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1. Introduction

There it little doubt now that interactions between any separated physical objects
are always transmitted (mediated) by some continuous mediators: by elastic medea
in the nonrelativistic case or by fields and field-like objects (e.g. metric tensor in
GR) in the relativistic case. In both cases, the interaction transfer between distant
objects takes some time and the energy-momenta lost by one object reaches the other
object with some retardation: with acoustic delay caused by the limited speed of
sound in the elastic medium, or with relativistic retardation caused by the limited
speed of light. While the energy-momenta are en-route, they are stored by the
mediator of interactions.

The standard approach to formulation of mechanical problems with distant in-
teracting objects usually suggests the dilemma: either to consider the transmitter
of interactions in its full details with explicit description of the excitation and prop-
agation of corresponding waves, or to neglect the retardation effects and the inertial
properties of the transmitter completely. In the first extreme, one may be helped by
the acoustics and the field theory, in the second extreme, by the apparatus of the
Hamiltonian or Lagrangian formalisms.

However, there is a large intermediate area of problems, where the retardation of
interactions and the inertia of the mediator cannot be neglected, and the formulation
and solution of the full-detail wave-propagation task is too difficult or impossible.
It is necessary to develop the methods of the formulation, analysis, and solution of
the mechanical problems, where the retardation is essential and the explicit consid-
eration of waves should be avoided.

In case of the relativistic processes with strongly interacting particles, the need
for such methods is especially acute, since the very existence of the classical ana-
logues of the corresponding quantum fields (e.g. of the quantum quark-gluonic field)
is still problematic.
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As the answer to this and similar needs, the construction of the various relativistic
many-times (MT) models [1-5] and direct interaction (RDI) theories, classical and
quantum [6-24], and of predictive mechanics [27-30], was undertaken.

The considered relativistic MT models start from general explicitly Poincare-
invariant Newton-type equations of motion, but then, for various reasons, sacrifice
the relativistic causality in favour of possibility of the Lagrangian and Hamilto-
nian formulations with corresponding conservation laws and in favour of getting the
closed-orbit solutions. They generally lead to integral conservation laws, in par-
ticular, to conservation laws [5] involving integration over time to +∞, which are
essentially post-mortem relations. The inertial properties of the mediating field (”in-
ertia of interactions”) is not considered explicitly, though may be taken into account
indirectly by its inclusion into the expression for the canonical momenta.

RDI theories take into account the inertia of the mediator and the relativistic
relation between energy and mass. They are able to describe elastic scattering and
the orbital motion. The common idea of all RDI theories is to replace the actual
retarded interactions by some ”equivalent” instant interaction compatible with the
structure of the Poincare group and able to give the same scattering and stationary
states predictions as the field theory. In most of these theories, the interaction is fixed
by one scalar function interpreted as the full (rest) mass of the particle system. In
some versions (based on the Pfaff equations [15]), a second scalar function is present
in interaction terms.

The structure of the Poincare group permits different ways to separate the inter-
nal motion, to introduce interaction terms, and to select the foliation of the space-
time. These ways, called the forms of the relativistic dynamics [6,7,8,12,14,19,24],
correspond to different physical assumptions about the inertial properties of the
mediator of interactions. For example, the point form of dynamics corresponds
to the assumption that the mediator has the 4-momentum, but has no spin (i.e.
no momenta corresponding to the spatial and the Lorentz rotations). The instant
form of dynamics means that the mediator has the energy and the momenta cor-
responding to the Lorentz rotations, and has no other momenta. These and other
forms of dynamics were found to be equivalent [14] in the sense that, for the same
interactions fixed by expressions for the total mass, they predict the same scatter-
ing crossections and the bound state energies in the quantum case. (By means of
the Lorentz-invariant classical limit [18], the similar statements about the canonical
scattering transformations and mass/period ratios for finite motion solutions can be
obtained for the classical case.)

The main difficulty of the RDI theories is that they give the trajectories of
particles in some phase spaces, but not in the physical Minkowski space M4 with
unambiguously measurable coordinates. It was first noticed in the Hamiltonian
formulation, where the famous ”no-interaction” theorem [8,26] excluded the coin-
cidence between the canonical coordinates q and the Minkowski space coordinates
x. The absence of coincidence itself is not a major problem since some functions X
of the canonical variables Q=(p,q) and of the evolution parameter T may be found
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that are transformed as points x of the Minkowski space, and one may try to inter-
pret these functions as space-time coordinates of particles [20-25]. The real physical
problem is that in case of several interacting particles the interaction terms cannot
be expressed through the differences of coordinates X, so the strength of forces be-
tween particles cannot correspond to particle closeness in M4. In these conditions,
it is difficult to understand how coordinates X can be measured, and, if measured,
why the results of measurements by means of different probing particles will be the
same. This makes the choice between different possible definitions of X uncertain
and their interpretation ambiguous. The definition of interaction with an external
field given in M4 becomes a problem as well.

These difficulties may look differently in different formulations of RDI theories,
but everywhere the definition of measurable coordinates X and of interaction with
external fields are a problem. Since the origin of these problems is the violation
of relativistic causality [31], some reflection of these problems should be expected
in other approaches disregarding the causality. Especially serious these problems
become in case of many particles, when the system closed (in the terminology of
Havas) contains subsystems which are open with respect to interactions with the
rest of particles.

These difficulties limit the domain of reliable practical applicability of the RDI
theories and other approaches, disregarding the relativistic causality, to the estima-
tion of time-independent values like S-matrix elements and the energies of the bound
states (and of their classical analogues) and make these approaches inadequate when
external fields are present.

In the present paper, we consider a causal version of relativistic MT mechanics
(with retarded interactions only) and develop it making a step toward a field theory
by introducing into the equations of particle motion a new mediator of interactions,
having, besides inertia, some field properties. The introduced mediator of interac-
tions is able, like fields, to pass interactions with causal retardation, but is, like the
potential, unable to excite its internal degrees of freedom. Such mediator can be
considered as a very simplified model of a field, so we will call it a reduced field (RF).
While acting on particles, RF is accumulating from particles and passing to parti-
cles, besides the energy, all kinds of linear and angular momenta, so its state may
be described by the set of 10 values corresponding to 10 generators of the Poincare
group.

With respect to its inertial properties, RF is similar to the most general mediators
of the RDI theories. However, the forces, produced by RF, unlike forces of RDI
theories, depend on retarded positions, velocities, and, possibly, accelerations of
particles, as the Lienard-Wiechert forces do in the electromagnetic theory. Besides
the dependence on the particle coordinates and velocities, the RF forces, generally,
depend on 10 values describing the state of RF. The last dependence is essential
for the existence of models describing elastic scattering and periodic (precessing)
orbital motion of strongly interacting particles.
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The relativistic classical mechanics with retarded interactions transmitted by
RF is a many-time theory of the Newtonian type. However, the introduction of the
description of the state of RF and the completion of the equations of motion by
the equations for RF evolution, eliminates the difficulties with the energy-momenta
conservation laws and makes the theory logically closed. The respecting of the
causality principle removes any problems with the measurability and interpretation
of the X coordinates. In this respect, the mechanics with RFs is as fundamental as
the nonrelativistic Hamiltonian mechanics, but is more general and more accurate
at high velocities. It is formally independent from the classical and quantum field
theory, though systematically uses the field picture as the source of inspiration.

