation, the duration inflation τ must

be longer than this time.

τ >
1
H

ln

(
Λf(ξ)
H

)
, (5.24)

which can be rearranged into the following form.

ξ < ξmax = f−1(eH(τ−τs)/Λ), (5.25)

where τs = 1
H ln
( 1
H

)
is the de Sitter scrambling time and also the maximum de Sitter life time

according to TCC. Figure 5.8 shows the graph of ξmax = f−1(eH(τ−τs)/Λ).
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To explain the scale-invariance of CMB fluctuations without finetuning of initial vaccum

state, generic initial states, including thosewith 1−ξ ≪ 1,must have enough time to thermalize

into BD by the end of inflation. Therefore, we need 1 − ξmax ≪ 1. The graph 5.8 tells us that

this condition implies eH(τ−τs)/Λ ≫ 1. If Λ = O(Mpl), we would need τ− τs ≫ H−1 which is

inconsistent withTCC.Thus, TCC implies that inflation cannot last long enough for a generic

initial vacuum to create the observed almost scale invariant CMB fluctuations. This imposes

a severe fine-tuning problem on inflation. This is in addition to another fine-tuning problem

that TCC imposes on inflationary models due to the very short field range of the inflaton29.

In conclusion, any conventional form of inflation seems to be in severe tension with TCC. A

TCC-compatible potential alternative for inflationwas recently proposed by PrateekAgrawalet.

al. for the early phase of our universe143.

5.5 Summary

We saw from twodifferent points of view that suppose de Sitter space lives long enough, the time
1
H ln
( 1
H

)
could be viewed as the thermalization time. From the complementarity standpoint,

this is when out-of-equilibrium perturbations thermalize over the stretched horizon before

getting radiated back into the Hubble patch. From another point of view, this is when

deviations from the thermal BD vacuum exit the Hubble horizon. These are two different, yet

compatible, ways of viewing the thermalization process in de Sitter space.

The TCC states that the lifetime of de Sitter space is less than the de Sitter thermalization

time. In other words, the universe will quickly access more light degrees of freedom than the

ones available to it in a give de Sitter background and will not stay in the de Sitter Hilbert

space long enough to reach thermal equilibrium. Because of this, TCC poses a severe initial

condition problem for any conventional inflationary scenario producing the scale-invariant

CMB fluctuations.

It would be interesting to study the possibility of a more general principle that quantum

gravity forbids finite-dimensional thermal systems in the sense that the thermal distribution
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in any finite-dimensional subspace cannot be confined to that subspace for more than its

thermalization time.
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6
Holography in scalar field cosmologies

In this section, we provide a holographic derivation of TCC in the asymptotics of the field

space. We have learned a lot about the nature of quantum gravity from string theory and

our understanding of string theory largely falls into two categories: 1) The non-perturbative

data from BPS objects and dualities, and 2) very detailed perturbative understanding of weak

coupling limits which lie at the infinite distance limits of the moduli space. The understanding

that string theory provides for the weak coupling limits is an important component of what

makes string theory what it is. After all, string theory owes its name to these weakly coupled

descriptions and finding a fundamental understanding of general features of the infinite

distance limits is as deep as understanding why string theory works.
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All infinite distance limits of the moduli space in string theory exhibit some universal

features which have led to various Swampland conjectures that postulate that these features

are fundamental to quantum gravity. Here we focus on two conjectures. 1) The distance

conjecture32 which postulates the existence of a tower of light weakly coupled states at every

infinite distance limit of the field space with masses that depend exponentially on the distance

in the field space. 2) TheTrans-PlanckianCensorshipConjecture (TCC)19which prohibits the

classicalization of Planckian quantum fluctuations and provides a concrete exponentially small

upper bound for the scalar potential in the infinite distance limit of the field space.

Some of the Swampland conjectures have been connected to more fundamental physical

principles such as unitarity, causality, or holography144,145,146,147. However, for the distance

conjecture and de Sitter conjectures such asTCC, considerable part of the evidence comes from

observations in string theory14,19,148,96,149,150,108,151,95 and compatibility with more established

Swampland conjectures21,22,15. In this work, we present an explanation for some aspects of

these conjectures based on the holographic principle. What we mean by holographic principle

is the most conservative form of holography, which states that physical observables in a

gravitational theory must live on the boundary of spacetime. This statement is equivalent

to the statement that there are no local physical observables in quantum gravity. One way

to see this is that in quantum gravity, we sum over spacetimes of different topologies, and

therefore, a unique spacetime manifold does not exist. However, a classical approximation can

arise when a particular configuration extremizes the Quantum Gravity path integral. The fact

that the classical picture is emergent rather than fundamental is nicely captured by dualities in

string theory. For example, consider two T-dual descriptions of a spacetime with one compact

dimensionof sizeR in one frame and l2s /R in the other frame.Aswe changeR/ls fromvery small

values to very large values, the semi-classical spacetime that provides the sharpest approximation

to thequantumtheory transitions fromonedescription to another.There is amappingbetween

the descriptions, but there is no direct mapping between the spacetimes. For examples, a local

wavepacket in the compact dimension in one picture maps to a winding string with no notion

of position in the compact dimension. Generally, the notion of spacetime, and any ”local”
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operator associated with the spacetime are expected to be emergent in quantum gravity.

Assuming that the potential always decays exponentially in the asymptotics of field space,

we show that there must be universal lower bounds on 1) the decay rate of the potential and 2)

the masses of the weakly coupled particles.

This section is organized as follows. Before going into details about the effective potential,

we first examine its meaning in subsection 6.1. We review different definitions for effective

action, both based on local observables (e.g. CFT correlators) and boundary observables (e.g.

scattering amplitudes). In subsection 6.2, we show that a boundary definition for the effective

potential is especially needed when the potential is positive. This is mainly due to the fact that

any local extremumof thepotentialwill be a de Sitter spacewithfinite spatial volume.Therefore,

the convexity theorem applies to any effective potential obtained from the QFT path integral.

But as we will discuss, a positive effective potential cannot be everywhere convex. Therefore, a

boundary definition of the effective action is required in theories with gravity.

In subsection 6.3 we consider a pure quintessence cosmology driven by a scalar field that

rolls to infinity in the field space. We study the boundary data that weakly coupled fields can

produce in such a cosmology.We show that in some cases, there is no non-trivial boundary data

at all. In other words, the field theory would be a uniquely bulk phenomenon, and therefore, it

cannot be holographically reproduced. The conditions that we find are

• The expansion cannot be accelerated a ∼ tp, p ≤ 1.

• For p > 1/2, the masses of the weakly coupled particles must decay polynomially fast in

timem ≲ t1−2p.

Note that the results of this section do not apply to cases where the thermal energy-momentum

of other fields dominates the evolution (e.g. matter or radiation dominated cosmologies).

In subsection 6.4, we discuss the relation between these results and various Swampland

Conjectures. The first result is simply equivalent to the TCC at future infinity, which could

also be expressed in the language of the de Sitter conjecture. As explained in19, TCC implies
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that the potential must decay as exp(−λφ) where λ ≥ 2/
√
d− 2, unless the contribution of

an emerging light tower of states to the energy density becomes significant in future infinity. In

that case, TCC implies the more conservative bound of λ ≥ 2/
√

(d− 1)(d− 2). In33, it was

argued that emergent string conjecture152 prevents the emergence of such light states in future

infinity. In that case, TCC always implies λ ≥ 2/
√
d− 2.

As for the second condition, when expressed in terms of the scalar field that drives the

expansion, it becomes identical to the statement of the distance conjecture m ≲ exp(−cφ).

The c that we find depends on λ. However, the greatest c(λ) that we find is c = 1/
√
d− 2,

which remarkably matches with the proposal in153, which is proposed on different grounds.

Note that our arguments only apply to universes that have polynomial expansion. Thus, we

cannot rule out eternal de Sitter. In fact, an EFT in de Sitter can famously produce boundary

data according to dS/CFT154. It is known that the asymptotic information in universes with an

accelerated expansion is spread across different Hubble patches and might not be measurable

by a bulk observer155,156, which might be a reason to think such universes are not physical157.

However, our argument points out a specific and fundamental problem with a subclass of

universes with accelerated expansion. We argue that boundary observables do not exist in

universes with accelerated polynomial expansions, whether we allow meta-observers or not.

6.1 Effective action

In this section we review two approaches for writing down an effective action for a physical

system based on the data used to produce it. Generally, an effective action is the approximation

of a quantum physical system by a classical field theory. The physical data that is used to

construct the effective action is either the algebra of some local observables, or some boundary

observables (e.g. S-matrix). CFTs are examples of the former class that do not have asymptotic

states158,159, and quantum gravities are believed to fall in the second category since they

do not have gauge-invariant local observables160. Note that it is possible to have two dual

descriptions of the same theory that fall into different categories. AdS/CFT correspondence161

107



is an examples of this where one theory is more naturally defined using boundary observables,

while the other theory is a CFT that has local observables.

In the following,webriefly reviewbothof these approaches to the effective action, and study

their requirements as well as their physical implications for the underlying physical theory.

Effective action for local observables

The most common definition of a field theory is a theory with local observables and the

effective action captures the local interactions in such a theory.We view a quantum field theory

as a theory of local observables defined via path-integral rather than a prescription to calculate

scattering amplitudes.

Suppose we have a field theory with a bare action S0 and a scalar field φ(x). The effective

action Γ(φ) is defined to give us the quantumcorrected equations ofmotion for the expectation

values of the operators. We can evaluate the vacuum expectation value of the operator φ̂(x) by

inserting it into the path integral. If the theory has a Minkowski vacuum, this vev would not

depend on x. However, we can consider non-vacuum backgrounds for which ⟨φ(x)⟩ evolves in

time. We are particularly interested in classical (or coherent) backgrounds. We can construct a

coherent background by acting on the vacuum with eαâ−α∗â† , where â† and â are creation and

annihilationoperators. Inorder to actwith anoperator onvacuum,we can insert it into thepath

integral. Therefore, to construct a background which looks classical, we can insert an operator

eαpâp−α∗p â
†
p for every harmonic oscillator corresponding to a momentum p:

ˆ
DφeiSe

´
dd−1p αpâp−α∗p â

†
p . (6.1)

Given that ap is the Fourier transform of φ(x), any linear combinations of φ(x) takes the form

above. Therefore, we can express a coherent state as follows

ˆ
DφeiSei

´
ddxJ(x)φ(x), (6.2)

The insertion of ei
´
ddxJ(x)φ(x) creates a classical background and is referred to as the source term.
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Now that we have created a non-vacuum background, we can re-evaluate the expectation value

of our local operator φ̂(x) and see how it evolves in time. Let the expectation value of φ(x) in

this background be φJ(x). If we take the limit of ℏ → 0, the quantum fluctuations disappear

and the path integral is replaced by its integrand. Therefore, we find that

ˆ
DφeiSei

´
ddxJ(x)φ(x) → eiS(φJ)+i

´
ddxJ(x)φ(x). (6.3)

In this limit the equations of motion are given exactly by the action S. However, when ℏ is non-

zero, the above equation breaks. The effective action Γfull is defined to capture these quantum

effects and maintain the above equation.

ˆ
DφeiS+i

´
ddxJ(x)φ(x) = φeiΓfull(φJ)+i

´
ddxJ(x)φ(x). (6.4)

This definition turns out to capture the fully quantum corrected equations of motion,

meaning that the expectation value of local operators follow the equations of motion given by

minimizing Γfull.

δΓfull(⟨φ⟩)
δ ⟨φ(x)⟩

= 0. (6.5)

Ifwe calculateΓfull according to aboveprescription, itwouldhave all sorts ofnon-local terms.

An important manifestation of the non-local effects is the running of the coupling constants.

What we usually mean by an effective action, is an approximation of Γfull with a local action

Γ with finite number of terms. This effective action can then be used to calculate long-range

correlation functions. In other words, Γ captures the full quantum effect as far as long-range

observables are concerned.

Approximating Γfull with a local action Γ is not always possible. Even if we start with a local

bare action S, the quantum effects generate variety of non-local terms in Γfull. If the field theory

is strongly interacting, the non-local terms can be too strong to neglect. Typically, only weakly

interacting QFTs can be described an effective action at long ranges.
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Suppose the effective action can be written as a sum of a canonical kinetic term and an

effective potential termV(φ) that only depends on ⟨φ⟩. In that case the equation (6.5) implies

that the vacuum expectation value of φmust be at a local minimum ofV(φ).

Effective action for boundary observables

In quantum gravity, it is often the case that the theory is formulated in terms of some

asymptotic observables defined on the conformal boundary of spacetime. The asymptotic

data is string theory is the string worldsheet amplitudes, however, the interpretation and

the structure governing these amplitudes vary depending on the background. In Minkowski

spacetime, the string amplitudes define the S-matrix, while in the AdS spacetime, they have

a much richer structure that represent the correlation functions in the dual CFT. The

formulation of quantum gravity in terms of boundary data is the general basis for holography.

In both Minkowski and AdS backgrounds, we can reproduce the low-energy boundary data

of the quantum gravity using a QFT in curved spacetime with an appropriate effective action.

This is how one calculates effective action in quantum gravity.

In this section, we review the boundary data in different backgrounds and how they can

be calculated using the effective action. If a theory of quantum gravity is formulated based on

the corresponding boundary data, one can use the results of this section to reverse engineer an

effective action that approximates that theory.

Minkowski space (V = 0)

The boundary observables in a weakly coupled quantum field theory in Minkowski

spacetime is the usual S-matrix elements. InMinkowski spacetime, the LSZ reduction formula

allows us to define S-matrix elements in terms of the field theory correlation functions. The

resulting S-matrix elements are asymptotic data, as they only depend on the initial condition in

the asymptotic past/future1. For example, formassive scalar particles, the LSZ formula states163

1There are some subtleties with massless particles in 4d due to IR divergences which we will not discuss here.
For a discussion of this problem and a proposed resolution see162.
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ˆ
dDp1eip1x1 . . .

ˆ
dDpmeipmxm

ˆ
dDq1e−iq1y1 . . .

ˆ
dDqne−iqnyn ⟨T {φ(x1) . . . φ(xm)φ(y1) . . . φ(yn)}⟩

∼ (Πm
i=1

i
p2i −m2 + iε

)(Πn
j=1

i
q2j −m2 + iε

) ⟨p1 . . . pm| S |q1 . . . qn⟩ , (6.6)

where T is the time ordering operator and ∼ is equality up to analytic terms. Note that we

have assumed that φ is canonically normalized which means the kinetic terms of φ in the

effective action takes the form− 1
2(∂μφ)

2. Since the correlation functions canbe calculated from

the effective action using the Schwinger–Dyson equation, we can also calculate the S-matrix

elements from the effective action using tree-level diagrams.

It is helpful to rewrite the scattering amplitude in the following form for reasons that will

become clear shortly.

< φ̃b(P1)φ̃b(P2)...φ̃b(Pn) >= lim
pi→Pi

ΠiG̃(pi)−1 < φ̃(p1)φ̃(p2)...φ̃(pn) >, (6.7)

where Pi and pi are respectively on-shell and off-shell momenta, G(p) is the propagator in the

momentum space. The Pi’s with positive energy correspond to in-going states while the ones

with negative energy correspond to out going states.

One of the significant properties of QFT in Minkowski space is that the Hilbert space of

asymptotic past/future admits a Fock space representation. As we will see shortly, this is not

generically true in an arbitrary spacetime.

Anti-de Sitter space (V < 0)

In AdS space, there is a very rich asymptotic structure given by the rescaled correlation

functions at the asymptotic boundary. One can intuitively understand the difference between

Minkowski space and AdS space as follows. In AdS space an observer can send a null ray to

the boundary and receive its reflection in a finite time. This means, the boundary condition in

AdS space is relevant to the experiments inside the AdS. Therefore, there must be a meaningful

way of measuring the correlation functions in AdS, even when some of those points approach
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the conformal boundary. The boundary data for QFT in AdS space is the basic ingredient that

makes AdS/CFT correspondence possible. Anti de Sitter space in the global coordinate has the

following metric.

ds2 = −(1+
r2

l2AdS
)dt2 + (1+

r2

l2AdS
)−1dr2 + r2dΩ2

d−1. (6.8)

Suppose, {Xi}1≤i≤n are n sets of coordinates on the (D− 1)-sphere. Then, the boundary data

is

lim
r→∞

〈
T {(rΔ1φ1(t1, r,X1)rΔ2φ2(t2, r,X2) . . . rΔnφn(tn, r,Xn)}

〉
, (6.9)

where φi are fields and Δi are appropriate weights that make the above expression convergent.

For a free field with massm, Δ is given by Δ = d
2 +

1
2

√
d2 + 4m2 164.

The normalized time-ordered correlation functions become singular in the limit where two

of the points coincide and the corresponding singularity behaves like an OPE of primary fields

in aCFT164. TheADS/CFT correspondence postulates that for any theory of quantum gravity,

the normalized time-ordered correlations on the boundary must in fact correspond to the

correlation functions of a CFT. Therefore, the asymptotic data of an EFT in AdS is correlation

functions. Let us take a moment to explain how these boundary correlation functions are

related to string worldsheet amplitudes.

In flat space, the string worldsheet amplitudes have an insertion of the form exp(ik.X) for

any external leg with momentum k. Therefore, a generic S-matrix element looks schematically

like

A{qi} =

〈ˆ
Πidzdz̄ : eiqi·xi : V(zi, z̄i;X, ...))

〉
worldsheet

, (6.10)

where : _ : is the proper ordering corresponding to the topology of the worldsheet. If we plug
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this into the LSZ equation and take a Fourier transform of both sides we find

ˆ
Πj[dDqje−iqjxj(

i
q2j −m2 + iε

)−1] ⟨T {φ(x1) . . . φ(xn)}⟩ ≃ A{qi}, (6.11)

where xi’s are taken to the asymptotic boundary. Let us look at all the ingredients of the above

equation and ( i
q2j −m2+iε)

−1 is the inverse of the Green’s function to cancel the evolution of

φj(xj) as we take xj to the asymptotic boundary and ensure that the expression converges to

something. In fact, the AdS boundary correlators are also defined using the same prescription.

We multiply bulk correlators by the inverse of the Green’s function to make sure the evolution

of the two cancel each other out as we take the points to the asymptotic boundary. The result of

this calculation is parametrized by boundary coordinates. In flat space these are the momenta

qi which pick out a direction, and in AdS they are coordinates xi. This final final expression

is also the string worldsheet amplitude. In other words, sting theory directly calculates the

well-defined boundary observables and effective action is just model that approximates those

boundary observables.

So in general, we have the following prescription to find the asymptotic observables

produced by a field theory. If the particles freeze in position space we use

lim
xi→Xi∈boundary

ΠjG(Xj, xj)−1 ⟨T {φ(x1) . . . φ(xn)}⟩ . (6.12)

and if they freeze in the momentum space, we use

lim
pi→Pi:on-shell

ΠiG̃(pi)−1 < φ̃(p1)φ̃(p2)...φ̃(pn) > . (6.13)
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6.2 Why gravity needs boundary observables whenV > 0?

In this section we want to point out a limitation to the observable-based approach when the

scalar potential is positive. Let us first see what happens when the spatial volume is finite. The

effective action captures the equations of motion of local quantum observables. So one might

think that the lack of need of asymptotic states will put finite and infinite spacetimes on equal

footings. However, it turns out that there is a major distinction between the two cases. In finite

spacetimes, one can go from any field configuration φ(x) = φ1 to any other field configuration

φ(x) = φ2 with finite action. In other words, the amplitude of tunneling between the two is

finite. This is in sharp contrast with infinite spacetimes with dimensions d > 2 where it takes

infinite energy to change the boundary conditions. For this reason, infinite spacetimes can have

different boundary conditions parameterized by moduli, that set the theory in different vacua.

But in finite spacetimes, the moduli cannot be frozen, as quantum fluctuations can take the

system from any field configuration to any other configuration with finite amplitude.

In the presence of different vacua, the effective potential can have multiple minima each

corresponding to a different vacuum. Note that all the minima must have the same energy,

otherwise, we can tunnel from one to another using a Coleman instanton in finite time76,165.

Given that the effective action represents the fully quantum corrected equations, being in the

local minima of the effective action must mean that we are in the true vacuum. Therefore, the

local minima of the effective actionmust be impervious toColeman instantons. Thus, the local

minima of the effective potential, must be the global minima of the effective potential.

As we discussed above, infinite spacetimes with d > 2 dimensions can have multiple vacua.

Therefore, the effective potential in infinite spacetimes can have multiple global minima. This

is because, the energy cost to transition between the two is infinite and therefore, the amplitude

is zero.
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V(φ)

φ

Coleman instanton

False vacuum
True vacuum

Figure 6.1: If the potential has another local minimum with a smaller energy, due to Coleman instantons, the universe will
nucleate expanding bubbles of the true vacuum which collectively fill the universe in finite time.

It is often said that the effective action is convex, however, the convexity theorem only

applies when one has not specified the boundary conditions of path integral at infinity. When

one does not specify that boundary condition, they are effectively averaging over all different

vacua. But,whenfixing theboundary condition at infinity, one canderive a non-convex effective

action that captures the fully quantum equations of motion. Higgs potential is an example of

this.

V{eff}(φ)

φ

True vacua

Figure 6.2: In infinite spacetimes with dimension d > 2, there could be different vacua. All of these vacua must have
the same energy to ensure their stable against Coleman instantons. Moreover, a true vacuum must be the minimum of the
effective potential. Therefore, an effective potential that is calculated via fixing the boundary condition at infinity, can have
multiple minima, and is not necessarily convex.

Going back to case of finite volume, no twominima are separated vacua since we can always

transition between states with finite amplitude. Therefore, there must be a unique vacuum in
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the theory. This implies that the effective potential must have a unique global minimum. This

in fact follows from the convexity theorem as well163. In finite volume there are no boundary

conditions to fix, and therefore the convexity theorem applies. A convex function has a unique

minimum, therefore, the vacuum is unique. de Sitter space has a finite volume, therefore, if it

is realized as a minimum of an effective potential which is defined based on the local observable

approach, that potential must be convex. However, in all known examples in string theory the

potential dies off exponentially in all directions of the field space14 and the following three

criteria are mutually inconsistent:

• V is convex.

• V decays exponentially at infinities.

• V has an extremumwithV > 0.

In fact, as long asV > 0 and decays exponentially at infinities, it will always have an extremum.

Thus, we do not even need to assume the existence of an unstable ormetastable de Sitter as long

asV > 0.

The above argument shows that the effective action based on local observables especially

does not make sense whenV > 0 and at best, it can only explain a finite window of field space.

Therefore, to have a meaningful definition of effective potential, gravity necessitates existence

of boundary observables forV > 0.

6.3 Boundary observables in rolling backgrounds

In this section we study the boundary observables that can be defined in FRW backgrounds

with polynomial expansions a ∼ tp. The reason we are interested in these backgrounds is that

as we show in the Appendix K any expansion driven by an exponentially decaying potential

is polynomial2. Exponential potentials are ubiquitous in string theory and in all the known
2Most of the calculations in the Appendix K are standard calculations that we include for the sake of

completeness (see for example157,166,22).

116



examples, the scalar potentials decays exponentially at the infinity of the filed space. This also

follows from the Swampland de Sitter conjecture14.

6.3.1 Asymptotic cosmology for exponential potentials

Let us summarize the results of the Appendix K. Assuming that the evolution of spacetime is

driven by an exponentially decaying scalar potential, we find

• Expansionary/contracting solutions expand/contract polynomially in the future/past

infinity.

• Unless there is a bounce, every spacetime has a spacelike singularity at finite time (i.e. big

bang or big crunch).

• Suppose the scale factor goes like a ∼ tp at the asymptotic of the field space and scalar

potential goes like exp(−λφ). We have

λ < 2
√

d− 1
d− 2

: p =
4

(d− 2)λ2

λ > 2
√

d− 1
d− 2

: p =
1

d− 1
. (6.14)

• p > 1 iff λ < 2√
d−2 .

The above results show the connection between exponential potentials and polynomial

evolutions. In the rest of the section, we focus on the cosmological evolution and study the

boundary observables for a given background that expands polynomially as

a(t) ∼ tp, (6.15)

as t → ∞where a(t) is the scale factor in the FRW solution with flat spatial curvature

ds2 = −dt2 + a(t)2(
d−1∑
i=1

dxi 2). (6.16)
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6.3.2 Heuristic calculations

Before doing anyprecise calculations, let us do someheuristic calculations to seewhatwe should

expect about the boundary data. Consider a particle with massm and comoving momentum k.

The proper momentum of the particle is k/a. Therefore, at late times, we expect the particle to

have energy ω ≃ m + k2
2ma2 and comoving velocity v ≃ k

ma2 . The maximum distance that this

particle can travel in comoving coordinate is

ˆ
dt

k
ma2

, (6.17)

which is finite if p > 1/2. Even if m depends on the running scalar and changes with time as

t−q, as long as q < 2p− 1, the particle cannot make it to spatial infinity and freezes out at some

comoving coordinates. Therefore, we cannot define an S-matrix and our boundary data must

be frozen correlators.

Now let us consider the massless case. For massless particles, the particle horizon is given by

ˆ
dt
a
. (6.18)

Therefore, if p > 1, the particle massless particle freezes out at some comoving coordinate and

our boundary data must be frozen correlators rather than scattering amplitudes.

In the following subsections we see how the boundary correlation functions freeze when

q < 2p− 1 for massive particles or p > 1 for massless particles. Not only that, but we will also

see that the frozen correlation functions are trivial and they vanish when the boundary points

are not coincident.
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6.3.3 Boundary correlation functions

The Ricci curvature in this background is

R = 2(d− 1)
ä
a2

+ (d− 1)(d− 2)
ȧ2

a2
. (6.19)

In a general curved background, the equation of motion of a scalar field is given by

[− 1
√−g

∂μ(gμν
√

−g∂ν) +m2 + ξR]φ = 0, (6.20)

wherem is the mass and ξ is the coefficient of the φR coupling. We assume ξ = 0 as its value

does not affect our conclusions.

1
a2
[−Δ2 + (d− 1)ȧa∂t + a2∂2

t +m2a2]φ = 0. (6.21)

Since we have translational symmetry in space, we can consider the following solution ansatz.

φ̃k = e−iω(t)·t+i⃗k·⃗x. (6.22)

Note that ω depends on t. As t → ∞, the last two terms dominate and we find

lim
t→∞

ω(t) → ±m. (6.23)

Let us focus on the positive frequency modes for now. We define ω = m + δω, where δω

vanishes at t = ∞.

1
a2
[k2 − i(d− 1)ȧa(ω + tω̇)− (ω + tω̇)2a2 +m2a2]φ̃k = 0. (6.24)

For ω to converge we need tω̇ → 0. Therefore, at late times, we can replace ȧa(ω + tω̇) with

ȧam. However, we cannot do the same with (ω+ tω̇)2a2. This is because tω̇ωa2, 2ωδωa2 could
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be relevant. However, the rest of the terms will be subleading. So we find

1
a2
[k2 − i(d− 1)ȧam− 2mδωa2 − 2tδω̇ma2] = 0, (6.25)

which leads to

t ˙(δω) + δω + i
d− 1
2

· ȧ
a
− k2

2ma2
= 0. (6.26)

The general solution to the above differential equation is

δω =
c
t
− i

(d− 1)p
2

ln(t)
t

− k2

2ma2(2p− 1)
, (6.27)

where c is a constant. The first term amounts to an overall normalization of φ̃.We choose c such

that

δω = −i
1
t
ln

(
(
a
a0
)(d−1)/2

)
− k2

2ma2(2p− 1)
. (6.28)

For ω = m+ δω we find

ω = m− i
1
t
ln

(
(
a
a0
)(d−1)/2

)
− k2

2ma2(2p− 1)
. (6.29)

As we states above, there is also a negative frequency mode which we can obtain by fliping the

sign ofm in the above equation. So we find

ω±(k, t) = ±m− i
1
t
ln

(
(
a
a0
)(d−1)/2

)
∓ k2

2ma2(2p− 1)
. (6.30)

We could relate the two solutions to each other by

iω± = (iω∓)
∗. (6.31)

This follows from the fact that if φ̃ is a solution so must be φ̃∗ because the equations are real.
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This implies that if ω gives a solution, so does−ω∗. Therefore, either ω is purely imaginary or

the two frequencies are related by the above relation. As we will see later, the first case happens

for the massless fields.

