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Abstract

The discovery of a bosonic resonance at the Large Hadron Collider (LHC)
has forced the scientific community to take the theory for electroweak sym-
metry breaking including a Higgs scalar seriously, if not to accept it all to-
gether. The Higgs boson is now incorporated in the standard model (SM),
and in this work we will mainly focus on the behavior of this or similar theo-
ries at small length scales.

Besides from the inherent hierarchy problem in scalar theories, these
also may suffer from other complications. The isolated scalar ¢* theory may
prove to be "trivial" due a the positive sign of its beta function, while the
incorporation of Yukawa couplings threaten to drive the coupling negative
and invoke instability of the electroweak vacuum. One should either make
sure that the theory stays consistent at least until the Planck scale, where
unknown gravitational effects should appear, or abandon the idea of fun-
damental scalars. These two possibilities are the motivation for the results
presented here.

In this thesis we investigate the ultra violet (UV) behavior for the stan-
dard model and a set of extensions with respect to the issues mentioned
above. We elucidate on previously unknown relations between the renor-
malization group (RG) equations of the standard model stemming from the
required abelian nature of the Weyl anomaly, and propose a new lowest or-
der calculation that satisfies the consistency conditions. We investigate the
issue of instability in certain extensions of the standard model, and find that
the electroweak vacuum may be stable in these extension where the param-
eters for the dark matter sector are constrained. Additionally we find that the
extensions, in the same way as the standard model, are consistent with the
idea of asymptotic safety, where the quartic scalar coupling vanishes at the
Planck scale.

By instead allowing a divergence of the scalar coupling, one may inter-
pret the gauge-Yukawa theory as being the low-energy description of a the-
ory of fermions with a four-fermion interaction. We demonstrate that a large
class of gauge-Yukawa theories may be equivalent to a theory of fermions
and composite scalars, and determine the allowed parameter space for the
gauge-Yukawa theory. We finally show that the Higgs boson may arise from
such a theory as composite of neutrinos provided extra scalars are present.
We show that the observed vacuum expectation value (VEV) and mass for
the Higgs field arise naturally in specific extensions utilizing the Coleman-
Weinberg mechanism while including viable dark matter candidates.
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Sammenfatning

Opdagelsen af en bosonlignende resonans ved eksperimenterne ved
partikelacceleratoren "Large Hadron Collider" (LHC) har tvunget det viden-
skabelige miljo til enten at tage teorien for det elektrosvage symmetribrud
via en Higgs-boson serigst eller blot direkte acceptere den. Higgs-bosonen
er nu indfert i standardmodellen (SM), og i det folgende vil vi hovedsageligt
fokusere pa denne og lignende teoriers karakteristik ved smé leengdeskalaer.

Udover det, til teorier med skalarpartikler, tilhorende hierarkiproblem,
kan teorierne ogsa indeholde yderligere komplikationer. Isoleret set kan
en skalar ¢*-teori vise sig at vere "triviel" grundet betafunktionen posi-
tive fortegn, hvorimod tilfejelse af Yukawakoblinger truer med at drive den
kvartiske kobling til negative veerdier og medfore ustabilitet af den elektros-
vage grundtilstand. Enten ber teorien forblive konsistent ned til Planck-
skalaen, hvor ukendte gravitationseffekter ber dukke op, eller ogsd ma man
opgive klassen af teorier med fundamentale skalarpartikler til at beskrive na-
turen. Disse to muligheder er motivationen for de resultater, som her vil blive
preesenteret.

I denne afhandling underseges den ultraviolette (UV) opforsel af stan-
dardmodellen og en maengde udvidelser af denne med henblik pa de nevnte
problemer. Vi belyser relationer imellem ligningerne for renormeringsgrup-
pen(RG) for standardmodellen, som tidligere var ukendte, stammende fra
den abelske egenskab af Weyl-anomalien og foresldr en ny forsteordens
beregning, som overholder de tilherende konsistenskrav. Vi underseger
problemet vedrerende ustabilitet i visse udvidelser af standardmodellen og
finder at den elektrosvage grundtilstand kan veere stabilt i disse udvidelser,
hvilket seetter begreensninger for de tilherende nye parametre og de nye par-
tikler i modellen herunder en kandidat til merkt stof. Ydermere finder vi
at denne klasse af udvidelser, ligesom standardmodellen, kan vere konsis-
tente med konceptet "asymptotisk sikkerhed", hvor den kvartiske kobling
ved Planckskalaen er nul.

Hvis man istedet tillader en divergens af den kvartiske kobling, kan den
tilherende gauge-Yukawa teori ses som verende en beskrivelse af en teori
bestdende af fermioner med en firefermion-kobling ved store skalaer. Vi
demonstrerer at en betydelig klasse af gauge-Yukawa-teorier kan veere aek-
vivalente til teorier med fermioner og sammensatte skalarpartikler, og ko-
rtlaegger de tilladte parameterrum for gauge-Yukawa-teorien. Slutteligt viser
vi at den observerede vakuumforventningsveerdi (VEV) og masse for Higgs-
feltet fremkommer naturligt i specifikke udvidelser af standardmodellen hvor
Coleman-Weinberg-mekanismen er anvarlig for symmetribruddet og som
indeholder kandidater til morkt stof.
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CHAPTER 1

INTRODUCTION: A GAME OF INFINITIES

Trying to grasp the structure of our physical world at the length scales small enough
to be beyond human perception has been a primary goal of many physicists over
the last several centuries. The development of the theory of electromagnetism and
quantum mechanics has given us increasingly impressive insights into the Nature
of small scale phenomena. In order to incorporate quantum mechanics and spe-
cial relativity into the same theory, quantum field theory was invented, and with
it a wonderfully intuitive (though somewhat simplified) picture was invented to
describe processes at the smallest scales: The Feynman diagrams. With Feynman
diagrams, any process can be described with diagrams that intuitively visualize
the interactions while giving a unambiguous recipe for calculating physical ob-
servables connected to the process. In Fig. 1.1 we show a diagram corresponding
to the interaction between two fermions through the electromagnetic force. The
main flaw in such pictures is that the spacial visualization in the diagram does not
correspond to actual separation, but the horizontal axis should be though of as
being the time evolution of the system, while any particles that only propagate in-
ternally in the diagram do not necessarily have the same properties as they would
in a process where they were part of either the initial or final state of the system.

Figure 1.1: The electromagnetic interaction between two fermions represented
via a Feynman diagram. The horizontal axis should be thought of as representing
difference in time rather than in space.

The only ingredients one has to know to calculate the contribution to the cross
section coming from a specific diagram are the propagators of the diagram and
the vertices that connect these propagators. These quantities are defined in the



CHAPTER 1. INTRODUCTION: A GAME OF INFINITIES

underlying quantum field theory, and once they are known, the calculation of the
amplitude of a diagram follows directly from the expressions connected to them.

In the quantum field theory for a single scalar field ¢ governed by the La-
grangian density

_1 2 1 2 Ao g
L =5 (0uf)" —5mod” 74", (L.1)

the propagation of a scalar particle is given by

........... = (1.2)

and is related to the amplitude for a particle to propagate from x to y in a free
theory (where A = 0) through the Fourier transform:

i

> —emiP (=) (1.3)
me + 1€

OITGL0P(1)10) f p

X =
PPy ) 2=
As for the interaction between scalar particles, the vertex is parametrized even
simpler:

S =—ildo (1.4)

Combining these ingredients into a diagram that corresponds to a given physical
process yields an unambiguous result for the contribution from that diagram.

The picture is intuitive and straightforward at this level. The remainder of this
chapter will deal with a specific problem that arises in this picture: To compute a
cross section or correlation function, we should sum the contributions of all (con-
nected and amputated) diagrams that correspond to the quantity in question. In
the scalar field theory of (1.1) some of the extra diagrams that need to be taken
into account will contain loops which will include extra factors of the interaction
Ao. In this case, we might argue that A is small, such that only the lowest order di-
agrams containing no loops should be relevant. As it turns out, the loop diagrams
carry integrals over the momentum going around the loop which often are diver-
gent quantities. That the corrections coming from diagrams of higher order in a
small expansion parameter seem to be infinite naturally led to some frustration
in the particle physics community; it seemed that the intuitive picture described
above had fatal flaws which might invalidate the procedure all together. Luckily
solutions were found for the problem, and in modern particle physics the juggling
of infinities in divergent diagrams has been turned into a valuable tool through
the process of renormalization, which forms the basis of most of the results pre-
sented in this thesis. In this section we will follow the logic of renormalization as
presented in [6].



1.1. RENORMALIZATION IN PARTICLE PHYSICS

1.1 RENORMALIZATION IN PARTICLE PHYSICS

When we allow for interactions, like the term proportional to Ay in (1.1), the Hamil-
tonian of the theory is changed, and so is the ground state of the theory. Instead of
the simple amplitude for propagation in (1.3), we consider the two-point Green’s
function,

QITG()P(YI), (1.5)

where we have exchanged the original ground state |0) for the ground state of the
interacting theory |[Q2). The physical interpretation of this expression is still the
amplitude for propagation between y and x, but the value changes due to the in-
teractions of the theory.

Specifically, the propagation between the two points can now take place in
several ways, and we define a corrected propagator:

(1.6)
A further analysis of the two point function reveals that, in the interacting theory,
its Fourier transform is given by

. i 7
fd4xe’p'x(Q| Tp(x)p(0)|Q) = m + terms regular at p> = m?.  (1.7)

Performing the same Fourier transform on (1.3) leads directly to the propagator
(1.2). Two things should be noted from the corrected result: First, m( has been
replaced by m thereby shifting the pole of the propagator, and second the residue
of the pole is Z in the interacting theory. We call Z the field renormalization, m
the bare mass, and m the physical mass of the ¢» boson. On the same note, we will
expect that the physical coupling constant A will differ from Ag. So far we have not
directly encountered any of the infinites mentioned in the beginning. They are
present in the shift between the physical mass and the bare mass and in Z, and we
shall see how to handle them shortly.

In order to recover the intuitive picture presented in the beginning, we will
have to renormalize the theory, which loosely put is to trade divergences with un-
observable shifts of the parameters in the theory. In order to recover the original
form of the propagator (1.2), we rescale the ¢ field:

p=2"2¢,. (1.8)

Defining the theory in terms of ¢, will then lead to the same residue for the pole
in the propagator as usual, although with a different pole.
After the rescaling, the Lagrangian has the form

1 1 A
L= EZ(augbr)z - EZm0<p2 - 4—"’Zz¢>§. (1.9)

3



CHAPTER 1. INTRODUCTION: A GAME OF INFINITIES

To define the theory in terms of the physical parameters we define
5,=2-1, Sp=moZ?-m?  83=MZ%-A. (1.10)

With this redefinition, the Lagrangian becomes
1 2 1 2 /1 4
Z= 2 (0uepr)” - Em‘Pr - Z‘Pr
1 o 1. 5 A
+ 552 (a,u(Pr) - §6m¢r - 4_!6)L¢r’ (1.11)

where the second line is normally called the counter terms of the theory. These
terms will contribute with new Feynman rules like the physical parameters, and
are what we use to cancel divergences that arise in any process, making the theory
well defined.

Since we have defacto introduced three new parameters in the Lagrangian
through (1.10), we should define them by relating them to some quantity in the
theory, to keep the number of free parameters constant. In ¢* theory, this may be
done through the diagrams’

(- and O

s N (1.12)

where the grey circles imply that all connected diagrams with the same external
legs have been summed to yield the total contribution. The defining conditions
are called renormalization conditions, and specify the value of the above diagrams
at some specific value of the external momenta in the diagrams. Different renor-
malization conditions may be chosen, and this fact is what may turn the diver-
gence cancellation into a tool rather than a problem, as we will see.

1.1.1 Aoneloop example

To exemplify the notions presented in the beginning of this section, we examine
the renormalization of ¢* theory at one loop order, to see where divergences may
arise, and how to eliminate them from physical predictions.

We start off by setting the renormalization conditions

i 2 2
—_—- --- = ———+ (termsregular at p° = m*);
O p? - m? 8 P

—il (ats=4m?,t=u=0.) (1.13)

Q

I The procedure is very similar for theories with fermions and vector bosons. We will stick to ¢*
theory so as to give the clearest picture of the logic of the renormalization procedure.

4



1.1. RENORMALIZATION IN PARTICLE PHYSICS

where the first condition defines both the mass and the residue of the propagator,
and the last defines the physical coupling.

We may now look at a specific amplitude, namely the two particle scattering
amplitude:

p2 Pa
N .
Ay
4 R4
N
IM(p1p2 — P3pa) = Q
4 \
b4 A
/7 AY
p1 ps3
N R4 RNt N ! TN \\ e
N 77 AN 7\ 4
= < + \ ! + 1=y + & +
S AN \‘w’/ s Ny ( A
e AN ,”, S /’ \ SO s AN

(1.14)

The first and last diagram displayed in the series have simple Feynman rules con-
nected to them (the latter related to the counterterm 6, from (1.11)), while the
loop diagram

\ p+k /

N By . 2 4 .

\‘/ Y :(—l/l) d*k 1 = —'/12"V 2 1.15
NN > ) et mE ks - ATV (L)
/, k \\

Utilizing the Mandelstam variables, we note that in this diagram p? = s, and for the
other two one loop diagrams, the same expression appears, but where s is replaced
by t and u. At one loop, the entire amplitude is then

il =—id+ (—iA2[IV(S)+iV (D) +iV(w)] - id, (1.16)

Our renormalization conditions tell us that at s = 4m?, u = ¢ = 0, the entire ampli-
tude must equal —i A, so we must have

81 =-A*[Vam?) +2V(0)]. (1.17)

The definition coming from the renormalization condition then defines our phys-
ical coupling and at the same time, makes sure that any divergences coming from
the terms on the right of (1.17) will be cancelled by our proper choice of the bare
parameters through 0.

Calculating the contribution V(p?), one finds that the integral diverges as ex-
pected. We may perform a dimensional regularization and calculate the result in
d space-time dimensions, which yields

lfl re-4 1

Vint)=-= 1.18
¥ @m2 [m2 - x(1-x)p A9

2 0 2]2—d/2
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CHAPTER 1. INTRODUCTION: A GAME OF INFINITIES

whereI'(z) = fg’o dxx“1e™*. The function I'(z) has polesat z=0,-1,-2,..., which
gives rise to the expected divergence when d = 4, but is finite for d = 4 — e with
€ <« 1. Thus, invoking a small shift from four dimensions, we can cancel the di-
vergent term by the counter term through (1.17), and only a finite momentum
dependent correction remains for the amplitude.

Having fixed the counter term 6y, we turn to the renormalization condition for
the propagator to determine 6 z and 6,,. To find the correct pole behavior of the
propagator, we must perform a sum over an infinite amount of diagrams, which
equals a geometric series. Defining the sum of all one-particle-irreducible inser-
tions into the propagator, i. e. all the diagram insertions with two external legs
that cannot be cut into two such diagrams by removing a single line, by

------- - _iMP(p?), (1.19)

we can find the full two point propagator by the sum

e ) e e ) IR (1 S (1) S

(1.20)

TP omE-ME(pY)

Requiring that the pole of this propagator is at p> = m? and that the residue is 1, is
equivalent to requiring

d
=0 and —— M?*(p?)]

M*(p*)| o e =0. (1.21)

p=m?

We can directly calculate M?(p?) to this one loop order, where the only possi-
ble insertions in the bare propagator is a one loop diagram and the counter term,
and find with dimensional regularisation

-
A Y
N

ir 1 ra-%H .,
=_?(4n)d/2 (m2)1-d/2 +1(p°6z =0 m)- (1.22)

Since only one term depends on p?, satisfying the conditions (1.21) is done simply
by setting
A 1 ra-%

0z=0 and 6, = T2 @am)di2 (m2yi-dr’

(1.23)
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1.2. RENORMALIZATION SCALES AND THE CALLAN-SYMANZIK EQUATION

Having thus fixed the physical parameters m and A, the theory is once again well
defined and the infinities lurking in the loop diagrams have been cancelled with
the proper counter terms. The infinities have only provided a shift between the
bare parameters of the theory, which are not accessible to experiments, and mea-
suring the coupling A and mass m in an experiment will fully define the link be-
tween theory and the corresponding physical system. As we saw, the renormaliza-
tion conditions were in this case slightly trivial to satisfy, since we could set § = 0.
Adding higher loop orders or adding a Yukawa interaction with a fermion would
however force both 6  and §,,, nonzero.

1.2 RENORMALIZATION SCALES AND THE CALLAN-SYMANZIK
EQUATION

Renormalization conditions, like the ones in (1.13), will make sure, that the di-
vergences in loop diagrams do not appear in the physical parameters for our the-
ory. We could however have chosen other similar renormalization conditions, that
would have accomplished the same thing. When taking the limit d — 4 (¢ — 0) in
an expression like (1.18), the I" function will produce terms like % +y+log(4m) +....
When enforcing the cancellation with the counter term, all of these terms will
be cancelled, but the only problematic term is the divergent % term. One could
chose another renormalization scheme, in which only this term is cancelled by the
counter term. This scheme is known as the minimal subtraction (MS) scheme.
A third possibility is to also cancel the y and log(47) terms and replace accom-
panying log(m?) by log(m?/M?) to ensure that the dimensionality of the final ex-
pression is correct. The mass parameter M is arbitrary and different values will
correspond to different renormalization scheme. This procedure is known as the
modified minimal subtraction (MS) scheme.

The freedom we have when picking renormalization schemes will be the key
to turning the renormalization procedure into a valuable tool for investigations of
quantum field theories. To see how, we will modify the renormalization conditions

7
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from the previous section to the form

------- =0 at p® = —M?
d 2 2

—iA at (p1 + p2)® = (p1+ p3)? = (p1 + pa)* = —M>.

@)

(1.24)

Here we have once again included an arbitrary scale M which we denote as the
renormalization scale (note also, that the theory is defined for the spacelike mo-
mentum pz = —M?). M is of course completely unphysical, but as will see, exam-
ining how the theory changes under variations of this scale will give us physical
insights to the theory at hand. Using such a scheme with such a renormalization
scale is particularly useful when the physical mass m = 0, since the scheme used
in (1.13) produces terms proportional to log(m). For simplicity, we will in the fol-
lowing assume exactly that m = 0.

As our starting point, we will thus take a theory with some bare coupling A as
well as some cutoff scale A (used to enforce a cutoff regularization). We could in
principle carry out the evaluation of the corrections to the bare parameters of the
theory (with the inherent cutoff dependence) and not carry out the renormaliza-
tion. As we have seen, however, it is practical to eliminate the cutoff dependence
through the renormalization conditions and thus the counter terms. Should we
wish so, we could reverse the operation from the knowledge of the renormaliza-
tion conditions, physical couplings, and counter terms to recover the original bare
theory. In this sense we could enforce different renormalization conditions for the
same theory, for example by using a different renormalization scale M’. The two
renormalized theories would then correspond to the same underlying bare theory.

By the same bare theory we mean the one with the same set of Green’s func-
tions

QITP(x1)P(x2)...p(xn)I2) (1.25)

given by the same functions of the bare parameter Ay and cutoff A. As we have
seen, we can remove the cutoff dependence by rescaling the fields and defining
renormalization conditions at some scale M. The Green’s functions are numeri-
cally the same up to a factor of the field strength renormalization Z:

(QUTP(x1)Pr (x2)... o (x) Q) = Z"HQITP(x1)P(x2) ... p(x) Q). (1.26)



1.2. RENORMALIZATION SCALES AND THE CALLAN-SYMANZIK EQUATION

The left hand side now depends on the physical coupling A and the renormaliza-
tion scale M. Had we used another set of conditions, we would have another scale
M’, another field strength rescaling Z’, and another physical coupling A’ (at this
point, it should be clear that the renormalized coupling is not really a physical
quantity either, since different renormalization conditions lead to different val-
ues.)
We denote by G™ (x1,...,Xx,) the connected n-point function after a renormal-
ization:
G (x1,..., %) = QTP (X)) Py (x2) ... o1 (X1) Q) connected- (1.27)

A small shift in the renormalization scale M will distort the relation to the bare
theory, but it should be possible to make a simultaneous shift of the field strength
and coupling constant to keep the bare theory corresponding to our renormalized
theory fixed. The infinitesimal transformation we would like to impose is then of
the form

M—-M+6M
A—A+06A
¢r— A+60;. (1.28)
Since the renormalized Green’s function is always related to the bare one with the

appropriate power of the field strength renormalization associated, this transfor-
mation will induce the rescaling

G™ — (1+ nénG™. (1.29)

We can then relate the change in G due to the shifts in A and M with this rescal-
ing through the relation

el oG
dG = oM
oM ° T Ton

A =nénG", (1.30)

We now define the dimensionless parameters

M M
= 250 y=-——
V=M

_ on, 1.31
oM n (1.31)

which makes us able to rewrite (1.30) via a multiplication of M/é M into
0 0
M— +B—+ny|G™ =o0. 1.32
o Par (1.2

This equation is known as the Callan-Symanzik equation. This equation relates
the shift of the different parameters in the to each other while the renormalization
scale is changed. It should be noted, that since we are working with a renormalized
theory, § and y are independent of the cutoff for the bare theory. Indeed they are
only functions of the values of the coupling constants of the given theory, which in
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this case is just A. The functions  and y will become the main focus for the later
chapters of this work, even though they at this point seem to be an unphysical
manifestation of the changes of the arbitrary renormalization scale.