The properties of RF and of mediators of other classical theories can be illus-
trated by table:

Mediators: Potential Rel. potential Reduced field : : : Field

energy Yes Yes Yes Yes Yes
momenta No Yes Yes Yes Yes
retardation No No Yes Yes Yes
excitations No No No : : : Yes

The dots here stand for the mediators intermediate between RF and a field and
describing explicitly some of the field excitations.

The main advantage of the explicit use of retarded arguments in the interaction
terms is the possibility to formulate equations of motion in terms of the physi-
cal (measurable) Minkowski space coordinates and combine freely the interparti-
cle interactions with the interactions of particles with external fields given in the
Minkowski space. The main disadvantage of such theory is that it falls outside
the well-developed Hamiltonian and Lagrangian formalisms in their usual forms (its
possible relations with various generalizations [32-35] of these formalisms remain un-
clear). Due to this circumstance the standard methods of quantization based on the
Hamiltonian and the Lagrangian formulations do not work for RF and, at present,
we may consider the classical version of the RF theory only.

The equations of motion in case of retarded interactions belong to the domain of
the theory of differential equations with deviated arguments [36-38]. The solutions
of such equations show, generally, more complicated behaviour than the solutions
of the equations without retardation. They often demonstrate various instabilities
similar to instabilities known in the theory of automatic regulation with retarded
feedback. One of the causes of possible instabilities of solutions is the absence of an
explicit lower bound of the energy of RF. To obtain physically interesting models
with stable particle motion, one has to choose carefully the magnitude and direction
of forces and their dependence on the state of RF. The first concern of the RF theory
is the description of the family of forces leading to stable solutions.
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In [39], the linear motion of two particles interacting via RF was analyzed and it
was shown that certain choice of the dependence of forces on the state of RF makes
the scattering elastic at arbitrary high energies.

In the present paper, we, besides the general introduction into the mechanics
with RFs, analyze the planar motion of two particles interacting with retardation
and construct retarded forces leading to an elastic scattering of the particles, and to
stable orbital motion in case of attraction. The main attention in the paper will be
paid to the correspondence between the structure of forces and the physical intuitive
picture of particles interacting through fields coating the particles.

NOTATIONS
x = (t;x); p = (p0;p) denote the coordinate and momentum of the particle,

m = |p| is its mass, h = p=m is its 4-velocity. � denotes the proper time: d� = dt=h0.
Derivatives with respect to � are denoted by dot. The scalar products x ·p will imply
the metric g=diag(1,-1,-1,-1). Vector Ri = −Rj = xi − xj, H = hi + hj.

The index ret means the value at the retarded position xret
j (xi) of particle j with

respect to the position of particle i. Rr
i = xi − xret

j is the null vector: (Rr)2 = 0.
Index r means that one of the arguments of a two-argument quantity is retarded.

Scalar Ti = Rr
i · hi is called the retardation time, scalar Di = Rr

i · h
ret
j plays role

of a distance between particles i; j in the rest frame of particle j.
s = x∧p means the antisymmetric tensor (spin) with elements sab = xapb−xbpa.

The scalar product of vector y and tensor s means y · s = −s · y = y · x p− y · px.

2. Equations of motion

The state of the system of particles and of RFs is fixed by the coordinates and
momenta of particles x; p and by the states U of RFs.

We consider the simplest possible case, when particles are unchangeable and
have no self-interactions. Then the masses of particles are constant and the state U
of each reduced field may be fixed by its 4-momentum Q and spin S describing the
internal rotational state of RF. Antisymmetric tensor S has 6 independent elements,
so the state U has 10 independent components. RF is not a particle and has no
x-coordinates.

Like the nonrelativistic potential which may describe paired, triple, or multipar-
ticle interactions, vanishing when any of the particles in the subset is far away and
depending, correspondingly, of two, three, or more particle coordinates, RF may
as well describe paired, triple, and so on, interactions and depend on two or more
points xi, or, since points xi are functions of times �i, depend of two or more times
�i.

We will define Q; S through functionals q; s describing the momentum and angu-
lar momentum contributions to RF from each particle and depending on one time �
only. (In general case, when the self-interactions are admitted, the values q; s may
get the physical status of states of RFs responsible for the self-interactions. Here
we use them as auxiliary quantities.) We put
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Qij...(�i; �j; : : :) = qi,...(�i) + qj,...(�j) + : : : ;

Sij...(�i; �j; : : :) = sij...(�i; �j; : : :)−Xij... ∧ Qij...;

where
sij...(�i; �j ; : : :) = si,...(�i) + sj,...(�j) + : : :

and Xij... = X(�i; �j ; : : :) is some collective (”center of mass”) coordinate of the sub-
set of particles ij : : :. The subtraction of term X ∧Q makes tensor S translationally
invariant.

In case of paired interactions, RF states U depend on two times and values Q; S
are

Qij = qi,j + qj,i;

Sij = si,j + sj,i −Xij ∧Qij:

In this case, the equations of motion of particles i = (1; : : : ; N) and RFs are

dxi = d�ipi=mi; (1)

dpi = d�i(Fi +
∑
j

Fij); (2)

dqi,j = −d�iFij; (3)

dsi,j = −d�ixi ∧ Fij; (4)

where one-index force Fi describes interaction with an external field and two-indeces
forces Fij describe interactions through reduced fields. Force Fi depends on xi; pi
only and does not contribute directly to the momentum and spin of RFs.

In case of multiparticle forces, the equations of motion are similar, only the
simple index j is replaced by appropriate collective index J = (j; : : :).

Unlike the Hamiltonian theory, the forces F in this theory are not defined as
the gradients of the mediator energy, but, conversely, the differentials of the state
U are defined through the forces which should be specified as functions of x; p; U
respecting the causality principle.

This principle, generally, allows the dependence of force Fij on any functional of
the present trajectory xi(told), told ≤ t, and of retarded parts of other trajectories
xj(told): told ≤ tret, (xi − xj(told))2 ≤ 0. In particular, the forces may depend on
the last RF state Uij(�i; �

ret
j ) or on an earlier RF state Uij(�

r
i ; �

ret
j ), where � ri < �i

and is defined through other variables in some Lorentz-invariant way. Typically, the
forces have form

Fij = Fij(xi; pi; x
ret
j ; p

ret
j ; ṗ

ret
j ; p̈ret

j ; Uij(�i; �
ret
j ); Uij(�

r
i ; �

ret
j ); : : :):

If we had admitted the self-interactions of particles, the forces would depend on
the functionals q; s separately. In the simplest case considered in this paper, the
dependence of forces on RF states is restricted to the dependence on U only.
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Equations of motion (1-3) do not depend on the assumption that particles are
unchangeable. This assumption puts the resrtriction on forces: to keep the masses
m constant, all forces should be orthogonal to p:

p · F = 0: (5)

The initial data for the equations of motion should include the pieces of trajecto-
ries of particles and of evolution of states U (or functionals q; s) during some period
in the past. This period should be long enough to contain all the retarded moments
� ret
j (xi) for all the present points xi. The initial trajectories and RF states need not

satisfy any equations and may be arbitrary. The freedom of their choice physically
corresponds to the freedom of choice of forces from external fields in the past.

