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Abstract

NOvA is a 810 km long base-line neutrino oscillation experiment with two detectors (far 14

KTon and near detector 300 Ton) currently being installed in the NUMI off-axis neutrino

beam produced at Fermilab. A 222 Ton prototype NOvA detector (NDOS) was built and

operated in the neutrino beam for over a year to understand the response of the detector

and its construction.

The goal of this thesis is to study the muon neutrino interaction data collected in this test,

specifically the identification of quasi-elastic charged-current interactions and measure the

behavior of the quasi-elastic muon neutrino cross section.

This thesis presents the analysis of the data from two detector configurations, the first

configuration collected data from 1 × 1019 protons on target (POT) from April to May

2011 and the second configuration collected data from 1.7 × 1020POT from October 2011

to April 2012. The charged current quasi-elastic muon neutrino events collected with each

configuration were analyzed to extract the cross section as a function of energy σ(Eν) as

well as the single differential cross sections with respect to outgoing muon momentum,
dσ
dP , outgoing muon angle from the incident neutrino direction, dσ

d cos θ and the momentum

transfer squared of the interaction, dσ
dQ2 .
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Introduction

The Quasi-Elastic cross section is not well understood in the energy range of the NOνA

experiment, specifically at energies around 2 GeV and below. This region is crucial to

NOνA, since electron neutrinos from the oscillation from muon neutrino to electron neutrino

occur in this region. Experiments such as MiniBooNE and NOMAD made recently cross

section measurements [1]. They have covered energy regions above and below 2 GeV; but

where their data overlap, around 2 GeV, these experiments show discrepancies with each

other and with theoretical predictions.

The goals of this thesis is to investigate the detector design for the NOνA experiment,

evaluate its performance and study Charged Current Quasi-Elastic (CC QE) interactions

using the data collected from the NOνA Detector Prototype. This thesis is structured as

follows:

• Chapter 1 briefly presents the history of the discovery of neutrinos, neutrino cross

sections and neutrino oscillation.

• Chapter 2 summarizes the theory of neutrino cross sections and presents a review of

the CC QE cross section measurements.

• Chapter 3 describes the experiment, the neutrino beam, the NOνA detector technol-

ogy and the Detector Prototype used for the measurements in this thesis.

• Chapter 4 describes the software used to simulate the detector, reconstruct the events

detected, and calibrate the detector.

• Chapter 5 gives the event selection criteria and demonstrates the implementation of

the event selection for simulated events. This chapter also describes the determination

of the neutrino energy and four momentum transfer.

• Chapter 6 presents the analysis. This chapter gives the prediction for the background

and signal events using MC simulations, explains the cross section measurement with

details about the background subtraction, efficiency, resolution correction and the

1



2

number of neutron targets. It also presents the results of the cross sections measure-

ments.

• Chapter 7 presents details about possible systematic uncertainties in the measurement.

• Chapter 8 presents a summary of what was learned about the detector design, com-

pares the cross-section measurements to that of other experiments, discussion and

gives future prospects for the NOνA Near Detector.



Chapter 1

The Physics of Neutrinos

1.1 A Brief History of Neutrinos

The basic properties of neutrinos have been studied for many years. The first experimental

evidence for neutrinos was obtained in 1956 by Reines and Cowan [2]. Since then, many

experiments have investigated the properties of the neutrinos. This section presents a brief

review of history of neutrinos, specifically the discovery of three types of neutrinos, neutrino

cross-section measurements and the discovery of neutrino oscillations.

1.1.1 The discovery of three types of neutrinos

The neutrino was first postulated by Pauli in 1930 to explain the results from the beta

decay process. Beta decay experiments showed that emitted electrons have a continuous

energy spectrum. At that time, it was believed that only a single electron was emitted

during this process. But the continuous energy of the electron violated the principle of the

conservation of energy. Pauli then suggested that another particle was emitted along with

the electron that was not and probably could not be observed. He proposed the existence

of a neutral particle that later Fermi gave the name of neutrino.

The first experimental evidence for neutrinos was obtained by Reines and Cowan’s

experiment in 1956[2] through the inverse beta decay reaction:

ν̄ + p→ n+ e+. (1.1)

This experiment used electron antineutrinos from a nuclear reactor at the Savannah River

Nuclear Plant. The experiment contained two tanks with approximately 200 liters of a

mixture of water and Cadmium chloride. After this experiment, new experiments followed

quickly to investigate the properties of the neutrino.

In 1962, muon neutrinos were discovered by Lederman, Schwartz, Steinberger, et. al.

at the Brookhaven National Laboratory. This experiment used a beam of protons focused

3
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toward a beryllium target[3]. The resulting interaction produced a large number of pions

which decayed to muons and muon neutrinos.

In 1973, the Gargamelle experiment at CERN discovered the weak neutral current in-

teraction ν̄µ + e→ ν̄µ + e [4].

Much later in 2001, the tau neutrinos were detected by the DONUT experiment[5]. This

experiment collided 800 GeV protons with a block of tungsten. This collision produced DS

mesons that subsequently decayed into tau-leptons which then produced tau neutrinos.

These and the experiments which followed showed the existence of three neutrino flavors:

the electron neutrino (νe), the muon neutrino (νµ), and the tau neutrino (ντ ).

1.1.2 Neutrino Cross Section

Experiments have studied neutrino cross sections in three different energy ranges, from 1

MeV to 100 MeV (low energy), from 0.1 GeV to 20 GeV (intermediate energy) and from

20 GeV to 350 GeV (high energy). We present a brief summary of those cross sections

experiments.

Low energy cross sections have been measured from inverse beta decay using different

targets: deuterium and nuclear target such as 12C,2H,56 Fe,71Ga,127 I.

For the inverse beta decay, neutrinos are produced from the fission of 239Pu,241 Pu and

238U [6]. The most precise determination of the cross-section is from the Bugey nuclear

power plant in 1994, they report a high precision measurement at 15m from a 2800 MWth

reactor. This experiment reported the ratio of measured cross-section to the expected theory

of the weak interactions
σf

σV−A
= 98.7%± 1.4%± 2.7% [7]. A compilation of inverse β decay

cross sections is found in [8].

In 1980 Los Alamos studied electron neutrino interactions with deuterium, νed→ e−pp.

This experiment used a six-ton Cherenkov counter filled with D2O . The experiment re-

ported a cross-section measurement σ(νed → e−pp) = (0.52 ± 0.18)x10−40cm2 [9]. Other,

direct cross-section measurements have been made using antineutrinos from nuclear reac-

tors for both the charged current (ν̄ed → e+nn) and the neutral current (ν̄ed → ν̄epn)

interactions at Savannah River, ROVNO, Bugey and Krasnoyarsk [10].

In addition, several experiments have made measurements for neutrino interactions on

nuclei at low energies (1-300) MeV. For example the KARMEN experiment in 2005 studied

ν12
e C → (e−) +12 N and reported a measurement of the flux average cross section (9.1 ±

0.5(stat)± 0.8(sys))× 10−42cm2. Experimental data is also available from LAMPF, E225,

LNSD, GALLEX and SAGE experiments. A compilation of all the experimental data is

found in [8].

Intermediate energy neutrino cross sections in the 0.1-20 GeV range have been made
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using deuterium and heavier nuclear targets. These measurements include the cross sections

for quasi-elastic, resonance and deep inelastic interactions. Early measurements from the

1970s and 1980s were made using either bubble chamber or spark chambers detectors.

For example the BNL 7-foot bubble chamber in 1981 measured the total cross section

σT (νn)/Eν = (1.07± 0.05)× 10−38, σT (νp)/Eν = (0.54± 0.04)× 10−38, and σT (νN)/Eν =

(0.80± 0.03)× 10−38cm2/GeV . Furthermore, cross section measurement for this have been

made using different nuclei such as C, Fe, H2O. The experimental data available is extensive

and a compilation is found in [8]. A detailed review of the experimental data for this energy

range, specifically for the quasi-elastic cross section is presented in Chapter 2.

Finally, high energy neutrino cross section measurements in the 20 GeV to 350 GeV

range have been made for both neutrinos and antineutrinos in experiments such as BEBC,

CCFR, CDHS, ZP C35, GGM-SPS, PL, IHEP-ITEP, MINOS, NOMAD and NuTeV. The

world-average cross section for neutrinos σν/Eν = (0.677± 0.014)× 10−38cm2/GeV and for

antineutrinos σν/Eν = (0.334± 0.008)× 10−38cm2/GeV [8].

1.1.3 Neutrino Oscillations

In 1957 Pontercorvo and Sakata proposed a new phenomenon for neutrinos, called neutrino

oscillation. From the formulation of neutrino oscillations, the three flavor states of neutrinos

νe, νµ, νe are related to the mass eigenstates ν1, ν2, ν3 by the 3× 3 PMNS neutrino mixing

matrix[11]. This matrix is expressed in terms of the mixing parameters θ12, θ23, θ13 and

a CP violating phase δ. Currently, experiments that study neutrino oscillations provide

values for θ12, θ23 and θ13, and for the square of the mass differences ∆m2
12, ∆m2

32, where

∆m2
ij = m2

i −m2
j gives the mass differences of the mass eigenstates.

The first experimental result indicating neutrino oscillation was in 1968[12], Davis Home-

stake experiment measured the flux of neutrinos from the sun and detected a deficit when

compared with the prediction of Bahcall’s Standard Solar Model. This discrepancy was

called the solar neutrino problem. The Davis experiment used a chlorine-based detector

and radiological techniques to measure the flux of solar neutrinos interacting in the detec-

tor.

In 1988, a similar deficit of atmospheric muon neutrinos was observed by the Kamiokande

experiment [13].

In 1998, the Super-Kamiokande experiment studied the interactions of both solar and

atmospheric neutrinos [14]. This experiment used a cylindrical stainless steel tank with

50Ktons space of water surrounded by 11,146 photomultipliers. The deficit in the angular

and energy distribution was explained by neutrino oscillations.

In 2002, the SNO experiment made precise measurements of solar neutrinos[15]. SNO
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is a heavy water Cherenkov detector in a nickel mine in Ontario (Canada) at a depth of

204 m of rock. The detector contained 1000 tons of D2O. This experiment measured

the electron and nonelectron component of the solar neutrino spectrum by comparing the

charged current and neutral current neutrino reactions on deuterium. The result from

this experiment was a detailed confirmation of the flavor changing signature of neutrino

oscillation.

In 2003, the KamLAND experiment found the first evidence for reactor ν̄e oscillations[16].

The neutrinos produced in nuclear power plants have energies similar to the energies of the

neutrinos generated from the solar fusion cycle, 1-20 MeV. KamLAND is a liquid scintil-

lator anti-neutrino detector that measured the ν̄e flux from nuclear reactors at an average

distance of 180Km. This experiment observed 258 events with an expected 365± 24 events

for the case of no oscillations.

The experiments Super-Kamiokande, SNO, and KamLANB provided the first precision

measurements of the solar oscillation parameters (θ12,∆m
2
32). The current limit from this

data provides the best fit parameters [17] sin2 2θ12 ≈ 0.86+0.03
−0.04 and ∆m2

21 ≈ 8.0± 0.3± 10−5eV 2.

Furthermore, experiments made measurements for θ23 and ∆m2
32, the best measurement

of sin2(2θ23) is from the Super-K experiment and the most precise measurement of the mass

splitting ∆m2
32 = 2.35+0.11

−0.08 × 10−3eV 2 is from the MINOS experiment[18].

Finally, two reactor experiments, Daya Bay in China and RENO in Korea, measured this

final mixing parameter θ13. The Daya Bay Reactor Neutrino Experiment found sin22θ13 =

0.091± 0.016(stat)± 0.005(syst). At about the same time, the RENO experiment reported

sin22θ13 = 0.113 ± 0.013(stat) ± 0.019(syst)[20]. In addition, T2K, MINOS experiments

provided limits on θ13. MINOS experiment reported 0.01(0.03) < 2 sin2 2θ13 sin2(θ23) <

0.12(0.18) and T2K experiment reported 0.03(0.04) < sin2 2θ13 < 0.28(0.34) for δ = 0 and

a normal (inverted hierarchy)[19].

There is now substantial evidence that neutrinos have mass, and they oscillate between

weak flavor states as they travel. This phenomenon has been observed for neutrinos from

many sources, the sun, reactors, cosmic ray interactions, and accelerator beams. While

these experiments tell us about neutrino mixing angles and differences in the square of their

masses, we still do not have a complete understanding of neutrinos. Remaining questions in

neutrino physics concern the absolute mass of neutrinos, whether there is CP violation in

the neutrino sector, their mass hierarchy and if they are Dirac (ν 6= ν̄) or Majorana (ν = ν̄)

particles.



7

1.2 Neutrinos in the Standard Model

The standard model describes three fundamental forces, the strong, weak and electromag-

netic interactions, it does not describe the gravity. In the standard model there are three

kind of elementary particles: leptons, quarks and mediators. Figure 1.1 shows the com-

ponents of the standard model. There are six leptons, the charged leptons: the muon,

the electron and the tau and the uncharged leptons: the muon neutrino νµ, the electron

neutrino νe and the tau neutrino ντ . There are also six antileptons.

Figure 1.1: Building blocks of matter and force carrying particles in the Standard Model.

Similarly, there are six flavors of quarks, which are classified according to charge,

strangeness (S), charm (C), bottom (B), and top (T). The quarks also fall into three gen-

erations. There are also six antiquarks.

Every interaction has its mediators: the photon for the electromagnetic force, two W’s

and a Z for the weak force, eight gluons for the strong force. The gluons themselves carry

color, and therefore cannot exist as isolated particles.

Particles with half-integer spin are known as fermions. The leptons and the quarks are

fermions. Particles with integer spin are known as bosons. The force mediators are bosons.

The standard Model is an SU(3) × SU(2) × U(1) gauge theory, where color SU(3)

correspond to quantum chromodynamics (QCD), and the weak isospin and weak hyper

charge group SU(2)× U(1) to the electro-weak theory.
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1.2.1 Weak Interactions in the Standard Model

Neutrinos interact only through the weak interaction, mediated by the W+− and Z bosons.

Therefore, we concentrate the review on the electroweak portion of the Standard Model.

The neutrino cross section in the Standard Model is described in the next chapter, section

2.1.

In 1960, Glashow, Weinberg and Salam introduced a model to unify the electromagnetic

and weak forces. The electromagnetic and weak interactions are unified under SU(2)×U(1)

gauge group. Experiments by Wu and Goldhaber [21] had already demonstrated the left-

handedness of the neutrino, showing that the charged current weak interactions couple to

particular chirality states. The following review is taken from [22].

The SU(2) group allows a natural implementation of this property because only the

left-handed fermion field (and the right-handed anti-fermion fields) have a non trivial rep-

resentation in the group. The left-handed states are arranged in doublets:

Le =

(
νe

e−

)
L

, Lµ =

(
νµ

µ−

)
L

, Lτ =

(
ντ

τ−

)
L

. (1.2)

And the right-handed states do not couple to the W±, they are expressed as SU(2) singlets:

le = eR, lµ = µR, lτ = τR. (1.3)

Similar assignments can be made in the quark sector

Qu =

(
u

d

)
L

, Qc =

(
c

s

)
L

, Qt =

(
t

b

)
L

, (1.4)

uu = uR, uc = cR, ut = tR, dd = dR, ds = sR, db = dR (1.5)

The model introduced by Glashow, Weinberg, and Salam to explain the electroweak forces

is that of a spontaneously broken SU(2) × U(1) gauge theory. A generalized position

dependent rotation in the space of SU(2)× U(1) of a field φ requires the existence of four

vector fields, three (W a
µ ) corresponding to the original SU(2) group and one (Bµ) from the

U(1) group. The covariant derivative of φ is given by

Dµφ = (∂µ − igW a
µτa −

i

2
g′Bµ)φ (1.6)

where g and g′ are the different coupling constants of the SU(2) and U(1) factors of the

gauge group. And τa = σa/2, where σa denotes the Pauli matrices.

To introduce massive gauge bosons, the symmetry has to spontaneously broken. The spon-

taneous symmetry breaking is used to give mass to the particles through the called Higgs
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mechanism[23]. A scalar field H is introduced and assumed to acquire a vacuum expectation

value of the form

< H >=
1√
2

(
0

v

)
. (1.7)

The mass of the gauge fields will come from the interaction with this new scalar field. The

relevant contribution to the electroweak Lagrangian will be the expectation value of the

interaction of the scalar field ground state. Then the gauge boson mass terms come from

the square of (1.6), evaluated at the scalar field vacuum expectation value < H >, equation

(1.7)

∆L =
1

2
(0 v)(gW a

µτ
a +

1

2
g′Bµ)(gW bµτ b +

1

2
g′Bµ)

(
0

v

)
. (1.8)

Evaluating the matrix product explicitly and using the σa, we find

∆L =
1

2

v2

4
[g2(W 1

µ)2 + g2(W 2
µ)2 + (−gW 3

µ + g
′
Bµ)2]. (1.9)

Three massive vector bosons can be defined, the W+
µ as a function of W 1

µ and W 2
µ as follows

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ) (1.10)

with mass mW = g v2 .

The Z0
µ in function of W 3

µ and Bµ

Z0
µ =

1√
g2 + g′2

(gW 3
µ − g′Bµ) (1.11)

with mass mZ =
√
g2 + g′2 v2 , where v has been defined in equation 1.7.

The fourth vector field, orthogonal to Z0
µ, remains massless:

Aµ =
1√

(g′W 3
µ + gBµ)

(1.12)

The Aµ field is identified with the electromagnetic vector potential.

Using the gauge fields W±µ , Z0
µ and Aµ, the equation (1.9) can be written as follows

∆L =
1

2

v2

4
(g2W+

µ W
−µ + (g2 + g′2)Z0

µZ
0µ, (1.13)

where the mass for mW± and mZ0 are given by

mW± = g
v

2
,

mZ0 =
v

2

√
g2 + g′2. (1.14)
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Now to complete the description of the electroweak interactions, consider a fermion field

belonging to a general SU(2) representation, with U(1) charge Y. The covariant derivative,

in terms of the mass eigenstate fields, becomes

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−µ T
−)− i 1√

g2 + g′2
Zµ(g2T 3 − g′2Y )

− i
gg′√
g2 + g′2

Aµ(T 3 + Y ), (1.15)

where T± = (T 1 ± iT 2). In the spinor representation of SU(2), T± = σ±.

From the covariant derivative equation (1.15), we can identify the coefficient of the electro-

magnetic interaction as the electron charge e:

e =
gg′√
g2 + g′2

, (1.16)

and the electric charge quantum number as Q = T 3 + Y .

To further simplify equation (1.15), we introduce the weak mixing angle defined by

cosθw =
g√

g2 + g′2
, sinθw =

g′√
g2 + g′2

. (1.17)

Using the Z0 coupling g2T 3 − g′2Y = (g2 + g
′2)T 3 = g

′2Q. The covariant derivative (1.15)

can be written in the form

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−µ T
−)− i g

cosθw
Zµ(T 3 − sin2θwQ)− ieAµQ, (1.18)

where g = e/sinθw.

The Lagragian for the weak interactions of quarks and leptons is given by:

Lew = L̄i(iγ
µ)∂µLi + l̄i(iγ

µ)li + Q̄j(iγ
µ∂µ)Qj + ūj(iγ

µ∂µ)uj + d̄k(iγ
µ)dk

+ g(W−µ J
µ+
W +W−µ J

µ−
W + Z0

µJ
µ
Z) + eAµJ

µ
EM , (1.19)

where

Jµ+
W =

1√
2

(ν̄Lγ
µeL + ūLγ

µdl); (1.20)

Jµ−W =
1√
2

(ēLγ
µνL + d̄Lγ

µuL); (1.21)

JµZ =
1

cosθw
[ν̄Lγ

µ(
1

2
νL + ēLγ

µ(−1

2
+ sin2θw)el + ēRγ

µ(sin2θw)eR

+ ūLγ
µ(

1

2
− 2

3
sin2θw)uL + ūRγ

µ(−2

3
sin2θw)uR + d̄Lγ

µ(−1

2
− 1

3
sin2θw)dl

+ d̄Rγ
µ(

1

3
sin2θw)dR]; (1.22)

JµEM = −ēγµe+
2

3
ūγµu− 1

3
d̄γµd. (1.23)
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The terms W−µ J
µ+
W + W−µ J

µ−
W in equation 1.19 are responsible for all charged-current in-

teractions in which the lepton charge is changed by ±1 units, and W+
µ and W−µ represent,

respectively, W+ and W− gauge bosons. The last two terms in equation 1.19 generates

interactions mediated by the neutral gauge boson Z0, and by the photon, denoted here by

the gauge Aµ.

1.2.2 Neutrino Mass in the Standard Model

The standard model makes a prediction concerning the mass of neutrinos. A short review

is given in this section.

A neutral fermion may exist either as a Dirac particle (fermion 6=antifermion) or as a

Majorana particle (fermion≡antifermion). The lagrangian can contain either Dirac mass

terms or Majorana mass terms. A Dirac mass term for a neutrino ν can be written

LDirac = −m(ν̄LνR + ν̄RνL), (1.24)

where m is the neutrino mass. In the Standard Model only the left handed helicity state

of the neutrino νL is presented at each generation. Consequently the Standard Model does

not contain any Dirac mass terms for neutrinos.

We can also construct mass terms out the νL alone or νR alone [24]. These mass terms

are called Majorana mass terms. We can have the ”left handed Majorana mass”

−LML = −mL

2
(ν̄L)CνL + h.c., (1.25)

or we can have the ”right handed Majorana mass”

−LML = −mR

2
(ν̄R)CνR + h.c.. (1.26)

In these expressions, mL and mR are mass parameters, and for any field ψ,ψC is the

corresponding charge-conjugate field. In terms of ψ, ψC = Cψ̄T , where C is the charge

conjugation matrix, and T denotes transposition. ψC represents the antiparticle field ψ. In

the Dirac bases C = γ2 (up to an arbitrary phase). Note (νL)C is a right-handed neutrino

field and (νR)C is a left-handed neutrino field.

A Dirac mass term turns a neutrino into a neutrino, or an antineutrino into an an-

tineutrino, while a Majorana mass term converts a neutrino into an antineutrino, or vice

versa. A Dirac mass terms conserve the lepton number L that distinguishes leptons from

anti-leptons, while Majorana mass terms do not. The quantum number L is also conserved

by the Standard Model coupling of neutrinos and other particles. Thus, if we assume that

the interactions between neutrinos and other particles are well described by the Standard

Model, then any L non-conservation that we observe in neutrino experiments would have

to arise from Majorana mass terms, not from interactions.
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An electrically charged fermion such as a quark cannot have a Majorana mass term,

because such a term would convert it into an antiquark, in violation of electric charge

conservation. However, for the electrically neutral neutrinos, Majorana mass terms are not

only allowed but likely within the Standard Model, given that the neutrinos are now known

to be particles with mass.



Chapter 2

Neutrino Cross Section

Neutrinos interact with matter via the weak interaction by exchanging W+ or Z0 bosons.

Neutrino interactions can be classified into two main categories: the neutrino charged cur-

rent interactions CC which involves the W+/− and the neutral current NC processes with

Z exchange:

νµN → µ−X , ν̄µN → µ+X CC (2.1)

νµN → νµX , ν̄N → ν̄X NC, (2.2)

where N = p, n or a target (with given neutrons and protons) and X as the hadronic final

state.

Furthermore, the charged current and the neutral current interactions are each classified

into three main categories

1. Quasielastic and elastic scattering: The neutrino scatters elastically off the nucleon

ejecting a nucleon from the target. The quasi elastic is for charged current events and

the elastic is for neutral current events.

2. Resonance production: The neutrino can excite the target nucleon to a resonance

state. This resonance quickly decays usually into a nucleon and a single pion final

state: νµN → µ−N∗, then the resonanceN∗ decays toN∗ → πN ′, whereN,N ′ = n, p.

This interaction occurs in both CC and NC processes.

3. Deep inelastic scattering: the neutrino scatter off a quark in the nucleon via the

exchange of W and Z boson producing a lepton and a hadronic system in the final

state. This interaction occurs in both charged and neutral current interactions.

Figure 2.1 shows the existing measurements of charged current neutrino cross sections across

the entire energy range, including quasi elastic, resonance and deep inelastic interactions.

13
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In addition, the theoretical models for each of the interactions are shown.

globally describes the transition between these processes or
how they should be combined. Moreover, the full extent to
which nuclear effects impact this region is a topic that has
only recently been appreciated. Therefore, in this section, we
focus on what is currently known, both experimentally and
theoretically, about each of the exclusive final-state processes
that participate in this region.

To start, Fig. 9 summarizes the existing measurements of
CC neutrino and antineutrino cross sections across this inter-
mediate energy range

!"N ! "!X; (54)

!!"N ! "þX: (55)

These results have been accumulated over many decades
using a variety of neutrino targets and detector technologies.
We immediately notice three things from this figure. First, the
total cross sections approaches a linear dependence on neu-
trino energy. This scaling behavior is a prediction of the quark
parton model (Feynman, 1969), a topic we return to later, and
is expected if pointlike scattering off quarks dominates the
scattering mechanism, for example, in the case of deep
inelastic scattering. Such assumptions break down, of course,
at lower neutrino energies (i.e., lower momentum transfers).
Second, the neutrino cross sections at the lower energy end of
this region are not typically as well measured as their high-
energy counterparts. This is generally due to the lack of high
statistics data historically available in this energy range and
the challenges that arise when trying to describe all of the
various underlying physical processes that can participate in
this region. Third, antineutrino cross sections are typically
less well measured than their neutrino counterparts. This is
generally due to lower statistics and larger background con-
tamination present in that case.

Most of our knowledge of neutrino cross sections in
this intermediate energy range comes from early experiments
that collected relatively small data samples (tens-to-a-few-
thousand events). These measurements were conducted in

the 1970s and 1980s using either bubble chamber or spark
chamber detectors and represent a large fraction of the data
presented in the summary plots we show. Over the years,
interest in this energy region waned as efforts migrated to
higher energies to yield larger event samples and the focus
centered on measurement of electroweak parameters (sin2#W)
and structure functions in the deep inelastic scattering region.
With the discovery of neutrino oscillations and the advent of
higher intensity neutrino beams, however, this situation has
been rapidly changing. The processes discussed here are im-
portant because they form some of the dominant signal and
background channels for experiments searching for neutrino
oscillations. This is especially true for experiments that use
atmospheric or accelerator-based sources of neutrinos. With a
view to better understanding these neutrino cross sections,
new experiments such as Argon Neutrino Test (ArgoNeuT),
KEK to Kamioka (K2K), Mini Booster Neutrino Experiment
(MiniBooNE),Main INjector ExpeRiment: nu-A (MINER!A),
Main Injector Neutrino Oscillation Search (MINOS), Neutrino
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cross section at intermediate energies. The underlying quasielastic,
resonance, and deep inelastic scattering contributions can produce a
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FIG. 9. Total neutrino and antineutrino per nucleon CC cross
sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figs. 28, 11,
and 12, with the inclusion of additional lower energy CC inclusive
data from m (Baker et al., 1982), # (Baranov et al., 1979), j
(Ciampolillo et al., 1979), and ? (Nakajima et al., 2011). Also
shown are the various contributing processes that will be inves-
tigated in the remaining sections of this review. These contributions
include quasielastic scattering (dashed), resonance production (dot-
dashed), and deep inelastic scattering (dotted). Example predictions
for each are provided by the NUANCE generator (Casper, 2002).
Note that the quasielastic scattering data and predictions have been
averaged over neutron and proton targets and hence have been
divided by a factor of 2 for the purposes of this plot.
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Figure 2.1: Total neutrino per nucleon charged current cross section divided by neutrino
energy and plotted as a function of the energy. The Monte Carlo prediction is from the
NUANCE generator. The experimental data are from the following experiments: ANL,
PRD 16, 3103 (1977), BEBC, NP B343, 285 (1990), BNL, PRD 23, 2499 (1981), FNAL,
PRD 28, 436 (1983) (D2), GGM, NC A38, 260 (1977), MiniBooNE, PRD 81, 092005 (2010),
C, NOMAD, EPJ C63, 355 (2009), Serpukhov, ZP A320, 625 (1985), Al, SKAT, ZP C45,
551 (1990), BEBC, ZP C2, 187 (1979), MINOS, PRD 81, 072002 (2010), NOMAD, PLB
660, 19 (2008), NuTeV, PRD 74, 012008 (2006). Also show are the predictions for the
quasi-elastic (QE), resonance (RES), and deep inelastic (DIS) cross sections as well as the
total cross section. This plot was taken from[8].