To see the importance of the § and y, we will look for solutions to the Callan-
Symanzik equation, and we will begin with the one for the two point function,
G%( p), in the scalar theory described above. The two point function is then the
sum of all connected diagrams with two external legs and must carry dimension
(mass) "2, We can then express its dependence on the two scales p and M as fol-
lows

G (p) = #g(—pz/Mz). (1.33)

Given the way in which the Green’s function depends on the ratio between M and
p, we may trade one for the other in the Callan-Symanzik equation. Redefining
p to be the magnitude of the spacelike momentum p = (-p?)!/? we rewrite the
Callan-Symanzik equation for the two point function:

9 _ i+2_gy GP(p) =o0. (1.34)

op = 0A

The equation is now defined with respect to the physical scale (p), which is the
argument of the Green’s function.
The Callan-Symanzik equation for the two point function is solved by

!

| - p=p -
G?(p,1) = #@(A(p,l))'exp (2 f N dlog(p'/ M)y (A(p, )], (1.35)

where we have defined a new function A which solves

ml(m =), AM)=A. (1.36)

The function ¢(A(p, 1)) must be determined by computing G® (p) via a perturba-
tion series in A and matching the terms to an expansion of (1.35).

In (1.36) we have defined a new coupling constant, A, which can be viewed
as depending on the momentum defining the scale at which the 2-point function
is evaluated, instead of the arbitrary renormalization scale. We call this quantity
the running coupling constant, and we usually say that we define it at the scale M
with the renormalization group equation (1.36). By knowing the scale where the
coupling is defined, its value at that scale, and the expression for §, the coupling
is defined uniquely®.

To see the importance of this parameter, one can repeat the exercise above for
the four-point function G (p), which yields an expression similar to (1.35), where
we now have a factor @™ (A( p, A)) in front. To leading order in perturbation theory,

2]f there are more than one coupling in the theory, one trades the one differential equation for
a set of them, and uniqueness is in general not guaranteed.

10



1.3. THE STANDARD MODEL AT HIGH ENERGIES

we know that G® ( p)= —p—iﬁ, and by matching this to the first term in the expansion
of the full solution

!

_ p _
G(4)(P,/1)=%@(4)(/1(;9,/1)%6@(4 f dlog(p' /M)y (A(p,1))|,  (1.37)
M

it can be seen that the factor in front of the exponential is on the form
4W = —il+0(?). (1.38)

We see that the factors in front of the exponentials in (1.35) and (1.37) are func-
tions of the running coupling and indeed we see that by replacing the ordinary
coupling A with the running A at the appropriate energy scale we improve the re-
sults we would have gotten form an ordinary expansion in the coupling constants
using Feynman diagrams. The running coupling constant measures the effective
coupling constant modified by the change of scale between the one where the cou-
pling is defined and the one were the correlation function or amplitude is evalu-
ated.

The framework discussed here thus gives us information about the evolution
of the coupling constant when the scale of the system is changed. To obtain
the coupling constant at one scale, one needs only to measure the coupling at
some other scale and the renormalization group equation for that coupling, which
amounts to knowing the form of . The functions  and y can be obtained by cal-
culating the 2-point and 4-point functions to a given order in perturbation theory
like in the previous section. The dependence of the renormalization scale M will
then be introduced via the counter terms and the beta function, § ,can be found
through use of the Callan-Symanzik equation. Loosely speaking, the beta function
will contain the factors in front of the divergent loop diagrams, since these are the
ones that are cancelled through adjustment of the counter terms at the scale M.

The beta functions for a given theory are of great use, when one wishes to in-
vestigate how the theory evolves when the relevant scale is changed, as will be
evident from the following chapters. For low values of the coupling constant, such
that only one loop terms are relevant to the problem, the sign of the beta function
is of great importance. A negative sign thus signals the presence of asymptotic free-
dom, where the theory becomes free in the far UV, while a positive sign hints that
the theory becomes free in the infrared. A zero in the beta function is called a fixed
point, and signals scale independent behavior for the theory. In the next section,
we will see, that the first two situations are common in particle physics.

1.3 THE STANDARD MODEL AT HIGH ENERGIES

The list of results in high energy theory stemming from the knowledge of the beta
functions of a given theory is not a short one, and the remaining chapters of this
work will add a couple of points to that list. To appreciate the context of this work,
we will mention a few of the other results in the following. Of specific interest

11



CHAPTER 1. INTRODUCTION: A GAME OF INFINITIES

to us will be the results regarding the quartic coupling for the Higgs boson in the
standard model, which has been indirectly measured [7].

1.3.1 Asymptotic freedom

Perhaps the most renowned result in the framework of RG equations is the dis-
covery of asymptotic freedom in a large class of nonabelian gauge theories due
to Gross & Wilczek [8], and Politzer [9]. These authors found that Yang-Mills the-
ory, having a non-abelian symmetry group, had a negative one loop beta function.
Since the one loop terms in the beta function dominates for small couplings, this
meant that the theory had a UV stable fixed point at zero coupling. It was found
that even when fermions were added, this feature might persist, and specifically it
was there when the symmetry group was SU(3) and less than sixteen triplets were
added in the fundamental representation. Since this was exactly the proposed
theory for strong interactions, QCD, it was predicted that given a "small enough"
coupling constant for the strong interactions at some energy scale, the coupling
would run to zero when the energy was increased; QCD would be asymptotically
free. Thus perturbation theory should be applicable for QCD at high enough ener-
gies, while the coupling would grow stronger in the IR, and potentially lead to the
confinement of quarks due to some unknown mechanism.

1.3.2 The fate of the Higgs coupling

The behavior of a quartic coupling in scalar theories is the opposite, and in ¢*
theory given by (1.11), the beta function is given to one loop by

di 312

doxtoTiD - Bi= G (1.39)

Since the one loop term is positive, the coupling increases with the energy scale,
and indeed the solution to this equation is given by

) (1.40)

(A{%LA)Z
clearly not valid). While the divergence cannot be trusted, the form of the solu-
tion does put an upper bound on the energy scales where perturbation theory is
valid. If we wanted to extend the range of validity for perturbation theory to very
large energies, we would need to have very small initial values for the coupling. In
the limit where the range of validity goes to infinity, it is sometimes said that ¢*
theory suffers from triviality, since this requires A; — 0.

In the case of the standard model, where a scalar doublet with a similar ¢* in-
teraction is present, the picture is slightly different. The presence of Yukawa cou-
plings between the Higgs doublet and the fermion of the standard model together

which diverges when p = M - exp( ) (at which point perturbation theory is

12



1.3. THE STANDARD MODEL AT HIGH ENERGIES

with electroweak interactions for the Higgs doublet modifies the beta function for
the quartic coupling. Taking only the top Yukawa (y;) and electroweak (gi, g2)
couplings into account, the RG equation is given by

B [3(4y7 -3g5 —gDA -6y} + 5128, + (g7 +82)°1 +244%].  (L4D)

~ an?

Naturally, the coupling y;, g1, and g» have beta functions of their own, and the
entire system does not have a simple analytic solution like the one above. How-
ever, since the top coupling has long been known to be large compared to the
gauge couplings (even before its measurement, the non-discovery of the top quark
hinted towards a large coupling), some predictions could be made:

A: If the quartic coupling A was sufficiently small, the top coupling would dom-
inate the beta function and eventually drive the Higgs coupling to negative
values at high energies.

B: If the Higgs coupling was very large, then the triviality picture above might be
relevant once more.

These two asymptotic scenarios were both troublesome. The first would lead to a
possible instability of the electroweak vacuum, since the ¢* term in the potential
would become negative. The second would mean that perturbation theory would
break down at some higher energy scale.

Turning these considerations around, such that the quartic coupling neither
becomes negative or diverges between the electroweak scale and the Planck scale,
where gravitational effects are expected to appear, one can make a prediction for
the value of the scalar coupling at the weak scale and hence a prediction of the
Higgs boson mass [10]. As it turns out, the predicted range for the Higgs mass
is pretty narrow considering the large hierarchy between the two scales in the
problem. This is due to the appearance of an approximate fixed point when only
the quartic and top Yukawa couplings are considered, and the weaker gauge cou-
plings® are ignored, at which point the system of RG equations takes the form

B = = [12y74 -6y} +241%] (1.42)
~_1 |95
ﬁyt—(m)z 2 t]' (1.43)

Defining a new "coupling" A/y?, we can calculate its beta function and find

A
24| — +3—2—6

vz ¥

v

~ 4n?

) (1.44)

S

3As mentioned, the strong gauge coupling is small at large energies.
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CHAPTER 1. INTRODUCTION: A GAME OF INFINITIES

which has a fixed point such that §,,,» = 0 when

A
¥

1
- — = 0.44. (1.45)
16

DN | =
@l@
| o

This approximate fixed point for the ratio 1/ y% is attractive in the IR, such that any
initial ratio between the couplings at high energies will lead to something close
to the fixed point value, if the high energy scale is well separated from the elec-
troweak scale. The flow of the two couplings is shown in Fig. 1.2

0.5+

0.4+

01f J } / / /// \k\\\\
o — NN\

Figure 1.2: The renormalization group flow for the top Yukawa and quartic scalar
coupling towards the IR for g1, g2, g3 = 0. The red dashed line shows the fixed point
for the ratio A/ y?

Specifying conditions on the value of A at the Planck scale (Mp) leads to pre-
dictions for the mass of the Higgs particle (mp) (which had not been measured at
the time), and specifically translating the requirement of absolute stability of the
electroweak vacuum as well as validity of perturbation theory into the constraint
0 < A(Mp) < 6 leads to the somewhat narrow mass prediction [11]

126 GeV < mpy <173 GeV.

The lower bound of this window has been used as a prediction in theories, where
gravitational interactions above the Planck scale drives the Higgs couplings to very
small but positive values [12].

Of course, this prediction of the Higgs mass relied on the specific assumptions
of absolute stability and perturbative validity. Smaller Higgs masses were allowed,
but the requirement that the electroweak vacuum should be at least so long lived
that the universe could exist as it does, might require new physics to show up at
some energy scale below the Planck scale to alter the potential.

14



1.3. THE STANDARD MODEL AT HIGH ENERGIES

On the other hand, the possible divergence of the quartic Higgs could also be
seen as a sign of new physics. Specifically, divergent behavior is compatible with a
scenario where the Higgs is a composite particle, and it was thus expected that the
Yukawa coupling to the fermion constituents should diverge in a similar fashion.
Theories where the Higgs is a top quark condensate have been around for a while,
and though the earliest models predicted too high masses for both the Higgs and
the top quark [13], viable theories are still being considered [14].

While the Higgs mass is currently well established, its value poses many inter-
esting theoretical and phenomenological questions. In particular, the questions
of vacuum stability, relation to gravitational physics and compositeness are still
relevant today, and we will spend the remainder of this work discussing them.
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CHAPTER 2

RG FLOW AND VACUUM STABILITY IN THE
STANDARD MODEL

Any reasonably thorough analysis of a given quantum field theory must include
an analysis of the behavior induced by a change of the renormalization scale, i.e
the renormalization group flow. For some theories, such a change will not have
any effect on the theory, and we call these theories scale invariant field theories, a
subclass of the conformal field theories'. For the well known theories of QCD and
QED, however, a change of the RG scale induces a change in the coupling con-
stants of the theory; the coupling constants "run". The description of this running
of the coupling constants is an important tool in characterizing essential features
of a theory, and theories may be associated with different features like fixed points,
asymptotic freedom and -safety, triviality, and unification etc. based on this de-
scription.

Theories featuring only a single coupling constant, which we will take to be
dimensionless, offer a simple recipe for a perturbative expansion when calculating
the effects of the RG evolution; an expansion in the coupling constant itself. Taking
the coupling constant to be small enables a reliable expansion and we may say that
perturbation theory is valid for analysis. As we shall see in the following, theories
with multiple different coupling constants offer the use of a similar approach to
the lowest order, albeit not exactly the one conventionally considered.

2.1 THE WEYL ANOMALY

We shall take as a starting point a conformal field theory to which we will add
terms with dimensionless coupling constants that break the scale invariance such
that these couplings start running. The line of reasoning roughly follows the work

11n addition to the symmetry under a rescaling of the coordinates, a conformal symmetry also
implies invariance under the special conformal transformations containing a combination of trans-
lations and inversions
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of Osborn [15]. The Lagrangian for such a theory may be summarized by
L =%Lcrr+gi0', (2.1)

where @' are the operators that break the conformal symmetry, g; are the corre-
sponding dimensionless couplings, and Zcrr contains the kinetic terms for the
quantum fields of the theory. Since we only added dimensionless couplings to the
theory, it is still classically scale invariant.

Our aim will be to deduce a set of relations between the RG equations of the
theory, and we will therefore introduce a tool in the form of a nontrivial back-
ground metric y*¥ as well as space time dependence for the coupling constants:

rH =yH (),
8i = gi(x)-

Our next move will be to perform a local scale transformation signified by the pa-
rameter o (x), which transforms the metric as

yHY — @20y kY 2.2)

Just as we saw in the previous chapter, a change of the scale of the system could
be related to a rescaling of the couplings along with the anomalous dimensions
for the fields of the theory. We can thus "compensate” for the local change of the
metric by simultaneously changing the couplings

gi(p) — gie W), 2.3)

up to a number of terms for g; that vanish in flat space.
This transformation can be expressed via the variation of the generating func-
tional at the quantum level, which is defined by

W =log

f@@ e"fd4x5"] . 2.4)

This variation is usually referred to as the Weyl anomaly, and it quantifies the de-
viation from true scale invariance due to quantum effects as described by

ow 5; )
Y v ’6gl
=a(aE(y) +x'0,8:0,8;G )+6#0a)i61,g,~G“"+... (2.5)

AW = fd‘lxa(x) (ZYW

Here, GV = RHY — %YWR is the Einstein tensor, E = RFP9R,, o5 — 4RHV Ry, + R?
is the Euler density, §; is the beta functions for the coupling g;, and a, »*, and
x'J are functions of the couplings g;. Naturally, reverting to constant values for
g; and a trivial metric, would trivialize this equation somewhat?, but what we are

21t would reduce to the Callan-Symanzik equation.
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2.1. THE WEYL ANOMALY

interested in is mainly the structure to be found in the functions a, ', and )(if and
their relation to the beta functions. These functions are completely determined
by the theory and can be explicitly computed in a perturbative expansion in the
couplings g;.

An important feature of the group of Weyl transformations is that it is abelian,
such the order of two successive transformations is irrelevant:

AgAr W = A A W. (2.6)

When applying this property to the anomaly (2.5), a set of consistency conditions
arise, among which the one we will focus on is

0a ;0w dw! i
— =yt ———|Bj=-X"B;, (2.7)
0gi og; dgi)’ !
where we have defined a new function @ = a — ' ;. At the lowest order in pertur-
bation theory, the functions w’ turn out to be one forms [16], such that g—‘é’; - % =0

and at this order ¥/ = y%/. Regarding 7%/ as a metric in coupling constant space,
we may define a contravariant
p'=1"Bi, (2.8)

and we see that at the lowest order,
B =x"Bi, 2.9)

thus relating all beta functions to the function & through (2.7), and making the
changes in @ under scale transformations a gradient flow described by 8. Apply-
ing a second derivative to (2.7) yields the result central to this chapter:

FPa___op _ op_op
d0gidgj  0gj og; 0gi

(2.10)

Evidently, the abelian nature of the Weyl group is reflected through the deviation
from absolute scale invariance, namely the Weyl anomaly, in to a set of conditions
linking the "contravariant" beta functions to each other. These will henceforth
be referred to as the Weyl consistency conditions. Specifically, these conditions
are relations between cross terms in the beta functions, that is terms in 8’ con-
taining g; and vice versa. This set of relations will also be present in the limit
where the couplings are restored to constants and the metric goes becomes of the
Minkowski type, and is fundamentally present in any field theory which contains
only marginal couplings®.

In the following, we will use the standard model (in an MS scheme, where the
Higgs mass is ignored) as an example, and show that these relations are explicitly
fulfilled to lowest order.

3This statement can be generalized to theories where dimensional couplings are present, but
where the renormalization procedure is a mass independent one, as in MS.
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2.2 PERTURBATIVE COUNTING FOR GAUGE-YUKAWA THEORIES

To see the consequences of the relations described above, we now turn to the stan-
dard model. Ignoring the Higgs mass, i.e working with a renormalization scale that
is considerably larger than the Higgs mass, such that we may regard all SM parti-
cles to be massless will approximate the theory with the classically scale invariant
type described above and justify the use of the previous results. With this in mind,
the marginal operators and the corresponding couplings will arise from the inter-
action terms in the SM which counts gauge as well as Yukawa and scalar couplings.
To simplify the picture, we will restrict the space of coupling constants to be that of
the three gauge couplings (g1, g2, g3), the top Yukawa coupling (y;) and the quar-
tic self interaction coupling of the Higgs (1) while taking the rest to be zero. This
approximation is widely used for RG analysis of the SM in the UV [17].

Due to the nature of the perturbative corrections it is convenient to redefine
the coupling set {g;} as {a1, @y, a3, a;, ay}, where

8 g g :
= , =22 = , = = : 2.11
NEG? T @ BT “Tamr Y ame @

To specify, g1, 82,83 are the U(l)y, SU(2)y, and SU(3). gauge couplings respec-
tively. Similarly, we denote by B, B2, 83, B:, and 3, their respective beta functions,

defined as ; = pz%.

Atleading order in the couplings, the matrix y is diagonal, and reads [16]

1 3

= dia 2 4 (2.12)
X_ g gy yaty . .

