International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 120 (2008) 072027 doi:10.1088/1742-6596/120/7/072027

Monitoring the Atlas Distributed Data Management
System

Ricardo Rocha!, Miguel Branco', David Cameron?, Benjamin
Gaidioz!, Vincent Garonne!, Mario Lassnig'?, Pedro Salgado'
L CERN, European Organization for Nuclear Research

2 University of Oslo, Norway
3 University of Innsbruck, Austria

E-mail: ricardo.rocha@cern.ch

Abstract. The ATLAS Distributed Data Management (DDM) system is evolving to provide
a production-quality service for data distribution and data management support for production
and users’ analysis.

Monitoring the different components in the system has emerged as one of the key issues to
achieve this goal. Its distributed nature over different grid infrastructures (EGEE, OSG and
NDGF) with infrastructure-specific data management components makes the task particularly
challenging. Providing simple views over the status of the DDM components and data to users
and site administrators is essential to effectively operate the system under realistic conditions.

In this paper we present the design of the DDM monitor system, the information flow, data
aggregation. We discuss the available usage, the interactive functionality for end-users and the
alarm system.

1. Introduction

With the start of the LHC at CERN scheduled for the second quarter of 2008 also the
offline software systems have been focusing more on operational issues and spending less time
in additional developments or functionalities. Monitoring plays a central role in any operational
activity so a number of different systems have been developed during the last two years focusing
on several areas: workload management, data management, site/service reliability and many
others.

This becomes only more true when the system has to serve a community as large and spread
as the one making the ATLAS experiment. A tiered topology has CERN as the starting point
for data collection - the Tier0. Around it there are ten big Tierl centres, located in Europe,
Asia and North America, each serving smaller communities usually tied to a specific Tierl by
geographical proximity - Tier2s. Currently there are already more than 100 sites, and this
number will certainly increase once small Tier3 centres start participating more actively.

The data management part of the system is of extreme importance, as in ATLAS the
matchmaking between tasks and available resources is done based on the location of the data.
Having datasets quickly exported to the centres where the processing should occur is vital for

(© 2008 IOP Publishing Ltd 1

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 120 (2008) 072027 doi:10.1088/1742-6596/120/7/072027

successful operation. In the following sections we go through the details of how the flow of
data and the different components of the system are monitored, how operators can access the
monitoring data and which mechanisms exist to alert in case of misbehaviors.

2. ATLAS Distributed Data Management

The Atlas DDM system is composed of different components which interact with each other to
perform the different bookkeeping and data movement tasks. The catalogs take care of the first
part - bookkeeping - while the site services try to answer the different user requests to spread
existing data among the different sites - called subscriptions.

Central Catalogs Include the Subscription catalog, which stores data movement requests from
users; the Location catalog, storing the sites where replicas of the data can be found and
additional information about its completeness; the Content catalog, tracking relationships
between files and the coarser grained unit of a dataset; and finally the Repository catalog,
which keeps track of existing datasets and their different versions

Site Services A collection of agents, each performing a distinct task. There are agents fetching
new subscriptions from the central catalogs, evaluating appropriate replicas for each file in
a dataset subscription, submitting transfers to the File Transfer Service (FTS), registering
files in the local storage catalogs once they are successfully transferred into the site or
registering new dataset locations in the central catalogs once subscriptions are complete

We have introduced a central concept in the system, the dataset. With the expected amount
of data being so large[l], and the file sizes varying from the controlled production data to the
more chaotic user analysis results, having collections of files greatly reduces the dimension of
the bookkeeping task and improves performance as the dataset is also used as the unit of data
movement. And being simply an abstraction over the physical data stored in individual files,
datasets are also dynamic, as users can add or remove files from the collection, creating new
versions of the same dataset.

Subscriptions can then be made on datasets or specific dataset versions, triggering the data
flow which is the main focus of the monitoring system.