The equations of motion are stating that, if some energy-momentum or angular
momentum is given to particles by RF forces, the same amount of energy-momenta
is taken from RFs. So, if we define the total energy-momenta and the total angular
momentum of the isolated system of particles and of RF as

Ptotal =
∑
i

pi +
∑
ij

Qij;

stotal =
∑
i

xi ∧ pi +
∑
ij

si,j

their conservation is a trivial consequence of the equations of motion. Indeed, in
the absence of an external field the differential of the total 4-momentum obviously
vanishes

dPtotal =
∑
i

dpi +
∑
ij

dqi,j = 0:

Since (due to identity dx ∧ p = 0) the differential of the angular momentum of the
particle is

d(xi ∧ pi) = xi ∧ dpi = xi ∧
∑
j

Fijd�j ;

the differential of the total angular momentum vanishes as well

dstotal = d(
∑
i

xi ∧ pi) +
∑
ij

dsi,j = 0:

In particular, if we consider the collision of particles and the reduced field is
the same before and after the collision (Qinitial = Qfinal; sinitial = sfinal), the energy-
momenta of the particle system is conserved in the collision. (If Qinitial = 0, angular
momentum sinitial of RF may be replaced by its spin Sinitial.)

In exceptional cases, when both the energy and the squared mass of the difference
∆U = Ufinal−Uinitial are positive, one may try to interpret ∆U as the energy-momenta
of the radiated field. It can be done, for example, for the electromagnetic interaction
described by the Lienard-Wiechert forces with the radiation friction term (compare
the method of calculating the radiation in [42]). But usually, the nonzero value of
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∆U has no clear interpretation and indicates that the reduced field description of
the mediator of interaction is inadequate and that more detailed description of the
mediating field, including its excitation and radiation properties, is needed.

The condition ∆U = 0 of elastic scattering limits the domain of complete logical
consistency of the mechanics with RFs. For this reason, the existence of the family
of forces, for which ∆U is exactly zero in a wide region of relative velocities of
particles, is a crucial question of the theory. In this paper, we explicitly construct a
large family of such forces, exploiting the possible dependence of forces on the state
U .

The description of RF by quantities U does not tell how the field is distributed
in space, it only tells how much energy-momenta the field contains. In this respect,
it is similar to the nonrelativistic potential which tells how much energy the field
has, but not where in the space it is. However, the dependence of forces on the state
U indirectly indicates, how close to the particles RF is accumulated.

The equations of motion are time-asymmetrical, and so are the solutions of these
equations. The equations of motion are asynchronous. They can be integrated for
each particle i together with relevant functionals qi,...; si,... independently of other
particles and of other functionals while the retarded moments � ret(xi) are contained
in the known parts of trajectories. In these respects, the solutions of retarded
equations of motion are qualitatively different from the solutions in the Hamiltonian
theory. However, certain choice of dependence of forces on U may make solutions
rather close to those of the Hamiltonian theory at low velocities.

Though the equations of motion are asynchronous, one may as well consider
proper times � as functions of some common evolution parameter t and solve equa-
tions synchronously, if it is convenient. The solution is identically the same in both
cases.

The choice of evolution parameter is, generally, subject only to the condition that
all vectors xi(�i(t))−xj(�j(t)) are always space-like. Let us consider ”synchronized”
equations of motion.

Denoting the evolution parameter by t and the time derivative d=dt by prime,
we may write equations of motion as

x0i = � 0ihi;

p0i = � 0i(Fi +
∑
j

Fij);

q0i,j = −� 0iFij;

s0i,j = −� 0ixi ∧ Fij:

From these equations one can extract equations for the full state of RF. Summing
the equations of motion for q, we obtain

Q0 = −F+; (6)
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where
F+ = Fi�i

0 + Fj�j
0

is a sum of forces at time t.
The definition of RF spin depends on the choice of collective coordinate X.... Let

Xij = (xi +xj)=2. Then, the time derivative of RF spin for two particles takes form

S 0ij = −[Ri ∧ F
− + (hi�i

0 + hj�j
0) ∧Q]=2; (7)

where
F− = (Fij�i

0 − Fji�j
0):

Generally, equations (6-7) are coupled with equations for differences qi,j − qj,i
entering force F−, if forces depend on U . This coupling may be eliminated, if the
correspondence between two arguments of Uij(�

r
i ; �

ret
j ) is reciprocal:

xri = �(xret
j ); xret

j = �(xri ):

Then both forces Fij; Fji will depend on the states on the same family of hyperplanes
and the differences qi,j − qj,i will drop out from force F−.

The correspondence (synchronization) � between two arguments of U must be
unambiguous, monotonous in time, and Lorentz-invariant. It should, for good con-
vergence to the nonrelativistic limit, place the particles as symmetrical as possible
in each other field, that is to make the distances Di; Dj close to each other and the
retardation times Ti; Tj close to each other. In [39], the exact equality of retardation
times Ti; Tj was used as synchronization condition of after-scattering trajectories.
In case of large accelerations, such condition is ambiguous. We will use another
condition

Ri ·R
r
i = Rj · R

r
j (8)

satisfying all the above requirements in the general case. Differentiating (8), we get
the relation between � 0i ; �

0
j:

� 0iKi = � 0jKj; (9)

where
Ki = hi · (R

r
i +Rr

j) +Ri · (hi − h
ret
j d�

ret
j =d�i):

The derivative d� ret
j =d�i can be found by differentiating (Rr

i )
2 = 0. It gives

d� ret
j =d�i = Ti=Di:

In the choice of evolution parameter t, it is advantageous (though not obligatory)
to define it to have the same value for points xri ; x

ret
j . In case of synchronization (8),

evolution parameter t, according (9), may be defined by

dt = kd�iKi;
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where k is a scale factor. Since at small accelerations Ki is close to Ti + Tj, it is
convenient to put k = 1=(Ti + Tj), what finally gives

t =
∫

Kid�i

(Ti + Tj)
: (10)

Then, when accelerations are small, � 0i ≈ � 0j ≈ 1; (xi−xj) ·H ≈ 0: In such cases,
more simple synchronization

(xi − xj) ·H = 0 (11)

may be used.

3. Forces and the Field Picture

The freedom of the choice of forces F from RFs is larger than the freedom of the
choice of the interaction potential in the nonrelativistic Hamiltonian or Lagrangian
mechanics and in RDI theories. But the subset of ”good” forces leading to physically
reasonable solutions of equations of motion is relatively narrow and its selection
is less easy than selection of ”good” Hamiltonians. To find the simplest families
of ”good” forces, we will appeal to the naive physical field picture of interacting
particles.

We may imagine particles as some fields with singularities moving with accel-
erations, if the stable (symmetrical) configuration of the field near a singularity is
perturbed by proximity of other singularities. In some approximation, the field with
several singularities may be represented as the sum of unperturbed fields of sepa-
rate singularities and some (nonlinear) corrections. The separate singularities with
their unperturbed fields are described in equations of motion as particles in states
x; p. The energy-momenta of the interference terms and of the field corrections are
described by the state U of RF. In case of two particles, RF energy-momenta is just
the difference between the initial energy-momenta of the field of two infinitely far
separated singularities, and the energy-momenta of the field with two singularities
at finite distance. In case of more particles, the partial contributions of different
fields and forces are singled out as separate RFs.