Kol

2!
a; a

The most important property of this expression for the "metric" is that when cal-
culating the "contravariant” ﬁi which enter into the relation with a, (2.10), the
power of the coupling constants in the equations differ from the one in the regular
beta functions. One finds that any gauge 8 compared to the original . features
two powers fewer in ag; the Yukawa g’ is related to ; with one less power of a;
while B carries the same powers in a, as 8. The condition (2.10) therefore plays
an important role, since it relates coefficients of different beta functions at differ-
ent loop order. Explicitly, the lowest order consistency conditions that we obtain
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are

ER N
= (8ot
o 2 (o
a%l(i_i - a%t g—% +0(a?) (2.16)

g%@’z(fé_z - a%t % +6(a?) 2.17)
ia%,(% - a%t i_% +6(a?) (2.18)
oL g_% - = % +6(a?) (2.19)
%% g_% - 6%1 % +0(a?) (2.20
2% % _ % g—% +0(a?) 2.21)

What should be noted, as evident from the structure of (2.12), is that the relations
are not between terms in the beta function of the same loop order, but rather con-
nects terms of different loop orders for different types of couplings. Explicitly, one
can see from (2.13), (2.14), and (2.15), that the consistency conditions (2.10) relate
the mixed terms in the one loop beta function for the quartic coupling to the two
loop terms in the Yukawa beta function and to the three loop gauge beta functions.
A test of the relations above can readily be made from the knowledge of the beta
functions for the standard model, which we will take from Ref. [18-20], without
using the SU(5) normalization for the hypercharge:

9 2 9 2 2
Br= Ea2—5a1a2+ ai—-ajar+ g %192 +12a%
X . PRI o \ ,
Eq. (2.15) Eq. (2.14) Egs. (2.14&2.15) (2‘22a)

+6a,1at—3a§ .
————

Eq. (2.13)
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B:r=2a {904 a 1705 9a +3a% —6a,a) —6a°
t= t 1 t 3 21 1 8 2 1 ) ¢
Eq- @18 p 016 Eq a7~ Ea-@13)
of 202 40ng 131 225 (2.22b)
+18a3at+a3(——+ ) at(—a1+—a2)
3 9 32 32
+1187a2 3aa +19aa 23a2+ asa }
432 "1 g TR g TR T g e e
1 10n 1 95n 3 ng 22n
ﬁ1:2a§{—+ G (—+ G)a1+(—+—(’)a2+ G(X3
12 9 4 54 4 2 9
N————
Eq. (2.19) Eq. (2.20)

at+|—=—-— —aja3
1152 81 1458 64 72 162

(3401 83nc 11n2G) 2+(1375nG 242né) )

163 145ng 5225n%\ , (87 7ng 137n¢
+ — — a1 —

+
384 36 18 | 54 g1 |3 (2.22¢)

ng
—?(120534—01/1( a1+ -—ay— a,l)

N J
-

Eq. (2.14)

17 785 29 113 101n;

- ——ay——azt|—+— at] ,
12 64 6 32 16

~——

Eq. (2.16)

43 2n 1 ng 259 49n

S A (e ar+|———+ G a

12 3 4 6 12 6

[ —
Eq. (2.19)

(163 35ng 55né) 5 (187 13ng

+ nt(xt[

B2 = 2“3{

- —+—— | a1
1152 54 162 | ' |64 24)12

(2.22d)

2
667111 .\ 3206ng 415mg 2
3456 27 54 2

125ng  22n%
6 9

) 1 3 3
053 + a/l(é—lal + Zaz— Ea/l)

Eq. (2.15)
3 593 729 7 57 45n;
as S [] ’

+ntat[ -—— ——a1-—az——-az+ +—
4 192 64 2 32 16
—~—
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11 2ng 11ng ( 3811(;)
=203 - —+ 2+ —a;+ —ay+|-51+ a
Ps 3{ 2 3 36 2 3
—_——
Eq. (2.20) Eq. (2.21)
65n; 60512 n 77n
+(_ 4326_ 972G ai_fgalaﬁ 54Ga1a3
(2.22€)

2 2
241ng 1ln n 2857 5033ng 325n
+ ¢ G+ Cayas+ |- + G- G |a2
48 12 2 4 18 27
101 93 9 21n;
+n[(xt[ -1 ——a;——ax—-20az+ |-+ at] )
—~ 48 16 4 4
Eq. (2.18)

Here ng is the number of generations which we set to 3 and 7, is the number
of top quarks, i.e. 1. Note that although we considered the gauge beta functions
to three loops, we show only the two-loop top Yukawa and the one-loop Higgs
quartic beta functions. This, as we will demonstrate momentarily, leads to a Weyl
consistent expansion in the couplings up to @’(a?).

To help the reader immediately identify the terms in the beta functions that
must satisfy the Weyl consistency conditions given in Egs. (2.13-2.21), we have
color-coded the contributions. Furthermore, beneath each relevant term we have
noted the equation number of the Weyl consistency condition it refers to. Specifi-
cally, the red color is associated to Eq (2.13), green to Eq. (2.14), blue to Eq. (2.15),
cyan to Eq. (2.16), magenta to Eq. (2.17), orange to Eq. (2.18), purple to Eq. (2.19),
brown to Eq. (2.20), and finally gray to Eq. (2.21). Note that the term %al a» in By
enters into both Eq. (2.14) and Eq. (2.15).

This illustrates that the one-loop coefficients of the quartic §,-function is re-
lated to the two-loop coefficient of the Yukawa S;-function, and to the three-loop
beta functions of the electroweak gauge couplings. Restricting the computation
to these orders, namely adopting a 3-2-1 loop counting in the gauge, Yukawa and
quartic beta functions, corresponds to a truncation of the function a at order af.’.
For illustration, we show the terms in the function @ which contribute to the one-
loop quartic B, -function:
= ...+%a§a,1 — Qaiag + a%a,l — aial + 5“1“2(1/1 +16ai+12aiat — 12a§a,1 +...

N - _ - A
Eq. (2.15) Eq. (2.14) Egs. (2.14-2.15)

NI

Eq. (2.13)
(2.23)
In order to ensure that the Weyl anomaly, measuring the departure from scale
invariance, is correctly of abelian nature, we thus see that the for the lowest non-
trivial order calculation one needs the quartic beta functions calculated to one
loop, the Yukawa beta functions to two loops, and the gauge beta functions to
three loops ("3-2-1" ordering). In this setup then, a conventional calculation to
one loop in all couplings is not a complete lowest order calculation at all! In ad-
dition, in order to specify a consistent NLO counting, one needs to calculate cor-
rections to the lowest order "metric", and it is not certain that a consistent order
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expansion can be found. In any case, it can be said that under the "3-2-1" order-
ing, the requirement of an abelian Weyl anomaly is satisfied to lowest order, while
a conventional ordering leads to a departure from Weyl consistency.

2.3 VACUUM STABILITY REVIEWED

As we have described a new lowest order ordering which respects the Weyl con-
sistency conditions, we should investigate how big the effect from departure from
this ordering is. If departing from Weyl consistency means large changes in the
predictions for the theory in question, it becomes vital to understand which re-
sult should be trusted. For the standard model, the UV behavior of the theory has
been studied in great detail, and specifically the (in)stability of the Higgs vacuum
has been questioned.

The analysis of the vacuum stability requires the knowledge of the effective
potential of the model at hand. The standard model effective potential is known
up to two loops [21]. Its explicit form is given in the appendix of Ref. [17,21]. For
large field values ¢ > v = 246 GeV, the potential is very well approximated by its
RG-improved tree-level expression,

Vil = #& . (2.24)

with u = @(¢p). Therefore if one is simply interested in the condition of absolute
stability of the potential, it is possible to study the RG evolution of A and determine
the scale A < My, with Mj,; the Planck scale, above which the coupling is negative.

We now calculate the RG flow as the renormalization scale changes from the
electroweak scale to the Planck scale. We show the evolution of the Higgs quartic
coupling A in three cases:

(1-1-1) The conventional leading order result, where all beta functions are calcu-
lated to one loop.

(3-2-1) The lowest order calculation respecting the Weyl consistency conditions,
using the three loop gauge beta functions, the two loop top Yukawa beta
function, and the one loop quartic beta function.

(3-3-3) The conventional "NNLO" calculation using three loop beta functions for
all couplings.

The resulting evolutions are shown in Fig. 2.1 for the central values of the Higgs
and top mass, and for the value of the top mass which results in A = 0 at the Planck
scale.

Evidently, there is a large difference when upgrading from the conventional
lowest order (1-1-1) to the Weyl consistent lowest order (3-2-1), which gives A =
10® GeV and A = 10! GeV, respectively, for the central value top mass. Note that
this is despite the fact, that the beta function for the quartic coupling is identical
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in the two orderings. It is harder to draw conclusions when comparing to the full
three loop analysis (3-3-3). Clearly the two methods yield approximately the same
result for the running of the quartic coupling, even though the quartic beta func-
tion for the latter has a considerably larger amount of terms. This feature may be
due to large cancellations in the higher order terms for the quartic coupling, which
has already been pointed out by the authors of [22]. This tells us that the influence
of the extra loops in the gauge and top Yukawa beta functions is greater than the
higher order terms of the quartic itself, even on the quartic evolution.

However, an accurate analysis of the potential has to take into account the full
structure of the Higgs potential. As was shown in [23, 24], one can always define
an effective coupling A such that for ¢ > v the effective potential assumes the
form

Veff = ———=¢p* . (2.25)

The explicit expression for Agg, up to two-loop order, can be found in [17, 21].
Within the 3-2-1 counting scheme, we have to take into account A only to one-
loop order, which is consistent with the one-loop running of the quartic coupling.
On the other hand for the 3-3-3 scheme we keep the full two-loop expression. The
direct comparison between the running of the effective quartic couplings in the
two schemes is shown in Fig. 2.2. We note a pattern very similar to the one for
A given in Fig. 2.1. The difference is, however, that the scale where A crosses
zero is roughly one order of magnitude larger, A =~ 10!!GeV for the 3-3-3 and 3-2-1
orderings with a central top mass.

In addition to the question of total stability addressed above, we consider the
possibility of a metastable vacuum state, from which a decay can in principle oc-
cur via tunnelling. The key to the validity of such a description is the expected
lifetime of such a state. If the system can be expected to stay in the metastable
state for a period longer than the current age of the universe, then this description
does not encounter any immediate tension with reality. We invoke standard ap-
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Figure 2.1: The RG evolution of the quartic Higgs coupling in different orderings,
where the Higgs mass is set at its central value My = 125.7 GeV and the top mass
issetto My =173.5(171.261) GeV to the left(right).
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Figure 2.2: The RG evolution of the quartic Higgs coupling in different orderings,
where the Higgs mass is set at its central value My = 125.7 GeV and the top mass
isset to M; =173.5(171.27) GeV to the left(right).

proximations [25] for the metastability of such a vacuum, which require that the
approximated probability of the false vacuum decaying within the lifetime of the
universe is less than one. This can be expressed mathematically as

87%/3

AP > = oeioTyer ial

(2.26)

where Ty is the age of the universe, yf is the Euler-Mascheroni constant and the
field value ¢ plays the role of the renormalization scale, so the equation must be
valid for all scales (at least up to the Planck scale). We invoke this division between
the metastable and unstable vacuum state, and compare the 3-3-3 results to the
3-2-1 as a function of the top and Higgs mass in Fig. 2.3

In addition to the vacuum stability analysis, we consider the case where the
electroweak vacuum is the true ground state, but an unstable minimum exists at
higher values of the Higgs field. The condition for such a second vacuum close to
the point when A vanishes is the simultaneous vanishing of Begs = d e/ d1n ¢ on
the new minimum. Typically these two conditions are met by lowering the value of
the top mass. To verify this possibility we show in the right panels of Figs. 2.1 and
2.2, where we adopt a lower value of the top mass, i.e. M; =171.27 GeV. It is clear
from the picture, that for this value of the top mass and within the 3-3-3 counting
scheme, the conditions for the existence of a second vacuum, degenerate in en-
ergy with the electroweak one, are met. Indeed, in the right panel of Fig. 2.2 we
observe that A22? crosses zero at A =~ 10'? GeV with a near zero slope, i.e. s = 0.
However, within the 3-2-1 counting scheme, the situation differs as /12%1 crosses
zero about three orders of magnitude earlier, with non-vanishing B¢, for the same
value of the top mass. We have to lower the top mass to circa M; = 171.05 GeV in
this Weyl consistent scheme to accommodate the emergence of a degenerate min-
imum, giving a deviation of the order 20 from the central value of the top mass.
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Figure 2.3: Standard model stability analysis based on the effective standard
model Higgs quartic coupling. The red region indicates instability, the yellow
metastability and the green absolute stability following the 3-2-1 counting. For
comparison, the black lines indicate the bounds from the 3-3-3 counting. The
point with error bars shows the experimental values of the top [26] and Higgs [7]
masses. The red dashed lines show the value in GeV at which Ag%fl Crosses zero.

2.4 IMPACT FROM RE-ORDERING

As is evident from the previous section, the results on the question of absolute sta-
bility of the standard model vacuum state is only altered slightly when switching
from the 3-3-3 ordering to the 3-2-1 ordering, and as such does not change the
conclusion. For the question of metastability, the differences are also small, but it
should be noted that the difference might become crucial once the uncertainties
on the Higgs and top masses are reduced, and in this case the nature of the con-
clusion might depend on the chosen ordering. The same is true for the question
regarding the possibility of and unstable vacuum around the Planck scale.

Even though the conclusions in the phenomenological example displayed here
does not seem be very sensitive to whether the 3-2-1 or 3-3-3 ordering is used, we
did see a large effect when converting from the conventional 1-1-1 leading order
result to the 3-2-1 leading Weyl consistent ordering. The exact origin for this ef-
fect cannot with certainty be attributed to the Weyl consistency, but it certainly
does beg the question whether a conventional "L-L-L" type of ordering which is
bounded in the counting of 7is is as consistent as we have taken it to be. Perhaps
the additional structure in the RG equations given by the Weyl consistency condi-
tions will become the key the precision.
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CHAPTER 3

STABILITY BY EXTENSION AND GRAVITY

While the instability in the Higgs potential of the standard model as described
above is not directly inconsistent with the low energy vacuum state which our part
of the universe seem to be in, it might lead to inconsistencies in the cosmological
picture describing the earliest period for the universe [27,28]. The presence of an
instability in the Higgs potential coupled with fluctuations of the Higgs field value
due to inflation could thus lead to bubbles where the Higgs field is at its true min-
imum, which would fill most of the universe.

The main assumption made in the previous chapter, however, is the absence
of new physics between the electroweak scale and the Planck scale. Since many
questions are left unanswered by the standard model, even though there is very
little tension with particle experiments, physics at higher energy scale are often
invoked to offer explanations for such questions. Specifically, the standard model
does not offer any candidates for dark matter (DM), and must as such be extended
in some way to enable a proper description of the astronomical and cosmological
observations that point to the existence of such. These extensions may lead to
different conclusions regarding the vacuum stability question depending on the
nature of the new physics.

The low value of the quartic Higgs coupling at large energies has also been pro-
posed as consequence of gravitational interactions at transplanckian energies. In
the following we investigate whether vacuum stability may be restored with the
introduction of dark matter and the effects on the possible connection to gravita-
tional dynamics.

3.1 STABLE DARK MATTER EXTENSIONS OF THE STANDARD MODEL

We investigate dark matter motivated extensions [29, 30] of the SM, where dark
matter is magnetically interacting. Here, for the first time we investigate their pos-
sible simultaneous ability to save the electroweak vacuum from being metastable,
provide a dark matter candidate, and their compatibility with the asymptotically
safe gravity framework [12,31].
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CHAPTER 3. STABILITY BY EXTENSION AND GRAVITY

The new sector consists of a vectorlike heavy electron (E), a complex heavy
scalar electron (S) and a SM singlet Dirac fermion ()). The associated renormaliz-
able Lagrangian is

£ = $5M+)Zi(37(—mx)Z)(+EilDE—mEEE—(SE)(yX+h.C.)
+D,S'DFS—m2S'S— AgsH HS'S - A5(S79)?, 3.1)

where H is the SM Higgs doublet and D* = 0* —ig; QpB*, with g; the hypercharge
coupling and Qp denoting the hypercharge of E and S. We assume the new cou-
plings yy, Ays and As to be real and the bare mass squared of the S field, mg, to be
positive so that electroweak symmetry breaks via the Higgs doublet. The interac-
tions among y, our potential magnetic dark matter candidate, and the SM fields
occur via loop-induced processes involving the SEyy-operator. Only the scalar
field S feels the Higgs directly. This is true provided we do not mix the new elec-
tron with the SM leptons via generalized Yukawa interactions. Due to this property
and the requirement of the renormalizability of the theory, the S sector is a portal
sector and can be probed directly using processes involving the Higgs.

The phenomenological signatures of this model were studied in Ref. [29],
where it was constructed in the search for a theory that is able to alleviate the
tension between the different direct-detection dark matter searches [32-35].

This model, without the explicit mass parameters, was also recently consid-
ered as a perturbatively natural conformal extension of the SM [36], where elec-
troweak symmetry breaking is generated via the Coleman-Weinberg mechanism
without any quadratic divergences to the perturbative order considered. This sce-
nario, in fact, predicts the mass of S to be around mg = 383 GeV, close to the bench-
mark value used in [29].

A more detailed analysis of the dark matter properties and constraints of these
theories appeared in [30]. Here it was shown that the basic model is constrained
dominantly by direct detection experiments and its parameter space can be nearly
entirely covered by up-coming ton-scale direct detection experiments. Adding the
vacuum stability analysis and the interplay with gravitational interactions allows
us to get one step closer to a more complete extension of the SM.

3.2 RG FLOW ANALYSIS

To study the vacuum stability and possible compatibility with the asymptotically
safe gravity scenario under the influence of the new dark matter interactions, we
turn to the RG equations for the couplings of the theory. The relevant couplings
to consider are assumed to be: The gauge couplings g1, g2, and gs, associated to
the U(1), SU(2) and SU(3) gauge symmetry respectively, as well as the top Yukawa
coupling y;, the Yukawa coupling of the dark sector y,, and the three quartic cou-
plings /1H, /1HS» and /13.
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Without gravitational corrections, i.e. in the low-energy region (as compared
to the Planck scale), their respective beta functions are given to one loop order by:

_ 1 41 2) 3 B 19 , _ 7 5
ﬁgl - (47.[)2 (_ + —QD) 8 ﬁgz - _967[2 g ﬁgs = _ng , (3.2
1 19 5 17 5 9 5 2
By, = @ |2V (8t (82 +8&Ie | (3.3)
1
ﬁ)’x (4n )2 y)((yx QDg1 (3.4)
ﬂ/lH (47 )2 [3(4yt 3g2_g1)/llH_6y?+%[2gg+(gl+g2)2]+24/12 +/1 ]
(3.5)
Brus = @n? [ (4y7-385 - &5 +8/1H)/1Hs+(4yx 6Q% g% +81s+4Ams)Ans +3Q5g1 |,
(3.6)
brs=Gx )2 [27L25+60Dg1 ~12Q% g% As +207A% +8)2As — 4yt | , (3.7)

where Qp is the hypercharge of the E and S fields.

Perturbative values of the couplings are within the phenomenological con-
straints presented for the theory in [29], and therefore the one loop beta functions
should be applicable around the Fermi scale. Admittedly, the use of only one loop
beta functions not in line with the logic employed in the previous chapter, and
we should therefore anticipate that some corrections may present themselves if a
Weyl consistent first order calculation would be performed where one must take
into account the three loop beta functions for the gauge couplings and the two
loop beta functions for the Yukawa couplings. We regard the present analysis to
be no more than a good qualitative estimate of the dynamics of the theory, espe-
cially so if the couplings remain small along the RG flow. We will assume, that the
DM candidate y has a mass around m, ~ 10 GeV, and that the mass of the scalar
and vector like electron have masses mg ~ mg ~ 500 GeV.

Due to the decoupling theorem, the SM couplings will run as in the SM, until
the mass scale mg of the new scalar S (and electron E) is reached. To lowest or-
der in perturbation theory, there is no threshold effects on the couplings at this
scale, since the vacuum expectation value of S is at the origin. Beyond the mg
scale the running couplings are influenced by the new sector. In particular, at one
loop, the beta function for the U(1) gauge coupling, g1, is modified since the new
scalar S appears in the loop corrections to the g; coupling, and the beta function
for the Higgs self-coupling Ay receives corrections from the portal coupling, A gs.
Defining values of As, Aps and y, at the mg scale as well as choosing a value for
the hypercharge Qp, will then uniquely dictate the evolution of the theory, at least
until gravitational corrections should be taken into account.

In order to constrain the parameter space of the theory, we will look for fixed
point structures in the new sector. Upon inspection of (3.2) and (3.4), we see that
the system of g; and y, can be considered in isolation, and as in the case of the
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(AH, y:) system described in Chapter 1 we find that the ratio % has an approximate
r = —_—

IR fixed point, which reads:
= =8 +302. (3.8)
811ir

Assuming that y, reaches small values in the IR of order g; (at the mg scale), we
can expect that the ratio of these couplings in the IR is close to this value. We
impose this assumption in our analysis to determine y, (ms) from g; (ms).

Moving on to the beta function for A, we see that upon replacing g; via (3.8),
it only depends on the couplings As, yy, and Ags. If we assume small values for
the Ags coupling (Ags < y)zc), then the system of the A5 and y, couplings can be
considered separate from the rest of the theory to this order. Reminiscent of the
situation for the (Ay, y;) system in the standard model, we find an approximate
fixed point, after defining x = (Qp/ r)2, in the IR:

As 3k—1 V81—-6x—111«k2

= oA , 3.9
20 + 20 +0(Ags) (3.9)

A
where we explicitly remind ourselves that nonzero values of Ays at low energies
will lead to corrections to this estimate. Interestingly, insertion of (3.8), such that
the leading estimate on the ratio only depends on Qp ensures that the ratio is
always between 0.32 and 0.42 regardless of the value of Qp!

