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Preface

Target Audience and Prerequisites. The mathematical philosophy of in-
dex theory and all its basic concepts, technicalities and applications are explained
in Parts I-III. Those are the easy parts. They are written for upper undergraduate
students or graduate students to bridge the gap between rule-based learning and
first steps towards independent research. They are also recommended as general
orientation to mathematics teachers and other senior mathematicians with different
mathematical background. All interested can pick up a single chapter as bedside
reading.

In order to enjoy reading or even work through Parts I-III, we expect the reader
to be familiar with the concept of a smooth function and a complex separable
Hilbert space. Nothing more. Instead of ascending systematically from simple
concepts to complex ones in the classical Bourbaki style, we present a patch-work
of definitions and results when needed. In each chapter we present a couple of fully
comprehensible, important, deep mathematical stories. That, we hope, is sufficient
to catch our three messages:

(1) Index theory is about regularization, more precisely, the index quantifies
the defect of an equation, an operator, or a geometric configuration from
being regular.

(2) Index theory is also about perturbation invariance, i.e., the index is a
meaningful quantity stable under certain deformations and apt to store
certain topological or geometric information.

(3) Most important for many mathematicians, the index interlinks quite di-
verse mathematical fields, each with its own very distinct research tradi-
tion.

Part IV is different. It is also self-contained. All concepts will be explained fully
and rigorously, but much shorter than in the first Parts. However, this last Part is
written for graduate students, PhD students and other experienced learners, inter-
ested in low-dimensional topology and gauge-theoretic particle physics. We try to
explain the very place of index theory in geometry and for revisiting quantum field
theory: There are thousands of other calculations, observations and experiments.
But there is something special about the actual and potential contributions of index
theory. Index theory is about chirality (asymmetry) of zero modes in the spectrum
and classifies connections (back ground fields) and a variety of other intrinsic prop-
erties in geometry and physics. It is not just about some more calculations, some
more numbers and relations.

Outline of History. When first considering infinite-dimensional linear spaces,
there is the immediate realization that there are injective and surjective linear en-
domorphisms which are not isomorphisms, and more generally the dimension of the

xi
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kernel minus that of the cokernel (i.e., the index) could be any integer. However, in
the classical theory of Fredholm integral operators which goes back at least to the
early 1900s (see [Fred]), one is dealing with compact perturbations of the identity
and the index is zero. Several sources point to Fritz Noether (in his study [No] of
singular integral operators, published in 1921), as the first to encounter the phe-
nomenon of a nonzero index for operators naturally arising in analysis and to give a
formula for the index in terms of a winding number constructed from data defining
the operator. Over some decades, this result was generalized in various directions
by G. Hellwig, I.N. Vekua and others (see [Ve62]), contrary to R. Courant’s and
D. Hilbert’s expectation in [CH] that “linear problems of mathematical physics
which are correctly posed behave like a system of N linear algebraic equations in
N unknowns”, i.e., they should satisfy the Fredholm alternative and always yield
vanishing index. Meanwhile, many working mainly in abstract functional analysis
were producing results, such as the stability of the index of a Fredholm operator un-
der perturbations by compact operators or bounded operators of sufficiently small
operator norm (e.g., first J.A. Dieudonné [Di], followed by F.W. Atkinson [Atk],
B. Yood [Yoo], I.Z. Gohberg and M.G. Krein [GK58], etc.).

Around 1960, the time was ripe for I.M. Gelfand (see [Ge]) to propose that
the index of an elliptic differential operator (with suitable boundary conditions in
the presence of a boundary) should be expressible in terms of the coefficients of
highest order part (i.e., the principal symbol) of the operator, since the lower order
parts provide only compact perturbations which do not change the index. Indeed,
a continuous, ellipticity-preserving deformation of the symbol should not affect
the index, and so Gelfand noted that the index should only depend on a suitably
defined homotopy class of the principal symbol. The hope was that the index of
an elliptic operator could be computed by means of a formula involving only the
topology of the underlying domain (the manifold), the bundles involved, and the
symbol of the operator. In early 1962, M.F. Atiyah and I.M. Singer discovered
the (elliptic) Dirac operator in the context of Riemannian geometry and were busy

working at Oxford on a proof that the Â-genus of a spin manifold is the index
of this Dirac operator. At that time, Stephen Smale happened to pass through
Oxford and turned their attention to Gelfand’s general program described in [Ge].
Drawing on the foundational and case work of analysts (e.g., M.S. Agranovic, A.D.
Dynin, L. Nirenberg, R.T. Seeley and A.I. Volpert), particularly that involving
pseudo-differential operators, Atiyah and Singer could generalize F. Hirzebruch’s
proof of the Hirzebruch-Riemann-Roch theorem [Hi66a] and discovered and proved
the desired index formula at Harvard in the Fall of 1962. Moreover, the Riemannian
Dirac operator played a major role in establishing the general case. The details of
this original proof involving cobordism actually first appeared in [Pal65]. A K-
theoretic embedding proof was given in [AS68a], the first in a series of five papers.
This proof was more direct and susceptible to generalizations (e.g., to G-equivariant
elliptic operators in [ASe] and families of elliptic operators in [AS71a]).

The approach to proving the Index Theorem in [AS68a] is based on the fol-
lowing clever strategy, which we shall explain in detail in Chapters 11-13 of this
book. The invariance of the index under homotopy implies that the index (say,
the analytic index) of an elliptic operator is stable under rather dramatic, but con-
tinuous, changes of its principal symbol while maintaining ellipticity. Using this
fact, one finds (after considerable effort) that the index (i.e., the analytical index)
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of an elliptic operator transforms predictably under various global operations such
as embedding and extension. Using K-theory and Bott periodicity, a topological
invariant (say, the topological index ) with the same transformation properties under
these global operations is constructed from the symbol of the elliptic operator. One
then verifies that a general index function having these properties is unique, subject
to normalization. To deduce the Atiyah–Singer Index Theorem (i.e., analytic index
= topological index ), it then suffices to check that the two indices are the same in
the trivial case where the base manifold is just a single point. A particularly nice
exposition of this approach for twisted Dirac operators over even-dimensional man-
ifolds (avoiding many complications of the general case) is found in E. Guentner’s
article [Gu93] following an argument of P. Baum.

Not long after the K-theoretical embedding proof (and its variants), there
emerged a fundamentally different means of proving the Atiyah–Singer Index The-
orem, namely the heat kernel method. This is worked out here (see Chapter 18 in
the important case of the chiral half D+ of a twisted Dirac operator D. In the index
theory of closed manifolds, one usually studies the index of a chiral half D+ instead
of the total Dirac operator D, since D is symmetric for compatible connections
and then index D = 0.) The heat kernel method had its origins in the late 1960s
(e.g., in [MS], inspired by [MiPl] of 1949) and was pioneered in the works [Pat],
[Gi73], [ABP]. In the final analysis, it is debatable as to whether this method is
really much shorter or better. This depends on the background and taste of the
beholder. Geometers and analysts (as opposed to topologists) are likely to find the
heat kernel method appealing. The method not only applies to geometric operators
which are expressible in terms of twisted Dirac operators, but also largely for more
general elliptic pseudo-differential operators, as R.B. Melrose has done in [Mel].
Moreover, the heat method gives the index of a “geometric” elliptic differential op-
erator naturally as the integral of a characteristic form (a polynomial of curvature
forms) which is expressed solely in terms of the geometry of the operator itself (e.g.,
curvatures of metric tensors and connections). One does not destroy the geometry
of the operator by using ellipticity-preserving deformations. Rather, in the heat
kernel approach, the invariance of the index under changes in the geometry of the
operator is a consequence of the index formula itself more than a means of proof.
However, considerable analysis and effort are needed to obtain the heat kernel for

e−tD
2

and to establish its asymptotic expansion as t→ 0+. Also, it can be argued
that in some respects the K-theoretical embedding/cobordism methods are more
forceful and direct. Moreover, in [LaMi], we are cautioned that the index theo-
rem for families (in its strong form) generally involves torsion elements in K-theory
that are not detectable by cohomological means, and hence are not computable
in terms of local densities produced by heat asymptotics. Nevertheless, when this
difficulty does not arise, the K-theoretical expression for the topological index may
be less appealing than the integral of a characteristic form, particularly for those
who already understand and appreciate the geometrical formulation of characteris-
tic classes. More importantly, the heat kernel approach exhibits the index as just
one of a whole sequence of spectral invariants appearing as coefficients of terms
of the asymptotic expansion (as t → 0+) of the trace of the relevant heat kernel.
(On p. 117, we guide the reader to the literature about these particular spectral
invariants and their meaning in modern physics. The required mathematics for
that will be developed in Section 18.4.) All disputes aside, the student who learns
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both approaches and formulations to the index formula will be more accomplished
(and probably a good deal older).

Further Reading. What the coverage of topics in this book is concerned, we
hope our table of contents needs no elaboration, except to say that space limitations
prevented the inclusion of some important topics (e.g., the index theorem for fami-
lies, index theory for manifolds with boundary, other than the Atiyah-Patodi-Singer
Theorem, Peter Kronheimer’s and Thomas Mrowka’s visionary work on knot ho-
mology groups from instantons, lists of all calculated spectral invariants). However,
we now provide some guidance for further study. A fairly complete exposition, by
Atiyah himself, of the history of index theory from 1963 to 1984 is found in Vol-
ume 3 of [Ati] and duplicated in Volume 4. Volumes 3, 4 and 5 contain many
unsurpassed articles written by Atiyah and collaborators on index theory and its
applications to gauge theory. We all owe a debt of gratitude to Herbert Schröder
for the definitive guide to the literature on index theory (and its roots and off-
shoots) through 1994 in Chapter 5 of the excellent book [Gi95] of P.B. Gilkey. We
have benefited greatly not only from this book, but also from the marvelous work
[LaMi] by H.B. Lawson and M.L. Michelsohn. In that book, there are proofs of
index formulas in various contexts, and numerous beautiful applications illustrat-
ing the power of Dirac operators, Clifford algebras and spinors in the geometrical
analysis of manifolds, immersions, vector fields, and much more. The classical book
[Sha] of P. Shanahan is also a masterful, elegant exposition of not only the stan-
dard index theorem, but also the G-index theorem and its numerous applications.
A fundamental source on index theory for certain open manifolds and manifolds
with boundary is the authoritative book [Mel] of R.B. Melrose. Very close to our
own view upon index theory is the plea [Fu99] of M. Furuta for reconsidering the
index theorem, with emphasis on the localization theorem. In the case of boundary-
value problems for Dirac operators, we put quite some care in the writing of our
[BoWo] jointly with K.P. Wojciechowski. The recent book [FV] of D. Fursaev
and D. Vassilevich contains a detailed description of main spectral functions and
methods of their calculation with emphasis on heat kernel asymptotics and their
application in various branches of modern physics. A wealth of radically new ideas
of (partly yet unproven) geometric use of instantons are given in [KM08] of P.B.
Kronheimer and T.S. Mrowka. A taste of the recent revival of D-branes and other
exotic instantons in string theory can be gained from [GML] of H. Ghorbani, D.
Musso and A. Lerda. Indications can be found in the review [Sa] of F. Sannino
about, how strongly coupled theories of gauge theoretic physics result in perceiving
a composite universe and other new physics awaiting to be discovered.

The Question of Originality: Seeking a Balance between Mathemat-
ical Heritage and Innovation. Parts I-III and the two appendices do not aim at
originality. These parts teach what mathematicians today consider general knowl-
edge about the index theorem as one of the great achievements of 20th century
mathematics. Actually, there are two novelties included which even not all experts
may be aware of: The first novelty appears when rounding up our comprehensive
presentation of the topology of the space of Fredholm operators: we do not halt
with the Atiyah-Jänich Theorem and the construction of the index bundle, but
also confront the student with a thorough presentation of the various definitions
of determinant line bundles. This is to remind the student that index theory is
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not a more or less closed collection of results but a philosophy of regularization, of
deformation invariance and of visionary cross connections within mathematics and
between its various branches.

A second novelty in the first three Parts is the emphasis on global construc-
tions, e.g., in our way of introducing and using the concept of pseudo-differential
operators.

Apart from these two innovations, the student can feel protected in the first
three Parts against any ambitious and possibly exaggerated, confusing and dispens-
able originality.

Basically, Part IV follows the same line: Happily we could avoid excessive
originality in the chapters dealing with instantons and the Donaldson-Kronheimer-
Seiberg-Witten results about the geometry of moduli spaces of connections. There
we also summarize, refer, define, explain more or less like in the first three Parts.

However, the core of Part IV is different. It consists of an original, full, quite
lengthy (in parts almost unbearably meticulous) proof of the Local Index Theorem
for twisted Dirac operators in Chapter 18 and its applications to standard geometric
operators. That long Chapter is thought as a new contribution to the ongoing search
for a deeper understanding of the index theorem and the “best” approach to it:

Clearly, a student looking for the most general formulation of the index theo-
rem and a proof apt for wide generalizations should concentrate on our Part III,
the so-called Embedding (or K-theoretic) Proof. However, a student wanting to
trace the germs of index calculations back in the geometry of the considered stan-
dard operators (all arising from various decompositions of the algebra of exterior
differential forms) should consult Section 18.5 with a full proof of the Local Index
Formula for twisted Dirac operators on spin manifolds (all terms will be explained)
and Section 18.6, where we derive the Index Theorem for Standard Geometric Op-
erators. These geometric index theorems are by far less general than Part III’s
embedding proof, but they are more geometric, and we hold, also more geomet-
ric than the usual heat equation proofs of the index theorem: Not striving for
greatest generality, we obtain index formulas for the standard elliptic geometric
operators and their twists. The standard elliptic geometric operators include the
signature operator d + δ : (1 + ∗) Ω∗ (M) = Ω+(M) → Ω−(M) = (1− ∗) Ω∗ (M),
the Euler-Dirac operator d+δ : Ωeven (M)→ Ωodd (M), and the Dolbault-Dirac op-

erator
√

2
(
∂̄ + ∂̄∗

)
: Ω−,even (M)→ Ω+,odd (M) (all symbols will be defined). The

index formula obtained for the above operators yields the Hirzebruch Signature
Theorem, the Chern-Gauss-Bonnet Theorem, and the Hirzebruch-Riemann-Roch
Theorem, respectively. While these operators generally are not globally twisted
Dirac operators, locally they are expressible in terms of chiral halves of twisted
Dirac operators. That applies also to the Yang-Mills operator. Thus, even if the
underlying Riemannian manifold M (assumed to be oriented and of even dimen-
sion) does not admit a spin structure, we may still use the Local Index Theorem
for twisted Dirac operators to compute the index density and hence the index of
these operators. While it is possible to carry this out separately for each of the
geometric operators, basically all of these theorems are consequences of one single
index theorem for generalized Dirac operators on Clifford module bundles (all to
be defined). Using the Local Index Theorem for twisted Dirac operators, we prove
this index theorem first (our Theorem 18.55), and then we apply it to obtain the
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geometric index theorems, yielding the general Atiyah-Singer Index Theorem for
practically all geometrically defined operators.

The Style. To present the rich world of index theory, we have chosen two
different styles. We wrote all definitions, theorems, and proofs as concise as possible,
like a flying arrow or a precise and reliable routing program that frees the reader
or driver from all dispensable side information. Where possible, we begin the
introduction of a new concept with a simple but generic example or a review of the
local theory, immediately followed by the corresponding global or general concept.
That is one half of the book, so to speak the odd numbered pages. The other
half of the book consists of historical reviews, motivations, perspectives, examples,
and exercises (often with extended hints). We wrote those sections in a more open
web-like style.

Correspondingly, the student will meet different ways of emphasizing. Impor-
tant definitions, notions, concepts are in bold face. Background information is in
small, with key ideas underlined. In remarks and notes, leading terms are in italics.
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If we do not succeed in solving a
mathematical problem, the reason
frequently is our failure to recog-
nize the more general standpoint
from which the problem before us
appears only as a single link in a
chain of related problems.

David Hilbert, 1900

Part I

Operators with Index and
Homotopy Theory

1



CHAPTER 1

Fredholm Operators

Synopsis. Hierarchy of Mathematical Objects. The Concept of a Bounded Fredholm

Operator in Hilbert Space. The Index. Forward and Backward Shift Operators. Alge-

braic Properties. Operators of Finite Rank. The Snake Lemma of Homological Algebra.

Product Formula. Operators of Finite Rank and the Fredholm Integral Equation. The

Spectra of Bounded Linear Operators (Terminology and Basic Properties)

1. Hierarchy of Mathematical Objects

“In the hierarchy of branches of mathematics, certain points are recog-

nizable where there is a definite transition from one level of abstraction

to a higher level. The first level of mathematical abstraction leads us to

the concept of the individual numbers, as indicated for example by the

Arabic numerals, without as yet any undetermined symbol representing

some unspecified number. This is the stage of elementary arithmetic; in

algebra we use undetermined literal symbols, but consider only individ-

ual specified combinations of these symbols. The next stage is that of

analysis, and its fundamental notion is that of the arbitrary dependence

of one number on another or of several others – the function. Still more

sophisticated is that branch of mathematics in which the elementary

concept is that of the transformation of one function into another, or,

as it is also known, the operator.”

Thus N. Wiener characterized the hierarchy of mathematical objects [Wie33, p.1].

Very roughly we can say: Classical questions of analysis are aimed mainly at investiga-

tions within the third or fourth level. This is true for real and complex analysis, as well as

the functional analysis of differential operators with its focus on existence and uniqueness

theorems, regularity of solutions, asymptotic or boundary behavior which are of partic-

ular interest here. Thereby research progresses naturally to operators of more complex

composition and greater generality without usually changing the concerns in principle; the

work remains directed mainly towards qualitative results.

In contrast it was topologists, as Michael Atiyah variously noted, who turned system-

atically towards quantitative questions in their topological investigations of algebraic man-

ifolds, their determination of quantitative measures of qualitative behavior, the definition

of global topological invariants, the computation of intersection numbers and dimensions.

In this way, they again broadly broke through the rigid separation of the “hierarchical

levels” and specifically investigated relations between these levels, mainly of the second

and third level (algebraic surface – set of zeros of an algebraic function) with the first, but

also of the fourth level (Laplace operators on Riemannian manifolds, Cauchy-Riemann

operators, Hodge theory) with the first.

2
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This last direction, starting with the work of Wilhelm Blaschke and William V.

D. Hodge, continuing with Kunihiko Kodaira, Shiing-Shen Chern and Donald Spencer,

with Henri Cartan and Jean Pierre Serre, with Friedrich Hirzebruch, Michael Atiyah

and others, can perhaps be best described with the key word differential topology or

analysis on manifolds. Both its relation with and distinction from analysis proper is that

(from [Ati68b, p.57])

“Roughly speaking we might say that the analysts were dealing with

complicated operators and simple spaces (or were only asking simple

questions), while the algebraic geometers and topologists were only

dealing with simple operators but were studying rather general man-

ifolds and asking more refined questions.”

We can read, e.g. in [Bri74, p.278-283] and the literature given there, to what

degree the contrast between quantitative and qualitative questions and methods must be

considered a driving force in the development of mathematics beyond the realm sketched

above.

Actually, in the 1920’s already, mathematicians such as Fritz Noether and Torsten

Carleman had developed the purely functional analytic concept of the index of an operator

in connection with integral equations, and had determined its essential properties. But

“although its (the theory of Fredholm operators) construction did not require the devel-

opment of significantly different means, it developed very slowly and required the efforts

of very many mathematicians” [GK57, p.185]. And although Soviet mathematicians such

as Ilja V. Vekua had hit upon the index of elliptic differential equations at the beginning

of the 1950’s, we find no reference to these applications in the quoted principal work on

Fredholm operators. In 1960 Israel M. Gelfand published a programmatic article asking

for a systematic study of elliptic differential equations from this quantitative point of view.

He took as a starting point the theory of Fredholm operators with its theorem on the ho-

motopy invariance of the index (see below). Only after the subsequent work of Michail S.

Agranovich, Alexander S. Dynin, Aisik I. Volpert, and finally of Michael Atiyah, Raoul

Bott, Klaus Jänich and Isadore M. Singer, did it become clear that the theory of Fredholm

operators is indeed fundamental for numerous quantitative computations, and a genuine

link connecting the higher “hierarchical levels” with the lowest one, the numbers.

2. The Concept of Fredholm Operator

Let H be a (separable) complex Hilbert space, and let B denote the Banach
algebra (e.g., [Ped, p.128], [Rud, p.228], [Sche, p.201]) of bounded linear operators
T : H → H with the operator norm

‖T‖ := sup {‖Tu‖ : ‖u‖ ≤ 1} <∞,

where ‖ · ‖ denotes the norm in H induced by the inner product 〈 · , · 〉.

Definition 1.1. An operator T ∈ B is called a Fredholm operator, if

KerT := {u ∈ H : Tu = 0} and CokerT := H/Im(T )

are finite-dimensional.

This means that the homogeneous equation Tu = 0 has only finitely many
linearly independent solutions, and to solve Tu = v, it is sufficient that v satisfies a
finite number of linear conditions (e.g., see Exercise 2.1b below). We write T ∈ F
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and define the index of T by

indexT := dim KerT − dim CokerT.

The codimension of Im(T ) = T (H) = {Tu : u ∈ H} is dim CokerT .

Remark 1.2. a) We can analogously define Fredholm operators T : H → H ′,
where H and H ′ are Hilbert spaces, Banach spaces, or general topological vector
spaces. In this case, we use the notation B(H,H ′) and F(H,H ′), corresponding
to B and F above. However, in order to counteract a proliferation of notation and
symbols in this section, we will deal with a single Hilbert space H and its operators
as far as possible. The general case H 6= H ′ does not require new arguments at this
point. Later, however, we shall apply the theory of Fredholm operators to elliptic
differential and pseudo-differential operators where a strict distinction between H
and H ′ (namely, the compact embedding of the domain H into H ′, see Chapter 9)
becomes decisive.
b) All results are valid for Banach spaces and a large part for Fréchet spaces also.
For details see for example [PRR, p.182-318]. We will not use any of these but will
be able to restrict ourselves entirely to the theory of Hilbert space whose treatment
is in parts far simpler.
c) Motivated by analysis on symmetric spaces – with transformation group G –
operators have been studied whose index is not a number but an element of the
representation ring R(G) generated by the characters of finite-dimensional represen-
tations of G [AS68a, p.519f] or, still more generally, is a distribution on G [Ati74,
p.9-17]. We will not treat this largely analogous theory, nor the generalization of
the Fredholm theory to the discrete situation of von Neumann algebras as it has
been carried out – with real-valued index in [Bre, 1968/1969].

Exercise 1.3. Let L2(Z+) denote the space of sequences c = (c0, c1, c2, . . .) of
complex numbers with square-summable absolute values; i.e.,

∞∑
n=0

|cn|2 <∞.

L2(Z+) is a Hilbert space (see Chapter A below). Show that the forward shift

shift+ : (c0, c1, c2, . . .) 7→ (0, c0, c1, c2, . . .)

and the backward shift

shift− : (c0, c1, c2, . . .) 7→ (c1, c2, c3, . . .)

are Fredholm operators with index(shift+) = −1 and index(shift−) = +1.
[Warning: Just as we can regard L2(Z+) as the limit of the finite dimensional vector
spaces Cm (as m→∞), we can approximate shift+ by endomorphisms of Cm given,
relative to the standard basis, by the m×m matrix

0 0 0 · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 · · · 0 1 0


.
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Note that the kernel and cokernel of this endomorphism are one-dimensional, whence
the index is zero. (See Exercise 1.4 below.).
We have yet another situation, when we consider the Hilbert space L2(Z) of se-
quences c = (. . . , c−2, c−1, c0, c1, c2, . . .) with

|c0|2 +

∞∑
n=1

(
|cn|2 + |c−n|2

)
<∞.

The corresponding shift operators are now bijective, and hence have index zero.]

3. Algebraic Properties. Operators of Finite Rank. The Snake Lemma

Exercise 1.4. For finite-dimensional vector spaces the notion of Fredholm
operator is empty, since then every linear map is a Fredholm operator. Moreover,
the index no longer depends on the explicit form of the map, but only on the
dimensions of the vector spaces between which it operates. More precisely, show
that every linear map T : H → H ′ where H and H ′ are finite-dimensional vector
spaces has index given by

indexT = dimH − dimH ′.

[Hint: One first recalls the vector-space isomorphism H/Ker(T ) ∼= Im(T ) and then
(since H and H ′ are finite-dimensional) obtains the well-known identity from linear
algebra

dimH − dim KerT = dimH ′ − dim CokerT.]

[Warning: If we let the dimensions of H and H ′ go to∞, we obtain only the formula
indexT = ∞ −∞. Thus, we need an additional theory to give this difference a
particular value.]

Exercise 1.5. For two Fredholm operators F : H → H and G : H ′ → H ′

consider the direct sum,

F ⊕G : H ⊕H ′ → H ⊕H ′.
Show that F ⊕G is a Fredholm operator with

index(F ⊕G) = indexF + indexG

[Hint: First verify that Ker(F ⊕ G) = KerF ⊕ KerG, and the corresponding fact
for Im(F ⊕G). Then show that

(H ⊕H ′) /(ImF ⊕ ImG) ∼= (H/ ImF )⊕ (H ′/ ImG) .]

[Warning: When H = H ′, we can consider the sum (not direct) F + G : H → H,
but in general this is not a Fredholm operator; e.g., we could set G := −F .]

Exercise 1.6. Show by algebraic means, that the composition G ◦ F of two
Fredholm operators F : H → H ′ and G : H ′ → H ′′ is again a Fredholm operator.
[Hint: Which inequality holds between

dim KerG ◦ F and dim KerF + dim KerG

and between

dim CokerG ◦ F and dim CokerF + dim CokerG ?]

[Warning: Why are these in general not equalities? Nevertheless, the chain rule
indexG ◦ F = indexF + indexG can be proved, since the inequalities cancel out
when we form the difference. Sometimes in mathematics a result of interest appears
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as an offshoot of the proof of a rather dull general statement. Such is the case when
we obtain the chain rule for differentiable functions by showing that the composite
of differentiable maps is again differentiable. Here, however, the proof of the index
formula requires extra work, and we must either utilize the topological structure by
functional analytic means (see Exercise 2.3, p.14) or refine the algebraic arguments.
The latter will be done next.]

We recall a basic idea of diagram chasing :

Definition 1.7. Let H1, H2, . . . be a sequence (possibly finite) of vector spaces
and let Tk : Hk → Hk+1 be a linear map for each k = 1, 2, . . . . We call

H1
T1−→ H2

T2−→ H3
T3−→ · · ·

an exact sequence, if for all k

ImTk = KerTk+1.

In particular, the following is a list of equivalences and implications (where 0
denotes the 0-dimensional vector space)

0 −→ H1
T1−→ H2 exact ⇔ KerT1 = 0 (T1 injective),

H1
T1−→ H2 −→ 0 exact ⇔ ImT1 = H2 (T1 surjective),

0 −→ H1
T1−→ H2 −→ 0 exact ⇔ T1 : H1

∼= H2 is an isomorphism,

0 −→ H1
T1−→ H2

T2−→ H3 −→ 0 exact ⇔
{
T1 : H1

∼= T1 (H1) and
T2 : H2

T1(H1)
∼= H3 .

In the last case, H2
∼= H1 ⊕H3, but not canonically so.

Remark 1.8. By definition, the sequence

0 −→ KerT1 ↪→ H1
T1−→ H2 −→ CokerT1 −→ 0

of linear maps between vector spaces is exact. If H1, H2 are Hilbert spaces and T1

bounded, the sequence becomes an exact sequence of bounded mappings between
Hilbert spaces if and only if T1 has closed range (see also the Hint to Exercise 2.1).

The following theorem is a key device in Homological Algebra for various kinds
of decomposition and additivity theorems, see also Remark 1.11.

Theorem 1.9 (Snake Lemma). Assume that the following diagram of vector
spaces and linear maps is commutative (i.e., jF = F ′i and qF ′ = F ′′p) with exact
horizontal sequences and Fredholm operators for vertical maps.

0 → H1
i→ H ′1

p→ H ′′1 → 0
↓ F ↓ F ′ ↓ F ′′

0 → H2
j→ H ′2

q→ H ′′2 → 0.

Then we have
indexF − indexF ′ + indexF ′′ = 0.

Proof. We do the proof in two parts.
1. Here we show that the following sequence is exact:

0 −→ KerF −→ KerF ′ −→ KerF ′′ −→
−→ CokerF −→ CokerF ′ −→ CokerF ′′ −→ 0.(1.1)
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For this, we first explain how the individual maps are defined. By the commutativity
of the diagram, the maps KerF → KerF ′ and KerF ′ → KerF ′′ are given by i and
p; and the maps CokerF → CokerF ′ and CokerF ′ → CokerF ′′ are induced by j
and q in the natural way (please check).

Also KerF ′′ → CokerF is well defined: Let u′′ ∈ KerF ′′; i.e., u′′ ∈ H ′′

and F ′′u′′ = 0. Since p is surjective we can choose u′ ∈ H ′1 with pu′ = u′′. Then
F ′u′ ∈ Ker q, since qF ′u′ = F ′′pu′ = F ′′u′′ = 0. By exactness, we have Ker q = Im j
and a unique (by the injectivity of j) element u ∈ H2 with ju = F ′u′. We map
u′′ ∈ KerF ′′ to the class of u in H2/ ImF = CokerF . It remains to show that we
get the same class for another choice of u′. Thus, let ũ′ ∈ H ′ be such that pũ′ = u′′

(p is in general not injective; hence, possibly ũ′ 6= u′). As above, we have a ũ ∈ H2

with jũ = F ′u′. We must now find u0 ∈ H1 with Fu0 = u − ũ. Then we are
done. For this, note that j(u − ũ) = ju − jũ = F ′u′ − F ′ũ′ = F ′(u′ − ũ′). Since
pu′ = pũ′ = u′′, we have u′ − ũ′ ∈ Ker p. By exactness, we have u0 ∈ H1 with
iu0 = u′ − ũ′, whence F ′iu0 = F ′(u′ − ũ′). The left side is jFu0 and the right side
is j(u− ũ) from above. Hence, Fu0 = u− ũ by the injectivity of j, as desired. We
introduced the map KerF ′′ → CokerF in such great detail in order to demonstrate
what is typical for diagram chasing: it is straightforward, largely independent of
tricks and ideas, readily reproduced, and hence somewhat monotonous. Therefore
we will forgo showing the exactness of (1.1) except at KerF ′, and leave the rest as

an exercise. The exactness of KerF
ı̃→ KerF ′

p̃→ KerF ′′, where ı̃ and p̃ are the
restrictions of i and p, means Im ı̃ = Ker p̃. Thus, we have two inclusions to show:

⊆: This is clear, since p ◦ i = 0 implies p̃ ◦ ı̃ = 0.

⊇: If u′ ∈ Ker p̃, then u′ ∈ KerF ′ and pu′ = 0, and

by the exactness of H1 → H ′1 → H ′′1 , we have u ∈ H1 with iu = u′. It remains to
show that Fu = 0, but this is clear, since jFu = F ′iu = F ′u′ = 0 and j is injective.

Note. Before we go to part 2 of the proof, we pause for a moment: It is interesting
that for H ′ = H ⊕H ′′, i = j the inclusion, and p = q the projection, we recapture
the addition formula of Exercise 1.5. In this case, the exact sequence (1.1) then
breaks, as shown there, into two parts

0→ KerF → KerF ′ → KerF ′′ → 0 and

0→ CokerF → CokerF ′ → CokerF ′′ → 0.

In the general case, however, we no longer have

dim KerF ′ = dim KerF + dim KerF ′′ and

dim CokerF ′ = dim CokerF + dim CokerF ′′,

but instead we must consider the interaction (KerF ′′ → CokerF ). From a topo-
logical standpoint, the concept of the index of a Fredholm operator is a special case
of the general concept of the Euler characteristic χ(C) of a complex

C :
Tk+1−→ Ck

Tk−→ Ck−1
Tk−1−→ Ck−2

Tk−2−→ Ck−3
Tk−3−→ · · ·

of vector spaces and linear maps (with Tk ◦ Tk+1 = 0) with finite Betti numbers

βk = dim

(
KerTk

ImTk+1

)
.
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Here KerTk/ ImTk+1 is called the k-th homology space Hk (C) . Assuming that
all these numbers are finite, as well as the number of nonzero Betti numbers, we
define

χ(C) :=
∑
k

(−1)kβk

whence indexF = χ(C) for

C : 0 −→ 0 −→ H
F−→ H −→ 0 −→ 0,

where C2 = C1 = H and Ci = 0 otherwise; thus, H2(C) = KerF and H1(C) =
CokerF . This is the reason why we can follow in the proof of Theorem 1.9 the well-
known topological arguments (see [Gr, p.100f] or [ES, p.52f]) yielding the addition
(or pasting) theorem

χ (C)− χ (C ′) + χ(C ′/C) = 0.

See also Section 14.4. In particular, (1.1) is only a special case of the long exact
homology sequence

→ Hk+1(C ′/C)→ Hk(C)→ Hk(C ′)

→ Hk(C ′/C)→ Hk−1(C)→ Hk−1(C ′)→,(1.2)

[Gr, p.57f] or [ES, p.125-128]. This more general description would have the ad-
vantage that we only need to prove exactness of (1.2) at three adjacent places with
an argument independent of k rather than at six places as in our simplified approach
where we restricted ourselves to complexes of length two. But back to our proof:
2. For each exact sequence

(1.3) 0→ A1 → A2 → · · · → Ar → 0,

of finite-dimensional vector spaces, we wish to derive the formula

r∑
k=1

(−1)k dim Ak = 0.

Notice first that for r sufficiently large (r > 3), the formula for the alternating sum
for (1.3) follows, once we know the formula holds for the exact (prove!) sequences

0 −→ A1 −→ A2 −→ Im (A1 → A2) −→ 0

and

0 −→ Im (A2 → A3) −→ A3 −→ · · · −→ Ar −→ 0.

Since these sequences have length less than r, the formula is proved by induction,
if we verify it for r = 1, 2, 3.

r = 1 : trivial, since then A1
∼= 0.

r = 2 : also clear, since then A1
∼= A2 .

r = 3 : clear, since 0→ A1 → A2 → A3 → 0 implies A3
∼= A2/A1,

whence dimA3 = dimA2 − dimA1.(1.4)

Thus, part 2 is finished and combining it with part 1, the Snake Lemma is proved.
Actually, we have proven much more, namely, whenever two of the three maps F,
F ′, F ′′ have a finite index, the third has finite index given by the snake formula. �
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Exercise 1.10. Combine Theorem 1.9 and Exercise 1.6, to show that

(1.5) indexG ◦ F = indexF + indexG.

[Hint: Consider the diagram

0 −−−−→ H
i−−−−→ H ⊕H ′ p−−−−→ H ′ −−−−→ 0yF yG◦F⊕Id

yG
0 −−−−→ H ′

j−−−−→ H ′′ ⊕H ′ q−−−−→ H ′′ −−−−→ 0

where iu := (u, Fu), jv := (Gv, v), p(u, v) := Fu− v, and q(w, v) := w −Gv.]

Remark 1.11. Alternative proofs of the product formula (1.5) can be found
in many places. They may appear shorter. Arguing via the Snake Lemma is more
lengthy, but it puts the product formula in the correct format of a topological
composition or gluing formula

(1.6) τ(Φ1 ∪ Φ2) = τ(Φ1) ∗ τ(Φ2) ∗ ε(Φ1 ∩ Φ2),

where we have in (1.5) the vanishing of the typical third term on the right side, the
error term ε(Φ1 ∩ Φ2), for τ := index; Φ1,Φ2 ∈ F ;∪ := ◦; and ∗ := +.

A stunning impression of the intricacies of simple looking product formulas
may be gained by checking the proof of the corresponding product formula for the
index of closed (not necessarily bounded) densely defined Fredholm operators, see
Theorem 2.45, p.43f.

4. Operators of Finite Rank and the Fredholm Integral Equation

Exercise 1.12. Show that for any operator K : H → H of finite rank (i.e.,
dimK(H) <∞), the sum Id +K is a Fredholm operator and

index(Id +K) = 0

Here, Id : H → H is the identity.

[Hint: Set h := ImK and recall Theorem 1.9 for the diagram

0 −→ h
i−→ H

p−→ H/h −→ 0
| | |

(Id +K)h Id +K (Id +K)H/h
↓ ↓ ↓

0 −→ h
j−→ H

q−→ H/h −→ 0.

To see that the vertical maps are well defined, we only need (Id +K)(h) ⊆ h. The
commutativity of the diagram and the exactness of the rows are clear. Since one
can show Ker (Id +K) ⊆ h and dim Coker(Id +K) ≤ dimh, the Snake Formula
gives us the result once we show

(1.7) index(Id +K)h = 0

and

(1.8) index (Id +K)H/h = 0.

But (1.7) is clear from Exercise 1.4 and (1.8) is trivial because (Id +K)H/h = IdH/h.

Note that one could deduce that Id +K has finite index by using the observation
at the end of the proof of Theorem 1.9.]



10 1. FREDHOLM OPERATORS

Remark 1.13. One may be bothered by the way in which the proposed solution
produces the result so directly from the Snake Formula by means of a trick. As a
matter of fact, index(Id +K) can be computed in a pedestrian fashion by reduction
to a system of n linear equations with n unknowns where n := dimh. To do this
one verifies that every operator K of finite rank has the form

Ku =

n∑
i=1

〈u, ui〉 vi

with fixed u1, ..., un, v1, ..., vn ∈ H (note that every continuous linear functional
is of the form 〈·, u0〉). Whether this direct approach, as detailed for example in
[Sche, Theorem 4.9](see also [Ped, p.110f]), is in fact more transparent than the
device used with the Snake Formula, depends a little on the perspective. While
in the first approach the key point (namely the use of Exercise 1.4 for equation
(1.7)) is singled out and separated clearly in the remaining formal argument, we
find in the second more constructive approach rather a fusion of the nucleus with
its packaging. However, the use of the fairly non-trivial Riesz-Fischer Lemma is
unnecessary in the case where K is given in the desired explicit form, as in the
following example.

Exercise 1.14. Consider the Fredholm integral equation of the second
kind

u(x) +

∫ b

a

G(x, y)u(y) dy = h(x)

with degenerate (product-) weight function (or integral kernel)

G(x, y) =

n∑
i=1

fi(x)gi(y)

with fixed a < b real and fi, gi square integrable on [a, b]. Prove the Fredholm
alternative: Either there is a unique solution u ∈ L2[a, b] for every given right side
h ∈ L2[a, b], or the homogeneous equation (h = 0) has a solution which does not
vanish identically. Moreover, the number of linearly independent solutions of the
homogeneous equation equals the number of linear conditions one needs to impose
on h in order that the inhomogeneous equation be solvable.
[Hint: Consider the operator Id +K on the Hilbert space L2[a, b], where Ku =∑
〈u, gi〉 fi, and apply Exercise 1.12. For the interpretation of the dimension of the

cokernel, see Exercise 2.1b below.]

5. The Spectra of Bounded Linear Operators: Basic Concepts

We close this chapter with a concept that belongs to the border region between
algebraic and analytic notions, the spectrum of a bounded linear operator. For
the corresponding definitions and elementary properties in the more general (and,
actually, different) case of not necessarily bounded linear operators we refer to
Definition 2.59 and Exercise 2.60, p.50.

Remark 1.15. The following comments correspond to the sets of Table 1.1.
For wanted arguments we refer to [Ped, Section 4.1]:
1. Res (T ) is open in C. We can argue as in Exercise 3.6, p.65 where one has to
prove that the group of units in any Banach algebra is open.
2. Spec (T ) is closed and bounded (i.e., compact) in C. Actually, one has Spec(T ) ⊂
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{λ : |λ| ≤ ‖T‖}.
3. Res (T ) ⊆ Fred (T ), and Fred (T ) is the union of at most a countable number of
open, connected components.
4. Spece (T ) ⊆ Spec (T ) , and Spece (T ) = Spec (π (T )), where π : B → B/K is the
projection.
5. Specp (T ) consists of isolated points of Spec (T ). Specp (T ) contains the limit
points of Spec (T ) which are Fredholm points.
6. Specc (T ) ⊆ Spece (T ).
7. Spec (T ) = Specp (T ) ∪ Specc (T ) ∪ Specr (T ), a union of disjoint sets.

Table 1.1. The spectra of bounded linear operators T : H → H

Symbol Name Definition

1. Res (T ) resolvent set
{
z ∈ C : (T − z Id)−1 ∈ B

}
2. Spec (T ) spectrum C\Res (T )
3. Fred (T ) Fredholm points {z ∈ C : T − z Id ∈ F}
4. Spece (T ) essential spectrum C \ Fred (T )

5. Specp (T )
point spectrum

(eigenvalues)
{z ∈ C : Ker (T − z Id) 6= {0}}

6. Specc (T ) continuous spectrum

z ∈ C :


Ker (T − z Id) = {0} ,
Im (T − z Id)  H, and

Im (T − z Id) = H


7. Specr (T ) residual spectrum

{
z ∈ C :

{
Ker (T − z Id) = {0} ,
codim

(
Im (T − z Id)

)
> 0

}

Example 1.16. (a) T := shift+ (see [Jö, 1970/1982, 5.3]) ⇒
Specp (T ) = ∅,
Specr (T ) = {z ∈ C : |z| < 1} and
Specc (T ) = Spece (T ) = {z ∈ C : |z| = 1} .

(b) T compact and self-adjoint (see [Jö, 1970/1982, 6.2]) ⇒
Spec (T ) ⊆ R,
Specp (T ) = {λn : n = 1, 2, . . .} ,
Specr (T ) = {0} and
Spece (T ) = {0} .

(c) T = Fourier transformation on L2 (R) (see [DM, 1972, p.98]) ⇒
Spec (T ) = Spece (T ) = Specp (T ) = {1, i,−1,−i} .



CHAPTER 2

Analytic Methods. Compact Operators

Synopsis. Adjoint and Self-Adjoint Operators - Recalling Fischer-Riesz. Dual char-

acterization of Fredholm operators: either by finite-dimensional kernel and cokernel, or

by finite-dimensional kernels of the operator and its adjoint operator and closed image.

Compact Operators: Spectral Decomposition, Why Compact Operators also are Called

Completely Continuous, K as Two-Sided Ideal, Closure of Finite-Rank Operators, and

Invariant under ∗. Classical Integral Operators. Fredholm Alternative and Riesz Lemma.

Sturm-Liouville Boundary Value Problems. Unbounded Operators: Comprehensive Study

of Linear First Order Differential Operators Over S1: Sobolev Space, Dirac Distribution,

Normalized Integration Operator as Parametrix, The Index Theorem on the Circle for

Systems. Closed Operators, Closed Extensions, Closed (not necessarily bounded) Fred-

holm Operators, Composition Rule, Symmetric and Self–Adjoint Operators, Formally Self-

Adjoint and Essentially Self-Adjoint. Spectral Theory. Metrics on the Space of Closed

Operators. Trace Class and Hilbert-Schmidt Operators

1. Analytic Methods. The Adjoint Operator

With Exercises 1.12 and 1.14, we have reached the limits of our so far purely algebraic

reasoning where we could reduce everything to the elementary theory of solutions of n

linear equations in n unknowns. In fact, the limit process n→∞ marks the emergence of

functional analysis which went beyond the methods of linear algebra while being motivated

by its questions and results. This occurred mainly in the study of integral equations.

In 1927, Ernst Hellinger and Otto Toeplitz stressed in their article Integral equations

and equations in infinitely many unknowns in the Enzyklopädie der mathematischen Wis-

senschaften that “the essence of the theory of integral equations rests in the analogy with

analytic geometry and more generally in the passage from facts of algebra to facts of

analysis” [HT, p.1343]. They showed in a concise historical survey how the awareness

of these connections progressed in the centuries since Daniel Bernoulli investigated the

oscillating string as a limit case of a system of n mass points:

“Orsus itaque sum has meditationes a corporibus duobus filo flexili in

data distantia cohaerentibus; postea tria consideravi moxque quatuor, et

tandem numerum eorum distantiasque qualescunque; cumque numerum

corporum infinitum facerem, vidi demum naturam oscillantis catenae

sive aequalis sive inaequalis crassitiei sed ubique perfecte flexilis.”1

The passage to the limit means for the Fredholm integral equation of Exercise 1.14

that more general nondegenerate weight functions G(x, y) are allowed which then can be

1Petropol Comm. 6 (1732/33, ed. 1738), 108-122. Our translation: “In these consid-
erations I started with two bodies at a fixed distance and connected by an elastic string;
next I considered three then four and finally an arbitrary number with arbitrary distances
between them; but only when I made the number of bodies infinite did I fully comprehend
the nature of an oscillating elastic chain of equal or varying thickness.”

12
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approximated by degenerate weights (e.g., polynomials). Such weights play a prominent

role in applications, especially when dealing with differential equations with boundary

conditions, as we will see below.

For the theory of Fredholm operators developed here we must analogously
abandon the notion of an operator of finite rank and generalize it (to compact
operator, see below) whereby topological, i.e. continuity considerations, become
essential in connection with the limit process. This will bring out the full force of
the concept of Fredholm operator. We now turn to this topic.

Closed Image of Fredholm Operators. To begin with, the reader should
derive the topological closedness of the image of a Fredholm operator from the purely
algebraic property of finite codimension of the image.

Exercise 2.1. For F : H → H a Fredholm operator, prove:
a)ImF is closed.
b) There is an explicit criterion for deciding when an element of H lies in ImF .
Namely, let n = dim CokerF ; then there are u1, ..., un ∈ H, such that for all w ∈ H,
we have

w ∈ ImF ⇔ 〈w, u1〉 = · · · = 〈w, un〉 = 0.

[Hint for a): As a vector subspace of H, naturally ImF is closed under addition
and multiplication by complex numbers. However, here we are interested in topo-
logical closure, namely that in passing to limit points we do not leave ImF . This
has far-reaching consequences, since only closed subspaces inherit the completeness
property of the ambient Hilbert space, and hence have orthonormal bases (= com-
plete orthonormal vector systems, see e.g., [Ped, p.83] or [Sche, p.31 and Lemma
11.9]). The trivial fact that finite-dimensional subspaces are closed can be exploited:
Since CokerF = H/ ImF has finite dimension, we can find v1, ..., vn ∈ H whose
classes in H/ ImF form a basis. The linear span h of v1, ..., vn is then an algebraic
complement of ImF inH. Consider the map Φ : H⊕h→ H with F ′(u, v) := Fu+v.
Since Φ is linear, surjective, and (by the boundedness of F ) continuous, we have
that Φ is open (according to the open mapping principle; e.g., see [Ped, p.53]). It
follows that H \ F (H) = Φ(H ⊕ h \H ⊕ {0}) is open.
[Hint for b): As a closed subspace of H, ImF is itself a Hilbert space possessing
a countable orthonormal basis w1, w2, . . .. Now set ui := vi − Pvi, where vi are as
above (i = 1, ..., n) and P : H → ImF is the projection

Pu :=

∞∑
j=1

〈u,wj〉wj .

Then {u1, ..., un} forms a basis for (ImF )⊥, the orthogonal complement of ImF in
H.
For aesthetic reasons, one can orthonormalize u1, ..., un by the Gram-Schmidt process
(i.e., without loss of generality, assume they are orthonormal). Then u1, ..., un,
w1, w2, w3, . . . is a countable orthonormal basis for H.]

Remark 2.2. Be aware that in spite of the strength of the open-mapping
argument, it can not be applied to show that any subspace W of finite codimension
dimH/W < ∞ is closed. Of course, one could once again construct a bounded
surjective operator Φ : H ⊕W → H, say by Φ(u, v) := u + v. But, in general,
H \W can not be obtained as the image of an open subset of H ⊕W by applying
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Φ. Certainly H \W 6= Φ(H ⊕W \ H ⊕ {0}). Actually, the kernel Ker(f) of any
unbounded linear functional provides a counterexample. It is a space of codimension
1, but it is not closed since closed Ker(f) would imply continuity of f in 0 and hence
everywhere.

Exercise 2.3. Once more, prove the chain rule

indexG ◦ F = indexF + indexG

for Fredholm operators F : H → H ′ and G : H ′ → H ′′.
[Hint: In place of the purely algebraic argument in Exercise 1.10, use Exercise 2.1a
to first prove that the images are closed, and then use the technique of orthogonal
complements in Exercise 2.1b.]

How trivial or nontrivial is it to prove that operators have closed ranges? For
operators with finite rank and for surjective operators it is trivial, and for Fredholm
operators it was proved in Exercise 2.1a. Is it perhaps true that all bounded linear
operators have closed images? As the following counterexample explicitly shows,
the answer is no. Moreover, we will see below that all compact operators with
infinite-dimensional image are counterexamples.

Exercise 2.4. For a Hilbert space H with orthonormal system e1, e2, e3, . . . ,
consider the contraction operator

Au :=

∞∑
j=1

1

j
〈u, ej〉 ej .

Show that ImA is not closed.
[Hint: Clearly A is linear and bounded (‖A‖ =?), and furthermore, we have the
criterion for Im(A)

v ∈ ImA⇔
∞∑
j=1

j 〈v, ej〉 ej ∈ H ⇔
∞∑
j=1

j2 |〈v, ej〉|2 <∞.

It follows that for

v0 :=

∞∑
j=1

1

j
√
j
ej

and

vn :=

∞∑
j=1

1

j
√
jj1/n

ej ; n = 1, 2, . . . .;

we get v0 ∈ H\ ImA and vn ∈ ImA. (The old trick:
∑

1/ja converges for a > 1
(e.g., for a = 1 + 1/n), but diverges for a = 1.) To finally prove that the sequence
actually converges to v0, observe that

‖v0 − vn‖2 =

∞∑
j=1

1

j2

(
j1/n − 1

)2
j j2/n

.

It is clear, that for each j

j1/n − 1

j1/n
→ 0 as n→∞,

and then in particular 〈v0 − vn, ej〉 → 0. However, to show that ‖v0 − vn‖2 con-
verges to 0 as n→∞, one must estimate more precisely. To do this, we exploit the
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fact that
∑∞
j>j0

j−3 can be made smaller than any ε > 0 for j0 sufficiently large,

while on the other hand, choosing n sufficiently large (so large that (1 + ε)n ≥ j0),
we have

j1/n − 1

j1/n
< ε for j ≤ j0.]

The Adjoint Operator. We will draw further conclusions from the closure
of the image of a Fredholm operator and to do this we introduce adjoint operators.
The purpose is to eliminate the asymmetry between kernel and cokernel or, in other
words, between the theory of the homogeneous equation (questions of uniqueness
of solutions) and the theory of the inhomogeneous equation (questions of existence
of solutions). This is achieved by representing the cokernel of an operator as the
kernel of a suitable adjoint operator.

Projective geometry deals with a comparable problem via duality: one thinks
of space on the one hand as consisting of points, on the other as consisting of
planes, and depending on the point of view, a straight line is the join of two points
or the intersection of two planes. Analytic geometry passes from a matrix (aij)
to its transpose (aji) or (aji) in the complex case to technically deal with dual
statements. We can do the same successfully for operators (= infinite matrices).
The basic tool is the following Representation Theorem with nice proofs in [Ped,
Proposition 3.1.9] or [Sche, Theorem 2.1]. Originally, it was proven independently
by Frigyes Riesz and Ernst Sigismund Fischer only for H := L2([a, b]).

Theorem 2.5 (E. Fischer, F. Riesz, 1907). Let H be a separable complex Hilbert
space. To each continuous linear mapping ϕ : H → C (called functional) there exists
a unique element u ∈ H such that ϕv = 〈v, u〉 for all v ∈ H.

Exercise 2.6. Show that on the space B(H) of bounded linear operators of a
Hilbert space H, there is a natural isometric (anti-linear) involution

∗ : B(H)→ B(H)

which assigns to each T ∈ B(H) the adjoint operator T ∗ ∈ B(H) such that for all
u, v ∈ H

〈u, T ∗v〉 = 〈Tu, v〉 .
[Hint: It is clear that T ∗v is well defined for each v ∈ H, since u 7→ 〈Tu, v〉 is
a continuous linear functional on H; and so, by the preceding theorem, you can
express the functional through a unique element of H, which you may denote by
T ∗v. The linearity of T ∗ is clear by construction. While proving the continuity
(i.e., boundedness) of T ∗, show more precisely that ‖T ∗‖ = ‖T‖ (i.e., that T 7→ T ∗

is an isometry).]

Just as easily, we have the involution property T ∗∗ = T , the composition rule
(T ◦R)∗ = R∗ ◦T ∗, and conjugate-linearity (aT +bR)∗ = āT ∗+ b̄R∗, where the bars
denote complex conjugation. Details can be found for example in [Ped, Theorem
3.2.3], [Sche, Sections 3.2 and 11.2]. Observe that for T ∈ B(H,H ′), where H and
H ′ may differ, the adjoint operator T ∗ is in B(H ′, H).