Clearly, the separation of the field into ”particles” with constant masses and some
perturbation used as a ”mediator of interaction”, implied in all classical theories, is
conventional and is not always justified. In particular, it is not quite adequate when
the energy of RF is negative and comparable with the masses of (free) particles. We
keep to the assumption m =const for simplicity of equations.

When particles are far separated, the perturbation of their fields are small, and
the force acting on particle i from the side of particle j is proportional to the
unperturbed field of particle j at point xi. This force depends on the positions and
velocities of particles, but does not depend on the state U of RF, or on accelerations.
It usually dominates, especially at low velocities. We shall call it a primary force

176



and denote F P . The Coulomb force is an example of a nonrelativistic limit of a
primary force.

When particles are close and move fast, the perturbation of their fields creates
additional forces. These forces are more complicated than F P and may depend
(besides positions and velocities) on accelerations of particles and on the state of
RF. There are three simplest possibilities.

1) The field perturbations may fly away as a radiation and carry away their
energy-momenta. Then they may produce forces only at the moment when the
radiation wave passes the particle. The amplitude of the wave from particle j and
the corresponding force acting on particle i should depend on the acceleration of
particle j, and, hence, on the force acting on particle j. Other words, the force
acting on one particle creates, after a proper retardation, the force acting on other
particle. We shall call such forces echo forces and denote them FE. The part of
the Lienard-Wiechert force proportional to acceleration is an example of an echo
force. (Interactions, dependent on accelerations, were considered in the Lagrangian
formulation as well [35]).

2) The field perturbations may accumulate somewhere near the particles. Since
they may not accumulate indefinitely, and since the perturbed field configurations
are generally unstable, they should return their energy-momenta back to the par-
ticles by means of some forces. This process can be interpreted as a decay of field
distortions. We shall call the corresponding forces decay forces and denote them
FD. Decay forces should depend on the state U of RF.

3) The field perturbations may accumulate somewhere near the particles, but
before their dissipation in space near the particles the perturbation wave may reach
the second particle and pass essential part of its momenta to that particle. It may
happen, if the field of two particles concentrates near a line connecting particles and
behaves as an elastic string. The wave along a string may create relatively strong
echo force FE, dependent both on the accelerations of particles and on the state of
RF.

In the next three sections, we shall construct the simplest forces F P ; FD; FE

having the properties suggested by the field picture. Combining these forces, one
may build models of relativistic physical systems of interacting particles with desired
behaviour, in particular, systems with elastic scattering and with finite motion. The
exact account of electromagnetic interactions (by means of the Lienard-Wiechert
forces) can by made as well.

4. Primary forces

Let us suppose that the field belonging to a particle and moving with it be-
comes spherically symmetric for the isolated particle and rotationally symmetric
around the line connecting the pair of interacting particles, if the particles are at
rest long enough. Then, the force in the static case is central and can be written as
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f = Rv,(|R|)=|R|, where v, means the derivative of function v with respect to its
argument. Arbitrary scalar function v is the static potential related with the field.

In the theory with causal retardation, the field may not change immediately
everywhere, when particles accelerate. Let particle i be at point xi and particle j
be moving. If particle j accelerates, its field at point xi continues to move during
the retardation time T in the direction of velocity hret

j , which the particle j had in
its retarded position xret

j (xi). Hence the force, acting on particle i at point xi is
directed not toward point xret

j , but toward the extrapolated position

xext
j = xret

j + hret
j

T

Cr
ij

;

where particle j would arrive at time t if it were moving without acceleration. In
the last expression, Cr

ij = hi · hret
j is the ratio of the differentials of the time in the

rest frame of particle i (where T is defined) and of the time in the rest frame of
particle j. So, the force acting on particle i has not the direction R = xi − xret

j , but
the direction

Rext
i = xi − x

ext
j :

It is easy to check, that hi · Rext = 0 as it is required by the condition of constant
particle mass: p · F = 0.

As an illustration of this, let us take the Lienard-Wiechert force FEM = eih · F ,
where ei is the charge and F is the tensor of the electromagnetic field

F = ejR
r ∧ (h ∧ Rr[Rr · ḣret − 1]=D − ḣret)=D2;

where D = (xi − xretj ) · hretj .
The primary force (containing no accelerations), is

F P
EM = −eiejh · (R

r ∧ hret)=D3 = Rexteiejh · h
ret=D3

and is directed just along the vector Rext. The ”echo” part of the Lienard-Wiechert
force which is proportional to acceleration and produced by the wave of the syn-
chrotron radiation, has different direction dependent on the distance.

Consider now the relation of the force F P with the relativistic generalization of
the static potential. The relativistic invariance leaves a large freedom in the choice
of such generalization. However, the above assumption that each particle drags its
own field means that the strength of the force acting on particle i from the field of
particle j should depend on distance Di = (xi − xret

j ) · hret
j in the rest frame of the

field.
Making the simplest assumption that the energy increment d�iF

P
i ·h

ret
j of particle

i in the rest frame of particle j depends only on the increment of distance D (and
does not depend otherwise on velocity hi of particle i), we come to relation

F P
i · h

ret
j = − ¯̇vi; (12)
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where the bar means that, according to the definition of the primary force, the terms
with accelerations ḣ; ḣret are omitted:

¯̇vi = ¯̇Div
, = (Cr

ij − Ti=Di)v
,: (13)

Since F P = Rext�, where � is a scalar function, from (12) and relation Rext · hret =
D − T=Cr, we obtain

F P
i = −Rext

i

Cr
ij

D
v,: (14)

Returning to the primary electromagnetic force F P
EM, one may see that

v,EM = −eiej=D
2; vEM = eiej=D;

as it could be expected.
Primary forces of the form (14) make it possible to introduce 4-vector Q̂ related

with potential v and describing the adiabatic approximation of the RF energy-
momentum Q. Unlike vector Q, dependent on the history of motion, vector Q̂
is defined as a function of particles variables only. In this respect, it resembles
relativistic interaction Hamiltonians in RDI theories. The main assumed property
of Q̂ is that

Q̂0=
a.a.
Q0; (15)

where prime means the derivative with respect to some evolution parameter, ”a.a.”
means the adiabatic approximation (omission of acceleration terms), and where only
the primary forces are taken into account.

Condition (15) permits different specific definitions of Q̂ depending on the as-
sumptions about the particle fields. The simplest assumption that the fields of two
particles are similar corresponds to

Q̂ = Hv�;

where � is a normalization factor depending only on hi; hj, and the correspondence
between the points of two trajectories is given by a symmetric condition (8).

Synchronization (8) leads, in a.a., to equalities

� 0i = � 0j = 1; Di = Dj ; Ti = Tj; Cr
ij = Cr

ji; Rext
i +Rext

j = H
2

H2
(D − T=Cr):

This and expression (14) for forces convert equation (6) into

Q0 = Hv,
2

H2
(Cr − T=D):

Comparing Q0 with Q̂0=
a.a.
Hv,(Cr − T=D)�, we finally obtain

Q̂ = Hv
2

H2
:
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Evidently, the energy component Q̂0 → v in the low velocity limit. So, if the
solutions of equations of motion will be stable and Q will remain close to Q̂, we will,
with primary forces (14), come to the usual potential interaction in the nonrelativis-
tic limit.

