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Abstract: Motivated by a family of binary cocyclic block matrices over GF(2), we proposed a construc-
tion method to gain the stabilizer of long-length quantum error-correction codes (QECCs). Stabilizer
quantum codes (SQCs) can be obtained by the different rows of the yielded circulant permutation
matrices; hence, the quantum codes have the virtue of a fast construction algorithm. The recursive
relation of a block matrix is employed in the proposed approach, so that the generator matrix of quan-
tum cocyclic codes with long length can be constructed easily. Furthermore, the obtained quantum
codes have the low-density advantage of there being no 4-cycles in the Tanner graph.

Keywords: long-length quantum codes; cocyclic block matrices; stabilizer codes; low-density parity
check codes

1. Introduction

The theoretical and experimental research on virtual quantum secure communication
has gradually matured. However, due to the constraints of single photon sources, single
photon detectors and the high cost of quantum devices, its practical application still faces
many technical challenges. Extending the error correction coding technology in classical
communication to the field of quantum information, the breakthrough in quantum error
correction coding technology will undoubtedly become an important link in the practical
application of quantum secure communication in the future, although quantum error-
correcting codes (QECCs) are of only nominal significance at present in both quantum
key distribution (QKD) and quantum secure direct communication (QSDC) [1,2]. There-
fore, QECCs play theoretically a vital role in quantum information fields owing to their
effects in fighting decoherence in quantum computing large-scale data [3–10]. The ap-
peared errors from quantum channel noise and possible eavesdropper’s interference can
be corrected by good QECCs. These codes are useful for building quantum fault-tolerant
circuits. In general, an important class of quantum codes called stabilizer codes is firstly pro-
posed by Gottesman [3]. Currently, in quantum coding theory, the stabilizer formalism of
QECCs and its special form called Calderbank–Shor–Steane (CSS) are its main construction
methods [4–6]. In quantum code construction theory, how to design the generator matrix
resort to block matrix is the key. However, the error correction ability of short quantum
codes is limited. The construction method of long-length quantum codes is becoming
more important. In order to achieve high error correction ability, low-density parity check
(LDPC) codes can achieve the maximum rate of reaching the Shannon limit with an error
probability approaching zero when the codeword length tends to infinity. Since Gallager
first proposed LDPC codes in the 1960s [11], two decades later, it caught the considerable
interest of many researchers again [12–15]. Subsequently, with the rapid development of
quantum information, many research achievements in its quantum versions have been
made in this field [16–23]. However, compared to the in-depth study of classical LDPC
codes, the corresponding quantum LDPC codes are still relatively less studied. One main
obstacle is the difficulty of obtaining a more effective algorithm of iterative coding. With the
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application of large-scale data in quantum information fields, it becomes more important
to encode massive data by making use of LDPC codes.

In quantum coding theory, the main problem for constructing low-density quantum
code is how to obtain the generator for the stabilizer. Based on the current research
results in this field, we will further study the encoding methods of quantum long-codes
stabilizers. In this paper, a class of quantum stabilizer codes spirited with a family of
cocyclic matrices is proposed [24,25]. The involved cocyclic block matrices are based on
the Jacket matrix, of which the main property is that its inverse matrix can be gained by
block-wise inverse [26,27]. According to the properties, its physical decoder circuit can
be realized relatively simply. Meanwhile, the constructed quantum codes also have no
4-cycles in their Tanner graphs, so their parity check matrices have sparse characteristics.

The remainder of the paper is arranged as follows. In Section 2, we provide some
necessary background and notations for QECCs. Then, in Sections 3 and 4, in terms of
circulant permutation matrices, we investigate the construction of quantum codes generated
from cocyclic block matrices which are applied to construct a generator matrix of quantum
codes. Furthermore, its poverties of low density are also analyzed in this section. Finally,
some concluding remarks are drawn in Section 4.

2. Preliminaries

In this section, we briefly follow here the relevant terms and notation for quantum
error-correcting codes and its stabilizer, which are used to be constructed in the paper.

2.1. General Construction Methods of QECCs

In terms of the depolarizing channel, there are four basic operators performing on
a single qubit, i.e., σ0, σx, σz and σy = σxσz, that can form a set P whose eigenvalues
are ±1 and ±i; here, σx, σz are the Pauli transformations. The stabilizer formalism of
quantum codes can provide a compact description of codewords, especially for larger
codes. Generally, a stabilizer S of quantum code C[[N, k, d]] is a nontrivial subgroup of the
N-operator group