2.1. Data Flow

From a bookkeeping point of view a dataset can be in state Open, where new files can be added
or old ones removed; Closed, where the latest version of the dataset is finished and changes can
only be done by reopening it; or Frozen, where no more changes can be done to it.

In the same way, a dataset subscription can be in different states, depending on which stage
each of the files it contains are at any given time. The full state machine for creating a replica
of a dataset or dataset version in a given site is depicted in Figure 1.

Canceled
Subscription
Canceled CANCELED

Subscription First Transfer
Fetched QUEUED Started INCOMPLETE O
File Transfer
Finished COMPLETE
[All Finished = No] v
[All Finished = Yes]

Dataset Broken BROKEN

Figure 1. Dataset Subscription State Diagram

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 120 (2008) 072027 doi:10.1088/1742-6596/120/7/072027

Queued The dataset has been taken for processing by the site services, but its contents have
not yet been retrieved from the content catalog

Incomplete Dataset contents are known, and files have been queued locally for transfer where
appropriate

Canceled The user canceled the subscription. Files already transferred are not removed, but
the ones still in the queue will not be replicated

Broken The subscription is invalid and the site services have given up on serving it. This is
usually due to the wrong definition of the dataset itself

Complete The subscription has been fully served, and all dataset files are stored and registered
in the destination site

Individual file replications follow a much more complex state machine. Figure 2 represents a
simplified version, where states resulting from failures are skipped.

._ File Selected —m| UNKNOWN SURLS Submit Transfer m

Fetch SURLS Select Replica { Tool
KNOWN SURLS Request Status
[Finished = No]
©A_{ FILE DONE]-e F‘E‘ﬂ‘;“ﬁ'g"‘ i VALIDATED |< Validate 1 ATTEMPT DONE |<_ [Firished = Ves)

Figure 2. File Movement State Diagram

Unknown Surls No information about potential source replicas is currently known
Known Surls The list of potential source replicas has been retrieved

Assigned A valid source replica has been selected, and the transfer has been placed in the
queue

Pending The transfer has been submitted to the File Transfer Service (FTS) and the transfer
request status is being periodically checked by the site services

Attempt Done The FTS reported the transfer attempt has been finished. If it was not
successful, a new submission will be made, using the same or a different source replica depending
on the error returned

File Done The replica has been registered in the site local file catalog, the last step being
performed

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 120 (2008) 072027 doi:10.1088/1742-6596/120/7/072027

A file movement can also be put into a Hold state, when multiple failures have happened and
the system cannot resolve them itself, requiring human intervention. Also, any file replica can
be later put into a File Bad state, meaning that after being successfully stored and registered
in a site a local change occured, and DDM has been unable to use this new replica for other file
movements - usually it either became corrupted, impossible to retrieve from storage or it was
unregistered from the local storage catalog.

3. DDM Dashboard

The ATLAS DDM dashboard design results from the use cases of two different types of users.
Site and service operators start from a system overview, digging deeper into site, dataset or
file movement details as required. On the other hand, end users submitting dataset movement
requests are less interested in site performance, focusing directly on the current status of their
own subscriptions.

The DDM dashboard is composed of two main sets of components: the web application and
all the actions available through its HTTP based interface; and the agents, each taking care
of a specific task. All of them use a unique backend database, where all data concerning the
monitoring of DDM and grid fabric components is stored.

3.1. Web Application - Querying

The web application’s most visible use is of course the access to the data using a web browser.
XHTML is the default output format for any query resulting in response data, though other
formats are available where appropriate. The available functionality via the web interface is
depicted in Figure 3.

Eite Emors
List
Activity Site Dataset Dataset N File Events

Salect Cloud Select Site Salact Daﬁaset ! Site

Cloud 3 A Y

Figure 3. Web Application Navigation

This extra functionality concerning multiple output formats is a direct benefit of having the
system built on top of the ARDA Dashboard framework[5]. It offers native translation of the
response objects into XML or CSV formats, as well as the representation of data in a graphic
format (only available when the output data is adequate). The mechanism of content type
negotiation strickly follows what is defined in RFC 2616]2].