Static potential may be used as well to define an approximation of spin

Ŝ =
∫
x1 ∧ q̂1d�1 +

∫
x2 ∧ q̂2d�2 −

x1 + x2

2
∧ Q̂;

where q̂ = −Rext

r
v and r = Rext·H = D−T=Cr. Spin Ŝ, generally, is not an adiabatic

approximation of S, since vectors q̂, generally, are not adiabatic approximations of
q (though always q̂i + q̂j = Q̂).

However, in the planar case, Ŝ 0=
a.a.
S 0. Indeed, in this case in the absence of

accelerations trajectories intersect and vectorRext does not change its direction with
time, so the normalized vector Rext

r
remains constant. Hence, the time derivative of

Rext

r
is proportional to accelerations and vanishes in the adiabatic approximation.

So, in this case,

q̂0=
a.a.
−
Rext

r
v0 = −� 0

Rext

D
Crv, = q0

and Ŝ becomes an adiabatic approximation of spin S.

5. Echo force

The echo forces, by definition, depend on the (retarded) accelerations of particles
Aret = F ret=m. Such force may become important, if the mediating field concentrates
near the straight line connecting the particles and ties particles together as a light
elastic string. The simplest field mechanism of an echo force is just a recoil wave
along a string which reaches with a retardation the other end and passes part of its
energy-momentum to the other particle. The maximum force transferable in such
a way is the part of Aret orthogonal to p: FE

max = Aret − hh · Aret: Generally, the
efficiency of the momentum transfer between the wave and a particle may be less
than one, so

FE = aE(Aret − hh · Aret);

where coefficient 0 ≤ aE ≤ 1 may depend on the angles between h;Rr and Rr ; hret.
The simplest echo forces increase, generally, the difference between the action

and reaction, increase the accumulation of the momenta of RF ( especially, of the
spin of RF), and make the motion of particles less stable. It is possible to construct
formally more complicated echo forces, dependent on the sum of retarded values of
accelerations of two particles and on the mentioned angles, which have the opposite
effect. However, it is difficult to understand what processes in the mediating field
could lead to such forces, so we will not consider them here.

180



6. Decay force

The retardation of interactions leads to accumulation of values U , especially of
spin components. The accumulation of RF occurs since the sum of spatial parts
of forces acting on two particles is not zero and the forces are not directed along
a line connecting the particles (the newtonian principle ”action equals reaction” is
violated by retardation). However small, such accumulation would exclude solutions
with periodic orbital motion even at low velocities.

The considerable accumulation of RF may lead to pathological results. In par-
ticular, the RF energy Q0 may tend to −∞ giving the positive infinite energy-
momentum to particles, and may remain negative, when particles separate and
cease to interact. Solutions with large RF may have strange attractors or become
fully chaotic.

The accumulation of values U can be limited by decay forces FD depending on
the state U of RF. The paper [39] demonstrated that in case of motion along a
line the appropriate decay forces linear in U can make RF to vanish with time and
make the scattering elastic at arbitrary high collision energy. In this paper, we will
consider similar decay forces for more complicated case of planar motion. We will
introduce more general decay forces, that are making the state U to tend to some
”equilibrium” value V , where V = (V q; V s) is some (10 component) function of
particle variables. One may interpret the difference U = U −V as some dynamically
created distortion or excitation of the static fields and a slow process of diminishing
of U as a decay of this excitation.

Function V may be arbitrary. For example, one may set the ”equilibrium” value
equal to the adiabatic one V = Û = (Q̂; Ŝ):

Let us consider equations of motion for RF distortion U . Subtracting V 0 from
both sides of equations (6)-(7) (and omitting obvious index ij of S), one gets similar
equations

Q0 = −(fij�
0
i + fji�

0
j); (16)

S 0 = −[Ri ∧ (fij�
0
i − fji�

0
j) +H ∧Q]=2 (17)

where f is the remaining force.
In case of choice V = Û , the remaining force is f = F−F P = F+Rext

i Cr
ijv

,=D and
does not contain most of the principle force. It can be written as f = fA+FD, where
force fA is proportional to accelerations and vanishes in adiabatic approximation
and FD is a decay force depending on the state of RF.

In case of choice V = 0, force f = F and the full RF is considered as a distortion:
U = U .

We will consider analytically only the decay forces linear in distortion U . Such
decay forces may be symbolically written as FD = B U (ret), where B is a linear
operator transforming the complex U of 4-vector and of tensor into 4-vector FD and
index (ret) means that some of the arguments of the state U are retarded.

181



Then equations (16-17) will be linear in U and may be symbolically written as

U 0 = AB U (ret) + AfA; (18)

where A is a linear operator transforming 4-vector fA into the complex U of 4-vector
and of tensor.

Since operator (matrix) B maps the space of larger dimension to space of smaller
dimension, operator (matrix) AB cannot be diagonal, and equations in system (18)
are always coupled. To simplify their analysis we will use the freedom in the choice
of force FD = B U (ret) so as to make equations as little coupled as possible.

First of all, we will use (moving) orthogonal tripod H = hi+hj ; h = hi−hj ; y,
where y is a space-like vector orthogonal to H; h, normalized by y2 = −1, and lying
in the plane of motion. In addition to these vectors, it is convenient to define vectors

h̄i = (Chi − hj)=n; h̄j = (Chj − hi)=n

where C = hi · hj and n = C2 − 1, which are orthogonal, respectively, to hi; hj and
normalized so that hj · h̄i = hi · h̄j = 1, and to define their combinations

H̄ = h̄i + h̄j; h̄ = h̄i − h̄j

with properties

H̄ ·H = 1; h̄ · h = −1; H̄ · h = h̄ ·H = 0:



FD
ji = a0h̄

r
jQ

rr
Hrr−b0y

rSrrhrryrr−ahh̄
r
jQ

rr
hrr−bhh̄

r
jS

rr
Hrrhrr+ayy

rQrryrr +byy
rSrrHrryrr ; (20)

where coefficients a0; b0; ah; bh; ay; by determine the decay rates of different compo-
nents of RF and are arbitrary within certain limits depending on retardation time.

The terms in (19),(20) have a simple interpretation.
The term with coefficient a0 is a force returning the energy of RF back to parti-

cles.
The term with coefficient ah is a force returning the momentum of RF along the

relative velocity h back to particles.
The term with coefficient ay is a force returning the momentum of RF in the y

direction.
The term with coefficient b0 returns to particles the angular momentum of RF.
The term with coefficient bh is a force reducing the element of spin tensor related

with the spatial separation of the field from the particles in the direction of h.
The term with coefficient by is a force reducing the element of spin tensor related

with the spatial separation of RF from the particles in the y direction.
One may see from these comments that all 6 terms in the decay forces (19),(20)

are necessary for the decay of all components of RF state. From the other hand,
the inclusion into the decay force of other terms xc would increase the number of
forces of the same direction and make the system of equations more coupled. So,
little freedom of choice is left, if the force is linear in the state U and the coupling of
equations is reduced to minimum. (19),(20) is a generalization of the corresponding
decay force of the one-dimensional case [39] to the case of planar motion.