PN = P⊗N = {iλ(τ1 ⊗ · · · ⊗ τN)|τj ∈ E∗, 0 ≤ λ ≤ 3,

1 ≤ j ≤ N}, (1)

here, any element in E∗ = {σ0, σx, σz, σy} is a Pauli matrix. It shows that the set PN consists
of all tensor products of Pauli matrices on N qubits again with multiplicative factors,
which is a Hilbert codeword space of N binary codes. Therefore, for a stabilizer code C of
encoding k logical qubits into N physical qubits, there are 2N−k independent elements in
2k-dimension code space C(S) associated with S of form

C(S) = {|ψ〉 : M|ψ〉 = |ψ〉, ∀M ∈ S}. (2)

To obtain the generator matrix of a stabilizer, two constraints should be met. One is that any
pair of elements in stabilizer S commute, and the second condition implies that all elements
of S are Hermitian, i.e., they have an eigenvalue of ‘±1’. It means that S is specified by
N − k commuting and independent generators, {Mi : 1 ≤ i ≤ N − k}. Correspondingly,
if stabilizer quantum code is to be formed, N − k generators of stabilizer S should be firstly
gained, which are described by matrix

GN = [Gx Gz](N−k)×2N = [M1, M2, . . . , MN−k]
T , (3)

where Gx = (gx
ij)(N−k)×N , Gz = (gz

ij)(N−k)×N for 1 ≤ i ≤ N − k, 1 ≤ j ≤ N. According
to the property of commuting generators, the elements of its row vector satisfy that the
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symplectic inner product is equal to zero. It means that an arbitrary operation γi in the
N-qubit depolarizing channel belongs to GN , which may be uniquely shown by

γi = τ[σxi1
1 σ

zi1
1 ]⊗ [σxi2

2 σ
zi2
2 ]⊗ . . . ⊗ [σxiN

N σ
ziN
N ] (4)

where xis , zis ∈ {0, 1} for 1 ≤ s ≤ N, and τ is a factor among the eigenvalues. With-
out considering the factor τ, based on single-qibit operator γi, we denote a 2N-dimensional
concatenated vector as

~γi = (~xi|~zi) = (xi1, xi2, . . . , xiN |zi1, zi2, . . . , ziN). (5)

For any two concatenated row vectors ~γi = (xi|zi) and ~γv = (xj|zj) in generator matrix GN ,
the symplectic inner product is defined by

~γi · ~γj = ~xi~zj +~xj~zi =
N

∑
k=1

(xikzjk + xjkzik). (6)

Thereby, two operations ~γi and ~γj satisfy the commuting condition if

~γi · ~γj = 0. (7)

The vector ~γi in Equation (5) is generally used to seek the generators of the stabilizer.

2.2. Error of Quantum Error-Correction Code and Bound

All errors that occur in different quantum codes can be labeled with string vector over
field F2 when the states are transmitted through quantum channels. Single qubit error
correction for quantum codes includes three classes, i.e, flip error, phase error or phase–flip
error, which can be described with three corresponding Pauli operators: σx, σz and σy,
respectively. Assuming a single error qubit described as flip error X(a) and phase error
Z(a) for a ∈ F2, a state |x〉 ∈ C acted by error is denoted as

X(a)|x〉 = |x + a〉 and Z(a)|x〉 = ωa∗x|x〉. (8)

Correspondingly, the errors on N qubits can be denoted as vector e = σX
x σZ

z , for X =
(x1, x2, . . . , xN) and Z = (z1, z2, . . . , zN) ∈ FN

2 . Hence, it acts on an N-qubit basis state
|Q〉 = (q1, q2, . . . , qN) over FN

2

e|Q〉 = (−1)Z·Q|X + Q〉 = (−1)∑
N
i=1 zi ·qi |

N

∑
i=1

xi + qi〉. (9)

Furthermore, the quantum Hamming bound of a general quantum code C[[N, k, d]] is
required to satisfy the following inequality condition [28]

t

∑
l=0

3l

(

N

l

)

≤ 2N−k, (10)

which may correct up to t = [(d − 1)/2] quantum error bits.

3. Quantum Codes Based on Cocyclic Quasi-Jacket Block Matrices

Motivated by the center weight Hadamard matrices [26], a family of orthogonal
matrices called Jacket transform was proposed [27], which is widely employed in signal
processing, encoding, mobile communication, etc. [29–32]. Especially, Hadamard and DFT
matrices belong to this kind of Jacket matrix.
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3.1. Definitions and Terms

Based on the general definition of a square matrix, in this section, we presented a con-
struction method of quantum codes over binary matrices. As the following, for obtaining
the stabilizer generators of quantum codes over the complex number field with a bigger
size, we consider a class of binary cocyclic Jacket matrices based on a circular permutation
matrix to construct its concatenated generator matrix, i.e.,

GN = [Gx|Gz]N×2N , (11)

here, Gx and Gz are generator matrices of the encoding bit and phase, respectively.
Since a cocyclic approach was introduced in [24], some interesting codes come from

useful cocyclic matrices, such as the Hadamard matrix that is the matrix representation of a
cocycle [25].

