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Abstract
We propose a scheme to realize long-range quantum correlations of two separated ensembles of
nitrogen-vacancy (NV) centers via asymmetric driving. Either of the ensembles of NV centers is
dynamically driven by a strong applied microwave field, which causes the coupled energy levels to
split into dressed states. A quantum electromechanical system (QEMS), as a quantum data bus,
connects the two ensembles of NV centers. When a weak microwave field in QEMS couples the
same energy level transitions of the two ensembles of NV centers, the beam-splitter-like
interactions are realized. The collective mode of the mechanical resonators in the QEMS is
near-resonant with the dressed energy level establishing the parametric down-conversion-like
interaction. The Kerr nonlinearity produced by the parametric down-conversion-like interaction
can be transferred by the beam-splitter-like interactions. We demonstrate the photon-phonon
one-way Einstein–Podolsky–Rosen steering, and spin squeezing. Our scheme can thereafter
support a potential application of the generalized storage of quantum information.

1. Introduction

With the rapid advancement of quantum technology, hybrid quantum systems have emerged as one of the
most reliable platforms for quantum simulation and manipulation [1–4]. Among these, solid-state spins
such as nitrogen-vacancy (NV) centers and silicon-vacancy centers offer several advantages, including long
coherence times, ease of control, and no need for trapping. These spins can also strongly interact with
various quantum devices, such as optical cavities (including microwave and acoustic cavities),
superconducting circuits (SC), and mechanical resonators (MRs). Therefore, a promising platform for
quantum information processing (QIP) can be established [5–21]. Recently, research on mechanical and
acoustic quantum manipulation has accelerated due to advances in cryogenic cooling technology [22–24].
To date, many different solid-state spins have been reported to be manipulatable by MR through gradient
magnetic or strain fields, such as the strong coherent NV-MR coupling proposed in [25]. Long-range
spin–spin interactions between separated NV centers can be realized through SC, MRs, and acoustic cavities
[23, 26, 27]. Additionally, quantum interference of photons emitted from two remote NV centers has been
observed [28–30].

Einstein–Podolsky–Rosen (EPR) steering represents a special form of entanglement that bridges
quantum state inseparability and Bell non-locality [31, 32]. More interestingly, unlike traditional
entanglement, EPR steering can exhibit a natural asymmetry [33] and potentially lead to non-reciprocal
quantum entanglement, such as one-way EPR steering [34]. One-way EPR steering, enabled by inherent
symmetry breaking, has been demonstrated both theoretically and experimentally in various quantum
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systems [35–41]. It has found widespread applications in QIP, including quantum teleportation [42–44],
quantum secret sharing [45–47], quantum key distribution [48–50], and quantum computing [51].

In this work, we study a hybrid quantum system consisting of two homogeneous NV ensembles
interacting with a quantum electromechanical system (QEMS). Either of the ensemble of NV centers is
dynamically driven by a strong applied microwave field, which causes the coupled energy levels to split into
dressed states. The QEMS, as a quantum bus, connects the two ensembles of NV centers, separated by a
distance of d= 100 µm [26]. A microwave field in QEMS couples the same energy levels of the two ensembles
of NV centers, realizing the beam-splitter-like interactions between them. The collective mode of the MRs in
the QEMS is near-resonant with the dressed energy level establishing the parametric down-conversion-like
interaction. Photon–phonon one-way EPR steering is realized through down-conversion-like and
beam-splitter-like interactions in our system. Meanwhile, spin squeezing occurs in the ground states of the
bare NV centers. Our scheme demonstrates the transfer of the nonlinear effect between two ensembles of NV
centers using two resonators and a microwave field. Our scheme minimizes system dissipation to preserve
coherence, contrasting with the approach that uses dissipation to establish quantum correlations in [30].

The remainder of this article is organized as follows, section 2 presents hybrid quantum system and
Hamiltonian. Quantum-coherence-based nonlinearity of two separated ensembles of NV centers is
demonstrated in section 3. Section 4 shows long-rang one-way EPR steering. Section 5 presents spin
squeezing at the steady state. Experimental considerations and potential applications are shown in section 6.
Finally, our conclusions are summarized in section 7.