We consider p > 1/2 where the friction term in (6.30) dominates and the modes freeze at

time infinity.

Now let us quantize our scalar field. The canonical quantization relations lead to

[φ(x), π(y)] = iδd−1(x− y)a−(d−1), (6.32)

where π = ∂tφ. The factor of a−(d−1) shows up because the distance x− y in the delta function

is not the proper distance. We could equivalently write

[φ(x), π(y)] = iδd−1(a(x− y)). (6.33)

Note that the above equation uses the fact that metric is diagonal and gtt = −1. Otherwise, we

would have π = −∂tφ which is not necessarily the same as ∂tφ.

Now let us expand the operators φ and π in terms of the solutions φ̃k.

φ(x, t) =
ˆ

dd−1k ake−iω+(k,t)t+i⃗k·⃗x + a†ke
−iω−(k,t)t−i⃗k·⃗x. (6.34)

The reality of the above expression follows from (6.31). Then we have

π(y, t) =
ˆ

dd−1k′ ak′(−i)(ω+ + ω̇+t)e−iω+(k′,t)+i⃗k′ ·⃗y + a†k′(−i)(ω− + ω̇−t)e−iω−(k′,t)−i⃗k′ ·⃗y.

(6.35)
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From the above equations we find

[φ(x, t), π(y, t)] =
ˆ

dd−1k dd−1k′[ak, ak′ ](−i)(ω+ + ω̇+t)e−iω+(k,t)t−iω+(k′,t)t+i⃗k·⃗x+i⃗k′ ·⃗x

+[a†k, a
†
k′ ](−i)(ω− + ω̇−t)e−iω−(k,t)t−iω−(k′,t)t−i⃗k·⃗x−i⃗k′ ·⃗x

+[ak, a†k′ ](−i)(ω− + ω̇−t)e−iω+(k,t)t−iω−(k′,t)t+i⃗k·⃗x−i⃗k′ ·⃗x

+[a†k, ak′ ](−i)(ω+ + ω̇+t)e−iω−(k,t)t−iω+(k′,t)t−i⃗k·⃗x+i⃗k′ ·⃗x.

(6.36)

From (6.32) we know that the right hand side must depend on time like a−(d−1). If we plug in

the asymptotic behavior of ω± from (6.30), we will see that the only terms that reproduce that

asymptotic behavior are coefficients of [ak, a†k′ ] and [a
†
k, ak′ ]. Therefore, we find

[ak, ak′ ] = 0,

[a†k, a
†
k′ ] = 0. (6.37)

We can rewrite the rest of the expression (6.36) follows.

[φ(x, t), π(y, t)] =
ˆ

dd−1k dd−1k′[ak, a†k′ ](−2i)(ω− + ω̇−t)e−iω−(k,t)t−iω−(k′,t)−i⃗k·⃗x−i⃗k′ ·⃗x.

(6.38)

Using (6.30), at t → ∞, we find

[φ(x, t), π(y, t)] ≃
ˆ

dd−1k dd−1k′(2im)(
a0
a
)d−1[ak, a†k′ ]. (6.39)

For (6.36) to be true, we need

[ak, a†k′ ] =
δd−1(k− k′)
2mad−1

0
. (6.40)

Now let us define the vacuum |Ω⟩ to be the state that is annihilated by all the operators ak.

This is a natural choice to ensure that at small scales, the vacuum looks like Minkowski (i.e.
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equivalence principle). Because, any comoving mode is trans-Planckian at some time and if it is

not in the vacuum, we will have a state that has highly UV excitations.

Let us calculate the equal-time correlation function for this state.Whenwe expand the fields

in terms of the creation and annihilation operators, there is only one combination that does not

vanish.

⟨Ω| φ(x, t)φ(y, t) |Ω⟩ =
ˆ

dd−1k dd−1k′ ⟨Ω| aka†k′ |Ω⟩ e−iω+(k,t)t−iω−(k′,t)+i⃗k·⃗x−i⃗k′ ·⃗y. (6.41)

Using ⟨Ω| aka†k′ |Ω⟩ = ⟨Ω| [ak, a†k′ ] |Ω⟩ and the commutation relation (6.40), we find

φ(x, t)φ(y, t) =
ˆ

dd−1k
1

2mad−1
0

e−2iIm(ω(k,t)t)+i⃗k·(⃗x−⃗y). (6.42)

We have dropped the state |Ω⟩ for simplicity. Since the leading k-dependence of ω in (6.30), the

above expression gives a simple delta function at t → ∞.

φ(x, t)φ(y, t) ≃ 1
2mad−1 δ

d−1(x− y). (6.43)

We can use factor out the asymptotic time-dependence of ω by defining boundary fields as

φb(x) ≡ limt→∞ φ(x, t)a(t)(d−1)/2. We find that the boundary correlators are given by

φb(x)φb(y) =
1
2m

δd−1(x− y), (6.44)

and so are trivial.

We canuse adiabatic approximation to seewhat happens ifmdepends on the running scalar

and therefore changes with time. Assumingm depends polynomially on time, as long as 1/ma2

decays faster than 1/t the k-dependent term in (6.30) is sub-leading and the correct asymptotic

data is frozen correlators rather than scattering amplitudes. Therefore, as long as ma2H ≳ 1,

there are no non-trivial boundary data associated with the field.

Now let us study the massless fields. Since the asymptotic behavior of the solution is

123



different for massless fields, we choose a different Ansatz.

φ̃k = fk(t)ei⃗k·⃗x. (6.45)

Looking at equation (6.21) form = 0, we find

k2

a2
+ (d− 1)

p
t
∂tfk + ∂2

t fk = 0 (6.46)

At t → ∞, the first termvanishes, andwithout that term, f = constant is a solution.Thismakes

up expect that f converges at t → ∞ in which case, we can view it as a function of z = 1/t and

study its behavior around z = 0.We take this as an assumption and confirm it a posteriori. The

above differential equation takes the following form in z.

z4∂2
z f+ z3(2− (d− 1)p)∂zf+

k2

a20
z2pf = 0, (6.47)

where a0 = a/tp. We can simplify the equation by writing it in terms of g(z) = ln(f(z)) as

follows.

z4∂2
z g+ 2z4(∂zg)2 + z3(2− (d− 1)p)∂zg+

k2

a20
z2p. (6.48)

If we neglect the last term, the general solution takes the following form.

g0(z) = ln
(
c0 + c1zp(d−1)−1), (6.49)

where c0 and c1 are constants. To take the effect of the last term in (6.47) into account we define

g = g0 + δg such that δg(0) = 0. After pluging this term in the equation (6.47) and keeeping

the leading terms for small zwe find

z4∂2
z δg+ z3(2− (d− 1)p)∂zδg+

k2

a20
z2p = 0. (6.50)
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The solution to the above equation with the initial condition δg(0) = 0 is

δg(z) = −Az2p−2k2, (6.51)

where

A = [(2p− 2)(1+ (d− 3)p)a20]−1. (6.52)

Therefore, for the solution (6.45) at large twe find

fk(t) ≃ (c0 +
c1

tp(d−1)−1 ) exp

(
−A

k2

t2p−2

)
. (6.53)

We can choose c0 = 1 as a normalization convention to define the following two modes.

φ̃k ± = (c0 ±
c1

tp(d−1)−1 ) exp

(
−A

k2

t2p−2

)
. (6.54)

Second quantization in terms of these modes is more complicated than the massive case,

however, it is actually not necessary.There is an easyway of seeingwhy the boundary datawould

still be trivial. Note that the solution converges at t → ∞ and completely freezes. Therefore,

the propagator converges to a constant as we take one operator to the boundary. In other words,

the boundary operators, are simply the bulk operators up to a constant.

〈
φb(X)φb(Y)

〉
∝ lim

t→∞
⟨φ(X, t)φ(Y, t)⟩ . (6.55)

Theproper distance between (X, t) and (Y, t) goes to infinity andwe expect the bulk propagator

on the right hand side to go to zero due to the cluster decomposition theorem. Therefore, in

the absence of any scaling factor that could compensate this decay, the boundary correlators at

non-coincident points vanish again.

X ̸= Y : φb(X)φb(Y) = 0. (6.56)
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Let us summarize the results of this section.

Compactness of brane moduli space

Suppose we have an FRW background that expands as a ∼ tp in the future infinity. If

p > 1, no field (massless or massive) yields any non-trivial boundary observable. If p < 1, a

weakly coupledmassive particle can produce a non-trivial boundary observable if and only

ifm ≲ t1−2p as t → ∞.

6.3.4 Some important remarks

• Higher spins: The calculation of the previous subsection is qualitatively similar for

particles of higher spins and the same results apply.

• Weak coupling: Our results only apply to particles hat become weakly coupled in the

future infinity. There could be more massive states that cannot be understood as sharp

resonances and therefore, do not lead to a boundary field. For example in a scattering

theory, such states cannot be in/out going states because they are not stable. However,

they leave an imprint on the scattering amplitude.

• Meaning of trivial boundary correlators: Let us point out that the boundary

correlators could be different if they are evaluated for a non-vacuum state in the bulk. In

dS/CFT this corresponds tohaving someoperator insertions at the past boundary,which

can be expressed as operator insertions at the antipodal point in the future boundary.On

the other hand, in AdS/CFT, this corresponds to evaluating the boundary correlators at

a state other than the AdS vacuum. In that case, we can create the other state by inserting

some other operator on the boundary and the said correlator is equivalent to a more

complicated vacuumcorrelation function.This is a consequence of crossing symmetry or

CPT and the same thing can be done here.We can study the two-point function in a non-

vacuumbackgroundby inserting other operators that change the state fromvacuum. For

example,
´
dd−1zf(z)φb(z) corresponds to a one-particle state and sandwiching the two-

point function between this operator corresponds to the two-point function in presence
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of a particle.

〈
φb(X)φb(Y)

〉
1-particle state =

〈
(

ˆ
dd−1z′f(z′)∗φb(z

′))φb(X)φb(Y)(
ˆ

dd−1zf(z)φb(z))
〉

|Ω⟩
.

(6.57)

As one can see from the above equation, such two-point functions can be reduced

to higher-order correlation functions. However, when the two-point functions are

delta functions, the correlation functions factorize and can be calculated using Wick’s

theorem. For example, for the above correlation function we have

〈
φb(X)φb(Y)

〉
1-particle state ∝ f(X)∗f(Y) + f(Y)∗f(X). (6.58)

Therefore, there is no additional data to the boundary observables and the boundary data

is trivial. In other words, the prefactors of the delta functions (e.g. the factor of 1/2m in

(6.43)) are not sufficient to capture the interactions in the bulk and reconstruct the EFT.

Intrestingly, the factorization phenomenon seems to be a universal feature of field

theories at infinite distance limits where the theory becomes weakly coupled167.

Therefore, it should be expected that frozen correlation functions will factorize and not

be able to capture the interactions away from the infinite distance limit of the field space.

• Uniqueness of boundary observables: One might ask why did we take the boundary

limit as t → ∞ while keeping the spatial co-moving coordinates fixed? For example, if

we had taken the proper distance to be fixed rather than the comoving distance, then we

wouldhave gotten adifferent result.However,we argue that there is a unique good choice

which is forced on us by the background. Suppose we had chosen to define the boundary

propagators as φb(X) = limt→∞ f(t)φ(Xtα) for some alpha, where f(t) is chosen such

that the limit of boundary correlators exist. If α < 0, then we are measuring correlators

at distances that are shrinking in comoving coordinates. Therefore, such a correlator is set

by the modes with decreasing comoving wavelength. However, since these modes were
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Trans-Planckian at some point, they must be set in the vacuum. In other words, even

though the correlation functions are non-trivial, the information of an initial condition

is completely lost. On the other hand if α > 0, the boundary correlator will be even

more trivial as it will be identically zero and we will lose the singularity. In general, we

must choose the boundary coordinates such that we have a well-defined quasi-stationary

mode expansion with constant wavenumbers.

• Significance of polynomial expansion:Note that the polynomial dependence on time

played an important role in the analysis of this section. The future boundary of universes

with exponential expansion or polynomial accelerated expansion are both spacelike.

However, in de Sitter spacewhere the expansion is exponential, one candefine non-trivial

boundary correlators. Since the points on the future boundary are not causually related,

the boundary correlators correspond to non-vanishing superhorizon correlations. These

correlators are the basis for dS/CFT154. Heuristically, the difference is that when the

expansion is exponential, the correlators freeze out so fast, that their x-dependence

does not fizzle out. However, in polynomial accelerated expansion, the expansion is fast

enough to freeze out the correlators at infinite time, but not fast enough to preserve

a non-trivial x-dependence. Now let us give a more precise explanation and point out

how the calculations are different between the exponential and polynomial expansions.

In exponential expansion, the friction term in the equation of motion (6.21) is of the

same order as the mass term and does not die off with time. The friction term gives an

imaginary component to ω(t → ∞) which then leads to imaginary dependence on

k in (6.42). Therefore, the boundary propagator has a non-vanishing k-dependence as

t → ∞.

In168, some exotic string theorybackgroundsusingnegative braneswhere studied. If such

theories exist, the worldvolume theory of the negative branes would be a non-unitary

supergroup gauge theory and their dual near horizon geometry are dS and AdS spaces of

exotic signatures. There are still some open questions about these theories, in particular,

an independent path integral definition of the worldvolume theory of the branes is
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missing. However, there is some evidence from dualities and string worldsheet for their

existence168. What is interesting is that all of the exotic string theory backgrounds that

where find in168 have an exponential expansion of the induced volume in the stationary

coordinate, and therefore, cannot be ruled out by our argument.

6.4 Swampland conjectures from holography

In section 6.2 we showed that in quantum gravity, a global positive potential requires a

boundary observables to be well-defined which is the most conservative form of holography.

In the previous section, we showed that depending on the masses of the particles and the rate

of expansion, such boundary condition might not exist. In this section we show that these

conditions match with some of the Swampland constraints and can be viewed as a holographic

derivation for them.

6.4.1 Trans-Planckian Censorship Conjecture

Trans-Planckian Censorship Conjecture (TCC) states that in a theory of quantum gravity, we

cannot have an expansion that is fast and long enough to stretch Planckian modes beyond

the Hubble scale19. In other words, the scale factor and Hubble parameter must satisfy the

following condition for any given times ti and tf.

a(tf)
a(ti)

<
1

H(tf)
. (6.59)

The initialmotivation ofTCCwas that such expansions erase the quantum information as they

classicalize the initial quantumfluctuations. Themotivations for this conjecturewere expanded

in a subsequentwork22. For backgroundswithpolynomial expansiona ∼ tp, TCC is equivalent

to p ≤ 1. Therefore, the boundwe found for the exponent of the expansion, is equivalent to the

statement of TCC in the asymptotic regions of the field space. This is very much in the spirit

of the initial motivation of TCC that information somehow gets lost if TCC is violated. As we
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can see now that the information (whether quantum or classical) completely gets lost at future

infinity if TCC is violated.

6.4.2 de Sitter conjecture

We can express the statement of TCC in the asymptotic region of field space in terms of the

scalar potential. Using the results of Appendix K, we can see that p ≤ 1 is equivalent to λ ≥

2/
√
d− 2 where V ∼ exp(−λφ). However, as was initially pointed out in19, this is only true

if we assume that the scalar fields are the main driver of the expansion. One could imagine a

scenario where the tower of light states that emerge in the infinite distance limit are excited and

contribute to the expansion. In that case the constraint on the potential would be milder and it

would be λ ≥ 2/
√

(d− 1)(d− 2)19.

In33, using the emergent string conjecture, it was argued that the tower of light states are

always heavier than the Hubble scale in which case they would not significantly contribute to

the expansion. In that case, TCC gives λ ≥ 2/
√
d− 2.

6.4.3 Distance conjecture

In the previous section, we saw that if the mass of the states in the bulk do not go to zero fast

enough, they will not lead to any boundary observables. Assuming that the expansion is driven

by a potentialV ∼ exp(−λφ), we can express the conditions imposed on their masses asm ≲

exp(−c(λ)φ)where cwould depend on λ. For λ < 2√
d−2 no state yields boundary observables

and for λ > 8√
(d−2)

, any mass yields scattering amplitude. However, for a λ in the above range,

using the results of Appendix K, our conditions lead to the following non-trivial bound.

m ≲ exp(−c(λ)φ), c(λ) =
4

(d− 2)λ
− λ

2
. (6.60)

Note that c(λ) is greatest at λ = 2/
√
d− 2 for which c = 1/

√
d− 2. This is a derivation of

distance conjecture in rolling backgrounds.What is evenmore interesting, is that the coefficient
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c = 1/
√
d− 2 matched with the proposal in153 to sharpen the distance conjecture. However,

we arrive at these decay rates from a completely different perspective based on the most basic

form of holography.

6.4.4 Generalized distance conjecture

The boundm ≲ t1−2p can be expressed in terms of the Hubble parameter asm ≲ H2p−1. We

can understand this bound in the following way: as we change the geometry of the spacetime

in the future infinity, there must be a tower of light states whose mass depends polynomially

on the energy density. This statement is similar to the distance conjecture when we view the

backgroundmetric as amodulus andwe think aboutmoving in the space of geometries as going

to the asymptotic direction in the moduli space3. This formulation was made more precise for

AdS spaces as generalized distance conjecture which states that as Λ goes to zero, there must be

a tower of light states whose masses go to zero polynomialy fast in Λ 169. If we replace Λ with

∼ H2 and extend it to time-dependent backgrounds, we recover m ≲ Hc for some positive

constant c.

Let us make the connection between our statement and the distance conjecture more

precise. Consider a homogeneous background of an auxiliary canonically normalized massless

field Φ that would reproduce the same action as the background we consider.

S =
ˆ

ddx√g
1
2
(∂tΦ)2. (6.61)

Bymatching the above actionwith the actual action S =
´
dds√gLwhereL = 1

2κ2R−V(φ)−
1
2(∂μφ)

2, we can define a formal notion of distance ΔΦ for our rolling geometry that is given

by
´
dt
√
2L. On the other hand, we have

√
L ∝ H ∝ t−1 as t → ∞. Therefore, we find

that this formal notion of distance between times ti and tf goes like ∝ ln
(
tf/ti
)
. If we apply

the distance conjecture to this notion of distance, it would imply that there must be a tower

of light states whose masses are exponential in ln(t/t0), which would be polynomial in t. This
3We are thankful to Cumrun Vafa for pointing this connection out to us.
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is exactly what we find! Therefore, we find a derivation for generalized distance conjecture in

rolling backgrounds.

6.5 Conclusions

We showed that the most basic form of holography, that observables of quantum gravity live

on the boundary of spacetime, has non-trivial implications for scalar field cosmologies. In

particular, we showed that the expansion of the universe, if polynomial, must be decelerated.

Moreover, if the expansion goes like tp, the masses of the weakly coupled particles must satisfy

m ≲ t1−2p. We also showed that these conditions are deeply connected to the Swampland

conjectures. In particular, the condition p ≤ 1 is equivalent to Trans-Planckian Censorship

Conjecture in the future infinity, and the condition m ≲ t1−2p matches with the generalized

distance conjecture. Moreover, it provides an explicit bound for the coefficient of the distance

conjecture that depends on the potential. However, the strongest constraint that we find is

m ≲ exp
(
−φ/

√
d− 2

)
which is identical to the proposal of153.

Our work presents a more fundamental explanation for various Swampland conjectures by

connecting them to amore fundamental principle of quantumgravity,which is the holographic

principle.
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Part II

The Swampland: micro
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7
Small instantons

Aconsistent quantum theory of gravity often includes long-range gauge forces as part of its low-

energy description. This is particularly true of supersymmetric theories, where these are often

required by supersymmetry. For instance, in theories with sixteen supercharges, the gravity

multiplet includes a massless 2-form field. Completeness of the spectrum170 then requires that

all possible values of the charges are populated by physical objects in the theory. Studying the

worldvolume theory of these branes, which map in the context of the String Landscape to

“probe branes” has been the source of much recent progress171,172,18,173,174,175 and can be used

to banish to the Swampland some naively consistent theories of quantum gravity that do not

appear in the String Landscape.
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When the branes are supersymmetric, they often have exactmoduli spaces – exactlymassless

directions of their worldvolume field theory. Some of these moduli have a direct spacetime

interpretation, like the scalars parametrizing the “center of mass” degrees of freedom of the

object in spacetime. But others characterize purely internal degrees of freedom. For instance, in

theories of quantum gravity arising via compactification from a higher-dimensional theory, we

will often have additional scalars parametrizing the position of the branes in the compact space.

Of course, scalars can also have other interpretations, such asWilson lines of higher-dimensional

gauge fields or more exotic origins. In any case, the low-energy effective field theory controlling

the dynamics of themoduli is simply a sigmamodel from the braneworldvolume to themoduli

spaceM:

L ⊃
ˆ
brane

√
−g

GIJ

2
∂μφI∂νφJ, (7.1)

where greek indices run over brane’s worldvolume directions, φ are the moduli, and Latin

uppercase indices live in the tangent bundle of M. To understand the dynamics of (7.1), it

is often useful to compactify all spatial worldvolume directions of the p-brane on the torus Tp

to obtain an effective quantummechanics with target spaceM (times any additional degrees of

freedom that may arise due to compactification, such as Wilson lines, etc.). Here we assume

p < d − 2, so the resulting 0-brane has codimension more than 2 in the uncompactified

spacetime. Canonical quantization then produces a spectrum whose energies are equal to the

eigenvalues of the Laplacian on M. We reach the conclusion that the sigma model (7.1) has

a spectrum dictated by the Laplacian on M (times any additional space). In particular, if M

is non-compact and the Laplacian has a continuous spectrum, the set of asymptotic states of

the theory described in (7.1) has infinitely many modes of any given finite energy range. In

particular, this means that the entropy density is infinite. Such behavior is fine in quantum

field theory, but it is unacceptable in a quantum theory of gravity, where the entropy is upper

bounded by that of the corresponding Schwarzschild’s black hole or black brane, as specified

by Bekenstein’s bound. Thus, the consistency of quantum gravity leads us to the basic claim174

which is the main tool we use in this chapter:
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Compactness of brane moduli space

Themoduli space of any p-branewith p < d−2 is compact (ormore precisely has a discrete

spectrum of the Laplacian) in a consistent quantum theory of gravity.

Throughout this chapter, we will apply this principle to the magnetic (d − 5)-brane

associatedwith themagnetic dual of theB field in the gravitymultiplet of d-dimensional theory

with 16 supercharges, extending the results in174. These branes preserve half the supercharges in

their worldvolume, andwhen the d-dimensional moduli are tuned such that the d-dimensional

theory has non-Abelian gauge fields, the (d − 5)-branes correspond to the zero-size limit of

gauge theory instantons. An example is the heterotic NS5 brane in 10 dimensions176,177,178.

When the instanton is of finite size, larger than the cutoff of the low-energy supergravity

description, the low-energy dynamics can be read off from the set of zeromodes of supergravity

fields in the instanton background. This can be efficiently analyzed using supersymmetry and

the index theorem to obtain the number of fermion zero modes. The corresponding theory,

including the modulus ρ that parametrizes the instanton size, is known as the “Higgs branch”

of the brane worldvolume theory. It connects to another branch of the moduli space, the

“Coulomb branch”, at ρ = 0 (Figure 7.1). The Higgs branch receives its name because

the low-energy effective field theory description there does not contain worldvolume gauge

fields, while at low energies on the Coulomb branch, the low-energy effective description is

a supersymmetric gauge theory. The phase transition between the two at ρ = 0 is described

by a (possibly free) SCFT. While the Higgs branch can be described via supergravity, the small

instanton SCFT and the Coulomb branch cannot.

The basic question about the Coulomb branch of the theory is its dimension, known

as the rank of the theory (see179 for a recent review). Even though this cannot be addressed

from bulk supergravity, the dimension of the Coulomb branch for a small instanton can be

accessed by supersymmetry due to constructions like ADHM for classical groups or Minahan-

Nemeschansky theories180,181 for exceptional groups. Specifically, the ADHMconstruction for

classical groups allows one to parametrize the low-energy dynamics in terms of linear degrees of
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Figure 7.1: The above figure shows a path between two instantons in the instanton moduli space. The path connects aG1
instanton to aG2 instanton whereG1 andG2 are independent non‐Abelian components of the spacetime gauge groupG.
We first shrink theG1 instanton down to zero‐size, which corresponds to moving along its Higgs branch to the Coulomb
branch. Then we move in the Coulomb branch to deform aG1 zero‐size instanton to aG2 zero‐size instanton. Finally, we
can move in theG2 instanton Higgs branch by increasing the size of the instanton.

freedom (which gives a natural description of the low-energy dynamics of zero-size instantons,

see182) and includes one scalar parametrizing the Coulomb branch. As a result, for branes that

can arise as a small instanton limit, the Coulomb branch will be rank one1.

Although it never happens in known string constructions, a priori, wemay also consider the

case where a given brane never arises as a small instanton of a non-Abelian group. In this case,

the non-commutative geometry version of the ADHMconstructionworks forU(1) instantons

in non-commutative space183, and again yields a one-dimensional Coulomb branch.

We emphasize that the argument outlined there essentially is that there is a unique field

theory description of the moduli space of instantons, including zero-size configurations, that

predicts a one-dimensional Coulomb branch. This and its exceptional versions are pure field

theory phenomena, even though somewere first discovered in the context of string backgrounds,

that we use as building blocks in the construction of quantum theories of gravity below.

The moduli space theory is not only rank one: it is also connected. In174, this was argued

via a strengthened version of the CobordismConjecture104 which was argued there to hold for
1Apriori onemay think that this does not exclude the possibility that, e.g., an exotic smallE8 instanton can be

described by a yet to be discovered SCFTwhich has a rank higher than 1. However, since there is a unique moduli
space of E8 instantons, studying the small E8 moduli space, using string theory is perfectly allowed to deduce that
its Coulomb branch is one dimensional. This is a local statement that does not rely on the existence of quantum
gravity in particular. We will provide another supporting argument in Section 8.2.
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theories with 8 supercharges because no superpotential is allowed for scalar fields2.

Connectedness of the moduli space refers to instantons of a fixed charge – components

of different charge are obviously disconnected –. In some string compactifications, like the

rank 10 theory in eight dimensions, where one can have symplectic groups where the small

instanton has a zero-dimensional Coulomb branch. This corresponds to fractionalD3 branes

stuck atO7+ planes. However, crucially, there is never more than one non-Abelian factor with

a zero-dimensional Coulomb branch3. In the stringy description, this is due to the fact that we

have a single O7+ plane. The corresponding moduli space is therefore a single point, which is

connected. For these theories, we consider themore interesting instantonmoduli space with an

instanton number of two, where the Coulomb branch is again one-dimensional.

Finally, we also note that the connectedness of the moduli space for the small instanton

limit of every possible non-Abelian gauge group with eight supercharges is deeply connected

with the fact that they all carry the same physical brane charge. As discussed in185, this is related

to demanding absence of Chern-Weil global symmetries.

To sum up, we end up with the conclusion that the space of the (d− 5)-branes in theories

with 16 supercharges is a connected moduli space, corresponding to a rank one Coulomb

branch. The basic consistency principle that will allow us to fully classify these Coulomb

branches is just the simple fact that brane worldvolume couplings should be well defined on

the moduli space, up to duality transformations.

This seeminglymild principle will turn out to have far-reaching consequences, to the extent

that we can determine the full moduli space of theories with sixteen supercharges in seven and

higher dimensions!

2The only way scalar fields pick upmass in theories with eight supercharge is via coupling to vectormultiplets,
as in going to their Coulomb branch, and not through self-interaction of the scalar multiplets. See also the
discussion in184.

3A redundant Swampland prediction coming out of this picture is that there can never be a point in moduli
space with more than one Sp(n) factor in the rank 10 8d theory. As was shown in174, this prediction is correct.
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8
Swampland constraints in various

dimensions

In this Section, we consider rank one worldvolume theories with 8 supercharges that describe

codimension-4 small instantons in various spacetime dimensions. By imposing consistency

conditions on worldvolume theories, we derive new swampland constraints and are even able

to reconstruct, purely from the brane perspective, the internal geometries that are familiar from

string theory.
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8.1 9d

In this Section, we show that the SLP holds for 9-dimensional supergravity theories.

