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Abstract

This thesis has been focusing on beyond the Standard Model aspects of particle physics and
their implication in cosmology. From the early times of the universe evolution, to current low
energy supersymmetry and colliders phenomenology, various works have been achieved using
mostly an effective, low energy formulation, at several different periods of the Universe History.

Namely, models of Inflation are presented as effective single field theories arising from super-
gravity, string inspired UV completion models. Furthermore, models of dark matter including
a mediator particle are studied with the use of effective higher dimensional operators that are
generated explicitly from microscopic underlying theories. Such models were able to produce in-
teresting results for explaining recent measurements on the X-rays spectrum of galaxy clusters.
Finally, the study of flavour changing processes in the Dirac gaugino supersymmetric extensions
of the Standard Model was explored in details, predicting some challenging signatures that are
to be searched for at the next run of the LHC.

Résumé

Cette thèse se concentre sur l’étude des aspects de la physique au delà du modèle standard
et de ses applications à la cosmologie. Depuis les temps reculés de l’évolution de l’Univers,
jusqu’à la supersymétrie de basse énergie et à la phénoménologie des accélerateurs, des travaux
variés ont été réalisés utilisant pour la majeure partie une formulation de basse énergie, et ce à
des stades différents de l’Histoire de l’Univers.

En effet, des modèles d’inflation sont présentés sous l’angle de théories effectives (à un
champs) provenant de théories de hautes énergies issues de la supergravité et de la théorie des
cordes. De plus, des modèles de matière noire incluant la présence d’une particule médiatrice
sont étudiés à l’aide d’opérateurs effectifs de dimensions supérieures, générés explicitement à
partir d’une théorie microscopique sous jacente. De tels modèles semblent pour expliquer de
récentes mesures du spectre de rayons X mesuré dans certains cluster de galaxies. Enfin l’étude
des changements de saveurs dans l’extension super-symétrique incluant des jauginos de Dirac du
modèle standard prédit des signatures expérimentales qui seront très probablement recherchées
lors des prochaines acquisitions du LHC.
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iv



Contents

1 Introduction 1

I Inflationary Cosmology 5

2 The theory of Big Bang 7
2.1 A brief History of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Geometrical Formulation of the Universe Evolution . . . . . . . . . . . . . . . . 7

3 Inflation 13
3.1 Horizon and Flatness problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Inflation : General idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Inflation slow roll parameter . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Scalar field Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Models of Single Field Inflation . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Perturbation Theory : Observables for Inflation . . . . . . . . . . . . . . . . . . 23

3.4.1 Some Alternatives to Single Field Inflation . . . . . . . . . . . . . . . . . 28
3.5 Inflation in Supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Chaotic Inflation in Supergravity . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Generalization of the Stabilizer Approach . . . . . . . . . . . . . . . . . . 32

3.6 Interplay with Supersymmetry Breaking . . . . . . . . . . . . . . . . . . . . . . 33
3.6.1 SUSY Breaking Safari : Our Strategy . . . . . . . . . . . . . . . . . . . . 33
3.6.2 Minimal chaotic inflation with a Polonyi field . . . . . . . . . . . . . . . 34
3.6.3 Effects of additional interactions . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.4 Supersymmetry breaking in the O’Raifeartaigh model . . . . . . . . . . . 41

3.7 Intermediate Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Moduli Stabilization and Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8.1 Introduction to String Inspired Models : the KKLT proposal . . . . . . . 44
3.8.2 Non Decoupling Effects of Moduli Stabilization : A Roadmap . . . . . . 48

3.9 Integrating out Heavy Moduli : General Results . . . . . . . . . . . . . . . . . . 49
3.9.1 The Generic Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.9.2 Integrating out heavy moduli . . . . . . . . . . . . . . . . . . . . . . . . 52
3.9.3 Chaotic inflation with a stabilizer field . . . . . . . . . . . . . . . . . . . 55

3.10 Chaotic inflation with KKLT moduli stabilization . . . . . . . . . . . . . . . . . 56
3.10.1 KKLT moduli stabilization and uplift . . . . . . . . . . . . . . . . . . . . 56
3.10.2 KKLT and chaotic inflation: analytic approach . . . . . . . . . . . . . . 58
3.10.3 A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Chaotic inflation and the Large Volume Scenario . . . . . . . . . . . . . . . . . . 61
3.11.1 LVS moduli stabilization and uplift . . . . . . . . . . . . . . . . . . . . . 61

v



vi

3.11.2 LVS and chaotic inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.11.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.12 Universality and CMB observables . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.13 Non Decoupling Effects of Moduli Stabilization : A Recap . . . . . . . . . . . . 70

3.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

II Dark Matter Models 73

4 Dark Matter : Generalities 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 On the Track to Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Production of Dark Matter : A Thermal History . . . . . . . . . . . . . . 79

4.3 Thermodynamics of the Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 A Simple Extension of the Standard Model : An Extra U(1) Symmetry 85

5.1 Z ′, heavy fermion mediators and effective operators . . . . . . . . . . . . . . . . 87

5.1.1 Microscopic Generation of Effective Couplings . . . . . . . . . . . . . . . 90

5.2 Dark Matter Annihilation to gluons . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 s-channel Cross-Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 t-channel Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Constraining the Model with Experimental Data . . . . . . . . . . . . . . . . . . 94

5.3.1 Relic Abundance vs Indirect Detection . . . . . . . . . . . . . . . . . . . 94

5.3.2 Direct Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.3 Monojet Events at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.4 Constraints Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Anomaly Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.1 “Anomalous” Z ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Light Mediators : Fitting the 3.5 keV Line 107

6.1 A New γ-ray Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 When Parametrization Looses Information . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 The Experimental Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.2 A Naive Attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 A Natural Microscopic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Scalar Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.2 Fitting the X-ray line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.3 Experimental Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Relic Abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.1 Dark matter annihilation into sterile neutrinos . . . . . . . . . . . . . . . 117

6.4.2 Cosmological Constraints on an Almost Hidden Sector . . . . . . . . . . 118

6.5 An explicit UV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



vii

III Low Energy Supersymmetry 123

7 Introduction To Flavor Physics 125
7.1 The Flavour Structure of the Standard Model . . . . . . . . . . . . . . . . . . . 125
7.2 The CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.1 Geometrical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3 Mass and Mixing Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.1 Abelian Models : The Froggatt–Nielsen Mechanism . . . . . . . . . . . . 127
7.4 Flavor Changing Neutral Currents . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.4.1 Charged vs Neutral Currents . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.2 The GIM Mechanism : When the SM Feels Fine . . . . . . . . . . . . . . 131
7.4.3 Meson Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 The Case of the Minimal Supersymmetric Standard Model 135
8.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.2 Constraining the MSSM with Dirac Gauginos . . . . . . . . . . . . . . . . . . . 137

8.2.1 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2.2 Flavour-violation observables . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2.3 Flavour patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3 Bounds in the mass insertion approximation . . . . . . . . . . . . . . . . . . . . 142
8.3.1 Majorana gluino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.3.2 Dirac gluino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.3 Fake gluino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.4 Beyond the mass insertion approximation . . . . . . . . . . . . . . . . . . . . . . 146
8.4.1 Dirac versus Majorana . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.4.2 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4.3 Inverted hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.5 A Diversion: how to fake a gluino . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.5.1 Phenomenological consequences . . . . . . . . . . . . . . . . . . . . . . . 161

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9 Conclusion 163



0



1 Introduction

Cosmology has been, across History, one of the most appealing subject of thought and research
for humanity. Inspiring from the oldest ages many mythological scenarios, involving divini-
ties under various forms, it finally led the philosophers of Antiquity to interpret it through
induction and scientific investigations. Indeed, coming back to 400 B.C., the Greek civilization
began to propose scientific models for explaining the movement of celestial bodies. Eudoxe (∼
400 B.C.), followed by Aristotle (∼ 350 B.C.), built some fascinating models of homocentric
rotating spherical trajectories of stars, reproducing fancy trajectory shapes by pure scientific
arguments. Of course, the arguments and building blocks of the different theories remained
naive (spherical trajectories, placing the earth at the center of the universe, ...), but for the
first time of the History, Science was putting religion aside, to try to explain our Universe
evolution. These first attempts got more and more evolved with time, Aristarchus (∼ 250
B.C.) suggested to build an heliocentric model, Eratosthenes (∼ 200 B.C.) and Hipparchus
(∼ 150 B.C.) released amazing celestial measurements and catalogs of stars and Ptolemy (∼
150 AD) proposed more complex trajectory structures. The quest for understanding the cos-
mos behavior continued after the end of the Antic period and the destruction of the library
of Alexandria, with the arising of the Arabic scientific community. In A.D. 800, Haroun Al
Rashid ordered the building of a house of astronomy in Bagdad and his grand son Al Ma’mun
continued promoting the research works released there by attracting famous translators, major
ancient textbooks, space observers, rehearsing up to its ancient glorious status the science of
astronomy. Many different techniques were developed for mapping up the sky, building celes-
tial calendars and the science of astronomy were pursued until the european Renaissance and
the XVIth century when Copernic (∼ 1550), Galileo Galilei (∼ 1610) and Giordano Bruno (∼
1600) re-affirmed the idea of heliocentrism. The advent of the Newtonian description of gravi-
tational laws (1687, Philosophiæ Naturalis Principia Mathematica) states the beginning of the
mathematization of cosmology and astronomy. The inductive feature of astronomy hence turns
into an incredible power of prediction. Neptune was thus discovered after the predictions of Le
Verrier in 1846. The discovery of General Relativity by Einstein (1915), reinforced this huge
power of mathematics in modeling the Universe dynamics. The twentieth century saw many
fascinating observational measurement arise that, on one hand confirmed on many aspects –
Perihelion precession of Mercury, deflection of light, gravitational redshift, ... – the validity of
General Relativity and on the other hand showed many unexplained behavior of the universe
dynamics – rotation curves of the galaxies, accelerated expansion, inhomogeneities of the CMB
spectrum,... – that remain to be fully explained by the cosmological theories.

As an inextricable piece of the cosmological puzzle that the scientific community aims
to unscramble, particle physics represents a key point of the understanding of the Universe
evolution. Indeed the particle content of the latter, thanks to Einstein’s theory of gravitation,
is intimately related to its geometrical shape and dynamics. Thus our learning about particle
physics can have strong implications with respect to our Universe behavior. Although the Higgs
boson has been recently discovered at the Large Hadron Collider in Geneva [1, 2] as the keystone

1



2

of the Standard Model of particle physics, many aspects of particle physics remain obscure. In
particular, the number of free parameters that are present in the Standard Model and the
origin of their hierarchical distribution over the parameter space stand as open questions for
the scientific community. The requirement from cosmological observations for the presence of
obscure forms of matter and energy is also something which is still not contained in such a
theory. More generally, in a will to unify the presence of four peculiarly different forces in a
single theory, the standard model turns out to be far incomplete and should be embedded in a
more fundamental theory such as String Theory.

In the Big Bang theory of cosmology, that we will review in the first part of this work, the
History of our Universe evolution constitutes a gigantic laboratory for testing particle physics
theories on highly different energy scales. Indeed one can observe today, with an impressive
accuracy that our universe is in a permanent state of expansion. Its matter content hence turns
out to be more and more diluted in the increasing vacuum of our cosmos, which sees its global
temperature dramatically decrease with time. Looking further and further in space – meaning
watching stars, constellations, galaxies, clusters of galaxies at more and more ancient times in
the Universe evolution timeline – thus provides us more and more informations on the Universe
dynamics at a period where the latter was incredibly more hot and energetic than it is today.
We aim in this thesis to plunge back at the most early times that the Big Bang theory can
imagine and attempt to describe the particle content of our spacetime at different periods and
energy scales, following the expanding evolution of our Universe.

At the very first moment of the Universe evolution, after the presupposed Big Bang, it is
commonly admitted that, due to a huge energy density the light was interacting all the time
and not able to propagate, like it would be during a very foggy day : The Universe was at a
point where it was completely dark. Hence the information one can get about this period while
simply looking at the sky is very much reduced. However, the observation of the first flash of
light happening at a point of the universe expansion where light had finally enough freedom to
propagate – called the Cosmic Microwave Background (CMB) and measured today with high
accuracy – provides us a precious piece of information concerning the dynamics of our spacetime.
At this point, the standard theories of both Big Bang and particle physics combined together
fails to explain the structure of the CMB measurement and requires additional ingredients to
explain the quasi homogeneity of the Universe, on scales that are not supposed to have ever
been able to communicate with each other. Inflation is one of the most appealing answer to
such a puzzle, and requires usually the addition of a new heavy particle to the standard model,
provoking an acceleration of the universe expansion at its very early stages. This new particle –
called the inflaton – is supposed to fill the whole universe, driving the dynamics of its expansion,
before producing after a while the standard particles that our world is made of today.

Yet the particle physics model that we have at our disposal to describe nature today – called
the Standard Model (SM) of particle physics – remains, as we mentioned above, incomplete.
Formal descriptions have been proposed in the past decades to include the Standard Model into
larger theories which could contain additional components of undiscovered matter – in partic-
ular dark matter, but equally other possibly existing forms of matter – that are for instance
String Theory, Supersymmetry, or simpler extensions of the Standard Model itself. Enlarging
the initial Standard Model is usually achieved by adding to our description of physics extra
symmetries that would not be visible at the low energy scale of our present world. Supersym-
metry predicts for instance the existence of many new particles – called superpartners – that
remain to be observed in the collider experiments. Saying that these additional degrees of free-
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dom are unobserved today – which is equivalent to say that additional symmetries should be
broken at low energies – tells us that enlarging the existing models should in addition contain
a mechanism to explain why such extension is not visible at low energies.

In the first part of this thesis, after reviewing the theoretical and phenomenological aspects
of both the Big Bang theory and the theory of Inflation we will study in detail how describ-
ing Inflation in a high energy supersymmetric theory while explicitly providing the model a
mechanism of supersymmetry breaking can be difficult to handle. We will in particular see
on one hand how phenomenological constraints on the inflation observables can translate into
constraints on the scale of supersymmetry breaking, and on the other hand how this mechanism
can in some situation be required to be the major source of the inflation process.

Another source of puzzle in cosmology comes from the strong discrepancy which exists
between the amount of matter that one can estimate by looking at the sky and counting the
stars and the amount of matter which is required, according to general relativity, for maintaining
the galaxies stable in the Universe. A solution for this puzzle, as it will be properly described in
the second part of the thesis is to assume the presence of an obscure form of matter, surrounding
our galaxy and maintaining the large structures of the Universe while interacting so weakly with
our visible world that it would have been almost completely invisible to any observation device
up to now. We here propose to study phenomenological aspects of simple models, extending
the present Standard Model with simple abelian symmetries, by assuming the constituent of
dark matter would be able to exchange information with the visible sector by the help of a
mediator particle. We study in particular possible interactions of heavy or light dark matter
with respectively the strong and the electroweak sectors of the Standard Model. Our models
are strongly constrained of course by experiments. On one hand such interactions must be
very weak not to produce too important excesses in accelerators – which would have been
already detected in the past experiments – and on the other hand they can be made sufficiently
important to be visible in future collider measurements and to explain eventual astrophysical
signals that are already observed.

The third part of the this work will be dedicated to a different aspect of beyond Standard
Model theories, that is the treatment of the flavour changing processes of particle physics. As
a matter of fact, the zoo of fundamental particle constituents of matter is indeed distributed
among three different generations of fermions, each generation being assimilated to a particular
flavour. Yet flavour appeared to be a feature which is not invariant through the different par-
ticle physics processes that one can observe in nature. However the structure of such flavour
oscillation remains not fully understood, and most of the time treated – in particular in su-
persymmetric theories – in a rather guileless manner. The Minimal Supersymmetric Standard
Model (MSSM), as one of these possible enlargement of the Standard Model, introduces new
processes of flavour changing that are highly constrained by experiment, and, contrarily to the
standard model not naturally suppressed from the theoretical point of view. Hence we present
some works in which we consider the possibility of adding so called Dirac Gauginos to the
MSSM to render flavour changing weaker in the theory, and propose different flavour patterns
that the standard mass insertion approximation used in many supersymmetric theories to see
how experimental constraints differ depending on the latter pattern choice. We formulate in
addition phenomenological signatures that may be visible in future accelerators measurements.

From the formulation of supersymmetry breaking at scales approaching the Planck mass
to low energy supersymmetry flavour changing processes, we hence go through the Universe
History studying beyond standard model physics at very different scales, relating constantly
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the constraints coming from accelerator measurements to theoretical considerations and astro-
physical observations about cosmology. A link which is of great importance to maybe better
understand, one day, what our Universe is truly constituted of.



Part I

Inflationary Cosmology
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2 The theory of Big Bang

2.1 A brief History of the Universe

This thesis aims to sail through the History of the Universe from the Big Bang early time to
our present, cold, low energetic Universe. We will present in this section a brief review of how
this evolution is sketched in the theory of Big Bang.

Let us first sketch the qualitative picture of the History of our Universe in the Big Bang
theory framework. As a general feature and a consequence of the observation that our Universe
is expanding around us, the story of the Big Bang starts at an initial time t = 0 corresponding
to a singular point of infinite energy density (or temperature). Beginning from this obscure
starting point, the evolution of the spacetime is, as we will see in more technical details in what
follows, characterized by a permanent cooling of the matter thermal bath it contains.

A Short Universe Timeline

• t ∼ 10−30 − 10−10s (1012GeV − T ∼ 100GeV) : Physics beyond the Standard Model is
dynamically present at high energy scales before symmetries breaks down to the Standard
Model gauge group as energy decreases. The Higgs vacuum expectation value forms and
all the Standard Model particles become massive.

• t ∼ 10−5s (T ∼ 200MeV) : Quarks get confined into hadrons and baryons.

• t ∼ 0.2s (T ∼ 1 − 2MeV) : Neutrinos decouple from the thermal bath. The ratio of
densities of protons with respect to neutrons gets frozen.

• t ∼ 1s (T ∼ 0.5MeV) : Electrons and positrons begin to annihilate into photons.

• t ∼ 200 − 300s (T ∼ 0.05MeV) : Nuclear reactions become efficient giving birth from
protons and neutrons to first helium and light atoms.

• t ∼ 1011s (T ∼ eV) : The quantity of matter equals the amount of radiation in the
Universe.

• t ∼ 1012 − 1013s (T ∼ 0.1eV): All electrons and protons combine to form stable atoms.
Light has now freedom to propagate on large distances. A flash of light characterizes this
period, namely emitting the Cosmic Microwave Background which is detected nowadays.

• t ∼ 1016 − 1017s : The galaxies form, creating the large structures in which we lie today.

2.2 Geometrical Formulation of the Universe Evolution

The astrophysical observations teach us that our Universe is both homogeneous and isotropic
on scales larger than 100 Mpc. This can be observed all over the 3000 Mpc that constitutes

7
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t

t tt

k = +1 k = 0 k = -1

Figure 1: Depending on the curvature k, the spacelike slices of spacetime get spherical, planar or hyperbolic
geometry.

our observable Universe. Of course this does not guarantee that our spacetime is entirely
homogeneous, but it shows at least that our Hubble piece of accessible universe is smooth.
Under such –well motivated – postulate, the geometry can be described on this patch by a
metric of the form

ds2 = − dt2 + a2(t)

(
dr2

1− kr2
+ r2( dθ2 + sin2 θ dφ2)

)
, (2.2.1)

where a(t) is an expansion factor and k = −1, 0,+1 is the spacelike curvature, giving respec-
tively spherical, flat or hyperbolic geometries, as depicted in Fig. 1

It is often convenient to define the conformal time τ so that the whole spacetime scales with
the expansion factor a(τ)

ds2 = a2(τ)

(
− dτ 2 +

dr2

1− kr2
+ r2( dθ2 + sin2 θ dφ2)

)
. (2.2.2)

The dynamics of such spacetime geometry is well known to be described by the Einstein
equations

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν + Λgµν (2.2.3)
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where R and Rµν are the curvature scalar and Ricci tensor built from the metric ds2 ≡
gµν dxµ dxν . The stress energy tensor Tµν is generically assumed to be the one of a perfect
fluid, which is of the form

T µν = diag(ρ,−p,−p,−p) , (2.2.4)

satisfying the equation of state
p = ωρ . (2.2.5)

The radiation dominated era is then characterized by ω = 1/3 while the matter dominated
era, assimilating the matter content of the Universe to dust corresponds to ω = 0. The case of
a cosmological constant can be seen as the effect of a perfect fluid whose equation of state is
defined by ω = −1. An important quantity to define for cosmology is the Hubble parameter

H ≡ ȧ

a
(2.2.6)

which has unit of inverse time and is negative for collapsing universe but positive for an expand-
ing spacetime, with which one can express the Einstein equations (called Friedmann equations
in this particular case)

H2 =
ρ

3
− k

a2
, (2.2.7)

and

Ḣ +H2 =
ä

a
= −ρ+ 3p

6
, (2.2.8)

where over dots represent the derivative with respect to the physical time t. One can notice that
(2.2.8) implies, in an expanding universe containing ordinary matter, that ä < 0. Such standard
Universe content would then force the expansion to decelerate. Furthermore, equations (2.2.7)
and (2.2.8) can be combined to obtain

d ln ρ

d ln a
= −3(1 + ω) . (2.2.9)

Solving this equation and integrating (2.2.7) over time provides

a(t) ∝
{
t

2
3

(1+ω) if ω 6= −1 ,
eHt if ω = −1 .

(2.2.10)

In the case where the Universe is composed of different kind of particles (baryons, photons,
neutrinos, dark matter, dark energy, etc.), the associated pressures and energy densities sum
up to give

ρ =
∑
i

ρi and p =
∑
i

pi . (2.2.11)

The respective contributions to the energy today are usually described by the ratios

Ωi ≡
ρ0
i

ρc
, (2.2.12)

where ρc = 3H2
0M

2
p . Staring for a few seconds at equation (2.2.7), one can interpret the

curvature term as a contribution to the energy density with ratio

Ωk = − k

a2
0H

2
0

, (2.2.13)
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Figure 2: Combination of the CMB and LSS observations shows that the spatial geometry of the universe is
essentially flat [3].

so that ∑
i

Ωi + Ωk = 1 . (2.2.14)

The second Friedmann equation, setting a(t0) = 1, can the be written

1

a0H2
0

d2a

dt2
= −1

2

∑
i

Ωi(1 + 3ωi) . (2.2.15)

Experimental Data Such model has been tested by observations with great precision, and
many precise data have been furnished concerning the ratios Ωi and Ωk. The WMAP collabo-
ration reported [3] for instance (see Fig. 2) that the contribution of curvature is almost exactly
vanishing

Ωk ∼ 0 , (2.2.16)

whereas it is composed of 4% baryons (“b”), 23% dark matter (“DM”) and 73% dark energy
(Λ) (see Fig. 3 and Fig. 4):

ΩDM ∼ 0.23 , Ωb ∼ 0.04 , ΩΛ ∼ 0.72 , (2.2.17)

with ωΛ ≈ −1
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Figure 3: The energy contribution of dark energy is shown to be very close to the one of a cosmological
constant with ωΛ ≈ −1 [3].

Figure 4: Contributions of dark energy and matter, measured from the Supernova Cosmology Project [4].
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3 Inflation

3.1 Horizon and Flatness problems

As we saw in the previous chapter, the Big Bang theory aims to extrapolate, running back in
time, what happened at early stages of the universe evolution. In particular, one can estimate
to which extent certain regions of the sky were, closer to initial time, causally connected or
not. In this picture, the number of causally disconnected patches contained in the region from
which the CMB that we measure today was emitted is of order 104. This would mean that
two different points in the CMB map whose respective distance to each other would exceed
two degrees would never have been in causal contact since the Big Bang initial time. However
such regions are observed to have extremely similar temperatures although they could not have
communicated at all from the very beginning of the Universe History. This problem is called
the Horizon problem and was first mentioned by Misner in 1969 [5] where, noticing that point,
he was proposing alternative proposals of geometries, such as the (type- I) Kasner [6] Universe
or the Bianchi type-IX [7] Universe. In such chaotic and so-called Mixmaster Universe, the
expansion factor a is added two form factors that can make the universe either contract or
expand during certain periods of time and possibly explain the dissolution of anisotropies of
the CMB. The beauty of the Inflation theory yet led later on the community not to study too
seriously this hypothesis. To illustrate this puzzle in detail, let us write again the Friedman-
Lemâıtre-Robertson-Walker flat metric

ds2 = −dt2 + a2(t)
[
dr2 + r2dΩ2

]
. (3.1.1)

The form of the latter geometry tells us that the spatial size of the universe between planckian
time ti and present time t0 scales like ai/a0 compared to time. As a consequence, one causal
patch at the present time, whose size is given by

lc0 ∼ ct0 ∼ 1028 cm (3.1.2)

turns out to contain a volume of the spacetime, which, at planckian time ti, had a size of

li ∼ l0
ai
a0

. (3.1.3)

However, the size of a causal region at that early time was

lci ∼ cti , (3.1.4)

and one can estimate the ratio between these two quantities to be

li
lci
∼ t0
ti

ai
a0

∼ 1017

10−43
10−32 ∼ 1028 . (3.1.5)

13
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In other words, the volume of spacetime corresponding to one, possibly observable, causal
patch today, would roughly correspond to (li/l

c
i )

3 ∼ 1084 causally disconnected patches at the
planckian time. Yet, the fluctuations of the CMB spectrum temperature is of order

δε

ε
∼ 10−4 , (3.1.6)

which would required a huge fine tuning at initial time to be released in our Universe. This
can be reformulated, using a very useful quantity of cosmology, that is the co-moving Hubble
radius. Indeed, the radial propagation of light is described by the metric

ds2 = a2(τ)(− dτ 2 + dr2) (3.1.7)

with τ being the conformal time, and the null geodesics are described by the equations

r = ±τ + Const. . (3.1.8)

The maximal distance through which light can propagate during a certain amount of time turns
out to be

∆r = ∆τ =

∫ t

ti

dt′

a(t′)
. (3.1.9)

Taking ti = 0 to be the starting point of the Big Bang, one can define the so called co-
moving particle horizon (the maximal distance any particle can ever have gone, or exchanged
information through)

rp(t) =

∫ t

0

dt′

a(t′)
=

∫ a(t)

a=0

(aH)−1 d ln a , (3.1.10)

and the co-moving Hubble radius (the radius over which one cannot communicate at a given
time) to be

rH = (aH)−1 . (3.1.11)

Note that we are here working in units of ln a, also called e-folds in what follows. The size of
a causal region hence depends directly on the evolution of the co-moving Hubble radius. The
latter can be expressed in the standard case of a perfect fluid where p = ωρ

rH ∝ a
1
2

(1+3ω) , (3.1.12)

which, for both radiation (ω = 1/3) and dust (ω = 0) gives an increasing function of time. The
horizon problem is represented in Fig. 1 where the CMB map is shown to contain points that
were causally disconnected at the initial time.

The flatness problem is another puzzle of the Big Bang theory that was first described by
Robert Dicke in 1969 in a lecture, according to Guth. Let us write the Friedmann equations in
the case of a curved spacetime

H2 =
ρ

3M2
P

− k

a2
, (3.1.13)

where k is the curvature of the spacelike foliation. One immediately gets by dividing both sides
by the Hubble parameter that

1− Ω(a) = − k

(aH)2
, (3.1.14)
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Figure 1: Evolution of the particle horizon with conformal time. The intersection between the conformal
time of recombination and the past timelike cone of our present point is in the future light cone of several
disconnected patches at initial time.

where

Ω(a) ≡ ρ(a)

ρc
and ρc = 3H2M2

P . (3.1.15)

Equation (3.1.14) hence suggests that if the curvature of space is non vanishing at some
early time of the Universe History, and if (aH)−1 keeps growing with time, thus the quantity
|1−Ω(a)| should explode with time. However the latter is strongly constrained by experiment
and we observe that today

|1− Ω(a0)| . 0.01 . (3.1.16)

Such constraint hence turns out to be even more stringent while running back in time and one
should have, at the energies of baryogenesis, Grand Unification and Planck mass, the following
constraints

|1− Ω(aBBN)| . O
(
10−16

)
,

|1− Ω(aGUT )| . O
(
10−55

)
, (3.1.17)

|1− Ω(aP )| . O
(
10−61

)
,

which would require an enormous fine tuning at initial time to satisfy the experimental con-
straints we obtain nowadays... The flatness problem can also be formulated in terms of fine
tuning required between kinetic and potential energy in our Universe (which defines local cur-
vature of the spacetime) not to get the universe collapse nor expand too fast compared to what
we measure today. In this sense, the flatness problem can be seen as a required fine tuning of
the initial velocities that characterize the Cauchy problem that is the expansion of our Universe.
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As a conclusion of this section, the main source of puzzle that arises from the homogeneity
and flatness of the Universe stand mainly in the fact that with a standard matter content,
the co-moving Hubble radius (aH)−1 increases with time. We will see in the next section how
Inflation is an elegant solution to circumvent this problem.

3.2 Inflation : General idea

As mentioned above, a possibility to escape the puzzles that are the horizon and flatness
problems is to introduce in the Universe History a period of time where the co-moving Hubble
radius shrinks, instead of growing.

d

dt
(aH)−1 < 0 . (3.2.1)

Such requirement is equivalent to ask, in the case of a perfect fluid content (3.1.12), that the
Strong Energy Condition is violated during a period called Inflation

1 + 3ω < 0 , (3.2.2)

or equivalently, that the expansion is accelerated

ä > 0 . (3.2.3)

In this case the conformal time would scale like

τ ∝ 2

1 + 3ω
a

1
2

(1+3ω) , (3.2.4)

and be sent to highly negative values while a would go to zero. This enlarges considerably the
representation depicted in Fig. 1 by pushing the initial time downward to negative values, and
the light cones that had no intersection at initial time in the previous situation can now – at
least for some of them – be causally connected at the time of the Big Bang, as represented in
Fig 2. Recalling the definition of the co-moving particle horizon

rp(t) =

∫ a(t)

a=0

(aH)−1 d ln a , (3.2.5)

one can understand how the horizon problem is solved by Inflation, through the following
consideration :

• Two particles separated by rp(t) have never been able to talk to each other;

• Two particles separated by rH = (aH)−1 are not able to exchange information at the
time t;

Hence, it is possible that today the co-moving particle horizon is much larger than the Hubble
radius, so that regions that are not causally connected today can have been in causal contact
before, when the co-moving Hubble radius was taking higher values. The Hubble radius can
indeed be very large at early times, decrease, thanks to Inflation, and fall under the radius of
a co-moving patch of spacetime where the Universe is roughly homogeneous (we will call it a
smooth patch). When Inflation ends, the Hubble radius would reach its minimal value and
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Figure 2: Schematic representation of the Inflation idea. Past timelike cones that were initially not in causal
contact are pushed down to negative values of conformal time, such that it dilutes inhomogeneities sufficiently
in the CMB.
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start growing again until now, where the Hubble radius is still contained in a smooth region of
the Universe.

The duration of Inflation, necessary to dilute sufficiently the inhomogeneities, can be ex-
pressed in a so called number of e-folds

N(t) = ln

(
a(tend)

a(t)

)
, (3.2.6)

where tend denotes the time where Inflation ends. This Number of e-folds is measured to lie
roughly between 50 and 60.

3.2.1 Inflation slow roll parameter

As we just explained, the main idea of Inflation is to make the spacetime expansion accelerate,
so that it dilutes simultaneously homogeneity and curvature of our Universe, accordingly to the
experimental measurement of the CMB spectrum. This condition can be expressed in terms of
what will be named the slow-roll parameter in what follows

ε ≡ − Ḣ

H2
= − d lnH

dN
, (3.2.7)

requiring that, during Inflation,

ä > 0⇔ 0 6 ε < 1 . (3.2.8)

This requirement will be of strong importance in the next sections.

3.3 Scalar field Inflation

As we saw above, a necessary condition for inflation to be released is to make the co-moving
Hubble radius decrease for ∼ 60 e-folds, meaning that the perfect fluid content of the Universe
should have the feature that its equation of state satisfies

ω < −1

3
. (3.3.1)

In order to get so, the simplest models of Inflation investigate the possibility that the
Universe expansion is driven by the presence of a scalar field φ called Inflaton, evolving in a
potential V (φ), in which it falls and finally oscillate at its minimum, as depicted in Fig. 4.
This can be formally expressed with the simple action

S =

∫
d4x
√−g

[
1

2
R +

1

2
gµν∂µφ∂νφ− V (φ)

]
= SEH + Sφ , (3.3.2)

SEH denoting the gravitational Einstein-Hilbert action and g ≡ det(gµν) the determinant of
the spacetime metric. The stress energy tensor can be derived from the latter action as follows

T (φ)
µν ≡ −

2√−g
δSφ
δgµν

= ∂µφ∂νφ− gµν
(

1

2
∂σφ∂σφ− V (φ)

)
, (3.3.3)
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V(ϕ)
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ϕ ϕCMB ϕend*
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Figure 4: Generic picture of the scalar inflation scenario. The Inflaton falls along its potential releasing 60
e-folds of inflation before oscillating around its minimum, reheating the Universe.

and the equations of motion for φ is

δSφ
δφ

= 0⇔ 1√−g∂µ
(√−g∂µφ)+ V, φ = 0 , (3.3.4)

where V, φ denotes the derivative with respect to φ. These equations can be applied to the case of
an homogeneous scalar field φ(x, t) = φ(t) living in the Friedman-Lemâıtre-Robertson-Walker
metric (2.2.1), giving rise to the following pressure and energy density

pφ =
1

2
φ̇2 − V (φ) , (3.3.5)

ρφ =
1

2
φ̇2 + V (φ) . (3.3.6)

The condition (3.3.1) thus turns into

ωφ =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

< −1

3
, (3.3.7)

and is equivalent to

V (φ) >
1

2
φ̇2 . (3.3.8)

The latter condition can be released for a convenient choice of potential and initial conditions.
The equation of motion for φ (3.3.4) become

φ̈+ 3Hφ̇+ V, φ = 0 , (3.3.9)

where the Hubble constant H is defined by

H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
. (3.3.10)
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Note that the term 3Hφ̇ present in (3.3.9) can be interpreted as a friction term. For the time
when the inflaton will be away from the vacuum, the potential will take large values (V > 1

2
φ̇2),

thus the Hubble constant and the latter friction term will be very large either. If the friction is
large enough, inflation will settle in a slow roll regime during 60 e-folds that are necessary to
dilute inhomogeneities and curvature.

The slow roll parameter ε can be expressed under the form

ε ≡ 3

2
(ωφ + 1) =

1

2

φ̇2

H2
, (3.3.11)

and the de Sitter, pφ ≈ −ρφ, corresponds to the limit where φ̇2 � V (φ), or equivalently where
ε→ 0. The first slow roll equation thus reads

H2 ' V (φ)

3
. (3.3.12)

A second condition, which is necessary for inflation to last for a sufficient number of e-folds,
is, as we mentioned earlier, that the friction term 3φ̇H dominates over the second derivative of
the field φ̈ so that the dynamics remains frozen for a while. This can be equivalently formulated
by demanding that

ε̇

Hε
= 2

φ̈

Hφ̇
+ 2ε� 1 , (3.3.13)

namely asking that the variation of ε is negligible compared to the co-moving value of ε itself,
or by simply imposing that the friction term is large enough

− φ̈

Hφ̇
≡ η � 1 , (3.3.14)

where we introduced the second slow roll parameter η. Necessary conditions for inflation to be
released for a sufficiently long time are then summarized in

ε � 1 , (3.3.15)

η � 1 . (3.3.16)

It can sometimes be convenient to express these conditions in a form depending only on the
shape of the scalar potential, using an alternative choice of slow roll parameters, that are

εV ≡ M2
p

2

(
V, φ
V

)2

< 1 , (3.3.17)

|ηV | ≡
∣∣∣∣M2

p

V, φφ
V

∣∣∣∣ < 1 . (3.3.18)

Note that this set of parameters can be matched to the initial one in the slow roll regime

ε ≈ εV , (3.3.19)

η ≈ ηV − εV . (3.3.20)
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To put this discussion in a nutshell, the slow roll regime period is mainly characterized by

H2 ≈ V (φ)

3
≈ const. , (3.3.21)

φ̇ ≈ −V, φ
3H

. (3.3.22)

During this period, the expansion of the Universe is approximately de Sitter, namely

a(t) ∼ eHt . (3.3.23)

The end of inflation is finally reached when

ε(φend) ≡ 1 , εV (φend) ≈ 1 , (3.3.24)

and one can estimate the number of inflation e-folds between an arbitrary value of φ and the
ending point φend

N(φ) ≡ ln
(aend

a

)
, (3.3.25)

=

∫ tend

t

H dt =

∫ φend

φ

H

φ̇
dφ = −

∫ φend

φ

dφ√
2ε
, (3.3.26)

which can be expressed using the slow roll approximation (3.3.21) - (3.3.22) as

N(φ) ≈ −
∫ φend

φ

V

V, φ
dφ ≈ −

∫ φend

φ

dφ√
2εV

. (3.3.27)

In order to solve both the horizon and the flatness problem, the total number of inflationary
e-folds has to exceed

Ntot = ln

(
aend
astart

)
> 60 . (3.3.28)

Furthermore, the number of e-folds that may separate the time of the CMB emission and the
end of Inflation should seat between NCMB ∼ 40−60, depending on the details involved during
the pre-heating and reheating episode. Finally we obtained

NCMB = −
∫ φend

φ

dφ√
2ε
≈ −

∫ φend

φ

dφ√
2εV
∼ 40− 60 . (3.3.29)

3.3.1 Models of Single Field Inflation

The simplest model of inflation, introduced in 1983 by A. Linde [8], is the so called chaotic
inflation where the scalar potential is chosen to be harmonic

V (φ) =
m2

2
φ2 . (3.3.30)

In this case, the slow roll parameters become

εV (φ) = ηV (φ) =
2M2

p

φ2
. (3.3.31)
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One can then immediately notice that imposing the slow roll conditions (3.3.17) - (3.3.18) leads
to values of the field of the order

φ &
√

2Mp ≡ φend . (3.3.32)

The number of e-folds becomes

N(φ) =
φ2

4M2
p

− 1

2
, (3.3.33)

and one can get an estimation for φCMB by inverting the condition (3.3.29)

φCMB = 2
√
NCMBMp ∼ 15Mp . (3.3.34)

These two last results show that – in the chaotic inflation scenario – inflation must happen
at a time where the inflaton field was actually having a vev larger than the Planck scale. This
is a particular case of a class of large field inflation models. Other models in this class can be
cited, among which stands the more general class of monomials

V (φ) = λpφ
p . (3.3.35)

Another famous model is the so called natural inflation scenario [9], in which the inflaton rolls
down from a hill potential of the form

V (φ) = V0

(
cos

(
φ

f

)
+ 1

)
. (3.3.36)

This potential usually arises if the inflaton field is taken to be an axionic field. The parameter
f has to be larger than the planck mass in order to get a slow roll regime of inflation. Super-
planckian values f �Mp are a challenging issue, but natural inflation for large-field variations
turns out to be quite appealing in the case of axions since the latter can be provided a shift
symmetry protecting the potential from correction terms even over large field ranges.

Models can also be constructed in a setup where the value of the field stays sub-planckian
during inflation. One can cite for instance the Higgs like potential

V (φ) = V0

[
1−

(
φ

µ

)2
]2

, (3.3.37)

which can be generalized to

V (φ) = V0

[
1−

(
φ

µ

)p]
+ . . . . (3.3.38)

Another quite popular model for radiatively-induced symmetry breaking in electroweak and
grand unified theories is the Coleman-Weinberg potential

V (φ) = V0

[(
φ

µ

)4

ln

((
φ

µ

)
− 1

4

)
+

1

4

]
, (3.3.39)

despite the fact that the parameters V0 and µ, if compatible with the small amplitude of
inflationary fluctuations cannot really be based on an SU(5) or GUT theory.
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Figure 5: Classical picture : the inflaton is represented by an homogeneous scalar field.

3.4 Perturbation Theory : Observables for Inflation

In the previous sections, the reader may have noticed that we were constantly using a classical
picture to explain the process of Inflation, using a classical field φ as the ingredient for diluting
the curvature and energy density inhomogeneities. In what follows we will consider the case
where the field φ is allowed to fluctuate around its classical value. This will slightly retire or
advance the fall of the inflaton into its potential minimum, creating inhomogeneities in the
energy spectrum. We will furthermore derive all the observables that are – presently or in the
future – measured by experimental devices.

As described earlier, let us assume that the spacetime is entirely filled by the inflaton
field at the primordial time. In the case where the field is classical, it can be described by
an homogeneous time dependent field φ0(t). In this case, the hypersurface define by t = t0
coincides with one plan φ(t) = const, as depicted in Fig. 5.

In the case where quantum fluctuations are allowed, the field φ is added a perturbation of
the form

φ = φ0(t) + δφ(x, t) . (3.4.1)

Depending on the location in space, this perturbation can be seen as if the inflaton local time
is advanced or retired. This can be seen by the fact that the hypersurface φ(t) = const. is
fluctuating around the plan t = const. with which it does not coincide anymore, as depicted in
Fig. 6. Thus, from one place to another, at a fixed time t0 the field φ will oscillate around the
background classical field φ0(t0).

However, we will see that such perturbations can actually be absorbed by a metric coordinate
transformation, seeing then the perturbation of the field as metric perturbations and local
curvature of the spacetime. Such perturbations of the geometry can anyway exist and will
hence mix up with the inflaton perturbations.