2. Hybrid quantum system and Hamiltonian

As illustrated in figure 1, two separated ensembles of NV centers (NV1 and NV2) are connected by an EMQS.
The triple ground states of the single NV center denote |0⟩ and | ± 1⟩. The zero-field splitting between the
levels |0⟩(1) and | ± 1⟩(1) is D0 = 2π× 2.87 GHz, and the Zeeman splitting δB = 2geµBBstatic induced by a
homogeneous static magnetic field Bstatic removes the degeneracy between the levels | ± 1⟩, where ge ≃ 2 is
the Landé factor of NV center and µB = 14 GHz/T is the Bohr magneton. We assume that the MR in the
EQMS has dimensions of (l,w, t). The NV1 centers are initially driven by a strong microwave field with Rabi
frequency Ω. In the interaction picture, the Hamiltonian of the NV1 centers is given by the unitary operator

U(t) = e−iω1σ
(1)
+1+1t [52, 53], is

HNV =∆
(1)
+1σ

(1)
+1+1 +

Ω

2

(
σ
(1)
+10 +σ

(1)
0+1

)
, (1)

where∆(1)
+1 = ω

(1)
+1 −ω1 is the detuning between the transition frequency ω(1)

+1 and the driving frequency ω1.

σ
(1)
k,l =

∑N
i=1σ

i(1)
kl are the projection operators for k= l and the spin-flip operators for k ̸= l [54, 55].

Ω=−µ+10ε, µ+10 is the electric dipole moment and ε is the electric amplitude. N is the number of NV
centers. It is easily seen that the Hamiltonian (1) can be diagonalized

HNV =
∑
j=±

djσj, (2)

where d± = (∆±Ω0)/2 are the eigenvalues, Ω0 =
√
∆2 +Ω2,∆(1)

+1 =∆, σ± = |±⟩⟨±|, and the eigenvectors
are

|+⟩= sinθ |0⟩(1) + cosθ |+1⟩(1) ,

|−⟩= cosθ |0⟩(1)− sinθ |+1⟩(1) , (3)

where sinθ =
√

(Ω0−∆)/2Ω0 and cosθ =
√
(Ω0 +∆)/2Ω0. For the ensemble of NV1 centers,

equations (3) are generally referred to as ‘dressed states’.
Two identical charged cantilever MRs, with sharp magnetic tips attached to their free ends, couple

magnetically to the two ensembles of NV centers. As in [26], the charged MRs capacitively interact with the
electromechanical quantum bus, contributing to the coupling between the vibrational modes (frequency νr)
and the NV centers. The vibrational modes of the two MRs are renormalized as

Hvm =
∑
i=1,2

νrb
†
i bi +

g12
2

(
b1 + b†1

)(
b2 + b†2

)
= νRb

†b+ νDb
†
DbD, (4)

where b and bD mean the mode operators of collective phonon eigenmodes of the two MRs, and νR and νD
are the frequencies of the collective mode, respectively. Here, mode b satisfies the resonant or near-resonant
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Figure 1. Schematic illustration of long-range quantum correlations. Two separated ensembles of NV centers (NV1 and NV2 with
a distance of d≃ 100 µm) are connected by an EMQS. A strong applied microwave field with Rabi frequencyΩ dynamically drives
NV1 to split the energy levels (dressed energy levels). A weak microwave field and two identical MRs in the QEMS simultaneously
couple the dressed energy levels of NV1 centers and the bared energy levels of NV1 centers. The inset shows the energy levels of
the triplet ground states of the NV1 center. Here, D0 = 2π× 2.87 GHz is the zero-field splitting, and δB = 2geµBBstatic is the
Zeeman splitting. The weak microwave field a and the collective mode b of the mechanical resonators with the circular
frequencies ν1 and νR respectively couple these two level. The NV2 center has the same level structure as the NV1 centers.

condition, while bD represents a far off-resonant mode. We can safely discard bD in the subsequent analysis.
When the collective mode b couples the transition from |0⟩ to |+ 1⟩, the Hamiltonian is given by

HNR = νRb
†b+

∑
j=1,2

Gj

(
bσ( j)

+10 + b†σ( j)
0+1

)
, (5)

where Gj = geµBχ ja0 (j = 1,2), χj are the magnetic field gradients, and a0 = 1/
√
2mνR. In the rotating

frame of HR = δ2b†b+ d+σ++ + d−σ−−+ω2σ
(2)
+1+1 and the rotating wave approximation, Hamiltonian (5)

can be rewritten as follows (see appendix A)

HNR = δRb
†b+λ

(
bσ−+ + b†σ+−

)
, (6)

where δR = νR− δ2, λ=−G1 sinθ cosθ, δ2 =−Ω0, δ2 and ω2 are the driving frequencies of the vibrational
modes and NV2. In this Hamiltonian, the term bσ−+ denotes a nonlinear process in which the dressed-state
transition from |+⟩ to |−⟩ accompanies with the absorption of a phonon. The terms bσ−+ and b†σ+− are
referred to as the parametric down-conversion interactions.