The gauge instantons are 4-branes, which are described by 5d N = 1 theory. The

consistency conditions on the brane theory impose strong restrictions on the gauge algebras. In

particular, we argue that theories with sp(n) gauge symmetry are in the swampland for n > 1

with dynamical quantum gravity, but fine without gravity. We also reconstruct the internal

space S1/Z2 of type I′ string theory186 from the viewpoint of the 4-brane.

Consistency condition from 4-brane

We consider a 5d N = 1 rank one theory as a worldvolume theory of 4-brane. This theory

has a Coulomb branch of real dimension one. The Coulomb branch is parametrized by the

expectation value of the real scalar field φ belonging to the vector multiplet A. The gauge

symmetry isU(1) on a generic point of the Coulomb branch.

The 9d theory with sixteen supercharges has gauge symmetry, with propagating gauge

bosons. This spacetime gauge symmetry is seen as a global symmetry of theworldvolume theory

of the brane. If there are non-Abelian factors in the spacetime gauge group, there is a point of

symmetry enhancement at the Coulomb branch in the worldvolume theory. At this special

point, the Coulomb branch connects to a Higgs branch, in which the brane “fattens up” as an

instanton of the spacetime gauge group.

As discussed in the previous chapter, the Coulomb branch moduli space must be compact

and connected. The compactness of the moduli space is required by the finiteness of the

black hole entropy, and the connectedness is required by the stronger cobordism conjecture.

Therefore, the Coulomb branch moduli space is connected, one dimensional, and compact,

and so it is either S1 or S1/Z2.

Wewill nowargue that the case of 16 superchargeswe are interested in corresponds toS1/Z2,

while the S1 moduli space corresponds to nine-dimensional theories with 32 supercharges. Take
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the 9d theory and compactify on S1, to obtain an N = 1 eight-dimensional theory. The

instanton moduli space is now complex one-dimensional, with the additional scalar coming

from the Wilson line of the photon. In compactifications coming from theories where the

instanton Coulomb branch in 9d is S1/Z2, the 8d geometry is an elliptic K3, and in particular,

it has curvature. By contrast, if the 9d instanton Coulomb branch is S1, the 8d instanton

Coulomb branch has geometry T2, which is flat.

String theory makes a prediction for the possible Coulomb branches of the probe brane

worldvolume theory, and these can be studied by analyzing noncompact configurations of

branes in string theory. The stringy prediction for the moduli space geometry from this

noncompact analysis is always that the moduli space geometry is not flat and has singularities

at a finite distance (consider, for instance, aD3 probing aD7). We will take this prediction that

string theorymakes for field theory as an assumption; from this, it follows that themoduli space

geometry can only be K3, which uplifts to S1/Z2 in nine dimensions.

We can provide another heuristic argument for the same conclusion, which may have

wider applicability than the current context. From the brane point of view, the basic difference

between S1 and an interval is that the former has an isometry1. TheCoulomb branch parameter

φ is then actually an axion with a continuous shift symmetry. This means that the currents

J1 = dφ, J4 = ∗dφ (8.1)

are exactly conserved, d ∗ J1 = d ∗ J4 = 0, and generate a 0-form and a 4-form global

symmetry on the brane worldvolume. The object charged under the 4-form current is simply

solitonicmembranes of φ, i.e. field configurations φ(x5) that depend nontrivially on one spatial

coordinate transverse to the membrane and that wind around the target space circle once.

Becausewehave these symmetries,we can include topological couplings in theworldvolume
1As one can see by the arguments later in the Section, there cannot be any points on the moduli space where

the 4-brane theory corresponds to a gauge instanton when themoduli space is S1. So indeed, the Coulomb branch
has no special points, and it will automatically have continuous shift symmetry, at least in the IR.
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brane action, ˆ
∗J1 ∧ A1,

ˆ
∗J4 ∧ A4, (8.2)

which introduce a coupling to the corresponding background connections. This is a standard

procedure in field theory. We will now give an argument that, whenever this happens in the

worldvolume theory of a brane coupled to quantum gravity, the background connectionsmust

correspond to dynamical fields of the bulk theory. Otherwise, the worldvolume symmetry

becomes an exact global symmetry, which is forbidden in quantum gravity. We can argue

for this in a manner similar to Sen’s construction of branes within branes via tachyon

condensation187. Consider a brane- antibrane pair, with a worldvolume charged state on the

brane. The two branes condense, but the condensation cannot be complete since otherwise,

the global charge on the worldvolume theory would be violated. More concretely, the winding

of the worldvolume scalar forces the tachyon condensation to remain incomplete in an

appropriate locus. As a result, one is left with a remnant solitonic object in the bulk spacetime.

Whichever process can make this object break or decay would uplift to the original field theory,

contradicting the assumption that the theory had a global symmetry.

In the case under consideration, we would therefore conclude that the bulk theory has a

4-form field. Such a field (or rather, its dual 3-form) is part of the 9d N = 2 supergravity

multiplet, but not part of the 9d N = 1 multiplet. As a consequence, S1 is only compatible

with 32 supercharges, as advertised.

An important caveat is that this argument only applies to exact symmetries of the

worldvolume brane theory. One could have worldvolume accidental IR symmetries, which will

not be coupled to a dynamical bulk field. An example is the BPS string in the rank 1 component

of the 9d moduli space obtained as M theory on the Möbius strip188, where there is accidental

supersymmetry enhancement from (8, 0) to (8, 8) at low energies. While we believe the above

is morally correct, we cannot argue that these symmetries must be exact in the worldvolume

theory; this is why the previous argument using the geometry of the U(1) instanton moduli

space is required. Furthermore, only in the S1/Z2 case non-Abelian symmetries arise188. In the
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following, we will consider only this case.

The low energyU(1) theory at the general point of the Coulomb branch is specified by the

prepotentialF(φ), which is at most cubic. The prepotential of 5dN = 1 rank 1 theory is

F =
1
2g2

φ2 +
∑
i

ci
6

(
|φ − φi|

3 + |φ + φi|
3
)
, (8.3)

where we take φ = 0 and φe are the endpoints of the interval S
1/Z2, and g, ci are parameters.

If the endpoint theory is a SCFT, then the gauge coupling is infinite. The cubic term ci is only

generated by a one-loop computation189, where the field which becomes light at φ = ±φi

contributes. In principle, there could be a tree-level contribution to the cubic term, but it is

absent due to the Z2 quotient. Note that the effective prepotential on the Coulomb branch is

valid even if SCFTs do not admit a gauge theory description. The effective gauge coupling is

given by the second-order derivative of prepotential:

1
g2(φ)

=
∂2F
∂φ2 =

1
g2

+
∑
i

ci
(
|φ − φi|+ |φ + φi|

)
. (8.4)

The Coulomb branch moduli space metric is

ds2 =
1

g2(φ)
dφ2. (8.5)

The Chern-Simons term is given by the third-order derivative of a prepotential:

∂3F
∂φ3

1
24π2A ∧ F ∧ F =

∑
i

ci
(
sign

(
φ − φi

)
+ sign

(
φ + φi

)) 1
24π2A ∧ F ∧ F. (8.6)

Thus, the coefficient ci represents the “jump” Δki in the Chern-Simons term.

The consistency condition can be obtained as follows: consider a double cover S1 with the

interval S1/Z2. Let usmove the scalar fieldφ around S1 once.At this time, the level of theChern-

Simons term (or the gauge coupling) must come back to its original value. Since the coefficient

c of the cubic term corresponds to the jump in level, the well-definedness of the level, when we
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come back to the same point, requires that

∑
i

ci =
∑
i

Δki = 0. (8.7)

This equation, which comes from the compactness of the brane moduli, which in turn comes

from the finiteness of black hole entropy, can be used to constrain the bulk gauge symmetry2.

At any point in the Coulomb branch, the worldvolume theory flows to SCFT or IR free theory

at low energy. Suppose we have a complete classification of 5d rank-1 theories and know the

coefficients ci and the extended global symmetry. Then from (8.7), we can restrict the possible

global symmetries. This translates into a restriction to the bulk gauge symmetry. Interestingly,

as we will soon review, the classification of 5d theory has developed significantly in recent years.

This helps us to obtain new swampland constraints.

In the following, we first review the classification of 5d SCFTs. Then, we list the IR-free

theories whose Higgs branch is isomorphic to the instanton moduli space.

Classification of 5d SCFTs

A 5d gauge theory is not renormalizable, because the gauge coupling has a negative mass

dimension. However, if the theory has nontrivial UV fixed points, it can become UV complete

as a field theory. Originally, 5d SCFTswere discovered as theories onD4-branes190. A large class

of 5d SCFTs is obtained byM-theory on local CY threefoldwith shrinking 4-cycle191, and (p, q)

5-brane webs in type IIB string theory192.

In recent years, there has been significant progress in the classification of 5d

SCFTs193,194,195,196,197,198,199,200,201,202,203,204,205,206,207. There are several classification methods.

For example, there is a classification based on geometry195,201, a classification based on gauge

theory description194,206, and a classification based on the S1 compactification of the 6d SCFT

(which may involve a twist)195,196,197,204,207. In particular, all 5d SCFTs are conjectured to be
2This condition can also be used to exclude the existence of non-Abelian symmetries when the Coulomb

branch geometry is S1.
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SU(2) + 8 F

E8 : SU(2) + 7 F

E7 : SU(2) + 6 F

E6 : SU(2) + 5 F

E5 : SU(2) + 4 F

E4 : SU(2) + 3 F

E3 : SU(2) + 2 F

E2 : SU(2) + 1 F

E1 : SU(2)0 Ẽ1 : SU(2)π

E0 : SU(2) + "-1" F

SU(2)π + Ad

O8(−1) : SU(2) + Ad + "-1" F

Figure 8.1: The RG flow among 5d rank 1 SCFTs obtained by mass deformations. The shaded boxes correspond to 5d KK
theories which are UV completed by 6d SCFTs. Each box represents a gauge theory description. Since it is rank 1, the gauge
group is SU(2) in all cases, where F represents matter in the fundamental representation andAd represents matter in
the adjoint representation. In the case of pure gauge theory and adjoint matter only, discrete theta angles are possible,
which are denoted by subscripts. There are no gauge theory descriptions for E0 andO8(−1) theories, but we write “−1”F
because RG flow corresponds to formally removing the fundamental representation matter.

obtained as RG flows of the 5d KK theory (which is a compactification of 6d SCFT)195.

Here we sketch the classification based on 5d gauge theories obtained from supersymmetry

preserving relevant deformations. The necessary conditions for obtaining nontrivial SCFTs

are proposed in194, which is an improved version of208. The conditions are that there exists a

physical Coulomb branch where the monopole string has positive tension and the instanton

particle has positive mass squared and that the gauge coupling there is positive. The possible

gauge groups of rank 1 are U(1),O(2), and SU(2), of which only SU(2) satisfies the necessary
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condition. The SU(2) gauge theories withNf = 0, 1, · · · , 7 fundamental matters correspond

to the gauge coupling deformation ofENf+1 theory, as listed in Fig. 8.1. ForNf = 0, there exists a

freedom to add discrete theta angle191. The SCFT that corresponds to the theory with discrete

theta angle π is Ẽ1 theory. The Ẽ1 theory is amenable to further relevant deformation, which

yields the E0 theory. Note that the SU(2) gauge theory with Nf = 8 fundamental matters is

UV completed by a 6d SCFT. All En and Ẽ1 theories are obtained from the RG flow of the 6d

SCFT, and the Coulomb branch geometries are locally R/Z2. The SCFTs are realized at the

fixed point.

Similarly, the SU(2) gauge theories with an adjoint matter and discrete theta angle π is UV

completed by 6d SCFT. The relevant deformation of this theory flows to another 5d SCFT in

the IR (right side of Fig. 8.1). This theorywas found in201.We call thisO8(−1) theory because, as

wewill see below, it is natural to regard this as the worldvolume theory of theD4-brane probing

theO8(−1)-plane.Here theO8(−1)-plane is the orientifold planewhoseD8-brane charge is−1188.

The Coulomb branch geometry of theO8(−1) theory isR/Z2.

If we include thematter in the SU(2) gauge theory with representations that do not appear

in Fig. 8.1, the value of ci becomes negative. This makes the gauge coupling negative and does

not satisfy the necessary condition in194.

In this chapter, we derive a consistency condition of the worldvolume theory of probe

branes, assuming that the classification above is complete. In principle, it is possible that there

exist unknown SCFTs which do not admit a gauge theory description and are associated with

unknown geometry, although we believe that this is unlikely.

The values of ci in the SCFTs described above are as follows:190,209,201

c
cA0

=


9− n for En theory (n = 0, 1, · · · , 8)

8 for Ẽ1 theory

1 forO8(−1) theory

, (8.8)
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where cA0 is the value of c for A0 theory (U(1) gauge theory with one electron).

IR free theories

The theory of the symmetry enhanced point on the 4-brane can be an IR-free theory as well

as a SCFT. Here we list the rank-1 free theories in which the Higgs branch is isomorphic to an

instanton moduli space.

There are two theories in which the Higgs branch is a one-instanton moduli space: An

theory and Dn theory. The An theory is a U(1) gauge theory containing (n + 1) “electrons”

as matter. This theory has an su(n + 1) global symmetry. A Dn theory is a SU(2) gauge

theory containing n “quarks” as matter. This theory has an spin(2n) global symmetry. The

Coulomb branch geometry of An theory is R and that of Dn theory is R/Z2 considering the

Weyl group. Compactifying theAn theory to S1 results in a 4dN = 2 theory corresponding to

the su(n+ 1) small instanton in 8d spacetime. This corresponds to the In singularity of the 4d

Coulomb branch. Similarly, the S1 compactification of theDn theory is the I∗n singularity of the

4d Coulomb branch.

For the Cn case, the one-instanton Higgs branch is simply given by a free half-

hypermultiplet, and has a zero-dimensional Coulomb branch. This means that the

corresponding probe brane is “stuck”, and indeed this theory is realized by the worldvolume of

a stuckD4 branes. By contrast, the theorywith instanton number of two has a one-dimensional

Coulomb branch, and as argued in174 it is the one describingmobile probe branes that connect

to small instantons of other non-Abelian factors. Therefore, we will focus on this theory,

which is given by anO(2) = U(1)⋊Z2 gauge theory containing two hypermultiplets of charge

2 and sp(n) hypermultiplets of fundamental representation as matter210. The global symmetry

of this theory is sp(n). The Coulomb branch geometry of Cn theory is R/Z2 because of a

discrete gauging. The S1 compactification of this theory is the frozen I∗n+8 singularity in the

4d Coulomb branch. The lack of mass deformation due to Z2 gauging in the O(2) gauge

symmetry corresponds to the singularity being frozen210.
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The jump in the level of the Chern-Simons term (which is the same as the change in the

slope of the gauge coupling) can be obtained exactly by a 1-loop calculation189. The result is

c
cA0

=


− (n+ 1) for An theory

8− n forDn theory

−(8+ n) for Cn theory

. (8.9)

One could also ask why these are all the possibilities for the global symmetry of IR free

theories. Naively, these are easy to construct: For any G, just consider U(1) gauge theory with

matter in a representation of G. At low energies, the scalars in the matter sector are described

just by a kinetic term

L ⊃
ˆ √

−g
[κab
2
∂μφa∂μφb

]
, (8.10)

where the indices a, b take values in some representation of G, and κab is the corresponding

quadratic form. At low energies, this theory has aG global symmetry. In particular, there seems

to be no obstacle to things like G = G2 in eight dimensions, which we know does not arise in

the landscape of known 8dN = 1 theories174.

However, for any theory with lagrangian (8.10), the global symmetry in the IR enhances to

Spin(n), Sp(n), or U(n), according to whether the representation under consideration is real,

pseudoreal, or complex, respectively. The point is that any finite-dimensional representation

of any group comes with the quadratic form κab that one uses to construct the non-degenerate

kinetic term, and that the symmetry of the lagrangian (8.10) is that of the quadratic form.When

the representation is real, κab is a real symmetricmatrix, and the corresponding symmetry group

is the orthogonal group. When the representation is pseudoreal, it preserves a symplectic form;

the symmetry is the symplectic group. And when the representation is complex, κab preserves a

Hermitian form, whose symmetry group is unitary.

So, assuming there is no accidental symmetry enhancement in the deep IR, the only

possibilities are the ones we have listed. We will now use these to classify the possible consistent
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Name free or CFT Symmetry Geometry Brane c/cA0

An(n = 0, · · · ) free su(n+ 1) R (n+ 1)D8 −(n+ 1)

Cn(n = 0, · · · ) free sp(n) R/Z2 O8+ + nD8 −(8+ n)

Dn(n = 0, · · · ) free spin(2n) R/Z2 O8− + nD8 8− n

En(n = 1, · · · , 8) CFT caption R/Z2 O8− + (n− 1)D8 9− n

Ẽ1 CFT u(1) R/Z2 O8− 8

E0 CFT ∅ R/Z2 O8(−9) 9

O8(−1) CFT ∅ R/Z2 O8(−1) 1

Table 8.1: List of 4‐brane worldvolume theories with one‐dimensional Coulomb branch. Global symmetries of En and Ẽ1
theories are E8 = e8,E7 = e7,E6 = e6,E5 = spin(10),E4 = su(5),E3 = su(3) + su(2),E2 =
su(2) + u(1),E1 = su(2), Ẽ1 = u(1),E0 = ∅. The Higgs branch is given by one‐instanton moduli space (two‐
instantons moduli space for Cn). The geometry column refers to the local geometry around the symmetry enhanced point.
See Eqs. (8.8) and (8.9) for the details of the c/cA0 column, and the text after (8.13) for details behind the brane column.

quantum gravity vacua that one can have in nine dimensions.

Comparison of (8.7) and string vacua

So far, we have listed the possible brane worldvolume theories that can arise at the endpoints or

singular points of the S1/Z2Coulombbranchmoduli space. These are summarized inTable 8.1.

Since the overall geometry is S1/Z2, there are worldvolume theories with a geometry ofR/Z2 at

the two endpoints. It is important to emphasize that there should be exactly two worldvolume

theories withR/Z2 geometries.

Only theAn theory can appear as a singularity inside a line segment. The fact that the cubic

coefficient ci in An theory is negative is important in obtaining the bound.

The different choices of theories on the two endpoints correspond to different classes of

vacua. There are 10 ways to choose two endpoints from Cn,Dn,En (including Ẽ1), and O8(−1)

theories. However, in order to satisfy (8.7), given that cAn is negative, the sum of ci of the theory

on the endpoints must be non-negative. This excludes the case where both endpoint theories

149



areCn and the case whereCn andO8(−1) are chosen. The remaining eight patterns are as follows:

2D,D+ E, 2E : Rank 17 theories,

D+ O8(−1),E+ O8(−1) : Rank 9 theories,

2O8(−1) : Rank 1 theories A,

C+D,C+ E : Rank 1 theories B. (8.11)

Here, on the right side, we have written the rank of the symmetry group, which is consistent

with the result in211.

The non-Abelian symmetry can be read from the global symmetry groups at the singularity,

but it is not a priori clear how to count the number of u(1) symmetries. Here we make two

important comments about the counting of u(1) factors. Later in the Subsection, we will

provide a more complete and systematic study of the u(1) factors.

First, there are u(1)’s associated with the relative positions of An singularities. This is

understood by starting from the A1 singularity and deforming it. The 5d theory at the A1

singularity has an su(2) global symmetry that rotates the two electrons, which corresponds

to the bulk gauge symmetry. Then, let us consider breaking the su(2) symmetry. This is

achieved, in the bulk, by giving the vacuum expectation value to the Cartan component of the

scalar field in the vector multiplet. On the brane, on the other hand, it is achieved by giving

a mass difference to the two electrons (corresponding to an A1 singularity splits into two A0

singularities). Therefore, we see that the u(1) vectormultiplet in the bulk is coupled to themass

difference operator on the brane. Similar arguments show that the relative position of An and

Dm singularities are also associated with u(1)’s.

Next, there may be an additional u(1) corresponding to the 5d instanton number. If a 5d

theory at the fixed point is IR free, then there is a conserved current190

j = ∗Tr (F ∧ F) . (8.12)
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This generates an u(1) symmetry under which the BPS instanton particle is charged. As before,

thismust couple to the 9d bulk vectormultiplet in a supersymmetricway. Thismeans that there

is a u(1) gauge symmetry in the bulk and that the 5d gauge coupling (and themass of instanton

particle) is controlled by the corresponding 9d scalar field.

We will now explain how the gauge group (including its Abelian factor) can be completely

determined from the data of the Coulomb branch of the brane theory. The data that we

are interested in is the collection of global symmetries of the brane worldvolume theory and

the points where those global symmetries are realized on the Coulomb branch. But for now,

we consider theories where the relative positions of all points of symmetry enhancement on

the Coulomb branch are frozen. The positions can freeze due to the continuity of the brane

coupling constant g across the brane moduli space. For example, consider the case where there

are twoE8 theories at the endpoints and anA0 theory somewhere in themiddle. In such a theory,

the location of the A0 is forced to be exactly at the center of the interval. This is because 1/g2

vanishes at the E8 endpoints and symmetrically increases in the middle. Therefore, the tipping

point of 1/g2, where A0 is located, must be at the center.

In theorieswhere the relative positions of points of symmetry enhancement for a fixed gauge

group are completely frozen, enhancing the symmetry algebra is impossible3. Laterwewill show

that these theories are the only maximally enhanced theories. In other words, we show that the

gauge group can always be enhanced to one of these symmetry groups.

Inmost cases, themaximally enhanced theory has a semisimple symmetry algebra of rank of

17, 9, or 1. However, in a few cases, the rank of the semisimple algebra is off by one. Therefore,

for such theories to be realized, there must be an extra u(1) in the gauge group. All the frozen

geometries in the sense discussed above and their corresponding gauge algebras are listed in the

following tables. The theories with ranks 17, 9, and 1, are respectively listed in Tables 8.2, 8.3,

and 8.4.

3Note that our definition for maximally enhanced theory is one where the gauge group cannot be further
enhanced to a larger group. This is different from the definition in212 where maximal enhancement refers to the
absence of u(1) factors.

151



#
Placement of enhanced

theories on the Coulumb branch
Gauge algebra Root lattice

1 E8 A1 E8 e8 + e8 + su(2) 2E8 + A1

2 E8 A2 E7 e8 + e7 + su(3) E8 + E7 + A2

3 E8 A3 E6 e8 + e6 + su(4) E8 + E6 + A3

4 E8 A4 E5 e8 + spin(10) + su(5) E8 +D5 + A4

5 E8 A5 E4 e8 + su(6) + su(5) E8 + A5 + A4

6 E8 A6 E3 e8 + su(7) + su(3) + su(2) E8 + A6 + A2 + A1

7 E8 A8 E1 e8 + su(9) + su(2) E8 + A8 + A1

8 E8 A9 E0 e8 + su(10) E8 + A9

9 E7 A3 E7 e7 + e7 + su(4) 2E7 + A3

10 E7 A4 E6 e7 + e6 + su(5) E7 + E6 + A4

11 E7 A5 E5 e7 + spin(10) + su(6) E7 +D5 + A5

12 E7 A6 E4 e7 + su(7) + su(5) E7 + A6 + A4

13 E7 A7 E3 e7 + su(8) + su(3) + su(2) E7 + A7 + A2 + A1

14 E7 A9 E1 e7 + su(10) + su(2) E7 + A9 + A1

15 E7 A10 E0 e7 + su(11) E7 + A10

16 E6 A5 E6 e6 + e6 + su(6) 2E6 + A5

17 E6 A6 E5 e6 + spin(10) + su(7) E6 +D5 + A6
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18 E6 A7 E4 e6 + su(8) + su(5) E6 + A7 + A4

19 E6 A8 E3 e6 + su(9) + su(3) + su(2) E6 + A8 + A2 + A1

20 E6 A10 E1 e6 + su(11) + su(2) E6 + A10 + A1

21 E6 A11 E0 e6 + su(12) E6 + A11

22 E5 A7 E5 spin(10) + spin(10) + su(8) 2D5 + A7

23 E5 A8 E4 spin(10) + su(9) + su(5) D5 + A8 + A4

24 E5 A9 E3
spin(10) + su(10)

+su(3) + su(2)
D5 + A9 + A2 + A1

25 E5 A11 E1 spin(10) + su(12) + su(2) D5 + A11 + A1

26 E5 A12 E0 spin(10) + su(13) D5 + A12

27 E4 A9 E4 su(10) + su(5) + su(5) A9 + 2A4

28 E4 A10 E3
su(11) + su(5)

+su(3) + su(2)
A10 + A4 + A2 + A1

29 E4 A12 E1 su(13) + su(5) + su(2) A12 + A4 + A1

30 E4 A13 E0 su(14) + su(5) A13 + A4

31 E3 A11 E3
su(12) + su(3) + su(3)

+su(2) + su(2)
A11 + 2A2 + 2A1

32 E3 A13 E1
su(14) + su(3)

+su(2) + su(2)
A13 + A2 + 2A1

33 E3 A14 E0 su(15) + su(3) + su(2) A14 + A2 + A1

34 E1 A15 E1 su(16) + su(2) + su(2) A15 + 2A1

35 E1 A16 E0 su(17) + su(2) A16 + A1
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36 E0 A17 E0 su(18) A17

37 E8 D9 e8 + spin(18) E8 +D9

38 E7 D10 e7 + spin(20) E7 +D10

39 E6 D11 e6 + spin(22) E6 +D11

40 E5 D12 spin(24) + spin(10) D12 +D5

41 E4 D13 su(5) + spin(26) D13 + A4

42 E3 D14 su(3) + su(2) + spin(28) D14 + A2 + A1

43 E1 D16 su(2) + spin(32) D16 + A1

44 E0 D17 spin(34) D17

45

-53
0 ≤ n ≤ 8 : Dn D16−n

spin(2n) + spin(32− 2n)

+u(1)
Dn +D16−n

Table 8.2: List of possible maximally enhanced rank 17 theories in nine dimensions which is obtained by Swampland
considerations. The first 44 lines where the algebra is semisimple match with Table 3 in212 which have string theory
realizations.

#
Placement of enhanced

theories on the Coulumb branch
Gauge algebra Root lattice

1 E8 A1 O8(−1) e8 + su(2) E8 + A1

2 E7 A2 O8(−1) e7 + su(3) E7 + A2

3 E6 A3 O8(−1) e6 + su(4) E6 + A3

4 E5 A4 O8(−1) spin(10) + su(5) D5 + A4
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5 E4 A5 O8(−1) su(6) + su(5) A5 + A4

6 E3 A6 O8(−1) su(7) + su(3) + su(2) A6 + A2 + A1

7 E1 A8 O8(−1) su(9) + su(2) A8 + A1

8 E0 A9 O8(−1) su(10) A9

9 D9 O8(−1) spin(18) D9

Table 8.3: List of possible maximally enhanced rank 9 theories in nine dimensions which is obtained by Swampland
considerations. The above table matches with Table 3 in 213 which have string theory realizations.

#
Placement of enhanced

theories on the Coulumb branch
Gauge algebra Root lattice

1 O8(−1) A1 O8(−1) su(2) A1

2 E1 C0 su(2) A1

3 E0 C1 su(2) A1

4 D0 C0 u(1) ∅

Table 8.4: List of possible maximally enhanced rank 1 theories in nine dimensions which is obtained by Swampland
considerations.

Let us compare the above with string compactifications. In string theory, there are four

classes of vacua214,215,188,18,212,213. Tomake the comparison with (8.11) easier to understand, we
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write each class as follows.

2O8− + 16D8 : Rank 17 theories,

O8− + O80 + 8D8 : Rank 9 theories,

2O80 : Rank 1 theories A,

O8− + O8+ : Rank 1 theories B, (8.13)

whereO80 is the shift orientifold215,188, andO8± are the orientifold planes with D8-charge±8.