Note that the state of RF in the RHS of (19),(20) is completely retarded (all 6
terms have index rr). It is not required by causality and, in [39], both completely
retarded and partly retarded forces were considered for the one-dimensional case.
However, in the 3-dimensional case, only completely retarded version of FD gives
equations for U uncoupled with equations for differences qi,j−qj,i. To avoid a lengthy
analysis of equations, where the quantities of different asymptotical behaviour are
coupled, we will consider here only fully retarded decay forces.

7. Decay of RF excitations

The inhomogeneous equation (18) describes the competition of two processes:
the creation of new RF distortions by the force fA and the decay of RF distortion
with the help of force FD. The decay is expressed by the homogeneous equation

U 0 = AB U (ret): (21)

Operator A depends on coordinates and velocities of particles, depending, in their
turn, on time. Operator B may depend on velocities and distances. With full
account of this dependence, the analytic consideration of solutions of equation (21)
is difficult even for the simplest choice of operator B.
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To simplify the task, we will use synchronization (8) with time (10) and consider
the estimates of the asymptotic behaviour of U in the rough adiabatic approximation,
where change of vectors hi; hj ; R during retardation time is neglected, so that

� 0i = � 0j = 1; H · R = 0; Cr = C; : : :

and retardations of arguments are the same for both particles. In this approximation,
system (21) is similar to system

U 0 = ZU ; (22)

where Z is a constant matrix and which can be analysed by finding the proper
values of Z. The main difference of (21) from (22) is that the state U in RHS of
(21) has some retarded arguments. To reduce (21) formally to (22), we introduce
the retardation operator E acting on elements of state

E : Eq = qret; EQ = Qrr; ES = Srr;

and include this operator in the elements of Z so that

ZU = ABU (ret):

Equation (22) has exponential solutions U = U(0)exp(t
). The retardation
operator acts on them as the multiplication operator:

EU = exp(−tr
)U ;

where tr ≥ 0 is the retardation (in our approximation, tr = Rr · Hr=|Hr| =
(T + D)=|H|). The spectrum of proper values 
 for (22) can be found from the
characteristic equation

|Z − 
I | = 0;

where the elements of Z containing operator E depend on 
.
If all the proper values of operator matrix Z have negative real parts, force FD

will constantly diminish RF distortion Q;S and solutions will be stable [36]. Let us
write matrix Z for forces (19),(20) explicitly.

In case fA = 0 and � 0i = � 0j = 1, (16),(17) turn into

Q0 = −(FD
ij + FD

ji ); (23)

S 0 = −[Ri ∧ (FD
ij − F

D
ji ) +H ∧Q]=2: (24)

The combinations of forces (19), entering these equations, in our approximation
are

FD
ij +FD

ji = a0H̄(QH)rr +ahh̄(Qh)
rr+ bhh̄(SHh)

rr + 2ayy(Qy)
rr+ 2byy(SHy)

rr; (25)

FD
ij − F

D
ji = a0h̄(QH)rr + 2b0y(Shy)

rr + ahH̄(Qh)
rr + bhH̄(SHh)

rr:
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Passing to scalar products with H; h; y, we get from (23),(25)

Q0H = −2a0(QH)rr; Q0h = 2ah(Qh)
rr + 2bh(SHh)

rr;

Q0y = 2ay(Qy)
rr + 2by(SHy)

rr:

The scalar products with F− = FD
ij − F

D
ji are

F−H = 2ah(Qh)
rr + 2bh(SHh)

rr; F−h = −2a0(QH)rr;

F−y = −2b0S
rr
hy:

This and (24) give
S 0hy = −a0Ry(QH)rr + b0Rh(Shy)

rr;

S 0Hh = a0RH(QH)rr + ahRh(Qh)
rr + bhRh(SHh)

rr −
H2

2
Qh;

S 0Hy = b0RH(Shy)
rr + ahRy(Qh)

rr + bhRy(SHh)
rr −

H2

2
Qy:

One may note, that equations for Qh;SHh are fully coupled and equations for
Qy;SHy are fully coupled. It happens because the corresponding terms in the decay
forces have the same direction. The equation for Shy remains uncoupled from the
equation for Qy in spite of the coincidence of the directions of the relevant terms in
the force, since one term is odd to the interchange of particles, while the other term
is even.

It is convenient to group the fully coupled equations together and write U as a
column 

QH
Shy
Qh
SHh
Qy
SHy


:

Then the matrix Z corresponding to the above equations is

Z =



−2a0E 0 0 0 0 0
−a0RyE b0RhE 0 0 0 0

0 0 2ahE 2bhE 0 0
a0RHE 0 ahRhE −

H2

2
bhRhE 0 0

0 0 0 0 2ayE 2byE

0 b0RH ahRyE bhRyE −H2

2
0


;

This matrix has four diagonal blocks, above which the matrix is empty. Therefore
the characteristic function � = |Z − 
I | is a product of four functions � = �1�2�3�4,
where

�1 = −
 − 2a0E;
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�2 = −
 + b0RhE;

�3 =
∣∣∣∣−
 + 2ahE 2bhE
ahRh −

H2

2
−
 + bhRhE

∣∣∣∣ = 
2 − 
(2ah + bhRh)E + 2bh
H2

2
E;

�4 =

∣∣∣∣∣−
 + 2ayE 2byE

−H2

2
−


∣∣∣∣∣ = 
2 − 
2ayE + 2by
H2

2
E;

and
E = e−trγ :

Function �(
) has on the complex plane the zeros of all four functions �1; : : : ; �4.
The real part of the position of the rightmost zero of the rightmost zeros of these
functions determines the general asymptotical behaviour of the solution U . If this
real part is negative, the forces diminish |U| and make the motion of particles stable.
Otherwise, they make it unstable.

By the change of variables � = tr
, the analysis of zeros of all factors in � is
reduced to the analysis of two functions

z1 = � + �e−λ; z2 = �2 + (��+ �)e−λ;

where �; �; � are parameters expressible through a0; : : : ; by.
Consider function z1. At small � the rightmost root �0 of equation z1 = 0 is real

and close to −�. At the point � = 1=e, where the function �(�) = −�eλ reaches
the maximum �̂, the rightmost root is �0 = −1 and becomes double. At greater �,
the root �0 splits into two complex roots, which move to the right with the growth
of �. At � = �=2, roots �0 become purely imaginary: �0 = ±i�=2. Therefore, the
region of �, where Re�0 < 0, and the extremal point in it are

0 < � < �=2; �̂ = 1=e; �0(�̂) = −1:

Returning to functions �1; �2, we obtain limitations on parameters a0; b0:

0 < 2a0tr < �=2; 0 < −b0Rhtr < �=2:

The fastest decay rate of components QH;Shy is 
̂0 = −1=tr and is reached at

â0 = 1=(2tre); b̂0 = −1=(Rhtre):

Consider now the function z3. The dependence of the rightmost root �0 on
parameters �; � is easier to analyse numerically. The calculations give the limitation

0 < � < 1:5 : : : ; 0 < � < f(�);

where the borderline curve f looks as distorted semicircle. At small �, f 0(�) ≈ 0:8.
Then, at about � = 1, f reaches maximum fmax ≈ 0:55. Near the other end � ≈ 1:5,
the curve goes steeply to zero, f 0 →−∞ at the end point.
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The fastest decay rate �̂0 ≈ −0:55 corresponds to

�̂ ≈ 0:5; �̂ ≈ 0:1006:

The fastest decay rate �̂0 ≈ −0:55 is slower than that obtained for equation z1 = 0,
and is, therefore, the fastest possible decay rate of RF distortion U as a whole.