A weak microwave field in the QEMS with the circular frequency ν1 couples the two ensembles of NV
centers, the Hamiltonian is written as follows (see appendix B) [16, 56, 57]

HNC = (Λaσ+−+ g2aσ+10)+H.c.+ δca
†a, (7)

where δc = ν1− δ1, and δ1 are the driving frequencies of the microwave field. Λ = g1 cos2 θ, H.c.means the
Hermite conjugation. a(a†) is the annihilation(creation) operator of the microwave field, and the coupling
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strength g j ( j = 1,2) of the NV centers and microwave field can be enhanced by the factor of
√
N. In what

follows, we just consider the dressed states |±⟩ for NV1 centers and the naked states σ(2)
kl (k, l= 0,±1) for

NV2 centers. Therefore, the superscript number ‘(2)’ of σ(2)
kl can be omitted for simplicity. In the

Hamiltonian (7), the term aσ+−( aσ+10) signifies that the transition from |−⟩(|0⟩) to |+⟩(|+1⟩)
accompanies with the absorption of a phonon, which is termed a beam-splitter-like interaction. Now the
cooperative parameters can be introduced C1,2 = g21,2/κ1,2γ1,2 and C3 = G2

1/κ2γ1.
The total Hamiltonian of the hybrid system under consideration reads

H=HNV +HNR +HNC. (8)

The master equation takes the form [58]

ρ̇=−i [H,ρ] +
∑

j,l=1,2,

γl
2
L
σ
( j)
0+1

+
∑

j,l=1,2,

κl
2
La,b, (9)

where the damping term Lρ= 2oρo†− o†oρ− ρo†o, γ l are the decay rates of the NV centers, κ1,2 are the
decay rates of the microwave fields and MRs. From an experimental perspective, our scheme achieves ideal
fidelities under conditions similar to those reported in [26], where the mechanical quality factor is
approximately Qm ∼ 106 at T= 100 mK [26].

3. Quantum-coherence-based nonlinearity of two separated ensembles of NV centers

Generally, the interaction between the optical field and matter can be expressed using the Dicke model,
which has the form H∼ (a+ a†)(b+ b†). The terms ab and a†b†, similar to the parameter down-conversion
process, produce nonlinear interactions indicative of a parametric down-conversion-like interaction.
Alternatively, the terms ab† and ba† induce linear interactions through photon hopping, which play a role in
beam splitters and are termed beam-splitter-like interactions. Related to quantum correlations is one-way
EPR steering which is intermediate between entanglement and Bell nonlocality [59]. Many schemes based on
Kerr nonlinearity in various quantum systems have been proposed to realize quantum steering [60–63].
Electromagnetically induced transparency (EIT) is one of the representative schemes for Kerr nonlinearity
[64, 65]. Especially, enhanced Kerr nonlinearity has been demonstrated in theory and experiment [66, 67].
Recently, the electromagnetically-induced-transparency-like (EIT-like) phenomenon has been shown in two
separated ensembles of atoms in an optical cavity [68, 69]. The physical essence is quantum coherence
produced by two separate ensembles of two-level atoms interacting with the applied optical fields.

From Hamiltonian (8), NV2 centers just interact with microwave field a and play a role of the beam
splitter, which produces linear interaction and establishes the quantum correlations of the two separated
ensembles of NV centers. However, NV1 centers simultaneously interact with microwave field a and
collective mode b of the MRs. Consequently, down-conversion-like and beam-splitter-like interactions occur

at the same time. As illustrated in figure 2, the dressed transitions |+⟩
a†,b
⇌
a,b†
|−⟩ of NV1 centers establish the

parametric down-conversion-like and beam-splitter-like interactions in this process. The transitions

|+1⟩
a†⇌
a
|0⟩ of NV1,2 centers lead to beam-splitter-like interactions between the both ensembles of NV

centers and microwave field. The long-range quantum correlations between the separated NV1 and NV2

centers are established by the beam-splitter-like interactions NV1
a←→
a†

NV2
a←→
a†

NV1, as shown in figure 3.