Theorem 2.7. For F ∈ F , the u1, ..., un in Exercise 2.1b form a basis of
KerF ∗, whence

ImF = (KerF ∗)⊥ and Coker (F ) = Ker (F ∗) .
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Proof. First we note that u ∈ (ImF )⊥ exactly when

0 = 〈u,w〉 = 〈u, Fv〉 = 〈F ∗u, v〉 ,
for all w ∈ Im (F ) (i.e., for all v ∈ H); thus, (ImF )⊥ = KerF ∗. By again taking
orthogonal complements, we have (KerF ∗)⊥ = (ImF )⊥⊥ = ImF , since ImF is
closed by Exercise 2.1a. �

Observe that the above argument remains valid for any bounded linear operator
with closed range. In this case, we have the criterion that the equation Fv = w is
solvable exactly when w⊥KerF ∗. This is the basic

Lemma 2.8 (Polar Lemma). Let H, H ′ be Hilbert spaces and T ∈ B(H,H ′).
Then (ImT )⊥ = KerT ∗ . Moreover, if ImT is closed, we have ImT = (KerT ∗)⊥.

In the language of categories and functors (see e.g. [Brd, p.176]) this can be
reformulated in the following, a bit exaggerated way:

Theorem 2.9. The functor H 7→ H, H ′ 7→ H ′, B(H,H ′) 3 T 7→ T ∗ ∈
B(H ′, H) is a contravariant functor on the category of (separable) Hilbert spaces
and bounded operators. It preserves the norm and is exact; i.e., if the sequence

H
T−→ H ′

S−→ H ′′
R−→

is exact, then the sequence

R∗−→ H ′′
S∗−→ H ′

T∗−→ H

is also exact.

Proof. We show the exactness only at H ′, i.e., ImS∗ = KerT ∗. Since ST = 0,
we have T ∗S∗ = 0, hence ImS∗ is contained in KerT ∗.

To show the opposite inclusion, we notice that ImT = KerS is closed in H ′

and ImS = KerR is closed in H ′′ . So we have a decomposition of

(2.1) H ′ = KerT ∗ ⊕KerS = (ImT )⊥ ⊕ ImT

and

(2.2) H ′′ = ImS ⊕ (ImS)⊥

into pairs of mutually orthogonal closed subspaces. Notice also that

(2.3) S|KerT∗ : KerT ∗ −→ ImS

is bounded, injective and surjective, hence its inverse is also bounded (though not
necessarily a Hilbert space isomorphism, i.e. not necessarily unitary).

Now let y ∈ H ′ with y ∈ KerT ∗ , i.e., 〈y, y′〉 = 0 for all y′ ∈ T (H). We consider
the mapping

[y] : H ′′ −→ C
Sy′ + z′ 7→ 〈y′, y〉

where the splitting on the left side is according to (2.2) and the inner product on
the right side is taken in the Hilbert space H ′. By construction, the mapping [y] is
linear and vanishes on the second factor of H ′′ . On the first factor it is continuous
because of the homeomorphism of (2.3). Hence the functional [y] can be represented
by an element of the Hilbert space H ′′ which we also will denote by [y]. So we have

(2.4) 〈y′ + y′′, S∗([y])〉 = 〈Sy′ + Sy′′, [y]〉 = 〈Sy′, [y]〉 = 〈y′, y〉 = 〈y′ + y′′, y〉
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for all elements y′ + y′′ ∈ H ′ with y′ ∈ (ImT )⊥ and y′′ ∈ ImT according to the
decomposition (2.1). Note that the second and the third inner product in (2.4)
are taken in H ′′ and the other inner products in H ′ . Equation (2.4) shows that
y = S∗([y]). Thus KerT ∗ ⊆ ImS∗, and KerT ∗ = ImS∗, as desired. �

Theorem 2.10. A bounded linear operator F is a Fredholm operator, precisely
when KerF and KerF ∗ are finite-dimensional and ImF is closed. In this case,

indexF = dim KerF − dim KerF ∗.

Thus, in particular, indexF = 0 in case F is self-adjoint (i.e., F ∗ = F ).

Proof. Use Theorem 2.7 and Exercise 2.1a. �

Remark 2.11. a) Note that KerF ∗F = KerF : “⊇” is clear; for “⊆”, take
u ∈ KerF ∗F , and then

〈F ∗Fu, u〉 = 〈Fu, Fu〉 = 0,

and u ∈ KerF . If ImF is closed (e.g., if F ∈ F), then we also have

ImF ∗F = ImF ∗.

Here “⊆” is clear. To prove “⊇”, consider F ∗v for v ∈ H, and decompose v
into orthogonal components v = v′ + v′′ with v′ ∈ ImF and v′′ ∈ KerF ∗; then
F ∗v = F ∗v′. In this way, we then have represented the kernel and cokernel of any
Fredholm operator F as the kernels of the self-adjoint operators F ∗F and FF ∗,
respectively.
b) The contraction operator A of Exercise 2.4 provides an example of a bounded,
self-adjoint operator with KerA (= KerA∗) = {0} which is not a Fredholm opera-
tor.

Corollary 2.12. Let H, H ′ be Hilbert spaces and F : H → H ′ a bounded
Fredholm operator. Then F ∗ : H ′ → H is a Fredholm operator and we have

KerF ∗ ∼= CokerF, CokerF ∗ ∼= KerF, and indexF ∗ = − indexF.

Proof. Consider the exact sequence

0 −→ KerF −→ H
F−→ H ′ −→ CokerF −→ 0.

Then by Theorem 2.9, the sequence

0 −→ CokerF −→ H ′
F∗−→ H −→ KerF −→ 0

is also exact, and the assertion follows. �

Positive operators. Another concept based on the scalar product is the no-
tion of positive operators.

Definition 2.13. If C ∈ B := B(H) with 〈Cx, x〉 ≥ 0 for all x ∈ H, then C is
called a positive operator. We denote the (convex) set of such operators by B+.

Proposition 2.14. Any C ∈ B+is self-adjoint. Moreover, for any n ∈ N,
Cn ∈ B+.
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Proof. For all x ∈ H,

〈Cx, x〉 = 〈x,Cx〉 = 〈x,Cx〉 = 〈C∗x, x〉 ⇒ 〈(C − C∗)x, x〉 = 0.

For D := C − C∗ and all x, y ∈ H, we then have

〈D (x+ y) , (x+ y)〉 = 0⇒ 〈Dx, y〉+ 〈Dy, x〉 = 0
〈D (x+ iy) , (x+ iy)〉 = 0⇒ −i 〈Dx, y〉+ i 〈Dy, x〉 = 0

}
⇒ 〈Dx, y〉 = 0.

So D = 0 and C = C∗. We now have
〈
C2x, x

〉
= 〈Cx,Cx〉 ≥ 0 and for n ≥ 3,

〈Cnx, x〉 =
〈
Cn−2 (Cx) , Cx

〉
,

whence the positivity of Cn follows by induction. �

For real Hilbert spaces H, 〈Cx, x〉 ≥ 0 does not imply C = C∗ (e.g., 〈Ax, x〉 =
0 ≥ 0 for any skew-symmetric A), but we assumed that H is complex.

Below, in Section 2.7 on trace class and Hilbert-Schmidt operators, we shall
prove the fundamental Square Root Lemma (Theorem 2.66, p.54ff) for all operators
belonging to B+ by means of completely elementary arguments.

2. Compact Operators

So far we found that the space F of Fredholm operators is closed under compo-
sition and passage to adjoints and particularly that all operators of the form Id +T
belong to F when T is an operator of finite rank. We will increase this supply of
examples, in passing to compact operators by taking limits. This, however, does
not lead to Fredholm operators of non-zero index.

We begin with an exercise which emphasizes a simple topological property of
operators of finite rank, more generally characterizes the finite-dimensional sub-
spaces which are fundamental for the index concept, and prepares the introduction
of compact operators.

Exercise 2.15. a) Every operator with finite rank maps the unit ball (or any
bounded subset) of H to a relatively compact set.
b) If H is finite-dimensional, then the closed unit ball BH := {u ∈ H : ‖u‖ ≤ 1} is
compact.
c) If H is infinite-dimensional, then BH is noncompact.
[Hint for a) and b): Recall the theorem of Bernhard Bolzano and Karl Weierstrass
that says that every closed bounded subset of Rn (or Cn ) is compact.
For c): Every orthonormal system e1, e2, ... in H is a sequence in BH without a
convergent subsequence. For instance, how large is ‖ei − ek‖ for i 6= k?]

Definition 2.16. We denote by K (or K (H)) the set of linear operators from
H to H which map the open unit ball (or more generally, each bounded subset of
H) to a relatively compact subset of H. Such operators are called compact (or
sometimes completely continuous) operators.

By Exercise 2.15a, the compact operators form the largest class of operators
that behave (in this respect) like finite rank operators, i.e., like the operators of
linear algebra which are defined via matrices.

The following theorem supports establishing the relative compactness of sub-
sets in function or mapping spaces, for instance in our proof of Rellich’s compact
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embedding of Sobolev spaces, Theorem 7.15, p.198f. We state it and its common re-
formulation without proof. For a clear (but a bit lengthy) proof we refer to [HiSch,
Satz 3.10].

Theorem 2.17 (Arzela-Ascoli, 19??). Let Y be a compact topological space,
(X, d) a metric space, and let C(Y,X) denote the metric space of continuous map-
pings from Y to X, equipped with the uniform metric

d∞(f, g) := sup {min{d (f(y), g(y)) , 1} : y ∈ Y } .

Then we have for every V ⊂ C(Y,X):

V is relatively compact ⇐⇒{
(i) V is uniformly continuous, and

(ii) V (y) := {f(y) : f ∈ V } is relatively compact in X for all y ∈ Y .

Here “V is uniformly continuous” means the following: For all y ∈ Y and ε > 0
there exists a neighborhood Uy of y such that d (f(y′), f(y)) < ε for all y′ ∈ Uy and
all f ∈ V .

The Arzela-Ascoli Theorem is applied mostly in the following form.

Corollary 2.18. Let Y be a compact topological space and V ⊂ C(Y,C).
Then we have:

V is relatively compact ⇐⇒ V is uniformly continuous and bounded.

Despite the risks inherent in pictures, we can perhaps best visualize compact operators

as “asymptotically” contracting maps which in the case of operators of finite rank map

the ball BH to a finite-dimensional disk, and in general to some sort of elliptical spiral as

in Figure 2.1.

BH

H

H

operator of
finite rank

general
compact
operator

Figure 2.1. Compact operators visualized as elliptical spirals

David Hilbert made this visualization precise in his spectral representation of a com-

pact operator K. Accordingly (in the normal case KK∗ = K∗K) the value Ku can be
expanded into a series in eigenvectors u1, u2, . . . with the corresponding eigenvalues as
coefficients, i.e.,

Ku =
∑∞

j=1
λj 〈u, uj〉uj ,
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whereby the eigenvalues accumulate at 0 and the eigenvectors form an orthonormal system.

In the language of operator algebras, that means that K vanishes at infinity.
In direct analogy to the principal axis transformation of analytic geometry, we thus

obtain for the quadratic form defined by K the representation

〈Ku, u〉 =
∑∞

j=1
λj 〈u, uj〉2 .

All proofs can be found in [Jö, 1970/1982, 6.2-6.4] or [Ped, Lemma 3.3.5 and Theorem

3.3.8], the historical background in [HT, 16, 34 and 40] or more compactly in [Kli, p.1064-

1066].

We give an elementary proof of the spectral representation of a compact oper-
ator in the simplest case, namely when the operator is self-adjoint. Our proof is
inspired by [AkGl, Section 55] and [GG, Theorem 5.1]; see also [CodLev, Section
7.3–4], where the very same chain of arguments is played through for the special
case of self-adjoint Sturm-Liouville boundary problems.

Definition 2.19. We say that an operator is diagonalizable (or “discrete”)
if there is an orthonormal basis {ej : j = 1, 2, . . . } for H and a bounded set
{λj : j = 1, 2, . . . } in C such that

Tu =

∞∑
j=1

λj〈u, ej〉ej

for every u ∈ H.

Note that the numbers 〈u, ej〉 are the coordinates for u in the basis {ej} and
that each λj is an eigenvalue for T corresponding to the eigenvector ej . So, the
matrix corresponding to T and the basis {ej} is the diagonal matrixλ1

λ2

. . .

 .

We are going to prove the spectral decomposition for compact operators (first
proven by David Hilbert in 1904 for Fredholm integral equations and generalized
by his student Erhard Schmidt in 1905).

Theorem 2.20 (Hilbert-Schmidt Theorem, 1904). Every compact self-adjoint
operator K is diagonalizable.

In the proof we shall use a simple, well-known technical result (Lemma 2.22
below) which follows from the also well-known proposition:

Proposition 2.21. If a bounded operator T is self-adjoint, then

‖T‖ = sup
‖u‖=1

∣∣〈Tu, u〉∣∣ .
The proposition remains valid for normal operators, see for instance [Ped,

Proposition 3.2.25] or [Rud, Theorem 12.25]. The number on the right is also
called the numerical radius of T and is denoted by |||T ||| .

Proof. Let m denote the numerical radius of T . We deduce m ≤ ‖T‖ from
the Cauchy–Schwarz inequality∣∣〈Tu, u〉∣∣ ≤ ‖Tu‖ · ‖u‖ ≤ ‖T‖ for ‖u‖= 1.
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To prove m ≥ ‖T‖ we consider arbitrary u, v ∈ H and obtain

〈T (u± v), u± v〉 = 〈Tu, u〉 ± 2<〈Tu, v〉+ 〈Tv, v〉
(using the fact that T is self-adjoint), from which

4<〈Tu, v〉 = 〈T (u+ v), u+ v〉 − 〈T (u− v), u− v〉 ,
where <z denotes the real part of a complex number z.

To bring m into play, we recall∣∣〈Tw,w〉∣∣ =
∣∣〈T w

‖w‖
,
w

‖w‖
〉
∣∣ ‖w‖2 ≤ m ‖w‖2 for every w ∈ H.

We then get the estimate

(2.5) 4<〈Tu, v〉 ≤ m
(
‖u+ v‖2 + ‖u− v‖2

)
≤ 2m

(
‖u‖2 + ‖v‖2

)
with the right inequality deduced from the parallelogram law

‖u+ v‖2 + ‖u− v‖2 = 2 ‖u‖2 + 2 ‖v‖2 .
If we replace u by αu with α ∈ C and |α| = 1, the right side of (2.5) remains

unchanged and we obtain (for α := e−iθ when 〈Tu, v〉 = |〈Tu, v〉|eiθ for suitable
real θ, hence |〈Tu, v〉| = <〈T (e−iθu), v〉):

(2.6)
∣∣〈Tu, v〉∣∣ ≤ m

2

(
‖u‖2 + ‖v‖2

)
.

Suppose Tu 6= 0. Then taking v := ‖u‖
‖Tu‖Tu in (2.6) yields

‖u‖ ‖Tu‖ =
∣∣〈Tu, v〉∣∣ ≤ m ‖u‖2 .

Hence ‖Tu‖ ≤ m ‖u‖ for all u ∈ H and so ‖T‖ ≤ m. �

Now, the key to the spectral representation is the following

Lemma 2.22. If K ∈ B(H) is compact and self-adjoint, then at least one of the
numbers ‖K‖ or −‖K‖ is an eigenvalue of K.

Proof. The lemma is trivial if K = 0. Assume K 6= 0. It follows from Proposi-
tion 2.21 that there exists a sequence (un) in H of unit vectors with 〈Kun, un〉 → λ,
where λ = ‖K‖ or λ = −‖K‖.

To prove that λ is an eigenvalue of K, we first note that

0 ≤ ‖Kun − λun‖2 = ‖Kun‖2 − 2λ〈Kun, un〉+ λ2

≤ 2λ2 − 2λ〈Kun, un〉 −→ 0.

Thus

(2.7) Kun − λun −→ 0.

Since K is compact, there exists a subsequence (Kun′) of (Kun) which converges
to some v ∈ H. Consequently, (2.7) implies that un′ → 1

λv, and by continuity of
K,

v = limKun′ =
1

λ
Kv.

Hence Kv = λv and v 6= 0 since ‖v‖ = lim ‖λun′‖ = |λ| = ‖K‖. Thus λ is an
eigenvalue of K. �

Now we prove the theorem by repeated application of the preceding lemma.
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Proof of Theorem 2.20. By Lemma 2.22, there exists an eigenvalue λ1 of
K and a corresponding unit eigenvector e1 with |λ1| = ‖K‖. Set H1 := H with the
closed subspace H2 := [e1]⊥ . Here

(2.8) [a, b, c . . . ] := Ca+ Cb+ Cc+ . . .

denotes the linear span of vectors a, b, c . . . . Now, T -invariance of a subspace M
for a bounded operator T implies that M⊥ is T ∗-invariant. Since K is self-adjoint
it follows KH2 ⊆ H2 . Set K1 := K and K2 := K|H2

∈ B(H2). Then K2 is compact
and self–adjoint.

If K2 6= 0, we repeat the previous argument. So, there exists an eigenvalue λ2

of K2 and a corresponding unit eigenvector e2 with

|λ2| = ‖K2‖ ≤ ‖K1‖ = |λ1|.

Clearly the pair (e1, e2) is orthonormal. Now H3 := [e1, e2]⊥ is a closed subspace
of H, H3 ⊂ H2 and KH3 ⊆ H3 . Setting K3 := K|H3 , the process continues. It
either stops when Kn = 0 or else we get a sequence (λn) of eigenvalues of K and a
corresponding set {e1, e2. . . . } of mutually orthonormal eigenvectors such that

|λn+1| = ‖Kn+1‖ ≤ ‖Kn‖ = |λn|, n = 1, 2, . . . .

If (λn) is an infinite sequence, then λn → 0. Indeed, assume this is not the
case. Since |λn| ≥ |λn+1|, there exists an ε > 0 such that |λn| ≥ ε for all n. Hence
for n 6= m,

‖Ken −Kem‖2 = ‖λnen − λmem‖2 = λ2
n + λ2

m > ε2 .

But this is impossible since (Ken) has a convergent subsequence due to the com-
pactness of K.

We are now ready to prove the diagonalization of K as asserted in the theorem.
Let u ∈ H be given.
Case 1. Kn = 0 for some n: Since un := u −

∑n−1
k=1〈u, ek〉ek is orthogonal to ej ,

j = 1, . . . , n− 1, the vector un belongs to Hn . Hence

0 = Knun = Ku−
∑n−1

k=1
λk〈u, ek〉ek .

Case 2. Kn 6= 0 for all n: From what we have seen in case 1 (and the simple
‖un‖ ≤ ‖u‖),

‖Ku−
∑n−1

k=1
λk〈u, ek〉ek‖ = ‖Knun‖ ≤ ‖Kn‖‖un‖ ≤ |λn|‖un‖ ≤ |λn|‖u‖ −→ 0,

which means that

Ku =
∑∞

k=1
λk〈u, ek〉ek . �

Corollary 2.23. Let K be a self-adjoint compact operator and ρ > 0 a real.
Then the operator K has only a finite number of linearly independent eigenvectors
such that the corresponding eigenvalues exceed ρ in modulus. In particular, only 0
can be an accumulation point of the eigenvalues, and each nonzero eigenvalue has
finite multiplicity.

In [AkGl, Section 52] it is shown that the preceding assertion remains valid
for any compact operator; i.e., the assumption that K is self-adjoint is dispensable.

Note that an operator K
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• is bounded (= continuous) if and only if for every u ∈ H
lim
|v|−→0

K(u+ v) = K(u),

• but is compact, if and only if, with respect to a complete orthogonal
system e1, e2, . . ., we have

lim
i−→∞

〈vi, ej〉 = 0 for each j ⇒ lim
i→∞

K(u+ vi) = K(u),

in which the hypothesis is weaker than ‖vi‖2 =
∑∞
j=1 |〈vi, ej〉|

2 → 0.

This describes the context in which Hilbert developed the idea of a compact opera-
tor and why he called them completely continuous. For our purposes the following
result is sufficient.

Theorem 2.24. a) K is a “two-sided (non-trivial) ideal” in the Banach algebra
B of bounded linear operators in a separable, infinite-dimensional Hilbert space H.
b) K is closed in B.
c) More precisely, K is the closure of the subset of finite-rank operators.
d) K is invariant under ∗; i.e., the adjoint of a compact operator is compact.

Proof. To (a): For bounded T and compact K, the operators T ◦ K and
K ◦ T are compact, by definition. We therefore have B ◦ K ⊆ K and K ◦ B ⊆ K.
Moreover, for λ ∈ C, we have λK compact. Now, let K and K ′ be compact. To
prove that K + K ′ is compact, we use the sequential criterion for compactness;
i.e., an operator is compact, if the image of a bounded sequence of points has a
convergent subsequence. Thus, let u1, u2, . . . be a bounded sequence in H. Then, by
a two-fold selection of subsequences, we can find ui1 , ui2 , ..., such that Kui1 ,Kui2 , ...
and K ′ui1 ,K

′ui2 , ...both converge in H, whence (K +K ′)ui1 , (K +K ′)ui2 , ... also
converges. Finally, it is trivial that every compact operator is bounded, since the
image of the unit sphere is relatively compact and hence bounded; thus, K ⊆ B.
Since K includes the operators of finite rank (Exercise 2.15a) but not the identity
(Exercise 2.15c), K is a nontrivial ideal, and the assertion follows.
To (b): Let T ∈ B be an operator in the closure of K. In order to show that
each open cover (say, without loss of generality, by all of the balls of radius ε > 0
[Du, 1966, p.298]) of the image T (BH) of the closed unit ball of H has a finite
subcover, we use an “ε/3-proof” (as is usual in such situations): We choose K ∈ K
with ‖T −K‖ < ε/3 and a finite open covering of K(BH) by balls of radius ε/3,
with centers at Ku1, , ...,Kum where u1, ..., um ∈ BH . Then the ε-balls about
Tu1, ..., Tum form the desired finite covering of T (BH): For each u ∈ BH , there is
some i ∈ {1, ...,m}, such that ‖Ku−Kui‖ < ε/3, and so

‖Tu− Tui‖ ≤ ‖Tu−Ku‖+ ‖Ku−Kui‖+ ‖Kui − Tui‖ < ε.

To (c): We now ask which operators are limits in B of sequences of operators of
finite rank. Evidently, these limits typically lie outside of the space of finite rank
operators; e.g., see Exercise 2.28 below. Let e1, e2, ... be a complete orthonormal
system in H and let

Qn : H −→ [e1, ..., en]

denote the orthogonal projection from H to the linear span of the first n basis
elements. This truncation yields, for each T ∈ B, a sequence Q1T,Q2T, ... of
operators of finite rank which converges pointwise to T ; i.e., QnTu→ Tu for each
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u ∈ H. This does not mean that the sequence Q1T,Q2T, ... = (QnT )
∞
1 converges

in B (i.e., in the operator norm) to T . Of course, not every bounded operator can
be the limit of a sequence of operators of finite rank (e.g., ‖Qn Id− Id‖ = 1 for
all n); in fact, we have already proved in (b) that limits of compact operators (in
particular, finite-rank operators - see Exercise 2.15 a) must be compact. It remains
to prove that, for each K ∈ K, the sequence (QnK)

∞
1 converges to K in B. For

this, we choose (for each ε > 0) a finite covering of K(BH) by balls of radius ε/3
with centers at Ku1, ...,Kum and some n ∈ N, so large that

‖Kui −QnKui‖ < ε/3 for i = 1, ...,m.

This is no problem, since (Qn)
∞
1 converges pointwise to the identity. For each

u ∈ BH , we then have

‖Ku−QnKu‖ ≤ ‖Ku−Kui‖+ ‖Kui −QnKui‖+ ‖QnKui −QnKu‖
< ε/3 + ε/3 + ε/3

for some i ∈ {1, ...,m}. For the last term, note that ‖Qn‖ = 1, whence

‖QnKui −QnKu‖ = ‖Qn(Kui −Ku)‖ ≤ ‖Kui −Ku‖ .
Thus, we have proven ‖K −QnK‖ < ε for all sufficiently large n, depending on ε.
To (d): Obviously, the space of operators of finite rank is invariant under ∗, since
every such operator T (as in Remark 1.13, p. 10) is of the form T =

∑n
i=1 〈·, ui〉 vi,

where u1, ..., vn ∈ H, and then (verify!) T ∗ =
∑n
i=1 〈·, vi〉ui also has finite rank.

Now, we can reduce the general case K ∈ K to the finite-rank case. Namely,
approximate K by a sequence (Tn)∞1 of operators of finite rank whose adjoints
then approximate K∗, since (by Exercise 2.6),

‖T ∗n −K∗‖ =
∥∥(Tn −K)

∗∥∥ = ‖Tn −K‖ . �

Remark 2.25. The statements in (a), (b), and (d) apply also (admittedly
with somewhat different proofs; e.g., see [Rud, Theorems 4.18, 4.19] or [Sche,
Section 4.3]) to the more general case of Banach spaces, but not statement (c).
The search for a counterexample began with a legendary treatise by Alexander
Grothendieck in [Gro] (1955) and led Per Enflo to success, published in [En]
(1973), incidentally supplemented by many nice examples of the correctness of
(c) in special cases, in particular for almost all well-known Banach spaces; see also
[Jö, 1970/1982, 12.4], but - surprisingly not for B(H): in [Sza] (1981), it was
proved by Andrzej Szankowski that the Banach algebra B(H) of bounded opera-
tors in complex separable Hilbert space is not approximative, i.e., there exists a
compact operator k : B(H)→ B(H) which can not be approximated by a sequence
(fj)j=1,2,... : B(H) → B(H) of operators (on the operator space B(H)) of finite
range.

Remark 2.26. Since the closure of an ideal is again an ideal (as is trivially
proved) and since the operators of finite rank obviously form an ideal in B, we note
that (a) follows from (c) – admittedly, somewhat less directly than in the above
proof.

Remark 2.27. For practical needs the sequence (QnK)∞1 stated in the proof
of (c) is a poor approximation of K by operators of finite rank. It presupposes the
knowledge of K on all of H and works with a completely arbitrary orthonormal sys-
tem. However K is frequently (see for example Exercises 2.28 and 2.29 below) given
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in a form which suggests a special approximation or which points to a distinguished
orthonormal system, namely the eigenvectors of K. The spectral representation of
Theorem 2.20 is numerically relevant, because it implies that

QnKu = KQnu =
∑n

j=1
λj 〈u, uj〉uj

which does indeed permit a stepwise approximation.

Exercise 2.28. Show that the operator A in Exercise 2.4 is compact. Namely,

give an estimate for
∥∥∥Au−∑n

j=1
1
j 〈u, ej〉 ej

∥∥∥2

which is independent of u, for ‖u‖
< 1. Recall the Cauchy-Schwarz inequality |〈u, ej〉| ≤ ‖u‖ ‖ej‖.

Exercise 2.29. Let [a, b] be a compact interval in R. Show that we obtain a
compact operator K on the Hilbert space L2[a, b] for each square-integrable function
G on [a, b]× [a, b] via

Ku(x) :=

∫ b

a

G(x, y)u(y) dy, x ∈ [a, b]

[Hint: Approximate the weight function G by step functions, and hence K by opera-
tors with finite rank of the kind considered in Exercise 1.14 (integral operators with
degenerate weight). For details of the argument, see [GG, Example II.14.3], [Sche,
Section 11.4], [Kato, Example V.2.19], [Ped, Propositon 3.4.16], and [ReSi72,
Theorem VI.23]. The last three references show that one can replace the inter-
val [a, b] by any locally-compact Hausdorff space with a fixed Radon integral and
that the integral operator is not only compact but Hilbert-Schmidt, i.e., with
the eigenvalues of K∗K going to zero fast enough to be summable (i.e., the trace
Tr (K∗K) <∞).]

Exercise 2.30. For the map

L2([a, b]× [a, b]) −→ K(L2[a, b])
G 7→ K ,

defined in Exercise 2.29, show that:
a) The map is linear and injective.
b) If G is the weight function of K, then

‖K‖ ≤ |G| :=

(∫ b

a

∫ b

a

|G (x, y)|2 dxdy

)1/2

.

c) The adjoint operator K∗ has the weight function G∗(x, y) = G(y, x).
d) If K1 and K2 are given by weight functions G1 and G2, then the operator K2◦
K1 belongs to the weight function

G (x, y) =

∫ b

a

G2 (x, z)G1 (z, y) dz.

[Hint: Linearity is clear. For injectivity, one naturally (Lebesgue integral!) need

only show that
∫ β
α

∫ δ
γ
G(x, y) dxdy =

〈
χ[α,β],Kχ[γ,δ]

〉
, where χ[α,β] and χ[γ,δ] are

characteristic functions of subintervals [α, β] , [γ, δ] ⊆ [a, b]; then, we have G = 0
when K = 0. Details (and the generalization to the case of unbounded intervals)
are in [Jö, 1970/1982, 11.2]. For the proofs of (b), (c), and (d), one needs to use
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the theorem of Fubini on iterated integrals; e.g., the details are in [Jö, 1970/1982,
11.2-11.3] or [Ped, Propositon 3.4.16].]

3. The Classical Integral Operators

The type of operators considered here, i.e., those which are given by weight functions

square-integrable on the product space, are nowadays called Hilbert-Schmidt operators.

For a rigorous treatment of abstract Hilbert-Schmidt operators, see Section 2.7 below.

By introducing them, the Hungarian mathematician Frigyes (Friedrich) Riesz (1907), not

only generalized the theory of integral equations with continuous weight function created

by Vito Volterra (Turin, 1896), Erik Ivar Fredholm (Stockholm, 1900) and David Hilbert

(Göttingen, 1904f), but drastically simplified it at the same time. Indeed, proofs dealing

with L2-integration theory on Hilbert space compare very favorably with the cumbersome

work with uniform convergence in the Banach space of continuous functions.

Of course, there do exist important integral operators whose weight functions
are not square integrable: The best-known example is the Fourier transform (see
Appendix A below)

f̂(x) =

∫ ∞
−∞

e−ixyf(y) dy.

It maps L2(R) bijectively onto itself, but the L2-norm of the weight,∫ ∞
−∞

∫ ∞
−∞

∣∣e−ixy∣∣2 dxdy =

∫ ∞
−∞

∫ ∞
−∞

1dxdy

is strongly infinite. Somewhere between these two simplest principal types – the
compact Hilbert-Schmidt operators on the one hand and the invertible Fourier
transform on the other – lie the convolution operators, in particular the Wiener-
Hopf operators and other singular integral operators. Their weights do not belong
to L2, but frequently they are at least componentwise integrable, for example∫ b

a

|G (x, y)|2 dy <∞ for x ∈ R.

All these operators are highly significant in kinematic as well as stochastic modeling

and in solving a multitude of physical, technical and economical problems: as in the

method of inverting differential operators into integral operators which goes back to George

Green and was developed on a large scale by David Hilbert; and as in the indirect treatment

of collective and statistical phenomena or more generally in probabilistic situations. We

will return to a number of particularly interesting integral operators later in this Part and

in the following Part. A first survey is given in Table 2.1.update the cross ref-
erences

4. The Fredholm Alternative and the Riesz Lemma

If F is a Fredholm operator on a separable Hilbert space H, then the statement
“indexF = 0” can be expressed in familiar classical terminology as: Either the
equation Fu = v has a unique solution u ∈ H for each v ∈ H, or the homogeneous
equation Fu = 0 has a nontrivial solution. In the second case, there are at most
finitely many linearly independent solutions w1, ..., wn of Fw = 0 and just as many
linearly independent solutions u1, ..., un of the adjoint homogeneous equation F ∗u =
0; the inhomogeneous equation Fu = v is solvable exactly when

〈v, u1〉 = · · · = 〈v, un〉 = 0.
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Table 2.1. Some fundamental integral operators of the form
Ku(x) :=

∫
X
G(x, y)u(y) dy

This statement is called the Fredholm alternative (met before in Exercise 1.14);
its equivalence with “indexF = 0” follows from Theorem 2.7. We saw already that
the Fredholm alternative holds for self-adjoint (F ∗ = F ), or more generally normal
(F ∗F = FF ∗), Fredholm operators. Moreover, in analogy with finite-dimensional
linear algebra, it holds for operators of the form Id +T , when T is an operator of
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finite rank. Even more important for many applications are the following operators
for which the Fredholm alternative holds:

Theorem 2.31 (F. Riesz, 1918). For each compact operator K, Id +K is a
Fredholm operator with vanishing index.

Note that our proof functions only in Hilbert space or in approximative Banach
space, see Remark 2.25. An alternative proof with wider applicability can be found
in [Kat, Theorem IV.5.26, p.238f].

Proof. Using Theorem 2.24c, approximate K by a sequence K1,K2,... of
operators of finite rank and choose n with ‖K −Kn‖ < 1. Then Id +K − Kn

is invertible. Indeed, let Q := K − Kn and consider the series
∑∞
k=0Q

k. Since
‖Q‖ < 1 and ∥∥∥∥∑M

k=N
Qk
∥∥∥∥ ≤∑M

k=N

∥∥Qk∥∥ ≤∑M

k=N
‖Q‖k ,

the partial sums form a Cauchy sequence in the Banach algebra B. The series then
converges, and one has

(Id−Q)
∑∞

k=0
Qk =

(∑∞

k=0
Qk
)

(Id−Q) = Id .

Thus, we can write Id +K as a product:

Id +K = (Id +K −Kn)(Id +(Id +K −Kn)−1Kn)

where the left factor is invertible and the right is Id + an operator of finite rank,
which we know (Exercise 1.12, p.9) is a Fredholm operator with index 0. By the
composition rule of Exercise 1.10 (p.9) or Exercise 2.3 (p.14), the statement is
proved. �

Remark 2.32. Note that in the above proof of the formula index(Id +K) = 0,
it was not needed that K is approximated by a sequence of operators of finite rank.
It was sufficient to have a crudely approximating operator K (with ‖Kn −K‖ <
1). Also, for the determination of the index, it was not necessary to compute
or know more precisely the inverse operator (Id +K − Kn)−1. This method of
proof which reduces the general case to situations permitting explicit or at least
iterative solutions goes back to E. Schmidt and works only in Hilbert space. In
more general cases where the theorem still holds the proof starts by showing with
a compactness argument that Ker(Id +K) (and similarly Ker(Id +K∗)) is finite
dimensional. Then one needs a careful argument concerning the limit process in
order to show that Im(Id +K) is closed, and one gets only that Id +K ∈ F . Finally
the homotopy invariant of the index (see Theorem 3.11, p.68) implies the formula
index(Id +K) = 0.

Exercise 2.33. Formulate and prove the Fredholm alternative for the linear
Fredholm integral equation of the second kind

u(x) +

∫ b

a

G(x, y)u(y) dy = h(x),

where G ∈ L2([a, b]× [a, b]); see Exercise 1.14 (p.10), Theorem 2.7 (p.15), Exercise
2.29 (p.25), and Exercise 2.30 (p.25).
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5. Sturm-Liouville Boundary Value Problems

We will apply Theorem 2.31 and Exercise 2.33 to a classical boundary value problem

in the theory of ordinary differential equations which is not very transparent. We start

with a dynamical system with finitely many degrees of freedom described by a system of

ordinary differential equations. Such ideally simple models are used in celestial mechanics

for the computation of planetary orbits, for investigations of the pendulum and gyro-

scope, for econometric simulation of economic processes, and for the treatment of many

other discrete oscillating systems (N -body problems). Many of these problems are math-

ematically unsolved, but one knows at least that each set of initial values determines a

unique solution curve; i.e., given the differential equation (with half-way reasonable co-

efficients), the system is completely determined by its state at a single moment in time.

The key mathematical tools are the local existence and uniqueness theorems of Augustin

Cauchy, Emile Picard, Rudolf Lipschitz, Giuseppe Peano, and Ernst Lindelöf. See, for

example, [CodLev, Chapters 1-2] or [UN, p.164-170]. We have a different situation with

continuously distributed oscillating systems such as the oscillating string or flexible rod,

electrical oscillations in wires, acoustical vibrations in tubes, heat conduction, heat prop-

agation and other diffusion processes, particularly the statistical treatment of equilibria

and motion.

For many such processes, one has partial differential equations (see Part II
below) for instance of the form

(2.9) ∂2U
∂x2 = ρ∂

2U
∂t2 + F (x, t) , x ∈ [0, 1] .

Under suitable assumptions, (2.9) can be reduced to an ordinary differential equa-
tion by separating variables. More explicitly, setting

U(x, t) = u(x)ψ(t),

we obtain

(2.10) u′′ + ru = f,

where r, f are given, and u is to be found. Hereby (2.10) usually inherits boundary
conditions, e.g.,

(2.11) u(0) = u(1) = 0

from (2.9). For details and generalizations, see [CH, I, V.3], [BlCs, p.25ff, 285ff,
351ff], [Lo, p.108-152] or [UN, p.164-170].

We stick with this example which goes back to John Bernoulli’s brachistochrone
problem and more generally to the beginnings of the calculus of variations and of
geometric optics by Pierre de Fermat [Kli, Ch. 24]. For starters let r = 0. Evidently
the homogeneous differential equation associated with (2.10) (put f = 0) has only
the trivial solution u = 0 if the boundary conditions (2.11) are to be satisfied. In this
case there is a Green’s function (see e.g., [CodLev, Theorem 7.2.2] or [CH, I, V.14-
15]) which, for each (piecewise continuous) f , yields a solution of the differential
equation (2.10) with boundary conditions (2.11) given by the formula

(2.12) u(x) =

∫ 1

0

k(x, y)f(y) dy.

For the present case of (2.10) with r = 0 and (2.11),

k(x, y) =

{
x(y − 1), for x ≤ y,
y(x− 1), for x ≥ y
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[CH, I, V.15.1].
Now let f = 0 and let r be a positive real number. Then the general solution

of (2.10) has the form

u (x) = c1e
i
√
rx + c2e

−i
√
rx;

i.e., each of the two conditions of (2.11) determines a one-dimensional family of
solutions where

c1/c2 =

{
−1, for u(0) = 0,

−e−2i
√
r, for u(1) = 0.

The two families coincide, exactly when
√
r is a multiple of π. If so, there is in

addition to the zero function another solution u0 of the homogeneous differential
equation

(2.13) u′′ + ru = 0

which satisfies the boundary conditions (2.11). Thus we have here – in contrast to
the Uniqueness Theorem of Lipschitz – an ordinary differential equation of second
order with two conditions imposed (which, however, are not concentrated at an
initial point but distributed over two points) whose solution is not unique. Another
peculiarity of this case is that in contrast to the Existence Theorem of Picard the
inhomogeneous differential equation (2.10) subject to the conditions (2.11) need
not always have a solution. This happens for example if the driving force f (the
source term) equals the eigenfunction u0, or more generally [CH, I, V.14.2] if∫ 1

0

f(x)u0(x) dx 6= 0.

This is the case of resonance which means that the system becomes unstable under the

influence of an exterior force. The lack of a solution does not mean that nothing happens,

but from the point of view of the user it is an indication that some critical phenomenon

might occur: A short in a wire, the collapse of a bridge, extreme concentration of light

beams which is technically utilized in a laser. Also, mathematically speaking, the lack of

a solution means only that no solution of the given or desired type exists, in our example

no bounded function which has a piecewise continuous second derivative. Frequently, this

is an indication that a reformulation or refinement of the question is necessary.

We note finally that in the other case, when the nontrivial solution sets with
u(0) = 0 and those with u(1) = 0 are disjoint, the equations (2.10) and (2.11)
always have a unique solution, and a Green function can be constructed which
carries the essential information of (2.10) and (2.11) and yields the solution for
each right hand side f in the integral form (2.12) [CH, I, V.14.1]. Combining the
two cases we obtain a kind of Fredholm alternative:

Either the differential equation (2.10) together with the boundary conditions
(2.11) possesses a unique solution u for every given f , or else the homogeneous
equation (2.13) has a solution which does not vanish identically. In the second case
the equations (2.10) and (2.11) have a solution, if and only if the orthogonality
condition ∫ 1

0

f(x)u(x) dx = 0

holds for each solution u of the homogeneous equation (2.13), where f is the right
hand side of (2.10).

The analogy with the Fredholm alternative for integral equations (Exercise 2.33,
p.28) is not accidental. When the solution is unique, the Green function makes
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the connection via formula (2.12). But even when solutions do not necessarily
exist or when they are not unique, then the classical theory manages to work with
generalized Green functions.

We will not deal with these questions in detail, but refer the reader to the
quoted literature. The fundamental methodological and, in our context, particu-
larly interesting point of view is perhaps best made precise as follows:

Exercise 2.34. Consider the differential equation

(2.14) u′′ + pu′ + qu = f

on the interval [0, 1] with p, q, f ∈ C0[0, 1] and with the boundary conditions

(2.15) u(0) = a and u(1) = b.

Show that the integral equation

(2.16) v −Kv = g

is equivalent to the boundary-value problem (2.14), (2.15), if

Kv(x) :=

∫ 1

0

G(x, y)v(y) dy, x ∈ [0, 1] ,

G(x, y) :=

{
y(q(x)(1− x)− p(x)), for y ≤ x,
(1− y)(q(x)x+ p(x)), for y > x,

g := ph′ + qh− f, and

h := a(1− x) + bx (hence, h′ = b− a).

[Hint: Show that every twice continuously differentiable solution of (2.14) and
(2.15) yields a solution v := u′′ of (2.16), and conversely, every continuous solution
v of (2.16) gives a twice continuously differentiable solution of (2.14) and (2.15) by
means of

u(x) := h(x) +

∫ 1

0

k(x, y)v(y) dy, where

k(x, y) :=

{
x(1− y), for x ≤ y,
y(1− x), for x ≥ y.

Details may be found in [Jö, 1970/1982, 9.1] (see also [Ped, Section 3.4.18] for a
rigorous treatment of the general symmetric second-order differential equation with
a certain periodic self-adjoint boundary condition). For a first calculation and in
order to maintain continuity with the preliminary remarks, it is recommended that
one first try p = 0, q positive and constant, and set a = b = 0, see also p.67.]

Remark 2.35. With Exercise 2.33, the Fredholm alternative for the boundary-
value problem follows from the equivalence proved in Exercise 2.34. More precisely,
Id−K is a Fredholm operator on the Hilbert space L2[0, 1], and index(Id−K) = 0.
Thus, we have a Fredholm alternative relative to L2[0, 1]. Actually, from the Closed
Graph Theorem and a regularity theorem (see Chapters 9 and 10; incidentally, we
see here that the Banach space theory is genuinely more difficult than the Hilbert
space theory), we have that each square integrable solution of equation (2.14) is
continuous, provided the right side is continuous. Thus, the Fredholm alternative in
C0[0, 1] holds: Either dim Ker(Id−K) = 0 and so (because index(Id−K) = 0, and
hence dim Coker(Id−K) = 0) the equation (2.14) has a unique solution for each
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g ∈ C0[0, 1] (whence, the boundary-value problem (2.14), (2.15) also has a unique
solution for each f ∈ C0 [0, 1] and fixed boundary values a, b), or the homogeneous
equation v −Kv = 0 has nontrivial solutions.
In the second case, the adjoint integral equation also has a nontrivial solution; i.e.,
there is a w ∈ L2[0, 1] with

w(x) = (1− x)

∫ x

0

(q(y)y + p(y))w(y) dy

+ x

∫ 1

x

(q(y) (1− y)− p(y))w(y) dy.

We can differentiate with respect to the upper and lower bounds, obtaining that w
is continuously differentiable and

w′(x) = −
∫ x

0

(q(y)y + p(y))w(y) dy + (1− x)(q(x)x+ p(x))w(x)

+

∫ 1

x

(q(y) (1− y)− p(y))w(y) dy − x(q(x) (1− x)− p(x))w(x)

= p(x))w(x)−
∫ x

0

· · ·+
∫ 1

x

· · · .

We bring p(x)w(x) to the left side, differentiate once more, and obtain

(2.17) (w′ − pw)′ + qw = 0.

From the integral equation for w, we have w(0) = w(1) = 0. Hence, every solution
w of the homogeneous adjoint integral equation is a solution of the formal-adjoint
homogeneous differential equation (2.17) with the homogeneous boundary condi-
tions w(0) = w(1) = 0. By formal-adjoint, we mean that for all u,w ∈ C2[0, 1]
with the homogeneous boundary condition, we have∫ 1

0

u ((w′ − pw)′ + qw) dx =

∫ 1

0

(u′′ + pu′ + qu)w dx

which one can verify through integration by parts. For brevity, we have taken all
functions to be real-valued.
In the second case of the Fredholm alternative, the problem (2.14) and (2.15) is
solvable exactly when (2.16) is solvable; i.e., when (2.17) has a nontrivial solution
w with 〈g, w〉 = 0, which means that in terms of f , we have∫ 1

0

f(x)w(x) dx = aw′(0)− bw′(1).

Details of this argument and similar treatments of other boundary-value problems
for ordinary differential equations of second order (Sturm-Liouville problems) can
be found in [CodLev, Chapters 7 and 12] and [Jö, 1970/1982, 9.2].

Remark 2.36. If the boundary value problem (2.14) and (2.15) is equivalent
to the integral equation (2.16), what is the special nature of the presentation (2.16)
in comparison with (2.14) and (2.15)? We bring out three points:
1. The integral equation succeeds in combining two equations, the differential
equation and the boundary conditions, into one.
2. Let

L : C2[0, 1] −→ C0[0, 1]
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denote the differential operator defined by the left side of (2.14) and let

B : C2[0, 1] −→ C⊕ C

denote the boundary operator defined by the left sides of (2.15). Then Exercise
2.34 says that the operators

L⊕B : C2[0, 1] −→ C0[0, 1]⊕C⊕ C and

Id−K : L2[0, 1] −→ L2[0, 1]

are equivalent in the sense that Ker (L⊕B) ∼= Ker (Id−K) and Coker (L⊕B) ∼=
Coker (Id−K). Here Id−K is a bounded operator on a Hilbert space to itself,
while the functional analytic structure of L⊕B is much less clear. The equivalence
of the differential and the integral equation is a formal one, while the equivalence
of the C0/C2-theory and the L2-theory is fairly elementary, but by no means ob-
vious: While nature poses its problems usually in the spaces C2 or C2(piecewise),
mathematicians decide freely in which spaces they want to solve these problems.
Hilbert spaces are used, not because of their intrinsic beauty, but because integral
equations on L2 can be treated more efficiently and more transparently than on C0.
The Regularity Theorem provides the justification for this procedure and shows at
the same time that the freedom of the mathematician is not arbitrary.
3. Numerically, the integral operator Id−K is dealt with by approximating the com-
pact operator K by operators of finite rank or by approximating the weight function
G(x, y) of K by degenerate weights of the form φ(x)ψ(y). Jacques-Charles-Francois
Sturm and Joseph Liouville first and successfully undertook the systematic inves-
tigation of boundary value problems for ordinary differential equations of second
order. It is quite characteristic that they also arrived at their algebraic solution
methods by an approximation principle: They investigated related difference equa-
tions and then passed to the limit (Jour. de Math. 1 (1836), 106-186 and 373-444).
The difference is that the approximation of the integral equation in some cases (e.g.,
when G is continuous and non-negative) can be done very naturally by develop-
ment into a series in eigenfunctions (analogous to principal axis transformation of
quadratic forms) so that the integral equation becomes immediately clearer ([CH,
I, III.5.1]). In contrast, the approximation of a differential equation by difference
equations is done blindly so to speak. It requires the ingenuity of a Sturm and
Liouville (or nowadays extensive free computer time) to regain the necessary in-
formation about the boundary value problem from the discrete pieces. (Of course,
the blind approximation always works, while for many Sturm-Liouville problems
no explicit eigenfunctions are known.)

In the final analysis the three viewpoints arise from the duality between local and

global terms and operations. This duality pervades large parts of analysis (see the Fourier

Inversion Formula in Appendix A or the Index Formula itself): While differentiation of

a function is a purely local operation, the solution of a differential equation with initial

or boundary conditions always requires a certain global operation. This circumstance is

illustrated already by the Newtonian formula relating derivative and integral. It may also

explain why the local theory of (e.g., elliptic) differential equations is so difficult (one has

to do global theory anyway, namely in Rn), and why at times a purposely global approach,

say starting with differential operators on closed manifolds, leads more quickly and easily

to fundamental local results. We resume this thought in Part II.
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6. Unbounded Operators

So far we have considered only bounded Fredholm operators, i.e., linear Fred-
holm operators from one separable Hilbert space H1 to another separable Hilbert
space H2 which are continuous and defined on all of H1. Identifying H1 and H2

we ended up with the space of bounded Fredholm operators as a subspace of the
algebra of bounded operators B(H). That is the main line of presentation chosen
for this book. It is sufficient for establishing the Atiyah–Singer Index Theorem.
Therefore, a hurried reader may skip this section.

However, since our Definition 1.1 (p.3) of Fredholm operator is purely algebraic,
we can reformulate and generalize most of the functional analytical and topological
results of this book concerning bounded Fredholm operators to the unbounded case
(though still assuming the linearity of the operators).

There is good reason to make this generalization: Differential operators are
naturally defined on domains which are dense subspaces of the full L2. However,
there is no reasonable way to extend them to endomorphisms, acting on the full L2

and with values in the same L2–space. And on their domain, they are not bounded
relative to the L2–norm. In particular for a closed (not necessarily bounded) oper-
ator T (see below) there are various ways to re-write or transform T as a bounded
operator, be it by Riesz transform (for self-adjoint T ), Cayley transform, or sim-
ply by equipping the domain Dom(T ) with the graph norm, to be recalled below
in (2.23), p.36. For index theory, these approaches are valuable to some extent,
as we shall show. However, they always distort the picture, and a treatment of
unbounded operator is in order.

Exercise 2.37. Let the unit circle S1 be parametrized by the angle θ ∈ [0, 2π).
Consider the Hilbert space L2(S1) of all square Lebesgue integrable complex–valued
functions on S1 with inner product

(2.18) 〈u, v〉L2 :=

∫ 2π

0

u(θ)v(θ) dθ for u, v ∈ L2(S1)

and norm ‖u‖L2 :=
√
〈u, u〉L2 (see Exercise A.1, p.669). On the dense subspace

C1(S1) of differentiable (periodic) functions with continuous derivative (l.c., Exer-
cise A.1e), the differentiation d/dθ defines a linear operator

(2.19) T0 : C1(S1) 3 u 7→ u′ =
du

dθ
∈ L2(S1)

with

Im(T0) = {v ∈ C0(S1) :

∫ 2π

0

v(θ)dθ = 0}.

Show that T0 is not continuous as a mapping in L2(S1).
[Hint: ‖u′‖L2 can be arbitrarily large for ‖u‖L2 = 1.]

Of course, T0 = d/dθ is bounded if it is regarded as an operator from the
Banach space C1(S1) to the Banach space C0(S1). Many problems in analysis,
however, require exploiting Hilbert space structure for effective treatment. After
all, the state space of quantum mechanics is a Hilbert space; and the Spectral
Theorem, both for bounded and unbounded operators, is valid only in Hilbert space.
Admittedly, most results on Fredholm operators can also be obtained in Banach
space, but are prettier, more meaningful, and much simpler in Hilbert space.
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These problems lead to unbounded operators, but not irrevocably: Alterna-
tively, staying with our example, we can extend the differential operator T0 to the
first Sobolev space W 1(S1). It is the completion of the pre–Hilbert space C1(S1)
equipped with the inner product

(2.20) 〈u, v〉W 1 :=

∫ 2π

0

u(θ)v(θ) dθ +

∫ 2π

0

u′(θ)v′(θ) dθ

and hence a Hilbert space. Then the extension (easily produced in Theorem 2.40
a)

(2.21) T : W 1(S1) −→ L2(S1)

of T0 becomes a bounded Fredholm operator from the (whole) Hilbert space W 1(S1)
to the (different) Hilbert space L2(S1). Thus, unbounded operators can be averted
in this sense.

In Part II of this book we shall follow this approach. It is quite effective for the
study of elliptic differential operators on closed manifolds, but not sufficient for the
study of boundary value problems. Different boundary conditions give different
extensions of the formal differential operator and different domains. Therefore,
varying boundary value problems for a fixed formal differential operator can often
best be treated in a shared framework, namely considering them all as densely
defined unbounded operators, operating by the same formal rules in the same basic
L2 space and distinguished only by their domains. The point is that two such
operators may be equal on a dense subspace, and yet be quite different. For a 1–
dimensional example see our discussion of Sturm–Liouville problems in Section 2.5.

Closed Operators. We emphasized that bounded operators in Hilbert space
share many properties with familiar matrix calculus in finite dimensions; that differ-
ential operators can be treated as bounded operators in suitably re-defined domains,
the so-called Sobolev spaces; and that those Sobolev spaces in our Part II will be
equipped with scalar products that make them separable Hilbert spaces. However,
a student would be mislead, if we over-emphasize the analogy with elementary
Euclidean linear algebra. To get a realistic feeling for the delicate aspects of dif-
ferential operators, of partial differential equations and global analysis, the reader
must become knowledgable of the basic concepts and fundamental results regarding
unbounded operators. That is the goal of the following short course in closed oper-
ators and not necessarily bounded Fredholm operators. The reader should work it
through, even though we can derive most of the key results of index theory without
referring to that world, to that language and theory.