All that is left in order to perform a stability analysis is the choice of the values
of the parameters Ags(ms) and Qp, with which we will determine the values of
¥y (ms) from g (ms) and in turn Ag(ms) from y, (ms) together with the choice for
Ags(mg) by assuming a constant value for A g for the calculation (3.9) (Since Ags
enters with a positive sign in (3.7), nonzero values for the portal coupling will lead
to a decrease in the predicted IR value for Ag). With this procedure in mind, we
vary A gs(msg) for different values of Qp to determine the minimal value needed to
make A g positive between the Fermi and Planck scale, a sign for absolute stability
of the Higgs potential.

For Qp =1 we deduce from Eq. (3.8) and (3.9) that y, (ms) =~ 0.69, and As(ms) ~ 0.20 up
to corrections from A ;5. The smallest value for A g that ensures stability of
the electroweak vacuum is A gs(mgs) > 0.26. A nonzero value of A gg leads, in
the full analysis, to a slightly smaller Ag(ms) <0.19. The running couplings
are shown in Figure 3.1. The quartic couplings run to large values around the
Planck scale. Thus the lower boundary on the coupling A s corresponds to
a Landau pole close to the Planck scale. For higher values of A1 s the Landau
pole is shifted toward lower energy scales.

For Qp =2 we have y,(ms) =~ 1.03 and the lower boundary on Ags is slightly lowered;
Ags(mg) > 0.2 with Ag(mg) < 0.41. The Landau pole, however, is also low-
ered to around the value 10'° GeV. For even higher values of Qp this trend
continues and the value of y, (ms) quickly becomes non-perturbative.
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Figure 3.1: RG evolution of the couplings, where Qp =1, mg = 500 GeV, Ags(mg) =
0.26, yy(mg) = 0.69 and As(ms) = 0.19. The Higgs self coupling is stabilized due to
the portal coupling A s, which is here at its lower bound to ensure stability.

For Qp ~ 0 i.e. for millicharged dark scalar and electron, the trend goes in the oppo-
site direction; the lower bound becomes Aps > 0.28 with y, (ms) = 0.53 and
As(mg) <0.11 and the Landau pole moves beyond the Planck scale.

For the case Qp = 1 we make an elaborate study of the Higgs potential stability
in the phase space of couplings. The electroweak vacuum is not stable if the Higgs
self-coupling Ay runs to negative values. We can, however, distinguish metasta-
bility from instability. This is done by considering the probability of tunneling to
the true vacuum during the evolution of the Universe. If the probability is bigger
than some value p, we say that the electroweak vacuum is unstable. Otherwise it
is metastable, and thus physical (see Refs. [25,37,38] for details). In our study, we
choose the value p = 0.1, which means that most of the universe (more precisely
e P ~90%) is in the metastable phase at current times.

In Fig. 3.2 we show the results of this analysis as a function of the top-quark
mass M; and Ags(ms), where we kept fixed all other parameters fixed to their
central experimental value, in particular my = 125.9 GeV, as given by the Parti-
cle Data Group [26]. Varying mpy within the experimental uncertainty does not
generate any numerically significant difference in the figure.

So far we concentrated on the stability analysis. By combining it with the re-
quest of a viable dark matter candidate [30], typically needing large values of A s
and y, at the electroweak scale, we conclude that the model is able to solve the
dark matter problem while remaining stable. However, the scalar couplings are
expected to generate a Landau pole before reaching the Planck scale. Possible in-
terpretations coming from this feature will be discussed in Chapters 4 and 5.

3.3 CROSSING THE GRAVITY SCALE

At this stage we will make a leap beyond what is usually attempted in phenomeno-
logical studies of DM models and investigate possible consequences from extend-
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Figure 3.2: The Higgs potential stability as a function of the top-quark mass M;
and Ags(mgs). The shadings show the normal distribution of the top-mass with
mean value 173.1 GeV and standard deviation o = 0.9 GeV, as given by the Particle
Data Group [26]. All other parameters were fixed to their central experimental
values, in particular my = 125.9 GeV [26]. The dashed contours indicate the scale
(in GeV) where Ay =0.

ing the analysis to RG scales beyond the Planck mass. Near the Planck scale we
can no longer ignore the gravitational corrections, but currently there is no uni-
versal consensus on how quantum gravitational corrections have to be dealt with.
To progress here we will make use of the intriguing scenario according to which
quantum gravity becomes asymptotically safe, and therefore nonperturbatively
renormalizable due to the occurrence of a strongly coupled UV fixed point [39].
The literature on the subject is vast and we refer to [40] for a review. To determine
the gravitational corrections we follow [41].

The authors in [12, 31] noticed an intriguing feature of the SM when assum-
ing the electroweak vacuum to be the true vacuum; i.e. they showed that a lower
bound on the Higgs mass consistent with asymptotic safe gravity is 129 + 6 GeV.
These results seem to imply that the electroweak scale is somehow determined by
Planck scale physics.

Here we test whether this picture survives, when including the effects of the
candidate dark sector. Denoting collectively the set of dimensionless couplings by
x; it follows from pure dimensional grounds that the gravitational contribution,
ﬁlgmv, to the beta function of x; reads:

grav _ 4i ,u2
§ 4 =—=——x, (3.10)
81 M 3 (W

where the Planck scale, Mp(u), is a dynamical quantity and scales due to asymp-

totic safety as [12]:
M (1) = Mp +2&0u” 3.11)
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where Mp = (SHGN)_“ 2 = 2.4 x 10'8 GeV is the usual (low energy) Planck mass.
The parameter ¢, is a model and scheme dependent number. Its exact value is
not important for this work and we fix its numerical value to ¢y = 0.024 based on
numerical studies in certain (FRGE) gravity models [41-43].

Also the coefficients a; are scheme and model dependent and are furthermore
dynamical. For our study only their sign near the Planck scale will be important.
The full one loop beta functions for the couplings x; thus read:

dx; LG I
T 8 M2 (w

X; . (3.12)

The corrections to the beta functions from gravity are negligible until we reach
y? ~ MIZD. If the couplings stay perturbative in the high energy regime, they are
well described by Eq. (3.12) with a; constant. For p? > MIZ) the gravitational cor-
rections become increasingly important. In particular, for a; < 0 the couplings
will run towards zero in the UV, making them all asymptotically free. In Ref. [12] it
was argued that a; for the gauge and Yukawa couplings are indeed expected to be
negative, while explicit computations for ,Bﬁ:w yields ay > 0 [41,43]. One should
note that different results have been obtained in the literature [46], so a positive a,
is at this point an explicit assumption. Due to the universal nature of gravitational
interactions, these arguments apply equally to the couplings of the extended sec-
tor and therefore we assume the sign of the gravitational coefficient a; of each type
of coupling to be: agauge <0, Ayukawa <0 and agyarric > 0. Thus also y, becomes
asymptotically free beyond the Planck scale, while the quartic couplings 15 and
As must both be positive or zero at the Planck scale to ensure that the potential
stays bounded from below beyond the Planck scale.

To investigate whether the asymptotically safe scenario agrees with the value
of the discovered Higgs mass, we assume that Ay (Mp) ~ 0 and S, ,| M, =0, as pre-
scribed in [12, 31]. This effectively sets A gs(Mp) =~ 0. The couplings y, and As are
determined as in the previous section at the mg scale using Eq. (3.8) and (3.9). We
restrict the analysis of this section to Qp = 1. This fully constrains the parameter
space and leads to the evolution of the couplings shown in Fig. 3.3.

The first thing to note is that Ag stays positive and perturbative all the way to
the Planck scale as required by consistency of the asymptotically safe scenario.
The next thing to note is that A s stays very small (and negative) all the way down
to the mg scale. This means that its effect on the running of 1y is negligible in the
entire region from the Planck scale and down to the Fermi scale. Moreover, it does
not ruin stability of the electroweak vacuum, since the potential is bounded from
below as long as 2y/AgAs+Apys > 0. Thus the Higgs mass prediction from the pure

1 The argument for agauge < 0 follows from explicit calculations in [44, 45]. The argument
for ayyrawa < 0 follows by negation, since positive values lead to trivial IR fixed points with
VIR = Vy,Ir = 0 (where IR is now the Planck scale as seen from the asymptotically safe UV fixed
point), up to contributions from the gauge sector, which are not able to explain the large value of
the top Yukawa coupling. Negative values of ay 41,4 are moreover supported by explicity com-
putations [46].
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Figure 3.3: RG evolution of the couplings, where we fixed Qp = 1 and mg =
500 GeV, and used the initial conditions Ay (Mp) =~ 0, Ags(Mp) = 0, y,(ms) = 0.69
and Ag(mg) = 0.21 as given in the text. The numerical values for the gravity co-
efficient were taken universally to be o = 0.024, ay = 1, ay = -1, and ag = —1.
Large variations on these parameters have been investigated with no relevant dif-
ferences on the results.

SM within asymptotic safe scenario stays intact. We recall that the prediction is
mpy = 12946 GeV [12,31]. In fact, the effect from the presence of A s is to push the
Higgs mass prediction slightly down (< 1 GeV). Since we have fixed the top mass
to its experimental central value and allowed the Higgs mass, at the electroweak
scale, to be determined by the UV conditions above, the stability regions of Fig. 3.2
will change slightly.

So far we have insisted in reducing the parameter space by using the low en-
ergy boundary conditions coming from (3.8) and (3.9) to determine As and y,.
One could argue, however, that a more consistent choice from the point of view
of asymptotic safe gravity would be to require the vanishing of 1s and its beta
function near the Planck scale, as done for Ay. This corresponds to assuming

As(Mp) ~ 0 and yf((Mp) = \/gQ%gf(Mp) to ensure that ﬁ/ls|Mp = 0. In this case,
the prediction for the values As(ms) and y, (ms) changes to smaller values, while
the effects on Ayg and thus Ay remains effectively unchanged. This scenario
is shown in Fig. 3.4, where again the electroweak vacuum remains stable since
2v/AgAs+ Ags > 0 along the entire energy range (using very small, but positive
values for the quartic couplings at the Planck scale).

Our study shows that the prediction of the Higgs mass from the interplay with
asymptotic safe gravity, put forward in [12, 31], apply to a wider class of exten-
sions of the SM. These models generically contain new perturbative scalar and
fermionic sectors. The key ingredients are to require, as done for the SM, that the
Higgs self-coupling Ay and its beta function to be zero just below the Planck scale.
The vanishing of the beta function guarantees the absence of a Landau pole imme-
diately above the Planck scale. We note that the Higgs mass prediction presented
here, and in [12,31] for the SM, are lower bounds compatible with the asymptotic
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Figure 3.4: RG evolution of the couplings, where we fixed Qp = 1 and mgs = 500 GeV
and used the Planck boundary conditions Ay (Mp) = 0, As(Mp) =0, As(Mp) =0
and y,(Mp) = 0.54, such that ﬁAH|MP ~ (0 and ,6,15|MP ~ 0. The numerical values
for the gravity coefficient were taken universally to be {o = 0.024, ay = 1, a, = -1,
and ag = —1. Large variations on these parameters have been investigated with no
relevant differences on the results.

safety scenario®.

An asymptotically safe scenario as the one depicted above, albeit being per-
fectly compatible with these kind of stable extensions of the SM, may be at odds
with the further requirement to also feature a phenomenologically viable DM can-
didate. If it is assumed that aj > 0 to ensure a highly predictive model, then the
scalar couplings must vanish at the Planck scale. This assumption stems from
certain quantum gravity computations. If, however, a negative sign is assumed
this would enable the combination of asymptotic safety and large scalar couplings
around the Planck scale that can accommodate the correct DM thermal relic den-
sity at low energies [30].

The extensions considered here yielded small deviations for the evolution of
the SM coupling constants up to the Planck scale. While both the asymptotic
safety scenario and absolute stability of the Higgs potential are interesting options,
another venue has yet to be explored. If the Higgs coupling was to diverge before
the Planck scale, nonperturbative methods would be needed to make sense of the
theory. Alternatively, such a divergence might signal that the Higgs boson has in-
ternal structure, and that the high energy theory might be one of only fermionic
matter. We turn our attention to this scenario for the remainder of this work.

21f there were tree level threshold effects on the quartic Higgs self-coupling, like in Ref. [47], the
bound on the Higgs mass could be lowered further. Note that this is not possible in the current setup,
since it would require (S) # 0 which would break the electroweak gauge symmetry completely.
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CHAPTER 4

COMPOSITENESS A LA NJL

While our treatment of the Higgs particle so far has implicitly assumed that the
Higgs is a fundamental particle, and as such the only known fundamental scalar,
the this is not necessarily the case. While a gauge-Yukawa theory is successfully
used to describe the particle physics experiments that has been conducted so far,
it might be that this theory should be replaced by one without fundamental scalars
at high energies, which yields the same effective description atlow energies. In this
chapter, we dedicate ourselves to the study of a general set of gauge-Yukawa theo-
ries, inspired by the the global symmetries of QCD and electroweak theory. Keep-
ing the initial discussion general we will then argue that it is possible to reinterpret
and make use of a certain class of gauge-Yukawa theories that are not asympoti-
cally safe or free, and thus usually could not be considered as complete descrip-
tions of nature. These theories thus have Landau poles that cannot be tamed con-
trollably, at least within perturbation theory, but which instead herald the energy
scale at which the scalars must be viewed as being composite objects.

4.1 THE COMPOSITE FACET OF GAUGE-YUKAWA THEORIES

A gauge-Yukawa theory can be described by a Lagrangian of the general form

1 ; _
£ = —@FMF’” +i¥DY + D,ODFOT + (YPOY + ho) - V(®),  (4.1)

V(@) = my? @0+ A (@' D)?, 4.2)

where Y, mg, and A may be tensors in the fermion ¥ and scalar ® field space.
To define the theory the appropriate gauge group(s) and corresponding represen-
tations must be specified, while the choice of the Yukawa and scalar couplings
determine the global symmetries of the theory. This class of theories are renor-
malizable and have been extensively studied. When quantum effects are consid-
ered and counter terms are added to remove the ultraviolet divergences, all of the
terms in the Lagrangian Eq. (4.1) receive corrections. Focussing on the fermionic
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and scalar sector of the theory the changes to the Lagrangian are given by
iYDY — i(1+062,)¥YDY, D,®D'®' — (1+6,)D,dD DT, 4.3)
mi—mi+8,2=ms, Y—Y+8y=Y,, A—A+8=A1,, (4.4)

where 6 z, and 6 z, are the corrections from field-strength renormalization of the
scalars and fermions. Through the renormalization procedure, a renormalization
scale u is introduced, and when the operators above change as the renormaliza-
tion scale is varied, the theory moves along a renormalization group flow in the
space of couplings. Defining the couplings at a given energy scale picks out a
unique RG trajectory of the flow. Therefore in principle, a specific gauge-Yukawa
theory has an infinite number of physically different paths in the RG flow.

To retain the canonical form of the renormalized Lagrangian, the field-strength
renormalizations may be absorbed by a redefinition of the fields, ® — ®/(1+ 6 z,) 1z
and ¥ — ¥/(1+6z,)'?, giving:

1 3 -
£ =~ F P +1¥DY + Dy®DHO! + (VYO + h.c) - V(@) (4.5)
g

with
V(®) = mad 0+ (@' D)? (4.6)

The renormalized canonical parameters are in terms of the renormalized non-
canonical ones given by:

Yr mi = m and A= Ar
(1+62,)/0+062) ®

<
(1467, (1+62,)%"

In standard perturbation theory the denominators in the above expressions can

be taken to unity, such that to lowest order Y=Y, mczp = mf and 1 = A,. However,

this identification breaks down if at strong-coupling the field-strength renormal-

izations grow big. This is the situation we would like to investigate.

In particular, we want to consider in this work gauge-Yukawa theories, where
the scalars are composite fields appearing only below a certain energy scale Ayy.
Above that scale, one should recover a theory of only fermions and gauge bosons.
This means that the scalars must cease to propagate at the scale Ayy, and there
we must set § z, = —1. This physical requirement on the scalar field translates into
requirements for the scalar and Yukawa couplings as well as the mass term of the
renormalized Lagrangian in Eq. (4.5), which we call the compositeness conditions.
It is convenient to express these conditions in the following form:

V=

4.7)

Y 2
A Mg my

im —=— im —=— (4.8)
u—Ayy pu—Ayv Y4 Yr4 ' u—Ayv Y2 er ’

where by the limit an inverse transformation from Eq. (4.5) to Eq. (4.1) is implied at
the scale Ayy. This transformation is necessary, because the canonical couplings

40



4.1. THE COMPOSITE FACET OF GAUGE-YUKAWA THEORIES

diverge at the scale Ayy. In perturbation theory such a divergence is associated
with the occurrence of a Landau pole. The approximation used requires also that
the fermion wave function renormalization correction does not spoil Eq. (4.8).

We show now a particularly important case, where these conditions are matched
onto a purely fermionic gauge theory at the composite scale. Consider the case
when A, =0 at the scale Ayy. The Lagrangian at the scale Ayy in this case reads:

1 _ B
L= - Eu FY + i9DWY + (Y, POV + h.c) - m?®' o, (4.9)

Z
where we assume that § z, < 1, or equivalently that the interactions are very weak
at Agy. Since there is no kinetic term for the scalars, we may eliminate them via
their equations of motion, and the resulting Lagrangian is

2
L= —4—12FWFW+ YDV + Y—rz(\iqu)z, (4.10)

r r
which has the structure of a generalized gauged Nambu-Jona-Lasinio (gNJL)
model [48]. The link between the four fermion theory described above and a low
energy gauge-Yukawa theory was first demonstrated in [13]. To connect the pic-
ture to the effective field theory language, we may choose as renormalization con-
ditions m2(Ayy) = A%N and Y?(Ayvy) = G, with G being the dimensionless four-
fermion coupling. Then the above Lagrangian takes the form of the following ef-

fective field theory:

1 - G -
L= ——Fn F* +i9DY + —— (P¥)°. (4.11)
4 AZ
r uv

The attentive reader would have realised that to derive the gNJL effective the-

ory from the gauge-Yukawa system we used not only the compositeness condi-

tions Eq. (4.8) but also that A, = 0. It is therefore important to know when this

requirement may be satisfied starting from the gauge-Yukawa theory. Consider
the following limit:

. Ar
lim == 1

im — (4.12)
p—Auv Y p—Auv (1 +6Z@)Yr

One observes that if 1, does not vanish at the composite scale the above quantity

. . s e . A,
diverges at Ayy. If, however, 1, — 0 in this limit, the ratio of ((ETPM) may go to a

constant value, thus yielding

lim — = constant. (4.13)
p—Aygy Y2

This new condition will be added to the list of compositeness conditions given in
Eq. (4.8), further reducing the number of gauge-Yukawa theories that may admit a
composite realization of the gNJL-type.
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The previous conditions are non-perturbative in nature and can be exploited
to investigate also the correspondence between the two types of theories. In par-
ticular, as we shall see, the correspondence enables us to study certain aspects of
theories of composite dynamics through gauge-Yukawa theories that feature a RG
region, where the theories can be treated perturbatively. This result shows that
weakly coupled gauge-Yukawa theories at some intermediate energy scale are, de
facto, composite theories. It is therefore tantalising to speculate that the stan-
dard model with its perturbative Higgs sector could hide, in plain sight, a com-
posite theory. Beyond perturbation theory one can use first principle lattice stud-
ies [49-53] for which our results can be viewed exploratory in nature.

To display how the compositeness conditions work out in a specific theory, we
introduce a concrete example which elucidates the main points. It consists of an
SU(N¢) gauge theory featuring Ny Dirac fermions transforming according to the
fundamental representation of the gauge group. They further interact, via Yukawa
interactions, with a gauge-singlet Nr x Nr complex scalar field that at intermedi-
ate energies self-interact. We show that it is possible to enforce the compositeness
conditions in this theory while simultaneously discovering a controllable pertur-
bative regime along the RG flow. This situation is similar to the SM, where at and
around the electroweak scale all the couplings can be treated in perturbation the-
ory. Following the Weyl consistent coupling constant ordering described in Chap-
ter 2 and thus organize the analysis coupling by coupling and such order by order.