Let us first write the FLRW metric (2.2.1) introducing metric perturbations as follows

ds2 = −(1 + 2Φ) dt2 + 2Bi dx
i dt+ a2(t) [δij + Cij] dxi dxj , (3.4.2)

where we introduced 10 entries, that are one scalar field Φ, 1 vector Bi and one tensor Cij. It
is possible to see, at the linear order of perturbations, that the Fourier modes of the pertur-
bations do not interact together, meaning they can be studied independently. Hence, for any
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Figure 6: Quantum picture : the classical field background is added a spacetime-dependent perturbation.
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Figure 7: Rotation of angle θ in the plane (e1, e2) around the vector ~k discriminating between scalar, vector
and tensor components of the perturbations.

perturbation X(x, t)

X =

∫
dk3

(2π)3
X~k(t)e

i~k·~x , (3.4.3)

and focusing on the study of one Fourier mode X~k, one can decompose it in terms of components

that behave like scalars, vector or tensor under rotation of axis ~k (SVT decomposition). One
can show in particular that the perturbation Bi decomposes like

Bi = ∂iB +BV
i , (3.4.4)

giving in the Fourier space
Bi = ik̂B + eaiB

V
a , (3.4.5)

where k̂ ≡ ~k

||~k||
and the vectors ei’s form a basis of the plan orthogonal to the direction ~k as

depicted in Fig. 7. The first component doesn’t transform under rotation around ~k, B being a
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Metric Inflaton Reduction Total d.o.f.

Scalars 4 1 -2 -2 1
Vectors 2 0 -1 -1 0
Tensors 1 0 1

Table 3.1: Number of scalar, vector and tensor components after diffeomorphism reduction and Einstein’s
equation constraints. The resulting degrees of freedom are one scalar and tensor mode.

scalar component, whereas BV
i transforms with helicity 1

BV
a → eiθBV

a . (3.4.6)

Similarly the matrix Cij can written under the form

Cij = 2δijΨ + 2k̂ik̂jE + 2
(
k̂ie

a
jE

V
a + k̂je

a
iE

V
a

)
+ γij , (3.4.7)

where one can work in a basis in which the tensor γij is traceless and divergence free

γii = ∂iγ
i
j = 0 . (3.4.8)

Thus the matrix C contains two scalar components, one vector and one tensor. Furthermore,
the use of diffeomorphisms of the form{

t → t+ ξ0 ,
xi → xi + ξi = xi + ∂iξS + ξiV

(3.4.9)

where ξ0, ξS are scalar components and ξV is a vector one, allows to get rid of two scalars and
one vector component in the theory. In addition to this, Einstein’s equations

G00 = 8πGT00 and G0i = 8πGT0i , (3.4.10)

fix two scalar components and one vector. The number of scalars, vectors and tensors present
in the theory are summarized in Tab. 3.1. It turns out that the degrees of freedom that remain
after elimination of the extra components are composed of one scalar and one tensor mode.
Depending on the point of view, one has the possibility to work in different gauges. In the
flat gauge, the metric is assumed to remain flat, Ψ and E being set to zero, which provides
perturbations to the inflaton field. On the opposite, one can assume that the inflaton does
not get perturbed while the metric sees its curvature fluctuate. Note that the term “flat” can
be used since the spacelike curvature R(3) is related to the perturbation components E and Ψ
through the formula

R(3) = 4
∇2

a2

(
Ψ +

1

3
∇E

)
. (3.4.11)

This freedom in the choice of gauge should yet not modify the physics of perturbations which
can indeed be described in terms of a gauge invariant quantity, called the curvature perturbation

ζ ≡ −Ψ−Hδφ

φ̇
. (3.4.12)

This invariant will provide in what follows a gauge independent tool for describing the scalar
perturbations of the metric.
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Scalar Perturbations from Inflation
In the flat gauge (where Ψ is assumed to be zero) one can write the scalar field action (3.3.2)
at the second order in the correction δφ, giving

S(2) =

∫
dt d3x a2

[
˙δφ

2

2
− (δφ)2

2a2
− 1

2
V ′′δφ2 − 1

a3
(a3εH)δφ2

]
. (3.4.13)

The first two terms constitute the free test field action

S
(2)
free =

∫
dt d3x a2

[
˙δφ

2

2
− (δφ)2

2a2

]
, (3.4.14)

and the additional terms behave like corrections of subleading order in the slow roll parameters
O (ε, η)

S(2) =

∫
dt d3x a2

[
˙δφ

2

2
− (δφ)2

2a2
+O (ε, η)H2δφ2

]
. (3.4.15)

The dynamics of the inflaton perturbation will hence be described at leading order on super-
horizon scales (k � aH) by the one of a free field in a de Sitter spacetime. Writing the latter
action (3.4.13) in a gauge invariant formulation provides the exact expression∫

dt d3x
a3φ̇0

2H2

[
ζ̇2 − 1

a2
(∂iζ)2

]
. (3.4.16)

whose Fourier modes will be described by a power spectrum of the form

〈ζ~kζ~k′〉 = (2π)3δ(~k + ~k′)Pζ(~k) ,

(
k

aH
� 1

)
. (3.4.17)

A detailed study of the quantization of (3.4.16) shows that the power spectrum of the spectral
curvature is given by

Pζ(~k) =
1

2k3

H4
?

φ̇2
?

, (3.4.18)

where H? and φ̇? are quantities defined at the horizon crossing k = aH. Using the slow roll
parameters definition (3.3.11) gives equivalently

Pζ(~k) =
1

2k3

H2
?

M2
p

1

2ε?
, (3.4.19)

and has been measured with a great precision by COBE [10] – giving the name COBE normal-
ization to the associated constraint – and more recently by the PLANCK experiment [11]

k3Pζ
2π

= 2.198+0.076
−0.085 × 10−9 . (k? ≈ 0.002Mpc) (3.4.20)

The spectral dependency of the scalar perturbations is then usually described by a spectral
index ns defined by

ns − 1 ≡ d ln(k3Pζ(k))

ln k
. (3.4.21)
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Using that a ∼ eHt and the slow roll conditions, one can relate the spectral index to the slow
roll parameters at horizon crossing

ns ≈ −6εV ? + 2ηV ? ≈ −4ε? + 2η? . (3.4.22)

The Planck collaboration was able to measure with very good accuracy [11] the spectral index,
which, as we will see represent one of the main constraints for inflation model building, namely

ns = 0.968± 0.006 . (3.4.23)

Tensor Perturbations from Inflation
Similarly to the scalar perturbations, we saw that the spacetime perturbations contain one
tensor mode, that can also be detected by experiment. In the same manner than the scalar
perturbations, the second order action of the tensor perturbation can be written

S
(2)
T =

M2
p

8

∫
dx3 dta3

[
γ̇2
ij −

1

a2
(∂γij)

2

]
, (3.4.24)

and the polarization modes behave like free fields in a de Sitter background. Two point functions
of the latter modes can be shown to take the form

〈γs~kγ
s′

~k′
〉 =

4

M2
p

H3

2k3
(2π)3δ(~k + ~k′)δss

′ ≡ PT (~k)

2
(2π)3δ(~k + ~k′)δss

′
. (3.4.25)

where s, s′ denote the polarizations of the modes. From these formula, one can define the so
called tensor-to-scalar ratio r by

r ≡ PT
Pζ

= 16ε . (3.4.26)

This quantity is of crucial importance while trying to build a viable model of Inflation, since
the shape of the chosen potential will influence directly the value of the latter. Furthermore it
appears to be severely constrained by experiment. Indeed, a combined analysis from PLANCK
and BICEP2 collaborations found out an upper bound on r, that is

r < 0.09 (95%CL) . (3.4.27)

A more precise information on the exact value of r would be a very important clue, if different
from zero, of the existence of tensor modes. A point that can appear to be puzzling from the
theoretical viewpoint is that there seems to exist a intriguing coincidence between the energy
scale of Inflation and the scale of grand unification. Indeed, it appears that these scales are
related by

V
1/4
inf =

( r

0.12

)1/4

× 2 · 1016GeV . (3.4.28)

There is no a priori strong reason for such a matching of scales. Another important feature
of single field inflation model phenomenology, is that one can relate the value of the tensor-
to-scalar ratio r to the total variation of the field. Using (3.3.29) one can indeed show [12]
that

∆φ

Mp

∼ O (1)
( r

0.01

)1/2

, (Lyth Bound, ’96) (3.4.29)

meaning that if the tensor-to-scalar ratio was experimentally detectable, the inflaton field would
generically run over scales larger than the Planck mass.
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Spectral Dependence of the Tensor Fluctuations
As it is defined for the scalar perturbations, the spectral behavior of the tensor perturbations
can be described by a spectral index nT related to the power spectrum factor by the relation

nT ≡
d lnH2

d ln k
= 2

Ḣ

H2
= −2ε . (3.4.30)

Using Eq. (3.4.26), a consistency relation for inflation to be valid can be written under the
form

nT = −1

8
r . (3.4.31)

The measurement of a negative tensor perturbation spectral index would hence be a very strong
piece of evidence that the theory of Inflation is a good description of our Universe evolution.
Indeed, speculations on the tensor-to-scalar value, even if the latter is measured to be different
from zero, would not be sufficient to claim that the observed gravitational waves would come
from an inflationary period...

3.4.1 Some Alternatives to Single Field Inflation

Although very popular because of its simple formulation, we saw that single field inflation has
peculiar features which make it either undetectable or involving field variations over super-
planckian energy scales. As an alternative to this elegant approach, theories including several
fields can produce a collective contribution to the inflation energy density while fields run over
reasonable energy scales, as in N-flation [13] where the potential is assumed to be of the form

V (φ1, . . . , φN) =
N∑
i=1

Vi(φi) . (3.4.32)

Another appealing class of models is the one of so called Starobinsky-like potentials coming
from modified versions of the Einstein-Hilbert action [14, 15, 16]. Indeed, writing an action of
the sort

S =

∫
d4x
√−g

[
1

2
R +

R2

12M2

]
, (3.4.33)

where M �Mp can be shown to be conformally equivalent to having canonical gravity plus a
scalar field, going back in the Einstein frame by performing fields redefinition

g̃µν = (1 + φ/3M2)gµν , (3.4.34)

ϕ =

√
3

2
ln(1 + φ/3M2) , (3.4.35)

and providing the potential

V (ϕ) =
3M2

4

(
1− e−

√
2/3ϕ
)2

. (3.4.36)

Such potential presents a plateau, on which the inflaton can slow roll before falling into its
minimum, while producing observables of order

ns = 1− 2/Ne , r = 12/N2
e , (3.4.37)
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making the predictions for r in particular very small by requiring that Ne ∼ 60 e-folds (r ∼
0.003).

One should also mention that non minimal coupling of scalar field to gravity can equally
lead to viable inflation model [17, 18, 19, 20, 21, 22]. The Standard Model Higgs boson was
thus imagined to couple non minimally to gravity in so called Higgs Inflation models [23].

3.5 Inflation in Supergravity

As we have seen along the description of Inflation, and through several examples, there exist
a large class of inflationary models where the inflaton field is taking large, trans-planckian
vacuum expectation values during the slow roll period. For this reason the contributions of
Planck-scale suppressed higher-dimensional, non renormalizable operators to the inflationary
potential, of the form

Veff = V0

∑
n

(φ̄φ)n

M2n
p

, (3.5.1)

are generically relevant. It is therefore crucial to embed large-field inflation within the frame-
work of an ultraviolet completion, for which string theory is the one of the most appealing
candidate, described by supergravity in its low-energy limit.

However, such corrections to the vacuum energy V0 can easily destroy the inflationary
scenario by contributing too much to the inflation energy scale. Indeed, already the first
term (n = 1) of the series would lead to a second derivative of the potential of order V ′′ ∼ V0,
pushing the second slow roll parameter η to values of order unity, preventing inflation to enter
any slow roll period. This so called η-problem appears typically in supergravity [24, 25], where
all the fields involved naturally interact through gravitational forces, and couple to the vacuum
energy density, thus producing large effective contribution to the scalar potential

VF ∼
(

1 +
φ̄φ

M2
p

+ . . .

)
V0 . (3.5.2)

More technically, this can be formulated by noting that a minimal Kähler potential containing
the inflaton

K = φφ̄+ . . . , (3.5.3)

would enter an exponential factor while writing the scalar F-term potential in supergravity

VF = eK
(
|∂φW +K,φW |2 − 3|W |2

)
, (3.5.4)

which would render the inflation potential obviously far too step to release 60 e-folds of inflation
as required to solve the flatness and homogeneity cosmological problems. It is important to
note also that the η-problem can arise in all possible picture of inflation while trying to embed
any model in supergravity, including small field inflation where φ . Mp, since the argument
exposed above doesn’t make any assumption on the value of the inflaton field. Large field
inflation models thus encounter even stringent problems making the η-problem a complete
catastrophe, since the series (3.5.1) would not even be summable in such case. For these
important reasons, several possibilities have been developed to circumvent such obstacles.

A first way to evade the η-problem is to make the inflation energy scale be sourced by D-
terms rather than F-terms [26, 27, 28] in order to escape the presence of the latter exponential
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factor (which is not present in the D-term scalar potential). In this case the η-problem is then
simply not present.

While using F-term inflation, there appears to be mainly two ways to avoid the η-problem :
On one hand, one can write the most generic minimal Kähler potential, involving all the fields
present in the theory [29, 30, 31]

K = φ∗iφ
i +
∑
n>2

κ
(n)
i

(φ∗iφ
i)n

M2n−2
p

+
∑

k=m+n

κ
(k)
ij

(φ∗iφ
i)n(φ∗jφ

j)m

M2k−2
p

+ . . . , (3.5.5)

and tune the parameters κ
(n)
i , κ

(k)
ij , . . . such that off diagonal terms appearing in the Kähler

metric render the potential sufficiently flat to release slow roll inflation.

On the other hand, it is possible to evade the η-problem by providing the Kähler potential a
approximate symmetry, preventing non renormalizable operators (3.5.1) to arise in the theory.
This can be released by making the Kähler potential depend only on a quantity invariant under
such symmetry ρ,

K = k(ρ) , (3.5.6)

which does not contain the inflaton degree of freedom, protecting the latter from getting large
supergravity mass corrections.

The simplest candidate symmetry which can be used in this aim is the shift symmetry
[32, 33, 34] under which the complex scalar field containing the inflaton degree of freedom
transforms like

φ −→ φ+ ic , (3.5.7)

where c denotes any real constant. To render the Kähler potential invariant under shift sym-
metry, the latter can thus be made depending only on the combination

ρ = φ+ φ̄ = 2Re(φ) . (3.5.8)

The degree of freedom which is hence not contained in this invariant quantity is the imaginary
part of the scalar field φ which turns out to be a good candidate for playing the role of the
inflaton

ϕ =
√

2 Im(φ) . (3.5.9)

Indeed the inflaton does not appear, in such circumstances, in the exponential factor, protecting
its mass to be affected by large, non renormalizable operators. This simple option for solving
the η-problem will be used in all the works presented in this chapter.

Another feature of supergravity models is that it usually mix up, in the F-term scalar
potential, several scalar fields altogether, which renders the shape of the effective inflationary
potential much more difficult to predict once one has written a given lagrangian. The inverse
problem, which would consist to build a supergravity lagrangian in order to embed a given
quantum field theory of inflation within SUGRA can then be sometimes very challenging.
Indeed one has to write explicitly the complete scalar potential, check that the inflaton is really
the lightest degree of freedom in the theory – hence the one contributing mostly to the inflation
energy density – and test the stability of the inflationary trajectory.
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3.5.1 Chaotic Inflation in Supergravity

As a simple example we will detail in this section how chaotic inflation can be properly embed-
ded in supergravity. For the reasons aforementioned, the naive choice of a lagrangian of the
form 

K = φφ̄+ . . . ,

W = m
2
φ2 + . . . ,

(3.5.10)

would obviously suffer from the η-problem and need to be provided a protecting symmetry to
escape the latter. The shift symmetry can therefore be illustrated here by modifying the Kähler
potential to be

K =
(φ+ φ̄)2

2
+ . . . . (3.5.11)

Yet this trick does not sufficy to produce a nice, chaotic inflationary scenario. Indeed, the
cautious reader might have noticed the presence of a significant negative term in the potential
(3.5.4). In the case of a simple quadratic superpotential, the latter has a dramatic effect on the
shape of the scalar potential for large values of the inflaton field ϕ =

√
2 Im(φ). As a matter of

fact, the potential behaves for ϕ� 1 like

V (ϕ) ∼ −3m2ϕ4 , (3.5.12)

that makes the latter unbounded from below. A solution to this auxiliary problem of SUGRA
chaotic inflation was proposed in 2000 by Kawasaki et al. [32] who introduced in the model a
stabilizer field S appearing simply in the lagrangian as follows K = |φ+φ̄|2

2
+ |S|2 − ξ(SS̄)2 ,

W = mSφ .

(3.5.13)

Up to higher-dimensional terms in the Kähler potential the model is determined by an R-
symmetry : R(φ) = 0, R(S) = 2, and a Z2-symmetry : (φ, S) → ±(φ, S). The inflation
trajectory appears in this case to stand in the direction S = Reφ = 0 and the effective inflation
potential is

Veff (ϕ) =
m2

2
ϕ2 = Vchaotic . (3.5.14)

Here the presence of a quartic term in the Kähler potential is one possible option to stabilize
the field S along the inflationary direction. S is rendere heavy enough during inflation for
ξ & 10. One can motivate the presence of such term in the Kähler potential by assuming that
the latter stems from couplings of heavy modes to S, i.e. from

Wheavy ⊃ λSψ2 + mass terms , (3.5.15)

where ψ denotes heavy modes of mass M . Then a quartic term for S in K is generated by
one-loop quantum corrections of the Coleman-Weinberg type,

K1-loop ' SS̄

[
1− λ2

16π2
log

(
1 +

λ2SS̄

M2

)]
' SS̄ − λ4

16π2M2
(SS̄)2 , (3.5.16)
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as discussed in [35]. Thus, in the generic case λ ∼ O(1) the parameter ξ is related to the mass
scale M as follows,

ξ ∼ 1

16π2M2
. (3.5.17)

Since the heavy degrees of freedom should be integrated out above the energy scale during
inflation, M & ρinf ∼MGUT ' 0.01, but below the Planck scale, one can roughly assume

ξ ' 10 (3.5.18)

to be reasonable values for the coefficient. Note that quartic terms in the Kähler potential could
also arise from α′ corrections in string theory. In such a setup the coefficients would rather be
ξ ∼ 1

M2
s
, where Ms denotes the string scale. In order for string modes to decouple, Ms would

have to be larger than the energy scale during inflation, but smaller than the Planck scale. Due
to the absence of the loop suppression factor 16π2, this could result in larger coefficients.

3.5.2 Generalization of the Stabilizer Approach

In a more general set up, one can construct models where the superpotential has the form
[36, 37]

W = Sf(φ) . (3.5.19)

In this case the Kähler potential can have a generic form

K(|φ+ φ̄|2, SS̄) , (3.5.20)

and the effective potential for the inflaton degree of freedom turns out to be (for S = 0)

V (ϕ) =

∣∣∣∣f ( ϕ√
2

)∣∣∣∣2 . (3.5.21)

Hence the full generality of the function f introduced here may provide this simple class of
models the ability to reproduce any potential V (ϕ). A simple extension of the chaotic case
(f = mφ) is the situation when one adds one correction with parameter a� 1

f(φ) = mφ(1− aφ) . (3.5.22)

A change of variable of the form φ → φ + 1
2a

makes this choice equivalent to the function

f̃ = −ma
(
φ2 − 1

(2a)2

)
and the effective inflation potential has the shape of the mexican hat-

like, Higgs potential

V (ϕ) =
λ

4

(
φ2 − v2

)2
, (3.5.23)

where λ = m2a2 and v = 1/(
√

2a). This potential has been explored in [36, 38, 39] and can
lead, in the case where v � 1 to reasonable observables in two different cases that can be
visualized in Fig. 8 :

• The inflaton starts from very large values. In this case the scenario is somehow similar
to the chaotic picture and leads to large values of r.

• The inflaton starts from small values, producing observables similar to the natural infla-
tion scenario [40, 9].



33

Figure 8: Figure extracted from [38] where observables are computed with the potential (3.5.23) defining New
Inflation. When the fields starts rolling down from large values, the situation is similar to standard chaotic
inflation (the star stands for the chaotic set up) and leads to large values of r (upper part of the curve), while
the case where the Inflaton starts falling from φ ≈ 0 is somehow similar to natural inflation (lower part of the
curve).

3.6 Interplay with Supersymmetry Breaking

Although being an incredibly appealing formulation of quantum field theory from many theoret-
ical viewpoints, supersymmetry requires, from a particle physics phenomenological viewpoint,
to be spontaneously broken in order to provide large masses to all the super-partners that have
at the moment not been produced and observed at the LHC. However, although chaotic infla-
tion and many of its variants have been extensively studied in the literature, its connection to
supersymmetry breaking was not as closely investigated. Indeed F-term and D-term Inflation
are usually using supersymmetry breaking to drive inflation by providing a sufficient energy
density during 60 efolds. However it is worth to ask the question whether it is possible to pro-
duce a model were supersymmetry is spontaneously broken at the end of inflation. As we will
see, this is not free of constraints. Indeed supersymmetry breaking will have a strong influence
on the shape of the inflaton potential, and hence be severely constrained by observables.

Simplest setups to achieve F-term supersymmetry breaking are the O’Raifeartaigh model
[41] and the Polonyi model [42]. Our first goal will thus be to explore to which point these
models can contain or be added an inflationary sector and how the supersymmetry breaking
scale is constrained by experiment in this peculiar case. Coupling the inflaton sector to a
supersymmetry breaking sector turns out to be more difficult than expected. In the simplest
working scenarios we find that the gravitino mass is bounded from above, which, as we will see
in more generality in the next sections, is a strong result of chaotic inflation in supergravity
when using a stabilizer field. This study has given rise to a publication in collaboration with
W. Buchmuller, E. Dudas and C. Wieck [43].

3.6.1 SUSY Breaking Safari : Our Strategy

In the sections that will follow, we will study in full detail different models of Inflation including
at least one stabilizer field to produce a chaotic-like potential in supergravity and breaking
supersymmetry in the vacuum. Our approach will be similar in the different situations and we
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recall here its different steps :

1. Write a lagrangian containing at least an Inflaton field and a stabilizer.

2. Choose the superpotential and a set of fields such that supersymmetry is broken in the
ground state.

3. Study the vacuum at the end of Inflation :

• Tune the parameters to cancel the cosmological constant,

• Compute the gravitino mass in terms of these parameters.

4. Study the inflation trajectory :

• Work out how the fields are stabilized, by imposing the condition of having a single
field inflation,

• Check that the Inflaton is the lightest degree of freedom and that other fields have
masses larger than the Hubble scale, not to contribute too much the energy density
during inflation and hence perturb the latter,

• Eventually check numerically that these heavy fields stabilize quickly during infla-
tion,

• Integrate out the latter to write the effective inflation potential,

• Find out in which range of values the gravitino mass can stand in order to predict
observables in agreement with experimental constraint aforementioned.

3.6.2 Minimal chaotic inflation with a Polonyi field

A minimal way to implement supersymmetry breaking after chaotic inflation is specified by the
superpotential1

W = mSφ+ fX +W0 , (3.6.1)

i.e., by adding a Polonyi-like sector with a chiral superfield X to the inflation model. Thus,
the two sectors decouple except for gravitational-strength interactions. By field redefinitions
and a Kähler transformation m, f , and W0 can be chosen to be real; they have mass dimension
one, two, and three, respectively. Similar to the superpotential, a suitable Kähler potential is
obtained by adding the contributions from the inflation and supersymmetry breaking sectors,
i.e.,

K =
1

2
(φ+ φ̄)2 + SS̄ +XX̄ − ξ1(XX̄)2 − ξ2(SS̄)2 . (3.6.2)

As we mentioned in Section 3.5.1, in the absence of the term proportional to ξ2, the stabilizing
scalar S gets no Hubble-scale contributions to its mass. Will see in the next sections that this

1Notice that this form of superpotential has been studied, in slightly different contexts, in [44, 45].
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is actually a more general result and applies to any model with or without supersymmetry
breaking and a Lagrangian of the type

K = Kab̄χaχ̄b̄ + SS̄ +K(φ+ φ̄) + . . . ,

W = W0 +W1(χa, S) +mSφ , (3.6.3)

where . . . denotes higher-order terms in the fields χa, and K(φ + φ̄) has at least a quadratic
term in an expansion of its argument. On the other hand, the quartic term in the supersym-
metry breaking field X is needed to stabilize the corresponding scalar in the true vacuum and
circumvent the Polonyi problem. Thus, the terms proportional to ξ1 and ξ2 are necessary to
ensure stability of all directions during inflation and in the ground state. Both terms may
result from integrating out heavy degrees of freedom at the quantum level. Since X gets a
Hubble-scale mass during inflation, we often neglect the term involving ξ1 in our discussion of
inflation.

Vacuum after inflation
In this combined model, if f is small compared to all other scales in the theory, m still cor-
responds to the inflaton mass, f denotes the scale of supersymmetry breaking after inflation,
and W0 is chosen such that the vacuum energy vanishes after inflation. The latter is achieved
by imposing

W0 '
f√
3
, (3.6.4)

at leading order in f . After inflation the vacuum of the system is found to lie at

〈φ〉 = 〈S〉 = 0 , 〈X〉 ' 1

2
√

3ξ1

. (3.6.5)

In this vacuum the gravitino mass is given by

m3/2 ≡ eK/2|W | ' W0 '
f√
3
. (3.6.6)

However, as will become clear in what follows, this vacuum structure is altered if f is chosen
to be larger than m. Starting from the full scalar potential

V = eK
{
|mS + (φ+ φ̄)W |2 +K−1

SS̄
|mφ+KSW |2 +K−1

XX̄
|f +KXW |2 − 3|W |2

}
, (3.6.7)

with

KX = X̄(1− 2ξ1|X|2) , KXX̄ = 1− 4ξ1|X|2 , (3.6.8)

KS = S̄(1− 2ξ2|S|2) , KSS̄ = 1− 4ξ2|S|2 , (3.6.9)

we expand V up to second order in all real scalars and obtain

V = f 2 − 3W 2
0 − 2

√
2fW0 α + 2mW0 ϕχ+

1

2
f 2
(
2ζ2 + χ2 + ψ2

)
−W 2

0

(
α2 + β2 + ζ2 + χ2 + ψ2

)
+

1

2
m2
(
ζ2 + χ2 + ψ2 + ϕ2

)
+ 2f 2ξ1

(
α2 + β2

)
, (3.6.10)
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with

S =
ψ + iχ√

2
, X =

α + iβ√
2

, φ =
ζ + iϕ√

2
. (3.6.11)

From the mass matrix of this system it is evident that assuming W0 = f√
3

leads to a tachyonic
direction close to the origin of the potential if

f > m . (3.6.12)

Specifically, only for f < m there is a stable vacuum at 〈φ〉 = 〈S〉 = 0 and f 2 = 3W 2
0 cancels

the cosmological constant. For larger f a linear combination of φ and S obtains a vev and
cosmological constant cancellation is ensured by

〈V 〉 = f 2 − 3W 2
0 +

m2 (f 2 − 6W 2
0 )

256 (f 2 − 2W 2
0 )

4
(f 2 −W 2

0 + 2ξ2 (f 2 − 3W 2
0 ))

= 0 , (3.6.13)

at leading order in m. This effect, although small, is taken into account in our analysis of the
inflaton dynamics.

Interaction during inflation
During inflation all fields in the combined system defined by Eq. (3.6.1) and Eq. (3.6.2) must
be stabilized with large masses, i.e., masses larger than the Hubble scale during inflation, so
they can be integrated out. Considering the scalar potential in Eq. (3.6.7) it is evident that
all real scalar degrees of freedom are stabilized at the origin with large masses, except for the
inflaton ϕ =

√
2 Imφ and the imaginary part of the stabilizer field χ =

√
2 ImS. Due to the

presence of the additional scale f and the constant W0, χ is shifted from its original minimum
at 〈χ〉 = 0. Assuming that χ� 1, we can expand the potential Eq. (3.6.7) up to second order
around χ = 0. The result reads

V = f 2 − 3W 2
0 +

1

2
m2ϕ2 + 2mW0ϕχ+

1

2

(
f 2 − 2W 2

0 +m2 + 2m2ϕ2ξ2

)
χ2 , (3.6.14)

neglecting the non-zero vev of X. Minimizing this expression with respect to χ we find

χ ' − 2mW0ϕ

f 2 − 2W 2
0 +m2 + 2m2ϕ2ξ2

, (3.6.15)

during inflation. Notice that Eq. (3.6.15) depends on f and W0, as well as on ϕ, and that only
the imaginary part of S receives a shift.

Numerical simulations
Using a numerical analysis we can verify that S indeed remains stabilized in its new minimum
for the entire inflationary epoch. While the inflaton slowly rolls down its quadratic potential
the stabilizer field trails its inflaton-dependent minimum near-instantly, see Fig. 9.

Therefore, S can still be treated as a heavy degree of freedom and can be integrated out at
its shifted vev given by Eq. (3.6.15). This yields an effective potential for the inflaton direction
which reads

V (ϕ) = f 2 − 3W 2
0 +

1

2
m2ϕ2

(
1− 4W 2

0

f 2 − 2W 2
0 +m2 + 2m2ϕ2ξ2

)
. (3.6.16)

Evidently, depending on the magnitude of f and hence the gravitino mass, the correction
resulting from integrating out S may severely alter the predictions of chaotic inflation.
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Figure 9: Evolution of the canonically normalized imaginary part of S (a) and the inflaton ϕ
(b) during inflation, for ξ1 = ξ2 = 10 and f = 10−8. In this case, since f < m, cancellation of

the cosmological constant implies W 2
0 = f2

3
. Depending on its initial value the stabilizer field

settles in its shifted minimum very early and remains stabilized for the rest of the inflationary
epoch and beyond (notice the different time scales in the plots). Due to its inflaton-dependence,
the vev of S evolves with time.

Bounds on the gravitino mass
Considering the effective inflaton potential Eq. (3.6.16), alteration of the CMB observables, in
particular the scalar spectral index ns and the tensor-to-scalar ratio r, is to be expected at
f & m. One can expect that increasing f even further will make inflation unfeasible at a value
which satisfies

3m2 . f 2 . 2m2ϕ2ξ2 , (3.6.17)

neglecting the correction to W0 in Eq. (3.6.13). Since m is fixed by observations to be
m ' 6× 10−6 in Planck units, it is necessary to specify realistic values of ξ2 to obtain a mean-
ingful upper bound on the gravitino mass. As we already showed in Section 3.5.1 we can assume
that the Kähler potential terms involving ξ1 and ξ2 stem from couplings of heavy modes ψi to
S and X,

Wheavy ⊃ λ1Sψ
2
1 + λ2Xψ

2
2 + mass terms , (3.6.18)

and hence assume natural values for these parameters to of order

ξ1 ' ξ2 ' 10 . (3.6.19)

Evidently, above a value of f ' 8 × 10−5 the tensor-to-scalar ratio increases above 0.2 and
ns drops below 0.94, a point at which the model is essentially ruled out by observation. This
translates into a bound on the gravitino mass,

m3/2 . 1014 GeV . (3.6.20)
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Figure 10: ns and r as a function of the supersymmetry breaking scale f . Clearly, the model
is ruled out by observation at values of f quite below 10−4.

Therefore, the most minimal way of achieving supersymmetry breaking in chaotic inflation
excludes the possibility m3/2 & H, when releasing inflation with the use of a stabilizer field.
This may have interesting implications for setups with string-inspired supersymmetry breaking
in which the supersymmetry breaking scale is usually very high, as recently investigated in
[46, 47, 48].

3.6.3 Effects of additional interactions

As an attempt to relax the gravitino mass bound (3.6.20) it is possible to extend the previous
minimal model by a coupling between X and φ in the superpotential which preserves the
R-symmetry,

W = mSφ+MXφ+ fX +W0 . (3.6.21)

The new mass scale M contributes, together with m, to the mass of the inflaton, i.e.,

V =
1

2
m2ϕ2 −→ V =

1

2
(m2 +M2)ϕ2 , (3.6.22)

in the absence of supersymmetry breaking. The associated Kähler potential can be written as

K =
1

2
(φ+ φ̄)2 + SS̄ +XX̄ − ξ1(XX̄)2 . (3.6.23)

Notice that no quartic term in S is needed to stabilize the corresponding scalars in this setup.
As before, we can always choose W0, f , and m to be real, but the mass M is generically
complex. For simplicity, we take it to be real in what follows.

Vacuum after inflation
In this framework, the fields are stabilized at different vevs in the vacuum, and the constant W0
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consequently takes a different value to cancel the cosmological constant. Specifically, writing
the complex scalars in terms of their real components

S =
ψ + iχ√

2
, X =

α + iβ√
2

, φ =
ζ + iϕ√

2
, (3.6.24)

the associated vacuum expectation values after inflation are given by

〈ϕ〉 = 〈χ〉 = 〈β〉 = 0 , 〈ζ〉 ' −
√

2
Mf

m2 +M2
, 〈α〉 ' 1√

6 ξ1

m√
m2 +M2

, (3.6.25)

and

〈ψ〉 ' M

(m2 +M2)3/2

f 2 (m2 + 3M2)− 3m2 (m2 +M2)

3
√

6 ξ1 m2
, (3.6.26)

at leading order in f and 1/ξ1. The gravitino mass in the true vacuum is given by

m3/2 ' W0 '
m√

m2 +M2

f√
3
. (3.6.27)

Notice that, as in the model discussed in Section 3.6.2, this vacuum will be corrected for large
values of f . The corrections will, however, not alter our conclusions about the allowed gravitino
mass by much. Therefore, in what follows we use the value of W0 stated in Eq. (3.6.27) as a
leading-order approximation.

Interaction during inflation
As in the decoupled model discussed in Section 3.6.2, the supersymmetry breaking scale f
induces a shift of the imaginary part of S during inflation. In fact, some of the other real scalars
are shifted as well, but their vevs are suppressed compared to that of χ and will therefore be
neglected in what follows. A numerical analysis once more confirms that all vevs are reached
quickly and that all fields, except the inflaton ϕ, remain stabilized during inflation. In the same
manner as in the previous section, expanding up to second order in χ and integrating out the
field gives a leading-order effective potential for the inflaton. The result reads

V (ϕ) =
1

2
(1 + δ2)m2ϕ2

(
1− 8f 2

f 2(2 + 8δ2 + 6δ4) + 3m2(1 + δ2)2(2 + δ2ϕ2)

)
+ f 2

(
1− 1

1 + δ2

)
, (3.6.28)

where we have introduced the dimensionless parameter

δ =
M

m
. (3.6.29)

Notice that, in the limit δ → 0, Eq. (3.6.28) reduces to the effective potential of the minimal
model in Section 3.6.2, given by Eq. (3.6.16). The only difference is that in the present setup
ξ2 = 0. Again, it appears that in this model chaotic inflation is not possible for arbitrarily large
values of f .
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Figure 11: CMB observables as functions of the supersymmetry breaking scale f , for different values of δ and

m = 6× 10−6, ξ1 = 10 in Planck units.

Bounds on the gravitino mass
In fact, it turns out there is a more stringent upper bound on the gravitino mass. The region
of parameter space where the model reduces to a single-field inflation model is δ > O(1). In
this case, there is again a bound stemming from the alteration of the CMB observables due to
the presence of f .

To visualize this bound, and how it scales with δ, the observables ns and r are depicted in
Fig. 11 as functions of f . For small values of δ, there is a bound from demanding that r does
not surpass 0.2 and ns does not drop below 0.94, analogous to Section 3.6.2. For larger values
of δ, however, these requirements are always fulfilled and a bound on f arises from demanding
that ns does not surpass ∼ 0.98. Although increasing δ pushes the bound to slightly higher
values of f , this effect saturates at roughly δ ∼ 10. However, since for δ � 1 the gravitino
mass can be written as

m3/2 =
1√

1 + δ2

f√
3
' 1

δ

f√
3
, (3.6.30)

increasing δ will, at a certain point, actually make the upper bound on m3/2 more stringent. It
turns out that the least severe upper bound on m3/2 is obtained for δ ' 4, in which case

f . 3× 10−5 ⇒ m3/2 . 8× 1012 GeV . (3.6.31)

Clearly the attempt to relax the bound obtained in the decoupled model of Section 3.6.2 was
not successful, since now m3/2 . 0.1H. One may suspect that this is due to the absence of
the large stabilizing term proportional to ξ2. Indeed, including this term in the present setup
trivially reproduces the mass bound Eq. (3.6.20) in the limit δ → 0. Whenever M , and thus δ,
is non-zero, however, the additional coupling will make the bound more severe. In particular,
in the regime δ ∼ O(1) the upper bound on m3/2 is very close to the bound obtained using
ξ2 = 0.
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3.6.4 Supersymmetry breaking in the O’Raifeartaigh model

A minimal way to incorporate chaotic inflation and supersymmetry breaking seems to be con-
tained in the O’Raifeartaigh model, without the addition of extra fields or couplings. In par-
ticular, writing the superpotential of [41] as

W = X(f +
1

2
hS2) +mSφ+W0 , (3.6.32)

where the stabilizer S and the inflaton φ take up the roles of the two - usually heavy -
“O’Raifeartons” and the F-term of X breaks supersymmetry. If φ is protected by a shift
symmetry, as in the cases studied before, the tree-level Kähler potential takes the form

K =
1

2
(φ+ φ̄)2 + SS̄ +XX̄ . (3.6.33)

Again we can choose W0, f , and m to be real, in which case the Yukawa coupling h can be
complex. For simplicity, we take it to be real in what follows. In this setup, inflation should be
possible in the direction of the imaginary part of φ. After inflation, φ is stabilized at the origin
and supersymmetry is broken by X as in the Polonyi model.

However, upon closer inspection the model turns out to be problematic due to tachyonic
instabilities during inflation. The F-term of S induces contributions in the scalar potential of
the form

V ⊃ mϕXS̄ + c.c. , (3.6.34)

i.e., there are mass eigenstates with squared mass

m2
tach ∼ −mϕ ∼ −H . (3.6.35)

Considering the original O’Raifeartaigh model and the discussion involving Eq. (3.5.16) one
may hope that quantum corrections from integrating out S can lift these tachyonic directions,
but they can not. In order to induce a loop-generated mass term of a size comparable to√
H ∼MGUT, heavy modes would have to be integrated out far below the GUT scale. In other

words, the coefficient ξ in Eq. (3.5.17) would have to be larger than allowed by the effective field
theory if the new states are heavy enough to not perturb the single-field inflation dynamics.

There are two notable ways out to make an O’Raifeartaigh model interacting with the
inflaton viable. The first one is invoking microscopic (string theory) contributions to the Kähler
potential of the form (1/Λ2

UV)|S|4, with a UV cut-off ΛUV . MGUT. During inflation, these
would generate large mass terms for S which would cure the tachyonic contributions. A string
theory with Ms ∼ MGUT and α′-corrections to the Kähler potential, plus some additional
assumptions on the origin of S, could be responsible for the existence of such terms.

A second solution could be to add a term of the type ξ1|X|4 with a very large coefficient ξ1.
This would decouple the sgoldstino scalar and again could cure the problem. Technically, this
is equivalent to working with a constrained goldstino superfield X2 = 0. The solution is

X =
ψXψX
2FX

+
√

2θψX + θ2FX , (3.6.36)
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and leads to a non-linearly realized supersymmetry which was discussed in other inflationary
contexts in [49, 50, 51, 52, 53]. In our case, the effective action is described by

K =
1

2
(φ+ φ̄)2 + SS̄ +XX̄ − ξ|S|4 ,

W = X

(
f +

1

2
hS2

)
+mSφ+W0 , and X2 = 0 . (3.6.37)

Since the superfield X contains no scalar, the dynamics simplifies. As in the previous examples,
the only relevant fields during inflation are the inflaton ϕ and ImS = χ/

√
2. At all orders in

the inflaton and quadratic order in S, the scalar potential is

V ' f 2 − 3W 2
0 +

1

2
m2ϕ2 + 2mW0ϕχ+

1

2

(
f 2 − 2W 2

0 − hf +m2 + 2m2ϕ2ξ
)
χ2 . (3.6.38)

As in the simpler models before, the field χ will track the inflaton trajectory, with a value given
by

χ = − 2mW0ϕ

f 2 − 2W 2
0 − hf +m2 + 2m2ϕ2ξ

. (3.6.39)

Since the tracking is very fast, we can write down an effective inflaton potential by inserting
Eq. (3.6.39) into the scalar potential Eq. (3.6.38). The result reads

V (ϕ) = f 2 − 3W 2
0 +

1

2
m2ϕ2

(
1− 4W 2

0

f 2 − 2W 2
0 − hf +m2 + 2ξm2ϕ2

)
. (3.6.40)

Notice that, as in Section 2.2, we neglect the sub-leading correction stemming from the modified
cosmological constant cancellation condition for large f .

As is well-known, the O’Raifeartaigh model has two vacua’s, depending on the values of the
parameters:

• |hf | > m2

In this case, either the imaginary or the real part of S has a non-zero vev in the ground
state in the rigid supersymmetric limit, equal to

√
2(|hf | −m2)/h. Cancellation of the

cosmological constant at leading order is in this case ensured by

m2(2|hf | −m2) ' 3h2|W0|2 . (3.6.41)

The gravitino mass in the ground state is given by

m3/2 '
m√
3h

√
2|hf | −m2 , (3.6.42)

which, for h ∼ O(1), is bounded by

m3/2 < m . (3.6.43)

However, even if h is chosen to be very small to avoid this bound, we expect the CMB
observables to receive similar corrections as in the model discussed in Section 2.1, as soon
as f & m.
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• |hf | < m2

In this case, all fields are stabilized at the origin in the true vacuum and W0 = f√
3

cancels
the cosmological constant. Again, as can be deduced from the similarity of the effective
inflaton potentials, the analysis of Section 2.1 applies to good approximation. Therefore,
we expect a bound on the gravitino mass of

m3/2 . H . (3.6.44)

In summary, in the O’Raifeartaigh model with non-linear supersymmetry, imposed by the
constraint X2 = 0, the outcome is again an upper bound on the gravitino mass which is similar
to the ones obtained in the previously discussed models.

We have proposed here two solutions to make an O’Raifeartaigh model coupled non-trivially
to the inflaton viable from the chaotic inflation perspective. The simplest option, however,
is clearly to decouple the supersymmetry breaking sector containing the fields χi from the
inflaton sector containing the inflaton φ and the stabilizer S, like for example in models with a
superpotential

W = WO’R(χi) +mSφ . (3.6.45)

The model of Section 3.6.2 is probably the simplest example of this type.