Definition 2.38. Let H be a Hilbert space.
a) A densely defined operator (not necessarily bounded) inH is a linear mapping

T : Dom(T ) −→ H ,

where Dom(T ) – the domain of T – is a (linear) dense subspace of H.
b) If S and T are operators in H such that Dom(S) ⊆ Dom(T ) and Su = Tu for
every u ∈ Dom(S), we say that T is an extension of S and write S ⊆ T .
c) For a densely defined operator T in H, we form the adjoint operator T ∗ in H
by letting Dom(T ∗) denote the subspace of elements u ∈ H for which the functional
v 7→ 〈Tv, u〉 on Dom(T ) is bounded (= continuous). Since Dom(T ) is dense in H,
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the functional extends by continuity to H, and thus there is a unique element T ∗u
in H such that

(2.22) 〈v, T ∗u〉 = 〈Tv, u〉 for all v ∈ Dom(T ).

d) A closed operator in H is a densely defined operator whose graph

G(T ) := {(u, Tu) : u ∈ Dom(T )}
is a closed subspace of H ⊕H.
e) A densely defined operator T in H is closable if the (norm) closure of G(T ) in
H ⊕H is the graph of an operator T . In that case T is a closed operator and it is
the minimal closed extension of T .

Exercise 2.39. a) Show that for every densely defined operator T in H we
have

(ImT )⊥ = KerT ∗ ,

exactly as for bounded operators (see proof of Theorem 2.7).
b) Show that a closed operator, while not necessarily continuous, at least has some
‘decent’ ([Ped]) limit behavior: If (un) is a sequence in Dom(T ) converging to
some u ∈ H and if (Tun) converges to some v ∈ H, then u ∈ Dom(T ) and Tu = v.
Moreover, show that this limit behavior characterizes a closed operator.
c) Conclude that an everywhere defined closed operator is bounded.
d) More generally, let T be a closed operator in H with Dom(T ) = W ⊆ H. Show
that the inner product of the Hilbert (sub)space G(T ) ⊆ H ⊕H induces an inner
product on W which makes W a Hilbert space. Conclude that T : W → H can be
considered as a bounded operator if W is equipped with the corresponding norm
induced by the graph of T .
e) Show that for every densely defined operator T in H the adjoint T ∗ is a closed
operator and we have an orthogonal decomposition

H ⊕H = G(T )⊕ UG(T ∗),

where U is the unitary anti–involution on H ⊕ H given by U(w, v) = (−v, w).
Furthermore, T is closable iff T ∗ is densely defined, and in that case T = T ∗∗ .
f) Let H be a Hilbert space with u1, u2, . . . a complete orthonormal system (i.e., an
orthonormal basis for H). Let (λj)j=1,2... be an unbounded sequence of numbers.
Find a linear subspace D ⊂ H such that the multiplication operator Mid is closed,
given by the domain D and the operation

D 3 u =
∑

cjuj 7→ Mid(u) :=
∑

λjcjuj .

g) Prove: If T is a densely defined, closed operator in H, and T is injective with
dense range, then the same properties hold for T ∗ and for T−1, and

(T ∗)−1 = (T−1)∗ .

[Hint: Deduce (a) from (2.22). For (c), apply the closed graph theorem. In (d), the
inner product in W underlying the graph norm

(2.23) ‖u‖T := ‖((u, Tu)‖G(T ) =
√
‖u‖ 2

H + ‖Tu‖ 2
H , u ∈W

induced in W by T is an immediate generalization of the inner product (2.20) of
the first Sobolev space. Note that the converse is not valid, i.e. not every bounded
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operator from such graph–norm equipped W to H can be considered as a closed
operator in H with domain W . E.g., if W ⊂ H is dense, then

Id |W = Id |H ,
so Id |W is not closed.
For (e), prove first G(T )⊥ = UG(T ∗). Since U is unitary, it follows that T ∗ is
closed. This gives the decomposition, but there is more to prove. Help can be
drawn from [Ped, Theorem 5.5]. For (f) recall that each element u in H has the
form

u =
∑

djuj ,

where the sum converges in the norm induced by the inner product. Taking inner
products with the uj ’s you see that the coordinates for u are determined by dj =
〈u, uj〉. Note also the Parseval identity (a generalization of Pythagoras’ theorem)

‖u‖2 =
∑
|dj |2 ,

obtained by computing 〈u, u〉. See also Exercise 2.50c. A safety net for (g) is
provided in [Ped, Proposition 5.1.7].]

We shall dwell a little more on the example of the standard first order differ-
ential operator d/dθ over the circle S1 . Our goal is to prove that the operator T
which acts like d/dθ on the domain W 1(S1) is a closed operator in L2(S1). There
is nothing surprising in the result; no interesting consequences are attached to it;
but it permits us to introduce and illustrate some of the most basic concepts of the
analysis of elliptic differential operators (to be developed below in Part II).

Recall the well-known fact that the functions

(2.24) ek(θ) =
1√
2π
eikθ , k ∈ Z

form a complete orthonormal system (= orthonormal basis) for L2(S1) (see also
Appendix A below). It follows that the space C∞(S1) is dense in the space L2(S1).
Clearly, the space C∞(S1) can be considered as the space of smooth complex–valued
functions on the real line of period 2π.

Let u ∈ L2(S1). We shall use the notation

(2.25) û(k) := 〈u, ek〉 , k ∈ Z
for the Fourier coefficients.

Recall the definition of the first Sobolev space W 1(S1) from above. Note that
the inner product defined in (2.20) is exactly the inner product induced by the
graph G(T ) ⊂ H ⊕H. For u ∈W 1(S1) we write

(2.26) ‖u‖W 1 :=
√
‖u‖ 2

L2 + ‖Tu‖ 2
L2 ,

where T : W 1(S1)→ L2(S1) extends d/dθ on C1(S1), as in the following.

Theorem 2.40. a) The operator d/dθ on C1(S1) has a unique continuous (i.e.,
bounded) extension T : W 1(S1)→ L2(S1), where W 1(S1) is the first Sobolev space
W 1(S1) (see (2.20)).
b) The W 1–norm and the Fourier coefficient norm

(2.27) ‖u‖1 :=
1√
2π

√∑
k∈Z

û(k)2(1 + k2)
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are equivalent norms on W 1(S1).
c) The first Sobolev space W 1(S1) is contained in the Banach space of continuous
functions C0(S1) and the inclusion is continuous.
d) For each θ ∈ S1, the Dirac distribution

(2.28) δθ : C0(S1) 3 u 7→ u(θ) ∈ C
extends to a continuous mapping from W 1(S1) to C (i.e., a bounded operator of
rank 1 or continuous linear functional).
e) The normalized integration operator

(2.29) C0(S1) 3 v 7→
∫ θ

0

v(s)ds− θ

2π
J (v) ∈ C1(S1)

with

J (v) :=

∫ 2π

0

v(s) ds ,

extends to a bounded operator S : L2(S1)→W 1(S1). Moreover, up to a finite rank
operator, the operator S is a right and left inverse of T (such a quasi–inverse is
called a ‘parametrix’):

(2.30) T ◦ S = IdL2 − 1

2π
J and S ◦ T = IdW 1 −δ0 .

f) As an operator in L2(S1), the differentiation operator T (with W 1(S1) ⊂
L2(S1) as its domain) is closed. Both its kernel and cokernel are one–dimensional,
so its index vanishes.
g) The range Im(T ) is closed in L2(S1).

Proof. of (a): For u ∈ C1(S1) we have

‖Tu‖ 2
L2 = 〈u′, u′〉L2 ≤ 〈u, u〉L2 + 〈u′, u′〉L2 = ‖u‖ 2

W 1 .

So, T is continuous as a mapping from the dense subset C1(S1) ⊂ W 1(S1) to
L2(S1), and so uniquely extends to W 1(S1) as a bounded operator.
of (b): We have

〈ek, ek〉W 1 = 1 + k2 ,

hence

‖u‖ 2
W 1 = 〈u, u〉W 1 =

∑
k∈Z
|û(k)|2(1 + k2).

of (c): For θ ∈ S1 and u ∈ C∞(S1) we have

|u(θ)| = 1√
2π

∣∣∣∑
k∈Z

û(k)eikθ
∣∣∣ ≤ 1√

2π

∑
k∈Z
|û(k)|

=
1√
2π

∑
k∈Z
|û(k)|(1 + k2)

1
2 (1 + k2)−

1
2

≤ 1√
2π

√∑
k∈Z
|û(k)|2(1 + k2)

√∑
k∈Z

(1 + k2)−1,

where the last inequality is Schwarz’ inequality

|〈a, b〉| ≤
√
〈a, a〉 ·

√
〈b, b〉

in the Hilbert space L2(S1) (or, correspondingly in the Hilbert space `2 of square–

summable sequences) for a :=
∑
û(k)(1 +k2)

1
2 ek and b :=

∑
(1 +k2)−

1
2 ek. Clearly
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b ∈ L2(S1) since
∑

(1 + k2)−1 < ∞. To see a ∈ L2(S1), we apply the preceding
result (b) to u ∈ C∞(S1) ⊂W 1(S1). Applying (b) once again yields

sup
θ∈S1

|u(θ)| ≤ C‖u‖W 1

where the constant C does not depend on u. We extend the estimate to the whole
W 1(S1) by density.
of (d): Clearly, δθ is continuous on C0(S1) for each θ ∈ S1 . Then the assertion
follows from (c).
of (e): Let v ∈ C0(S1) and k ∈ Z, k 6= 0. Then

〈Sv, ek〉L2 =
1√
2π

∫ 2π

0

(∫ θ

0

v(s)ds

)
e−ikθdθ − J (v)

(2π)3/2

∫ 2π

0

θe−ikθdθ

=
−1√
2π

∫ 2π

0

v(θ)
1

−ik
e−ikθdθ +

1√
2π

[(∫ θ

0

v(s)ds

)
1

−ik
e−ikθ

]2π

0

+
J (v)

(2π)3/2

∫ 2π

0

1

−ik
e−ikθdθ − J (v)

(2π)3/2

[
θ

1

−ik
e−ikθ

]2π

0

=
−i

k
√

2π

∫ 2π

0

v(θ)e−ikθdθ +
i

k
√

2π
(J (v)− 0)

+
iJ (v)

k(2π)3/2

[
1

−ik
e−ikθ

]2π

0

− iJ (v)

k(2π)3/2
(2π − 0)

= − i
k
v̂(k),

because the third term vanishes and the second and forth cancel each other. Hence

〈Sv, Sv〉L2 =
∑
k 6=0

|v̂(k)|2 1

k2
+ |〈Sv, e0〉|2 .

By partial integration and Schwarz’ inequality we obtain

|〈Sv, e0〉| =

∣∣∣∣∣ 1√
2π

∫ 2π

0

(∫ θ

0

v(s)ds

)
dθ − J (v)

(2π)3/2

∫ 2π

0

θdθ

∣∣∣∣∣ ≤ C0‖v‖L2 .

Clearly,

(2.31) T (Sv) (θ) = T

(∫ θ

0

v(s)ds− θ

2π
J (v)

)
= v(θ)− 1

2π
J (v).

We estimate
|J (v)| ≤

√
2π‖v‖L2

and obtain

‖(Sv)′‖L2 = ‖TSv‖L2 ≤ ‖v‖L2 +
1

2π
|J (v)| ≤ C1‖v‖L2 .

So,

〈Sv, Sv〉W 1 = ‖Sv‖2L2 + ‖TSv‖2L2

=
∑

k 6=0

(
|v̂(k)|2 1

k2

)
+ C2

0‖v‖2L2 + C2
1‖v‖2L2

≤ (1 + C2
0 + C2

1 )‖v‖2L2 .
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Moreover, for u ∈ C1(S1) we have

(2.32) S (Tu) (θ) =

∫ θ

0

u′(s)ds− θ

2π

∫ 2π

0

u′(s)ds = u(θ)− u(0).

The assertion follows by a density argument.
of (f): Let (un) be a sequence in W 1(S1). We assume that (un) and (Tun) converge
in L2(S1). We denote the limits by u, respectively w. To prove that T is closed
we have to show (by Exercise 2.39b) that u ∈ W 1(S1) and Tu = w. From the
preceding (e) we obtain

‖(un − um)− (un(0)− um(0)) ‖W 1 = ‖(S ◦ T )(un − um)‖W 1 ≤ C‖T (un − um)‖L2 .

This shows that the sequence (vn := un − un(0)) is convergent in W 1(S1) to a limit
v. So, the sequence(un − vn = un(0)) has a limit in L2(S1), hence in C, and so also
in W 1(S1). This proves that the sequence (un) converges in W 1(S1) to u. So, by
(a), Tun converges to Tu and Tu = w.

Clearly, Ker(T ) ⊇ {constants} and, by (2.32)

Ker(T ) ⊆ Ker(ST ) = {constants}.
So,

Ker(T ) = {constants} = Coker(T ),

and hence index(T ) = 0.
of (g): Let (vn = Tun) be a sequence in ImT which converges in L2(S1) to a
v ∈ L2(S1). Without loss of generality we may assume that δ0(un) = 0 for all
n = 1, 2, . . . . According to (e), the operator S is bounded. So, the sequence
(un = S(Tun) + δ0(un) = S(Tun)) converges in W 1(S1) to a u ∈ W 1(S1). Then
by the continuity of T we obtain v = Tu. �

Remark 2.41. We gave a fully detailed proof of the preceding theorem because
the 1–dimensional case study provides a preview for the analytical part of this book:
each of the statements will be reproved (and the underlying concepts generalized)
in Part II by replacing S1 by an arbitrary n–dimensional compact manifold with-
out boundary (i.e. closed manifold) and d/dθ by an arbitrary elliptic differential
or pseudodifferential operator of order m, acting on sections of a complex vector
bundle. More precisely, (a) will be generalized in Theorem 9.2 (p.234), (b) in Ex-
ercise 7.2b (p.192), (c) in Theorem 7.13 (p.197), (d) in Theorem 7.14 (p.198), (e)
in Theorem 9.7 (p.236), (f) once again in Theorem 9.2 (p.234) and Step (iv) of the
cobordism proof in Section 13.2 (p. 299), and (g) in Theorem 9.9a (p.236).

In (e), we have

(Tu)(θ) =
1√
2π

∑
k∈Z

(ik) eikθ û(k) and

(Sv)(θ) =
1√
2π

(
v̂(0) +

∑
k 6=0

−i
k
eikθ v̂(k)

)
for u ∈ Dom(T ) = W 1(S1) and v ∈ Dom(S) = L2(S1). This is a special way of
writing T and S as pseudo–differential operators with amplitudes

t(θ, k) = ik and s(θ, k) =
−i
k
,

respectively, see Chapter 8. We are only interested in the case k 6= 0, and note that
then t and s are invertible (namely 6= 0) and inverses of each other.
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On arbitrary closed manifolds we will not have such simple global descriptions
of differential and pseudo–differential operators. However, the symbolic calculus
we are going to develop below in Chapter 8 will provide us with globally defined
principal symbols (= the top order homogenous part of the amplitudes). We will
characterize an elliptic operator S by the invertibility of its principal symbol s and
construct a parametrix T from the inverse t of s (Section 9.2, p. 236ff).

A closer look at the proof of Assertion (c) reveals that the first Sobolev space
W 1(S1) coincides with the space of absolutely continuous functions on the real line
with period 2π (see also [ReSi72, p.257 and note p.305]).

Assertion (f) can also be proved in a different way, namely by showing that
T = R∗ with densely defined R. Actually, R = −T . Therefore the index of T must
vanish. This argument will be made precise below. The index must also vanish for
topological reasons because the dimension of S1 is odd (see Result (a) in Section
14.3, p.308).

In continuation of Exercise 2.37, p.34, and the preceding Theorem 2.40, we close
this Section with an exercise of a system of r, r ∈ N, linear ordinary differential
equations of first order on S1 = [0, R]/(0 ∼ R) with R ∈ R, R > 0 fixed. Like
before, one may take R = 2π and the angle θ as coordinate. Here, however, we
prefer general R and a real x as coordinate for better recalling elementary results for
systems of ordinary differential equations. In particular, we denote by C∞(S1,Cr)
the space of smooth r-vector valued functions on R of period R.

Exercise 2.42. Denote by gl(C, r), r ∈ N, the space of complex r×r matrices.
Let A : R → gl(C, r) be a smooth mapping with A(x + R) = A(x) for all x ∈ R.
Consider the operator (∇+A)|S1 : C∞(S1,Cr)→ C∞(S1,Cr), where

∇ :=
d

dx
⊕ r times. . . ⊕ d

dx
.

a) Show that the operator (−∇ + A∗)|S1 is formally adjoint to (∇ + A)|S1 . Here
A∗(x) denotes the adjoint matrix of A(x), x ∈ R.
b) Denote by Φ : Cr → C∞([0,∞),Cr) the fundamental solution for ∇+ A which
assigns a solution f ∈ C∞([0,∞),Cr) to each initial value f(0) ∈ Cr , and define a
linear mapping φ := Φ|x=R : Cr → Cr by assigning f(0) 7→ f(R). Show that the
periodic solutions correspond to the fixpoints of φ.
c) Denote by Ψ the fundamental solution for −∇+A∗ and define a corresponding
linear mapping ψ : Cr → Cr. Show that φ and −ψ−1 are adjoint.
d) Prove the Index Theorem on the Circle, namely

dim ker(∇+A)|S1 = dim ker(−∇+A∗)|S1 , i.e., index(∇+A)|S1 = 0.

[Hint: To a) Define a Hermitian inner product on Cr by

〈u, v〉 :=

r∑
i=1

uivi for u = (u1, . . . ), v = (v1, . . . ).

Then deduce that the operators (∇+A)|S1 and (−∇+A∗)|S1 are formally adjoint
from∫ R

0

〈(∇+A)f, g〉dx−
∫ R

0

〈f, (−∇+A∗)g〉dx = 〈f(R), g(R)〉 − 〈f(0), g(0)〉 !
= 0
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for all f, g ∈ C∞(S1,Cr).
To b) Clearly a periodic solution yields a fixpoint of φ. A delicate argument is
needed to show that each fixpoint yields a smooth periodic solution.
To c) To begin with, consider two functions f, g on R with values in Cr and two
points x0 < x1 . If (∇+A)f = 0 and (−∇+A∗)g = 0, you get

〈f(x1), g(x1)〉 = 〈f(x0), g(x0)〉.

Put x0 = 0 and x1 = R and re-write

〈f(R), g(R)〉 = 〈φ(f(0), g(R)〉 and 〈f(0), g(0)〉 = 〈f(0), ψ−1g(R)〉.

To d) If we do not require the periodicity condition, the solution uniquely exists
for a given initial value at a point. Hence the dimension of the space of periodic
solutions is at most r. Notice that, according to changes of A, the dimension of the
space of periodic solutions varies and takes values between 0 and r.]

Note. Alternatively, we could apply the heavy analysis tools of our Part II
to get the mentioned Index Theorem on the Circle. First we would determine the
principal symbol of (∇+ A)|S1 , e.g., by the formula of Exercise 6.34, p. 180. Our
data are x0 ∈ R, ξ ∈ T ∗x0

S1, and e ∈ Cr. We represent ξ = df |x0 by a function f
vanishing at x0 like, e.g., f(x) = ξ(x−x0), and extend e to a vector-valued function
g, e.g., the constant function g := e1 on S1. Then we find

σ1(∇+A)(x0, ξ)(e) = i(∇+A)(fg)|x0

= i∇(ξ(x− x0)e1)|x0
+ iA(x)(ξ(x− x0)e1)|x0

= iξe+ iA(x0)(0e) = iξe = (iξIr)e.

Here Ir ∈ GL(r,C) denotes the identity. Whence, σ1(∇ + A)(x0, ξ) = iξIr is
invertible for ξ 6= 0, Next, we conclude that (∇ + A)|S1 is an elliptic differential
operator on a closed manifold and has finite index which depends only on the
homotopy type of the principal symbol. All that will be explained in Part II.
Finally, we notice that the choice of A does not inflict the principal symbol. We
choose A = 0 constant and obtain index∇ = 0. That suffices. As mentioned above
in a similar situation, this is in fine agreement with the basic topological insight that
any homogeneous polynomial elliptic symbol over an odd-dimensional manifold can
be deformed into the identity within the class of elliptic symbols.

Closed (not necessarily bounded) Fredholm Operators. It is easy to
generalize the concept of Fredholm operators to the unbounded case.

Definition 2.43. Let H be a complex separable Hilbert space. A linear (not
necessarily bounded) operator F with domain Dom(F ), null space Ker(F ), and
range Im(F ) is called Fredholm if the following conditions are satisfied.

(i) Dom(F ) is dense in H.
(ii) F is closed.
(iii) Both dim Ker(F ) and dim Coker(F ) are finite. The difference of the di-

mensions is called index(F ).

Then it follows that the range Im(F ) of F is a closed subspace of H and
that dim Ker(F ∗) is finite. So, a closed operator F is characterized as a Fredholm
operator by the same properties as in the bounded case (see also Exercise 2.39a):
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(iv) For any arbitrary v ∈ H the equation Fu = v, v ∈ Dom(F ), is solvable
if and only if v is orthogonal to every solution w of F ∗w = 0: differently
speaking, Im(F ) is closed.

(v) Each of the equations Fu = 0, F ∗w = 0 has only finitely many linearly
independent solutions.

Condition (iv) can be replaced by

(iv’) ‖Fu‖ ≥ C‖u‖ for all u ∈ Ker(F )⊥ ∩Dom(F ) with a positive constant C.

We more generally show

Lemma 2.44. Let T : Dom(T ) → H be a closed (by our definition densely
defined) operator. Then T has closed range if and only if (iv’) is valid.

Proof. Let first condition (iv’) be satisfied. Let (fn)n=1,2,... be a sequence
that converges to f (shortly “fn → f”) with fn ∈ Im(T ). Choose a sequence
(un ∈ Dom(T )∩Ker(T )⊥) with Tun = fn. We get un−um ∈ Ker(T )⊥ for all n,m,
and thus by (iv’)

‖un − um‖ ≤
1

C
‖fn − fm‖ −→ 0, n,m −→ 0.

Accordingly, un → u and Tun → f which implies that u ∈ Dom(T ) and Tu = f ,
i.e., f ∈ Im(T ), since T is closed. Thus Im(T ) is closed.

Now let Im(T ) be closed. Then the mapping

Dom(T ) ∩Ker(T )⊥ −→ Im(T )
u 7→ Tu

is surjective and injective for simple reasons. Moreover, both spaces are closed
subspaces of H, and thus can be interpreted as Hilbert spaces. The inverse of this
mapping exists and is a well-defined linear transformation of Im(T ) into Ker(T )⊥,
with domain Im(T ). Also this transformation is a closed linear operator of the
Hilbert space Im(T ) into the Hilbert space Ker(T )⊥, as follows from the fact that
T is closed. Whence it must be a bounded linear transformation by standard
argument. However, this boundedness clearly amounts to the condition (iv’). �

Moreover, as in Theorem 2.10, F is a Fredholm operator if and only if F ∗ is a
Fredholm operator (proving the closedness of Im(F ∗) looks demanding, but follows
rather directly from Lemma 2.44), and (clearly) we have

indexF = dim KerF − dim KerF ∗ = − indexF ∗.

In particular, indexF = 0 in case F is self–adjoint (i.e., F ∗ = F , see below).
The composition of (not necessarily bounded) Fredholm operators yields again

a Fredholm operator. More precisely, we have the following composition rule.

Theorem 2.45 (I.Z. Gohberg and M.G. Krein, 1957). If F and G are (not
necessarily bounded) Fredholm operators then their product GF is densely defined
with

(2.33) Dom(GF ) = Dom(F ) ∩ F−1 Dom(G)

and is a Fredholm operator. Moreover,

(2.34) indexGF = indexF + indexG .
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Remark 2.46. The proof is considerably more involved than in the bounded
case. Why so? Can’t we consider the operators F,G as bounded Fredholm operators
in the graph norm of (2.23)? Yes. And then derive that the composition is Fredholm
and satisfies (2.34) from our previous product rule for bounded Fredholm operators
in Exercise 1.10? Yes, indeed. The delicate claim, however, is that the domain
Dom(GF ) of the composition is dense in H.

In the context of index theory, the product of closed unbounded Fredholm
operators shows up

(1) for elliptic differential operators over a closed (i.e., compact and without
boundary) manifold M and

(2) for elliptic differential operators over a compact manifold with smooth
boundary, subject to some regular (elliptic) boundary conditions.

The first case was touched upon in Exercise 2.37, p.34f and Theorem 2.40, p.37
with M = S1 and is the subject of the main body of this monograph for arbitrary,
more general and more specific closed M . As we shall see in Part II, an elliptic
differential operator F of order k ≥ 1, acting between sections of vector bundles E1

and E2 over M can be considered both as a closed unbounded operator from L2(E1)
to L2(E2) with domain Dom(F ) = W k(E1) ⊂ L2(E1) or as an indexed family of
bounded operators

{
Fr : W r(E1) → W r−k(E2)

}
for all real r, where W r(E1)

denotes the rth Sobolev space (see Chapters 7 and 9). Combining F with a second
elliptic differential operator G, say of order m, with dom(G) = Wm(E2) ⊂ L2(E2)
yields the domain

Dom(GF ) = Dom(F ) ∩ F−1 Dom(G)

= W k(E1) ∩ F−1(Wm(E2)) = W k(E1) ∩ Wm+k(E1) = Wm+k(E1),

which is dense in L2(E1) by definition. Here we exploited that the Sobolev spaces
can be defined via elliptic operators (along the lines of Exercise 7.2b, p. 192f).
Whence, in view of our set-up of Part II, there is nothing surprising in the preceding
theorem for elliptic operators on closed manifolds. Even in that case, however, the
result is not trivial.

The second case is much more intricate: We have to deal with a boundary
condition for the combined elliptic differential operator obtained by combining two
possibly radically different regular (elliptic) boundary conditions. Solely by classical
analysis arguments it might be difficult to prove the regularity of the combined
boundary condition.

Surprisingly, we can prove the density of Dom(GF ) ⊂ H by purely (but, ad-
mittedly, somewhat wired) functional analysis arguments, following [GK57] and
[CorLab, Lemma 2.3 and Theorem 2.1].

We prepare the proof by a series of small lemmata.

Lemma 2.47. Let D be a dense subspace of H and Mn a closed subspace of
H of finite codimension n ∈ N. Then there exists a bounded idempotent (= not
necessarily orthogonal projection) P , such that

Im(P ) = Mn, dim Ker(P ) = n, Ker(P ) ⊂ D.

Recall from Remark 2.2, p.13, that subspaces of finite codimension are not
necessarily closed.
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Proof. To begin with, choose a basis u1, . . . , un ofM⊥n . Then select v1, . . . , vn ∈
D sufficiently close to the start basis (say ‖ui − vi‖ < δ for all i = 1, . . . , n for suf-
ficiently small δ > 0), such that

(2.35) det
(
〈ui, vj〉

)
i,j=1,...,n

6= 0.

In particular, this implies linear independence of v1, . . . , vn. Let Q denote the space
spanned by v1, . . . , vn. Clearly Q ⊂ D. Then for every x ∈ H there exists a unique
decomposition x = w + v with w ∈ Mn and v ∈ Q. Indeed, we simply set v :=∑n
i=1 αivi where the coefficients αi are uniquely determined by the orthogonality

relations 〈
x−

n∑
i=1

αivi , uj
〉

= 0, j = 1, . . . , n.

Note that the determinant of the preceding system of linear equations does not
vanish, by (2.35). Now define Px := w. This defines a projection operator satisfying
all claims stated above. In particular, P is bounded with

‖Px‖ = ‖w‖ = ‖x− v‖ ≤ ‖x‖+ ‖v‖ = ‖x‖+ C
∑
|αi| ≤ (1 + C ′)‖x‖. �

The claim of following lemma becomes wrong, if we drop the assumption of
finite codimension and closedness of M . Take, for instance, H := L2([a, b]), D a
dense subset of step functions, and M∞ := C0([a, b]). For finite codimension of
M , the lemma seems obvious. However, to prove it rigorously we depend on the
preceding result.

Lemma 2.48. Under the assumptions of Lemma 2.47, the intersection Mn ∩D
is dense in Mn.

Proof. For given u ∈ Mn and given approximation radius δ > 0, we set

δ′ := δ
(
1 + ‖Id−P‖

)−1
and select an x ∈ D such that ‖u− x‖ ≤ δ′. As before, we

decompose x = w + v with w ∈Mn and v ∈ Q ⊂ D, whence w = Px ∈ D, and

‖u− w‖ ≤ ‖u− x‖+ ‖(Id−P )x‖
= ‖u− x‖+ ‖(Id−P )(x− u)‖ ≤

(
1 + ‖Id−P‖

)
δ′ = δ. �

Now we can draw the decisive consequence for the composition of (not neces-
sarily bounded) Fredholm operators in Hilbert space.

Lemma 2.49. If F and G are (not necessarily bounded) Fredholm operators
then their product GF is densely defined and Fredholm.

Proof. 1. We first show that Dom(GF ) = {u ∈ Dom(F ) : Fu ∈ Dom(G)}
(as defined in (2.33)) is dense in H. Since by assumption

dim Ker(F ∗) = dim Im(F )⊥ <∞,
the space Im(F ) ∩ Dom(G) is dense in Im(F ) by the preceding lemma. Let now
u ∈ Dom(F ), then there exists ũ ∈ Ker(F )⊥∩Dom(F ) with Fũ = Fu, and we have
u− ũ ∈ Ker(F ) ⊂ Dom(GF ). Since Im(F ) ∩Dom(G) is dense in Im(F ), for every
δ′ > 0 there exists a v ∈ Im(F ) ∩ Dom(G) such that ‖v − Fu‖ < δ′. Let v = Fw
with w ∈ Ker(F )⊥, then w ∈ Dom(GF ). We get ũ − w ∈ Ker(F )⊥, and thus
‖ũ−w‖ ≤ C‖Fu− v‖ ≤ Cδ′. Set u′ := w+u− ũ, and choose δ′ such that Cδ′ = δ,
then we have ‖u − u′‖ < δ and u′ ∈ Dom(GF ), which means that Dom(GF ) is
dense in Dom(F ). Since Dom(F ) is dense in H, we see that Dom(GF ) is dense in
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H.
2. Next we show that GF is closed. Suppose the sequence (un)n=1,2,... converges to
u (once again, shortly “un → u”) and GFun → v. We decompose Fun = wn + zn
with wn ∈ Ker(G)⊥ and zn ∈ Ker(G). By the closedness of Ker(G)⊥ = Im(G∗)
(see the reformulation (iv’) above), we have wn → w ∈ Ker(G)⊥. Also either znk →
z ∈ Ker(G) for a suitable subsequence (znk) or ‖zn‖ → ∞, since dim Ker(G) <∞.
In the first case we get unk → u, Funk → w + z, GFunk → v, i.e., u ∈ Dom(GF )
and GFu = v, since F and G are closed operators. In the second case, let xn :=
un/‖zn‖, then

xn −→ 0, Fxn =
wn
‖zn‖

+
zn
‖zn‖

, GFxn −→ 0.

But zn/‖zn‖ must have a convergent subsequence, and we must get xnk → 0,
Fxnk → w with ‖w‖ = 1, which is a contradiction, since F is closed. This proves
that GF is closed.
3. Now we show that GF satisfies condition (iv’) (before Lemma 2.44, p.43).
Indeed, let un ∈ Dom(GF )∩Ker(GF )⊥, ‖un‖ = 1, and GFun → 0. Then we again
write Fun = wn+zn with wn ∈ Ker(G)⊥ and zn ∈ Ker(G). We get wn → 0 by (iv’)
for G, and again either znk → w or ‖zn‖ → ∞. In the first case we get GFunk → 0,
Gunk → w, and unk ∈ Ker(F )⊥, i.e., unk → u, ‖u‖ = 1, u ∈ Dom(GF )∩Ker(GF )⊥,
and GFu = 0, a contradiction. In the second case, set again xn := un/‖zn‖. The
sequence (Fxn) must have a convergent subsequence, and thus we get

xnk −→ 0, Fxnk −→ w, ‖w‖ = 1

a contradiction, because F is closed. This proves (iv’) for GF .
4. Finally, it is clear that

dim Ker(GF ) ≤ dim Ker(F ) + dim Ker(G) <∞
and

codim Im(GF ) = dim Ker((GF )∗) = dim Ker(F ∗G∗)

≤ dim Ker(F ∗) + dim Ker(G∗) <∞.
Here we apply that F ∗G∗ is also closed with closed range (by the same arguments)
and we have (GF )∗ = F ∗G∗. �

Proof of Theorem 2.45. The preceding lemma yields the delicate result,
namely that GF is closed with closed range and that the in (2.33) defined Dom(GF )
is dense in H. We leave it to the reader to count the dimensions for the proof of
(2.34), respectively refer to [CorLab, p.699] for the details of that counting. �

Exercise 2.50. Find out which of the following operators are (not necessarily
bounded) Fredholm operators in the sense of Definition 2.38.
a) (Bounded) Fredholm operators in the sense of Section 1.2?
b) Operators of finite rank?
c) The multiplication operator Mid of Exercise 2.39f for λj := j, j = 1, 2 . . . ?
d) The operator T which extends (to W 1(S1)) the differentiation operator d/dθ on
C1(S1) (Exercise 2.37)?
e) The Laplace operator ∆ on the unit disk in the plane (see Exercise 5.9, p. 144).
[Answer: (a) Yes. (b) Never. (c) Yes: for

Dom(Mid) :=
{∑∞

j=1
cjuj :

∑∞

j=1
j2|cj |2 < +∞

}
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you obtain a densely defined closed operator which is injective and surjective. (d)
Yes, if H = L2(S1) and the domain of T is taken to be W 1(S1) ⊂ L2(S1) (as in
Theorem 2.40a). (e) Yes, if the domain is extended to the second Sobolev space
and restricted by elliptic boundary conditions (see Exercise 5.9, p. 144). If the full
space of smooth functions on the disc is taken as the domain of the Laplacian
and no boundary conditions are imposed, the kernel of the Laplacian is infinite-
dimensional, consisting of all harmonic functions on the disk.]

Symmetric and Self–Adjoint Operators. As seen immediately after Def-
inition 2.43, the index of unbounded self–adjoint Fredholm operators vanishes like
in the bounded case. So, there is no immediate index problem. However, spectral
projections of self-adjoint Fredholm operators defined by the Spectral Theorem 2.61
(below on p.51) are of high interest in index theory, in particular for specifying el-
liptic boundary value problems. As a matter of fact, the most interesting operators
of geometry and gauge–theoretical physics are Laplacians or Dirac type operators
which are symmetric operators.

Index problems arise from symmetric operators in two ways:

(1) We may occasionally split a self–adjoint Fredholm operator P into the
direct sum of chiral non–symmetric components

P =

(
0 P−

P+ 0

)
with P− = (P+)∗ and investigate the index of P+. Since

Ker(P ) = Ker(P+)⊕Ker(P−) and Ker(P−) ∼=
(
Im(P+)

)⊥
,

the integer index(P+) = n+ − n− gives the chiral asymmetry of Ker(P );
here n± := dim Ker(P±). This is also the way one follows in most geomet-
ric and topological applications (e.g., when determining the Euler charac-
teristic or the signature of even–dimensional closed Riemannian manifolds,
see Part III, Section 14.4, p. 309ff).

(2) Index problems arise from symmetric operators directly on compact man-
ifolds with boundary when symmetric elliptic operators are considered
and non–self–adjoint elliptic boundary conditions are imposed (see e.g.
[BoWo, Theorem 22.24]).

For these perspectives and also for the completeness of our presentation, we
summarize the basic knowledge of symmetric and self–adjoint unbounded operators
and introduce to the corresponding Fredholm theory.

Definition 2.51. a) We say that a densely defined operator S in H is sym-
metric (or formally self–adjoint) if

〈Su, v〉 = 〈u, Sv〉, u, v ∈ Dom(S).

b) Recall that a densely defined operator S in H is called self–adjoint if S∗ = S
(in the sense of Definition 2.38c).
c) A densely defined symmetric operator S in H is called essentially self–adjoint
if its closure is self–adjoint, i.e. if S = S∗ .

We give an interesting criterion for proving that a symmetric operator is essen-
tially self–adjoint. See also and similarly, [ReSi72, Theorem VIII.3, Corollary, p.
257] and, differently, [Miz, Lemma 8.14] – Mizohata requires dense Im(T ) in H and
the existence of a positive constant a such that ‖Tu‖ ≥ a‖u‖ for all u ∈ Dom(T ).
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Lemma 2.52. Let T be a densely defined symmetric operator in a separable
complex Hilbert space H. We assume that both Im(T + i) and Im(T − i) are dense
in H. Then T is essentially self–adjoint.

Proof. First we show that Im(T ± i) = H. Let (un) be a sequence in Dom(T )
and (T ± i)un converges to v0 . As with T , T is also symmetric, and we have

‖(T ± i)u‖2 = ‖u‖2 + ‖Tu‖2 for all u ∈ Dom(T ± i) = Dom(T ),

since the mixed terms 〈±iu, Tu〉 and 〈Tu,±iu〉 cancel each other by symmetry.
Hence

‖u‖ ≤ ‖(T ± i)u‖ ,
i.e., T ± i injective and (T ± i)−1 well defined on Im(T ± i) and bounded. We
conclude that (un) converges to some u0 and Tun converges too. Since T is closed,
u0 ∈ Dom(T ) and (T ± i)u0 = v0 . Thus Im(T ± i) is closed, so Im(T ± i) = H.

Now we show that T is self–adjoint. By definition, T is the minimal closed

extension, so T ⊆ T ∗ . Therefore it suffices to show that Dom(T
∗
) ⊆ Dom(T ).

Then, let u ∈ Dom(T
∗
). Since Im(T + i) = H, there is a w ∈ Dom(T ) so that

(T + i)w = (T
∗

+ i)u. But Dom(T ) ⊆ Dom(T
∗
), so u− w ∈ Dom(T

∗
) and

(T
∗

+ i)(u− w) = 0 .

Since Im(T − i) = H, we have Ker(T
∗

+ i) = {0} , so u = w ∈ Dom(T ). �

From the first part of the preceding proof we can distil

Corollary 2.53. Let T be a closed, injective operator. If T is bounded from
below by the identity, then T is a semi–Fredholm operator.

Here we used the following notation:

Definition 2.54. a) A densely defined closed operator T is called a semi–
Fredholm operator if and only if Im(T ) is closed and either Ker(T ) or Coker(T )
has finite dimension.
b) A densely defined, symmetric operator T is bounded from below by the
identity if we have

‖u‖2 ≤ 〈Tu, u〉 for all u ∈ Dom(T ),

and consequently ‖u‖ ≤ ‖Tu‖.

We apply the lemma for H = L2(S1) and take for T the operator id/dθ with
domain C∞(S1). Integration by parts shows that id/dθ is symmetric. For ek (θ) :=

1√
2π
eikθ (k ∈ Z), we have (T ± i) (ek) = (−k ± i) ek (or (T ± i)( 1

−k±iek) = ek) and

so Im(T ± i) is dense, since it contains the linear span of the complete orthonormal
system {ek : k ∈ Z}. Thus we have proved

Theorem 2.55. The operator id/dθ in L2(S1) with domain C∞(S1) is sym-
metric and essentially self–adjoint.

We have shown in Theorem 2.40a that d/dθ on C1(S1) extends to a continuous
operator T : W 1(S1)→ L2(S1). Regarding T as an unbounded operator on L2(S1)
with dense domain W 1(S1), we have already shown that T is closed (see Theorem
2.40f). Indeed, T is the closure of d/dθ with domain C1(S1) ⊂ L2(S1). Applying
the preceding theorem yields
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Corollary 2.56. On the circle S1, the unbounded operator T on L2(S1)
(which extends id/dθ on C1(S1)) with domain W 1(S1) is self–adjoint.

Remark 2.57. The arguments of the preceding proof can be generalized to
prove the well–known but seldom explicitly stated fact that each symmetric elliptic
differential operator on a closed Riemannian manifold (or, more generally, on a com-
plete Riemannian manifold) is essentially self–adjoint (see though [Shu, Theorem
8.3], [BlBo03, Lemma 3.23] and, implicitly, [Gi95, Lemma 1.6.3] or, differently
and carried through only for the Laplacian, [Tay2, Proposition 8.2.4]).

Note the remarkable contrast with the case where the underlying manifold has
a boundary. Then there is a huge variety of domains to which a fixed symmetric
elliptic differential operators can be extended such that it becomes self–adjoint; and
there is a smaller, but still large variety where the extension becomes self–adjoint
and Fredholm. For the case of a 1–dimensional manifold (= the interval) see below
Exercise 2.58g–h. For the higher dimensional case see [BoFu1, Section 3] and,
differently, [BoWo, Chapter 20].

In [BoFu2, Proposition 7.15] it is shown that the set of all extensions of
a given symmetric elliptic differential operator T0 of first order over a compact
smooth Riemannian manifold M with boundary Σ can be naturally identified with
a dense graded subspace β(T0) of the distribution space W−1/2(Σ). It turns out
that β(T0) carries a natural structure of a symplectic Hilbert space, i.e., a (real)
Hilbert space with a skew-symmetric, nondegenerate and bounded bilinear form ω,
here induced from the principal symbol of T0 over Σ in normal direction.2 Then
all self–adjoint extensions of T0 (in the underlying L2–space) correspond to the La-
grangian subspaces of β(T0) and the self–adjoint Fredholm extensions correspond
to the Lagrangian subspaces which form a Fredholm pair with the canonical La-
grangian subspace (the Cauchy data space).

A classical source to the systematic study of all self–adjoint extensions of a
given symmetric operator is the célèbre paper [Neu]. For supplementary studies,
involving also the deficiency indices (i.e. the codimension of the range of T ± i)
and relations to index theory, we refer to [AkGl, Section 78], [GK57], and, more
recently, [Les, Chapter 4].

Exercise 2.58. a) Show that a densely defined operator S in H is symmetric
if and only if S ⊆ S∗ . So, in particular, each self–adjoint operator is symmetric.
b) Prove another criterion for S being symmetric, namely that 〈Su, u〉 ∈ R for
every u ∈ Dom(S).
c) Let S be a symmetric operator in H. Show that the two usual conditions (i.e.,

S = S
∗

and S = S∗) for S being essentially self–adjoint are equivalent.
d) Let S be a densely defined operator in H which is essentially self–adjoint. Show
that then S is the only self–adjoint extension of S. Show that the converse is also
true, i.e., if S has one and only one self–adjoint extension, then S is essentially
self–adjoint.
e) Let S be a densely defined, symmetric operator in H. Show that S is self–adjoint
if and only if S ± i are both surjective operators.
f) Show that the operator Mid of Exercise 2.50c is self–adjoint.

2The concept of symplectic manifolds is mentioned in Remark 6.9, p.163, and introduced
rigorously in Definition 19.21, p.619. They are one of the major objects of Seiberg-Witten Theory.
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g) Show that the operator id/dx in L2([0, 1]) with domain C∞0 ([0, 1]) (= smooth
functions with support in the interior (0, 1) of the interval) is symmetric but not
essentially self–adjoint.
h) Let P, Q be continuous real–valued functions on the interval [0, 1]. Let u 7→ u′

denote the differentiation. Show that the operator

u 7→ (Pu′)′ +Qu

in L2([0, 1]) with domain C∞0 ([0, 1]) is symmetric but not essentially self–adjoint.
i) Consider the multiplication operator Mid (u(x) 7→ xu(x)) and the differential
operators of (g) and (h) on L2(R) with domain C∞0 (R) (= smooth functions with
compact support). Show that these operators are essentially self–adjoint.
[Hint: For (a) use (2.22). For (b) establish

4〈u, v〉 =

3∑
k=0

ik〈u+ ikv, u+ ikv〉

by straightforward calculation. For (c) recall that always S ⊆ T implies T ∗ ⊆ S∗;
that every symmetric operator S is closable, because S is densely defined and
S ⊆ S∗; and that S = S∗∗ for each closable S. For (d) note first that every
symmetric operator is closable because S is densely defined and S ⊆ S∗, whence
S ⊆ S ⊆ S∗. Then use that S ⊆ R implies R∗ ⊆ S∗. A safety net for (e) is provided
e.g. in [Ped, Proposition 5.2.5], see also the second part of our proof of Lemma
2.52. (f) can be proved directly or by applying (e).
For (g) and (i) recall that the support of a function u ∈ C0(X) is by definition
the smallest closed subset of X outside which u vanishes identically: suppu :=
{z ∈ X : u(z) 6= 0}. Here X is a topological space, C0(X) denotes the set of com-
plex valued continuous functions on X, and L denotes the closure of L ⊂ X.
In (g) and (h) the symmetry follows from partial integration. Candidates for non–
uniquely determined self–adjoint extensions are provided in (g) by the unitarily
twisted periodic boundary conditions u(1) = eiϕu(0) for all ϕ ∈ [0, 2π); and in
(h) e.g. by the Dirichlet boundary condition u(0) = u(1) = 0 and the Neumann
boundary condition u′(0) = u′(1) = 0. For(i) see also the extensive discussion in
[AkGl, Sections 49, 77].]

Spectral Theory. The following definition extends the notion of resolvent set
and spectrum commonly defined for elements in B(H); cf. Table 1.1, p. 11.

Definition 2.59. a) For an operator T in H we define the resolvent set
Res(T ) as the set of all λ ∈ C for which the operator T − λ Id is bijective from
Dom(T ) onto H with bounded inverse.
b) The complement of the resolvent set is called the spectrum of T , and is denoted
by Spec(T ).
c) The function R(λ) := (T − λ Id)−1 defined on C \ Spec(T ) with values in B(H)
is called the resolvent function.

Exercise 2.60. a) Show that the resolvent set of any operator in H is open.
b) Let T be a closed operator in H and λ0 ∈ C. Assume that the resolvent
R(λ0) exists and is compact. Show that then the spectrum of T consists entirely
of countably many isolated eigenvalues with finite multiplicities and without finite
accumulation point, and the resolvent R(λ) is compact for all λ ∈ Res(T ). If T is
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self–adjoint, conclude that T is diagonalizable (= discrete), i.e., the eigenvectors
form a basis of Dom(T ).
c) Prove that the spectrum of a self–adjoint operator in H is a nonempty, closed
subset of R.
d) Prove the following spectral characterization of (not necessarily bounded) self–
adjoint Fredholm operators: A self–adjoint operator T has discrete spectrum of
finite multiplicity in a neighborhood of 0 ⇐⇒ Ker(T ) is finite–dimensional and
Im(T ) is closed.
e) Let S be a self–adjoint operator in H with compact resolvent. Show that S and
each bounded self–adjoint perturbation (i.e. operators of the form S + C where
C ∈ B(H) and C = C∗) are Fredholm operators in the sense of Definition 2.38.
[Hint: For (a) cf. [Ped, Proposition 5.2.11] or [Rud, Exercise 13.17, p.365]. For (b)
cf. [Kat, Theorem III.6.29]; see also our Section 2.2 on compact operators (p. 18ff),
in particular Theorem 2.20. See also our discussion of the Green’s function for the
Sturm-Liouville problems in the preceding section. Note that the eigenfunctions
of the Green’s operator and of the Sturm-Liouville problem coincide, while the
eigenvalues of the Green’s operator are the reciprocals of the eigenvalues of the
Sturm-Liouville problem (in that case 0 is not an eigenvalue); see [CodLev, p.194].
For (c) cf. [Kat, Section V.3.5] or [Ped, Proposition 5.2.13]. For (d) cf. [DunSch,
Def. XIII.6.1 and Thm. XIII.6.5]. Dunford and Schwartz show that if T is self–
adjoint, then λ is an isolated point of the spectrum of T if and only if Im(T − λ)
is closed. (Note that [DunSch] define the essential spectrum differently). For (e)
apply (c) and (d).]

For a normal (not necessarily bounded) operator, there is a famous theorem
which expresses the operator as an integral of the coordinate function over the
operator’s spectrum with respect to a projection-valued measure. It supplements
the previously proven spectral decomposition for compact operators, Theorem 2.20,
p.20. We shall formulate it only for self-adjoint operators.

Theorem 2.61 (Spectral Theorem). Let T be a densely defined self-adjoint
operator in a complex separable Hilbert space H. Then there exists a uniquely
determined spectral measure E on the Borel subsets of R such that

(1) T =
∫
λ∈Spec(T )

λ dE(λ),

(2) E(M) = 0 for all M ⊂ R with M ∩ Spec(T ) = ∅,
(3) E(M) 6= 0 for all open M ⊂ R with M ∩ Spec(T ) 6= ∅.

Consequently, we can associate a well-defined operator f(T ) to T for each
function f that is integrable on Spec(T ). That result is trivial for a polynomial
f (with id(T ) = T as in (1) and 1(T ) = Id), but rather advanced for such simple
functions like f :=

√
· yielding an ultra-short proof of the Square Root Lemma. For

comparison, see our elementary but lengthy proof of that Lemma below on p.54f.
Different variants of the Spectral Theorem and a variety of different proofs are in
the literature. We recommend [Ped, Theorems 4.4.1 and 5.3.8] for the bounded
and for the not necessarily bounded case.

Metrics on the Space of Closed Operators. Recall that for a fixed separa-
ble complex Hilbert space H, we denoted by B(H) the algebra of bounded operators
from H to H. It is naturally equipped with the metric defined by the operator norm
‖T − S‖.
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We shall denote by C(H) the space of closed densely defined operators in H.
Clearly the operator norm does not make sense for unbounded operators. However,
for S, T ∈ C(H) the orthogonal projections PG(S), PG(T ) onto the graphs of S, T
in H ⊕H are bounded operators and

γ(S, T ) := ‖PG(T ) − PG(S)‖
defines a metric for C(H), the projection metric.

It is also called the gap metric and it is (uniformly) equivalent with the metric
given by measuring the distance between the (closed) graphs. For details and the
proof of the following Lemma and Theorem, we refer to [CorLab, Section 3].

Lemma 2.62. For T ∈ C(H) the orthogonal projection onto the graph of T in
H ⊕H can be written (where RT := (I +T ∗T )−1) as

PG(T ) =

(
RT RTT

∗

TRT TRTT
∗

)
=

(
RT T ∗RT∗

TRT TT ∗RT∗

)
=

(
RT T ∗RT∗

TRT I−RT∗

)
.

Theorem 2.63. (Cordes, Labrousse) a) The space B(H) of bounded operators
on H is dense in the space C(H) of all closed operators in H. The topology induced
by the projection (∼= gap) metric on B(H) is equivalent to that given by the operator
norm.
b) Let CF(H) denote the space of closed (not necessarily bounded) Fredholm opera-
tors. Then the index is constant on the connected components of CF(H) and yields
a bijection between the integers and the connected components.

Exercise 2.64. Consider the multiplication operator Mid of Exercise 2.50c
and let Pj denote the orthogonal projection of H onto the linear span of the j-
th orthonormal basis element uj . Clearly the sequence (Pj) does not converge in
B(H) in the operator norm. Show that, however, the sequence (Mid − 2jPj) of
self–adjoint Fredholm operators converges in C(H) in the projection metric to Mid.
[Hint: On the subset of self–adjoint (not necessarily bounded) operators in the
space C(H), the projection metric is uniformly equivalent to the metric γ given by

γ(T1, T2) := ‖(T1 + i)−1 − (T2 + i)−1‖ ,
(cf. [BLP, Theorem 1.1]).]

Remark 2.65. The results by Heinz Cordes and Jean–Philippe Labrousse may
appear to be rather counter-intuitive. For (a), it is worth mentioning that the
operator-norm distance and the projection metric on the set of bounded operators
are equivalent, but not uniformly equivalent since the operator norm is complete,
while the projection metric is not complete on the set of bounded operators. Ac-
tually, this is the point of the first part of (a), see also the preceding exercise.

Assertion (b) says two things: (i) that the index is a homotopy invariant,
i.e. two Fredholm operators have the same index if they can be connected by
a continuous curve in CF(H); (ii) that two Fredholm operators having the same
index always can be connected by a continuous curve in CF(H). Both results are
also true in the category of bounded Fredholm operators. Actually, topologically
much farther reaching results for bounded Fredholm operators are shown in Chapter
3. For investigations of the topology of the subspace of self–adjoint (not necessarily
bounded) Fredholm operators we refer to [BLP] and [Les04].