4.2 THE COMPOSITE TEMPLATE

We start with an SU(N¢) gauge theory with N¢ > 2. The associated gauge fields
AZ have field strength Fﬁv (a=1,- --NCZ: —1). We add Ng Dirac fermions Ql.c with
i=1,---Nrpand c=1,--- N¢ transforming according to the fundamental represen-
tation of SU(N¢). The fermions further interact with an Ng x Ng complex scalar
H. The fundamental interaction Lagrangian reads:

1 _. _

=S T [P Fy |+ Tr [Q zDQ] +Tr [a#HT G”H] +yTr [Q HQ] ~VI[H], (4.14)
with Tr [GHQ] = Tr [GLHQR +6RHTQL] and

) 2

VIH = m¥ T [H' H|+ute [H HE ] 0 (T [ BH]) . @as)

We trace over both color and flavour indices. The theory has been studied

earlier in connection with top-quark condensate models in [54,55], albeit in a dif-

ferent setup and limit that we here are taking.
The model has four classically marginal coupling constants given by the gauge
coupling, the Yukawa coupling y, and the quartic scalar couplings; the single-trace

coupling u and the double-trace coupling v. From these we define new rescaled
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couplings, useful in the large N¢ and N limit, which read

g*Nc _ y*Nc uNp UNJZE

Y% amz YT amz T am YT e

(4.16)

These are the appropriately normalized couplings which enables us to study the
Veneziano limit of the theory, where Ny, N¢ — oo, while Nr/N¢ is kept constant.
Note the additional power of N in the definition of the scalar double-trace cou-
pling, which makes v/u go as a,/(a, Nf).

Having defined the gauge-Yukawa theory under investigation, we specify the
connection to a fermion theory with composite scalars as described above. The
resulting compositeness conditions introduced in the previous section specialize
to

. _ . a . .
lim a! =0, lim 2= lim — =0, lim —=—, 4.17)
y 2
u—Ayv u—Ayv ay u—Ayy ay u—Ayv m

where the last requirement gives the matching to the high energy four fermion the-
ory. The two first conditions can be investigated in any renormalization scheme,
while the last one involving the mass, only applies to mass-dependent schemes. In
mass-independent schemes there will be corrections to the right-hand-side of the
latter condition [56], which are, however, unimportant to this work. The matching
to the high-energy theory is achieved in the following way: At the scale Ayy, where
the couplings of the Lagrangian Eq. (4.14) formally diverge, the theory should in-
stead be rewritten through the transformations given in Eq. (4.7). Assuming fur-
thermore that

a
lim Zulv constant . (4.18)
as explained in the previous section, it then follows that the scalar sector of the
theory is described by

"%(Ilz)mposite = \/ETI aLHQR +6RHTQL] —A%JVTI‘ [HTH] , (4.19)

where the fields Qp;r and H now are the inversely transformed ones, like in
Eq. (4.3), where the kinetic term for H has vanished. The renormalized mass
parameter and Yukawa coupling are the inversely transformed ones defined in
Eq. (4.4), where the renormalization conditions identifying them with the cut-
off and the four-fermion coupling was imposed. By eliminating the auxiliary
scalar degrees of freedom through their equation of motion, one obtains the four-
fermion interaction':

2G — —
"cgg)mposite = ATTI [QLTQQR] Tr [QR TaQL] ) (4.20)
uv

J— i —!
1By using a Fierz identity, this can be recast into the form G/A%N(QlLCQ}{C)(Qf?j Qric) -
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Here T% was introduced through H = h*T%, with a =0,1,. ..,Nf, — 1 which are the

the generators of SU(Ng), while 70 = leTﬂ' The normalization used is Tr T#T? =
F

1 6ab

3097,

We are now ready to provide a consistent renormalization group investigation
of this gauge-Yukawa system superimposed with the compositeness conditions
derived above. Abiding the consistency conditions derived in Chapter 2, we will
investigate the system by use of RG equations in the pattern:

Be=BY (@) +B2 g1 +BY g1+, 4.21)
By =B+ gy +, (4.22)
Br=BP" gy +, (4.23)

where the superscripts denote the loop order of the terms and the parenthesis
shows which couplings they depend on. In our case the general quartic coupling
A will be replaced by u and v. Respecting the Weyl consistency conditions, one
may consider the running of the gauge coupling at 1-loop consistently without
taking into account the running of Yukawa and the quartic couplings (leading or-
der). Likewise one may analyze the two-loop running of the gauge coupling taking
into account the one-loop running of the Yukawa consistently without taking into
account the running of the quartics (next-to-leading order). At three loops, run-
ning of all couplings must be taken into account and the lowest consistent count-
ing order is 3-2-1 loops in the gauge-Yukawa-quartic beta functions (next-to-next-
to-leading order). We will in this sense analyze the leading, next-to-leading and
next-to-next-leading order corrections to the RG flow and their physical implica-
tions on the four-fermion theory described above. In particular, we will compute
the distance in energy between the composite scale and the confinement scale of
the theory, and show that large hierarchies are not only possible to establish, but
seems to be a clear feature of these theories.

4.2.1 Leading order and weak compositeness conditions

The leading order analysis is an over simplified case, which is not able to capture
the composite nature of gauge-Yukawa theories. Nevertheless, we make a lead-
ing order analysis in this section for completeness, since it allows us to define the
infrared scale and furthermore provides a pedagogic step towards the following
sections.

To the leading order one needs only to consider the gauge beta function at
one-loop which reads:

2 Np
ﬁgzatagz—ﬁoaéz—gaﬁ,(n—zN—c) ) (4.24)

Taking the Veneziano limit by letting Nr, N¢ — oo, allows us to further take x =
NFr/N¢ to be any real nonnegative number. Depending on the number of flavours,
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HIAIR

1 10 100 1000

Figure 4.1: Renormalization group evolution for the lowest order analysis, where
the Yukawa coupling is constant and nonzero, while the gauge coupling runs. We
have here defined the scale Aig such that ag(Ag) = 1. The scalar quartic cou-
plings, not included here, are also constants to this order.

the double zero at ag = 0 can either be an infrared or an ultraviolet gaussian fixed
point. The latter case is also known as asymptotic freedom. In the former case the
ultraviolet theory is not well defined unless higher orders introduce an interacting
ultraviolet fixed point, in which case the theory becomes asymptotically safe [57,
58].

Here we consider the case in which the theory is asymptotically free. This
restriction allows us to assume that the wave-function renormalization of the
fermions will stay small near the composite scale, since they are at one-loop pro-
duced by gauge interactions. As explained in the previous section, for consistency
we should not consider the running of the scalar and Yukawa couplings at this
order. According to the compositeness conditions Eq. (4.17) we should have

lim «,*=0. (4.25)
p—Auyy

To this order, a constant and formally divergent a, is thus required. This is in clear
tension with perturbation theory. Given that we want to avoid an uncontrollable
nonperturbative analysis, to the leading order we therefore must take another ap-
proach by enforcing instead a weaker version of the compositeness conditions:
Assuming that we are describing a four-fermion theory at a mass scale, which is at
least a few times below the composite scale, we may consider a simply to some
constant value smaller than one, as depicted in Fig. 4.1, to ensure validity of the
pertubative analysis. We shall see that when next to leading order corrections are
taken into account, this assumption is valid, since the Yukawa coupling will natu-
rally grow at high energy and what we are describing here are boundary conditions
in an energy range, where the Yukawa coupling is small enough for perturbation

theory to hold. For the scalar self-interactions we assume a similar behaviour.
From this first oversimplified analysis one expects that the asymptotically free
theory develops a mass gap associated with the divergence of the gauge coupling
atlow energies. At these energies chiral symmetry breaks leading to the formation
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of the nonperturbative condensate

(QQ) x AZ;. (4.26)
The scale Ajg can be estimated to be (cf. Eq. (.39) in the appendix):

1
AIR = Ho €Xp (—W) . (427)
4

This estimate is insensitive to the perturbative corrections from the Yukawa and
scalar sectors, which contribute only at higher orders. Thus if the Yukawa and
scalar sectors stay perturbative in the IR, the above expression provides a good
estimate of the IR strong scale of the fully dynamical gauge-Yukawa theory.

4.2.2 Next-to-leading order analysis: The rise of the Yukawa coupling

For the next order in perturbation theory one needs to go to two loops in the gauge
coupling and one loop in the Yukawa, while the evolution of the scalar couplings
is still not relevant. To this order, therefore, the Yukawa coupling is no longer a
constant and its running and consequent back-reaction on the gauge coupling
are important. We have :

2 N N NZ-1 NZ
By = —=a (11—2—F)+ 34— L 1104+3-¢ ag+3—La,| (4.28)

378 Ne¢ Nc¢ N2 NZ

NF) NZ-1
= ay|2({l1+—|a,-6 a (4.29)
ﬁ)’ y ( N¢ y Né g
Working in the Veneziano limit by defining x = Nr/N¢ at large Ny and N yields:
2

By = _§a2g[(11—2x)+(34—13x)ag+3x2ay], (4.30)
By = 2ay[Q+x)a,-3ag]. (4.31)

We restrict x < 11/2, ensuring asymptotic freedom for the gauge coupling. In the
absence of the Yukawa interactions, a well known interacting infrared fixed point
emerges at

. 11-2x 34 11
Ay=—"—"—, or —<x<—, and a,=0. (4.32)

§ 13x-34 13 2
For x very close to 11/2 this is the Banks-Zaks perturbative infrared fixed point.
This fixed point, however, disappears in the presence of the Yukawa interactions °.

2The beta functions are in the MS-scheme [59-64]. It would also be interesting to investigate the
compositeness conditions in other renormalisation schemes such as the momentum subtraction
scheme [65-68], since different schemes can be more or less suitable to explore different facets of
gauge-Yukawa theories.

3 By setting 8 y =0 we derive ay = % ag which can be substituted in g yielding:

)

2
(11-2x)+(34-13x+9—— ag
1+x

2 5
ﬁg_’_gag

showing that the presence of the Yukawa has eliminated the possibility of the infrared fixed point.
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Therefore the next-to-leading-order effects on the gauge beta function strength-
ens the infrared QCD-like behaviour of the theory.

The RG flow of the gauge-Yukawa system for x = 2 is shown in Fig. 4.2. The
arrows in the figure shows the flow from the ultraviolet (UV) to the infrared (IR)
regime. In the UV two distinct phases form. The boundary between these two
phases is approximately given by

ay 2(x-1)

=—), (4.33)
ag 3(x+1)

which is determined by the one-loop beta functions in both couplings (cf. Eq. (.56)
in the appendix). Below the red trajectory both couplings are asymptotically free
meaning that the theory is non-interacting and well defined in the UV. This RG
region, therefore, does not support a composite limit of the theory. The com-
posite limit emerges in the RG region above the red trajectory, where the Yukawa
coupling diverges in the UV, thus allowing the compositeness conditions given in
Eq. (4.17) to be satisfied. We notice that the boundary Eq. (4.33) for x < 1 is outside
the physical parameter space of the couplings. Therefore the composite limit is
supported by the entire perturbative region of the physical space of couplings, i.e.
the Yukawa coupling will also diverge in the UV. Thus x = 1 defines a boundary in
the external parameter space.

We show in Fig. 4.3, again for x = 2, the actual running of the two couplings in
the composite region for one particular RG trajectory. Considering the flow from
UV to IR, initially @y > a¢ due to the compositeness condition. Since ay, will de-
crease, while a g increases towards the IR, at some intermediate scale p, their val-
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Figure 4.2: The RG flow in the (ag, ay) plane for x = 2. Two distinct phases are

present. The red trajectory indicates the phase boundary estimated from the one
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loop beta functions: T = 300D
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Figure 4.3: Renormalization group evolution for the next to leading order analysis,
where the Yukawa and gauge couplings run. We define the scale Ajg and Ayy such
that ag(Ar) = @y(Ayv) = 1. The scalar quartic couplings are constants to this
order and are not included here.

ues equal, and once 3ag > (1+x)ay, the sign of the Yukawa beta function changes,
making it grow again in the deep IR. This growth of @y, in the IR is therefore at most
as fastas 3ag/(1+ x).

The composite scale Ayy is identified with the Landau pole in the Yukawa cou-
pling. We will fix our perturbative initial conditions at the crossing scale g, and
we ensure perturbation theory to be valid by requiring ag(uo) = a,(uo) = C < 1.
This condition is for any x consistently above the boundary Eq. (4.33), ensuring
the theory to be in the composite phase.

It is interesting to study the hierarchy between the composite scale and the
chiral symmetry breaking one, as a function of both C and x. At the one loop level,
in both the gauge and Yukawa coupling, we can estimate it analytically to be

11-2x
g (o) 2(1-x) | 20-»

1 (AUV) B 3(1 * 2,00 3(1+x))
AR 2(11-2x)ag(po)

(4.34)

The expression is well-defined for any x, and it takes the following simple form at
x=1:

11-2x 3ag (o)
ag(to) 2(1 —x))ztl—x) _ &P (205(”0))

lim log( UV) = lim( (4.35)
x—1 AR 3(lg(po) x—1 ay (/J()) 3(1+x) 3(Xg(ﬂ())

To set the initial values of the couplings we will use ag(uo) = ay (o) = C since in
the composite phase there will always be a iy such that this condition is fulfilled.

In Fig. 4.4 we compare the approximate analytical one-loop result with the
next-to-leading order numerical calculation. To numerically estimate the value
of the IR(UV) scale we use the approximate relation ag(y) (Arwv)) = 1.

The ratio increases for small and large values of x for a fixed value of C. This
is so because, for small x, the first coefficient of the Yukawa beta function de-
creases, de facto, slowing the runaway behavior of the associated coupling in the
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Figure 4.4: The ratio between the scale of UV compositeness (Ayy) and the one
associated to infrared gauge coupling divergence (Agr), as a function of the num-
ber of flavors/colors, parametrized by x and the common value, C, of the gauge
and Yukawa coupling at the scale where they are equal. We vary x in (a) and C in
(b). The one loop estimate is presented in dashes while the NLO perturbative (2-1)
numerical result is represented by the solid curve

UV. For large x, instead, the ratio becomes large since we are nearing the limit
where asymptotic freedom is lost for the gauge coupling. Consequently the in-
frared scale is approaching zero.

Additionally, we explore the influence of the chosen value of the couplings
ay = ag = C at the scale where they are equal. Setting x = 2.5 associated to a re-
gion of x that does not influence dramatically the ratio Ayy/Arg, as it is clear from
Fig. 4.4a, we vary the value C and plot again the ratio in Fig. 4.4b. As one might
have expected, smaller values of the couplings lead to a larger ratio of the scales
since more RG running is needed to reach the UV and IR scales where the cou-
plings become nonperturbative. We also observe that the approximate one-loop
result overestimates the ratio.

Another interesting feature is that for the theory to remain perturbative in an
intermediate regime, say C < 0.1, the ratio of the scales, as function of x, can-
not be too small, and typically should be larger than 100, implying a hierarchy of
scales of at least two orders of magnitudes. This means that theories in the ex-
tended technicolor class may also be expected to offer large separation between
the extended technicolor scale, where four fermion interactions are relevant and
the strong scale connected to electroweak symmetry breaking.

It is straightforward to see that the compositeness conditions in Eq. (4.17) are
satisfied to this order. The conditions for the scalar sector are satisfied by imposing
the weaker version of the conditions discussed in the previous leading-order case.
Following that reasoning, thus to the next-to-leading order in perturbation theory,
we have shown that gauge-Yukawa theories can be naturally viewed as stemming
from a compositeness paradigm for a wide region of the RG phase diagram, e.g.
the one in Fig. 4.2.
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4.2.3 Next-to-Next-to-leading order: The awakening of the scalars

In the previous sections, we were able to draw a consistent picture of composite-
ness in the gauge-Yukawa sector, and we were furthermore able to provide esti-
mates for the hierarchy between the ultraviolet composite scale and the infrared
confinement scale. From the ultraviolet theory point-of-view, the scalars are merely
auxiliary fields. For consistency of the analysis in the previous sections, they should
therefore not play any physical role. In this section, we investigate the influence of
the scalars on the above results, and provide the needed constraints on the scalar
coupling phase space, needed to ensure consistency of the previous analysis.

The next order in the RG analysis requires the one loop beta functions for the
quartic couplings, the two loop terms in the Yukawa beta function, and the three
loop terms in the gauge beta function. This system of RG equations obeys the
Weyl consistency conditions and reflects the back reaction from the scalars on the
running of the Yukawa coupling, which in turn back reacts on the gauge coupling.
Since the scalars do not carry gauge charge, they do not contribute to the three-
loop terms for the gauge coupling. Additionally, since we are considering a mass-
independent renormalization scheme, we can independently take into account
the running of the mass, where one-loop is also sufficient. In the Veneziano limit,
the beta functions to this order read [69, 70]:

2

2, ,  8lx
Bg=- §ag (11-2x)+ (34 -13x) ag +3x"ay, + Tagay

3x%(7+6x) , 2857+112x*>-1709x ,
— 2 ay,+ 18 gl (4.36)

20x-203 ,

By =2ay |(1+x)ay—3ag+ Bx+5agay,+ Tag

x(x+12
—8xau—¥ai+4a2u , (4.37)
and for the scalar sector
X

Bu=4 [Zai +ayay— Eai] , (4.38)
By =4[a% +4a,a, +3a? +a,ayl, (4.39)
B, = 0emiy = 4milay + ay +2ay] . (4.40)

In this section we must show that the scalar self-interactions can be consistent
with the compositeness picture emerged above and driven, so far, by the Yukawa
interactions. Specifically, considering as in the above analysis an intermediate RG
scale po, where perturbation theory is well-defined, we have to ensure that the
scalar couplings stay perturbative up to the composite scale, where they further-
more have to satisfy the compositeness conditions given in Eq. (4.8) and Eq. (4.13).
The reason for this requirement is that if the scalar couplings would grow strong
before the composite scale, the analysis of the previous sections would be invali-
dated.
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There are two other issues which may arise; the first is that according to the
mass-independent scheme, the scalars remain dynamical as long as mg(y) < p.
For mpy(y) = p, the scalars will decouple before reaching the scale where they
should be seen as auxiliary fields, and therefore this situation should be avoided.
The second issue arises when the effective potential develops a global minimum
away from the origin due to quantum corrections. For consistency of our analysis,
this has to be avoided between the scales py and Ayy, since the vacuum expec-
tation value of the scalar fields was earlier assumed to be zero in the analysis of
the compositeness condition on the Yukawa coupling and in the calculation of
the scale hierarchy. However, at lower scales there is no inconsistency of having
a symmetry breaking through the scalar sector, rather than the gauge sector. This
would correspond to another interesting possibility that we are, however, not con-
sidering here.

To summarize, the aim of this section is to understand and provide the criteria
under which:

1. The scalar sector stays perturbative up to the composite scale, where it fur-
thermore must satisfy the compositeness conditions.

2. The scalars do not decouple before the infrared confinement scale.

3. The minimum of the effective potential at the origin remains stable under
quantum corrections between the composite and confinement scales.

We now demonstrate that there is a subset of theories which do obey the above
three constraints on the scalar sector. First of all, we need to ensure that there
is no Landau pole in the scalar couplings between py and Ayy. To lowest order
in perturbation theory, we have shown in the appendix (cf. Eq. (.67), (.68) and
(.80)) that the initial conditions on the scalar couplings must satisfy the following
inequality, to not become strong at intermediate scales:

2(11-2x) C

24 (q- i_:r})zlgﬁzxﬁ ~1

{lawwol, 2le (o)1} < : (4.41)

wIn

where we used the renormalization condition of the previous section ag(ug) =
Oéy(ﬂo) =C.