Theories with rank 17 are obtained by circle compactification of heterotic/type I strings, as

well as type I′ stringwhere there are twoO8−-planes and 16D8-branes186. In this context, the 4-

brane obtained as a small instanton is aD4-brane. The theory on theD4-brane that probes the

(n+1)D8-branes is theAn theory, and the theory on theD4-brane that probes theO8−+nD8 is

theDn theory.When the dilatondiverges at the position ofO8−+(n−1)D8, then theEn theory

is realized. It is also possible for O8− to emit D8 non-perturbatively (O8− → O8(−9) + D8)4.

The worldvolume theory of aD4-brane that probes the O8(−9) becomes the E0 theory. This is

not captured by the perturbative type I′ description, but it can be understood from the language

of geometry in real K3216. Table 11 of212 lists all the patterns of the maximally enhanced gauge

groups in the 9-dimensional heterotic string vacuum, which matches the ones in Table 8.2.

Theories with rank 9 are obtained from the CHL string217,218, M-theory on the Möbius

strip219,220, and IIA string withO8− +O80 + 8D8188. Again, when theO-plane emitsD8 non-

perturbatively (O8− → O8(−9)+D8 andO80 → O8(−1)+D8), themaximally enhanced gauge

symmetries are realized. By comparingwith (8.11),we can see that theO8(−1) theory inTable 8.1

is naturally interpreted as a worldvolume theory forD4-brane probing theO8(−1) plane. Table

3 of213 lists all the patterns of themaximally enhanced gauge groups in the 9-dimensional CHL

string vacuum, which matches the ones in Table 8.3.

Finally, there are two inequivalent theories that have rank-1. One is M-theory on the Klein
4The superscript corresponds toD8-brane charge.
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Bottle220, the Asymmetric Orbifold of IIA, and is IIA with 2O80 188. The other is IIB on the

Dabholkar-Park background220, the Asymmetric Orbifold of IIB, and IIAwithO8−+O8+ 188.

It is known that in both classes of theories, the symmetry can be enhanced to SU(2), which

matches the list in Table 8.4.

Spacetime gauge theory and instanton moduli space

For branemoduli spaces listed inTables 8.2, 8.3, and 8.4,we found the corresponding spacetime

gauge group and showed that the gauge group is maximally enhanced. In the following, we

complete our analysis by determining the spacetime gauge group for the ones not listed in

the tables. The semisimple part of the gauge algebra is easy to find as it is given by the global

symmetries of the brane theory.However, counting the number of additional u(1) components

turns out to be non-trivial. Moreover, we will show that the theories listed in the tables are

the only maximally enhanced theories. In other words, the gauge group of any theory with a

different brane moduli space could be enhanced to one of the entries of Tables 8.2, 8.3, or 8.4.

To show any other theory can be a=enhanced, we look at the deformations of the Coulomb

branch of the brane resulting frommoving around in the Coulomb branch of the bulk theory.

In addition to the continuous change in the position ofAn points in the interior of the interval,

multiple groups can fuse or break up. These can be most easily read off from the string theory

realization of these theories. Note that this is a field theory statement, even though we use the

string theory realizations of these theories to verify it. We find that the following transitions are

allowed:

1. E0 and A0 ↔ Ẽ1 corresponding toO8(−9) +D8↔O8−.

2. E1 and A0 ↔ E2 corresponding to moving away aD8 from the E2 point.

3. Am andAn ↔Am+n+1 corresponding to joining/separating two stack ofm+ 1 and n+ 1

D8 branes .
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4. Am and Dn ↔ Dm+n+1 corresponding to moving to/away a stack of m + 1 D8 branes

to/from a stack ofO8− and n D8 branes.

5. C0 and A0 ↔ C1 corresponding to moving joining/separating a D8 brane to/from the

O8+ brane.

We did not include transitions involvingCn>1 since, as we will see later, including such theories

makes it impossible to satisfy the condition (8.7).

Note that the first two transitions do not change the rank of the semisimple Lie algebra

of the gauge group. However, the last three transitions change the rank of the semisimple

Lie algebra by one. Since the the total rank of the group is invariant, these transitions must

also involve the appearance of additional u(1). In other words, the rank change comes from

(un)Higgsing mechanism that absorbs/breaks up a u(1) to/from the Lie algebra5.

Following, we implement an algorithmic series of these transitions that will maximally

enhance the gauge group.

One can first use transitions 1 and 2 to convert the enhanced theories on both ends into one

of {C0 or 1,En ̸=2,Dn}. Then, one can use transition 3 to fuse all theA-type points of symmetry

enhancement into one. If one of the endpoints is aD theory, one can use transition 4 to absorb

the remaining A-singularity into theD. If one of the endpoints is C0, either there is nothing in

the middle, or there is just an A0. In the latter case, one can use transition 5 to absorb the A0

fiber into C0 and change it into C1. At the end of this series of transitions, the condition 8.7

is still satisfied, and none of the transitions 1-5 can be done anymore. The only configurations

that have these properties are the ones listed in Tables 8.2, 8.3, and 8.4. Therefore, any gauge

group can be enhanced to a semisimple group listed in the third column of Tables 8.2, 8.3, and

8.4. An example of this algorithm is illustrated in Figure 8.2.

Note that for transitions 3-5, the brane theory encodes the data of theU(1) gauge coupling

through the relative position of the enhanced global symmetry points on its Coulomb branch.
5This is consistent with the argument below (8.11).
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A4 A6E2 D3
Transition 2

A4 A6E1 D3A0

Tran
sitio

n 3

A5 A6E1 D3 Transition 3

A12 D3E1

D16E1

Tran
sitio

n 4

Figure 8.2: The above graph demonstrates the algorithm to deform a theory consistent with the condition (8.7) to a
maximally enhanced theory in Table 8.2.

When the distance between these points is shrunk to zero, the appropriate adjoint vector bosons

becomemassless, and the symmetry is enhanced. In the string theory language, this corresponds

to the string states connecting the D-branes becoming massless.

The above algorithmoffers an easyway to count thenumber ofu(1)’s.Thenumber ofu(1)’s

is the number of transitions 3-5 used plus the number of u(1) at the end of the algorithm! This

allows us to read off the full gauge group by looking at the brane’s Coulomb branch.

There is a small loophole in the above argument that we address below. In the above

algorithm we assumed that we can arbitrarily move the position of the points of symmetry

enhancement to perform the transitions 8.1, as long as they are consistent with equations (8.4)

and (8.7). However, we might not have such a control over the brane moduli space through

variations of the spacetime moduli. In the following we show that variations of bulk moduli

indeed allow for such arbitrary deformations of the brane moduli space. Our argument has

two steps. First we show that as long as the points do not cross, we can arbitrarily move them

around subject to the equations (8.4) and (8.7). Then we show that after moving two points

corresponding to one of the transitions arbitrarily close to each other, they can be fused by

changing bulk moduli.
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First step: In Subsection 8.3, we will show that by varying the vev of bulk u(1) scalars,

any sufficiently small movement of the points of symmetry enhancement that satisfies (8.4) and

(8.7) is possible. Now we argue that any large movement must also be possible. Suppose we

have a canonically normalized bulk modulus φ9d that controls the distance between two points

of symmetry enhancement. We assume that increasing φ9d corresponds to bringing the two

points closer to each other. The unwanted scenario happenswhen even by takingφ9d to infinity,

the points do not get arbitrarily close to each other and stop at some finite distance. As we will

explain next, this cannot happen.

The 9d supersymmetry fixes the moduli space of the spacetime theory to be the moduli

of the Γ17,1 Narain lattice, for which all infinite distance limits are decompactification limits.

Fortunately, we understand the decompactification limits for the brane theory. When two

points of symmetry enhancement that cannot be fused are brought closer to one another,

we get a theory that does not have any 5d UV completion and decompactifies into a 6d

theory. For example, this happens when we try to fuse A0 point to an E8 endpoint. Therefore,

the decompactification limit corresponds to the situation when two points of symmetry

enhancement converge but cannot be fused. Therefore, the worrisome situation mentioned

before where the points stop at some finite distance from each other never happens. This

completes the first step of the argument. Now we prove the second step.

Second step (fusibility of points): We want to show that suppose a pair of points

corresponding to one of the transitions are brought sufficiently close to each other, they can be

fused. To see why, note that we can always perform the transitions in the direction of splitting a

point of symmetry enhancement into two. This can be done by Higgsing the spacetime gauge

symmetry. Thus, at sufficiently small distances between two points of symmetry enhancement,

the relation between the canonical distance of two points of symmetry enhancement on the

brane moduli and the spacetime moduli is such that the points can be fused at a finite distance

of the 9dmoduli space.Doing it in reversemust also be possible at finite distance of bulkmoduli

space.
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This completes the argument that closes the loophole. We showed that any movement

of the points of symmetry enhancement that satisfies equations (8.4) and (8.7) in addition

to all of the five transitions (in both directions) are always possible through variations of the

spacetime moduli. In particular, this shows that all the rank 17 gauge groups are connected by

the spacetime moduli space.

Excluding 9d supergravity theories with sp(n) symmetry

Herewe show that theorieswith sp(n ≥ 2) symmetry canbe excludedusing (8.7) andTable 8.1.

Inorder to achieve sp(n) symmetry,wemust take theCn theory as oneof the endpoints ofS1/Z2.

At this time, in order to satisfy (8.7)

− (8+ n) +
cS1/Z2

cA0

≥ 0, ⇒ n ≤
cS1/Z2

cA0

− 8, (8.14)

is required, where cS1/Z2 is the value of ci at the other endpoint. From here, we can see that the

upper bound of n for sp(n) symmetry is determined by the maximum value of cS1/Z2/cA0 that

can be taken. Table 8.1 shows that cS1/Z2/cA0 is maximized in the E0 theory, where the value is 9.

This means that

n ≤
cS1/Z2

cA0

− 8 ≤ 1. (8.15)

Thus, theories with sp(1) = su(2) symmetry are feasible, but theories with sp(n ≥ 2)

symmetry are not. Note that there is nothing problematic with a supersymmetric sp(n)

symmetry without coupling to gravity. Indeed the O8+ orientifold in string theory realizes it

on a non-compact space, where 9d gravity is decoupled, except for the running of the dilaton

which leads to infinitely strong coupling at finite distance. In the string construction, the point

at strong coupling can only be probed by very long strings stretching out of O8+, which have

a high energy. Therefore, this singularity can be interpreted as a stringy version of the Landau

pole.
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Also, note that supersymmetry is essential for the conclusions reached here. It is known that

in a non-supersymmetric gravity theory, one can obtain a theory with sp(n) gauge symmetry

in 10 dimensions221, and by compactifying it to S1 one can obtain the same symmetry in 9

dimensions.

8.2 8d

In this Section, we review the argument for the 8d case discussed in174, and extend it to derive

the SLP in 8d supergravity theories.

The gauge instantons in 8d are 3-branes, which are described by a 4dN = 2 rank-1 theory.

The coupling constant is represented by an elliptic curve, and the total space is an hyperkähler

geometry. The only known compact and connected hyperkählermanifolds with real dimension

4 are the torus T4 or K3, and only the latter produces non-Abelian symmetry. A direct

application of the arguments in Section 8.1 shows that only K3 is relevant for theories with 16

supercharges. In this way, the elliptic K3 geometry of the F-theory compactification222,223,224

is reconstructed from the 3-brane174. Moreover, by studying the structure of the Coulomb

branch for gauge instantons from the bottom-up perspective225, one recovers the dictionary

between K3 singularities and enhanced gauge symmetries. See226,211,227,228 for swampland

constraints on the global structure of the gauge group in 8d.

In Section 7, we have provided the argument that the rank of the brane theory is one. As

remarked in the footnote there, we used the extra input from the string theory constructions to

exclude the possibility of the yet-to-be-discovered SCFT. In 8d,we can exclude such a possibility

in yet another way based on the central charge6. It is known that other gauge algebras cannot

be realized229,174, so in the following, we will only consider the case of the simply-laced gauge

algebra and the sp(n) gauge algebra. Assuming that the Higgs branch is given by that of the

one-instanton moduli space, the central charges a and c of SCFT are determined230,231. This

is because the Higgs branch corresponds to a non-Abelian instanton of nonzero size, and the
6This statement applies to 9d as well, since it is related by a simple S1 compactification.
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low-energy dynamics is uniquely determined by supergravity and the index theorem.Moreover,

an upper bound to the rank can be obtained by using the relationship232 between the central

charge and the scaling dimension of the Coulomb branch coordinates:174

(Rank) ≤ 4(2a− c). (8.16)

This can be used to rule out the existence of nontrivial SCFTs with ranks greater than one

that we do not yet know about. For sp(n), the central charges are those of the trivial SCFTs,

and there are no nontrivial SCFTs. For simply-laced gauge algebras, by giving the bulk scalar a

vacuum expectation value, we can always break the symmetry to SU(2). The central charges of

the interacting SCFTon the corresponding small instanton 3-brane are a = 11/24 and c = 1/2.

By substituting these values into (8.16), this leads to (Rank) ≤ 5/3, which means that ranks

higher than one are excluded.

We will now briefly comment on the reduced rank cases, which are related to frozen

singularities in F-theory. In eight dimensions, there are three theories of rank 18, 10, and 2211.

The gauge group of the theory with rank 18 is completely reproduced from the 3-brane. A

theory of smaller rank corresponds to the case with D8+n frozen singularities, and the theory

on the 3-brane that probes this singularity is a S1 compactification of theCn theory of Table 8.1.

A theory with rank 10 corresponds to geometry with a single frozen D8+n singularity, while a

theorywith rank 2 corresponds to geometrywith two. Thismapping allows us to reproduce the

gauge symmetry in theories with reduced rank too, which completes the SLP in 8d supergravity

theories as well.

8.3 7d

In this Section, we apply the methodology of previous Sections to 7d theories with 16

supercharges. In 7d, the brane is magnetically charged under the 3-form field in the gravity

multiplet. Therefore, the brane is a 2-brane instanton. Assuming the brane is BPS, the
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worldvolume theory of the 2-brane is a 3dN = 4 theory, which becomesU(1) in theCoulomb

branch and at low energies.

Following the black hole argument and the strong version of the cobordism conjecture

reviewed in Section 7,we can respectively argue that themoduli space is compact and connected.

Moreover, from theN = 4 supersymmetry, we know that the moduli space is hyperkähler233.

To sum up, we are led to conclude that the moduli space is a four-dimensional compact,

connected hyperkähler manifold. As mentioned above, only two such examples are known: T4

and K3. The case of T4 has no symmetry enhancement at any point in the moduli space and

corresponds to seven-dimensional theories with 32 supercharges. We will therefore focus on

the remaining case of 16 supercharges described by K3.

In principle, we can use this knowledge ofmoduli space to constrain the landscape of gauge

theories, similar towhatwe did in the 9d case in Section 7. To systematically classify the possible

7d theories of maximal rank, we will need to construct all possible SCFT’s that arise at singular

points in the Coulomb branch, just as we did in the 9d case and was done for the 7d case in234.

Unlike in the 9d case in Section 7, we do not have a systematic classification of 3d N = 4

SCFT’s, sowe cannot use it to produce a list of allowed singularities (including the frozen ones);

this means that strictly speaking our results here are weaker than the 9d and 8d cases. What we

will do instead is list the known 3d rankN = 4 SCFT’s that arise at singular points in known

string theory constructions,7 and use these singularities to reconstruct all 7dN = 1 maximal

enhancement points. We can then reverse the field and string theory roles: Rather than using

a field theory construction to construct all 7d N = 1 theories, we will employ the known

existing constructions to predict a classification of those rank-1 3dN = 4 SCFT’s which have

the instanton moduli space as the Higgs branch!

Before embarking on the classification, we must discuss a subtlety that is absent in the 8d

and 9d cases. The local singularities that can arise in K3 are codimension 4. The geometry, in a

neighborhood of the singularity, looks likeR4/Γg, where Γg is an ADE group. The four scalars

7TheM2 brane probingM-theory on K3 was discussed in235,236.
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in the worldvolume of the brane are the three scalars that live in the 3dN = 4 vector multiplet,

and the dual photon. Since the low-energy theory is a sigmamodel into K3, there is a possibility

of including a topological coupling in the brane worldvolume,

ˆ
CIJKεαβγ∂αXI∂βXJ∂γXK =

ˆ
π∗(C), (8.17)

where {α, β, γ} are brane worldvolume indices, Latin uppercase indices correspond to the K3

tangent space, and the notation π∗(C) just denotes the pullback, to the 2-brane worldvolume,

of the K3 3-formC. A smoothK3 has no nontrivial 3-cycles, and so in such a caseC = 0. But in

a singular K3, one can excise the local singularity, and the resulting space has a nontrivial linking

3-cycle of topology S3/Γg. It follows that, if in a given quantum theory of gravity,we find a brane

withC ̸= 0 around some singularity, it will not be possible to deform the K3 to be smooth: the

corresponding singularity must be frozen.

What we have just given is a Swampland derivation of the existence of frozen singularities,

which are very familiar from F andM theory constructions214. In particular, we have recovered

theirM-theory description as geometric singularities frozen by 3-formflux. In a sense, the brane

perspective is telling us that any consistent 7d N = 1 theory can arise from K3 with frozen

singularities, and so, it gets us tantalizingly close to the statement that M-theory is the unique

quantum theory of gravity in seven dimensions.

From the definition (8.17), it is pretty clear that the 3-form C is only defined modulo an

integer, since the coupling remains the same upon shifting C by a 3-form that integrates to 1

on the relevant 3-cycle. Furthermore, 3dN = 4 supersymmetry requires that the coupling is

topological, which amounts to the statement that the 3-form C is closed, dC = 0. This local

condition must be true globally in the compact K3 (with singularities removed), so if there

are p = 1, . . . frozen singularities in K3, the holonomies
´
S3/Γ(p)g

C around each of the frozen

singularities must satisfy ∑
p

ˆ
S3/Γ(p)g

C ≡ 0mod 1. (8.18)
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The constraint (8.18) can also be recovered in known compactifications to seven dimensions: it

just becomes the condition that there cannot beG4 flux onM-theory on K3214.

Armed with the above, we can reproduce the list of maximal enhancements in known

theories in seven dimensions214,234. The following table lists all known (possibly frozen) local

singularities that can arise in K3, the global symmetry on the brane theory at that point

(corresponding to the non-Abelian enhanced symmetry), the local geometry of the Coulomb

branch near the singularity and taken from214,237, and the corresponding discrete flux threading

the singularity.

Unfrozen Algebra Flux
´
C3 Frozen Algebra

so(2n+ 8) 1/2 sp(n)

e6 1/2 su(3)

e6 1/3, 2/3 ∅

e7 1/2 so(7)

e7 1/3, 2/3 su(2)

e7 1/4, 3/4 ∅

e8 1/2 f4

e8 1/3, 2/3 g2

e8 1/4, 3/4 su(2)

e8 1/5, 2/5, 3/5, 4/5 ∅

e8 1/6, 5/6 ∅

Table 8.5: The frozen singularities in the context of the compactification of M‐theory on K3214,237.

These have to be combined in all possible ways to form a K3 with singular fluxes. We list

all the possibilities in the table below, matching the known list of 7d theories with reduced

rank214,18,234. So assuming this table can be derived independently from the classification of 3d

SCFT’s withN = 4, this would complete the SLP program for supergravity theories in 7d as

well.

As we have seen so far, much information about the spacetime theory is encoded in the

small instanton moduli space. For example, the gauge group of the spacetime theory is related
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Rank Flux
´
C3 Freezing rule Dual description

11 1
2 +

1
2

so(2n+ 8)⊕ so(2m+ 8) → sp(n)⊕ sp(m)

2 e6 → 2 su(3), 2 e7 → 2 so(7), 2 e8 → 2 f4
so(2n+ 8)⊕ (e6, e7, e8)

→ sp(n)⊕ (su(3), su(7), f4)
e6 ⊕ e7 → su(3)⊕ so(7),

e6 ⊕ e8 → su(3)⊕ f4, e7 ⊕ e8 → so(7)⊕ f4

HeteroZ2 triple
CHL string

IIA 6O6− + 2O6+

no vector structure
F on K3×S1/Z2

7 1
3 +

2
3

2 e6 → ∅, 2 e7 → 2 su(2), 2 e8 → 2 g2
e6 ⊕ e7 → su(2), e6 ⊕ e8 → g2,

e7 ⊕ e8 → su(2)⊕ g2

Hetero Z3 triple
F on K3×S1/Z3

5 1
4 +

3
4

2 e7 → ∅ , 2 e8 → 2 su(2)
e7 ⊕ e8 → su(2)

Hetero Z4 triple
F on K3×S1/Z4

3 1
5 +

4
5 2 e8 → ∅

Hetero Z5 triple
F on K3×S1/Z5

3 1
6 +

5
6 2 e8 → ∅

Hetero Z6 triple
F on K3×S1/Z6

3 1
2 +

1
2 +

1
2 +

1
2

so(8)⊕ so(2n+ 8)⊕ so(2m+ 8)⊕ so(2ℓ+ 8)
→ sp(n)⊕ sp(m)⊕ sp(ℓ)

IIA 4O6− + 4O6+

3 1
2 +

1
2 +

1
2 +

1
2

so(8)⊕ so(2n+ 8)⊕ so(2m+ 8)⊕ so(2ℓ+ 8)
→ sp(n)⊕ sp(m)⊕ sp(ℓ)

IIA 4O6− + 4O6+

F on T4 × S1/Z2

1 1
3 +

1
3 +

1
3 3 e6 → ∅, 2 e6 ⊕ e7 → su(2) F on T4 × S1/Z3

1 1
2 +

1
4 +

1
4

so(8+ 2n)⊕ e7 ⊕ (e7, e8)

→ sp(n)⊕ (∅, su(2))
F on T4 × S1/Z4

1 1
2 +

1
3 +

1
6 so(2n+ 8)⊕ (e6, e7)⊕ e8 → sp(n)⊕ (∅, su(2)) F on T4 × S1/Z6

Table 8.6: List of 7d theories with reduced rank 214,18,234. The reduced rank theories are obtained by putting the flux
in Table 8.5, where the total flux must vanish mod 1 in the compact manifold. The gauge algebra is obtained by the
replacement of the maximal rank theories (the list of maximally enhanced gauge algebra is given in234). The number of
inequivalent rank‐3 theories is not entirely certain. It may be four rather than three (see footnote 22 in214). Applying the
freezing rule to the list provided in 234, we see that the gauge algebra of all rank‐1 theories can be enhanced to su(2). The
only maximal enhanced gauge algebra of rank‐3 theories corresponding to 4O6− + 4O6+ is 3 su(2). The maximal gauge
algebra of the other cases is given in 234.

to the singularities of the brane moduli space. An ambitious improvement of this relationship

would be to understand how the Coulomb branch of the brane moduli deforms by changing

the spacetime moduli. In fact, in 7d, we canmake an elegant connection between the geometry

of the brane moduli space and the spacetime moduli.

Take a 2-cycle in the small instantonmoduli space and consider a skyrmionwhere the brane

moduli wrap around the 2-cycle on the spatial slices of the brane. Suppose we can localize the
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2+1 dimensional skyrmion so that it pinches off from the brane worldvolume. The pinched-off

skyrmion is a 0+1 spacetime particle.Note that themass of the scalar field corresponding to this

particle controls the size of the 2-cycle. Therefore, we can locally control the complex structure

of theK3moduli space subject to the frozen singularities by changing the periods ofK3 through

varying the spacetime moduli. This establishes a direct relationship between the brane moduli

space and spacetime moduli using only field theory.

The above result holds for higher dimensions as well. For example, take the 9d theory

and compactify it on a T2 down to 7d. The points of symmetry enhancements on the brane

Coulomb branchmap to singularities of K3. Therefore, we can locallymove the location of the

singularities subject to the K3 geometry by changing the spacetimemoduli. If we decompactify

one S1, the path in the 7d moduli space lifts to a path in the 8d moduli space, which moves

the location of the singular fibers on the brane moduli space subject to the geometry of the

elliptic K3. Suppose we further decompactify the extra S1. In that case, the path lifts to a local

movement of the points of symmetry enhancement on the brane Coulomb branch subject to

the single valuedness of gauge coupling g in (8.4) and
∑

i ci = 0 from (8.7).

If the spacetime gauge group of the 9d theory differs from the ones listed in Tables 8.2, 8.3,

and 8.4, two things happen simultaneously:

1. Given that the entries of the tables have maximal semisimple algebras, the gauge algebra

must be a subalgebra of one of the entries with an additional u(1) factor.

2. Since the entries of the tables are the only configurations where the relative positions

of the points of symmetry enhancement are completely frozen, the relative position

between at least two of the points of symmetry enhancement must be tunable.

Therefore, we conclude the relative position between two points of symmetry

enhancements is tunable if and only if the gauge algebra has an additional u(1) factor.

In other words, the Coulomb branch of the brane moduli space is sensitive to the scalars of the

vector multiplets corresponding to the Abelian u(1)’s.
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8.4 6d

In 6d, there are two types of theories with 16 supersymmetries: chiral (N = (2, 0)) and non-

chiral (N = (1, 1)). Of these, the chiral N = (2, 0) theory is known to have such a strong

restriction that the massless spectrum is determined by symmetry alone238, so we will consider

the non-chiralN = (1, 1) theory.

The initial analysis of the 6d theories parallels that of the 7d.Thebrane is (1+1)dimensional

and hasN = (4, 4) supersymmetry by studying the gauge instanton solution in the bulk 6d

theory. From a combination of the strong cobordism conjecture and the ADHMconstruction,

we find that themoduli space of the 1-brane is a connected two-dimensional complexmanifold.

Moreover, from the black hole argument reviewed in 7, we know that the moduli space must

be compact. Contrary to the 7d case, the N = (4, 4) supersymmetry does not lead to an

hyperkähler manifold as the target space of the sigma model in general239,240,241. Only when

there is an extraU(1) isometry does the target space becomes hyperkähler.

If we assume an additional U(1) isometry, these facts collectively narrow down the

possibilities to eitherK3orT4. Like the 7d case,T4 corresponds to theorieswith32 supercharges.

Thus, we conclude that the moduli space of the 1-brane is K3. As in the cases of the other

dimensions, by classifying 2dN = (4, 4) theories, the possible gauge algebras of 6d theories

are obtained. It would be interesting to complete the classification.

In fact, without assuming U(1) isometry, we can see the appearance of K3 geometry from

another argument. Since the 1-brane we are considering has rank-1 and N = (4, 4), the

worldsheet theory has four scalars and four fermions, and the total central charge is c = 6. In242,

by calculating the elliptic genus of the N = (4, 4) theory with c = 6, it is shown that this

theory is interpreted as a string propagating on K38. In this sense, we can reconstruct the K3

geometry as the target space of the sigma model. Note that this argument can only be applied

to smooth K3 and not to singular K3 with frozen singularities.
8As a technical assumption, it is required that the massless representations with isospin l = 0 and l = 1/2 do

not mix242. This rules out torus compactifications.
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The arguments above indicate that the geometry is morally K3, but we can not rule out the

possibility that there is a N = (4, 4) SCFT which is different from the SCFT we get from

K3 (despite that fact that at least in the smooth case it must have the same elliptic genus as

K3)9. Modulo the assumption that all theN = (4, 4) SCFT’s with c = 6 and compact target

spaces are somehow equivalent (e.g., T-duality) to the SCFTwithK3 target space (possiblywith

singularities), the SLP is valid.

9See243 for the study on the patterns of frozen singularities from this point of view.
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9
Infinite distance limits

9.1 Refinements of the distance conjecture

In this section, we review some variations of the distance conjecture that are very powerful

for bottom-up arguments. In particular, we focus on the emergent string conjecture and the

sharpened distance conjecture

Emergent string conjecture

In any infinite distance limit of the field space, the lightest tower of states is either a KK

tower coming from the higher dimensional field theory or excitations of a fundamental

string152,34.
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Note the word fundamental in describing the string. The criterion that the string is

fundamental makes the conjecture very strong. What we mean by a fundamental string is a

string that has graviton as a string state, and moreover, the scattering amplitudes of the string

states are dominated by processes involving string worldsheets (see Fig. 9.1). In other words, the

gravitational amplitudes in the weak-coupling limit are given by a tree-level string amplitude.

(a) (b)

Figure 9.1: (a) The worldsheet diagrams that contribute to the amplitude of string states. (b) For an ordinary defect that
couples to spacetime fields, such diagrams need to be summed. However, for fundamental strings, including such diagrams
would lead to overcounting of the amplitude since the spacetime fields are supposed to emerge from string perturbation.