2.1 Neutrino Scattering

The general expression of the differential cross section for two body reaction to two body

final states is

dσ =
|M|2

4[(p1.p2)2 −m2
1m

2
2]1/2

dΦf , (2.3)

where M is the transition amplitude: < f |M |i >=< p3, p4|M|p1, p2 > and dΦf stands for

the phase space volume element in the final state∫
dΓ
dΦf (p3, p4) = (2π)4δ4(p3 + p4 − p1 − p2)

d3p3

(2π)22E3

d3p4

(2π)32E4
. (2.4)

TheM can be applied analytically for point like particles. For example, for a muon neutrino

scattering off of an electron via W exchange νµ + e− → µ−+ νe. The review below is taken

from [25]. The matrix element can be written as
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M =
g2
w

8
[ū(p3)γµ(1− γ5)u(p1)]

−i(gνµ − qµqν
M2
W

)

q2 −M2
W

[ū(p4)γµ(1− γ5)u(p2)] (2.5)

Considering q2 << M2
W c

2 the propagator can be simplified and averaging the spins the

amplitude is written as∑
spins

|M|2 =
g2
w

(8(MW c)2)2
Tr[γµ(1− γ5)(p1 +mec)γ

ν(1− γ5)p3] (2.6)

× Tr[γµ(1− γ5)p2γν(1− γ5)(p4 +mµc)].

Using the trace theorems the amplitude is∑
spins

|M|2 = 4(
gw
MW c

)4(p1.p2)(p3.p4). (2.7)

Neglecting the mass of the electron and if we go to the center of mass frame, the differential

cross section is
dσ

dΩ
=

1

2
(

~cg2
WE

4π(MW c2)2
)2[1− (

mµc
2

2E
)2]2. (2.8)

As another example of the neutrino scattering, consider the neutrino nucleon scattering

νµ(p1) + n(p2)→ µ−(p3) + νe(p4). The amplitude can be obtained replacing the point like

e− νe current ū(p3)γµ(1− γ5)u(p1) by the nucleon n-p current

Vud < p(p3)|Vµ −Aµ|n(p1) > = Vudū(p3){γµf1(q2) +
iσµνq

ν

2M
f2(q2) (2.9)

− g1(q2)γµγ5 − g3(q2)
qµ
M
γ5}u(p1),

where M is the nucleon mass and qµ = (p3 − p1)µ. For the neutrino scattering off of a

neutron, there is no analytical way to find the matrix amplitude M. The nucleon form

factors of Vµ are denoted by f1,2(q2) which capture the internal structure of the nucleon

and those of the Aµ by g1.3(q2)[26].

2.2 Quasielastic Scattering

This section reviews the quasi-elastic scattering process. The quasi-elastic cross section

gives the information about the static properties of the proton and the neutron. Consider

the neutrino nucleon scattering

νl(p1) + n(p2) → µ−(p3) + p(p4) (2.10)
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Figure 2.2: Feynman diagram for neutrino-nucleon charged current scattering.

where p1, p2, p3 and p4 are the four momenta. These four momenta are:

p1 = (Eν , ~pν)

p2 = (Eµ, ~pµ)

p3 = (M, 0)

p4 = (E, ~p). (2.11)

The momenta can be written as a function of the Lorentz invariant variables s, t and u

(called Mandelstam variables) as follow:

s = (p1 + p2)2 = (p3 + p4)2 = M2 + 2MEν ,

u = (p1 − p4)2 = (p2 − p3)2 = M2 +m2 − 2MEl,

t = (p1 − p4)2 = (p2 − p3)2 = q2 = 2M2 +m2 − (s+ u) = 2M(El − Eν). (2.12)

Other set of kinematic variables are:

Q2 = −q2 = 2Eν(El − pl)−m2

ν = Eν − El,
W 2 = M2 + 2Mν −Q2,

x = Q2/2Mν, (2.13)

where Q2 is the four momentum transfer between the leptonic and hadron vertices and can

be computed using the kinematics of the outgoing muon and incoming neutrino energy. The



17

Eν is the neutrino, m is the mass of the muon, M is the nucleon mass, El and pl are the

energy and momentum of the lepton.

The neutrino interaction can be written as a leptonic current times a hadronic current. The

hadronic current depends on the underlying nucleon structure and is written in terms of

the Dirac and Pauli nucleon vector form factors. The amplitude is

M =
G√

2
ūµ(p3)γλ(1− γ5)uνµ(p1)cos(θc)ūp(p4)ΓλCC(q2)un(p2). (2.14)

Here θC is the Cabibbo angle which measures the probability of quark flavor change in the

weak interactions[23]. ΓµCC(q2) gives the weak form factors for the nucleon

Γλ = γλF
1
V (q2)+

iσλνq
νξF 2

V (q2)

2M
+
qλF

3
V (q2)

M
+γλγ5FA(q2)+

qλγ5Fp(q
2)

M
+
γ5(p1 + p2)λF

3
A(q2)

M
,

(2.15)

here M is the mass of the struck nucleon. These weak form factors parameterize the amount

of each type of weak current participating in the interaction. They are functions of the four

momentum q2.

The form factors in equation (2.15): F 1
V , F

2
V and F 3

V are the vector nucleon form factors,

FA is the axial-vector form factor, Fp is the pseudo scalar form factor and ξ is ξ = µp−µn,

the difference of the anomalous magnetic moments of the proton and neutron.

The Γλ can be reduced using invariances following Llewellyn-Smith[28]. First, T invari-

ance, requires that all form factors are real. Second, charge symmetry gives, F 1,2
V , FA and

Fp real and F 3
V,A imaginary. Third, T invariance plus charge symmetry implies no second

class currents so F 3
V,A = 0. Fourth, conserved vector current (CVC) requires F 3

V = 0. And

finally the Dirac electromagnetic isovector form factor F 1
V (q2) = [FP1 (q2)−Fn1 (q2)] and the

Pauli electromagnetic isovector form factor F 2
V (q2) =

µpF
p
2 (q2)−µnFn2 (q2)

µp−µn .

Using the matrix element 2.14 and the invariances from Llewellyn-Smith[28], the differ-

ential cross section for neutrino quasi elastic scattering can be written as

dσ

dq2
=
G2
FM

2 cos2 θc
8πE2

ν

[A(q2)∓B(q2)
(s− u)

M2
+

(s− u)2

M4
C(q2)] (2.16)

where GF is the Fermi constant, s and u are the Mandelstam variables defined in equation

(2.12). The (−)+ refers to (anti)neutrino scattering. A(q2), B(q2), and C(q2) are:

A(q2) =
m2 − q2

4M2
[(4− q2

M2
)|FA|2 − (4 +

q2

M2
)|F 1

V |2

− q2

M2
|ξF 2

V |2(1 +
q2

4M2
)− 4q2F 1

V ξF
2
V

M2

− m2

M2
((F 1

V + ξF 2
V )2 + |FA|2],

B(q2) =
q2

M2
((F 1

V + ξF 2
V )2)FA),

C(q2) =
1

4
(|FA|2 + |F 1

V |2 −
q2

4M2
|ξF 2

V |2). (2.17)
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F 1
V (q2) and F 2

V (q2) are the Dirac electromagnetic isovector form factor and the Pauli elec-

tromagnetic isovector form factor. And the ξ = µp − µn = 3.71 (µ = anomalous magnetic

moment).

The F 1
V and F 2

V can be written as a function of the Sachs from factors:

F 1
V (q2) = (1− q2

4M2
)−1[GVE(q2)− q2

4M2
GVM (q2)]

ξF 2
V (q2) = (1− q2

4M2
)−1[GVM (q2)−GVE(q2)]. (2.18)

The Sachs form factors have been well measured in electron scattering experiments [29].

The GVM , G
V
E are described to within ±10% experimentally by:

GVE(q2) =
1

(1− q2

0.71GeV 2 )2

GVM (q2) =
1 + µp − µn

(1− q2

0.71GeV 2 )2
. (2.19)

The cross section equation 2.16 also depends on the axial vector from factor FA(q2). This

axial-vector form factor can be written using a dipole approximation as follows

FA(q2) =
FA(0)

(1− q2

(MA)2 )2
(2.20)

where MA is the axial vector mass. FA at (q2 = 0) has been measured in neutron β decay

experiments. The q2 dependance of the axial form factor is extracted from the neutrino-

nucleon quasi elastic data. This is equivalent to measuring MA.

The differential cross section for charged current quasi elastic (CC QE) interactions

depends on the value of axial vector mass MA. Figure 2.3 shows the differential cross

section for CC QE interactions as a function of Q2 for mono energetic neutrinos scattering

off free nucleons using different values of MA, for MA = 1.0 GeV, MA = 1.1 GeV and

MA = 1.2 GeV. The left plot shows the curves normalized by area and shows that changing

the value of MA has an effect on the shape of the cross section. The right plot shows

the curves absolutely normalized and shows that changes to MA also changes the overall

normalization of the cross section.

Measurements of the axial vector mass MA have been made by several experiments, the

next section provides a review of some experimental results.

The changes of MA can affect the shape and rate information as is shown in figure

2.3. Some experiments present results for MA using only rate information, only shape

information or both. Those depending only on a rate analysis require a good knowledge

of the flux. Many of these experiments did not have sufficient knowledge of the incident

neutrino flux to use the rate information.
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Figure 2.4: Above: quasi-elastic differential cross section off of a free
nucleon with respect to Q2. Each distribution corresponds to a differ-
ent value of the axial-vector mass parameter. Below: The same Q2
distribution as above except the red and blue distributions are normal-
ized to the area of the black Q2 distribution.
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Figure 2.3: Cross section for different values of MA. The curves correspond to mono-
energetic neutrinos (at 1GeV) and do not include any nuclear effects. The left curves are
normalized to area and the right curves are absolutely normalized. Plots taken from [30]

2.2.1 Nuclear Effects

Section 2.2 reviewed neutrino nucleon scattering from a nucleon νµn → µ−p. However,

neutrino experiments use nuclear target. For example, NOνA uses mainly (CH2) as a

target. Because the target nucleons are bound in (CH2), there are additional complications

due to interactions with the other nucleons within the nucleus called nuclear effects. The

following review of nuclear effects is taken from [30].

Nuclear effects change both the cross section and the kinematics of the final state. For

example when a charged current pion is made and the pion is absorbed in the target nucleus

the visible final state is different from the original interaction.

The nuclear effects include the Fermi motion of the nucleons (the movement of the nucleon

inside the target nucleus), a nucleon’s binding energy in the nucleus, Pauli blocking and

final state interactions (FSI) such as re-scattering of the outgoing particles with the nuclear

remnant.
CHAPTER 2. THEORY OF THE WEAK INTERACTION 35

Figure 2.5: The CC-νµ QE differential cross section with respect to
Q2 with several values of kF compared to the free nucleon case, shows
the low Q2 suppression characteristic of Pauli-blocking. Taken from
a talk given by M. Sakuda at the 2005 NuFact conference.

ulate these nuclear effects. Benhar proposes the use of nuclear spectral functions
which provided an improved description of the nucleon momentum distribution
within the nucleus [32].

Intranuclear Re-Scattering

While Pauli-blocking has a dramatic effect on the apparent cross section of CC-
νµ QE neutrino-nucleus scattering particularly at low neutrino energies and in the
low Q2 region. However final state interactions are also very important. FSIs
are interactions between the struck nucleon and other nucleons as the struck nu-
cleon passes through the nucleus. Thus for CCνµ QE interactions FSIs change the
kinematics of the final state recoil proton and also determine whether the recoil

Figure 2.4: Charge current QE differential cross section as a function of Q2 for several
values of Fermi momentum kF compared to the free nucleon. Plot taken from [30] .

Pauli blocking is a consequence of the application of the Pauli Exclusion Principle to
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the nucleus in which two identical fermions cannot occupy the same quantum state. In the

quasi elastic interactions this means that the struck nucleus can only be excited if there is

an unoccupied final energy state for the outgoing nucleon. Recent experiments have used

the relativistic Fermi Gas model (RFG) to describe the effects of both Pauli-blocking, and

Fermi motion for quasi elastic scattering. In the RFG model, the excitation of the nuclear

system is described as the transition of a nucleon from a state below the Fermi surface to

one above the Fermi surface [30]. In the FG model the nucleus is a translationally invariant

system composed of an infinite number of nucleons with a momentum distribution

n(|~p|) =
τ

4
3πk

3
F

Θ(kF − |~p|), (2.21)

where τ is the atomic number Z for protons or the neutron number N, Θ is the Heaviside

step function, kF is the Fermi momentum; and ~p is the three momentum of the nucleon.

The value of the Fermi momentum depends on the nucleus and is typically around 200-300

MeV. In Fermi Gas simulations all energy levels up to the Fermi surface are considered to

be filled and any interaction with a momentum transfer that leaves the final state nucleon

with a momentum less than the Fermi momentum is considered to be Pauli blocked.

In 1972 Smith and Moniz [31] evaluated quasi elastic neutrino nucleus scattering, com-

paring this with quasi elastic neutrino nucleon scattering and found the largest effect is for

low values of Q2. Figure 2.4 shows the effect on the cross section σ of moving from a free

nucleon approach to Free Gas model. The figure shows three different values of the Fermi

momentum.

2.3 Review of Quasi-elastic cross section measurements

This section presents a review of the experiments that have measured the axial vector

mass and the cross section. Table 2.1 is a survey of axial vector mass MA measurements,

indicating the target used, the type of detector, the axial vector mass MA obtained and the

number of events.

2.3.1 Result from Bubble Chamber experiments

In 1982 the axial mass was measured by the Argonne 12-foot bubble chamber [32]. This

experiment studied a muon neutrino beam interacting with deuterium. The reaction studied

was νµd→ µ−pps. The experiment used a 12.4 GeV proton beam extracted from the Zero

Gradient Synchrotron and focused onto a beryllium target. Charged particles (pions and

kaons) are produced from this interaction and focused toward the bubble chamber by two
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Table 2.1: Review of the Ma axial vector measurements.
Experiment Target Detector Ma±Error (GeV) Events

ANL[32] D Bubble chamber 1.00± 0.05 1,737

FNAL[112] D Bubble chamber 1.05+0.12-0.16 362

BNL[35] D Bubble chamber 1.08+0.040-0.045 1,1381

CERN[36] CF3Br,C3H8 Bubble chamber 0.94± 0.05 766

SKAT[37] CF3Br Bubble chamber 1.05± 0.14 540

BNL[38] Fe Segmented tracker 1.05± 0.20 6000

K2K[39] H2O Segmented tracker 1.20± 0.12 5,568

MiniBooNE[40] CH2 Chrenkov detector 1.35± 0.17 146,070

NOMAD[41] C Segmented tracker 1.05± 0.02± 0.06 14,021

MINOS[40] Fe Segmented tracker 1.26± 0.17 345,000

magnetic horns. Neutrinos come from the decay of the pions and kaons in the 30-m long

drift space upstream of the bubble chamber.

The neutrino flux was calculated using the measured yields of pions in the p-Be collision

and propagating the particles through the horn system and the decay tunnel. The flux

uncertainty was estimated as 15% from the pions and 25% from the kaons.

The event selection for the data sample was done through human scanning. The overall

efficiency for events in fiducial volume was (98 ± 2)%. They reported a total of 2.4 × 106

pictures taken with the 12-foot bubble chamber. The sample contained 1737 events and the

background for the quasi elastic interactions was estimated to be (2± 2)%.

Figure 2.5 shows the weighted number of events as function of Q2, where the solid line

is obtained from a maximum-likelihood fit of the data to the dipole model. The axial vector

mass result for this experiment was MA = 1.00± 0.05 GeV.

The table 2.1 shows the result from several bubble chamber experiments using different

targets. The axial mass world average value is MA = 1.026± 0.021 GeV [33].

2.3.2 Result from the K2K experiment

In 2006, the K2K experiment measured the axial vector mass using neutrino interactions on

oxygen[39]. This experiment used a neutrino beam produced by 12 GeV protons hitting an

aluminum target. Two magnetic horns focus the charged particles (pions and kaons) into

a 200 m long decay pipe, where they decayed to produce the neutrino beam. The neutrino

energy was peak at 1.2 GeV with energies from 0.3 GeV to 5 GeV.

The K2K experiment analyzed one-track and two-track events. The requirement for the

recoil proton of the two-track sample was a threshold of 600 MeV proton momentum. The

purity of the sample was 63%.

K2K did not include the low Q2 bins in the fit, events below 0.2 GeV 2, since, the largest
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shows the factor R(g ) by which we multiply the
free-neutron cross section in order to correct for
the two deuteron effects mentioned above.
In Fig. 4 we show the weighted number of

events as a function of Q . The solid curve is ob-
tained from a maximum-likelihood fit of the data
to the dipole model. The following likelihood
functions (given in logarithmic form) were tried:

~rate =—»(2'"&da~a'"Os )—~ 0

'2

~d.ta
~shat, e= g ~(gi')»

i=1
dg (Q;,E„;M„,M )R(g; )4(E„;)

f f (Q,E,;Mg,Mv)R(Q )C&(E„)dg dE,
d 2

~total ~rate+ ~shape ~

data

WFt——g W(Q; )ln
dgg \(g;,E„;;MgMy)R(g; )

f 2 (Q,E„;My,My)R (Q )dg
d 2

where FI denotes "flux independence. " In these
equations, 0.& is the experimental error on the ex-
pected number of events, W(g; ) is the weight due
to scan efficiency, R(g; ) is the deuterium correc-
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tion, 4(E ) is the neutrino flux, and
(do/dg )(Q;,E~;Mq,M~)R(Q; ) is the differen-
tial cross section. One should carefully note the
following dependencies. The function W„„de-
pends only on the number of events found and not
on their distribution in the kinematic space
(E„g ). The excitation function for the present
experiment is in agreement with our earlier result.
On the other hand, the function ~sh, pe does de-
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normalization. Whereas the function W„„~,in
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tributions. The results of the fits are given in
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FIG. 4. Weighted Q distribution. The solid curve is
from a maximum-likelihood fit to the dipole model
(M&——1.00 GeV/c ). The dotted curve is from a fit to
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FIG. 5. Result of the two-parameter maximum-

likelihood analysis using W,h,~ and dipole form factors.
The curve is the one standard deviation contour.

Figure 2.5: Q2 distribution from the ANL experiment[32], the solid histogram is the data
and the lines are the result from the fit. The solid curve is the maximum-likehood fit to
the dipole model (MA = 1.00 GeV/c2). The dotted curve is from a fit to AVMD model
(MA = 1.11 GeV/c2).

uncertainty of the model for nuclear effects is the low Q2 region. They also used a free

parameter for the overall normalization and rescaled the neutrino in each energy region.

The figure 2.6 shows the data and the best fit Q2 distribution for the one-track, two track

QE enhanced, and the two-track non-QE enhanced samples.

K2K found, from a fit to the shape of the Q2 distribution, Ma = 1.20± 0.12 GeV.

2.3.3 Result from the NOMAD experiment

The NOMAD experiment studied the neutrino and antineutrino quasi-elastic cross section.

The axial vector mass parameter MA for the quasi-elastic neutrino cross section was ex-

tracted from their cross section measurement.

This experiment used a neutrino beam produced by the 450 GeV proton synchrotron at

CERN. The proton beam interact with a beryllium target producing π+ and K+ mesons.

Those charged particles are focused by magnetic lenses and subsequently decay producing

neutrinos [41].

The NOMAD experiment consists of an active target of 44 drift chambers made of low

Z material with a total fiducial mass of 2.7 tons located in a 0.4 Tesla dipole magnetic field.

The average energy of the incoming neutrinos is 25.9 GeV. The data sample used by the

CCQE analysis was 751000 charged current interactions.

The NOMAD used two samples for the analysis of quasi-elastic charged current inter-

actions. In the first sample of 1-track events, only one charged lepton was reconstructed
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in the muon momentum scale. Also, the muon thresholds
are somewhat different, and the acceptance model for
short, second tracks in SciFi is calibrated separately for
the two data sets, which could show up in the two-track to
one-track migration.

C. Systematic uncertainties

Here we discuss the systematic errors in detail. The
largest contributions to the systematic error, summarized
in Table VI, are the uncertainty in the muon momentum

scale, and the normalization and uncertainty in the flux for
each energy region. For simplicity, we treat all the errors as
symmetric when quoting a final result because these largest
errors are symmetric. Other, smaller contributions include
the shape of the non-QE background, the non-QE=QE
ratio, and the two-track to one-track migration. A final,
interesting source of uncertainty comes from nuclear ef-
fects, though it contributes only a small amount to this
analysis. The statistical error is estimated by setting all the
other parameters in the fit to their best fit values and
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FIG. 7. The data and the best fit Q2
rec distributions for K2K-1 data (left) and K2K-IIa data (right) for the one-track, two-track QE

enhanced, and two-track non-QE enhanced samples. The shaded region shows the QE fraction of each sample, estimated from the MC.
The contribution from each energy region is summed for each plot. The lowest two data points in each plot are not included in the fit,
due to the large uncertainty in the effects of the nucleus.
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in the muon momentum scale. Also, the muon thresholds
are somewhat different, and the acceptance model for
short, second tracks in SciFi is calibrated separately for
the two data sets, which could show up in the two-track to
one-track migration.

C. Systematic uncertainties

Here we discuss the systematic errors in detail. The
largest contributions to the systematic error, summarized
in Table VI, are the uncertainty in the muon momentum

scale, and the normalization and uncertainty in the flux for
each energy region. For simplicity, we treat all the errors as
symmetric when quoting a final result because these largest
errors are symmetric. Other, smaller contributions include
the shape of the non-QE background, the non-QE=QE
ratio, and the two-track to one-track migration. A final,
interesting source of uncertainty comes from nuclear ef-
fects, though it contributes only a small amount to this
analysis. The statistical error is estimated by setting all the
other parameters in the fit to their best fit values and
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enhanced, and two-track non-QE enhanced samples. The shaded region shows the QE fraction of each sample, estimated from the MC.
The contribution from each energy region is summed for each plot. The lowest two data points in each plot are not included in the fit,
due to the large uncertainty in the effects of the nucleus.
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in the muon momentum scale. Also, the muon thresholds
are somewhat different, and the acceptance model for
short, second tracks in SciFi is calibrated separately for
the two data sets, which could show up in the two-track to
one-track migration.

C. Systematic uncertainties

Here we discuss the systematic errors in detail. The
largest contributions to the systematic error, summarized
in Table VI, are the uncertainty in the muon momentum

scale, and the normalization and uncertainty in the flux for
each energy region. For simplicity, we treat all the errors as
symmetric when quoting a final result because these largest
errors are symmetric. Other, smaller contributions include
the shape of the non-QE background, the non-QE=QE
ratio, and the two-track to one-track migration. A final,
interesting source of uncertainty comes from nuclear ef-
fects, though it contributes only a small amount to this
analysis. The statistical error is estimated by setting all the
other parameters in the fit to their best fit values and
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due to the large uncertainty in the effects of the nucleus.
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Figure 2.6: Q2 distribution for data and the best fit for a set of the K2K data. The points
are the data and the solid histogram is their MC simulation for signal plus background.
The first graph is the one-track sample, the second the two-track non QE sample and the
third the two-track QE enhanced sample. The shaded region is their MC prediction for the
QE interactions[24].

and identified and in the second sample 2-track events, the negative muon and a positively

charged track were reconstructed. For the second track proton candidate, they required to

have a momentum of p > 300 MeV/c. The figure 2.7 shows the reconstructed Q2 distribu-

tion for data and their MC. This plot also shows the expected background contamination.

NOMAD used the DIS interactions to constraint the flux normalization.

The cross section and axial mass MA extracted from the combined of 1-track and 2-track

sample is

< σqel >νµ = (0.92± 0.02(stat)± 0.06(syst))× 10−38cm2

MA = 1.05± 0.02(stat)± 0.06(syst)GeV. (2.22)

The figure 2.8 shows the < σqel >νµ as a function of the neutrino energy in the 1-track and

2-tracks samples.

2.3.4 Result from the MiniBooNE experiment

In 2010, the MiniBooNE experiment made the first measurement of the double differential

cross section for charged current quasi elastic (CCQE) scattering on carbon [40]. This



24 19

0

50

100

150

200

250

300

0 0.5 1 1.5 2
Q 2 (GeV 2)

N 
ev

en
ts  /  0

.0
5 

G
eV

 2

NOMAD data
MC (DPMJET)
Background

Fig. 13. The Q2 distributions in identified QEL events.

2. C is defined in the same way as for the total QEL
cross-section measurement, i.e. we use another process
(DIS) for normalization:

C =
N0

Φ0σ0
(23)

If we sum over the Q2 variable for the investigated
(Eν , Q2) interval, finding the MA parameter from Eq. (18)
becomes nothing else than the numerical resolution of
Eq. (8). Therefore, this variant of the fit can be con-
sidered as a simultaneous fit of the total and differen-
tial cross-sections; henceforth, we shall refer to it as
σ ⊗ dσ/dQ2 fit.

Fig. 13 presents a comparison of the reconstructed Q2

distribution with our MC prediction. The expected back-
ground contamination is also shown.

We can now apply the proposed methods to experi-
mental data and measure the QEL cross-section and axial
mass MA. The numerical results are reported in Section 8,
while the discussion of the corresponding uncertainties is
presented in the next section.

7 Systematic uncertainties

We have studied several sources of systematic uncertain-
ties, which are important for the measurement of the to-
tal QEL cross-section and axial mass parameter. They are
listed below:

1. identification of QEL events; we vary the selection cri-
teria within reasonable limits (L > 0 ± 0.4 for 2-track
sample and θh/π > 0.35 ± 0.03 for 1-track sample).
The final result is found to be practically insensitive to
the exact positions of the muon azimuth ϕµ cut and ad-
ditional requirements for the Pmis

⊥ , α and θh variables:

e.g. in the νµ analysis a more strict cut 0.1π < ϕµ <
0.9π leads to 0.8% variation in the measured cross sec-
tion while a change in the pre-cuts to Pmis

⊥ < 0.9 GeV,
α/π > 0.75 and 0.18π < θh leads to an uncertainty of
0.4%.