Definition 1. If set G is a finite group of order v and A is an Abelian group of order w, respectively,
a mapping: ϕ: G × G → A is called a cocycle while it satisfies the following particular cocycle
equation

ϕ(g, h)ϕ(gh, k) = ϕ(g, hk)ϕ(h, k), ∀g, h, k ∈ G. (12)

From the definition, it is easy to show that ϕ(g, 1) = ϕ(1, h) = ϕ(1, 1), ∀g, h ∈ G, so
ϕ(1, 1) = 1, as we call it, is a normalized cycle.

According to the cocycle mapping, if the rows and columns of a square matrix can be
indexed by the elements of G in terms of some distribution, the matrix is called a cocyclic
matrix, which is described as

Mϕ = [ϕ(g, h)]g,h∈G, (13)

where the map ϕ(g, h) denotes a position (g, h) of the entry in matrix Mϕ. If the cocycle
ϕ is symmetric, Mϕ will be a symmetric matrix. Furthermore, on the basis of the cocylic
matrices, some cocyclic codes are primitively derived from Hadamard matrices or from
related block designs [33]. In this case, a v × v Hadamard matrix H with entries {±1} such
that HHT = vIv is used to construct codes with length v = 4 s for integer s ≥ 1. If 1s and
−1 s are replaced by 1 s and 0 s, respectively, the Hadamard matrix becomes a binary one.
A main superiority of cocyclic codes is that the long-length codes may be easily gained
with a circulant manner; hence, it may be applicable to the generalized classical case and
further quantum codes.

Definition 2. A square matrix JN = [aij]N , if its inverse is obtained simply by element-wise
inverse, i.e., it satisfies

a−1
ij =

{

aij/a if aij 6= 0,
0 aij = 0,

(14)

where a is the normalized constant, we call matrix JN a block Jacket matrix. Obviously, the
Hadamard matrix belongs to the defined Jacket matrix. Furthermore, if there is a permutation matrix
T , and its inverse matrix can be described as J−1

N = T · [aij]N/a, matrix JN is a quasi-Jacket block
matrix [34]. This class of matrices may be generalized by a simple binary transformation. Matrix
decomposition with a Kronecker product of identity matrices can successively design a large length
of codes that resorts to lower-order coefficient matrices. Meanwhile, this factorization decomposition
generates a family of block circular sparse Jacket matrices which have good performance of LDPC
codes. In the applications, the derived circulant permutation matrices with a Jacket pattern could
lead to a very simple encoding algorithm.
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3.2. Cocyclic Matrix Derived from Jacket Block Matrices

On the basis of the above definitions, we shall apply the index mapping to construct
generator matrices Gx and Gz based on cocyclic Jacket matrices with order N = pm. Firstly,
we form an Abelian group by factoring a quasi-Jacket block matrix, of which elements will
be used to construct a stabilizer.

Theorem 1. Given Au = [aij]u and Bv = [bij]v are two cocyclic Jacket matrices, their Kronecker
product Au ⊗ Bv will be also a cocyclic Jacket matrix with size uv [35].

Proof. Because Au and Bv are Jacket matrices, in terms of the definition of Jacket matrix,
it has

A−1
u = [a−1

ij ]Tu /ca, B−1
v = [b−1

sl ]Tv /cb, (15)

where ca, cb are two constants. As a result, their Kronecker product is Au ⊗ Bv = [wiu+s,ju+l ]uv

for wiu+s,ju+l = aijbst. Correspondingly, we have

(Au ⊗ Bv)
−1 = [(aijbst)

−1]Tuv/(cacb)

= [(wiu+s,ju+l)
−1]uv/(cacb), (16)

i.e., Au ⊗ Bv is a Jacket matrix.
On the other hand, suppose that the row and column index orders of the two matrices as

ga
s1 → ga

s2 → . . . → ga
su, f or ga

sj ∈ GA

gb
s1 → gb

s2 → . . . → gb
su, f or gb

sl ∈ GB (17)

where s = r, c, and ga
s1 (or gb

s1) and gτ
c1 (or gb

c1) refer to the first row and column indices
of matrix Au (or Bv), respectively. Hence, the row and column index orders of matrix
Au ⊗ Bv are

ga
sjg

b
sl 7→ ga

sig
b
sh, if ga

sj → ga
si or ga

sj = ga
si, gb

sl → gb
sh. (18)

Correspondingly, define

ϕAB(ga
rig

b
rh, ga

cjg
b
cl) = ϕA(ga

rig
a
cj)ϕB(gb

rhgb
cl). (19)

Because both Au and Bv are cocyclic matrices, ϕA and ϕB satisfy the condition shown in
Equation (12). As a result, it is verified that ϕAB also meets it with the index orders shown
in Equation (18). It means that Au ⊗ Bv also is a cocyclic matrix.