3.7 Intermediate Conclusions

In this section, we have studied in detail the interplay between large-field inflation and su-
persymmetry breaking reinforcing the models with small value of the superpotential during
inflation, among which we studied models with a ‘stabilizer’ field coupled to the inflaton and
a supersymmetry breaking sector. We found that models with renormalizable couplings of
non-gravitational origin between the inflaton and the supersymmetry breaking sector are very
constrained and difficult to construct. Therefore, the simplest viable models turn out to be
the ones in which the coupling between the two sectors is purely gravitational. In all the
cases presented above, we found an upper bound on the supersymmetry breaking scale and
consequently on the gravitino mass. The precise bound is model-dependent but parametrically
of the order of the inflaton mass. Therefore, chaotic inflation is challenged in scenarios like
KKLT moduli stabilization, where usually m3/2 > H is required. Let us stress that models
with ”strong moduli stabilization“ [54, 55, 56, 57] with a light gravitino, m3/2 � m, were con-
structed some time ago and are perfectly viable from our perspective, in particular with regard
to low-energy supersymmetry or mini-split models. Our results merely emphasize that the
complementary high-mass region m3/2 > m, interesting in some string constructions, is more
problematic for chaotic inflation, again in the models with ”stabilizer“. Our results imply non-
trivial constraints on high-scale supersymmetry breaking scenarios, if the inflationary dynamics
is of large-field, chaotic type. Models with moderately small (compared to the inflaton mass)
scale of supersymmetry breaking [54, 55, 56, 57] are therefore preferable from this viewpoint.

3.8 Moduli Stabilization and Inflation

String Theory is probably one of the most exciting and popular model of unification, assembling
all together the different interactions of nature in a single mathematical formulation. Yet it
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requires a tedious treatment, after compactifying extra dimensions that one cannot see in our 4D
world, so that higher dimensional objects present in the 10D or 11D formulation of M-Theory
do not destroy our experimentally constrained four dimensional phenomenology of physics.

One challenging goal for String Theory and Supergravity is to construct a theoretical model
of compactification in which our 4D world arises to be a de Sitter vacuum (as it was indicated by
experimental data [58, 59]). For theoretical reasons [60, 61, 62] the latter cannot be achieved at
the leading order action of either 10D or 11D formulation of M-Theory, in a gs and α′ expansion.
Yet it was proposed by Kachru, Kallosh, Linde and Trivedi in 2003 [63] to use quantum α′

corrections and extended objects like D-branes to build a dS solution of String Theory. We
will first review this model and its implication in a first section before entering a more general
discussion on the role of supersymmetry breaking in achieving both moduli stabilization and
a proper inflationary scenario. This work has been published in [64] in collaboration with W.
Buchmuller, E. Dudas, A. Westphal, C. Wieck and M. Winkler.

3.8.1 Introduction to String Inspired Models : the KKLT proposal

Working in type IIB string theory, compactified on a Calabi Yau (CY) manifold in the presence
of fluxes, one can assume that the complex structure moduli and the dilaton are fixed [65]
and deal with stabilizing the remaining Kähler moduli (assuming the compactification overall
volume is the only remaining Kähler modulus). At leading order in α′ and gs the latter is not
fixed, due to a no-scale structure, and one will need to include corrections breaking the no-scale
structure of the lagrangian to do so.

In particular, in the presence of non zero flux, one gets for the Calabi Yau moduli [66, 67, 68]
a superpotential of the form

W =

∫
M
G3 ∧ Ω , (3.8.1)

where G3 = F3− τH3 with τ being the axio-dilaton, Ω the (3, 0) holomorphic form, and F3, G3

being the three-form fluxes in type IIB arising from NS and RR sectors respectively.
The tree level Kähler potential reads in this case

K = −3 ln
[
T + T̄

]
− ln

[
S + S̄

]
− ln

[
−i
∫
M

Ω ∧ Ω̄

]
, (3.8.2)

where T is the single overall volume modulus.
One can show that, by a suitable choice of H3, F3, the complex structure moduli, the dilaton

and the moduli of D7 branes (in type IIB language) are completely fixed, with masses at the
scale – rendered arbitrarily large by the latter choice –

m ∼ α′

R3
, (3.8.3)

R being the radius of the compactification manifoldM, and that the only remaining dynamical
fields are Kähler moduli, in particular the overall volume T

For stabilizing the latter, it was proposed in [63] to include D3 branes [69] or stacks of Nc

D7 branes wrapping four-cycles on the compactification manifold. In the second case, gluino
condensation under the N = 1 supersymmetric SU(Nc) arising in the low energy theory leads
to write a superpotential of the form

Wgauge = Ae−
2πT
Nc ≡ Ae−aT , (3.8.4)



45

Figure 12: Schematic representation of the supersymmetric AdS vacuum obtained in the unlifted version of
the KKLT model.

where A is determined by the energy scale under which the associated SQCD theory is valid.
The so called KKLT model, thus proposes to study the moduli stabilization with the

lagrangian  K = −3 ln
[
T + T̄

]
,

W = Ae−aT +W0 ,
(3.8.5)

W0 being the tree level contribution generated by the fluxes.
Such lagrangian was studied and shown to produce an AdS supersymmetric vacuum, as

depicted in Fig. 12. To construct a dS solution, it was argued in [63] that the presence of anti
D3 branes transverse to the compactification manifold would contribute to the energy density
– breaking slightly supersymmetry – through the uplift

δV ∼ 1

(T + T̄ )2
, (3.8.6)

where D depends on the number of D3 branes involved2. The value of the minimum of T
appears to be in this case almost identical to the previous AdS minimum location and the
mass of the latter field arises to be very large compared to the tuned cosmological constant.
The potential ends up with the shape represented in Fig. 13 where one can of course notice
the presence of a runaway vacuum at infinity. The finite dS vacuum turns hence out to be
metastable, and a possible destabilization of the modulus would have dramatical consequences
since it would de-compactify the Calabi Yau manifold.

The AdS vacuum being supersymmetric, one can estimate the depth of the minimum in
Fig. 12 to be of order

VAdS = −3eK|W|2 = −3m2
3/2 . (3.8.7)

One can in addition translate this result in the presence of the uplift (3.8.6) showing that in
this case DTW(T dS0 )�W(T dS0 ) and hence

m2
3/2 ≈

VAdS
3
≈ Vbarrier

3
. (3.8.8)

2More generally, the uplift can take the form δV ∼ (T + T̄ )−n where n = 2 in the case of anti D3 branes
and n = 3 in the case of an F-term uplift.
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Figure 13: Schematic representation of the dS vacuum obtained after uplifting of the AdS vacuum obtained
in the KKLT model.

As we will see in what follows, this has strong consequences while trying to couple gravi-
tationally an inflationary sector to the KKLT model of moduli stabilization. Indeed, a typical
energy scale during inflation has a dependence3 in ρ and φ of the sort

V infl.
tot ≈ VKKLT (T ) +

V (φ)

(T + T̄ )n
. (3.8.9)

Consequently, such term destabilize the potential for V infl. � Vbarrier ∼ m3/2, see Fig. 14.

Since during inflation Vinfl. = H2

3
this condition requires that the gravitino mass satisfies

H . m3/2 . (3.8.10)

We will illustrate this bound in more detailed analysis in what follows. Alternatively, one can
reconcile a small value of the gravitino mass by using different kinds of stabilization for pulling
up the potential and obtain a dS vacuum. This was proposed in [54, 70] using a racetrack-type
superpotential with two exponents

W = W0 + Ae−aρ +Be−bρ . (3.8.11)

In this case, the addition of two extra parameters allows a fine-tuning such that one can get
(see Fig. 15) either one Minkowski and one AdS vacuum either two different AdS vacua’s, as
well as a barrier whose height is independent on the gravitino mass and can be rendered – by
an appropriate choice of parameters – arbitrarily large, while the gravitino can be tuned to be
very small

H � m3/2 . (3.8.12)

The case of two AdS minima can further be uplifted by adding an O’Raifeartaigh sector
giving rise to the O’KKLT model [35] that we will not describe in detail in this work.

In the following sections we will investigate in more details, how one can embed quadratic
inflation into supergravity including a moduli stabilization sector. As we will see, this will
lead to modifications such that quadratic inflation could remain a viable possibility from the
experimental constraints viewpoint.

3Note that we have redefine ρ such that −i(ρ− ρ̄)→ (ρ+ ρ̄), notation to which we will stick for convenience
in the rest of the thesis.
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Figure 14: Figure extracted from [54]. The lowest curve stands for the one of the standard KKLT model.

The second one describes, e.g., the inflationary potential with the term Vinfl. = V (φ)
(ρ+ρ̄)3 added to the KKLT

potential. The top curve shows that when the inflationary potential becomes too large, the barrier disappears,
and the internal space de- compactifies.

V

ρ
Figure 15: Schematic form of the KL potential in the case of one minkowski vacuum and one Ads minimum.
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3.8.2 Non Decoupling Effects of Moduli Stabilization : A Roadmap

In Section 3.6 we have seen how the interplay between a SUSY breaking sector and chaotic
inflation with the use of a stabilizer field leads through several examples to a bound which is
contrary to the one we just discussed in the light of the KKLT model, that is one requires on
the contrary that

m3/2 . H . (3.8.13)

As we will see, setting an upper bound for the gravitino mass is a generic feature of the chaotic
inflation implementation with a stabilizer field while one wants to stabilize all the heavy fields
present in the theory, including moduli.

Yet, there has been substantial progress in implementing chaotic inflation without a stabi-
lizer, and related models, in string theory. For recent discussions, cf. [47, 71, 48, 72, 73, 74, 75,
76, 77]. In particular, the authors of [74, 75] have analyzed the effects of moduli stabilization
in F-term axion monodromy inflation. A general supergravity analysis comparing the scale of
inflation and the gravitino mass has been performed in [78, 79]. On the other hand, it has
proven difficult to implement the model proposed in [32] in explicit string constructions. For
recent treatments, cf.[71, 80], and for a different approach, cf. [81].

As we saw in the previous section, string compactification usually involves many scalar fields
that have to be stabilized during and after inflation. We saw how the KKLT model was one
proposal for achieving this task, and that supersymmetry breaking may be strongly constrained
by this requirement. From the point of view of releasing inflation without a stabilizer field, one
may ask whether some of these heavy moduli fields can mitigate the problems of the quadratic
inflation model without a stabilizer field that was reviewed in Section 3.5.1. In particular, it
may be possible that in no-scale supergravity setups involving moduli fields the negative term
which makes V unbounded from below is canceled. In what follows we consider models which
only contain Kähler moduli, assuming all other moduli to be stabilized supersymmetrically.

We will make clear in the next section many important points about moduli stabilization.
First we will demonstrate that this no-scale cancellation can only happen when the moduli break
supersymmetry. In the absence of supersymmetry breaking, fields heavier than the Hubble scale
will indeed – which is not that much surprising – completely decouple from the dynamics of
inflation, as discussed in [82] and, for the case of chaotic inflation without a stabilizer field, in
[43].

On the contrary, we will see that supersymmetry breaking generically induces effects which
do not decouple, in particular soft-breaking terms. Therefore, moduli stabilization with broken
supersymmetry affects inflation even if the involved fields are heavy and can be integrated out.
One can then divide moduli stabilization schemes in two classes.

1. The stabilization of moduli does not (or almost not) induce supersymmetry breaking.
This means that the moduli masses and the inflaton mass are much bigger than the
scale of supersymmetry breaking, given by the gravitino mass m3/2. In this case, the
moduli can decouple with little effects on the dynamics of inflation, cf. [82]. Examples
in this class are those with “strong moduli stabilization”, treated in [54, 56], as well as
stabilization via world-sheet instanton couplings as discussed in [27]. In models of this
class chaotic inflation without a stabilizer does not work because the inflaton potential
remains unbounded from below for ϕ & 1.
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2. The stabilization of moduli spontaneously breaks supersymmetry such that the scale of
supersymmetry breaking is larger than the inflaton mass. In this case, integrating out
the heavy moduli results in substantial effects on the dynamics of inflation. This class is
what we will study in detail in this section. Indeed we will investigate how supersymmetry
breaking interplays with chaotic inflation different models that are the KKLT model [63]
and the Large Volume Scenario [83]. We will see that in all three examples inflation
is possible if the gravitino mass is larger than the Hubble scale. Many of the details
are, however, different in the three cases. Note that the considered models of moduli
stabilization are hardly compatible with the alternative inflation model of [32] which
requires the gravitino mass to be parametrically smaller than the inflaton mass [43].

We will finally see that, despite the differences in detail, all considered models reduce to an
effective single-field inflaton potential of remarkable universality. The moduli backreact on the
inflaton, and the flattened effective potential in all models is of the form

V =
1

2
m2
ϕ ϕ

2

(
1− ϕ2

2ϕ2
M

)
. (3.8.14)

This potential is characterized by the inflaton mass m setting the scale of the potential and po-
sition ϕM of a local maximum induced by the negative quartic terms stemming from integrating
out the moduli. Hence, all the setups exposed will be shown to share universal predictions for
the CMB observables, in particular r & 0.05, after imposing the Planck constraints.

3.9 Integrating out Heavy Moduli : General Results

3.9.1 The Generic Picture

In a similar way we proceeded in the last sections, we are interested in supergravity models
in which the inflaton field ϕ is the imaginary part of a complex scalar field φ = 1√

2
(χ + iϕ)

and interacts with heavy moduli and supersymmetry breaking fields, collectively denoted by
Tα. Yet in this section we will focus on models without “stabilizer field”, that is, the effective
action is generically defined by

K = K0(Tα, T ᾱ) +
1

2
K1(Tα, T ᾱ)(φ+ φ̄)2 , (3.9.1)

W = Wmod(Tα) +
1

2
mφ2 , (3.9.2)

where the Tα’s denote arbitrary moduli fields, much heavier than the inflaton, that one wants to
get stabilized, and integrated out during inflation. As already mentioned earlier, these moduli
can be integrated out either in a supersymmetric vacuum or breaking supersymmetry at their
minimum of potential. We will hence investigate whether both these picture can produce an
acceptable inflation scenario in this general framework of chaotic inflation without stabilizer.

Supersymmetric decoupling
Let us first have a glance at the simplest chaotic inflation model in supergravity without sta-
bilizer field, including the effect of supersymmetry breaking. The simplest model of this type
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is described by

K =
1

2
(φ+ φ̄)2 +XX̄ − ξ1(XX̄)2 ,

Winf =
1

2
mφ2 + fX +W0 . (3.9.3)

Note that we have included here a polonyi field sector to break supersymmetry, compared
to the generic form we wrote in Eq. (3.9.1), but this will not change the conclusion of the
discussion. However, this model suffers from the same instability problem as in the absence
of supersymmetry breaking, as mentioned in Section 3.5.1. This becomes evident to see by
inspecting the scalar potential,

V = eK

{∣∣∣∣mφ [1 +
1

2
φ(φ+ φ̄)

]
+ (fX +W0)(φ+ φ̄)

∣∣∣∣2
+K−1

XX̄

∣∣∣∣f +KX

(
1

2
mφ2 + fX +W0

)∣∣∣∣2 − 3

∣∣∣∣mφ2

2
+ fX +W0

∣∣∣∣2
}
. (3.9.4)

Indeed, we recover a potential unbounded from below for large φ. Since the origin of the
problem is the negative supergravity contribution to the potential, at first sight, the presence
of a supersymmetrically stabilized modulus ρ can solve the problem via a no-scale cancellation.
Note that the effects of stabilized Kähler moduli on similar models of chaotic inflation have
been previously studied in [84, 44, 82]. Starting from the Kähler potential

K = −3 log (ρ+ ρ̄) +
1

2
(φ+ φ̄)2 +XX̄ − ξ1(XX̄)2 , (3.9.5)

and superpotential

W = Wmod(ρ) +Winf(φ,X) , (3.9.6)

Winf(φ,X) =
1

2
mφ2 + fX +W0 , (3.9.7)

the scalar potential reads

V = eK
{

(ρ+ ρ̄)2

3
|∂ρW |2 − (ρ+ ρ̄)(∂ρWW + ∂ρWW ) +KαᾱDαWDᾱW

}
, (3.9.8)

where α = φ,X. Thus, the dangerous negative term indeed seems to be canceled due to the
no-scale structure of the model.

However, upon closer inspection this cancellation does not occur. During inflation, there is
a non-trivial interaction between the inflaton and the modulus field. The modulus vev is shifted
by an amount δρ, which can be evaluated in an inverse expansion of the modulus mass [82],
assuming it is heavy enough. Similar setups with heavy Kähler moduli have been previously
studied in [54, 55, 56, 57]. We assume that Wmod is such that the scalar potential has a local
minimum at ρ0 = ρ̄0 ≡ σ0 which is supersymmetric and Minkowski,

DρWmod(σ0) = Wmod(σ0) = 0 . (3.9.9)
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The mass of the modulus in the ground state is given by

mρ =

√
2σ0

3
W ′′

mod(σ0) , (3.9.10)

where primes denote derivatives with respect to ρ. Notice that this stabilization scheme differs
from the original proposal by KKLT, in the sense that mρ and m3/2 are uncorrelated and the
modulus can be much heavier than the gravitino.

We want now to visualize how the inflaton potential changes when the modulus is integrated
out and taken to be very heavy. Hence, for mρ > H, in order to guarantee single-field inflation,
the shift of the modulus vev δρ can be expanded in powers of H/mρ and is given, at leading
order, by

δρ ' Winf√
2σ0mρ

, (3.9.11)

which is small, δρ ≤ σ0, if mρ >
Winf

(2σ0)3/2 .

As demonstrated in [82], once the modulus is integrated out at its shifted vev the inflaton
potential is corrected by terms which can be expanded in powers of H/mρ. The modified
inflaton potential reads

V =
Vinf(φα)

(2σ0)3
− 3

2(2σ0)9/2mρ

{
Winf

[
Vinf(φα) + eKKαᾱ∂αWinfDᾱW inf

]
+ c.c.

}
, (3.9.12)

at leading order in H/mρ. Here Vinf(φα) denotes the inflationary potential in the absence
of a modulus sector. But this is precisely the potential before the addition of the modulus,
Eq. (3.9.30), which is unbounded from below. The leading order correction in Eq. (3.9.12)
may be sizable, depending on mρ, but cannot solve the problem of unboundedness from below!
Therefore, after integrating out ρ at its true minimum the no-scale cancellation is not
effective since the modulus minimizes its F-term, including the contribution from the inflaton
sector.

Coming back to our generic framework (3.9.1), we just saw in this example that for a single
heavy modulus T with K0(T, T ) = −3 ln

(
T + T

)
and K1(T, T ) = 1 the effects on the dynamics

of inflation can be expressed as

V ≈ Vinf(φα)

(2T0)3
− 3

2(2T0)9/2mT

{
Winf

[
Vinf(φα) + eKKαᾱ∂αWinfDᾱW inf

]
+ c.c.

}
− 3eK

(2T0)6m2
T

∣∣∣KαᾱDαWinf∂ᾱW inf

∣∣∣2 , (3.9.13)

up to terms suppressed by higher powers of the modulus mass mT . Evidently, all corrections
stemming from integrating out the heavy modulus disappear in the limit mT →∞. Of course
the study could be held for a more general lagrangian, but we will see in what follows that the
discussion would be unchanged.

This conclusion is actually to be expected: if the modulus does not break supersymmetry
and is heavy enough to not perturb the single-field chaotic inflation, it will decouple from the
inflationary dynamics at leading order. Then the leading-order scalar potential can be obtained
in the limit mρ → ∞ which results in the original model defined by Eq. (3.9.29). A lighter
modulus can certainly change the situation, but for mρ < H the model turns into a much more
complicated multi-field inflation model.
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Effects of supersymmetry breaking
Another solution to this problem is to stabilize the modulus non-supersymmetrically. If the
modulus ρ studied earlier would have had a non-vanishing F-term during inflation, it may indeed
have canceled the dangerous −3|W |2 term by virtue of the no-scale structure. A similar setup
has recently been discussed in [48], where the modulus is stabilized non-supersymmetrically in
a Large Volume Scenario.

In the generic framework, if any of the fields Tα was breaking supersymmetry the picture
would change. In this case, there are well-known effects that do not decouple from inflation.
In the context of low-energy supersymmetric models these lead to soft-breaking terms whose
size is controlled by the gravitino mass. In particular, considering spontaneous supersymmetry
breaking we expect the effective inflaton potential to be of the form

V = VSUGRA +
c

2
m̃m3/2ϕ

2 + . . . , (3.9.14)

where c is a model-dependent real constant and VSUGRA is to be computed using

K =
1

2

(
φ+ φ̄

)2
, W =

1

2
m̃φ2 , (3.9.15)

with m̃ = K−1
1 e

1
2
K0(T0,T 0)m and the wave-function normalization φ → K

−1/2
1 φ to match the

notation of Eq. (3.9.2). Notice that in Eq. (3.9.14) a term proportional to m2
3/2ϕ

2 is absent due
to the shift symmetry φ→ φ+iα, which is broken softly by the mass term in the superpotential.
Computing VSUGRA from Eqs. (3.9.15) while imposing cancellation of the cosmological constant
at the end of inflation, ϕ = 0, and setting the heavy real scalar χ ≡

√
2 Re(φ) to its minimum

at 〈χ〉 = 0, we find

V =
1

2
m̃2ϕ2 +

c

2
m̃m3/2ϕ

2 − 3

16
m̃2ϕ4 + . . . . (3.9.16)

Apparently, the second term only decouples from inflation ifm3/2 � m̃. The dots in Eqs. (3.9.14)
and (5.1.1) denote sub-leading terms and higher powers in ϕ, for example terms of order
O(m̃m3/2ϕ

4). Usually, such terms can be discarded easily. In large-field inflation, however,
super-Planckian excursions of ϕ can make corrections relevant. Therefore, in the following
we systematically calculate corrections to the leading-order potential in Eq. (5.1.1). We are
curious to find out if corrections from the modulus sector can cancel the third term in the
effective potential, which makes V unbounded from below. Furthermore, if the modulus sec-
tor has an approximate no-scale symmetry we expect a cancellation of the bilinear soft mass
term, i.e., c� 1. We wish to discuss if, in this situation, chaotic inflation can proceed via the
supersymmetric mass term of ϕ without spoiling the stabilization of moduli.

3.9.2 Integrating out heavy moduli

In the following, we would like to generalize the results of [82], in particular Eq. (3.9.13), to
more general supergravity Lagrangians. Starting from Eqs. (3.9.2) we find for the Kähler metric
and its inverse

KIJ̄ =

(
K0,αβ̄ 0

0 K1

)
, KIJ̄ =

(
Kαβ̄

0 0
0 K−1

1

)
. (3.9.17)
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The indices I and J run over the Tα and φ. Accordingly, the scalar potential is given by

V = eK0

{
Kαβ̄

0

[
Wα +K0,α

(
Wmod(Tα) +

1

2
mφ2

)][
W β̄ +K0,β̄

(
Wmod(T ᾱ) +

1

2
mφ̄2

)]

+K−1
1 m2|φ|2 − 3

∣∣∣∣Wmod(Tα) +
1

2
mφ2

∣∣∣∣2
}
.

(3.9.18)

Assuming the cosmological constant to be canceled at φ = 0, i.e., after inflation has ended,
means

Kαβ̄
0 [Wα +K0,αWmod]

[
W β̄ +K0,β̄Wmod

]
= 3 |Wmod(Tα,0)|2 . (3.9.19)

Furthermore, we assume that the moduli fields adiabatically trace the minimum of their po-
tential during inflation. This is justified as long as their masses are larger than the Hubble
scale. We can now integrate out the heavy fields Tα to obtain an effective scalar potential for
the inflaton ϕ. Using Eq. (3.9.19) and using that χ is heavy due to its soft mass and stabilized
at the origin we can expand V in powers of the inflaton field,

V = eK0

{
Kαβ̄

0

[
Wα +K0,α

(
Wmod(Tα)− 1

4
mϕ2

)][
W β̄ +K0,β̄

(
Wmod(T ᾱ)− 1

4
mϕ2

)]

+
1

2
K−1

1 m2ϕ2 − 3

∣∣∣∣Wmod(Tα)− 1

4
mϕ2

∣∣∣∣2
}

(3.9.20)

which can be put under the form

V = V0(Tα, T ᾱ) +
1

2
V1(Tα, T ᾱ)mϕ2 +

1

4
V2(Tα, T ᾱ)m2ϕ4 . (3.9.21)

The explicit coefficients V0, V1, and V2 and other details of the computation can be found in
the Appendix of [64]. During inflation the fields Tα are displaced from their minima,

Tα = Tα,0 + δTα . (3.9.22)

We can expand the coefficients Vi of Eq. (3.9.21) at leading order in δTα as long as |δTα| � |Tα,0|
(condition which can be verified a posteriori). Introducing ρα = (Tα, T ᾱ) this can be written as

V =
1

2
δραM

2
αβδρβ +

1

2

(
V1 +

∂V1

∂ρα
δρα

)
mϕ2 +

1

4
V2m

2ϕ4 + . . . , (3.9.23)

where M2
αβ denotes the un-normalized mass matrix of the ρα. Again, detail computations can

be found in [64]. Minimizing this expression with respect to δρα gives,

δρα = −1

2
(M−2)αβ

∂V1

∂ρβ
mϕ2 . (3.9.24)
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Plugging this back into Eq. (3.9.23) one obtains the effective potential in its most general form,

V =
1

2
V1

(
Tα,0, T ᾱ,0

)
mϕ2 +

1

4
V2

(
Tα,0, T ᾱ,0

)
m2ϕ4

− 1

2

(
∂V1

∂Tα
∂V1

∂T ᾱ

)((m−2)αβ̄ (m−2)αβ

(m−2)ᾱβ̄ (m−2)ᾱβ

)( ∂V1

∂T β̄
∂V1

∂Tβ

)
m2ϕ4 + . . . .

(3.9.25)

To simplify this expression it is useful to consider a limit in which supersymmetry is weakly
broken. This is the case when the supersymmetric mass, i.e., the mass of the fermions associated
with the scalars Tα, is much larger than the gravitino mass (With the exception of the goldstino,
of course). Specifically, when

Eigenvalues [(mF )αβ] = Eigenvalues

[
eG/2

(
∇αGβ +

1

3
GαGβ

)]
� m3/2 . (3.9.26)

Alternatively, one may consider the case where the supersymmetry breaking scale is large but
the supersymmetry breaking sector decouples from moduli stabilization. An example for this
is supersymmetry breaking in the O’Raifeartaigh model with a very heavy Polonyi field. For
both of these possibilities the effective inflaton potential can be expanded to finally obtain the
expression

V ≈ mϕ2

2
eK0

{
−1

2
Kαβ̄

0

(
K0,β̄DαWmod +K0,αDβ̄Wmod

)
+mK−1

1 +
3

2
(Wmod +Wmod)

}
+
m2ϕ4

16
eK0

{
− 3 + eK0/2

[
Kδ

(
m−1
F

)βδ [−Kεε̄
0 (Kβε +KβKε − ΓγβεKγ)Dε̄Wmod

+ 2DβWmod + 3KβWmod + 2mK−2
1 (K0,βK1 −K1,β)

]
+ h.c.

]}
,

(3.9.27)

which is the desired generalization of Eq. (3.9.13). Notice, however, that the quadratic term is
independent of the small-supersymmetry breaking approximation. It is simply the total mass –
supersymmetric and soft mass – of the inflaton in the true vacuum, computed from the effective
action defined by (3.9.2). Indeed, using the definition of the inflaton Imφ = ϕ/

√
2 and the

supergravity scalar masses in Eqs. (3.6.3), we find that the inflaton mass is

m2
ϕ = m2

φφ̄ −
1

2

(
m2
φφ +m2

φ̄φ̄

)
. (3.9.28)

It is a straight-forward, though non-trivial exercise to prove that Eq. (3.9.28) equals the mass
term in the first line of Eq. (3.9.27).

Using this result we can, in principle, calculate the effective potential with corrections for
any model of moduli stabilization described by the ansatz Eqs. (3.9.2). In practice, however,
the approximation outlined above to obtain Eq. (3.9.27) – more precisely, the quartic term,
as explained above – is not always applicable. In that case, either a more general expression
for the effective potential can be used, given by Eq. (3.9.25), or the calculation can be signifi-
cantly simplified by expanding in small parameters while performing the above analysis. Before
demonstrating this in three popular examples of moduli stabilization with spontaneously broken
supersymmetry, we give a short remark on chaotic inflation with a stabilizer field.
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3.9.3 Chaotic inflation with a stabilizer field

Although we will concentrate in the next sections on simple chaotic inflation model with a
quadratic superpotential, we will here make a couple of remarks about the scenario with a
stabilizer field. This model has been intensively studied in the literature, and its interplay with
supersymmetric moduli stabilization has been treated in [84, 44, 82]. A generalization of the
results in [82] can be found analogously to the above analysis.

As a starting point we can consider

K = K0(Tα, T ᾱ) +
1

2
K1(Tα, T ᾱ)(φ+ φ̄)2 +KSS̄|S|2 +

1

4
KSS̄SS̄|S|4 + . . . ,

W = Wmod(Tα) +mSφ .
(3.9.29)

As before, for simplicity we assume the superpotentials of the moduli sector and inflation sector
to be decoupled. The canonically normalized inflaton is ϕ =

√
2Imφ, and ψ =

√
2ImS. The

real parts of φ and S are assumed to be stabilized at the origin. The scalar potential is given
by

V = eK
{
Kαβ̄

0 [Wα +K0,α(Wmod +mSφ)]
[
W β̄ +K0,β̄(Wmod +mSφ)

]
+ K−1

1 m2|S|2

+
1

KSS̄ +KSS̄SS̄|S|2
∣∣(1 +KSS̄|S|2

)
mφ+KSS̄S̄Wmod

∣∣2 − 3 |Wmod +mSφ|2
}
.

(3.9.30)

Imposing cancellation of the cosmological constant, Eq. (3.9.19), and stabilization of all Tα and
S during inflation, we can again integrate out the heavy Tα and do a similar analysis than
we did in the previous section to find, in the near-supersymmetric limit outlined above, the
effective inflaton potential

V ≈ 1

2
m2ϕ2

(
K−1
SS̄
eK0 − V 2

1

m2
S

)
− V 2

1 e
K0

4m4
S

m4ϕ4

{
KSS̄SS̄

K2
SS̄

+ eK0/2

[
Kδ(m

−1
F )βδ (3.9.31)

×
[
Kεε̄

0 (Kβε +KβKε − ΓγβεKγ)Dε̄Wmod −DβWmod −
1

2
KβWmod

]
+ h.c.

]}
,

where

V1 = V1

∣∣∣
S=0

= −1

2
eK
{
Kαβ̄

0

(
K0,β̄DαWmod +K0,αDβ̄Wmod

)
− 2(Wmod +Wmod)

}
. (3.9.32)

Analogous to the case without stabilizer the quadratic term in ϕ is independent of the small-
supersymmetry breaking approximation.

Let us compare this result to the the case without stabilizer, Eq. (3.9.27). Since V1 ∼ m3/2

and m2
S ∼ m̃2 +m2

3/2, the corrections to the chaotic scalar potential 1
2
m̃2ϕ2, with m̃ = meK0/2,

are negligible for m3/2 � m̃. For large gravitino masses m3/2 & m̃, on the other hand, the
quadratic inflaton term in Eq. (3.9.31) becomes negative and stops inflation. Simultaneously,
the quartic term becomes sizeable. Thus, these generic results fit nicely with the explicit analysis
performed in [43]. However, remember that Eq. (3.9.31) is only valid in the near-supersymmetric
limit. If the supersymmetry-breaking Tα can not be completely decoupled in the fermion mass
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matrix, a more general result can be found in [64] concerning the appropriate quartic term
in the scalar potential. Since all moduli stabilization schemes with supersymmetry breaking
that we consider require a large gravitino mass, it is difficult to reconcile these schemes with
chaotic inflation with a stabilizer. Therefore, in the examples treated in the following sections
we restrict ourselves to the more interesting models with no stabilizer field.

3.10 Chaotic inflation with KKLT moduli stabilization

As a first example we discuss stabilization of a single Kähler modulus T by the mechanism of
KKLT[63] and its interaction with chaotic inflation. Before treating the coupled Lagrangian
we discuss important properties of the original KKLT vacuum and its uplift. Many of these are
well-known facts, nonetheless it is instructive to review them before discussing the interaction
with inflation.

3.10.1 KKLT moduli stabilization and uplift

The possibly simplest setup to stabilize Kähler moduli via non-perturbative effects was proposed
in [63]. The original model assumes all complex structure moduli of a compact CY manifold and
the dilaton to be stabilized by fluxes, as first developed in [65]. The remaining effective theory
contains a single lightest Kähler modulus, in the following denoted by T , which parameterizes
the volume of the compact manifold. T then has the following tree-level Kähler potential,

K = −3 ln
(
T + T

)
, (3.10.1)

and does not appear in the flux superpotential, W0, responsible for stabilizing the complex
structure and the dilaton. Therefore, T is massless at perturbative tree-level and must be sta-
bilized to avoid a series of well-known problems. This is achieved by employing non-perturbative
corrections to the superpotential, so that W takes the form

W = W0 + Ae−aT . (3.10.2)

We treat W0 and A as constants determined by fluxes and vacuum expectation values of complex
structure moduli. They are assumed to be real in what follows. A relative phase between A
and W0 can always be compensated by a field redefinition. Depending on whether the non-
perturbative term stems from a Euclidean D3 instanton or from a gaugino condensate on a
stack of D7 branes, a can be 2π or 2π

N
, where N is the rank of the condensing gauge group. The

scalar potential

V = eK
(
KTTDTWDTW − 3|W |2

)
, (3.10.3)

has two extrema, ∂TV = 0, corresponding to

DTW = 0 . (3.10.4)

One extremum lies at T = ∞, where the potential vanishes. In addition there is a supersym-
metric AdS vacuum at T̃0 which is determined by

W0 = −Ae−aT̃0

(
1 +

2

3
aT̃0

)
. (3.10.5)
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For real parameters of the superpotential T̃0 is real. ImT is stabilized at the origin at the same
mass scale as ReT .

To uplift the AdS vacuum to a Minkowski vacuum the authors of [63] introduced an anti-D3
brane. To avoid explicit supersymmetry breaking4 we resort to uplifting via the F-term of a
Polonyi field X, with

Kup = k
(
|X|2

)
, Wup = fX . (3.10.6)

Uplifting of AdS vacua’s via F-terms of matter fields was first discussed in [86]. We assume
that the function k contains a quartic term so that X is stabilized close to the origin at a high
scale, and thus the field completely decouples from the dynamics of moduli stabilization and
inflation. Such a quartic term may effectively arise from couplings to heavy fields, cf. [41].5

The only contribution of the Polonyi field to V is then its F-term,

Vup = eKf 2 , (3.10.7)

which can be used to cancel the cosmological constant in the true vacuum defined by Eq. (3.10.5).
In addition to the extremum at T = ∞ corresponding to DTW = 0, the uplifted scalar

potential has two further extrema which are determined by

DTW = −3W

4T

(
1±

√
1− 2f 2

(aT + 2)W 2

)
. (3.10.8)

The negative sign yields the uplifted AdS minimum,

DTW = − 3f 2

4aT 2
0 W |T0

+O(T−3
0 ) , (3.10.9)

where the value of the modulus T is shifted to T0 = T̃0 + δTup. The shift in T is easily obtained
by expanding DTW in δTup,

DTW |T̃0
≈ DTW |T0

− δTup ∂TDTW |T0

≈ DTW |T0
− δTup

(
(−a+KT ) DTW |T0

+ ((a−KT )KT + ∂TKT ) W |T0

)
. (3.10.10)

Using Eqs. (3.10.4) and (3.10.9) we find

δTup

T0

≈ f 2

2a2T0W 2
0

+O(T−2
0 ) , (3.10.11)

where we have used W |T0
≈ W0. Using Eqs. (3.10.3), (3.10.7), and (3.10.9) one finds that the

cosmological constant of the AdS vacuum is canceled by tuning f to

f =
√

3W0

(
1− 3

2aT0

+O(T−2
0 )

)
. (3.10.12)

4See, however, [85] for a very recent treatment of this issue.
5For a more thorough treatment of the dynamics linking supersymmetry breaking and chaotic inflation,

cf. [44, 43].
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Note that there is a sub-leading contribution of the modulus to supersymmetry breaking,

〈FT 〉 = eK/2
√
KTTDTW

∣∣∣
T0

≈ − 3
√

3W0

a(2T0)5/2
≈ −3〈FX〉

4aT0

. (3.10.13)

Since aT0 � 1 for consistency of the single-instanton approximation, the dominant contribution
to supersymmetry breaking stems from the Polonyi field. The gravitino mass in the Minkowski
vacuum is given by

m3/2 = eK/2W =
W0

(2T0)3/2

(
1− 3

2aT0

+O(aT0)−2

)
≈ W0

(2T0)3/2
. (3.10.14)

It is closely related to the mass of the canonically normalized modulus,

mT ≈ 2aT0m3/2 . (3.10.15)

The uplifted Minkowski vacuum is protected by a barrier from the run-away vacuum at
T =∞. The height of the barrier can be found by choosing the positive sign in the expression
(3.10.8) for the covariant derivative, corresponding to the local maximum in the scalar potential.
For the field value of the modulus at the position of the barrier, TB, we find

VB = V
∣∣∣
TB

≈ f 2

(2TB)3
∼ 3m2

3/2 . (3.10.16)

We are now ready to analyze the effect of chaotic inflation on the uplifted KKLT vacuum.
Since the F-term of T does not vanish, one may hope that it can cure the problem of un-
boundedness which plagues the simplest variant of chaotic inflation. To analyze the two-field
system defined by the modulus and the inflaton, it is instructive to use both an analytic and a
numerical approach.

3.10.2 KKLT and chaotic inflation: analytic approach

Treating the interaction between the modulus and inflaton sectors in the simplest way, we
assume that their superpotentials and Kähler potentials completely decouple. Thus, the theory
is defined by

W = W0 + Ae−aT + fX +
1

2
mφ2 , (3.10.17a)

K = −3 ln
(
T + T

)
+ k
(
|X|2

)
+

1

2

(
φ+ φ̄

)2
. (3.10.17b)

In particular, in the notation of Sec. 3.9 we choose

Wmod(Tα) = W0 + Ae−aT + fX , (3.10.18)

K0(Tα, T ᾱ) = −3 ln
(
T + T

)
+ k
(
|X|2

)
(3.10.19)

K1(Tα, T ᾱ) = 1 . (3.10.20)

Note that the relative phase between W0 and m is physical. In the following we choose all
superpotential parameters to be real, so that only the real part of T is affected by inflation.
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Therefore, we set T = T in the following discussion. Our results do not change qualitatively if
we allow for m and/or W0 to be complex. Moreover, the Polonyi field X is treated in the way
discussed in Sec. 3.10.1. The canonically normalized inflaton field is

√
2Imφ ≡ ϕ, which does

not appear in the Kähler potential. On the inflationary trajectory the superpotential reads

W = W0 + Ae−aT − 1

4
mϕ2 . (3.10.21)

A natural question to ask is the following: can the effective theory of inflation defined by
Eqs. (3.10.17) resemble chaotic inflation, after integrating out T at a high scale?

Leading-order effective potential
To answer this question we solve the equation of motion for T during inflation, ∂TV = 0, which
yields for the covariant derivative

DTW = −3W

4T

[
1±

√
1− 2

(aT + 2)W 2

(
f 2 +

1

2
m2ϕ2

)]
, (3.10.22)

which implicitly determines T as function of ϕ. In addition, there is the extremum at T =∞
with DTW = V = 0. The negative sign in Eq. (3.10.22) again yields the uplifted AdS minimum,

DTW = − 3

4aT 2

f 2 + 1
2
m2ϕ2

W
+O(T−3) . (3.10.23)

Using Eqs. (3.10.21) and (3.10.23) we obtain for the effective inflaton potential

V (ϕ) =
1

(2T )3

(
f 2 +

1

2
m2ϕ2 − 3W 2 +O(T−2)

)
=

1

2
m̃2ϕ2 +

3

2
m̃m3/2ϕ

2 − 3

16
m̃2ϕ4 +O

(
δT

T0

)
, (3.10.24)

with m̃ = m
(2T0)3/2 and m3/2 given by Eq. (3.10.14). The corrections of order δT/T0 are due to

the ϕ-dependent shift of the modulus, δT (ϕ) = T (ϕ)−T0. Thus, it seems that after integrating
out T the negative definite term proportional to m̃2ϕ4 still appears in the potential, making it
unbounded from below. This is related to the fact that the modulus is only a sub-leading source
of supersymmetry breaking. Notice that this way of obtaining the leading-order potential is
equivalent to the naive treatment outlined in Sec. 3.9.1, which resulted in Eq. (5.1.1).