2. uncertainty in the total (mainly DIS) charged current
muon neutrino cross-section, which enters both in the
normalization factor σ0/N0 and in the subtraction of
the corresponding DIS background (the experimental
error on 〈σdis〉 is 2.1% for νµ CC and 2.4% for ν̄µ CC);

3. uncertainty in the RES cross section, which determines
the contamination admixture of the single resonant
pion events in the identified QEL sample (we assume
10% error on 〈σres〉 both for neutrino and antineutrino
cases, see e.g. [56]);

4. FSI interactions (we vary τ0 and αF
mod DPMJET pa-

rameters for fixed Mmc
A = 1.03 GeV);

5. uncertainty in the neutrino flux shape (the relative er-
rors for each Eν bin were taken from [30]);

6. neutral current admixture (we assume 5% error for
the corresponding cross section, which can be found in
Table 3);

7. charge misidentification of the primary lepton (recon-
structed νµ CC event is classified as ν̄µ CC and vice-
versa);

8. contamination from coherent pion production (see sub-
section 4.4).

In Table 6 we present our numerical estimations for
systematic uncertainties (in the case of νµ scattering, sys-
tematic errors were calculated for the mixture of 1-track
and 2-track subsamples). One can see that the most im-
portant contributions come from the QEL identification
procedure and from the uncertainty on the non-QEL pro-
cesses contribution to the selected sample of signal events.

The nuclear reinteractions (FSI effect) significantly af-
fect the neutrino sample only (see Table 9), while in the
antineutrino case the influence of the nuclear reinterac-
tions is expected to be negligible. For νµ scattering, the
cross-sections can be calculated separately for both the 1-
track and 2-track subsamples of identified QEL events or
for their mixture. We can then compare the results and
choose whichever one has the minimal total error. In our
case it was obtained for the combined 1-track and 2-track
sample, which was found to be almost insensitive to the
variation of DPMJET parameters (see Section 8 for ex-
planations).

The uncertainty on the shape of the (anti)neutrino
spectrum is important for the measurement of σqel as a
function of neutrino energy Eν . But it does not affect both
the flux averaged cross section 〈σqel〉 and the MA extrac-
tion from the Q2 distribution.

The uncertainty due to the primary lepton misidenti-
fication and neutral currents comes into play through the
subtraction of the corresponding background from the se-
lected DIS sample, that is, from the normalization factor.
The admixture of those events into the identified QEL
events is negligible.

Figure 2.7: Q2 distribution for the selected CCQE events [41].

20

Table 6. The relative systematic uncertainties (in %) of the QEL cross section 〈σqel〉 and axial mass MA, measured in
νµn → µ−p and ν̄µp → µ+n reactions.

Source 〈σqel〉νµ MA from 〈σqel〉νµ MA from dσν/dQ2 〈σqel〉ν̄µ MA from 〈σqel〉ν̄µ

1 QEL identification procedure:
likelihood or θh cut 3.5 3.2 2.4 4.3 4.2
ϕµ cut 0.8 0.7 0.3 – –
P mis

⊥ , α and θh precuts 0.4 0.4 0.4 – –
2 δ(σdis) 2.9 2.6 0.2 4.2 4.2
3 δ(σres) 4.0 3.6 0.6 7.6 7.4
4 nuclear reinteractions 1.8 1.6 6.5 – –
5 shape of neutrino spectrum 0.2 0.2 0.1 0.9 0.9
6 NC contribution < 0.1 < 0.1 – 1.1 1.1
7 muon misidentification < 0.1 < 0.1 – 1.0 1.0
8 coherent pion production < 0.1 < 0.1 < 0.1 1.1 1.1

total 6.5 5.9 7.0 9.9 9.5
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Fig. 14. Comparison of our 〈σqel〉νµ measurements as a function of the neutrino energy in the 1-track and 2-track subsamples
(for the best parameter τ0 = 1.0) with the final 〈σqel〉νµ values measured using the full event sample, see Table 7.

8 Results

8.1 νµn → µ−p sample

The results of our analysis for the νµ sample are sum-
marized in Table 9. We measure the flux averaged QEL
cross-section in the neutrino energy interval 3 − 100 GeV
(see Eq. (11)) for the 1-track and 2-track samples as well
as for their mixture (which is called Combined in Table 9).
For each 〈σqel〉 we calculate the corresponding axial mass
value, MA. Results on MA extraction both from the stan-
dard Q2 fit and from the combined σ⊗dσ/dQ2 fit are also
given. These measurements are repeated for several QEL
MC with different values of input parameters (the axial
mass MA was varied between 0.83 and 1.23 GeV in steps
of 0.1 GeV; the formation time τ0 was allowed to take a
value of 0.6, 1.0 and 2.0; the correction factor αF

mod was
varied within the interval [0.54, 0.69]). On top of this the
NUANCE QEL MC with its own treatment of FSI effects
is used for cross-checks.

We then observe that MA recalculated from the mea-
sured 〈σqel〉 depends on τ0 if one refers to the 1-track or
the 2-track samples. Specifically, the measured MA value

increases with increasing τ0 when extracted from the 1-
track sample while it decreases when extracted from the
2-track sample. This can be understood if we take into
account the fact that the τ0 parameter controls the proba-
bility for an outgoing nucleon to be involved in an intranu-
clear cascade. Increasing τ0 then increases the fraction of
QEL events with reconstructed proton and thus populates
the 2-track sample to the detriment of the 1-track sample.
This is the reason for the systematic overestimation of MA

extracted from the 1-track sample alone and its underes-
timation when extracted from the 2-track sample alone.
However the value of MA extracted from the combination
of the 1-track and 2-track samples is almost insensitive to
variations of the τ0 parameter.

We also find that using the QEL Monte Carlo with
τ0 = 1 and αF

mod = 0.6 provides the most accurate predic-
tion for the ratio between the 1-track and 2-track samples
(and hence the most adequate description of the FSI): in
this case the flux averaged QEL cross-section stays ap-
proximately the same whether measured from the 1-track
sample or from the 2-track sample (see Table 9). This al-

Figure 2.8: Cross section as a function of the neutrino energy for the 1-track and 2 track
subsamples [41].

section presents a review of their results. The MiniBooNE experiment uses a neutrino

beam from the Fermilab Booster. Protons are accelerated to 8 GeV kinetic energy in the

Fermilab Booster synchrotron, are extracted, and interact with a beryllium target. The

secondary mesons that are produced are then focused by a toroidal magnetic field which

serves to direct the resulting beam of neutrinos towards the downstream detector. The

MiniBooNE detector consists of a spherical steel tank of 610 cm inner radius filled with

mineral oil (CH2).

The procedure to determine the cross section was made selecting a CCQE sample and

measuring the CCπ+ background. The CCπ+ background to the CCQE signal is measured

by adjusting the weights of the simulated CCπ+ events to achieve data-MC agreement in

the Q2 distribution for the background sample (CCπ+). This weighting is applied to the

simulated CC1π+ events, giving an estimate of the CC1π+ background to the CCQE signal.

Figure 2.9 shows the Data and MC for the selected samples after background correction,

on the top a sample dominated by CCQE interactions and on the bottom a background

sample dominated by CC1π+.
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FIG. 7: (color online) Distribution of events in Q2
QE for the

(a) 2 and (b) 3 subevent samples before the application of
the CC1π+ background correction. Data and MC samples
are shown along with the individual MC contributions from
CCQE, CC1π+, and other channels. In (b), the dashed line
shows the CC1π+ reweighting function (with the y-axis scale
on the right) as determined from the background fit proce-
dure.

tion, the µ/e log-likelihood ratio cut (Tab. II and Fig. 5)
is applied for both the 2- and 3-subevent samples, fur-
ther ensuring that the CC1π+ events are the same in
both samples.

The CC1π+ reweighting function (Fig. 7b) is a 4th-
order polynomial in Q2

QE and is determined from the
ratio of data to MC in this sample. The 2-subevent
sample shows good shape agreement between data and
MC. This is because the event model for CCQE was al-
ready adjusted to match data in a previous analysis [11]
that considered only the shape of the Q2

QE distribution.
That analysis did not consider the overall normalization
of events.

In practice, this determination of the CC1π+ reweight-
ing is done iteratively as there is some CCQE background
in the 3 subevent sample. An overall normalization factor
is calculated for the CCQE sample to achieve data-MC
agreement in the 2 subevent sample after subtraction of
the CC1π+ background. This is then applied to deter-
mine the CCQE background in the 3 subevent sample.
The background from other channels is determined from
the simulation and subtracted. This process converges
after two iterations.

This method determines a correction to the CC1π+

rate (as a function Q2
QE) using data from the 3-subevent

sample rather than relying strictly on simulation. This
reweighting is then applied to all simulated CC1π+

events, in particular those that are contained in the 2-
subevent sample and form most of the background for
the CCQE measurement. The error on M1π

A within the
resonant background model is then set to zero and the
resulting error on the CC1π+ background to the CCQE
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FIG. 8: (color online) Distribution of events in Q2
QE for the

(a) 2 and (b) 3 subevent samples after the application of the
data-based CC1π+ background constraint and the new CCQE
model parameters Meff

A and κ as determined from the CCQE
fit procedure described in the text.

signal from CC1π+ production is determined by the co-
herent π-production errors and the π+ absorption un-
certainty. The statistical errors in this procedure are
negligible. Most CC1π+ events that end up in the 2-
subevent (CCQE) sample are due to intranuclear π+ ab-
sorption. This process is modeled in the event simulation
as explained in Sec. III D and is assigned a 25% uncer-
tainty. The coherent π-production process is modeled as
described in Sec. III C and is assigned a 100% uncertainty.

With the measured CC1π+ background incorporated,
a shape-only fit to the 2-subevent (CCQE) sample is per-
formed to extract values for the CCQE model parame-
ters, M eff

A and κ. This exercise is required to have a
consistent description of the MiniBooNE data within the
simulation after adjustment of the background. This pro-
cedure has no effect on the CCQE cross section results
reported here other than very small corrections to the an-
tineutrino background subtraction which uses these pa-
rameters. In this fit, all systematic errors and correla-
tions are considered. The CCQE simulated sample is
normalized to have the same number of events as data
which is the same normalization as determined in the
CC1π+ background determination. The Q2

QE distribu-
tions of data from the 2 and 3 subevent samples is shown
together with the MC calculation in Figure 8. The MC
calculations include all the adjustments described in this
section and agreement with data is good in both samples.

This shape-only fit to the 2-subevent sample yields the
adjusted CCQE model parameters, M eff

A and κ,

M eff
A = 1.35 ± 0.17 GeV/c2 ;

κ = 1.007 ± 0.012 ;

χ2/dof = 47.0/38 .

Figure 9 shows the 1σ contour regions of this fit together

Figure 2.9: Q2 distribution for two sets of data after the CC1π+ background constraint.
The points are the data and the black histogram is the result from the fit. The top plot is
the quasi elastic sample and the bottom plot is the background sample[40]

The MiniBooNE experiment used a set of data corresponding to 5.58× 1020POT with

a total of 146070 events passing the CCQE selection. The CCQE sample is estimated to

contain 23.0% of background events dominated by CC1π+ interactions.

The results are shown in figures 2.10. The left hand plot shows the flux integrated

differential cross section and the right hand plot is the flux integrated single differential

cross section.

MiniBooNE experiment measured the flux integrated CCQE cross section by integrating

the double differential cross section providing the value of 9.429× 10−39cm2 with 10.7% on

the total normalization error.

In addition the MiniBooNE experiment performed a shape only fit for the single dif-

ferential cross section. The right hand plot in figure 2.10 shows the RFG model for

the world average (MA = 1.03GeV, k = 1.000) [40] and the parameters from their fit

(MA = 1.35GeV, k = 1.007).

The flux unfolded CCQE cross section as a function of the neutrino energy was measured

by the MiniBooNE experiment. This is shown in figure 2.11. The extracted parameters

from their fit are: (M eff
A = 1.35GeV, k = 1.007).

We have reviewed measurements for the axial vector mass MA from modern experiments

using different targets and old bubble chamber experiment using deuteron as target. Those

experiments provide the current knowledge for the axial vector mass MA. In addition to

these experiments, other experiments are analyzing their data using different targets such

as the MINOS experiment which uses (Fe) as target and the Minerva experiment which
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FIG. 13: (Color online). Flux-integrated double differential
cross section per target neutron for the νµ CCQE process.
The dark bars indicate the measured values and the surround-
ing lighter bands show the shape error. The overall normal-
ization (scale) error is 10.7%. Numerical values are provided
in Table VI in the Appendix.

simplicity, the full error matrices are not reported for all
distributions. Instead, the errors are separated into a to-
tal normalization error, which is an error on the overall
scale of the cross section, and a “shape error” which con-
tains the uncertainty that does not factor out into a scale
error. This allows for a distribution of data to be used
(e.g. in a model fit) with an overall scale error for un-
certainties that are completely correlated between bins,
together with the remaining bin-dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential cross
section

The flux-integrated, double differential cross section

per neutron, d2σ
dTµd cos θµ

, for the νµ CCQE process is ex-

tracted as described in Section IVD and is shown in
Figure 13 for the kinematic range, −1 < cos θµ < +1,
0.2 < Tµ(GeV) < 2.0. The errors, for Tµ outside of this
range, are too large to allow a measurement. Also, bins
with low event population near or outside of the kine-
matic edge of the distribution (corresponding to large
Eν) do not allow for a measurement and are shown as
zero in the plot. The numerical values for this double
differential cross section are provided in Table VI in the
Appendix.

The flux-integrated CCQE total cross section, ob-
tained by integrating the double differential cross section
(over −1 < cos θµ < +1, 0 < Tµ(GeV) < ∞), is mea-
sured to be 9.429 × 10−39 cm2. The total normalization
error on this measurement is 10.7%.

The kinematic quantities, Tµ and cos θµ, have been cor-
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FIG. 14: (Color online). Flux-integrated single differential
cross section per target neutron for the νµ CCQE process.
The measured values are shown as points with the shape
error as shaded bars. Calculations from the nuance RFG
model with different assumptions for the model parameters
are shown as histograms. Numerical values are provided in
Table IX in the Appendix.

rected for detector resolution effects only (Section IVD).
Thus, this result is the most model-independent mea-
surement of this process possible with the MiniBooNE
detector. No requirements on the nucleonic final state
are used to define this process. The neutrino flux is an
absolute prediction [19] and has not been adjusted based
on measured processes in the MiniBooNE detector.

B. Flux-integrated single differential cross section

The flux-integrated, single differential cross section per
neutron, dσ

dQ2
QE

, has also been measured and is shown

in Figure. 14. The quantity Q2
QE is defined in Eq. 2

and depends only on the (unfolded) quantities Tµ and
cos θµ. It should be noted that the efficiency for events
with Tµ < 200 MeV is not zero because of difference
between reconstructed and unfolded Tµ. The calculation
of efficiency for these (low-Q2

QE) events depends only on
the model of the detector response, not on an interaction
model and the associated uncertainty is propagated to
the reported results.

In addition to the experimental result, Figure 14 also
shows the prediction for the CCQE process from the nu-
ance simulation with three different sets of parameters
in the underlying RFG model. The predictions are ab-
solutely normalized and have been integrated over the
MiniBooNE flux. The RFG model is plotted assum-
ing both the world-averaged CCQE parameters (MA =
1.03 GeV, κ = 1.000) [9] and the CCQE parameters ex-
tracted from this analysis (MA = 1.35 GeV, κ = 1.007)
in a shape-only fit. The model using the world-averaged
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FIG. 13: (Color online). Flux-integrated double differential
cross section per target neutron for the νµ CCQE process.
The dark bars indicate the measured values and the surround-
ing lighter bands show the shape error. The overall normal-
ization (scale) error is 10.7%. Numerical values are provided
in Table VI in the Appendix.

simplicity, the full error matrices are not reported for all
distributions. Instead, the errors are separated into a to-
tal normalization error, which is an error on the overall
scale of the cross section, and a “shape error” which con-
tains the uncertainty that does not factor out into a scale
error. This allows for a distribution of data to be used
(e.g. in a model fit) with an overall scale error for un-
certainties that are completely correlated between bins,
together with the remaining bin-dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential cross
section

The flux-integrated, double differential cross section

per neutron, d2σ
dTµd cos θµ

, for the νµ CCQE process is ex-

tracted as described in Section IVD and is shown in
Figure 13 for the kinematic range, −1 < cos θµ < +1,
0.2 < Tµ(GeV) < 2.0. The errors, for Tµ outside of this
range, are too large to allow a measurement. Also, bins
with low event population near or outside of the kine-
matic edge of the distribution (corresponding to large
Eν) do not allow for a measurement and are shown as
zero in the plot. The numerical values for this double
differential cross section are provided in Table VI in the
Appendix.

The flux-integrated CCQE total cross section, ob-
tained by integrating the double differential cross section
(over −1 < cos θµ < +1, 0 < Tµ(GeV) < ∞), is mea-
sured to be 9.429 × 10−39 cm2. The total normalization
error on this measurement is 10.7%.

The kinematic quantities, Tµ and cos θµ, have been cor-
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FIG. 14: (Color online). Flux-integrated single differential
cross section per target neutron for the νµ CCQE process.
The measured values are shown as points with the shape
error as shaded bars. Calculations from the nuance RFG
model with different assumptions for the model parameters
are shown as histograms. Numerical values are provided in
Table IX in the Appendix.

rected for detector resolution effects only (Section IVD).
Thus, this result is the most model-independent mea-
surement of this process possible with the MiniBooNE
detector. No requirements on the nucleonic final state
are used to define this process. The neutrino flux is an
absolute prediction [19] and has not been adjusted based
on measured processes in the MiniBooNE detector.

B. Flux-integrated single differential cross section

The flux-integrated, single differential cross section per
neutron, dσ

dQ2
QE

, has also been measured and is shown

in Figure. 14. The quantity Q2
QE is defined in Eq. 2

and depends only on the (unfolded) quantities Tµ and
cos θµ. It should be noted that the efficiency for events
with Tµ < 200 MeV is not zero because of difference
between reconstructed and unfolded Tµ. The calculation
of efficiency for these (low-Q2

QE) events depends only on
the model of the detector response, not on an interaction
model and the associated uncertainty is propagated to
the reported results.

In addition to the experimental result, Figure 14 also
shows the prediction for the CCQE process from the nu-
ance simulation with three different sets of parameters
in the underlying RFG model. The predictions are ab-
solutely normalized and have been integrated over the
MiniBooNE flux. The RFG model is plotted assum-
ing both the world-averaged CCQE parameters (MA =
1.03 GeV, κ = 1.000) [9] and the CCQE parameters ex-
tracted from this analysis (MA = 1.35 GeV, κ = 1.007)
in a shape-only fit. The model using the world-averaged

Figure 2.10: Top: Flux integrated double differential cross section per target neutron for
the νµ CCQE interactions. Bottom: Flux integrated single differential cross section per
target neutron for the νµ CCQE interactions [40].

uses several different nuclear targets (C,Fe,Pb)[43].

The MINOS experiment reported preliminary results for the axial vector MA, measuring

MA for two regions of Q2, (1.26+0.12
−0.10(fit)+0.08

−0.12(syst) GeV between 0.3 and 1.2 GeV 2 and

(1.19+0.09
−0.10(fit)+0.12

−0.14(syst) for Q2 between 0 and 1.2 GeV 2 [42].

The K2K, NOMAD, MiniBooNE and MINOS experiments reported a higher axial vector

mass than the values reported by the Bubble chamber experiment (Table 2.1). In addition,

the NOMAD and MiniBooNE experiments reported measurements of cross section as a

function of the neutrino energy which seem to disagree. Figure 2.12 shows the result from

both experiments. This plot also shows the MC predictions for different models, the dash

red curve is the RFG model with MA = 1.03 GeV and k = 1.00, the blue curve the RFG

model with MA = 1.35 GeV and k = 1.007 and the dash green the Free nucleon model with

MA = 1.03 GeV. None of those models describe the experimental data for both experiments.

It is important to understand that the MiniBooNE experiment quasi elastic selection did

not use the information about the recoil proton in the final state, while NOMAD experiment

identified the recoil proton for the 2-track sample for the selected quasi elastic interactions.
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FIG. 15: (Color online). Flux-unfolded MiniBooNE νµ CCQE
cross section per neutron as a function of neutrino energy. In
(a), shape errors are shown as shaded boxes along with the
total errors as bars. In (b), a larger energy range is shown
along with results from the LSND [56] and NOMAD [10] ex-
periments. Also shown are predictions from the nuance sim-
ulation for an RFG model with two different parameter vari-
ations and for scattering from free nucleons with the world-
average MA value. Numerical values are provided in Table X
in the Appendix.

CCQE parameters underpredicts the measured differen-
tial cross section values by 20 − 30%, while the model
using the CCQE parameters extracted from this shape
analysis are within ≈ 8% of the data, consistent within
the normalization error (≈ 10%). To further illustrate
this, the model calculation with the CCQE parameters
from this analysis scaled by 1.08 is also plotted and shown
to be in good agreement with the data.

C. Flux-unfolded CCQE cross section as a function
of neutrino energy

The flux-unfolded CCQE cross section per neutron,
σ[EQE,RFG

ν ], as a function of the true neutrino energy,
EQE,RFG

ν , is shown in Figure 15. These numerical values
are tabulated in Table X in the Appendix. The quantity
EQE,RFG

ν is a (model-dependent) estimate of the neu-
trino energy obtained after correcting for both detector
and nuclear model resolution effects. These results de-
pend on the details of the nuclear model used for the cal-
culation. The dependence is only weak in the peak of the
flux distribution but becomes strong for Eν < 0.5 GeV
and Eν > 1.2 GeV, i.e., in the “tails” of the flux distri-
bution.

In Figure 15, the data are compared with the nuance
implementation of the RFG model with the world average
parameter values, (M eff

A = 1.03 GeV, κ = 1.000) and
with the parameters extracted from this work (M eff

A =
1.35 GeV, κ = 1.007). These are absolute predictions
from the model (not scaled or renormalized). At the

source normalization error (%)

neutrino flux prediction 8.66

background cross sections 4.32

detector model 4.60

kinematic unfolding procedure 0.60

statistics 0.26

total 10.7

TABLE IV: Contribution to the total normalization uncer-
tainty from each of the various systematic error categories.

average energy of the MiniBooNE flux (≈ 800 MeV), the
extracted cross section is ≈ 30% larger than the RFG
model prediction with world average parameter values.
The RFG model, with parameter values extracted from
the shape-only fit to this data better reproduces the data
over the entire measured energy range.

Figure 15(b) shows these CCQE results together with
those from the LSND [56] and NOMAD [10] experiments.
It is interesting to note that the NOMAD results are bet-
ter described with the world-average M eff

A and κ values.
Also shown for comparison in Fig. 15(b) is the predicted
cross section assuming the CCQE interaction occurs on
free nucleons with the world-average MA value. The cross
sections reported here exceed the free nucleon value for
Eν above 0.7 GeV.

D. Error Summary

As described in Section IV E, (correlated) systematic
and statistical errors are propagated to the final results.
These errors are separated into normalization and shape
uncertainties. The contributions from each error source
on the total normalization uncertainty are summarized
in Table IV. As is evident, the neutrino flux uncer-
tainty dominates the overall normalization error on the
extracted CCQE cross sections. However, the uncer-
tainty on the flux prediction is a smaller contribution
to the shape error on the cross sections. This can be
seen in Figure 16 which shows the contribution from the
four major sources to the shape error on the total (flux-
unfolded) cross section.

The detector model uncertainty dominates the shape
error, especially at low and high energies. This is because
errors in the detector response (mainly via uncertain-
ties in visible photon processes) will result in errors on
the reconstructed energy. These errors grow in the tails
of the neutrino flux distribution due to feed-down from
events in the flux peak. This type of measurement usu-
ally has large errors due to non-negligible uncertainties
in the CC1π+ background predictions. In this measure-
ment, that error is reduced through direct measurement
of the CC1π+ background. However, this error is not
completely eliminated due to the residual uncertainty on
the rate of intranuclear pion absorption that is included.

Figure 2.11: Cross section per neutrino as a function of the neutrino energy [40].
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FIG. 15: (Color online). Flux-unfolded MiniBooNE νµ CCQE
cross section per neutron as a function of neutrino energy. In
(a), shape errors are shown as shaded boxes along with the
total errors as bars. In (b), a larger energy range is shown
along with results from the LSND [56] and NOMAD [10] ex-
periments. Also shown are predictions from the nuance sim-
ulation for an RFG model with two different parameter vari-
ations and for scattering from free nucleons with the world-
average MA value. Numerical values are provided in Table X
in the Appendix.

CCQE parameters underpredicts the measured differen-
tial cross section values by 20 − 30%, while the model
using the CCQE parameters extracted from this shape
analysis are within ≈ 8% of the data, consistent within
the normalization error (≈ 10%). To further illustrate
this, the model calculation with the CCQE parameters
from this analysis scaled by 1.08 is also plotted and shown
to be in good agreement with the data.

C. Flux-unfolded CCQE cross section as a function
of neutrino energy

The flux-unfolded CCQE cross section per neutron,
σ[EQE,RFG

ν ], as a function of the true neutrino energy,
EQE,RFG

ν , is shown in Figure 15. These numerical values
are tabulated in Table X in the Appendix. The quantity
EQE,RFG

ν is a (model-dependent) estimate of the neu-
trino energy obtained after correcting for both detector
and nuclear model resolution effects. These results de-
pend on the details of the nuclear model used for the cal-
culation. The dependence is only weak in the peak of the
flux distribution but becomes strong for Eν < 0.5 GeV
and Eν > 1.2 GeV, i.e., in the “tails” of the flux distri-
bution.

In Figure 15, the data are compared with the nuance
implementation of the RFG model with the world average
parameter values, (M eff

A = 1.03 GeV, κ = 1.000) and
with the parameters extracted from this work (M eff

A =
1.35 GeV, κ = 1.007). These are absolute predictions
from the model (not scaled or renormalized). At the

source normalization error (%)

neutrino flux prediction 8.66

background cross sections 4.32

detector model 4.60

kinematic unfolding procedure 0.60

statistics 0.26

total 10.7

TABLE IV: Contribution to the total normalization uncer-
tainty from each of the various systematic error categories.

average energy of the MiniBooNE flux (≈ 800 MeV), the
extracted cross section is ≈ 30% larger than the RFG
model prediction with world average parameter values.
The RFG model, with parameter values extracted from
the shape-only fit to this data better reproduces the data
over the entire measured energy range.

Figure 15(b) shows these CCQE results together with
those from the LSND [56] and NOMAD [10] experiments.
It is interesting to note that the NOMAD results are bet-
ter described with the world-average M eff

A and κ values.
Also shown for comparison in Fig. 15(b) is the predicted
cross section assuming the CCQE interaction occurs on
free nucleons with the world-average MA value. The cross
sections reported here exceed the free nucleon value for
Eν above 0.7 GeV.

D. Error Summary

As described in Section IV E, (correlated) systematic
and statistical errors are propagated to the final results.
These errors are separated into normalization and shape
uncertainties. The contributions from each error source
on the total normalization uncertainty are summarized
in Table IV. As is evident, the neutrino flux uncer-
tainty dominates the overall normalization error on the
extracted CCQE cross sections. However, the uncer-
tainty on the flux prediction is a smaller contribution
to the shape error on the cross sections. This can be
seen in Figure 16 which shows the contribution from the
four major sources to the shape error on the total (flux-
unfolded) cross section.

The detector model uncertainty dominates the shape
error, especially at low and high energies. This is because
errors in the detector response (mainly via uncertain-
ties in visible photon processes) will result in errors on
the reconstructed energy. These errors grow in the tails
of the neutrino flux distribution due to feed-down from
events in the flux peak. This type of measurement usu-
ally has large errors due to non-negligible uncertainties
in the CC1π+ background predictions. In this measure-
ment, that error is reduced through direct measurement
of the CC1π+ background. However, this error is not
completely eliminated due to the residual uncertainty on
the rate of intranuclear pion absorption that is included.