The delicacy of Assertion (b) is partly due to the delicacy of varying domains.
However, if we fix a self–adjoint operator T with compact resolvent and dense
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domain D ⊆ H and make D into a Hilbert space by the operator norm (along the
lines of Exercise 2.39d), one may investigate all closed Fredholm operators in H
with that domain D. A reasonable guess is that this space can be identified with
the full space of bounded Fredholm operators by identifying D with H, and that
this bijection is a homeomorphism.

7. Trace Class and Hilbert-Schmidt Operators

Here we give a rigorous definition and exposition of the fundamentals of trace
class and Hilbert-Schmidt operators on a general (complex, infinite-dimensional)
Hilbert space H. For an advanced reader, our presentation may seem a bit convo-
luted with all the small definitions, lemmata, propositions and theorems patched
together. We refer such a reader to [Ped, Section 3.4] where all we need is done
simply and directly. In this section, however, we prefer to confront our primary
readership with all the details of the involved calculations instead of hiding them
in general structural concepts and theorems.

We have already seen the important special case of Hilbert-Schmidt integral
operators with square-integrable kernels on function spaces (see Exercises 2.29 and
2.30, p. 25). We will also need trace class operators later in Section 3.9 when we give
a construction of the determinant line bundle over the space of Fredholm operators
with index 0. A connection between determinants and traces is seen in the formula
det
(
eA
)

= eTrA for a A ∈ GL (N,C), or the related formula (see Proposition 3.43,
p. 96)

(2.36) det (Id +A) =
∑N

k=0
Tr
(
ΛkA

)
,

where ΛkA is the extension of A to the k-th exterior product Λk(Cn) of Cn. For
those not familiar with exterior products, let λ1 (A) , . . . , λN (A) be the eigenvalues
of A, repeated according to algebraic (as opposed to geometric) multiplicity. In
view of Jordan canonical form, we have the formula (equivalent to (2.36))

(2.37) det (Id +A) =
∏N

j=1
(1 + λj (A)) =

∑N

k=0

(∑
〈i〉k

λi1 (A) · · ·λik (A)

)
where

∑
〈i〉k

denotes the sum over all indices 0 < i1 < i2 < · · · < ik ≤ N ; this inner

sum is in fact Tr
(
ΛkA

)
. The k = 1 term is the trace of A, namely

(2.38) Tr(A) =
∑N

i=1
λi (A) ,

and in general the k-th term is the elementary symmetric polynomial of degree k
in the λi (A), which again is the same as Tr

(
ΛkA

)
. The formula (2.36) extends

to operators on a Hilbert space H when A is trace class. Indeed, it is essentially
the Definition 3.44 (p. 98) of det (Id +A) that we adopt. The equivalence of (2.36)
and (2.37) for trace class operators A is true, but not trivial (see [Sim]). Roughly,
A ∈ B(H) is trace class if the square-roots

√
λn of the eigenvalues λn ≥ 0 of A∗A

are summable (i.e.,
∑
n

√
λn < ∞). However, for this one would need to assume

that there exists a complete eigenbasis of A∗A, and thus some assumptions on A
(e.g., compactness) would have to be made. We would rather have the compactness
of A emerge from our definition of trace class than assume compactness as part of
the definition. In the course leading to the definition we adopt, we begin with some
useful, basic definitions and results of independent interest.
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The following Square Root Lemma is fundamental for establishing the Polar
Decomposition of bounded operators in Proposition 2.77, which plays a prominent
role in establishing the fact that the set I1 of trace class operators is closed under
addition (see below). It is a simple consequence of the Spectral Theorem 2.61,
p.51. Since we have not proven the Spectral Theorem, we give an elementary,
though elaborate (i.e., a bit lengthy) proof of the Square Root Lemma.

Theorem 2.66 (Square Root Lemma). If C ∈ B+, then there is a unique

S ∈ B+, such that S2 = C. Denoting S by
√
C, the map C →

√
C is continuous

in operator norm.

Proof. The power series for
√

1− x about x = 0 is

(2.39) p (x) :=
∑∞

n=0
anx

n = 1 +
∑∞

n=1

(−1)
n

n!

∏n−1

k=0

(
1
2 − k

)
xn.

For n ≥ 1, the coefficients an are all negative. Thus,∑∞

n=1
|an| = lim

x→1−

∑∞

n=1
|anxn| = lim

x→1−

(
1−
√

1− x
)

= 1.

The Weierstrass M -test then implies that p (x) converges uniformly and absolutelyexplain W’s M-test
for ‖x‖ ≤ 1 to

√
1− x. Let

B+
1 :=

{
B ∈ B+ : ‖B‖ ≤ 1

}
.

Since

A ∈ B+
1 ⇒ ‖anAn‖ ≤ |an| ‖A‖

n ≤ |an| and
∑∞

n=1
|an| <∞,

the Weierstrass M -test implies that
∑∞
n=0 anA

n converges uniformly on B+
1 to a

continuous function p : B+
1 → B, namely

p (A) :=
∑∞

n=0
anA

n (for A ∈ B+
1 ).

The convergence of
∑∞
n=0 ‖anAn‖ also implies that the formal squaring and re-

arrangement of the series p (A) yields the expected result

(2.40) p (A)
2

= Id−A (for A ∈ B+
1 ).

Note that p (A) ≥ 0, since (using ‖A‖ ≤ 1)〈∑k

n=1
|an|Anx, x

〉
≤
∑k

n=1
|an| ‖Anx‖ ‖x‖ ≤

∑k

n=1
|an| ‖A‖n ‖x‖2 ≤ ‖x‖2 ,

which implies that

〈p (A)x, x〉 = lim
k→∞

〈(
Id−

∑k

n=1
|an|An

)
x, x

〉
= ‖x‖2 − lim

k→∞

〈∑k

n=1
|an|Anx, x

〉
≥ 0.

If C ∈ B+
1 , we have Id−C ∈ B+

1 , since

〈(Id−C)x, x〉 = 〈x, x〉 − 〈Cx, x〉 ≥ ‖x‖2 − ‖Cx‖ ‖x‖ ≥ ‖x‖2 (1− ‖C‖) ≥ 0,

and then using Proposition 2.21 (p. 20), we get

‖Id−C‖ = sup {〈(Id−C)x, x〉 : x ∈ H, ‖x‖ = 1}
= sup {1− 〈Cx, x〉 : x ∈ H, ‖x‖ = 1} ≤ 1.
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Thus in (2.40) we may take A = Id−C ∈ B+
1 and (p (Id−C))

2
= p (A)

2
= Id−A =

C. Hence, for C ∈ B+
1 and ‖C‖ ≤ 1, a positive square root of C is p (Id−C). For

arbitrary C ∈ B+with C 6= 0, note that Id−C/ ‖C‖ ∈ B+
1 and(√

‖C‖ p
(

Id− C

‖C‖

))2

= ‖C‖ C

‖C‖
= C.

Then there is a positive square root S (C) of C ∈ B+, namely

S (C) :=

{
p (Id−C) , if ‖C‖ ≤ 1,√

‖C‖ p
(

Id− C
‖C‖

)
, if ‖C‖ > 0.

Since
√
αp (1− x/α) =

√
α
√

1− (1− x/α) =
√
α
√
x/α =

√
x, for 0 ≤ x ≤ α ≤ 1,

the two formulas agree for 0 < ‖C‖ ≤ 1. The first formula yields the continuity

of S on B+
1 , in particular at C = 0. Since C 7→

√
‖C‖ and C 7→ Id−C/ ‖C‖ are

continuous functions on B \ {0}, the second formula yields the continuity of S on
the rest of B+.

We now prove the uniqueness property. Suppose that R is another positive
square root of C. Then RC = R3 = R2R = CR, so that R commutes with C and
hence with S (C) which (aside from the trivial case C = 0) can be written as a series

of powers of Id−C/ ‖C‖. To show that R = S (C), we show Ker (S (C)−R)
⊥

=
{0}. Since RS (C) = S (C)R, we have (S (C) +R) (S (C)−R) = 0 which implies
that

(S (C)−R) (H) ⊆ Ker (S (C) +R) , and so (S (C)−R) (H) ⊆ Ker (S (C) +R) .

Since S (C)−R is self-adjoint, we then have

Ker (S (C)−R)
⊥

= (S (C)−R)
∗

(H) = (S (C)−R) (H) ⊆ Ker (S (C) +R) .

Thus,

x ∈ Ker (S (C)−R)
⊥ ⇒ 〈S (C)x, x〉+ 〈Rx, x〉 = 〈(S (C) +R)x, x〉 = 0

⇒ 〈S (C)x, x〉 = 0 and 〈Rx, x〉 = 0,

since S (C) ≥ 0 and R ≥ 0. Now,

〈Rx, x〉 = 0⇒ 0 =
〈
S (R)

2
x, x

〉
= ‖S (R)x‖2 ⇒ Rx = S (R)

2
x = 0,

and similarly 〈S (C)x, x〉 = 0⇒ S (C)x = 0. Thus,

(S (C)−R) (x) = S (C)x−Rx = 0− 0 = 0,

and so x ∈ Ker (S (C)−R) ∩Ker (S (C)−R)
⊥

= {0}. �

Corollary 2.67. Every A ∈ B is a C-linear combination of two self-adjoint
operators, and any self-adjoint operator is a C-linear combination of two unitary
operators.

Proof. Note that A+A∗ and i (A−A∗) are self-adjoint, and

A = 1
2 (A+A∗)− i

2 (i (A−A∗)) .

If B ∈ B is self-adjoint and ‖B‖ = 1, then Id−B2 ≥ 0, and
√

Id−B2 makes sense.
Note that

(2.41) B = 1
2

(
B + i

√
Id−B2

)
+ 1

2

(
B − i

√
Id−B2

)
,
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where B ± i
√

Id−B2 is unitary since(
B ± i

√
Id−B2

)∗ (
B ± i

√
Id−B2

)
=
(
B ∓ i

√
Id−B2

)(
B ± i

√
Id−B2

)
= B2 + Id−B2 = Id .

If 0 6= B ∈ B is self-adjoint, we can replace B by B/ ‖B‖ in (2.41) and multiply by
‖B‖. If B = 0, then B = 0 Id +0 Id. �

Definition 2.68. A ∈ B is trace class, written A ∈ I1, if there is a complete
orthonormal system {e0, e1, . . .}, such that for the operator |A| :=

√
A∗A, we have

Tr |A| :=
∑∞

i=0
〈|A| ei, ei〉 =

∑∞

i=0

∥∥∥|A| 12 ei∥∥∥2

<∞.

More generally, for p ∈ N, A ∈ Ip if |A|p ∈ I1. If A ∈ I2, then A is called
Hilbert–Schmidt.

Remark 2.69. Note that Tr |A| is independent of the choice of {e0, e1, . . .}.
Indeed, if {f0, f1, . . .} is another complete orthonormal system, then∑∞

i=0
〈|A| ei, ei〉 =

∑∞

i=0

∥∥∥|A| 12 ei∥∥∥2

=
∑∞

i=0

(∑∞

j=0

∣∣∣〈|A| 12 ei, fj〉∣∣∣2)
=
∑∞

j=0

∑∞

i=0

(∣∣∣〈|A| 12 fj , ei〉∣∣∣2) =
∑∞

j=0
〈|A| fi, fi〉 .

Remark 2.70. Note that p ≤ p′ ⇒ Ip ⊂ Ip′ , since∑∞

i=0

〈
|A|p

′
ei, ei

〉
=
∑∞

i=0

∥∥∥|A| 12p′ ei∥∥∥2

=
∑∞

i=0

(∥∥∥|A| 12 (p′−p) |A|
1
2p ei

∥∥∥)2

≤
∑∞

i=0

(∥∥∥|A| 12 (p′−p)
∥∥∥∥∥∥|A| 12p ei∥∥∥)2

=
∥∥∥|A| 12 (p′−p)

∥∥∥2∑∞

i=0

∥∥∥|A| 12p ei∥∥∥2

=
∥∥∥|A| 12 (p′−p)

∥∥∥2

Tr |A|p .

Recall that K denotes the ideal of compact operators in B. Let Bf denote the
ideal of finite rank operators. We will eventually show (see Proposition 2.75) that

Bf ⊂ Ip ⊂ Ip′ ⊂ K, for 1 ≤ p ≤ p′,

but first we prove

Proposition 2.71. Any trace class operator is compact; i.e, I1 ⊂ K.

Proof. For any x ∈ H, we have

Ax = A
(∑∞

i=0
〈x, ei〉 ei

)
=
∑∞

i=0
〈x, ei〉Aei.

Thus, we have (as always) that A is the pointwise limit of finite rank operators

A =
∑∞

i=0
〈·, ei〉Aei =

∑∞

i=0
e∗i ⊗Aei = lim

n→∞

∑n−1

i=0
e∗i ⊗Aei.

To show that A is compact, it suffices to show convergence in norm; i.e.,

(2.42) lim
n→∞

sup{||(A−
∑n−1

i=0
e∗i ⊗Aei) (x) || : x ∈ H, ‖x‖2 = 1} !

= 0.
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First, note that A ∈ I1 ⇒ |A|2 ∈ I1, since∑∞

i=0

〈
|A|2 ei, ei

〉
=
∑∞

i=0
‖|A| ei‖2 =

∑∞

i=0

(∥∥∥|A| 12 |A| 12 ei∥∥∥)2

≤
∑∞

i=0

(∥∥∥|A| 12 ∥∥∥∥∥∥|A| 12 ei∥∥∥)2

=
∥∥∥|A| 12 ∥∥∥2∑∞

i=0

∥∥∥|A| 12 ei∥∥∥2

=
∥∥∥|A| 12 ∥∥∥2

Tr |A| .

In the sup of (2.42), we may assume x ∈ Hn := span (e0, . . . , en−1)
⊥

, since

(A−
∑n−1

i=0
e∗i ⊗Aei)|H⊥n = 0.

Thus, it suffices to show that

lim
n→∞

sup
{
‖Ax‖ : x ∈ Hn, ‖x‖2 = 1

}
= 0.

Note that any x ∈ Hn with ‖x‖2 = 1 may serve as fn in a complete orthonormal
extension {fi}∞i=0 of e0, . . . , en−1, and so we have∑n−1

i=0
‖Aei‖2 + ‖Ax‖2 ≤

∑∞

i=0
‖Afi‖2 =

∑∞

i=0
‖|A| fi‖2 = Tr

(
|A|2

)
.

Thus, as desired,

x ∈ Hn, ‖x‖2 = 1⇒ ‖Ax‖2 ≤ Tr
(
|A|2

)
−
∑n−1

i=0
‖Aei‖2 ⇒

lim
n→∞

sup
{
‖Ax‖2 : x ∈ Hn, ‖x‖2 = 1

}
= Tr |A|2 − lim

n→∞

∑n−1

i=0
‖Aei‖2 = 0. �

If A ∈ I1, then |A| ∈ I1 and hence |A| is compact, self-adjoint and positive.
By the Hilbert-Schmidt Theorem 2.20, there is a complete orthonormal system for

(KerA)
⊥

, say {ei : 0 ≤ i < N}, where N may be finite or∞, such that |A| ei = µiei
with µi > 0, µ0 ≥ µ1 ≥ µ2 ≥ . . . ≥ 0 (repeated according to multiplicity), and
limi→∞ µi = 0 if N = ∞. The positive eigenvalues µi of |A| are known as the
singular values of A. For x ∈ H,

Ax = A

(∑N

i=0
〈x, ei〉 ei

)
=
∑N

i=0
〈x, ei〉Aei =

∑N

i=0
µi 〈x, ei〉

(
µ−1
i Aei

)
=
∑N

i=0
µi 〈x, ei〉 fi, where fi := µ−1

i Aei.

Thus, we have the so-called canonical expansion of A

(2.43) A =
∑N

i=0
µi 〈·, ei〉 fi,

which (assuming N =∞) converges in norm to the compact operator A, since∥∥∥A−∑n

i=0
µi 〈·, ei〉 fi

∥∥∥ = sup
{∥∥∥Ax−∑n

i=0
µi 〈x, ei〉 fi

∥∥∥ : x ∈ H, ‖x‖ = 1
}

= sup
{
‖Ax‖ : x ∈ span {e0, . . . en}⊥ , ‖x‖ = 1

}
= sup

{
‖(|A|x)‖ : x ∈ span {e0, . . . en}⊥ , ‖x‖ = 1

}
= µn+1 → 0 as n→∞.

We have

〈fi, fj〉 =
〈
µ−1
i Aei, µ

−1
j Aej

〉
= µ−1

i µ−1
j 〈A

∗Aei, ej〉 = δij , and

(AA∗) fi = (AA∗)µ−1
i Aei = µ−1

i A (A∗Aei) = µ−1
i A

(
µ2
i ei
)

= µ2
i

(
µ−1
i Aei

)
= µ2

i fi.
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It follows that {fi : 0 ≤ i < N + 1} is a complete orthonormal system for (KerA∗)
⊥

=
ImA, and the µi are also the singular values of A∗, which (noting that fi =
µ−1
i Aei ⇒ ei = µ−1

i A∗fi) has the canonical expansion

A∗ =
∑N

i=0
µi 〈·, fi〉 ei.

The following definition then yields TrA∗ = TrA, for A ∈ I1.

Definition 2.72. For A ∈ I1 with canonical expansion A =
∑N
i=0 µi 〈·, ei〉 fi,

we define

TrA :=
∑N

j=0
〈Aej , ej〉 =

∑N

j=0

〈∑N

i=0
µi 〈ej , ei〉 fi, ej

〉
=
∑N

j=0
µj 〈fj , ej〉 .

This sum is absolutely convergent, since |µj 〈fj , ej〉| ≤ µj ‖fj‖ ‖ej‖ = µj and

∑N

j=0
µj =

∑N

j=0
〈|A| ej , ej〉 = Tr |A| <∞.

Remark 2.73. If A ∈ I1 and A is self adjoint, then A =
∑N
i=0 λi 〈·, ei〉 ei is

the canonical expansion of A, where {ei} is a complete orthonormal system for

(KerA)
⊥

with Aei = λiei. In this case,

TrA =
∑N

j=0
λj 〈ej , ej〉 =

∑N

j=0
λj ,

which converges absolutely and agrees with (2.38) when N <∞.

Proposition 2.74. If {gi} is any complete orthonormal system for H and
A ∈ I1, then ∑∞

j=0
〈Agj , gj〉 = TrA,

and the sum is absolutely convergent.

Proof. We first verify that the sum is absolutely convergent:

∑∞

j=0
|〈Agj , gj〉| =

∑∞

j=0

∣∣∣∣〈∑N

i=1
µi 〈gj , ei〉 fi, gj

〉∣∣∣∣
≤
∑∞

j=0

∑N

i=1
µi |〈gj , ei〉 〈fi, gj〉|

=
∑N

i=1
µi
∑∞

j=0
|〈gj , ei〉 〈fi, gj〉|

≤
∑N

i=1
µi

(∑∞

j=0
|〈gj , ei〉|2

) 1
2
(∑∞

j=0
|〈fi, gj〉|2

) 1
2

=
∑N

i=1
µi ‖ei‖ ‖fi‖ =

∑N

i=1
µi = Tr (|A|) = ‖A‖1 .
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The absolute convergence of
∑∞
j=0

∑N
i=1 µi |〈gj , ei〉 〈fi, gj〉| just shown allows the

interchange of the sums over i and j in the following:∑∞

j=0
〈Agj , gj〉 =

∑∞

j=0

〈∑N

i=1
µi 〈gj , ei〉 fi, gj

〉
=
∑∞

j=0

∑N

i=1
µi 〈gj , ei〉 〈fi, gj〉

=
∑N

i=1

∑∞

j=0
µi 〈gj , ei〉 〈fi, gj〉

=
∑N

i=1
µi 〈fi, ei〉 = TrA. �

Proposition 2.75. For any p, p′ ∈ N with p ≤ p′, we have

Bf ⊂ Ip ⊂ Ip′ ⊂ K.

Proof. Since Bf ⊂ Ip is clear, it suffices (by Remark 2.70) to prove that
Ip ⊂ K for any p ∈ N. For A ∈ Ip, we have |A|p ∈ I1. Thus, |A|p is compact.

Let A =
∑N
i=0 µi 〈·, ei〉 ei be the canonical expansion of |A|p. Then the canonical

expansion of |A| is
∑N
i=0 µ

1/p
i 〈·, ei〉 ei. Since µi → 0, we have µ

1/p
i → 0, and so

|A| is compact. This implies that A is compact. Indeed, since ‖|A|x‖ = ‖Ax‖, if
{|A|xn} has a convergent subsequence {|A|xni} for any bounded sequence {xn},
then {Axn} has the convergent subsequence {Axni} since it will also be a Cauchy
sequence:

∥∥Axni −Axnj∥∥ =
∥∥|A|xni − |A|xnj∥∥→ 0 as i, j →∞. �

The set I1 is clearly closed under scalar multiplication, but less clearly under
addition, as the following exercise suggests.

Exercise 2.76. Show that there are 2×2 matrices A and B for which |A+B| 

|A|+ |B| (i.e. |A|+ |B| − |A+B| is not positive).

To show that nevertheless I1 is closed under addition, it is convenient to first
introduce polar decomposition.

Proposition 2.77 (Polar Decomposition). Any A ∈ B can be uniquely ex-
pressed in the form A = UP , where

P ∈ B is self-adjoint and positive (i.e., 〈Px, x〉 ≥ 0 for all x ∈ H) with

P
(

(KerA)
⊥
)
⊆ (KerA)

⊥
, and

U ∈ B, KerU = KerA, and 〈U (x) , U (y)〉 = 〈x, y〉 for x, y ∈ (KerA)
⊥

(i.e.,

U |(KerA)⊥ is an isometry of (KerA)
⊥

onto U (H)).

Indeed,

(2.44) P =
√
A∗A and U = 0KerA ⊕

(
A ◦

(√
A∗A|(KerA)⊥

)−1
)
.

Proof. We first establish uniqueness of the decomposition A = UP . Note

that U∗U
(

(KerA)
⊥
)
⊆ (KerA)

⊥
, since

x ∈ (KerA)
⊥
, y ∈ KerA⇒ 〈U∗U (x) , y〉 = 〈Ux,Uy〉 = 0.

Also,

x, y ∈ (KerA)
⊥ ⇒ 〈U∗Ux, y〉 = 〈Ux,Uy〉 = 〈x, y〉 ⇒ U∗U |(KerA)⊥ = Id (KerA)⊥ .
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For x ∈ KerA, (A∗A)x = 0 = P 2x, and for x ∈ (KerA)
⊥

we have

A∗Ax = (UP )
∗

(UP )x = P ∗ (U∗U) (Px) = P ∗Px = P 2x,

since Px ∈ (KerA)
⊥

and U∗U |(KerA)⊥ = Id (KerA)⊥ . Thus, A∗A = P 2 and so

P =
√
A∗A by Theorem 2.66. Then A = UP ⇒ U |(KerA)⊥ = A ◦

(
P |(KerA)⊥

)−1

,

and since U |KerA = 0, we have the uniqueness. Defining P and U by (2.44), we
have A = UP , since

x ∈ KerA⇔ 〈Px, Px〉 =
〈
P 2x, x

〉
= 〈A∗Ax, x〉 = 0⇒ UPx = 0 = Ax, and

x ∈ (KerA)
⊥ ⇒ UPx = A

((
P |(KerA)⊥

)−1
)

(Px) = Ax.

By definition,
√
A∗A is self-adjoint and positive. Also, since (A∗A) |(KerA)⊥ ∈

B
(

(KerA)
⊥
)

is positive, by the uniqueness of positive square roots, we have

√
A∗A = 0KerA ⊕

√
(A∗A) |(KerA)⊥ ,

whence
√
A∗A

(
(KerA)

⊥
)
⊆ (KerA)

⊥
. For x, y ∈ (KerA)

⊥
, we have

〈U (x) , U (y)〉 =

〈
A ◦

(√
A∗A|(KerA)⊥

)−1

x,A ◦
(√

A∗A|(KerA)⊥

)−1

y

〉
=

〈(√
A∗A|(KerA)⊥

)−1

A∗A
(√

A∗A|(KerA)⊥

)−1

x, y

〉
=

〈(√
A∗A|(KerA)⊥

)−1 (√
A∗A|(KerA)⊥

)−1

A∗Ax, y

〉
=

〈(
(A∗A) |(KerA)⊥

)−1

A∗Ax, y

〉
= 〈x, y〉 .

By definition, KerA ⊆ KerU and since we have just seen that Ker
(
U |(KerA)⊥

)
= 0,

we have KerA = KerU . �

Exercise 2.78. (a) Use polar decompositions of A, B and A+B to show that
for p = 1 and p = 2

(2.45) A,B ∈ Ip ⇒ (Tr |A+B|p)
1
p ≤ (Tr |A|p)

1
p + (Tr |B|p)

1
p ,

and hence that A+B ∈ Ip. By Proposition 2.74 Tr : I1 → C is then linear. [Hint:
The case p = 2 is a bit less tricky. As a last resort, see [ReSi72, p. 208] for the
case p = 1.]
(b) Show that if A ∈ Ip for p ∈ N and B ∈ B, then A∗, AB and BA are in Ip.
Moreover, for A ∈ I1, prove that Tr (AB) = Tr (BA). [Hint: By Corollary 2.67 and
Part (a), we may assume that B is unitary.]

While (2.45) is valid for all p, here we only need it for p = 1 and 2. In general,

Ip is a normed linear space, the Schatten class, with norm ‖A‖p := (Tr |A|p)
1
p .

In particular, there is a norm (the trace norm) on I1, given by

(2.46) ‖A‖1 := Tr (|A|) =
∑N

i=0
µi,
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where A =
∑N
i=0 µi 〈·, ei〉 fi is the canonical expansion of A. We have

‖Ax‖2 =
∑N

i=0
µ2
i |〈x, ei〉|

2 ≤ µ2
0 ‖x‖

2
,

with equality for x = e0. Thus,

‖A‖ = µ0 ≤
∑N

i=0
µi = ‖A‖1 .

Note that Part (b) of Exercise 2.78 yields that Ip is an ideal of algebra B, whence
the use of the symbol “I”. When p = 2, we now show that ‖A‖2 is in fact the norm
associated with an inner product. Note that Tr (D∗C) exists for C,D ∈ I2, since

4D∗C = (C∗ +D∗) (C +D) + i (C∗ − iD∗) (C + iD)

− (C∗ −D∗) (C −D)− i (C∗ + iD∗) (C − iD)

=
∑3

k=0
ik
(
C + ikD

)∗ (
C + ikD

)
=
∑3

k=0
ik
∣∣C + ikD

∣∣2 .
Then by Exercise 2.78,

∣∣C + ikD
∣∣2 ∈ I1 and D∗C ∈ I1. Thus, we have an inner

product 〈·, ·〉Tr on I2 given by

〈C,D〉Tr := Tr (D∗C) for C,D ∈ I2,

with norm
√
〈C,C〉

Tr
=
(

Tr |C|2
) 1

2

= ‖C‖2.

Proposition 2.79. For A ∈ I1 and B ∈ B, we have BA ∈ I1 (by Exercise
2.78) and

‖BA‖1 ≤ ‖B‖ ‖A‖1 .

Proof. Let A = U |A| denote the polar decomposition of A ∈ I1. Since

|A|
1
2 ∈ I2,

|Tr (BA)|2 = |Tr (BU |A|)|2 =
∣∣∣Tr
(
BU |A|

1
2 |A|

1
2

)∣∣∣2
=
∣∣∣〈(|A| 12)∗ , BU |A| 12〉

Tr

∣∣∣2 =
∣∣∣〈|A| 12 , BU |A| 12〉

Tr

∣∣∣2 .
By the Cauchy-Schwarz inequality for 〈·, ·〉Tr,∣∣∣〈|A| 12 , BU |A| 12〉

Tr

∣∣∣2 ≤ ∥∥∥|A| 12 ∥∥∥2

2

∥∥∥BU |A| 12 ∥∥∥2

2
= Tr (|A|)

∥∥∥BU |A| 12 ∥∥∥2

2

= ‖A‖1 Tr
((
BU |A|

1
2

)∗
BU |A|

1
2

)
= ‖A‖1 Tr

(
|A|

1
2 U∗B∗BU |A|

1
2

)
.

For a complete orthonormal system e1, e2, . . . , we have

Tr
(
|A|

1
2 U∗B∗BU |A|

1
2

)
=
∑∞

i=0

〈
|A|

1
2 U∗B∗BU |A|

1
2 ei, ei

〉
=
∑∞

i=0

〈
U∗B∗BU |A|

1
2 ei, |A|

1
2 ei

〉
≤
∑∞

i=0
‖U∗B∗BU‖

〈
|A|

1
2 ei, |A|

1
2 ei

〉
= ‖U∗B∗BU‖

(∑∞

i=0
〈|A| ei, ei〉

)
= ‖A‖1 ‖B‖

2
.

Thus, combining the above, |Tr (BA)|2 ≤ ‖A‖21 ‖B‖
2

or |Tr (BA)| ≤ ‖A‖1 ‖B‖.
Letting BA = W |BA| denote the polar decomposition of BA, we then have

‖BA‖1 = Tr |BA| = |Tr (W ∗BA)| ≤ ‖A‖1 ‖W
∗B‖ = ‖A‖1 ‖B‖ . �
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Recall that Bf ⊂ B denotes the subspace of finite-rank operators. Relative to
the operator norm, the closure of Bf is the space K of compact operators. Since
there are compact operators which are not trace class (e.g.,

∑∞
n=1

1
n 〈·, en〉 en), I1

is not a closed subspace of B in the operator norm. However, we have

Proposition 2.80. (I1, ‖·‖1) is a Banach space. The set Bf of finite-rank
operators is ‖·‖1-dense in I1; i.e., (I1, ‖·‖1) is the ‖·‖1-completion of Bf .

Proof. Let (An) be a Cauchy sequence in (I1, ‖·‖1), then (An) is a Cauchy
sequence of compact operators in (B, ‖·‖) with limit A ∈ K. We need to show
A ∈ I1with ‖A−An‖1 → 0. Since (An) is a Cauchy relative to ‖·‖1, the sequence
(‖An‖1) is bounded (‖An‖1 ≤ ‖An −Am‖1 + ‖Am‖1 ≤ ε + ‖Am‖1 for n ≥ m,

where m is chosen sufficiently large). Let A =
∑N
i=0 µi 〈·, ei〉 fi denote the canonical

expansion of A. We first show ‖A‖1 =
∑N
i=0 µi < ∞. Since the case N < ∞ is

clear, let N =∞. If ‖An −A‖ → 0, then ‖A∗nAn −A∗A‖ → 0, since

‖A∗A−A∗nAn‖ ≤ ‖(A∗ −A∗n)A+A∗n (A−An)‖
≤ ‖A∗ −A∗n‖ ‖A‖+ ‖A∗n‖ ‖A−An‖ ≤ (2 ‖A‖+ 1) ‖A−An‖ ,

for n sufficiently large. Using this and Theorem 2.66, we obtain

(2.47) ‖An −A‖ → 0⇒ ‖|A| − |An|‖ =
∥∥∥√A∗A−√A∗nAn∥∥∥→ 0.

Then for each (finite) m ∈ N,∑m

i=1
〈|A| ei, ei〉 =

∑m

i=1
lim
n→∞

〈|An| ei, ei〉

= lim
n→∞

∑m

i=1
〈|An| ei, ei〉 ≤ ‖An‖1 .

Hence A ∈ I1, since

‖A‖1 = lim
m→∞

∑m

i=1
〈|A| ei, ei〉 ≤ sup

n∈N
{‖An‖1} <∞.

By (2.47), we have (as p→∞)

‖A−Ap‖ → 0⇔ ‖(A−An)− (Ap −An)‖ → 0⇒ |Ap −An| → |A−An| ,
and so∑m

i=1
〈|A−An| ei, ei〉 = lim

p→∞

∑m

i=1
〈|Ap −An| ei, ei〉 ≤ lim

p→∞
‖Ap −An‖1

⇒ ‖A−An‖1 = lim
m→∞

∑m

i=1
〈|A−An| ei, ei〉 ≤ lim

p→∞
‖Ap −An‖1 .

Given any ε > 0, for n and p sufficiently large we have ‖Ap −An‖1 ≤ ε. Hence,
‖A−An‖1 ≤ ε for n sufficiently large (i.e., limn→∞ ‖A−An‖1 = 0). As for the
density of Bf in I1, let A =

∑∞
i=0 µi 〈·, ei〉 fi denote the canonical expansion of

A ∈ I1 − Bf . Then as n→∞,∥∥∥A−∑n

i=0
µi 〈·, ei〉 fi

∥∥∥
1

=
∥∥∥∑∞

i=n+1
µi 〈·, ei〉 fi

∥∥∥
1
≤
∑∞

i=n+1
µi → 0. �



CHAPTER 3

Fredholm Operator Topology

Synopsis. Calkin Algebra and Atkinson’s Theorem. Perturbation Theory: Homo-

topy Invariance of the Index, Homotopies of Operator-Valued Functions, The Theorem

of Kuiper. The Topology of F : The Homotopy Type, Index Bundles, The Theorem of

Atiyah-Jänich. Determinant Line Bundles: The Quillen Determinant Line Bundle, De-

terminants, The Segal-Furutani Construction. Spectral Invariants: Essentially Unitary

Equivalence, What Is a Spectral Invariant? Eta Function, Zeta Function, Zeta Regular-

ized Determinant

1. The Calkin Algebra

So far, we have introduced compact operators for purely practical reasons: Within

pure mathematics, they came from the search for a (closed) class of operators that exhibit

properties analogous to those of the operators of finite rank. In applied mathematics, they

enter through the theory of integral equations associated with the study of oscillations.

Actually, the compact operators have yet a deeper significance in the representation of

Fredholm operators.

We recall our notation: H is a complex, separable Hilbert space; B denotes
the Banach algebra of bounded linear operators on H (in modern terminology, B is
even a C∗-algebra; see Exercise 2.6, where one needs to verify the additional axiom
‖T ∗T‖ = ‖T‖2); K ⊆ B denotes the closed two-sided ideal of compact operators
(see Theorem 2.24); and F ⊆ B denotes the space of Fredholm operators. We begin
with a simple exercise.

Exercise 3.1 (J. W. Calkin, 1941). Show that the quotient space B/K, con-
sisting of equivalence classes π(T ) := {T −K : K ∈ K}, where T ∈ B, forms a
Banach algebra.
[Hint: Since K is a linear subspace, clearly B/K is a vector space. To prove that
B/K is an algebra, one must use the fact that K is a two-sided ideal. Then show
that since K is closed, B/K can be made into a Banach space by defining a norm
on B/K by

‖π(T )‖ := inf {‖T −K‖ : K ∈ K} = inf {‖R‖ : R ∈ π(T )} .
It remains to show that

‖π(Id)‖ = 1 and ‖π(T )π(S)‖ ≤ ‖π(T )‖ ‖π(S)‖ .
To prove the left equation, assume that there is a K ∈ K with ‖Id−K‖ < 1
and show that K is invertible (using the argument in the proof of Theorem 2.31
involving geometric series); this contradicts the compactness of K. To prove the
right inequality, apply the trick

inf
K∈K

‖TS −K‖ ≤ inf
K1,K2∈K

‖(T −K1) (S −K2)‖ . ]

63
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Theorem 3.2. (F. V. Atkinson, 1951) If (B/K)× is the group of units (i.e.,
elements which are invertible with respect to multiplication) of B/K and π : B →
B/K is the natural projection, then we have

F = π−1((B/K)×).

Exercise 3.3. Show that this theorem of Frederick Valentine Atkinson can
also be written as: An operator T ∈ B is a Fredholm operator exactly when there
are S ∈ B and K1,K2 ∈ K, such that ST = Id +K1 and TS = Id +K2. Such
an S is called a parametrix (or quasi-inverse) for T . One also says that T is
essentially invertible; i.e., invertible modulo K.

Exercise 3.4. Suppose that K1 and K2 in Exercise 3.3 are trace class (see
Section 2.7) and self-adjoint. Show that

(3.1) indexT = TrK1 − TrK2.

[Hint. Using K1 = ST − Id and K2 = TS − Id, show that TK1 = K2T and
SK2 = K1S. Using this, verify that if v (resp. w) is an eigenvector of K1 (resp.
K2) with eigenvalue λ, then Tv (resp. Sw) is an eigenvector of K2 (resp. K1) with
eigenvalue λ. If Vλ (resp. Wλ) is the eigenspace of K1 (resp. K2) for eigenvalue λ,
then check that ST |Vλ = (1 + λ) IdVλ and TS|Wλ

= (1 + λ) IdWλ
. Conclude that

T |Vλ : Vλ ∼= Wλ for λ 6= −1. Also check that KerT = V−1 and CokerT ∼= W−1 =
KerS. Verify that

TrK2 − TrK1 =
∑

λ
λ dimWλ −

∑
λ
λ dimVλ,

and all but two desirable terms cancel in the difference of these absolutely conver-
gent sums.]

Proof of Theorem 3.2. For “⊆”, let F ∈ F . We show that π(F ) is invert-
ible. For this, consider the operator F ∗F + P , where

P : H −→ KerF is orthogonal projection.

In Remark 2.11 (p.17), we have already shown that KerF ∗F = KerF and ImF ∗F =
ImF ∗; thus, F ∗F + P is bijective and hence invertible in B. Since P is compact
(being of finite rank), it follows that π(F ∗F ) = π(F ∗)π(F ) is invertible in B/K.
Similarly, one shows with the help of the orthogonal projection

Q : H −→ KerF ∗

that FF ∗ + Q in B and π(F )π(F ∗) in B/K are invertible. With a left-inverse for
π(F ∗)π(F ) and a right-inverse for π(F )π(F ∗), it follows that π(F ) is invertible in
B/K.

For “⊇”, let T ∈ B with π(T ) invertible in B/K; i.e., there is S ∈ B such that
TS and ST lie in π(Id). Now, π(Id) = {Id +K : K ∈ K)} consists of Fredholm
operators by Theorem 2.31 (indeed, of index zero, but that does not concern us
here). In particular, we then have that KerST and CokerTS are finite-dimensional.
Since

KerT ⊆ KerST and ImT ⊇ ImTS,

it follows that T ∈ F . �

Remark 3.5. The trick in the first part of the above proof consists of first
considering F ∗F and FF ∗ (whose invertibility modulo K is trivial) rather than
F , and only then drawing conclusions about π(F ). This has the advantage that
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one need not explicitly exhibit the parametrix (i.e., inverse modulo K) for F . An
explicit, if somewhat cumbersome, proof of the theorem of Atkinson can be found
in [Sche, Theorems 5.4 and 5.5].

Exercise 3.6. Show that the set of Fredholm operators is open in the Banach
algebra of bounded linear operators on a fixed Hilbert space H. [Hint: Because of
the continuity of π (π is even contracting), it suffices to show that (B/K)× is open
in B/K. For this, show in general that the group of units A× in any Banach algebra
A is open; more precisely, show that about each a ∈ A× there is a ball of radius
1/
∥∥a−1

∥∥ contained in A . For this, apply again the geometric series argument in
the proof of Theorem 2.31 or from Exercise 3.1.]

Exercise 3.7. Conclude from the theorem of Atkinson that the space of Fred-
holm operators is closed under composition, the adjoint operation, and addition of
compact operators. Show that such a conclusion is not circular, since the earlier
proofs of the same results (e.g., Exercise 1.6 (p.5) and Theorem 2.10, (p.17)) were
not needed in the proof of Atkinson’s theorem.

Exercise 3.8. Illustrate Atkinson’s theorem with the shift+ operator (in Ex-
ercise 1.3, p. 4) on L2(Z+). In particular, show that the similarly defined shift− is
a parametrix (= an inverse modulo K) for shift+. Which compact operators do we
get for (shift− ◦ shift+)− Id and for (shift+ ◦ shift−)− Id?

Exercise 3.9. Using the theorem of Riesz (Theorem 2.31, p.28), show that
each parametrix G for a Fredholm operator F is itself a Fredholm operator, and we
have indexG = − indexF .

Exercise 3.10. From Exercise 3.7, we know already that F is closed under
addition of compact operators. Now show that the index is invariant:

index (F +K) = indexF for all F ∈ F and K ∈ K.
[Hint: Show that each parametrix for F is also a parametrix for F +K, and apply
Exercise 3.9.]

2. Perturbation Theory

The result of Exercise 3.10, which we obtained as an easy corollary of the Theorem

2.31 (p.28) of Riesz and of Theorem 3.2, is also due to Frederick Valentine Atkinson.

It represents a fundamental result of perturbation theory which asks how the properties

of a complicated system are related to those of an easy, ideal system close by whose
properties are more easily computed or known. The idea comes from the variational
calculus which asks the opposite way, namely determining optimal shapes of curves
and surfaces (e.g., minimizing some energy functionals) by comparison with less
advantageous neighbors, formalized in the famous Euler-Lagrange Equations and
developed further in Morse Theory. In that context, the basic idea of homotopy
was expressed by the young Giuseppe Lodovico (Luigi) Lagrangia (Lagrange) in
his [Lag, Second letter to Euler, 12 August, 1755], to us the birth certificate of
deformation theory and differential topology:

“Differentiale ipsius y quatenus hic differentiatur, x manente, pro
habendo maximo, minimove formulae datae valore, ad distinc-
tionem aliarum eiusdem y differentiarum, quae in illa jam ingredi-
untur, denotabo per δ; sic et δdy est differentia ipsius dy, dum
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y crescunt quantitate δy; idem dic generaliter de valore δFy [Fy
mihi est functio quaecumque (emphasized by the authors) y].”1

Perturbation theory in a wider sense arose in celestial mechanics which tries to
determine the deviations of planetary orbits from the unperturbed Keplerian paths
due to the gravitational forces of other celestial bodies. While the methods used
there point in a different direction, it is the perturbation theory of Lord Rayleigh
(concerned with continuously extended oscillating systems) which leads frequently
and typically to operators perturbed by the addition of a compact operator. This
happens for example, when in elasticity the passage is made from constant mass
density to variable density. See for example [CH, I, V.13]. That these are as a
rule compact perturbations, is due to the fact that in the underlying partial and
ordinary differential equations the terms of highest order remain unchanged and
only the coefficients of the derivatives of lower order are modified. A theorem of
Franz Rellich (see below Theorem 7.15, p. 198) explains why this produces compact
perturbations.

Quantum mechanics poses farther reaching perturbation problems which are in
parts mathematically unsolved. An example is the quantitative determination of
energy levels of complicated systems of quantum mechanics.

The oscillations and motions of quantum mechanical systems are largely de-
termined by the eigenvalues and eigenfunctions of the corresponding operators.
Therefore, perturbation theory usually amounts to applying approximation meth-
ods to solving the eigenvalue problem of a complicated linear operator T +K which
differs little from a simpler T with a solved eigenproblem. Perturbation theory
becomes spectral theory which studies the different constituents of the spectrum of
an operator. A reference is the comprehensive exposition in [Kat].2

We will not pursue the physical applications any further here, since there is
abundant motivation for perturbation theory within mathematics. Consider for in-
stance the above mentioned calculus of variations of which local perturbations are
an actual principle, or geometric questions which ask how much a curve (asymp-
totically or in its shape) or a surface, etc., changes if relevant parameters in their
equations are modified. In particular, we are interested in the degree to which our
quantitative invariants dim Ker, dim Coker, and index are independent of “small”
perturbations. Here “small” does not exclusively mean that the dimension of the

1Our translation: “I shall denote the (peculiar) derivative of y, which is here to differentiate

to obtain the largest or smallest value of a given formula while x remains unchanged, by δ - to
distinguish it from the other differentiations of that y which already enter that formula; in such a
way δdy denotes the difference just of dy, when (all) the y increase by a value δy; likewise speak

generally of the value δFy [to me, Fy is an arbitrary function (emphasized by the authors) of y].”
2Kato’s perturbation theory is incomparably deeper than our investigation: While we con-

sider a single invariant, the index, Kato’s theory is concerned with countably many real parameters
associated with the power series expansion of the eigenvalues of a perturbed (symmetric) operator

T + cK where the parameters depend analytically on the perturbation. Just as one can classify
symmetric matrices in linear algebra

• -according to their rank

• -projectively, according to their index of inertia (Sylvester index) , and
• -orthogonally, according to their diagonal elements (after principal axis transformation)

we have in the perturbation theory of operators in Hilbert space several levels of stability: in-

dex/essential spectrum (see below)/perturbation parameters of the power series expansion. In
the crude mirror of finite-dimensional linear algebra, Kato’s theory is closest to the principal axis
transformation, while we restrict ourselves in index theory to consideration of the rank.
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image of the perturbing operator is small, as with operators of finite rank and in a
sense with compact operators, but may mean the perturbation is small in operator
norm.

To get a feeling for the complications, we put together a list of established
results:

1. The group of invertible elements of a Banach algebra is open, by Exercise 3.6.
In particular, for each invertible, bounded, linear operator T , there is an ε (:=∥∥T−1

∥∥−1
) such that for all S ∈ B with ‖S‖ < ε, we have:

(i) T + S ∈ F
(ii) index (T + S) = indexT (= 0)
(iii) dim Ker (T + S) = dim KerT (= 0)
(iv) dim Coker (T + S) = dim CokerT (= 0).

2. Further, by Exercise 3.10, for all T ∈ F and K ∈ K
(i) T +K ∈ F
(ii) index (T +K) = indexT .

3. On the other hand, one can always find a perturbation of the identity by a
compact operator K such that

dim Ker (Id−K) > 1080

making Ker (Id−K) unimaginably large, since its dimension could not be matched
by the atoms in a universe of “only” 1011 galaxies. Namely, select an orthonormal
basis for H and define K as the orthogonal projection onto the linear span of the
first 1080 + 1 basis elements. However, index (Id−K) = index Id (= 0) by the Riesz
Theorem (Theorem 2.31, p. 28).

4. In each arbitrarily small neighborhood of the zero operator there are Fred-
holm operators (namely, iterates of the shift operators multiplied by a small con-
stant ε) with any large or small index; e.g.,

index(0 + ε(shift+)k) = k.

Hence, in the neighborhood of 0, the index behaves (metaphorically) as a holo-
morphic function in the neighborhood of an essential singularity (Theorem of Felix
Casorati and Karl Weierstrass).

5. For the boundary-value problem

u′′ + ru = 0, u(0) = u(1) = 0, r ∈ R, r > 0,

treated in Chapter 2 (see Exercise 2.34, p.31), or the equivalent problem

v − rKv = 0,

where

Kv = (1− x)

∫ x

0

yv(y) dy + x

∫ 1

x

(1− y)v(y)dy,

it was already shown that

dim Ker(Id−rK) =

{
1, for r = n2π2 and n ∈ N,
0, otherwise.

While dim Ker(Id−rK) is not perturbable if it is zero (this is also clear because
Id−rK is then invertible by the Riesz Theorem (Theorem 2.31, p. 28), whence
Exercise 3.6 or the above result 1 applies), it is very prone to change when r = n2π2
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– however, only in one direction: the dimension can only decrease. In other words,
dim Ker(Id−rK) is upper semi-continuous; i.e.,

dim Ker(Id−rK) ≤ dim Ker(Id−r0K) for all r sufficiently close to r0.

6. Closed (not necessarily bounded) Fredholm operators with compact resolvent
(typically elliptic differential operators of positive order on closed manifolds or on
compact manifolds with smooth boundary subject to suitable boundary conditions)
have either discrete spectrum or the whole set C as essential spectrum. Non-
vanishing index implies the second case, by Exercise 3.10, p.65.

The following theorem shows, for arbitrary small (in the operator norm sense)
perturbations what we already proved in Exercise 3.10 for compact perturbations:
Even though the dimensions of the kernel of an operator and of its adjoint are not
invariant under perturbations, the two jump by the same amount, so that their
difference (the index) remains constant. The perturbation-invariance of the index
is its most remarkable property. Together with the composition rule (Exercise 1.10,
p.9, or Exercise 2.3, p.14), it shows that the index has properties analogous to
homotopy invariants in algebraic topology such as the Euler characteristic χ(M) of
a compact manifold M . Indeed, χ(M) is in fact the index of a certain operator
(namely, d+δ from the space of even differential forms to the space of odd differential
forms on M .

3. Homotopy Invariance of the Index

After these heuristic considerations, we now come to the aforementioned main
theorem.

Theorem 3.11 (J. Dieudonné, 1943). With regard to the operatornorm topol-
ogy, the mapping index : F → Z is locally constant.

Proof. By Exercise 3.6, we already know that there is a neighborhood in B
which is contained in F . We now amplify the argument used there: By Theorem 3.2
(p. 64), we first choose a parametrix G for F ; i.e., a G ∈ B such that

FG = Id +K1 and GF = Id +K2,

where K1,K2 ∈ K. We now show that for all T ∈ B with ‖T‖ < ‖G‖−1
, we have

F + T ∈ F . Recall the geometric series argument (see the hint for Exercise 3.6),
whereby the operators Id +TG and Id +GT are invertible, since ‖TG‖ and ‖GT‖
are less than 1. Thus (Id +GT )−1G is a left inverse of F + T modulo K, since

(Id +GT )−1G (F + T ) = (Id +GT )−1 (Id +K2 +GT )

= Id +(Id +GT )−1K2.(3.2)

Similarly, G(Id +TG)−1 is a right inverse of F + T modulo K. Thus, by Theorem
3.2, we have F + T ∈ F . Applying the composition rule (Exercise 2.3, p.14)) and
the Riesz Theorem (Theorem 2.31, p. 28), we easily obtain from (3.2) the index
formula

index
(
(Id +GT )−1

)
+ indexG+ index(F + T ) = 0.

Hence index(F + T ) = indexF , since the index of an invertible operator vanishes,
and indexG = − indexF by Exercise 3.9. �
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Remark 3.12. a) As mentioned in Theorem 2.63, the index remains locally
constant (and, in fact, distinguishes the connected components) also in the un-
bounded case, even for varying domains.
b) The following example shows that the index of Fredholm operators in a Fréchet
space is not a homotopy invariant.

Example 3.13. As explained in Appendix A, the functions z 7→ zk, k ∈ Z form
an orthonormal basis for the Hilbert space L2(S1) of square integrable complex
valued functions on the circle S1 = {z : |z| = 1}. Let H+ denote the (closed)
subspace spanned by all zk with k non-negative. Let P+ : L2(S1) → H+ denote
the orthogonal projection. Then each f ∈ C0(S1) induces a bounded operator

Tf := P+ ◦Mf |H+
: H+ −→ H+,

where Mf denotes multiplication by f . We shall see below in Exercise 4.3 that
Tf ∈ B(H+) depends continuously of f . Moreover, Theorem 4.4 implies that Tf is
a Fredholm operator if and only if f(z) 6= 0 for all z ∈ S1. In that case we have
indexTf = −W (f, 0), where W (f, 0) denotes the winding number of f around the
origin (e.g., W (zk, 0) = k for k ∈ Z).
On the Fréchet space C∞+ (S1) := P+

(
C∞(S1)

)
, each f ∈ C∞(S1) correspondingly

induces a continuous linear operator

τf := π+ ◦Mf |C∞+ (S1) : C∞+ (S1) −→ C∞+ (S1),

where π+ denotes the restriction of P+ to C∞+ (S1). Similarly as in the preceding
case, the operator τf depends continuously on f (in the respective Fréchet spaces).
However, the domain of τf is much smaller than the domain of Tf , and so are the
secondary sets. In particular, we now have that τf is Fredholm if and only if f has
not more than a finite number of zeros, each of finite order. If f has no zeros at
all, we still have index τf = indexTf = −W (f, 0). Now, τzk can continuously be
deformed into the identity within the space of Fredholm operators in our Fréchet
space, e.g., by ft(z) := zk − 2t, t ∈ [0, 1], since zk − 2 clearly is homotopic to a
constant function.

Exercise 3.14. Return to the space F of all bounded Fredholm operators in a
fixed Hilbert space. Show that the index is constant on the connected components
of F .

Exercise 3.15. Show that

dim Ker : F −→ N ∪ {0}
is upper semi-continuous; i.e., dim KerF does not expand suddenly when F is
changed continuously. But it may well shrink suddenly. As an example, consider
a continuous path Ft, t ∈ [0, 1], in F connecting an invertible operator F0 (with
dim KerF0 = 0) to a non-invertible operator F1 (with dim KerF1 > 0). More
precisely, show that

dim Ker(F + T ) ≤ dim KerF

for F ∈ F and ‖T‖ sufficiently small.

[Hint: Show that Ker(F + T ) ∩ (KerF )
⊥

= {0}. Details are found in [Sche, Proof
of Theorem 5.11].]

As an aside, we mention that Dieudonné (in [Di43]) proved Theorem 3.11 only im-

plicitly without use of the index concept. The numerous interrelations of this theorem can
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be seen from the fact that by now a number of quite diverse proofs exist. All proofs have

in common the reduction to the geometric series argument or the openness of the group

of units of a Banach algebra.