This beam-splitter-like interactions (aσ+−, aσ+10, a†σ−+ and a†σ01+) play central role in the realization
of long-range EPR steering, which makes the nonlinear transfer between the subsystems.

In general, the response of NV1 centers to the microwave field and collective mode of the MRs can be
described by the susceptibility χ =−µ−+ρ+−/ϵ0ε (ϵ0 is the permittivity of free space). It is well known that
the real part Reχ of the susceptibility relates to dispersion. Plotted in figure 4 is that the dispersion Reχ in
unit of |µ−+|2/ϵ0 versus the normalized detuning∆/Ω with the parameters δR = δc = 0, C1 = 50γ,
κ1 = 10κ2 = γ, γ2 = 100γ1 = γ, ω= 0, C2,3 = 50γ (black circle), C2,3 = 100γ (red circle), C2,3 = 200γ (blue
circle), and ω = 0.1γ, C2,3 = 200γ (magenta square), respectively. It is obvious that the dispersive profiles are
similar to that of EIT, which further verifies quantum correlation can be generated in the long-range
two-level subsystems [58].

Before proceeding further, the master equations (9) can be transformed into sets of c-number Langevin
equations under the generalized P representation [70]. The correspondences between the c-number variables
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Figure 2. Schematic of the photon-spin-phonon interactions. Left: The dressed levels |±⟩ of NV1 centers interact with the
microwave field a and the collective mode b of the mechanical resonators at the same time, which produces beam-splitter-like
interaction (aσ+− in equation (7)) and parametric down-conversion-like interaction (bσ−+ in equation (6)). Right: The naked
levels |+ 1,0⟩ of NV2 centers interact with microwave field a, in which only the beam-splitter-like interaction (aσ+10 in
equation (7)) occurs. In this process, the long-range separate NV centers are connected by the microwave field a based on the the
beam-splitter-like interactions (aσ+−, and aσ+10 in equation (7)). The mode b is far-off resonant with its coupled transition.

Figure 3. Schematic of the interactions between the NV centers, microwave field and EMQB. NV2 centers just interact with the
microwave field (see equation (6)), in which only the beam-splitter-like interaction is produced. The collective mode of the
mechanical resonators interacting with NV1 centers only leads to the parametric down-conversion-like interaction.

and operators are shown in the appendix C. The Langevin equations read as follows

α̇=−
(κ1
2

+ iδc
)
α+Λv1 + g2v2 +

√
κ1αin,

β̇∗ =−
(κ2
2
− iδR

)
β∗−λv2 +

√
κ2β
∗
in,

v̇1 =−
Γ

2
v1 +π 1 (Λα+λβ∗)+ Fv1 ,

v̇2 =−
γ2
2
v2 +π 2g2α+ Fv2 , (10)

where the conjugations and closed relations ⟨σ++⟩+ ⟨σ−−⟩= ⟨σee⟩+
〈
σgg
〉
= N are considered. Γ =

4Γ1 +Γ2 +Γ3, π 1 = ⟨σ++⟩− ⟨σ−−⟩, π 2 = ⟨σ+1+1⟩− ⟨σ00⟩. ⟨·⟩ denotes the mean value. αin, βin and Fvl
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Figure 4. Schematic of the nonlinearities of NV1 centers response to the microwave field and collective mode. Reχ in unit of
|µ−+|2/ϵ0 versus the normalized detuning∆/Ω with the parameters δR = δc = 0, C1 = 50γ, κ1 = 10κ2 = γ, γ2 = 100γ1 = γ,
ω= 0, C2,3 = 50γ (black circle), C2,3 = 100γ (red circle), C2,3 = 200γ (blue circle), and ω = 0.1γ, C2,3 = 200γ (magenta
square), respectively.