Figure 2.12: Quasielastic cross section measurement as a function of neutrino energy for
MiniBooNE experiment and NOMAD experiment [40].

Recently, theorists have been comparing the this data to different models using an

interesting new approach that matches the data from MiniBooNE, the multi nucleon model

by M. Martini et al., [44]. This model considers the neutrino interacting with multiple

nucleons at once. They consider events involving a correlated nucleon pair from which the

partner nucleon is also ejected. This leads to the excitations of 2 particle 2 hole (2p-2h)

states. Their prediction for the 2p-2h in C is shown in figure 2.13. The plot shows the dash

curve the Fermi Fas model (MA = 1.0 GeV), the red curve the 2p-2h and the points are the

data from MiniBooNE experiment. This model does not remedy the discrepancies between

MiniBooNE data and NOMAD.

2.4 Brief review of Resonance and Deep inelastic scattering

This section presents a brief review of the resonance scattering and deep inelastic scattering.

2.4.1 Resonance scattering

Neutrinos interact with a nucleon and excite that nucleon into a resonant state which

subsequently decays producing a pion. Typical resonances reactions, in which intermediate

states like ∆(1232) are produced for charged current interactions are

νµp→ µ−pπ+, νµn→ µ−nπ+, νµn→ µ−pπ0 (2.23)
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Figure 2.13: Quasi elastic νµC cross section per neutron as a function of neutrino energy.
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the points the data from MiniBooNE [44].

and for neutral current

νµp→ νµpπ
0 νµp→ νµnπ

+ νµn→ νµn→ νµnπ0, νµn→ νµpπ
−. (2.24)

The model used for resonant pion production is the Rein-Sehgal model [45]. This model

predicts both CC and NC resonance production.

The differential cross section for resonance scattering using the phase space factors can

be written as

∂σ

∂q2∂Eq
=
G2
F cos

2θc
8π2

q2

Q2

Γ

(W −M∆)2 + Γ2

4

(u2σ− + v2σ+ + 2uvσ0), (2.25)

where Γ

(W−M∆)2+ Γ2

4

is the Breit-Wigner factor and W is the invariant mass of the resonance,

Γ is the width of the resonance and σ±, σ0 are

σ± =
m∆

mN

1

2

∑
jz

f2
±,jz (2.26)

σ0 = −mN

m∆

Q2

q2
σjzf

2
0,jz (2.27)

fk,jz = < N, jz + k|Fk|∆, jz > . (2.28)

Equation 2.25 gives the differential cross section for a single resonance (∆). However, a

number of other resonances contribute to pion production and these resonances and their

interference have to be taken into account.

The Rein-Sehgal model shows some disagreement with the pion production data, espe-

cially for the low Q2. To improve the agreement between model and data some modifications

to the Rein-Sehgal model have been proposed. In the original Rein-Sehgal calculation, the

mass of the muon was approximated as zero. Extensions of the model to include muon mass

have been described [46]. A compilation of measurements and MC simulation of CC and

NC single pion production cross section is found in [8].
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2.4.2 Deep Inelastic scattering

In deep inelastic scattering, the neutrino interacts with a quark in the nucleon and produces

a lepton and a hadronic system. Studies of deep inelastic scattering have provided measures

of electroweak parameters and nucleon structure functions coupling constants.

The deep inelastic scattering can be described in terms of the four momentum transfer, the

inelasticity and the Bjorken scaling parameters given by

x =
Q2

2Mν
, (2.29)

y =
Ehad
Eν

, (2.30)

Q2 = −m2
µ + 2Eν(Eµ − pµcosθµ), (2.31)

where Eν is the incident neutrino energy, ν = Ehad/Eν is the energy of the hadronic system,

Eµ the energy of the muon and cosθµ is the scattering angle of the outgoing muon.

The inclusive cross section for deep inelastic scattering neutrinos can be written using these

variables and structure functions which contain the information about the structure of the

target

d2σν

dxdy
=

G2
FMEν

π(1 +Q2/M2
W,Z)2

[
y2

2
2xF1(x,Q2)+ (1−y−Mxy

2E
)F2(x,Q2)+y(1− y

2
)xF3(x,Q2)],

(2.32)

where Fi(x,Q
2) are the dimensionless nucleon structure functions. There is an approximate

simplification using massless, free spin 1/2 partons, first derived by Callan and Gross, where

2xF1 = F2.

Using the quark parton model this structure function can be written in terms of the quark

composition of the target:

2xF νp,CC1 = x[dp(x) + ūp(x) + sp(x) + c̄p(x)], (2.33)

xF νp,CC3 = x[dp(x)− ūp(x) + sp(x)− c̄(x)], (2.34)

where dp(x) refers to the parton distribution function (PDF), of a given quark flavor in the

proton and the contributions from the third generation quarks are neglected. A compila-

tion of the experimental measurements and simulation for the deep inelastic neutrino cross

sections are found in [8].

The cross sections are very important for the study neutrino interactions, specifically in

neutrino oscillations measurements. Neutrino oscillation experiment uses the quasi-elastic

sample as signal sample for the analysis of the appearance and disappearance measurements.
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2.5 Brief review of theoretical formulation for neutrino os-

cillations

Results from studies of neutrino oscillations have provided evidence that neutrinos have

mass. This section reviews the theoretical formulation for neutrino oscillation.

Neutrino oscillation is a phenomenon that occurs when a neutrino from one type changes

to another type as the neutrino propagates. The theory of neutrino oscillation states that

neutrino mass eigenstates are not necessary the same as the flavor eigenstates [11]. A

relationship between these eigenstates can be shown as

|να >=
N∑
i=1

U∗αi|νi > (2.35)

where α is the index for each type of flavor eigenstates, corresponding to the electron

neutrino |νe >, muon neutrino |νµ >, and tau neutrino |ντ >. On the right hand side of

equation (2.35), the i corresponds to the mass eigenstates, |ν1 >, |ν2 >; and |ν3 >, and U is

the NxN unitary matrix also known as Pontecorvo-Maki-Nakagawa-Sakata(PMNS) mixing

matrix[11].

To obtain the probability for a να neutrino to be converted into νβ at any time t > 0, we

need the time evolution of the neutrino. A neutrino of the generation i, after a time interval

of t, is given by

|νi(t) >= e−Eit|νi >, (2.36)

where the energy Ei =
√
P 2 +m2

i . The time evolution of a flavor eigenstate |να > can be

written by substituting equation (2.36) into equation (2.35)

|να(t) >=

N∑
i=1

U∗αi|νi(t) >=

N∑
i=1

N∑
β=1

UβiU
∗
αie
−iEit|νβ > . (2.37)

The probability that a neutrino created as a να eigenstate will be detected as a νβ after a

time t is

P (να→β) = | < νβ|να(t) > |2

= |
N∑
i=1

UβiU
∗
αie
−iEit|2 =

N∑
i=1

N∑
j=1

U∗αiUαjUβiU
∗
βje
−it(Ei−Ej). (2.38)

For relativistic neutrinos, the momentum |pi| = |p| ≈ E and the energy Ei ≈ Ei +m2
i /2E,

since mj << |pj |. Neutrinos travel a distance L in a time t, with c = 1, the distance L = t.

The probability result is then

P (να→β)(t) =

N∑
i=1

N∑
j=1

U∗αiUαjUβiU
∗
βje
−i L

2p
∆m2

ij , (2.39)
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where ∆m2
ij = m2

i −m2
j . For any unitary matrix

∑
i UβiU

∗
αi = δαβ. Adding and subtracting

this term to the last expression, the probability can be written as

P (να→β) =
∑
ij

UβiU ∗αi U ∗βj Uαj(e−i
L
2p

∆m2
ij−1

) +
∑
ij

UβiU ∗αi U ∗βj Uαj

= δαβ − 4
∑
i>j

Re(U∗αiUαjUβiU
∗
βj)sin

2(
∆m2

ijL

4E
)

+ 2
∑
i>j

Im(U∗αiUαjUβiU
∗
βj)sin

2(
∆m2

ijL

4E
). (2.40)

This is the probability that a neutrino that starts as να eigenstate after it travels a distance

L is detected as a νβ. We can see from the probability equation (2.40) if the neutrino masses

are equal to zero oscillations do not occur.

2.5.1 Two flavor approximation

The study of neutrino oscillation can be described with the two flavor approximation. From

the relation of the mass eigenstates and flavor eigenstates equation (2.35), the νµ and νe

flavor eigenstates are related to the mass eigenstates ν1 and ν2 as follows

|νµ > = cos θ|ν1 > + sin θ|ν2 >, (2.41)

|νe > = − sin θ|ν1 > + cos θ|ν2 > . (2.42)

The time evolution of the weak eigenstate |νµ > is

|νµ >= cosθe−E1t|ν1 > +sinθe−E2t|ν2 > . (2.43)

The probablity of a muon neutrino transforming into a electron neutrino is

P (νµ → νe) = | < νµ|νe > |2

= sin2θcos2θ|e−iE2 − e−iE1 |2 = sin22θsin(
(E2 − E1)t

2
), (2.44)

where E1 ≈ p+
m2

1
2p and E2 ≈ p+

m2
2

2p . And again considering that a muon neutrino travels

a distance L in a time t, L = t. Substituting the energies into the last expression, the

probablity is

P (νµ → νe) = sin22θsin2(
(m2

1 −m2
2)L

4E
) (2.45)

where L is the distance from the source, E is the neutrino energy, and ∆m2 = m2
1−m2

2 is the

mass differences. Returning the constants c and h, the phase ∆m2c3L
4hE ≈ 1.267∗ ∆m2

eV 2
L
km

GeV
E .
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2.5.2 Three neutrino mixing

Considering three generations of neutrinos, in the neutrino oscillations formulation, the

flavor eigenstates are related with mass eigenstates through the PMNS matrix. Writing the

equation 2.36 for the three neutrino flavor in matrix form, we have
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




ν1

ν2

ν3

 =


c13c12 c13s12 s13e

−iδ

−c23s12 − s13s23c12e
iδ c23c12 − s13s23s12e

iδ c13s23

s23s12 − s13c23c12e
iδ −s23c12 − s13c13s12e

iδ c13c23




ν1

ν2

ν3


where cjk = cosθjk and sjk = sinθjk. The parameters of the matrix can be classified into

different neutrino oscillations. The atmospheric neutrino oscillations are determined by the

θ23 and ∆m2
23 parameters. The solar neutrino oscillations are determined by θ12 and ∆m2

12.

And the cross mixing can be determined by θ13, ∆m2
13, and δ. This matrix can also be

written as the multiplication of the three matrices

U =


1 0 0

0 cosθ23 sinθ23

0 −sinθ23 cosθ23




cosθ13 0 e−iδsinθ13

0 1 0

−e−iδsinθ13 0 cosθ13




cosθ12 sinθ12 0

−sinθ12 cosθ12 0

0 0 1

 .

The parameter δ is still unknown.

Using this matrix and the probability from equation (2.40), it is possible to construct the

probability of νµ → νe oscillations in vacuum. Ignoring the matter effect, solar term, and

CP violating phase, the oscillation probability is

P (νµ → νe) ≈ sin2 θ23 sin2 2θ13 sin2(1.27∆m2
31L/Eν). (2.46)

The main goal of the Nova experiment is to find the mixing angle θ13 and the CP phase δ.



Chapter 3

The Neutrino Beam and NOνA

Detector

3.1 Neutrino Beam

The NOνA Detector Prototype sees neutrino from two different beams, NuMI and Booster.

The NuMI neutrino beam is produced at Fermilab using 120 GeV proton from the Main In-

jector and the Booster beam is produced at Fermilab using 8 GeV proton from the Booster.

However, this thesis will present only the analysis with the data from the NuMI.

The process of particle acceleration at Fermilab begins with gaseous hydrogen which is

injected into the ion source to produce negatively charged hydrogen ions. The ions are

extracted from the source at 18 keV and the pre accelerator produces a beam at 750 keV

to be injected into a linear accelerator called Linac. The Linac accelerates the ions to 400

MeV and sends them to the Booster. The Booster takes 500 MeV H− ions from the Linac,

strips the electron off, accelerates the remaining protons to 8 GeV, and then sends them to

the Main Injector.

The Booster is a synchroton with a radius of 75.47 meters. It accelerates protons from a

kinetic energy of 400 MeV to 8 GeV, using 17 RF cavities with frequency that slews from

37.8 MHz at injection to 52.8 MHz at extraction to match the MI frequency. The injection

process lasts for ten Booster turns, resulting in a total average current of 420 mA. The

injected beam is a stream of bunches equally spaced at the linac RF frequency of 201.2

MHz.

The main Injector is another synchroton with a radius of 528.30 meters, and its acceleration

cycle is 2.2 s. It accepts 8 GeV proton from Booster and accelerates protons to 120 GeV.

Fig. 3.1 shows the pictures of the Booster and the Main injector.

33
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Figure 3.1: The Fermilab accelerators. The left plot is a picture from the Booster and the
right picture is from the Main injector NuMI.

3.1.1 Neutrino Production

The beam of neutrinos from the NuMI is generated by focusing 120 GeV protons from the

Main Injector NuMI onto a graphite target 940mm long, 6.4mm wide and 15mm high. This

interaction produces mesons (pions and kaons) as well as other particles. These mesons de-

cay in a pipe filled with He at 1atm, which is 675 m in length and 2 m in diameter. The pions

and kaons decay and produce neutrinos. A representation of the generation of the neutrino

beam is shown in Fig. 3.2. Two magnetic focusing horns are located next to the target.

The two magnetic horns that focus the particles produced in the target are pulsed with a

200kA current, yielding a maximum 30KG toroidal field. The two horns focus positively

charged particles and defocus negatively charged particles. These focused mesons decay

and produce a neutrino beam. A change of current polarity through the horns produces

an antineutrino beam. The mesons decay primarily through the channels π± → µ±νµ(ν̄µ)

and K± → µ±νµ(ν̄µ) and the muons decay and produce µ± → νµ(ν̄µ) + e± + νe(ν̄e). At

the end of the decay pipe is a hadron monitor followed by an absorber to monitor and stop

the remnant hadrons. The absorber is followed by rock of about 240 m to stop the muons,

leaving only neutrinos [48].

The NuMI neutrino beam can produce different beam energy configurations; since NuMI al-

lows the possibility of changing the relative positions of the target to the horns and changing

the horn current. The change in position and current provides a low energy beam, medium

energy beam, and high energy beam. In addition, changes in current polarity allows run-

ning an anti-neutrino mode. The NOνA Detector Prototype experiment uses the low energy

beam and NOνA Near and Far Detector will use the medium energy beam.
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Figure 3.2: Components of the NuMI beam line. 120 GeV protons from the Main Injector
hit a graphite target, producing pions and kaons. These charged particles are focused by
two parabolic horns into a 675 m decay pipe filled with He. The pions and kaons decay
and produce neutrinos. Following the decay pipe is the hadron monitor and the absorber
to stop any of the remnant hadrons and charged leptons, leaving only neutrinos.

3.1.2 Neutrino energy

The pions and kaons decay and produce neutrinos. These neutrinos have an isotropic

angular distribution in the meson rest frame. In the lab frame, the energy of the neutrinos

produced by the decay of pions depends on the energy of the pions and on the angle between

the decay axis and the beam direction. The energy of the neutrinos in the lab frame is

Eν =
(1− m2

µ

m2
π,K

)Eπ,K

1 + γ2θ2
. (3.1)

Where γ = 1/
√

1− β2, Eπ,K is the energy of pions or kaons and mµ,mπ,mK is the mass

of muon, pion and kaon. The Figure 3.3 shows neutrino energy spectrum Eν as a function

of the energy of the kaons Ek and the energy of the pions Eπ for two different off axis angle

θ = 110 mrad and θ = 120 mrad.

The simulated neutrino energy spectra for the NuMI are shown in Figure 3.4. The distri-

butions on the left correspond to the neutrino run and the distributions on the right are

for antineutrino run. The blue curve is the νµ component and the red curve is the ν̄µ. The

neutrino mode from NuMI shows two peaks, the low energy peak is produced from the pion

decay and the peak around 2GeV is produced from the kaon decay.

3.2 The NOνA Prototype Detector

The NOνA Prototype Detector is located on the surface at Fermilab. This detector is

located off-axis at an angle of 110 mrad. The dimensions of the detector are 2.9 m wide,

4.2 m high, and 14.3 m long. The detector is split into the following parts: fiducial event

region and a muon catcher made mainly from iron. This detector consists of a total active
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Figure 1: Energy of the neutrino in pion decay as a function of the pion energy, for several
choices of decay angle θ.

higher-energy neutrinos in the MINOS on axis flux. In the off-axis case, however, all such
pions may be expected to deposit neutrinos of the same energy, with potentially only the
overall rate being affected. As will be demonstrated, most of the systematic uncertainties are
small for the off-axis flux. The dominant uncertainty is just the MiniBooNE reconstruction
of the neutrino interaction point (since this affects the determination of the off-axis angle).
Even particle production rates have a lesser effect on the off-axis flux, since the spectrum of
particles off the target is less important to know than the overall rate.

In fact, because the neutrinos from pion and kaon decays are well-separated in energy in
the off-axis configuration, the measurement of the neutrino energy spectrum at MiniBooNE
could be helpful to determine the overall relative rate of π/K off the NuMI target. As will
be discussed below, the portion of the phase space in (xF , pT ) of pions and kaons from the
NuMI target that is sampled by MiniBooNE is substantially different from that sampled by
the MINOS detectors, but is potentially of value in constraining particle production models.

This note proceeds as follows. Section 2 will present the flux at the MiniBooNE detec-
tor and describe the type and origin of the hadrons whose decays give neutrinos at Mini-
BooNE. Section 3 describes the flux uncertainty due to uncertainties in π/K production rates.
The particle production uncertainties include the uncertainty in downstream interactions in
shielding materials which yield hadrons whose decays produce neutrinos in MiniBooNE. Sec-
tion 4 details the uncertainties on the flux from focusing errors in the beam line. Section 5
comments upon an interesting kinematic correlation that might be observed across the face
of the MiniBooNE detector. Section 6 concludes.

2

Figure 3.3:

detector PVC mass of 40.973 metric tons, total active detector scintillator mass of 97.67

metric tons; and 86.72 metric of total steel mass located at the end of the detector[48].

The total detector mass is 225.35 metric tons. A representation of the detector is shown

in figure 3.5. The detector contains 199 planes of PVC with a liquid scintillator, 99 planes

with horizontal cells and 100 with vertical cells.

Studies using the data from Prototype Detector showed that event containment could

be a problem for the NOνA Near Detector. For the Prototype Detector we found about

50% of events exit the detector[49]. Now the NOνA Near Detector has been modified and

the new dimensions are 4 m wide, 4 m high and 15 m long.

3.2.1 NOνA Detector Technologies

The basic unit of the NOνA detector is a rectangular rigid PVC plastic cell containing liquid

scintillator and a wavelength-shifting fiber. Each cell has a wavelength shifting (WLS) fiber

of 0.7 mm. The fiber collects the light created in the liquid scintillator. The violet light

(380-425nm) emitted by the scintillator is reflected by the TiO2 in the PVC walls and

finally absorbed by a fluorescent dye in the WLS fiber. The blue green (450-650 nm) light

emitted by the dye is partially trapped within the fiber by total internal reflection. The

short wavelength light less than 520 nm is attenuated while traveling through a full length

of the WLS fiber, however the longer wavelengths are only weakly attenuated.

The figure 3.6 illustrates a cell with a fiber that is looped at the bottom. When a charged

particle goes through the cell, the scintillator produces light. This light bounces around the
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Figure 3.4: Simulated neutrino energy spectrums. The blue distribution is the energy spec-
trum for the neutrinos νµ, the red distribution is the energy spectrum for the antineutrinos
ν̄µ and the black distribution is the energy spectrum for the addition of neutrinos and
antineutrinos νµ+ ν̄µ. Left: Neutrino run from NuMI. Right: Antineutrino run from NuMI.

rectangular cell which has a width of W=3.87cm and depth of D=6cm until the lights gets

captured by a wavelenght shifting fiber or absorbed by the PVC or the scintillator.

The NOνA PVC is designed to be highly reflective by adding more titanium dioxide

(TiO2). This can yield reflectivity values as high as 92% at 430 nm, near the peak of the

scintillator emission spectrum. A PVC module consists of a 32 cell PVC extrusion assembly,

and end-plane, and a fiber manifold. A module representation is illustrated in the right plot

of Figure 3.6. At the bottom of the extrusion, the end is glued with an end-plate. At the

top of the extrusion, the two fiber ends per cell are routed through a PCV manifold to an

optical connector. The manifold cover is glued to the snout and on the top of the snout is

the electronic box, which carries the front end board with the electronics.

The modules are glued into a block, in alternating horizontal and vertical orientations as

shown in Figure 3.7.

3.2.2 Photodetector

NOνA uses avalanche photodiode (APD) photodetectors operated at a gain of 100 and

readout via a Front-End Board (FEB). Both ends of the fiber are connected to one pixel

on an Avalanche Photodiode (APD). The light detectors(APD) provides high quantum

efficiency but low amplification. Electronic noise is reduced using Peltier effect coolers and

a water cooling system which allows the APDs temperature to be maintained at −15C.

Because condensations problems in the prototype detector, the APDs were run without

cooling for most of their operation. The APDs are packaged in arrays of 32 pixels and
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Figure 3.5: NOνA Near Detector. The dimensions of the detector are: 2.9 m wide, 4.2m
high; and 14.3m long. The green region represents the fiducial volume and the region in
black represent the muon catcher.

mounted on a carrier board. This is shown in Figure 3.8.

The APDs use the photoelectric effect to convert light to electricity. The light is ab-

sorbed in the collection region, electron-hole pairs are generated and under the influence

of the applied electric field, electrons propagate to the p-n junction. At the junction, the

electric field is high enough that avalanche multiplication of the electrons occurs. The mul-

tiplication of the current is determined by the electric field at the junction and by the mean

free path of the electrons between ionizing collisions, which depends on both the accelerat-

ing field and on the temperature. This light is converted to an electric signal and which is

processed through electronics of the front end boards.

3.2.3 Front End Boards

The NOνA Detector uses a Front-End Board (FEB) for each module to readout signals

from the APDs. Each FEB reads out the 32 pixels from one APD.

The FEB is connected to the APD carrier board as in shown in Figure (3.9). This figure

shows the ASIC amplifier which provides amplification and shaping of signal followed by

multiplexing to an array of ADCs on the FEB for digitization. The FEBs readout is con-

tinuous with no dead time.

The FEB FPGA applies a Digital Signal Processing (DSP) algorithm to select signals above

a configurable pixel-by-pixel programmable threshold for each channel and extract the pulse

height and timing edge for the signal. The timing resolution determined by the DSP is bet-

ter than the digitization period because a Matched Filtering algorithm compares the raw
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Figure 3.6: Representation of a module costructed with two PVC extrusions, each PVC
extrusion is made by 16 cells. The main components for each extrusion are shown: manifold
cover, end plate seal, snout, and electronic box [48] .

data response to an ideal response function in the FPGA. The algorithm used in Detector

Prototype is a simple Dual Correlected Sampling algorithm which subtracts the signal from

the baseline [50].

The NOνA detector uses a Data Concentrate Module (DCM) to consolidate and concate-

nate the data from up to 64 FEBs; program, configure and monitor the FEBs; and pass the

Timing System Clock and Sync command to the FEBs. The FEB FPGA produces timing

markers at periodic intervals (50µs) interspersed with digitized hits. The digitized hits are

consolidated by the DCM FPGA to 50µs time slices containing data from all 64 FEBs. An

application running on the DCM CPU consolidates this data further to a longer time slice

(5ms) and routes this time slice to a downstream buffer node for further processing.
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Figure 3.7: Representation of the detector layout[48]

NOQA TDR Ch   October 8, 2007 14-2

14 Photodetector and Electronics 
14.1   Introduction 

The NOQA photodetector is an avalanche photodiode (APD) operated at a gain of 100, 
cooled to -15˚C by a thermoelectric cooler (TEC), and readout via a Front-End Board (FEB).  The 
FEB has a low noise, <200e- custom ASIC amplifier matched to the APD.  Over 12,000 APD / 
TEC / FEB assemblies are required for the NOQA Far Detector. 

14.2   Technical Design Criteria 
The readout of the NOQA Far Detector has two distinct tasks: (1) read out events caused by 

neutrinos from the NuMI beamline at Fermilab and (2) operate between spills to collect cosmic 
ray events for calibration and monitoring.  The readout will operate in a triggerless mode to 
accomplish both tasks seamlessly.   

The NOQA Near Detector uses similar electronics but must satisfy different constraints.  
The mean signal from the far end is approximately 4 times greater for the shorter modules, and 
there will be multiple neutrino induced events in the detector during the NuMI spill.  A modified 
version of the basic Far Detector design that samples each channel more frequently is required. 

A time-stamp generated from the kicker fire, signal $74, from the NuMI beam line will be 
used to determine which events occur during the 11.1�Ps single turn extraction of the Main 
Injector protons onto the NuMI target.  The actual length of time the protons will hit the target 
will be 6/7 of this, or 9.5Ps. 

14.3   Avalanche Photodiodes (APDs) 
The photodetector for NOQA is an avalanche photodiode (APD), shown in Figure 14.1.  

The APDs are packaged in arrays of 32 pixels and mounted on a carrier board substrate using 
flip-chip mounting.  This device has been custom made for NOvA to optimize the fit of two fiber 
ends on a single pixel.  The 32 pixels map directly onto the 32 cells of a single PVC extrusion 
module.  Table 14.1 summarizes the key parameters for the NOQA APDs. 

 

   
 
Fig. 14.1:  Prototype NOvA APD mounted on carrier board. 

 

Figure 3.8: NOνA APD mounted on a carrier board [48].

Figure 3.9: Schematic view of a Front End Board[50].
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Figure 3.10: Photo of a FEB from the Near Detector Prototype.

Figure 3.11: NOνA Detector Prototype. The left shows a photo of the entire detector, the
last planes are the muon catcher made of alternative planes of PVC modules and steel. The
right photo shows the top of the detector. This photo shows the data concentrator modules
and the electronic boxes that contain the FEB and the APD.
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3.3 Detector Prototype Commissioning

The main goal of the Detector Prototype was to test all the detector systems including:

assembly technique, data acquisition system, APD installation, scintillator filling, electronic

installation and commissioning, as well as study its response to the NuMI beam neutrino

beam and cosmic rays events.

The operation of the Detector Prototype allowed us to test and modify detector systems

as necessary before building the NOνA Far and Near detectors. For example, base on the

prototype experience installation procedures have changed, the APDs and scintillation filling

procedures were also changed[51]. Furthermore, the manifold cover plastic developed some

cracks in the Detector Prototype which were repaired. These covers were redesigned for the

Far Detector[52].

3.3.1 Performance of the detector

The Detector Prototype started taking data in October 2010. Table 3.1 summarizes all

detector configurations taken with the Near Detector Prototype, the beam configurations

and the number of protons on target (POT) collected. We collected both cosmic ray data

and neutrino data.

Table 3.1: Neutrino and Anti-neutrino configurations.

Neutrino beam Neutrino Neutrino

Protons on Target 9.63× 1018POT 1.7× 1020POT

Dates 04-05 2011 10-2011 to 04-2012

Detector configuration configuration 1 configuration 2

Simulation and reconstruction software have been developed and tested with the De-

tector Prototype. Figure 3.12 shows the track reconstruction efficiency for Monte Carlo

cosmic muons and 2 GeV muons as a function of the zenith angle of the true tracks for the

Detector Prototype [53].