More generally, by making use of the mathematical methods of induction, it is easily
verified that a large-length matrix

JN = Jp1 ⊗ Jp2 ⊗ · · · ⊗ Jpn (20)

with order N = p1 p2 · · · pn is still a Jacket matrix and cocylic matrix, while Jacket matrix
Jpi

is a cocylic matrix for 1 ≤ i ≤ n. Specially, if p1 = p2 = · · · = pN , the following matrix

Jpm , [ω
~i◦~j] = J⊗n

p (21)

with a Kronecker product also achieves the definitions of Jacket matrix and cocylic matrix.
In the following, we further illustrate that the generator matrix may be derived from a
recursive cocyclic matrix.

Theorem 2. A recursive p-order cocyclic matrix Jpm for a integer m can be composed of a family of

cocyclic matrices A = {A1
N , A2

N , · · · , Am
N} with conventional multiplication as follows
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Jpm =
m

∏
i=1

Ai
pm = A1

pm A2
pm · · · Am

pm , (22)

where

Ai
pm = Ipi−1 ⊗ Jp ⊗ Ipn−i , (23)

for that, Jp is a cocyclic matrix and Ip is an identity matrix.

Proof. We use the mathematical induction method to prove the result. In fact, while n = 1,
the conclusion is obviously valid, i.e., Jp = Ip0 ⊗ Jp ⊗ Ip0 . Since the hypothesis is true for
integer n = m, we consider that it holds for n = m + 1. Namely, the recursive equation

Jpm+1 = Jpm ⊗ Jp = (
m

∏
i=1

Ai
pm)⊗ Jp (24)

holds. According to the property of the Kronecker product, it obeys the following formula

(A ⊗ B)(C ⊗ D) = (AC)⊗ (BD) (25)

for any square matrices A, B, C and D. Hence,

m+1

∏
i=1

Ai
pm =

m

∏
i=1

(Ai
pm ⊗ Ip)(Ipm ⊗ Jp) =

m

∏
i=1

Ai
pm ⊗ Jp. (26)

It means that Equation (24) is equal to Equation (26), i.e., the case of n = m+ 1 also holds.

In terms of the above conclusion, based on its decomposition factors, we can form
a factor group A = {A1

N , A2
N , · · · , Am

N}. Resorting to the factor group A, we consider
constructing the stabilizer with two isomorphic classes of groups.

Lemma 1. Take factor groupA in Equation (23) and its isomorphic factor groupB = {B1
N , B2

N , · · · , Bm
N}

with matrix J′p. In terms of the property of the Kronecker product, if matrices Jp and J′p satisfy
the commuting condition, i.e., their symplectic inner product is equal to zero, it is easy to check
that any pair of factors Ai

N and Bi
N (1 ≤ i ≤ m) in the two groups also satisfies the commuting

condition (7).

It means that any pair of Ai
N and Bi

N can be taken as the generator matrices Gx and Gz

of quantum codes, respectively, when two matrices Jp and J′p commute.

Example 1. If the prime integer is given p = 2, let ω = e
√
−1π/2. It has vectors~i0 = (1 = ω0, ω)

and~i1 = (ω, 1) in group G = {1, ω}.

3.2.1. Quasi-Jacket Block Matrices with Size 4m by 4m

Resorting to the binary matrixes, we consider building the generator matrix of quan-
tum stabilizer codes. On the one hand, we define a class of fundamental matrices α and β

derived from binary Hadamard matrix H as follows, respectively:

α ,

[

1 0
1 1

]

, β ,

[

1 1
0 1

]

. (27)

It is easy to check that the introduced matrices have the following properties

αβ + βα = I2, αβ × βα = I2. α2 = β2 = I2. (28)
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Furthermore, define a permutation matrix with 2q order as

T2q =

[

0 1
1 0

]

× Iq. (29)

Based on the above fact, with simple computation, we can obtain a 4-order matrix and
its inverse matrix

J4 ,

[

α β

β α

]

and J −1
4 =

[

β α

α β

]

= T4 ×J4, (30)

which is a quasi-Jacket block matrix in terms of the definition.
Similarly, we may also obtain the 16-order quasi-Jacket block matrix as

J16 = J42 = J4 ⊗J4 =

[

α β

β α

]⊗2

=









1 0 1 1
1 1 0 1

ine1 1 1 0
0 1 1 1









⊗J4 =









J4 O4 J4 J4
J4 J4 O4 J4

ineJ4 J4 J4 O4
O4 J4 J4 J4









, (31)

and its inverse matrix

J −1
16 = T16 ×









J −1
4 O4 J −1

4 J −1
4

J −1
4 J −1

4 O4 J −1
4

J −1
4 J −1

4 J −1
4 O4

O4 J −1
4 J −1

4 J −1
4









. (32)