However, things are not quite as they seem by merely studying the result Eq. (3.10.24). For
large values of ϕ, i.e., when the quartic term in the effective potential dominates, the modulus
can be destabilized by the potential energy of ϕ. In this case, the inflationary trajectory
becomes tachyonic and the modulus can no longer be integrated out. To see when this point
is reached, it suffices to consider the structure of Eq. (3.10.22). A necessary condition for the
existence of real solutions for DTW is clearly W 2 & 0. For W 2 ≈ 0, the uplifted AdS minimum
and the maximum merge in a saddle point. Using Eq. (3.10.21) we then obtain an upper bound
on allowed values of ϕ,

m̃ϕ2 . 4m3/2 . (3.10.25)
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This is the well-known bound H < m3/2 stressed in [54], as will become more clear in our
numerical example in Sec. 3.10.3. There, a more detailed analysis reveals that the modulus is
destabilized slightly before the above bound is saturated. In fact, the local maximum of the
effective inflaton potential Eq. (3.10.24) is never reached while the modulus is stabilized.6

Corrections to the effective potential
The corrections to the effective potential are determined by the shift of the modulus field
δT (ϕ) = T (ϕ)−T0.7 Expanding the covariant derivative in δT and ϕ2, analogous to Eq. (3.10.10),
we find

δT

T0

=
m̃ϕ2

4aT0m3/2

+O(T−2
0 ) . (3.10.26)

With this, the effective inflaton potential including the leading-order correction becomes, at
quartic order in ϕ and leading order in (aT0)−1 and m̃/m3/2

V (ϕ) =
1

2
m̃2ϕ2 +

3

2
m̃m3/2ϕ

2 − 3

16
m̃2ϕ4 − 3

4aT0

(
3m̃m3/2ϕ

2 +
3

4
m̃2ϕ4

)
+ . . . . (3.10.27)

To obtain higher-order corrections to the potential, the potential must be expanded to higher
orders in δT , and δT must be computed up to higher powers in T−1

0 .
So far we have analyzed the deformation of the Minkowski vacuum due to the inflaton field

starting from the covariant derivative. Alternatively, on can directly find the shift δT (ϕ) by
minimizing the scalar potential,

V = V |T0 + (∂TV )|T0δT +
1

2
(∂2
TV )|T0δT

2 +O(δT 3) , (3.10.28)

along the lines of the general analysis in Sec. 3.9.2. One then expects that the shift δT is
inversely proportional to the modulus mass, cf. Eq. (3.9.24). Eq. (3.10.26) can indeed be
rewritten in this form,

δT

T0

=
m̃ϕ2

2mT

+O(T−2
0 ) . (3.10.29)

In a manner similar to integrating out T , it is possible to verify that the displacement δX
of the Polonyi field during inflation gives negligible contributions to the inflaton potential. For
the particular choice

k
(
|X|2

)
= |X|2 − |X|

4

Λ2
, (3.10.30)

for example, the displacement of X is at leading order

δX = Λ2δT . (3.10.31)

Since Λ� 1 to stabilize X at a high scale with a small vacuum expectation value, the contri-
bution of integrating out X at Eq. (3.10.31) is clearly negligible.

Among other things, this means that the sector which dominates supersymmetry breaking
can be completely decoupled from the dynamics of inflation. In this case, it is possible to obtain
the effective potential Eq. (3.10.27) essentially by applying the general expression Eq. (3.9.27).

6In fact, the full potential defined by Eqs. (3.10.17) is bounded from below at all points in field space.
7Notice that for real superpotential parameters the displacement of T is real as well.
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3.10.3 A numerical example

Let us now study whether 60 e-folds of inflation can be realized with the effective inflaton
potential Eq. (3.10.27), and if the resulting predictions for the CMB observables resemble those
of chaotic inflation. It is worth noting that in the parameter regime where T is stabilized, i.e.,
when m3/2 is very large, the bilinear term proportional to m̃m3/2 actually dominates in V and
drives inflation. In this case, the relevant terms in the inflaton potential are

V (ϕ) ≈ 3

2
m̃m3/2ϕ

2

(
1− 1

8

m̃

m3/2

ϕ2

)
. (3.10.32)

Consequently, inflation is only possible if m̃ and m3/2 have the same sign. With Eq. (3.10.16)

the corrections can be interpreted as a power series in H2

VB
, the squared Hubble scale divided by

the barrier height of the modulus potential. This is a natural expansion parameter because the
modulus is destabilized when the vacuum energy of ϕ lifts the modulus over the barrier, cf. the
bound found in Eq. (3.10.25). Neglecting order-one coefficients, COBE normalization imposes√
|m̃m3/2| ∼ 3× 10−6. This puts a lower bound on the gravitino mass, i.e.,

m3/2 >
√
|m̃m3/2|ϕ? ∼ 5× 10−5 ∼ H , (3.10.33)

where ϕ? ≈ 15 denotes the inflaton field value at the beginning of the last 60 e-folds of inflation.
This means that the gravitino must be very heavy and there is a moderate hierarchy between the
gravitino and inflaton mass for 60 e-folds of chaotic inflation to be possible. This is illustrated
in Fig. 16 for a suitable set of parameters.

Indeed, 60 e-folds of inflation can take place starting at ϕ? ≈ 15. The CMB observables in
our example are found to be

ns = 0.966 ,

r = 0.106 ,
(3.10.34)

which are slightly below the predictions of pure quadratic inflation. This is due to the flattening
of the quadratic potential by the negative quartic term. Notice that the modulus is destabilized
and the inflaton trajectory becomes tachyonic at the critical value ϕc ≈ 24, corresponding to the
bound in (3.10.25). Therefore, Eq. (3.10.32) and the dashed line in Fig. 16 are only meaningful
up to this point.

Moreover, the interplay between inflaton and modulus can be illustrated by means of the
full scalar potential as a function of T and ϕ, depicted in Fig. 17. The minimum in the modulus
direction is uplifted as ϕ increases, until the point where it disappears at ϕc ≈ 24.

3.11 Chaotic inflation and the Large Volume Scenario

3.11.1 LVS moduli stabilization and uplift

Another well-known example of moduli stabilization with spontaneously broken supersymmetry
is the Large Volume Scenario developed in [83]. It is based on the observation that, for certain
types of CY compactifications with multiple Kähler moduli, the scalar potential may have
a non-supersymmetric AdS minimum at exponentially large volume. A particularly simple
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Figure 16: Effective inflaton potential in KKLT for W0 = 0.009, A = −0.75, a = 2π
10

, and
m = 1.67 × 10−5. With these parameters we find T0 = 10 and m3/2 = 10−4. The dotted line
denotes a purely quadratic potential with mϕ = 6 × 10−6 imposed by COBE normalization.
The dashed line is the effective potential Eq. (3.10.27) evaluated at all orders in (aT0)−1. This
potential is valid only as long as the modulus remains stabilized. The solid line is obtained
numerically by setting the modulus to its minimum value at each value of ϕ. Evidently, above
the critical value ϕc ≈ 24 the modulus is destabilized towards the run-away minimum at T =∞
and the theory can not be described by Eq. (3.10.27) any longer.

example of this type is given by a “swiss-cheese” CY manifold with a single “hole”, i.e., a
manifold whose volume is parameterized by

V = (Tb + T b)3/2 − (Ts + T s)
3/2 , (3.11.1)

where Tb is the Kähler modulus of some big four-cycle, i.e., the “cheese”, and Ts controls the
volume of a small four-cycle, the “hole”. The simplest setup for a Large Volume Scenario is
then described by

W = W0 + Ae−aTs , (3.11.2)

and

K = −2 ln(V + ξ) , (3.11.3)

with ξ = − ζ(3)
4(2π)3χ〈ReS〉3/2 where χ denotes the Euler number of the compactification manifold

and S denotes the dilaton. Throughout this work we assume the dilaton to be stabilized
supersymmetrically at a high scale so that ξ can be treated as a constant. As in the previous
examples we consider real superpotential parameters, and hence restrict our attention to the
real parts of the moduli, i.e., we set Tb,s = T b,s in the following.
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Figure 17: Scalar potential as defined by Eqs. (3.10.17) as a function of T and ϕ, for the
same parameter example as in Fig. 16. Apparently, a minimum for the modulus exists for
ϕ . ϕc ≈ 24. Beyond this point the modulus runs away towards T = ∞ and can no longer
be integrated out. For ϕ < ϕc inflation may take place in the valley of the uplifted modulus
minimum.

The extrema of the potential satisfy the two equations ∂Tb
V = ∂TsV = 0. Since the

superpotential does not depend on Tb, they lead to two quadratic equations for DTsW which
can be rewritten as

DTsW = Ỹ W , Z̃i = 0 . (3.11.4)

The functions Ỹ and Z̃i are functions of a and various derivatives of the Kähler that can be
found in [64]. Assuming that V is large and expanding KTs and Ỹ in powers of V−1, the equation
for DTsW yields

∂TsW |T0
= aAe−aT0 ≈ 3(2T0)1/2

2V0

W0 . (3.11.5)

Eq. (3.11.5) determines the volume in terms of T0,

V0 ≈
3
√
T0e

aT0W0√
2aA

(
1− 3

4aT0

)
, (3.11.6)
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at next-to-leading order in (aT0)−1. The second equation in (3.11.4) determines the value of
Ts. Using the large volume expansions for the functions Z̃i one finds

T0 ≈
ξ2/3

2

(
1 +

2

3aξ2/3

)
+O

(
(aξ2/3)−2

)
. (3.11.7)

At leading order in V−1, T0 only depends on ξ and a. Eqs. (3.11.6) and (3.11.7) can also be
obtained by considering the scalar potential in the large volume limit,

V ≈ 2
√

2 a2A2
√
Ts e

−2aTs

3V − 4aAW0Ts e
−aTs

V2
+

3ξW 2
0

2V3
. (3.11.8)

To obtain this form the imaginary part of Ts has been fixed at 〈ImTs〉 = π
a
. In this case, W0

and A must have the same sign for the stabilization mechanism to work. Minimizing V with
respect to V and Ts one finds the local AdS minimum with the values V0 and T0 given above.

The depth of the AdS vacuum is

VAdS ∼ −
W 2

0

V3
0

, (3.11.9)

rather than W 2
0 /V2

0 as one may naively expect. This is due to the approximate no-scale cancel-
lation between FTb

and W 2
0 . To achieve a complete uplift to a Minkowski vacuum we employ,

once more, a Polonyi field X as a toy example. Treating the uplift in the same way as in
KKLT moduli stabilization, we assume that X is stabilized with a nearly-vanishing vacuum
expectation value.8 However, in the LVS scheme the quartic term in the Kähler potential is
not required as X is stabilized by its soft mass term. The contribution of the Polonyi field then
amounts to a term Vup = f2

V2 in the scalar potential. To cancel the cosmological constant in the
vacuum, it must be

f 2 ≈ χ0W
2
0 , χ0 =

9
√

2T0

2aV0

, (3.11.10)

up to terms suppressed by higher powers of V or aTs. Here, V0 and T0 denote the values of
the two real fields in the uplifted vacuum. The expression for the volume is still given by
Eq. (3.11.6), where T0 is now the shifted modulus

T0 ≈
ξ2/3

2

(
1 +

2

aξ2/3

)
+O

(
(aξ2/3)−2

)
(3.11.11)

The F-terms of the fields in this vacuum are given by

FTb
≈ −
√

3
W0

V0

, FTs ≈
√

6aT0χ0
W0

V0

, FX ≈
√
χ0

W0

V0

. (3.11.12)

Clearly, the dominant contribution to supersymmetry breaking comes from the volume mode.
As expected, the uplift sector is important to cancel the cosmological constant but its contri-
bution to supersymmetry breaking is suppressed in the large volume limit. The corresponding
gravitino mass is, again,

m3/2 ≈
W0

V0

, (3.11.13)

8Indeed it is possible to verify that, once coupled to chaotic inflation, the displacement of X is again negligible
compared to that of V and Ts.
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up to terms suppressed by higher powers of the inverse volume or aT0. The masses of the
canonically normalized moduli are, schematically9

mTb
∼ W0

V3/2
0

, mTs ∼
W0

V0

. (3.11.14)

The uplifted vacuum is protected by a potential barrier of height

VB ∼
m2

3/2

V0

. (3.11.15)

Although the structure of this vacuum is more complicated than in the previous two cases,
the coupling of chaotic inflation works in the same way. As will become clear in the following,
the results are qualitatively similar.

3.11.2 LVS and chaotic inflation

Our starting point for the coupled model is this time

W = W0 + Ae−aTs + fX +
1

2
mφ2 , (3.11.16)

K = −2 ln
[(
Tb + T b

)3/2 −
(
Ts + T s

)3/2
+ ξ
]

+ k
(
|X|2

)
+

1

2

(
φ+ φ̄

)2
. (3.11.17)

The uplift sector is treated as described above, since it is safe to neglect its influence on inflation.
The scalar potential at leading order in V−1 reads

V =
2
√

2 a2A2
√
Ts e

−2aTs

3V − 16aATs e
−aTs (4W0 −mϕ2)

V2

+
3ξ (4W0 −mϕ2)

2

32V3
+

(V − 2ξ)
(
f 2 + 1

2
m2ϕ2

)
V3

.

(3.11.18)

Comparing this expression to Eq. (3.11.8) we observe that, in principle, the contribution of
the inflaton can be absorbed in a redefinition of W0 and f . As before, we treat inflation as a
perturbation of the true vacuum. Hence, we naively expect chaotic inflation to be successful in
LVS as long as

m2ϕ2 � f 2 , mϕ2 � W0 , (3.11.19)

neglecting order-one coefficients. It will become clear in the following that these two conditions
precisely guarantee that the inflaton energy density does not destabilize the moduli.

To compute the effective inflaton potential we have to take the displacements of both moduli
into account. Hence, we expand the potential around

δV = V − V0 , δTs = Ts − T0 . (3.11.20)

9Note that the axion of Tb is exactly massless and thus irrelevant during inflation. The axion of Ts is
stabilized at the same mass scale as the real part of Ts.
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Minimizing the result with respect to both shifts yields

δV
V0

≈ m̃2ϕ2

χ0m2
3/2

+
m̃ϕ2

4m3/2

, (3.11.21a)

δTs

T0

≈ m̃2ϕ2

aT0χ0m2
3/2

+
m̃ϕ2

2aT0m3/2

, (3.11.21b)

up to terms suppressed by higher powers of V−1 or (aT0)−1. The displacement of Ts is relatively
suppressed by one power of V0. This is to be expected because Ts is the heavier of the two
moduli. Nonetheless, δTs must be taken into account to find the correct leading-order result.

Integrating out the displacements of both moduli, we are left with the leading-order effective
potential

V (ϕ) ≈ 1

2
m̃2ϕ2 +

χ0

4
m̃m3/2ϕ

2 − 1

2χ0

m̃4ϕ4

m2
3/2

− 1

4

m̃3ϕ4

m3/2

− χ0

16aT0

m̃2ϕ4 . (3.11.22)

We refrain from rewriting this unwieldy expression in terms of the moduli masses, but the
idea is the same as in our previous examples. Some of the correction terms are suppressed by
inverse powers of mTb

and mTs and vanish in the limit of very heavy moduli. Others, like the
supersymmetry breaking second term in Eq. (3.11.22) grow with the moduli masses, and hence
do not vanish. As in the previous examples, the region where V (ϕ) is unbounded from below
is never reached since the moduli are destabilized at smaller values of ϕ.

We can now rewrite the effective potential to study inflation. In particular,

V (ϕ) ≈ 1

2
m̃2ϕ2

(
1− 1

χ0

m̃2

m2
3/2

ϕ2

)
+
χ0

4
m̃m3/2ϕ

2

(
1− 1

4aT0

m̃

m3/2

ϕ2

)
. (3.11.23)

Again, V (ϕ) contains a supersymmetric mass term and a bilinear soft term – suppressed by
one power of χ0 –, both with a correction proportional to H2

VB
. By requiring the barrier to be

larger than the Hubble scale during inflation, the gravitino mass is generically constrained as
follows,

m3/2 > H
√
V0 ∼ 10−4

√
V0 . (3.11.24)

As before, this constraint is equivalent to demanding that ϕ is not large enough to uplift the
modulus minimum to a saddle point.

3.11.3 Numerical examples

Based on the effective potential Eq. (3.11.23) we can distinguish two cases in which 60 e-folds
of inflation may be realized.

The supersymmetric term dominates
If m̃ � χ0m3/2 ∼ m3/2/V0, in principle the supersymmetric quadratic term in Eq. (3.11.23)
could dominate, yielding the leading-order potential

V (ϕ) ≈ 1

2
m̃2ϕ2

(
1− 1

χ0

m̃2

m2
3/2

ϕ2

)
. (3.11.25)
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Figure 18: Effective inflaton potential in LVS for W0 = 1, A = 0.13, a = 2π, m = 5.8×10−4, and
ξ = 1.25. With these parameters we find T0 = 0.75, V0 = 200, and m3/2 = 0.005. The dotted
line denotes a purely quadratic potential with mϕ = 6×10−6 imposed by COBE normalization.
The dashed line is the effective potential Eq. (3.11.22) evaluated at all orders in aT0. The solid
line is obtained numerically by setting the modulus to its minimum value at each value of ϕ.
Since the barrier height and Hubble scale are the same as in the previous example, modulus
destabilization occurs at ϕc ≈ 18. Again, Eq. (3.11.22) and the dashed line are only meaningful
for ϕ < ϕc. Notice that the difference between the dashed and the solid line is comparably
large in this example. This is because the relatively small value of V0 limits the precision of
the expansion in V−1.

However, this scenario is excluded by a consistency requirement of the LVS scheme. Specifically,
the gravitino mass must not exceed the Kaluza-Klein scale which, as discussed in [87], means

that W0 � V1/3
0 . Requiring the supersymmetric term to be larger than the soft term while both

moduli are stabilized always violates this bound. For different effects related to the Kaluza-
Klein scale, cf. [88, 89].

The bilinear soft term dominates
If, on the other hand, m̃ � χ0m3/2 ∼ m3/2/V0, the term proportional to m̃m3/2 may drive
inflation. In this case, the leading-order inflaton potential reads

V (ϕ) ≈ χ0

4
m̃m3/2ϕ

2

(
1− 1

4aT0

m̃

m3/2

ϕ2

)
. (3.11.26)

The gravitino mass is constrained by the generic requirement (3.11.24). Interestingly, by re-
quiring m3/2 < mKK for consistency, the volume of the compactification manifold is bounded
from above, V0 . 103. A numerical example for this scenario is depicted in Fig. 18.
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The CMB observables in our example are found to be

ns = 0.964 ,

r = 0.116 ,
(3.11.27)

at ϕ? ≈ 15.2. Modulus destabilization towards the run-away minimum occurs at ϕc ≈ 18.

3.12 Universality and CMB observables

Let us consider the effective single-field inflaton potential arising in the two previous example
models as well as in the general discussion of Sec. 2. We observe that a simple expression
captures all models and their flattening of the inflaton potential by moduli backreaction,

V (ϕ) =
1

2
m2
ϕ ϕ

2 − 1

4
λϕ4 , λ > 0 . (3.12.1)

This expression is valid at leading order in the modulus shift, and thus holds for a certain range
ϕ < ϕc until the moduli are destabilized.

Due to the negative quartic term the potential has a local maximum at ϕM = m/
√
λ. All

three scenarios share the property that the moduli destabilization point occurs to the left of
the maximum of the leading-order inflaton potential,

ϕc < ϕM . (3.12.2)

Hence, V (ϕ) is a good approximation for ϕ < ϕc. Two parameters determine the effective
potential, m/

√
λ gives the position of the maximum and m fixes the overall normalization of

V (ϕ). Thus, we can write the potential in terms of m and ϕM,

V (ϕ) =
1

2
m2
ϕ ϕ

2

(
1− ϕ2

2ϕ2
M

)
. (3.12.3)

As long as ϕM, ϕc � 1 inflation can occur to the left of the local maximum. For ϕM →∞ the
potential asymptotes to the pure quadratic form. In this limit, the field value ϕ? corresponding
to Ne(ϕ?) e-folds of slow-roll before the end of inflation takes the limiting value ϕ? = 2

√
Ne,

which for Ne = 50− 60 is about 15.
For decreasing ϕM the 60 e-fold point lies increasingly close to the local maximum and the

destabilization point. Thus, for ϕc → ϕ? the inflationary dynamics changes continuously from
the quadratic large-field behaviour to a nearly hill-top small-field model. Correspondingly, the
scalar spectral index and r are decreased compared to pure quadratic inflation.

Inflaton potentials of this type arise in the context of non-minimally coupled quadratic
inflation [39] and more recently in subcritical models of D-term hybrid inflation [90, 27, 91]. As
the leading-order scalar potential is the same for all our models, the CMB observables agree as
well. Reproducing the particularly simple form given in [90, 91] one finds

ε =
2

ϕ2

 1− ϕ2

ϕ2
M

1− ϕ2

2ϕ2
M

2

, η =
2

ϕ2

 1− 3ϕ2

ϕ2
M

1− ϕ2

2ϕ2
M

 . (3.12.4)
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Figure 19: Prediction for the CMB observables ns and r of the leading-order effective inflaton
potential. In the limit ϕM →∞ the observables asymptote to the predictions of pure quadratic
inflation. Decreasing ϕM brings the potential increasingly into the hill-top regime. This leads
to the green band of decreasing ns and r values spanned by the 60 and 50 e-fold curves. Note,
once more, that the regime of true hill-top inflation can actually never be reached because
moduli destabilization occurs to the left of the would-be local maximum in V (ϕ) at ϕM.

Extracting ϕ? from Ne =
∫ ϕ?
ϕe

dϕ/
√

2ε we obtain

ϕ2
? = 4Ne + 2− 4N2

e

ϕ2
M

− 8N3
e

3ϕ4
M

+
4N4

e

3ϕ6
M

+ . . . (3.12.5)

where we have used the leading-order expression for the end-point of slow-roll inflation, ϕe =
√

2−O(ϕ−2
M ).

From this it is evident that all our models approach the quadratic inflation limit as ϕM →∞.

Comparison with the full numerical solution for ϕ? reveals that the analytic expression
above must be given up to O(ϕ−6

M ) for sufficient accuracy. The terms with inverse powers of ϕM

are given at leading order in Ne to allow for a compact expression. We find that for ns & 0.94
this form approximates the ensuing values of ns and r to 5% numerical accuracy compared to
the exact coefficients given in [91]. Plugging back ϕ? into the expressions for ε and η we can
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compute the spectral parameters of the curvature and tensor perturbation power spectra

ns = 1− 6ε(ϕ?) + 2η(ϕ?) ,

r = 16ε(ϕ?) .
(3.12.6)

at horizon exit. Doing this numerically and comparing the result with the Planck data results
in the green band in Fig. 19 which is identical to the corresponding graph in [91]. Imposing
the constraints on ns and r we find a lower bound on the tensor-to-scalar ratio, r & 0.05, for
Ne = 60.

Finally, we make an interesting observation. On the one hand, our effective inflation po-
tential arises for all three models studied here as an approximation of, for example, type IIB
string theory constructions of axion monodromy inflation with an F-term supergravity descrip-
tion [47, 71, 48, 72, 73, 74, 75, 76, 77] as well as of models of D-term hybrid inflation [90, 27, 91].
Moreover, we found in this work that all our models show a form of polynomial flattening of the
naive quadratic inflation potential by subtracting (at leading order) a higher-power monomial
term in ϕ

V (ϕ) ∼ ϕp0f(ϕ) , f(ϕ) = 1− cϕ2 + . . . , p0 = 2 . (3.12.7)

The flattening occurs in a regime with c� 1 and small higher-oder coefficients.
On the other hand, there is a large class of models of axion monodromy inflation which

feature a form of monomial flattening [92, 93, 94, 95, 96]. Some of these setups work without a
supergravity embedding or with inflation from a sector with non-linearly realized supersymme-
try arising from non-supersymmetric compactifications like Riemann surfaces [97, 98, 92, 99, 96]
while another one involves F-term monodromy on D-branes [76]. In these constructions a
quadratic or quartic inflation potential flattens by suppressing the monomial power p < p0,

V (ϕ) ∼ ϕp0f(ϕ) , f(ϕ) = ϕ−∆p p0 = 2, 4 . (3.12.8)

The correlation between the two types of flattening – polynomial and monomial – may be
due to the different mechanisms of volume stabilization (non-perturbative versus perturba-
tive). In particular, polynomial flattening seems to correlate with models showing spontaneous
bulk F-term supersymmetry breaking and non-perturbative volume stabilization (implying CY
compactification). We may speculate here that both of these correlations hold more widely.

Moreover, the two types of flattening have quite different observational predictions, with
polynomial flattening corresponding to the green band and monomial flattening yielding the
red band in Fig. 19. Future CMB data may enable us to discriminate between the two types
of flattening – and hence maybe even between classes of string compactifications.

3.13 Non Decoupling Effects of Moduli Stabilization : A

Recap

We studied in this last section the interplay between Kähler moduli stabilization and large-
field inflation in the context of string-effective supergravity models. We found that if moduli
stabilization breaks supersymmetry, the modulus sector never decouples from inflation. On the
one hand, supersymmetry breaking induces a bilinear soft mass term for the inflaton which



71

can potentially drive 60 e-folds of slow-roll inflation. On the other hand, the potential contains
dangerous terms which destabilize the moduli if the inflaton field exceeds a critical value.

We have illustrated our results in two prominent models of moduli stabilization: KKLT
and the simplest Large Volume Scenario. In both models we have analyzed corrections to the
inflaton potential from supersymmetry breaking and from integrating out the moduli. Although
the dominant source of supersymmetry breaking and the structure of vacua’s differ in the three
models, they share a number of common features. First, we find that both of them give rise to
an effective inflaton potential of the form

V (ϕ) =
1

2
m2
ϕ ϕ

2 − 1

4
λϕ4 ,

after the moduli have been integrated out. Hence, they share universal predictions for the
CMB observables, in particular r & 0.05. Second, in all models the stability of moduli during
inflation imposes a severe lower bound on the scale of supersymmetry breaking. In KKLT
this is the well-known bound m3/2 > H. In the Large Volume Scenario, the moduli masses
and the potential barrier are suppressed compared to m3/2 due to an approximate no-scale

symmetry. This leads to the more stringent constraint m3/2 > H
√
V , where V denotes the

volume of the compactification manifold. Unfortunately, this implies that supersymmetry can
no longer protect the flatness of the inflaton potential. This is opposite to chaotic inflation with
a stabilizer field, where the gravitino mass must be parametrically smaller than the inflaton
mass. Third, in all considered schemes the parameter choices required by successful inflation
appear unnatural from the perspective of string theory. Although our analysis is limited to
specific examples we believe that this problem is characteristic for a wide class of large-field
inflation models coupled to a modulus sector.

Another important caveat is that the initial conditions of inflation must be chosen very
carefully. The moduli are destabilized if the energy density of the universe exceeds the barrier
protecting their local minimum. In this case, the desired regime of slow-roll inflation is never
reached. In this sense, the effective inflation models obtained after integrating out the moduli
are no longer “chaotic”.

3.14 Conclusion

Inflation is one of the most obscure but exciting phases of the History of our Universe. The
flatness and horizon problems are very strong pieces of evidence that the actual content of our
spacetime in insufficient to explain its complete evolution from the initial time that the Big
Bang is supposed to represent. Yet the incredibly well verified predictions the theory of Big
Bang has been able to produce address us a challenging question : Which kind of devil has ever
been responsible for such a brutal acceleration of the Universe expansion at early time of our
Universe History?

The answer to this question may stand somewhere among one of the aforementioned models
of Inflation but stays at the moment unaccessible to experiment. Although the more and more
stringent constraints on the tensor to scalar ratio can help discriminating between the different
scenarios proposed it could be that constraints reach a critical low point (r . 0.001) under which
B modes of tensor perturbations are supposed to convert into E modes through gravitational
lensing and can in principle not be detected anymore. On the contrary, if r is measured to be
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positive with good precision and the tensor spectral index to be negative and of value −r/8,
one would be more confident that inflation is the right theory for modeling early cosmology.

In this part we have reviewed many different aspects of the role that supersymmetry breaking
can play in an inflation scenario and in the process of stabilizing moduli, in the case one would
try to embed the inflation scenario in a String Theory framework. Chaotic inflation, although
one of the simplest model of inflation, faces several difficulties when trying to incorporate it
in supergravity, and we saw how either a stabilizer field joined to a supersymmetry breaking
sector with small gravitino mass can cure the problem, or models without stabilizer involving
heavy moduli where on the contrary, supersymmetry breaking must be the major component
driving inflation.

The latter studies turned into a quite generic formulation, even if the discussion could be of
course enlarged. In particular we kept working on chaotic-like formulations of Inflation, which
represents a particular class of set up for modeling Inflation. Small field inflation, models
predicting small tensor to scalar ratios, or multi field inflation could be studied as well as
models getting perturbed by non decoupling effects of supersymmetry breaking.

This interplay between theories modeling the very early Universe as well as the processes
which let our present world with a broken supersymmetry is a crucial way to cross-constrain
both edges of a global theory of the Universe and its particle content. Possible future mea-
surement of the tensor to scalar ratio, and/or the polarization of the CMB with good accuracy
could give important constraints on the gravitino mass. Reversely, a potential observation of
the super-partners at the LHC during the next runs of the accelerator could provide us impor-
tant information on the supersymmetric scale, and consequently discriminate between different
scenarios of inflation at early time of the Universe clock.
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4 Dark Matter : Generalities

4.1 Introduction

Is there anything out there? This question is at the heart of every dark matter search, from
experimental detection, to theoretical model building and investigations. Namely, from the
brilliant discovery of General Relativity by Einstein in 1915 [100], where gravitation seemed at
first sight to have found a clean and smart, but incredibly powerful formulation, it appeared a
few decades after that many gravitational phenomenons remained unexplained in our cosmos.
Dark Energy, dark matter, the scientific community stays nowadays staring at the sky looking
for the obscure components which make our Galaxy stable, our Universe accelerating, in a
picture where our ordinary matter seems rather weak and insignificant. Therefore it is of great
importance, for our understanding of the gravitational behavior of celestial bodies as well as
for our knowledge of what particles actually compose the main part of our Universe, to be able
to explain how any dark matter candidate could ever communicate with our visible world, and
how one can model properly the dynamics of the Universe in the presence of the latter.

In this second part of the thesis, I will first review how dark matter remains one of the most
probable piece for making the Big Bang Theory puzzle complete, introducing important tools
for modeling the Universe thermodynamics. Then I will present different works all deriving
dark matter models in the presence of intermediate mediators, and study how the visible sector
gets altered by the presence of a dark sector, either in the electroweak or in the strong sector
of particle physics. This work led to two key publications released in collaboration with Yann
Mambrini, Emilian Dudas and Bryan Zaldivar [101, 102].

4.2 On the Track to Dark Matter

The first piece of evidence of an obscure form of gravitational sources in our galaxy arose in
1932 in a paper from Oort [103]. The vertical dynamics of stars around the galactic plane
indeed gives a good hint to estimate the local density of the galaxy. Oort then investigated the
possibility of modeling the dynamics of stars inside our galaxy as being similar to a gravitational
gas of stellar bodies, and managed to formulate an estimation of the matter density present
in the Solar vicinity, to notice a discrepancy of a factor 2 between his theoretical prediction
and local density estimated at that time. He then suggested for the first time the possibility
that some other, invisible matter could be present near the galactic disk, retaining stars from
escaping transversally our galaxy.

Another crucial hint for the presence of dark matter comes from the measurement of the
rotation curve v = v(r) of the galaxies mass content. Decomposing the velocity of a star inside
its host galaxy in terms of its radial and transverse components vr = cos θ and vt = sin θ (see
Fig. 1) it is possible to measure both separately by the mean of different techniques : The
position θ of the star in our sky gives information on vr whereas the Doppler-Fizeau effect

75
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Figure 1: Parametrization of the stars velocities in term of polar coordinates.

(shifting the stellar emission spectrum towards blue or red wavelengths) provides informations
on the tangential velocity vt.

Starting from 1940, numerous measurements of the rotation curves in different spiral galaxies
showed a significant anomaly in the outer regions of the latter. Indeed, whereas the velocities
of stars in the central region of the galaxies are expected to behave like the one a rigid body

vcenter(r) ∼ r , (4.2.1)

the Kepler law suggests – in the very rough approximation of a spherical mass distribution –
that the stars velocities should decrease like

vouter(r) ∼
1√
r

(4.2.2)

in the outer regions. Surprisingly, observations are far different from this last prediction. Indeed,
after growing like v ∼ r near the center, the velocity is observed to reach a plateau at large values
of the radius instead of decreasing, as depicted in Fig. 2. The first measurement of the rotation
curves was achieved in a first place by Ford and Rubin in 1970 [105]. To put this in a nutshell,
stars which are very far from the galactic center and possessing a high velocity, keep rotating
around the galaxy instead of escaping its gravitational field. This led the scientific community
to conclude that either the theory of general relativity reaches its limits of application on very
large scales, or there should be some additional presence of mass, retaining these outer stars,
that will give rise to the concept of Dark Matter. The latter, in order to reproduce the observed
rotation curves could be spread around the galaxies under the form of a halo, of mass density
behaving like ρ(r) ∼ r−2 at large distances. Yet such a potential can be investigated but would
lead to a constant velocity while r goes to infinity. As a consequence, more evolved profiles
have been proposed to take the form

ρNFW (r) =
ρ0(

r
rs

)(
1 + r

rs

)2 , (4.2.3)
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Figure 2: Experimental measurement of the rotation curve extracted from [104] for the galaxy NGC6503
decomposed among its different constituents : gas, visible disk and dark halo

rs being a typical length scale for the halo, depending on the galaxy features, after which the
velocity reaches a plateau on a scale of order ∼ rs before decreasing after a while. Such profile
is usually called NFW profile and was proposed by Navarro, Frenk and White in [106]. More
generally, one parametrizes our ignorance on the dark matter profile shape by using the generic
form of density

ρDM(r) =
ρ0(

r
rs

)α (
1 + r

rs

)3−α , (4.2.4)

where 0 6 α 6 3/2.
Historically, the first person who proposed the existence of unobserved matter was Zwicky,

who realized in 1933 that the measure of galaxy velocities inside the Coma cluster were much
too high compared to the expectations of the virial theorem. Indeed a self interacting system
of N objects of average mass m, should have kinetic and potential energy of respectively

E =
1

2
Nmv2 , U =

Gm2

r

N(N − 1)

2
. (4.2.5)

The virial theorem hence predicts that

E = −U
2
⇒M = Nm =

2rv2

G
. (4.2.6)

The observed mass M of a given cluster should then in principle give access to the mean velocity
of the bodies it is composed of. However, it appeared that this mean velocity was dramatically
underestimated :there should hence be much more matter involved ! As far as numbers are
concerned, this computation was predicting the presence of 400 times more matter than it is
actually observed.
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(a) (b)

Figure 3: (a) Explanation of the gravitational lensing effect. Light is deflected by entering in the gravitational
field of some very massive celestial body. (b) ALMA/Hubble composite image of the gravitationally lensed
galaxy SDP.81. Light rays, deflected all around the a lensing galaxy, form the structure of ring called Einstein’s
ring. Credit: ALMA (NRAO/ESO/NAOJ); B. Saxton NRAO/AUI/NSF; NASA/ESA Hubble, T. Hunter
(NRAO)

Gravitational Lensing
In the theory of General Relativity, developed by Einstein in 1915 [107, 100] the spacetime is
considered to behave like a geometrical manifold, locally curved by the presence of matter, and
whose timelike and null geodesics represent respectively the trajectories of massive and mass-
less bodies. In such a framework, the light propagating through our spacetime can sometime
encounter very massive celestial bodies which deform significantly – by deforming the space
geometry all around – its trajectory between the source of emission and the observer. The
latter deformation is hence a very useful quantity to measure, in order to estimate indirectly
how much matter is present in certain regions of our Universe.

The first deflection of this kind was measured in 1919 by Eddington [108] who observed for
light rays entering the gravitational field of the Sun, a deflection angle of δ ≈ 1.75′′ (See Fig.
4)

This so called “gravitational lensing” effect allows to estimate, for stars, galaxies, clusters
of galaxies, what is the actual quantity of matter, only through indirect, gravitational consid-
erations. It turns out that this measured quantity is in good agreement with the considerations
made above about the virial theorem for the case of clusters. Namely, the ordinary matter
represents only 20% of the matter present in the latter object !

A very appealing observation of this discrepancy between direct observation of matter and
indirect measurements of mass through gravitational lensing, was the observation of the so
called Bullet Cluster (1E 0657-558). The latter consists of two colliding clusters of galaxies
at a comoving radial distance of 1.141 Gpc (3.721 Gly) and is often considered to be one of
the best evidence for the existence of dark matter [109]. Indeed the famous picture presented
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Figure 4: Picture taken by Eddington during his expedition to west Africa, measuring light deflection by
observing the position of stars during an eclipse in May 1919. The light emitted by the star passes very closed
to the sun and is deviated by its gravitational field.

in Fig. 5 shows in color X rays measurements released by Chandra in 2004 [110], where one
can clearly see two regions of emission, coming from ordinary baryonic matter after interaction
of the clusters. However one can notice in blue the regions of the sky, delimited by study of
the lensing, where most of the matter is measured to be present. The separation between the
visible, luminous, regions –containing ordinary matter – and the blue region of – theoretical,
invisible – matter presence, suggests that nearly all of the matter is dark, and weakly interacting
: the hot gas in each cluster interacts with one another and is consequently slowed down in its
progression, whereas invisible, dark matter bullets pass by, almost ignoring clouds of ordinary
matter and even very feebly interacting with one another.

4.2.1 Production of Dark Matter : A Thermal History

As we have seen above, anomalies in the rotation curves of galaxies, the bullet cluster obser-
vation, etc. suggest the presence of a massive matter component, which should in addition be
relatively weakly interacting with ordinary matter. This enormous amount of obscure matter,
often called WIMP (Weakly Interacting Massive Particle) is generally expected to be produced
at the very early times of the Universe History. Dark matter production and equilibrium are
hence of great importance to study in order to better understand its evolution through the
ages.

Let us consider a sketch where only two stable kinds of particles, X being a dark matter
candidate, and Y being a standard model constituent, interact with each other through the
reaction XX̄ ↔ Y Ȳ .

Of course, during early times, while the temperature of the Universe was far higher than the
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(a) (b)

Figure 5: Observations of the Bullet Cluster [109]. Pink clouds denotes the presence of detected X ray emission
(a) while blue regions represent the suspected presence of mass through study of the gravitational lensing. The
second picture (b) represents the X-ray measurement superimposed with the gravitational lensing isocurves
(green).

dark matter mass mX , creation and annihilation of X and Y were equivalently efficient. Thus
the particle X was maintained to stand in large abundance with the standard model sector.
Yet, as the temperature decreases with the expansion of the Universe, the process of creation of
X becomes inefficient when T . mX , while annihilation does not stop functioning. The number
density of X can be computed, in the hypothesis of thermal equilibrium, to be

neqX = gX

(
mXT

2π

)3/2

emX/T , (4.2.7)

where gX is the number of internal degrees of freedom of the particle X. However, an important
effect on thermal equilibrium that has to be taken into account is the effect of the Universe
Hubble expansion on the interaction process. Indeed, if particles were in thermal equilibrium
indefinitely, their number density would not cease decreasing while the Universe cools down,
as indicated by Eq. 4.2.7. In this case, it can be difficult to explain the presence of the
remaining, so called “relic” density of dark matter which is suspected to lie around our galaxies
today. A possible explanation for the existence of relic density is the competition between the
self annihilation process and the Hubble expansion. Indeed, expansion of our Universe works
towards a dilution of the WIMPs density whereas the annihilation rate becomes negligible.
Dark matter thus can survive, expansion making annihilation inefficient. Both effects are well
described by the Boltzmann equation

dnX
dt

+ 3HnX = −〈σv〉(n2
X − neqX 2) , (4.2.8)

where nX is the WIMPs’ number density, H is the Hubble factor defined in Eq. (2.2.6) H =(
8π3ρ
3Mp

)1/2

and 〈σv〉 is the averaged cross section of annihilation of X multiplied by the relative

velocity of the annihilating particles.
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To give a first comment, one can see in Eq. 4.2.8 that in the case where T � mX , nX is large
and stabilized to neqX at equilibrium, whereas when T � mX , the number density nX decreases
and the term 3HnX becomes more and more relevant. When 〈σv〉n2

X becomes sufficiently small,
expansion dominates and the annihilation process is stopped. This is called the thermal freeze
out.

The temperature of freeze out TFO can then be computed using Eq. 4.2.8 and is usually
expressed in terms of the variablex ≡ mX/T , giving

xFO ≡
mX

TFO
≈ ln

[
c(c+ 2)

√
45

8

gX
2π3

mXMp

g
1/2
? x

1/2
FO

(
a+

6 b

xFO

)]
, (4.2.9)

where c ∼ 0.5 is a numerical factor, gX is the number of external degrees of freedom (gX ∼ 120
in the Standard Model at T ∼ 1TeV, gX ∼ 65 at T ∼ GeV) and a, b are the coefficients in the
non relativistic expansion of the cross section

〈σv〉 = a+ bv2 = O
(
v4
)
. (4.2.10)

This provides the WIMP density remaining in our Universe

ΩXh
2 ≈ 1.04× 109GeV−1

Mp

xFO

g
1/2
X

(
a+ 3 b

xFO

) . (4.2.11)

In the case of a dark matter of order GeV mass, and a weak scale cross section, the freeze
out temperature turns out to be of order xFO ∼ 20− 30, and the relic density becomes

ΩXh
2 ≈ 0.1

(xFO
20

)(gX
80

)−1/2
(

a+ 3 b
xFO

3 · 10−26cm3.s−1

)−1

. (4.2.12)

This relation states surprisingly that, for a typical electroweak cross section, the relic abun-
dance ΩX gets a value approaching ΩX ∼ 0.2 − 0.3 which is precisely the value measured by
recent measurement of the Universe matter content. This coincidence, far from being a proof
for the existence of a WIMP-like dark matter, is often called the WIMP miracle and used as
a motivation suggesting that dark matter could naturally be imagined to take the form of a
massive (∼ GeV − TeV), weakly interacting particle.