The performance of the detector has been study using cosmic data. Figure 3.13 shows

the measured cosmic ray muon rate as a function of the time for the Detector Prototype.

The plot shows the rate changes over time as APDs are added and removed from the

detector. The estimated cosmic ray muon rate is 1.95kHz [54].

Another measure of the performance of the detector is the mean energy deposition or

light level for cosmic ray muons as a function of time[55]. This is shown in figure 3.14. The

figure shows 8 channels in one module as a function of time. The change in the light level is

due to cooling the channels and their subsequent gain change. In addition, the plot shows

a slow drop of light levels due to an oil leak in the module.
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Figure 3.12: Reconstruction efficiency of simulated MC as a function of the zenith angle of
the true tracks. Left: Simulated cosmic ray. Right: Simulated uniform distributed single
particle 2 GeV muons tracks. Plots taken from [53]

The detector response calibration was studied for the the quasi-elastic analysis, details

of this work is presented in the thesis [55].

3.3.2 Neutrinos in the Detector Prototype

We collected data with a trigger window associated with the NuMI beam spill. The trigger

window is open for 500 µs synchronized with the 10 µs long NuMI spill. The plot on the left

figure 3.15 shows the time for the neutrino interaction candidates from NuMI beam relative

to the start of 500 µs window. The right plot in figure 3.15 contains an extra selection which

requires correlation with the NuMI beam direction. We apply cos θNuMI > 0.7 to remove

the cosmic background. At this stage in the commissioning, neutrino interaction candidates

required only events which had more than 4 hits in each view and the vertex of the event

in the fiducial region. The fiducial region is defined as follows: |x| < 110 cm, |y| < 140 cm

and the longitudinal coordinate z > 50 cm and z < 770 cm. The reconstruction used for

commissioning analysis is called Cana. This reconstruction takes any collection of raw hits

and tries to fit a 3D line to them, more details are given in [56].

Using the fiducial region and a time cut to select only the events that are in time

with the neutrino beam, the reconstructed particle track angle with respect to the beam

direction is shown in figure 3.16. The distribution shows that the neutrino events are peaked

around cos θNuMI equal 1 in black. The peak for small values of cosθNuMI is due to cosmic

background. The solid line shows the data not in the NuMI spill window. This data has

been normalized to the in time data according to the relative sizes of the time windows

used to select the events.

During the commissioning of the Detector Prototype APDs were damaged when they

were cooled to their nominal operating temperature of -15 degrees C. This was caused by

the condensation of atmospheric water vapor on the active surface of the APD because the



44

Figure 3.13: Cosmic rate in the Detector Prototype as a function of time. Each color
corresponds to the number of active DCMs which is proportional to the number of active
channels in the detector [54].

design of the seal between the atmosphere and the APD allowed for improper mounting.

The APD tests of the Detector Prototype showed the necessity of having a surface coating

for APDs to protect the surface from potential contact with contaminants. . Because of

this the design of the NOvA detector was changed by adding a parylene coating to the APD

surface as well as a dry air flow to that APD surface[51].

Because cooling damaged many APDs, we had to reconfigured the channels of the detec-

tor [57]. Analysis tools were developed to study the different configurations and from this

study a reconfiguration was chosen and implemented. Figure 3.17 shows the two detector

configurations. The detector in the period between April to May 2011 we called configu-

ration 1 and in the period from October 2011 to April 2012 we called configuration 2. In

next chapters we will show the data from each configuration separately.

Figure 3.18 shows the distribution of the number of active channels as a function of time and

the distribution of the number of candidates per POT as function on time. The number of

channels increases with time as more APDs were installed and then decreases as the cooling

system was turned on and APDs were damaged by water condensation. The maximum

number of active channels correspond to the configuration 1.

During this time the neutrino production target had to be replaced. Figure 3.19 shows
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Figure 3.14: Light level in 8 channels on an APD as a function of time. Each color
corresponds to one of those 8 channels responses. The first low point is due to low levels
of scintillator in that cell, once it was filled the light level returned to a value similar to
the other channels. The slow drop of light levels in these 8 channels is due to a leak in the
module. The general shift in light levels in July through September are due to cooling tests
on the APDs. Plot taken from [55].

the number of candidates as function of Protons on Target for the different target configu-

rations. The different targets are represented with different colors.

Analysis of the Detector Prototype data required proper tracking of the live channels

both between the two configurations and within each configuration. We developed a channel

masking technique which removed the dead channels from the detector simulation, details

can be found [59]. The channels are removed before any reconstruction in both Data and

MC. Figure 3.20 shows an example of cell number as a function of plane number for the

active channels and the dead channels from a data run (Run=12141). The red dots are the

bad channels and the green dots are the good channels.
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Figure 3.15: Arrival time of events inside the NuMI trigger windows. Top: Fiducial cuts
applied and four hits in each view. Bottom: Fiducial cuts, four hits cut and required
correlation with the NuMI beam direction cos θNuMI > 0.7. The sharp spike shows the
NuMI beam.
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Figure 3.16: Reconstructed particle track angle with respect to the beam direction using
fiducial cuts and four hits in each view.
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Figure 3.17: Detector configurations. On the left is the configuration 1 and on the right the
configuration 2. Figure taken from [58].CANDIDATES PER POT - ALL CONFIGURATIONS
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Figure 3.18: Top distribution shows the number of candidates for each target configuration
as a function of time. The bottom distribution shows the number of raw active channels as
a function of time. Plot taken from [60].
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Figure 3.19: Number of candidates as a function of the Protons on Target. Plot taken from
[60].

From May

Figure 3.20: Cell number as a function of plane number for run 12141. The red colors show
the bad or uninstrumented channels and the green colors shows the good channels.



Chapter 4

Simulation, Reconstruction and

Detector Calibration

4.1 Monte Carlo Simulations

Monte Carlo simulations provide predictions for the different processes that produce the

quasi-elastic interactions in the detector. The simulations start with the creation of the

beam of neutrinos, interact the neutrinos in the detector and propagate the particles result-

ing from the neutrino interaction through the detector. Finally the simulations provide the

tools to develop the analysis. A summary of the different simulations used in the NOνA

experiment is presented below

1. The first step of the simulations is the production of the neutrino flux for the NuMI

beamline as was described in Chapter 3. This simulation includes the production of

hadrons by 120 GeV/c protons interacting with the NuMI target and the propagation

of those hadrons through the magnetic horns, along the decay pipe. NOνA uses

Flugg (FLUGG 2009.4)[61], a combination of Fluka and Geant4. Fluka performs

proton scattering on the carbon target and interaction of secondary particles within

the target and writes an output file containing all of the produced particles and their

kinematics. This output is taken by Geant4 which propagates the particles through

the horns and decay pipe. The resulting flux simulation saves the particle decays

which produce the neutrinos passing through the detector and this flux file is used as

input for the neutrino event generation in GENIE.

2. The second step is the generation of neutrino interactions in the NOνA detector. This

is done using the GENIE simulation, (GENIE stand for Generates Events for Neu-

trino Interactions Experiments, version GENIE 3665). GENIE uses the output flux

49
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from the Flugg simulation and pre calculated neutrino cross sections to determine

if individual neutrino rays pulled from the flux interact in the detector geometry.

The neutrino interaction modeling is made in three steps; the first primary inter-

action inside nucleus, second; the hadronization and finally the intranuclear hadron

transport[63].

3. Final states of the neutrino interactions are used by Geant4. This simulation prop-

agates the final state particles through the detector. Geant4 simulates the physics

of energy loss, particle scattering, decays, etc. This step is in charge of the particles

energy deposition and decays.

4. The final step in the simulation is the light propagation and DAQ electronics. This

simulation does the photon production by charged particles traversing liquid scintilla-

tor and the transport, capture and transmission of photons through the fibers as well

as the conversion of photons to photoelectrons in the APDs.

These simulations save the information about each interaction. For example GENIE pre-

serves the true information about the neutrino as well as the energy, the vertex position, the

type of interaction of each neutrino interaction. Geant4 stores the true energy deposited

in each cell and the trajectory of each of the particles produced. And the final step in the

simulation provides the energy deposited in the detector registered by an APD in unity of

ADC value. We will explain later how the calibration calibration data is used to convert

the signal from APD to energy.

The next sections describe the topology of neutrino interactions in the Near Detector Pro-

totype, the reconstruction used for the quasi-elastic analysis and the detector calibration.

4.2 Neutrino Interactions in the NOνA Detector Prototype

The NOνA Detectors are designed to study electron neutrino, muon neutrino interactions.

The initial step to reconstruct and identify the quasi elastic interactions was done using

human scanning of the Monte Carlo simulations. This section provides a description of the

event topology in the NOνA detector.

4.2.1 Event Topologies

Initially, simulated events were scanned by hand for each type of neutrino interaction in the

Detector Prototype. Using the true information from the Monte Carlo for charged current

and neutral current interactions of muon neutrinos we scanned about 100 events from each



51

type of interaction (QE, RES, DIS and COH). The summary of the scanning is presented

below.
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Figure 4.1: Quasi elastic events. The top plot shows a simulated quasi elastic event
with a non-visible proton at the vertex (νµ[1.9GeV/c] +C → µ[1.7GeV/c] + n[0.4GeV/c] +
p[0.4GeV/c]). The bottom plot shows a true quasi elastic event with a muon and a visible
proton track (νµ[1.3GeV/c] + C → µ[0.9GeV/c] + p[0.8Gev/c] +X200000101).

1. Quasi-elastic interactions: Scanning studies showed 4% of events have 2 visible tracks,

about 75% of those events have a detectable muon and proton at the vertex and 21% of

the quasi-elastic events have some activity around the vertex. The activity is defined

as one or two cells hit around the vertex. The figure 4.1 shows two examples of quasi

elastic events. This figure shows one view of the track (the x or horizontal direction)

as it progresses longitudinally through the detector planes (the z direction). The color

of the hits shows the relative amount of energy deposited in a cell. Two topologies for

the quasi elastic interactions are shown, the top shows a single track from a muon with

a proton at vertex position, but the proton does not have a visible track, although it

deposits energy around the vertex. The second topology on the bottom shows a long

track from a muon and a visible proton track.

2. Resonance interactions: 20% of the events have a single track, 17% of the events have
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Figure 4.2: Resonance event. A long track from a muon and a second proton track, there is
also additional activity around the vertex (νµ[1.9GeV/c]+C → µ[0.9GeV/c]+p[1.1GeV/c]+
p[0.4GeV/c] + n[0.2GeV/c] + n[0.3GeV/c] + n[0.5GeV ] + n[0.3GeV ])

2 clean tracks and the rest of the events have activity around the vertex or more than

2 tracks. Figure 4.2 shows a simulated CC RES event, which has a long track from a

muon and a short track from a proton. There is also additional visible vertex activity.

3. Deep Inelastic interactions: 35% of these events have a track from the muon and

activity around the vertex. 65% of these events have more than 3 tracks. Figure 4.3

shows a CC DIS interaction. It is a multi-track event with a long track from a muon

and a π0.
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Figure 4.3: Deep Inelastic. A long track from a muon and a pion zero (νµ[3.7GeV/c]+C →
µ[2.1GeV/c] + p[1.8GeV/c] + n[0.2GeV/c] + π0[0.5GeV/c]).

4. Neutral current interactions in the NOνA detector are diffuse. Charged pions travel

short distances and a π0 showers in the detector. Figure 4.4 shows a NC interaction

with a visible π0 in the final state.
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Figure 4.4: Neutral current event with a π0 in the final state (ν̄µ[2.7GeV/c] + C →
ν̄µ[1.1GeV/c] + n[0.4GeV/c] + p[0.1GeV/c] + π0[1.5GeV/c]).

Table 4.1: Number of prongs for 300 neutrino candidates for the FHC data with configura-
tion 1

Number of prongs Events Activity Fully contained
events

Partially con-
tained events

1 185 78 94 91

2 111 70 45 66

3 4 0 2 2

We also scanned the data events within the fiducial region that were not identified as cosmic

ray background to study the topology of the real events in the Detector Prototype. Table

4.1 gives a summary of the number of events with one, two and three prongs. We found for

configuration 1 that 62% of these events have a single prong with 57% having an identified

clean muon. Events with 2 prongs account for about 37% of the total sample and 1%

of events have more than 2 prongs. Furthermore, we found that 50% of events are fully

contained. We scanned MC simulation events and found similar results, about 50% are

fully contained. We found agreement between the data and MC simulation.

Also, we scanned the selected charged current quasi elastic events for configuration 2,

details of evaluations are reported at [64].

4.3 Event Reconstruction

This section contains a brief review of the reconstruction used for the quasi-elastic analysis.

The first step in the reconstruction chain is called the slicer. This algorithm obtains a list

of cell hits sorted by time for each event and groups all the hits that are contiguous in time

to form a physics slice. Other hits are grouped into a noise slice[65].

The Kalman Filter reconstruction uses the non noise slice hits for each of the detector views.
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This algorithm finds the tracks for each view separately as described below. Once the tracks

are found in the 2D views, the algorithm matches the 2D tracks into 3D tracks and save

them [66]. Figure 4.5 shows a diagram of the steps used to reconstructed the tracks.

The Kalman Filter starts with a seed track and add hits to the track by projecting the

ALGORITHM DESCRIPTION: ARCHITECTURE

Reconstruction takes place on
each non noise slice cluster
individually
For each non noise slice:

I All the hits are separated by
view

I Tracks in each view are found
separately

I 2D tracks found in separate
views are matched together to
form 3D tracks

I All matched 3D tracks and
unmatched 2D tracks are saved
in the event

The following slides detail how
these processes are performed
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N. Raddatz (UMN) KalmanTrack Dec. 12, 2011 5 / 193

Figure 4.5: Architecture of the Kalman Filter, figure taken from [66].

trajectory to the next hit and including it in the fitted track if it is within the track’s

uncertainty range.

The Kalman Filter uses a track state at point k represented by

~xk = viewposition, slope. (4.1)

Then the change in the track state from plane k-1 to k is

~xk = A~xk−1 + ~wk−1 (4.2)

where A is a matrix that extrapolates the state vector from k-1 to point k and ~wk represents

the process noise that corrupts the state vector. In this case, most of the process noise is

due to multiple scattering. More details about the Kalman Filter reconstruction can be

found [66].

The tracks in each view are made projecting the track direction plane by plane. Then, if

hits are close to the projection they are added to the track. If the projection goes through

a maximum gap of 3 cells without adding a hit, the track is terminated. Having the tracks

from each view (2D tracks), the final step is to merge those tracks into 3D tracks [66]. These

3D tracks are used for the quasi-elastic analysis. An example of a reconstructed muon with

multiple scattering is shown in figure 4.6. The reconstructed trajectory along the muon
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track is shown together with the cell hits. Note that the track reconstruction algorithm can

follow the particle trajectory even through large amounts of multiple scattering.

We use the Kalman Filter reconstruction for both the Monte Carlo simulations and the data

MULTIPLE SCATTERING - RECO TRAJECTORY

N. Raddatz (UMN) KalmanTrack March 30, 2012 13 / 32Figure 4.6: Example of reconstructed muon, figure taken from [67].

collected in the Detector Prototype. The next section compares Data and MC distributions

in the detector.

4.4 Comparison between Data and Simulations

This section presents a comparison of Data and MC simulations for the Detector Prototype.

We compare Data and MC simulations using the preselection criteria for both samples

corresponding to the detector configuration from April to May 2011 for which there were

9.6× 1018 protons on target. The preselections criteria used are the following:

1. Data quality selection: Several cuts are used to select the good runs for the analysis,

details about the data quality can be found in [71].

2. Timing selection: Reconstructed events in the beam time window (t > 217µs and

t < 227µs).

3. Fiducial cuts: Require the reconstructed vertex positions |x1| < 115 cm, |y1| < 150

cm and 50cm < z1 < 770 cm.

4. cosmic raycut: The cosmic raymuons are removed using the inverse of the slope of the

tracks. Require z2−z1
y2−y1 < −1 or z2−z1

y2−y1 > 1.

Figure 4.7 compares the data and Monte Carlo simulation for the track length of all the

tracks in an event (left plot) and the angle of the tracks with respect to the beam direction

cos θNuMI (right plot). The data is cosmic ray background subtracted by using the out of

time data (out of time is the data outside the spill window) to predict the in time back-

ground. This is done by using all the pre-selection cuts on the out of time data and scaling

by the ratio of out of time window to the in time window. The MC simulation has been
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scaled to the amount of protons on target (POT) for the data. These distribution shows

good agreement between data and MC.

The track vertices for data and Monte Carlo simulations are shown in figure 4.8. The figure
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Figure 4.7: Left: track length for the reconstructed tracks. Right: reconstructed track angle
with respect to the beam direction. Black points are the data and the red histogram is the
simulation.

shows the track vertex X coordinate, the track vertex Y coordinate and the track vertex Z

coordinate in centimeter. These distributions shows good agreement between data and MC.

4.4.1 Detector Calibration

We review the calibration used for the quasi-elastic analysis. Details about the calibration

chain and the status can be found [68].

Calibration

Cosmic ray muons reconstructed in the Detector Prototype are used to calibrate the detec-

tor.

The energy units used in this discussion are the following:

1. ADC: The ADC is the pulse height for a cell as recorded by the analog to digital

converter (ADC).

2. PE: PE is the number of photoelectrons detected by the APDs calculated using the

ADC (ADC/1.43).
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Figure 4.8: Vertex positions of the reconstructed tracks. The black points are the data and
the red histogram is the simulation.

3. PECorr: PECorr is the calibrated energy deposited correcting for the attenuation

length of the fiber.

4. MIP: MIP is the energy deposited by a minimum ionizing particle traveling along the

z direction through the depth of one cell.

5. GeV: Energy in GeV. This energy is obtained using the MIP times a constant[69].

Through going cosmic rayray muons are used to measure and correct the variation in light

caused by the attenuation along the WLS fiber in a scintillator cell.

The attenuation fits are done on a channel by channel basis. The fits use the following

assumptions: First, the channel response is stable in time. Second, the energy spectrum of

cosmic rayrays is uniform in space. Third, the APD response to arriving photons is linear.

The pulse hight or (ADC/cm) of the cell crossed from a cell is plotted as a function of the

distance from the center of the detector. This distance is called W. The data is fit to a

double exponential

y = C +A(exp(
x

X
) + exp(−3L/2 + x

X
)) (4.3)
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where y is the response and x is the W position.

Figure 4.9 shows an example of a fit of the cosmic ray data for a single vertical and for

a horizontal cell. These plots show a pronounced rolloff on the edges of the ADC/cm as a

function of the distance from the center distribution. These rolloffs follow an x4 polynomial.

This was determined empirically [69]. An extra term is used in the fit

y =


1− αR(x = xR)4 x > +xR

1 otherwise

1− αL(x− xL)4 x < −xL

(4.4)

Finally the product of equation 4.3 and 4.4 was used to make the fit. The attenuation

and rolloffs are shown in figure 4.9. The plots shows the mean ADC/cm as a function of

the distance from center, the left plot is for a vertical cell and the right for a horizontal

cell. The roll off is caused by the absorption of light by the dark plastic at each end of the

module. Since the light captured by the fiber has been reflected by about 1 m of the plastic

of the cell, the distribution should roll off as it approaches the end of the module where

there is internal structure supporting the fiber.Examples of ADC vs W fits
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Figure 4.9: Detector response (ADC/cm) of liquid scintillator traversed in the cell as func-
tion of the distance from the center of the module for a vertical cell. Left: a vertical cell.
Right: a horizontal cell, plots taken from [69]. The dashed lines represent the edges of the
detector.

An example of the calibrated visible energy for the NuMI neutrino events in the Detector

Prototype is shown in figure 4.10. The total observed energy in the event is shown for

Data after the cosmic ray background subtraction and for Monte Carlo simulations. The

red distribution is the Monte Carlo and the black is the Data after pre-selection cuts.
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Figure 4.10: Visible energy in the events for the neutrino events. The red is the total
MC after pre-selection cuts and the black is the data after pre-selection cuts and cosmic
raybackground subtracted events.

Momentum calibration

The muon momentum is obtained using the range of the muons. We use fully contained

events and 3D tracks from the Kalman Filter reconstruction. This section describes the

technique used to determine the momentum.

A Monte Carlo sample of quasi-elastic interactions is used to calibrate the muon momentum.

We fit the muon momentum as a function of the track length. This fit provides values of

fit parameters which are used in the MC and the Data to determine the momentum of the

tracks.

The Detector Prototype is made of about 12 meters of scintillator and about 2 meters with

alternative planes of scintillator and steel in the muon catcher. We use two fits to determine

the momentum of the tracks, one fit for the events in the scintillator and a second fit for

the events stopping in the muon catcher.

The distributions in the figure 4.11 show range of the muons as a function of their momentum

for simulated events in the part of the detector made only of detector modules and also the

muon catcher. The top distribution is a scatter plot of the momentum versus the track

length and the bottom is the profile of that plot as a function of muon momentum.

The momentum in the scintillator is found fitting the momentum as a function of the track

length to a straight line equation P = aL + b. The parameters from the fit from the left

plot of figure 4.11 are: a = (0.12182±0.00164)GeV/cm and b = (0.002008±0.000003)GeV.

For the events stopping in the muon catcher, we split the tracks into two sections and use
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Figure 4.11: Momentum versus track length for simulated CC QE events. We divide the
track in two parts: the first part for tracks in the scintillator and the second part for tracks
in the muon catcher. The left plots are for the track only in the scintillator modules and
the right plots are for the tracks only in the muon catcher. On each side, the top plot is
the momentum vs the track length and the bottom is the profile on the top plot fitted to a
straight line.

the prediction of the momentum in the modules for the first part of the track and the muon

catcher fit for the second part. The muon catcher fit is also a straight line equation with

the following parameters a = (−0.043±0.006)GeV/cm, b = (0.00755±0.00009)GeV for the

right distribution of figure 4.11.

The length and momentum contained in the muon catcher is predicted as follow

Pcatcher = P (total)− P (modules)

Lcatcher = L(total)− L(modules) (4.5)

The right distributions in figure 4.11 shows the fit of muon momentum as a function of

the track length for the length contained in the muon catcher. The top distribution is the

momentum Pµcather as function of the Lµcatcher and the bottom is the profile and fit.

Finally, we compare the true momentum and the reconstructed momentum for simulated

events. Figure 4.12 shows the resolution distribution, where resolution is defined as (Pµ(true)−
Pµ(reco))/Pµ(true). The resolution for the momentum is 13% for configuration 1. This

distribution shows a tail, because dead channels cause some muons to have a shorter recon-

structed track length than their true track length.
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Chapter 5

Event Selection

5.1 Charge Current Quasi-elastic selection

This section describes the νµ Charged Current Quasi-Elastic (CC QE) interaction selec-

tion. This interaction produces a long muon track. In addition to the muon, some CC QE

interactions contain a short track associated with a proton. However, the number of CC

QE interactions with a visible and reconstructed second track from proton is small. Using

scanning we found about 4% of the CC QE interactions have a second visible track from

proton, with at least four hits in each view. Four hits is the minimal requirement for the

Kalman Filter to reconstruct a track. Since the number of νµ CC QE events with a second

visible track from proton is small we make a selection for the CC QE using one and only

one reconstructed track, (3D reconstructed tracks).

The CC QE selection is made using two steps: first we apply pre-selection cuts to remove

events at the edge of the detector and remove cosmic ray background events; then we use

a kNN algorithm to select the CC QE interactions.

5.1.1 Pre-selection Cuts

The pre-selection cuts are defined as follows:

• Event passing Data quality checks[71] and within the 10 microsecond beam spill be-

tween 217µs > t < 227µs.

• Interaction fiducial cuts: Interaction point 50cm from the edge of the detector

|x1| < 115cm, |y1| < 150cm, 50cm >z1 < 770cm, (5.1)

where the (x1, y1, z1) are the reconstructed vertex positions, considering the smallest

value of z for the track as the vertex position. For configuration 2 we adjust the z

62
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coordinate cuts to 300cm >z1 < 500cm, since the instrumentation was moved to a

fiducial region around these coordinates . Figure 5.1 shows an event display with the

coordinate system.

• Cosmic ray background rejection: The inverse of the slope of the tracks in the y view

is used to remove the cosmic ray background.

C3 =
Z2 − Z1

Y2 − Y1
. (5.2)

where 1 and 2 refers to the beginning (most upstream z) and end of the reconstructed

track. A detail study was made to determine the cuts on this variable. Appendix C

shows a summary of the study. Cosmic ray muons tracks are rejected using −1 <

C3 < 1.

• One and only one reconstructed track, (3D reconstructed track).

• Events with track length greater than 60 cm.

• Containment fiducial cut: |x2| < 115cm, |y2| < 150cm; and z2 < 1350cm, where

x2, y2 and z2 are the end positions of the reconstructed tracks. The containment cuts

are the same for both configurations.

• Events exiting the detector from the side: This is done extrapolating the tracks in

both detector views, vertical (Y) and horizontal (X), and rejecting those tracks that

are likely to exit the detector. This cut is only used for configuration 2, since this

configuration has fewer active planes.

In addition to the pre-selection cuts, a k-Nearest Neighbour (kNN) classifier is used to

select the final sample of CC QE interactions. The motivation for using this algorithm is to

separate quasi elastic signal events from the neutral current, charged current resonance and

charged current deep inelastic background events with a single reconstructed track. The

pre-selection cuts remove a significant amount of background events with multi prongs, but

the background events with a single pion or proton track are still there. The Table 5.1

shows the percent of events remaining after each pre-selection cut, after the fiducial cuts.

5.1.2 Using a k-Nearest Neighbour Classifier (kNN)

The kNN is one of the standard algorithms used in high energy physics to separate signal

from background. The kNN method is part of the TMVA ROOT classes. A summary of

the method is taken from [72].
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Figure 5.1: Event display to show the coordinate system used in the analysis. For the
x coordinates |x1| < 115cm, for the y coordinate |y1| < 150cm; and the z coordinate
changes for each detector configuration, for configuration 1 we use 50cm >z1 < 770cm and
for configuration 2 we use 300cm >z1 < 500cm.

Interactions QE RES DIS NC

Fiducial cut 100% 100% 100% 100%

Cosmic cut 86% 85% 82% 72%

One track 78% 46% 21% 42%

Fully contained 30% 20% 8% 30%

Table 5.1: Percent of the events after each pre-selection cut.

This algorithm estimates a multidimensional probability density function by counting

the number of signal and background events from a set of simulated training events in the

parameter space near the event. The kNN finds the k nearest events from the training set

for each test event:

k = kS + kB, (5.3)

where kS is the number of the signal events, and kB is the number of the background events

in the training sample. The relative probability that a test event is of signal type is given

by

PS =
kS

kS + kB
=
kS
k
. (5.4)

The kNN searches for k events that are closest in a defined set of parameters to the test

event. The closeness is measured using the Euclidean distance

R = (

nvar∑
i=1

|xi − yi|2)
1
2 , (5.5)
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where nvar is the number of input parameters used for the classification, xi are the param-

eters of an event from a training sample and yi are parameters of an observed test event

[72]. The k events with the smallest values of R are the k-nearest neighbors. A value of k

determines the average size of the neighborhood over which probability density functions

are evaluated.

Figure 5.2 illustrates event classification with the k-nearest neighbor algorithm. The

number of training events has been reduced to illustrate the principle of the algorithm.