According to its definition, the matrix obviously is a quasi-Jacket block matrix.
Generally, by resorting to the recursive relationships based on J4 defined by (30),

we can obtain the quasi-Jacket block matrices with larger size 4m by using the Kronecker
product, i.e.,

J4m = J4 ⊗J4m−1 , for m ≥ 2, (33)

which may be used to generate the generator matrices Gx (or Gz).
On the other hand, to obtain the matrix Gz (or Gx), we consider another class of matrix

called the permutation matrix Ph = (pij)p×p,

pij =

{

1 if i = (j + h) mod p, 1 ≤ h < p,
0 otherwise,

(34)

for an even number p ≥ 4. According to the definition, it is obviously a finite cyclic group
P = {I, P, . . . , Pp−1} formed by a family of matrices Pi, 0 ≤ i ≤ p − 1 is an Abelian group
based on the matrix-multiplication operation, and I = P0 is its unit element. Here, given
that the number p is an even number and h is an odd number, respectively, a sequence of
matrices whose exponents are odd can form a subset Po = {P, P3, . . . , Pp−1} of Abelian
group P .

Based on the generated two classes of matrices, i.e., the cocyclic Jacket matrix and
permutation matrix, we consider obtaining the stabilizer for quantum codes. Let Gx

with a size of N = 4m be obtained by the cocyclic Jacket matrix described before. In
the following, we consider how to construct another matrix Gz. Firstly, we take two 4-
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order basic permutation matrices P4 in Equation (34) with parameters h = 1, 3 respectively,
i.e., {ω2, ω4}, such that

ω2 = P =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









or ω4 = P =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









. (35)

Then, it provides that PN = P4 ⊗ PN−1, and it takes Gz = P4 ⊗ PN/4. As a result, the con-
catenated generator matrix G is built.

In the following, we use the mathematical induction to deduce that two matrices
Gx and Gz in the obtained concatenated generator matrix G satisfy self-orthogonal and
commuting conditions, i.e., the obtained generator matrix should meet the conditions of
self-orthogonal and commuting, so that it may be used to construct a stabilizer of quantum
codes. In fact, it is obvious that matrix Gz satisfies the self-orthogonal, so we firstly consider
that the case of m = 1 for Gx meets the self-orthogonal constrain. Namely, in the following
matrix

[Gx|Gz]4×8 = [J4|P4] =









1 0 1 1 0 0 0 1
1 1 0 1 1 0 0 0

ine1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0









, (36)

any two rows in Gx and Gz are self-orthogonal and commuting. Assuming it meets the
case of m − 1, we consider the result for m. In fact, if any two rows in concatenated block
submatrix [α β] meet the conditions, it can also do so in [β α]. Without a loss of generality,
here, we only consider the rows in submatrix [α β]. By making use of the Kronecker product
of any two row vectors in Gx

4 , it is easy to check that they meet the orthogonal condition.
And then, the symplectic inner product in Equation (6) is proved as following. Define

complement operators 1̄ = 0 and 0̄ = 1, according to number theory; then, it is possible to
easily check that matrices P̄ = ( p̄ij) with parameters h = 1, 3 commute. Namely, any two
row vectors in concatenated matrices (P̄|P) satisfy the commuting condition in Equation (7).
In fact, it can be checked that the elements in the Abelian group P commute when their
cycle indexes both are odd or even numbers. The matrices satisfy isomorphic J ∼= P when
its corresponding orthogonal matrix also satisfies isomorphic J ∼= P̄. The complement of
Gx is an element in the circulant permutation group P0; hence, two pairs of vectors ~x1, ~x2
and~z1,~z2 all belong to this group. The product of any two vectors in Gx and Gz is equal
to 0 or 1 simultaneously; i.e., it means that two pairs of vectors of the inner product with
module 2 is equal to 0.

Similarly, we consider the generator matrix based on the block matrix J16 and 16-order
permutation matrix stemmed from P4.

[Gx|Gz]16×32 = [J16|P⊗2
4 ]

=









J4 O4 J4 J4 O4 O4 O4 P4
J4 J4 O4 J4 P4 O4 O4 O4
J4 J4 J4 O4 O4 P4 O4 O4
O4 J4 J4 J4 O4 O4 P4 O4









. (37)

Generally, the N-order generator matrix for N = 4m, m ≥ 2 can be generated by

[Gx|Gz]N×2N = [JN |P4 ⊗ PN/4]. (38)