The emergent string conjecture is a very strong refinement of the distance conjecture.

However, we will be using a weaker refinement of the distance conjecture in our studies which

is the sharpened distance conjecture153. The sharpened distance conjecture states that the value

of the numerical coefficient λ in the distance conjecture must be lower bounded by 1/
√
d− 2.

Moreover, the authors in Ref.153 alsomade the observation that the inequality is only saturated

whenone of the string towers is the lightest tower.Our argumentswill be based on the following

conjecture.

Sharpened Distance Conjecture153

The numerical coefficient λ in the distance conjecture satisfies

λ ≥ 1√
d− 2

=: λmin . (9.1)
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The inequality is saturated if and only if the lightest tower is the string states.

Note that in the above conjecture, it is not assumed that the corresponding string is

necessarily fundamental. In fact, for this precise reason, the sharpened distance conjecture is a

weaker conjecture than the emergent string conjecture. A derivation of the sharpened distance

conjecture from the emergent string conjecture was given in Ref.56. One could formulate a

weaker version of the emergent string conjecture without the assumption that the light string

would be fundamental. The sharpened distance conjecture is stronger than the weak version of

the emergent string conjecture and weaker than the emergent string conjecture.

Emergent string conjecture

⇓

Sharpened distance conjecture

⇓

Weak emergent string conjecture (without fundamentality of the string)

In the following sections, we show that the sharpened distance conjecture combined with

the finiteness of the black hole entropy shows that the number of string limits is always

countable. This result implies that with the exception of a measure zero subset of infinite

distance limits, any other limit decompactifies. This is a powerful result that we will use for

bottom-up arguments of various string dualities.

9.2 Countability of strings

We first argue that the number of inequivalent strings in the moduli space must be countable.

We prove this statement by contradiction. Suppose we have uncountable inequivalent strings.

For each string labeled by α, we pick a point Pα such that the string wolrdsheet description is

valid in the ε-neighborhood of that point in the moduli space. ε is a positive number which can

be arbitrarily small, and the radius of the neighborhood is measured using the canonical metric
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on the moduli space. Let us call these neighbourhoods string domains. Consider a covering

of the moduli space with a countable number of ε/2-neighborhoods1. One of these open sets,

let us call it U, will include uncountably many points Pα. Since the diameter of U is ε, the

worldsheet description of every string α where Pα ∈ U is valid across all of U. Therefore, U

has uncountably many inequivalent strings with valid descriptions at the same points in the

moduli space. However, that would mean that uncountably many of those strings have a mass

scale below some finitemassM, whichwould violate the Bekenstein-Hawking entropy formula.

Therefore, the number of inequivalent strings across the moduli space is countable.

9.3 Countability of string limits

Now that we have shown that the number of inequivalent strings is countable, we will show

that only countably many directions in the moduli space are string limits. For that, let us first

define what we mean by an infinite distance direction.

An infinite distance direction is a global geodesic which is maximally extended in one

direction. By global geodesic, we refer to a geodesic which is the shortest path between every

two points on it. An instructive example is type IIB theory. In type IIB, the moduli space is

a quotient of the upper-half plane,H/SL(2,Z). For any point p in the moduli space, one can

consider a continuous family of geodesics which leave point p at different angles.However, only

countablymanyof themwill go to the infinity of theupper half-plane. Furthermore, only oneof

them is a global geodesic. Note that this is not true for the upper half-plane before quotienting.

However, as a result of the SL(2,Z) identification, some geodesics are no longer the shortest

global path between every pair of points on them. According to our definition above, we would

say that the type IIB theory has only one infinite distance limit up to dualities.

Now consider that a point p is in the asymptotics of the field space and a geodesic exiting

from p, which is a global geodesic. Suppose the corresponding infinite distance limit is a string

limit. Therefore, according to the sharpened distance conjecture, the coefficient of distance
1This is doable under reasonable physical assumptions laid out in25.
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conjecture in this limit is 1/
√
d− 2. Now, let us make an infinitesimal change in the velocity

vector of the geodesic. The resulting geodesic is either a global geodesic or it is not (like the type

IIB example).Wewant to show that this geodesic cannot be a string infinite distance limit. If this

geodesic does not correspond to a global geodesic, there is nothing to prove. However, if this

is a new infinite distance limit, we will note that by mixing the tension of the string with other

moduli, we have increased the distance we have to travel in themoduli space in order to decrease

the tension of the string by a certain amount. Therefore, the λ of the original string tower can

no longer be λ = 1/
√
d− 2. Therefore, even if this limit is a string limit, the corresponding

stringmust be a different string. In other words, every string has a unique infinite distance limit

associated with it. This is the direction in which the tension of the string decreases the fastest.

Since the number of inequivalent strings is countable, we conclude that the number of string

limits must also be countable.
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10
Dualities from Swampland principles

One of the most remarkable features of string theory is the emergence of new weakly coupled

descriptions at the infinite distance limits of the moduli space. This observation has been

formulated more precisely in the Swampland distance conjecutre32 (see, e.g. Refs.108,35 for

tests in string theory), which plays the central role in the Swampland program244 (see also

reviews245,246,247,56). The emergent weakly coupled descriptions which appear at different

corners of themoduli space are dual to each other. Therefore, the distance conjecture, at its core,

is a general quantification of the universality of dualities in string theory. Indeed, the distance

conjecture is sometimes referred to as the duality conjecture (e.g. Ref.248). However, the precise

logical relation between the distance conjecture and the various string dualities is not clear. The
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purpose of the chapter is to fill this gap.Wemake this connectionmore precise by showing that

refinements of distance conjecture can in fact explain dualities under several assumptions.

We focus on the higher dimensional supergravity theories with 16 or 32 supercharges. We

use a variety of Swampland conjectures to find the relation between the conjectures and all the

string dualities in d ≥ 9. Our arguments center around the sharpened distance conjecture153,

and rely on various other conjectures such as the BPS completeness hypothesis171. This work

shows that the Swamplandprinciples,with some assumptions, capture the essenceof theduality

web, and perhaps must be viewed as fundamental.

Note that all the theories we consider are supergravities and not string theories. In other

words, we will not assume that the UV completions of the mentioned supergravities are the

known string theories.

The chapter is organized as follows. In Section 9, the sharpened distance conjecture and its

connection to the emergent string conjecture152,34, our main tool in the chapter, is reviewed.

In Section 10.1, the T-duality between the IIA and IIB theories is derived from the bottom-up

perspective. In Section 10.2, other 11d/10d string dualities of theories with 32 supercharges

are discussed. Similarly, 10d/9d string dualities of theories with 16 supercharges are argued

in Section 10.3. We clarify the relationship between the string dualities and the Swmapland

conjectures. The technical details are provided in Appendix H, I and J.

10.1 IIA/IIB T-duality

Theories withN ≥ 16 supercharges have at least one anti-symmetric two form in their gravity

multiplet other than eleven dimension. Each 2-form Bμν is a higher form gauge field with

coupling gwhich is set by the action,

LB =
1
2g2

dB ∧ ⋆dB. (10.1)
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A string that is electrically charged under Bμν is called the supergravity string. The supergravity

string is special in that it can be BPS. In all the known string theories, in the limit g → 0, a

BPS supergravity string becomes the fundamental string. Moreover, if we compactify the limit

theory on a circle, when the string is sufficiently weakly coupled, it always has a T-dual in which

the supergravity string is also weakly coupled.

In the following, we provide a bottom-up argument for this observation in theories with

32 supercharges in 10 dimension based on Swampland principles. More concretely, we use the

BPS completeness hypothesis171, the sharpened distance conjecture.

Assuming that the BPS supergravity string exists, the tension of the BPS supergravity string

is (see Appendix H for derivation)1

T = M2
10eφ̂/

√
2, (10.2)

where φ̂ is the canonically normalized dilaton field,M10 is the 10d Planck scale, and g = e
√
2 φ̂.

Let us define the string length ls such that,

ls = T− 1
2 = l10e−φ̂/(2

√
2), (10.3)

where l10 = M−1
10 is the 10d Planck length.We compactify the 10d theory on a circle with radius

R and consider a BPS version of a closed string, which is the winding string.

The mass of a winding string is protected by supersymmetry and is given by

mwinding = TR =
R
l2s
, (10.4)

even for small values of R where the 10d supergravity description breaks down. We can also

find the degeneracies of the ground states of a winding string and their representations under

the SO(8) rotation group in 9d. This is because the ground states of the BPS stringmust furnish
1There are two Bμν fields in the type IIB supergravity. Here we can choose any of them.
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representations of the broken supersymmetries. In Appendix I, we show that based on the

chirality of the 10d theory, the ground states of the winding string are given by

• Winding string in type IIA Supergravity: (8v ⊕ 8s)⊗ (8v ⊕ 8s)with massm =
R
l2s
.

• Winding string in type IIB Supergravity: (8v ⊕ 8c)⊗ (8v ⊕ 8s)with massm =
R
l2s
,

where 8v, 8s, and 8c are the vector, spinor, and conjugate spinor representations of Spin(8),

respectively.

Recall that the massless spectrum of the IIA and IIB supergravity is given by (8v ⊕ 8c) ⊗

(8v⊕8s) and (8v⊕8s)⊗ (8v⊕8s). After the compactification on S1, these become the KK states

charged under the KKU(1). On the other hand, the winding strings are charged under theU(1)

coming from the dimensional reduction of Bμν. Therefore, the first/second line is consistent

with the first level of the KK tower of Type IIB/Type IIA supergravity on a circle with radius

l2s /R. This is remarkable since the BPS completeness hypothesis alone seems to reproduce the

well-known T-duality between type IIA and type IIB string theories. In particular, this almost

shows that the limitR → 0 of IIA/IIB is the ten-dimensional IIB/IIA theory.

However, since we are not aware of the existence of the other non-BPS towers becoming

light in the limitR → 0, there are still following possibilities.

1. Thewinding strings are the leading tower, corresponding to the decompactification limit

to 10d.

2. Thewinding strings are the leading tower, corresponding to the decompactification limit

to 11d.

3. The winding strings are the leading tower, corresponding to the tensionless string limit.

4. The winding strings are not the leading tower, and lighter non-BPS states are the leading

tower, corresponding to the decompactification limit.
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5. The winding strings are not the leading tower, and lighter non-BPS states are the leading

tower, corresponding to the tensionless string limit.

6. The leading tower is neither KK nor string state.

In the following, we show that the possibility 1 is the only option using the sharpened distance

conjectures.

First, it is easy to rule out the possibilities 2 and 4. If the possibility 2 is correct, given that

we have maximal supersymmetry, the theory must decompactify to the 11d supergravity on T2.

However, in this case, we have to find two BPS towers (the BPS tower other than the winding

strings will be discussed in Section 10.2.1). This does not occur at the generic point of θ.

Similarly, the possibility 4 is excluded. Since the decompactification limit is either 10d

IIA/IIB supergravity on S1 or 11d supergravity on T2, the KKmodes are always the BPS states,

charged under U(1) gauge symmetries. Therefore, it is impossible that the leading non-BPS

tower becomes the KK tower.

Next, the sharpened distance conjecture excludes the possibility 6 by definition.

Then, we use the sharpened distance conjecture to rule out the possibilities 3 and 5. To this

end, we clarify what we mean by R → 0 more precisely. There are two moduli fields in 9d

supergravity. One is the dilaton φ̂, and the other is the radion field parameterizing the S1 radius.

The canonically normalized radion modulus in d dimensions, ρ̂, is given by2

R
l9

= exp

[√
d− 1
d− 2

ρ̂

]
, (10.5)

which becomesR/l9 = e
√

8/7 ρ̂ for 9d.

We consider the infinite distance in (φ̂, ρ̂)-plane.

φ̂ + iρ̂ =: reiθ, r → ∞, θ : fixed. (10.6)

2We treat ρ̂ as a dimensionless quantity normalized by l9.
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TheR → 0 limit corresponds to π < θ < 2π. In this limit, φ̂ goes to−∞ for π < θ < 3π/2,

and goes to+∞ for 3π/2 < θ < 2π. For θ = 3π/2, φ̂ remains constant.

As we do not want to change the effective 9d theory, we fix the value of l9.

l9 =
(
l8s e2

√
2φ̂R−1

)1/7
=
(
l8s e2

√
2φ̂−

√
8
7 ρ̂/l9

)1/7
= fixed, (10.7)

where the 10d and 9d Planck lengths are related as (l9/l10)8 = l9/R. This determines the

behavior of ls in this limit:

ls → l9 e
1

2
√
2

(
−φ̂+ ρ̂√

7

)
= l9 e

1√
7
sin(θ+α)r

, tan α = −
√
7, (10.8)

where−π/2 < α < π/2.

In this limit, the mass of the KK states and the BPS winding strings (mw = R/l2s ) become

1
R

= l−1
9 e−

√
8
7 ρ̂,

R
l2s

= l−1
9 e

(
φ̂√
2
+

3̂ρ√
14

)
= l−1

9 e
√

8
7 sin(θ+β)r, tan β =

√
7
3
, (10.9)

where−π/2 < β < π/2.Weobserve that thenumerical coefficient λwinding for theBPSwinding

string is given by

λwinding = −
√

8
7
sin(θ+ β). (10.10)

The value of λwinding (10.10) as a function of θ is plotted in Fig. 10.1 (solid red line). The

dashed blue line corresponds to the minimum value of λ, λmin, dictated by the sharpened

distance conjecture. The figure implies that for π < θ ≲ 1.65π, λwinding is bigger than λmin.

Since the winding tower whose mass is protected by the BPS condition has a decay rate larger

than λmin, the sharpened version of the distance conjecture implies that the above limit must be

a 10d decompactification limit, and so the possibility 1 is correct.
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Figure 10.1: Plots of the numerical coefficient λ as a function of θ. Solid red line: The value of λwinding (10.10) as a function
of θ. Dashed blue line: The minimum value of λ, λmin, dictated by the sharpened distance conjecture.

Moreover, from the chiralities of thewinding stateswhichwe listed earlier,we conclude that

anyweakly coupled type IIA theory is T-dual to a weakly coupled type IIB theory and vice-versa.

To be more precise, we showed that if quantum gravity is described by IIB/IIA supergravity on

a circle with radiusR at low energies, then the same theory at sufficiently small (but finite)R is

described by IIA/IIB supergravity at sufficiently small energies. Note that the 9d theory exists

for every value of R, even if the 10d description cannot be trusted3. The statement of duality

holds for any radius, and is useful when the radius is sufficiently large in either description.

When the KK/winding state is not the lightest state, the above statement is trivially correct.

However, since we have argued that the KK/winding state is lightest for R → 0 or R → ∞,

the statement of the T-duality above is non-trivial.

10.2 Other dualities in theories with 32 supercharges

In this section, we argue the relationship between the string dualities of 11d/10d theories (other

than IIA/IIB T-duality) with 32 supercharges and the Swampland conjectures.
3It is expected that the original supergravity description breaks down for R → 0 because of the species

scale249,250 for a string with tension l−2
s is l−1

s . Any effective field theory description breaks atR ≪ ls.
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10.2.1 IIA/M-theory

Now let us study the strong coupling limit of a theory which at low energy is described by the

type IIA supergravity. In type IIA, assuming the BPS completeness hypothesis171,4 we have a

tower of BPS particles whose masses are protected by supersymmetry.

mBPS ∝
M10

g 3
4
, (10.11)

where g is the coupling constant of the 2-form field in the gravity multiplet (see Eq. (10.1)).

Upon expressing thismass scale in terms of the canonically normalized spacetimemodulus φ̂ =

ln(g)/
√
2, we find

mBPS ∝ exp

(
− 3√

8
φ̂
)
. (10.12)

The BPS particles might not be the lightest tower, however, they provide a tower which has a

decay rate faster than λmin = 1/
√
8. Therefore, the sharpened version of the distance conjecture

implies that this limit cannot be a string limit and must be a decompactification limit. There is

a unique field theory in dimension greater than 10 that has 32 superchrages252,253,254, which

is the 11d supergravity, and the only 1d internal geometry which would preserve all of that

supersymmetry is a disjoint union of multiple S1. However, due to the uniqueness of the lower

dimensional graviton, the internal geometrymust be connected. Therefore, the only possibility

is 11d supergravity on S1. Note that since the 11d supergravity does not have any 1-form gauge

field, there are no fluxes (in this case Willson line) that can be turned on.

After dimensional reduction of the 11d supergravity, it is easy to see that the standard

matching255 of the fields between M-theory on S1 and type IIA is unique. For example, the

11d supergravity on S1 produces a unique gauge field, which comes from the KK reduction

of the metric. Therefore, the particles charged under the type IIA gauge field must have KK
4To be precise, we assume the stronger version of the BPS completeness where the each BPS state is populated

by a single particle state. In other words, we assume the existence of the bound state at the threshold251.
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momentum. In fact, from the 11d picture, we can also see that the BPS particles must be the

KK particles. Therefore, we can match the mass of the 10d BPS particles with the mass of the

KK particles to relate the coupling of IIA with the radius in the 11d supergravity picture in a

unique way according to the usual string theory argument.

10.2.2 IIB S-duality

The S-duality of a theory which at low energies is described by type IIB supergravity easily

follows from other dualities that we have derived so far.

In particular, we have shown in section 10.1 that such a theory on a circle of radius R

is dual to a IIA supergravity on a circle of radius l2s /R for sufficiently small R. Moreover, in

section 10.2.1, we have shown that type IIA supergravity with φ̂ → ∞ is described by 11d

supergravity on a circle. Therefore, type IIB supergravity on a circle has a dual description as an

11d supergravity on a torus. Since the SL(2,Z) symmetry of the Teichmuller parameter of the

torusmust be a discrete gauge symmetry in the 11d picture, thismust also be the case in the type

IIB picture for the duality to hold. Therefore, we find that the low-energy SL(2,Z) symmetry

of type IIB supergravity cannot be an accidental symmetry, andmust indeed be a duality of the

theory.

10.3 Dualities in theories with 16 supercharges

In this section, we argue the relationship between the string dualities of 10d/9d theories with

16 supercharges and the Swampland conjectures.

10.3.1 Duality between Spin(32)/Z2 and E8 × E8 supergravity theories

Similar to the previous duality, the duality between the Spin(32)/Z2 and E8 × E8 supergravity

theories follows directly from the sharpened distance conjecture. The key point is that since the

gauge group in both theories is maximally enhanced, the charge lattice of the theory on S1 is
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fully known. In particular, we show that the charge lattice is even and self-dual.

When we compactify the theory on S1, the charge lattice is the direct sum of two lattices,

i.e. the weight lattice of the 10d theory and Γ1,1. The first lattice consists of charges under the

KK reduction of 10d gauge fields, and the latter lattice is the charge lattice under Bμ9 and gμ9. A

priori, it is non-trivial why the charge lattice must be decomposable this way. However, charges

states under Bμ9 are winding strings. The ground state of such winding strings is BPS, and the

action of such BPS strings is known fromSwampland arguments18. In particular, we know that

the gauge symmetry of the spacetime induces a current algebra on the string. Therefore, the

winding charge decouples from the other charges. Similarly, the KK charge is known to notmix

with the higher dimensional gauge charges. Therefore, the full latticemust decompose into a 2d

part and the higher dimensional charge lattice in the absence of Wilson lines. Moreover, given

that the charges of the KK charge and the winding charge are known, it is easy to verify that the

resulting 2d lattice is even and self-dual, just like the remaining 16d lattice, which is either e28 or

d+16, where e8 and d+16 are the weight lattices ofE8 and Spin(32)/Z2, respectively. Since the direct

sum of two even and self-dual lattices is even and self-dual, the overall charge lattice is even and

self-dual.

All even and self-dual lattices with the signature (1, 17) are related by a similarity

transformation. Since it is natural to assume that variations of the 9d moduli act by a similarity

transformation on the charge lattice256,257 (see Appendix J for an argument), if an even and

self-dual charge lattice is realized only at one point of the 9d moduli, all such lattices can be

realized. In particular, if we compactify the E8×E8 theory on S1, we canmove in the 9dmoduli

space to change the charge lattice from Γ1,1 ⊕ e28 to Γ1,1 ⊕ d+16. Then we can act with a boost

of increasing rapidity on Γ1,1 by moving to an infinite distance of the moduli space. Assuming

the BPS completeness hypothesis, there are BPS particles that lie on both axes of Γ1,1. Since

these particles are BPS, we can calculate their masses and see how they depend on the moduli

of the 9d theory. Since the answer is unique, we can find the answer via a trick by looking at the

dependence of KK towers in the decompactification limits of 10d supergravities on S1. We find

that the coefficient of the distance conjecture for suchparticles is
√
8/7.Given that this number
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is greater than λmin = 1/
√
7, this limit must decompactify. Moreover, from the charge lattice,

we know that the gauge lie group contains Spin(32)/Z2. Given that the only non-anomalous

supergravity with such a gauge algebra is so(32) supergravity, we conclude that E8 × E8 and

Spin(32)/Z2 supergravities are dual to each other.

10.3.2 Duality among heterotic Spin(32)/Z2 and type I, and type I′

Here we consider the strong coupling limit of the Spin(32)/Z2 supergravity, where the dilaton

field in the gravity multiple is taken to infinity. In this limit the supergravity string charged

under Bμν, which is only BPS state in 10d theories with 16 supercharges, becomes infinitely

heavy. Therefore, the tower of the light states must be non-BPS. This is exactly what we know

from string theory186. This limit corresponds to the perturbative type I theory where a non-

supersymmetric type I fundamental string becomes tensionless. The question is how to arrive

at the same conclusion in a bottom-up manner.

From the sharpened distance conjecture, the strong coupling limit is either the tensionless

string or the decompactification limit. In the latter case, the theory must decompactify to

the 11d supergravity. In the following, we argue that there are no compactifications of 11d

supergravity which leads to the 10d Spin(32)/Z2 supergravity. This indicates that the strong

coupling limit is the tensionless non-BPS string limit.

To this end, suppose the strong coupling limit of the 10d supergravity decompactifies to the

11d supegravity. Since the 11d supergravity has 32 supercharges, the internal dimension must

have features that break the half of the supersymmetry. A priori, one can imagine any 1d graph

with singular points as a viable option of the compactification (see Figure 10.2)5.

However, from the Swampland conjectures, we can argue that the only background

preserving half of the supersymmetry is an interval. To see why we first put the 10d theory on

a circle to find a type IIA background on the corresponding 1d graph. Then, we introduce a

BPS 4-brane coupled with a 3-form field. The BPS 4-brane is a supergravity solution, and is
5The singular points are viewed as positions of the brane.
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Figure 10.2: A hypothetical exotic internal geometry for 11d supergravity. The consistency of such compactification
depends on the existence of appropriate non‐perturbative branes sitting at the vertices.

required from the BPS completeness hypothesis. No global symmetry conjecture implies that

thenumberof 4-branes andgauge theory instantons individually is not conserved.However, the

overall number of the two is conserved and is protected by a 4-form gauge symmetry. Therefore,

the BPS 4-brane solutions placed at a point in the graphmust be continuously transformable to

zero-sized gauge theory instantons176 of the 9d theory. The gauge theory instantons correspond

to specific points in the Coulomb branch of a BPS 4-brane in 9d. We call the defect which

encompasses both the zero-sized gauge theory instanton as well as the BPS 4-brane, a small

instanton6.

The worldvolume theory of small instanton at a generic point of its 1d Coulomb branch

is simply a BPS 4-brane placed on the graph.7 Therefore, the internal geometry must match

the Coulomb branch. However, the theory on large scales is described by a 5d SCFT and the

vertices of the internal geometry are the Coulomb branch singularities of such 5d SCFT. Given

the classification of such theories and their corresponding singularities, we know that the only

allowed vertices are the end of the interval points. Therefore, a 1d graph such as Figure 10.2 does

not preserve half of the supersymmetry. The only allowed geometry is an interval.

Now we have found that the only way to obtain a 10d theory with 16 supercharges is to

compactify the 11d supergravity on the interval. In this case, it is well-known that the anomaly

cancellation fixes the gauge group258 to be E8 × E8. Therefore, we conclude that the strong

coupling limit of the Spin(32)/Z2 supergravity cannot be a KK limit, and according to the
6The small instanton was used to classify the possible patterns of the gauge algebra of supergravity

theories174,24.
7Moving the internal direction is identified as Coulomb branch as it is real one dimension. We need complex

scalars to obtain the Higgs branch.
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sharpened distance conjecture, it must be a string limit. As we pointed out earlier, it follows

that the corresponding fundamental string is non-supersymmetric, as expected from the type I

string theory.

So far,wehave explained the duality between the Spin(32)/Z2 theory and type I by showing

that Swampland conditions imply the existence of the type I string. The duality between the

type I and type I′ theory, on the other hand, is more subtle. We will argue for this duality in

10.4.

10.4 Type I and type I′

Using various Swampland conjectures and the conclusion of the last chapter, we will show that

the strong coupling limit of the 9d supergravity is always described by type IIA supergravity on

an interval.Moreover, there areBPSdomainwalls along the intervalwhose location corresponds

to the 9d moduli and uniquely determine the unbroken gauge symmetry via Swampland

argument.

The 9d supergravity has scalars in the vector multiplets, as well as the dilaton from the

gravity multiplet. The moduli space from the scalars in the vector multiplets takes the form

M ∈ SO(1, r)/SO(r), (10.13)

where r is the number of vector multiplets. If we move in the moduli space via Ω ∈ SO(1, r) as

M → ΩMΩT, (10.14)

the charge lattice transforms in the vector representation of SO(1, r) (see J). If a particle is BPS,

its mass is given by

m = |QR|. (10.15)
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Since we know how the change inM acts on the charge, we also know how it would act on the

mass of the BPS particles. However, the charges are also controlled by the dilaton as

Q ∝ e
9

2
√
7
φ̂
, (10.16)

where φ̂ is the canonically normalized dilaton. Therefore, if we take the dilaton to go to infinity

fast enough, the mass of all of the BPS particles will go to infinity. We will call such limits non-

BPS limits. To bemore precise, consider the following infinite distance limit in the scalars of the

vector multiplets.

lim
γ→±∞

Ω(γ)MΩ(γ)T, (10.17)

where

Ωi(γ) =

 cosh γ δij sinh γ

δji sinh γ δijδ
i
j′ cosh γ

 , (10.18)

such that i ∈ {1, · · · , r}. Then, the mass of BPS particles whose charges go to zero is given by

m ≃ e±γa,ie
d

2
√
d−2 φ̂mp. (10.19)

Therefore, any limit in which φ̂ goes to infinity such that |φ̂|/|γ| ≥ (2
√
d− 2/d) is a non-BPS

limit.

Now that we know that these limits are non-BPS, we use the result of the last chapter to

conclude that almost all such limits must decompactify. However, since all the light particles

must be non-BPS, the decompactification cannot have any toroidal piece which results in a BPS

KK tower. This significantly reduces the possibilities. We either decompactify to 11d or 10d.

Let us start with the 11d possibility. We will first show that the number of boundaries must

be less than or equal to 2. This is due to the fact that as we showed earlier, the moduli space

of small instanton in 9d is an interval. However, the 9d small instanton is the wrapped 11d 2-
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brane. Therefore, there must be exactly two boundaries which correspond to the endpoints of

the small instanton moduli space. The possibilites for internal geometry with less than three

boundaries that would preserve 16 supercharges are Mobius strip, cylinder, and torus, all of

which have light BPS KK states. Therefore, these decomapctifications cannot arise in non-BPS

limits.