This idea is most apparent in [Do, p.36f. and pp.133-148] where it is first shown that

A×/A×0 is discrete where A is an arbitrary Banach algebra (with identity), A× its group

of units, and A×0 is the connected component containing the identity. There is an abstract

index

i : A× −→ A×/A×0
defined in a natural way and whose continuity and hence local invariance is clear from the

definition. The main task consists in making the connection between this ideally simple

algebraic object and the real index. Less algebraic proofs can be found in [Jö, 1970/1982,

5.4], where the reduction to the openness of B× is achieved in a sequence of explicit

extensions and projections which are computed in detail. The trick of fixing one dimension

is carried out particularly elegantly in [Ati69, p.104]. As in [Jö] and in contrast to our

proof above which is inspired by [CaSc, 12/06] and [Sche, Theorem 5.11], the Atiyah

proof does not use the nontrivial theorems of Riesz and Atkinson and thus may be the

most transparent proof on the whole. We will render it next.

Alternative Proof of Theorem 3.11. Let e0, e1, ... be a complete ortho-
normal system for the Hilbert space H. We take Hn to be the closure of the linear
span of the ei with i ≥ n, and we let Pn denote the orthogonal projection of H
onto Hn.
Step 1: Clearly Pn is self-adjoint and Pn ∈ F , since KerPn and CokerPn are
finite-dimensional. Hence indexPn = 0, and for each F ∈ F , we then have

indexPnF = indexPn + indexF = indexF.

Step 2: Since dim CokerF < ∞ (F ∈ F), we have n0 such that e0, e1, ..., en0−1

together with F (H) span H; in particular, for all n ≥ n0,

PnF (H) = Hn and dim CokerPnF = n.

(Incidentally, we see that dim CokerPnF and also dim KerPnF can be made arbi-
trarily large with n.)
Step 3: Although the function dim Ker is only semi-continuous on F , we claim
that for G sufficiently near to F and n sufficiently large (as in Step 2)

dim KerPnG = dim KerPnF and dim CokerPnG = dim CokerPnF.

For G ∈ B and p : H → KerPnF the projection, consider the operator

Ĝ : H −→ Hn ⊕KerPnF given by Ĝu := (PnGu, pu).

If G = F , then F̂ is bijective, and hence has a bounded inverse by the Open

Mapping Principle. Identifying Hn ⊕KerPnF with H, we then have F̂ ∈ B×. By
the familiar argument in the hint to Exercise 3.6 (p. 65), there is a neighborhood of

F̂ contained in B×(the units, i.e., the invertible operators belonging to the algebra

B). Since “G 7→ Ĝ” is continuous, there is also a neighborhood V of F such

that for all G ∈ V the operator Ĝ is an isomorphism. From the surjectivity of

Ĝ, it follows that PnG(H) = Hn, whence dim CokerPnG = n = dim CokerPnF.

Moreover, KerPnG = Ĝ−1(KerPnF ), since by definition of Ĝ, a point u is mapped
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to KerPnF by Ĝ exactly when the first component (i.e., PnGu) of Ĝu vanishes.

Since Ĝ is an isomorphism, we then also have

dim KerPnG = dim Ĝ−1(KerPnF ) = dim KerPnF,

which establishes the above claim.
Summary: We have shown that for each F ∈ F , there is a natural number n and
η > 0 such that for all G ∈ B with ‖F −G‖ < η, we have

indexF = indexPnF = indexPnG = indexG.

Here, one could replace “index” by “Ker” or “Coker” in the inner equality, but
not in the outer equalities. Moreover, Im(PnF ) = Im(PnG) = Hn and KerPnG =

Ĝ−1(KerPnF ). �

Exercise 3.16. Formulate Theorem 3.11 for a continuous family of Fredholm
operators, by which we mean a continuous map G : X → F , where X is any
topological space. More precisely, show that for all x0 ∈ X, there is a neighborhood
U and a natural number n, such that for all x ∈ U ,

ImPnG(x) = Hn.

Then prove that the function

dim KerPnG : X −→ N ∪ {0}
is constant (say k) on U , and that there are k continuous functions

fi : X −→ H, i = 1, ..., k,

such that for all x ∈ U , the points f1(x), ..., fk(x) form a basis of Ker(PnG(x)).
[Hint: Imitate the preceding alternate proof, replacing G by G(x) and F by G(x0).

Let f1(x0), ..., fk(x0) be a basis of KerPnG(x0) and set fi(x) := Ĝ(x)−1(fi(x0)).]

The concept of a continuous family of operators comes from classical analysis in

the investigation of operators depending on a parameter or families of operators. In the

simplest examples, the parameter space X is the unit interval, all R, or a bordered do-

main in a higher-dimensional Euclidean space (e.g., the domain of permissible control

variables). With somewhat more complex problems of analysis (e.g., as in the study of

elliptic boundary value problems), we are quickly forced to consider families with more

general parameter spaces: An elliptic differential equation defines a continuous family of

Fredholm operators, where the parameter space is the sphere bundle of covectors of the

underlying manifold restricted to the boundary; see Part 2, Chapter 10. We will first

treat these questions not from the standpoint of applications, but rather out of natural

topological-geometric considerations, namely interest in deformation invariants3.

3Motivated by problems of optics (and also questions in astronomy, surveying, and architec-

ture), the projective geometry of the 17th century originated in the idea of searching for properties
of geometric figures which are invariant under transformations (central projection and cross sec-

tion). In addition to these linear transformations, the concept of a deformation (i.e., the continuous

change of a mathematical object) existed, for instance, when Johannes Kepler in 1604 noted that
if the plane is compactified, then ellipse, hyperbola, parabola and circle can be transformed into

one another by a continuous relocation of the foci (See [Kli, p.299]). But it was not until well
into the 19th and 20th centuries that deformation invariants were found for a greater variety of

mathematical objects. These include homology and cohomology theories, as presented axiomati-

cally in [ES] for example, as well as the so-called K-theory, another branch of algebraic topology
which was developed by Michaef F. Atiyah and Friedrich Hirzebruch and is specifically aimed at

the needs of analysis; see Part III below.
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We assign to each compact parameter space X a group and to each continuous
family of Fredholm operators

G : X −→ F
we assign a group element, which is indeed invariant under deformation. This means
that another continuous family of Fredholm operators G′ : X → F is assigned to
the same group element, if G and G′ are homotopic. By this, we mean that G can
be continuously deformed to G′ (see Chapter 11); i.e., there is a continuous family
g of Fredholm operators parametrized by the product space X×I, where I = [0, 1],

g : X × I −→ F , such that g|X×{0} = G and g|X×{1} = G′.

If X consists of a single point, then a continuous family of Fredholm operators
is just a single Fredholm operator, and the homotopy of G and G′ clearly means
that G and G′ lie in the same (path) component of F . In this way, we can answer
fundamental questions concerning the nature of the connected components of F
(e.g., via approximation theory).

Before we study continuous families of Fredholm operators (i.e., the geometry
of F or the group of units (B/K)× by Theorem 3.11), we first turn to a simpler
problem, the geometric investigation of the group of units B×.

4. Homotopies of Operator-Valued Functions

This section and the following sections of this chapter are central for understanding

index theory. They may be skipped in first reading and then later read in conjunction

with Part III. In particular, here we use some concepts from topology which will be made

precise only in Part III below.

Exercise 3.17. Let X and Y be topological spaces and f, g and h continuous
maps from X to Y . Show that if f is homotopic to g and g is homotopic to h, then
f is homotopic to h.

We recall some definitions and introduce some notation.
1. Two continuous maps f and g from X to Y are called homotopic (written

f ∼ g), if one can continuously deform one into the other; i.e., there is a continuous
map F : X × I → Y (where I = [0, 1]) such that

F ◦ i0 = f and F ◦ i1 = g,

where it : X → X × {t} is the canonical inclusion (t ∈ I). We write Ft for F ◦ it,
and can then roughly regard F as a 1-parameter family (over I) of continuous maps
from X to Y . We call F a homotopy of f to g.

2. By the transitivity (Exercise 3.17) and obvious symmetry and reflexivity of
the relation homotopic, it follows that the homotopy classes

f̄ := {g ∈ C (X,Y ) : g ∼ f}
where C (X,Y ) is the set of continuous functions from X to Y , and the homotopy
set

(3.3) [X,Y ] :=
{
f̄ : f ∈ C (X,Y )

}
are well defined. Note that [point, Y ] corresponds to the set of pathwise connected
components of Y .

3. Two topological spaces X and Y are homeomorphic, if there is a bijective
map f : X → Y which is continuous in both directions.
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4. Two topological spaces are homotopy equivalent, if there are continuous
maps f : X → Y and g : Y → X such that f ◦ g ∼ Id and g ◦ f ∼ Id. Clearly, the
real line R and the plane R2 are homotopy equivalent and have the same cardinality
(i.e., there is a bijection between them), but they are not homeomorphic, as we show
in Part 3 (or just note that the removal of a point disconnects R but not R2.

5. Y is called a retract of X, if Y ⊆ X and there is a continuous map
f : X → Y with f |Y = Id. Such an f is called a retraction. If, in addition,
i ◦ f ∼ Id, where i : Y → X is inclusion, then Y is called a deformation retract
of X, and X and Y are homotopy equivalent. Each P ∈ X (or rather {P}) trivially
constitutes a retract of X (but the sphere, as the boundary of the solid ball, is not
a retract of the ball – see Part 3 below). If {P} is a deformation retract of X, then
X is called contractible. The shape of X must then be starlike in a certain sense.

Here we will study the homotopy type of operator spaces. Let B×(H) denote
the group of invertible operators on a Hilbert space H that we allow to be a finite-
dimensional complex vector space, say CN in which case B×(H) = GL(N,C).

Exercise 3.18. Investigate the group B×(H×H) (or GL(2N,C)) of invertible
operators on the product space H × H, which can be written as 2 × 2 (block)
matrices. For R,S ∈ B×(H) – or more generally for R,S : X → B×(H) continuous
with X a given topological space – show that[

SR 0
0 Id

]
∼
[
R 0
0 S

]
.

[Hint: Consider the map F : X × [0, π/2]→ B×(H ×H), which is given by

Ft :=

[
cos t − sin t
sin t cos t

] [
S 0
0 Id

] [
cos t sin t
− sin t cos t

] [
R 0
0 Id

]
.

Here, we have for brevity written cos t and sin t for the operators cos t Id and sin t Id
∈ B(H). Show that the image of F really lies in B× (H ×H) – not entirely in
B×(H)× B×(H) – and investigate F0 and Fπ/2. Why can we use an interval [a, b]
(a 6= b) of R different from I in the definition of a homotopy?]

The trigonometric functions which appeared in the preceding problem are typical of

homotopy investigations of linear spaces in which rotations and compressions or dilations

are the most important deformations. This considerably simplifies the explicit statement

of homotopies. Of course, it does not simplify the demonstration of the non-existence of

a homotopy since this forces one to consider all homotopies, a task which in general is

solvable only with the crude means of algebraic topology; see Chapter 11 below.

Recall from linear algebra the fact that the group GL(N,C) of invertible com-
plex N × N -matrices contains the compact subgroup U(N), where U(N) consists
of the unitary matrices of rank N ; i.e.,

U(N) :=
{
A ∈ GL(N,C) : A∗ = A−1

}
,

where A∗ is the conjugate transpose of A. Such A are matrices of C-linear trans-
formations of CN which preserve the usual Hermitian inner product in CN . For a
(complex) Hilbert space H, we have the group U(H) :=

{
T ∈ B(H) : T ∗ = T−1

}
.

Exercise 3.19. If R,S ∈U(H), show that the homotopy used in Exercise 3.18
does not leave U(H ×H).
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Exercise 3.20. Regard S1 := {z : z ∈ C and |z| = 1} as a subset of C×{0}
(via z 7→ (z, 0)) and choose a ∈ S1 (e.g., a = (1, 0)). Construct a continuous map

g : S1 −→ U(2)

with the properties
(i) (g(z))(z) = a for all z ∈ S1

(ii) g ∼ f , where f(z) = Id for all z ∈ S1.
[Warning: The exercise would be trivial and solvable without using the 2nd dimen-
sion (i.e., within U(1) rather than U(2)) if S1 were contractible. In that case the
maps f : z 7→ 1 and g : z 7→ az−1 would be homotopic as maps from S1 to S1 (or
equivalently U(1)).]
[Hint: Reduce to Exercise 3.19 by setting

g (z) =

[
az−1 0

0 za−1

]
. ]

We show that U(N) and GL(N,C) are pathwise connected as follows. The
polar decomposition theorem of linear algebra states that every g ∈ GL(N,C) is
(uniquely) a product AP , where A ∈ U(N) and P ∈ H+

N := the convex space of
positive-definite (and hence invertible), N ×N Hermitian matrices. Thus, if U(N)
is path-connected, the multiplication map

U(N)×H+
N −→ GL(N,C)

exhibits GL(N,C) as the continuous image of the path-connected space U(N)×H+
N ,

and so the path-connectedness of GL(N,C) follows from that of U(N). To show
that U(N) is connected, we may proceed as follows. If eN = (0, . . . , 0, 1) ∈ CN ,
then the map

f : U(N) −→ S2N−1 given by f (A) = AeN

is a continuous, open surjection with fibers f−1 (f (A)) = AU(N − 1), homeomor-
phic to U(N − 1). Suppose that U(N) is not connected. If U(N) = V1 ∪ V2

where V1 and V2 are nonvoid, open disjoint sets, then as S2N−1 is connected,
f (V1) ∩ f (V2) 6= φ, say AeN ∈ f (V1) ∩ f (V2). Thus

AU (N − 1) = (V1 ∩AU (N − 1)) ∪ (V2 ∩AU (N − 1)) ,

which implies that AU(N − 1) is not connected. Continuing, we arrive at the
contradiction that U(1) (a circle) is not connected. If u (N) is the real vector
space of skew-Hermitian matrices, the exponential map exp : u (N) → U(N) has
differential Id at IN and hence is a local homeomorphism about 0 ∈ u (N). It follows
that U(N) is locally path connected. Finally, a connected, locally path-connected
space is path-connected, since the path-components are then open and disjoint. In
Part III below, we further investigate the homotopy type of U(N) which is only
partially known. In contrast, we can show for infinite dimensional H that U(H) is
contractible; see Remark 3.24 following Theorem 3.22 below.

Theorem 3.21. The group B× of invertible bounded linear operators on a
Hilbert space H is pathwise connected.

It is not true that the group of units of a Banach algebra is pathwise con-
nected. The group of units (B/K)× in the Calkin algebra is a counterexample; its
connected components – the connected components of Fredholm operators – are
mapped bijectively to Z by the index, as the following paragraph shows.
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This theorem is usually proved by means of deeper results of spectral theory
(see, e.g., [Do, 1972, p.134ff]). One first shows that every unitary operator U has a
spectral decomposition U = eiA = cosA+ i sinA where A is a self-adjoint operator.
Then, by the Spectral Theorem 2.61,

t 7→ Ut := eitA, t ∈ I

is a continuous path in U(H) from Id to U . (If one is willing to use spectral theory,
this argument can replace the one above for the connectivity of U(N).) One shows
further that each invertible operator R can be factored as R = UB where U is
unitary, and B =

√
R∗R is self-adjoint, positive and invertible. Then one again

connects U with Id using Ut and B with Id with the path

t 7→ Bt := t Id +(1− t)B, t ∈ [0, 1]

which does not go outside B× by the Spectral Theorem, since B is positive and
invertible. In this fashion t 7→ UtBt defines a path from R to Id.

Following an idea of Nicolaas Kuiper, here we provide a completely elementary
proof of the theorem which perhaps is not as elegant as the proof outlined above and
which (as most elementary proofs) requires more calculation and perhaps some more
geometric imagination. The decisive advantage for us is that the elementary proof
generalizes effortlessly to a proof of Kuiper’s Theorem (Theorem 3.22) according to
which [X,B×] = 0, even if X does not consist of a single point as in Theorem 3.21
but is an arbitrary compact topological space. While the content of Theorem 3.21
remains unchanged in passing from CN to the infinite-dimensional Hilbert space H,
Theorem 3.22 exhibits a fundamental difference (see the Bott Periodicity Theorem
in Chapter 11) between the linear algebra of finite-dimensional vector spaces and
the functional analysis of Hilbert space. This aspect we can bring out clearly in the
following proof of Theorem 3.21.

Proof of Theorem 3.21. Let R0 ∈ B×. We seek a continuous path in B×
connecting R0 with Id. We proceed in two stages: In the first stage, we connect
R0 with an operator R2 which is the identity on a cleverly constructed infinite
dimensional subspace. In the second stage, we connect R2 with the identity of H.
Stage 1, step 1: We begin by recursively constructing a sequence of unit vectors
a1, a2, ... ∈ H and a sequence of 2-dimensional subspaces A1, A2, ... ⊆ H, such that

Ai⊥Aj for i 6= j, and

ai ∈ Ai, R0ai ∈ Ai for all i = 1, 2, . . . .

Start with any unit vector a1 ∈ H and a 2-dimensional subspace A1 which contains
a1 and R0a1. Then choose a unit vector

a2 ∈ A⊥1 ∩R−1
0

(
A⊥1
)
,

and let A2 be a 2-dimensional subspace with A2⊥A1 and containing a2 and R0a2;
note that a2 ∈ R−1

0

(
A⊥1
)
⇒ R0a2 ∈ A⊥1 . Then proceed with

a3 ∈ A⊥1 ∩A⊥2 ∩R−1
0

(
A⊥1
)
∩R−1

0

(
A⊥2
)
, etc.

The construction never breaks down, since the intersection of finitely many sub-
spaces of finite codimension in H (recall dimH =∞) is never trivial.
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Stage 1, step 2: Now we deform the operator R0 to R1 so that R1ai is a unit
vector in the direction of R0ai. Thus, define (for t ∈ I)

Rtu :=

{
R0u, for u ∈ (

⊕∞
i=1Ai)

⊥
,(

(1− t) + t
|R0ai|

)
R0u, for u ∈ Ai

Stage 1, Step 3: Deform the operator R1 to an operator R2 with the desired
property

R2ai = ai for all i.

This will be done by constructing a suitable curve Tt ∈ U(H) (t ∈ [0, 1]) with
T0 = Id, Tt (Ai) = Ai and T1 (R1ai) = ai. With R2 := T1R1, we then will have

R2ai = ai. Moreover, by construction, Tt will leave all vectors in (
⊕∞

i=1Ai)
⊥

fixed.
The simple geometric construction of Tt (in which we have given up spatial intuition,
since a complex plane, of C-dimension 2, has R-dimension 4) can be reduced to
Exercise 3.20. Indeed, we map each Ai by an isometry αi onto C2, in such a way
that the complex line {λR1ai : λ ∈ C} is mapped to C × {0}. Then let gi : S1 →
U(2) be a map with the properties (guaranteed by Exercise 3.20):

(i) (gi(z))(z) = (1, 0), for all z ∈ S1 ⊂ C×{0}
(ii) There is a continuous map Fi : S1 × I −→ U(2) with

Fi(·, 1) = gi and Fi(z, 0) = IdC2 for all z.

Let Bt ∈ U(2) (t ∈ [0, 1]) be a curve chosen so that B0 = Id and B1αi(ai) = (1, 0) ∈
S1 ⊂ C×{0}. For t ∈ I, we now set

Ttu :=

{
u, for u ∈ (

⊕∞
i=1Ai)

⊥
,

α−1
i B−1

t Fi (αi (R1ai) , t)αiu, for u ∈ Ai.

Then T0 = Id, and since αi (R1ai) ∈ S1 ⊂ C×{0}, we have

T1 (R1ai) = α−1
i B−1

1 Fi (αiR1ai, 1)αiR1ai

= α−1
i B−1

1 (1, 0) = α−1
i (αi(ai)) = ai.

Thus,

t 7→ R1+t := Tt ◦R1

is a continuous path in B× from R1 to R2 with R2|H′ = Id, where H ′ ⊆ H denotes
the infinite-dimensional closed subspace spanned by a1, a2, ....

Stage 2, step 1: Relative to the decomposition H = H1 ⊕H ′, where H1 :=
(H ′)⊥ denotes the orthogonal complement of H ′ in H, R2 has the form[

Q 0
∗ Id

]
,

where Q ∈ B×(H1) and the perturbation term ∗ can be deformed to zero by a
continuous path in B×(H)

R2+t =

[
Q 0

(1− t) ∗ Id

]
, t ∈ I; with R3 =

[
Q 0
0 Id

]
.

Stage 2, step 2: By the classical argument (which one uses in set theory to
count Q or to demonstrate the equipotence of N and N×N), we can decompose H ′



3.5. THE THEOREM OF KUIPER 77

into an infinite sum of Hilbert spaces H2, H3, .... Explicitly, let a1, a2, ... form an
orthonormal basis of H ′. Decompose N into the infinite disjoint subsets

Nj :=
{

2j−2(2n− 1) : n ∈ N)
}
, j = 2, 3, 4, ....

and take Hj to be the closed subspace spanned by the ai with i ∈ Nj . In this way
we have H =

⊕∞
j=1Hj (recall H1 = (H ′)⊥) and

R3 = Q⊕ Id⊕ Id⊕ · · · :=


Q 0 · · · 0

0 Id
...

...
. . . 0

0 · · · 0 Id

 .
If we now identify Hj and H1 for j 6= 1 (all infinite-dimensional, separable, Hilbert
spaces are trivially isomorphic), we can also write:

R3 = Q⊕
[
QQ−1 0

0 Id

]
⊕
[
QQ−1 0

0 Id

]
⊕ · · · .

With the rotation of Exercise 3.18, we obtain a continuous path in B×(H1) ×
B×(H1 ×H1)× · · · ⊆ B×(H) from R3 to an operator

R4 = Q⊕
(
Q−1 ⊕Q

)
⊕
(
Q−1 ⊕Q

)
⊕ · · ·

=
(
Q⊕Q−1

)
⊕
(
Q⊕Q−1

)
⊕ · · ·

and with one more rotation (this time in B×(H1 ×H1)×B×(H1 ×H1)× · · · ) to a
continuous path from R4 to R5 = Id⊕ Id⊕ · · · = IdH . �

5. The Theorem of Kuiper

The idea of the last step of the preceding proof can be found in Albert Solomo-

novich Schwarz [Schw64] and in Klaus Jänich [Ja]. It bares a secret which separates

fundamentally (from the topological standpoint) the linear functional analysis in Hilbert

space from the linear algebra of finite dimensional vector spaces: It is the possibility of

(figuratively speaking) escaping any squeeze by moving aside into a new dimension. If we

had decomposed H into only finitely many components H1 ⊕ · · · ⊕Hm, we would have

gotten stuck in Hm, either with the homotopy from R3 to R4 or with the homotopy from

R4 to R5 (depending on whether m is even or odd). We meet a similar phenomenon when

investigating the geometry of unitary matrices where, e.g., the homotopy set [Si,U(N)]
(the well-known homotopy groups πi(U(N)), where Si denotes the i-sphere of unit vectors

in Ri+1) is determined for 2N ≥ i+ 1 by the Periodicity Theorem of Raoul Bott but not

known for all smaller values of N . Details are in Chapter 11.

Finally we wish to remark that generally in topology low-dimensional structures,

particularly 3- and 4-dimensional manifolds (recall the key words Vaughan Jones and knot

theory, Grigori Perelman’s proof of the Poincaré conjecture or Friedrich Hirzebruch’s work

on the signature) are among the most difficult areas, while analogous questions for higher-

dimensional objects were either solved decades ago or at least pose no fundamentally new

problems. This is the background which may help understand the following basic theorem.

Theorem 3.22. (N. Kuiper, 1964) For any compact, topological space X, the
homotopy set [X,B×(H)] consists of a single element, where B×(H) is the group of
bounded, invertible operators in the Hilbert space H.
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Remark 3.23. Just like Theorem 3.21 (X = point), Theorem 3.22 holds for
nonseparable Hilbert spaces (see [Il, No. 284/02f. ] and for real Hilbert spaces (see
[Kui, p.19-30]). However, according to our earlier convention, we restrict ourselves
always to separable complex Hilbert space.

Remark 3.24. It is a corollary of Theorem 3.22 that B×(H) is contractible.
This would be completely trivial if Theorem 3.22 were valid for non-compact X,
for example for X = B×(H). But it is not this simple. Still there is a way (by
studying the nerve of an open cover of B×(H) as in Stage 0 of the following proof)
of reducing the question of contractibility to Theorem 3.22. See [Kui, p.27f.] and
[Il, No. 284/01f. ].

Remark 3.25. Contrary to the topological investigation of the general linear
group GL(N,C), there is no gain in restricting attention first to the group U(H)
of unitary operators (TT ∗ = T ∗T = Id). In the classical case (see Chapter 11) the
advantage results from the compactness of U(N) := U(CN ) but for dimH = ∞,
U(H) is not compact.

Proof. We adopt the proof of Theorem 3.21 with the necessary modifications
and several additional observations. In order to make a reasonable analogy between
a continuous family f : X → B×(H) of operators and a single operator R ∈ B×(H),
say R : {point} → B×(H), we must guarantee that Im f is at least contained in
a finite-dimensional subspace of B(H). Thus, before we consider the analogy, we
establish
Stage 0: Each continuous f0 : X → B×(H) with X compact is homotopic to a
continuous map f1 : X → B×(H) with f1(X) ⊆ V , where V is a finite-dimensional
subspace of B(H).

To prove this, we use the openness of B×(H) (see Exercise 3.6, p. 3.6) and
place an open ball contained in B×(H) about each operator T ∈ f0(X). This
gives us an open cover U of f0(X). For safety reasons (see below), we replace each
ball U ∈ U by a ball U ′ with the same center, but with 1/3 the radius. Clearly,
U ′ := {U ′ : U ∈ U} is an open cover of f0(X), since each operator in the image of
f0 is the center of some U ′. As the continuous image of a compact set, f0(X) is
also compact and it is covered by a finite subset of U ′. Thus, we have f0(X) ⊆ U∗,
where U∗ =

⋃N
i=1K (Ti, εi) is the union of the finite set of open balls

K (Ti, εi) := {T ∈ B(H) : ‖T − Ti‖ < εi} , i = 1, ..., N.

The balls are contained in B×(H) and are so small that K (Ti, 3εi) is also contained
in B×(H).

Then we are essentially done with the verification of stage 0: Although U∗ is still
infinite-dimensional, it is visibly contractible to a simplicial complex with vertices
T1, ..., TN , meaning a structure that lies entirely in the subspace of dimension ≤ N
of B(H) spanned by T1, ..., TN , see Figure 3.1.

Since intuition (particularly for infinite-dimensional spaces) can be deceiving,
we will write out this argument precisely: For each t ∈ [0, 1] and T ∈ U∗, we define
an operator

gt(T ) := (1− t)T + t
∑N

i=1
φi(T )Ti,
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f X0( )
(subset of B µ B

£( ) ( ))H H

the finite covering U
*

contraction onto
simplicial complex

T1

T1

T3

T4
T5

T6
T7

K T( ,2 "2)

K T( ,1 "1)

T2

T2

Figure 3.1. Two cases of visible contraction to a simplicial complex

where φi (i = 1, ..., N) is a partition of unity subordinate to U∗; i.e., φi : U∗ → R
is continuous and

(i) support φi ⊆ K (Ti, εi); i.e., φi (T ) = 0 for ‖T − Ti‖ ≥ εi,
(ii) 0 ≤ φi (T ) ≤ 1

(iii)
∑N
i=1 φi(T ) = 1 for T ∈ U∗

For example, set

φi (T ) :=
ψi(T )∑N
i=1 ψi(T )

for T ∈ U∗, where

ψi(T ) :=

{
εi − ‖T − Ti‖ , for T ∈ K (Ti, εi) ,
0, otherwise.

In this way, g0 : U∗ → B×(H) is the inclusion and g1 : U∗ → B×(H) is a retraction of
U∗ onto a simplicial complex (composed of points, segments, triangles, tetrahedra,
and corresponding higher-dimensional simplices) with vertices T1, ..., TN . To be sure
that the homotopy of g0 to g1 does not leave B×(H), we use an “ε/3-argument”
(see Figure 3.2): Let T ∈ U∗. In considering gt(T ), we are (because of (i)) only
interested in those summation indices i for which T ∈ K(Ti, εi). We compare
these balls and let K(Tm, εm) be the one with the largest radius. By the triangle
inequality, each of these balls is contained in K(Tm, 3εm). Thus, the convex hull of
T and these Ti (and hence gt(T ), 0 ≤ t ≤ 1) is contained in the ball K(Tm, 3εm),
which by construction lies in B×(H).

With ft := gtf0, t ∈ I, we obtain a homotopy in B×(H) of f0 to an f : X →
B×(H) with the desired properties. This completes the essential work in carrying
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Figure 3.2. Keeping the homotopy of g0 to g1 in B×(H) by an
ε/3-argument

over the proof of Theorem 3.21 to the more general situation of Theorem 3.22.
Indeed, the rest of the proof now is quite analogous; we no longer consider R0 as
a single element of B×(H), but rather as the intersection of the finite-dimensional
subspace V (in which f1(X) lies) with B×(H). Then we need only show that {Id}
is a deformation retract of span (V, Id) ∩ B×(H), just as we showed in the proof of
Theorem 3.21 that R0 and Id are connected by a continuous path in B×(H), and
we are done. The proofs are identical in principle. In the particulars, we need the
following modifications:

Stage 1, step 1: We construct as above a sequence of unit vectors a1, a2, ... ∈
H and a sequence of pairwise orthogonal (n+ 1)-dimensional subspaces A1, A2, ... ⊂
H such that ai ∈ Ai and Rai ∈ Ai for all R ∈ V and i = 1, 2, ...; here, n := dimV
and V is the vector space constructed in stage 0, except for containing in addition
the operator Id; i.e., replace V by span (V, Id).

Stage 1, steps 2 and 3: Now we show that the canonical inclusion

γ0 : V ∩ B×(H) ↪→ B×(H)

is homotopic to a map

γ2 : V ∩ B×(H) −→ B×(H)

with γ2 (R) (ai) = ai for i = 1, 2, . . . and R ∈ V ∩ B×(H).

As before, in stage 1 step 2 (p. 76), we first go from γ0 to γ1 with

γ1 (R)u :=

{
Ru, for u ∈ (

⊕∞
i=1Ai)

⊥
,

Ru
|Rai| , for u ∈ Ai.

For step 3, one must again take up the rotation argument of Exercise 3.20 and
generalize it somewhat by induction: We regard

S2n−1 =
{
z = (z1, ..., zn) ∈ Cn : |z1|2 + ...+ |zn|2 = 1)

}
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as a subset of Cn × {0} ⊆ Cn+1 and construct, for each a ∈ S2n−1, a continuous
map g : S2n−1 → U(n+ 1) with the properties

(i) g(z)(z) = a for all z ∈ S2n−1 and
(ii) g ∼ h, where h(z) = IdCn+1 for all z ∈ S2n−1

(see also [Il, No. 284/04]). We reduce our problem to this situation by mapping
each Ai by an isometry αi onto Cn+1 so that {Tai : T ∈ V } is mapped into Cn×{0}.
Then, if Fi : S2n−1 × I → U(n+ 1) is the corresponding homotopy for a := αi(ai),
then the following is a homotopy from γ1 to γ2 with the desired properties:

γ1+t (T )u :=

{
γ1 (T )u, for u ∈ (

⊕∞
i=1Ai)

⊥
,

α−1
i Fi (αiγ1 (T ) ai, t)αiγ1 (T )u, for u ∈ Ai.

In particular, we have an infinite-dimensional H ′ (with orthonormal basis a1, a2, ...)
such that γ2|H′ = Id.

Stage 2: In the proof of Theorem 3.21, we have already implicitly shown that
B×((H ′)⊥)× IdH′ , is a deformation retract of the group of all invertible operators
on H which are the identity on H ′ (step 1), and that B×((H ′)⊥) × IdH′ , can be
contracted to {IdH} (step 2). The proof of Theorem 3.22 is now complete. �

Exercise 3.26. Prove the Theorem of Dixmier (and Douady) that shows that
U(H) is contractible in the strong operator topology. Recall or check, e.g., in [Ped,
Section 4.6, p.171 ]: The strong topology on B(H) is induced by the family of
seminorms of the form T 7→ ‖Tx‖ for various x ∈ H. Since ‖Tx‖ ≤ ‖T‖ ‖x‖, we
immediately observe that the strong topology is weaker than the norm topology.
Kuiper’s theorem is about the norm topology and is much harder (although there
are now, depending on taste, more conceptual proofs than ours which is Kuiper’s
original one). The idea is very simple.
[Hint, following [Dix, Lemma 10.8.2]: First realize H as L2[0, 1] and consider the
strongly continuous family Pt of orthogonal projections onto the subspaces L2[0, t],
t ∈ [0, 1]. Of course Pt is given by multiplication by the characteristic function of
[0, t]. Now for t > 0, let Vt denote the obvious isometry of L2[0, t] onto L2[0, 1],
namely Vt(x)(s) =

√
tx(ts) for s ∈ [0, 1] and x ∈ L2[0, t], and let V0 = 0. Then

t 7→ Vt is strongly continuous. The contraction of U(H) to 1 is given by (u, t) 7→
(1 − Pt) + Pt (Vt)

∗
uVtPt. At time t = 1, this is just the identity map u 7→ u on

U(H), while at time t = 0, this is the map u 7→ 1. Check that V ∗t (y) (σ) = 1√
t
y(σt )

for σ ∈ [0, t], and verify the unitarity of (1− Pt) + Pt (Vt)
∗
uVtPt for t ∈ (0, 1).]

6. The Topology of F

Like the preceding one, this section is central for index theory but may be skipped

in first reading and read later in connection with the study of the topology of the general

linear group (Bott’s Periodicity Theorem, Chapter 11) and the topological interpretation

of elliptic boundary value problems (Chapter 10 and Section 14.8).

Our point of departure is the principal theorem on the homotopy invariance of
the index saying that the index is defined in a neighborhood of a Fredholm operator
and is constant there, and consequently on each connected component (Theorem
3.11, p.68). Regarding the topology of F , the space of Fredholm operators on a
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given Hilbert space H, the following questions arise:

1. What is the number of connected components of F?
2. What can be said about the structure of the individual

connected components? How many holes are there of each type?

Conceptually imagine a serving of Swiss cheese. Not only do we note the numbers
of slices (Question 1) but also the kind of holes (Question 2), those that cross the
cheese like a channel and those which are enclosed like air bubbles.

We already have a partial answer for Question 1. There are at least Z con-
nected components, since the right-handed and left-handed shift, together with its
iterates (the natural powers), show that every integer can be the index of a Fred-
holm operator. We denote the path connected components of F by [point,F ]. Then
the map index : [point,F ] → Z is well-defined by Theorem 3.11, p.68, (homotopy
invariance of the index) and surjective. In fact, the map is injective also as we
will prove in this chapter. This answers Question 1 completely. In particular, it is
utterly impossible that F or the group of units (B/K)× of the quotient algebra is
contractible, in contrast to B× (Theorem 3.21, p.74). In addition, the individual
connected components of F differ as to homotopy type (Question 2) radically from
B×, which has an extremely simple structure according to the Theorem of Kuiper
(Theorem 3.22, p.77). In fact, we will show that the holes of F , its fissures, can be
arbitrarily complex in some sense, that F is a kind of model for all possible topolog-
ical structures (distinguishable via the functor K; see below). We can sketch this
aspect before starting with formal definitions and theorems, as follows: In algebraic
topology, for instance in the “K-theory” treated in Part 3, one has methods which
assign to certain topological spaces (compact or triangulable spaces, differentiable
manifolds, etc.) certain algebraic objects (groups, rings, algebras, etc.) and to
continuous (differentiable etc.) maps certain homomorphisms between the associ-
ated algebraic objects. In this fashion certain topological-geometric phenomena,
which are very difficult to distinguish in concrete visualization, can be reduced to
algebraic terms (made discrete, F. Waldhausen) for which there is a well-developed
formalism that is easier to comprehend. For example, it is immediate that there is
no epimorphism of the group Z onto the group Z ⊕ Z, while the non-existence of
a retraction of the n-dimensional ball Bn onto its boundary Sn−1 is not immedi-
ately clear (see Theorem 11.21). The construction of the index bundle which will
be treated in this chapter is the basis of a further step from algebraic topology
to functional analysis or to elliptic topology (Atiyah). We will be able to explain
this term only in the following chapters which deal with the connection between
elliptic differential equations and Fredholm operators. In this way, deep geometric
questions in the proof of Bott’s Periodicity Theorem (generalization of the con-
cept winding number) find an algebraic formalism in K-theory. Thereby the Bott
isomorphism K(X × R2) → K(X) is described by means of families of Fredholm
operators, and in this form can be understood more easily and elementarily by a
symmetric use of classical results of functional analysis (see Chapter 11). This is an
example where the interpretation in functional analysis makes the understanding
of geometric or algebraic situations easier or perhaps only possible.

Conversely, the topological and algebraic problems and methods serve analy-
sis: for example, when the index or the index bundle yield algebraic-topological
invariants for Fredholm operators or families of Fredholm operators which turn up
concretely in problems of analysis.



3.7. THE CONSTRUCTION OF INDEX BUNDLES 83

7. The Construction of Index Bundles

We now come to the construction of index bundles. Let T : X → F be a
continuous family of Fredholm operators in a Hilbert space H, where X is a compact
topological space. If X is connected, Theorem 3.11 (p.68) gives

indexTx = indexTx′ , for all x, x′ ∈ X.
In this way, we can assign to each T an integer, which is independent of possible
small continuous perturbations of T . For X connected, we therefore have a map

index : [X,F ] −→ Z,
which is well defined on the homotopy set [X,F ]; see (3.3), p.72. Actually, we can
extract much more information out of T .

Exercise 3.27. Show that for each continuous family T : X → F with constant
kernel dimension, i.e., dim KerTx = dim KerTx′ , for all x, x′ ∈ X, one can assign a
vector bundle KerT over X, in a natural way. Here, a vector bundle E over X is
a continuous locally-trivial family of complex vector spaces Ex of finite dimension,
parameterized by the base space X. For the details of the definition, we refer to
the Appendix.
[Hint: Set KerT := ∪x∈X {x} ×KerTx, and give this the induced topology that it
inherits as a subset of X ×H. Then show, as in the alternative proof (see p.70) of
Theorem 3.11, the property of local triviality; i.e., locally there is a basis of KerTx
which depends continuously on x. See also Exercise B.2c (p. 678) of the Appendix,
where X = S1.]

Exercise 3.28. Under the same assumptions as in Exercise 3.27, show that
there are naturally defined vector bundles KerT ∗ and the quotient bundle CokerT .
Moreover, show that these bundles are isomorphic (see Appendix).

We denote the set of all isomorphism classes of vector bundles over X by
Vect(X). By Exercises 3.27 and 3.28, we have a map ι from the set C (X,F)
of continuous families of Fredholm operators with constant kernel dimension to
Vect(X)× Vect(X):

ι : C (X,F) −→ Vect(X)×Vect(X) given by

ι (T ) := ([KerT ] , [CokerT ]) .

If X consists of a single point, then a vector bundle over X is simply a single vector
space, and Vect(X) can be identified with Z+, since vector spaces are isomorphic
precisely when their dimensions are equal; symbolically, [·] = dim(·). In this case,
we then have the maps

F ι−→ Z+ × Z+
δ−→ Z given by

T
ι7→ ([KerT ], [CokerT ])

δ7→ [KerT ]− [CokerT ],

where δ is the difference mapping and δ ◦ ι = index.
In the more general case where X is not a single point, we can formally write

such a difference [KerT ] − [CokerT ], at least when the family T has constant
kernel dimension. Admittedly, this is meaningless for the moment: While one can
naturally introduce an addition ⊕ in Vect(X) by forming the direct sum pointwise
(see Exercise B.4, p. 679, of the Appendix), this only makes Vect(X) a semigroup.
However, one can go from the abelian semigroup Vect(X) to an abelian group (just
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as from Z+ to Z), which we denote by K(X) and define as follows. An equivalence
relation on the product space Vect(X)×Vect(X) is defined by means of

(E,F ) ∼ (E ⊕G,F ⊕G) for G ∈ Vect(X),

and then

K(X) := (Vect(X)×Vect(X))/ ∼ .
The equivalence class of the pair (E,F ) is then written as E − F ; these we call
difference bundles.

The details of this construction, and its basic importance for algebraic topology,
is explained in Section 11.3. Here we only need to establish that the difference map
δ extends from Z+×Z+ to Vect(X)×Vect(X) in a canonical way so that its values
form an abelian group K(X). (To be careful, X is always compact in this chapter,
but many of the steps carry over easily to more general cases.)
[Warning: In spite of the close analogy between the construction of K(X) and Z,
notice that (for X 6= point) the natural map

Vect(X) −→ K(X), given by E 7→ E − 0

need not be injective. In Chapter 11, we will get to know vector bundles E and F
over the two-dimensional sphere S which are not isomorphic, but when the same
vector bundle G is added to each of them, the results are isomorphic. (Visually, one
may note that the tangent bundle of S2 and the real two-dimensional trivial bundle
over S2 are not isomorphic, but the addition of a trivial one-dimensional bundle to
each yields isomorphic bundles; see the Appendix, Exercise B.11a, p. 683).]

With the help of the maps ι and δ just introduced, we can now deduce from
Exercise 3.27 and Exercise 3.28:

Exercise 3.29. To each continuous family T : X → F of Fredholm operators,
with constant kernel dimension, there can be assigned a difference bundle (index
bundle) indexT := [KerT ] − [CokerT ] ∈ K(X). Moreover, for a point space X
(T is then a single Fredholm operator and K(X) ∼= Z), the concepts of index and
index bundle coincide.
[Hint: Set index := δ ◦ ι.]

Now we will show that the unrealistic condition that the kernel dimension
be constant can be dropped, and the index bundle is invariant under continuous
deformation just as the index (Theorem 3.11, p.68).

Theorem 3.30. Let X be compact. For each continuous family T : X → F of
Fredholm operators in a Hilbert space H, there is an index bundle

indexT ∈ K(X)

assigned in a canonical way.

Proof. As in the alternative proof (see p.70) of Theorem 3.11, we first choose
an orthonormal system e0, e1, ... for H and consider the Fredholm operator PnTx
(which has the same index as Tx), where Pn is again the projection of H onto the
closed subspace Hn spanned by en, en+1, . . . . Since X is compact, we can choose n
such that

Im(PnTx) = Hn for all x ∈ X, and then

dim KerPnTx = dim KerPnTx′ for all x, x′ ∈ X.
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Indeed, for each y ∈ X, there is a natural number ny and a neighborhood Uy so
that for all x ∈ Uy, Tx will be sufficiently close to Ty to ensure (by means of the
alternative proof, p.70) that dim KerPnTx = dim KerPnTy for all n ≥ ny. Then
we pass to a finite subcover {Uy : y ∈ Y }, where Y is a finite subset of X, and set
n := max(ny : y ∈ Y ). Relative to the family PnT , we can therefore (as in Exercise
3.29) set

indexT := indexPnT = [KerPnT ]− [CokerPnT ]

= [KerPnT ]− [X × (Hn)
⊥

].

Thus, we have assigned an index bundle in K(X) to T . Indeed, we have expressed
the index bundle in normal form, in the sense that the bundle subtracted is trivial.

We must show that the definition is independent of the sufficiently large natural
number n. Without loss of generality, replace n by n+ 1. Then, by construction,

[CokerPn+1T ] = [X × (Hn+1)⊥] = [CokerPnT ]⊕ [X × Cen].

To calculate [KerPn+1T ], we note that for all x ∈ X,

PnTx|(KerPnTx)⊥ : (KerPnTx)⊥ −→ Hn

is bijective. Hence, by the closure of Hn and the open mapping principle, there is
a bounded inverse operator

T̃x : Hn −→ (KerPnTx)⊥ ⊆ H.

We set

vx := T̃x(en) ∈ (KerPnTx)⊥, so that

PnTxvx = en for all x ∈ X.

Then for all x ∈ X, we have

KerPn+1Tx = KerPnTx ⊕ Cvx and

[KerPn+1Tx] = [KerPnT ]⊕ [{(x, zvx) : x ∈ X, z ∈ C}] .

As with T , the family T̃ is also continuous (prove!). Thus, T̃ yields an isomorphism
of bundles

X × Cen −→ {(x, zvx) : x ∈ X, z ∈ C} ,
(i.e., x 7→ vx is a continuous, nowhere zero section over X in X × H). Thus, the
index bundles index(Pn+1T ) and index(PnT ) are equal in K(X).

Finally, we must show the independence of the choice of orthonormal ba-
sis. For this problem we use the independence of n just shown. Let ẽ0, ẽ1, . . .

be another complete orthonormal system for H, and let P̃m : H → H̃m denote

the orthogonal projection onto the closed subspace H̃m spanned by ẽm, ẽm+1, . . ..

There is m̃0 ∈ N such that for all m ≥ m̃0, we have Im
(
P̃mTx

)
= H̃m. As Hn

and H̃m both have finite codimension, so does Hn ∩ H̃m. Since KerPnT is the
same if we replace en, en+1, . . . by another orthonormal system for Hn, we may

assume that en, en+1, . . . is adapted to Hn ∩ H̃m in the sense that for some k, we

have that en+k, en+k+1, . . . is a complete orthonormal system for Hn ∩ H̃m. Sim-

ilarly, we may assume that ẽm, ẽm+1, . . . is chosen so that
(
ẽm+k̃, ẽm+k̃+1, . . .

)
=

(en+k, en+k+1, . . .) for some k̃. Then (en+k, en+k+1, . . .) is a common tail of both
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sequences en, en+1, . . . and ẽm, ẽm+1, . . . . The orthogonal projection onto the span

of this common tail (i.e., onto Hn ∩ H̃m) is Pn+k = P̃m+k̃. Thus, by the above

indexPnT = indexPn+kT = index P̃m+k̃T = index P̃mT. �

Remark 3.31. For simplicity, we have assumed that the continuous family
T : X → F of Fredholm operators is such that T is defined on the same Hilbert
space for all x ∈ X. In applications, we actually often have a different situation.
For example, in analysis the arising Hilbert spaces are function spaces with values
in a vector space Vx which can vary with the parameter x ∈ X. Then Tx is a
Fredholm operator on the Hilbert space H ⊗ Vx; i.e., the Hilbert space on which
the continuous family of Fredholm operators operates is not constant. We will
encounter such examples mainly in Chapter 10, but also in Part 3, when we interpret
homomorphisms of K-theory, in particular products of algebraic topology, with
tools of analysis. What can be done in such cases? In general, using the Theorem
of Kuiper, one can show that every Hilbert space bundle is trivial (i.e., isomorphic
to a product bundle X ×H, where H is a single Hilbert space). This follows from
[Ste, p.54f] and the contractibility of the X structure group B×, and more simply
from [A,B×] = 1 for all compact A (Theorem 3.22, p.77) following [Ste, p.148f]
(e.g., in the case that X is a compact, triangulable manifold). For the construction
of index bundles, it suffices to have only a local product structure which is already
part of the definition of a Hilbert bundle and this always holds (by the naturality
of definitions) in our applications.

Remark 3.32. In the proof of Theorem 3.30, we have strongly used the fact
that H is a Hilbert space. We treated the general case with variable KerTx by
reducing it, through composition with an orthogonal projection, to the simple spe-
cial case of constant kernel dimension. Instead, we can study the family T on the
quotient spaces H/KerTx which produces the constant kernel dimension 0, or we
can make the operators Tx surjective by extending their domain of definition (to
H ⊕Ker(T ∗x ) say) which produces constant cokernel dimension 0. Details for these
two alternatives, which are already indicated in the usual proofs of the homotopy
invariance of the index (e.g., see [Jö, 1970/1982, 5.4] and our comments after The-
orem 3.11), can be found for the first alternative in [Ati67a, p.155-158] and for the
second alternative, for instance if H is a Fréchet space and T is an elliptic operator
(see below) in [AS71a, p.122-127].

[Warning: In connection with Wiener-Hopf operators, we will later meet fami-
lies of Fredholm operators T : X → F for which it is quite possible that indexT = 0
for all x ∈ X, while the global index bundle indexT ∈ K(X) does not vanish. The
index bundle is simply a much sharper invariant than just an integer. Thus one
must be very careful if one wishes to infer properties of the index bundle from those
of the index. The next exercise may be comforting.]

Exercise 3.33. Show that for each continuous Fredholm family T : X → F , we
have indexT ∗ = − indexT , where T ∗ : X → F is the adjoint family (T ∗)x := (Tx)

∗

for x ∈ X.

Theorem 3.34. The construction of the index bundle in Theorem 3.30 depends
only on the homotopy class of the given family of Fredholm operators, and for X
compact yields a homomorphism of semigroups

index : [X,F ] −→ K(X).
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Proof. 1. We show first the homotopy-invariance of the index bundle. Let
T : X×I → F be a homotopy between the families of Fredholm operators T0 := Ti0
and T1 := Ti1 parametrized by X, where

it : X −→ X × {t} ↪→ X × I, t ∈ I
are the mutually homotopic natural inclusions. The functoriality of index bundles
(Exercise 3.37) then yields

indexT0 = i∗0(indexT ) = i∗1(indexT ) = indexT1,

where the middle equality follows from the homotopy invariance of K(X); namely,
f∗ = g∗ for f ∼ g : Y → X (Theorem B.5, p. 680, Appendix).

2. For the homomorphism property of the index, we point out first that for
two Fredholm families S, T : X → F , we have a well defined product family TS :
X → F given by composition in F (i.e., (TS)x := TxSx), and that [X,F ] is then
a semigroup. On the other hand, K(X) has an addition defined via the direct sum
of vector bundles which makes it a group (Section 11.3). The index is a semigroup
homomorphism now, since

indexTS = indexTS + index Id = index(TS ⊕ Id)

= index(S ⊕ T ) = indexS + indexT.

In the second and fourth equalities, we have used the fact that (by the construction
in Theorem 3.30) the index bundle, for a family of Fredholm operators on a product
space H ×H which can be written in the form

S ⊕ T :=

[
S 0
0 T

]
,

coincides with the direct sum of the index bundles of the two diagonal elements.
Moreover, for the third equality, we have applied the usual trick of homotopy theory,
where TS⊕Id can be deformed into S⊕T in F(H×H). This is clear by the definition
of this homotopy in Exercise 3.18 (p. 73). Note that we do not need T, S ∈ B×(H)
since we are deforming in F(H ×H), as opposed to B×(H ×H). �

Remark 3.35. Note that in the proof of homotopy invariance, we did not need
to again investigate the topology of F , but rather everything followed from the
entirely different aspect of homotopy invariance of vector bundles. Why did it take
more work to prove the homotopy-invariance of the index of a single operator in
the proof of Theorem 3.11, p.68, while in the proof of Theorem 3.34 we did not use
this result, even though we can deduce it for X = {point}. The solution of this
paradox lies in the fact that the actual generalization of the homotopy invariance
of the index is already contained in the construction of index bundles in Theorem
3.30.

Exercise 3.36. Show that the index bundle of a continuous family of self-
adjoint Fredholm operators, T : X → F with Tx = T ∗x for all x ∈ X is zero; i.e.,
indexT = 0.
[Warning: One cannot deduce this from Exercise 3.33, since it is possible that K(X)
has a finite cyclic (torsion-) factor; e.g., possibly a+ a = 0, but a 6= 0.]
[Hint: Consider the homotopy tT + i(1− t) Id. Show that a self-adjoint operator A
has a real spectrum; i.e.,

A− z Id ∈ B× for z ∈ C− R :
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Step 1. u ∈ Ker(A− z Id) implies zu = Au = A∗u = z̄u, and so u = 0 since z 6= z̄.
Step 2. If v is in the orthogonal complement of Im(A−z Id), then 〈Au− zu, v〉 = 0
and so

〈u,Av〉 = 〈Au, v〉 = 〈zu, v〉 = 〈u, z̄v〉 for all u ∈ H.
Thus, Av = z̄v, and v = 0 by step 1. Hence, Im(A− z Id) is dense in H.
Step 3. Let v ∈ H and let v1, v2, ... ∈ Im(A− z Id) be a sequence converging to v.
Then show that the sequence of unique preimages u1, u2, ... is a Cauchy sequence,
and set u := limui. Then note that Au− zu = v.]

We will now investigate the construction in the Theorem 3.30 more generally,
and show that it has all the properties that one might reasonably expect. We begin
with the following exercise.

Exercise 3.37. Show that our definition of index bundle is functorial: Let
f : Y → X be a continuous map (X and Y compact) and let T : X → F be a
continuous family of Fredholm operators. Then (see Exercise B.1d, p. 676, of the
Appendix), we have index Tf = f∗(indexT ).
[Hint: If e1, e2, ... is an orthonormal basis for H and the projection Pn is chosen so
that dim KerPnTx is independent of x, then dim KerPnTf(y) is also independent
of y ∈ Y . Thus, one does not need to choose another projection Pn to exhibit the
index bundle for the family Tf : Y → F .]