On the other hand, from the factorization of a large number, 4m, in Equation (22), we
can obtain a group A with Formula (23) whose element Ai

pm = I4i−1 ⊗ J4 ⊗ I4n−i . Any

element Ai
4m in the group can be taken as the generator Gx. Similarly, we can form another

group B based on P4, and take the element Bi
4m (same structure to Ai

4m ) as the generator Gz.
As a result, a large-length generator matrix with size 4m by 4m is gained.
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3.2.2. Quasi-Jacket Block Matrices with Size 4pm by 4pm

Furthermore, to obtain the more general length of code, we define a matrix

Qα ,

[

I O

Ph I

]

, Qβ ,

[

I P−h

O I

]

. (39)

It is easily checked that

Q2
α = Q2

β = I2p, and QαQβ +QβQα = I2p. (40)

Furthermore, in terms of the basic properties, we consider matrix

Q ,

[ Qα Qβ

Qβ Qα

]

=











I O I P−h
p

Ph
p I O I

I P−h
p I O

O I Ph
p I











, (41)

and its inverse matrix

Q−1 =

[ Qβ Qα

Qα Qβ

]

=











I P−h
p I O

O I Ph
p I

I O I P−h
p

Ph
p I O I











=

[

O I
I O

]

×
[ Qα Qβ

Qβ Qα

]

= T4p ×Q. (42)

It is obvious that the constructed matrix Q is also a quasi-Jacket matrix which can be seen
as a 4p × 4p binary cocyclic matrix. It means that a quantum code with a length of 4p may
be obtained. Similarly, the recursive relationships may be used to obtain the large-length
block matrices with a larger size 4pm by using the Kronecker product, i.e.,

J4pm = J4 ⊗Jpm , for m ≥ 2, (43)

such that the more general case of the generator matrix with a long size is achieved. In a sim-
ilar manner, the obtained large-size matrix also satisfies the conditions of self-orthogonal
and commuting like the process before proving the case of size 4m. We take two matrices
based on parameters h1, h2 in Pe = {ω, ω3, . . . , ωp−2} or in Po = {ω2, ω4, . . . , ωp−1} as
Gx and Gz, respectively. It is evident that the obtained matrices commute each other.

3.3. Quantum LDPC Codes Based on Cocyclic Block Matrix

To encode k information qubits into a QC quantum code C with parameter [[N, k]],
one should firstly gain two N × N cocyclic circulant permutation matrices G based on the
previously constructed matrices Gx and Gz of satisfying the orthogonal condition. Accord-
ing to the recursive relationship, we take any N − k rows of the two generated matrices as
the generators Gx and Gz. It means that the concatenated matrix GN in Equation (3) meets
the construction condition of quantum code.

In classic coding theory, a class of very important linear codes called LDPC code is
widely explored and used in practice. Its theoretical importance mainly embodies that
its good performance of linear-time decoding can achieve Shannon capacity [14,16]. Its
quantum version, known as quantum LDPC (QLDPC) codes, plays a very important role
in quantum information. However, compared to its classical counterparts, the achieved
fruits of quantum LDPC codes are still far less. The main problem is the lack of efficient
methods for obtaining iterative coding. Generally, the proportion of 1s in a binary matrix is
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called the matrix’s destiny. Given that ι0 and ι1 are the numbers of 0s and 1s in a matrix,
respectively, the destiny is

d0 =
ι1

ι0 + ι1
. (44)

According to the construction method described in Equation (41), it obvious that the total
number of 0s and 1s in a 4p × 4p matrix is 16p2. Furthermore, each of the 12 matrices I, P−h

and Ph in G contain p 1s; hence, there are 12p 1s in this matrix: i.e, the 1s density in G is

d4p =
12p

16p2 =
3

4p
. (45)

From the ratio, it means that the constructed cocylic matrix has a good performance of low-
density property. On the other hand, there are N(log 2N − 1) additions and 2N(log 2N − 1)
multiplications for the computation complexity in processing the obtained matrix with
size N = 4m. The check matrix H of LDPC codes is generally represented by a simpler
and more intuitive Tanner graph with a one-to-one map. If there are equal degrees of all
variable nodes in the Tanner graph, its corresponding LDPC code is called a regular code.
Otherwise, it is called an irregular code. Denote by η and ρ the variable and check the
nodes’ degrees corresponding respectively to the minimum weights of the row and column
of the check matrix. Assume that the girth g in the graph refers to the length of the shortest
cycle [36,37]. Then, the following bounds should be satisfied, i.e.,

N ≥ 1 +
x+1

∑
i=2

η(η − 1)i−2(ρ − 1)i−1 (46)

for girth g = 4x + 2, and

N ≥ 1 +
x+1

∑
i=1

η[(η − 1)(ρ − 1)]i−1 (47)

for girth g = 4x, where x is an integer, it can be seen from the above bounds that the code
length will increase exponentially, while the cycle length and weights also are rising.