If the theory decompactifies to 10d, we have two options for the 10d supergravity. The local

theory has either 32 supercharges, half of which are spontaneously broken. Or the theory has

16 supercharges. In the latter case, we cannot afford to lose any supercharges. Therefore, the

10d theory must be compactified on a circle. This again would give rise to light BPS KK states

which cannot happen in non-BPS limits. Therefore, the only possibility is to decompactify to a

type II supergravity background where half the supersymmetry is broken. Since the compact

dimension cannot be circle (due to lack of light BPS KK states), there must be end of the

universe walls in the background. However, type IIB is chiral and cannot have BPS end of the

universe walls. Therefore, the limit must correspond to a type IIA background on a 1d space

with some some boundaries. However, given that the small instanton will correspond to type

IIA 4-brane, the internal geometry must match the moduli space of small instanton, which is

an interval. Therefore, the internal geometry must be an interval. We find that almost any non-

BPS limit in 9d supergravity must decompactify to a type IIA background on an interval. The

corresponding background can have a non-trivial profile of dilaton along the interval. This is

the type I’ supergravity. Furthermore, since the moduli space of the small instanton is matched

with the internal geometry, the location of BPS 8-branes must match with the singularities on

the small instantonmoduli space.We showed earlier that one can read off the gauge theory from

the structure of these singularities. Therefore, we can completely match the profile of dilaton

along the interval to the gauge group in the bulk.Our bottom-up argument for the gauge group

also provides a bottom-up argument for the wolrdvolume theory living on the 8 branes.

Now given the above discussion, we can provide a bottom-up argument for the duality

between type I and type I’ theory.
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Let us compactify the SO(32) supergravity on a circle and take the small radiusR limitwhile

taking the dilaton φ to infinity. We can choose different relative rates for them,

φ̂ = α ln(l10/R). (10.20)

where φ̂ is the canonically normalized dilaton. Since the dilaton goes to infinity, we can think

of this theory as type I supergravity on a circle of radius R. If α is sufficiently large, this is a

strong coupling limit in 9d supergravity. Therefore, for almost any sufficientley large α, it must

decompactify tomassive type IIA supergravity on an interval. Such a background is also known

as the type I’ theory.

10.5 E8 × E8 and 11d supergravity

Nowwe combine the chains of dualities that we have established to identify the strong coupling

limit of the E8 × E8 theory.

Based on the argument that we will present in 10.4, any 9d supergravity has a strong

coupling limit which decompactifies to type I′ background (type IIA on an interval). We can

apply this knowledge to the E8 × E8 supergravity on S1 and take its strong coupling limit of

φ → ∞. According to the type IIA picture, this is the limit where the 10d coupling of type

IIA is taken to infinity. From the discussion in Section 10.2.1, the theory decompactifies to 11d

supergravity on S1 × I1. Therefore, we find that the strong coupling limit of the E8 × E8 is 11d

supergravity on I1.

10.6 Chain of dualities and 9d Supergravity

Our bottom-up arguments for the dualities between the 10d and 11d supergravities have direct

implications for lower dimensions.Wewill argue below, that in 9d supergravities with 17 vector

multiples, we know the structure of almost all infinite distance limits.

In 10.4 we showed that any strong coupling limit of a 9dN = 1 supergravity is type IIA
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on an interval (type I′ theory). But now that we have a complete web of dualities between the

higher dimensional theories, we know that the type I′ theory shares its moduli space with other

9d supergravities such as type I on a circle, Heterotic on a circle, or M-theory on a cylinder.

Therefore, we can tell that there are corners of the 9d supergravity with the rank 17 that

decompactify to each one of those theories. But we can do even better! Our proof of dualities in

the previous sections not only demonstrates that thementioned theories share amutualmoduli

space, but also explains how the moduli of the theories are related. Therefore, we know exactly

how themoduli between any two suchdescriptions are related. For example, theduality between

type IIA and 11d supergravity on circle, tells us how the moduli of type I′ are related to the

moduli of 11d supergravity on a cylinder. Therefore, if an infinite distance limit is the type

I′ supergravity, we can use that matching of the moduli to figure out what limits go to 11d

supergravity on the cylinder. In 9d theories of maximal rank (r = 17), all the infinite distance

limits are already covered by the dualitieswe derived.Our arguments canbe used as a bottom-up

derivation that the infinite distance limits of the 9d theory must behave exactly as superstring

theory predicts188.

Note that the reasonwe can identify the infinite distance limits is that ameasure-one subset

of infinite distance limits decompactify to higher dimensions. This result, which we showed in

10.4, is based on the sharpened distance conjecture and the finiteness of the black hole entropy.

This is a very strong result which demonstrates the non-triviality of the sharpened distance

conjecture. As long as we identify only one decompactification limit precisely, we can use the

proven dualities to infer the other infinite distance limits.
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Figure 10.3: Summary of our result. The upper, middle, and lower boxes correspond to 11d, 10d, and 9d supersymmetric
theories, respectively. The relation among them and dualities are denoted by the arrows or texts in black color. The
assumptions we used to derive the dualities are written in red color. The sharpened distance conjecture are generically
used, and is not written in the figure.
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A
A Strong Short-Field-Range Inequality

In this appendix, we aim to understand what is the strongest short-field-range statement that

TCCwould imply for an arbitrarymonotonically decreasing positive potential. The conjecture

must hold for any physically allowed initial condition (one that φ̇i < O(1) andVi < O(1)). To

deduce a strong inequality from TCC, we focus on an initial condition that seems to challenge

(2.1) the most. As φ̇ appears in the denominator of the LHS, a natural guess for the initial

conditions with the most tension with the TCC would be small φ̇i. From (1.2) one can find

that H decreases at a rate proportional to φ̇2. Thus, small φ̇i could result in an inflationary

universewith a slowly-varyingHubble parameter. If φ̇ does not grow fast enough, the af
ai inflates

exponentially leading to a violation of (1.1). With that in mind, we try to obtain an inequality
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from TCC for small initial field derivative φ̇i.

Suppose φ̇i > 0 is small enough such that φ̈i given by the (2.3) is positive. Let φ∗ be the

smallest φ > φi where φ̈ vanishes (later in the appendix we will prove that such a field value

exists and we will provide an upper bound for it). Using (2.4), we find

φ̈ = −V′ − (d− 1)Hφ̇ < −V′ −
√

d− 1
d− 2

φ̇2. (A.1)

Since φ̇ is increasing in the interval [φi, φ
∗], we can use the above inequality to find

dφ̇
dφ

=
φ̈
φ̇
<

φ̈
φ̇i

≤
−V′ −

√
d−1
d−2 φ̇

2
i

φ̇i
. (A.2)

By integrating the above inequality, we find the following upper bound on φ̇ for every φ ∈

(φi, φ
∗].

φ̇ <
V(φi)− V(φ)

φ̇i
−
√

d− 1
d− 2

φ̇i(φ − φi) + φ̇i. (A.3)

Plugging the above upper bound on φ̇ into the equation of motion (2.3) and using the

inequalityH < Hi, whereHi is the initial Hubble parameter, we find

φ̈ > φ̈i + (−V′(φ) + V′(φi))− (d− 1)Hi(
V(φi)− V(φ)

φ̇i
−
√

d− 1
d− 2

φ̇i(φ − φi)). (A.4)

By setting φ to φ∗, at which φ̈ vanishes, we find

(d− 1)Hi(
V(φi)− V(φ∗)

φ̇i
−
√

d− 1
d− 2

φ̇iΔφ)− (−V′(φ∗) + V′(φi)) > φ̈i, (A.5)

where Δφ = φ∗ − φi. According to the mean value theorem, there is a point φ1 ∈ [φ, φ∗] such
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that

(d− 1)Hi(
V(φi)− V(φ)

φ̇i
)− (V′(φi)− V′(φ∗)) = Δφ[(d− 1)Hi(

−V′(φ1)

φ̇i
) + V′′(φ1)].

(A.6)

We can rewrite the inequality (A.5) in terms of the values ofV′ andV′′ at φ1 as

Δφ >
−(d− 1)Hiφ̇i + |V′(φi)|

(d− 1)Hi(
|V′(φ1)|

φ̇i
−
√

d−1
d−2 φ̇i) + V′′(φ1)

, (A.7)

wherewe used the equation ofmotion (2.3) to substitute φ̈i for the numerator of the right hand

side. Suppose φ̇ is small enough such that

φ̇i ≤ c1
√

V(φi) & φ̇ ≤ c2
|V′(φi)|√
V(φi)

& φ̇i
V′′(φ1)

|V′(φ1)|
≤ c3

√
V(φi), (A.8)

for some non-negative numbers c1, c2, and c3 satisfying c22(2+ c21 ) < (d− 2)/(d− 1), we have

φ̇i ≤ c1
√
V(φi) → Hi ≤

√
2+ c21

(d− 1)(d− 2)

√
V(φi), (A.9)

φ̇i ≤ c2
|V′(φi)|√
V(φi)

→ −(d− 1)Hiφ̇i + |V′(φi)| ≥ |V′(φi)|(1− c2

√
(d− 1)(2+ c21 )

d− 2
),

(A.10)

φ̇iV
′′(φ1) ≤ c3

√
V(φi)|V

′(φ1)| → V′′(φ1) ≤ c3

√
V(φi)|V

′(φ1)|
φ̇i

, (A.11)

where we used the Friedmann equation(2.2) in derivation of (A.9), and we used (A.9) in the

derivation of the (A.10). Since φ̇i > 0 we have

(d− 1)Hi(
|V′(φ1)|

φ̇i
−
√

d− 1
d− 2

φ̇i) + V′′(φ1) < (d− 1)Hi
|V′(φ1)|

φ̇i
+ V′′(φ1). (A.12)
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By multiplying (A.9) by (d− 1)|V′(φ1)|/φ̇i and summing it up with (A.11) we find that

(d− 1)Hi
|V′(φ1)|

φ̇i
+ V′′(φ1) ≤ (c3 +

√
(d− 1)(2+ c21 )

d− 2
)

√
V(φi)|V

′(φ1)|
φ̇i

. (A.13)

If we combine this with (A.12), we find

(d− 1)Hi(
|V′(φ1)|

φ̇i
−
√

d− 1
d− 2

φ̇i) + V′′(φ1) < (c3 +
√

(d− 1)(2+ c21 )
d− 2

)

√
V(φi)|V

′(φ1)|
φ̇i

.

(A.14)

Dividing (A.10) by the above inequality leads to

−(d− 1)Hiφ̇i + |V′(φi)|

(d− 1)Hi(
|V′(φ1)|

φ̇i
−
√

d−1
d−2 φ̇i) + V′′(φ1)

>
1− c2

√
(d−1)(2+c21 )

d−2

c3 +
√

(d−1)(2+c21 )
d−2

(
|V′(φi)|
|V′(φ1)|

)
φ̇i√
V(φi)

≥
1− c2

√
(d−1)(2+c21 )

d−2

c3 +
√

(d−1)(2+c21 )
d−2

(
|V′(φi)|

maxφ∈[φi,φ∗](|V′(φ)|)
)

φ̇i√
V(φi)

= c2f(c1, c2, c3)g(φ̇i)
φ̇i√
V(φi)

, (A.15)

where f(c1, c2, c3) and g(φ̇i) are given by

f(c1, c2, c3) =
1− c2

√
(d−1)(2+c21 )

d−2

c2(c3 +
√

(d−1)(2+c21 )
d−2 )

g(φ̇i) =
|V′(φi)|

maxφ∈[φi,φ∗](|V′(φ)|)
. (A.16)

Using the assumption φ̇ ≤ c2|V′(φi)|/
√

V(φi) we can lower the right hand side of (A.15) to

get

−(d− 1)Hiφ̇i + |V′(φi)|

(d− 1)Hi(
|V′(φ1)|

φ̇i
−
√

d−1
d−2 φ̇i) + V′′(φ1)

> f(c1, c2, c3)g(φ̇i)
φ̇2
i

|V′(φi)|
. (A.17)
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By combining the above inequality with (A.7) we find

Δφ > f(c1, c2, c3)g(φ̇i)
φ̇2
i

|V′(φi)|
. (A.18)

For every φ ∈ [φi, φi +
f(c1,c2,c3)g(φ̇)φ̇2i

|V′(φ̇i)|
]we have

|V(φ)− V(φi)|
φ̇i

≤
φ − φi
φ̇i

max
φ∈[φi,φi+

f(c1,c2,c3)g(φ̇)φ̇2i
|V′(φ̇i)|

]

(|V′(φ)|)

≤
φ − φi
φ̇i

max
φ∈[φi,φ∗]

(|V′(φ)|)

≤ f(c1, c2, c3)g(φ̇i)
φ̇i

|V′(φ̇i)|
max

φ∈[φi,φ∗]
(|V′(φ)|)

= f(c1, c2, c3)φ̇i, (A.19)

where in the first line we used themean value theorem, in the second line we used (A.18), and in

the third line we used the (A.16), the definition of g(φ̇i). Using the inequalities we have derived,
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we find

φ̇i

√
2f(c1, c2, c3)g(φ̇i)

|V′(φi)|
√

(d− 1)(d− 2)(f(c1, c2, c3) + 1)

=

ˆ φi+f(c1,c2,c3)g(φ̇i)
φ̇2i

|V′(φi)|

φi

√
2

(d−1)(d−2)

(f(c1, c2, c3) + 1)φ̇i
dφ

≤
ˆ φi+f(c1,c2,c3)g(φ̇i)

φ̇2i
|V′(φi)|

φi

√
2

(d−1)(d−2)

|V(φ)−V(φi)|
φ̇i

−
√

d−1
d−2 φ̇i(φ − φi) + φ̇i

dφ

≤
ˆ φi+f(c1,c2,c3)g(φ̇i)

φ̇2i
|V′(φi)|

φi

√
2

(d−1)(d−2)

φ̇
dφ

=

ˆ φi+f(c1,c2,c3)g(φ̇i)
φ̇2i

|V′(φi)|

φi

1√
V(φ)

√
2V(φ)

(d−1)(d−2)

φ̇
dφ

≤ 1√
V(φi + f(c1, c2, c3)g(φ̇i)

φ̇2i
|V′(φi)|

)

ˆ φi+f(c1,c2,c3)g(φ̇i)
φ̇2i

|V′(φi)|

φi

√
2V(φ)

(d−1)(d−2)

φ̇
dφ

≤ 1√
V(φi + f(c1, c2, c3)g(φ̇i)

φ̇2i
|V′(φi)|

)

ˆ φi+f(c1,c2,c3)g(φ̇i)
φ̇2i

|V′(φi)|

φi

H
φ̇
dφ

<
1√

V(φi + f(c1, c2, c3)g(φ̇i)
φ̇2i

|V′(φi)|
)

ln

 1

H(φ + f(c1, c2, c3)g(φ̇i)
φ̇2i

|V′(φi)|
)



≤ 1√
V(φi + f(c1, c2, c3)g(φ̇i)

φ̇2i
|V′(φi)|

)

ln


√

(d−1)(d−2)
2√

V(φ + f(c1, c2, c3)g(φ̇i)
φ̇2i

|V′(φi)|
)

,

(A.20)

where in the third line we used (A.19), in the fourth line we used (A.3), in the sixth line we used

the monotonicity of V, in the seventh and the ninth lines we used V ≤ H2(d − 1)(d − 2)/2,

and in the eighth line we used the TCC. Below we list the assumptions we made to derive the
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inequality (A.20).

φ̇i ≤ min(c1
√
V(φi), c2

|V′(φi)|√
V(φi)

),

and

φ̇i max
φ∈[φi,φ∗]

(
V′′(φ)
|V′(φ)|

) ≤ c3
√

V(φi). (A.21)

Following we find an upper bound for φ∗ in terms of φi, φ̇i and V(φi) so that by replacing φ
∗

in the criteria (A.21) we change them into criteria that only depend on the initial conditions.

Hi > Hi −H(φ∗)

= −
ˆ φ∗

φi

Ḣ
φ̇
dφ

=

ˆ φ∗

φi

φ̇
d− 2

dφ

≥
φ̇i

d− 2
(φ∗ − φi), (A.22)

which can be rearranged into the form

φ∗ <
(d− 2)Hi

φ̇i
+ φi. (A.23)

By replacing φ∗ in (A.21) with this upper-bound, our criteria change into

φ̇i ≤ min(c1
√

V(φi), c2
|V′(φi)|√
V(φi)

),

and

φ̇i max
φ∈[φi,

(d−2)Hi
φ̇i

+φi]
(
V′′(φ)
|V′(φ)|

) ≤ c3
√

V(φi). (A.24)

We can view the last inequality as an inequality for c3 rather than a criterion for φ̇i. Moreover,

it seems that to get the most non-trivial result from the inequality (A.20), we should pick the

largest φ̇ possible. We can choose φ̇ such that φ̇i = min(c1
√

V(φi), c2
|V′(φi)|√

V(φi)
) and then we can
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pick c3 accordingly as follows to make sure that all of the criteria are satisfied.

φ̇i = min(c1
√
V(φi), c2

|V′(φi)|√
V(φi)

),

c3 = max(0, φ̇i max
φ∈[φi,

(d−2)Hi
φ̇i

+φi]
(
V′′(φ)
|V′(φ)|

)). (A.25)

From this point on, we take the above identities as definitions of φ̇i and c3. Note that for a given

potentialV(φ), c3, and φ̇i are now functions of φi, c1 and c2. Therefore from now on, we show

them as c3(c1, c2, φi) and φ̇(c1, c2, φi). By plugging (A.25) into the inequality (A.20), we find the

following two-parameter family of inequalities for non-negative pair of numbers (c1, c2)where

c22(2+ c21 ) < (d− 2)/(d− 1). For every φ we have

min(
V(φ)
|V′(φ)|

c1, c2)A1(c1, c2, φ) <

√
V(φ)

V(φ + A3(c1, c2, φ))
ln

(
A2√

V(φ + A3(c1, c2, φ))

)
,

(A.26)

where,

A1 =
f(c1, c2, c3(c1, c2, φ))g(φ̇(c1, c2, φ))

√
2√

(d− 1)(d− 2)(1+ f(c1, c2, c3(c1, c2, φ)))
,

A2 =

√
(d− 1)(d− 2)

2
,

A3 = f(c1, c2, c3(c1, c2, φ))g(φ̇i(c1, c2, φ))
min(c1

√
V(φ), c2 |V′(φ)|√

V(φ)
)2

|V′(φ)|2
. (A.27)

The inequality (A.26), although complicated, is very strong. It is almost local in the sense that it

mostly depends on the values ofV and its derivatives at point φ, and provides a good way to see

if an arbitrary potential violates TCC. This inequality does not depend on initial conditions

since we used TCC for the initial conditions that seem to challenge TCC the most to find

it. This feature makes it easy to be applied to an arbitrary potential numerically or a class of

potentials analytically. For example, for convex potentials (A.26) takesmuch simpler form since

g(c1, c2, φ) = 1. Note that in the case which c2 is large enough such that V/|V′| comes out of
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themin function on the LHS of (A.26), we get an inequality very similar to the dS conjecture

except an extra logarithmic term. In fact, most of the local results that we find fromTCC share

this feature.
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B
Unstable Critical Points

In this appendix we prove the inequality (2.49) which can be stated as in the following form.

Suppose φ0 is a critical point (local maximum) of V(φ), such that V′ < 0 and |V′′(φ)| ≤

|V′′|max over the field range φ0 ≤ φ ≤ φ0 + Δφ. Then, either

Δφ <
B1(d)B2(d)

3
4V

d−1
4

maxV
3
4
min ln

(
B3(d)√
Vmin

) 1
2

VminB2(d)− |V′′|max ln
(

B3(d)√
Vmin

)2 , or
|V′′|max

Vmin
≥ B2(d) ln

(
B3(d)√
Vmin

)−2

, (B.1)

whereVmax = V(φ0) andVmin = V(φ0+Δφ) are respectively themaximumand theminimum
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ofV over φ ∈ [φ0,Δφ], and B1(d), B2(d), and B3(d) areO(1) numbers given by

B1(d) =
Γ(d+1

2 )
1
221+ d

4

π d−1
4 ((d− 1)(d− 2)) d−1

4
,

B2(d) =
4

(d− 1)(d− 2)
,

B3(d) =
√

(d− 1)(d− 2)
2

. (B.2)

To show the above result, we prove the following one parameter family of inequalities for

0 ≤ c ≤ 1.

Δφ <
c1/2

1− c2
B1(d)

V
d−1
4

max

|V′′|
1
4
max

or
|V′′|max

Vmin
≥ c2B2(d) ln

(
B3(d)√
Vmin

)−2

. (B.3)

One can check that by setting c equal tomin(1, ε +

√
|V′′|max ln

(
B3(d)√
Vmin

)2

VminB2(d) ) and taking the limit

ε → 0+, we can recover the statement (B.1).

Proof of (B.3):

We start by assuming that first inequality in the (B.3) is violated, and will prove that for

TCC to hold, the second inequality must be true. Violation of the first inequality implies

Δφ ≥ c1/2

1− c2
B1(d)

V
d−1
4

max

|V′′|
1
4
max

. (B.4)

We treat the problem semi-classically in the sense that we demand the TCC to hold for all

classical evolutions with initial conditions

φ(t = 0) = φ0 + δφi & φ̇(t = 0) = δφ̇i, (B.5)

where δφi =
√〈

(φ − φ0)
2
〉
and δφ̇i =

√〈
φ̇2〉. In the appendix C we study the quantum

fluctuations to find the lower bound on the product δφiδφ̇i. Later, we will optimize our choice

of initial conditions among all those that satisfy that uncertainty principle. Until then, we
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express all of our results in terms of arbitrary initial conditions δφi and δφ̇i.

From the equation of motion (2.3), we have

φ̈ ≤ φ̈ + (d− 1)Hφ̇ = −V′ ≤ |V′′|max(φ − φ0), (B.6)

where in the last inequality we used the mean value theorem. If we use the mean value theorem

again, we find

φ̈ ≤ |V′′|max(φ − φ0) ≤ |V′′|maxtφ̇max + δφi|V
′′|max, (B.7)

where φ̇max(t) = maxt′∈[0,t]{φ̇}. If we integrate this inequality from t′ = 0 to t′ = t, using

φ̇max(t
′) ≤ φ̇max(t)we find

φ̇ ≤ |V′′|max

2
t2φ̇max + |V′′|maxδφit+ δφ̇i. (B.8)

Since the right hand side is monotonic in t, and the left hand side is equal to φ̇max for some

t′ ∈ [0, t], we have

φ̇max ≤
|V′′|max

2
t2φ̇max + |V′′|maxδφit+ δφ̇i. (B.9)

Suppose c is a positive number smaller than 1, for t ≤
√
2/|V′′|maxc, the above inequality gives

us

φ̇max ≤
|V′′|maxδφit+ δφ̇i

1− |V′′|maxt2
2

≤
|V′′|maxδφit+ δφ̇i

1− c2
. (B.10)

From φ̇ ≤ φ̇max we find

φ̇ ≤
|V′′|maxδφit+ δφ̇i

1− c2
. (B.11)
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Integrating this inequality gives

φ − φ0 ≤
|V′′|maxt2δφi
2(1− c2)

+
δφ̇it
1− c2

+ δφi. (B.12)

Using t ≤ c
√

2/|V′′|max again, we find

φ − φ0 ≤ (1+
c2

1− c2
)δφi +

δφ̇i
1− c2

c
√
2√

|V′′|max

=
2

1− c2
δφi + δφ̇i

c
√
2

(1− c2)
√

|V′′|max
. (B.13)

The above inequality is true for all t ≤ c
√
2/|V′′|max such that φ(t) ≤ φ0 + Δφ. If the

right hand side in (B.13) is less than Δφ, that would mean φ is in [φ0, φ + Δφ] for every

t ≤ c
√
2/|V′′|max. We show that initial conditions could be optimized to make sure that this

happens without violating the uncertainty principle (C.7) δφiδφ̇i ≥
Γ((d+1)/2)Hd−1

i
2πd−1/2 .

For the initial conditions

δφ =
c 1
2Γ(d+1

2 )
1
2H d−1

2

2 3
4 π d−1

4 |V′′|
1
4
max

,

δφ̇ =
Γ(d+1

2 )
1
2H d−1

2 |V′′|
1
4
max

c 1
22 1

4 π d−1
4

, (B.14)

the uncertainty principle gets saturated and the right hand side of (B.13) becomes equal to

B1(d)
c1/2

1− c2
V

d−1
4

max

|V′′|
1
4
max

, (B.15)

where we used the Friedmann equation (d− 1)(d− 2)H2
i /2 = Vmax. According to (B.4), the

above expression is less than Δφ. Therefore, for these initial conditions, φ ∈ [φ0, φ0 + Δφ] for
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every t ≤ c
√

2/|V′′|max. If we set t = c
√

2/|V′′|max, from (1.4) we find

c

√
2

|V′′|max
≤ − 1

H
ln(H)

≤

√
(d− 1)(d− 2)

2Vmin
ln


√

(d−1)(d−2)
2√

Vmin

, (B.16)

which can be rearranged into

|V′′|max

Vmin
≥ c2B2(d) ln

(
B3(d)√
Vmin

)−2

, (B.17)

which is our desired result.

Now we use the inequality (B.1) that we just proved to obtain a result for quadratic

potentials. Suppose the quadratic potentialV(φ) has local maximumV(φ0) = V0 and second

derivative−|V′′| over a field range [φ0, φ0 +
√

2(1−c)V0
|V′′| ] for some 0 ≤ c ≤ 1. This field range

corresponds to the potential range [Vmin,V0] where Vmin = cV0. Let k be positive number

smaller than 1. We can weaken the (B.1) by multiplying the right hand side of the second

inequality by k as

Δφ <
B1(d)B2(d)

3
4V

d−1
4

maxV
3
4
min ln

(
B3(d)√
Vmin

) 1
2

VminB2(d)− |V′′|max ln
(

B3(d)√
Vmin

)2 , or
|V′′|max

Vmin
≥ kB2(d) ln

(
B3(d)√
Vmin

)−2

. (B.18)

If the second inequality gets violated, we get an upper bound on |V′′| in terms of V. Plugging

this upper bound in the first inequality in (B.18) would weaken the above statement to

Δφ <
B1(d)B2(d)

3
4V

d−1
4

maxV
3
4
min ln

(
B3(d)√
Vmin

) 1
2

(1− k)VminB2(d)
, or

|V′′|max

Vmin
≥ KB2(d) ln

(
B3(d)√
Vmin

)−2

.

(B.19)
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By plugging Δφ =
√

2(1−c)V0
|V′′| andVmin = cV0 into the above inequalities we find either

|V′′|
V0

>
2(1− k)2(1− c)c 1

2B2(d)
1
2

B1(d)2
V

2−d
2

0 ln

(
B3(d)√
cV0

)−1

, or
|V′′|max

V0
≥ kcB2(d) ln

(
B3(d)√
cV0

)−2

.

(B.20)

In other words,

|V′′|
V0

≥ min(kcB2(d) ln
(
B3(d)√
cV0

)−2

,
2(1− k)2(1− c)c 1

2B2(d)
1
2

B1(d)2
V

2−d
2

0 ln

(
B3(d)√
cV0

)−1

)

(B.21)

We can optimize the above inequality by setting k = 1+D(V0, d)−
√

D(V0, d)2 + 2D(V0, d)

where

D(V0, d) =
c 1
2B2(d)

1
2B1(d)2V

d−2
2

0

4(1− c)
ln

(
B3(d)√
cV0

)−1

, (B.22)

so that the two expressions in themin(, ) become equal to each other. This gives

|V′′|
V0

≥ (1+D(V0, d)−
√
D(V0, d)2 + 2D(V0, d))cB2(d) ln

(
B3(d)√
cV0

)−2

. (B.23)

Note that the right hand side only depends on V0. This is a potential dependent lower bound

on |V′′|/V0 for quadratic potentials defined over a potential range [cV0,V0] for some number

0 ≤ c ≤ 1.
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C
Uncertainty Principle

In this appendixwe derive the uncertainty inequality for δφδφ̇where δφ =
√〈

(φ − φ0)
2
〉
and

δφ̇ =
√〈

φ̇2〉. Note that since we study the evolution of a Hubble patch, the field values that

we work with are not the local field values φ(x), instead they are averaged over a (d− 1)-ball of

radius 1/H.