Exercise 3.38. The proof of Theorem 3.34 yields (for X = point) a further
proof of the composition rule indexTS = indexS+indexT for Fredholm operators.
We have already seen three proofs, namely Exercise 1.10 (p.9), Exercise 2.3 (p.14),
and Exercise 3.7 (p.65). Do these three proofs carry over without difficulty to the
case of families of Fredholm operators? Does one need a homotopy argument each
time? What is the real relationship between the four proofs?

Exercise 3.39. Show that the set

F0 := {T ∈ F : indexT = 0}

is pathwise-connected.
[Hint: For T ∈ F0 choose an isomorphism

φ : KerT −→ (ImT )⊥

(vector spaces of the same finite dimension!) and set

Φ :=

{
φ, on KerT,

0, on (KerT )
⊥
.

By construction, we have T + Φ ∈ B× and T + tΦ ∈ F for t ∈ I (Why? What kind
of operator is Φ?). Now apply Theorem 3.21.]

8. The Theorem of Atiyah-Jänich

The sets Fi := {T ∈ F : indexT = i} are bijectively (modulo compact opera-
tors) mapped onto each other in a continuous fashion by shift operators (see Exercise
1.3, p.4). Thus, Exercise 3.39 with the homotopy-invariance of the index already
proved in Theorem 3.11 (p. 68) gives us a bijection from the pathwise-connected
components of F to Z. Naturally, this result still does not say much about the
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topology of F , and we do not want to carry it out in detail. Much more informa-
tive is the following theorem which gives the result,

index : [{point} ,F ] −→ Z bijective,

as the special case X = {point}.

Theorem 3.40 (M. F. Atiyah, K. Jänich 1964). We have an isomorphism

index : [X,F ] −→ K(X).

Proof. We show that the natural sequence of semigroups

[X,B×] −→ [X,F ]
index−→ K(X) −→ 0

is exact. From this result of M. Atiyah and K. Jänich along with the theorem of
N. Kuiper (Theorem 3.22, p.77), the present theorem follows. (For the concept of
exactness, see the material before Theorem 1.9, p. 6).

Step 1. The index bundle of a continuous family T : X → B× is trivially zero.
Step 2. Now let T : X → F be a Fredholm family with vanishing index bundle.

In Exercise 3.39, we have stated what one must do in the case where X = {point};
i.e., T is a single Fredholm operator. Namely, one chooses an isomorphism

φ : KerT −→ (ImT )⊥

and then

Φ :=

{
φ, on KerT,

0, on (KerT )
⊥

is an operator of finite rank with T + tΦ the desired homotopy in F to T + Φ ∈ B.
To generalize this to X 6= {point}, we now must deal with two difficulties:

l.
⋃
x∈X KerTx is not always a vector bundle.

2. In general, there is no canonical choice of
φx : KerTx −→ (ImT )⊥ which depends continuously on x.

The first problem, we can quickly solve: We choose again an orthogonal projection
Pn : H → Hn, such that dim KerPnTx is constant and

indexT = [KerPnTx]− [X × (Hn)
⊥

] ∈ K(X).

Then “index T = 0” means

[KerPnT ] = [X × (Hn)⊥] in K(X),

which in turn means (see Section 11.3) that, for N sufficiently large, there is an
isomorphism of vector bundles

φ : (KerPnT )⊕ (X × CN ) ∼= (X × (Hn)⊥)⊕ (X × CN ).

This means that by augmenting with the trivial bundle X×CN , we can also cure the
second difficulty in principle. Actually we can avoid this K-theoretical argument.
Indeed, we do not need to augment, if we take n to be large enough: As shown in
the proof of Theorem 3.30 (p.84), we have

KerPn+1T ∼= KerPnT ⊕ (X × C).

Thus, for m := n+N , the map φ can be regarded as an isomorphism

KerPmT −→ X × (Hm)⊥.
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In this way, the construction of φ in Exercise 3.39 carries over pointwise, whence
we obtain a homotopy of Fredholm families between

PmT : X −→ F(H) and PmT + Φ : X −→ B×(H).

Since the index of the orthogonal projection Pm : H → Hm vanishes (and hence
coincides with the index of Id), we can connect the constants Pm with Id in F(H)
(Exercise 3.39), and hence also connect PmT with T in a further homotopy of
maps X → F(H). Each Fredholm family with vanishing index bundle is therefore
homotopic to a continuous family of invertible operators, and, in conjunction with
step 1, exactness in the middle of the short sequence is now proved.

Step 3: We must now show the surjectivity of index : [X,F ] → K(X). By
the construction in Exercise B.10 (p. 683) of the Appendix (see also Section 11.3),
every element of K(X) can be written in the form [E] − [X × Ck], where E is
a vector bundle over X and k ∈ Z+. Hence we will be finished with the proof
if, for each vector bundle E, we can find a continuous family S of (surjective)
Fredholm operators on a suitable Hilbert space such that indexS = [E]. Then, the
homomorphism of the index bundle construction (Theorem 3.30) yields

index
(
shift+

)k
S = [E]− [X × Ck],

where shift (as in Exercise 1.3, p. 1.3) is the displacement to the right relative to
an orthonormal basis of the Hilbert space. Note that, since index shift+ = −1, the
constant family x→ shift+ gives the index bundle −[X × C].

Thus, let E be a vector bundle over X. If X consists of a single point, then
we just complete an orthonormal basis of E (regarded as a subspace of an infinite-
dimensional separable Hilbert space) to an orthonormal basis of the whole Hilbert
space and set S := (shift−)dimE . Now, we consider the general case. By Exercise
11.8 (p. 275) of the Appendix, there is a vector bundle F over X and a finite-
dimensional (complex) vector space V such that E ⊕ F ∼= X × V . Let π : V → E
denote the projection.

Let H be an arbitrary Hilbert space. We will see that it is simplest to consider
the desired operators Sx, x ∈ X, to be defined on the space Hom(V,H) of linear
transformations from V to H. We choose for the vector space V (which we can
identify with CN , N = dimV , via a basis) a Hermitian scalar product 〈·, ·〉 :
V × V → C. For every pair (f, u) ∈ V × H, we have an element of Hom(V,H)
defined by

v −→ 〈f, v〉u, v ∈ V,
which we will denote by f⊗u; recall the isomorphism Hom(V,H) = V ′⊗H of linear
algebra, where V ′(∼= V ) is the vector space of linear maps from V to C. Then, we
have

Hom(V,H) =
{∑m

i=1
fi ⊗ ui : m ∈ N, fi ∈ V, ui ∈ H

}
,

where

zf ⊗ u = f ⊗ zu, z ∈ C and

(f + f ′)⊗ (u+ u′) = f ⊗ u+ f ⊗ u′ + f ′ ⊗ u+ f ′ ⊗ u′.

We define a scalar product〈∑m

i=1
fi ⊗ ui,

∑m

j=1
f ′j ⊗ u′j

〉
:=
∑m

i,j=1

〈
fi, f

′
j

〉 〈
ui, u

′
j

〉
,
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which makes Hom(V,H) a Hilbert space (since V is finite-dimensional, nothing
can go wrong; addition and scalar multiplication by complex numbers are defined
naturally). One easily checks that if f1, ..., fN is an orthonormal basis for V and
e0, e1, e2, . . . is an orthonormal basis for H, then

{fj ⊗ ei}j=1,...,N, i=0,1,2,...

is a orthonormal basis for Hom(V,H).
Each bounded linear operator T on H and endomorphism τ of V clearly define

a bounded linear operator τ ⊗ T on Hom(V,H) by means of

(τ ⊗ T ) (f ⊗ u) := τ (f)⊗ T (u) .

For a fixed chosen basis e0, e1, e2, . . . of H, we set

Sx := (πx ⊗ shift−) + (IdV −πx)⊗ IdH .

Then,

Sx (f ⊗ ei) =

{
πx (f)⊗ ei−1 + (f − πx (f))⊗ ei, for i ≥ 1,

(f − πx (f))⊗ e0, for i = 0,

and in particular for f ∈ Ex, we have Sx (f ⊗ e0) = 0. Hence, we have ImSx =
Hom(V,H) and KerSx = {f ⊗ e0 : f ∈ Ex}. Thus, KerSx is isomorphic to Ex in
a natural way, and indexS = [KerS]− 0 = [E]. �

The preceding theorems are significant on various levels: In the following chapters, in

dealing topologically with boundary value problems as well as in proving analytically the

Periodicity Theorem of the topology of linear groups, we will repeatedly use Theorems

3.30 and 3.34, i.e., the construction of the index bundle and its elementary properties,

but we will not use explicitly Theorem 3.40, our actual main theorem. Nevertheless, the

last theorem has fundamental significance for our topic, as it provides the reasons for the

theoretical relevance of the notion index bundle and explains why this concept proved

suitable to express deep relations in analysis as well as topology.

9. Determinant Line Bundles

A primary motivation for the study of determinant line bundles originated from the

desire of quantum physicists to produce a gauge-invariant volume element for the purpose

of computing (via functional integration) Greens functions for Dirac operators coupled

to gauge potentials. An obstruction to doing this is the nontriviality of the so-called

determinant bundle for a certain family of Fredholm operators, namely the family of

Dirac operators parametrized by the quotient space of gauge potentials modulo gauge

transformations. This obstruction signals the presence of so-called anomalies that arise

when physicists attempt to quantize the classical field theory.

While it would be premature to go into the mathematically murky details of
this now, in this section we develop the notion of the determinant line bundle of
a continuous family of Fredholm operators. Moreover, in the case of a family with
index 0, we assist the reading in showing (see Exercise 3.51 and Corollary 3.52) that
it is the pull-back of a universal determinant line bundle that we construct over
F0, the space of Fredholm operators of index 0. The simplest way of describing this
line bundle (often referred to as the Quillen determinant line bundle, which arose
in [Q85]) is to declare the fiber above the point T ∈ F0 to be

ΛdT (kerT )∗ ⊗ ΛdT (kerT ∗), where dT := dim kerT = dim kerT ∗.
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However, the fact that these fibers may be pieced together to form a genuine line
bundle is not trivial since dT varies with T , and dT is an unbounded function of
T ∈ F0. In doing this, we adopt a novel approach due primarily to Graeme Segal
(in [Seg90]). Various ways of describing this universal bundle are summarized in
Theorem 3.53.

The Quillen Determinant Line Bundle. For compact X and a continuous
family T : X → F of Fredholm operators in a fixed Hilbert space H, we have seen
that there is an index bundle

indexT ∈ K(X)

assigned in a canonical way. While the determinant of an operator on a Hilbert
space H exists only in restrictive circumstances, we now show that there is a well-
defined complex line bundle detT → X, known as the determinant line bundle of
T . For any α ∈ K(X), we will first define an isomorphism class detα ∈ K(X)
which is represented by a line bundle. For a continuous family T : X → F , we
then can (and do) simply define detT to be det(indexT ), where indexT ∈ K(X) is
given in the Atiyah–Jänich Theorem 3.40. We know that α = [E]− [F ] ∈ K(X) for
E,F ∈ Vect (X). For a finite-dimensional vector bundle V → X, it is convenient to
use the notation Λmax (V ) = ΛdimV (V ). We claim that

[
Λmax (E)

∗ ⊗ Λmax (F )
]
∈

K(X) only depends on α, in the strong sense that if α = [E] − [F ] = [E′] − [F ′],
then

(3.4) Λmax (E)
∗ ⊗ Λmax (F ) ∼= Λmax (E′)

∗ ⊗ Λmax (F ′)

(not just
[
Λmax (E)

∗ ⊗ Λmax (F )
]

=
[
Λmax (E′)

∗ ⊗ Λmax (F ′)
]

in K (X)). Indeed,
using the fact that Λmax (V ⊕W ) = Λmax (V )⊗ Λmax (W ), we have

[E]− [F ] = [E′]− [F ′] ⇐⇒ E ⊕ F ′ ∼= E′ ⊕ F
=⇒ Λmax (E ⊕ F ′) ∼= Λmax (E′ ⊕ F )

=⇒ Λmax (E)⊗ Λmax (F ′) ∼= Λmax (E′)⊗ Λmax (F ) .

Tensoring both sides with Λmax (E′)
∗⊗Λmax (E)

∗
and noting that for a line bundle

L, L⊗L∗ is isomorphic to the trivial bundle X ×C, we then obtain (3.4). We can
now make the following

Definition 3.41. For X compact and α ∈ K (X), let E and F be vector
bundles over X with α = [E]− [F ]. We define the determinant of α by

detα =
[
Λmax (E)

∗ ⊗ Λmax (F )
]
∈ K (X) .

By (3.4) the bundle Λmax (E)
∗⊗Λmax (F ) is well defined (independent of the choice

of E and F ). By an abuse of notation, we also denote this isomorphism class by
detα. For a continuous family T : X → F ,

detT := det(indexT ).

Note that while detT has been defined, this does not directly imply that

(3.5)
⋃
x∈X

Λmax (Ker (Tx))
∗ ⊗ Λmax (Ker (T ∗x ))

can be given the structure of a (global) vector bundle over X. Usually, doubts
about this are glibly deflected by saying: while Ker (T ) and Ker (T ∗) are not defined
globally in general, dim Ker (Tx) and dim Ker (T ∗x ) jump by the same amount if x
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varies. It is useful (and comforting) to show that for some genuine vector bundles
E and F over X with indexT = [E] − [F ], the fiber Λmax (Ex)

∗ ⊗ Λmax (Fx) of
the manifestly well defined bundle Λmax (E)

∗ ⊗ Λmax (F ) → X is isomorphic to
Λmax (Ker (Tx))

∗ ⊗ Λmax (Ker (T ∗x )) in a natural fashion. Indeed, as in the proof

of Theorem 3.30 (p. 84), let Pn : H → Hn = {e0, . . . , en}⊥ be an orthogonal
projection so that PnTxH = Hn for all x ∈ X. We then have bundles E = KerPnT
and F = Ker (PnT )

∗
= X ×H⊥n , and a natural isomorphism

Λmax (KerPnTx)
∗ ⊗ Λmax

(
H⊥n

) ∼= Λmax (Ker (Tx))
∗ ⊗ Λmax (Ker (T ∗x ))

is supplied by taking G to be Tx in the following

Proposition 3.42. Suppose that G ∈ F and PnG (H) = Hn. Then there is an
isomorphism (depending only on the choice Pn)
(3.6)

ΨG,n : Λmax (KerPnG)
∗ ⊗ Λmax

(
H⊥n

) ∼= Λmax (KerG)
∗ ⊗ Λmax (KerG∗) .

Proof. First note that we have an isomorphism

G̃ := G|Ker(G)⊥ : (KerG)
⊥ −→ G (H) ,

and hence

KerPnG = G−1H⊥n = Ker (G)⊕
(

Ker (G)
⊥ ∩G−1

(
H⊥n

))
= Ker (G)⊕ G̃−1

(
H⊥n ∩G (H)

)
.(3.7)

The orthogonal projectionQn : H → H⊥n is IdH −Pn. We are given that PnG (H) =

Hn. This implies that Qn|G(H)⊥ : G (H)
⊥ → H⊥n is injective, because

v ∈ G (H)
⊥
, Qn (v) = 0⇒ v ∈ Hn ∩G (H)

⊥

=⇒ v = Pn (w) for some w ∈ G (H) , say w = G (u)

=⇒ G (u) = w = Pn (w) +Qn (w) = v +Qn (w)

=⇒ v = G (u)−Qn (w)

=⇒ 〈v, v〉 = 〈v,G (u)−Qn (w)〉 = 〈v,G (u)〉 − 〈v,Qn (w)〉 = 0,

since v ∈ G (H)
⊥

and 〈v,Qn (w)〉 = 〈Pn (w) , Qn (w)〉 = 0. We claim

(3.8) H⊥n =
(
H⊥n ∩G (H)

)
⊕Qn

(
G (H)

⊥
)
.

First note that
(
H⊥n ∩G (H)

)
∩Qn

(
G (H)

⊥
)

= {0}, since

u ∈
(
H⊥n ∩G (H)

)
∩Qn

(
G (H)

⊥
)

=⇒ u = G (w) ∈ H⊥n for some w ∈ H, and u = Qn (v) for v ∈ G (H)
⊥

=⇒ 〈u, u〉 = 〈Qn (v) , G (w)〉 = 〈v − Pn (v) , G (w)〉
= 〈v,G (w)〉 − 〈Pn (v) , G (w)〉 = 0− 〈Pn (v) , G (w)〉 = 0,

since v ∈ G (H)
⊥

and G (w) ∈ H⊥n . The same proof yields the general fact that for
two subspaces V and W of an inner product space, the orthogonal projection of
V ⊥ onto W is orthogonal to V ∩W . To obtain (3.8), it now suffices to show that

dim
(
H⊥n ∩G (H)

)
≥ dimH⊥n − dimQn

(
G (H)

⊥
)
.
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For this, note that

dim
(
H⊥n ∩G (H)

)
≥ dim

(
H⊥n

)
− codim (G (H))

= dim
(
H⊥n

)
− dimG (H)

⊥
= dim

(
H⊥n

)
− dimQn

(
G (H)

⊥
)
,

since we have shown that Qn|G(H)⊥ is injective. This also follows from

indexG = indexG+ indexPn = indexPnG

=⇒ dim KerG− dimG (H)
⊥

= dim KerPnG− dimH⊥n

=⇒ dimG (H)
⊥

= dim
(
H⊥n ∩G (H)

)
− dimH⊥n .

Let

(3.9) G̃n := G̃|G̃−1(H⊥n ∩G(H)) : G̃−1
(
H⊥n ∩G (H)

) ∼= H⊥n ∩G (H) ,

and

qG,n := Qn|G(H)⊥ : G (H)
⊥ ∼= Qn

(
G (H)

⊥
)
.

By (3.8) and (3.7), we have the isomorphisms

Λmax(G̃−1
n )∗ : Λmax(G̃−1

(
H⊥n ∩G (H)

)
)∗ ∼= Λmax

(
H⊥n ∩G (H)

)∗
,

Λmax(q−1
G,n)∗ : Λmax(Qn

(
G (H)

⊥
)

)∗ ∼= Λmax
(
G (H)

⊥
)∗
, and

Λmax
(
H⊥n ∩G (H)

)∗ ⊗ Λmax
((
H⊥n ∩G (H)

)) ∼= C.

Then we obtain (3.6), as follows:

Λmax (KerPnG)
∗ ⊗ Λmax

(
H⊥n

)
= Λmax(Ker (G)⊕ G̃−1

(
H⊥n ∩G (H)

)
)∗

⊗ Λmax
((
H⊥n ∩G (H)

)
⊕Qn

(
G (H)

⊥
))

= Λmax (KerG)
∗ ⊗ Λmax(G̃−1

(
H⊥n ∩G (H)

)
)∗

⊗ Λmax
(
H⊥n ∩G (H)

)
⊗ Λmax

(
Qn

(
G (H)

⊥
))

.

Via Id⊗Λmax(G̃−1
n )∗ ⊗ Id⊗Λmax(q−1

G,n), this last tensor product is

∼= Λmax (KerG)
∗ ⊗ Λmax

(
H⊥n ∩G (H)

)∗
⊗ Λmax

(
H⊥n ∩G (H)

)
⊗ Λmax

(
G (H)

⊥
)

∼= Λmax (KerG)
∗ ⊗ Λmax

(
G (H)

⊥
)
.

In other words, for

α ∈ Λmax (KerG)
∗
, βn ∈ Λmax

(
G̃−1

(
H⊥n ∩G (H)

))∗
bn ∈ Λmax

(
H⊥n ∩G (H)

)
and an ∈ Λmax

(
Qn

(
G (H)

⊥
))

,

we have (α⊗ βn)⊗ (bn ⊗ an) ∈ Λmax (KerPnG)
∗ ⊗ Λmax

(
H⊥n

)
, and we define

ΨG,n ((α⊗ βn)⊗ (bn ⊗ an)) :=
〈

Λmax(G̃−1
n )∗ (βn) , bn

〉
α⊗ Λmax(q−1

G,n) (an) .



3.9. DETERMINANT LINE BUNDLES 95

Note that

Ψ−1
G,n (α⊗ a) = (α⊗ βn)⊗ (bn ⊗ Λmax(qG,n)a) ,

where βn and bn are chosen so that
〈

Λmax(G̃−1
n )∗ (βn) , bn

〉
= 1; i.e., bn is dual to

Λmax(G̃−1
n )∗ (βn), or equivalently, βn is the dual of Λmax(G̃−1

n ) (bn). �

Thus, the set (3.5) can be given the structure of a genuine line bundle, namely
that which is induced by the bijections

Λmax (Ker (Tx))
∗ ⊗ Λmax (Ker (T ∗x ))↔ Λmax (KerPnTx)

∗ ⊗ Λmax
(
H⊥n

)
,

and this line bundle structure is unique up to isomorphism. The set (3.5) then
serves as a standard representative of the isomorphism class detT .

What we have done so far is sufficient for many purposes, but we will go on to
construct a restricted version, the so-called Quillen determinant line bundle
q : Q → F and show that detT → X is isomorphic to the pull-back via T of Q, at
least in the case indexT = 0. The fiber of Q above F ∈ F , is simply

q−1 (F ) = Λdim KerF (KerF )
∗ ⊗ Λdim KerF∗ (KerF ∗) ,

which is clearly a complex line. However, as with the set (3.5), it is not immediately
clear that there are suitable local trivalizations for

(3.10) Q :=
⋃
F∈F

q−1 (F )

with continuous transition functions, because KerF (or KerF ∗) is not the fiber of
a vector bundle over F about points where F (or F ∗) is not surjective. It is true
that for any F ∈ F , there is some nF such that PnF (H) = H⊥n for some suitable
neighborhood, say UF , of F in F . Moreover, one can construct a trivialization
for q|UF : q−1 (UF ) → UF . However, unlike the case of a family T : X → F
with X compact where we had fixed n for which PnTx (H) = H⊥n for all x ∈ X,
note now that nF is an unbounded function of F ∈ F (noncompact). At the
very least, this causes difficulties in defining the transition functions and exhibiting
their continuity. Instead of attempting this, we opt for an interesting, instructive
alternative construction, using transition functions that are determinants of the
form det (Id +A) where A is a trace class operator, defined below. This idea is
based on informal notes of Graeme Segal (see [Seg90]), with extensions elaborated
upon by Kenro Furutani in [Fur], to whom we are indebted. One drawback is
that this construction is only for Q|F0

, where F0 := {A ∈ F : indexA = 0}, and
we have yet to find a graceful way to similarly construct Q over the components
of F with nonzero index. This may not be of crucial importance, since the usual
convention is that if indexT 6= 0, then detT = 0 if detT is defined at all (e.g., for
T : Rn → Rm, we have indexT = n − m and detT is undefined if n 6= m). Of
course, we always can identify the connected components of F (distinguished by
the index), e.g., by shift operators after fixing a basis for the underlying Hilbert
space H. The bundle Q then constructed via pull-back would, however, depend on
the choice of the identifications. Another potential difficulty in the Segal approach
is that one needs to know the functional analysis of trace class and Hilbert-Schmidt
operators (which is covered in Section 2.7), and determinants which we consider
next.
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Determinants. For a complex vector space V with d = dimV finite, let
Λk (V ) denote the k-th exterior product of V (k = 0, . . . , d), where Λ0 (V ) = C.
If T ∈ End (V ) (i.e., T : V → V is linear), then T induces ΛkT ∈ End

(
Λk (V )

)
,

determined by

(3.11)
(
ΛkT

)
(v1 ∧ · · · ∧ vk) = Tv1 ∧ · · · ∧ Tvk for k > 0,

and Λ0T = IdC. Since dim Λd (V ) = 1, ΛdT is multiplication by a scalar, and this
scalar is detT . Indeed detT can be defined in this way, and it is straightforward to
show that this agrees with the usual definition in terms of the matrix of T relative
to a basis (e.g., just take k = d and let v1, · · · , vd be a basis in (3.11)). Note that
under the natural isomorphisms

End
(
Λd (V )

) ∼= Λd (V )
∗ ⊗ Λd (V ) ∼= C,

and ΛdT ∈ End
(
Λd (V )

)
corresponds to detT . There are immediate problems with

the notion detT when dimV = ∞, but detT can be defined when V is a Hilbert
space and T is sufficiently close to Id (e.g., T − Id is trace class), as we will show.
We begin with the following proposition whose proof can be shortened somewhat
if one presupposes that A can be put in Jordan canonical form.

Proposition 3.43. If V is a vector space with dimV = d <∞, we have

det (Id +A) =
∑d

k=0
Tr
(
ΛkA

)
.

Proof. We define

εj1...jki1...ik
=

 1, if j1 . . . jk is an even permutation of i1 . . . ik,
−1, if j1 . . . jk is an odd permutation of i1 . . . ik,
0, otherwise,

and εi1...id = ε1...di1...id
.

In what follows, we use the multi-index notation

(i)k := (i1, . . . , ik) and (i)′d−k = (ik+1, . . . , id),

where i1, . . . , id run independently from 1 to d. We also use the abbreviated nota-
tions

∧(i)kv := vi1 ∧ · · · ∧ vik , ∧(i)′n−k
v = vik+1

∧ · · · ∧ vid , and

ε
(j)k
(i)k

= εj1...jki1...ik
and ε(i)d = εi1...id = ε1...di1...id

.
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Assuming that v1, . . . , vd is an orthonormal basis of V , we compute(
Λd (Id +A)

)
(v1 ∧ . . . ∧ vd) = (v1 +Av1) ∧ . . . ∧ (vd +Avd)

=
1

d!

∑
(i)d

ε(i)d
∑d

k=0

(
∧(i)k (Av)

)
∧
(
∧(i)′d−k

v
)

=
1

d!

∑
(i)d

ε(i)d
∑d

k=0

(
1

k!

∑
(j)k

〈
∧(i)k (Av) ,∧(j)kv

〉 (
∧(j)kv

))
∧
(
∧(i)′d−k

v
)

=
1

d!

∑
(i)d

ε(i)d
∑d

k=0

(
1

k!

∑
(j)k

〈
∧(i)k (Av) ,∧(j)kv

〉) (
∧(j)kv

)
∧
(
∧(i)′d−k

v
)

=
1

d!

∑
(i)d

ε(i)d
∑d

k=0

((
1

k!

∑
(j)k

〈
∧(i)k (Av) ,∧(j)kv

〉)
ε
(j)k
(i)k

(
∧(i)dv

))
=

1

d!

∑
(i)d

ε(i)d
∑d

k=0

((
1

k!

∑
(j)k

〈
∧(j)k (Av) ,∧(j)kv

〉) (
∧(i)dv

))
=

1

d!

∑
(i)d

ε(i)d
∑d

k=0
Tr
(
ΛkA

) (
∧(i)dv

)
=

(∑d

k=0
Tr
(
ΛkA

))
(v1 ∧ . . . ∧ vd) . �

If H is a separable (complex) Hilbert space with dimH =∞, and A is a suitable
operator on H, one is tempted to define

(3.12) det (Id +A) =
∑∞

k=0
Tr
(
ΛkA

)
.

This is certainly finite if A has finite rank, but the terms on the right side need not
exist, even if A is compact. If there is a complete orthonormal system {e0, e1, . . .}
with Aei = λiei, λi ∈ C, then it is reasonable to define

det (Id +A) =
∏∞

i=0
(1 + λi) ,

provided the infinite product converges (i.e., the partial products
∏n
i=0 (1 + λi)

converge). It is well known that this is the case if
∑∞
i=0 |λi| <∞; i.e., if A is trace

class. However, we will proceed somewhat differently, in the spirit of Proposition
3.43 and (3.12).

Since H is a fixed separable (complex) Hilbert space with dimH =∞, through-
out this section we use the notation

B = B (H) :=
{
A ∈ End (H) : ‖A‖ = sup‖x‖=1 {‖Ax‖} <∞

}
and

B× = B× (H) :=
{
A ∈ B : A−1 ∈ B

}
,

and recall from Section 2.7 that I1 denotes the Banach space (and ideal in B)

of trace class operators, with norm ‖A‖1 := Tr |A| = Tr
√
A∗A; see (2.46) (p.60)

and Propositions 2.79 and 2.80 (p.62). Let Λk : B (H) → B
(
ΛkH

)
denote the

continuous linear map determined by

Λk (A) (v1 ∧ · · · ∧ vk) = Av1 ∧ · · · ∧Avk.
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Note that Λk (AB) = Λk (A) Λk (B), and Λk (A∗) = Λk (A)
∗

since〈
Λk (A) (v1 ∧ · · · ∧ vk) , w1 ∧ · · · ∧ wk

〉
= 〈Av1 ∧ · · · ∧Avk, w1 ∧ · · · ∧ wk〉

=
1

k!

∑
εi1···ik 〈Av1, wi1〉 · · · 〈Avk, wik〉

=
1

k!

∑
(i)k

εi1···ik 〈v1, A
∗wi1〉 · · · 〈vk, A∗wik〉

=
〈
v1 ∧ · · · ∧ vk,Λk (A∗) (w1 ∧ · · · ∧ wk)

〉
.

Thus, ∣∣Λk (A)
∣∣ =

√
Λk (A)

∗
Λk (A) =

√
Λk (A∗) Λk (A) =

√
Λk (A∗A)

=

√
Λk
(
|A|2

)
=
√

Λk (|A|) Λk (|A|) = Λk (|A|) .

Hence, the singular values of Λk (A) coincide with those of Λk (|A|), namely the
products µi1 · · ·µik , where the µi are the singular values of A. Moreover,∥∥Λk (A)

∥∥
1

= Tr
(
Λk (|A|)

)
=
∑

i1<···<ik
µi1 · · ·µik ≤

1

k!

∑
i1,··· ,ik

µi1 · · ·µik

=
1

k!
Tr (|A|)k =

1

k!
(‖A‖1)

k
,

and for any z ∈ C,∣∣∣∑∞

k=0
Tr
(
Λk (A)

)
zk
∣∣∣ ≤∑∞

k=0

∣∣Tr
(
Λk (A)

)∣∣ |z|k ≤∑∞

k=0
Tr
(∣∣Λk (A)

∣∣) |z|k
=
∑∞

k=0

∥∥Λk (A)
∥∥

1
|z|k ≤

∑∞

k=0

1

k!
(|z| ‖A‖1)

k ≤ e|z|‖A‖1 .

Since
∑∞
k=0 Tr

(
Λk (A)

)
zk exists for any z (in particular z = 1), we may make the

following definition which agrees with the finite-dimensional case.

Definition 3.44. For A ∈ I1, we define

det (Id +A) =
∑∞

k=0
Tr
(
Λk (A)

)
,

which is known as the Fredholm determinant of Id +A.

Proposition 3.45. For A,B ∈ I1,

|det (Id +A)− det (Id +B)| ≤ ‖A−B‖1 exp (‖A‖1 + ‖B‖1) ,

whence det (Id + (·)) : I1 → C is a continuous function.

Proof. Since Tr is linear and Tr
(
Λ0 (A)

)
= Tr

(
Λ0 (B)

)
= Tr (IdC) = 1,

|det (Id +A)− det (Id +B)| ≤
∑∞

k=1

∣∣Tr
(
Λk (A)− Λk (B)

)∣∣ .
Observe that 〈(

Λk (A)− Λk (B)
)

(v1 ∧ · · · ∧ vk) , v1 ∧ · · · ∧ vk
〉

=

k−1∑
p=0

 〈Bv1 ∧ · · · ∧Bvp, v1 ∧ · · · ∧ vp〉 ·
· 〈(A−B) vp+1, vp+1〉 ·
· 〈Avp+2 ∧ · · · ∧Avk, vp+2 ∧ · · · ∧ vk〉

 ,
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since(
Λk (A)− Λk (B)

)
(v1 ∧ · · · ∧ vk)

= Av1 ∧ · · · ∧Avk −Bv1 ∧Av2 · · · ∧Avk
+Bv1 ∧Av2 · · · ∧Avk −Bv1 ∧ · · · ∧Bvk
= (A−B) v1 ∧Av2 ∧ · · · ∧Avk +Bv1 ∧Av2 ∧ · · · ∧Avk
−Bv1 ∧Bv2 ∧Av3 · · · ∧Ak +Bv1 ∧Bv2 ∧Av3 · · · ∧Ak −Bv1 ∧ · · · ∧Bvk
= (A−B) v1 ∧Av2 ∧ · · · ∧Avk +Bv1 ∧ (A−B) v2 ∧Av3 · · · ∧Ak
+Bv1 ∧Bv2 ∧Av3 · · · ∧Ak −Bv1 ∧ · · · ∧Bvk

= · · · =
k−1∑
p=0

Bv1 ∧ · · · ∧Bvp ∧ (A−B) vp+1 ∧Avp+2 ∧ · · · ∧Avk.

Thus, using
∥∥Λk (A)

∥∥
1

= 1
k! (‖A‖1)

k
,∣∣Tr

(
Λk (A)− Λk (B)

)∣∣
≤ |Tr (A−B)|

k−1∑
p=0

p! (k − 1− p)!
(k − 1)!

Tr |Λp (B)|Tr
∣∣Λk−1−p (A)

∣∣
≤ Tr |A−B|

(k − 1)!

k−1∑
p=0

‖B‖p1 ‖A‖
k−1−p
1 ≤

‖A−B‖1
(k − 1)!

k−1∑
p=0

‖B‖p1 ‖A‖
k−1−p
1

≤
‖A−B‖1
(k − 1)!

(‖B‖1 + ‖A‖1)
k−1

, and so

|det (Id +A)− det (Id +B)| ≤
∑∞

k=1

∣∣Tr
(
Λk (A)− Λk (B)

)∣∣
≤ ‖A−B‖1

∑∞

k=1

1

(k − 1)!
(‖B‖1 + ‖A‖1)

k−1

≤ ‖A−B‖1 exp (‖B‖1 + ‖A‖1) . �

Proposition 3.46. For A,B ∈ I1, we have

det ((Id +A) (Id +B)) = det (Id +A) det (Id +B) .

Proof. Note that det ((Id +A) (Id +B)) exists, since (Id +A) (Id +B) = Id +A+
B+AB and A+B+AB ∈ I1 by Exercise 2.78 (p.60) and Proposition 2.79 (p.61).

Let A =
∑NA
i=0 µi (A) 〈·, ei (A)〉 fi (A) and B =

∑NB
i=0 µi (B) 〈·, ei (B)〉 fi (B) denote

the canonical expansions (see (2.43), p.57) of A and B. Let

An :=
∑n

i=0
µi (A) 〈·, ei (A)〉 fi (A) if n < NA

and An = A if n ≥ NA <∞. Define Bn similarly. Let

Vn = span {ei (A) , fi (A) , ei (B) , fi (B) : i ≤ n}

and note that An|Vn , Bn|Vn ∈ End (Vn). Since dimVn <∞, we have

det ((Id +An|Vn) (Id +Bn|Vn)) = det (Id +An|Vn) det (Id +Bn|Vn) .
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As An → A, Bn → B, and AnBn → AB in (I1, ‖·‖1) by Proposition 2.79, we have

det ((Id +A) (Id +B)) = det (Id +A+B +AB)

= det
(

lim
n→∞

(Id +An +Bn +AnBn)
)

= lim
n→∞

det (Id +An +Bn +AnBn) ,

since det (Id + (·)) is continuous on (I1, ‖·‖1) by Proposition 3.45. Since An = 0 on
V ⊥n ,

det (Id +An) =
∑∞

k=0
Tr
(
Λk (An)

)
=
∑∞

k=0
Tr
(
Λk (An|Vn)

)
= det (1 +An|Vn) ,

and similarly for An +Bn +AnBn. Thus,

det (Id +An +Bn +AnBn) = det (Id +An|Vn +Bn|Vn +An|VnBn|Vn)

= det ((Id +An|Vn) (Id +Bn|Vn))

= det (Id +An) det (Id +Bn) , and

det ((Id +A) (Id +B)) = lim
n→∞

det (Id +An +Bn +AnBn)

= lim
n→∞

det (Id +An) det (Id +Bn)

= det (Id +A) det (Id +B) . �

Corollary 3.47. If A ∈ I1, then Id +A is invertible ⇔ det (Id +A) 6= 0.

Proof. Note that

(Id +A) (Id +B) = Id +A+B +AB = Id⇔ B = −A (Id +A)
−1
.

For B := −A (Id +A)
−1
, B ∈ I1 by Proposition 2.79. Then det (Id +A) 6= 0, since

det (Id +A) det (Id +B) = det ((Id +A) (Id +B)) = det Id = 1.

If Id +A is not invertible, then −1 ∈ Spec (A) := {λ ∈ C : λ Id−A /∈ B×}, and
we know that there is a unit eigenvector e with Ae = −e (since Id +A ∈ F0,
we have −1 /∈ Spece(A) and, actually, −1 ∈ Specp(A)). Let P ∈ B denote the
orthogonal projection onto span (e) given by P (x) := 〈x, e〉 e. Note that AP = −P .

The orthogonal projection Q = I − P onto span (e)
⊥

, obeys P + Q = Id, and
AQAP = −AQP = 0. Thus,

(Id +AQ) (Id +AP ) = Id +A (Q+ P ) +AQAP Id = Id +A.

Since Id +AP = Id−P and det (Id−P ) =
∑∞
k=0 Tr Λk (−P ) = 1− 1 = 0,

det (Id +A) = det (Id +AQ) det (Id +AP ) = 0. �

Remark 3.48. So, the zeros of the function A 7→ det(Id +A) arise exactly
where dim KerA > 0. This gives a hint of the intimate relation between index
theory and the geometric study of determinants. It may as well legitimize our
construction of the determinant bundle via the index bundle. For much deeper
relations see, e.g., [Nas, Chapter X] where index theory yields an obstruction to
the existence of a gauge invariant determinant for classical Dirac operators coupled
to a background field (a connection).
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The Segal-Furutani Construction. We now begin the alternative construc-
tion of the restriction q : Q|F0 → F0 based on work of G. Segal [Seg90] with con-
tributions of K. Furutani [Fur]. We refer to [Boh, Appendix] for a short cocycle
definition of the Segal determinant bundle. For a fixed Hilbert space H, recall that
B× denotes the group of invertible elements of the ring B := B (H) and I1 denotes
the ideal of trace class operators.

Proposition 3.49. The space F0 of all Fredholm operators of index 0 on H
equals B× + I1.

Proof. Let T ∈ F0, and let σT : H → KerT denote the orthogonal projection.

Since the index of T is 0, there is an isomorphism L : KerT ∼= (ImT )
⊥

. Then L◦σT
is a finite rank (and hence trace class) operator, and T + L ◦ σT ∈ B×. Indeed,
Ker (T + L ◦ σT ) = {0}, since

0 = (T + L ◦ σT ) (v) = T (v) + (L ◦ σT ) (v) ∈ ImT ⊕ (ImT )
⊥

=⇒ T (v) = 0 and L (σT (v)) = 0 =⇒ v ∈ KerT and v = σT (v) = 0.

Moreover, T + L ◦ σT is surjective, since

(T + L ◦ σT ) (KerT ) = (L ◦ σT ) (KerT ) = (ImT )
⊥

and

(T + L ◦ σT )
(

(KerT )
⊥
)

= T
(

(KerT )
⊥
)

= ImT.

Thus, T +L◦σT ∈ B× and T ∈ B×−L◦σT ⊂ B×+I1. Conversely, any element of
B×+I1 is of the form C+K, where C ∈ B× and K ∈ I1 ⊂ K by Proposition 2.75.
Then C+K ∈ F by Exercise 3.7 (p.65) which makes use of Theorem 3.2 (Atkinson),
p.64. By Exercise 3.10 (p. 65), index (C +K) = indexC = 0, and so C + K ∈
F0. �

For A ∈ I1, let

UA :=
{
T ∈ B : T +A ∈ B×

}
= B× −A ⊂ B× + I1.

In other words, UA consists of all perturbations of invertible operators by −A ∈ I1.
Then {UA : A ∈ I1} is an open cover of F0 = B×+I1 in the topology of the operator
norm. To see that B× + I1 = ∪A∈I1

UA, note that if S ∈ B× + I1, then S = G−A
for some A ∈ I1 and G ∈ B×. Thus, S + A = G ∈ B× and so S ∈ UA. Note that
for T0 ∈ F0, we have T0 +LT0

◦σT0
∈ B× and so T0 ∈ ULT0

◦σT0
. For A,B ∈ I1 and

T ∈ UA ∩ UB , let

(3.13) gAB (T ) := det
(

(T +A)
−1

(T +B)
)
∈ C.

This is defined, since composing both sides of T + B = (T +A) + (B −A) on the

left with (T +A)
−1

yields

(3.14) (T +A)
−1

(T +B) = Id + (T +A)
−1

(B −A) ∈ Id +I1.

Then Definition 3.44 applies. Note that (3.14) also implies that gAB is continuous.
Indeed, UA ∩ UB → I1, given by

T 7→ (T +A)
−1

(B −A) ,

is continuous since T 7→ (T +A)
−1 ∈ B is continuous in the operator norm topology,

and by Proposition 2.79 the composition multiplication B × I1 → I1 is (jointly)
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continuous. Then Proposition 3.45 yields the continuity of

T 7→ gAB (T ) = det
(

Id + (T +A)
−1

(B −A)
)
.

For A,B,C ∈ I1and T ∈ UA ∩ UB ∩ UC , we have the cocycle condition

gAC (T ) = gAB (T ) gBC (T ) .

Indeed, using Proposition 3.46

gAB (T ) gBC (T ) = det
(

(T +A)
−1

(T +B)
)

det
(

(T +B)
−1

(T + C)
)

= det
(

(T +A)
−1

(T +B) (T +B)
−1

(T + C)
)

= det
(

(T +A)
−1

(T + C)
)
.

Let π : S → F0 denote the line bundle defined by {gAB}; i.e., S is the disjoint
union of {UA × C : A ∈ I1}, but with the identifications

(T, zA) ∈ UA × C ∼ (T, zB) ∈ UB × C

⇔ zA = gAB (T ) zB = det
(

(T +A)
−1

(T +B)
)
zB .

In particular, for T ∈ B× + I1, say T − A ∈ B× for A ∈ I1, the fiber π−1 (T ) can
be written as

π−1 (T ) = [T, zA] = {(T, zB) ∈ UB × C : B ∈ I1 and zA = gAB (T ) zB} .

We now show that Q|F0
(with Q defined in (3.10), p.95) can be made into

a genuine line bundle by exhibiting identification of Q|F0 with S. Let T ∈ F0.
As in Proposition 3.49, we have the orthogonal projection σT : H → KerT and
some isomorphism L : KerT ∼= KerT ∗. Let e1, . . . , ed be a basis for KerT , and let
e∗1, . . . , e

∗
d denote the dual basis for (KerT )

∗
. Define

(3.15) φA : UA × C −→ Q|F0
:=

⋃
T∈UA

Λd
(
(KerT )

∗)⊗ Λd (KerT ∗) by

φA (T, zA) := zA det
(

(T + L ◦ σT )
−1

(T +A)
)
·

e∗1 ∧ · · · ∧ e∗d ⊗ L (e1) ∧ · · · ∧ L (ed) , for T ∈ UA, zA ∈ C.

We now show that φA (T, zA) is independent of the choice of basis e1, . . . , ed; later we
show that it is also independent of the choice of L. For a new basis F (e1) , . . . , F (ed)
where F ∈ GL (KerT ), note that we have

(L ◦ F ) (e1) ∧ · · · ∧ (L ◦ F ) (ed) = (detF ) (L (e1) ∧ · · · ∧ L (ed)) .

If F (ej) =
∑
i F

i
j ei, then

δij = F (ei)
∗

(F (ej)) = F (ei)
∗
(∑

k
F kj ek

)
=
∑

k
F (ei)

∗
(ek)F kj .

Since δij =
∑
k

(
F−1

)i
k
F kj , we have

F (ei)
∗

(ek) =
(
F−1

)i
k

=
(∑

j

(
F−1

)i
j
e∗j

)
(ek) , and so

F (ei)
∗

=
∑

j

(
F−1

)i
j
e∗j .

Thus,

F (e1)
∗ ∧ · · · ∧ F (ed)

∗
= det

(
F−1

)
e∗1 ∧ · · · ∧ e∗d.
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Then φT is independent of the choice of basis e1, . . . , ed, since

F (e1)
∗ ∧ · · · ∧ F (ed)

∗ ⊗ (L ◦ F ) (e1) ∧ · · · ∧ (L ◦ F ) (ed)

=
(
det
(
F−1

)
detF

)
e∗1 ∧ · · · ∧ e∗d ⊗ L (e1) ∧ · · · ∧ L (ed)

= e∗1 ∧ · · · ∧ e∗d ⊗ L (e1) ∧ · · · ∧ L (ed) .

We now show that φT is also independent of L. Suppose that L′ : KerT ∼= KerT ∗

is another isomorphism. Then

L′ (e1) ∧ · · · ∧ L′ (ed)
= det

(
L′ ◦ L−1

)
L (e1) ∧ · · · ∧ L (ed) .

Thus,

det
(

(T + L′ ◦ σT )
−1

(T +A)
)
e∗1 ∧ · · · ∧ e∗d ⊗ L′ (e1) ∧ · · · ∧ L′ (ed)

= det
(

(T + L′ ◦ σT )
−1

(T +A)
)

det
(
L′ ◦ L−1

)
·

· e∗1 ∧ · · · ∧ e∗d ⊗ L (e1) ∧ · · · ∧ L (ed) .

Hence, we must show that

det
(

(T + L′ ◦ σT )
−1

(T +A)
)

det
(
L′ ◦ (τT ◦ L)

−1
)

= det
(

(T + L ◦ σT )
−1

(T +A)
)

, or equivalently,

(3.16) det
(
L′ ◦ L−1

)
= det

(
(T + L′ ◦ σT ) ◦ (T + L ◦ σT )

−1
)
.

For this, note that for v ∈ (KerT )
⊥

,

(T + L ◦ σT ) (v) = T (v) = (T + L′ ◦ σT ) (v) ,

and for v ∈ KerT ,

(T + L ◦ σT ) (v) = L (v) , while (T + L′ ◦ σT ) (v) = L′ (v) .

Hence, (3.16) holds, since

(T + L′ ◦ σT ) (T + L ◦ σT )
−1

= Id(KerT )⊥ ⊕
(
L′ ◦ L−1

)
.

For T ∈ UA ∩ UB , we have

φA (T, zA) = φB (T, zB)⇔ zA = gAB (T ) zB , since

zA det
(

(T + L ◦ σT )
−1

(T +A)
)

= gAB (T ) zB det
(

(T + L ◦ σT )
−1

(T +A)
)

= zB det
(

(T + L ◦ σT )
−1

(T +A)
)

det
(

(T +A)
−1

(T +B)
)

= zB det
(

(T + L ◦ σT )
−1

(T +B)
)
.

Thus, we have a well defined bijection

(3.17) Φ : S −→ Q|F0
given by Φ ([T, zA]) := φA (T ) .

So far we have not given Q|F0 a topology. At this point, the easiest way to give
Q|F0

a topology is to assert that Φ is a homeomorphism, since the line bundle S
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has a topology given by the topologies on the UA ×C, after taking the quotient by
the equivalence relation.

We summarize what has been done thus far.

Proposition 3.50. If Q|F0 is given the unique topology so that the bijection
Φ : S → Q|F0 in (3.17) is a homeomorphism, then Q|F0 inherits the structure of
a complex line bundle from S. Explicitly, the local trivializations of Q|F0

are given
by the maps

φA : UA × C −→ Q|UA ,

found in (3.15), and the transition functions are gAB : UA ∩ UB → C, given by

gAB (T ) := det
(

(T +A)
−1

(T +B)
)
.

Exercise 3.51. Use Proposition 3.42, p.93, and the fact that for any T ∈ F ,
there is some nT such that PnT T (H) = H⊥nT for some neighborhood of T in F ,
in order to directly give Q|F0

a possibly different alternate line bundle structure.
Then show that this alternate structure is in fact equivalent to that induced by
Φ : S → Q|F0 .

Corollary 3.52. For a continuous family T = {Tx}x∈X : X → F0, the
determinant bundle detT → X is the pull-back T ∗(Q|F0) of the line bundle Q|F0 →
F0. Here

detT := det(indexT ).

Proof. For x ∈ X, we have

T ∗(Q|F0
)x = (Q|F0

)Tx = Λmax(Ker(Tx))∗ ⊗ Λmax(Ker(T ∗x )) = (detT )x.

Thus, the fibers of T ∗(Q|F0) coincide with those of detT . This does not yet prove
that detT = T ∗(Q|F0

) as line bundles, but this is a consequence of the preceding
Exercise 3.51 if we give Q|F0

its alternate structure. Without giving Exercise 3.51
away, let Pn : H → Hn := {e0, . . . , en}⊥ be an orthogonal projection so that
PnTxH = Hn for all x ∈ X, and note that

detT ∼= detPnT = Λmax(KerPnT )∗ ⊗ Λmax(H⊥n ) = (PnT )∗(Q|F0
). �

BesidesQ|F0 , we now show that there is another way to interpret the line bundle
S. This is also essentially due to Graeme Segal; see [Seg90]. For T ∈ F0 = B×+I1,
let

FT := T + I1 and F×T := FT ∩ B× 6= ∅.
(Note that there appears to be a notational problem in using F0 and FT , but since
T ∈ F0, we never have T = 0.) In particular, FId = Id +I1 is the set of operators
on which the Fredholm determinant (see Definition 3.44) is defined. For S ∈ F×T ,
define a continuous bijection

ΦS : FT −→ FId by ΦS (R) = S−1R, where R ∈ FT .
Note that S−1R ∈ FId, since

R = T +B, S = T +B′ (where B, B′ ∈ I1)

=⇒ S−1R = (T +B′)
−1

(T +B) = Id + (T +B′)
−1

(B −B′) ∈ Id +I1 = FId.

Also, ΦS is clearly 1-1, and we see that ΦS is onto, as follows. For C = I+B′′ ∈ FId,
we have (by Proposition 2.79)

SC = S (I +B′′) = S + SB′′ ∈ F×T + I1 ⊆ B× + I1.
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Since C = S−1SC = ΦS (SC), ΦS is onto. On FId × C, we have an equivalence
relation

(R, z) ∼ (R′, z′)⇔ z detR = z′ detR′.

Alternatively, there is a map

κ0 : FId × C −→ C given by κ0 (R, z) := z detR,

and the (huge) equivalence classes are just the preimages of points in C. We denote
the set of equivalence classes [R, z] by

EId := {[R, z] : (R, z) ∈ FId × C} =
{(
κ0
)−1

(w) : w ∈ C
}

.

Since κ0 (Id, z) = z, there is a bijection

κ : EId −→ C given by κ ([R, z]) = κ0 (R, z) = z detR,

and EId inherits a vector space structure from C via κ. For S ∈ F×T , we have a
map

κ0
T,S := κ0 ◦ (ΦS × Id) : FT × C −→ C, or (for A ∈ I1)

κ0
T,S (T +A, z) = κ0

(
S−1 (T +A) , z

)
= z det

(
S−1 (T +A)

)
,

which defines an equivalence relation on FT × C. Note that for S′ ∈ F×T , we have

κ0
T,S (T +A, z) = z det

(
S−1 (T +A)

)
= z det

(
S−1S′S′−1 (T +A)

)
= det

(
S−1S′

)
z det

(
S′−1 (T +A)

)
= det

(
S−1S′

)
κ0
T,S′ (T +A, z) , and so

(3.18) κ0
T,S = det

(
S−1S′

)
κ0
T,S′ .

Since det
(
S−1S′

)
6= 0, κ0

T,S′ defines the same equivalence relation, say ∼T , on

FT × C. For T ∈ F0 = B× + I1, let

ET := (FT × C) / ∼T= {[R, z] : (R, z) ∈ FT × C} ,
E :=

{
(T, [R, z]) : T ∈ B× + I1 and [R, z] ∈ ET

}
, and let

p : E −→ B× + I1 be given by p (T, [R, z]) = T.

Note that for S ∈ F×T , ΦS : FT −→ FId induces

[ΦS ] : ET −→ EId defined by [ΦS ] ([T +A, z]) = [ΦS (T +A) , z] =
[
S−1 (T +A) , z

]
.

Then [ΦS ] : ET → EId defines a vector space structure on ET which is independent
of the choice of S ∈ F×T . However, the identification κT,S : ET → C, given by

κT,S ([R, z]) := κ ([ΦS ] [R, z]) = κ ([ΦS (R) , z]) = z det
(
S−1R

)
,

depends on S. Using (3.18), we have

κT,S = det
(
S−1S′

)
κT,S′ .