Building on top of the XML output format there is also a set of command line interface tools
and a python API available as alternatives to the more rigid web browser interface. Both should
ease the task of integrating dashboard data into external tools.

3.2. Web Application - Collection
The second use of the web application is for information collection. It turns the same endpoint
used for data query into a messaging system, and is used to gather the different messages coming
from the multiple site services instances.

The main advantages of using HTTP for delivering these messages are the external
dependencies. At the collector side there is already an HTTP server running for the querying

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 120 (2008) 072027 doi:10.1088/1742-6596/120/7/072027

interface, so nothing needs to be added. And at the producer side, as the site services run in
standard linux distributions, tools like curl are installed by default and the required outbound
ports 80 and 443 open for everyone to use.

The main and probably only disadvantage of this option is the lack of reliability in the
message delivery. This is a feature that does not exist natively in the HTTP protocol, so a
client side layer with persistent storage had to be developed for cases where the endpoint is
down or unreachable. Several modern messaging systems provide this functionality both at the
client and broker levels.

3.8. DDM Dashboard Agents
Other than the collection of dataset and file transfer information from the site services, there
are other individual agents performing different tasks in the DDM dashboard.

3.3.1. SAM Collector The LCG Service Availability and Monitoring (SAM)[3] service gathers
information concerning service and site availability by running a set of tests against the different
instances running at the sites. It covers all types of services, but for the case of the DDM
dashboard data management services are of particular interest, namely the Local File Catalogs
(LFC) and File Transfer Services (FTS) running at the Tierl centres, and the Storage Resource
Managers (SRM) and Storage Elements (SEs) running at each site.

For collecting this information an agent uses the SAM XSQL interface, which allows controlled
queries to the backend database via HT'TP requests.

3.8.2. Storage Space Monitoring Running out of storage space at a site is obviously a show
stopper and should be prevented as much as possible. Currently the way available storage space
is collected is by querying the BDII service. This is not always reliable, as there is no guarantee
the information being published is VO specific. This agent has been developed keeping in mind
that better data will be available in the future, so that the same kind of information can be also
collected from different sources.

3.8.8. Statistics Collection This agent is responsible of generating cloud and site statistics
concerning data movement - throughput, number of files and datasets moved, average dataset
and file completion time, dataset and file time in queue, ... - and errors, both during transfer
and registration. It generates these values every 10 minutes, giving a close to real time view of
the system behavior.

3.8.4. Snapshot Collection Snapshots are usually gathered once per hour, and include detailed
site information - size of the file and dataset queue, number of files in each transfer state, status
of the underlying grid fabric services, etc.

3.8.5. Statistics Plotting As statistics are being generated, also plots are created showing the
different metrics being gathered on a cloud and site basis.

3.3.6. Snapshots Plotting As for statistics plots, snapshot plots follow the snapshot collection,
being updated every hour.

3.8.7. Site Information Collection ATLAS provides its own information system where the site
topology is defined, called TiersOfAtlas [4]. The dashboard uses this as the main site information
provider, complementing it with some information coming from the BDII service.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 120 (2008) 072027 doi:10.1088/1742-6596/120/7/072027

3.8.8. Alarms and Notifications A single agent is responsible of sending notifications and
alarms to the system operators. It periodically checks the different metrics about the DDM
site services and the corresponding grid fabric services - LFC, FTS, SRM, SE - and alerts when
performance goes below a certain threshold, or one of the services becomes unavailable.

3.4. Performance
There are two main concerns when it comes to performance: the backend database, due to the
amount of data being collected; and the web application endpoint, not really due to heavy data
querying but due to it also being used to collect the different messages coming from the DDM
site services.

Each of these points is described in more detail below, along with the solutions put in place
to have a satisfactory quality of service.