The relevant limitations on parameters ah; bh; ay; by are obtained from limitations
on �; � by using relations

−2(ah + bhRh)tr = �; bhH
2t2r = �;

−2aytr = �; byH
2t2r = �:

The fastest possible decay is obtained for

b̂h =
�̂

H2t2r
; âh = −

�̂

2tr
−

�̂Rh

H2t2r
;

b̂y =
�̂

H2t2r
; ây = −

�̂

2tr
:

The values â0; b̂0; : : : turn into infinity at tr = 0 and at Rh = 0 and become large
near these points, what contradicts to our assumption that accelerations are small.
To remain within the region, where the adiabatic approximation and the analysis
above are applicable, one has, estimating the decay rates, to consider parameters
a0; : : :, limited everywhere, for example, the expressions

a0 =
1

2e(tr +D0)
; b0 = −

1

e

Rh

R2
h + |h2|R2

y + |h2|D2
0

1

tr +D0
; : : :

bh =
�̂

H2(tr +D0)2
; ah = −

�̂

2(tr +D0)
−

�̂Rh

H2(tr +D0)2
;

by =
�̂

H2(tr +D0)2
; ay = −

�̂

2(tr +D0)
:

where D0 is some characteristic small distance below which the decay forces are
switching off. The term |h2|R2

y in the dominator of the expression for b0 does not let
b0 to grow near the points, where R is orthogonal to h, when R is large compared
to D0.

We may conclude, that the parameters in the expressions for the forces FD can
be chosen in such a way, that RF distortion will decay at any energies. The decay
rate is limited: if time is measured in terms of the retardation time tr, it is limited
by the value �0 ≈ −0:55. The maximal decay rate is possible everywhere, except the
vicinities of the points tr = 0,Rh = 0, where the adiabatic condition puts additional
limitations.
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8. Conditions of Elastic Scattering

The conditions of elastic scattering are specially important in the relativistic
mechanics with interactions through RF since they limit the domain of consistency of
the theory. Indeed, RF belonging to a pair of particles, as a mediator of interactions
between these particles, should not disconnect with them. If particles, when they
fly to infinity after the scattering, cease to interact with their RF and leave it in a
nonzero state, it, generally, means that the used reduced description of their fields
is contradictory and more detailed description of the fields is required.

The conditions of elastic scattering can be derived by a method similar to the
method of the preceding section. One has only to take into account that distances
between flying away particles may considerably grow during the retardation time.
The equations with changeable retardation may be reduced to the equations with
constant retardation parameter by a change of variables and by making the param-
eters of the decay force to be time-dependent.

Let us estimate the retardation time for flying away particles. At some distance
from the collision zone, the trajectories of particles become close to the straight rays
coming from one point. Taking this point as the origin of our coordinate frame, we
may approximate the trajectories of particles by expressions

xi = hi�i; xj = hj�j:

Solving then the retardation equation

(hi�i − hj�
ret
j )2 = 0

for � ret
j (and solving similar equation for � ret

i ), we obtain

� ret
j = k�i; � ret

i = k�j; k = C −
√
C2 − 1 =

1

C +
√
C2 − 1

:

The retardation time tr depends on the definition of the evolution parameter t. In
case of the ray trajectories, any reciprocal synchronization gives � ri = � retj ; Di =
Dj ; Ti = Tj and tret = kt, if t is proportional to � . (In particular, it is true for (8)
and (11) synchronizations. Besides, for the ray trajectories (10) give t = �i = �j.)
Hence,

tr = t− tret = t(1− k):

Consider now the homogeneous part of one pair of coupled equations for RF
components, for example, the equations for Qy; SHy:

Q0y = 2ayQy(t− tr) + 2bySHy(t− tr);

S 0Hy = −
H2

2
Qy(t):
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Let
2ay = ã=tr; 2by = b̃=(tr)

2; t = eθ:

Then
dQy

d�
=

ã

(1− k)
Qy(� − �) +

b̃

(1− k)tr
SHy(� − �);

dSHy

d�
= −

H2

2
tQy(�):

The corresponding characteristic equation is∣∣∣∣∣−
 + ã
(1−k)

E b̃
(1−k)tr

E

−(C + 1)t −


∣∣∣∣∣ = 
2 − 

ã

(1− k)
e−γµ +

b̃

(1− k)2
(C + 1)e−γµ = 0:

Comparing it with the equation z2 = 0 of the preceding section, we may identify

−ã
�

1− k
= �; b̃(C + 1)

(
�

1− k

)2

= �; 
0� = �0 ≈ −0:55;

what gives the decay parameters

ay = −
�

2

1− k

�tr
; by =

�

2(C + 1)

(
1− k

�tr

)2

:

In terms of time t, the decay now is not exponential, but obeys a power law:

(Qy; SHy) ∼ t
λ/µ: (26)

The consideration of other equations in the system U 0 = ZU is quite similar. In all
the expressions for a0; : : : ; by, derived in the adiabatic approximation, the account
of the growing separation of particles after the scattering gives the replacement of
each factor 1=tr by the factor (1− k)=(�tr), and of the exponential law eλt/tr by the
power law (26).

The after-collision decay of RF with the decay forces (19),(20) is slow at high
velocities. In principle, it is sufficient to make the scattering elastic and the theory
with RF consistent at arbitrary energies. However, when the decay rate is small,
the terms which were neglected in the above derivation, become important and may
prevent the decay of spin components of RF at high velocities. The numerical tests
show that, for the fully retarded version of decay forces and for the coefficients
derived above, the scattering remains elastic below the relative velocity 0.3 c. To
make the scatterin elastic at higher velocities, the ”less retarded” decay forces, like
those considered in [39], with Qr; Sr instead of Qrr; Srr should be used.

If the mechanics with retarded interactions is used as a model of processes with
particles which scatter inelastically above some energy threshold, there is no reason
to use in the model the decay forces making the scattering always elastic. The model
will be more accurate below the energy threshold, if the energy dependence of the
decay forces is so modified that at the threshold energy the coefficients a0; : : : leave
the region where all the roots of the characteristic equation for U 0 = ZU have a
negative real part.
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9. Exact and Numerical Solutions

We give here just a few examples of the solutions of the equations of motion with
the discussed forces.