To obtain the good performance, having no 4-cycles in the Tanner graph of the quan-
tum LDPC codes is required. A cycle is composed of a group of interconnected vertices in
a Tanner graph, with one of these vertices serving as both the starting and ending points,
and passing through each vertex only once. If the length of a cycle is called the number of
lines it contains, the girth of a graph is defined as the minimum cycle length in the graph.
The traditional cycle detection methods are generally based on block matrix sequences [15].
When using this algebraic description to detect cycles in a given check matrix, there is
redundancy due to the possibility that different block matrix sequences may form the same
girth. To avoid redundancy caused by repeated traversal, we propose the following method
for detection.

Theorem 3. Based on the cocyclic block matrices in Equations (38) and (43), the constructed
quantum codes have no 4−cycles in the Tanner graph.

Proof. According to the proposed construction method, matrix J4 derived from matrices α

and β obviously cannot form a cycle. If it considers a quasi-Jacket block matrix sequence with
a cycle of girth 2i, (j0, l0); (j1, l1); . . . ; (ji−1, li−1); (j0, l0) as the loop is cyclic. Here, elements
(jv, lv) represent the block matrix of row jv and column lv for 0 ≤ v ≤ i. The formation of a
cycle means that any block matrix sequence (j0, li−1); (ji−1, li−2); (ji−2, li−3); (jv+1, lv)(j1, l0)
is different from the original sequence.

Assume new coordinates (Jv, Lv) to describe any block matrix in a block matrix
sequence. For a cycle with a length of 2i, the block matrices in the sequence can be located
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at most in the i-th row. Without losing generality, the sequence of block matrices that may
generate a 2i girth is classified according to the number of possible rows. Assume that i
block matrices are located in the u(2 ≤ u ≤ i) row, and u rows are marked in order from
top to bottom (1, 2, . . . , u). The new row coordinate ranges Jv ∈ {1, 2, . . . , u} for each block
matrix, as adjacent block matrices cannot be in the same row. Therefore, we can obtain
Jv ∈ {1, 2, . . . , m}\Jv−1, where 2 ≤ v < i. When v = i, the i-th block matrix is adjacent not
only to the i-th block matrix but also to the first block matrix, so Ji ∈ {1, 2, . . . , u}\{J1, Ji−1}
can be obtained. For column coordinates, making L1 = 1, “1” does not mean that the
block matrix is in the first column, but rather that the column in which the block matrix
is located is the first occurrence in the sequence. The subsequent block matrix is marked
with new column coordinates Lv in the order. We implement this by setting the parameter
Mv = maxi=1:v Li, where Mv represents the number of columns distributed in the first v
block matrices. Then, for the v-th block matrix, Lv ∈ {1, 2, . . . , Mv−1, Mv−1 + 1}\Lv−1 will
indicate that the column can be in a different column from the first v − 1 block matrix.
For the i−th block matrix located in row u(2 ≤ u ≤ i), the first block matrix will be
J1 = L1 = 1, i.e., the new coordinate is (1,1) and M1 = 1. For the v-th block matrix, we
may obtain that Lv ∈ {1, 2, . . . , Mv−1, Mv−1 + 1}\Lv−1; hence, the new coordinates of the
current block matrix sequence have (u − 1)× (v − 1) possibilities. After traversing each
possibility and determining all the branches of the i-th block matrix , we can obtain that the
cycle of the constructed matrix is bigger than 4 when the parameter in construction method
meets m ≥ 2.

According to the above description, after determining all the branches of the i-th block
matrix, a tree diagram of the i−th layer will be obtained, thereby avoiding redundancy
caused by repeated traversal.

In the classical coding field, we firstly compare the performance of the classical codes
obtained from the cocyclic block matrices with the classical quasi-cyclic (QC) codes in
Figure 1. In light of the character of the quasi-Jacket block matrix, the gained generator
matrix of classical code has sparse property; hence, the parity check matrix of low weight
can be obtained. In this figure, we take the different cocyclic matrices presented in this
paper to analyze their bit error ratio (BER) and consider the coding performance of a single
one among the generated pair classical codes. Here, given the different prime numbers p
are taken n = 5, 7 with the construction method of the quasi-Jacket block matrix in this
paper, their corresponding quantum code lengths are N = 4pm = 500, 1372 for m = 3,
respectively. Assuming the binary phase shift keying (BPSK) modulation is over an additive
white Gaussion noise (AWGN) channel, the bit error performance of the selected quantum
codes is shown in this figure. As a result, the gained codes have the good properties of
a sparse matrix. In decoding the performance of LDPC, short cycles will degrade the
result under an iterative algorithm. The fewer short cycles of code makes its performance
better; hence, the prime numbers p = 5, 7 more than 4 are taken to avoid 4−cycles in the
Tanner graph.