4.3 Thermodynamics of the Decoupling

Let us here clarify how statistical distributions of thermodynamics are treated while dealing
with the universe particle content. First let us specify that while talking about the “Universe
temperature”, one always talks about the temperature of the photon thermal bath, with which,
depending on the age of the universe, several other species are in thermal equilibrium. All
the particles present in this bath hence follow the well known Fermi-Dirac or Bose-Einstein
distribution (respectively for fermions “+” and bosons “-”)

f(p) =
1

exp{(E − µ)/T} ± 1
. (4.3.1)
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µ is here denoting a chemical potential which could in principle differ, depending on the different
species of particles in equilibrium at the time considered. The number density, energy density
and pressure of the considered gas can then be expressed in terms of this distribution function
as follows

n = g

∫
d3p

(2π)3
f(p) , (4.3.2)

ρ = g

∫
d3p

(2π)3
E(p)f(p) , (4.3.3)

P = g

∫
d3p

(2π)3

|p|2
3E

f(p) , (4.3.4)

where g is the number of internal degrees of freedom of the gas considered. In the relativistic
limit where T � m,µ, these quantities can be derived to find

n =


g ζ(3)
π2 T

3 (Bose)

g 3
4
ζ(3)
π2 T

3 (Fermi)

, ρ =


g π

2

30
T 4 (Bose)

g 7
8
π2

30
T 4 (Fermi)

, P =
ρ

3
. (4.3.5)

In the non relativistic limit m� T , these formulas become

n = g

(
mT

2π

)
e−(m−µ)/T , ρ = mn , P = nT � ρ . (4.3.6)

Here we have considered the distribution of a single gas species. Yet in the primordial Universe
many different species are in thermal equilibrium. Some of them, depending on their masses,
will be relativistic and some of them will not. In the latter case, energy density and pressure will
be exponentially suppressed, such that the only particles contributing to the Universe energy
density and pressure will be the relativistic ones, and one can define a combined number of
degrees of freedom g? by

g? ≡
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

, (4.3.7)

such that these quantities express as

ρ =
π2

30
g?T

4 , and P =
π2

90
g?T

4 . (4.3.8)

Here the Ti’s stand for the respective temperature of each baths composed of one species only.
The latter are in equilibrium with photons before decoupling with the thermal bath and this
step function is a good approximation of the true function g(T ) during the Universe expansion.

A few lines of thermodynamics arguments (using mainly the first law of thermodynamics)
show that the entropy density of the gas considered goes like

s =
ρ+ P

T
, (4.3.9)

that is the entropy density varies with respect to the temperature as the simple function

s =
2π2

45
gs? T

3 , (4.3.10)
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Figure 6: Evolution of the temperature of different species (relativistic and non-relativistic) after their decou-
pling from the thermal bath.

where

gs? =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

. (4.3.11)

Again, when all relativistic degrees of freedom are in thermal equilibrium, factors
(
Ti
T

)
are set

to one in the latter expressions and g? = gs? but these two numbers differ as soon as one species
decouples from the thermal bath.

These results have important consequences on the evolution of the thermal bath tempera-
ture. Indeed, the constance of the entropy

S = a3s ∝ (aT )3 , (4.3.12)

indicates that the temperature evolve like

T ∝ a(t)−1 . (4.3.13)

In addition to that, the process of decoupling is constrained to happen at constant entropy and
hence makes the temperature of the thermal bath satisfy

T afterγ = T beforeγ ×
(
gbefores

gafters

)1/3

. (4.3.14)

Since the value of the number of degrees of freedom is decreasing while a species decouples,
the latter relation enforces the temperature of the thermal bath to increase, reheating the
Universe. After the decoupling, depending on its mass, a particle species can be frozen while
still relativistic or not. Both cases will lead to different evolution of their respective own
temperature, that can be shown to be

Ti ∝ a(t)−1 (Relativistic) Ti ∝ a(t)−2 (Non-Relativistic) . (4.3.15)
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The two kinds of evolutions are depicted in Fig. 6, where the thermal bath is reheated by the
different decoupling phases, while the temperatures of each species population decreases with
the aforementioned laws.

This evolution of the Universe temperature is of a crucial importance to understand the
process of decoupling and how the temperature laws of the different species involved change
during the different phases of the Universe History.

Now that we have seen in details how one can describe a thermal evolution of the Universe
and in particular, how the addition of a dark matter sector, in thermal equilibrium at the early
time of the Universe with the visible sector, can play a role in this evolution, we will investigate
in what follows what a dark matter candidate can be and how it can – weakly – interact with
our observable world.



5 A Simple Extension of the Standard Model :

An Extra U(1) Symmetry

One of the simplest possible option to enlarge the standard model is to add to the latter new
abelian gauge interactions. For a recent review on the subject, see for instance [111, 112]. As
we will see this has the appealing feature to provide new interactions that can be used to model
the way a dark sector can talk to our visible world. In such a picture, one could for example
imagine the dark matter be a fermionic component interacting, through this new U(1)X with
standard model particles. This new interaction would in this case be carried by a new gauge
boson, playing the role of a mediator between dark matter and visible matter that is generically
called a Z ′ boson (or hidden photon in the case it is supposed very light or massless).

The most common approach to study the existence of one additional gauge boson is to couple
it to the standard model fermions, analogously than it is in the usual electroweak theory. The
possibility that there exists couplings of the form

L ⊃ gX(ψ̄SMγ
µψSM)Zµ , (5.0.1)

is however very much constrained by direct searches and especially by FCNC processes. There
exists a large amount of proposals, among which models like B − L or combinations α(B −
L) + βY are the most popular, where the Z ′ is coupling to the SM fermions with flavor blind
charges. These models are actually the only ones which contain family-independent, anomaly-
free gauged symmetries commuting with the SM gauge group in case where there are no new
fermions beyond the ones of the SM. Family-dependent anomaly-free models with no extra
fermions were also extensively studied [113, 114, 115]. In such cases, the fact that the Z ′ is in
direct contact with Standard Model fermions, and if the coupling gX is not too small, the Z ′

should be heavy enough to escape detection. It is roughly constrained to stand in the multi-TeV
mass range.

There exists also a wide literature on light U(1)’s of string or field theory origin with anomaly
cancellation a la Green-Schwarz [116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131], with low-energy anomalies canceled by axionic couplings and generalized Chern-
Simons terms, or in other models with Stueckelberg realization of Z ′ [132, 133, 134].

There is, however another way to sketch the possible interaction of this new gauge boson
with the standard model if one imagine that none of the SM fermions are charged under this
U(1)X but if there exists additional heavy fermions ΨL,R, called “mediators” in what follows,
mediating effective interactions, described by the dimension-four kinetic mixing and higher-
dimensional operators between the Z ′ and the SM sector. This approach was adopted in 2012
by Dudas, Mambrini, Pokorski and Romagnoni [135, 136] aiming to fit the 130 GeV gamma
ray line claimed to be observed by FERMI LAT at that time [137]. Indeed, a detection of
significance & 3.2σ was claimed indicating the presence of a gamma ray line a round the galactic
center, that could possibly be a smoking gun evidence for the presence of dark matter in the
milky way (See Fig. 1). Yet a few years later, the significance has decreased and the signal
may be not even present at all. Nevertheless, this approach for SM gauge boson coupling to a
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Figure 1: Plot extracted from [137]. On the left panel, distribution of the signal, red regions denoting the
presence of the line in the two bubbles surrounding the galactic center. On the right panel, experimental data
showing the 3.2σ excess at 130 GeV.

Z ′ boson through dimension 6 operators provides an elegant way to parametrize our ignorance
on the underlying UV completion model but also a natural way to get very tiny interactions –
thanks to a 1/Λn suppression – between the visible sector and the dark matter sector, which
can communicate with the latter through the exchange of the Z ′ boson.

If one wants mediators parametrically heavier than the electroweak scale (say in the TeV
range), we need, in addition to possible SM Higgs contributions, an additional source to their
mass. A purely Dirac mass is of course a simple viable option. However as argued in [135, 136],
because of the Furry theorem, in this case the only low-dimensional induced effective operator
is the kinetic mixing, whereas the next higher-dimensional ones are of dimension eight.

A natural option to obtain dimension-six effective operators is alternatively to generate the
mediator masses by the vev of some scalar field φ breaking spontaneously the Z ′ gauge symmetry
(a heavy Higgs boson). The corresponding induced mediator masses, called generically M in
what follows, determine the mass scale of the higher dimensional operators and also the UV
cutoff of the effective theory. In principle, there could also be contributions to their mass from
the SM Higgs field m ∼ λ〈H〉 = λv, but one can consider them to be smaller, such that we can
expand in powers of v/M and obtain operators invariant under the SM gauge group. Such a
framework was already investigated in [135, 136, 138, 139] from the viewpoint of the effective
couplings of Z ′ to electroweak gauge bosons.

In the work we will present here, we wanted to explore the possibility that these heavy
mediators could be charged under the colored SU(3) gauged group of the standard model.
Under such assumption, the Z ′ boson would naturally couple gluons through dimension six
operators, suppressed by a power two in the mass scale M aforementioned providing very
feeble interactions between the Z ′ and the colored sector of the visible sector. In what follows,
we consider the kinetic mixing to be small enough (which has been actually tested to be a
reasonable assumption in the parameter space allowed by the PLANCK/WMAP data). If we
are interested in Z ′ couplings to gluons, this can be achieved for example by having colored
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ψDM ΨM ψSM

U(1)X • •

U(1)× SU(2)× SU(3) • •

Table 5.1: Summary of the gauge symmetries involved in the model. Standard model fermions are assumed
to be charged only under standard model gauge group while heavy mediators ΨM are supposed to be charged
both under the SM gauge group and the new abelian interaction. Finally, dark matter fermion ψDM is charged
under U(1)X such that it can interact with the SM through a Z ′ exchange.

mediators with no hypercharge. We will restrict ourselves throughout this thesis to CP even
couplings for simplicity.

As far as the dark matter sector is concerned, we will assume the dark matter candidate to
be the lightest fermion in the dark sector and being charged under the U(1)X symmetry, such
that the Z ′ interaction constitutes the unique portal between the visible and invisible sectors.
The situation is summed up in Tab. 5.1.

5.1 Z ′, heavy fermion mediators and effective operators

We would like to make clear in this section, how to write an explicit model containing all the
ingredients mentioned above, in a completely covariant manner. Effective operators generated
by loops of heavy fermions are generically invariant under the Standard Model gauge group.
As far as the U(1)X symmetry is concerned, it turns out that it can be realized non linearly,
a la Stueckelberg. Indeed, if the mass of the mediators were induced by operators invariant
under the whole gauge group then effective operators would be gauge invariant in the usual
way. Yet heavy mediators get here their masses through the breaking of the U(1)X symmetry.
The associated heavy Higgs can be hence expanded around its vacuum expectation value V ,
introducing the dimensionless axion field θX = aX

V

Φ =
1√
2

(V + φ) exp(iθX) . (5.1.1)

The spontaneous breaking of the symmetry leads to an effective theory containing only the
axionic field θX transforming non-linearly as follows

δZ ′µ = ∂µα , δθX =
gX
2
α . (5.1.2)

The use of the covariant derivative

DµθX ≡ ∂µθX −
gX
2
Z ′µ , (5.1.3)

provides an important tool for defining covariant effective operators as we will see.
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The Lagrangian

We will give here the toolbox that will be explored in the following section for studying the
possible interaction of dark matter with the gluons. In order to make the theory be as relevant
as possible, we aim to derive in the cleanest manner a generic form for the effective operators,
starting from a sufficiently general microscopic picture. The exact lagrangian that we will use,
describing all the microscopic physics, including the mediator fields ΨL,R, is taken to be of the
form

L = LSM + Ψ̄i
L

(
iγµDµ +

gX
2
X i
Lγ

µZ ′µ

)
Ψi
L + Ψ̄i

R

(
iγµDµ +

gX
2
X i
Rγ

µZ ′µ

)
Ψi
R

−
(

Ψ̄i
LMije

iaX (XiL−X
j
R

)

V Ψi
R + h.c.

)
+

1

2
(∂µaX −MZ′Z

′
µ)2 − 1

4
FX
µνF

X µν (5.1.4)

where LSM is the Standard Model Lagrangian, Dµ’s are the covariant derivatives with respect
to the standard model gauge group, and where MZ′ ≡ gXV/2. As stated above this lagrangian,
being written in terms of covariant derivatives only, is invariant under (5.1.2) and hence com-
pletely gauge invariant.

For phenomenological applications, we consider here a model in which the dark matter is
represented by the lightest stable fermion ψDM charged under Z ′ and uncharged under SM (the
mass of dark matter will be denoted by mψ in what follows). The mediators ΨL,R are considered
to be heavy enough so that they have not been discovered yet in colliders. Assuming than they
are heavier than both dark matter and the Z ′ boson, they can be integrated out so that we
have to deal with effective operators, including new parameters. At low energy, the mediators
being integrated out give rise to a new effective lagrangian

Leff = L1(ψDM, Z ′µ) + L2(ASMµ ) + Lmix(Z ′µ, ASMµ ) , (5.1.5)

where L2 and L1 represent the new effective operators generated separately in the SM gauge
sector and Z ′ one, whereas in Lmix we collect all the induced terms mixing Z ′ with the Standard
Model. Notice that L1 also contains the DM particle (i.e. the lightest mediator) which is not
integrated out.

As we explained earlier, the mediators acquire their mass after the breaking of the U(1)X
symmetry, meaning their mass matrix has the symbolic form

Mij ∼ λijV , (5.1.6)

where V is the vev breaking the Z ′ gauge group U(1)X . At the one-loop perturbative level,
mediators generate only Z ′ couplings to the SM gauge fields and the SM Higgs as represented
in Fig. 2 in the case of Z ′ coupling to gluons. Indeed, in the absence of kinetic mixing, one-loop
couplings to SM fermions can be generated only if there are Yukawa couplings mixing mediators
with SM fermions. We forbid such couplings in what follows1.

As we will see in section 5.4, it is important, while building a particle physics model, not
to introduce anomalies, especially while new triangle diagrams can be generated in addition
to the standard model ones. If the UV complete model, describing the high-energy physics is

1Which can be easily achieved by imposing for instance a Z2 parity, under which all mediator fields are odd
and all SM fields are even
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Figure 2: When heavy fermions are integrated out, they generate dimension-six effective operators of strength
dg/M

2.

anomaly-free and the SM fermions are neutral under Z ′, then the mediators have to form an
anomaly-free set. We will consider that this is the case in what follows.

Another restriction that we will impose is the operators we introduce conserve CP for
simplicity. Being given this hypothesis one has to note in addition that if the mediators are
completely non-chiral, meaning they are completely vector-like both with respect to the SM
and U(1)X , there are no dimension-six induced operators, since the only one that can be
potentially written, T r(FXFSM F̃SM) actually vanishes exactly (a demonstration can be found
in Appendix C of [102]). In the case where these heavy fermions are chiral with respect to
U(1)X and vector-like with respect to the SM, the induced dimension-six operators are

L(6)
CP even =

1

M2

{
dg∂

µDµθXT r(GG̃) + d′g∂
µDνθXTr(GµρG̃

ρ
ν)

+ egD
µθXTr(GνρDµG̃ρν) + e′gDµθXTr(GανDνG̃µα)

}
+

+
1

M2

{
DµθX

[
i(DνH)†(c1F̃

Y
µν + 2c2F̃

W
µν )H + h.c.

]
+ ∂mDmθX(d1T r(F Y F̃ Y ) + 2d2T r(FW F̃W )) + d′ew∂

µDνθXTr(FµρF̃
ρ
ν )

+ eewD
µθXTr(FνρDµF̃ ρν) + e′ewDµθXTr(FανDνF̃ µα)

}
, (5.1.7)

where DµGαβ denotes the gluon covariant derivative, in components

DµGa
αβ = ∂µG

a
αβ + gfabcGb

µG
c
αβ , (5.1.8)

and where we defined, for notational convenience

F̃µν ≡
1

2
εµνρσF

ρσ , T r(FG) ≡ Tr[FµνG
µν ] , T r(EFG) ≡ Tr[E λ

µ FλνG
νµ] , (5.1.9)

”Tr“ taking into account a possible trace over non-abelian indices. The last three terms, indexed
by ”ew“ in (5.1.7) refer to all SU(2) × U(1)Y electroweak gauge bosons. In what follows we
work in the unitary gauge where the axion is set to zero θX = 0.
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5.1.1 Microscopic Generation of Effective Couplings

After one has written down a lagrangian with the largest possible number of effective dimension
six operators (see Eq. (5.1.7)), it turns out that the number of new parameters inserted to
parametrize our ignorance on the underlying macroscopic theory is rather large. Since we
imagined a UV complete formulation of how these operators are generated, one can try to
derive explicit forms of these operators being given this high energy framework and check in
particular which operators are indeed generated.

This can be achieved easily by computing the one loop triangle diagrams relating the Z ′

boson to a pair of gluons as depicted in Fig. 3.

Figure 3: Integration of heavy fermions in a triangle diagram.

At the one loop order, there are several contributions to the effective vertex function Γµνρ.
The first is the triangle loop diagram without chirality flip, given by

Γ(1)
µνρ =

∑
i

tiaa

∫
d4p

(2π)4
Tr

[
/p+ /k2

(p+ k2)2 −M2
i

γρ
/p

p2 −M2
i

γν
/p− /k1

(p− k1)2 −M2
i

γµγ5

]
. (5.1.10)

where tiaa = Tr(XiT
aT a). Using Ward identities, it is sufficient to compute this diagram in

order to find the full amplitude2. After symmetrization among the two gluon legs, one finds

ΓOµνρ = −
∑
i

itiaa,L−R
12π2M2

i

{[2(k1 + k2)µενραβ − k1ρεµναβ − k2νερµαβ]kα1 k
β
2 + εµνραk1k2(k2 − k1)α} ,

(5.1.11)
where tiaa,L−R = Tr((XL − XR)T aT a)i and the corresponding dimension-six operator for the
triangle diagram represented in Fig. 3 turns out to be

O =
g2

3

24π2

∑
i

Tr

(
(XL −XR)TaTa

M2

)
i

[
∂µDµθXT r(GG̃)− 2DµθXTr(GανDνG̃µα)

]
,

(5.1.12)
where g3 is the QCD strong coupling.

On the other hand, it can be shown (see Appendix C of [102]) that the antisymmetric
part of the amplitude in the gluonic legs is zero, which is consistent with the fact that there
is no possible dimension-six operator mixing Z ′ to gluons, that is antisymmetric in the gluon
fields. As a byproduct, we also find that the heavy mediators we are considering do not induce
operators of the type

1

M2
Tr(Gµν [G

νλ, G̃µ
λ]) , (5.1.13)

2Find a proper demonstration in Appendix B of [102]
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that are completely antisymmetric in the three gluon fields , and similar operators for elec-
troweak gauge fields. This means that there are no constraints from purely SM dimension-six
operators induced in this setup and all the phenomenological constraints come from the mixing
of Z ′ with SM fields.

Let us come again to the expression 5.1.1. Indeed, the implication of such formula are of
great importance for what will follow. As we saw, writing down an generic lagrangian, conserv-
ing the global CP symmetry, and coupling together a Z ′ with gluons gives rise to four different
operators to which are associated four different free parameters. Among other details, what we
showed here is that only two of these four operators are actually generated through loops in the
quite generic picture of heavy fermions integrated out. Furthermore, the exact computation of
the latter loop provides a relation between the two remaining free parameters, expressing both
in terms of the heavy mediators charges and the strong coupling. As a consequence, one ends
with two different effective operators providing the effective interaction lagrangian

Lint =
dg
M2

[
∂µDµθXT r(GG̃)− 2DµθXTr(GανDνG̃µα)

]
, (5.1.14)

where

dg ≡
g2

3

24π2

∑
i

Tr [(XL −XR)TaTa]i . (5.1.15)

5.2 Dark Matter Annihilation to gluons

We just saw how one can express the interaction lagrangian of our Z ′ boson with a pair of
gluons, generating explicitly the effective operators in terms of microscopic charges involved in
the underlying high energy theory. It is yet important to notice that, with on-shell gluons in
the final state, only the first operator will contribute to the amplitude. We will hence continue
working with the simplified lagrangian

Lint =
dg
M2

[
∂µDµθXT r(GG̃)

]
. (5.2.1)

On the side of the dark sector, we assume dark matter to couple minimally to the Z ′ boson
as follows

L ⊃ ψ̄DML
gX
2
XDM
L γµZ ′µψ

DM
L + ψ̄DMR

gX
2
XDM
R γµZ ′µψ

DM
R , (5.2.2)

which provides us two ways of annihilating dark matter. The first one is an s-channel produc-
tion of an off shell Z ′ boson decaying to a pair of gluons. The second one is a t-channel process,
leading to two Z ′ bosons, which will mostly decay into gluons. The associated Feynman dia-
grams are presented in Fig.4.

In the unitary gauge, rescaling for notation convenience the effective coupling dg the Z ′-
gluon-gluon vertex coming from the operator dg is

dg
M2

{
gX∂

mZ ′mε
µνρσ∂µG

A
ν ∂ρG

A
σ

}
. (5.2.3)

The propagator of the vector boson Z ′ in the unitary gauge is

∆(q) = −i
ηµν − qµqν

M2
Z′

q2 −M2
Z′ + iMZ′Γ(Z ′)

, (5.2.4)
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Figure 4: Gluon pair production via two different processes, that are the s-channel (a) and the t-channel Z ′

pair production (b), that decay subsequently into two gluons each.

For dark matter fermions of mass smaller than MZ′/2, the main contribution to the Z ′

width Γ(Z ′) is Γ(Z ′ → ψDMψDM), which is computed to be

Γ(Z ′) =
g2
X

384πM2
Z′

[
(X2

L +X2
R)M2

Z′ − (X2
L +X2

R − 6XRXL)m2
ψ

]√
M2

Z′ − 4m2
ψ . (5.2.5)

For heavier masses of dark matter, one has to consider the Z ′ decay width into gluons and
SU(2) gauge bosons. However, it can be easily checked that the detailed values of these widths
do not influence much the results in what follows3.

5.2.1 s-channel Cross-Section

Vector-coupling case
In the case of a vector-like coupling of DM fermion to Z ′ boson (no γ5 in the coupling), one
obtains the interaction lagrangian

Lint = ψ̄DM
gX
2
XDMγµZ ′µψ

DM , where XDM ≡ XDM
R = XDM

L . (5.2.6)

One can then perform the tree-level diagram cross section and find out that the amplitude
vanishesM = 0. Therefore, the dg-term coupling does not contribute to the final cross section
at all. Indeed, due to the effective coupling of the form dg∂

mZ ′mT r(GG̃), the vertex Z ′ψDMψDM

gets multiplied by the virtual momentum as follows

qµv̄(p2)γµu(p1) = v̄(p2)(/p2 + /p1)u(p1) = 0 , (5.2.7)

after using Dirac equation for the spinors describing the wave functions of the dark matter
fermions. Hence one has to write an interaction between dark matter and our new gauge boson
Z ′ using an axial coupling.

3Indeed, we will see that the cross section of dark matter annihilation into gluons is suppressed for an
invariant mass

√
s approaching MZ′ , as a consequence of the Landau-Yang theorem [140]. In the non-relativistic

approximation, this happens in the energy region closed to s ' 4m2
ψ+m2

ψv
2
rel > 4m2

ψ. The suppression therefore
occurs for a mass mψ significantly lower than MZ′/2, where the decay width is essentially that of decay into
two dark matter particles.
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Axial-vector couplings case
Adding to the previous coupling an axial component, one can write in full generality, an axial-
vector coupling

Lint =
gX
2

(
XDM
R +XDM

L

2

)
ψ̄DMγµZ ′µψ

DM +
gX
2

(
XDM
R −XDM

L

2

)
ψ̄DMγµγ5Z

′
µψ

DM . (5.2.8)

The annihilation cross section of dark matter into a gluon pair takes non zero values in this
case and becomes

σs−channel =
d2
g

M4

(−4E2 +M2
Z′)

2

(−4E2 +M2
Z′)

2 +M2
Z′Γ

2(Z ′)

E5g4
Xm

2
ψ(XL −XR)2

πM4
Z′

√
E2 −m2

ψ

. (5.2.9)

It is worth to notice that this cross section is suppressed for energies of order MZ′/2 due
to the Landau-Yang theorem[140]. Indeed the latter states that a spin 1 massive vector boson,
cannot decay into two massless spin one. There is also a helicity suppression for the case of a
light dark matter, that can be understood by writing the vertex Z ′ψDMψDM in this case

(XL −XR)qµv̄(p2)γµγ5u(p1) = (XL −XR)v̄(p2)(/p2γ5 − γ5/p1)u(p1) ,

= −2mψ(XL −XR)v̄(p2)γ5u(p1), (5.2.10)

by the use of Dirac equation.

This finally gives in the non-relativistic approximation s ' 4m2
ψ+m2

ψv
2
rel ⇔ E ' mψ

√
1 +

v2
rel

4
,

with vrel being the relative velocity between the two colliding dark matter fermions, the total
cross section

〈σv〉s−channel '
d2
g

M4

g4
Xm

6
ψ(XL −XR)2

πM4
Z′

 2
(
M2

Z′ − 4m2
ψ

)2(
M2

Z′Γ
2(Z ′) +

(
M2

Z′ − 4m2
ψ

)2
)
+O

(
v2
)

(5.2.11)

5.2.2 t-channel Cross Section

As mentioned earlier, we also have to consider a t-channel process, producing pairs of Z ′ bosons
in dark matter annihilation for Z ′ mass below the dark matter mass. Considering that the only
non vanishing coupling is the one in dg, each Z ′ will decay into gluons; this process will then
produce gluons in the final state. After expanding in powers of v2, the cross-section in this case
can be expressed as

〈σv〉t−channel =
g4
X

√
m2
ψ −M2

Z′

128π2mψM2
Z′

(
2m2

ψ −M2
Z′

)2

(
2m4

ψX
4
L − 4m4

ψX
2
LX

2
R + 2m4

ψX
4
R − 3m2

ψM
2
Z′X

4
L

+ 10m2
ψM

2
Z′X

2
LX

2
R − 3m2

ψM
2
Z′X

4
R +M4

Z′X
4
L − 6M4

Z′X
2
LX

2
R +M4

Z′X
4
R

)
+O

(
v2
)
.

(5.2.12)
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5.3 Constraining the Model with Experimental Data

We have so far made theoretical computations, determining how dark matter could interact
with gluons through an annihilation process. We aim, in this section, to constrain the parameter
space to enter the recent experimental measurements error bars or excesses with respect to the
standard model. A coupling Z ′GG can be tested in several laboratories, from direct detection
experiments to indirect detection, relic abundance or LHC searches. We present in the following
the constraints obtained from these different searches, before summarizing all of them at the
end of the section. The reader can find a recent complementary analysis of gluonic effective
couplings to dark matter in [141].

5.3.1 Relic Abundance vs Indirect Detection

We saw in section 4.2.1 that the relic abundance ΩDM of dark matter, present nowadays in
our universe, highly depends on the cross section of annihilation of dark matter that we com-
puted in the previous section. Indeed, the thermal equilibrium that keeps dark matter at the
same temperature than the thermal bath for a while strongly depends on its capacity to be
produced, and to annihilate, before it completely decouples from the latter. As far as numbers
are concerned, the PLANCK collaboration released recently its latest results concerning the
composition of the Universe [142]. It confirms the results of WMAP experiment [143] obtaining
for the relic abundance of non–baryonic matter Ωh2 = 0.1199 ± 0.0027 at 68% of CL. Using
the relation 4.2.12, one can hence use this high level of precision to know what reasonable
parameters provide a sufficient production of dark matter from the thermal bath to respect the
previous PLANCK/WMAP results.

Moreover, if dark matter is present in the galaxy and in different celestial bodies, its weak
interaction with ordinary matter should produce detectable traces in the indirect detection
experiments. Indeed, astrophysical constraints arise from the study of diffuse gamma ray
produced indirectly by the dark matter annihilation in various astrophysical bodies, among
which are the center of the Milky Way [144], the galactic halo [145], the dwarf spheroidal
galaxies [146] or the radio observation of nearby galaxies like M31 [147].

These two different kinds of constraints acts on a theoretical model in opposite manners.
On one hand, the cross section given by the relic abundance will set a lower bound on the
theoretical cross section we predict. Indeed, knowing the amount of visible matter present in
the Universe and making dark matter interact too feebly with the visible sector would predict
the presence of a huge amount of dark matter, which is not observed by the Planck/WMAP
measurements and would render the Universe overclose. On the other hand, indirect detection
sets an upper bound on the cross section, stating, being given the amount of unexplained ray
production we observe in the Universe and the expected amount of present dark matter, what
can be the highest possible interaction rate.

Relic abundance
As we just saw, depending on the spectrum, two annihilation processes allow the dark matter
candidate to keep thermal equilibrium with the standard model particles of the plasma: the
s–channel exchange of a Z ′ (Eq.5.2.11) with a pair of gluons, and the t-channel production
of Z ′ (Eq.5.2.12), as long as this channel is kinematically open. It is then possible to solve
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Figure 5: Different approaches to constrain the parameter space. Relic abundance is a measure of the ratio
dark matter / visible matter present in the Universe (bound on the hidden part of the iceberg, compared to the
visible one). If the cross section was too low, one would need much more dark matter to explain the amount of
visible matter we actually observe. Indirect detection sets an upper bound on the visible rays in the Universe
(visible part of the iceberg), setting upper limits on the annihilation cross section.

numerically the Boltzman equation 4.2.8 to compute, in our theoretical model what is the relic
density for a given choice of parameters.

Adapting the public software MicrOMEGAs [148], one can easily find out from (5.2.11-
5.2.12) which parameters give the right relic density. We noticed in section 5.2.1 that the
coupling of the dark matter should be axial, as the vectorial part of the current coupling to Z ′µ
does not gives any contribution to the process ψDMψDM → Z ′ → GG. For simplicity, we will
set charges XR = 1, XL = 2 ⇒ |XR −XL| = 1. Our results for a different set of charges are
modified in a straightforward way. To keep our results as conservative as possible, we plotted
the WMAP limits 0.087 < Ωh2 < 0.138 at 5σ.

We show in Fig. 6 the parameter space allowed in the plane (M
2

dg
,mψ) for different values of

MZ′ and gX . Points above the red lines region would lead to an overpopulation of dark matter
whereas points lying below the red lines would require additional dark matter candidates to
respect PLANCK/WMAP constraints. We can notice several, interesting features from these
results. First of all, we observe that as soon as the Z ′Z ′ final state is kinematically allowed
(mψ > MZ′) this annihilation channel is the dominant one as soon as gX is sufficiently large
(we checked that this happens for gX & 0.3) and mainly independent on the dark matter mass.
This is easy to understand after an inspection of Eq.(5.2.12). Indeed, in the limit mψ � MZ′ ,

one obtains 〈σv〉Z′Z′ ' 9g4
X

256π2M2
Z′

. In other words, once

9 g4
X

256π2M2
Z′

& 2.5× 10−9 GeV−2 → gX & 3× 10−2

√
MZ′

GeV
, (5.3.1)

then the t-channel process ψDMψDM → Z ′Z ′ dominates the annihilation and forbids the dark
matter to overpopulate the Universe (Ωψh

2 . 0.138). This corresponds to gX ' 0.3 for MZ′ =
100 GeV and gX ' 1 for MZ′ = 1 TeV, which fits pretty accurately the numerical results we
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Figure 6: Constraints from WMAP/PLANCK (red line) and FERMI dSphs galaxies (blue line) in the (M
2

dg
,mψ)

plane for different values of gX (0.1 on the left and 1 on the right), MZ′ = 100 GeV (up) and MZ′ = 1 TeV
(down). See the text for more details.
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obtained. This limit also explains why the region allowed by PLANCK/WMAP is larger for
MZ′ = 1 TeV: the value gX = 1 is at the border limit for the t−channel to dominate. From
Eq.(5.3.1) we also understand why the Z ′Z ′ final state, even if kinematically allowed, has no
influence on the limits set by the relic abundance for gX = 0.1: the coupling is too small to
give sufficient annihilation products. The dominant process is then the s−channel Z ′ exchange
(' 15% of Z ′Z ′ final state for gX = 0.1 and MZ′ = 1 TeV.).
The linearity of the constraints coming from WMAP/Planck data when the s−channel is dom-
inating can also be easily understood. Indeed, after a glance at Eq.(5.2.11), one obtains,
neglecting the tiny region around the pole MZ′ = 2mψ,

〈σv〉 ' d2
g

M4

2g4
X

π

m6
ψ

M4
Z′

(for MZ′ � mψ or MZ′ � mψ) , (5.3.2)

implying, for constant 〈σv〉,

log

(
M2

dg

)
= 3 logmψ + const , (5.3.3)

which is exactly the behavior we observe in Fig.6.

Indirect Detection
As far as the constraints from indirect detection are concerned, we have considered the ones
obtained by the observation of dwarf galaxies by the FERMI telescope [146]. Since dwarf
galaxies are mainly composed of dark matter, the background is there naturally minimized.

We show the result of our analysis in Fig.6 where the points below and on the right of the
blue lines are excluded by FERMI observations. As expected, the region below mψ . 40− 50
GeV (where the curves from FERMI and WMAP/PLANCK cross) is in tension with FERMI
limit, as hadronic final states are the more restricted by FERMI analysis, which seems to
exclude any thermal relics below this dark matter mass. When the Z ′Z ′ final state is allowed,
the annihilation cross section ψψ → Z ′Z ′ is so large that it is almost automatically excluded
by FERMI data. One can notice however that FERMI considers in their analysis the Z ′ decays
into quarks only, whereas in our case it decays into gluons.

5.3.2 Direct Detection

Since our proposal is to make dark matter interact with the strong sector one could easily
imagine that this model could have signatures in direct detection experiments. In order to
investigate this possibility, one can integrate out the Z ′ gauge boson and write the corresponding
dimension-eight operator connecting the dark matter with the gluons. One gets

dg
M2M2

Z′
ψ̄DMγµ

(
XR +XL

2
+
XR −XL

2
γ5

)
ψDMT r ∂µ(GG̃) . (5.3.4)

By using the observed CP invariance of the strong interactions, we find that the only non-
vanishing relevant gluonic matrix element we can write between an initial and a final nucleon
state is 〈N(p)|Tr Gν

µG̃
λ
ν |N(p′)〉 = Aελαβµ pαp

′
β, where A is a Lorentz invariant. As a consequence,

〈N(p)|T r ∂µ(GG̃)|N(p′)〉 = 0 . (5.3.5)

There are therefore no constraints on this operator from direct detection experiments.
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5.3.3 Monojet Events at the LHC

As a generic feature of dark matter models, the annihilation process should be looked upside
down to be considered also from the point of view of dark matter production in accelerators.
The model described in previous sections can therefore be probed at the LHC. Indeed the Z ′-
gluon-gluon vertex makes possible to produce a dark matter pair out of two protons, provided
a Z ′ is produced. Typical production channels are shown in Fig. 7, where we consider a generic
process:

p p→ j ψ̄DM ψDM (5.3.6)

of a proton-proton collision giving rise to 1 jet, plus missing energy (Emiss
T ).

G
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Figure 7: Dark matter production processes at the LHC (at partonic level), in association with
1 jet: p p→ jψ̄DMψDM.

The monojet final state was first studied using Tevatron data [149] in the framework of
effective ψDM-quark interactions of different nature. In a similar fashion, bounds to dark matter
effective models have been obtained by analyzing single-photon final states using LEP [150]
and LHC [151] data. An interesting complementarity between these two approaches has been
analyzed in [152]. Since then, the ATLAS and CMS groups have taken the monojet signal
analyses as an important direction in the search for dark matter at the LHC (see [153] and
[154] for the most recent results from ATLAS and CMS, respectively).

For achieving this study we used the monojet data coming from the CMS analysis [154],
which collected events using a center-of-mass energy of 8 TeV up to an integrated luminosity
of 19.5/fb. The results are shown in Fig. 8, where we show the exclusion power of the monojet
analysis to the model. We present the bounds for the quantity M2/dg as a function of the dark
matter mass, for three different values of the Z ′ mass: 100 GeV, 500 GeV and 1 TeV.

5.3.4 Constraints Summary

All the constraints detailed above can finally be gathered in a single plot to see what are the new
allowed regions in the parameter space. Superposing Fig.(6) and 8, we get a new representation
of those validity zones, as represented in Fig.(9). As explained earlier, parameters are allowed
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Figure 8: 90% CL lower bounds on the quantity M2/dg as a function of the dark matter mass, for MZ′ = 100
GeV (blue), 500 GeV (red) and 1 TeV (green). Based on the CMS analysis with collected data using a center-
of-mass energy of 8 TeV and a luminosity of 19.5/fb.

to lie below the red/full lines (Overdensity of the universe), above the orange/full line (LHC
bounds on monojets production). Since the whole study has been released using effective
dimension six operators generated by integrating out heavy fermions loops, one has to check
that the parameter range is still in the window where M � mψ. This is indicated on Fig.(9)
where we considered natural values of dg varying between 10−2 and 1 (purple and green/dashed
line, respectively). Thus one can easily distinguish between the two regions mψ � M (upper
region) and mψ �M (lower region).

In the case where dg ∼ 10−2, it is important to notice that low values of the coupling
constant gX provide almost no validity region in the parameter space since parameters have to
lie above the purple/dashed line. On the other hand, for gX = 1 one can also notice that the
allowed region is much larger in the case of a heavy Z ′. The case dg ∼ 1 considerably relax
the constraints since the validity zones are almost in the region where mψ � M (below the
green/dashed line).

The model we exposed hence appears to be viable in most of the situations explored. As
a general feature it appears that the mass of dark matter should exceed the mass of the Z ′

boson and that the bigger the coupling gX , the more the area of validity is open. However let
us recall that in our microscopic interpretation of the non renormalizable operators, both the
masses of Z ′ and the heavy mediators were sourced by a heavy higgs vev V as follows

MZ′ ≡
gX
2
V , (5.3.7)

M ∼ λijV , (5.3.8)

where λij were Yukawa couplings. Hence it turns out that the relation between M and MZ′ is
not arbitrary and would lead, for similar values of the Yukawas and the coupling constant gx
to a rough estimation

M ∼MZ′ . (5.3.9)

In such case, and for values of dg of order O(0.1− 1) the situation with a Z ′ of mass ∼ 100GeV
seems disfavored since the effective coupling dg/M

2 is required to be lower than O(10−8−10−7),



100

Figure 9: Experimental constraints on mψ and M2/dg parameters, including LHC and universe overdensity
constraints. Below the purple/dashed line M � mψ and the effective theory analysis we made is not valid.
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which is difficult to release with Eq. (5.3.9) for natural choices of the microscopic parameters.
It hence turns out that a Z ′ in a range of mass over 500GeV is then safer from the microscopic
point of view.

5.4 Anomaly Cancellation

As we mentioned in section 5.1, introducing new couplings to heavy mediators can potentially
produce anomalies in a quantum field theory model. After reviewing anomaly cancellation, we
will present how one can imagine a model in which such a Z ′ boson could in principle couple
even to SM quarks without introducing anomalies.

Let us consider the simplest (massive) fermionic lagrangian

L = ψ̄ (��∂ − e��A−m)ψ . (5.4.1)

In the limit where the mass m goes to zero, this lagrangian is left invariant by two global
symmetries, called respectively vector and axial symmetries

ψ → eiαψ , ψ → eiβγ
5

ψ . (5.4.2)

The Noether currents (vector and axial currents) associated to the latter transformations can
then be written

JµV = ψ̄γµψ , JµA = ψ̄γµγ5ψ , (5.4.3)

and satisfy classically the equations of motion

∂µJ
µ
V = 0 , ∂µJ

µ
A = 2imψ̄γ5ψ , (5.4.4)

where the vector current turns out to be exactly conserved while the axial current is only
conserved in the massless limit. At the quantum level, a carefull analysis of the non invariance
of the effective action with the path integral shows that the axial divergence, has an additional
anomalous term related to the electromagnetic background as follows

(∂µJ
µ
A)an. = − e2

16π2
εµνρσFµνFρσ . (5.4.5)

To show this, one can indeed study the effect of symmetries on the functional measure in the
path integral

〈O(x1, x2, ..., xn)〉 =
1

Z[0]

∫
Dψ̄Dψexp

{
i

∫
d4xiψ̄��∂ψ

}
O(x1, x2, ..., xn) , (5.4.6)

where O is an arbitrary gauge invariant operator. In what follows we will consider this operator
to contain a product of currents O(x, y) = Jµ(x)Jν(y). One can then show that invariance of
this path integral under a local, vector transformation imposes that

∂µ〈JµV (x)O(x1, x2, ..., xn)〉 = 0 , (5.4.7)

whereas the invariance transformation under axial transformations leads to

∂µ〈JµA(x)O(x1, x2, ..., xn)〉an. = − e2

16π2
〈εµνρσFµν(x)Fρσ(x)O(x1, x2, ..., xn)〉 , (5.4.8)
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Jµ1

Jν2

Jα3

Figure 10: Triangle diagram computed with entries containing only Noether currents, providing the vertex
function Mµνα.

giving the result aforementioned.
This result can be recovered by computing the loop triangle diagrams in which the pion π0

couples to photons. In the presence of the operator O = iλπψ̄γ5ψ, the amplitude of the process
takes the form

M = λ
e2

4π2m
εµνσρεγ1

µ ε
γ2
ν q

γ1
ρ q

γ2
σ , (5.4.9)

which is to say that the operator to which the pion couples in an electro magnetic background
takes the mean value given by Eq. 5.4.5. A major difference between the classical and the
quantum theory in this case stands in the fact that this non conservation of the axial current is
still true at the quantum level in the limit where m = 0. This discrepancy between the classical
and the quantum theory while looking at the symmetries of a given lagrangian tells us that the
chiral symmetry is anomalous.

More generically, in an arbitrary gauge theory, involving several gauge groups, anomalies
can naturally arise at the one loop level through the non conservation of operators of the form

Oµναijk (x, y, z) = Jµi (x)Jνj (y)Jαk (z) , (5.4.10)

where indices i, j, k stem for the different gauge groups involved. The computation of the
triangle diagrams represented in Fig. 10 will then give us direct indication on the presence of
gauge anomalies in the theory.