3.4.1. Backend Database Rough figures used when designing the system indicated half a million
datasets being created per year, each having 10 to 10000 files. With around 80 storage areas
at the time (both disk and tape) it was easy to calculate a worst case scenario and from these
numbers it was decided to rely on the powerful Oracle service provided by CERN IT.

The most impressive number comes not from the datasets or files, but from the individual
file transfer state reports, as the transfers evolve in the state machine introduced in a previous
section. This is of course temporary data, useful for real time debugging but less useful once
information becomes old and statistics have been gathered. Even so, the period of time where
this information is kept should be made as big as possible.

Different Oracle features were used to tackle the problem. Connection Pooling is used to
reduce the overhead of establishing new database sessions, and this is true for the web application
and all agents. Table Partitioning is especially important for the file state history table, but is
also used in both datasets and files tables. In all cases the record creation time field is used for
defining the different partitions, which prevents row movement from the start. And this same
field is used in as many queries as possible, to reduce the amount of data being accessed by
the different database sessions. The other important feature is related to Bulk Insertions. This
is one of the most important performance enhancements for any database with high insertion
rates, and it matches the need of the site services to also deliver messages in bulk due to the
messaging system implementation. There is no mechanism implemented in the system to have
partial success of a transaction doing bulk insertions, which means in the case of errors there is
an inherent overhead introduced when performing the rollback.

3.4.2. HTTP endpoint Choosing HTTP as the messaging protocol means that the server
receiving messages from the different site services instances is hit very hard and should be
highly optimized. Monitoring the system has shown peaks of up to 60 requests per second,
with 5 requests per second in normal operation. Considering that most of these (90%) are bulk
requests, the load on the service is very high.

The option was to use the Apache Web Server, which has proved to be one of, if not the most
performant implementation of an HT'TP server. Still, some tuning had to be done to accomplish
the necessary performance.

The first step was to use Apache in worker MPM mode, where requests are served by multiple
threads in a single process (or multiple processes with multiple threads). This is the only way
to have proper connection pooling in the web application, as the pool implementation used is
limited to a single process. At the same time, having less processes and relying on threads
to handle requests greatly reduces the memory footprint of the service. A second important
feature is the use of the KeepAlive directive, which makes the server keep the TCP connection
to a specific client open for a certain period of time after the request has been processed, in

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 120 (2008) 072027 doi:10.1088/1742-6596/120/7/072027

the hope that it will issue a new request soon reducing the overhead of establishing new TCP
connections.

Finally, the server is kept as minimalistic as possible, so most of the modules being loaded
by a default Apache installation are removed and only the absolutely necessary is kept.

4. Conclusions and Future Work

The distributed nature of the ATLAS Data Management system increases the difficulty of
monitoring the behavior of the overall system. Having a centralized point where monitoring
data is collected, covering both ATLAS specific and grid fabric services is an ideal solution for
site and service operators.

Using systems with recognized performance by both industry and research communities, and
after several iterations and trials with multiple setups we have managed to provide a working
system being used on a daily basis in a production environment.

Future work will certainly involve adding new functionalities, most likely improving the
existing alarm system which is still rather limited. The messaging system between the site
services and the monitoring application is another area of improvement, possibly replacing it by
an equivalent one deployed and managed by the grid fabric infrastructure.

Acknowledgments
This work was funded by EGEE. EGEE is a project funded by the European Union under
contract INFSO-RI-031688

References

[1] R. Jones et al, ATLAS Computing Model, January 2005

[2] R. Fielding, J Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, RFC 2616, June 1999

[3] LCG Service Availability and Monitoring (SAM), https://twiki.cern.ch/twiki/bin/view/LCG/
SAMOverview

[4] Tiers of Atlas, http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/project/ddm/releases/
TiersOfATLASCache.py

[5] Andreeva J, Gaidioz Benjamin, Herrala Juha, Maier Gerhild, Rocha Ricardo, Saiz Pablo, Experiment
Dashboard: the monitoring system for the LHC experiments, Proceedings of the 2007 workshop on Grid
monitoring