It can be seen from the result that the constructed quantum LDPC codes have no ap-
parent performance in the low signal-to-noise ratio (SNR) region, but the cocyclic codes are
better than quasi-cyclic codes at high SNR. Furthermore, we also can see that the difference
becomes more pronounced when the code length is larger. Therefore, the designed cocyclic
codes may be better applied to construct large-length quantum codes.

Generally, three types of independent Pauli errors occur in a realistic depolarizing
communication channel, i.e., bit-flip errors X, phase–flip errors Z and Y, and errors that are
the combination of X and Z. Assuming that the total probability denotes as f , the probabil-
ities of the three classes of errors are equally f /3 owing to their independence. Namely,
the distributed marginal flip probability can be depicted as fm = 2 f /3. As a result, the er-
rors of types X and Z in the obtained generator matrices Gx and Gz are separately corrected
by reason of their isomorphism.

Furthermore, in the construction of quantum LDPC codes, the binary generator matrix
of a quantum code is constructed by matrices Hx and Hz which can be seen as the parity-
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check matrices of two two classical codes Cx and Cz, respectively. The spaces of degenerate
X-codewords C⊥

x and Z-codewords C⊥
z are derived from the rows of matrices Hx and Hz.

The minimum distance d = min{dx, dz} of the quantum code is defined as the smaller of
two-types distances dx and dz. According to the structure of the generator matrices, at least
the minimum distances are bounded above by O(N1/2 log N) as the code length N → ∞.

-6 -4 -2 0 2 4 6 8

Eb/No (dB)

10-5

10-4

10-3
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10-1

100
B

E
R

Cocyclic code (500,248)
Cocyclic code(1372, 685)
QC LDPC(1008,223)
QC LDPC(504,250)
Uncoded BPSK

Figure 1. BER performance comparison of classical cocyclic code with N = 500, 1372 and classical
quasi-cyclic codes with code rate R = 0.5. To achieve the bigger length of cycle, the prime numbers
p = 5, 7 more than 4 (for avoiding 4-cycles) are taken in the construction method. If the input is taken
in the model of the Gaussian white noise channel (GWNC), we apply the quasi-Jacket block matrix to
construct generator matrices. On the other hand, the quasi-cyclic codes with similar length are also
constructed.

In the following, we compare the proposed quantum cocyclic codes to the quantum
Reed-Solomon coding method with the previous work in ref. [38] under the 0.5 coding rate
of constructed codes in Figure 2. The designed quantum codes with lengths N = 500, 1372,
respectively, and similar length of CSS-type quantum Reed-Solomon (RS) codes are taken for
comparison. Here, we take the generator in terms of the similar method from Equation (31)
with size N = 1024, 4096 for parameter m = 5, 6 respectively. Furthermore, similar lengths of
quantum Reed–Solomon codes are constructed according to the circulant permutation of two
classical codes in its construction method. Here, we take the prime number p = 31, 61, so
that the codes of size N = 930, 3660, respectively, are gained for comparison.

0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024
Flip Probability f

m
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Quantum RS code, N=1024,
Quantum RS code, N=4096
Quantum cocyclic code, N=930
Quantum cocyclic code, N=3660

Figure 2. Comparison of decoding error rate of the proposed quantum cocyclic codes (red) and
conventional quantum Reed–Solomon LDPC codes (blue). Here, the proposed quantum codes
with lengths N = 930, 3660 are generated by m = 5, 6 on a binary symmetric channel, and the
conventional quantum LDPC codes are obtained with similar lengths with rates Rq = 0.50, respectively.
For simplicity, assuming the equal error rate of two kinds of errors X and Z, only the bit error rate of
flip probability fm is shown here.
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In the SNR range, it is shown that the taken two shorter lengths of quantum codes
have better performance from 0.2 to 0.4 dB than the longer one. However, owing to the
close cycles and their bit-flip error correction capability, the higher length of code shows its
superiority with increasing length.

4. Conclusions

The coding method of massive data has important applications in the field of infor-
mation transmission and big-data processing. With the rapid development of quantum
computing, this class of coding construction becomes one of the research fields of quantum
information. In this paper, based on a class of circulant permutation matrices, we presented
quantum cocyclic stabilizer codes in terms of two long-length block matrices. Motivated by
the advantage of convenient and low-complexity implementation, a special family of Jacket
block matrices is applied to the generator construction of a stabilizer. The presented method
can construct long-length quantum cocyclic codes based on the iterative coding process.
If the involved parameters are designed appropriately, the gained quantum codes have no
4-cycles in their generators, and the LDPC codes have good performance. In terms of the
analysis for marginal flip probability fm about our proposed codes, the good performance
of the sparse matrices that appeared with a bit error rate is shown in Section IV. Therefore,
the obtained quantum cocyclic stabilizer codes can be potentially applied to the future
quantum information field of processing massive data.
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