In particular, let us consider a theory containing only one left handed Weyl fermion

L = −1

4
F 2
µν + ψ̄ (i��∂ − e��A)PLψ , (5.4.11)

where, as usual, PL ≡ 1
2
(1 − γ5). In this case the photon couples to a current JµL = ψ̄γµPLψ

and one can denote the three point function for currents 〈JµLJνLJαL〉 by Mµνα
L

Mµνα
L =

∫
d4k

(2π)4

[
Tr[γµPL��kγ

νPL(��k +��q2)γαPL(��k −��q1)]

k2(k + q2)2(k − q2
1)

+

(
µ↔ ν
1↔ 2

)]
. (5.4.12)

This matrix element decomposes into one part without γ5 (vector three point function) and
one containing only one γ5 matrix, giving

Mµνα
L =

1

2
(Mµνα

V −Mµνα
5 ) , (5.4.13)

where the two terms come from the current matrix elements 〈JµV JνV JαV 〉 and 〈JµAJνV JαV 〉. As we
saw above, conservation of the vector current but non conservation of the axial current, shows
that

∂µ〈JµLJνLJαL〉 6= 0 . (5.4.14)
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However in more general theories, both left and right-handed Weyl fermions can be involved
with different charges QL and QR as in the following simple example

L = −1

4
F 2
µν + ψ̄ (i��∂ −QLe��A)PLψ + ψ̄ (i��∂ −QRe��A)PRψ , (5.4.15)

where the photon Aµ couples to the mixed current

Jµ = QLψ̄γ
µPLψ +QRψ̄γ

µPRψ . (5.4.16)

In this case, anomalies are generated by matrix elements of the form

1

2

(
Q3
R −Q3

L

)
Mαµν

5 . (5.4.17)

which naturally cancel if QR = QL. In the case of the standard model, one can compute in this
manner the U(1)3

Y anomalies by writing

∂µJ
µ
Y =

(∑
left

Y 3
L −

∑
right

Y 3
R

)
g′2

16π2
εµνρσBµνBρσ , (5.4.18)

where Bµν is the field strength of the hypercharge U(1)Y gauge group. The summation in the
standard model runs over left-handed leptons (charged leptons and neutrino), the right-handed
charged leptons and (possibly existing) right-handed neutrinos, left handed quarks and their
right-handed counterparts, giving the anomaly cancellation constraint

0 = (2Y 3
L − Y 3

e − Y 3
νR

) + 3(2Y 3
Q − Y 3

u − Y 3
d ) . (5.4.19)

This condition is satisfied with the choice of charges

YL = −1

2
, Ye = −1 , YνR = 0 , YQ =

1

6
Yu =

2

3
, Yd = −1

3
. (5.4.20)

Of course, the gauge group considered in the standard model contain non abelian factors
and one has to derive a similar condition in the case of non-abelian gauge theories. Arbitrary
currents can be written in this case

Jaµ =
∑
ψ

ψ̄iT
a
ijγ

µψj , (5.4.21)

where the T aij are the generators of the gauge group Lie algebra. It turns out that the key
quantity arising in triangle diagrams amplitudes and generating anomalies is a trace of the
generators involved in the loop of the form

dabc =
1

2
Tr[{Ta, Tb}Tc] . (5.4.22)

We will see in the next section how this quantity can be chosen to vanish for a specific choice
of charges, in the case where the Z ′ boson does couple to quarks taking part in the model
dynamics.
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5.4.1 “Anomalous” Z ′

Until now we have made the important assumption that no SM fermion is charged under Z ′

and the only couplings arise through gauge-invariant higher-dimensional operators generated by
integrating out heavy fermions forming an anomaly-free set. A more subtle option, in the spirit
of [155, 121, 122, 126, 127, 128, 129, 130, 131, 135, 136, 138, 139] is to integrate-out a set of
heavy fermions which do contribute to gauge anomalies. In this case there are non-decoupling
effects leading to axionic couplings and eventually generalized Chern-Simons terms. Let us
consider two simple examples in order to exemplify the main points.

i) Example with no colour anomalies

Field QL
3 tR bR

Z ′charge 1 1 1

In this case, after defining the anomaly coefficients Ca = Tr(XT 2
a )L−R and CX = Tr(X2Y )L−R,

the low-energy effective theory has the following mixed anomalies:

U(1)XSU(3)2 : C3 =
1

2
× (2− 1− 1) = 0 ,

U(1)XSU(2)2 : C2 =
1

2
× 3 ,

U(1)XU(1)2
Y : C1 = 6× 1

9
− 3× (

16

9
+

4

9
) = −6 ,

U(1)2
XU(1)Y : CX = 6× 1

3
− 3× 4

3
+ 3× 2

3
= 0 . (5.4.23)

i) Example with colour anomalies

Field QL
3 tR bR

Z ′charge 1 1 0

In this case, the low-energy effective theory has the following anomalies:

U(1)XSU(3)2 : C3 =
1

2
× (2− 1) =

1

2
,

U(1)XSU(2)2 : C2 =
1

2
× 3 ,

U(1)XU(1)2
Y : C1 = 6× 1

9
− 3× 16

9
= −14

3
,

U(1)2
XU(1)Y : CX = 6× 1

3
− 3× 4

3
= −2 . (5.4.24)

In such examples, the heavy-fermion spectrum has to exactly cancel the low-energy gauge
anomalies. In the decoupling limit there is an axionic coupling with a coefficient exactly deter-
mined by the low-energy induced anomalies

Lax =
aX(x)

16π2V

[∑
a

(Cag
2
a ε

µνρσF a
µνF

a
ρσ) + CX gXg

′εµνρσFX
µνF

Y
ρσ

]
. (5.4.25)
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As shown in the Appendix B of [102], we can also capture the effect of these axionic couplings in
the unitary gauge, where the axionic effect is encoded in the particular high-energy behaviour
of the anomalous three gauge boson amplitude with light fermions in the loop. This is strictly
speaking true in the large (infinite) mass limit of heavy fermions. For finite mass, there are
corrections and the low-energy description in the unitary gauge with three-gauge anomalous
couplings is corrected by finite mass effects.
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6 Light Mediators : Fitting the 3.5 keV Line

In the previous section we exposed a model where, according to the WIMP miracle indication,
a new gauge boson and our fermionic dark matter candidates were taking typical masses of
order 100GeV − 1TeV. However, even if we know quite well the cosmological abundance of
dark matter [143, 142], little is known about its mass in reality. In view of recent results
from both direct and indirect detection experiments, the Weakly Interacting Massive Particle
paradigm begins to be severely constrained by XENON [156], LUX [157] or the FERMI satellite
[158, 159, 160].

Nevertheless, several other scenarios offer much lighter [161] or heavier [162] candidates with
feeble [163, 164, 165, 166, 167, 168] or very feeble [169] couplings. Their thermal histories can
be relatively different (but not less motivated) from the standard freeze out one. The cases
of FIMP (for Freeze In Massive Particle or Feebly Interacting Massive Particle) or WISP (for
Weakly Interacting Slim Particle) are typical cases where the coupling is too weak to reach the
thermal equilibrium with the standard model bath [163, 164]. The dark matter candidate can
be so weakly coupled that it decoupled from the bath at the reheating epoch, like the gravitino
or candidates motivated by SO(10) schemes. Other scenario proposed an even more weakly
interacting particle, so weakly interacting that the dark matter is stable at the scale of the age
of the universe: the decaying dark matter (see [170] for a review on the subject).

6.1 A New γ-ray Line

One of the most clean signature for attesting of the presence of dark matter in a celestial
body, would be the clear detection of a monochromatic rayline which would be absolutely
unexplained by the known chemical, astrophysical processes predicted by the standard model
of particle physics. Yet it has been until now difficult to measure such a signal with a sufficiently

Figure 1: Picture of the XMN-Newton telescope. This satellite was the one achieving the measurements of
the X-ray spectrum from which the 3.5keV signal was extracted.
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Figure 2: Detection of 3.5keV line from different analysis. The left panel is extracted from Boyarski et al.
analysis [172], the central one is the analogous study from Bulbul et al. [171] and the right panel is the analysis
of the signal when detected in the Milky Way, made by Boyarski et al. [173].

high significance to be able to claim for a dark matter discovery.
At the beginning of the year 2014, a 3.55 keV X-ray line has been reported in the stacks

analysis of 73 galaxy clusters from the XMM-Newton telescope [171]
with a significance larger than 3σ. A similar analysis found evidence at the 4.4 σ level for

a 3.52 keV line from their analysis of the X-ray spectrum of the Andromeda galaxy (M31) and
the Perseus Cluster [172]. Such signal was later on measured in other regions of the sky, and
most importantly measured in the center of our Galaxy [173].

Such a detection is a very sensible task to achieve since one should take into account the
presence of atomic lines very close to 3.5 keV, such that the Potassium and Chlorine lines, while
extracting the background. Thus the work of Boyarski et al. and Bulbul et al. were strongly
controversial a few months after their initial claim [174, 175, 176, 177]. Yet the debate is still
open today and seems to confirm the presence of an X-ray signal around 3.5 keV.

In both original analysis, the unidentified line was interpreted as a possible signal of sterile
neutrino dark matter νs [178] decaying through a loop νs → γν. While more conventional
explanations in term of atomic physics effects are currently lacking, several works have been
released in the following weeks, all focusing on a decaying dark matter candidate. Extensions
with a sterile neutrino as dark matter candidate [179, 180, 181, 182, 183, 184], radiatively-
induced (sterile) neutrinos decay [185], axions or ALPs [186, 187, 188, 189, 190, 191, 192], axinos
[193, 194, 195], pseudo-Nambu-Goldstone bosons [196] or supersymmetric models (gravitino
[197, 198, 199], sgoldstino [200]or low scale supersymmetry breaking [201]) were proposed, all
relying on processes ensuring a fine tuned lifetime τ ' 1028 seconds to fit the observed line.
Other more exotic candidates like decaying moduli [202], millicharged dark matter [203], dark
atoms [204], magnetic dark matter [205], majoron decay [206] or multicomponent dark matter
[207, 208] have been proposed. Recent works have also proposed annihilating scenarios in the
context of the so called Weinberg model [209]. Another original model was studied in [210, 211]
with an eXciting dark matter, where the photons come from the transition from an excited state
down to the ground state for the dark matter particle, which in this case can be significantly
heavier than 3.5 keV. Moreover, it is well known that for a warm dark matter candidate of
mass ∼keV, free streaming produces a cutoff in the linear fluctuation power spectrum at a
scale corresponding to dwarf galaxies and can fit observations for ms & 1.5 keV [212].

Most of these scenarios seemed to exclude an annihilating dark matter scenario [213]. We
will indeed see how using a naive effective contact operator is indeed incompatible with the
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Figure 3: Presence of X-ray atomic transition lines, close to the signal of 3.5 keV detected.

experimental data we get about the flux of this ray line [171, 172]. Building an annihilating
scenario moreover requires a careful study of the thermal History of the Universe in detail in
order to reproduce the measured relic density, as we will see in the next sections.

However recent measurements seem to emphasize that the detection of the 3.5keV line
strongly depends on the dark matter velocity distribution, which could, if confirmed, constitute
a hint that the dark matter decay is actually excluded compared to the annihilating one in
which such feature can naturally appear.

6.2 When Parametrization Looses Information

An old, but sometimes useful approach in particle physics for explaining a mysterious phenom-
ena, is to introduce new interactions by parameterizing our lack of knowledge with the use of
effective couplings and operators. Such operators, as we saw in the previous section can be
non renormalizable and require a UV completion model, that is supposed to generate the latter
as an effective theory at the energy scale of the physical processes experimentally observed.
Indeed, it is rather natural to imagine that the physics beyond a measurable scale of energy is
represented by heavy particles not yet produced in accelerators, but coupling to the observable
sector. This is frequently used in LHC studies [214] or dark matter searches [152, 150, 215, 216].

One conclusion we can pick up from the microscopic calculations made in section 5.1.1 is
that the form of the operators can be strongly dependent on the underlying microscopic theory.
But more importantly the effective operator approach can become misleading when there are
light mediators involved in the annihilation process, as was shown in [217]. Supersymmetric
or grand unified models do not escape this rule: light stau or Z ′ for instance generate new
processes observable at LHC and not predicted by a naive effective operators approach. This
is exactly what is happening in the case of a cosmological monochromatic signal.

6.2.1 The Experimental Signal

In this section we review what are the main constraints coming from the experimental measure
of the 3.55 keV line in the case of annihilating dark matter and interpret them in terms of
constraints on the annihilation cross section while building a given model.

If the signal analyzed in [171, 172] is generated by dark matter annihilation to two photons
ss → γγ (with a dark matter mass of 3.5 keV) then one should fit the annihilation cross
section 〈σv〉γγ with the flux measured in the vicinity of the sun. A naive estimate of the total
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luminosity of Perseus can be computed using

L =

∫ RPe

0

4πr2n2
DM〈σv〉γγ =

∫ RPe

0

4πr2

(
ρ(r)

ms

)2

〈σv〉γγ (6.2.1)

with Rpe being the Perseus radius. Let us here adopt a simple picture in which the halo
distribution of dark matter is simply a spherical and homogeneous distribution. One could
check that the consequence of such assumption on the cross section values does not change
significantly, with respect to the precision expected in the study which will follow. The Perseus
observation involves a mass1 of MPe = 1.49 × 1014M� in a region of RPe = 0.25 Mpc at a
distance of DPe = 78 Mpc from the solar system. One can then estimate

nDM '
1.49× 1014M�

ms

3

4πR3
Pe

= 2.0× 10−37GeV3

= 2.6× 104cm−3 . (6.2.2)

Combining Eq.(6.2.1) and (6.2.2), it is then very easy to compute the luminosity in the
Perseus cluster,

L ' 1.2× 1055

(
3.5 keV

ms

)2( 〈σv〉γγ
10−26cm3s−1

)
photon/s , (6.2.3)

giving a constraint on the flux φγγ = L/(4πD2
Pe) that one should observe on earth

φγγ = 1.7× 10−5

(
3.5 keV

ms

)2( 〈σv〉γγ
10−32cm3s−1

)
cm−2s−1 . (6.2.4)

According to the authors of [172, 210], one can identify a monochromatic signal arising from
M31 or Perseus cluster with a flux φγγ = 5.2+3.70

−2.13× 10−5 photons cm−2 per seconds at 3.56 keV
with the cluster core. Taking into account also other observations like M31, we will impose in
our analysis a conservative required annihilation cross section estimated as

〈σv〉γγ ' (2× 10−33 − 4× 10−32) cm3s−1 . (6.2.5)

As one can easily imagine, inserting in the theory new – light – particles interacting with
photons can have dramatical consequences on the Cosmic Microwave Background anisotropies.
The authors of [218, 219] show that the corresponding condition is given by

〈σv〉CMB
γγ . 2.42× 10−27

( ms

1 GeV

)
cm3s−1 , (6.2.6)

which for a 3.5 keV dark matter is 〈σv〉γγ < 8.5 × 10−33cm3s−1. In fine one will then
restrict ourself to the parameter space allowing a monochromatic signal and respecting the
CMB constraints:

2× 10−33cm3s−1 < 〈σv〉γγ < 8.5× 10−33cm3s−1 . (6.2.7)
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Figure 4: Effective diagram for dark matter annihilation

6.2.2 A Naive Attempt

In this section we will, as announced earlier, see how adopting a naive effective formulation of
a dark matter interacting with photons, can be misleading and make people wrongly conclude
that annihilation is ruled out. Indeed, in the case of a scalar particle annihilating into two
photons, the CP–even effective lagrangian can be written (the cases of fermionic dark matter,
CP-odd or pseudo–scalar couplings are detailed in the appendix of [101])

Leff =
S2

Λ2
FµνF

µν , (6.2.8)

with Fµν = ∂µAν − ∂νAµ being the electromagnetic field strength. The scale Λ is related to the
mass of the particles running in the loops (see Fig.(4)) which , being charged under U(1)em,
should be heavier or at least of the order of TeV. A list of generic couplings of this type can be
found in [141]. One obtains in this case the cross section

〈σv〉effγγ =
2m2

s

πΛ4
. (6.2.9)

One now has to match this formula with the value of the cross section (6.2.7) dictated by
the experimental value of the experimental flux. One obtains consequently constraints on the
value of the high energy scale Λ

10 GeV < Λ < 15 GeV . (6.2.10)

This value is obviously far below any accelerator limit on charged particles. Hence, no possible
interpretation of this operator in terms of heavy particle integrated in loops is possible. It
seems then impossible at first sight to UV complete this operator and achieve a large enough
rate.

However one can easily imagine that this effective formulation fails when additional light
degrees of freedom are involved in the process. We will in the next section imagine the case
where a light particle mediates the interaction between dark matter and photons, in the same
manner our previous proposal of Z ′ boson was mediating interactions between the dark and
visible sectors.

1See table 2 of [171]
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6.3 A Natural Microscopic Approach

It is then easy to build a microscopic model and to check how observables get modified. Indeed,
the presence of a keV-MeV dark matter particle here naturally leads to a keV scale dynamics,
as the presence of GeV particles in the standard model naturally leads to GeV scale dynamics
in the Higgs sector. We then can suppose the presence of a (pseudo)scalar coupling to the
dark matter candidate, and generating the keV dynamics. We will consider for simplicity a
scalar dark matter; other dark matter spin or couplings do not change the conclusions and are
reviewed in details in the Appendix of [101].

6.3.1 Scalar Dark Matter

We present here a proposal of model for fitting the 3.55 keV line with annihilating scalar dark
matter. The situation is the following : we introduce a scalar mediator φ, coupling directly
at tree-level to dark matter, but indirectly to the standard model through loops (suppressed
by a high energy scale Λ). This is a typical secluded dark matter type of model [220]. The
lagrangian can then be written for a scalar dark matter

Leff ⊃ −
m2
s

2
S2 −

m2
φ

2
φ2 − m̃φS2 +

φ

Λ
FµνF

µν . (6.3.1)

We assume the parameter m̃ to be a free mass scale parameter. However such coupling can be
explicitly generated by symmetry breaking in renormalizable models, as illustrated in section
6.5. In the latter case, m̃ is expected to be at most of the same order of magnitude than
mφ since it gets its value from the vev of a field Φ = vφ + φ after spontaneous symmetry
breaking. Furthermore this is what would be more generally expected if m̃ is generated by
whatever dynamical mechanism involving only φ and the light field S. The mass scale Λ is
related to the mass of heavy particles integrated in the loop. In a perturbative set up with N
charged fermions running in the loop Λ ∼ 4π

Nhφα
Mψ, where hφ is the Yukawa coupling of φ to

the charged fermions of mass Mψ. Using the constraint Mψ & 500 GeV from collider searches
and perturbativity one finds that the minimum natural values for Λ are Λ ∼ 50 − 500 TeV,
whereas Λ ∼ 5 TeV can only be obtained in a strongly coupled hidden sector.

Such a lagrangian gives for the annihilation cross section (process depicted in Fig.(5)

〈σv〉microγγ =
4m2

sm̃
2

πΛ2(4m2
s −m2

φ)2
. (6.3.2)

One can notice in the latter expression that the scale Λ now appears at the denominator
to the power two only compared to the naive formulation, while (4m2

s −m2
φ)2 appears in the

denominator. The natural smallness of this last quantity then allows the scale Λ to take
reasonably high values making the model safer with respect to experimental constraints on
charged fermions from LEP. As recently emphasized by the authors of [217] for the LHC analysis
of mono jet events, the effective operators approach ceases to be valid once the ultraviolet
(microscopic) theory contains some light mediators, which is exactly the case here.

6.3.2 Fitting the X-ray line

Depending on the hierarchy between the masses of the mediator φ and the dark matter particle
S, the condition (6.2.7) coming from the measurement of the emission flux leads to two kinds
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Figure 5: Microscopic diagram for dark matter annihilation

of constraints

Case A : mφ & ms (Heavy Mediator),

mφ ' (12.3 − 17.6)

√
ms

3.5 keV

√
m̃

Λ
GeV

(6.3.3)

Case B : mφ . ms (Light Mediator),

m̃

Λ
∼ (1.63− 3.36)× 10−13 . (6.3.4)

Both cases could give at first sight viable results but we will see that experimental bounds
on light scalar particle interactions with the electromagnetic sector (which is the main feature
of the mediator φ we introduced) are strongly restrictive.

6.3.3 Experimental Bounds

As we just mentioned above, interactions of a light scalar, or axion-like particle (ALP) with the
visible sector is very much constrained by collider data (LEP) and astrophysics. A summary
of these constraints on Axion-Like Particles (ALPs) is presented in Fig. 6.

Indeed bounds on pseudoscalar particles interacting with photons (see [221]) have been
studied, using LEP data from ALEPH, OPAL, L3 and DELPHI, and have shown that the
coupling of the pseudoscalar with photons cannot exceed a value of 2.6 × 10−4GeV−1 for a
mediator of mass mφ . 50 MeV, which means, in terms of our mass scale

Λ & 3 TeV [mφ . 50 MeV] . (6.3.5)

Furthermore, one of the most restrictive constraints on ALPs comes from the non-observation
of anomalous energy loss of horizontal branch (HB) stars via a too important ALP production
[222]. Indeed those constraints impose

Λ & 1010 GeV [mφ . 30 keV] , (6.3.6)

for a mediator mass up to mφ . 30 keV. At higher masses arise constraints coming from
the CMB, BBN and Extragalactic Background Light (EBL) studies, setting lower limits on
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Figure 6: Experimental constraints on an ALP particle coupling to the electromagnetic field with a coupling
constant gaγ . Plot extracted from [221]

the coupling with photons. A nice review on the subject can be found in [223, 224]. Various
astrophysical constraints on ALP masses and coupling to photons are summarized in, e.g. [223].

These constraints on our model essentially put lower bounds on Λ. Indeed, for a light
mediator (Case B) HB results impose that the mass scale Λ takes very high values (& 1010 GeV).
In this case, as indicated by Eq.(6.3.4), one would need the tri-linear coupling to be of order
m̃ & 10−3 GeV. However, in this case, since mφ is assumed to be smaller than the keV scale,
one would conclude that m̃/mφ & 103 which is, as mentioned in the previous section, quite
unnatural. We will then concentrate our study on Case A, where the mediator φ is assumed to
be heavier than the dark matter field S.

In Case A, the discussion is a bit more subtle, as far as the experimental constraints are
concerned. According to the bounds arising from CMB, BBN (see e.g. [225, 226]) and EBL
[227], for mediator masses lower than a hundred keV, the mass scale Λ must reach very high
values (& 1016 GeV) to escape experimental exclusion bounds. However, such constraints were
derived assuming the ALP particle is sufficiently stable to produce significant effects on these
different observables. We will see in Eq. (6.3.7) that those regions of the parameter space
are anyway forbidden, even in the case of an unstable mediator φ, for theoretical reasons,
considering together the condition m̃ . mφ and the flux condition (6.3.3), even if the mediator
would be a short lived scalar particle. Still such region of the parameter space is not acceptable
since it would lead to a very heavy parameter m̃. For higher masses of the mediator (mφ &
300 keV) more reasonable values of Λ are allowed, and we are left with lower bounds coming
from LEP. The previous description is depicted in Fig. 7 where the different regions explored
are summarized.

Different choices of Λ will then lead to different pairs of (mφ, m̃), as depicted in Fig.(8)
In order to fix ideas, and anticipating results of section 6.5, we indicated in red in the figure
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Figure 7: Experimental constraints on an ALP particle coupling to the electromagnetic field with a coupling
constant gaγ . The allowed region on the left panel (Case A : heavy mediator) is located below the band
delimiting the LEP constraints, right to the HB bounds and above the constraints coming from supernovae.
The right panel (Case B : light mediator) shows the region allowed by experiment, which is yet excluded by the
theoretical requirement that m̃ . mφ.

Figure 8: (mφ,m̃) parameter space allowed by the γ flux measurements in the case of a heavy mediator (Case

A), for different values of Λ. The red shaded region indicates where m̃ is higher than mφ.
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the region where m̃ & mφ. This shows clearly, that imposing mφ & 300 keV sets an upper limit
for Λ, giving approximately

Λ . 1000 TeV . (6.3.7)

Furthermore, the lower limit Λ & 5 TeV mentioned in section 6.3.1 – still acceptable if there is

Figure 9: (mφ,m̃) parameter space allowed by the γ flux measurements in the case of a heavy mediator (Case
A), for different values of Λ. Grey bands indicate here constraints coming from experiment on ALPs particles,
providing a narrow mass range for the mass of the mediator φ.

some strongly coupled hidden sector generating the effective mass scale Λ – imposes an upper
limit on the mediator mass, mφ . 50 MeV. One would thus expect from this model that the
mediator mass lies in the region

300 keV . mφ . 50 MeV . (6.3.8)

6.4 Relic Abundance

As we saw in section 4.2.1, building a model of annihilating dark matter has strong consequences
on the thermal history of the Universe. In particular, one has to provide the dark matter
candidate a sufficient annihilation cross section in order to reproduce the relic density of the
Universe which is measured nowadays.

Computing the relic abundance in models with a very weak annihilation cross section and
a keV dark matter particle is highly non-standard. Indeed, it is well known from the standard
lore that a hot dark matter candidate leads to a relic density

Ωh2 ' 9.6× 10−2 geff
gs(xf )

( ms

1 eV

)
, (6.4.1)

where geff is the effective number of degrees of freedom of the dark matter candidate and gs the
effective number of degrees of freedom for the entropy. Eq.(6.4.1) gives ms ' 5 eV if one wants
to respect PLANCK [142] limit ΩDMh

2 = 0.1199±0.0027. However, this condition is valid only
under the hypothesis that the dark matter is in thermal equilibrium with a common temperature
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T with the thermal bath. In the case of the line signal observed in the clusters, the cross section
necessary to fit the result is far below the classical thermic one 〈σv〉therm = 3 × 10−26cm3s−1.
This had led previous studies to rule out scalar dark matter candidates lighter than O (MeV)
[228]. In fact, the dark bath, composed of the light mediator φ and the dark matter S cannot
be in equilibrium with the standard plasma.

There are several ways to address this issue. A first possible attempt to solve the problem,
proposed in [163, 164] and [165, 166, 167, 168], is to suppose that the dark matter is produced
through the freeze in mechanism: the interacting photons annihilate to produce the dark matter
in the inverse process of Fig.(5). Yet it is not possible to get the right relic density in this way
since, solving the Boltzmann equation in this case would produce too much dark matter. Indeed
equilibrium dark matter density would reach quickly a value that would overclose the Universe.

Another way to solve the problem was proposed in [229, 230] where the authors noticed
that the condition (6.4.1) is not valid anymore if the temperature of the hidden sector Th is
different from the one of the thermal bath T . In this case, one can compute the temperature
Th needed to obtain a 3.56 keV particle respecting the relic abundance constraint. Yet, as we
will see in what follows, we still need the hidden sector content to be richer in order to provide
new dark matter annihilation channels leading to the right relic abundance. This will be done
adding to the model a right-handed sterile neutrino.

6.4.1 Dark matter annihilation into sterile neutrinos

One way of solving the lack of annihilation of dark matter described above is to assume that
a right-handed sterile neutrino couples directly to the mediator scalar particle previously in-
troduced. This would provide another channel for annihilating dark matter which would boost
the relic density to its experimental value.

Figure 10: Microscopic model of dark matter decaying into right-handed sterile neutrinos.

In a similar fashion than we did in section 6.3.1, one can add to the usual neutrino in-
teraction terms a Yukawa coupling between the field φ and the sterile neutrino νR, using the
two-component spinor notation,

− Lν =
M

2
νRνR +mDνLνR + λνφνRνR + h.c. , (6.4.2)

After diagonalization of the mass matrix, the sterile neutrino gets mass mst ' M while the
active one obtains a mass of mact ' m2

D/M via the seesaw mechanism.
Such interactions give the following cross section for dark matter annihilation into a pair of

sterile neutrinos

〈σv〉νν =
λ2
νm̃

2

8π2

(m2
s −M2)

m2
s(4m

2
s −m2

φ)2

√
1− M2

m2
s

. (6.4.3)



118

Assuming that M is negligible compared to ms leads to a cross section depending only on
ms, mφ and m̃, λν :

〈σv〉νν ∼
λ2
ν

8π2

(
m̃

ms

)2
m2
s

(4m2
s −m2

φ)2
. (6.4.4)

As far as experimental constraints are concerned, the mass of the sterile neutrino specie cannot
be arbitrary small since it would imply a too high mixing angle θ ' mD/M , constrained by the
BBN measurement (see e.g. [231, 232] for phenomenological and theoretical reviews). However,
a sterile neutrino of mass M ' 1 keV with an active neutrino of mass mact ' 10−2 eV would
lead to a mixing angle parameter of order 10−3 − 10−2 and would be still acceptable regarding
the experimental bounds. As we will see in the next sections, this new channel of annihilation,
being provided this new parameter λν , furnishes us a way of fitting on one hand the right flux
of annihilation into photons (explaining perfectly the signal at 3.5 keV) and on the other hand
producing the right dark matter relic density by tuning the flux of annihilation into sterile
neutrinos.

6.4.2 Cosmological Constraints on an Almost Hidden Sector

For the purpose explained above, we introduced in our model two species of very light particles
that are the dark matter candidate and the sterile neutrinos, interacting together via the
exchange of the mediator φ. In such a framework, dark matter and sterile neutrinos can be
seen as living together in a – almost – hidden thermal bath decoupled from the visible sector.
We will adopt here a formalism for modeling such a behavior, which was developed in [230, 229],
where they imagined how a hidden sector could get its own thermal equilibrium and change
the resolution of the Boltzmann equation.

Let us denote the temperature of this hidden bath by

Th ≡ ξ(t)T , (6.4.5)

where in what follows ξ will be assumed to be a constant parameter2. As described in [229, 230],
such a point of view can have important consequences on the thermal dynamics of the hidden
sector, since ξ enters into the Boltzmann equation. Indeed dark matter can decouple while
still relativistic or semi-relativistic and lead to different relic densities, as the parameter ξ takes
different values (See Fig.(13)). Such freedom in the temperature of the hidden sector is yet
constrained by astrophysical considerations. In particular, a hidden sector dark matter can
freeze out while still being relativistic. It is then important to check that its free streaming
length is smaller than typical galactic length scales (typically λFSH . 230 kpc, see e.g. [233,
234]) so that it does not destroy the matter power spectrum. Another constraint, introduced
by Tremaine and Gunn in [235], comes from bounding the phase-space density of structures
like small dwarf galaxies by statistical quantum mechanics considerations. Both constraints are
computed and summarized in the case of a ∼ 3 keV dark matter in [229] and lead naturally to
a relic density value different from the one of the visible thermal bath (〈σv〉0 ∼ 10−9 GeV−2)
as depicted in Fig. 11, depending on how cold the hidden sector is. We thus get

0.015 〈σv〉0 . 〈σv〉 . 0.045 〈σv〉0, (6.4.6)

2See ref. [230] for a discussion on the validity of this approximation.
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Figure 11: Plot extracted from [229], solving the Boltzmann equation in the case of a light (∼ 3keV) dark
matter hidden sector, decoupling while still semi relativistic. The diagram provides alternative values for the
relic density cross section, constrained by astrophysical bounds that are the Tremaine-Gunn bound and the free
streaming.

the upper limit corresponding to the free streaming constraint whereas the lower one to a
strict Tremaine-Gunn bound.

One should also remark that the dark matter is relatively warm (xf = mS/Tf ' 2 − 4
for points respecting WMAP/PLANCK) in this case. As a warm candidate, it can elude the
possible problems of cold dark matter i.e. the few number of galaxy mergers (. 10%) or the
core observed profiles compared to the cusp ones predicted by N-body simulations.

Results
In the light of section 6.3.3 and equation (6.4.4) one can now constrain couplings between
the mediator φ to both the dark and the visible sector m̃ and λν , taking into account that
relic density can lie in the region (6.4.6) exhibited above, as well as imposing constraints on
the photons flux measurement. Results are presented in Fig.(12) where we show the allowed
parameter space imposing cosmological bounds [229] superimposed within the regions fitting
the 3.5 keV excess, for mφ = 500 keV. As one can see, a relatively large region respects the
cosmological bounds and the monochromatic excess. The values of λν are also quite constrained
(∼ 10−7−10−5, depending on the mass scale Λ), leading to different values of the hidden sector
temperature (as represented in Fig.(13)).

6.5 An explicit UV model

As we have shown in constraining the model with experimental data, the mediator φ is required
to be significantly heavier than the dark matter candidate. One could argue that the implication
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Figure 12: Constraints on the parameter space (m̃, λν), for mφ = 500 keV; considering cosmological

constraints (relic abundance, free streaming and Tremaine-Gunn bounds) in the red/dark band and a 3.5 keV

excess (blue/green region) for different values of the BSM scale Λ (see the text for details).

Figure 13: Hidden temperature factor ξ allowed by the flux measurement limits, as a function of the relic

density value, for different values of the mass scale Λ.
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of heavier fields could at the loop order give corrections to the tree level mass of dark matter,
which would, after renormalization, not be as light as expected.

We hence give here an explicit example realizing the case A of Section 6.3.
Let us write a model containing a scalar σ and a pseudoscalar S, together with a (set of)

fermion(s) ψ, with the lagrangian

L = Lkin +
µ2

2
(σ2 + S2)− λ

4
(σ2 + S2)2

−ψ̄(h1σ + ih2Sγ5)ψ +
σ

Λ
FµνF

µν . (6.5.1)

In this picture, the set of fermions ψ are part of the hidden sector, in particular they are singlets
with respect to the Standard Model. By defining the complex field Φ = 1√

2
(σ + iS), we can

then split the lagrangian (6.5.1) into two parts:

L = L0 + L1 ,where

L0 = Lkin + µ2Φ†Φ− λ(Φ†Φ)2 − (h1ψ̄LΦψR + h.c.) ,

L1 = i(h1 − h2) S ψ̄γ5ψ +
σ

Λ
FµνF

µν . (6.5.2)

One can here notice that the whole lagrangian is invariant under the vectorial transformation

U(1)V : ψ → eiαψ , Φ→ Φ , (6.5.3)

whereas L0 is also invariant under the axial transformation

U(1)A : ψ → eiβγ5ψ , Φ→ e−2iβΦ . (6.5.4)

The axial transformation is broken by L1 and is therefore an exact symmetry of the hidden
sector lagrangian in the limit h1 = h2. The symmetry is broken additionally by the coupling
to the photons.

At tree-level, S is massless since it is the (pseudo)Goldstone boson of the axial U(1)A
symmetry. For µ2 > 0 there is a symmetry breaking vacuum, with 〈σ〉 = v and v2 = µ2

λ
. By

expanding around the minimum one also finds at tree-level that

m2
φ = 2µ2 , m̃ =

√
λ

2
mφ . (6.5.5)

At the one-loop level, there is a quantum correction to the potential V1 = V1(h2
1σ

2+h2
2S

2), which

generates a mass for the pseudo-goldstone boson S, proportional to m2
S ∼ O(

h2
2−h2

1

16π2 )m2
φ, which

has a one-loop suppression with respect to the mediator mass φ. This model is an example of
a UV embedding of case A of Section 6.3, in which one naturally expects m̃ ≤ mφ and selects
therefore natural regions in the parameter space in Section 6.3.

We thus showed that the hypothesis of Case A (heavy mediator) as well as the theoretical
constraint m̃ ≤ mφ both can naturally arise in a microscopic model with appropriate symme-
tries. The second point appears yet to be a more general feature of the model, since the mixing
term m̃ is expected to be sourced by the same process giving masses to dark matter and to the
mediator and hence to stand in a range of mass in between the masses of dark matter and of
the mediator.
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We have hence shown in detail that a keV scalar dark matter can be the main constituent
of the matter of the universe, producing monochromatic X-ray signals that can be fitted with
the recently claimed events of a 3.5 keV line in nearby clusters of galaxies. Moreover, we
know that for a warm dark matter mass of order of a keV, free streaming produces a cutoff
in the linear fluctuation power spectrum at a scale corresponding to dwarf galaxies and can
fit observations for ms & 1.5 keV [212]. We have shown that astrophysical, collider and relic
density constraints are more difficult to accommodate. They are however possible to satisfy
for certain values of the mediator mass mφ and scale Λ of the couplings between the mediator
and the photon 300 keV . mφ . 50 MeV and 5 TeV . Λ . 1000 TeV. These values
can conversely be considered as a prediction of our setup of keV dark matter models leading
to X-ray monochromatic lines.

6.6 Conclusions

In this part we have reviewed several aspects of dark matter searches. The possible implication
of a mediator, either heavy, or light, has been studied in details, in the context of interactions
with the electroweak sector as well as the strong sector of the Standard Model. Possible
signatures at the LHC have been described as well as interesting toy models being able to
contain all together right handed neutrinos, light dark matter and axion like particles.

The latter spectator particles in our studies remain very interesting beyond standard model
particle candidates. A myriad of experimental devices are indeed being developed to detect
scalar particles interacting with the electromagnetic field. Furthermore sterile neutrinos are well
motivated particles which remain hypothetical, but that can have plenty of phenomenological
implications.

We also showed that, as pointed out recently by [217], the study of pure effective models –
as it is often done in the literature – misses important quantitative effects. Indeed, we could
reach a cross section in agreement with the analysis of XMM Newton data only through the
building of a microscopic model with the exchange of a light scalar.

Of course, a wide field of unexplored paths remains to be explored, paths that have to be
more and more constrained, in order to be able, one day, to make a strong statement about the
existence and the features of dark matter.
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7 Introduction To Flavor Physics

7.1 The Flavour Structure of the Standard Model

Let us in this section introduce the basic tools for studying the flavour structure of Standard
Model, providing the reader a minimal toolbox which will widely used in the following sections.

Any model of particle physics is being given during its construction a certain amount of –
a priori – free parameters (masses, couplings). Yet, by the use of field redefinitions, one can
get rid of some of them, and count how many fundamental parameters the theory actually
contains. As an example let us emphasize the case of the quark sector. Among the components
of the quark Yukawa matrices (or equivalently the mass matrices at low energies), which are
taken to be arbitrary 3×3 complex matrices, there would a priori be 18 free parameters (9 real
components, 9 complex phases). The quark sector containing up and down quarks would then
contain some 36 free parameters. Yet a careful counting of the physical parameters, conserved
by the symmetry of the SM Lagrangian shows that the quark sector should contain only six
physical masses and four additional parameters : 3 mixing angles and one CP violating phase.
Let us see in this section how these show up in the Standard Model. The experimental goal of
flavour physics is to measure with good precision these four parameters.

7.2 The CKM Matrix

In order to work out where do the physical parameters show up, one has to play with the
different symmetries of the Lagrangian in particular to reduce the number of components of
the Yukawa matrices we introduced. In order to do so, let us write the quark interaction terms
under the form

LY uk = Q̄i
L(yu)iju

j
RH̃ + Q̄i

L(yd)ijd
j
RH + (lepton term) + h.c. , (7.2.1)

where H is the Higgs SU(2) doublet and H̃α ≡ εαβHβ its charge conjugate. The field Qi are
the left-handed quark doublets

Qi
L =

(
uiL
diL

)
, (7.2.2)

where the index i runs over the familiy indices, and the fields uR, dR are their right-handed
counterparts. The Higgs field reaching its vev 〈H〉 = (0 , v/

√
2)T after spontaneous symmetry

breaking generates the mass terms for the quarks of the form

Lmass, q = md
ij d̄

i
Ld

j
R +mu

ijū
i
Lu

j
R + h.c. , (7.2.3)

such that the Yukawa couplings are in one to one correspondence with the quark masses. Now
in order to go in the basis where the mass matrices are diagonal, one simply has to rotate the
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left-handed and right-handed fields by two different unitary matrices VL and VR respectively
qiL = (V q

L )ij q
′j
L

qiR = (V q
R)ij q

′j
R

⇒ m̂q
ij =

(
V q
L
†
)k
i
mq
kl (V

q
R)lj , (7.2.4)

where the symbole q stands for either “up” or “down” quarks u, d. In this new basis, the
Yukawas become diagonal, the mass eigenstate basis. Yet, on the other hand, the interaction
terms with gauge bosons get mixed up in the flavour space since it transforms like

LWqq =
g√
2
ūLiγµdLW

µ −→ g√
2
ū′Liγµ

(
V u
L
†V d

L

)
d′LW

µ . (7.2.5)

We see here appearing the well known CKM matrix (introduced for three generations of
quarks by Makoto Kobayashi and Toshihide Maskawa in 1973 [236] , adding one generation to
the matrix previously introduced by Nicola Cabibbo [237]) defined by

VCKM ≡ V u
L
†V d

L =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (7.2.6)

The study of the CKM matrix is then the key point for a good understanding of the flavour
changing processes in the standard model. Yet, it is necessary to parametrize this matrix in
terms of the few physical parameters the theory is built on. Indeed, as we announced earlier, the
construction of such a unitary matrix can be parametrized in terms of only four real parameters,
that cannot appear all in the same row. A possible parametrization is to use the mixing angle
θ12, θ13 and θ23 (θ12 being the famous Cabbibo angle in the limit of two generations) adding to
these angles a phase δ providing the formulation

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12c23 − c12s23s13e
iδ −c12c23 − s12s23s13e

iδ c23c13

 , (7.2.7)

where cij = cos θij and sij = sin θij.
This exact parametrization is usually pretty difficult to handle, which is the reason why

people elaborated approximated formulations. In an inductive manner, Wolfenstein hence
proposed [238] a particular pattern to approximate the CKM matrix

|VCKM | ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (7.2.8)

where the parameter λ, taking its value from experimental measurements would be of order

λ ∼ 0.22 . (7.2.9)

Such a leading order value of the CKM elements could indeed come from a particular expression
of its components in terms of four independant parameters, defining

s12 = λ =
|Vus|√

|Vus|2 + |Vud|2
, (7.2.10)

s23 = λ2A = λ

∣∣∣∣VcbVus

∣∣∣∣ , (7.2.11)
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and
s13e

iδ = Aλ3(ρ+ iη) = V ∗ub . (7.2.12)

This formulation can seem rather tedious at first sight but becomes incredibly smart while
expanding the whole CKM matrix for small λ, giving

VCKM ∼

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) , (7.2.13)

where one can easily recognize, looking at first 2 by 2 block matrix the Cabbibo mixing matrix.

7.2.1 Geometrical Formulation

The unitarity of the CKM matrix provides an elegant way to parametrize the latter in a
geometrical way. Indeed the well known properties of unitary matrices∑

i

VidV
∗
is = 0 , (7.2.14)

provides several relations (3 for the rows, 3 for the columns) that can de seen as vectorial closure
relations of triangles in the complex plane. For instance the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (7.2.15)

has the particularity to involve three terms of the same order of magnitude λ3 and can be
rewritten

VudV
∗
ub

VcdV
∗
cb

+ 1 +
VtdV

∗
tb

VcdV
∗
cb

= 0 , (7.2.16)

such that, in the (ρ, η) plane, one can represent the associated triangle under the form depicted
in Fig. 1. Each of the CKM matrix element can then be constrained by flavour changing
measurements as shown in Fig. 2.