Signal
Background Query event

0 1.50.5 1.0

0.5

1.0

1.5

0

In
pu

t 
va

ri
ab

le
 2

Input variable 1

Figure 5.2: Example of KNN classification. Signal is shown in red and background is shown
in blue and the query event with green. A neighborhood enclosing the 6 nearest neighbors
is shown with the black circle. The KNN searches for 6 nearest points in the nearest
neighborhood (circle) of the query event. The nearest neighborhood counts 5 signal and 1
background points so that query event may be classified as a signal candidate.

We use three different parameters as an input to the kNN: (1) number of planes that

the track crosses, (2) ratio of mean energy (PECorr) per plane to track length in plane and

(3) the energy (PECorr) within a 50 cm radius of the vertex, including muon track hits.

We use simulated (νµ + ν̄µ)CC QE events as the signal sample while we use the simu-

lated CC resonance, deep inelastic, electron neutrino (νe + ν̄e), and NC interactions as the

background sample. We train the kNN using the three input parameters and later evaluate

the kNN using a different MC sample and the Near Detector Prototype Data.
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5.1.3 Training Sample for kNN

Events used for the kNN training and testing sample are subjected to the pre-selection cuts

given in section 2.1. In addition, we include additional cuts in the training sample to include

short track length events with a single proton track in the final state as background events.

The additional cuts are used to classify those events as background in the training sample.

The cuts include the following:

Removing the bad reconstructed events

• Events mainly due of events with proton

• Using the definition of the mip (avg de/dx) to reject 
protons from nova-db 7635 and nova-db 7752

4

Vertex Energy

Trackers have a tough time close to the vertex where hits from charged particles
are close together.

Need to be careful about removing digits close to vertex.

Current definition of “close to vertex” is first 50cm from the start of the track.
Need to study what a sensible number for that is.

Decisions on what to keep, and what to throw away based on MIP assumption
for the muon.

Definition of MIP
dE

dx
based on Nick’s study. Mean = 0.00157 and � = 0.00015

in GeV/cm

avg dE/dx  (GeV/cm)
0 0.001 0.002 0.003 0.0040

200

400

600

800

Kanika Sachdev (UofM) MRCC and MRE July 31st, 2012 7 / 31Plot taken from nova-db 7752

Average de/dx for muons

Figure 5.3: Average of dE
dx for muons, black is simulation and red is a curve from a fit. Plot

taken from [73]

1. For the training we selected events with a bragg peak at the end of the track as back-

ground. The variable is made using the energy deposited as a function of the length

dx at the end of the track. The threshold used is dE/dx > 52MeV . This threshold

is set to avoid the rejection of muons with a Michel electron.

2. Require the dE
dx to be consistent with a minimum ionizing particle for any track.

The threshold is determined using the average of dE
dx for muons. Figure 5.3 shows

the average dE
dx for muons using simulations. We cut events outside of dE

dx ± 3σ,

(0.001 < dE
dx < 0.0025)GeV/cm.

The justifications for the event parameters used to build the kNN are:

• Number of planes in the reconstructed track. This separates neutral current events

from charged current events. Figure 5.4 shows the difference between neutral current

events and charged current events. The pions from neutral current events tend to

travel through fewer planes than muons from charged current interactions.
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• Mean energy deposition per plane (PECorr) in the reconstructed track normalized by

the track length. Neutral current events tend to deposit more energy per plane than

charged current events. The distribution is shown in figure 5.4. The motivation for

this variable come from < dE/dx > but we found Data-MC discrepancies for this

variable and found the < dE/dx > /(tracklength) have better Data-MC agreement.

• Energy around the vertex, the PECorr energy is added for all the cells around the

vertex using a radius of 50 cm from the reconstructed vertex position. The figure 5.4

shows the PECorr energy around the vertex. The CC QE events have less energy

around the vertex compared with other type of neutrino interactions.

After training and testing the kNN with different MC samples, the output kNN is shown in

figure 5.5. The signal and each component of the background are shown. The red curve is

from CC QE interactions, the blue CC resonance interactions, the pink CC deep inelastic

interactions and the green the NC interactions.

To optimize the cut for the kNN, we chose the maximum figure of merit (FOM) defined as:

FOM =
Signal√

Signal +Background
. (5.6)

The figure 5.6 shows the signal purity, signal efficiency, the signal times the purity and

the significance (value of the FOM) as a function of each value of the kNN output. The

maximum significance and signal times purity is shown in this plot. The optimized kNN

cut was chosen to be kNN > 0.35, using the criterion of having the maximum FOM . This

selection produces a signal efficiency of 85% and a purity of about 60%.

Now, having the algorithm trained to select the CC QE events using the MC, we apply

the same techniques in the Data collected from the Near Detector Prototype. The next

section shows the Data input variables and the kNN selector used to select the CC QE

events. In addition, we will show the scattering angle and momentum prediction that will

be used to compute the neutrino energy for the selected CC QE events.
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Figure 5.4: Number of planes in the reconstructed track, ratio of mean energy per active
plane to track length (PECorr)/cm, and PECorr energy around the vertex, taking a radius
of 50 cm around the vertex. The red represent the CC QE interactions, the blue the CC
RES interactions , the pink the CC DIS interactions and the green the NC interactions.
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Figure 5.5: kNN output for a different Monte Carlo sample than that used to train the kNN.
The different curves represent each interaction type using the truth from the simulations.
The red represent the CC QE interactions, the blue the CC RES interactions , the pink the
CC DIS interactions and the green the NC interactions. The horizontal axis is the kNN
result and the vertical axis is the number of events in the sample
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Figure 5.6: Efficiency for the signal and background as a function of the kNN output. The
dark blue represent the signal efficiency, the red the background efficiency and the purity
for signal is shown in light blue color. In addition the significance (FOM) is shown in green
color and the signal efficiency times purity is shown in pink color.
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5.2 Events after Pre-selection and Cosmic Ray Background

Using the preselection cuts over the Data, we find a sample of beam events plus cosmic ray

background. Since the beam MC simulation does not contain the cosmic ray background,

we make a prediction for the cosmic ray background using the out of time Data and subtract

this background from the total sample.

The cosmic ray background prediction is determined using the events outside the spill win-

dow. We use the pre-selection cuts for these events and time normalized the distributions.

This Data is outside the spill beam window from 0 to 217µs and from 227µs to 500µs.

Figure 5.7 shows events within 50 cm radius of the vertex, number of planes and ratio of

mean energy per plane to track length for the beam candidates and cosmic ray background

for preselected events.

5.3 Data-MC Selection

Figure 5.8 shows the input parameters to the kNN in Data and MC simulations for the events

after pre-selection cuts for the configuration 2. This Data set correspond to 1.7×1020POT.

The distributions show Data after cosmic ray background subtraction.

Evaluating the input parameters: number of planes, ratio of mean energy per active

plane to track length and the energy around the vertex for Data and MC a kNN selector

is built. Figures 5.8 shows the comparisons of the Data and with the MC simulations.

In the distributions on the left, the Monte Carlo has been normalized to the Data (area

normalized) while on the right it has been normalized to have the same POT as the Data.

For the POT normalized plots the statistical errors are calculated from Gaussian, if the

bin contains less than 10 events, Poisson statistics. The shapes of the Data and Monte

Carlo distributions are generally in good agreement but there is a discrepancy in absolute

normalization. The χ2 and NDF is shown in table 5.2 for the area and POT normalized

plots.

Figure 5.9 shows the kNN output used to select events.

χ2/NDF (Area normalized) χ2/NDF (POT normalized)
Number of planes 11.6/14 44.1/14

Mean energy 10.7/19 42.9/19
Vertex energy 10.9/9 41.5/9

Table 5.2: χ2 and NDF for area and POT normalized plots from figure 5.8

The CC QE selection requires both the pre-selection cuts and the PID selector, (kNN >

0.35).

Data-MC distributions of parameters not directly used in the selection process are shown
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in figure 5.11 for events selected as QE events and the cosmic ray background prediction.

The Figure 5.12 shows the scattering angle of the tracks with respect to the beam direction

compared to the Monte Carlo prediction. The left distribution is area normalized and right

distribution is POT normalized. Figure 5.13 shows the momentum of the CC QE selected

events for Data and MC, where the momentum is determined from the length of the tracks.

Again, figures 5.12 and 5.13 show that the behavior of these parameters is consistent with

the Monte Carlo but the absolute normalization is not. A study of POT accounting was

made using the Monte Carlo simulations to fix the POT accounting [74]. This correction

is used in this analysis. Table 5.3 shows a summary of the events after each cut for Data,

cosmic ray background and MC events. The MC events have been scaled by POT.

In time Data Cosmic Data Subtracted-Data MC
Fiducial cut 11459 9194 2265 3679

Cosmic ray cut 2845 757 2088 3066
One track 1841 612 1229 1769

Track Length > 60 cm 1715 558 1157 1661
Fully contained 513 64 449 642

PID cut (kNN > 0.35) 214 24 190 263

Table 5.3: Events after each pre-selection cut and PID cut in Data and MC.

The kNN distribution, figure 5.9, shows good agreement between Data and MC, except

perhaps for the first bin. A study was made using scanning to determine the origin of this

discrepancy and we found those events are coming from short track length NC events. The

Monte Carlo predicts more short track length than Data. We plot a comparison of Data and

MC including the systematic uncertainties in figure 5.10. The systematic uncertainties for

the background events will be discussed in Section 9. We note that the same disagreement

between Data and Monte Carlo occurs in configuration 1 as shown in Appendix A.
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Figure 5.7: Top: Energy within a 50 cm radius from the vertex (PECorr). Middle: ratio
of energy per active plane to track length. Bottom number of planes. Distributions show
the beam candidates in black and cosmic ray background in blue for preselected events in
configuration 2.
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Figure 5.8: The top plots show the comparison of number of planes. Middle plots show
comparison of the ratio of mean energy per active plane to track length and bottom plot
the comparison of the energy around the vertex. All plots show a comparison of the Data
for pre selected events (black) to the Monte Carlo (red) of QE plus background subjected to
the same selection criteria as the Data for each parameter used in the kNN event selector.
The left hand set of graphs are area normalized and the right hand set are normalized to
protons on target (POT). All distributions are for configuration 2.
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Figure 5.9: k-Nearest Neighbour classifier (kNN) for Data and Simulations for configuration
2. Left: kNN area normalized. Right: kNN POT normalized.
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Figure 5.11: Neutrino candidates and cosmic ray background prediction for configuration
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Figure 5.12: Comparison of the scattering angle for νµ CC QE selected events after cosmic
ray background subtraction and MC simulation. Left: MC normalized to Data. Right:
POT normalized.
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Figure 5.13: Comparison of momentum for νµ CC QE selected events after cosmic back-
ground subtraction and MC simulation. Left: MC normalized to Data. Right: POT
normalized.

5.3.1 Background Study

To study background, we used the same pre-selection cuts as the Data except we required

events to have two 3D reconstructed tracks. Figure 5.14 shows the MC for each of the

background contributions. Note that the fraction of QE signal events in this sample is

less than 5%. We use the longest track to determine the energy and compute the four

momentum transfer.

Figure 5.15 shows the neutrino energy and figure 5.16 shows the four momentum transfer

distributions from Data and MC simulations.

This two track sample is background dominated, the biggest background contribution is

from resonance interactions. The plot in figure 5.16 shows the comparison of Data and MC

simulation for two track events. The MC has been normalized to the number of events from

Data. The Data-MC area normalized comparison shows the two track Data is statistically

consistent with MC simulation which is background dominated.

We have studied the two track selected sample to explore the possibility of constraining

the background in the single track selection sample. Using the two track sample as follows

Nbackground(1track) =
NMC−1track

NMC−2track
NData(2tracks). (5.7)

To evaluate if the two track sample could be used to estimate the background, we determine

the systematic uncertainty for this sample. The figure 5.18 shows the ratios of each of the

systematic uncertainties to the nominal MC, in the left distribution for the one track sample

(CC QE selection) and the right distribution for the two track selected sample. We use
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Figure 5.14: Square four momentum transfer for events with 2 reconstructed tracks. The
plot shows the Monte Carlo prediction of the event composition

the GENIE reweighting tools to find the cross section model uncertainties for each of the

background RES, DIS, NC and COH [94]. Also, we determine the uncertainties from the

intranuke parameters.

The total systematic uncertainty for the two track sample is obtained adding each of the

uncertainty in quadrature for each bin. Figure 5.17 shows the total systematic uncertainty

for the two track selected sample. Since the total systematic uncertainty is much bigger

than the systematic uncertainty for the CC QE selected sample, (section 7.3 shows details

about the systematic for the selected CC QE events). The physics modeling of the two-

track selected sample is different compared with the one track sample and cannot be used

to predict the background in the CC QE selected sample. However, we find Data-MC

simulations has good shape agreement for the two track selected sample and use this sample

to check our MC simulation.
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Figure 5.15: Neutrino Energy for events with two 3D reconstructed tracks. Left: Data and
Monte Carlo simulation comparison area normalized. Right: POT normalized.
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Figure 5.16: Square four momentum transfer for events with 2 reconstructed tracks. Left:
The distribution shows Data and Monte Carlo simulation comparison area normalized.
Right: POT normalized.
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Figure 5.18: Left :Ratios of the one sigma prediction to nominal MC simulation for each of
the systematic for the CC QE selected events. Right: Ratios of the one sigma prediction
to nominal MC for the two track selected sample.
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5.4 Neutrino Energy and Four Momentum Transfer Recon-

struction

The neutrino energy is reconstructed using the kinematics of the event, the scattering angle

and momentum prediction, where the momentum is determined from the length of the

track, Appendix B describes the method to obtain the momentum. These variables are

shown in figures 5.12 and 5.13. The neutrino energy is obtained using

Eν =
2(M

′
n)Eµ − ((M

′
n)2 +m2

µ −M2
p )

2[(M ′
n)− Eµ +

√
E2
µ −m2

µ cos θµ]
(5.8)

where Eµ = Tµ+mµ is the total muon energy, Mp is the proton mass, mµ is the muon mass

and M
′
n is the adjusted neutron mass: M

′
n = Mn − EB, where EB is the binding energy

(EB = 25MeV )[95].
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Figure 5.19: Left: Neutrino energy for the νµ CC QE selection. Right: Q2 for the νµ CC
QE selection. Data in time is the beam plus cosmic ray background and out of time is the
cosmic ray only for configuration 2.

Four momentum transfer is obtained using:

Q2 = −m2
µ + 2Eν(Eµ −

√
E2
µ −m2

µ cos θµ) (5.9)

Figure 5.19 shows the neutrino energy and the four momentum transfer for the Data in

time and Data out of time. In addition, figures 5.20 and 5.21 show Data-MC simulation

comparisons for the neutrino energy and the four momentum transfer for the Data collected

from the configuration 2 forward horn current neutrino run. Distributions shown in figures

5.20 and 5.21 are area normalized on the left and POT normalized on the right. Doing a χ2

test for the neutrino energy distribution in figure 5.20 for the area normalized distributions

we obtain χ2 = 3.7, NDF = 2 . Now doing the χ2 test for the POT normalized plot we

obtain χ2 = 13.5, NDF = 3.
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Figure 5.20: Comparison of reconstructed neutrino energy for νµ CC QE selected events
after cosmic ray background subtraction from data and MC simulation, that includes both
QE signal and background. Left: MC normalized to Data. Right: POT normalized.
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Figure 5.21: Comparison of square four momentum transfer for νµ CC QE selected events
after cosmic ray background subtraction for data and MC simulation. Left: Four mo-
mentum transfer area normalized. Right: Four momentum transfer POT normalized for
configuration 2.

Table 5.4: Expected signal and background events from the MC simulations.
configuration CC-QE νµ CC-QE ν̄µ CC RES CC DIS NC COH CC-QE νe Total

configuration 1 27 11 11 4 5 1 2 59
configuration 2 131 49 49 16 25 5 4 280
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5.4.1 Irreducible Background

The CC QE selection for the Near Detector Prototype detector contains irreducible back-

ground. The components of this background are shown in figure 5.22 and 5.23 for con-

figuration 2. Using the MC simulations, the expected number of signal and background

events are shown in table 5.4 for both configurations. The current Data selection criteria

give 230 neutrino candidates with 20 cosmic ray background events for configuration 2 and

55 neutrino candidates with 11 cosmic ray background events for configuration 1. The

distributions for configuration 1 are shown in appendix B.
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Figure 5.22: Comparison of reconstructed neutrino energy for νµ CC QE selected events
after cosmic ray background subtraction and the MC simulation that includes non cosmic
background. The background contribution for each type of interaction is shown. Top: area
normalized, Bottom: POT normalized.
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grounds. Also shown is the MC simulation for each of the interaction contributions. The top
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Chapter 6

Analysis

6.1 Cross Section definition

Consider a target, at rest, with a given number of target nucleons. Aim at this target a

beam of neutrinos with a flux φ. Then we expect the total number of scattering events N int

to be proportional to the effective cross-sectional area of each target, the number of targets

T and the flux φ as

dN int = Tσdφ. (6.1)

The cross section measurement can be made as a function of any quantity that affects either

the interaction, such as the neutrino energy, or the consequences of the interaction such as

the muon momentum. Review taken from [96]. We can write equation 6.1 as a function of

the initial quantities ~a = a1..aL and the final quantities ~b = b1..bN . The total number of

interactions is then just the integral over all of those quantities.

N int = T

∫
a1

..

∫
aM

∫
b1

..

∫
bN

∂Nσ(~a,~b)

∂b1..∂bN
db1..dbN

∂Mφ(~a)

∂a1..∂aM
da1..daM (6.2)

If one desires to express the cross-section in terms of the final state variables, we need to

integrate over all the initial states.

For simplicity, consider only a single initial state variable a and final state b. By definition,

the flux averaged cross section is given by integrating over the range of the variable a:

< σ >φ=
1

φ

∫
a
σ(a, b)

∂φ

∂a
da. (6.3)

The total number of interactions in bin j of the final state variable b becomes

N int
j = Tφ

∫
bj

<
∂σ

∂b
>φ db (6.4)

84
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where 6.1 has been applied to ∂σ
∂b . The flux averaging is independent of the final state

derivatives , and equation 6.1 is equivalent to

N int
j = Tφ

∫
bj

∂ < σ >φ
∂b

db. (6.5)

The flux average differential cross section is then given by

<
∂σ

∂b
>j=

N int
j

Tφ∆bj
(6.6)

where ∆bj is the bin width and σ =< σ >φ. Using this definition we can compute the flux

average differential cross-section for the four momentum transfer, angle and momentum as

<
∂σ

∂Q2
>j=

N int
j

Tφ∆Q2
, <

∂σ

∂Tµ
>j=

N int
j

Tφ∆Tµ
, <

∂σ

∂cos θ
>j=

N int
j

Tφ∆ cos θ
. (6.7)

The flux average total cross section per nucleon is given by

< σ >φ=
N int

Tφ
. (6.8)

In the next section we will use these definitions.

6.2 Cross section calculation

The cross section is calculated using the experimental definition:

σi =

∑
j UijNQEi

εiφiT
, (6.9)

where U is the unfolding matrix to account for the resolution of reconstructed events as a

function of energy and four momentum transfer. NQE are the selected CC QE events, ε is

the efficiency and T is the number of targets.

For the cross section as a function of energy σ(E), the flux is divided into energy bins and

for the flux integrated cross section dσ
dQ2 the flux is integrated across all bins φ =

∑
i φi.

The following sections describe the procedures used to calculate the cross section: (6.2.1)

number of target neutrons, (6.2.2) background subtraction and efficiencies, (6.2.3) unfolding

procedure. It also presents the summary of cross section uncertainties (7) and, finally, the

results.

6.2.1 Number of Neutron Targets

We determine the number of target neutrons using the mass of the detector and its compo-

sition [75].

The mass is calculated using the total PVC and the total scintillator mass for the detector.
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Table 6.1 shows the total mass of the PVC and scintillator. This Data comes from nova-db

1136 [76].

Using the mass and volume of the total detector, the neutrino interaction fiducial mass is

calculated:
mF

VF
=
mT

VT
. (6.10)

Table 6.2 shows the fiducial mass of PVC and scintillator for both configurations of the

Prototype Detector.

Detector mass (tons)
Total detector PVC mass 38.3

Total detector scintillators mass 91.3
Muon catcher PVC mass 2.7

Muon catcher scintillator mass 6.3
Total steel mass 95.71

Total 225

Table 6.1: Total Detector Mass[76].

PVC(tons) scintillator(tons)
Configuration 1 14.9 35.6
Configuration 2 4.1 10.0

Table 6.2: Interaction region fiducial mass for the PVC and scintillator.

The number of neutrons is calculated using:

1. The molar weight of each of the components.

2. Dividing the detector mass by the molar weight.

3. Calculating the number of molecules by multiplying the number of moles by Avo-

gadro’s number.

4. Multiplying the molecules by the number of neutrons per molecule.

Using the mass fraction and the procedure described above, the number of neutrons are

calculated for each element. Table 6.3 shows the numbers for each element in the NOνA

Prototype Detector for configuration 1. The total number of neutrons for this configuration

is 1.3566 × 1031 and the total number of neutrons for the configuration 2 is 3.768 × 1030.

6.2.2 Background Subtraction and CC QE sample

The selected CC QE events contain a background coming from single track events that are

not QE. For example, scanning studies show about 20% of the charged current resonance
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Table 6.3: Number of Neutrons for each component of the Near Detector Prototype fiducial
region for configuration 1.

Composition Mass
Fraction

Mass(ton) Molecules # Neutrons

Scintillator
CH2 94.64% 33.7 1.4e30 8.7e30
C9H12 5.23% 1.86 9.3e27 5.0e29

C15H11NO 0.139% 0.049 1.3e26 1.4e28
C24H22 0.0016 5.7e-4 1.1e24 1.6e26

PVC
C2H3Cl 80% 11.96 1.2e29 3.4e30
TiO2 15% 2.2 1.7e28 7.1e29

C36H70O4Ca 0.6% 0.09 9e25 2.4e28
C20H42 0.9% 0.14 2.9e26 3.4e28
C12H20O5 0.2% 0.03 7.4e25 8.3e27
C21H42O4 0.2% 0.03 5.0e25 7.9e27
C5H8O2 3.1% 0.46 2.8e27 1.3e29

interactions have a single muon in the final state. In addition, short track length pions from

neutral current background in which the dE/dx information is very similar to short track

length muons are part of the background.

We use the MC simulation as described in section 5.4.1 to predict the background from

charged current and neutral current interactions. The charged current backgrounds consid-

ered are resonance (RES), deep inelastic scattering (DIS), coherent scattering (COH) and

νe interactions. These events are subtracted from both the Data and MC simulation. Table

5.4 gives the background contributions to the signal.

Neutrino Energy

The reconstructed energy for the CC QE selected events is shown in figure 6.1. This plot

shows the background prediction in pink and the total MC in red for signal plus non cosmic

background, ( (νµ + ν̄µ)CCQE as well as νe, ν̄e, RES, DIS and NC interactions). The Data

has cosmic ray background, which is not in the MC, subtracted.

Subtracting the background prediction from both the Data and MC simulation produces

the reconstructed neutrino energy distribution for the (νµ + ν̄µ)CCQE events shown in

figure 6.2.

Now, we have a sample of (νµ + ν̄µ)CCQE events. In order to determine a cross section

for the νµ CC QE events we use the ratio of νµ to (νµ + ν̄µ) obtained from Monte Carlo to

determine the contribution from νµ

R =
νµ

νµ + ν̄µ
, (6.11)

where νµ and ν̄µ are the events after the CC QE selection. The ratio as a function of
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Figure 6.1: Comparison of reconstructed neutrino energy for νµ CC QE selected events
after cosmic ray background. Data is shown in black and MC simulation is in red for
signal plus the background from other neutrino interactions. The pink histogram is the MC
background prediction. These distributions are taken from figure 5.20 with the background
curve added. The left hand distribution has the MC area normalized to Data. The right
hand distributions are POT normalized.

neutrino energy is shown in figure 6.3. The error bands are the systematic uncertainty from

the π+/π− ratio in hadron production. Details about the systematic uncertainty introduced

by this correction can be found in section 7.2.3. Using the ratio in the right hand plot of

figure 6.3 and the background subtracted neutrino energy from figure 6.2 we extract the

νµCC QE sample. Figure 6.2 is POT normalized and shows a discrepancy between Data

and MC simulation in some bins.
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Figure 6.2: Comparison of reconstructed neutrino energy for νµ CC QE selected events
after cosmic ray background and interactions background subtraction for Data and MC.
Data and MC are POT normalized.
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Figure 6.3: Left: Ratio of νµ to (νµ + ν̄µ) as a function of reconstructed neutrino energy
for the CC QE selected events from the Monte Carlo simulation. Right: Ratio of νµ to
(νµ + ν̄µ) as a function of four momentum transfer for the CC QE selected events. The
error bands represent the systematic uncertainty of the ν̄µ contamination, as described in
section 7.2.3.

Four Momentum Transfer

We use a similar procedure as above for the background subtraction in the four momentum

transfer square (Q2) distribution. Figure 6.4 shows the four momentum transfer for the

data νµ CC QE events and the MC simulation prediction. The pink distribution shows the

irreducible background, from charged current (RES, DIS and COH) and neutral current

interactions. The left hand plot is area normalized and the right hand plot is POT nor-

malized. The POT normalized distribution shows disagreement between the Data and the

MC simulations. To check the modeling of the background, a background data enhanced

sample was studied in section 5.3.1 and showed good agreement between the shape of the

Data and Monte Carlo.

Using the MC simulation prediction we subtracted the background from both the Data

and MC simulation, the four momentum transfer after background subtraction is shown in

figure 6.5. This figure shows that, although the shape of the distributions agree, there is a

normalization disagreement between the Data and MC simulation.

To obtain the νµ CC QE component we use the ratio of νµ to (νµ + ν̄µ) and the subtracted

background four momentum transfer distribution. The ratio is defined in equation 6.11,

but now as a function of Q2. The ratio as a function of four momentum transfer is shown

in the left hand plot of figure 6.3.



90

)2(GeV2Q
0 0.1 0.2 0.3 0.4 0.5

C
os

m
ic

-S
ub

tr
ac

te
d 

E
ve

nt
s

0

50

100

150

200
Data

MC

MC Background

)2(GeV2Q
0 0.1 0.2 0.3 0.4 0.5

C
os

m
ic

-S
ub

tr
ac

te
d 

E
ve

nt
s

0

50

100

150

200
Data

MC

MC Background

Figure 6.4: Comparison of four momentum transfer square for νµ CC QE data events after
cosmic ray background subtraction and MC simulation. The red distribution is the MC
prediction of signal plus background and the pink curve is the MC background prediction.
The black points are the Data. The left hand distribution is area normalized to the Data
and the right hand distribution is POT normalized.
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Figure 6.5: Comparison of four momentum transfer for νµ CC QE data after cosmic ray
background and interaction background subtraction and corrected for anti-neutrino con-
tamination. The MC simulation is POT normalized.
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Efficiency as a function of neutrino energy and four momentum transfer

We use the MC simulations to calculate the efficiency of the detector and analysis procedure.

ε =
Selected

F iducial
( νµCCQE), (6.12)

where Selected are the true CC QE events after the CC QE selection and the Fiducial are

the true CC QE events in the true vertex fiducial volume. The efficiency as a function of

true neutrino energy is shown in the left hand plot of figure 6.6. Using the definition for

the efficiency from equation 6.12 the efficiency as a function of the true four momentum

transfer is shown in the right hand plot of figure 6.6.
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Figure 6.6: Left: Efficiency as a function of true neutrino energy. Right: Efficiency as a
function of true four momentum transfer.
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6.2.3 Unfolding Procedure

To calculate the CC QE cross section we use a Bayesian unfolding procedure to correct for

detector resolution [77]. Starting with the number of events in a set of reconstructed bins

Nrec,j , this procedure gives an estimate for the distributions of true events Ntrue,i in a given

bin.