(l= 1,2) are noise terms with zero means. In the Fourier domain, the solutions of equations (10) are
obtained

α=
t
√
κ1αin + r

√
κ2β
∗
in

st+ r2
,

β∗ =
s
√
κ2β
∗
in− r

√
κ1αin

st+ r2
,

v1 =
π 1Λ

Γ
2 − iω

α+
π 1λ

Γ
2 − iω

β∗,

v2 =
π 2g2

γ2

2 − iω
α, (11)

where the coefficients read

s=
κ1
2

+ i(δc−ω)−
π 1Λ

2

Γ
2 − iω

− π 2g22
γ2

2 − iω
,

t=
κ2
2
− i(δR−ω)+

π 1λ
2

Γ
2 − iω

,

r=
π 1Λλ
Γ
2 − iω

.

4. Long-rang one-way EPR steering

In order to show one-way EPR steering, the amplitude and phase quadratures are defined Xj = o+ o† and
Yj =−i(o− o†) (o= a,b). Fortunately, the sufficient and necessary criterion for detection of the steering of
Gaussian states under the Gaussian measurements is presented by Reid [43]. For microwave field a and
collective mode b, the criteria of the steering from a to b and b to a are [71–73]

V2←1 = Vinf (X2)Vinf (Y2)< 1, (12)

V1←2 = Vinf (X1)Vinf (Y1)< 1, (13)

where Vinf(ok) = V(ok)−⟨okol⟩2 /V(ol), V(ok) =
〈
(δok)2

〉
−⟨δok⟩2, and ok = Xk,Yk (k ̸= l= 1,2). As only

one of the criteria (12) and (13) holds, the one-way EPR steering occurs. Meanwhile, we suppose that initial
state of Alice and Bob is |ψ ⟩= |φ⟩A⊗ |φ⟩B. Alice and Bob operate their states by microwave field a and
collective mode b, respectively.
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Figure 5. Schematic of criteria V2←1 and V1←2. (a) Criterion V2←1 versus the normalized detuning∆/Ω with the parameters
δR = δc = 0, κ1 = 10κ2 = γ, γ2 = 100γ1 = γ, C1 = 50γ, and C2,3 = 50γ, 100γ, 200γ, respectively. V1←2 are always more than
unit. (b) Criteria V2←1 and V1←2 versus the normalized frequency ω/γ with the parameters δR = δc = 0, κ1 = 10κ2 = γ,
γ2 = 100γ1 = γ, C1 = 50γ, C2,3 = 200γ, and∆/Ω= 0.1γ, 0.5γ, and γ.

Consider the input–output relations oout + oin =
√
kjo (j = 1,2 and o= α,β). According to

equations (11), the criterions read as follows

V2←1 = 4

|M|2 + |Q|2− Re(MP∗−MQ)2

2
(
|M|2 + |P|2

)
2

, (14)

V1←2 = 4

|M|2 + |P|2− Re(MP∗−MQ)2

2
(
|M|2 + |Q|2

)
2

, (15)

whereM= r
√
κ1κ2/(st+ r2), P= tκ1/(st+ r2)− 1, Q∗ = sκ2/(st+ r2)− 1.

Plotted in figure 5 are the criteria V2←1 and V1←2. At the steady state, V1←2 are always more than unit.
The criterion V2←1 versus the normalized detuning∆/Ω with the parameters δR = δc = 0, κ1 = 10κ2 = γ,
γ2 = 100γ1 = γ, C1 = 50γ, and C2,3 = 50γ, 100γ, 200γ, as illustrated in figure 5(a). The criteria V2←1 and
V1←2 versus the normalized frequency ω/γ with the parameters δR = δc = 0, κ1 = 10κ2 = γ,
γ2 = 100γ1 = γ, C1 = 50γ, C2,3 = 200γ, and∆/Ω= 0.1γ, 0.5γ, and γ, as shown in figure 5(b). It is easily
seen that microwave field a can steer collective mode b of the MRs (V2←1 < 1) at the steady state. In this case,
it means that Alice can operate the initial state |ψ ⟩ by microwave field a, but Bob cannot do anything. This

7
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Figure 6. |δSx,y|2 / |δSz| versus the normalized detuning∆/Ω with the parameters δR = δc = 0, C1 = 50γ, C2,3 = 200γ,
γ1 = 0.01γ, κ1,2 = 0.1γ, γ2 = γ, and κ1,2 = γ, γ2 = γ,0.1γ,0.02γ, respectively.

asymmetrical operations for the quantum states are referred as to one-way EPR steering which has been used
widely for quantum secret sharing [45–47] and quantum key distribution [48–50]. In addition, one-way EPR
steering from b to a (V1←2 < 1) and a to b (V2←1 < 1) can also occur in different frequency domain.