7.3 Mass and Mixing Hierarchy

Understanding the hierarchy between the different fermion masses and mixings is a challenging
task which has to be understood and motivated in order to build viable models of the Standard
Model flavour structure. In this section we present an approach, introduced by Frogatt and
Nielsen in 1979 [240] where this hierarchy can be generated by an additional abelian symmetry,
spontaneously broken.

7.3.1 Abelian Models : The Froggatt–Nielsen Mechanism

The approach of Frogatt and Nielsen starts from the observation that, at leading order, one
expects the up quark Yukawa matrix to be of the form

yu ∼

0 0 0
0 0 0
0 0 1

 , (7.3.1)
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Figure 1: Geometrical representation of the unitarity relation (7.2.16) in the plane (ρ, η).

Figure 2: Summary of the experimental constraints on the CKM unitary triangle described in (7.2.16). Plot
extracted from [239]
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at the renormalizable level. The smallness of the light masses and mixing angles can then
be interpreted as an expansion parameter ε coming from the mass suppression of higher di-
mensional operators involving an additional scalar field φ – called flavon – charged under an
additional U(1) symmetry and getting a vev through spontaneous symmetry breaking, leading
to suppression factors of the form

ε =
〈φ〉
Λ
� 1 . (7.3.2)

Here Λ can be the Planck scale or more generically the scale where Yukawa couplings are
generated. Namely, at the renormalizable level, the lagrangian is assumed to contain the single
interaction term

Lren. ⊃ (yu)33ū
t
Lu

3
RH̃ + h.c. , (7.3.3)

meaning that the charges of these fields under this additional U(1) satisfy

q3 + u3 − h = 0 , (7.3.4)

where q3, u3 and h denote the charges of the top quark, its right-handed counterpart and the
higgs field, respectively, under the new abelian symmetry. The expansion parameter ε arises in
the theory as soon as one introduces higher dimensional operators of the form

Lhdo = (yu)ij

(
φ

Λ

)qi+uj−h
uiLu

j
RH̃ + h.c. [If qi + uj − h > 0]

+ (yu)ij

(
φ†

Λ

)−(qi+uj−h)

ūiLu
j
RH + h.c. [If qi + uj − h < 0] , (7.3.5)

where, for (i, j) 6= (3, 3), the charges summation satisfies qi + uj − h can take different signs.
Restricting to the case where qi + uj − h > 0, the effective Yukawa coupling becomes, after
spontaneous symmetry breaknig of the U(1) symmetry, of the form

(yeff
u )ij ≡ εqi+uj−h(yu)ij , (7.3.6)

which can be re-written, using Eq. (7.3.4), with charges relative to the top quark ones,

(yeff
u )ij = ε(qi−q3)+(uj−u3)(yu)ij ≡ εqi3+uj3(yu)ij , (7.3.7)

providing, assuming the initial Yukawa matrix was of order one, the general form for the up
quark effective Yukawa matrix

yeff
u ≈

εq13+u13 εq13+u23 εq13

εq23+u13 εq23+u23 εq23

εu13 εu23 1

 . (7.3.8)

The down quarks generation Yukawa matrix can now be easily written as follows

yeff
d ≈

εq13+d13 εq13+d23 εq13

εq23+d13 εq23+d23 εq23

εd13 εd23 1

× εq3+d3+h . (7.3.9)
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In the simplest approximation where the charges are distributed in the reversed order than
the masses hierarchy

q1 > q2 > q3 ,

u1 > u2 > u3 , (7.3.10)

d1 > d2 > d3 ,

the latter matrices are close to be diagonal and the rotation matrices V u,d
L,R close to the identity

matrix. The CKM matrix turns out to be given by the values of the charges qi

VCKM ≈

 1 εq12 εq13

εq12 1 εq23

εq13 εq23 1

 . (7.3.11)

The mass ratios are thus simply given by the relations

mu

mt

≈ εq13+u13 ,
mc

mt

≈ εq23+u23 ,
md

mb

≈ εq13+d13 ,
ms

mb

≈ εq23+d23 . (7.3.12)

One simple possibility, elaborated in [241, 242], using an expansion parameter of the order
the Cabbibo angle sin θc ≈ 0.22 ∼ ε, is given by

(q1, q2, q3) = (3, 2, 0) ,

(u1, u2, u3) = (5, 2, 0) , (7.3.13)

(d1, d2, d3) = (1, 0, 0) ,

(7.3.14)

giving the ratios
mu

mt

≈ ε8 ,
mc

mt

≈ ε4 ,
md

mb

≈ ε4 ,
ms

mb

≈ ε2 . (7.3.15)

Such model provides a simple example for introducing a hierarchy in the flavour structure
of the Standard model.

7.4 Flavor Changing Neutral Currents

Now that we have introduced how flavours can get mixed up in the standard model, we will
in this section briefly review what are the major constraints coming from experiment and why,
are Flavor Changing Neutral Currents (FCNCs) such important tests for building a viable
phenomenological model.

7.4.1 Charged vs Neutral Currents

Let us make a short parenthesis making some purely phenomenological comments. Indeed let
us look at particular flavour changing currents, from both the charged and neutral sides. Let us
for instance consider two processes involving K hadrons and look at their decays into leptonic
final states branching ratios. Namely

Br(K+ → µ+ν) = 64% , Br(KL → µ+µ−) = 7× 10−9 . (7.4.1)
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Figure 3: Process b→ sγ generating flavour changing at the one loop order

In these two processes, flavour number is violated, whereas the first one involves a charged
intermediate (charged current) while the second has a neutral one (neutral current). One
immediately notices the huge difference of order of magnitude between these two different
branching ratios. Indeed the neutral current process is strongly suppressed compared to the
charged one. This is actually a generic phenomenological feature of the Standard Model.
Looking at other flavour changing processes therefore confirms this first sight statement : The
B and D mesons decays give

Br(B± → D±lνlX) = 11% , Br(B0 → K∗l+l−) ≈ 10−6 , (7.4.2)

and

Br(D± → K0µ±ν) = 9% , Br(D0 → K±π∓µ±µ∓) < 5× 10−4 . (7.4.3)

The same pattern is thus generically observed in particle physics and constitutes a stringent
constraint while building phenomenological models. That is, as a matter of fact, FCNCs have
to be strongly suppressed in any reasonable beyond the Standard Model example.

We will in what follows describe some classical FCNC processes, and see how they are nat-
urally suppressed in the Standard Model before plunging into supersymmetric considerations.

7.4.2 The GIM Mechanism : When the SM Feels Fine

At the tree level, only interaction involving mediation of a W± can generate flavour changing
since the photon and the Z couple diagonally in the flavour space. FCNCs thus appear only at
the loop level, but we will see here that it gets a suppression factor in addition to the simple
loop factor. The typical flavour changing process at one loop, involving FCNC, is the process
b→ sγ depicted in Fig. 3.

Computing the amplitude of such a diagram makes appear the following quantity

M∝
∑
i=u,c,t

VibV
∗
isF

(
m2
i

m2
W

)
. (7.4.4)

Where F
(
m2
i

m2
W

)
arises from the precise calculation of the loop integral, and is expected to

be of order one. The reader may notice, that weak couplings involving only left handed quarks
would lead to a global factor of

qγµεν(q
γ) (ū(ps)PRσ

µνPLu(pb)) , (7.4.5)
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which would exactly vanish. One has to add, as a consequence, a chirality flip to make one of
the quarks change its chirality during the process. Flipping the chirality of the heaviest quark
mb � ms, and taking into account the mass suppression coming from the propagator of the W
bosons as well as the loop factor gives an overall factor of the form

M∝ g2
2

16π2

mb

m2
W

∑
i=u,c,t

VibV
∗
isF

(
m2
i

m2
W

)
. (7.4.6)

Let us for a while make the simple assumption that all the internal quarks u, c, t are lighter
than the W boson. This assumption turns out to be partially wrong, and we will see later on
how one can generalize the following results in a more realistic formulation. Using this naive
assumption, one can however expand the function F around zero

F

(
m2
i

m2
W

)
= F (0) +

m2
i

m2
W

F ′(0) + . . . , (7.4.7)

giving for the amplitude factor

∑
i=u,c,t

VibV
∗
isF

(
m2
i

m2
W

)
= F (0)

( ∑
i=u,c,t

VibV
∗
is

)
+
∑
i=u,c,t

VibV
∗
is

(
m2
i

m2
W

)
F ′(0) + . . . . (7.4.8)

The orthogonality of the CKM matrix hence ensures that the first term of the expansion
(7.4.8) vanishes. One can furthermore write

VtbV
∗
ts = −

∑
i=u,c

VibV
∗
is , (7.4.9)

which gives the final expression∑
i=u,c,t

VibV
∗
isF

(
m2
i

m2
W

)
= −F ′(0)

∑
i=u,c

VibV
∗
is

(
m2
t −m2

i

m2
W

)
+ . . . ,

≈ −F ′(0)
∑
i=u,c

VibV
∗
is

(
m2
t

m2
W

)
,

≈ −F ′(0)
(
λ4 + λ2

)( m2
t

m2
W

)
. (7.4.10)

where powers of the mixing angle λ ∼ 0.22 come from the Wolfenstein parametrization (7.2.8)
of the CKM matrix. Therefore it turns out that, in addition to the suppression loop factor,
comes the additional factor m2

t/m
2
W as well as a mixing angle suppression λ2.

Obviously the assumption mt � mW is now outdated since we know that mt ∼ 2mW

and one could doubt of the validity of the latter result since the expansion (7.4.8) is now
not relevant. This can be done writing simply by noting that the leading contribution to the
function F comes from the top running in the loop, such that

F

(
m2
t

m2
W

)
� F

(
m2
u

m2
W

)
, F

(
m2
c

m2
W

)
, (7.4.11)
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Figure 4: Schematic representation of a meson mixing loop process.

and the integral becomes roughly∑
i=u,c,t

VibV
∗
isF

(
m2
i

m2
W

)
≈ VtbV

∗
tsF

(
m2
t

m2
W

)
∼ λ2F

(
m2
t

m2
W

)
. (7.4.12)

The function F being of order one, one gets the same suppression as stated in the old version.
This is a peculiar feature of the Standard Model : The consideration of the complete set of
quarks in the loops involved in FCNC processes, naturally leads to a suppression of the latter
compared to charged current processes. This idea was first suggested by Glashow, Iliopoulos,
and Maiani in [243] in a slightly different context, giving their name to a mechanism that is
usually called the GIM mechanism.

7.4.3 Meson Mixing

Historically speaking, the GIM mechanism was proposed in another context than the b → sγ
process, which was the case of meson mixing. Indeed one can imagine loop processes in which
mesons can oscillate through a ∆F = 2 flavour changing interaction, as depicted in Fig. 4.

Such oscillation were first studied in the case of the neutral Kaon K0, the combination of a
d quark and an s-antiquark oscillating with its counterpart K̄0 – s quark and d anti-quark. The
diagram of this oscillation process is drawn in Fig. 5. Indeed, in this case the same argument
can be used, using the CKM matrix unitarity to show that altogether, the quarks running in
the loops provide a necessary compensation, rendering the associated FCNC highly suppressed
in the Standard Model. Such proof was actually an argument at that time to claim for the
existence of the c quark.

The Kaon system is one of the best precisely measured FCNC process in the standard model
and hence turns out to be a major source of constraint for building beyond standard model
theories. We will see in what follows that this is the case in particular in the context of the
supersymmetric version of the Standard Model, the so called MSSM.
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Figure 5: Processes inducing a Kaon oscillation in the Standard Model. The internal indices i, j run over the
quarks u, c and t.



8 The Case of the Minimal Supersymmetric Stan-

dard Model

8.1 Generalities

The supersymmetric version of the Standard Model, in its minimal formulation, is probably
the cleanest formulation of a phenomenological supersymmetric theory, although it suffers from
theoretical and phenomenological problems that will not be detailed in the context of this work.
Its particle content is summarized in Table 8.1 and 8.2.

Quarks and leptons supermultiplets are present in the model under three versions consti-
tuting the three different flavour families. A family index i = 1, 2, 3 can hence be affixed to
the chiral supermultiplet names (Qi, ui, . . .) when needed, for example (e1, e2, e3) = (e, µ, τ).
The superpotential of the MSSM is given by Yukawa terms as well as the µ term for the higgs
doublets, namely

WMSSM = ŪyuQHu − D̄ydQHd − ēyeLHd + µHuHd , (8.1.1)

To parametrize ones ignorance on the supersymmetry breaking process, one usually add to the
lagrangian so called soft breaking terms (soft in the sense they have positive mass dimension)
of the form

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)
−

(
˜̄UauQ̃Hu − ˜̄DadQ̃Hd − ˜̄eaeL̃Hd + h.c.

)
(8.1.2)

− Q̃†m2
QQ̃− L̃†m2

LL̃− ˜̄Um2
ū

˜̄U † − ˜̄Dm2
d̄

˜̄D† − ˜̄em2
ē
˜̄e†

− m2
HuH

∗
uHu −m2

Hd
H∗dHd − (b HuHd + h.c.) .

Here matrices au,d,e represent (scalar)3 interaction matrices (in one-to-one correspondence with
the Yukawa couplings) while the m2

Q,ū,d̄,ē,L
are hermitian mass matrices. The model contains

Names Spin 0 Spin 1/2 SU(3)c, SU(2)L, U(1)Y

Squarks, quarks

(× 3 families)

Q (ũL, d̃L) (uL, dL) (3,2, 1
6 )

Ū ũ∗R ucR (3̄,1,−2
3 )

D̄ d̃∗R dcR (3̄,1, 1
3 )

Sleptons, leptons

(× 3 families)

L (ν̃, ẽL) (ν, eL) (1,2,−1
2 )

ē ẽ∗R ecR (1̄,1,1

Higgs, higgsinos
Hu (H+

u , H
0
u) (H̃+

u , H̃
0
u) (1,2,+1

2 )

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1̄,2,−1

2 )

Table 8.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The spin-0 fields are
complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.
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Names Spin 1/2 Spin 1 SU(3)c, SU(2)L, U(1)Y

Gluino, gluon g̃ g (8,1,0)

Winos, W boson W̃± W̃ 0 W± W 0 (1,3,0)

Bino, B boson B̃0 B0 (1,1,0)

Table 8.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

Figure 1: Example of diagrams contributing to the process µ− → e−γ in models with lepton flavour violating
soft supersymmetry breaking parameters (denoted by mass insertion symbols ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2

ē , m2
L, and ae, respectively.

furthermore Majorana masses for the gluinos M1,M2,M3. All these masses parameters are
introduced in order to break supersymmetry and we assume them to be of the order of a
typical supersymmetry breaking mass scale

msoft & TeV . (8.1.3)

Although the MSSM adds to the old fashion non-supersymmetric Standard Model in total
about one hundred new free parameters, and hence render its phenomenological treatment
more difficult, one can easily see that all these different couplings and new possible vertices
introduce dangerous flavour mixing or CP violating processes, that are severely restricted by
experiments. A typical example is the process µ− → e−γ, whose branching ratio is constrained
by experiment [244, 245] to be lower than

Br(µ− → e−γ) < 1.2× 10−11 , (8.1.4)

constraining, among others, the parameter m2
µ̃∗RẽR

≡ (m2
ē)12 to be very small, the numerical

value depending on the particular scenario explored. Off-diagonal terms of the left-handed
sleptons squared-mass matrix m2

L also induce, as depicted in Fig 1 b, contributions to the
µ− → e−γ process, that is, the slepton squared-mass matrices must not have significant mixings
for eL , µL.

Note that the aforementioned process induced by supersymmetric interactions violates the
flavour number conservation by ∆F = 1. However there exists other strong constraints, in
particular on the squarks squared-mass matrices, with the higher degree of violation ∆F = 2.
The strongest of these comes from the neutral kaon system K0 ↔ K̄0 arising through box
diagrams of the kind depicted in Fig. 2.

We will in what follows study in detail the constraints arising from the study of meson
mixings in the MSSM, in the generalized case where Dirac gauginos are added to the standard
MSSM.
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Figure 2: Among others, some of the diagrams contributing to the neutral kaon mixing K0 ↔ K̄0 induced by
the squarks mass insertion parameters (indicated by ×).

8.2 Constraining the MSSM with Dirac Gauginos

It has been known since the early days of low-energy supersymmetry that flavour-changing
processes set severe constraints on the flavour structure of the superpartner spectrum in the
MSSM. For example, the simplest models based on a single abelian flavoured gauge group that
we have briefly reviewed in section 7.3.1 in the case of the Standard Model, although providing
an approximate alignment mechanism for scalar mass matrices, still require scalar partners
heavier than at least 100 TeV. Both collider and flavour constraints encourage us to search
for non-minimal extensions with suppressed collider bounds and flavour-changing transitions.
Supersymmetric extensions with a Dirac gaugino sector [246, 247, 248, 249, 250, 251, 252, 253,
254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284] enter precisely into this category.

Originally motivated by the preserved R-symmetry, which allows simpler supersymmetry
breaking sectors [246, 247], and the possible connection with extra dimensions and N = 2
supersymmetry [251, 285], it was subsequently noticed that Dirac gaugino masses have many
phenomenological advantages over their Majorana counterparts. For example, the Dirac mass is
supersoft [286, 287, 250, 288], which naturally allows somewhat heavy gluinos compared to the
squarks [289, 290, 291]. Furthermore, it was argued later on that in this case flavour-changing
neutral current (FCNC) transitions are suppressed due to protection from the underlying R-
symmetry that lead to a chirality flip suppression [253]. It was also proved that the collider
signatures of superpartner production are suppressed compared to the MSSM case due to the
heaviness of the Dirac gluino and the absence of several squark decay channels [292, 293, 294,
295]. We want, in what will follow to understand the most general bounds arising from flavour
physics when we allow Dirac gaugino masses in addition to Majorana masses. This work was
made in collaboration with E.Dudas, M. Goodsell and P. Tziveloglou and published in [296].

In recent years, very precise measurements of observables in flavour violation processes have
been made [297] while the Standard Model contribution to some of these processes is now being
known with reasonable accuracy [298]. This results in very strong restrictions on the flavour
structure of theories beyond the SM. An exact theoretical computation of the neutral meson
mixing systems is particularly difficult due to unresolved non-perturbative, strong-interaction
effects. The general strategy is to compute the amplitude between the valence quarks in the full
perturbative theory, then match the amplitude to an effective theory of four-fermion contact
interactions. Contact with neutral meson mixing is achieved by estimating the matrix elements
between initial and final states, typically by use of PCAC [299] and lattice QCD techniques.
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8.2.1 Effective Hamiltonian

Within the context of MSSM, the dominant contribution to neutral meson mixing comes from
gluino-squark box diagrams (see eg. fig. 2 for the Kaon system). Starting from the superfield
lagrangian (where V a is denoting the gluino superfield in what follows)

LMSSM ⊃
∫
d4θ Q†e2gsV aTaQ+D

†
e−2gsV aTa∗D

⊃ −
√

2gs

[
d̃∗LxiT

a
xyλ

aαdLyiα − d̃RxiT a∗xyλaαdcRyiα
]

+ h.c. , (8.2.1)

we expand in the following the standard computation to include both Majorana and Dirac
gluino masses. In particular

L ⊃ −1

2
(Mλaλa +Mχχ

aχa + 2mDχ
aλa + h.c.)

−
√

2gs

[
d̃∗LxiT

a
xyλ

aαdLyiα − d̃RxiT a∗xyλaαdcRyiα
]

+ h.c. , (8.2.2)

where λaα is the Majorana gaugino, χaα its Dirac partner and T axy, dLi, d̃Li are the SU(3) genera-
tors, the quarks and the squarks of generation i respectively1. The mass matrix is diagonalized
by performing an orthogonal transformation and then a phase shift to render the masses posi-
tive, (

λa

χa

)
= R

(
ψa1
ψa2

)
. (8.2.3)

In basis ψi, eq. (8.2.2) becomes

L′ ⊃ −1

2
(M1ψ

a
1ψ

a
1 +M2ψ

a
2ψ

a
2 + h.c.) (8.2.4)

−
√

2gs

[
d̃∗LxiT

a
xy(R11ψ

aα
1 +R12ψ

aα
2 )dLyiα − d̃RxiT a∗xy (R11ψ

aα
1 +R12ψ

aα
2 )dcRyiα

]
+h.c.

The four-fermion effective action is given by [301, 302]

HK =
5∑
i=1

CiQi +
3∑
i=1

C̃iQ̃i , (8.2.5)

where the conventionally chosen basis of the dimension six operators is (now in Dirac notation)

Q1 = dxγ
µPLsx dnγµPLsn ,

Q2 = dxPLsx dnPLsn ,

Q3 = dxPLsn dnPLsx ,

Q4 = dxPLsx dnPRsn ,

Q5 = dxPLsn dnPRsx , (8.2.6)

1Our conventions are the ones from [300].
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Q̃1,2,3 are the analogues of Q1,2,3 through the exchange L↔ R and

C1 = ig4
sW1KW1L

(
11

36
|R1r|2|R1q|2Ĩ4 +

1

9
MrMqR

∗2
1rR

2
1qI4

)
W †
K2W

†
L2 ,

C2 = ig4
s

17

18
W4KW4LI4W

†
K2W

†
L2MrMqR

2
1rR

2
1q ,

C3 = −ig4
s
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W4KW4LI4W

†
K2W

†
L2MrMqR

2
1rR

2
1q ,

C4 = ig4
sW1KW4L

(
7

3
MrMqR

∗2
1rR

2
1qI4 −

1

3
|R1r|2|R1q|2Ĩ4

)
W †
K2W

†
L5

−ig4
s

11

18
W1KW4LĨ4W

†
K5W

†
L2 |R1r|2|R1q|2 ,

C5 = ig4
sW1KW4L

(
1

9
MrMqR

∗2
1rR

2
1qI4 +

5

9
|R1r|2|R1q|2Ĩ4

)
W †
K2W

†
L5

−ig4
s

5

6
W1KW4LĨ4W

†
K5W

†
L2 |R1r|2|R1q|2 , (8.2.7)

C̃1 = ig4
sW4KW4L

(
11

36
|R1r|2|R1q|2Ĩ4 +

1
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MrMqR

2
1rR

∗2
1qI4

)
W †
K5W

†
L5 ,

C̃2 = ig4
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W1KW1LI4W
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L5MrMqR
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1q ,

C̃3 = −ig4
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1
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W1KW1LI4W

†
K5W

†
L5MrMqR

∗2
1rR

∗2
1q . (8.2.8)

where summation over r, q = 1, 2 and K,L = 1, ... , 6 is implied and the Feynman integrals
I4 = I4(M2

r ,M
2
q ,m

2
K ,m

2
L), Ĩ4 = Ĩ4(M2

r ,M
2
q ,m

2
K ,m

2
L) are given by the expressions

In(m2
1, ...,m

2
n−1,m

2
n) ≡

∫
d4p

(2π)4

1

(p2 −m2
1)(p2 −m2

2)...(p2 −m2
n−1)(p2 −m2

n)

≡ i

16π2m2n−4
n

fn(x1, x2, ..., xn−1)

Ĩn(m2
1, ...,m

2
n−1,m

2
n) ≡

∫
d4p

(2π)4

p2

(p2 −m2
1)(p2 −m2

2)...(p2 −m2
n−1)(p2 −m2

n)

≡ i

16π2m2n−6
n

f̃n(x1, x2, ..., xn−1)

with xi ≡ m2
i

m2
n
. Convenient expressions of the latters can be found in the appendix of [296]. The

quantities WIJ are the components of the unitary matrix that diagonalizes the down squark
mass-squared matrix m2

d̃
in a basis where the down quark mass matrix is diagonal. Matrix W

is given in terms of the squark diagonalizing matrix Z and the quark diagonalizing matrices
VL, VR by

W =

(
V †LZLL V †LZLR
V †RZRL V †RZRR

)
. (8.2.9)

In the simple case that the mass of the gaugino is Dirac-type (M = Mχ = 0), we obtain
M1 = M2 = mD, R11 = −iR12 = 1√

2
, so that

∑ |R1r|2|R1q|2Ĩ4 = Ĩ4 and
∑
MrMqR

∗2
1rR

2
1qI4 =
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∑
MrMqR

2
1rR

2
1qI4 =

∑
MrMqR

∗2
1rR

∗2
1qI4 = 0. The effective coefficients simplify to

C1 = ig4
s

11

36
W1KW1LĨ4W

†
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†
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C4 = −ig4
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1
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†
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s
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†
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s
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C̃1 = ig4
s

11

36
W4KW4LĨ4W

†
K5W

†
L5 , C̃2 = 0 , C̃3 = 0 , (8.2.10)

The derivation of the effective action for the mixing between the other neutral mesons is the
same as above. Therefore, the corresponding effective actions are given by simple substitution
in the K,L indices of the W components :

HBd = HK(s→ b, 2→ 3, 5→ 6) ,

HBs = HK(d→ s, s→ b, 1→ 2, 2→ 3, 4→ 5, 5→ 6) ,

HD0 = HK(d→ u, s→ c,W → W u) . (8.2.11)

8.2.2 Flavour-violation observables

We have seen in the previous section how one can parametrize the Kaons oscillation in terms of
8 operators that we have made explicit, as functions of Feynman integrals I4, Ĩ4, the rotation
matrix R and the matrix W containing the information relative to diagonalization of the quarks
and squarks mass matrices. We will now see how such parametrization can be constrained, using
it to express observable quantities, that are to be directly constrained by experiment.

Flavour violation in the Kaon mixing system is typically parametrised by the real and
imaginary part of the mixing amplitude. These two are related to the mass difference between
KL and KS and the CP violating parameter as

∆mK = 2Re〈K0|HK |K0〉 , |εK | =
∣∣∣∣∣Im〈K0|HK |K0〉√

2∆mK

∣∣∣∣∣ , (8.2.12)

which have both been experimentally measured with great accuracy [297]. Their size sets strict
bounds on the amount of flavour violation allowed by new physics. In order to compute these
observables we need to extract the hadronic matrix elements of the operators in (8.2.5). They
are first derived in the Vacuum Saturation Approximation (VSA),

〈K0|Q1|K0〉V SA =
1

3
mKf

2
K ,

〈K0|Q2|K0〉V SA = − 5

24

(
mK

ms +md

)2

mKf
2
K ,

〈K0|Q3|K0〉V SA =
1

24

(
mK

ms +md

)2

mKf
2
K ,

〈K0|Q4|K0〉V SA =

[
1

24
+

1

4

(
mK

ms +md

)2
]
mKf

2
K ,

〈K0|Q5|K0〉V SA =

[
1

8
+

1

12

(
mK

ms +md

)2
]
mKf

2
K . (8.2.13)
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Since only strong interactions are involved, we get identical expressions for the ‘R-projection’
version of the first three operators. The ratio of the exact over the VSA result for each of the
five operators above is parametrized by the “bag” factors Bi, i = 1, ..., 5 (see later on, Tab. 8.3),
that are typically extracted by numerical techniques. In comparing with the SM contribution,
the usual parametrization used is

Re〈K0|HK |K0〉
Re〈K0|HSM

K |K
0〉

= C∆mK ,
Im〈K0|HK |K0〉

Im〈K0|HSM
K |K

0〉
= CεK . (8.2.14)

8.2.3 Flavour patterns

Now that we have specified our choice of parametrization and observables, as well as how to
extract constraints on results obtained in the vacuum saturation approximation from general
experimental measurement, one should find a way to express the hamiltonian in a simplified
way in order to be able to conclude in some clear constraints on the model parameters. In order
to do so, one may specify a particular choice of flavour pattern, in order to get rather simple
expression of the factors from their general expression (8.2.7).

The stringent experimental bounds on flavour violation processes require that contributions
from extensions of the Standard Model be highly suppressed. This is typically achieved by
employing particular patterns for the flavour structure of the BSM theory. In the following we
describe how flavour violation is parametrized along the study of different flavour patterns.

Degeneracy - mass insertion approximation

One way to suppress flavour violation is to assume that the masses of the squarks are almost
degenerate,

m2
I = m2

q̃ + δm2
I , (8.2.15)

where m2
I are the squark mass eigenvalues and δm2

I are small enough deviations from an “av-
erage” squark mass-squared m2

q̃, I = 1, ..., 6. Expansion of the loop integrals in δm2
I and use of

the unitarity of the W matrices delivers (for I 6= J , L 6= N)

WIKWLMI4(m2
K ,m

2
M)W †

KJW
†
MN = m2

IJm
2
LNI6(m2

q̃,m
2
q̃,m

2
q̃,m

2
q̃) + ... (8.2.16)

where m2 is the squark squared mass matrix in the basis where the quark mass matrix is
diagonal. Flavour violation in this scheme is parametrised by the small ratio of the off-diagonal
elements m2

IJ over the average squark mass δ
L(R)L(R)
ij ≡ m−2

q̃ m2
i(i+3) j(j+3).

Hierarchy

A slightly different notation is used in the case of hierarchical squark masses where the squarks of
first and second generation are much heavier than those of the third so that their contribution
to the box diagrams is negligible. Further below we will consider such flavour patterns, in
the simpler case of absent left-right mixing. In this case, one can parametrize flavour violation
processes by δ̂Lij ≡ WL

i 3W
L†
3 j , δ̂Rij ≡ WR

i 3W
R†
3 j , where WL

ij and WR
ij are the block diagonal matrices

of (8.2.9). The reasoning behind this choice can be illustrated by the following example [303].
Let us assume that b̃L is much lighter than the other squarks. Then

W1KW1LI4(m2
K ,m

2
L)W †

K2W
†
L2 ' (δ̂L12)2 I4(m2

b̃L
,m2

b̃L
) where (δ̂L12) = WL

13W
L†
32 . (8.2.17)
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Alignment

An alternative to degeneracy or hierarchy for the suppression of flavour violating processes
is to consider that the squark mass-squared matrix is simultaneously diagonalised with the
quark mass matrix [304]. In this “alignment” flavour pattern, the suppression appears because
WL
ij = V L †

ik ZLL
kj ∼ δij and WR

ij = V R †
ik ZRR

kj ∼ δij. In this framework, we can take the squark
masses to be of the same order mq̃ but not degenerate. If we ignore left-right mixing, we obtain
eg. for the left sector

WL
1iW

L
1jI4(m2

i ,m
2
j)W

L†
i2 W

L†
j2 ' (δ̃L12)2I4(m2

q̃,m
2
q̃) where δ̃L12 = max

k
(WL

1kW
L†
k2 ) (8.2.18)

and similarly for δ̃R12.

8.3 Bounds in the mass insertion approximation

Now that we have set up the parametrization of the different observables and specify the possible
flavour patterns, we will for a while concetrate on the case of near degenerate squarks, namely
what we called the mass insertion approximation. In the following we present the bounds for
representative points in the gluino parameter space (M,mD,Mχ). Hierarchical and alignment
flavour patterns will be discussed in section 8.4.

In the mass insertion approximation, coefficients (8.2.7) and (8.2.8) of the general effective
action for the Kaon mixing system become
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In the expressions above, xk = M2
k/m

2
q̃ with Mk the gluino mass eigenstate and we have

introduced for notation convenience, the definitions

I6(M2
r ,M

2
q ,m

2
q̃,m

2
q̃,m

2
q̃,m

2
q̃) =

i

16π2m8
q̃

f6(xr, xq, 1, 1, 1) =
if6

16π2m8
q̃

,
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The bounds on d↔ s transitions from the Kaon system are proven to be the most restrictive
and therefore we will focus on them, but a discussion about the comparison of bounds coming
from other mesons can be found in the appendix C of [296]. We allow the SUSY contribution
to ∆mK to be as large as the experimental bound; however, the contribution to εK is restricted
by the SM calculation [298]. Our analysis takes into account NLO corrections to the effective
Hamiltonian [305]; as for the parameter inputs, they can be found in Tab. 8.3 as well as the bag
factors (see section 8.3) used for exploiting constraints on exact results by the use of calculations
in the vacuum saturation approximation.

Parameter Value Ref.
αs(MZ) 0.1184 [297]
fK 0.1598 GeV [297]
mK 0.497672 GeV [297]

ms(2 GeV) 0.095 GeV [297]
md(2 GeV) 0.0048 GeV [297]

∆mexp
K (3.484± 0.006)× 10−15 GeV [297]

|εexp
K | (2.228± 0.011)× 10−3 [297]
|εSM
K | (2.04± 0.19)× 10−3 [298]

Parameter Value
B1 0.60
B2 0.66
B3 1.05
B4 1.03
B5 0.73

Table 8.3: Input used for Kaon bounds bag numbers [306].

8.3.1 Majorana gluino

In tables 8.4 and 8.5, we update the bounds on flavour violation parameters for the MSSM with
a Majorana gluino, for an average gluino mass of 1.5 TeV and 2 TeV. Non vanishing δL(R)L(R)

parameters are set for simplicity to a common value δ whose value saturating the 2σ deviation
in εSMK are indicated in the tables. The results turn out to be identical for Re(δ2) and c2Im(δ2),
with a coefficient of order c ' 25. As seen in the tables, the K − K system sets powerful
constraints on the size of flavour violation.

mq̃ [GeV] δLL 6= 0 δLL = δRR 6= 0 δLR = δRL 6= 0

750 0.211 0.002 0.004

1500 0.180 0.002 0.014

2000 0.157 0.003 0.008

Table 8.4: Majorana gluino bounds for Mg̃ = 1500 GeV. By δAB we denote
√
|Re (δAB12 )2| and

c
√
|Im (δAB12 )2|.
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mq̃ [GeV] δLL 6= 0 δLL = δRR 6= 0 δLR = δRL 6= 0

750 0.192 0.002 0.005

1500 0.374 0.003 0.011

2000 0.240 0.003 0.019

Table 8.5: Majorana gluino bounds for Mg̃ = 2000 GeV. By δAB we denote
√
|Re (δAB12 )2| and

c
√
|Im (δAB12 )2|.

8.3.2 Dirac gluino

As we have already mentioned, flavour violation for quasi-degenerate squarks is suppressed if
the gluino is of Dirac type, especially in the large gluino mass limit. This is true both because
of the absence of the chirality-flip processes and because we are allowed to increase a Dirac
gluino mass over the squark masses without affecting naturalness as much as in the Majorana
case. These properties lead to a significant relaxation of the bounds from ∆mK and εK , as seen
in figure 3 for representative values of δAB.

However, despite the order of magnitude (or better) improvement over the Majorana case,
the bounds on εK still require a relatively high flavour degeneracy or that the flavour violating
masses in the squark matrix are almost real. For example, for a 6 TeV gluino and average
squark mass of 1 TeV,

√
|Im (δLL12 )2| can be as high as ∼ 1%.

In section 8.4 we will explore flavour bounds on models with Dirac gauginos beyond the
mass insertion approximation. We will see that there exist flavour models where a Dirac gluino
can satisfy even the εK bounds for reasonable values of gluino and squark masses. We will
also notice that in many other flavour models, Dirac gauginos do not enjoy the suppression of
flavour violation with respect to Majorana ones that is seen here.

8.3.3 Fake gluino

The mass terms of eq. 8.2.2 allow for non-standard gluinos, when all M , mD and Mχ are
non-zero. One such scenario is when M � Mχ,mD and corresponds to the interesting case of
a light gluino with a suppressed squark - quark vertex, which we call “fake gluino”. In section
8.5 we explore this possibility in more detail.

In this limit we obtain more relaxed bounds on flavour violation parameters with respect
to MSSM with Majorana gluino. In order to illustrate the point, we consider

mD = Mχ = M/10 . (8.3.3)

Even for an order of magnitude difference between M and mD, Mχ, we obtain no restrictions for
the size of flavour violation from effective operator Q1, where δLL 6= 0, δRR = δLR = δRL = 0.
For other combinations, we obtain results given in tables 8.6 and 8.7.

In this case, the quark/squark coupling of the fake gluino is suppressed with respect to the
standard one by R12 ∼ mD

M
= 0.1 as can be seen in eq. (8.2.4). So if the contribution to the

box diagram is dominated by the lighest eigenstate, we should expect the box diagram to be
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Figure 3: Contour plots in parameter space mq̃ - mD for purely Dirac gluino (M = Mχ = 0). Left:
δLL = δRR = δ, δLR = δRL = 0. Right: δLL = δRR = δLR = δRL = δ. Along the contours

∆mK = ∆mexp
K (for δAB =

√
|Re (δAB12 )2|) and εK = εexp

K (for δAB = c
√
|Im (δAB12 ) 2|).

mq̃ [GeV] δLL = δRR 6= 0 δLR = δRL 6= 0

750 0.013 0.028

1500 0.014 0.029

2000 0.014 0.030

Table 8.6: “Fake” gluino bounds for Mg̃ = 1500 GeV. By δAB we denote
√
|Re (δAB12 )2| and

c
√
|Im (δAB12 )2|.

mq̃ [GeV] δLL = δRR 6= 0 δLR = δRL 6= 0

750 0.017 0.037

1500 0.018 0.038

2000 0.018 0.039

Table 8.7: “Fake” gluino bounds for Mg̃ = 2000 GeV. By δAB we denote
√
|Re (δAB12 )2| and

c
√
|Im (δAB12 )2|.
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suppressed by R4
12 for the same lightest gluino mass, leading to bounds reduced by R2

12 ∼ 0.01.
However, we observe from the bounds in tables 8.6 and 8.7 that the suppression is much less
dramatic, of the order 0.1. The reason is that it is not the light but actually the heavy eigenstate
that dominates the box integral!

This can be seen by comparing, for example, the loop integral contribution from the
chirality-flip process

√
xrxqR

∗2
1rR

2
1qf6(xr, xq) ' x1f6(x1, x1) + x2

(
x2

x1

)2

f6(x2, x2) + 2
√
x1x2

(
x2

x1

)
f6(x1, x2) .

(8.3.4)

In the approximation mentioned above where, denoting by x the quantity x ≡M2
g̃ /m

2
q̃, we get

the hierarchy

x2 ' x ,

x1 ' 100x , (8.3.5)

and one can introduce the dimensionless parameter

y ≡ x2

x1

� 1 . (8.3.6)

In this case the chirality-flip process becomes

√
xrxqR

∗2
1rR

2
1qf6(xr, xq) '

x

y
f6(x/y, x/y) + xy2f6(x, x) + 2xy

√
yf6(x/y, x) , (8.3.7)

where we have replaced R11 ' 1, R2
12 ' x2

x1
. Since f6(x/y, x) ∼ y2 log y, f6(x/y, x/y) ∼ y2

6x2 , the
dominant contribution comes from the heavy gluino term x1f6(x1, x1) and is given by

√
xrxqR

∗2
1rR

2
1qf6(xr, xq) '

1

6x

M2
D

M2
. (8.3.8)

The parametric scaling of the bound on δAB is then

|δABMajorana|
|δABfake gluino|

∼ M

mD

(8.3.9)

which is much less than the naive scaling of M2

m2
D

.

8.4 Beyond the mass insertion approximation

Having established in the previous section that the bounds from εK do not allow flavour-
generic models at LHC-accesible energies even in the case of Dirac gaugino masses, we are led
to the conclusion that it is likely that we either require an accidental suppression of the mixing
between the first two generations or we must impose some additional structure on the squark
mass matrices. It is therefore important to consider flavour models. However, in doing so we
invariably find that the mass insertion approximation is no longer valid: in fact, it is hard to
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find any models in which it would actually apply. Hence, in this section we shall investigate the
consequences - and the general bounds - when we go beyond the mass insertion approximation
in the context of Dirac gauginos.

One of the most important things that we find in the general case is that the much-vaunted
suppression of ∆F = 2 FCNC processes is in general much less marked; in fact, for certain
specific cases the Majorana case is actually less suppressed! We explain this in section 8.4.1. In
the remainder of the section we then discuss specific flavour models to illustrate the different
types of behaviour. We shall consider:

• The simple case of non-degenerate but same order of magnitude squark masses, where
alignment applies.

• A simple flavour model realising such a spectrum.

• The general case of an inverted hierarchy between the first two squark generations and
the third, à la reference [303]. In addition to changing the gluino masses to Dirac type,
we will update the bounds with the latest flavour data and also take into account the
LHC bounds on squark and gaugino masses.

• Models where in addition to the first two generations of squarks, the third generation of
right-handed squarks is also heavy. These models provide a minimum of extra coloured
particles available to the LHC.

• A flavour model realising the above, as given in [307] but with Dirac gaugino masses. This
model highly restricts the allowed flavour violation by imposing additional symmetries
upon the first two generations.

In the following, we ignore left - right squark mixing and define WL
ij = Wij and WR

ij =
Wi+3 j+3 for i, j 6 3. We also define

f̃AB = WA
1iW

B
1j Ĩ4(m2

D,m
2
Ai,m

2
Bj)W

A†
i2 W

B†
j2 , (8.4.1)

where A = L,R. Then the effective action (8.2.5) can be written as

HDirac
K = C1Q1 + C̃1Q̃1 + C4Q4 + C5Q5 (8.4.2)

where the Dirac coefficients (8.2.10) are written as

C1 =
11

36
ig4
s f̃

LL , C̃1 =
11

36
ig4
s f̃

RR , C4 = −1

3
ig4
s f̃

LR , C5 =
5

9
ig4
s f̃

LR (8.4.3)

8.4.1 Dirac versus Majorana

In reference [253], it was argued that the absence of chirality-flip processes in the case of Dirac
gluinos leads to a suppression in the contribution to the box diagram by a factor x ≡ M2

g̃ /m
2
q̃

as the Dirac mass becomes larger than the squark masses. In the following we show that this
is generally not true beyond mass insertion approximation and even when it is, the flavour
bounds are often relaxed by a factor of few rather than being parametrically reduced.
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This can be immediately seen by taking the large x limit in the loop functions that appear
in the coefficients (8.2.7) of the general expression (8.2.5) for ∆F = 2 FCNC processes. Taking
for simplicity equal masses mq̃ for the squarks in the loop, these functions are (see appendix
A.3 of [296]):

M2
g̃ I4(M2

g̃ ,M
2
g̃ ,m

2
q̃,m

2
q̃) ≡

i

16π2m2
q̃

xf4(x) =
i

16π2m2
q̃

[
2x(x− 1)− x(x+ 1)ln(x)

(1− x)3

]
,

Ĩ4(M2
g̃ ,M

2
g̃ ,m

2
q̃,m

2
q̃) ≡

i

16π2m2
q̃

f̃4(x) =
i

16π2m2
q̃

[
x2 − 2xln(x)− 1

(1− x)3

]
. (8.4.4)

Function f̃4(x) appears in both Dirac and Majorana cases while xf4(x) appears only in the
Majorana case, corresponding to the chirality-flip process. Notice that xf4(x) is always positive,
and f̃4(x) always negative; moreover they have broadly similar values except near x = 0; for
example f4(1) = 1/6, f̃4(1) = −1/3. As x → ∞ the ratio between them tends to −ln(x) + 2,
which is not the aforementioned enhancement by a factor of x.