If we quantize a scalar field in a generic background, using a foliation Σ(t) such that Σ’s are

Cauchy surfaces, for every xd−1 ∈ Σ(t) and every function f onΣ(t), the commutation relations

would look like,

ˆ
Σ(t)

f(x′d−1)[φ̂(xd−1), ∂μφ̂(x′d−1)]da
μ
Σ(x

′
d−1) = if(xd−1), (C.1)
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where aμ is the area vector with respect to the background metric. Suppose the metric take the

form

ds2 = dt2 − gΣ(t)dx2d−1. (C.2)

The equation (C.1) would take the form

ˆ
Σ(t)

√gΣf(x′d−1)[φ̂(xd−1), ∂tφ̂(x′d−1)]dx′d−1 = if(xd−1), (C.3)

which can be written as

[φ(x), φ̇(x′)] = iδμΣ(x− x′), (C.4)

where δμΣ is the Dirac delta distribution on Σ with respect to the measure μΣ induced by gΣ. If

we define φ̄, and ¯̇φ to be the average of φ and φ̇ respectively overM ⊂ Σ with respect to μΣ,

integrating (C.4) over {(x, x′) ∈ M×M} leads to

[φ̄, ¯̇φ] =
i

μΣ(M)
. (C.5)

If we takeM to be a (d− 1)-ball of Hubble radius 1/H in a spatially flat FRW background, we

find

[φ̄, ¯̇φ] =
i

πd−1/2

Γ((d+1)/2)(
1
H)

d−1
, (C.6)

which would result in the uncertainty principle

δφiδφ̇i ≥
Γ((d+ 1)/2)Hd−1

2πd−1/2 . (C.7)
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D
Subtleties of the thin-wall approximation

In the main text we presented a simplified version of the thin-wall discussion to make the

presentation easier to follow, but in such a way that the main conclusions are unaltered. The

actual calculations are more complicated, and we discuss them here, in order of appearance in

the main text.

D.0.1 Gravitational effects in thin-wall formulae

In the discussion in section 4.1, we neglected gravitational effects that are relevant when the

bubble radius is comparable to the Hubble scale. This turns out a posteriori to be a good

approximation since the results only change by an O(1) factors, but one needs to check the
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full result, which we do here.

Taking into account gravitational effects, the euclidean bounce solution259,78 is given by

S = 2π2Tr3 +
12π2

κ2

{
1
Vf

[
(1− 1

3
κVfr2)

3
2 − 1

]
− 1

Vi

[
(1− 1

3
κVir2)

3
2 − 1

]}
. (D.1)

whereT is the tension of the membrane (the wall), and the initial and final vacuum energies are

Vi and Vf respectively, with Vf < Vi (we will discuss the possibility of up-tunneling below).

The critical radius corresponds to the value of r that minimizes the above action, which implies

solving the following equation,

γr = −T
√

1− r2Λi, γ ≡
(
T2

4
+ Λf − Λi

)
. (D.2)

We can see that non-trivial solutions exist only for γ < 0, namely for bubble radius smaller

than the de Sitter horizon r < Λ−1/2
i = H−1

i where H is the Hubble scale. We have defined

Λ ≡ κV/3 and set κ = 1 to work in Planck units. Notice that the case γ = 0 corresponds to a

bubble of Hubble radius, while γ < 0 implies the following critical radius

R2 =
1( γ

T

)2
+ Λi

(D.3)

Plugging this back into (D.1) one gets the final result for the action S. For later convenience, it

is useful to define the parameters,

p ≡ T√
Λ

, q ≡
√
Λ
(

T
ΔΛ

)
= R0H (D.4)

where we have renamed Λ ≡ Λi andR0 ≡ T/ΔΛ is the critical radius of a bubble in flat space.

When the parameter p becomes small, gravitational corrections become subleading, and we can

expand the instanton action for small p to obtain:

S = w(q)
T

Λ3/2 +O(p2),
w(q)
2π2 =

1+ 2/q2√
1+ 1/q2

− 2
q

(D.5)
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In this limit, the bubble radius reads

R2 ≃ 1
Λ

1
1+ (1/q)2

→ (RH)−2 ≃ 1+ (R0H)−2 (D.6)

Hence, the size of the bubble is parametrised by the value of q, which yields two limits of interest.

On one hand, if q ≪ 1, the critical radius is small compared to the de Sitter horizon and we

recover the result for the transition rate in the flat space limit,

S ≃ T
Λ3/2q

3 =
T4

ΔΛ3 ≡ S0 , R ≃ R0 =
T
ΔΛ

(D.7)

On the other hand, if q ≃ O(1), the bubble radius is of Hubble size and we get

S ≃ T
Λ3/2 , R ≃ H−1 (D.8)

Notice that q = 1 is the largest value that this parameter can take which is still consistent with

a solution to (D.2), so (D.8) gives the largest possible radius and the smallest possible euclidean

action of an instanton solution describing bubble nucleation in de Sitter space in the thin wall

approximation.

We also comment briefly on the prefactor78. The full expression taking into account

gravitational backreaction is

P =
e−ζ′R(−2)

4
T2R2 ≃ T2R2

0

1+ (R0H)2
∼ S2

R4 (D.9)

where the last equality is true modulo aO(1) function ofHR only which goes to 1 at zero, and

ζ′R(−2) = −0.0394 . . ..

A precise determination of the prefactor outside of the thin-wall approximation requires

the calculation of a one-loop determinant around the Euclidean saddle, and it is both

complicated and detail-dependent (see260 for an example). As shown in78, in the thin-wall

approximation it is possible to determine the prefactor since the only low-energy degrees of
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freedom that contribute to the prefactor are fluctuations of its local position (fluctuations of the

Goldstone associated to translational invariance). These will have energies of the order of 1/R,

while we will assume that the next excitation, corresponding to internal worldvolume degrees

of freedom, will appear at a much higher energy scale.

Even though this computation only took into account Goldstone modes, we expect our

conclusions to hold modulo O(1) corrections if a finite number of worldvolume degrees of

freedom at the scale of the Goldstones are included. For instance, if the domain wall is a D-

brane, wewould expect to have worldvolume gauge fields and gauginos as well. Since we are not

sensitive toO(1) coefficients, we will drop it in (D.9).

Combining (D.9) and (D.5)we get that the transition rate per unit time and volume is given

by

Γ = H4
(

T
H3

)2
(R0H)2

1+ (R0H)2
exp

(
− T
H3w(R0H)

)
(D.10)

The above thin-wall expressions can be easily generalised to any dimension78. We use this

generalization in subsection 4.3.5.

D.0.2 Up-tunneling

In de Sitter space, up-tunneling is allowed due to the gravitational effects, but it is more

suppressed than down-tunneling. More precisely, as discussed in78, up-tunneling is described

by the same kind of CdL instanton that down-tunneling, considering an anti-membrane rather

than a membrane. In four dimensions, the difference in action between these two tunneling

rates is

Sup − Sdown ∝
ΔΛ
Λ2 , (D.11)

which will be large in most of our parameter space, but can be significant near the eternal

inflation point. Notice that the difference (D.11) is also essentially the difference between

the entropies of the down-tunneling and up-tunneling de Sitters. The reason up-tunneling is

suppressed is entropic.
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Uptunnelling is responsible for the last term in the formula (E.19) for the effective potential.

It is never dominant in the region allowed by the swampland conjectures.

D.0.3 Regime of validity of CdL formulae

In most of the region of interest to us, the action of the Euclidean instanton (4.5) is small.

However, the usual lore is that semiclassical expressions such as these are only accurate as long

as the instanton action is large and so there is exponential suppression. So how come that we

can use it more generally? CdL is essentially an application of theWKB formula to field theory,

and this is controlled not by whether there is exponential suppression or not, but by whether

the perturbation parameter is small. These two notions can differ in a theory that hasmore than

one parameter.

An illustrative example is Schwinger’s original calculation of the decay via emission of

charged pairs in (1+1) dimensions. Schwinger obtained a vacuum decay amplitude (later

reinterpreted as a pair production rate261,262) given by

Γ =
(qE)2

4π3 e−
πm2
qE . (D.12)

This calculation was done in the semiclassical limit q → 0,E → ∞, with qE fixed. The small

parameter is therefore the electron charge q andwe can expect that (4.5) is just the first in a series

of corrections suppressed in higher powers of q. The classical instanton action is becoming small

when m → 0, yet the result is still trustworthy because the expansion parameter is q, which

remains small.

This is not always the case.When computing the potential generated for the θ parameter in

a Yang-Mills theory, there is only one small coupling, the Yang-Mills coupling g. The instanton

action S = 8π2/g2 only depends on g, and sending g → ∞ means both that the instanton

action becomes small and the perturbative expansion fails.

The CdL scenario is very similar to the Schwinger example above. Instead of the particle
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mass, we have the tension T, and the parameter qE in the Schwinger model, which is just the

difference in vacuumenergy before/after pair nucleation, is replaced byΔΛ in our example. The

change in vacuum energy ΔΛ is then related to the background flux density in the false vacuum

as

ΔΛ = g23 n, (D.13)

where n is an integer parametrizing the background “top-form flux density”. The parameter g3

is the 3-form gauge coupling263 which controls the strength of interactions and backscattering

between the domain walls.

The thin-wall computations above should be understood as taking place in a formal limit

where g3 is going to zero and n diverges in such a way that

ΔΛ = g23n → const. (D.14)

More physically, this should be thought of as a limit in which brane-brane interactions are

switched off, but branes still respond to the background difference in vacuum energies. In such

a limit, just as in the Schwinger case, we expect to be able to trust the thin-wall expression even

when themembrane tensionT is small and there is no exponential suppression since it is just the

leading piece of the small ΔΛ expansion. In this case, the physics is dictated by the prefactor. But

we also emphasize that this is an assumption we make and which we cannot prove. Ultimately,

the reason for this is that the rigorous argument for the Schwinger effect above relied on the

fact that we have a Lagrangian description of the system, which we are lacking in the higher-

dimensional case since extended objects are an essential ingredient1.

1Wecould try to compactify to (1+1) dimensions to recover a Lagrangian description, orwe could resort to the
effective action for a probebrane/particle,which is available also inhigher dimensions. Butnoneof these arguments
are conclusive since the probe brane approach we do not know how to compute corrections systematically, and
compactification to (1+1) would involve talking about wrapped branes, with very different kinematic properties.
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E
Derivation of the effective potential

Here we discuss in detail the derivation of the effective potential introduced in the main text.

The basic quantity we are interested in is

dN/dt, (E.1)

the number of membranes that hit an observer per unit time. We will now do so by geometric

means, as in264.
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Take d-dimensional de Sitter space in conformal flat slicing:

ds2 =
1
τ2

(
−dτ2 +

d−1∑
i=1

dx2i

)
, (E.2)

where the coordinates xi parametrize flat space. Here−∞ < τ < 0 parametrizes half of a dSd

(see Figure E.2). If the observer sets her clock such that t = 0 is at τ = −1, then in general her

proper time is related to τ as

τ = −e−t. (E.3)

Let

ξ =
dN
dt

= −τ
dN
dτ

(E.4)

be the number of bubbles that hit the worldline of a timelike static observer at x⃗ = const. Our

task is to determine ξ.Wewill do this by calculating ξ in twodifferentways, and then demanding

they are both equal:

• ξ is related to the mean free path traversed by a bubble. Suppose one has a bubble whose

wall is expanding at the speed of light. In the above coordinate system, it moves along a

straight line x = τ. When traversing a time interval Δτ, there is a probability

Phit = − ξ
2τ

Δτ (E.5)

that the bubble gets hit by another bubble entering its lightcone (see Figure E.1).

If it gets hit, the bubble will annihilate and disappear. The probability that the bubble

survives these collisions at τ+ Δτ, Pτ+Δτ, is equal to the probability Pτ that it made it to

τ, times the probability that it does not get hit by the bubble, so

Pτ+Δτ = Pτ + ΔPτ = Pτ

(
1− ξ

2τ
Δτ
)
, (E.6)
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Figure E.1: In black, we have the worldline of an expanding domain wall. As it moves in a lightlike fashion through an
interval Δτ, there is a probability that it gets hit by a bubble. This probability depends on ξ, the number of membranes
that arrive per unit time the worldline of static observers.

which has solution

Pτ =
(τ0
τ

) ξ
2
. (E.7)

This equation gives the probability that a bubble which was born at conformal time τ0

actually makes it to conformal time τ (see264). In terms of proper time, we have

Pt = Pt0e−
ξ
2 (t−t0), (E.8)

which implies that the quantity ξwe are actually looking for is just the inverse of themean

free path of a bubble.

• Similarly, to compute the number of bubbles that hit an observer at conformal time τ0

in a conformal timewindowΔτ, we just need to integrate the bubble production rate on

the past light cone, and correct by the factor (E.7) which establishes that only a fraction

of the bubbles produced at conformal time τ actually make it to τ0.

Taking these two things into account, the number of bubbles we get is

ΔN = ΓSd−2

ˆ τ0

−∞
dτ
ˆ r(τ,τ0+Δτ0)

r(τ,τ0)
dV
(τ0
τ

) ξ
2
, (E.9)

where Sd−2 is the volume of Sd−2, and

r(τ, τ0) = τ0 − τ (E.10)
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parametrizes the null radial geodesic from (τ, r) to (τ0, 0). Plugging everything back in,

one gets
ΔN
Δτ0

= ΓSd−2

ˆ τ0

−∞

(τ0 − τ)d−2

τd
(τ0
τ

) ξ
2
. (E.11)

Evaluating the integral for d = 4, one obtains

− ξ
τ0

=
dN
dτ0

= −ΓSd−2
16

τ0(ξ+ 2)(ξ+ 4)(ξ+ 6)
, (E.12)

which allows one to get (restoring the Hubble constant)

ξ
H

= −3+

√
4
√

ΓSd−2

Hd + 1+ 5. (E.13)

On the other hand, we could write ξ as

ξ =
dN
dt

= ΓVeff (E.14)

where Veff is some effective volume. Notice that this effective volume

Veff =
ξ
Γ
=

H
Γ

−3+

√
4
√

ΓSd−2

Hd + 1+ 5

 (E.15)

is always below 1 in Hubble units. This works in general, but due to TCC we are interested in

the regime Γ/Hd ≫ 1, in which (E.13) is just

ξ
H

∼ Γ1/4

Hd/4 . (E.16)

and the effective volume becomes of order Veff ∼ Γ−3/4. Equation (E.16) can also be easily

understood: in the regime where Γ is large and bubbles are efficiently produced, a bubble will

die of a collisionwaybefore it notices the expansionof theuniverse.As a result, itwill hit another

bubble by the time its volume is such that the probability of bubble nucleation is of order one,

in other words Γξ4 ∼ 1, which is precisely (E.16).
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Once we have the number of bubbles that hit the observer per unit time, it is a simple task

to relate this to the potential. Assuming slow-roll inflation, we get

dV
dt

= ΔΛ
dN
dt

= ΔΛξ ≈ (V′)2√
V

, (E.17)

We should also take into account that indS there canbeup-tunnelingon topofdown-tunneling,

as discussed in appendix D.0.2. The effect will be small away from the curve β = 2, but

significant for β > 2. up-tunneling membranes may annihilate with up-tunneling membranes

and vice-versa, but down-tunneling and up-tunneling membranes just go through each other.

As a result, to compute the change in vacuum energy, one simply has to replace (E.17) by

dV
dt

= ΔΛ
dN
dt

(
1− e−ΔΛ/Λ2

)
≈ (V′)2√

V
, (E.18)

where the last equation is again due to slow-roll. The general effective scalar potential then reads

V′

V
≃ ΔΛ1/2Λ−3/4Γ1/8

√
1− e−ΔΛ/Λ2

. (E.19)

This has (4.10) and (4.11) as limits when the decay rate is very small or very large compared to

Hubble. We use the full expression (E.19) to make the figures in the main text.

As a final comment, we should explain why we used the open slicing (E.2) which, as

illustrated in Figure E.2, only covers half of de Sitter space. But clearly, bubbles that nucleate

in the lower half of the diagram can reach the upper half! So why don’t we take them into

account? The answer is related to the phenomenon of “persistence of memory”, beautifully

discussed in265,266. It is often stated that, due to the exponential expansion, a de Sitter universe

soon “forgets” any initial condition; indeed, this property is crucial for the success of the

inflationary mechanism. It is, however, not true in general. Certain fields, such an electric

current in two dimensions266 and a 3-form current in four (the case we consider here) can

develop vevs that partially break the de Sitter isometries and are never diluted by the exponential

expansion (any nonzero vev will do this). While the top-form field-strength preserves all of
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the de Sitter isometries, the current it generates via quantum effects does not; it always picks

a preferred reference frame, where e.g. it is purely spatial. This current vev in a sense retains

information about what happened in the early universe, which didn’t dilute away completely;

hence, “persistence of memory”.

Let us describe this in more detail. To do this, it is convenient to use conformal global

coordinates, which cover all of de Sitter. In these, the metric is given by

ds2 =
1

cos2(χ)
(
−dχ2 + dΩ2

d−1
)
, (E.20)

where the conformal time coordinate χ lives in (−π/2, π/2) and the spatial slices are (d − 1)

spheres.

Figure E.2: A depiction of the conformal diagram of de Sitter space. The flat coordinates (E.2) only cover half of the
spacetime (they do not cover the part shaded in blue). Global coordinates (E.20) cover all of spacetime. Surfaces of
constant χ would be horizontal lines in the picture, while surfaces of constant τ asymptote to the past cosmological horizon
of the patch they cover (the top left to down right diagonal line).

Suppose the universe nucleates into existence (has a Big Bang) at some particular initial

timeslice. We will take this to happen at a constant global timeslice χBB, but the main lesson

is actually independent of the choice of timeslice. This choice breaks the dS isometries, and

when computing the bubble nucleation rate, one should stop integrating at the Big Bang. The

number of bubbles that reach a static observer at a later time χ (ignoring backreaction, for

simplicity) can be computed as the volume of the lightcone times the nucleation rate Γ, so (in

d = 4),
dN
dt

= 4πΓ cos(χ)
ˆ χ

χBB

sin2(χ − χBB)
cos4(χ)

=
4π
3
Γ
sin3(χ − χBB)
cos3(χBB)

, (E.21)
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where we have stated the result again in terms of proper time t. Notice that, with finite χBB, the

result at late times is actually independent of χBB and finite,

lim
χ→π/2

dN
dt

=
4π
3
Γ, (E.22)

while if we take χBB → −π/2 first (which would correspond to a truly eternal de Sitter,

with no Big Bang), the result diverges due to the volume factor in the denominator. This

noncommutativity of limits is the technical manifestation of persistence of memory. Sending

χBB → −π/2 first corresponds to integrating the bubble nucleation rate over all of the past

light cone of a point. This is a manifestly de Sitter-invariant way of computing dN/dt, so of

course, it must produce a dS-invariant answer; but the only dS-invariant “values” of dN/dt are

zero or infinity, so that’s why the result diverges.

By contrast, sending χ → ∞ yields a finite value; at very late times, all the information

about the Big Bang has been diluted away, except for the fact that nonzero dN/dt tells us that

therewas aBigBang in the first place (or, at the very least, that the systemdoes not enjoy de Sitter

invariance). We focus on this possibility; because of the Big Bang, or for whatever other reason,

there is a nonzero but finite dN/dt, which breaks de Sitter invariance, but the magnitude of

dN/dt forgets the details about the initial timeslice. This justifies using open slicing (E.2) and

only integrating over half of the dS; it corresponds to having a Big Bang at τ = −∞, and it

leads to particularly simple computations. As we have just explained, the result at late times is

independent of this choice.
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F
Constraints on Hawking-Moss

In the Hawking-Moss (HM) transition79 the universe tunnels from a local minimum to a

local maximum and it happens everywhere at once. This spatial homogeneous transition can

be interpreted267 as a thermal fluctuation of a horizon-sized region up to the top of the

barrier, followed by the rolling of the field down to the true vacuum. It also has an entropic

interpretation268 since it canbe shown tobe completely determinedby the gravitational entropy

of the system. Another characteristic of theHM transition is its relatively small decay rate given

by79,267

Γ ≲ H4 exp

(
1
Vi

− 1
Vtop

)
∼ Λ2 exp

(
−δΛ
Λ2

)
, (F.1)
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Λ + δΛ

Figure F.1

where in the last step we have used that the height of the potential barrier δΛ ≡ Vtop − Vi is

small compared to the initial vacuum energy Λ = Vi ≃ Vtop. Otherwise, the transition will

be dominated by thin-walls. This decay rate corresponds to a transition time which is greater

than theHubble time. This suggests that aHM transition inwhich the physics does not change

drastically canonly bemarginally consistentwithTCC, since itmight still allow for anoriginally

subplanckianmode of the first vacuum to becomeHubble-sized after the transition.Onemight

attempt to resolve this tension by requiring the physics in the two vacua to be sufficiently

different so the fluctuations in one can no longer be expressed in terms of long-wavelength

fluctuations of light degrees of freedom in the other. The distance conjecture suggests that for

this tobe true, thefieldmust traverse a trans-Planckian range. In the followingwe showthat even

trans-Planckian field ranges do not mitigate the tension between HM transition and TCC.

We consider the potentials of the form shown in figure F.1. Suppose ΔΛ is the energy

difference between the initial and final vacua and δΛ is the height of the potential as shown

in figure F.1.

Under some circumstances, the TCC implies the refined dS conjecture up to some
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logarithmic corrections which can be neglected for order of magnitude analysis. We will come

back to the required condition and check them later. For now, we assume the refined dS

conjecture is true,

|V′′|
V

> O(1). (F.2)

If we estimate the potential interpolating between the two vacua with an inverted parabola, we

find

ϕf − ϕi ≃
√
2(
√
δΛ + ΔΛ +

√
δΛ)√

|V′′|
. (F.3)

As we discussed in the previous section, ΔΛ ≲ δλ corresponds to the thin-wall approximation.

Therefore, for Hawking-Moss transition we need ΔΛ ≳ δλ. Using this inequality we can

simplify (F.3) to find

ϕf − ϕi ∼

√
ΔΛ
|V′′|

. (F.4)

Plugging this into (F.2) leads to

Δφ = ϕc − ϕi < ϕf − ϕi ≲
√

ΔΛ
Λ

, (F.5)

and from ΔΛ < Λ, we find

Δφ ≤ O(1). (F.6)

Thus, for thepotential tobe consistentwith theTCCthefield rangemustbe sub-Planckian, but

as we discussed in the beginning of the section, this poses a tension with the other swampland

conjectures, in particular the Distance Conjecture.

Now we go back and check the assumptions we made to get (F.2). In19 it was shown that
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in d spacetime dimensions, the TCCwould imply the refined dS conjecture if

Δφ ≥
B1(d)B2(d)

3
4V

d−1
4

maxV
3
4
min ln

(
B3(d)√
Vmin

) 1
2

VminB2(d)− |V′′|max ln
(

B3(d)√
Vmin

)2 , (F.7)

where Vmax and Vmin are respectively the maximum and the minimum of V over φ ∈ [φi, φc],

and B1(d), B2(d), and B3(d) areO(1) numbers given by

B1(d) =
Γ(d+1

2 )
1
221+ d

4

π d−1
4 ((d− 1)(d− 2)) d−1

4
,

B2(d) =
4

(d− 1)(d− 2)
,

B3(d) =
√

(d− 1)(d− 2)
2

. (F.8)

We show that either the above condition holds and henceforth (F.2) is true, or the field range is

sub-Planckian. Since we proved (F.2) leads to a sub-Planckian field range, this would prove that

in either case the field range must be sub-Planckian which is our final desired result. We prove

this claim by contradiction. Suppose |V′′|
V << O(1) and Δφ is trans-Planckian, in particular

Δφ >> Λ
1
2 . We show that this leads to a contradiction.

Since |V′′| << V the denominator of RHS in (F.7) is dominated by V. Moreover, δΛ ≲

ΔΛ < Λ, thus Vmax ∼ Vmin ∼ Λ. Plugging in Vmax ≃ Vmin ≃ Λ and neglecting theO(1)

terms, including the logarithmic terms, makes (F.7) take the following form.

Δφ ≲ Λ
1
2 , (F.9)

which is in contradiction with Δφ > O(1). This proves our claim by contradiction. To

summarize,we showed that for theHawking-Moss transition tobe consistentwith theTCCthe

field range traversed during the transitionmust be sub-Planckian. But then, there is no reason to

expect the physics to drastically change after the HM transition, and we run into the problems

explained at the beginning of the section: the lifetime associated withHM is of order or greater
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than Hubble, which might exceed the TCC time getting into tension with the conjecture.

Note that we assumed that second-order expansion around the peak of the potential

reasonably approximates the ridge of the potential. One could argue that this makes our

derivation somewhat model-dependent.
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G
Thought experiment: Meeting beyond the

Hubble horizon

We present the de Sitter version of the thought experiment discussed in subsection 5.2. This

thought experiment was developed in conversations with Cumrun Vafa and Georges Obied.

We show that τs ≳ τTCC.

We assume that the vacuum is BD after a scrambling time. As we will see, this is consistent

with our final result τs ≳ τTCC, because as we showed in subsection 5.2, any vacuum evolves

into BD in τTCC. Since BD vacuum is maximally entangled across the Hubble horizon, we

can use it to perform the Hayden-Perskill protocol117 to recover the information. Therefore,
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the information of a system that has exited the Hubble horizon can be recovered after the

scrambling time.

Consider Alice and Bob carrying two fully entangled q-bits. The idea is to have Bob cross

Alice’s horizon and see ifAlice can get two copies ofBob’s state; one throughHawking radiation

and another via a null signal from Bob. If Alice succeeds, both the no-cloning theorem and the

monogamy theorem would be violated.

Alice is initially stationarywith respect to the comoving frame. Bob crossesAlice’s stretched

horizon located at∼ lP from the Hubble horizon and the spacetime point X. After he is one lP

outside theHubble horizon, he ,makes ameasurement on the q-bit and sends the outcome by a

null ray toward Alice. We consider an extra lP since any emergent phenomenon from quantum

gravity such as a horizon has a Planckian resolution.

We call the spacetime point at which Bob sends the signal Y. As Bob jumps in, the

informationof theqbit he is carryingwill thermalize and radiate back toAlice fromthe stretched

horizon after a scrambling time ts ≃ 1/H log(1/H). We denote the point of radiation by

Z. Suppose Alice moves toward the horizon on a null ray and catches the signal midway at

spacetime point T.

We consider a de Sitter space with flat coordinates such that tX = 0 and the scale factor at

X is set to 1.

The metric takes the form

ds2 = dt2 − a(t)2[dr2 + dΩ2], (G.1)

where a(t) = eHt. Therefore, rX = 1
H−1 and tX = 0. Fromds2 ≥ 0wefind tY−tX ≥ rY−rX.By

plugging in rX = 1
H − 1 and rY = 1

H + 1 we find tY ≥ 2. Bob’s information radiate back off

of the stretched horizon after a scrambling time τs. Thus tZ ∼ τs. The physical distance of Z
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which is on the stretched horizon from the Hubble horizon is∼ lP, therefore

a(tZ)rZ =
1
H

− 1 → rZ = e−Hτs(
1
H

− 1). (G.2)

Now we solve the null ray equation to find when the radiation will reach Alice at T.

ds = 0 → dt = −a(t)dr

→ Δ
1
H
e−Ht = Δr

→ e−HtT − e−Hτs = −H
e−Hτs( 1

H − 1)
2

→ e−HtT = e−Hτs(H+
1
2
). (G.3)

Now to see if there is any cloning paradox we should see if the future lightcones of T and Y

intersect. For points in the future light cone of T, we have,

dt ≥ a(t)dr → 1
H
(e−HtT − e−Ht) ≥ r

→ r ≤ 1
H
(e−Hτs(H+

1
2
)− e−Ht). (G.4)

For points in the future light cone of Y, we have,

dt ≥ −a(t)dr → 1
H
(−e−HtY + e−Ht) ≤ r− rY

→ r ≥ 1
H

+ 1− 1
H
(e−2H − e−Ht) =

e−Ht

H
+ 1+

1− e−2H

H
. (G.5)

From (G.4) and (G.5) we find the following inequality must hold to prevent the future

lightcones of T and Y from intersecting so that the no-cloning theorem is not violated.

e−Hτs(1+
1
2H

) ≤ 1+
1− e−2H

H
. (G.6)
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For sub-planckian energy dinsitiesH < 1, the LHS is e−HτsO(1) and the RHS isO(1).

e−Hτs ≲ H → τs ≳
1
H

ln

(
1
H

)
. (G.7)

Note that if Bob could send his signal right after exiting the horizon instead of lP beyond

the horizon, Alice could catch it and the experiment would fail. The Planckian resolution of

the stretched horizon plays an important role in preventing a cloning paradox.