The following review of the unfolding method is taken from [78].

Consider Nrec,j events in a reconstructed energy bin j. The number Nij of those events

expected in a true energy bin i is

Ni,j = P (i|j)Nrec,j (6.13)

where P (i|j) is the conditional probability for an event to be reconstructed in bin j when

it is actually in bin i. The total number of events expected to be in true energy bin i is

Ntrue,i =
∑
j

P (i|j)Nrec,j . (6.14)

The resolution is unfolded by finding P (i|j). Using the Bayes’s theorem for conditional

probabilities:

P (i|j) =
P (j|i)P (i)

P (j)
(6.15)

where P (i|j) is expressed in terms of the conditional probability and the total prior proba-

bilities i and j. P(j) can be written as the sum over all the probabilities that something in

state i is really in state j times the probability that it is in state i in the first place,

P (i|j) =
P (j|i)P (i)∑
i P (j|i)P (i)

. (6.16)

Inserting this expression into 6.14 we obtain

Ntrue,i =
∑
j

P (j|i)P (i)∑
l P (j|l)P (l)

Nrec,j . (6.17)

Now we have an expression for the unfolding matrix in terms of the prior probabilities P (i)

and the conditional probabilities P (j|i). Both can be obtained using the Monte Carlo.

The P (j|i)P (i) is the migration matrix Ai,j . We can write equation 6.17 in terms of the

migration matrix as

Ntrue,i =
∑
k

Ai,j∑
lAl,j

Nrec,j (6.18)

where Ai,j is the probability that a quantity with a true value of i will end up being assigned

the value j. To obtain an unfolding matrix, we first bin the MC events in reconstructed and

true energy to form the migration matrix A, then calculate the unfolding matrix elements

Ui,j =
Ai,j∑
lAl,j

. (6.19)
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Here the matrix Ai.j is normalized in each bin of reconstructed energy. This procedure

is different from the matrix inversion method in which the unfolding matrix is normalized

in each bin of true neutrino energy and inverted after the normalization. It is used here

because the matrix inversion method is unstable, producing large variations in the unfolded

distribution due to small fluctuations in the reconstructed distribution. [79].
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Figure 6.7: Reconstructed Neutrino Energy. The red points correspond to the true neutrino
energy, the green is the unfolded neutrino energy and the blue is the reconstructed neutrino
energy. The top distributions are made using the same MC simulation used to build the
unfolding matrix as a check of the method. The bottom distributions are made using an
independent MC sample to test the unfolding.

Figure 6.7 shows a comparison of the true, reconstructed and unfolded neutrino energy

spectrum using the MC simulation for configuration 2. The top plots show the unfolding

applied to the same MC simulations used to build the unfolding matrix as a procedural

check for both energy and momentum transfer distributions. The bottom plots show the

unfolding applied to events generated by an independent MC sample, the MC statistic used

for training and testing are similar. In addition, we studied a sample of MC with similar

statistics as the Data, details can be found in [80]. The 6.8 plots shows the four momentum

transfer using the same sample used for the neutrino energy spectrum. In both cases, the

unfolding corrects the reconstructed spectrum to better match the true spectrum.

Now, using the Data we perform the unfolding for configuration 2 and the result is

shown in figure 6.9. First, we subtract the irreducible background from RES, DIS and NC

interactions and correct for the anti neutrino contamination as explained in the previous

section. Then apply the unfolding. The black points are the reconstructed Data for neutrino

QE events and the blue curve is the unfolded Data as a function of neutrino energy.
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Figure 6.8: Event rate as function of four momentum. The red points give the true four
momentum transfer, the green is the unfolded four momentum transfer and the blue is the
reconstructed four momentum transfer. The top distributions are made with the same MC
events used to build the unfolding matrix. And bottom distributions are made using an
independent MC sample to test the unfolding.
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Figure 6.9: Comparison of reconstructed neutrino energy spectrum (black) and unfolded
neutrino energy energy spectrum (blue) for configuration 2.
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6.2.4 Closure Test

The cross section normalization procedure was checked by comparing the cross-section cal-

culated from simulated MC events to the input GENIE cross-section [95]. We compute the

cross-section using

σi =
NQEi

φiT
(6.20)

where theNQE are the true CC QE events in the true vertex fiducial volume for configuration

2, the number of neutrons (T = 3.768 × 1030) as determined in section 5.1 and the flux φ

for νµ. For the flux we use the gSimple flux[82] which is used as input to the generation

events in GENIE. We use the gSimple flux version because it has the best prediction of the

neutrino flux. The input distributions for the cross section calculation are shown in figure

6.10, the left hand distribution is the total flux as a function of true neutrino energy and the

right hand distribution is the event rates as a function of neutrino energy for events in true

vertex fiducial volume. Applying equation 6.20, we divide the neutrino energy distribution

by the flux for each bin and normalize it to the number of neutron targets.

Figure 6.11 shows the true cross section in black and the extracted cross section in red
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Figure 6.10: Left: Neutrino flux corresponds to 1E10POT and events in the true fiducial
volume. Right: Neutrino energy distribution for 7E21POT and for events interacting in
the true fiducial volume.

for the true Monte Carlo. These distributions show good agreement in both normalization

and shape.

Furthermore, we compute the cross section using a MC sample and compare with the true

cross section, following all the analysis steps used for Data (section 6.2). Figure 6.12 shows

the comparison of the true cross section with the calculated cross section, black is the true

GENIE cross section, red is the calculated cross section from simulated events using the

true information from GENIE and the pink is the extracted cross section using the analysis
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Figure 6.11: Cross-section comparison. Black is the input GENIE cross-section used in the
simulation and red is the calculated cross section from the simulated events.

chain. The closure test shows good agreement between the Unfolded MC cross section and

the input GENIE cross section within the statistical uncertainties.
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Figure 6.12: Cross-section comparison. Black is the input GENIE cross-section used in
the simulation, red is the calculated cross section from the simulated events using the true
neutrino energy and pink is the calculated cross section using all steps of the analysis,
background subtraction, unfolding and efficiency correction.
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6.3 Cross Section Systematic Uncertainty Summary

The cross section uncertainty includes those from both statistics and systematics. This sec-

tion summarises all the systematics considered for the cross-section calculation. The details

about each systematic uncertainty are described in section 7. The systematics considered

are:

1. Muon momentum uncertainty. Our prediction of neutrino energy comes from the

range of the tracks, converted to momentum. We estimate the muon momentum

uncertainty using the track length uncertainty and propagate this error to the neutrino

energy prediction. Section 7.1 gives a detailed explanation.

2. Uncertainty in the NuMI beam flux. The uncertainty in the flux is due to the un-

certainty of the horn focusing properties together with the uncertainties of hadron

production. Section 7.2 explains in detail the procedure used to predict these errors.

3. Neutrino interaction modeling. We use GENIE reweighing tools to vary different

parameters in the MC simulation to determine their effect on the cross section. We

also studied the intranuke parameters for each background component[95]. Section

7.3 presents the details of this study.

4. Channel configuration modeling. This uncertainty comes from any difference between

the actual masked channels for a Data run and the bad channel map used in the MC.

Details are given in section 7.3.

5. Energy calibration uncertainty. This uncertainty is obtained by shifting the calibration

of the ADC by 10% in the MC simulation and comparing with the nominal MC. Details

can be found in section 7.5.

6. Alignment uncertainty. This uncertainty takes into account the uncertainties intro-

duced by positioning errors within the detector and the uncertainty of the angle in

the neutrino energy estimate. Section 7.6.

7. Detector mass uncertainty and proton on target uncertainty. Section 7.7.

8. Unfolding uncertainty. Section 7.8.

Assuming that these uncertainties are uncorrelated, we add each systematic uncertainty

in quadrature bin by bin. Figure 6.13 shows the contributions to the total systematic

uncertainty as a function of neutrino energy and four momentum transfer. The systematic

uncertainty is dominated by the flux uncertainty.
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Figure 6.13: Fractional error as a function of neutrino energy and fractional error as a
function of four momentum transfer.
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Figure 6.14: Fractional error as a function of momentum and cos θ.
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6.4 Results

6.4.1 Cross section as a function of energy

The cross section as a function of energy is obtained using σ =
∑
j UijNQE
εφT as described in

Section 6.2.

Two different normalizations are shown. In the left hand plot, the MC is area normalized

to the Data showing good agreement in the behavior of the Data and MC model. In the

right hand plot the MC and Data are normalized by POT, showing a possible disagreement

between the Data and the model in absolute normalization. Doing a χ2 test for the left

hand area normalized distributions, we obtain χ2 = 0.939, NDF = 2 and a χ2 test for the

POT normalized distributions, we obtain χ2 = 5.707, NDF = 3.

Table 6.4 shows the measured cross-section together with the statistical, systematic and the

total uncertainties in each energy bin.

Comparison of the measured cross section with the GENIE cross section used in the sim-
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Figure 6.15: Cross-section as a function of energy for configuration 2. The left distribution
shows the MC normalized to Data and the right distribution is POT normalized.

ulation is shown in figure 6.16, where the GENIE cross section is extracted directly from

GENIE [84]. GENIE uses a dipole form factor approximation with an axial-vector mass

equal to MA = 0.99GeV/c2.

In addition, we plot the variation of the Quasi-Elastic cross section based on the axial

mass MA. We use GENIE reweighing tools to obtain the +1σ and −1σ range for the CC QE

interactions, in the MC simulation[95]. This is shown in figure 6.17, where the blue bands

represent the axial mass MA range. This comparison is made to see if the Data is within the

MA uncertainty of the cross section model used in the simulation. The comparison shows
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good agreement for Data and MC simulation within the MA uncertainties.
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Figure 6.16: Comparison of the measured cross-section and the GENIE cross-section used in
the simulation (in red). Black points are Data and the black errors bars are from statistical
errors. The blue error bars include systematic errors.

E(GeV) σ(cm2) stat(cm2) sys(cm2) total error(cm2)

0.25-0.8 2.9×10−39 0.9×10−39 1.9×10−39 1.6×10−39

0.8-1.4 8.9×10−39 2.2×10−39 2.9×10−39 2.9×10−39

1.4-2.0 7.2×10−39 1.1×10−39 3.0×10−39 2.5×10−39

Table 6.4: Cross section measurement as a function of E.

6.4.2 Flux Integrated Single Differential Cross Section

The single differential cross sections dσ
dP , dσ

d cos θ and dσ
dQ2 are computed using the same pro-

cedure as for the cross section as a function of energy but binned in muon momentum P ,

angle of the muon with respect to the beam direction cos θ and Q2.

Figures 6.18 and 6.19 show the single differential cross section as a function of angle and

momentum. The left hand plot shows the MC normalized to Data and the right hand plot

is the POT normalized distribution. The area normalized distributions show good shape

agreement and the POT normalized distributions show a possible disagreement between

the Data and MC simulation in absolute normalization. And tables 6.5 and 6.6 gives the

measured cross section with systematic and statistical errors for each bin.
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Figure 6.17: Comparison of the measured cross-section and the extracted MC cross-section,
both MC and Data has gone through the analysis chain. Black points are Data. The black
errors are statistical uncertainties and the blue includes systematic uncertainties. The blue
band represent the +1σ and −1σ uncertainty from the axial mass MA.

P (GeV ) dσ
PQE

(cm2/GeV ) stat(cm2/GeV ) sys(cm2/GeV ) tot error(cm2/GeV )

0-0.5 2.4×10−39 0.6×10−40 0.8×10−40 1×10−39

0.5-1.0 0.9×10−39 0.3×10−40 0.2×10−40 0.4×10−39

1.0-1.5 0.6×10−39 0.2×10−40 0.2×10−40 0.2×10−39

1.5-2.0 0.4×10−39 0.1×10−40 0.1×10−40 0.1×10−39

2.0-2.5 0.1×10−39 0.05×10−40 0.03×10−40 0.06×10−39

Table 6.5: Flux integrated single differential cross section as a function of muon momentum
P .

cos θ dσ
cos θ stat sys tot error

0.25-0.5 1.0×10−39 3.4×10−39 0.4×10−39 2.6×10−39

0.5-0.75 2.7×10−39 1.1×10−39 0.8×10−39 1.4×10−39

0.75-1 4.8×10−39 0.8×10−39 1.2×10−39 1.4×10−39

Table 6.6: Flux integrated single differential cross section as a function of cos θ, the angle
between the muon and beam direction.
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Figure 6.18: Comparison of the measured flux integrated single differential cross section
as a function of the muon momentum (P) and the MC simulation. Black points are Data
and the black errors are from statistical errors. The blue error bars are from statistical and
systematic added in quadrature. Left: MC normalized to Data. Right: distribution is POT
normalized.
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Figure 6.19: Comparison of the measured flux integrated single differential cross section as
a function of cos θ and the MC simulation. Black points are Data and the black errors is
from statistic errors and blue from statistic and systematic added in quadrature bin by bin.
Left: MC normalized to Data and right distribution is POT normalized.
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The single differential cross section as a function of Q2 is shown in figure 6.20. The

left hand plot shows the MC normalized to Data and the right hand plot is the POT

normalized distribution. The area normalized distributions on the left show good agreement

between the behavior of the Data and the MC model. Doing a χ2 test for the left hand

area normalized distributions, we obtain χ2 = 1.66, NDF = 4 and a χ2 test for the POT

normalized distributions, we obtain χ2 = 18.51, NDF = 5.

We observe a disagreement between the Data and the MC simulation for low Q2 values

(Q2 < 0.2GeV 2). This is shown in the right hand distributions of figure 6.20. Similar

disagreements between Data and MC simulation in theQ2 distribution have been found from

MINOS experiment[42] and MiniBooNE experiment[40], where MINOS used NEUGEN and

MiniBooNE used NUANCE event generators in their MC simulation.
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Figure 6.20: Comparison of the measured flux integrated single differential cross section as
a function of Q2 and the MC simulation. Black points are Data and the black errors bars
are from statistical errors while blue are from statistic and systematic added in quadrature
bin by bin. Left: MC normalized to Data. Right: POT normalized.

Q2(GeV 2) dσ
dQ2

QE
(cm2/GeV 2) stat(cm2/GeV 2) sys(cm2/GeV 2) tot error(cm2/GeV 2)

0-0.1 7.2×10−39 1.4×10−39 1.9×10−39 2.4×10−39

0.1-0.2 4.2×10−39 1.2×10−39 1.0×10−39 1.7×10−39

0.2-0.3 2.2×10−39 1.1×10−39 0.5×10−39 1.2×10−39

0.3-0.4 2.7×10−39 1.2×10−39 0.5×10−39 1.2×10−39

0.4-0.5 2.3×10−39 1.5×10−39 0.5×10−39 1.6×10−39

Table 6.7: Flux integrated single differential cross section as a function of Q2



Chapter 7

Systematic Uncertainties

The systematic uncertainties come from the physics modeling of the neutrino interactions,

detector response to the interactions and flux uncertainty. This section describes the deter-

mination of each systematic uncertainty.

7.1 Muon Momentum Uncertainty

The muon momentum is calculated from the track length. We fit the muon momentum to a

linear function of its track length in the MC simulation. The figure 7.1 shows the muon mo-

mentum versus track length and the result from the fit. In addition, the bottom distribution

shows the resolution of the momentum, where resolution is defined as Ptrue−Preco
Ptrue

.
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Figure 7.1: Muon momentum as a function of track length from the MC simulation for
configuration 2.
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The muon momentum uncertainty is calculated using the uncertainty on the length of

the track as follow:
∆P

P
=

∆L

L
, (7.1)

where ∆L is the uncertainty on the length of the muon track. The uncertainties considered

are from dead material uncertainties as follows: the detector cell wall thickness, the glue

thickness and from the material in the muon catcher. The uncertainty for the wall thickness

is taken from the extrusion manufactures tolerance ±0.025 cm[85]. The glue thickness is

extracted from the MC simulation and we assign a 50% uncertainty (0.033 ± 0.0165) cm.

In the muon catcher, the uncertainty per plane is 2%[86] on each 10 cm steel plane.

Using these uncertainties, the fractional error is calculated to be ∆L
L = 0.006, where L

is the length of the cell.

We use this fractional error in calculating the neutrino energy and four momentum transfer

using equations (5.8) and (5.9) to find the muon momentum uncertainty. This procedure is

applied for the neutrino energy and four momentum transfer. Figures 7.2 and 7.3 show the

nominal MC, a systematic 1 sigma shift MC, and the ratio of the neutrino energy and four

momentum transfer. The ratios show small muon momentum uncertainty. This contributes

less than 4% of the fractional error.
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Figure 7.2: Neutrino energy distribution, red is the nominal MC and the blue is the MC
with the muon momentum uncertainty applied. Bottom shows the ratio of the distributions.
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7.2 Systematic Uncertainties in the NuMI Beam Flux

Two sources of flux uncertainties were studied. The first is the uncertainty in the flux due

to the focusing properties of the horns and the second is from the hadron production model.

7.2.1 Uncertainty due to horn focusing properties

The systematic uncertainty from the horn focusing properties has been studied using the

same techniques as the MINOS experiment[88].

The neutrino spectrum at the detector depends on the alignment of the beam line

elements. For example changing the horn position has the effect of increasing the focusing

for high energy pions. Figure 7.4 shows the horns and some examples of trajectories for

pions through the horns. Figure 7.5 shows the nominal alignment of the target and the

focusing horn. This figure shows fast pions exiting the target at small angles. These pions

can pass through the field free aperture of the horn, while slower pions exit the target

at larger angles and enter the horn field region between the two conductors. Therefore,

a misalignment of the horns can produce the distortion of the neutrino energy spectrum.

Flux uncertainties due to several beam focusing misalignments are considered. These

systematic uncertainties were studied carefully by the MINOS experiment and the Mini-

BooNE experiment[88], [89]. We use the same uncertainties used by the MINOS experiment
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Figure 7.4: Schematic diagram of horns in the LE10 beam, the figure shows 5 categories
of pion trajectories through the horns. This figure is from [88].
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Figure 1: Schematic diagram of a low-momentum pion entering horn 1 at large angle and a
fast pion entering the horn at low angle and just grazing the inner conductor.

The relevance of the above discussion is that some effects, such as a horn misalign-
ment, changes the minimum angle θ of pions which receives focusing. Horn 1, for example,
has an inner neck of radius 9 mm and is at a distance of ∼ 60 cm from the center of
the target in the LE position. This suggest that horn 1 focuses particles down to an angle
tan θ=0.9 cm/60 cm ≈ 0.02, or a pion momentum as high as p ≈ (250 MeV)/0.02 = 13 GeV/c,
which corresponds to neutrino energies Eν ≈ 5.5 GeV/c. Affects which move the horn focal
region, such as a transverse misplacement of the horn, affect its minimum radius of focusing
and hence the momentum range of pions which can be focused by the horns.

Figure 1 represents schematically the above discussion. Fast pions exit the target at small
angles and can pass through the field-free aperture (”neck”) of the horn, while slower pions
exit the target at larger angles and enter the horn field region between the two conductors.
Figure 2 shows the ND spectrum, broken up into 5 categories of focused pions: (1) very high
energy pions pass through the necks of both horns at small angles, contributing to the high
energy tail; (2) slightly softer pions exit the target at small enough angle to pass through the
neck of horn 1, but are focused by horn 2; (3) the next softest category of pions enters horn 1,
is underfocused (i.e. is still diverging as it exits horn 1), but is brought into focus by horn 2
(this category constitutes the vast majority of the flux in the LE beam); (4) still softer pions
enter horn 1 are soft enough to be brought into focus entirely by horn 1 and pass (parallel)
through the (larger) neck of horn 2; and (5) the softest pion momenta contributing to the
neutrino flux consists of pions which are actually over-focused by horn 1 and are rescued by
horn 2. Figure 3 shows the same breakdown for the pME and pHE beams.

The remainder of this note investigates effects such as horn misalignments and magnetic
field modelling which affect the geometric ray tracing of pions through the horns, our knowl-
edge of the precision of the proton beam intensity (which affects the net flux scale), the
effects of the proton beam shape on the target. The model of pion yield (hadron produc-
tion) from the target, which affects significantly the momentum and transverse momentum
of pions from the target is studied in a separate note [12].

2

Figure 7.5: Diagram of a low-momentum pion entering horn 1 at large angle and a high-
mementum pion entering the horn at small angle. Figure taken from [89].

and consider the following focusing uncertainties:

1. Transverse misalignment of horn 1 and horn 2 by 1 mm.

2. Angular misalignments of horn 1 and horn 2 by 1 mradian.

3. Uncertainty in the chase wall locations by 0.5 inches.

4. Uncertainty (taken to be 1%) in the absolute value of the horn current.

5. Uncertainty in the distribution of the horns current in their inner conductor,[88].

6. Scraping of 1% of the proton beam on the collimating baffle.

7. Target offset.

The focusing effects were simulated in PBEAM [87] and compared to the nominal beam

line condition. For each uncertainty, five different configurations were simulated, nominal

plus four different misalignments[88]. The nominal configuration is simulated using gnumi-

v18. Ratios of the flux with misaligned elements to the nominal flux are taken. Figure 7.6

shows the true neutrino energy spectrum on the left hand plot and the ratios for each of

offsets on the right hand plot for the selected quasi-elastic events. For the horn1, four offset

were considered 1mm (red histogram), 2mm (blue histogram), 3mm (pink histogram), 4mm

(green histogram) and the nominal (black histogram).
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Figure 7.6: Left: True neutrino energy spectrum for the different misalignments positions
(1mm, 2mm,3mm,4mm) for the horn 1. Right: Ratio of offset flux to nominal flux.
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Figure 7.7: Left: Ratio of flux offset to nominal flux as a function of the horn offset for the
2 GeV bin. Right: Relative error for the horn 1 offset.

To determine the error from this misalignment an extrapolation method was used.

Using the four offset ratios in figure 7.6, we fitted a second order polynomial to the measured

neutrino spectrum distortion as a function of the magnitude of the misalignment for each

bin. This is shown in figure 7.7 for one bin in neutrino energy (2 GeV). We repeat this

polynomial fit extrapolation for each bin in neutrino energy. Once the fitted polynomial

was found for all neutrino energy bins an error was calculated by evaluating the polynomial

for a 1.0mm offset. The 1.0mm alignment uncertainty is taken from previous studies [88].

For angular misalignments, four flux histograms were generated using PBEAM for the

configurations rotated by 1mrad, 2mrad, 3mrad and 4mrad from the nominal horn 1. The

effect of each misalignment is shown as a function of true neutrino energy in the left hand

plot of figure 7.8. The right plot shows the ratio of the misaligned flux to nominal flux.
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Figure 7.8: Left: True Neutrino energy spectrum for different misalignments in the angle
for horn 1. Right: Ratio to the nominal flux.
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Figure 7.9: Left: True Neutrino energy spectrum for different misalignments in the angle
for horn 2. Right: Ratio to the nominal flux.

Figure 7.9 shows the effect of the angular misalignment for the horn 2. This procedure is

repeated for the different misalignments, the chase wall locations, the absolute value of the

horn current, the distributions of the horns current, and the scraping of the proton beam.

The ratios in figures 7.6 and 7.8 show small differences and differences around 3 GeV are

from low statistics. The ratio of the offset flux to the nominal flux is found by combining

all of these effects and is shown in the left hand plot of figure 7.10.

Using the ratios from figure 7.10 we find the fractional uncertainty for each bin of neutrino

energy. The total fractional uncertainty is shown on figure 7.11.
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Figure 7.11: Fractional uncertainty of the muon neutrino flux at the Near Detector Pro-
totype for the NuMI LE beam due to focusing effects. The colors represent each of the
focusing effects, the horn current offset, horn 1 offset, horn 2 offset, horn 1 angle offset,
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7.2.2 Systematic Uncertainty from hadron production

We estimate the systematic uncertainty from hadron production by comparing the FLUGG

and NuMIGeant4 simulations[90][62]. We use the disagreement of the these two simulations

to estimate the error from the hadron production. The FLUGG simulation uses Fluka plus

Geant4 geometry and NuMIGeant4 uses pure Geant4. Figure 7.12 shows the neutrino

energy distributions for both simulations and the ratio between these distributions.

Adding the beam alignment uncertainty and the uncertainty from the hadron production
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Figure 7.12: Left: True energy spectrum from two flux simulations FLUGG and GEANT4.
Right: Ratio of the two simulations.

in quadrature bin by bin gives the fractional error as function of energy and as a function

of Q2 as is shown in figure 7.13. The green distribution is the uncertainty from the horn

focusing effects and the pink distribution from the hadron production uncertainty. The

black distribution is the total uncertainty. These distributions show the uncertainty is

dominated by the flux model.

7.2.3 Systematic Uncertainty from the π+/π− ratio in hadron production

The systematic uncertainty from ν̄µ contamination is predicted using the π+/π− ratio for

Data and MC simulations. We compare data from the CERN NA49 experiment [109]

with our FLUGG simulations and use the difference as the systematic uncertainty. Figure

7.14 shows the comparison of the NA49 data (158 GeV proton beam) and our FLUGG

simulation, which uses a 120 GeV proton beam. At higher pT the FLUGG simulation

shows a disagreement with the data. However our experiment has essentially no acceptance

for pions with a pT above 0.3 GeV/c and pz above 15 GeV as shown in figure 7.16. This
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Figure 7.13: Left: Fractional error as a function of reconstructed neutrino energy. Right:
Fractional error as a function of reconstructed Q2. The green distribution is from focusing
effects and the pink distribution from the hadron production model.

plot shows that most of our events come from low pz and low pT .

Furthermore, figure 7.15 shows the comparison of the NA49 data with the FLUKA

simulations from the MINOS experiment [92]. At low pZ NA49 data and MC simulations

(GFLUKA, FLUKA01, FLUKA05) are in good agreement. Note that the MARS simulation

does not agree with the others. The ratio π+/π− Data-MC comparison in figure [?] has

less than 10% of difference at low pz, excluding the MARS simulation. We use 10% as an

estimation of the systematic uncertainty.

Figure 7.17 shows the ratio of νµ/(νµ+ν̄µ) as a function of neutrino energy for our simulation

with and error bands from the range of the NA49 data. To determine the error bands, we

applied an additional weight to each neutrino event depending on its parent hadron [93].

This systematic uncertainty is used in the cross section systematic uncertainty (section 8).
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simulations. The plot is taken from [109].
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115

7.3 Background Uncertainties

The CC QE selection for the Near Detector Prototype contains some irreducible back-

ground from other charged current interactions (RES, DIS and COH) and from neutral

current interactions. To determine the uncertainty from the background in the quasi elastic

selection, we use the GENIE reweighting tools [94] to find one sigma variation in each of

the parameters for the corresponding background.

Two source of systematics are investigated in this analysis. The first is from uncertainties

in the neutrino cross section and the second from uncertainties in the intranuclear hadron

transport. GENIE uses Intranuke for modeling final state interations (FSI) effects and its

reweighing tool provides a list of physics parameters that can be adjusted in the model [95].

The table 7.1 shows the different parameters changed in the MC to study the background

uncertainties.

The plot in figure 7.18 shows the fractional errors for each of the backgrounds as a

function of the four momentum transfer for a 1σ variation of the parameters in table 7.1.

The plot of figure 7.19 shows the uncertainties coming from the Intranuke parameters.

Although the fractional errors from figure 7.19 are not necessarily independent, they

have been added in quadrature bin by bin. The total result is shown in figure 7.20.