5. Spin squeezing at the steady state

As mentioned above, the system nonlinearities arise from the parametric down-conversion-like interactions
between NV1 centers and the collective mode of the MRs. However, NV2 centers interacting with microwave
field just produces beam-splitter-like interactions. Therefore, of interest for us is the nonlinearity of NV2

centers. Now we check the spin components of NV2 centers. At the steady state, ⟨Sx⟩=
〈
Sy
〉
= 0 and

⟨Sz⟩=−π 2. Therefore, the spin squeezing is governed by the inequalities as follows [74, 75]〈
δS2x,y

〉
< |⟨δSz⟩| . (16)

Form equations (11), the variances of the ground-state spin can be obtained∣∣δSx,y∣∣2
|δSz|

=
8 |π 2| |g2|2

γ2

(∣∣∣∣ t√κ1st+ r2

∣∣∣∣2 + ∣∣∣∣ r√κ2st+ r2

∣∣∣∣2
)
, (17)

and ∣∣δSx,y∣∣2
|δSz|

=
8 |π 2| |g2|2

γ2

(∣∣∣∣ t ′
√
κ1

s ′t ′− r ′2

∣∣∣∣2 + ∣∣∣∣ r ′
√
κ2

s ′t ′− r ′2

∣∣∣∣2
)
. (18)

As illustrated in figure 6,
∣∣δSx,y∣∣2 / |δSz| versus the normalized detuning∆/Ω with the parameters

δR = δc = 0, C1 = 50γ, C2,3 = 200γ, γ1 = 0.01γ, κ1,2 = 0.1γ, γ2 = γ, and κ1,2 = γ, γ2 = γ,0.1γ,0.02γ,
respectively. It is obvious that the spin squeezing occurs in NV2 centers. Such nonlinearities can transfer
from NV1 to NV2 centers based on the beam-splitter-like interactions NV1

a←→NV2
a←→NV1 as shown in

figure 3. The quantum correlations of two ensembles of NV centers are established. It means that the
quantum information can be stored in NV2 centers based on the beam-splitter-like interactions.

6. Experimental considerations and potential applications

To examine the feasibility of our scheme for experiment, the silicon MR with dimensions (l= 2, w= 0.1,
t= 0.1) µm is considered. The resonance frequency ωr/2π ∼ 1 GHz and coupling strength g/2π ∼ 3 kHz
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with Young’s modulus E∼ 1.3× 1011 Pa and the mass density ρ∼ 2.33× 103 kg m−3. The quality factor Q
of the MR is about 106, γm = ωr/Q. As mentioned above, gc ∝

√
N which can match the coupling strength

gm. The pump fields frequencies are ω+ ∼ 3.3 GHz, ω2 ∼ 2.3 GHz, and the amplitudes are Ω± ∼ 1 MHz
[76]. Although the physical mechanics differ from those in [30], the feasible experimental conditions
described therein inspire the realization of our scheme.

For applications, acoustic quantum devices are believed to have some unique advantages to accomplish
potential targets of QIP, i.e. easy isolation environmental phononic noise than traditional electromagnetic
systems, convenient fabrication because of their inherent large dimensions, rich hybridization choices to
different quantum units with the strong coherent couplings but without any trap design. Therefore, utilizing
the mechanical cantilever to engineer solid-state spins into the one-way EPR steering entanglement and spin
squeezing corresponds to the feature of our scheme. Furthermore, we also state that such entanglement can
potentially provide some interesting applications, such as the one-sided device-independent quantum
communication [49, 50, 77], preparation, manipulation and measurement of the entanglement [78–82],
quantum simulation [83, 84] et al.