The systems with the primary and decay forces described above permit exact
solutions with circular trajectories of particles. If the center of mass of the whole
system of particles and RF is placed at the origin and the particle i at t = 0 is on the
x-axis, the circular solutions may be written as (xi)0 = (xj)0 = t; (xi)3 = (xj)3 = 0
and

(xi)1 = �icos(!t); (xj)1 = −�jcos(!t + �);

(xi)2 = �isin(!t); (xj)2 = −�jsin(!t+ �):

They are completely fixed by four parameters �i; �j ; !; �.
The family of such solutions is two-dimensional. Indeed, the fixation of the

trajectories determines the primary forces and the coefficients before the scalars
QH; : : : ; SHy in the expressions (19),(20) for the decay forces. These scalars for the
circular trajectories with constant parameters must be constant:

(QH)0 = 0; : : : ; (SHy)
0 = 0: (27)

The last conditions and the RF part (3),(4) of the equations of motion give 6
equations permitting to express 6 scalars QH; : : : ; SHy through the primary forces,
and, hence, through the parameters �i; �j; !; �. So, finally, these four parameters
determine the total forces F . The particle part (1),(2) of the equations of mo-
tion in case of circular solutions reduces to 6 scalar equations, two of which —
hi · Fij = 0; hj · Fji = 0 — are always fulfilled due to the structure of forces,
another two equations

(Fij)0 = 0; (Fji)0 = 0

are the consequences of equations (27) and are satisfied for any values of the pa-
rameters �i; �j; !; �. The remained two equations for the forces directed toward the
origin

Fij · xi=�i +mi!
2�i=(1− !

2�2
i ) = 0;

Fji · xj=�j +mj!
2�j=(1− !

2�2
j ) = 0;

reduce the number of independent parameters from four to two. For example, one
may use ! and �, or the total mass M = |Ptotal| and the total angular momentum
J = (stotal)12 as a pair of independent parameters.

The region of !; �, where the circular solutions exist, depends on the choice of
forces and is limited. (In the nonrelativistic limit, � → 0, and this region becomes
one dimensional. Physically, it corresponds to the vanishing of RF in the limit
of small velocities due to the complete decay of all the non-energy components of
RF during typical nonrelativistic times 1=!. In the absence of RF spin, the total
angular momentum reduces to the angular momentum of the particles and becomes
functionally dependent of the kinetic energy.)
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Consider a numerical example of a relativistic circular solution. Let particles
have different masses mi = 0:15; mj = 0:85, the principle force have form

F P = c1
h · (Rr ∧ h)

1 + (T=c2)4
; c1 = 0:001; c2 = 40

and decay force FD have form (19),(20) with the coefficients

a0 =
1

2etr
; b0 =

0:2

etr

Rrr
hrr

(Rrr
hrr)

2 + (hrr)2(Rrr
yrr )2) + c2

3

; c3 = 10;

bh = −
0:1006

(Hrr)2(tr)2
; ah =

1

4tr
− bhR

r
hr ;

ay =
1

4tr
; by = bh:

corresponding to the maximal decay rates of all the components of RF, except for
the coefficient b0 having additional factor 0.2, slowing down the decay of the angular
momentum of RF. (Such choice of b0 is convenient for the illustrations below.)

Let the ”equilibrium” value V



In this example, the total mass of the system is greater than the sum of masses, so
the particles, if they return the energy and the angular momentum, borrowed from
RF, back to RF, would still have considerable kinetic energy (the lighter particle
would have the velocity 0.507 c). So, one may suspect that the solution is unstable.



First of all, the particle systems with attractive forces, besides the ordinary
scattering solutions, usually have the capturing solutions. By ”capturing” we mean
the process when the particles initially are far away from each other and move toward
each other, but, after entering the region of interactions, instead of scattering and
then flying away, they start rotating indefinitely around each other. Other words,
the manifold of solutions usually has normal or strange attractors.

At the beginning of capturing process (Fig.5), the particle motion is quasi-
precessing. Then the trajectories either turn gradually into a precessing solution, or
converge to a circular one (to the solution on Fig.1 in case of Fig.5), or to a non-
periodic solution (strange attractor). Since the region of existence of the circular
solutions is two-dimensional, the limiting circular solutions are not at all rare (as
they are in the Hamiltonian theory, where their family is usually one-dimensional
in M;J plane), but are quite common. For some interactions, most of the region of
initial parameters (energies and angular momenta), leading to capturing, is covered
by the region of the circular solutions.

Besides the capturing solutions and of the simple scattering solutions, there is
often a region of quasi-capturing solutions, where colliding particles start orbiting,
then orbits become close to quasi-precessing solutions slowly changing their pa-
rameters. When these parameters reach some critical values, the motion becomes
unstable, and the particles fly away. Such solutions can be considered as classical
analogies of the quantum resonant states of the elementary particle physics.

Another interesting feature of the motion with retarded interactions is the non-
trivial motion of the center of mass of two particles, which may be orbiting around
the center of mass of the total system at considerable distance.



with a continuous medium. It may reproduce qualitatively even the existence of
the energy threshold between the elastic and inelastic scattering, which is usually
considered as a purely quantum-field phenomenon related to particle production.
These features of the theory with reduced fields make this theory very promising for
the construction of the classical models of various processes with elementary particles
which before could be considered only in the frame of the relativistic quantum field
theory.

The equations of motion with RFs permit to take the electromagnetic interac-
tions into account exactly by using the Lienard-Wiechert forces with the radiation
friction term [41]

F rf
i =

2

3
e2hi · (hi ∧ ḧi);

where ḧ (as well as ḣ) should be understood and numerically realized as a limit from
the left to exclude unphysical growing solutions. Then the state U of the reduced
electromagnetic field (in case of several particles, the sum of such states) will give
the correct values of all the energy-momenta of the radiated field without actual
calculating of the outgoing waves what is specially convenient in case of several
charged particles [42].

It is worth to comment briefly the way of getting the orbital motion in the the-
ory with RFs and in earlier MT relativistic models for a pair of electrically charged
particles. Such models use the combinations of retarded and advanced interactions,
introduced either in a symmetrical (e.g. [2]), or in an asymmetrical (e.g. [43])
fashion. In both cases, inclusion of advanced interactions eliminates the radiation
losses (what, of course, is a distortion of the real electromagnetic interactions though
excused usually by the references to the action-at-a-distance version of the electro-
dynamics [44]). The actual justification of the advanced interactions, violating the
causality, is the desire to obtain closed (or precessing) orbits and to come to the
Hamiltonian or Lagrangian description.

In the present approach, the RF-dependent decay forces, if added to the Lienard-
Wiechert forces, are able to reach the same goal, i.e. to prevent radiation losses and
produce closed (or precessing) orbits, at smaller cost, without violating the causality.
With respect to the particle motion, the decay forces are similar to the forces from
the fields in accelerating cavities of storage rings compensating the radiation losses
of charged particles.

The peculiar features of the orbital solutions classified in [43] (the solutions with
the sign of Jtotal opposite to the sign of Jparticles, the sideway positions of the center
of mass of particles) are easily reproducible in the theory with RFs. The variety of
solutions in the new theory is, in fact, wider, than in the older models, and contains
strange attractors and capturing solutions.

The reduced description of the mediating field and the forces, considered in this
paper, are the simplest ones. One may take into account some excitations of the
mediating field, adding to 10 values U describing the state of RF, other functionals of
the trajectories and making the forces to depend on these functionals. The freedom
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