Uncertainty Description 1σ

Ma Elastic scattering Adjust MA in elastic scattering cross section ±25%
CC Resonance Production Adjust MA in Rein-Sehgal CC cross section affect-

ing shape and normalization
±20%

NC Resonance Production Adjust MA in Rein-Sehgal NC cross section affect-
ing shape and normalization

±20%

Coherent model MA Adjust MA in the Rein-Sehgal Coherent model ±40%
Non resonant interactions Affects NC and CC production of single pion final

states
±50%

Table 7.1: Cross section model uncertainties. Table taken from H. Gallagher [103]
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Figure 7.18: Fractional uncertainty for each of the background components as a function of
Q2, for each of the background (CC RES, CC DIS, CC COH, NC RES and NC EL). The
black curve represents the total uncertainty due to the background. This total uncertainty
is calculated adding the component uncertainty in quadrature bin by bin.
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Figure 7.19: Fractional uncertainty from Intranuke as a function of Q2, the following
parameters has been studied: elastic probability for pions, inelastic for pions, elastic for
nucleons, inelastic for nucleons, pion production for nucleons, free path for π, free path for
nucleons, pion production, charge exchange nucleons, charge exchange π and absorption for
π.
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Figure 7.20: Total background and cross section uncertainties from figures 7.18 and 7.19.
This total uncertainty is calculated adding the errors in quadrature bin by bin.

Uncertainty Description 1σ

Pion mean free path mean free path for poins ±20%
Nucleon mean free path mean free path for nucleons ±20%

Pion fates pion production charge exchange probability for poins ±20%
Pion fates absorption absorption probability for pions ±30%

Nucleon fates charge exchange charge exchange probability for nucleons ±50%
Nucleon fates Elastic elastic probability for nucleons ±30%

Nucleon fates charge Inelastic inelastic probability for nucleons ±40%
Nucleon fates absorption absorption probability for nucleons ±20%

Nucleon fates pion production pion production probability for nucleons ±20%
Pion fates Elastic elastic probability for pions ±10%

Pion fates charge exchange charge exchange probability ±50%
Pion fates Inelastic inelastic probability for pions ±40%

Table 7.2: Cross section model uncertainties. Table taken from H. Gallagher [103]
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7.4 Bad Channels Uncertainty

The bad channel uncertainty comes from malfunctioning detector channels that are not

removed from the analysis using the regular analysis package (standard bad channels re-

moved). To determine the bad channel uncertainty, we use two samples of MC, one with the

standard bad channels removed [59] and another MC sample with standard bad channels

plus any extra bad channels remaining which were found using the efficiency for recon-

structing cosmic muon tracks. We removed the any additional bad channels found from

the analysis and ran the reconstruction for the same MC sample. The comparison of the

regular MC and the additional bad channel removed MC gives us the uncertainty.

An example of the bad channels detected using the cosmic rays by the occupancy plot is

shown in figure 7.21. Occupancy is defined as Log(#Hits/Event). The black distribution

is the occupancy for all the channels used in the analysis and the red distribution shows

the bad channels detected by the cosmic ray efficiency. Details about the determination of

bad channels from both methods can be found in [97][99].

The comparison between the nominal MC and the cosmic ray bad channel removed

MC is shown in figure 7.22. The top plot shows the neutrino energy distributions and the

bottom the ratio. The second set of plots on the bottom shows the four momentum transfer

distributions and their ratio. The bad channel uncertainty is small less than 1% where there

is a significant amount of data.
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Figure 7.21: Occupancy distribution. The black distribution correspond to all the channels
and the red the low cosmic efficiency for cosmic ray data. Plot taken from [99]
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7.5 Calibration Uncertainty

The calibration uncertainty come from the two input variables used in the KNN in the CC

QE selection. Those variables are directly related with the pulse height, the energy around

the vertex (PECorr) and the mean energy per active plane to track length(chapter 5).

The calibration uncertainty was studied by changing the pulse height to photoelectron

conversion by 10%. We use conservative estimate of the calibration uncertainty (10%)[98].

Two samples of MC were produced for this study, one with the nominal calibration constant

and a second set of MC was produced by shifting the calibration of the ADC by 10%. Figure

7.23 and 7.24 shows the neutrino energy and four momentum transfer distributions for the

nominal MC and for the altered MC with 10% change in the PE. The bottom plots are the

ratios. These ratios show the calibration uncertainty is small within 5%.
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Figure 7.23: Neutrino energy and four momentum transfer distributions. The blue distri-
bution is made by shifting the calibration of the ADC by 10% in MC and the red is the
nominal MC. The bottom plot shows the ratio of these two distribution

7.6 Alignment Uncertainty

The alignment uncertainty was studied by applying random shifts to each of detector cells.

We used 1 cm random shift between the nominal Monte Carlo and a shifted Monte Carlo. We

did constrain the cells to be contiguous while doing the shifts. Details about the Alignment

procedure can be found at [101]. Figure 7.25 and 7.26 shows the neutrino energy and four

momentum transfer distributions for the nominal Monte Carlo in red and the shifted Monte
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Carlo after the misalignment as well as the ratios of those distributions. These ratios show

the alignment uncertainty is less than 2%.

7.7 Mass Uncertainty

The mass used in the MC was compared with the mass calculated data table (6.2) and

they differ by less than 5%. We use this difference as a systematic uncertainty for the mass

calculation and also corrected the cross section normalization in the closure test (section

6.2.4) and in the final calculation (section 6.4.1).

The total mass from data: PVC mass is 38.3 tons, scintillator mass is 91.3 tons[76] and

using the function from the Geometry (GeometryBase::TotalMass), we found the PVC mass

used in the MC to be 39.9 tons and for the scintillator mass to be 90.9 tons. This produces

a difference on the order less than 5%, which is taken as uncertainty in the mass.

Now for the POT uncertainty, we use the same POT counting as the MINOS experiment,

the uncertainty is 2% [102]. We take 5% for total normalization uncertainty.

7.8 Unfolding Uncertainty

This systematic uncertainty is determined using several unfolding matrices based on differ-

ent cross section models. We change the axial mass MA (+1σ,−1σ,+2σ,−2σ) and make the
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Figure 7.25: Neutrino energy distributions for nominal and one centimeter random shift to
each plane. The red distribution is the nominal Monte Carlo and the blue is the shifted
Monte Carlo. The bottom distributions are the ratio of nominal to shift distribution.

ratio of unfolded neutrino energy to the true energy for each model to estimate the extent

to which the uncertainty from unfolding depends on the neutrino spectrum. In addition,

we use the difference between the initial (1) and the final (4) iterations of the unfolding

algorithm. A similar procedure was used in recent cross section measurements from the

MiniBooNE experiment [100]. Figure 7.27 shows the fractional uncertainty as a function of

energy and Q2. The uncertainty is below 10%.

The differences between the true and the unfolded distribution gives the closure test

(section 6.2.4). We have some differences for the closure test. We use the differences

between true and unfolded as an additional systematic uncertainty.
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momentum transfer.
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7.9 Propagation of Systematic Uncertainties into the Cross

Section

Previous sections described each of the uncertainties for the reconstructed energy and re-

constructed four momentum transfer, however the extracted cross section is obtained for

the true neutrino energy and true four momentum transfer after the unfolding. Using the

systematic uncertainties we build unfolding matrices for each uncertainty, except for the

normalization and the background systematic, since unfolding is made after background

subtraction. These unfolding matrices are used to unfolded the nominal neutrino energy

reconstructed distribution and each of the reconstructed neutrino energy shifted by the un-

certainty.

The ratio of the shifted unfolded neutrino energy distribution to the nominal unfolded neu-

trino energy distribution gives each of the systematic and the final systematic is obtained

adding each of the systematic in quadrature bin by bin.



Chapter 8

Summary, Discussion and Future

Prospects

We have studied charged current quasi-elastic events induced by neutrinos from the NuMI

beam in the NOνA Prototype Detector. Because this was a prototype, the number and

position of active channels was constantly changing and two different major configurations

of the detector instrumentation were used in this analysis. Section 3.3 described each of

the configurations and commissioning. The results presented in this thesis comprise the

first study of neutrinos interactions in the NOνA type of detector. Chapter 4 described the

simulation, reconstruction and detector calibration. Chapter 5 showed details about the

event selection process for muon neutrino quasi-elastic scattering and Chapter 6 described

the analysis procedure to measure the cross section.

8.1 Performance of the Prototype Detector

The Prototype Detector was used to test all detector systems: including the structure and

operation of the detector, its effectiveness for measuring neutrino and cosmic ray events,

the procedures for installation and commissioning, the functioning of the data acquisition

system, the fidelity of the simulation program, and the effectiveness of the analysis software.

The knowledge learned from the Prototype has been applied to the construction and in-

stallation of the NOvA Near and Far detectors currently under construction. For example,

some changes that have arisen from the operation of the prototype: (1) new installation

procedures, (2) new design of manifold cover parts for the Far Detector, (3) a surface coat-

ing for the photodetector was developed to protect their surface, (4) addition of air drying

system to guard against the condensation on the photodetector, (5) new mounting for the

photodetector. In addition, the Near Detector size has been modified for better containment
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of events. Section 3.3.1 and 3.3.2 gave details about the detector performance.

Muon neutrino data from two detector configurations have been studied to understand

the response of the detector, the details are presented in chapter 5. We found the Prototype

Detector performed well and we were able to analyze the charged current quasi-elastic

events from muon neutrino scattering. Each detector configurations perform differently, the

momentum resolution (Ptrue−PrecoPtrue
) for configuration 1 was 18% and for configuration 2 was

24%.

Both detector configurations had small data sets. The CC QE analysis gave 230 CC QE

selected events with 20 cosmic ray background events for detector configuration 2 and 55

events with 11 cosmic ray background for detector configuration 1. From GENIE simulations

the CC QE selection in the Prototype Detector contains 47% CC QE νµ, 17% CC QE ν̄µ,

17% RES, 6% DIS, 9% NC, 2% COH and 2% νe interactions.

8.2 The Physics Result

The charged current quasi-elastic (CC QE) cross section is not well understood in the energy

range of the NOνA experiment. Section 2.2 presented a review of quasi-elastic cross section

measurements.

The measured cross section as function of energy σ(E) and the single differential cross

sections for dσ
d cos θ , dσ

dP and dσ
dQ2 are reported in, section 6.4.

The average cross sections for each configuration for the mean energy of the neutrino

flux (0.58 GeV) are given in Table 8.1

Configurations σ(cm2)
Configuration 1 (0.54± 0.18(stat)± 0.16(syst))× 10−38cm2

Configuration 2 (0.64± 0.14(stat)± 0.11(syst))× 10−38cm2

Table 8.1: Quasi-elastic cross section measurements for both detector configurations at
mean energy of 0.58 GeV.

The uncertainty of the energy has been found using the criterium of one sigma deviation

from the mean corresponding to 68% of the area of the neutrino energy distribution.

Table 8.1 shows the measured cross section is the same within the uncertainties for both

configurations.

Figure 8.1 shows the comparison of the measured cross section for both detector config-

urations and the data from the MiniBooNE experiment (carbon target), ANL experiment

(deuterium target). BNL experiment (deuterium target) and NOMAD experiment (mainly

carbon target) [111]. In addition, the GENIE MC prediction from the simulation used in

this experiment is shown. The GENIE MC uses the Llewellyn Smith formalism for the

quasi-elastic interactions, chapter 2 presented a description of the model.
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figuration 2) compared with MiniBooNE, ANL, BNL and NOMAD experiments. The red
curve shows the MC simulation prediction for GENIE with MA = 0.99GeV

Figure 8.2 shows the comparison of the combined cross section from both detector

configurations and the external data. The combine cross section is (0.60 ± 0.17(stat) ±
0.16(syst)) × 10−38cm2. We observe our data agrees with the GENIE simulations within

the uncertainties. The GENIE model used for the simulation of this experiment has σ =

0.7× 10−38cm2 at 0.58 GeV.

The total uncertainty has approximately equal contributions from statistical errors and

the systematic uncertainties. The systematic uncertainties are dominated by the uncertainty

in the incident neutrino spectrum. Section 7.2 presented details about the determination

of this flux uncertainty.

8.3 Future Prospects for the Near Detector

The higher neutrino flux will allow NOνA Near Detector will collect high neutrino event

rates to study CC QE interactions, specifically the measurements of cross section and axial

mass parameter MA. The primary differences between the prototype detector and the

Near Detector are: the neutrino beam, the detector homogeneity and detector dimensions.
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Figure 8.2: νµ CC QE cross section measurement as a function of energy for the NOνA
Prototype Detector (red point) compared with the MiniBooNE, ANL, BNL and NOMAD
experiments. The red curve shows the MC simulation prediction from GENIE with MA =
0.99GeV

The Near Detector energy spectra is different from the Detector Prototype energy spectra,

the Prototype Detector is 110 mrad off axis and Near Detector is 14 mrad off-axis. The

spectrum of the Near Detector contain a larger contamination of RES, DIS interactions,

many of these interactions are irreducible background. For example, we found about 20%

of the resonance interactions have a single visible muon in the final state and very small

activity around the vertex. Therefore, understanding the background and the modeling will

be very important for the study of CC QE events in the NOνA detectors.

Building on this analysis technique, improvements in event selection and systematic

uncertainties could be made. The measurement CC QE cross section is difficult to make

because of the background coupled with the uncertainties of the background modeling. High

statistics allow understanding of the background events. For Example, data driven methods

could be used to constraint the background. Since the Near Detector will have higher

average energy around 2 GeV, the beam will contain more Neutral Current interactions,

that can be studied to refine the separation of pions and muons. This will improve the

background rejection. Most importantly, the systematic uncertainty for the CC QE analysis

in the Near Detector Prototype is dominated by the flux uncertainty, this systematic error
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on the flux needs to be decreased by using external data.

Furthermore, including events with a reconstructed proton track, could increase the

knowledge of the CC QE interaction. Because of the low statistics the CC QE analysis in

the Detector Prototype had very few events with a second track, we found 5% of the CC QE

events had a second reconstructed track. The neutrino beam in the Near Detector contains

more CC QE events with a second proton track. An improvement will be to include events

with a second visible track, to study CC QE events with a proton track in the final state.

This will allow to measure the entire sample of QE scattering and improve the accuracy of

the measurement.
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Appendix A

Study of Cosmic Background

This section presents a summary of the study of cosmic background for the quasi-elastic

analysis. We explored different methods to reject the cosmic background. This section

shows study of different cuts and the final cuts chose for the analysis.

The study was made using the data corresponding to October 2012 to April 2013 for

the neutrino run (configuration 2). For the study of cosmic background we use cosmic data

which is out of time from of the spill window from 0µs to 217µs and from 227µs to 500µs

for the NuMI trigger.

Method to eliminate the cosmic background

Different variables were explored to reject the cosmic background, two variables used in

the Nue Cosmic background analysis in MINOS [104] were explored. The variables are the

following:

1. The Zenith angle. This angle is defined θzenith = acos( |y2−y1|√
dx2+dy2+dz2

), where dx =

x2− x1, dy = y2− y1, and dz = z2− z1.

2. The difference of the beginning and end of the track in the vertical view (|y2− y1|).

Figure A.1 shows the separation of the cosmic data and beam MC simulations for the Zenith

angle and for the difference in y2 and y1 coordinates, where the beam MC includes CC and

NC interactions. To reject the cosmic background, a cut in the Zenith angle was chosen

θzenith < 0.7. The second cut is made (|y2− y1|), (|y2− y1|) > 300cm. These cuts are very

conservative. No signal is rejected as can be seen in Figure A.1. The efficiency of cosmic

background rejection is 32% using the two cuts.

137



138

A third variable is the inverse of the slope in y. This variable is defined as Z2−Z1
Y 2−Y 1 . Figure
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Figure A.1: Zenith angle, the red distribution is the beam MC and the blue is the cosmic
background data. Events after fiducial cuts.

A.2 on the right hand left shows the beam MC and the cosmic background separation. The

efficiency of cosmic background rejection is 50% using the inverse of the slope variable.

The ratio of signal to background using the first two variables is 2.9. Now, using the inverse

of the slope variable the ratio of signal to background is 3.8. Using the best ratio of signal

to background, the inverse of the slope was selected to reject the cosmic background.

The right hand plot on figure A.2 shows the figure of merit FOM for the inverse of the slope
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Figure A.2: Left: Slope in Y Z2−Z1
Y 2−Y 1 . Right: plot shows the FOM for the inverse of slope

distribution Z2−Z1
Y 2−Y 1 .

variable. The figure shows the Z2−Z1
Y 2−Y 1 from 0 to 5 in Y axis and Z2−Z1

Y 2−Y 1 from -5 to 0 in the

X axis. The maximum FOM is represented by the maximum color in the 2D distribution.
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Furthermore, we show the reconstructed angle with respect to the beam direction after

the cuts Z2−Z1
Y 2−Y 1 < −1 or Z2−Z1

Y 2−Y 1 > 1 and the rest of pre-selection cuts (one and only one

reconstructed track, fully contained events and events with track length greater than 60

cm) in figure A.3. The distribution shows the cosmic background events in blue and the

neutrino candidates in black. And the table table A.1 shows a summary of the cosmic

background events after each of the cuts.

Table A.1: Cosmic background events

In fiducial Cosmic cut One track Track length (> 60cm) Fully contained After PID cut

9194 757 612 558 64 24

NuMIθCos
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E
ve

nt
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0

50

100

150

200
Data in time

Data out of time

Figure A.3: Angle of the tracks with respect to the beam direction for pre-selected events,
the black is the data in the spill window and the blue is the cosmic background events.

The cosmic background is rejected by applying the cuts in the inverse of the slope

variable. More details for the studies can be found in NOνA doc-db [105].



Appendix B

Cross section analysis for

configuration 1

This section shows the analysis distributions used to compute the cross section for config-

uration 1. This data set correspond to 1× 1019POT .

We start with the event selection, we show the input variables for the kNN selector in

figure B.1. These distributions have been made using the pre-selection cuts from section

5.1.1. The left hand plots are area normalized and the right hand plots are POT normalized.

Similar Data-MC disagreement for the POT normalized distributions as for configuration 2

in section 5.4. The output selector is shown in figure B.3. Again the Data-MC shows more

disagreement between Data and MC in the first bin for both area and POT normalized

distributions.

Next, we show Data-MC comparison for the scattering angle and the momentum pre-

diction in figures B.4 and B.5 after the CC QE selection (preselection cuts and PID cut

from Chapter 5), where left distribution is MC normalized to Data and right distribution

is POT normalized. Similar normalization differences for both Data and MC after analysis

selection.

Neutrino Energy and cross section as a function of energy

Using the momentum and angle prediction we calculate the neutrino energy spectrum for

this configuration. The reconstructed neutrino energy is shown in figure B.6. Similar

normalization differences for both area and POT normalized distributions.

Figure B.7 shows reconstructed energy with the predictions for the background in the

left hand plot, where pink curve represents the background from RES, DIS, NC and COH

interactions and red curve is the total MC including signal events.
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Figure B.1: Input variables for the kNN. The top distributions are the number of crossed
planes by the event. The bottom plots are the energy per active plane to track length. Red
is the total MC after pre-selection cuts and the black is the data after pre-selection cuts
and cosmic background subtracted events.

Using the MC background prediction we subtract the background in Data and MC. The

background subtracted plot is shown on the right hand distribution of figure B.7.

Using the ratio of νµ to (νµ + ν̄µ) equation 6.11 we estimate the νµ component. The

ratio as a function of energy is shown in figure B.8.

The efficiency as a function of neutrino energy is shown in the right hand distribution

of figure B.8, we used the same definition used for configuration 2 from equation 6.12.

Using the MC simulations the expected signal and background number of events are

shown in table B.1. The current data selection criteria gives 55 neutrino candidates and 11

cosmic background events.

Table B.1: Signal and background events
CC-QE νµ CC-QE ν̄µ CC RES CC DIS NC COH CC-QE νe Total

27 11 11 4 5 1 1 59
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Figure B.2: Energy around the vertex. Red is the total MC after pre-selection cuts and
the black is the data after pre-selection cuts and cosmic background subtracted events.
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Figure B.3: Left: kNN area normalized. Right: kNN POT normalized for configuration 1.
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Figure B.4: Left: Scattering angle area normalized. Right: Scattering angle POT normal-
ized for configuration 1.
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Figure B.5: Left: Momentum area normalized. Right: Momentum POT normalized for
configuration 1.
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Figure B.6: Comparison of reconstructed neutrino energy for νµ CC QE selected events
after cosmic background subtraction and MC simulation. Left: MC normalized to Data.
Right: Neutrino energy POT normalized.
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Figure B.7: Left: Comparison of reconstructed neutrino energy for νµ CC QE selected
events after cosmic background subtraction and MC simulation for each of the interaction
contributions. Red distribution is the total MC prediction and pink curve is the MC back-
ground prediction. Right: Comparison of reconstructed neutrino energy for events after
cosmic and interaction background subtraction.

(GeV)νE
0.5 1 1.5 2 2.5

) µν+ µν
/( µν

0

0.2

0.4

0.6

0.8

1

(GeV)νE
0.5 1 1.5 2 2.5

S
el

ec
te

d 
C

C
-Q

E
/C

C
-Q

E

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure B.8: Left: Ratio of νµ to (νµ + ν̄µ) as a function of reconstructed neutrino energy
for the CC QE selected events. Right: Efficiency as a function of energy for configuration
1.
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Using the procedure described in Chapter 6, we calculate the cross section for config-

uration 1, since we have very small statistic for this configuration we show only one data

point in figure B.9. This figure shows the extracted cross section and the GENIE true cross

section prediction. We find good agreement between the Data and GENIE simulation for

configuration 1 within the uncertainties.
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-3910×

GENIE cross-section

Data(stat+sys)

Figure B.9: Comparison of the calculated cross-section for the configuration 1 and the
GENIE MC prediction.
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Flux Integrated Single Differential Cross Section

We use similar procedure as used in Section 6.2 to compute the flux single differential cross

section. Figure B.10 shows the four momentum transfer area and POT normalized. The

POT normalized comparison shows Data-MC discrepancy for the first bin.

The left hand plot on figure B.11 shows the background prediction and the right hand

distributions on this figure shows the four momentum transfer after the cosmic and inter-

actions background subtraction.

Following the same procedure as in Chapter 6, we multiply the ratio νµ to (νµ + ν̄µ) by

the subtracted four momentum distribution in figure B.11 and dividing by the integrated

flux, bin width, number of neutron target and efficiency from distribution B.13, we produce

the flux integrated single differential cross section. This distribution is shown in figure B.14.

The left plot MC is normalized to data and the right distributions are POT normalized.
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Figure B.10: Left: Four momentum transfer area normalized. Right: Four momentum
transfer POT normalized for configuration 1.
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Figure B.11: Left: Four momentum transfer POT normalized, red curve is the total MC
prediction and pink curve represent the irreducible background. Right: Four momentum
transfer after cosmic and interactions background subtraction, POT normalized for config-
uration 1.
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Figure B.12: Ratio of νµ to (νµ + ν̄µ) as a function of four momentum transfer for the CC
QE selected events.
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Figure B.13: Efficiency as a function of energy for configuration 2.
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Figure B.14: Flux integrated single differential cross-section for configuration 1. Left: MC
normalized to Data. Right: Distributions POT normalized.



Appendix C

Normalization checks

We study the Data-MC normalization. The MC prediction and data agrees within one

sigma of systematic uncertainty. However, we made a study to investigate the source of

normalization difference as a cross check. This appendix summary the studies, the list of

checks include:

• Fit the data with the kaons and pions MC components.

• Cosmic Data-MC comparison, (cosmic exposure normalized).

• Study of bad channels.

• Comparison of the simulations used in this analysis and simulations used by Mini-

BooNE experiment in the study of NuMI off axis beam.

Data and MC simulations

Figure C.1 shows the reconstructed neutrino energy for the CC QE selected events in Data

and MC simulations. In addition, we plot the reconstructed neutrino energy for each parent

contribution (pions and kaons) in the left plot of figure.

A crude study was made to explore the Data and Monte Carlo comparison differences,

we reweighed the neutrinos coming from kaon by a factor of 0.7. The right hand plot in

figure C.1 shows the Data and MC comparison, gray distribution shows the neutrino energy

after reweighing. We note comparison Data-MC neutrino has better agreement after the

reweighing.

In addition, we fit simultaneously the MC predictions from pions and kaons with the data

using MC(total) = α × MC(pions) + β × MC(kaons). This fit produces α = 0.8 and

β = 0.7 with a χ2/NDF = 1.99/4 the result is shown in left plot of figure C.2.

Normalizing the MC simulations to the data we find χ2/NDF = 2.17/4. The area normal-

ized distribution is shown in the right plot of figure C.2. Both χ2/NDF are very similar for
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Figure C.1: Reconstructed Neutrino Energy. Left: Comparison of CC QE selected events
and MC simulations. Green curve represents neutrinos produced by the pions parent and
the pink curve is the neutrino energy from the kaons. Right: Gray color represents the MC
after reweighing the kaons composition by 0.7.

the area normalized and the distributions after we fit the pions and kaons with our data.

Also figure C.3 shows the ratio of pions to kaons as a function of the neutrino energy after

POT normalization and from the result of the fit, ratio is very similar. This shows that

Data-MC comparison is consistent and we do not find any problem from the simulations of

our hadron production.
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Figure C.2: Comparison of the CC QE selected events and the MC simulations after the
fit.
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Cosmic Data-MC comparison

Comparison of the cosmic data and cosmic MC simulation is made. The figure C.4 shows

the cosmic Data and cosmic MC simulation, where the MC has been normalized by the

data cosmic exposure. The comparison shows MC simulation agrees with the cosmic Data.
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Figure C.4: Cosmic data and cosmic MC simulation. MC has been normalized using the
data cosmic exposure. The red is the MC and black the cosmic data.

Bad Channels Study

We remove the data with shut off Front End Boards and make the Data-MC comparisons

excluding these sub runs. We found similar Data-MC comparison. This study shows the

comparison is not affected by the data with shut off FEBs.

In addition, we removed the bad channels determined with the cosmic data[99] and

make the comparison again. We found Data-MC comparison is consistent with previous

comparisons.

Comparing our simulations with external simulations used to study the

NuMI beam at off axis location

The MiniBooNE experiment measured the νµ events in an off axis neutrino beam (NuMI)

at 110 mrad. The study showed good agreement between data and MC simulations [106].

Exploring the Data-MC agreement from their measurement to constraint our MC. We

compare our MC simulations with their MC simulations. Figure C.5 shows the flux compari-

son for the Near Detector Prototype and the NuMI at MiniBooNE detector, red distribution



153

is our MC simulation and the black is the MC used for the MiniBooNE collaboration on

the left hand distributions and the ratio is shown in the right hand distribution.

Furthermore, we compare the cross sections. We use GENIE event generator and Mini-
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Figure C.5: Comparison of the flux at the Near Detector Prototype and the flux at the
MiniBooNE detector [107]. Right: Ratio Flux at MiniBooNE detector to Flux at Near
Detector Prototype.

BooNE uses NUANCE event generator, the figure C.6 shows the comparison for the cross

section for GENIE and NUANCE.

Figures C.5 and C.6 shows the MC simulation differences between our simulation and the
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Figure C.6: Comparison of GENIE cross section and NUANCE cross section. The green
curve corresponds to GENIE cross section with Ma = 0.99GeV/c2 and the black is the
cross section from NUANCE with Ma = 1.02GeV/c2 [108].

simulation used by MiniBooNE experiment to study the NuMI off axis. However, those dif-

ferences does not cover the normalization differences we see in our Data-MC comparisons.
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