For A ∈ I1, recall that UA := B× − A and that {UA : A ∈ I1} is an open cover of
B× + I1. Although κT,S : ET → C depends on S ∈ F×T , for each T ∈ UA, there is

a natural choice for S ∈ F×T , namely S = T +A. Then we may define

ψA : p−1 (UA) −→ UA × C by (where [R, z] ∈ ET , T ∈ UA)

ψA (T, [R, z]) :=
(
T, κT,(T+A) ([R, z])

)
=
(
T, z det

(
(T +A)

−1
R
))

.(3.19)
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For B ∈ I1, note that from κT,S = det
(
S−1S′

)
κT,S′ and (3.13), we have

κT,(T+A) = det
(

(T +A)
−1

(T +B)
)
κT,(T+B) = gAB (T )κT,(T+B).

Thus, for zA = κT,(T+A) ([R, z]) and zB = κT,(T+B) ([R, z]), we have(
ψA ◦ ψ−1

B

)
(T, zB) = ψAA (T, [R, z]) = (T, zA) , where

zA = κT,(T+A) ([R, z]) = gAB (T )κT,(T+B) ([R, z]) = gAB (T ) zB .

Hence, the transition functions for the bundle p : E → B× + I1 relative to the
trivializations ΨA are the same as those for the bundle π : S → B× + I1, and so
the ΨA induce an isomorphism

Ψ : E ∼= S.
By Proposition 3.50, the bundle S|F0 is isomorphic to the Quillen bundle Q|F0 . In
summary we have

Theorem 3.53. There are three isomorphic complex line bundles over the com-
ponent F0 of Fredholm operators with index zero on a fixed Hilbert space H, namely

π : S −→ F0, q : Q|F0 −→ F0 and p : E −→ F0.

For A ∈ I1, and T ∈ UA = B× −A, the point in q−1 (T ) corresponding to [T, zA] ∈
π−1 (T ) is

(3.20) zA det
(

(T + L ◦ σT )
−1

(T +A)
)
e∗1 ∧ · · · ∧ e∗d ⊗ L (e1) ∧ · · · ∧ L (ed) ,

which is independent of the choice of isomorphism L : KerT ∼= KerT ∗ and the
choice of basis {e1, . . . , ed} of KerT ; here σT is the orthogonal projection of H
onto KerT . The point in p−1 (T ) corresponding to [T, zA] ∈ π−1 (T ) is

(T, [T +A, zA]) ∈ p−1 (T ) ,

since (by (3.19))

ψA (T, [T +A, zA]) =
(
T, κT,(T+A) ([T +A, zA])

)
=
(
T, zA det

(
(T +A)

−1
(T +A)

))
= (T, zA) .

Remark 3.54. Recall that

(3.21) [T +A, zA] =
{

(R, z) : zA = z det
(

(T +A)
−1
R
)

and R ∈ T + I1

}
.

Taking R = T + L ◦ σT ∈ (T + I1) ∩ B× in (3.21), we obtain

(T, [T +A, zA]) =
(
T, [R, zA/ det

(
(T +A)

−1
R
)

]
)

=
(
T, [R, zA det

(
R−1 (T +A)

)
]
)
.

The zA det
(
R−1 (T +A)

)
in this last expression is precisely the factor multiplying

e∗1∧· · ·∧e∗d⊗L (e1)∧· · ·∧L (ed) in (3.20), but neither (3.21) nor (3.20) is determined
by this factor alone.

In the fiber p−1 (T ), there are standard elements

[T, 1] =
{

(R, z) ∈ FT × C : z detS−1R = detS−1T for all S ∈ F×T
}

and

[T, 0] =
{

(R, z) ∈ FT × C : z detS−1R = 0 for all S ∈ F×T
}
.
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Actually [T, 0] is just the zero element in p−1 (T ). For T ∈ F0,

[T, 1] = [T, 0]⇔ detS−1T = 0 for all S ∈ F×T ⇔ S−1T /∈ B× for all S ∈ F×T
⇔ T /∈ F×T (i.e., T is not invertible).

The canonical section σ : F0 → E is defined by σ (T ) = [T, 1]. We have just seen
that σ (T ) 6= 0⇔ T ∈ B×. On UA, we have (see (3.19))

ψA (σ (T )) = ψA ([T, 1]) =
(
T, det

(
(T +A)

−1
T
))

.

In other words, the local representative σA : UA → C of σ is given by

σA (T ) = det
(

(T +A)
−1
T
)

= det
(

Id− (T +A)
−1
A
)

.

Setting zA = det
(

(T +A)
−1
T
)

in (3.20) and noting that

det
(

(T + L ◦ σT )
−1

(T +A)
)

det
(

(T +A)
−1
T
)

= det
(

(T +A)
−1
T
)

(by Proposition 3.46, p.99), we obtain the Quillen version of the canonical section,
namely σq : F0 → Q|F0 given by

σq (T ) = det
(

(T + L ◦ σT )
−1
T
)
e∗1 ∧ · · · ∧ e∗d ⊗ L (e1) ∧ · · · ∧ L (ed) ,

where again L : KerT → KerT ∗ is an arbitrary isomorphism and {e1, . . . , ed} is an
arbitrary basis of KerT .

Exercise 3.55. Show directly that for T ∈ F0,

σq (T ) =

{
0 ∈ Λd (KerT )

∗ ⊗ Λd (KerT ∗) , if T /∈ B×,
1⊗ 1 ∈ C⊗ C, if T ∈ B×.

From this, it would seem that σq is discontinuous. Is this really the case? One may
wish to read the relevant discussion and footnotes in [Nas, p.276].

Remark 3.56. At the end of the next Section, we provide a brief glimpse
of the fascinating relations (discovered in [ScWo00]) between the rich structure
of the determinant line bundle (and the canonical section) to the corresponding
object in physics, namely the zeta-function regularized determinant of Dirac op-
erators. Presently, we will only note the following recent development. On the
infinitedimensional manifold F0, we have the Quillen-Segal determinant line bun-
dle E. This is a rather complicated object, say of degree one. On the space ΩFId

of loops {T : S1 → FId}, i.e., T (θ) = Id +Aθ invertible for θ ∈ S1 with Aθ ∈ I1, we
have U(1)-valued functions, det(T ) (after normalization) which are simpler objects,
say of degree zero. Currently, a very active research field is the investigation of sim-
ilar transgressions between an object of degree k+ 1 on a base and a corresponding
object of degree k on the free loop space of the base.

10. Essential Unitary Equivalence and Spectral Invariants

Our main focus in this book is on the index, which is stable under rather general

deformations of the operator in question. However, in this section we wish to broaden

the perspective somewhat by indicating some of the finer attributes of operators which

are captured by more sensitive quantities constructed from their spectra; i.e., spectral

invariants.
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The power and limitations of the homotopy theoretic technique in analysis,
specifically in the theory of Fredholm operators, are demonstrated in results of
Lawrence Brown, Lewis Coburn, Ronald Douglas, Peter Fillmore, William Helton,
Roger Howe and others. We will review them briefly; for details see the collection
[Fi, 1973].

1. Let B denote the Banach algebra of linear bounded operators on the Hilbert
space H with the closed ideal K of compact operators and the canonical projection
π : B → B/K. For S, T ∈ B, we define (in B/K) essential unitary equivalence or
unitary equivalence mod K, denoted by π(S) ≈ π(T ), by either of the following
equivalent ([Fi, 1973, p.77]) conditions:

(i) There is a unitary operator U ∈ B (i.e., U∗ = U−1 ),
such that S − UTU∗ ∈ K.

(ii) There is a unitary element v in B/K such that π(S) = vπ(T )v∗.

Now let S ∈ F ; i.e., π(S) is an invertible element in B/K (see Theorem 3.2, p. 64).
What is the relationship in F between

• the topological relation S ∼ T (S and T are homotopic; i.e., S and T
can be connected by a continuous path in F , or equivalently: indexS =
indexT ) and

• the numerical-analytic relation π(S) ≈ π(T ); i.e., S and T are modulo K
unitarily equivalent?

Since B and even more U are connected (Theorem 3.21), the homotopy equivalence
follows trivially from the unitary equivalence modulo K. The converse is not imme-
diately clear. Rather, by looking, for example, at the homotopic operators Id and
− Id, it is apparent that Fredholm operators from the same path-connected com-
ponent of F may well differ by “more” than a compact operator. However, Brown,
Douglas and Fillmore showed in 1970: In the group of unitary elements of B/K the
relations “S ∼ T” and “π(S) ≈ π(T )” coincide; i.e., essentially unitary operators
in Hilbert space can be joined by a continuous path in F (i.e., they have the same
index) if and only if they are unitarily equivalent modulo K. In still another way:

By [Fi, 1973, p.71], the classes of unitarily equivalent unitary elements of B/K
form an infinite cyclic group with representatives

π(Id) or π((shift+)n) or π((shift−)n), n ∈ N.
For all essentially-unitary operators T ∈ B (i.e., π(T ) is unitary in B/K), the

essential spectrum Spece(T ) = Specπ(T ) is contained in S1 = {z ∈ C : |z| = 1)},
since ‖π(T )‖ = 1 (see Exercise 3.6, p.65). Since index(T − z Id) = 0 whenever
|z| > 1 , the homotopy invariance of the index implies that the inclusion Spece(T ) ⊆
S1 is proper, only if indexT = 0. Thus each class of unitarily equivalent unitary
elements in B/K is characterized by the index, where for fixed T the index of T−z Id
is a map on C− S1 into Z with value 0 everywhere outside S1 and constant value
n = indexT inside S1 as depicted in Figure 3.3. In geometric language: The index
is a complete unitary invariant for the unitary elements in B/K.

2. For normal operators (T ∈ N ⇔ T ∗T − TT ∗ = 0), however, the essential
spectrum is the complete unitary invariant4, while the index is identically 0 in

4I.D. Berg, Trans. Amer. Math. Soc. 160 (1971), 365-371, shows that every normal operator
can be diagonalized by a compact perturbation, and that S, T ∈ N are unitarily equivalent modulo
K (i.e., there is a unitary operator U with S−UTU∗ ∈ K), if and only if Spece(T ) = Spece(S). For

self-adjoint S, T this result is due to John von Neumann, whose point of departure was a lemma
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index( Id)T z¡ index( Id)T z¡ index( Id)T z¡
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Figure 3.3. Three classes of unitarily equivalent elements in B/K,
distinguished by the height n = 4, 1,−2 of the |z| < 1-towers

the complement of the essential spectrum (see Remark 2.11, p. 17). The class of
operators which is the most natural next object of study after the normal and
Fredholm operators are (working modulo K at any rate) the essentially normal
operators, i.e., the operators T ∈ B for which π(T ) is normal, i.e., TT ∗−T ∗T ∈ K.
This includes in particular the compact perturbations of normal operators (nothing
new since their index vanishes) and the essentially-unitary operators. We have the
following theorem of Brown-Douglas-Fillmore [BDF, 1975]: Two essentially normal
operators S and T are unitarily equivalent modulo K, if and only if they have the
same essential spectrum X and if on every connected component of C \X, we have
index(S − z Id) = index(T − z Id) [Fi, 1973, p.73-122].

The proof of this theorem with its dependence on delicate questions of topolog-
ical algebra and K-theory is by no means trivial. Let us consider the situation once
more: The essential spectrum X of an essentially normal operator T is a compact
subset of C. The expression index(T − z Id) defines a Z-valued function on C−X.
The connected components of C − X with non-vanishing index are (so to speak)
the obstructions to the normality of T .

3. While pathwise connectedness in F yields nothing but a decomposition
into the Z connected components (a classification by index T − z Id at the point
z = 0) we have in 2 above a finer classification by index towers on the connected
components of the complement of the essential spectrum as depicted in Figure 3.4.

We state some concrete consequences which form a transition to the next chap-
ter.

(i) An essentially normal operator T with index (T − z Id) = 0 for all z outside
the essential spectrum of T belongs to N + K, i.e., can be written as a sum of a
normal and a compact operator [Fi, p.118]

(ii) The family N + K is topologically closed (in the operator norm); thus
elements of the complement of N +K in B (even if their index vanishes) cannot be
approximated by a sequence in N + K [Fi, p.119]. Unfortunately, there is not yet
an elementary proof for this remarkable result.

(iii) It is another very interesting fact, that essentially normal operators whose
essential spectrum is described by the image of a simple, closed curve are, modulo K,

by Hermann Weyl (1909) saying that the accumulation points of the spectrum of a self-adjoint
operator remain unchanged under perturbation by a compact operator.
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Figure 3.4. Index towers on the connected components of the
complement of the essential spectrum

unitarily equivalent to Wiener-Hopf operators with the same characteristic curve.
Details are in the next chapter and in [Fi, p.73].

What Is a Spectral Invariant? Let A be a set of operators (possibly un-
bounded) on a Hilbert space, and let spec (A,A∗) := {(Spec (T ) ,Spec (T ∗)) : T ∈ A}.
Roughly speaking, a spectral invariant of A with values in a set C (typically Z,
R or C) is a function Φ : spec (A,A∗)→ C which is preserved (i.e., invariant) under
a given set (often a group) G of transformations g : A → A; i.e., Φ (g (T )) = Φ (T ).
We say that a spectral invariant Φ′ is finer than Φ if Φ′ (S) = Φ′ (T ) ⇒ Φ (S) =
Φ (T ), but not conversely. One might expect that finer invariants are better, but
they may be more difficult to compute, and a courser one may solve the problem
at hand.

The main spectral invariant that we have considered thus far is

index : spec (F ,F∗) −→ Z, given by indexT = dim KerT − dim KerT ∗.

This case brings out the point that spec (T ) and spec (T ∗) should include infor-
mation on the multiplicities of eigenvalues of T and T ∗ (e.g., if KerT 6= {0} or
KerT ∗ 6= {0}, the multiplicity of the eigenvalue 0). For the index, the set G could
be the additive group K of compact operators K with K (T ) := T + K. Exercise
3.10 (p. 65) shows that the index is a spectral invariant of F under translations by
K. More generally, by the homotopy invariance of the index (Theorem 3.11, p.68),
the index is a spectral invariant of F under any set of transformations on F that
map each component of F into itself.

Note that any function Φ : spec (A,A∗)→ C is a spectral invariant under a set
of transformations that leaves specT and specT ∗ invariant. For example, this is
the case if G := B×, acting via conjugation (i.e., g (T ) = gTg−1), since

gTg−1 − λ Id = g (T − λ Id) g−1 (for g ∈ B×)

shows that the resolvent set of gTg−1 is the same as that for T (see Definition
2.59). Of course, we may form a semi-direct product B× � K and let it act on F
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via (g,K) · (T ) = gTg−1 + K. Clearly the index is still a spectral invariant on F
under this larger group. The result of Brown, Douglas and Fillmore in 1 above
that two essentially unitary operators have the same index if and only if they are
unitarily equivalent modulo K, can be interpreted as the statement that there is
no spectral invariant for essentially unitary operators which is finer than the index,
under the subgroup U � K ⊂ B× � K. However, the result in 2 says that this is
very far from the case when we enlarge the class of operators from the essentially
unitary operators to the essentially normal operators.

In addition to the index, many other spectral invariants have arisen, especially
for (unbounded) differential operators such as the Laplace and Dirac operators.
Referring to Theorem 2.40 (p. 37), consider the unbounded operator D0 = −iT
in the Hilbert space L2(S1), where T |C0(S1) denotes differentiation and i =

√
−1.

Recall that T , and hence D0, has dense domain W 1(S1) ⊂ L2(S1). Moreover, D0

is self-adjoint by Corollary 2.56, p. 49, and index D0 = 0. For ek(θ) := 1√
2π
eikθ,

we have D0ek = kek and the standard complete orthonormal system {ek}k∈Z of

L2(S1) consists of normalized eigenvectors of D0 with simple eigenvalues consti-
tuting Spec(D) = Z. The operator D0 is essentially the so-called Dirac operator
for the circle with the trivial spin structure. More generally, standard (first-order)
Dirac operators can be defined on spinor fields that live on oriented Riemannian n-
manifolds M with spin structures, and indeed certain “twisted” operators of Dirac
type do not require spin structures. We will consider them later in some detail. As
with the primordial example D0 on L2(S1), the spectra of operators of Dirac type,
say D, over compact spin manifolds have a discrete real spectrum of eigenvalues
(not necessarily simple) which is unbounded above and below. If the eigenvalues of
D are ordered so that |λ1| ≤ |λ2| ≤ · · · , then there is some constant C (depending
on M) such that (see [Gi95, Lemma 1.12.6, p.113])

|λk| ∼ Ck1/n, where n = dimM .

The Eta Function. The eta function for D is a C-valued function of s ∈ C
defined, for <s sufficiently large, by

ηD(s) :=
∑

λ∈(specD)\{0}
(signλ)mλ |λ|−s ,

where mλ is the multiplicity of the eigenvalue λ. Note that ηD(s) is a measure of
the spectral asymmetry of specD in the sense that if mλ = m−λ, then ηD (s) = 0.
This is the case for D0:

ηD0(s) =
∑

k∈Z\{0}

k

|k|
|k|−s =

∑∞

k=1
(1− 1) |k|−s = 0.

It is known ([Gi95, Lemma 1.13.1, p.114]) that Γ ((s+ 1) /2) ηD(s) extends to a
meromorphic function (possibly 0) defined on C, all of whose poles (if any) are sim-
ple and located at points of the form (n+1−k)/2, k ∈ N = {1, 2, 3, . . .}. Generally,
the reduced eta invariant of D (not to be confused with the eta function of D
or with ηD(0), also called the eta-invariant) is defined by

η̃D := 1
2 (ηD(0) + dim Ker (D)) modZ.

The reduced eta invariant makes a natural appearance as a boundary term for the
Atiyah-Patodi-Singer index formula ([APS73]) for operators of Dirac type, with
certain boundary conditions, on manifolds of even dimension with boundary. In this
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case the D in η̃D is an induced tangential Dirac operator on the odd -dimensional
boundary of the manifold.

Example 3.57. Although ηD0
(s) ≡ 0, consider Da := D0 − a for a ∈ R. If

a ∈ Z, then SpecDa = SpecD0 and ηDa(s) ≡ 0. Thus, assume that a /∈ Z, so that
0 /∈ SpecDa = {k − a : k ∈ Z}. Then

(3.22) ηDa(s) =
∑

k∈Z

k − a
|k − a|

|k − a|−s , for <s > 1.

Note that ηDa(s) is periodic of period 1 in the variable a. Also,

ηD−a(s) =
∑

k∈Z

k + a

|k + a|
|k + a|−s =

∑
k∈Z

−k + a

|−k + a|
|−k + a|−s

=
∑

k∈Z

− (k − a)

|k − a|
|k − a|−s = −ηDa(s),

whence ηDa(s) is odd in a as well. We will find that ηDa(0) is defined, but not by
the above sum in (3.22). Using Γ (x) :=

∫∞
0
tx−1e−t dt, we have∫ ∞

0

t(s−1)/2λe−λ
2t dt = Γ

(
1
2 (s+ 1)

) λ

|λ|
|λ|−s for <s > −1 and λ ∈ R \ {0} .

Indeed, using the change of variable τ = λ2t,∫ ∞
0

t(s−1)/2λe−λ
2t dt = λ

∫ ∞
0

(
λ−2τ

)(s−1)/2
e−τ λ−2dτ

= λ−1

∫ ∞
0

|λ|1−s τ (s−1)/2e−τdτ = λ−1

∫ ∞
0

|λ|1−s τ 1
2 (s+1)−1e−τdτ

= Γ
(

1
2 (s+ 1)

) λ

|λ|
|λ|−s .

Thus, with λ = k − a 6= 0,∫ ∞
0

t(s−1)/2 (k − a) e−(k−a)2t dt = Γ
(

1
2 (s+ 1)

) k − a
|k − a|

|k − a|−s ,

and so for <s > 1,

Γ
(

1
2 (s+ 1)

)
ηDa(s) = Γ

(
1
2 (s+ 1)

)∑
k∈Z

k − a
|k − a|

|k − a|−s

=
∑

k∈Z

∫ ∞
0

t(s−1)/2 (k − a) e−(k−a)2t dt

=

∫ ∞
0

t(s−1)/2
∑

k∈Z
(k − a) e−(k−a)2t dt.

Since the final expression is analytic in s for <s > −1, it is the analytic continuation
of Γ

(
1
2 (s+ 1)

)
ηDa(s) which was originally defined only for <s > 1. We claim that

for t > 0,∑
k∈Z

(k − a) e−(k−a)2t = −2
(π
t

)3/2∑∞

k=1
ke−

π2k2

t sin (2πka) .

This is a consequence of the Poisson Summation Formula∑
k∈Z

f (k) =
√

2π
∑

k∈Z
f̂ (2πk)
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which holds for rapidly decreasing functions f ∈ C∞↓ (R) (and under less stringent

conditions; see [BlCs, p.445]). We apply this to

f (x) = (x− a) e−(x−a)2t, for which f̂ (ξ) =
−iξ

(2t)
3/2

e−ξ
2/4te−iaξ.

Then ∑
k∈Z

(k − a) e−(k−a)2t

=
√

2π
∑

k∈Z
f̂ (2πk) =

√
2π
∑

k∈Z

−i2πk
(2t)

3/2
e−(2πk)2/4te−i2πak

= −i
(

2π

2t

)3/2∑∞

k=1
ke−π

2k2/t
(
e−i2πak − ei2πak

)
= −2

(π
t

)3/2∑∞

k=1
ke−π

2k2/t sin (2πak) .

Hence, for 1 < <s < 2

Γ
(

1
2 (s+ 1)

)
ηDa(s) = Γ

(
1
2 (s+ 1)

)∑
k∈Z

k − a
|k − a|

|k − a|−s

=
∑

k∈Z

∫ ∞
0

t(s−1)/2 (k − a) e−(k−a)2t dt =

∫ ∞
0

t(s−1)/2
∑

k∈Z
(k − a) e−(k−a)2t dt

= −2

∫ ∞
0

t(s−1)/2
(π
t

)3/2∑∞

k=1
ke−π

2k2/t sin (2πak) dt

= −2π
3
2

∑∞

k=1
k

(∫ ∞
0

t
1
2 s−2e−π

2k2/t dt

)
sin (2πak) .

This last expression is analytic for <s < 2. Thus, it is the analytic continuation of
Γ
(

1
2 (s+ 1)

)
ηDa(s) for <s < 2. For s = 0, we get

√
πηDa(0) = −2π

3
2

∑∞

k=1
k

(∫ ∞
0

t−2e−π
2k2/t dt

)
sin (2πak)

= −2π
3
2

∑∞

k=1
k

1

π2k2
sin (2πak)

= − 2√
π

∑∞

k=1

1

k
sin (2πak) .

Since 4
∫ 1/2

0
(2x− 1) sin (2kπx) dx = −2

kπ , we have that − 2
π

∑∞
k=1

1
k sin (2πxk) is the

Fourier sine series of 2x− 1 on
[
0, 1

2

]
. We then have

ηDa(0) = − 2

π

∑∞

k=1

1

k
sin (2πak) = 2a− 1 (for 0 < a ≤ 1

2 ).

Since ηD0
(s) = 0 and ηDa(s) is odd and periodic in a of period 1, ηDa(0) = 2a− 1

for 1
2 < a < 1 and ηD1

(0) = 0. Thus, ηDa(0) is the periodic extension (of period 1)
of

a 7→
{

0, for a = 0 or 1,
2a− 1, for 0 < a < 1.
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Thus ηDa(0) is a discontinuous function with a jump −2 as a crosses each integer.
The reduced eta invariant of Da is then

η̃Da = 1
2 (ηDa(0) + dim Ker (Da)) modZ = 1

2 (2a− 1) modZ
=
(
a− 1

2

)
modZ =

(
a+ 1

2

)
modZ for all a ∈ R.

It is easy to check the relation

(3.23) Da := −i d
dx
− a = eixaD0e

−ixa for all a ∈ R.

For integer a, (3.23) can be read as a special kind of unitary equivalence between the
operators Da and D0 with Ua := eixa unitary operator on L2(S1) and U∗a = U−a.
Note that Ua and U∗a keep the domains of the operators D0 and Da (namely the
first Sobolev space W 1(S1), defined in(2.20) on page 35) invariant. That explains
SpecDa = SpecD0. If a ∈ R \ Z, the transformation Ua is still unitary with
U∗a = U−a, but it does not keep W 1(S1) ⊃ C0(S1) invariant. Hence we obtain a
different spectral situation.

At this place, we shall not re-formulate (3.23) in the language of essential
unitary equivalence. We shall turn back to the example later when we discuss the
symbolic calculus in Part II, Chapter 7, pages 190ff.

The Zeta Function. In contrast to the eta function, the zeta function is
typically defined for certain unbounded operators P , such as Laplacians or squares
of Dirac operators, with discrete spectrum which is positive (or more generally in
an unbounded wedge containing the positive real axis). (However, see [ScWo00]
in which zeta functions for operators of Dirac type are defined.) In the context of
Laplacians for Riemannian manifolds the zeta function made an early appearance
in the seminal paper [MiPl] of S. Minakshisundaram and Å. Pleijel. Let {λk}∞k=1,
denote the eigenvalues of P with positive real part, ordered so that 0 < <λ1 ≤
<λ2 ≤ · · · (repeated according to multiplicity). We define zeta function of P by

ζP (s) :=
∑∞

k=1
λ−sk .

If P is a self-adjoint, elliptic differential operator of order d over a compact n-
manifold, this sum converges to an analytic function for <s > n/d, since |λk| ∼
Ckd/n (see again [Gi95, Lemma 1.12.6, p.113]). It turns out that ζP (s) extends
to a meromorphic function (still called the zeta function of P and still denoted by
ζP (s)) on all of C. Assuming further that P is positive semi-definite, all of the
poles of ζP (s) are simple and they form a subset of {(n− k − 1) /d : k ∈ N}; see
[Gi95, Theorem 1.12.5, p.112].

Example 3.58. For P = D2
0 = −d2/dθ2, we have eigenvalues k2, for k =

0, 1, 2, . . ., each of multiplicity 2. Thus, in this case

ζD2
0

(s) = 2
∑∞

k=1
k−2s = 2ζ (2s) ,

where ζ is the well-known Riemann zeta function. Since ζ (z) is known to be
analytic except for a simple pole at z = 1 with residue 1, we have that ζD2

0
(s) is

analytic except for a simple pole at s = 1/2 = n/d with residue 1.

Closely related to the zeta function is the trace of the heat kernel for P,
namely

Tr
(
e−tP

)
:=
∑∞

k=nP
e−λkt .
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Here the sum is over all of the eigenvalues of P , say

λnP ≤ λnP+1 ≤ · · · ≤ λ1 ≤ λ2 ≤ · · · ,
not just the positive ones λ1 ≤ λ2 ≤ · · · . If π+ is the projection onto the closed
subspace spanned by the eigenspaces of P with positive eigenvalues λ1 ≤ λ2 ≤ · · · ,
then the so-called renormalized heat trace for P is

(3.24) Tr
(
e−tPπ+

)
=
∑∞

k=1
e−λkt = Tr

(
e−tP

)
−
∑0

k=nP
e−λkt.

For τ = λt,∫ ∞
0

ts−1e−λt dt =

∫ ∞
0

(τ/λ)
s−1

e−τ λ−1dτ = λ−s
∫ ∞

0

τs−1e−τ dτ = λ−sΓ (s) .

Thus, for <s > n/d,

ζP (s) =
∑∞

k=1
λ−sk = Γ (s)

−1
∑∞

k=1

∫ ∞
0

ts−1e−λkt dt

= Γ (s)
−1
∫ ∞

0

ts−1
∑∞

k=1
e−λkt dt = Γ (s)

−1
∫ ∞

0

ts−1 Tr
(
e−tPπ+

)
dt.(3.25)

For a suitable function f (t), the function s 7→
∫∞

0
ts−1f (t) dt is the so-called

Mellin transform of f (t). Thus, (3.25) says that ζP (s) is the Mellin transform
of the renormalized heat trace Tr

(
e−tPπ+

)
. The residues of the poles of Γ (s) ζP (s)

are spectral invariants in that they depend only on the spectrum of P . For any
ε > 0,

Γ (s) ζP (s) =

(∫ ε

0

ts−1 Tr
(
e−tPπ+

)
dt+

∫ ∞
ε

ts−1 Tr
(
e−tPπ+

)
dt

)
.

Since the second integral is analytic, the residues of Γ (s) ζP (s) only depend on the
behavior of Tr

(
e−tPπ+

)
for small t > 0. As we will do later, at least for certain

natural geometric operators P , it is possible to develop an asymptotic expansion

(3.26) Tr
(
e−tP

)
∼ 1

tn/d

(
a0 (P ) + a1 (P ) t1/d + · · ·+ aN (P ) tN/d

+ O
(
t(N+1)/d

))
as t→ 0+,

where the ak (P ) are integrals of certain functions on M , which are expressible in
terms of the coefficients of P and their derivatives. Note that∑0

k=nP
e−λkt =

∑∞

m=0

(
1
m!

∑0

k=nP
(−λk)

m

)
tm.

By (3.24), the coefficients of the asymptotic expansion (as t→ 0+) of Tr
(
e−tPπ+

)
will have coefficients ãk (P ) which generally differ from ak (P ) when (k − n) /d ∈
{0, 1, 2, . . .}, namely

ãk (P ) = ak (P )− 1
m!

∑0

k=nP
(−λk)

m
if m = (k − n) /d ∈ {0, 1, 2, . . .} .

Note that for 0 ≤ k ≤ N,∫ 1

0

ts−1t(k−n)/d dt =

∫ 1

0

ts−(n−k)/d−1 dt =
1

s− (n− k) /d
for s > (n−N) /d.

It follows that the residue of Γ (s) ζP (s) at the point s = (n− k) /d is ãk (P ); i.e.,

(3.27) Ress=(n−k)/d (Γ (s) ζP (s)) = ãk (P ) , k ∈ {0, 1, 2, . . .} .
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It is well-known that about s = 0, Γ (s) has the initial Laurent expansion Γ (s) =
s−1 + γ + · · · , where γ = − limn→∞

(
log n−

∑n
k=1

1
k

)
= 0.5772 . . . is Euler’s con-

stant. Thus, ζP (s) is regular at s = 0, and

(3.28) ζP (0) = Ress=0 (Γ (s) ζP (s)) = ãn (P ) .

Note that ãn (P ) is the term in (3.26) which is t-independent. In the case that
P is the square of an operator D of Dirac type on a manifold of even dimension,
ãn (P ) is the index of the restriction, say D+, of D to the space of positive spinor
fields with the space of negative spinor fields as the codomain (see Chapter 18 in
Part IV). Moreover, when P = D2, ãn (P ) = indexD+ is a topological invariant.
Sometimes (but not always!) ãn (P ) is a topological invariant even when P is not
of the form D2, as in the following.

Example 3.59. There is a notion of a Laplace operator ∆ defined on the
space C2 (M,R) of functions on manifold M with a Riemannian metric. In the
case of a smooth, compact surface M embedded in R3 and f ∈ C2 (M,R), one
can define ∆f as the restriction to M of the ordinary Laplacian for R3 of the
extension, say f̄ , of f to a neighborhood of obtained by constantly extending f
along line segments normal to M ; i.e., ∆f :=

(
∆f̄
)
|M . Then P = −∆ has a

discrete spectrum 0 = λ0 < λ1 ≤ λ2 ≤ . . .(see [Gi95, Lemma 1.6.3]). As t → 0+,
we have the asymptotic expansion

1 + Tr
(
e−tPπ+

)
= Tr

(
e−tP

)
= Tr

(
et∆
)

=
∑∞

k=1
e−λkt

∼ 1

4πt

(∫
M

dA+

(
1
3

∫
M

K dA

)
t+

(
1
15

∫
M

K2 dA

)
t2 + · · ·

)
,(3.29)

where K is the Gaussian curvature and dA is the element of area (see the sem-
inal paper [MS] of H. P. McKean, Jr. and I. M. Singer). Note that

∫
M
dA is

simply the area of M , which is then a spectral invariant of ∆; i.e., two surfaces
with the same spectrum for ∆ must have the same area. For an eigenfunction uk
with −∆uk = λkuk, w (p, t) := cos

(√
λkt
)
uk (p) is clearly a solution of the wave

equation wtt = ∆w. Hence, the λk are proportional to the frequencies λk/2π of
possible fundamental harmonic tones emitted from the surface. In this sense, spec-
tral invariants of ∆ are quantities that can be heard, since they are determined
by the set of these tones. In particular, (3.29) implies that the area of M can
be heard. We can also hear the total Gaussian curvature

∫
M
K dA whose signif-

icance is explained as follows. The Gaussian curvature at (0, 0, 0) of the surface
z = 1

2

(
k1x

2 + k2y
2
)

is k1k2, which is negative for a hyperbolic paraboloid (saddle)
and positive for an elliptic paraboloid. At an arbitrary point p of a surface M in
R3, K is defined the same way by means of the best quadratic approximation to
M in a coordinate system centered at p and adapted to M with the z-axis normal
to M at p. The Gauss-Bonnet Theorem asserts that

∫
M
K dA = 2π (2− 2g), where

the so-called genus g is the number of holes of M (e.g., g = 1 for a torus, and
g = 0 for a sphere). Intuitively, the more holes M has, the more negative Gaussian
curvature M has. Thus, a torus and a sphere not only look different, but they also
sound different, even if they have the same area. Incidentally, 2− 2g is the Euler
characteristic

χ(M) = #faces−#edges+ #vertices,
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for a triangulation of M . At any rate, (3.29) tells us that

(3.30)

∫
M

K dA = 2π (2− 2g) = 2πχ(M)

can be heard. Moreover,
∫
M
K2 dA can be heard, as well as all of the higher order

terms in (3.29) which involve derivatives of K. These terms are computable, but
with efforts that soon exceed the rewards, especially in higher dimensions.

Example 3.60. Let 0 = λ0 < λ1 ≤ λ2 ≤ . . . . denote the eigenvalues of −∆ for
a compact Riemannian manifold M as in Example 3.59. Let C∞0 (R) denote the
space of compactly supported, R-valued C∞functions on R. Let W : C∞0 (R)→ R
denote the linear functional defined by

W (f) :=
∑∞

k=0

∫ ∞
−∞

f (t) cos(
√
λkt) dt, for f ∈ C∞↓ (R) .

Even though the sum
∑∞
k=0 cos(

√
λkt) may not converge, one writes

W =
∑∞

k=0
cos(

√
λkt) in the distributional sense,

since W is a distribution (a continuous linear functional on C∞0 (R) with the
topology of uniform convergence of each derivative on each compact subset of
R). The distribution W has the interpretation as the trace of the wave ker-
nel Tr cos

(
t
√
−∆

)
as opposed to the heat kernel. We say that x ∈ R is in the

singular support of W (denoted by sing supp W ) if there is no open interval I
about x and F ∈ C∞ (I), such that W (f) =

∫
I
F (x)f(x)dx for all f ∈ C∞0 (R)

with f |R\I = 0. It is clear that 0 ∈ sing supp W . At least for generic M , it has
been proven (see [DG] for much more) that (sing suppW )\{0} is the closure of the
length spectrum of M which is the set of multiples of lengths of smoothly closed
geodesics (curves whose sufficiently short subarcs are of minimal length between
their fixed endpoints) of M . In other words, at least generically, the closure of the
length spectrum of M is a spectral invariant.

Remark 3.61. From the above examples, one may have the impression that
the spectrum of ∆ for a compact Riemannian manifold contains so much informa-
tion that it might even determine M up to isometry. The first counterexample was
discovered by John Milnor [Mil64] who found that the quotients of R16 by the
lattices E8 × E8 and E16 provide two flat tori which are isospectral (i.e., have
the same spectrum for ∆) but not isometric to each other. Since then a large
variety of counterexamples have been found, including one-parameter families of
non-isometric isospectral deformations. Moreover, non-isometric isospectral sur-
faces were first found in 1992 (see [GWW]), which led to a negative answer to the
query of Mark Kac, “Can one hear the shape of a drum?” (see [Kac66]).

For a survey of this and many other related topics, consult Chapter 9 of the
truly monumental book [Berg] of Marcel Berger. A short list of spectral invariants
derived from first coefficients of the asymptotic expansion of the heat kernel can
be found in [Esp98]. Much longer lists are given in [Gi04, Gi08]. Of special
interest to mathematicians are the monographs and reviews by E. Elizalde [El]
and Dmitri Vassilevich and collaborators [FV, Va] which discuss main spectral
functions appearing in the context of modern physics, in particular quantum field
theory.
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As will become clear from the asymptotic formula for the heat kernel (elab-
orated below in Section 18.4, p. 517ff), in general, information about the whole
spectrum can not be gained from the heat kernel asymptotics alone but requires in-
sight into the derivatives of the heat kernel and other tools. For the zeta-regularized
determinant, this is explained in the following section. For details see also our re-
views [BlBo03, Section 3.2] and [Bo02]. Bauer et al. [BFI] give an interesting
review of related work on homogeneous spaces where new relations for the Hurwitz
zeta-function are obtained and representations and characters of the underlying
symmetry group enter into the calculations.

The Zeta Regularized Determinant. While a self-adjoint, elliptic differ-
ential operator P of order d over a compact n-manifold, with spectrum bounded
below, is far from possessing a Fredholm determinant in the sense of Definition
3.44 (p. 98), there is the so-called zeta regularized determinant of P defined and
motivated as follows. Note that for <s > n/d, we have

ζ ′P (s) =
∑∞

k=1

d
ds

(
λ−sk

)
=
∑∞

k=1

d
dse
−s log λk =

∑∞

k=1
−λ−sk log λk.

If one sets s = 0, then the right side becomes the formal undefined expression
−
∑∞
k=1 log λk which can formally be rewritten as other undefined expressions:

−
∑∞

k=1
log λk = − log

(∏∞

k=1
λk

)
= − log

(
detP |π+H

)
,

where π+H is the projection of H onto the closure H+ of the span of the eigenspaces
of P with positive eigenvalues. Although as it stands, − log

(
detP |H+

)
is a purely

formal meaningless expression, we can define − log
(
detP |H+

)
to be ζ ′P (0) , which

does exist since the meromorphic extension ζP (s) is regular at s = 0. Then the
zeta determinant of P |H+ is defined to be

detζ
(
P |H+

)
:= e−ζ

′
P (0).

This notion of determinant appeared in the 1971 paper [RaSi71] of D. Ray and I.
M. Singer. If 0 is not an eigenvalue of P , then it is natural to define

detζ (P ) := λnP · · ·λ0e
−ζ′P (0),

where we recall that λnP ≤ · · · ≤ λ0 are the non-positive eigenvalues of P . If 0 is
an eigenvalue of P , the consensus seems to be to eliminate it by restricting P to

the (KerP )
⊥

. Of course, it would be nice to have a way of computing ζ ′P (0). By
(3.25),∫ ∞

0

ts−1 Tr
(
e−tPπ+

)
dt = Γ (s) ζP (s) =

(
s−1 + γ + · · ·

)
(ζP (0) + ζ ′P (0) s+ · · · )

= ζP (0) s−1 + (ζ ′P (0) + γζP (0)) + · · · .

By (3.28), we then have the (rather intractable) formula

(3.31) ζ ′P (0) = −γãn (P ) + lim
s→0

(∫ ∞
0

ts−1 Tr
(
e−tPπ+

)
dt− ãn (P ) s−1

)
.

Although ζ ′P (0) is not locally computable, as with an (P ) (or ãn (P ) when P is
semi-definite), it is a sensitive spectral invariant with important applications not
only to quantum physics in relation to anomalies (see [Nas, Chapter X]), but it
has also been used in other contexts, e.g., to show the compactness of the space of
non-isometric compact surfaces with a given spectrum for ∆ (see [OPS]).
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At first sight, Fredholm determinants and determinant line bundles of the pre-
vious section and the zeta-regularized determinants discussed here seem to have
little in common. It is a very remarkable development arising from the work of
researchers such as Jinsung Park, Simon Scott and Krzysztof Wojciechowski (see
e.g., [PaWo02], [Sco02] and [ScWo00]) that there are relations between quotients
of the respective determinants. While we cannot go into the details here, perhaps
the reader can experience the flavor of such relations by simply looking at one of
them, say the following formula which is explained and proved in [Sco02]:

detζ (∆P1)

detζ (∆P2
)

=
detF

(
S (P1)

∗
S (P1)

)
detF

(
S (P2)

∗
S (P2)

) .
Here (for i = 1 or 2), ∆Pi is essentially a Dirac Laplacian (i.e., D∗PiDPi where DPi is
an operator of Dirac type on a manifold with boundary), Pi is a suitable boundary
condition, and S (Pi)

∗
S (Pi) is a boundary Laplacian, involving a generalized scat-

tering operator S (Pi). Moreover, such formulas have interpretations in the context
of determinant line bundles over suitable spaces of boundary conditions.

It was remarked above that usually the finer a spectral invariant is, the more
difficult it is to compute. In order of increasing computational difficulty, we gen-
erally have: the index, the reduced eta invariant, the eta invariant, and the zeta-
determinant which seems to be the most delicate and informative of the four thus
far.



CHAPTER 4

Wiener-Hopf Operators

Synopsis. The Reservoir of Examples of Fredholm Operators. Origin and Funda-

mental Significance of Wiener-Hopf Operators. The Characteristic Curve of a Wiener-Hopf

Operator. Wiener-Hopf Operators and Harmonic Analysis. The Discrete Index Formula.

The Case of Systems. The Continuous Analogue

1. The Reservoir of Examples of Fredholm Operators

We already proved some deep theorems on Fredholm operators, but our supply
of examples is still very small, even trivial, as we only studied the following types
of Fredholm operators:

(1) The identity operator Id.
(2) The shift operator shift+ (with respect to an orthonormal basis); see Ex-

ample 1.3.
(3) The Riesz operators Id +K, where K is an operator with finite rank or,

more generally, a Hilbert-Schmidt integral operator of the form

(Ku)(x) :=

∫
X

G(x, y)u(y) dy

with square integrable weight function G; see Exercise 2.29.
(4) The differentiation operator on the first Sobolev space W 1(S1) and its

parametrix; see Theorem 2.40 and Exercise 2.42.

All the other Fredholm operators which appeared so far were elementary function-
analytic modifications of the above three basic types. For instance, the left-handed
shift is the adjoint of the right-handed shift, i.e., shift− = (shift+)∗. Further, the
(unitary) Fourier transformation (Exercise A.2e) F : L2(R)→ L2(R) can be written
as a direct sum

F = i Id ⊕ (− Id) ⊕ (−i Id) ⊕ Id

by decomposing L2(R) into a direct sum of four closed subspaces H1, H2, H3, H4,
which are the eigenspaces of F for the eigenvalues in. (A proof which explicitly
exhibits the eigenfunctions, the Hermite functions, can be found in [DM, p.97-
101].) Viewed in this fashion, from the standpoint of our abstract operator theory
on Hilbert space, the Fourier transformation is nothing but a trivial modification
of the identity.

We will now enlarge our supply of examples by a class of operators which is
connected to all four of the basic types (the relation to differentiation were disclosed
by Louis Boutet de Monvel in his profound study of local elliptic boundary value
problems in [Bou]): The Wiener-Hopf operators of the form Id +K, defined on the

120
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Hilbert space L2[0,∞], where

Ku(x) :=

∫ ∞
0

k(x− y)u(y) dy, for x ≥ 0 and k ∈ L1(R).

We will give some background information before developing the mathematical
theory of these operators and the analogous discrete operators

S : L2[Z+] −→ L2[Z+], where

(Su)n :=
∑

k≥0
fn−kuk,

whereby the fn are, for example, the Fourier coefficients of a continuous function
f ∈ C0(S1) on the circle S1.

2. Origin and Fundamental Significance of Wiener-Hopf Operators

Norbert Wiener wrote (1954) in his autobiography:

“However, the best of the work which he (Eberhard Hopf) and I under-

took together concerned a differential equation occurring in the study

of the radiation equilibrium of the stars. Inside a star there is a region

where electrons and atomic nuclei coexist with light quanta, the material

of which radiation is made. Outside the star we have radiation alone, or

at least radiation accompanied by a much more diluted form of matter.

The various types of particles which form light and matter exist in a

sort of balance with one another, which changes abruptly when we pass

beyond the surface of the star. It is easy to set up the equations for this

equilibrium, but it is not easy to find a general method for the solution

of these equations.

The equations for radiation equilibrium in the stars belong to a type

now known by Eberhard Hopf’s name and mine. They are closely related

to other equations which arise when two different physical regimes are

joined across a sharp edge or a boundary, as for example in the atomic

bomb, which is essentially the model of a star in which the surface

of the bomb marks the change between an inner regime and an outer

regime; and, accordingly, various important problems concerning the

bomb receive their natural expression in Hopf-Wiener equations. The

question of the bursting size of the bomb turns out to be one of these.

From my point of view, the most striking use of Hopf-Wiener equa-

tions is to be found where the boundary between the two regimes is in

time and not in space. One regime represents the state of the world up to

a given time and the other regime the state after that time. This is the

precisely appropriate tool for certain aspects of the theory of prediction,

in which a knowledge of the past is used to determine the future. There

are however many more general problems of instrumentation which can

be solved by the same technique operating in time. Among these is the

wave-filter problem, which consists in taking a message which has been

corrupted by a simultaneous noise and reconstructing the pure message

to the best of our ability.

Both prediction problems and filtering problems were of importance

in the last war and remain of importance in the new technology which
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has followed it. Prediction problems came up in the control of anti-

aircraft fire, for an anti-aircraft gunner must shoot ahead of his plane

as does a duck shooter. Filter problems were of repeated use in radar

design, and both filter and prediction problems are important in the

modern statistical techniques of meteorology.” (N.W.: I am a Mathe-

matician, Victor Follancz Ltd., London, 1956.)

Here we cannot treat all three main areas of application of Wiener-Hopf oper-
ators mentioned by Norbert Wiener, namely

(i) the analysis of boundary-value problems
(ii) filter problems in information theory, and
(iii) time series analysis in statistics.

We have to concentrate on the aspect (i) (see Chapters 10 and 11, where we intend
to clarify the connection with topological-geometric questions). But it is useful for
this purpose to have an idea of the other applications, since it simplifies the transfer
of the methods in (ii) and (iii) to our area (i).

3. The Characteristic Curve of a Wiener-Hopf Operator

From information sciences we are interested in the stance taken by electrical
engineers: The computation in C and the Fourier analysis of electric oscillations
with the classification of filters (or more generally control circuits) by the geometric
shape of the characteristic curve as depicted in Figure 4.1. Imagine a filter K acting
on an input signal u resulting in an output

Ku(x) =

∫ ∞
−∞

k(x− y)u(y) dy.

Figure 4.1. Scheme of a filter (left) and specifying a transmis-
sion region in the corresponding amplitude ratio curve (right)

Such linear, time independent and (if k(x) = 0 for x < 0) purely past-dependent
filters are good models for many devices of physics and technology. The information
scientist measures such channels of information by processing a pure sine wave
u(x) = eiωx through the filter

Ku(x) =

∫ ∞
−∞

k(x− y)eiωydy = (with z = x− y) = −
∫ −∞
∞

k(z)eiω(x−z)dz

= eiωx
∫ ∞
−∞

k(z)e−iωzdz = eiωxk̂(ω),
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and sketching the characteristic values k̂(ω) as a function of the phase ω or the
frequency 1/ω. Note that here and throughout the rest of this chapter, we define

k̂(ω) :=
∫∞
−∞ k(z)e−iωzdz without the factor 1/

√
2π which would only serve as a

distraction in the current context.
The amplitude ratio |k̂(ω)| is only one measure for the linear distortion indicat-

ing its reinforcement or weakening. From it the transmission region [ω0, ω1] may be

found via the condition |k̂(ω)| ≥ κ. However, a true harmonic analysis is achieved

only if the phase shift, i.e., the argument of the complex number k̂(ω), is taken into
account. The nonlinear distortion is given essentially by the shape of the curve

{k̂(ω) : ω ∈ R}, see Figure 4.2. This characteristic curve, filter characteristic or
periodogram coincides under certain conditions with the essential spectrum of the
operator K; see Theorem 4.11 (p. 129) below.

Figure 4.2. Left: characteristic curve of a filter without feedback.
Right: feedback is possible in a certain region. Note: the linear
distortion of both filters may be the same

For details, in particular for the relationship with the general theory of electric
circuits we refer to [DM, p.170-176] and the literature quoted there.

4. Wiener-Hopf Operators and Harmonic Analysis

We have just pointed out how complex analysis, with its varied geometric-
topological aspects, enters markedly into operator theory through information the-
ory. Roughly, the real reason is that the Fourier transform of a square-integrable
function k which vanishes identically on the left half-line is holomorphic on the
upper half-plane C+ , see Figure 4.3 and [DM, p.161f]. Formulated differently,
the reason is that the situation of singularities in C of certain functions associated
with dynamical systems carries information about the asymptotic behavior of the
oscillating system; see Chapter 10 below and the literature listed there.

The methods of complex analysis thus introduced are based on the idea (founded
in the notion of a holomorphic function expandable in a power series) of quantities
which vary smoothly and continuously and which are ultimately completely deter-
mined through the knowledge of the function value and those of the derivatives at
a single point. In contrast, the statistical theory of time series analysis rests on the
theory of real functions and thus enters into functional analysis an experience of
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C+

k̂

Figure 4.3. Fourier transform of a square-integrable function
which vanishes identically on the left half-line

dealing mathematically (in the framework of harmonic analysis) with curves which
are pieced together from unrelated parts.

With the terminology of the preceding section, we have (roughly) that every
operator on the past of u(x) which is linear and invariant under translation of the
time origin can be represented as a filter

Ku(x) =

∫ ∞
0

k(y)u(x− y) dy

or as the limit of a sequence of such operators. If K is defined in this fashion as a
linear statistical prediction operator, for example, then the method of least squares
yields an optimality criterion of minimizing∫ ∞

−∞
|u (x+ a)− (Ku) (x)|2 dx,

where a is a given prediction period and the function k which defines K is sought.
However, in a statistical theory no statements are made about single occurrence but
only about large numbers of such. Correspondingly, the prediction or extrapolation
based on a single time series u (the determination of k from a single u) does not
make any sense. The optimality criterion itself must be interpreted statistically,
and the goodness of the operator must be measured not by a single sample but
by its average effect. Hence the stochastic processes which appear are classified by
their autocorrelation

φ (a) := lim
T→∞

1

2T

∫ T

−T
u (x− a)u (x) dx, a ∈ R.

When passing from u to the function φ, a certain part of the information content of
the time series u is isolated, while for the rest the specific features of u are ignored.
For a class of time series with known autocorrelation φ, the optimality criterion
can be written as a Wiener-Hopf equation

φ (x+ a)−
∫ ∞

0

φ (x− y) k (y) dy = 0, x ≥ 0,

where φ and a are given and k is sought.
These methods have become standard fare in the statistical time series analysis

through the pioneering works [Kol, 1943] and [Wie49], and can be found in any of the

textbooks on statistics and probability theory, frequently under the title Spectral theory
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of stochastic processes. A survey with an abundance of examples from economics and

technology is provided by [IL, 1967], which includes non-stationary processes also. The

details of these methods are not always interesting from our point of view (computation

of the index of Fredholm operators). Conversely, the computation of the index is as a

rule uninteresting for correlation theory, since the Wiener-Hopf operators which show up

usually have vanishing index, see [IL, 1967, p.75]; but also note [Zy, 1970, p.147f] who

warns about the illusion of an easy computability of the optimal kernel functions and

points out the large computational effort necessary for the determination of the corre-

lation functions... in spite of their uniqueness and explicit solvability in principle. He

suggests adaptive algorithms as an alternative. These are associated with other types of

Fredholm operators, and the uniqueness of the solution is lost. In our context, we want

to retain the probabilistic method which roughly consists in forming averages by means

of Lebesgue integration, and in compressing and selecting information. The relevant in-

formation is then that which (as autocorrelation and the prediction operator itself) yields

statements on the kind of connections and transitions between one curve segment (time

series) and the next (transition probabilities). This is exactly the same strategy that is

practical in algebraic topology which investigates, again roughly how geometric structures

are composed of simpler pieces (see Part III). On this background, the explanation takes

shape of why the Wiener-Hopf operators, which originated in boundary value problems

of analysis and gained significance in probability theory, more recently turned out to be

relevant for the representation of operations in K-theory (see Section 11.5). It is simply

because they are (as all Fredholm operators) a functional analytic tool in the treatment

of seams, transitions, and relations.

5. The Discrete Index Formula. The Case of Systems

In Appendix A, we become familiar with the Hilbert space L2(S1) of mea-
surable, square-integrable functions on the circle, and we cited the fact that the
functions z 7→ zn, n ∈ Z form an orthonormal basis for L2(S1).

Exercise 4.1. Let Hn denote the subspace of L2(S1) spanned by zk with
k ≥ n ∈ N. Show that the functions z0, z1, ..., zn−1 form a basis of the orthogonal
complement (Hn)⊥ of Hn in H0.