There is another subtle effect, which can lead to a Landau pole, due to tangen-
tial divergence, as explained in the appendix (cf. Eq. (.70)-(.71)). Here we can in
the general case at best impose an overconstraint inequality, ensuring no Landau
poles. For the a,, coupling it reads:

—1—w1+4x<4%<—1+\/1+4x. (4.42)
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For the a, coupling, the situation is more complex (cf. Eq. (.79)). The following
constraints, however, will ensure no Landau poles at intermediate scales:

a +4a 12
@y (o) > yo) HAaulpo) |y 12 | (4.43)
2 ay (to) 2
\ (4+ au(uo))
ay (o) + 4 (o) 12
(o) < Y HO T2 1-—. (4.44)
2 \ (4+ ay(”o))
ay, (to)

ay (L)
ay (,UO)

2
If a,(uo) is negative, the additional constraint, (4+ ) > 12, must be im-

posed, which can be expressed more clearly as:

ay(to) ay(Ho)
ay(ug) > ———=-0.13a,(up) and a,(ug) < ~—-1.87a,(up) .
ulto VT yHo ulto V124 y o

(4.45)

To ensure that there are no Landau poles in the infrared regime, before the con-
finement scales, similar constraints can be put, which are also provided in the
appendix (cf. Eq. (.68) and (.80)).

At high scales the coupling a, may also exhibit tangential divergence, as ex-
plained in the appendix (cf. Eq. (.76)). This is avoided by imposing the following
constraint on the theory parameters:

x>—4+3V3— 6(7—4\/5) ~0.54. (4.46)

The constraint does not depend on the initial perturbative values of the scalar cou-
plings and must be satisfied regardless. Thus we can conclude that for x < 0.54, the
perturbative theory cannot show a composite nature of the type we are consider-
ing, but for any other values 0.54 < x < 5.5, there are well defined regions where
compositeness is expected.

When these constraints are satisfied, the only Landau pole appearing in the
UV regime is the one driven by the Yukawa coupling. It is then clear that in pertur-
bation theory the running of the scalar couplings at the composite scale may only
diverge as fast as the Yukawa coupling, and thus the extra condition in Eq. (4.13), in
agreement with an NJL-type four-fermion theory interpretation, is automatically
satisfied. In appendix 5.5 we have furthermore showed that the value of Eq. (4.13)
are at one-loop exactly fixed by the theory parameters, and independent of the
initial values of the couplings (cf. Eq. (.63) and (.77)). In particular, near the com-
posite scale the sign of a, is always negative, while the sign of a,, is always positive.
The consequence of this on the stability of the potential will be analyzed at the end
of this chapter.

Intuitive understanding of the constraints for the quartic couplings may most
easily be obtained from a visualization, and in Fig. 4.5 we display the constraints
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Constraints on ay/ay at uo
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Figure 4.5: The constraints on a,(uo) in terms of ay (uo) for different values of x.
The strong coupling constraint Eq. (4.41) is shown in solid, while the perturbative
tangential divergence constraints on a, Eq. (4.42), and on a, Eq. (4.45)-(4.46) are
shown in dashes, dots, and dotdashes, respectively.

Eq. (4.41), (4.42), (4.45) and (4.46) in terms of the ratio a“E“ 9 From the figure we
see that, although the absence of unwanted Landau poles is strongly constrain-
ing the parameter space, a range of initial values for «, is still consistent with the
composite picture. We note in particular that the quartic coupling «,, is always
constrained to be smaller than the Yukawa coupling, and that for any x, the cou-
pling a;, cannot be smaller than —0.13a.

As mentioned, the picture for the other coupling, a,, is more involved and
the constraints depend on the values of x and a as well as the ratlo . We start
by examining the latter dependence, coming from Eq. (4.43) and (4. 44), which is
depicted in Fig 4.6a.

The allowed regions for @, (o) depend on the ratio a,/ay in a nontrivial way,
but notice that this dependence only constrains a, in the region of negative val-
ues, while leaving positive values for a,(uo) unconstrained. For values of a,/a)
larger than ~ 0.7 the region excluded by Eq. (4.43) is fully contained within the ab-
solute lower bound coming from the strong coupling constraints Eq. (4.41), mak-
ing the former constraint irrelevant. The region where Eq. (4.43) and Eq. (4.44) are
most relevant, is the one where a,/a, takes small values, the lowest value allowed

from Eq. (4.45) being a"gﬁo) =~ —0.13. In Fig. 4.6b we therefore display the strong

coupling constraints Eq. (4.41) (independent of a;/ay) alongside the constraints

Eq. (4.43) and (4.44), evaluated at a“éﬁo) = —0.13. For larger values of a,/ay, the
horizontal band in Fig. 4.6b moves downwards and closes the small window of al-
lowed parameter space in the lower right corner for ‘;;Eﬁg; = —0.05, as one can infer
from Fig. 4.6a.

To test the validity of the approximations made in the calculations of the con-
straints above, we perform a full RG running of the coupled system of equations
including the scalar couplings. As a benchmark model, we choose x = 2.5 (giv-

ing the smallest hierarchy between Ayy and Arg, cf. Fig. 4.4a), and ag(uo) =
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(a) x-independent bounds on compositeness. (b) x-dependent bounds on compositeness for
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Figure 4.6: Constraints on the initial value of the coupling @, in terms of a,.
(a) displays the x-independent constraints coming from Eq. (4.43), (4.44) (dots),
and Eq. (4.45) (dotdashes), while the lowest x-dependent bound is also displayed
(solid), which can be inferred from (b). (b) displays the x-dependent strong
coupling constraints Eq. (4.41) (solid), and Eq. (4.46) (dotdashes), while the x-

independent constraints Eq. (4.43) and (4.44) (dots) are displayed for ‘;;‘Ezgi =
au(/JO)

—0.13. For larger values of —“=* the horizontal band moves downwards and closes

ay(to)
the small window in the lower right corner for g“gﬁg; = —0.05, as one can infer from
y

(a).

ay(uo) = 0.1, guaranteeing composite behavior in the gauge-Yukawa sector, as
well as ay, (po)/ ay(uo) = 0.3 and a, (1o)/ ay (o) = 0.1 to respect the constraints for
the quartics. A numerical solution to the RG equations at one loop in all beta func-
tions generates the running couplings shown in Fig. 4.7, where also the running of
the ratios a,/ay and a,/ay is shown.

The result shows that the quartic couplings are well behaved between Ajg and
Ayv, where respectively the gauge and the Yukawa coupling poles are located.
The plot of the running of ratios demonstrates that they run to a unique constant
at the composite scale, which signals that a possible composite UV completion is
of four-fermion NJL-type. Including the complete NNLO information in the RG
equations, given at the beginning of this section, we find a very similar picture for
the benchmark model, as shown in Fig. 4.8a. As predicted, we thus see that the
initial conditions for the scalar couplings in this setup are not relevant for the UV
behavior, in contrast to the situation for the simplest standard model extensions
tailored for compositeness [4].

Next we consider the running of the mass and note that from its beta func-
tion the mass-squared parameter cannot change sign in perturbation theory. We
further require the sign of m%, to be positive to match the ultraviolet gNJL the-
ory and to ensure stability of the scalar vacuum at the origin (for the Coleman-
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-1.0"

(b) 1-loop running of coupling ratios

Figure 4.7: The RG evolution of the one loop system of gauge, Yukawa, and quartic
couplings for a benchmark model, which respects the constraints for composite
theories, where x = 2.5 giving the smallest hierarchy between Ayy and Ajr (see
Fig. 4.4a). Fig. 4.7a shows the composite signature, where the divergence of the
Yukawa and scalar couplings at Ayy is expected, and implies a possible compos-
ite interpretation of the theory. Fig. 4.7b shows that the ratios a,/ay and a,/a,
are well-behaved in the entire region and run for different initial conditions to a
unique fixed value at Ayy, implying the possible composite theory to be of NJL-
type.

Weinberg instabilities concerning the case m% = 0 see [55]). The compositeness
conditions tell us that the mass parameter must also diverge at the composite
scale. At perturbative values, however, it must be ensured that mpy(u) < u for ev-
ery [ > L, since otherwise the scalar fields would decouple at a scale u*, where
mp(u*) = u*. In the perturbative regime, however, this can be easily achieved by
choosing mp (o) < Uo, since the growth in my is logarithmic in p/yg, and thus
never exceeds p. If we instead ask for the stronger constraint that the decoupling
scale should be the strong IR scale of the previous sections, and not the m scale,
we need to impose the following constraint:

2 2 (Mo "
m2, (o) < Ay | —| (4.47)
Arr
where vy is the one-loop coefficient of ,Bmi, evaluated at py, i.e.
Yo =4lay (o) + @y (to) +2au(po)] - (4.48)
Taking the IR scale to be the strong IR scale of the previous section, we get:
m2, (o) < 12 exp (—ﬂ) : (4.49)
ﬁO g (,UO)

This parameter choice ensures that the scale hierarchies computed in the previous
section remain valid, when taking the scalar sector into account. One can imag-
ine other possibilities that can lead to the generation of new intermediate scales
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(a) NNLO running of the couplings (b) NNLO running of coupling ratios

Figure 4.8: The evolution of the system of gauge, Yukawa, and quartic couplings
for same values of parameters as in Fig 4.7. The running of the couplings is shown
in (a), while the evolution of some ratios of the couplings are shown in (b). The
conclusions are equivalent to that in Fig 4.7, however, he scale of IR divergence
is now closer to the point where the couplings are initially defined, while the UV
divergence is delayed by approximately the same amount. In addition, we also
here see that the ratios between the quartic couplings and the Yukawa couplings
stay well-defined, even when the couplings start to diverge, in accordance with
the expected composite-like behavior of four-fermion interactions.

with interesting phenomenological applications that we, however, do not consider
here. We illustrate the requirement Eq. (4.49) in Fig. 4.9 for the benchmark param-
eters mentioned above while varying x.

Finally we must ensure stability of the potential. The scalar fields are well-
defined in the regime Ajr < H < Ayy. The scalar potential must for these values
be positive to ensure the global minimum of the origin in field space. As shown in
the appendix (cf. Eq. (.90)), in the large N limit the constraint ensuring stability

ay(uo) = 0.1, ay(uo) = 0.03, ay(uo) =0.01

0.8
Decoupling
0.6
my%(u0)
Ho?
M (1) < AIr
0.2¢
0.0L
1 2 3 4 5

Figure 4.9: Initial mass values m%(uo) which in the white region respect the re-
quirement Eq. (4.49), ensuring that the scalars do not decouple above the scale
Ajqg.
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of the potential reduces to
m3;>0. (4.50)

Thus, if all the previous compositeness constraints are satisfied, the potential will
automatically stay positive, in the entire domain of possible field values of H.

We have thus witnessed the emergence of a perturbative consistent picture
of a subclass of gauge-Yukawa theories featuring Landau poles. We argued that
these theories suggest a composite picture because they can me mapped directly
into gNJL theories. We have furthermore shown that large scale hierarchies in
these theories between the ultraviolet composite scale of the otherwise elemen-
tary scalar and the infrared scale leading to chiral symmetry breaking are a gen-
eral feature. This result can be seen as the stepping stone towards realistic the-
ories of SM fermion masses not at odds with flavour changing neutral currents
constraints.

Since gauge-Yukawa theories can be equivalent to fermionic theories with com-
posite scalars induced by a four-fermion interaction, it is intriguing to consider
whether the Higgs in the standard model might be such a composite particle,
which alterations should be made to the standard model and in turn which con-
sequences this will have one the RG evolution of the parameters of the standard
model.
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CHAPTER 5

A NEUTRINO HIGGS CONDENSATE

The idea that the Higgs particle might be a composite particle in the spirit of the
four-fermion interactions discussed in the previous chapter is not a new one. Even
before the top quark was discovered, the non-discovery hinted towards a larger
Yukawa coupling for the top quark than for the known quarks, maybe even large
enough to fulfill the compositeness conditions mentioned above.

Many years ago it was thus proposed that the top quark Higgs-Yukawa (HY)
coupling, y;, might be large and governed by a quasi-infrared-fixed point behavior
of the renormalization group [71,72]. This implied, using the minimal ingredients
of the Standard Model, a top quark mass of order 220 — 240 GeV for the case of a
Landau pole in y; at a scale, A, of order the GUT to Planck scale. In light of the
observed 173 GeV top quark mass, the fixed point prediction is seen to be within
25% of experiment. This suggests that small corrections from new physics might
bring the prediction into a more precise concordance with experiment.

One of the main interpretations of the quasi-infrared fixed point was the com-
positeness of the Higgs boson. In its simplest form, the Higgs boson was consid-
ered to be a bound state containing a top and anti-top quark [13,73-77]. This was
amenable to a treatment in a large- N, Nambu-Jona-Lasinio model [48], defined
by a four-fermion interaction at a scale A, with a a large coupling constant, and a
strong attractive 0* channel. The theory requires drastic fine-tuning of quadratic
loop contributions, which is equivalent to a fine-tuning of the scale-invariant NJL
coupling constant . By tuning the NJL coupling close to criticality, the Higgs boson
mass becomes small, creating an infrared hierarchy between the compositeness
scale, A, and the electroweak scale embodied in m;,. Tuning the coupling slightly
supercritical yields a vacuum instability and the Higgs boson acquires its vacuum
expectation value (VEV).

Once the infrared hierarchy has been tuned, the remaining structure of the
theory is controlled by renormalization group running of couplings [13]. The RG
treatment indicates that a #¢f composite Higgs boson requires (i) a Landau pole
at scale A in the running top HY coupling constant, y,(u), (ii) the Higgs-quartic
coupling Ay must also have a Landau pole, and (iii) compositeness conditions
must be met, such as Ay (u)/yt(w) — 0 and Ay (w)/y?(u) —(constant) as g — A,
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[13]. This predicts a Higgs boson mass of order ~ 250 GeV with a heavy top quark
of order ~ 220 GeV, predictions that come within a factor of 2 of reality.

While the 7t minimal composite Higgs model is ruled out, it remains of inter-
est to ask, “can we rescue an NJL-RG composite Higgs boson scenario with new
physics?” and if so, “what are the minimal requirements of new physics needed to
maintain a composite Higgs boson scenario?" In this chapter we address this issue
and revisit a composite Higgs boson model based upon an attractive idea of S. P
Martin, [78] (this has also been considered in a supersymmetry context by Leon-
taris, Lola and Ross [79]). Martin pointed out that the top quark HY is sensitive to
right-handed neutrinos, qu, that become active in loops above the large Majorana
mass scale, M. The right-handed neutrinos are assumed to have HY couplings,
yL' = 0'(1), and also have a Majorana mass of order M ~ 10%3, thus leading to the
neutrino seesaw model at low energies [80,81]. Turning on the neutrino loops will
generally pull a large y;(m,) to a Landau pole at a scale of order A ~ 10'° —10!9
GeV, and the large top quark mass becomes intertwined with neutrino physics
above M. The strong dynamics that forms the boundstate Higgs boson for us is
the dominant large coupling, y.

5.1 NJL MODEL

The effective UV model we have in mind is a variation on the Nambu-Jona-Lasinio
model [48] and top condensation models [13, 73, 74]. We adapt this to a neutrino
condensate with the four-fermion interaction Lagrangian:

2 A
L= %(LLZ'V}?)(T/R]'LJL) + 5 Luvp)iraTf) + hc. 5.1)

where Li = (v}, 0" (vR;) are left-handed lepton doublets (right-handed neutrino
singlets), and T}, (tg) is the top quark doublet (singlet); (i, j,..) are generation in-
dices running to N =3 and (a,b,..) are color indices running to N, = 3. The
dominant large coupling constant in our scheme is g and h < g/Ny. We will
have additional smaller couplings involving the other quarks associated with light
fermion mass generation and flavor physics, as well as charge conjugated terms
like (I:L,-qu) gf k (Vg jLLk)C. These generate the charged lepton and quark masses
and mixing angles, which we presently ignore.

Like in the previous chapter, we follow [13] and factorize the NJL interactions
to write:

Ly =gLitHV + g Ty HtS — A’ H'H (5.2)

Here we define g’ = h?/g. Here we have introduced an auxillary field H that re-
produces eq.(5.1) by H’s equation of motion. This is the Lagrangian at the scale A,
where the auxilliary field H will become the dynamical Higgs boson boundstate at
lower energies. We have ignored terms of order g’? which are generated when H is
integrated out to recover eq.(5.1).
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We now use the RG to run the Lagrangian down to the Majorana mass scale,
M, of the right-handed neutrinos, using only fermion loops. The result is formally:
Pl 2_ 32t An T 112
v = ZulDH|"—M°H H+7(H H)
+gLit HV + g Tar  HEf + 7S, M; v +h.c] (5.3)
where the Majorana mass matrix, M;, is now incorporated by hand. The Higgs
boson has acquired a logarithmic kinetic term and a quartic interaction due to the
fermion loops, and the Higgs mass has run quadratically:

Zy = (4m 3(g*Ny+g*No)In(A*/ M?)
M* = N*-(4m) 2(2g°Ny+28*No)(A* - M?)
Au = @m)2Qg'Ny+2g No)In(A*/ M?) (5.4)

The quantities appearing in eq.(5.3) are, of course, unrenormalized. The renor-
malized couplings at the present level of approximation are:
) ~
g g An
= = /l = —
and we see that in the large (N, N,) limit the ratio y2/y? is a constant.
For simplicity, we take the Majorana mass matrix to be diagonal,

M = diag (M;, M, M3). In the large M/vyeqx limit, where vyeqr ~ 175 GeV,
the masses of the three light neutrino states are given by the seesaw mechanism:

(5.5)

2.2
i_ y"vweak

v M,;
Assuming that y, is ~ @(1), and ~ eV masses for the light neutrinos, we expect
M; ~ 10'3 GeV. Thus, in the RG evolution of the system, loops containing right-
handed neutrinos occur only above the scales M;. As an approximation, take the
threshold of the v}, in loops to be at a common Majorana mass scale M.

m , (5.6)

Note that the renormalized Ay = 1 ul Z?I has the limits Ag/ yﬁ — 0 and
Arly? — (constant) as u — A. The extent to which the top quark participates
in the binding of the Higgs boson relative to the neutrinos is determined by
g’N./g>N '+ which we assume is of order 1/ Ny, and thus the dominant coupling
at the UV scale is g2. While we could keep the order g'? terms in the factorization
of eq.(5.3), this would make a weakly boundstate doublet, H' composed mainly
of £t, but since g'? is subcritical this state would remain a heavy dormant doublet
with m? ~ A2,

Below the Majorana mass scale M the neutrinos decouple and the only signifi-
cant running in the fermion loop approximation is the top quark. The electroweak
scale is tuned by the choice of critical couplings. The quadratic running to a zero
mass Higgs boson, M? = 0 defines the critical coupling:

?_N 12 _ 2 M2
8 f+g NC—SE 1+F (57)
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The criticality, we assume, is due principally to the large value of g2 and is only
slightly modified by the top quark. We then choose g? slightly supercritical to pro-
duce the phenomenological tachyonic Higgs potential, M? = —Mf{Z (A Mp).

The NJL model is schematic, and must itself be an approximation to some new
dynamics in the UV. This structure suggests a new gauge interaction which leads
to eq.(5.1) upon Fierz rearrangement, in analogy to topcolor models [82], as:

2 2 A A
%I:LiV;?VRjLiz—%TJJ%Y”LLVR%Y”VR+..., (5.8)

where the Gell-Mann matrices 14 now act on the flavor indices. The g’ term then
requires some extension of the theory. A model such as this assigns an SU(3) gauge
group to lepton family number, and therefore gauge charges to the vg;, i.e, the
vg; are no longer sterile. This would imply that the Majorana mass matrix must be
generated by a VEV associated, e.g., with additional SU(3) scalar fields. With vg;
in the triplet representation, this requires {3} and/or {6} scalar condensates, and
would dictate the neutrino mass and mixing angle structure.

5.2 YUKAWA SECTOR

The above discussion is the Wilsonian renormalization group approach. To im-
prove the calculation, we turn to the full RG equations which are used below the
scale A, together with the matching conditions dictated by the fermion bubble ap-
proximation [13]. The full RG equations (for N =3 these are a slight modification
of ref. [78]) take the form:

By, 9 9 17
(4n)2; = JYi-8g+30m(u- My, -8 - 81
ﬁ)’v 9 9 3
(4”)2W = Om(u-M)|Zyy+3yi -8 -8
ﬁgl 41 2 2ﬁg2 19 2
@n?== = —gf, @m*—=>=-—
& 6 81 @ 6 8
(47:)2% = 78 (5.9)
3

where g1, g2, and g3 are the gauge couplings of the U(1)y, SU(2)r, and SU(3),
symmetries respectively, y; is the top HY coupling, and y, the HY coupling of the
lepton doublets to right-handed neutrinos. We have introduced a step-function,
Oy =0(u— M), where 8(x) =1; x = 0and 8(x) = 0; x < 0. The step-function models
the threshold of turning on the right-handed neutrino corrections at the scale of
the Majorana mass matrix.