This can be understood in the following way. Following the reasoning of [253], integrating
out the heavy gluino generates effective operators

1

Mg̃

d̃∗Rs̃
∗
LdRsL ,

1

M2
g̃

d̃L∂µs̃
∗
LdLγ

µsL , (8.4.5)

the first of these being the chirality-flip process forbidden in the Dirac case. In the mass
insertion approximation, the flavour changing loop diagram is then as in figure 4(a) and gives
(Qi refers to the four-fermion effective operators of sec. 8.2)

Leff ⊃ Qi
(m2

12)2

M2
g̃

∫
d4q

1

(q2 −m2
q̃)

4
∼ Qi

δ2
12

M2
g̃

(8.4.6)

for the chirality-flip case and

Leff ⊃ Qi
(m2

12)2

M4
g̃

∫
d4q

q2

(q2 −m2
q̃)

4
∼ Qi

m2
q̃

M4
g̃

δ2
12 (8.4.7)

in the same chirality case, in line with the claim in [253]. The insertion of operators of the form
m2

12q̃
∗
1 q̃2 as effective vertices is of course only valid in the limit m2

12 � m2
q̃; however, as we shall

see below in section 8.4.2, the above behaviour of the integrands can also arise in certain cases
beyond mass insertion approximation, where there is approximate unitarity of a submatrix of
the squark rotations leading to cancellations between diagrams. However, in all other cases we
instead have diagrams like that of figure 4(b), which gives

Leff ⊃ Qi
W 2

12

M2
g̃

∫ Mg̃

d4q
1

(q2 −m2
q̃)

2
∼ Qi

W 2
12

M2
g̃

ln
M2

g̃

m2
q̃

(8.4.8)

in the chirality-flip case and

Leff ⊃ Qi
W 2

12

M4
g̃

∫ Mg̃

d4q
q2

(q2 −m2
q̃)

2
∼ Qi

W 2
12

M2
g̃

(8.4.9)
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Figure 4: Loop diagrams in the effective theory where the gaugino has been integrated out. In
figure (a) the mass insertions are shown, whereas in figure (b) the mass-insertion approximation
is inappropriate.

in the same chirality case, where we needed to use the cutoff of Mg̃ in the integrals2. This
is exactly the behaviour that we find born out in the amplitudes and explains why in generic
flavour models the Dirac case will not provide a parametric suppression of the flavour-changing
bounds.

The logarithmic, instead of a linear suppression for the Dirac amplitude has then striking
consequences. In the case that the contribution from same-chirality and chirality-flip amplitudes
is comparable for reasonable values of x, the flavour bounds on Dirac gluinos can be proven
more strict than those on Majorana, because in the latter there can exist cancellations between
the same- and flipped- chirality amplitudes. Let us consider the impact that this has on bounds,
by taking the ratio between the value of the Wilson coefficients Ci for purely Majorana gauginos
CM
i and for purely Dirac CD

i . For a given contribution to the integrand (i.e. for the same values
of K,L) in equation (8.2.7) and taking for simplicity equal masses for the squarks in the loop
(while neglecting left-right mixing) we find:

CM
1

CD
1

=1 +
4

11

xf4(x, x, 1)

f̃4(x, x, 1)
= − 4

11
ln(x) +

19

11
+O(x−1 ln2(x)),

CM
4

CD
4

=7 ln(x)− 13 +O(x−1 ln2(x)),

CM
5

CD
5

=− 1

5
ln(x) +

7

5
+O(x−1 ln2(x)). (8.4.10)

For arbitrarily large values of x the Majorana case will have a larger contribution, but for
reasonable values, up to x = O(100), only C4 is actually enhanced compared to the Dirac
case (for C1 we would require gluinos about 40 times heavier than squarks to obtain a relative
suppression).

Finally, we note that the cancellation between the amplitudes can also be relevant when
the linear enhancement of the chirality-flip contribution applies, i.e. when fAB and f̃AB are

proportional to
(∼)

I6. This is the case when squarks are quasi-degenerate but also in certain cases
beyond the mass insertion approximation for very particular squark matrix configurations as

2Note that if we define m2
q̃K

= m2
q̃(1 + δK), sum the integrals of the above form (8.4.8) and (8.4.9) over

W1KW
∗
2KW1LW

∗
2L we and expand to leading order in δK we recover (8.4.6) and (8.4.7).
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we shall find below. In this case, for moderate values of x the cancellation plays a role:

CM
1

CD
1

→1 +
4

11

xf6(x, x, 1)

f̃6(x, x, 1)
=

1

11
(47− 2x− 12 ln(x)) +O(x−1 ln2(x)),

CM
4

CD
4

→7x

2
− 62 + 21 lnx+O(x−1 ln2(x)),

CM
5

CD
5

→ 1

10
(28− x− 6 lnx) +O(x−1 ln2(x)) (8.4.11)

We observe that the Majorana contribution is smaller than the Dirac for C1(x . 5) and
C5(x . 15) while the Dirac is only suppressed by a factor of 10 for C1(x ' 50) and C5(x ' 100).

8.4.2 Alignment

In the previous section we examined how flavour constraints in the mass insertion approximation
are affected by a generalized gluino spectrum. However, flavour models often do not lead to a
near degeneracy of the squarks’ masses but to different flavour patterns such as alignment or
hierarchy, as mentioned in section 8.2.3. Moreover, one expects non-degeneracy to arise from
running: there will always be a split between at least the first two generations and the third due
to the larger Yukawa couplings. It therefore makes sense to consider models that can suppress
flavour constraints even without requiring degeneracy of the squarks’ masses.

Alignment in the left sector

Alignment is typically obtained in flavour models of additional horizontal U(1) symmetries [241,
241]. In a minimal representative of such models there is only one horizontal U(1) symmetry,
under which the quark superfields are charged with charges X as

X[Qi] = (3, 2, 0) , X[U i] = (3, 1, 0) , X[Di] = (3, 2, 2) . (8.4.12)

If we neglect D-term contributions to the squark masses, the order of magnitude structure of
the squark mass matrices (before any quark rotations) is3

m2
d̃L
∼ m2

F

 1 ε ε3

ε 1 ε2

ε3 ε2 1

 , m2
d̃R
∼ m2

F

 1 ε ε
ε 1 1
ε 1 1

 , (8.4.13)

where ε is a small number, the parameter of U(1) symmetry breaking. Throughout this section,
ε = λ, where λ ' 0.22 is the Cabibbo angle. In this flavour model, the quark diagonalizing
matrices have the same structure

V d
L ∼

 1 ε ε3

ε 1 ε2

ε3 ε2 1

 , V d
R ∼

 1 ε ε
ε 1 1
ε 1 1

 , (8.4.14)

and the squark diagonalizing matrices (in the basis where the quarks are diagonal) are approx-
imated by WL ∼ V d †

L and WR ∼ V d †
R . Therefore, with this particular choice of U(1) charges,

the left-squarks sector exhibits alignment while the right-squarks sector does not.

3In all flavour abelian models in what follows, ∼ means order of magnitude only and not a precise number.
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We can estimate flavour violation in ∆mK in the leading order in ε, by focusing on

f̃LR = ε2
[
(m2

R1 −m2
R2)
(
Ĩ5(m2

L1,m
2
R1,m

2
R2)− Ĩ5(m2

L2,m
2
R1,m

2
R2)
)
,

+(m2
L2 −m2

L1)Ĩ5(m2
L1,m

2
L2,m

2
R3)
]

+O(ε4) ∼ i

16π2

ε2

m2
q̃

f̃5(x) ,

(8.4.15)

f̃LL = ε2(m2
L1 −m2

L2)2Ĩ6(m2
D,m

2
L1,m

2
L2) +O(ε4) ∼ i

16π2

ε2

m2
q̃

f̃6(x) ,

f̃RR = ε2
[∑

i

Ĩ4(m2
Ri,m

2
Ri)− 2Ĩ4(m2

R1,m
2
R2)− 2Ĩ4(m2

R1,m
2
R3) + 2Ĩ4(m2

R2,m
2
R3)
]

+ O(ε4) ∼ i

16π2

ε2

m2
q̃

f̃4(x) , (8.4.16)

where x = m2
D/m

2
q̃ and in approximating, we have required that all squark masses are of the

same order mq̃ but not degenerate. In the limit of Dirac gluinos much heavier than mq̃ we
obtain

〈K0|Heff |K0〉
∆mK(exp)

'
( αs

0.1184

)2
(

15 TeV

mD

)2

e2iφK , (8.4.17)

which is much too large: in order to meet the bounds from εK we would need mD ∼ O(100)
TeV. Here, we might have expected Dirac gaugino masses to soften the bounds with respect
to Majorana masses. However, this is not the case. Since the strongest constraint comes from
operator Q̃1, according to equation (8.4.10) we have a bound about 5 times stronger for Dirac
masses than Majorana ones when x = 100.

Alignment in both left and right sectors

As we have seen above, since the constraints are severe for Kaon mixing, models that suppress
the elements WL

12 and WR
12 are then most attractive (since f̃AB obtains largest contribution

from WA
11W

A†
12 ∼ WA

12 and WA
21W

A†
22 ∼ WA

21). However, retrieving the correct form for the CKM
matrix leads to large flavour rotation for the up-quark matrix. Therefore, apart from checking
that B-meson constraints are satisfied, one must as well consider constraints from D-meson
mixing.

Since both down and up squark sectors are involved in the following discussion, we restore
the corresponding superscripts in the W matrices, so that W qA

ij is the matrix that diagonalizes
the A-handed squarks in the q-type sector, with A = L,R and q = u, d.

Defining 〈W q
ij〉 ≡

√
W qL
ij W

qR
i,j we can place approximate bounds in this framework

W dL
12 ,W

dR
12 . 2× 10−3 , 〈W d

12〉 . 4× 10−4 ,

W dL
13 ,W

dR
13 . 0.1 , 〈W d

13〉 . 0.2 ,

W dL
23 ,W

dR
23 . 0.4 , 〈W d

23〉 . 0.5 ,

W uL
21 ,W

uR
21 . 0.03 , 〈W u

21〉 . 0.04 , (8.4.18)
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where all of these should be multiplied by
( mq̃

2 TeV

)√∣∣∣ 1/3

f̃4(x)

∣∣∣. The constraints4 in the left column

of (8.4.18) come from operators of the type Q1, Q̃1, whereas the ones in the right column come
from Q4, Q5.

Of these bounds, it is the D-meson constraint that proves problematic for alignment models,
as typically suppressing the W d

12 element will require W u
21 ∼ λ. However, the problem is not

particularly severe: it can either be remedied by having somewhat heavy first two generations,
or by allowing a small degeneracy between the first two generations.

To explore this, consider as a representative example a model with two abelian symmetries
U(1)1 × U(1)2 under which the quark superfields have charges [241]

Q D U
(3, 0) (−1, 2) (−1, 2)
(0, 1) (4,−1) (1, 0)
(0, 0) (0, 1) (0, 0)

(8.4.19)

Other examples of models with alignment can be found eg in [308, 309]. The symmetry breaking
parameters, coming from flavon fields of charges (−1, 0) and (0,−1), are ε1 ∼ λ and ε2 ∼ λ2

respectively. The diagonalising matrices are given by

W dL
ij ∼

 1 λ5 λ3

λ5 1 λ2

λ3 λ2 1

 , W dR
ij ∼

 1 λ7 λ3

λ7 1 λ4

λ3 λ4 1

 ,

W uL
ij ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , W uR
ij ∼

 1 λ6 λ5

λ6 1 λ
λ5 λ 1

 , (8.4.20)

which are generically challenged by the bounds given above via D-meson mixing. However,
those bounds are derived under the assumption that the amplitude is well dominated by a
single contribution. We find that, in practice, they are overly conservative. Indeed, in order
for this to be the case there has to actually be a substantial hierarchy between the squark
masses, and then since there is a minimum mass for the second generation via LHC bounds
we will find that the model will be less constrained than feared. Considering this model, the
constraint essentially comes from the Q1 operator for D-meson mixing. Moreover, if we were
to suppress the amplitude by O(λ2) then we would easily meet the constraints; hence we must
only suppress the leading order contribution in λ, which we find to be:

f̃LL = λ2

[
Ĩ4(m2

L1,m
2
L1) + Ĩ4(m2

L2,m
2
L2)− 2Ĩ4(m2

L1,m
2
L2)

]
+O(λ4)

= λ2(m2
L1 −m2

L2)2Ĩ6(m2
L1,m

2
L2) +O(λ4). (8.4.21)

Clearly if the first two generations are quasi-degenerate then this will vanish sufficiently to
satisfy the constraints. Indeed, particular UV models could have them degenerate up to O(λ2)
[310, 311, 312, 313, 314, 315], which would give a much greater suppression of the FCNC

4These approximate bounds include bag factors but no NLO corrections (no magic numbers) (in plots we
include all available data including magic numbers).
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Figure 5: Constraints on the model described in section 8.4.2. The dashed lines correspond to
exactly Dirac gauginos, while the solid lines are purely Majorana. We take the same hierarchies
for up- and down-type squarks, with m2

L1 = 1.5m2
L2 = 3m2

L3 for the red plots; m2
L1 = 5m2

L2 =
10m2

L3 for the green curves and m2
L1 = 25m2

L2 = 100m2
L3 for the blue.

processes than necessary to avoid current bounds. However, it is actually not necessary to have
so much degeneracy; for example taking m2

L1 = 3m2
L3,m

2
L2 = 2m2

L3 and taking mD = mL2 the
amplitude is suppressed by a factor of 0.02 compared to simply taking f̃4(1), which is enough
to satisfy the bounds for squark at gluino masses of O(2 TeV).

To illustrate this, we show plots in figure 5 of the allowed lightest squark mass versus gaugino
mass for this model with randomly chosen entries of the above form. In order to harden the
bounds we must introduce a large hierarchy between the squark masses. We take three different
hierarchies: m2

L1 = 1.5m2
L2 = 3m2

L3, m2
L1 = 5m2

L2 = 10m2
L3 and m2

L1 = 25m2
L2 = 100m2

L3 (the
same hierarchies for both up- and down-type squarks) and calculate the bounds showing the
gluino mass against the lightest squark mass using NLO corrections and taking into account all
∆F = 2 constraints. In practice, the D-meson constraint is dominant: we insist that |∆mD0|
is less than the experimental value of 7.754 × 10−15 GeV (since this is approximately three
standard deviations from zero, and moreover the standard model value is known to much less
accuracy).

The results of figure 5 agree with our discussion in the end of sec. 8.4.1. The cancellation
between the chirality-flip and the same chirality process suppresses the contribution in the
Majorana case for moderate x even if the enhancement over the Dirac case is linear in x. Since
the flavour bounds for mL3 & 0.8 ÷ 1 TeV are obeyed already at low x, a Majorana gluino is
less contrained than a Dirac one. Another feature of this model is that, due to the suppression
in the unitary rotations, the main FCNC effects come from the first two generations, even if
they are heavier than the third one. Hence, one should bear in mind that the relevant squark
mass for the loop diagrams is heavier than the mL3 shown on the abscissa.
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8.4.3 Inverted hierarchy

Decoupling the first two generations

A particularly attractive scenario in light of the strong LHC bounds on the first two generations
of squarks and the desire for “natural supersymmetry” is to have an inverted hierarchy, where
the first two generations of squarks are substantially heavier than the third. This can be simply
accommodated in flavour models, as we shall discuss below.

One approach, following [303], is to decouple the first two generations. In this case, the
effective action is given by (8.4.2) with f̃AB of (8.4.1) given by

f̃AB = δ̂A12 δ̂
B
12 Ĩ4(m2

D,m
2
A3,m

2
B3) (8.4.22)

in the inverted hierarchy limit, as we have described in sec. 8.2.3. Here mL3,mR3 are the
masses of the ‘left-handed’ and ‘right-handed’ sbottoms. The reader should be careful with

the “hat” notation however: since δ̂A12 ≡ WA
13W

A

23 we expect the δ̂A12 to be small, coming from
two small rotations rather than (in the generic case) one - indeed if the rotations come from
the squark mass-squared matrices M2

A ij themselves (rather than from quark rotations) so that

WA
13 ' −M2

A 13/m
2
A1 then we expect δ̂A12 < m2

A3/m
2
A1.

For m2
D � m2

L3,m
2
R3 we find

〈K0|Heff |K0〉
∆mK(exp)

= 3× 103 ×
( αs

0.1184

)2
(

2000 GeV

mD

)2 (
0.3(δ̂L12)2 + 0.3(δ̂R12)2 − 2.6 δ̂L12δ̂

R
12

)
(8.4.23)

and hence√
|Re(δ̂L12)2| < 3× 10−2

( mD

2000 GeV

)
,

√
|Im(δ̂L12)2| < 9× 10−4

( mD

2000 GeV

)
, (8.4.24)

which are not much weaker than the limits from [303] despite the larger gaugino mass and
the change from Majorana to Dirac gauginos. The reason is that the flavour data have been
updated and the limits scale only inversely proportional to the gaugino mass, since there is
no further suppression of the Dirac case relative to the Majorana case, as described in section
8.4.1. In fact, since the limits are derived from the constraints on C1, C̃1 without the mass
insertion approximation, for moderate values of the ratio of gluino to third generation squark
masses, the Dirac version of this model is actually more constrained than the Majorana one.

Including the first two generations

The above discussion assumed that we could completely decouple the first two generations.
However, we know that we cannot make them arbitrarily massive compared to the third gener-
ation without the two-loop RGEs leading either to tachyons or substantial fine-tuning to avoid
them. Typically a factor of m1/m3 ∼ 10− 15 is the maximum that is allowed. Given this, we
must still worry about flavour-changing effects from the first two generations.

For example, let us suppose that the heavy eigenstates are not degenerate, but have masses
m1 6 m2. In the limit where m1 is much larger than mD, one of the contributions to f̃LR of
(8.4.1) can be written as

− 16π2if̃LR ∼ WL
12W

R
12

m2
1

.
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Under the reasonable assumption that there are no accidental cancellations between the different
contributions, for m1 ∼ 10 TeV the constraint from εK requires WL

12W
R
12 . 10−6 which is clearly

highly restrictive for any flavour model. Therefore we must impose restrictions upon the heavy
squarks.

Let us determine the condition for neglecting the contribution from the first two gener-
ations in the approximation that the first two generations of left- and right-handed squarks
are degenerate to leading order with masses mL1,mR1 respectively, with the third generation
masses mL3,mR3. Then, there are corrections δA12m

2
1, δA13m

2
1, δA23m

2
1 to the off-diagonal elements

of the squark mass-squared matrix, with δAij defined similar to the mass insertion approximation

flavour parameter described in sec. 8.2.3: δAij = m−2
1 (mA

ij)
2, A = L,R. In this case, eq. (8.4.1)

is expressed as

f̃AB ' δ̂A12 δ̂
B
12 Ĩ4(m2

A3,m
2
B3)

+ δA12 δ̂
B
12m

2
A1

∂

∂m2
A1

[
Ĩ4(m2

A1,m
2
B3)− Ĩ4(m2

A1,m
2
B1)

]
+ (A↔ B)

+ δA12δ
B
12m

2
A1m

2
B1

∂2Ĩ4(m2
A1,m

2
B1)

∂m2
A1∂m

2
B1

, (8.4.25)

where we have neglected subleading terms in δ̂A,B12 . If we further take mA1 = mB1 = m1,
mA3 = mB3 = m3, then this simplifies to

−16π2if̃AB = δ̂A12δ̂
B
12

1

m2
3

f̃4(
m2
D

m2
3

) + δA12δ
B
12

1

m2
1

f̃6(
m2
D

m2
1

)

−
[
δA12 δ̂

B
12

1

m2
1

f̃5(
m2
D

m2
1

,
m2

3

m2
1

) + (A↔ B)

]
, (8.4.26)

where

f̃5(
m2
D

m2
1

,
m2

3

m2
1

) = log
m2
D

m2
1

+
2m4

D − 3m2
Dm

2
3 +m4

3(1 + log
m2

3

m2
D

)

(m2
3 −m2

D)2
+O(m−2

1 ) . (8.4.27)

Assuming that mD � m1, in order to neglect the contribution of the first two generations we
require δ12 . δ̂12

m1

m3
. Since, as explained above, we expect m1

m3
. 10 ÷ 15, we see that only

certain flavour models will actually allow this.

Concrete Realizations

In order to realise a model with heavy first two generations of squarks with suppressed mix-
ing between them, we could consider models with a large D-term for an extra abelian gauged
flavour symmetry under which only the first two generations are charged, and obtain a natural
supersymmetric spectrum [316, 317]. These D-term contributions were argued to be natu-
rally generated (at least) in effective string models [318, 319], to be positive and, in certain
circumstances, to be dominant over the F-term contributions. It is then clear from (7.3.13)
that precisely because the first generations of fermions are lighter than the third one, the
corresponding scalars are predicted to be heavier. While such models would be one approach
to realizing the scenario of the previous subsection, there is currently no extant example that
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solves the FCNC problem of mixing between the first two generations (owing to the need to
have degeneracy between them).

Another class of flavour models adds extra (non abelian) symmetry between the first two
generations [320, 321, 322, 323, 324, 325, 326]. In this case, we can effectively take the squark
mass matrix to be diagonal, with flavour-changing processes only induced by the quark rotations
combined with the (possibly small) non-degeneracies in the squark matrix (of course, if the
squarks were degenerate then the super-GIM mechanism would lead to vanishing of the flavour-
changing effects).

Taking the model of [307] for m2
L1 = m2

L2 = m2
1 � m2

L3, m2
R1 = m2

R2 = m2
1 ' m2

R3 as
an illustrative example of this scenario (see appendix B.2 of [296] for more details), we have
approximately

f̃LR ' i

16π2
WL

13W
L†
32 W

R
13W

R†
32

m2
1 −m2

3R

m4
1

f̃5(
m2
D

m2
1

,
m2
L3

m2
1

) , (8.4.28)

where f̃5 is given in (8.4.27) and the diagonalizing matrices are given in terms of parameters of
the model:

WL
13W

L†
32 W

R
13W

R†
32 = −s2

d

md

ms

|V d
23|2e−2iα̃12 , (8.4.29)

with sd and V d
23 that take values s2

d ' 0.2 and V d
23 ' 0.04 in the best fit of one of the models in

[307].
The bounds on ∆mK are easily satisfied by this model, so we focus directly on the bounds

on εK . We obtain, allowing CεK ∈ [0.66, 1.73] at 99% confidence level:

|∆εK |
|εK(SM)|0.73
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1
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|
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|
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)(
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1

)2
(
f̃5

1.1

)
(8.4.30)

where we have used mD = 2 TeV, mL3 = mb̃L
= 1 TeV, m1 = 10 TeV to evaluate f̃5. The

results from [307] are compatible with the 95% confidence level bound CεK ∈ [0.77, 1.41] and
we show the comparison in figure 6.

In this model, the Dirac gluino offers an improvement by roughly a factor of four over
the Majorana case. Again, this is in agreement with sec. 8.4.1 since the dominant contribu-
tion comes from C4 where the chirality-flip process adds to the same-chirality one instead of
cancelling it.

8.5 A Diversion: how to fake a gluino

We saw previously that large suppression of FCNC and production of coloured particles can be
obtained in two different ways:

• Large Dirac mass mD �M,Mχ, due to the underlying R-symmetry, in the mass insertion
approximation.

• Large Majorana mass M � mD,Mχ, due to small couplings of the light “fake gaugino”
fermion to quarks/squarks.
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Figure 6: Contour plots for the model of section 8.4.3. Along the contour, |∆εK | = ∆εK(exp).
The dashed lines correspond to exactly Dirac gauginos, while the solid lines are purely Majo-
rana, as in the original model of [307]. In the left plot, the left-handed sbottom mass is set
equal to that of the gluino; in the right plot, the left-handed sbottom is fixed at 1 TeV. The
two lines correspond to m2

d̃R
−m2

b̃R
= (1.5, 4 TeV)2. The remaining parameters are chosen as

|V d
23| = 0.04, sin(α12) = 0.5 and s2

d = 0.2.
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The second case can be realized in two distinct ways.
i) We can have a scenario with a very moderate hierarchy and without a see-saw mass: we
can take for example Mχ ∼ TeV, M ∼ 10 TeV, 1 TeV . mq̃ . 5 TeV and an arbitrarily
small Dirac mass. In particular, we need only consider the gluino as being so heavy (the other
gauginos could be somewhat lighter). In this case, all of the masses would be generated by
F-term supersymmetry-breaking. The Dirac mass is then automatically suppressed, as can be
checked by writing explicitly the Dirac mass term with the help of a chiral spurion superfield.
Alternatively, there can be also a small D-term which would explain the smallness of the Dirac
mass. Here Rg̃

12 ∼ mD/M , so the mixing between the gauginos and the fake gaugino could be
almost arbitrarily small.
ii) A second way is by having a large, intermediate scale gluino mass. A theoretical motivation
for this case is gauge coupling unification. According to [327], MSSM with additional adjoint
chiral fields leads to a good unification of couplings at the string scale for adoint masses around
1012 GeV. In the case they considered, the low-energy effective theory is just the MSSM. From
the gauge unification viewpoint however, we can switch the masses of the gauginos/gluinos
with those of the chiral adjoint fermions, keeping the scalar adjoint masses heavy. This switch
will not affect gauge coupling unification at one-loop, whereas it will significantly change phe-
nomenology, which we call “fake split SUSY” for obvious reasons in what follows. In this section
we therefore consider in more detail this scenario and comment on its qualitative phenomeno-
logical consequences.

Case i) is clearly easy to justify. Before discussing phenomenological implications, let elab-
orate more about case ii). The obvious question is the stability of the hierarchy M � mD,Mχ

under radiative corrections through diagrams of the form represented in Fig. 7. For this, we
need to consider the effective theory when we integrate out the gauginos and the adjoint scalars.
The adjoint fermion χ (the “fake gaugino”) has no tree-level renormalisable couplings to the
squarks and sleptons, but it does couple via the gauge current to the gaugino λ and the adjoint
scalar Σ: the relevant terms are

L ⊃−
(
M

2
λaλa +

Mχ

2
χaχa +

1

2
BΣΣaΣa + i

√
2gfabcΣ

a
λbχc + h.c.

)
−m2

ΣΣaΣ
a

− (mDΣa +mDΣ
a
)2 − (mDλ

aχa + c.c.). (8.5.1)

χa χa
λa λa

×
〈λλ〉

×
〈ΣaΣa〉

Figure 7: Loop diagram generating corrections to the bare majorana mass Mχ. Symbols × denote mass
insertions for the adjoint scalar Σ and the gluino λ.

On the second line we included the terms coming from the Dirac gaugino mass term, which
necessarily also generates the term (mDΣa + mDΣ

a
)2. We do not absorb these into mΣ, BΣ
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because these corrections are RGE invariant and therefore apply at any renormalisation scale
[286, 287, 288]. Instead we define

B̂Σ ≡ BΣ + 2m2
D , m̂2

Σ ≡ m2
Σ + 2|mD|2. (8.5.2)

Since we are making the logical assumption that the adjoint scalars are at least as massive as
the other scalars in the theory, we can integrate them out along with the gaugino λ: at one
loop we generate a term Mχ given by

Mχ = 2g2C2(G)B̂ΣM

∫
d4p

(2π)4

p2

(p2 +m2
D)2 +M2p2)((p2 + m̂2

Σ)2 − B̂2
Σ)

, (8.5.3)

which gives to leading order in BΣ/m
2
Σ,mD/M

Mχ =
2C2(G)g2

16π2
×


B̂Σ

M

(
1− log M2

m̂2
Σ

)
M � m̂Σ ,

B̂Σ

m̂2
Σ
M m̂Σ &M.

(8.5.4)

This clearly prevents an arbitrary hierarchy between M and Mχ. We might consider simply

ignoring B̂Σ; however, it will always have a D-term contribution from the Dirac mass, so that
without tuning we can say |B̂Σ| & |mD|2. More honestly, one should check if there can be a
symmetry preventing the generation of such a term. Indeed this is the case: If we rotate under
U(1)F the adjoint superfield Σ then this prevents both Mχ and BΣ, but also prevents the Dirac
mass mD. However, if we break this symmetry with the vev of a field φ such that φ/Mhigh ≡ ε
then we generate

mD ∼ εM , Mχ ∼ ε2M , BΣ ∼ ε2M2 ∼ m2
D (8.5.5)

and thus the above contribution is irrelevant: the see-saw (and direct) masses for the “fake”
gluino are of order m2

D/M where the scale is controlled by the parameter ε. We also note that
since this hierarchy is protected by the approximate symmetry, it is not affected by renormali-
sation group running from above the SUSY-breaking scale5

δMχ ∼ ε2
g2
s

16π2
M , (8.5.6)

δBΣ ∼MMχ
g2

16π2
log

(
Λ

M

)
∼ ε2

g2

16π2
M2 log

(
Λ

M

)
.

Taking M ∼ mq̃ ∼ mΣ ∼ 1012 GeV and assuming that the “fake” gluino mass is of
order Mχ ∼ 1 TeV, this fixes the parameter ε to be of order 10−4 (so that we could take
〈φ〉 ∼M,Mhigh ∼MGUT). Hence we get the following masses

M ∼ 1012GeV & mΣ � mD,
√
BΣ ∼ 108GeV � Mχ ∼ 1TeV . (8.5.7)

If the switch of masses is also performed for the wino/bino↔ fake wino/bino, the resulting
low-energy effective theory in this case is different compared to standard split SUSY. Indeed,

5 In terms of the parameter B̂Σ defined in (8.5.2), we find δB̂Σ ∼ (MMχ −m2
D) g2

16π2 log
(

Λ
M

)
.
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we should consider whether there are any light higgsinos remaining in the spectrum: in split
SUSY, there is an R-symmetry that protects the mass of the higgsinos, whereas we have broken
this, and we would expect the higgsinos to obtain a mass through diagrams similar to the one
considered above:

µ ' 1

4
2g2

YMBµĨ4(m2
h,m

2
H ,M

2
B̃1 ,M

2
B̃2) +

3

4
2g2

2MBµĨ4(m2
h,m

2
H ,M

2
W̃ 1 ,M

2
W̃ 2) , (8.5.8)

where MB̃i ,MW̃ i with i = 1, 2 are the masses for the bino and wino eigenstates respectively
(before electroweak symmetry breaking) and mh (mH) are the light (heavy) mass parameters
in the Higgs sector,

m2
h '

m2
hu
m2
hd
−B2

µ

m2
hu

+m2
hd

, m2
H ' m2

hu +m2
hd
. (8.5.9)

In writing (8.5.8) we neglected Mχ in the loop. In this case, a more compact form for the
integrals is, for example

Ĩ4(m2
h,m

2
H ,M

2
W̃ 1 ,M

2
W̃ 2) =

∫
d4p

(2π)4

p2

(p2 +m2
h)(p

2 +m2
H)[(p2 +m2

D)2 +M2
W̃
p2]
. (8.5.10)

Whereas the general expression is rather involved, in the limit M � mH and (for simplicity)
with equal gaugino mass parameters for SU(2) and U(1) factors MW̃ = MB̃ 'M , it simplifies
to

µ ' g2
Y + 3g2

2

32π2

Bµ

M −m2
H/M

log
m2
H

M2
. (8.5.11)

However, this can be repaired in a similar fashion: we can suppose that the Higgs fields are
charged under the same U(1) symmetry that the adjoints are charged under. This would
suppress the µ andBµ terms, and also prevent any superpotential couplings between the adjoints
and the higgsinos. We would have µ ∼ ε2M,Bµ ∼ ε2M2 so we would have Bµ � |µ|2 and the
heavy Higgs scalars would be parametrically heavier than the electroweak scale. In this scenario
we effectively take infinite tan β and require the down-quark and lepton Yukawa couplings non-
holomorphic and generated in the high-energy theory (see e.g. [328, 266]).

Then, in split SUSY the effective lagrangian contains higgs/higgsino/gaugino couplings

Leff ⊃ −
H†√

2
(g̃uσ

aW̃ a + g̃′uB̃) H̃u −
HT ε√

2
(−g̃dσaW̃ a + g̃′dB̃) H̃d. (8.5.12)

In usual split SUSY, g̃u = g sin β, g̃d = g cos β, g̃′u = g′ sin β, g̃′d = g′ cos β; however, in our case
these couplings will be strongly suppressed by the fake gaugino/bino compositions R12, R′12. If
the adjoint superpotential couplings W ⊃ λSHdSHu + 2λTHdTHu had not been suppressed,
then they would have provided couplings of the same form. Instead, the absence of such
couplings at low-energy could be therefore a signature of a remote N = 2 supersymmetric
sector, instead of a more conventional split SUSY spectrum.

Finally, in the absence of couplings λS,T , the model has difficulties to accomodate a good
dark matter candidate, due to the small couplings of the fake electroweakinos to quarks and
leptons.
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8.5.1 Phenomenological consequences

In the context of split SUSY, where squarks are very heavy compared to the gluino, one striking
experimental signature is the long lifetime of the gluino and associated displaced vertices or
(for even heavier squarks) gluino stability. Indeed the lifetime of the gluino could be sufficiently
long to propagate on macroscopic distances in detectors [329, 330, 331]. This lifetime, in the
standard split SUSY context, can be estimated in an approximate manner according to [331]
as follows

τg̃ =
4 sec

N
×
( mq̃

109GeV

)4

×
(

1 TeV

M

)5

, (8.5.13)

where N is a quantity varying with M and mq̃ but of order une for our range of masses.
As we saw in the previous sections, the fake gluino couplings are altered by the diagonali-

sation of the gluino mass matrix and contain a tiny contribution of the original gluino gauge
coupling, proportional to Rg̃

12 ∼ mD/M . In case i) above, the mixing between the gauginos and
the fake gaugino could be almost arbitrarily small by having mD � TeV, meaning that the
fake gluino could still have displaced vertices without requiring large mass scales. Particularly
interesting is the case where the usual gluinos are not accessible (they are heavier than say 5
TeV), whereas some of the squarks are. Displaced vertices /long lifetime for the fake gluino with
light squarks would be a direct probe of a high-energy N = 2 supersymmetric spectrum. Pair
production of faked gluinos in this case lead to displaced vertices, since although some squarks
could be light, their small couplings to the fake gluino suppresses such processes. On the other
hand, direct squark production is possible, but subsequent squark decays to quarks/neutralinos
go dominantly through the Higgsino components and corresponding Yukawas couplings. They
are therefore unsuppressed only for third generation squarks ( and eventually third generation
sleptons if similar arguments are applied to the other gauginos). Of course, the heavier the
usual gluino, the bigger the fine-tuning needed in order to keep a squark to be light. Some
fine-tuning, moderate for gluino mass below 10 TeV or so, is unavoidable for such a scenario
to be realized in nature. However, its very different phenomenological implications could be
worth further study.

In case ii) above, the fake gluino couplings to quarks/squarks are proportional to gsR12 '
gs

mD
M
∼ ε and encodes the small gluino composition of the lightest fermion octet. According to

our numerical choice of masses we get R12 ∼ ε ∼ 10−4. This affects therefore the fake gluino
lifetime, which has to be modified according to

τχ =
4× 1028 sec

N
×
(

10−4

Rg̃
12

)2
(

10−4

Rχ0

12

)2

×
( mq̃

1012GeV

)4

×
(

1 TeV

Mχ

)5

∼ 1021 years (8.5.14)

where we define Rg̃ and Rχ0

12 to be the rotation matrices for the gluino and neutralino respec-
tively. For the scales given, this lifetime is hence longer than the age of the universe, and so
we should make sure that fake gluinos are not produced in the early universe6.

We could also consider different moderate hierarchies with interesting low-energy implica-
tions. For example, let us suppose that Mχ ∼ mD ∼ TeV and gluino and squark masses
M ∼ mq̃ ∼ 100 TeV, while the higgsinos remain light; in split SUSY gluino decays are prompt

inside the detector, but in our “fake split SUSY” case, now Rg̃
12 ∼ 10−2 and we can take Rχ0

12 ∼ 1.

6For more discussion of this issue we refer the reader to [332]
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The gluino propagation length is increased by a factor of 104 and the vertex starts to become
displaced. Although the squarks are still very heavy, they could produce testable CP violating
FCNC effects in the Kaon system (εK).

8.6 Conclusions

In this third part, we introduced the flavour structure of the standard model of particle physics.
We reviewed briefly how things turn bad while going in a supersymmetric formulation when
looking at FCNC processes like the Kaon oscillation system. We saw that flavour physics
sets severe constraints on supersymmetric models of flavour. In models in which the scale of
mediation of supersymmetry breaking is similar or higher than the scale of flavour symmetry
breaking, fermion masses and mixing hierarchies are correlated with the flavour structure of
superpartners. In the MSSM constructing a fully successful flavour model of this type is difficult
and usually requires the simultaneous presence of several ingredients like abelian and non-
abelian symmetries. At first sight, flavour models with Dirac gauginos are simpler to build, due
to the flavour suppression argued in the literature in their R-symmetric pure Dirac limit, for
gluinos heavier than squarks. In this last part, we found that this suppression is only strong in
the near-degeneracy (mass insertion approximation) limit, whereas in most flavour models this
approximation is not valid.

We analyzed the simplest Dirac flavour models with abelian symmetries realising various
degrees of alignment of fermion and scalar mass matrices and for non-abelian symmetries re-
alising a natural supersymmetric spectrum with heavy first two generations. We found only
a moderate improvement in the flavour constraints over the MSSM case. We also showed in
an explicit example in section 8.4.2 that due to cancellations in the Majorana case, it is even
possible that a Dirac model is for some parts of the parameter space more constrained than its
MSSM cousin.

We also considered generalised Lagrangians with both Majorana and Dirac masses, by not
imposing an R-symmetry in the UV. We considered, in particular, the case in which the gluino
Majorana mass is very large compared to that of the chiral octet fermion and the Dirac mass
M � Mχ,mD. This led to the scenario dubbed “fake gluino” in which the light adjoint
fermions are not the N = 1 partners of the gauge fields, but the other fermions in the N = 2
gauge multiplets. In this case, couplings of the light “fake gluino” to quarks are suppressed
parametrically by the ratio mD/M . This leads to a potentially new exotic phenomenology in
which squarks can be light and accessible experimentally, while the light adjoint fermions can
be long-lived and generate displaced vertices or escape detection. Experimental discovery of a
squark and simultaneously of long-lived light gluinos would be spectacular evidence of such a
spectrum. An extreme case with heavy gluinos and light adjoint fermions is obtained by pushing
a Majorana gluino mass and squark masses to an intermediate scale M ∼ 1012 GeV, which leads
to good gauge coupling unification. The outcome is similar in spirit to split supersymmetry, with
however light adjoint fermion couplings to quarks and (for electroweakinos) to higgs/higgsino
which are highly suppressed compared to split supersymmetry.



9 Conclusion

We have gone through this work along the timeline of the Universe History focusing on three
major topics that are the Inflationary period, the dark matter relic density production and
detection, and finally the question of flavor changing constraints on low energy supersymmetric
theories.

We studied in particular the intimate link that shows up between the breaking of super-
symmetry in the Minkowski vacuum and the successful achievement of a large field inflation
scenario. We saw that combining these two concepts in a single supergravity model imposes
bounds on the gravitino mass depending strongly on the kind of model – with or without sta-
bilizer – used to produce effective chaotic inflation. Furthermore we saw that in some cases
supersymmetry breaking non decoupling effects of integrating out heavy fields can be required
to be the major source of energy for driving inflation during 60 e-folds.

Letting aside supersymmetric theories for a while we investigated the possibility that dark
matter could interact with our visible sector through the exchange of a mediator particle. The
latter mediator has been imagined to couple to the Standard Model particles through higher
dimensional effective operators. We considered the case of a Z ′ interacting through dimension
six operators to the strong SU(3) sector, as well as an axion like particle interacting with
the photons. The work released showed the possibility to include relatively light mediators,
although only satisfying direct and indirect detection constraints thanks to the use of non
renormalizable – and hence suppressed by a large energy scale – operators. In order to explain
with our models the presence of the recently detected 3.5 keV line, we made in addition a
prediction for the existence of an axion like particle with a mass of order m ∼ MeV, which may
be detected in the next generations axion like particle detection experiments.

Finally we explored, back into supersymmetric theories how the presence of Dirac Gauginos
could either reinforce or relax constraints coming from flavor changing neutral currents on the
minimal supersymmetric standard model. We saw that going beyond the naive assumption of
nearly degenerate squark masses can lead to even more restrictive constraints on the model.
We defined in the case of heavy Majorana mass compared to the Dirac one, the concept of fake
gluino, allowing experimentally accessible squarks and long-lived light gluinos which could lead
to displaced vertices detectable in future collider experiments.

Although dealing with various themes, this thesis encompasses fundamental questions of
both cosmology and particle physics beyond the Standard Model. Indeed a better understand-
ing of the early times of the Universe requires a strong knowledge on the particle content of
our world, especially in order to interpret properly the observations we are able to have access
to on earth experiments. The models exposed propose original scenarios among which a few
experimental signatures could be detected in the future years, learning us hopefully better what
our Universe is actually truly made of.
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[160] G. A. Gómez-Vargas, M. A. Sánchez-Conde, J.-H. Huh, M. Peiró, F. Prada, et al.,
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