7. Conclusion

In our scheme, two ensembles of the separated NV1,2 centers with a distance of about 100 µm connected by
the QEMS. NV1 centers are dynamically driven by the strong microwave field with Rabi frequency Ω to dress
the coupled energy levels. When a microwave field couples the same energy level transitions of the two
ensembles of NV centers, the beam-splitter-like interactions are realized. The collective mode of the MRs in
the QEMS is near-resonant with the dressed energy level establishing the parametric down-conversion-like
interaction. The Kerr nonlinearity produced by the parametric down-conversion-like interaction can be
transferred by the beam-splitter-like interactions. We demonstrate the photon-phonon one-way EPR
steering, and spin squeezing.
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Appendix A. The interaction between the NV centers and the collective mode of theMRs

The interaction between the NV centers and the collective mode of the MRs is described by equation (5).
Because of the asymmetric driving, the energy levels of NV1 centers is dressed. Hamiltonian (5) is rewritten

HNR = νRb
†b+ b{G1 [sinθ cosθ (σ++−σ−−)

+cos2 θσ+−− sin2 θσ−+
]
+G2σ

(2)
+10

}
+H.c.. (A1)

When the collective mode b is near-resonant with the dressed-state transition from |−⟩ to |+⟩, we obtain
Hamiltonian (6) under the rotating-wave approximation.

Appendix B. Effective Hamiltonian

A weak microwave field couples the two ensembles of NV centers at the same time, the Hamiltonian reads

HNC = ν1a
†a+

∑
j=1,2

gj
(
aσ( j)

+10 + a†σ( j)
0+1

)
. (B1)

9
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In the dressed picture, the Hamiltonian (B1) can be rewritten as follows, according to equation (3)

HNC = ν1a
†a+ g1 sinθ cosθ

(
a+ a†

)
(σ++−σ−−)

+ g1
(
acos2 θ− a† sin2 θ

)
σ+−+ g1

(
a† cos2 θ− a sin2 θ

)
σ−+

+ g2
(
aσ(2)

+10 + a†σ(2)
0+1

)
. (B2)

In the rotating frame of HR = δ2b†b+ d+σ++ + d−σ−−+ω2σ
(2)
+1+1 and the rotating-wave approximation,

we can obtain Hamiltonian (7) when δ1 =Ω0 = ω2.

Appendix C. Mater equation in the dressed picture

According to the equation (9), the damping term of NV1 centers in the dressed picture reads

Lσ1
0+1
ρ=

Γ1

2
(2σ++ρσ++− ρσ++σ++−σ++σ++ρ)

+
Γ1

2
(2σ−−ρσ−−− ρσ−−σ−−−σ−−σ−−ρ)

+
Γ2

2
(2σ+−ρσ−+− ρσ−+σ+−−σ−+σ+−ρ)

+
Γ3

2
(2σ−+ρσ+−− ρσ+−σ−+−σ+−σ−+ρ)

−Γ1 (2σ++ρσ−−+σ−−ρσ++) (C1)

where Γ1 = γ1 sin
2 θ cos2 θ, Γ2 = γ1 sin

4 θ, and Γ3 = γ1 cos4 θ.
The populations of NV1,2 centers at the steady state are obtained

⟨σ++⟩=
N sin4 θ

sin4 θ+ cos4 θ
,〈

σ2
00

〉
= N. (C2)

Appendix D. The correspondences between the c-number variables and the operators

The correspondences between the c-number variables and the operators are written in order as follows(
a b σ−+ σ0+1

α β v1 v2

)
. (D1)

Appendix E. The stability conditions of the hybrid system

The Routh–Hurwitz criterion [85–87] is under consideration for the stability of this hybrid system.
According to equation (10), the stability conditions read respectively as follows

A1 > 0,

A3 > 0,

A4 > 0, (E1)

A1 ∗A2 ∗A3 > A2
3 +A2

1 ∗A4,

where

A1 =
1

2
(Γ+ γ2 +κ1 +κ2) ,

A2 =
1

4
[(Γ+ γ2)(κ1 +κ2)+ (Γγ2 +κ1κ2)]

+π 1

(
λ2−Λ2

)
−π 2g2,

A3 =
π 1λ

2

2
(γ2 +κ1)−

π 1Λ
2

2
(γ2 +κ2)+

Γγ2
8

(κ1 +κ2)

+
1

8

(
κ1κ2− 4π 2g

2
2

)
(Γ+ γ2) ,

10
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A4 =
π 1γ2
4

(
κ1λ

2−κ2Λ2
)
− π 1Γg22γ2

4
−π 1π 2λ

2g22

+
Γγ2κ1κ2

16
, (E2)

and the detunings δR = δc = 0.
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