In Fig. 5.1 we demonstrate the running of the HY coupling for the top quark
and the neutrino as described. We use the initial conditions for the gauge
couplings g1(mz) = 0.36, g2(mz) = 0.65, gs(mz) = 1.16, for the HY couplings:
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yi(mg) = 0.99, and y, (M) = 1, and for the masses mz =91.2 GeV, m; = 173.2 GeV,
and M = 10'3 GeV.

The evolution in Fig. 5.1 clearly indicates the existence of a Landau pole for the
HY couplings at a scale A ~ 102° GeV; in accord with what one would expect if the
Higgs is a fermion pair condensate.

The Landau pole of the neutrino HY coupling is seen to pull the top HY towards
a Landau pole at A. The neutrino HY coupling is always significantly larger than
the top coupling for the scales where the perturbative result is valid. For the dis-
played example we find the ratio y,/y; = 3 for the region very close to the Landau
pole.

To verify the consistency of this behavior of the top quark, consider the region
below, but near, A. Here the RG equations for top and neutrino HY couplings can
be approximated in the large (N¢, N,) limit by:
dny; ~ (4n)? dny,

42
4m dinp dinp

~ Ny + Ney?, (5.10)

hence:
2dIn(yilyy) _

4
4m dinp

(5.11)

This implies that y, (1)/ y:(n) — (constant), as we approach the scale A. The ratio
vi!yv ~ g'1 g, so the role of the top quark role is only that of a spectator.

In this simplified setup, inserting an experimental neutrino mass in (5.6) yields
yv(M) as a function of M. For a chosen M, this value may be used as an initial
condition in the RG equation for y,, and the scale A may be read off from the
solution to the RG equations. A simple analytic estimate is given by setting to zero

M = 10" GeV

L L L L L
100 100 1010 1014 1018
u/ GeV

Figure 5.1: The RG evolutions of the top (solid) and neutrino (dashed) HY cou-
plings with contributions from right-handed neutrinos for renormalization scales
above the neutrino Majorana mass; x> M = 10'3 GeV.
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all couplings except y,, in which case one finds for the one loop solution

(47 Vweak)2

A= Mex
ImP M

. (5.12)

Here v is again the Higgs VEV and m,? is the experimentally measured neu-
trino mass. The estimate (5.12) is in good agreement with the full numerical solu-
tion due to the fact that the neutrino coupling itself is what drives the divergence
at A. The relation (5.12) also gives a lower bound on the possible compositeness
scale A, for any neutrino mass given by

exp

-1
Amm:l,sx( v ) %101 GeV. (5.13)
eV

We perform the numerical analysis as before using the RG equations above,
and obtain the scale associated with the Landau pole for different values of M
given a specific mass of the light neutrino states in the eV range. In Fig. 5.2 we
show numerical results concerning the relation between the Majorana mass and
the A scale for different values of the neutrino mass. The perturbative nature of
our analysis does not allow us to extrapolate to infinite coupling values, so we in-
stead take the naive estimate of the A scale to be defined by y, (A) = 30. We stress
that this analysis is meant to provide a demonstration of principles rather than
high precision results.

Two distinct behaviors are exhibited in Fig. 5.2: For smaller values of the Ma-
jorana mass, the scale A is very sensitive to the choice of neutrino and Majorana
mass. This is due to the fact that y, (m;) is quite small for these values, and more
RG time is needed to run to the Landau pole. For larger values of the masses,
yv(m;) also grows large in accordance with (5.6) and the Landau pole is shifted
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Figure 5.2: Numerical results displaying the relation between the Majorana mass
and the scale associated with the Landau pole for the neutrino HY coupling for
different values of the neutrino mass.
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closer to the scale where the neutrino coupling becomes active in the RG equa-
tions.

5.3 SCALAR SECTOR

In the minimal version of a single composite Higgs boson, the physical Higgs mass
prediction is larger than the observed ~ 125 GeV. The Higgs mass is controlled by
the electroweak VEV, v,,.4k, and the quartic coupling. The Higgs compositeness
conditions predict a Landau pole for the quartic scalar coupling at the composite-
ness scale A [13]. However, the quartic coupling constant in the standard model
is to be too low to match these conditions, and indeed, appears to decrease with
scale potentially, becoming negative at ~ 10'? GeV as seen in Chapter 2 .

To achieve compositeness of the Higgs boson, we employ a simple modifica-
tion by which the observed Higgs quartic coupling, A, becomes only a low energy
effective coupling, while the true quartic coupling, 1y, is larger and can have the
requisite Landau pole. The actual quartic coupling needs only be about 2x the
observed A to achieve this, but requires additional physics at the ~ 1 TeV scale.

In the spirit of [83], we extend the scalar sector to include a complex singlet, S
and the new Higgs potential becomes:

y=An (H'H- v2)2 oA (s's- uz)z
2 2
+AHS(HTH— u2) (STS— uz), (5.14)

where we have assigned the vacuum expectation values
(H'Hy = v?, (S'S)y=u?. (5.15)
The VEVs (5.15) are the global minima of the potential when Ay, As > 0and AgAs >
A2, ..
HS

Expanding about the minimum of eq.(5.15), one finds the mass matrix for the

massive scalars to be
o’V | Am ¥ Agsvu
a(pl(p] AHSVU lsuz

where ¢; refers to the direction of the VEV in H and S. The eigenvalues are

mi = Agv? +/15u2 +x,

where x = \/(Agv2 — Asu?)2 +4Aysv2u?. In the limit where Ayv? < Agu?, the
lightest state mostly resides within H, and the mass can be approximated by

2 2 A?{s 2 Auv? 2
my=m- =2 AH—TS v'+0 e v-. (5.16)
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The effective quartic coupling, measured from the Higgs mass, is now:

s
A=Ag—-—=, 5.17

As (5.17)
which is intrinsically smaller than the coupling Ay. Thus, the composite picture
with a suitable Landau pole in A is now possible.

5.3.1 Singlet scalar extension

We now analyze the RG evolution of the full theory with an eye to the Landau pole
in Ap. Assuming S is an electroweak SU (2) singlet, and U(1)y sterile, the RG equa-
tions for the scalar sector are given by

Bry = (12J’%+129MJ’V—38%_985)/1H—12(y?+HMJ/;I)
3 3 9
+Zgj‘+zgfg22+zg§+12/1§{+29u/1§15, (5.18)
3 9
Bius = 63’?+129MJ/V—585—583+61H Aus (5.19)
+40,(As+Ags)Ays,
Bry, = 4A%g+100,A%, (5.20)

where we have included the Heaviside function 8,, = 6(u — u), to adjust for the
fact that loops involving the S state are not taken into account for scales below the
VEV (S) = u which generates the mass for the S state.

To accommodate the composite scenario, as first described in [13], both the
quartic coupling and the HY coupling for the condensating fermions must diverge
at a scale A. Furthermore, the nature with which the scalar becomes propagating
at lower energy scales, sets the requirement

lim Ay/ys =0, (5.21)
pu—A

and we expect the common divergence to yield

lim Ay/y2=0Q). (5.22)
pu—A

In Fig. 5.3 we demonstrate the evolution of the quartic coupling for a specific
choice of initial conditions. We choose a mass for the active neutrino m; " = 1
eV, which yields a divergence of y, around A = 10'® GeV, under the assumption
that M = 5 x 10'3 GeV. At the scale where y, (i) = 10, we then define the initial
conditions for the quartic couplings Ay (1) = 98, in accordance with (5.22), and
the somewhat arbitrary choices Ags(u) = 23, As(u) = 1.7. The assumed value for
u =1 TeV. The IR phenomenology features a large value for the Higgs quartic cou-
pling A g ~ 0.7, while the effective coupling is considerably smaller A ~ 0.28 corre-
sponding to a Higgs mass my ~ 130 GeV.
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M=5x108GeV , m, =1eV
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Figure 5.3: The RG evolution for the quartic couplings for a specific choice of initial
conditions at the UV scale. The IR phenomenology features a large quartic for the
Higgs, while the effective coupling leads to a light Higgs mass my ~ 130 GeV.

The RG system involves some degree of tuning to ensure the proper behavior
of the two new quartic couplings. Specifically, we must tune g to be small, to
ensure a large correction in A as seen in (5.16) while Ays is also tuned, such that
Ag > Ags > Ag is satisfied for all RG scales, in order to ensure a valid value of A at
small scales.

This model should merely serve as a proof of concept, displaying the possibil-
ity that the UV behavior of the Higgs quartic coupling can include a Landau pole.
In this setup we have looked at the simplest possible scalar extension of the stan-
dard model with the standard Higgs mechanism in play for both scalars. The is-
sues of tuned scalar couplings may then be alleviated if a different mechanism for
symmetry breaking or a more complex scalar sector is considered. For a large class
of more general gauge-Yukawa theories, a composite limit due to four fermion in-
teractions at high energies is easily obtainable, as shown in [3], while we will focus
on the simplest alternative solutions below.

5.4 ALTERNATIVE SCALAR EXTENSIONS

As we have introduced a tuning between the dimensionless coupling constants of
the scalar sector in addition to the usual tuning for the Higgs mass parameter, it
would be beneficial to find a mechanism to stabilize the IR phenomenology to-
wards changes in the initial UV conditions. We expect that this might be found by
connecting the symmetry breaking mechanisms for the scalar sector.

In the previous example, the role of the “portal” coupling Axs was to supply
a correction to the quartic Higgs coupling in the effective coupling by connect-
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ing the two scalar sectors, while the symmetry breaking mechanism is that of the
standard Higgs boson for both the H and S scalars.

5.4.1 Negative portal coupling

We can expand the role of the portal coupling by letting the portal interaction com-
municate symmetry breaking in the dark S sector to the standard model. Setting
Ams < 0 and assuming (S) # 0 can trigger spontaneous symmetry breaking in the
standard model, even if the mass term for the Higgs mff =0, since the portal inter-
action will add a negative squared mass contribution for H. If the portal coupling
is very small, then there can be a large hierarchy between the VEVs of S and H, and
the validity of eq.(5.16) is guaranteed.

The change from a positive portal coupling to a negative one can thus change
the nature of the symmetry breaking for the Higgs particle. It allows for other val-
ues of the Higgs mass parameter, and specifically one can choose m%, =0 and still
obtain a second order phase transition due to the portal interaction. The actual
analysis of this alternative model is however almost identical to the original, since
the stability constraint and mass prediction only involve }L%IS' The measured Higgs
mass is still obtainable together with a Landau pole for A, albeit tuning between
the scalar couplings is needed.

5.4.2 Communicated Coleman-Weinberg symmetry breaking

Common to the scalar sectors discussed so far has been the feature that a mass
scale has been inserted by hand into the potential, either for both scalars, or for
one of them. This enables the generation of a vast interval of possible scalar masses,
but intrinsically means that these are very sensitive to the input parameters. An
alternative way to generate mass scales is the dynamical one, where the mass
scales arise directly from the RG evolution. We will show in the following that
Landau poles in the quartic couplings, in accordance with a composite picture,
may also accommodate spontaneous symmetry breaking due to the Coleman-
Weinberg(CW) mechanism as demonstrated for elementary scalars in [84].

It is central to the success of this model, that we now consider a dark’ scalar
doublet S, gauged under a new SU(2) x groupz. Since we want all mass scales to
be generated dynamically, the potential is given as

V= )L?H(HTH)ZMHS(H*H)(STSH%(STS)Z, (5.23)

where we will investigate the cases where As < 0. Just as before, the requirement
for stability of the potential is

Ag>0, As>0, Agds>Ai.. (5.24)

ISimilar models with a portal coupling to another scalar sector are often used to probe dark
matter phenomenology.

2The critical property of the gauge group is asymptotic freedom, so any other gauge group with
this property could have been used.
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Spontaneous symmetry breaking then occurs dynamically in this setup via the
Coleman-Weinberg mechanism when the RG evolution brings the system of cou-
pling constants into violation of the stability conditions (5.24).

The driving force behind the symmetry breaking in this setup is the new gauge
coupling g, related to the SU(2)x gauge symmetry. As this coupling becomes
large at some scale due to asymptotic freedom, the quartic coupling As will be
driven negative in the IR, due to the form of its beta function which is positive for
any nonzero value of the couplings:

9
Bas = 4A3g+ 1215 + Z g1 —98As. (5.25)
Denoting by s* the scale at which Ag = 0, and performing the approximation close
to this scale that A5 = f,,In (si), the estimated value for the VEV of S coming from
the associated Coleman-Weinberg symmetry breaking mechanism is given by

(Sy=u=s*e 4, (5.26)

In return, the negative portal coupling A s induces a VEV for H:

-1
(Hy=v=uy | =25 (5.27)
Au
At this minimum, the mass matrix takes the form
22y -2v/ -2 H/l HS
v (5.28)
( 2\/=AuAus Abps— ,3/15 Trs

Assuming that v?> < u? which is to say AHS « 1, we may expand the eigenvalues

to the leading order in /}LHS and obtain

AsAH
_Bas 3

m? =2Av%, mi=
Ans

(5.29)

where the indices 1 and 2 relate to the state composed of mostly H and S respec-
tively, and A = Ay — ﬁz This naturally resembles (5.16), and we see once again,
how the effective quartlc coupling is smaller than the true coupling for the Higgs.

So far, the setup seems to resemble the simple one given in the previous chap-
ter. The key difference is that while a high degree of tuning was needed for the
initial conditions in the simple setup to guarantee the correct hierarchy at smaller
scales, this is no longer the case, since the dynamics at these scales are controlled
mainly by the evolution of the new gauge coupling.

Our probes of the parameter space for this theory will follow the lines of logic
from the previous section: Assuming a certain neutrino mass m, and Majorana
mass M, the scale of compositeness scale A is determined uniquely. We will then
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impose the constraint (5.22), which fixes the quartic couplings at this scale®. The
last remaining free parameter is the new gauge coupling gx, which will be fixed at
the mass of the Z boson. The only free parameters in our analysis are thus the two
masses associated to the neutrino sector and the value g.(mz).

The RG equations for the remaining quartic coupling and the new gauge cou-
pling is given to one loop by

Br, = (2y;+120nmyy—38; —985)Au—12(y; + Omyy)
3 3 9
+ng+ngg22+zg§+12/1§{+29u/1§[5, (5.30)
3 9
Brus = (63/? +60pmyy — 58% - zg,% +6Am|Ans (5.31)

9
+(6)Lg—zg§()/lH5+4/1§{5,
Pex = —48x- (5.32)

A numerical evaluation of the running of the couplings as described above will
yield the VEVs of H and S as well as the masses of the respective eigenstates,
through (5.26),(5.27), and (5.29), when the couplings are evaluated at the scale of
symmetry breaking s*.

A sample RG evolution yielding v = 175 GeV and my = 125 GeV is shown
in Fig. 5.4, where the increase of the gauge coupling gx in the IR is displayed
alongside the decrease of the dark quartic Ags, which is the source of the symme-
try breaking. We warn the reader that the value for (S) = u = 227 GeV, such that
v%/u? ~ 0.6 such that the approximation used in (5.29) may be invalid and a more
complete analysis should be performed. Once again, we postpone this for other
work, while aiming for a qualitative description for now.

For the RG evolution shown above all quartic values are fixed to be equal at the
compositeness scale, and the tuning between is no longer needed. Instead, hav-
ing settled on a specific neutrino mass, only the Majorana mass M and gx(mz)
require balancing in order to get the correct phenomenology in the Higgs sec-
tor. Keeping gx(my) fixed while varying M with respect to the sample calculation
above, yields the Higgs VEV and mass depicted in Fig. 5.5. Interestingly, the Higgs
mass seems to be stabilized around ~ 130 GeV for a range of different Majorana
masses, while the VEV has a stronger dependence on M.

Varying gx(m_z), one sees that in order to get values of v and my close to the
correct values, one has to remain within the interval gx(m) € [5;6] with M ~ 4 x
10'* GeV for the chosen value of m, = 0.3 eV. Thus the tuning problems within the
parameters of the theory have been greatly reduced, and the interesting region of

3We will assume that all quartic couplings are large at this scale which would be true in a theory
where all scalars are composite in the sense we have described here. This is not a necessary assump-
tion, and it may be relaxed if one wishes to consider elementary scalar dark matter extensions.
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M = 4.1x10* GeV, m, =03eV, g(Mz)=55

[Ansl

100 10° 106 104 104
u/Gev

Figure 5.4: The RG evolution for the quartic couplings in the communicated CW
setup. Choosing the active neutrino mass and Majorana mass, determines the
compositeness scale, where the quartics are given values such that Ay = [Agg| =
As = y2 at this scale. The final assumption is that gx (m) = 5.5, which determines
the IR behavior and symmetry breaking pattern. The evolution shown above yields
v =174 GeVand my = 126 GeV.

parameter space has been discovered. For the higher neutrino mass m, =1 eV, the
relevant values of M are centered at M ~ 1.2 x 10'* GeV, while for the lower mass
m, = 0.1 eV, realistic Higgs phenomenology requires M ~ 1.2 x 10'® GeV, while the
value of gx(my) is kept constant.

Along with the values for the Higgs mass and VEV, we obtain values for the
mass of the other scalar state m; = m, from (5.29) along with the mass for the dark
matter candidate My = gx * u/2, which are also shown in Fig. 5.5. For the choice
of parameters corresponding to the values for the Higgs observables, marked with
a grey line, we obtain mg ~ 190 GeV and Mx ~ 300 GeV. The predictions for these
dark matter observables are fairly independent on the choice of neutrino and Ma-
jorana mass in the setup.

The phenomenology of the model presented here is by construction virtually
identical to the one of its elementary counterpart, as reviewed in [?]. The main
effect of imposing the composite picture is that the absolute value for the portal
coupling A g is larger in our setup.

5.5 PROSPECTS FOR A NEUTRINO HIGGS CONDENSATE
We have thus seen that the Higgs theory can be described by a condensate of neu-
trinos due to the possible large values for the neutrino Yukawa coupling. The com-

posite theory may give the correct Higgs observables granted that a portal cou-
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m, =036V, g(Aew)=55
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Figure 5.5: Values of the Higgs VEV (v) and mass (my,) along with the mass of the
extra scalar (m;) and the dark gauge bosons (My) as the Majorana mass M is var-
ied, while the active neutrino mass m, = 0.3 eV and gx(m ) = 5.5. The grey dashes
indicate the point where correct Higgs phenomenology is realized.

pling to a new scalar generates a smaller effective quartic coupling for the Higgs
field. While large tuning is needed in the simplest setup, this may be alleviated if
the symmetry breaking occurs due to the Coleman-Weinberg mechanism in the
new scalar sector, and the predictions of the theory are then fairly unaffected by
variance of the external parameters.

Since the structure of the neutrino sector is of the seesaw type, the model does
not in this regard stand out from the bulk of neutrino theories. Tests of our setup
should thus mainly be found within the Higgs and portal sectors.
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The renormalization group flow gives us information on the variations of different
interaction strengths for gauge-Yukawa theories under a change of the relevant
scale for the process. For theories with different types of couplings we derived
consistency conditions relating the beta functions for the respective couplings to
one another. This new structure is also present in the RG equations for the stan-
dard model, and result from the Weyl consistency conditions. These originate in
the abelian nature of the Weyl anomaly, which in turn measures deviation from
scale invariance. The consistency conditions relate terms occuring at different
loop orders for different couplings to one another, and thus suggest an alterna-
tive perturbative counting in such theories. We have demonstrated that the effect
on the question of stability of the electroweak vacuum are not large enough to
change the conclusions on the matter of stability, although this may change with
increased experimental precision.

We have investigated the stability of extensions of the standard model with
well motivated dark matter candidates and shown that the electroweak vacuum
may be stable in such theories due to extra contributions to the quartic Higgs cou-
pling. The predictivity of these models is large due to approximate fixed points
for some ratios of the couplings in the IR. It was also shown that these exten-
sions could be consistent with a picture of asymptotic safety where the quartic
couplings vanish around the Planck scale due to gravitational corrections to the
beta functions for transplanckian momenta. This indicates that a large class of
perturbative extensions to the standard model may posses this feature.