Hubble Horizon
BobAlice

Δt ∼ τs

X

Y
Z

T

Figure G.1: Penrose diagram of the thought experiment in de Sitter space. Alice (green curve) and Bob (orange curve) carry
entangled q‐bits. The red and blue squiggly lines respectively represent the Hawking radiation and Bob’s message both of
which carry a copy of Bob’s q‐bit’s information
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H
Tension of the supergravity string

We use supersymmetry to find the tension of a BPS supergravity string. We present the

calculation in 7d where there is a nice way of labeling the vectors in the gravity multiplet.

However, as we will explain later, the argument applies to any theory with 16 supercharges.

The gravity multiplet in 7d has three graviphotons and the smallest irreducible spinor

representation is a pseudo Majorana spinor which can be viewed as two sets of 8 real

grassman numbers. These two are actually related. The gravity multiplet can be packaged in

representations of Sp(1). The pseudo Majorana spinors carry a 2 dimensional representation

and are labeled by i ∈ {1, 2} and the graviphotons furnish a three dimensional representation

Aij whereA is antisymmetric in i and j. The theory also has a pseudoMajorana spinor χi which
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can be viewed as a doublet in Sp(1).

In this notation, the supersymmetry transformation rules take a simple form. The fields are

tetrads eμA, gravitino ψμ
a,i, graviphotons A

μi
j , 2-form Bμν, fermions χai , and the dilaton φ. Greek

indices are spacetime indices, {A,B, ...} are Lorentz indices, {i, j, ...} are Sp(1) indices, and

{a, b, ...} are spinor indices. We will often drop the spinor indices in the calculations. Also,

γμ = γAeμA where γA are 7d Dirac matrices.

Now let us go back to our question of interest. Consider the string electrically coupled to

Bμν. This string has an action term

S ∝ i
ˆ

⋆B ∧ dX ∧ dX+ ... (H.1)

Now we consider the action of supersymmetry on the field Bμν to see how this action

transforms. The full list of possible supersymmetry transformations of the fields in the gravity

multiplet is given as below2691.
1We have used the fact that the spinors are pseudo Majorana to rewrite the terms in a slightly different way

that makes the calculations simpler. In particular, we have expressed the transformation rules of all of the bosonic
fields in terms of ε̄ rather than ε.
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δeA = κε̄iγA ∧ ψi

δψi =
2
κ
Dεi + c1 ⋆ [⋆(γ ∧ γ ∧ γεj) ∧ Fij]eqκφ

+ d1 ⋆ (γεj ∧ ⋆Fji)eqκφ

+ c2 ⋆ [⋆(γ ∧ γ ∧ γ ∧ γεi) ∧ G]eqκφ

+ d2 ⋆ (γ ∧ γεi ∧ ⋆G)erκφ + bilinear fermions

δχi = c3 ⋆ [(γ ∧ γεi) ∧ ⋆Fij]eqκφ

+ c4 ⋆ [(γ ∧ γ ∧ γεi) ∧ ⋆G]erκφ

+ c5 ⋆ (γεi ∧ ⋆dφ) + bilinear ferimoins

δAj
i = f1(̄εjψ − 1

2
δjīεkψ)e−qκφ

+ f3(̄εjγχi −
1
2
δjīεkγχk)e

−qκφ

δB = (f2ε̄iγ ∧ ψi + f4ε̄iγ ∧ γχi)e
−rκφ + p2A

j
i ∧ δAi

j

δφ = f5ε̄iχi, (H.2)

where G = dB, Fij = dAi
j, γA is a 0-form, γ is a 1-form, ψi is a 1-form, κ is proportional to

the 7d Newton constant, and {ci, di, fi, pi, r, q} are all non-zero numerical coefficients that are

determined by the closure of the supersymmetry algebra. Note that, modulo the Sp(1) index

{i, j}, the above expressions hold for all dimensions.Note that the exponential factor e−rκφ is the

fundamental charge of the supergravity string, because the kinetic term forB takes the following

form

S7dB = −
ˆ

1
2
dB ∧ ⋆dBe2rκφ (H.3)

The supersymmetry transformation of the action (H.1) is δB = (f2ε̄iγ∧ψi+f4ε̄iγ∧γχi)e
−rκφ0+

p2A
j
i∧ δAi

j+ . . .. For the string action to be supersymmetric, this variationmust be canceled by

the supersymmetry transformation of other terms in the action. Note that φ0 is the asymptotic

value of φ which sets the coupling constant of the theory. It is almost clear how to cancel the

last term since it already contains the supersymmetry transformation of Aj
i ∧ Ai

j. What is less
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clear, is how to cancel the other two terms.We will focus on ε̄iγ∧ ψie
−rκφ0 term. It is easy to see

that if the supersymmetric variation of a term does not depend on anything other than e and ψ

and has a single γmatrix, that termmust only depend on e.

Therefore, we are looking for a geometric 2-form.Moreover, our 2-formmust be a function

of e and not its derivatives. The only such area form is the induced volume form on the

worldsheet. Let us verify that the induced area gives the correct variation under supersymmetry

transformation. Suppose h is the induced metric. We can express hαβ in terms of the tetrads as

hαβ = ∂αXμ∂βXνeMμ eNν ηMN. (H.4)

Moreover, we can write the determinant h as

h =
1
2
hαβhα′β′εαα

′εββ
′
. (H.5)

and its supersymmetry variation is

δ
√
−h = −

hα′β′εαα
′εββ′

√
−h

∂αXμ∂βXnueNν δeMμ ηMN. (H.6)

In conformal coordinates, the first term simplifies as

hα′β′εαα
′εββ′

√
−h

= εαβ. (H.7)

Working in conformal coordinates, and plugging in δeMμ from (H.2) gives

δ
√
−hd2σ = −ejνδeiμηijdx

μdxν = −κε̄ ∧ γψ. (H.8)

which is coordinate independent and holds in every coordinate system. Therefore, we find that

to cancel the supersymmetry transformation of (H.1) we must add

i
f2
κ

ˆ √
−he−rκφ. (H.9)
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Theprefactor f2
κ is a pure imaginary number that is determinedby the closure of supersymmetry

algebra. Similarly, the number r is determined by supersymmetry. For example, in 7d, we have

f2 =
i√
2
, r = − 2√

5
. (H.10)

In general, we find that supersymmetry dictates the term

SNambu-Goto = −Ad

2π

ˆ √
−hecdφ (H.11)

for some dimension dependent positive constants Ad and cd. This also implies that the tension

of the supergravity string is given by

T = Adecdφ0 , (H.12)

where ecdφ0 is the coupling of the 2-form B in the gravity multiplet.

In 10 dimensions, r = 1/
√
2. Therefore, the tension of the string is given by

T = Aeφ̂0/
√
2, (H.13)

for some constant A. We can simplify our equations by shifting φ̂ by a constant to absorb the

coefficientA. This shift will make the normalization of B non-canonical, but the normalization

of φ̂ will remain canonical.

T = eφ̂0/
√
2M2

10. (H.14)

Note that in our convention,

S =
T
2π

· Area. (H.15)

237



I
Ground states of winding BPS string

In this section, we determine the Spin(8) representation of the ground state of the static

windingBPS supergravity string1.After fixing the coordinates on theworldsheet, the lowenergy

action on the string would be in terms of spacetime coordinates Xi with i ∈ {1, 2, . . . , 8}. In

Appendix A, we found that the action around the ground state of a BPS supergravity string is

S = −T
ˆ √

−gd2 σ. (I.1)

where T = Adecdφ and g is the induced metric on the string worldsheet. The above action is

trustable for perturbations around BPS configurations as well.
1The partial supersymmetry breaking by the winding string was discussed, e.g., in Refs.270,271.
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The action (I.1) is not the full worldsheet action. Any spacetime supercharge that is

preserved by the string, maps to a global charge on the worldsheet. The corresponding

worldsheet charges can be found by the Green-Schwarz formalism272 for studying

supersymmetric branes273. However, the detail of the worldsheet action is not important for

us.

We compactify the X9 direction with the radius R, X9 ∈ [0, 2πR). We consider a static

string winding around a circle. We choose the worldsheet coordinates as

(σ, τ) =
(
X9

R
,X0
)
, (I.2)

and we have gττ = 1 and gσσ = R2. This gauge choice is known as the static gauge or unitary

gauge274,275,276.

The winding string along the X9 direction breaks the Lorentz symmetry as

SO(9, 1) → SO(8)× SO(1, 1). (I.3)

Let us take a closer look at the supercharges in 10d non-compact spacetime and their

action on the BPS string. Suppose we start with a supergravity with 32 supercharges. The

BPS string preserves half of the supersymmetry. These supercharges act on the worldsheet

fields and must be in fermionic representations of SO(8) corresponding to rotations in the

transverse coordinates to the string. This symmetry manifests itself as the R-symmetry of

the worldsheet theory. The smallest spinor representation of SO(8) is 8 dimensional. The

supercharges must also furnish representations of SO(1, 1) which is the Lorentz group of the

worldsheet. The irreducible representations of SO(1, 1) are one-dimensional and can be left

or right handed. However, since the R-symmetry maps the supercharges in an irreducible

representation of SO(8) to each other, they must all have the same worldsheet handedness.

Therefore, the supercharges lead toworldsheet charges that come in groups of 8 that all have the

same worldsheet handedness and are in the vector representation of SO(8). For theories with
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32 spacetime supercharges, we find the following two possibilities:

We consider the dimensionally reduced 9d supersymmetry algebra. In Spin(8) notation

corresponding to the spatial rotation, we have2772

{Qa
A,Qḃ

B} ∼ γiaȧp
iδAB, (I.4)

where i = 1, · · · , 8 is the direction transverse to the string, A,B = 1, 2 is the label of the

supersymmetry charges, and a = 1, · · · , 8 and ȧ = 1, · · · , 8 are the indexes for 8S and

8C representations, respectively. The string states are not invariant under pi action since this

generates translation along the transverse direction to the string. This indicates that the BPS

string can preserve eitherQa orQȧ, but not both.

Suppose that Qa is preserved and Qȧ is broken. Then, we can normalize Qȧ in such a way

that

{Qȧ,Qḃ} = δȧḃ, (I.5)

is satisfied. This is analog to the Clifford algebra, and by utilizing the triality relation in Spin(8),

we see that the representation of the algebra above is

8v ⊕ 8s. (I.6)

Similarly, if Qȧ is preserved and Qa is broken, then the algebra of the broken supersymmetry

tells us that the representation is

8v ⊕ 8c. (I.7)

Therefore, by looking at the broken supersymmetry, we can find the Spin(8) representation of

the BPS supergravity string.
2The minimal spinor in 9d is 16 components Majorana spinor, which can be decomposed into 8s + 8c of

Spin(8). Since we are working in the theories with 32 supercharges, we have two copies of the Majorana spinor.
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• 10dN = (1, 1) supergravity (IIA supergravity):

The supercharges are the two 10dMajorana-Weyl spinors with different chirality. These

supercharges are decomposed as

(8s, 1/2)⊕ (8c,−1/2), and (8s,−1/2)⊕ (8c, 1/2), (I.8)

under SO(8) × SO(1, 1). Here −1/2 and 1/2 correspond to the left and right-handed

fermions, respectively.

Depending on the symmetry breaking pattern, we obtain either N = (0, 16) or the

vector N = (8, 8) as a 2d worldsheet theory. In the following, we argue that it is not

possible to obtain the 2dN = (0, 16)worldsheet theory assuming that the theory flows

to an SCFT without the symmetry enhancement.

First, as the perturbative anomaly of the bulk theory is canceled without Green-Schwarz

mechanism278, there is no anomaly inflow279 to the BPS string. This indicates that the

central charges of the left-mover and right-mover satisfy the relation18

cL − cR = 0. (I.9)

Moreover, we use the knowledge ofN = (0, 2) superconformal subalgebra in theN =

(0, 16) theory. By identifying the R-symmetryU(1)R of theN = (0, 2) superconformal

algebra as an SO(2) subgroup of the SO(8) rotation group, we obtain the relation cR =

018. In total, we have

cL = cR = 0. (I.10)

However, this contradicts the fact that there must be the center of mass degrees of

freedom.

Therefore, we conclude that the worldsheet theory possesses N = (8, 8).3 The
3In this case, Eq. (I.9) is still correct, but Eq. (I.10) is modified.

241



supercharge preserved by the BPS string is either

(8s, 1/2), and (8s,−1/2), (I.11)

or

(8c,−1/2), and (8c, 1/2). (I.12)

The worldsheet supersymmetry is N = (8s, 8s) or (8c, 8c). In both cases, the Spin(8)

chirality is the same. This means that the Spin(8) representation of the BPS string is

(8v ⊕ 8s(c))⊗ (8v ⊕ 8s(c)). (I.13)

Note that BPS states contain 28 states while non-BPS states contain 216 states.

• 10dN = (2, 0) supergravity (IIB supergravity):

The supercharges are the two 10d Majorana-Weyl spinors with the same chirality. Both

supercharges are decomposed as

QA=1,2 : (8s, 1/2)⊕ (8c,−1/2), (I.14)

under SO(8)× SO(1, 1).

As in the previous case, the supercharge preserved by the BPS string is

QA=1 : (8s, 1/2), QA=2 : (8c,−1/2), (I.15)

or vice versa.

Therefore the worldsheet supersymmetry is N = (8s, 8c) or (8c, 8s), and the Spin(8)

242



representation of the BPS string is

(8v ⊕ 8s(c))⊗ (8v ⊕ 8c(s)). (I.16)
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J
Massive vector multiplets in supergravity

In this appendix, we argue thatN = 16 supersymmetry determines the transformation of the

charge lattice under variationof themoduli. The idea is to show that the coupling of anymassive

particle to massless vectors depends on the scalars in the same vector multiplet in a specific way

due to supersymmetry. Since these couplings set the charges, the charges are set by the spacetime

moduli.

First, let us remind ourselves of the supermultiplets in theories with 16 supercharges and

dimensions greater than 6. The onlymassless multiplets are the gravitymultiplet and the vector

multiplet. However, we can also have massive multiplets. For example, if we start with a theory

with a non-Abelian gauge symmetry and move in the Coulomb branch, we can Higgs some

244



of the previously massless vector multiplets into massive vector multiplets. From the Higgsing

argument, it is easy to see that the massive vector multiplets always have 9 − d scalars in d

dimensions. For example, in 9 dimensions, the massless vector multiplet has one real scalar,

which gets absorbed into the vector, turning it into a massive vector. The same thing happens

in all other dimensions inN = 16 theories.

If the mass of the massive vector field is sufficiently small, we must be able to incorporate it

into the field theory. In order to get some intuition about the supersymmetric coupling of the

massive vector multiplet to massless multiplets, let us start with the example of aHiggsed gauge

group.

It is helpful to work with the O(10 − d, k) formulation of supergravities280 where d is the

dimensionof spacetime and k is the dimensionof the gauge group.Weuse the conventionwhere

the (10− d, k)metric is

η =


0 110−d 0

110−d 0 0

0 0 1k−(10−d)

 . (J.1)

Note that the 10 − d graviphotons are excluded from k. Let us take the gauge group to be

G = U(1)r−1 × SU(2), and move in its Coulomb branch to Higgs it intoU(1)r. This allows us

to see how the two massive vector multipletsW± can supersymmetrically couple to the other

massless multiplets. In this example, k = r+ 2. The bosonic part of the action is given by280

S =
ˆ

dnx
√

−ge−2φ[R(g) + 4∂μφ∂μφ − 1
12
HμνρHμνρ

+
1
8
DμĤM̂N̂DμĤM̂N̂ − 1

4
ĤM̂N̂F̂

μνM̂F̂ N̂
μν − V(H)], (J.2)
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where

DμĤM̂N̂ = ∂μĤM̂N̂ − 2Â K̂
μ f (M̂

K̂ L̂Ĥ
N̂)L̂.

F̂ M̂
μν = 2∂[μÂ M̂

ν] + fM̂K̂L̂Â
K̂
μ Â L̂

ν ,

Hμνρ = 3(∂[μ]Bνρ] − Â M̂
[μ ∂νÂρ]M̂ − 1

3
fM̂K̂L̂Â

M̂
[μ Â K̂

ν Â L̂
ρ] ),

V(H) = fM̂K̂P̂f
N̂
L̂Q̂ĤM̂N̂ĤK̂L̂ĤP̂Q̂ +

1
4
fM̂N̂K̂ĤM̂N̂f

N̂
M̂L̂Ĥ

K̂L̂ +
1
6
fM̂N̂K̂f

M̂N̂K̂, (J.3)

where the scalars ĤK̂L̂ are inO(10− d, r+ 2)/[O(10− d)×O(r+ 2)], and M̂ = 1, · · · , 10−

d+ r+ 2.

Suppose that SU(2) corresponds to indices 10 − d + r ≤ M̂ ≤ 10 − d + r + 2. After

Higgsing the SU(2), we can use the quotient groupO(10−d)×O(r+2) tomake all the scalars

in ln[Ĥ]M̂N̂ wheremax{M̂, N̂} ≥ 10− d+ r except the following vanish.

(M̂, N̂) ∈{1, . . . 2(10− d)} × {10− d+ r, 10− d+ r+ 1, 10− d+ r+ 2}

∪ {10− d+ r, 10− d+ r+ 1, 10− d+ r+ 2} × {1, . . . 2(10− d)}. (J.4)

such that for 10− d < M̂ ≤ 2(10− d) and N̂ ∈ {10− d+ r, 10− d+ r+ 1, 10− d+ r+ 2}

we have

ln[ĤM̂N̂] = − ln[ĤM̂−(10−d) N̂] = ln[ĤN̂M̂] = − ln[ĤN̂ M̂−(10−d)]. (J.5)

We use ln
(
Ĥ
)
because it belongs to the Lie algebra of O(d) × O(r + 2), which has a simpler

description.

We can also use the gauge symmetry to impose the unitary gauge ln[Ĥ]N̂ 11−d =

ln[Ĥ]11−d N̂ = 0 for N̂ > 10− d+ r and ln[Ĥ]10−d+r 11−d = C is the Higgsing parameter that

sets themass scale of theHiggsed vector multiplets M̂Massive ∈ {10−d+ r+ 1, 10−d+ r+2}.

Note that thesemassive vectormultiplets noweachhave 9−d scalars corresponding to ln[Ĥ]M̂N̂

where 11− d < N̂ ≤ 2(10− d).

246



Looking at the action, one can see that the charge of the two Higgsed vector multiplet ÂN̂

under themassless vector ÂM̂ comes from the terms quadratic inF and is proportional to ĤM̂N̂.

This scalar depends on scalars in the massless and massive multiplets through exponentiation

of ln[Ĥ]. Even though the dependence of the gauge couplings on the scalars in the massless

multiplets is complicated, its change under the change of them is easy. Changing the scalars

in the massless multiplets corresponds to a similarity transformation on Ĥ by an element of

O(10 − d, r), which acts on the first 10 − d + r indices. Therefore, the charges of the massive

multiplets which are given by ĤM̂N̂ with M̂ ≤ 10− d+ r < N̂ transform in the fundamental

representation ofO(10− d, r).

Λ ∈ O(10− d, r) : ĤM̂N̂ → ΛM̂′

M̂ ĤM̂′N̂. (J.6)

In fact, this argument holds for anyHiggsedmassivemultiplet.Consequently, if the theory has a

point of maximal enhancement where the gauge algebra becomes simple, this argument tells us

that the charge lattice transforms covariantly underO(10−d, r) changes of themoduli.We are

particularly interested in 9d supergravities,which according to Swampland arguments24, always

have such a point of symmetry enhancement. However, even if such a point did not exist, such

a constraint is generally expected from supersymmetry. For the coupling terms ÂM̂ × . . . or

∂ÂM̂ × . . . to be supersymmetrically invariant, we need to cancel the second order variation of

ÂM̂ under supersymmetry with terms which involve scalars in the samemultiplet as ÂM̂, which

is whywe typically end upwith a term likeHM̂N̂ÂM̂× . . . orHM̂N̂∂ÂM̂× . . .. Even though the

rest of the terms (such as the mass term) can have different scalar dependencies, the coupling to

themassless vectormultiplets is expected to have fixed dependence on the scalars in themassless

multiplets due to supersymmetry.
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K
Rolling backgrounds

In thisAppendixwe study FRWsolutions that are driven by a scalar potential that exponentially

decays at infinity. We show that in expansionary solution, exponential potentials lead to

polynomial expansion at t → ∞ and in contracting solutions, they lead to polynomial

contraction at t → −∞. We also show that unless a smooth bounce happens, there is always a

space-like singularity at finite past or future (i.e. big bang or big crunch).

We focus on FRW solution with zero spatial curvature. Let us start with the asymptotic

future. We later use the time reversal symmetry of Einstein-Hilbert action to deduce similar

conclusions about the past boundary. We assume that the evolution is driven by an potential

that dies off exponentially in all directions of the field space. In that case, the vev of the scalar
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fields will always roll towards the infinity of the field space in the asymptotic future.

V(φ) ∼ exp(−λφ)

φ

V(φ)

tunneling
tunneling

Figure K.1: If the potential always dies of exponentially, the universe cannot stay in any local minimum of the potential
forever and it will eventually tunnel to a lower vacuum energy. Therefore, the at future infinity, the evolution of the
universe is given by a scalar field rolling in an exponential potential.

Therefore, we just consider the quintessence solutions of the form φ → ∞ for an

exponential potential V(φ) = V0 exp(−λφ). We have two options: expanding universe or

a contracting universe. As we will shortly see, the fate of these two universes is very different.

In a contracting universe, the energy will blow up at finite time. Therefore, we will have a big

crunch.While, in the expanding universe, the universe smoothly expands and dilutes.However,

depending on the value of λ, the expansion can be accelerating or decelerating which changes

the asymptotic boundary of spacetime.

Let us start by setting up the equations of motion.

(d− 1)(d− 2)
2

H2 =
1
2
φ̇2 + V(φ)

φ̈ + (d− 1)Hφ̇ + V′(φ) = 0. (K.1)

First thing to notice from the first equation is thatH can never vanish. Therefore, an expanding

universe remains expanding and a contracting universe remains contracting1. From the above
1Note that here we are assuming there is no thermal background of other fields which is usually assumed in

bounding cosmologies. We will come back to this assumption later.
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equations one can also find

Ḣ = − φ̇2

d− 2
. (K.2)

Ifwe startwith a contracting solution (H < 0), then the absolute value ofHwill keep increasing

while φ rolls down the potential. Therefore, after some point, the Hubble energy must be

mainly sourced by kinetic energy, which implies

(d− 1)(d− 2)
2

H2 ≃ 1
2
φ̇2 ≫ V(φ). (K.3)

From this we find thatV′ is suppressed in the second equation of motion in (K.1). So, we find,

φ̈ ≃ −(d− 1)Hφ̇ ≃
√

d− 1
d− 2

φ̇2. (K.4)

The solution to this equation is

φ(t) ≃ −
√

d− 1
d− 2

ln

(
c1 −

√
d− 1
d− 2

· t

)
+ c2, (K.5)

where c1 and c2 are constants. As one can see, this solution diverges at finite time t = c1
√

d−2
d−1 .

At this time, the kinetic energy diverges and drives the field to φ → ∞. This is a big crunch.

Now let us look at the scale factor. We have

ȧ
a
= H ≃ − 1√

(d− 1)(d− 2)
φ̇ = − 1√

(d− 1)(d− 2)(c1 −
√

d−1
d−2 · t

. (K.6)

After integrating we find

a ∝ (c1 −
√

d− 1
d− 2

· t)
1

d−2 . (K.7)

To see if the asymptotic boundary is spacelike or null, we should see if the contraction is slow

250



enough to create a horizon2. In other words, if we take two points, can they communicate with

each other before hitting the asymptotic boundary of spacetime? If any two points can, the

asymptotic boundary is null, and if some points cannot, the asymptotic boundary is spacelike.

The FRW metric is given by ds2 = −dt2 + a(t)2dX2. Therefore, the furthest coordinate

distance that a signal can travel is
´
a−1. If this integral diverges, the asymptotic boundary is

null. In the case of (K.7), this integral clearly converges. Thus, the Penrose diragram looks like

the following.
O
bs
er
ve
r

Cosmological

horizon

big crunch

Figure K.2: Penrose diagrams of contracting universes that are driven by an exponentially decaying scalar potential. The
universe ends with a spacelike big‐crunch.

In the above analysis we neglected creation of matter near the singularity. The inclusion

of a thermal background would not have changed the qualitative behavior of the solution. To

see this, note that in the above solution H2 ∝ a−2(d−2). In dimensions greater than 3 where

gravity is dynamical, both matter and radiation increase slower than, or equal to, this rate. The

energy density of a relativistic matter increases asH2
rad ∝ a−d and the energy density of a non-

relativistic matter increases as H2
matter ∝ a−(d−1). Therefore, the qualitative behavior of the

solution remains the same.

Note that the asymptotic behavior of the solution at t → ∞ is also independent from λ. So

we find that, contracting solutions have a universal behavior at the asymptotic future and they

end with a spacelike big crunch.

Now let us consider the expanding solutions. In the expanding solutions, depending on
2Fast expansions and slow contractions create cosmological horizons.
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exponent λ, the solution behaves qualitatively differently. For large enough λ, the expansion is

so fast that the kinetic term dominates the Hubble energy. On the other hand, for small λ, all

the terms are of the same order.

Case I: λ < 2
√

d−1
d−2

The attractor solution is

φ =
2
λ
ln

√√√√ λV0
4(d−1)
λ2(d−2) − 1

t+ c1

, (K.8)

where c1 is a constant. For this solution, all the terms in theHubble energy are of the same order.

H2 ∝ φ̇2 ∝ V(φ). (K.9)

As t → ∞we have

ȧ
a
∝ 4

(d− 2)λ2t
. (K.10)

Therefore, at future infinity, the scale factor goes like

a ∝ tp; p =
4

(d− 2)λ2
. (K.11)

Case II: λ > 2
√

d−1
d−2

The attractor solution is

φ =
√
d− 2d− 1 ln(t+ c1) + c2, (K.12)
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where c1 and c2 are constants. For this solution, the kinetic term dominates and we have

H2 ∝ φ̇2 ≫ V(φ). (K.13)

As t → ∞we have

ȧ
a
∝ 1

(d− 1)t
. (K.14)

Therefore, at future infinity, the scale factor goes like

a ∝ tp; p =
1

(d− 1)
. (K.15)

Now we study the shape of the Penrose diagram at future infinity. As we discussed earlier,

the shape of the future boundary depends on the integral
´
a−1. For all the expanding solutions

we foundapolynomial dependencea ∼ tp. For p > 1, the integral
´
a−1 convergeswhich signals

the existence of a spacelike boundary with a null cosmological horizon. While for p < 1, there

is no cosmological horizon and the future boundary must be null.

Note that p < 1 corresponds to λ > 2√
d−2 . Therefore, we find the following Penrose

diagrams depending on the value of λ.

I +

O
bs
er
ve
r

Cosmological

horizon

Asymptotic

future I +

O
bs
er
ve
r

Asymptotic

future

λ < 2√
d−2 λ > 2√

d−2

Figure K.3: Depending on the value of λ, the Penrose diagram takes a different shape in t → ∞. For λ > 2√
d−2 , the

future infinity is decelerating and the asymptotic future I + is null. However, for λ < 2√
d−2 , the asymptotic future has an

accelerating expansion which creates a cosmological horizon.
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Now, we can time reverse the above analysis and make similar statements about the past

infinity of the expanding and contracting universes.

We find that the past infinity of the expanding universes is always spacelike and the

past infinity of contracting universes depends on the coefficient λ that drives the evolution.

Therefore, we find the following four options (Fig. K.4).

Big bang

λ > 2√
d−2

Big bang

λ < 2√
d−2

H > 0 H > 0 Spacelike

boundaries

I +

I +

Big Crunch

λ > 2√
d−2

Big crunch

λ < 2√
d−2

H < 0

H > 0 Spacelike

boundaries

I −

I −

(a) (b)

(c) (d)

Figure K.4: Penrose diagrams of: (a) expanding universe with deccelerating asymptotic future, (b) expanding universe with
accelerating asymptotic future, (c) contracting universe with deccelerating asymptotic past, and (d) contracting universe
with accelerating asymptotic past.
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