Alternative to the picture of fundamental scalars is one, where the scalars are
sets of fermions held together by some four-fermion interaction. The correspon-
dence between gauge-Yukawa theories and four-fermion theories has been demon-
strated for a large class of QCD inspired gauge-Yukawa theories. We have demon-
strated how the compositeness conditions are satisfied for the couplings of the
theory and how a large ratio between the relevant scales in the theory can easily
be accomplished. Finally we have determined the parameter space where such
gauge-Yukawa theories are equivalent to a four-fermion theory at high energies.

As an application of the formalism derived for composite scalars above, we
demonstrate how the Higgs particle could be composed of neutrinos. The neu-
trino Yukawa coupling stays small until contributions from heavy right-handed
neutrinos modifies the running and introduces the divergence of the Yukawa cou-
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pling natural to four-fermion equivalent theories. We show that even with the
low Higgs mass measured at the LHC, the composite scenario is still viable if ex-
tra scalars exist. Specifically, we show that versions of popular dark matter mod-
els featuring Coleman-Weinberg symmetry breaking, are also consistent with the
composite scenario, and natural values for the Higgs mass and VEV are easily ob-
tained.
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ANALYTIC ANALYSIS OF THE
COMPOSITENESS CONDITIONS FORA
GAUGE-YUKAWA THEORY AT ONE LOOP

Itis possible to study the compositeness conditions in a general perturbative gauge-
Yukawa theory analytically, by analyzing the gauge-Yukawa-quartic system of beta
functions, at one-loop in all couplings. We will here consider the subspace of the-
ories represented by the Lagrangian in Egs. (4.14) and (4.15). The compositeness
conditions on the couplings were given in Eq. (4.17) and read:

2
. - . a . o . G
lim aylzo, lim —Z: lim —<=0, im y—zzT. (.33)
u—Ayy u—Ayy ay u—Auyv p—Ayy mH AUV

We imagine a situation where the theory considered is valid perturbatively
around some energy scale yy. We can then investigate, using the one-loop run-
ning of the couplings, whether the compositeness conditions will be satisfied at
some higher scale Ayy. The one-loop beta-functions in the Veneziano limit of the
theory will in general take the form:

,Bag = ata’g = —ﬁoaé ) (.34)
Ba, =0y = au(duau+dyay)—dyya§,, (.36)
Ba, =0cay = ay(foay +dyay+ fuay) + fuunds, (.37)

where ¢ = Inu/pp and all coefficients are positive definite in any gauge-theory,
except for fy. In infrared-free gauge theories y < 0. Here we do not consider
such theories, as we require the gauge sector to be perturbatively well-defined at
the composite scale, and thus require y > 0. Notice that the coefficient d,, is the
same in B4, and B, for any gauge theory. Also notice that 4, is decoupled from
ay, which holds to all orders in the Veneziano limit. The one-loop truncation of
RG equations allows us to first solve the gauge sector, then the Yukawa sector, and
finally the quartic sector sequentially.
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ANALYTIC ANALYSIS OF THE COMPOSITENESS CONDITIONS FOR A GAUGE-YUKAWA
THEORY AT ONE LOOP

THE GAUGE SECTOR AND THE STRONG SCALE

The solution of ag(#) is well known and reads:

1 1

— = —— 4 fot. 38
ag(f)  ag0) Po (:38)

It has a strong confinement scale at the point, where the left hand side vanishes,
which reads:

fg=ln—= = — , (.39)

where we defined ¢;.

THE YUKAWA SECTOR AND THE COMPOSITE SCALE

The beta function f,, can be used to reduce fq, to an ordinary differential equa-
tion in terms of Rgy, = ag/ay, which for ¢ # o reads:

Ry _ (Rgy—b) (.40)
dlnag - Algy =0 '
where
C C
a=1--2, p=—2_. (.41)
,60 Cg_,BO

It follows that @ and b have opposite signs and furthermore a < 1. The case cg = fo,
where b is not well-defined, will be considered in a moment.
It is easy to check that Eq. (.40) has the solution:

ag(6))\?
Rgy(0 = (R (0)—b( g ) +b. (.42)
8y ( 8y ) ag(O)
The compositeness condition for R, reads:
B . Auv
Rgy(t1)=0, for 0< tL—ln'u—<oo, (.43)
0

where we defined t;. Due to asymptotic freedom the last condition on #; can also
be stated in terms of ay:

ag(tr)
g (0)

Rgy(t1) =0, for 1> (.44)

It can then be seen that if a > 0 (i.e. ¢g < fp), and thus b < 0, the compositeness
condition will always be satisfied.
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THE YUKAWA SECTOR AND THE COMPOSITE SCALE

On the other hand, if a <0 (i.e. ¢g > o) we have to impose an extra condition,
since the composite scale in this case can be written as:

)\ R (0
(ag(L)) :1_L()_ (45)
ag(0) b
ag() Rgy(0)

The lower bound #; > 0 (i.e. < 1) is always satisfied, since 5— > 0. But

g (0)

the upper bound #; < co implies that C;Z ((%)) > 0 and leads to a constraint on the
parameter space:
Rgy(0)<b, (fora<0). (.46)

Using the expression for a g(t) in Eq. (.38) we can derive a general expression
for the composite scale Ayy, for any a and b satisfying the compositeness condi-

tions:
1
A 1 Rgy(0)\«
tp=In—Y = (1— 8 ) -1 (.47)
Mo Poag(0) b
Finally, for the special case a =0, i.e. ¢cg = B9, the RG equation for R, reads:
dR c
8y -7 (.48)
dinagleg=po  Po
From the general solution
cy  ag(t)
Ry (1) = Rgy(0) + —1 , 49
gy (1) = Rgy(0) Bo nag(O) (.49)
it is readily seen that the compositeness condition parametrized by
ocg(tL) = ag(O) exp (—?ng(O)) < ag(O) R (.50)
y

is always satisfied, since the coefficients in the exponential are positive definite.
Furthermore the composite scale here reads:
tL =In M — ;
Ho ﬁoa’g(o)
This is not in contradiction with Eq. (.47), since it can be seen to be contained in
that expression by noting that:

Ryy(0)\# Rq, (0
lin})(1+a 8y )) =exp (L()) :exp(%ng(O)). (.52)
a— y

. (.51)

exp (%ng(m) -1
y

—ab —ab

The hierarchy of scales between the composite and strong scales can now be
computed:
Bo

Bo— Cg ) Bo-cg

Cy

t;—ts=1In

Auv 1 (_ng(O))i_ 1

= = 1+ Ry, (0
Air  Poag(0) b ﬁoag(o)( ey (©)

(.53)

As we noted before, the expression is regular for (o — cg) — 0.
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ANALYTIC ANALYSIS OF THE COMPOSITENESS CONDITIONS FOR A GAUGE-YUKAWA
THEORY AT ONE LOOP

The SU(N) case

Let us be specific and restrict to the case in Eq. (4.30) discussed in the paper,
where:

B 22—-4x

fo="

, cy=2(1+x), cg=6. (.54)

The parameters a and b then read:

2(1-x) 3(x+1)
a= , b= .
11-2x 2(x-1)

(.55)

For x < 1 we get that a = 0 and the compositeness conditions are always satisfied
from the above analysis. For x > 0 we get that a < 0 and b > 0. The compositeness
conditions are in this case only satisfied if furthermore b > Rg,,(0) or equivalently:

a'y(o) S 2(x-1)
2g0)  3x+1D)

(.56)

ay(0)
ag(0)
for any x < 11/2 (such that By > 0) we can uniquely impose the compositeness

condition in Eq. (.56). Finally, the hierarchy of scales is given by:

Since

> 0 is always true, this constraint holds automatically for x < 1. Thus

11-2x

0) 1-x) 25w

3(1 o

A 0) 3(1

In=YY - 40 (”)) : (57)
AR 2(11-2x)ag(0)

THE QUARTIC SCALAR SECTOR

From the compositeness conditions Eq. (.33) it follows that the quartic couplings

may diverge only as fast as a, at the composite scale. This specifically means that

Landau poles in the quartic couplings entering before ¢;, defined above, are not

allowed. At the level of perturbation theory this is already implicit, since otherwise

the above analysis would suffer from large corrections from the quartic couplings.
We consider, as before, the RG evolution of ratios. In particular, consider

Ryu=—", Ryy=—. (.58)

v

The RG equation for Ry, can be written in terms of Rgy, as follows:

dRyy  Au+cgRgyRyy+(dy—cy)Ryu~ dyy R, (59)
dInRgy cy—(cg—Po)Rgy

This equation is not well-defined at ¢, — (cg — fo) Rgy = 0, which is a problem we will
get back to. To investigate the compositeness conditions, however, we only need
to understand the asymptotic behavior as ¢ — 77, and since Rg (1) = 0, and ¢y, > 0,

ALV



THE QUARTIC SCALAR SECTOR

the above equation is well-defined in limit  — ¢;. The asymptotic RG behavior is
thus given by:
dRyy _dy (d

d
-+ —y—l)Ryu—%Rf,u =po+p1Ryu—p2R2,,  (.60)
y

dinRgylt—1u ¢, Cy

where to keep the notation light we introduced the coefficients p;. Defining some
intermediary scale ¢, < 7, where the asymptotic solution is viable, we can parametrize
this solution by:

Aﬂ

Rgy (1)
p1—Aptanh (K— - In R;yy(t*))

Ryuld)| _, = : (61)

2[)2

where the discriminant A, reads:

Ap=1/p?+4pop2 - (.62)

The integration constant K is a number that has to be fixed by matching Ry, (£+) o

=1
to the full solution given in terms of Ry, (0) at the scale ¢, and is for this analysis
unimportant. The important result is that the solution exists and that the ratio of
couplings Ry, at the composite scale is fixed, since Rg(f7) = 0 and tanh(oco) =1,
and reads:

P1— Ap
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Ryu(tL) = ’ (.63)
which is also a fixed-point of the RG equation (.60). Notice that this value is nega-
tive, meaning that a, diverges to negative infinity as fast as a,, diverges to positive
infinity, while keeping their ratio constant. This is potentially a problem for the
stability of the potential near the composite scale. We shall comment on it after
having considered the other quartic coupling a, as well. Let us comment on the
region of validity of the above approximation. Since Ry, (f1) # 0 for any parameter
value, the asymptotic solution will be a good approximation as long as Rg, () < 1.
This can be expressed in terms of the initial conditions:

1
1 Rgy(0) = b\«
>t > -1, .64
L asymp. ﬁoag(O) ( 1-b ) (.64)
which for a = 0 exponentiates to:
I > Lasymp, > ———— exp(@ (R 0) — 1)) - 1] . (.65)
ymp. Boag(0) cy gy

Next we like to address the issue of divergence in Eq. (.59). The potential problem

is that if for some f; < ¢ < 17 the denominator goes to zero, i.e. Rg (1) = Cc_yo =b,
g

-B
then the quartic coupling will diverge at ¢. If By > c¢ then it is automatically never
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satisfied since Rgy () > 0. Let us consider the case cg > fp, meaning that a < 0 and
b > 0. From the general solution it is readily found that Rgy () = b only occurs for
t = t5, which is consistent and not a problem.

Finally, as a last condition on «a, we must ensure that it does not have Landau
poles in the whole region t; < t < f;. We ensure this by negation: consider the case
where @, does have a pole at a scale t; < ¢, < tz. Near this scale a,, is much bigger
than ay, and to a good approximation the RG equation reads:

Ba, = dua?, . (.66)
This is similar to the RG equation for ag, and analogously its strong scale reads:

1

fy=——r .
“ dyay(0)

(.67)

To ensure perturbation theory to be valid in the region #; < ¢ < t; thus requires
that t,, < t; or t,, > t;. Formally this gives:

Boag(0) for a,(0) <0 (ot <ty
du u 0 % -
(O] < Botg (0) (1— Rg;f‘”) —1] for a,(0) > 0 (o t,> 1)
(.68)

One can also include the corrections to this, by including the term a (f)a,(?) in
Ba, and setting a (1) = a,(0), which is a good approximation for intermediary
scales. One then finds the strong scale of a, to be:

dy ay(O))

ty,=———Io +
"= dya,(0) g( dy 0,4(0)

(.69)

which makes small corrections to the above bound on «,(0). Finally, including
all terms and assuming a(#) = @y (0), one can solve for a,(f) exactly. Defining
A=dy, B=dyay0)and C = —dyyay(O)Z, and the discriminant D = VB2 —4AC,
which is always real, since C < 0, the solutions reads:

B+Dtanh|1Dt~tanh™! (—B”%"‘“(O))]

ay(t =- . .70
M( ) lintermed. 2A ( )

If the argument of tanh is real, there is never a Landau pole, since tanh € [-1,1]
on the real domain. The argument can turn complex if |B + 2Aa,(0)| > D, which
potentially can lead to a Landau pole. Here one has to compute ¢, case by case
and compare with ¢; and ;. To avoid this, one can ensure that there is never a
pole, by over-constraining the argument of tanh to always be real, i.e.:

|IB+2Aa,0)|<D < —-B-D<2Aa,(0)<-B+D (.71)
4d,d 4d,d

>-1-1+ uzyy<2d”a”(0)<—1+ 1+%. (.72)
dy dyay(o) dy
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We now move on to the coupling a,, through Ry, as we did for a;, above. Its
RG equation can be written as:

dRy, (cgRgy —cy+dy) RJZ/L{RJ/V + fuRyuRyy + fuuRJZm + fVRJZ/u
dInRgy (Rgy (Bo—cg) +cy) RS,

(.73)

This is in general not a useful description, however, asymptotically the equation
simplifies to:

4R f f f
yv uu 2 u v 5

=———— R, +|p1—-————|Ryv+ = =m2R;, + MRy +10,
dInRg, lt~1 CyRJZ/u(tL) yv (pl Cleyu(tL”) yv cy Na2tvy, +Niltyy T 7o

(.74)

where we defined the coefficients ;. Note that g > 0 and 1, > 0, while n; can take
any real value, in general. The general solution reads:

Rey(1)

1
ni +Antanh(§Anlnm +Ky)

Ryn(0)] _, =~ , (.75)
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where t, is defined as before and

Ap=1/n5—41012>0. (.76)

The positivity constraint on this expression is a requirement we have to impose
to satisfy the compositeness conditions; for imaginary A; the above expression
switches from tanh to tan, and leads to Landau poles in a, before the composite
scale. This is therefore a constraint on the possible theory space of gauge-Yukawa
theories we are considering. Furthermore we get that:

mn— An

Ryv(tL):_ 27]2 . (.77)

Finally, we repeat the exercise of removing possible parameter region that vi-
olates perturbation theory in the region #; < ¢ < t;, by considering the strong scale
of a,. To a first approximation it is simply:

1

- fvav(o) ' (79

Iy
which leads to the equivalent bounds as in Eq. (.68). Perturbation theory is en-
sured if ¢, < ¢, for a,(0) <0 and ¢, > 1, for a,(0) > 0. Finally, we can again solve
the full differential equation by assuming that at intermediate scales a () = a,(0)
and a (1) = @,(0), which are good approximations in the composite phase space.
Defining this time A = f;, B = dya(0) + f,@,(0) and C = fuuozu(O)2 and the dis-
criminant D = vV B? — 4 AC, the solution is given by the same expression as for a,
in Eq. (.70). However, note that this time C > 0 and thus the discriminant can turn
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complex, i.e. for B2 < 4AC. Considering this case, the expression is rewritten in
terms of tan:

B-(iD)tan|}(iD)t +tan~! (22400
(1) = : (.79)
Tintermed. 2A

In this case there are many poles, since tan(z/2 + nx) = +oo for all integer n. The
scales at which these occur is given by:

7—2tan"! (%g)”(o)) +n-2m
tv - (iD) . (.80)

This leads to the extra constraint, i.e. the smallest negativ ¢, has to be less than

t; and the smallest positive ¢, has to be bigger than ;. This constraint is relevant

0Y2 .. . .
whenever4f, fi, > ( fu+ dy%) , while in the opposite case one should consider

a constraint equivalent to Eq. (.71).

The SU(N) case

Let us apply the above analysis to the case considered in the paper. The beta func-
tion coefficients read:

dy=8,dy=4,dy,,=2x, (.81)
fo=4, fu=16, fuu=12. (.82)

From these we derive the relevant parameters:

4 1-—x X V(1-x)2+16x

=—, 0j=—,0p=—, Ay= ——— .83

po 1+x p1 1+x p2 1+x p 1+x (:83)
2 V(1 —x)?+16x 24x°

Nno=—"—Mm=- (.84)

- ’ y M2 = .
L+x L+x (1+x)(x—1+/(1-x)2+16x)2

Notice that 77, <0 for any x. The expression for A; takes a lengthy expression, but
its constraint Eq. (.76) leads to:

x>—-4+3V3-1/6(7-4v3)~0.54. (.85)

For a given x it is always possible to find initial parameter values for ag, ay, ay
and a, such that the constraints Egs. (.56), (.68), (.71), (.76), and the ones related
to Eq. (.78)-(.80) are satisfied. We consider the details in the paper.

We have furthermore found that the ratio of quartic couplings over a, are
completely fixed at the composite scale, independent of initial conditions, and
given by Eq. (.63) and (.77).
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RUNNING MASS AND STABILITY OF THE POTENTIAL
The RG equation describing the running of the scalar mass term is given by
:Bmf{ zdtm%: m%(hyay+hvav+huau), (.86)

where for SU(N(¢) the parameters read in the Veneziano limit: hy, =4, h, =4, hy, =
8. This expression shows that, where it is valid, the scalar mass term can not
change sign, since its beta function is proportional to the squared mass itself. The
initial condition mfi > 0, should then ensure that spontaneous symmetry break-
ing will not occur in the range where the above expression may be applied.

The further condition mi,(,u) < uz should also be satisfied to make sure that no
scalar states decouple at energies higher than the strong scale. However, this con-
straint is not related to compositeness and can be relaxed to instead read m%(u) <
Lo such that the composite nature of the theory, which is probed for u > y stays
intact, while the IR physics defined by u < pp may have different phases. In our
analysis we have constraint the IR phase to be dominated by strong gauge inter-
actions.

Proceeding to study the stability conditions on the potential, we first note that
the scalar fields are well-defined for field values my (1) < H < Ayy, where as ar-
gued above mpy (1) < po. For a positive mass-term it is clear that the potential has
a minimum at the origin, (H) = 0, which preserves the U(Np) x U(Nfr) symmetry
of the classical theory. To ensure consistency of our analysis, we must make sure
that this symmetry is obeyed for large field values as well and at every scale in the
region o < p < Agy. Itis enough to study the diagonal field H =diag(h;,..., hn;,)
since this can be rotated into any other H by a U(Nf) x U(NF) transformations. In
terms of h; the potential reads:

Nr Nr Nr 2
V=m§{Zh$+uZh;*+u(Zh§) : (.87)
i=1 i=1 i=1
We consider the general case where u and v can take both positive and negative
values. As argued before if all /2; are small (i.e. h; << mpy) then one sees that the
minimum is at the origin, since my > 0. Let us now consider what happens for
large values of some of the fields h;, in particular take for i = 1,..., n the fields h; —
Ayvy,whilefori=n+1,..., Nr keep h; < mg. Then the potential is dominated by
the large fields and reads approximately:

V = mi(nAZy) + unAdy) + v(n®Agy) - (.88)
Positivity of this potential requires:

2
My

u
+—+v=0. (.89)
2

nAUV n
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In term of the rescaled couplings from Eq. (4.16), this becomes

2 2
ms5, N a, N, Np—
HF YL ra,20 = m}>0. (.90)

n(47‘[AU\/)2 n

Thus, in the large Np limit already assumed constraint mff > 0 ensures the poten-
tial to stay positive in the entire region of field values.

For completeness, let us discuss the finite N case, and thus consider the un-
rescaled couplings. If u is negative, then the strongest constraint comes from
n =1, yielding the constraint:

m2

ATH+v2—u foru<o. (.91)
uv

If v is negative, the strongest constraint comes from n = NF, thus:

2
my
T+u2—vNF forv<0. (.92)

AUV

If both u and v are negative, one has to maximize the function u + nv for n, and
ensure that the general constraint Eq. (.89) is satisfied.

AX
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