Exercise 4.2. Let P denote the orthogonal projection L2(S1) → H0, and let
f be a continuous complex-valued function on the circle; i.e., f ∈ C0(S1).
(a) Show that Tf := PMf |H0 defines a bounded linear operator on the Hilbert
space H0, where Mf denotes multiplication by f .
(b) Verify that for u ∈ H0 and n ∈ Z+

(Tfu)̂ (n) =
∑∞

k=0
f̂(n− k)û(k),

where f̂(m) := 〈f, zm〉 is the m-th Fourier coefficient of f (see Appendix A). Tf is
the (discrete) Wiener-Hopf Operator assigned to f .

Exercise 4.3. Show that f 7→ Tf defines a continuous linear map

T : C0(S1) −→ B(H0),

where the Banach algebra C0(S1) has norm ‖f‖ := sup
{
|f(z)| : z ∈ S1

}
. [Hint:

‖Tf‖ ≤ ‖f‖. Incidentally, is T a Banach algebra homomorphism; i.e., does it
respect the ring structure? See Step 2 in the proof of Theorem 4.4 below.]
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Theorem 4.4 (Discrete Gohberg-Krein Index Formula, 1956). If f ∈ C0(S1)
and f(z) 6= 0 for all z ∈ S1, then
(a) Tf : H0 → H0 is a Fredholm operator,
(b) indexTf = −W (f, 0). For the definition of winding number W (f, 0), see Sec-
tion 11.1.

Proof. We begin with (a).
Step 1: Let B := B(H0) denote the Banach algebra of bounded linear operators on
the Hilbert space H0, and let K ⊆ B denote the closed ideal of compact operators
on H0 with π : B → B/K the canonical projection onto the quotient algebra; see
Chapter 2 also. From Exercise 4.3, it follows that π ◦ T : C0(S1) → B/K is linear
and continuous.
Step 2: Let C∨ denote the subalgebra of C0(S1) consisting of the continuous
functions representable by finite Fourier series. Let f, g ∈ C∨, say

f(z) =
∑n

k=−n
f̂(k)zk, g(z) =

∑m

k=−m
ĝ(k)zk,

for n,m ∈ N. In Appendix A, the Fourier coefficients of fg are already calculated:

f̂g (j) =
∑∞

k=−∞
f̂(j − k)ĝ(k), j ∈ Z,

where the sum is actually taken over only finitely many k. Thus we have (see also
Exercise 4.2b)

TfTg(z
k) = Tfg(z

k) for k ≥ m+ n.

The operators TfTg and Tfg coincide on the subspace Hm+n of H0. Since the
codimension of Hm+n in H0 is finite (= m+ n), this means that TfTg − Tfg is an
operator of finite rank, and hence is compact. While T is not a homomorphism of
Banach algebras (give a counterexample with f := ... and g := ...), by passing to
the quotient algebra B/K, we have

πT (fg) = πT (f)πT (g).

Thus, π ◦ T is a homomorphism, when restricted to the subalgebra C∨.
Step 3: By the Approximation Theorem of Karl Weierstrass (see Chapter A or, for
a direct proof, [DM, p.49]), each continuous function on a compact interval can be
uniformly approximated (i.e., in the sup-norm) by polynomials, and even more so
by rational functions. Thus, C∨ is dense in C0(S1). Since π ◦ T is continuous, the
multiplicative property carries over; i.e., π ◦T : C0(S1)→ B/K is a homomorphism
of Banach algebras.
Step 4: Since πT (1) = 1 (where the 1 on the left is the constant function z 7→ 1 and
the 1 on the right is the class {Id +K : K ∈ K}, it follows that π◦T takes invertible
functions into invertible elements of B/K. Hence, if f(z) 6= 0 for all z ∈ S1, then
π(Tf ) is invertible in B/K, and so Tf is a Fredholm operator by the Theorem of
Atkinson (Theorem 3.2, p. 64).
We now prove (b).
We begin with the simplest case, the function f(z) = zm. Relative to the canonical
orthonormal basis of H0 consisting of the functions zn, n ∈ N, the Wiener-Hopf
operator Tzm assigned to f (Exercise 4.2b) has the form of the one-sided shift
operator (shift+)m for m ≥ 0 and (shift−)|m| for m < 0. By Exercise 1.3, we then
have indexTzm = −m. From the continuity of T (Exercise 4.3) and the continuity
(homotopy invariance or local constancy) of the index (see Theorem 3.11, p. 68), it
follows from (a) that indexTg = −m for any g ∈ C0(S1) with values in C× = C\{0}
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which can be connected to the function zm by a continuous path of functions in
C0(S1) with values in C×. Now, the winding number of the curve S1 → C (defined
by zm) about the point 0 is m. Since curves in C× are homotopic through curves in
C× exactly when they have the same winding number (see Section 11.1), we have
indexTg = −W (g, 0), and the index formula is proved. �

Exercise 4.5. In the construction of the index bundle (Theorem 3.30), we
have seen that for each prescribed orthonormal basis e0, e1, e2, . . . and Fredholm
operator S ∈ F (H0) , there is an n ∈ N such that

PnS : H0 −→ Hn

is surjective, where Pn is the orthogonal projection of H0 onto the closed subspace
Hn spanned by the basis elements en, en+1, en+2, . . .. Now show that (in the case
of Wiener-Hopf operators) to each f ∈ C0(S1) with f(S1) ⊆ C \ {0}, one can ex-
plicitly give an n for which PnTf : H0 → Hn will be surjective.
[Hint: One naturally exploits the fact that we deal not with an arbitrary Hilbert
space, but rather with function spaces, where there is an additional structure: Ap-
proximate the function z 7→ 1/f (z) by a finite Fourier series

g (z) =
∑n

k=−n
ĝ (k) zk

with n chosen large enough so that sup
{
|f (z) g (z)− 1| : z ∈ S1

}
< 1.]

Theorem 4.4 and Exercise 4.5 demand a detailed topological discussion, in
relation to Chapter 1 and in view of Part III. However the families of Wiener-Hopf
operators which we will encounter in the following are not of such elementary type.
So we need some generalizations.

The first generalization is apparent, if we interpret the Wiener-Hopf opera-
tor Tf as a prediction operator for a time series . . . , u−4, u−3, u−2, u−1, u0 of (say
geophysical) measurements, as depicted in Figure 4.4.

Figure 4.4. Interpretation of a Wiener-Hopf operator as a pre-
diction operator

Here, e.g., vn =
∑∞
k=0 fn−ku−k, with u−k = û (k) the given time series, fn−k =

f̂ (n− k) the weighting and vn = (Tfu)̂(n) the predicted time series.
From the standpoint of the statistician, it is now perfectly obvious (even if one

is interested in the weather in Frankfurt exclusively) that the inclusion of additional
series of meteorological measurements (from Iceland or the Azores, say) can result
in more information than the most sophisticated evaluation of a single series of
data (of Frankfurt, for example) could provide. While for a single time series,
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the weights fn−k are numbers, they must be matrices in the statistical analysis of
multiple time series. Hence, if we deal with an N -fold time series, the condition
f(z) 6= 0 which implies the Fredholm property must be replaced by det(f(z)) 6= 0,
where f(z) ∈ GL (N,C).

Exercise 4.6. Let H be a Hilbert space of complex-valued functions (e.g.,
H = L2(S1) or other examples in Appendix A). Show that the well-known notion
of tensor product from multilinear algebra for finite-dimensional vector spaces also
yields a sensible definition H⊗CN . Convince yourself that H⊗CN is again a Hilbert
space and (for the concrete examples) is related to the scalar-valued function space
H, in such a way that one can regard H ⊗CN as being the corresponding function
space with values in CN .
[Hint: Compare the analogous considerations in the proof of Theorem 3.40 with
regard to the Hilbert space Hom(CN , H) isomorphic to H ⊗ CN . How does one
obtain a basis for H ⊗ CN from bases of H and CN? Details of the algebraic
construction are in [UN, 1970, p. 116f], and the peculiarities of infinite-dimensional
spaces (which are indeed no problem, when one factor of the tensor product is finite
dimensional) are found in [Do, 1972, p.31 and 79f].]

Exercise 4.7. For a continuous map f : S1 → GL(N,C), define the Wiener-
Hopf operator

Tf := PMf |H0
⊗ CN : H0 ⊗ CN −→ H0 ⊗ CN ,

where P : H ⊗ CN → H0 ⊗ CN is the projection, and Mf is multiplication by the
matrix function f . Show:
a) Tf is a Fredholm operator,
b) indexTf depends only on the homotopy class of f in the homotopy set

[S1,GL(N,C)].

[Hint: Repeat the arguments from Exercises 4.2a and 4.3, and Theorem 4.4. Be-
cause of (b), we can identify indexTf ∈ Z with the element [f ] in the fundamen-
tal group π1(GL(N,C)) ∼= Z that f represents. Each continuous map of S1 into
GL(N,C) is homotopic to a continuous map of S1 into the space of invertible di-
agonal matrices of rank N . Therefore, set

[f ] := −W (det f, 0),

where det f(z) is the determinant of the matrix f(z). See also under Section 11.2.]

Exercise 4.8. In the next generalization, let X be a compact parameter space.
Assign to each continuous map f : S1 × X → GL(N,C) a Fredholm family Tf :
X → F and also an index bundle indexTf ∈ K(X). Show that indexTf only
depends on the homotopy class of f .
[Hint: Note that f(z, x) is an invertible matrix that depends continuously on the
variables z and x. Apply Exercise 4.7, noting that we obtain Tf(·,x) ∈ F , for each

x ∈ X. Here F is the space of Fredholm operators on the Hilbert space H ⊗ CN .
Show that Tf(·,x) depends continuously on x, and then apply the construction from
Theorem 3.30, p.84.]

Exercise 4.9. For a further generalization let E be a complex vector bundle
over X of fiber dimension N . Figuratively speaking, one allows the vector space
CN to change from point to point. Given a function f(z, x) ∈ Iso (Ex, Ex) which
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depends continuously on z and x and therefore defines a family of automorphisms
of the vector bundle E, construct a family of Fredholm operators (in the variable
Hilbert space H ⊗ E ), and finally an index bundle indexTf ∈ K(X) that again
only depends on the homotopy class of f .
[Hint: See Theorem 3.30, Remark 3.31(p. 86), where we may take the base X to be
sufficiently nice (e.g., triangulable). Question: Do we really need the Theorem of
Kuiper in this Exercise (as in Remark 3.31) or can we proceed directly because of
the particular structure of the problem? See [Ati69, p.115].]

6. The Continuous Analogue

In connection with local elliptic boundary-value problems (Chapter 10) and
topological investigations of the general linear group GL(N,C) (Chapter 11, the
Periodicity Theorem of Raoul Bott), we will return to the preceding construction.
For the moment, we will only consider the continuous analog of Theorem 4.4:

Exercise 4.10. Let L1(R) denote the space of measurable, absolutely inte-
grable functions. Show that each φ ∈ L1(R) defines a bounded linear operator
Kφ : L2(R+)→ L2(R+), via

(Kφu)(x) :=

∫ ∞
0

φ(x− y)u(y) dy, x ∈ R+.

[Hint: Regard L2(R+) as a subspace of L2(R), and then apply the results of Chap-
ter A on the convolution. For detailed estimates, see [Ti, 1937, p.90f].]

Theorem 4.11. Let φ ∈ L1(R) with φ̂(t) + 1 6= 0 for all t ∈ R and let Kφ be
as in Exercise 4.10. Then

Id +Kφ : L2(R) −→ L2(R)

is a Fredholm operator, and we have

index (Id +Kφ) = W (φ̂+ 1, 0),

where W (φ̂+ 1, 0) is the winding number of the oriented curve t 7→ φ̂(t) + 1 (t ∈ R)
about the origin (see Section 11.1).

Remark 4.12. In this index formula, one always must be aware of the depen-
dence of the orientation in the definition of the winding number (for us, W (z, 0) = 1,
for z (t) = ei2πt, t ∈ [0, 1]) and the orientation in the Fourier transformation (for

us, φ̂(x) =
∫∞
−∞ e−ixyφ(y) dy). If one removes the minus sign in the exponent (e.g.,

as does Mark Krein), then one obtains a minus sign in the index formula.

Remark 4.13. More exactly, for any φ ∈ L1(R):

(i) Spece(Kφ) =
{
φ̂(t) : t ∈ R

}
(ii) index(z Id−Kφ) = W (φ̂, z) for z ∈ Spece(Kφ)

(iii) z Id−Kφ is

{
surjective for index z Id−Kφ ≥ 0
injective for index z Id−Kφ ≤ 0.

Proofs for these results discovered by Mark Krein are found in [Jö, 1970/1982,
13.4], for example.

Remark 4.14. If we regard Id +Kφ as a map of L1(R), then under the as-
sumptions of Theorem 4.11, we have that Id +Kφ is an isomorphism [Wie33]. We
then have no index problem.
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Proof. Instead of presenting a complete proof, we will comment on the very
different ways one can prove Theorem 4.11.
Approach 1: Reduce to Theorem 4.4 with the Cayley transformation κ (z) := z−i

z+i ,
which maps the upper half-plane conformally onto the open unit disk, as depicted
in Figure 4.5.

C+

10

i

·(0)

·

·(1)

·( )i

Figure 4.5. The Cayley transform κ : C+ → D2

For v ∈ L2(S1),

(Uv)(x) :=
√

2
v(κ (x))

x+ i
, x ∈ R

defines an isometry from L2(S1) to L2(R), which carries the Hilbert space

H0(S1) :=
{
v ∈ L2(S1) : v̂(n) = 0 for n < 0

}
to the Hilbert space

(4.1) H0(R) :=
{
u ∈ L2(R) : û|(−∞,0) = 0

}
.

Equivalently, H0(R) consists of the square-integrable functions on R which can be
analytically continued to the lower half-plane C−; e.g., see [De, 1967, p.82-84].

Instead of working with the projection P : L2(S1) → H0(S1) (see Exercise
4.2), we utilize the corresponding projection Q : L2(R) → H0(R), where Q =
UPU−1. To each continuous C-valued function f ∈ C0(R) of the form f = c +

φ̂, where c ∈ C and φ ∈ L1(R), we assign a (continuous) Wiener-Hopf operator
Wf := Q (Mf ) |H0(R) : H0(R) → H0(R), where Mf means multiplication by f . (In
contrast to such continuous Wiener-Hopf operators, one often refers to the discrete
Wiener-Hopf operators as Toeplitz operators). We now have defined three different
operators:

- the discrete Wiener-Hopf operator Tg, g ∈ C0(S1),
- the convolution operator Kφ, φ ∈ L1(R), and
- the continuous Wiener-Hopf operator Wf for f = c+ φ.

From the properties of U , it then follows [De, p.91] that

(i) Tg = U−1WfU , if f = g ◦ κ, and

(ii) Ŵf (u) = f̂ ∗ û, for all u ∈ H0(R); i.e.,

Ŵf (u) = cû(x) +
∫∞

0
φ(x− y)û(y) dy, x ∈ R+, c ∈ C and φ ∈ L1 (R) .
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Denoting the Fourier transform by F : L2(R)→ L2(R), we can write (ii) as

(ii
′
) FWf = (c Id +Kφ)F , where f = c+ Fφ.

Fact (i) expresses the unitary equivalence of discrete and continuous Wiener-Hopf
operators, which is trivial by the definition of Wf here. Fact (ii) requires some
caution with the Fourier transformation: In Appendix A, we deal only with the
harmonic analysis of periodic processes or of processes which (in some sense) abate
with increasing or decreasing time. However, in the kinematic and statistical analy-
sis of most natural, physical, technical, economic, etc. processes, the classical ma-
chinery is, in fact, not sufficient, since these processes oscillate about some mean
without being strictly periodic. The formally analogous Fourier analysis requires
functions on R which are identically 0 away from a point but are so strongly infinite
at this one point that the integral over all of R does not vanish. Physicists, such
as Paul Dirac, used this idea in their computations long before Norbert Wiener
rigorously proved the necessary generalizations of harmonic analysis [Wie33], and
which Laurent Schwartz later placed on an even broader foundation with his theory
of distributions. In the sense of distributions the Fourier transformation of the con-
stant function 1 is just the Dirac distribution δ at the point 0. See [Hö63, p.21f]
or [Schw50, II, p.11]. Theorem 4.11 follows immediately from Theorem 4.4 with
(i) and (ii′).

Approach 2: When Allen Devinatz proved the unitary equivalence between
discrete and continuous Wiener-Hopf operators, he showed more than is actually
necessary for the proof of Theorem 4.11. Alternatively, one can reduce Theo-
rem 4.11 to Theorem 4.4 in a pedestrian fashion via approximating f − 1 by func-
tions which are identically zero outside a bounded interval. If g is such a function,
then g + 1 can be considered a continuous periodic function, i.e., an element of
C0(S1). The approximation is done in such a way that g(z) + 1 6= 0 for all z ∈ S1

and then Theorem 4.4 applies to g + 1.
We now proceed as in the passage from Fourier series to Fourier integrals (see

Appendix A) whereby the convergence questions must be considered very carefully.
For an indication of the computations involved, see e.g. [GRS, p.129-132].

Approach 3: One can avoid Theorem 4.4 and basically give a new proof (e.g.
[Kr, 1958, Theorem 9.2], [Jö, 1970/1982 , 13.4], also for systems (i.e., matrix valued
f , [GK58, Theorem 4.1]. These proofs employ the famous factorization method

introduced by Eberhard Hopf and Norbert Wiener in their original paper (Über
eine Klasse singulärer Integralgleichungen. Sitzber. Preuss. Akad. Wiss., Sitzung
der phys.-math. Klasse, Berlin 1931, 696-706). Its idea and essential content are
presented very comprehensibly in [Wie49, p.153-157] (Norman Levinson’s heuris-
tic addendum), [UN, 1970, p.47-48] (Friedrich Sommer’s survey paper on complex
analysis) or [DM, 1972, 176-184]. The last source contains an altogether good in-
troduction to the function theoretic properties of Hardy functions and the elements
of our spaces H0(S1) and H0(R).

Approach 4: One can use projection methods of a more general sort which
encompass the discrete as well as the continuous case. A detailed exposition is found
in [GF, 1974]. Here, as in Approach 3, the stress is on finding explicit solutions
so that statements about the index enter more frequently in the opposite direction,
since “the applicability of one or another projection method to the Wiener-Hopf
integral equation is determined by the index” (l.c., p. 9l). Complete proofs of our
Theorem 4.11, in the manner of these projection methods, are in [Prö74, 2.1.5,
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2.4.1, 3.2]. Here Theorem 4.11 is not only proved for square integrable functions,
but at once for broad varieties of more general function spaces, as do the authors
of Approach 3. �

Finally we return once more to the discrete Wiener-Hopf operators whose to-
tality

{
Tf : f ∈ C0(S1)

}
we will denote by T after adjoining the compact operators

on H0.

Exercise 4.15. Show that the following is an exact sequence of Banach spaces

0 −→ K(H0) −→ T −→ C0(S1) −→ 0,

where K(H0) denotes the space of compact operators on the Hilbert space H0(S1).
How are the arrows defined?
[Hint. One best begins with the fact, established in the proof of Theorem 4.4,
that the commutator ideal

{
TφTψ − Tφψ : φ, ψ ∈ C0

(
S1
)}

is contained in K(H0).
Show then that the quotient algebra T /K(H0) is mapped isometrically via T onto
C0
(
S1
)
, where the maps of the short sequence are defined using algebraic generali-

ties. The proof is not entirely simple. One may consult [Do, 1972, p.184]. Note the
similarity to the exact symbol sequence in the theory of partial differential equa-
tions (see Part II below). Also compare it to the tensorial sequence in the case of
systems [Do, 1972, p.202f].]

With these classes of Wiener-Hopf operators, we have greatly enlarged our
reservoir of examples. One can even show that, up to unitary equivalence modulo
unitary operators (see Section 3.10, p. 107), every essentially normal operator R on
a separable Hilbert space can be written in the form of a Wiener-Hopf operator.
More precisely:

1. If the essential spectrum of R has the form of a simple, closed curve (say
the image of the circle S1 under an orientation-preserving, continuous, embedding
η : S1 → C) and index (R− z Id) = n for z interior to curve, then R is unitarily
equivalent to a compact perturbation of the multiplication operator Mη or the
discrete Wiener-Hopf operator Tη◦κ−n , where κ (z) := z [Fi, 1973, p.73].

2. Even when the essential spectrum cannot be parametrized so nicely, classes
of generalized Wiener-Hopf operators (namely on generalized Hardy spaces, where
the domain of holomorphy need not be the upper half-plane or the open unit disk,
but may be any bounded region of C) exist from which a model of R can be patched
together; see [Fi, 1973, p.122] and the original papers quoted there.



But, we ask, will not the growth of
mathematical knowledge eventually
make it impossible for a single re-
searcher to embrace all parts of this
knowledge? In answer let me point
out how thoroughly, by the very na-
ture of the mathematical sciences,
any true progress brings with it the
discovery of more incisive tools and
simpler methods which at the same
time facilitate the understanding
of earlier theories and eliminate
older more awkward developments.
By acquiring these sharper tools
and simpler methods the individual
researcher succeeds more easily in
orienting himself in the different
branches of mathematics. In no
other science is this possible to the
same degree.

David Hilbert, 1900

Part II

Analysis on Manifolds
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CHAPTER 5

Partial Differential Equations in Euclidean Space,
Revisited

Synopsis. Review of Classical Linear Partial Differential Equations: Constant and

Variable Coefficients, Wave Equation, Heat Equation, Laplace Equation, Characteristic

Polynomium. Elliptic Differential Equations: Where Do Elliptic Differential Operators

Arise? Boundary-Value Conditions. Main Problems of Analysis and the Index Problem.

Calculations. Elementary Examples. The Hellwig-Vekua Problem with Non-Vanishing

Index

Elliptic operators on sections of complex vector bundles over manifolds provide
a primary source of Fredholm operators. In this Part, we explain how this happens.
Before that, we recall a bit of general knowledge about elementary geometric aspects
of partial differential equations in the plane or in n-dimensional Euclidean space.

1. Linear Partial Differential Equations

The theory of partial differential equations serves the characterization of motions and

equilibria with infinitesimal interactions and constitutes the mathematics of all quantities

varying in space and time (Norbert Wiener) which makes up a good part of mathematical

physics and of applied mathematics altogether.

We distinguish ordinary and partial differential equations. In ordinary differential

equations, the unknown is a function or a system of functions which depend on a single

independent variable. In most applications, this variable is time. In partial differential

equations, the one or more unknown functions depend on several variables. In applications,

these variables are usually the coordinates of a point in space, but one of them may

be time. A differential equation expresses relations between measurable quantities and

their changes in space and/or time (rates of change). In geometric language (see Figure

5.1), solving an ordinary differential equation means finding a curve and solving a partial

differential equation means finding a family of curves or a surface or a manifold of higher

dimension, whereby the curvatures of the curves or surfaces must satisfy the conditions

expressed by the differential equation.

In this Chapter, we restrict ourselves here to the treatment of linear differential
equations of the form

Pu = f

where u and f are infinitely differentiable complex-valued function on R and

Pu(x) :=
∑

α
aα(x)(Dαu)(x), x ∈ R.

134
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Figure 5.1. Finding a curve (ode task, left) and finding a family
of curves etc. (pde task, right)

Here, α = (α1, ..., αn) ∈ Z+ ×
n times· · · × Z+ is a multi-index to specify the partial

derivative; e.g.

D(1,0,...,0) :=
1

i

∂

∂x1
, D(2,0,...,0) :=

(
1

i

)2
∂2

∂x2
1

, and

Dα :=

(
1

i

)|a|
∂|α|

∂xα1
1 · · · ∂x

αn
n

, where |α| := α1 + · · ·+ αn.

Remark 5.1. It’s also convenient to carry the factor of i−|α| when integrat-
ing Hermitian inner products by parts. Then integration by parts can be done
symmetrically. For example, when n = 1,∫ b

a

(
d
dxf

)
g = −

∫ b

a

f d
dxg + boundary terms, while∫ b

a

(Df) g =

∫ b

a

f Dg + boundary terms for D = 1
i
d
dx .

In this way we achieve that the differential operators Dα are formally self-adjoint
(see Exercise 6.38, p. 181) and yield better expressions under Fourier transforma-
tion (note that under Fourier transform the operator 1

i is converted into a simple
multiplication operator, see Exercise A.2, p. 672). A drawback of the factor is that
we have to re-define the Dα and the principal symbol (see (6.23), (6.27) below on
p.183ff) for real differential operators of odd order to stay in the real category.
But here we follow the notation of main stream analysis, which seems unaware of
this drawback, possibly out of a former neglect of operators of first order in their
community. Conversely, we emphasize that real differential operators of first order
(typically of Dirac type) are of interest in index theory, see our Section 14.9 and
the literture given there.

The coefficients aα are always taken to be infinitely differentiable; moreover,
aα = 0 for all but finitely many α. P is then called a differential operator of
order max {|α| : aα 6= 0}. We give the space C∞(Rn) of infinitely differentiable
(complex-valued) functions on Rn the topology defined by the following family of
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semi-norms (for k ∈ Z+, K ⊂ Rn compact):

‖f‖k,K :=
∑
|α|≤k

sup {|Dαf (x)| : x ∈ K} .

Accordingly, a sequence f1, f2, ... of C∞ functions converges to the constant function
0, if and only if the functions f and all their derivatives converge to 0 uniformly on
each compact subset of Rn.

Exercise 5.2. Show that a linear (for simplicity, assume scalar) differential
operator P is a continuous, linear, and local map P : C∞(Rn) → C∞(Rn); here
local means that

suppPf ⊆ supp f for all f ∈ C∞(Rn), where

supp f := f−1 (R \ {0}) = the closure of {x ∈ Rn : f(x) 6= 0} .

Remark 5.3. Conversely, one can show that every continuous, linear, local
map P : C∞(Rn) → C∞(Rn) is a differential operator (if one allows the order
to be infinite and only finite on compact subsets). In fact, for each x ∈ Rn, the
map f 7→ (Pf)(x) is a continuous linear form on C∞(Rn) with one-point support
{x}, whence [Schw50, I, Ch. III, Theorem XXXV] it is a finite linear combination
of derivatives (in the distributional sense) of the Dirac δ at x. As x varies in Rn,
one can piece together these distributions to obtain the desired differential operator
with C∞ coefficients. The details are in [CaSc, 1-03f.]. In 1960, Peetre showed that
one can drop the continuity assumption. One can find the completely elementary
proof, avoiding distribution theory, in [Na, p.172-175].

Exercise 5.4. Show that the linear differential operators with coefficients in
C∞(Rn) form a non-commutative algebra. Verify that the commutator PQ−QP
is a differential operator of order at most m+m′ − 1, if P has order m and Q has
order m′.

Exercise 5.5. Show that the space of linear differential operators with constant
coefficients forms a commutative subalgebra which is isomorphic to the polynomial
algebra C[ξ1, ..., ξn] in the variables ξ1, ..., ξn.

Exercise 5.6. Study the connection between the following partial differential
equations appearing most frequently in mathematical physics texts:
a) The wave equation

∂2u
∂t2 − a

2
(
∂2u
∂x2

1
+ ∂2u

∂x2
2

+ ∂2u
∂x2

3

)
= f(x1, x2, x3, t)

is the differential equation for the spreading of vibrations in a homogeneous medium,
where the right side vanishes if no force intervenes, and u denotes the displacement
(e.g., of a vibrating membrane).
b) The heat equation (which governs many other diffusion processes) in a homo-
geneous isotropic body is

∂u
∂t − a

2
(
∂2u
∂x2

1
+ ∂2u

∂x2
2

+ ∂2u
∂x2

3

)
= f(x1, x2, x3, t).

Here the right side vanishes when no sources or sinks are present; u is the temper-
ature.
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c) The potential (or Poisson) equation for the potential of an electric field (for
example) is

∂2u
∂x2

1
+ ∂2u

∂x2
2

+ ∂2u
∂x2

3
= −4πf(x1, x2, x3),

where f is the given charge density and u is the potential whose negative gradient
is the electric field.

One can easily classify the (scalar) second order linear differential equations in
several independent variables. For the corresponding differential operator

P =
∑
|α|≤2

aαD
α

and a point x ∈ R, consider the characteristic form∑
|α|=2

aα (x) ξα1
1 · · · ξαnn

which is a quadratic form in ξ1, ..., ξn since |a| =
∑n
j=1 αj = 2. In analogy with the

classification of conic sections in affine geometry, P is called elliptic at the point
x, if the form is definite in the sense that∑

|α|=2
aα (x) ξα1

1 · · · ξαnn 6= 0 for (ξ1, ..., ξn) ∈ Rn \ {0} .

In this case, by a change of variable (ξi) → (ηi) (not necessarily orthogonal), one
can express the form (at x) as

±
(
η2

1 + · · ·+ η2
n

)
We call P hyperbolic at x, if the characteristic form can be expressed as

η2
1 + · · ·+ η2

n−1 − η2
n

by a change of variables; and P is parabolic at x, if we can express the form as

η2
1 + · · ·+ η2

n−1

The wave equation is then hyperbolic (n = 4), the heat equation is parabolic
(n = 4), and the potential equation is elliptic (n = 3).

2. Elliptic Differential Equations

Roughly speaking the elliptic differential equations of second order differ from
the other classical types, in that there is no distinguished coordinate (e.g., time).
More precisely, if P (of order k) is not elliptic at x0, then in general (i.e., except in
certain degenerate cases which can cause difficulties when using Hamilton-Jacobi
methods) there is a function f ∈ C∞(Rn) with f(x0) = 0 and∑

|α|=k
aα (x0)

(
∂f
∂x1

(x0)
)α1

· · ·
(
∂f
∂xn

(x0)
)αn

= 0,

where the gradient
(
∂f
∂x1

, . . . , ∂f∂xn

)
(x0) ∈ R \ {0}; i.e., the directional derivatives

of f at x0 do not all vanish. By the Implicit Function Theorem, the set S :=
{x : f(x) = 0)} is an (n − 1)-dimensional submanifold of Rn in a neighborhood of
x0 (see Figure 5.2).

The manifold S is called characteristic for the differential operator P at the
point x0. Solutions which are otherwise smooth can have jumps of their second
derivatives only along these characteristic surfaces. (In physics the characteristic
surfaces are possible wave fronts.) Furthermore, one obtains from them certain
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R
n

R

x0

S

grad f
f

0

Figure 5.2. Distinguished coordinate and characteristic surface
at x0 for non-elliptic differential equation

curves along which (separation of variables) the partial differential equation reduces
to a simpler differential equation of first order, the so-called transport equation. For
these reasons the study of characteristic surfaces is a central task in the theory of
non-elliptic differential equations.

However, we shall deal with elliptic differential operators which have no (real)
characteristic manifolds. The above may well be the reason why, in the theory of
elliptic differential equations, it is not initial value problems but boundary value
problems and problems on compact curved manifolds involving global questions
which are at the center of interest. Slightly exaggerated: Since elliptic operators
look locally the same in all directions (there are no characteristic manifolds, no
distinguished directions etc.), and since the local solvability presents no problems
(according to [Hö63, Theorem 7.2.1] there are no local singularities which could
cause trouble globally). Also since there are sufficiently many local solutions (e.g.,
the large spaces of harmonic functions for the Laplace operator and holomorphic
functions for the Cauchy-Riemann operator), interesting global problems can be
formulated immediately and at times solved. We will come back to this philosophy
later.

We refer to [ABP] for the connection between elliptic equations and parabolic
initial value problems, which we will discuss more closely below in Section 18.3 for
twisted Dirac operators, see in particular Proposition 18.29, p.510. The solutions
of the parabolic heat equation, with arbitrary initial values, solve the potential
equation asymptotically. This fact is made the starting point for the heat equation
proof of the Atiyah-Singer Index Formula, explained in detail in [BeGeVe, Gi95,
Yosh].

Until now we have considered only single differential equations (i.e., scalar
differential operators). The treatment of simultaneous differential equations (where
the interacting unknowns cannot be decoupled) requires the concept of vectorial
differential operators. These are operators of the form P =

∑
α aα(x)Dα, where

(for each x ∈ Rn), aα(x) is a linear map from a complex vector space V to a
complex vector space W . Relative to bases of V and W , one can regard the aα(x)
as matrices with complex entries. The differential equation Pu = f , where u and
f are C∞ vector-valued functions on Rn (u(x) ∈ V ∼= CN and f(x) ∈ W ∼= CM ),
can be regarded as a system of M differential equations in N unknown functions.
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Then, we have

P : C∞(Rn,CN )→ C∞(Rn,CM ),

where C∞(Rn,CN ) denotes the C∞ functions from Rn to CN .

Exercise 5.7. To what extent do the previous exercises carry over to vectorial
differential operators? A differential operator P of order k is said to be elliptic, if
(for all x ∈ Rn and (ξ1, ..., ξn) ∈ Rn \ {0}) the characteristic polynomial or the
principal part ∑

|α|=k
aα (x) ξα1

1 · · · ξαnn
is an isomorphism from V to W ; in particular, dimV = dimW .

In the following paragraphs we will investigate the concept of ellipticity more
fully; in particular we will work out the geometric meaning of the principal part.
Here, we give only a few hints for why one is interested in elliptic differential
operators and what kinds of related questions come to the forefront.

3. Where Do Elliptic Differential Operators Arise?

Linear elliptic differential operators emerge in many different contexts.
(o) Linear elliptic differential equations of order 1 can not arise in more than

two variables: An R-linear mapping Rn → C ∼= R2, (ξ1, . . . , ξn) 7→
∑
αjξj with

complex αj can not be injective for n > 2. That may explain why the main stream
of the partial differential equations community was late to show interest in the
study of geometric defined differential operators of first order and Dirac type (see
our Parts III-IV): “First order?! That’s not a challenge.” Perhaps, they were right
regarding equations, but terribly wrong regarding systems.

(i) Modeling of equilibrium states of oscillating systems. A typical example
from mathematical physics is the Laplace equation of potential theory; see Exercise
5.6c above. More complicated problems, require more complicated operators: Op-
erators with variable coefficients which only pointwise resemble Laplace operators
(e.g., when the material is not isotropic); operators of higher order; and opera-
tors on those function spaces, where the individual functions are not the concrete
distributions of a continuous quantity (e.g., temperature), but for instance, the
probability amplitudes (wave functions) describing a discrete quantum mechanical
system consisting of single electrons, atoms or molecules.

(ii) Investigation of classical operators on more complicated geometric surfaces.
In analogy with the Laplace operator ∆ = ∂2/∂x2

1 + · · ·+∂2/∂x2
n, one can construct

an operator on any Riemannian manifold; see Chapter 6. Various properties of such
operators depend on the form of the manifold and serve to classify such surfaces
and manifolds to some degree see Chapter 14 below.

(iii) Probabilistic characterization of diffusion processes. In contrast to dis-
crete decay processes with transition probabilities, e.g. on lattices, we deal here
with infinitesimal descriptions of flows and other processes, whereby the transition
probabilities are given in the form of vector fields. Depending on the model, the
random growth, the mean exit time (for problems with boundary), the expectation
of some other quantity, etc. appear as solutions of characteristic operators which
are associated with the Markov process via some infinitesimal consideration. Con-
ceptually, imagine a particle which performs a symmetrical random motion on the
lattice points of Zn by moving in equal time intervals one unit to one of the 2n
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neighboring lattice points with transition probability 1/2n always, i.e., the transi-
tion probability equidistributed and history independent. If f is a payoff function
defined on the lattice points, then the expectation of the payoff after one time unit
is given by the mean

Pf (x) :=
1

2n

∑n

k=1
(f (x+ ek) + f (x− ek))

where the random motion placed the particle one unit ago at the point x ∈ Zn, and
e1, ..., en are the canonical basis vectors of Rn. The linear operator P − Id is then
a discrete analogue of the operator 1

2∆ in that one can show that the statistical
operator P − Id yields the half the Laplace operator, when the distances between
lattice points approach zero. The reason is the identity

(∆f) (x) =
∑n

k=1
lim
h→0

1

h2
(f (x+ hek)− 2f (x) + f (x− hek))

which holds for sufficiently smooth functions. In this fashion, the Laplace operator
is linked with the Wiener process which models the random motion of very small
particles suspended in some fluid. The Wiener process is characterized probabilis-
tically by the fact that the random change x(t+s)−x(t) of a trajectory x possesses
a normal distribution with a particularly simple density function. Other probabil-
ity distributions yield different characteristic operators, but again elliptic ones if
the underlying random process is a diffusion process. A very elementary and clear
exposition can be found in [DY]. Further details are in [KR].

(iv) Branching of solutions of nonlinear differential equations. It should be
noted that physical, biological, or social systems rarely contain intrinsic justifica-
tions for the linearity assumption of mathematical models. The supposition that
the effect on a system under study is exactly proportional to the effect contradicts
the presence of friction and, more generally, the laws of thermodynamics. Lin-
ear models are therefore used exclusively for pragmatic reasons, “either in order
to facilitate computation or on account of the present imperfection of engineer-
ing techniques of realization (of models) [Wie49, p.12]. There are a multitude of
situations which unquestionably warrant the use of linear models, for example, in
the theory of elasticity of materials, whose deformations are nearly proportional to
the forces acting on them, or for many questions of stability theory and of control
theory, for which the underlying machinery has been made fairly linear by man.
On the other hand, some situations require non-linear modeling, since the essential
phenomenon of branching of solutions cannot be described in any other way. (Some
examples from mechanics are the bending of a straight rod under a constant force,
the buckling of a flexible plate, the oscillations of a satellite in its orbital plane, and
the surface waves of a heavy fluid.)

These facts in no way render the study of linear models superfluous. Rather it
is true that very many nonlinear systems can be approximated by so-called implicit
operators which are linear, and in many cases also elliptic differential operators.
In these cases the index of the implicit linear elliptic differential operator plays an
important role for the derivation of the branching equation. The following example
illustrates why the theory of the branching of solutions of a nonlinear equation,
with an analytic variety as solution manifold, is a natural analogue of the Fredholm
theory with affine spaces as solution manifolds. Consider the nonlinear operator
(x, λ) 7→ Tx − λx on H × R where H is a Hilbert space and T a (linear) compact
operator. The solution set {(x, λ) : Tx− λx = 0} consists of the R-axis {0}×R and
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the kernels Ker {T − λ Id}× {λ} of the operators T − λ Id, which are Fredholm for
λ 6= 0, depicted in Figure 5.3. Here the jumps of the kernel dimension of T − λ Id
(i.e., the eigenvalues of T ) are of special interest. See [VT, Chs. VII/VIII, esp.
Sect. 27] and [Ize] for this rapidly developing theory.

¸i ¸j R

H

Figure 5.3. Analytic variety {(x, λ) : Tx − λx = 0} as solution
manifold of the simple non-linear operator (x, λ) 7→ Tx − λx for
T ∈ K(H)

(v) Problems of optimization theory. Frequently elliptic differential equations
are solved by solving the associated variational problem, i.e., a problem of optimiza-
tion. Conversely, many complicated problems of optimization, particularly those
occurring in control theory, can be reduced to elliptic differential equations and in
this way made clearer and more accessible for particular questions. A comprehen-
sive exposition of this aspect can be found in [Mo].

(vi) Non-elliptic boundary value problems. Another area of applications is the
treatment of systems of non-elliptic differential equations which sometimes can be
represented as a family of elliptic differential operators in space coordinates para-
metrized by time. This is true for instance for the important type of parabolic
differential equations which describes a multitude of spacial growth and differenti-
ation processes. Here the connection between parabolic initial value problems and
families of elliptic operators is well researched (see above Section 5.2).

4. Boundary-Value Conditions

Notice that in (i), (iii) and (iv) boundary-value conditions play essential role,
while in (ii) interesting and deep results can be found considering operators on
closed manifolds (see Chapter 6 below), thereby avoiding the analytic difficulties of
boundary-value problems. We will see below how closely connected boundary-value
problems are with problems on closed manifolds. In fact, in the geometric expres-
sions of K-theory, every boundary-value problem on a region X with boundary has
a corresponding problem on the boundary ∂X of X and a problem on the double
X ∪∂X X of X (see Figure 5.4 and Section 14.8 below). Conversely, elliptic oper-
ators over a closed manifold reflect in this fashion how complicated manifolds are
built from macromolecules, the classical regions with boundary of Euclidean space
R.

Warning: Conceptually, the term boundary-value problems first brings to mind
the boundary-value problems of the theory of elasticity, where an oscillating mem-
brane is held fast along its border. This is mathematically the Dirichlet problem
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Sphere S2

Torus T2

Figure 5.4. Correspondence between manifolds with boundary,
boundaries, and closed doubles

u|∂X = 0, or more generally u|∂X = g, where g is a function on ∂X. But in many
applications, we deal with much more general types of boundary-value conditions.
Good examples for all that can occur on the boundary of a region are furnished by
the theory of diffusion processes described in (iii). We list just a few of the simplest
phenomena following [DY, p.137-139], see also Figure 5.5:

(I) Backward jump of the particle upon reaching the boundary to a fixed
point x inside X, possibly according to a certain probability distribution π generally
depending on the boundary point y.

(II) Absorption: The particle stays for good at the boundary point first
reached.

@X
X

x y
x 0

y 0

@X

x
y

Figure 5.5. Boundary occurrences in the theory of diffusion
processes: extinction (left) and reflection (right)

(III) Extinction: The particle is annihilated upon first reaching the boundary.
(IV) Reflection: Symmetric reflection of the trajectory in the boundary.

For us, these different boundary-value problems only serve as a supply of con-
ceptual examples, and we will not pursue them further. But we wish to stress
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that it is lastly the investigation and classification of the various boundary-value
problems (just like the investigation and classification of various manifolds) that
yield the most interesting results. A simple but meaningful example is the Hellwig-
Vekua-Theorem (Theorem 5.11, p. 146).

5. Main Problems of Analysis and the Index Problem

Let X be a region in Rn (or a C∞ manifold; see below) and a differential
operator on X with C∞ coefficients. Consider the equation Pu = f , where u and
f are functions (not necessarily C∞) on X. Somewhat vaguely, we can (following
[Hö71c]) formulate the following questions:

(i) Under which conditions on P and X can one obtain local or global existence
results?

(ii) Given X and P , how are the singularities of u and of f related? Lars
Hörmander shows in detail [loc. cit.] that these questions “are in fact so closely
related that they can be considered different forms of the same problem.” We
are interested in the index of elliptic problems that is in questions of type (i).
We will show in Part II that, for Pu = f to have a solution at all, every elliptic
problem with suitable boundary-value conditions must possess an index, i.e., a finite
number of linearly independent solutions of the homogeneous equation (f = 0) and
a finite number of linear conditions for f . In Part III, we will introduce methods for
computing the index from the coefficients of P and from numerical invariants of the
structure of X, and conversely, for representing topological invariants of manifolds
as indices of elliptic operators.

6. Numerical Aspects

“Much of the modern work in partial differential equations looks highly
esoteric, and only a few years ago such work would have been considered
of no interest for applications, where one wants a solution expressed in
a workable form, say by a sufficiently simple formula. The advent of the
modern computing machines has changed this. If a problem involving
a differential equation is sufficiently understood theoretically, then, in
principle at least, a numerical solution can be obtained on a machine.
If the mathematics of the problem is not understood, then the biggest
machine and an unlimited number of machine-hours may fail to yield
a solution.” (COSRIMS Report of the National Science Foundation,
1969).

Sometimes the choice of numerical methods can cleverly be based on previous
knowledge of the index. While dealing with Wiener-Hopf operators in Chapter
4, we pointed out such results of I. Z. Gohberg and A. Feldman (after Theorem
4.11, p.129). Similarly, in the numerical treatment of non-linear problems, differ-
ent methods have been recommended, depending on the index of the associated
linear problem ([VT], [Ize]). Volker Strassen and other mathematicians uncovered
the importance of the Theorem of Riemann-Roch (see Section 14.7) and of other
quantitative (index-) formulas of algebraic geometry for basic questions of compu-
tational complexity (e.g., for the calculation of the computational steps needed for
inverting a matrix). Thus, there is an indirect relevance of index calculations on
computer oriented numerical mathematics in this setting as well.
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7. Elementary Examples

After these general remarks we will work out in detail some elementary exam-
ples.

Exercise 5.8. Investigate the (trivially elliptic) ordinary differential operator
on the unit interval I = [0, 1] with boundary ∂I = {0, 1}, defined by

P : C∞(I)× C∞(I) → C∞(I)× C∞(I),
(f, g) 7→ (f ′,−g′) ,

with three choices of boundary conditions C∞(I)× C∞(I)→ C∞(∂I) ∼= C× C

(i) R1 : (f, g) 7→ (f − g) |∂I
(ii) R2 : (f, g) 7→ f |∂I
(iii) R3 : (f, g) 7→ (f + g′)|∂I .

Determine the index of the operators (for i = 1, ..., 3)

(P,Ri) : C∞(I)× C∞(I)→ C∞(I)× C∞(I)× C∞(∂I).

[Hint: Clearly, dim Ker(P,Ri) = 1. To determine the cokernel, one writes F,G ∈
C∞(I) and h = (h0, h1) ∈ C× C, obtaining

f(t) =

∫ t

0

F (τ)dτ + c1, g(t) = −
∫ t

0

G(τ)dτ + c2

and two more equations for the boundary condition. The dimension of Coker(P,Ri)
is then the number of linearly independent conditions on F , G, and h which must
be imposed in order to eliminate the constants of integration. For each of the
three boundary conditions, check that there is only one condition on the triple

(F,G, h), namely h0 = h1 −
∫ 1

0
F (τ)dτ −

∫ 1

0
G(τ)dτ ; h0 = h1 −

∫ 1

0
F (τ)dτ ; resp.,

h0 = h1 −
∫ 1

0
F (τ)dτ −G (0) +G(1). Conclude that the index vanishes in all three

cases.]

For a more comprehensive treatment of the existence and uniqueness of boundary-
value problems for ordinary differential equations (including systems), we refer to
[CodLev] and [Ha, p.322-403]. Does the index always vanish?

We now consider the Laplace operator ∆ := ∂2/∂x2 + ∂2/∂y2, as a linear
elliptic differential operator from C∞(X) to C∞(X), where X is the unit disk
{z = x+ iy : |z| ≤ 1} ⊂ C with boundary ∂X := {z ∈ C : |z| = 1}.

Exercise 5.9. For the boundary-value problem (named after Peter Gustav
Dirichlet) with boundary condition

R : C∞(X)→ C∞(∂X), with R (u) = u|∂X ,

show that

a) Ker(∆, R) = {0} and

b) Im(∆, R)⊥ = {0} ,
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where ⊥ is orthogonal complement in L2(X) × L2(∂X).1 In particular, it follows
that index(∆, R) = 0.
[Hint for (a): Ker(∆, R) consists of functions of the form u+ iv, where u and v are
real-valued. Since the coefficients of the operators ∆ and R are real, we may assume
v = 0 without loss of generality. Thus, consider a real solution u with ∆u = 0 in
X and u = 0 on ∂X. Then (where ∇u := (∂u∂x ,

∂u
∂y ))

(5.1) 0 = −
∫
X

u∆u dxdy =

∫
X

|∇u|2 dxdy,

whence ∇u = 0, noting that u is real. Thus, is constant, and indeed zero since
u = 0 on ∂X. The trick lies in the equality (5.1), an integration by parts which is
perhaps most simply derived from the integral theorem of George Gabriel Stokes
in the calculus of differential forms (see Exercise 6.17, p. 169 and [UN, p.133f]).
Stokes’ formula reads

∫
X
dω =

∫
∂X

ω, where ω is a 1-form. We set ω := u ∧ ∗du,

where ∗ denotes the Hodge star operator (defined here via ∗du = ∗(uxdx+uydy)
!
=

uxdy − uydx, again, see Exercise 6.17) and obtain

dω = du ∧ ∗du+ u ∧ d ∗ du = |∇u|2 dx ∧ dy + (u∆u) dx ∧ dy.

Using Stokes’ formula and u|∂X = 0, we have∫
X

|∇u|2 dxdy +

∫
X

(u∆u) dxdy =

∫
X

dω =

∫
∂X

ω =

∫
∂X

u ∧ ∗du = 0.

From this and ∆u = 0, conclude that ∇u = 0 and u is constant.]
[Hint for (b): Choose L ∈ C∞ (X) and l ∈ C∞ (∂X) with (L, l) orthogonal to
Im(∆, R), whence (relative to the usual measures on X and ∂X)

(5.2)

∫
X

(∆u)L+

∫
∂X

ul = 0 for all u ∈ C∞(X).

Use a 2-fold integration by parts (in the exterior calculus) to obtain

(5.3)

∫
X

u∆L−
∫
X

(∆u)L =

∫
X

(u(d ∗ dL)− d (∗du)L) =

∫
∂X

(u ∗ dL− L ∗ du) .

First consider u with support supp (u) := the closure of {z ∈ X : u(z) 6= 0} con-
tained in the interior of X. Then∫

X

u∆L =

∫
X

(∆u)L = −
∫
∂X

ul = 0,

and so ∆L = 0. Now for u ∈ C∞(X) apply (5.2) and (5.3) to deduce that∫
∂X

ul = −
∫
X

(∆u)L =

∫
∂X

(u ∗ dL− L ∗ du)

=

∫
∂X

(
u
(
x∂L∂x + y ∂L∂y

)
− L

(
x∂u∂x + y ∂u∂y

))
.

Conclude that l = x∂L∂x + y ∂L∂y and L|∂X = 0, and finally apply (a). Details are in

[Hö63, p.264].]

1Here, consider that the intersection of the orthogonal complement of Im(∆, R) relative to

the usual inner product in L2(X)× L2(∂X) with the space C∞(X)× C∞(∂X) is isomorphic to
Coker(∆, R). This is true, since the image of the natural Sobolev extension of (∆, R) is closed in

the L2-norm, and its L2-orthogonal complement is contained in C∞(X)× C∞(∂X).
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Remark 5.10. The preceding result index(∆, R) = 0 (for Ru = u|∂X) can
also be obtained by proving the symmetry of ∆ and that the L2 extension on the
domain defined by Ru = 0 is a self-adjoint Fredholm extension.

We now consider a C∞ vector field ν : ∂X → C on the boundary ∂X =
{z : |z| = 1}. For u ∈ C∞(X), z ∈ ∂X, and ν(z) = α(z) + iβ(z), one defines the
directional derivative of the function u relative to the vector field ν at the point z
to be the number

∂u
∂ν (z) := α(z)∂u∂x (z) + β(z)∂u∂y (z) .

From the standpoint of differential geometry it is better either to denote the vector
field by ∂

∂ν or to write the directional derivative as simply as ν [u] (z), since ∂
∂x and

∂
∂y can be regarded as vector fields; see Chapter 6 below. The pair (∆, ∂∂ν ) defines

a linear operator

(∆, ∂∂ν ) : C∞(X)→ C∞(X)⊕ C∞(∂X) given by u 7→ (∆u, ∂u∂ν ).

Theorem 5.11 (G. Hellwig, I. N. Vekua, both 1952). For p ∈ Z and ν(z) := zp

as depicted in Figure 5.6, we have that (∆, ∂∂ν ) is an operator with finite-dimensional
kernel and cokernel, and

index(∆, ∂∂ν ) = 2 (1− p) .

Figure 5.6. The vector field ν : ∂X → C with winding number
p = 0, 1, 2
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º

Xp =2

@X

Figure 5.7. Another vector field ν with winding number 2

Remark 5.12. The theorem of G. Hellwig and I.N. Vekua remains true, if we
replace zp by any nonvanishing vector field ν : ∂X → C \ {0} with winding number
p as in Figure 5.7.

Moreover, in place of the disk, we can take X to be any simply connected (i.e.,
without holes) domain in C with a smooth boundary ∂X; see Chapter 6 below. The
reason is the homotopy invariance of the index (see Theorem 3.11, p. 68) which holds
for elliptic differential operators on closed manifolds and on compact manifolds with
smooth boundary when admissable boundary conditions are imposed (see Section
14.8, p.323 below) .

Remark 5.13. One encounters the number 2(1− p) also in the theory of Rie-
mann surfaces of genus p; e.g., as the Euler characteristic of a closed surface
or, deeper, in the theorem of Bernhard Riemann and Gustav Roch (see Section
14.7, p.320). This is no accident, but rather it is connected with the relation be-
tween elliptic boundary-value problems and elliptic operators on closed manifolds,
as mentioned above on p. 139. Specifically, there is a relation between the index of
(∆, ∂∂ν ) and the index of the Cauchy-Riemann operator for complex line bundles

over S2 = P1 (C) with Chern number 1− p (e.g., see Example 5.16 for a start).

Remark 5.14. Motivated by the method of replacing a differential equation
by difference equations, David Hilbert and Richard Courant expected “linear prob-
lems of mathematical physics which are correctly posed to behave like a system of
N linear algebraic equations in N unknowns... If for a correctly posed problem in
linear differential equations the corresponding homogeneous problem possesses only
the trivial solution zero, then a uniquely determined solution of the general inho-
mogeneous system exists. However, if the homogeneous problem has a non-trivial
solution, the solvability of the non-homogeneous system requires the fulfillment of
certain additional conditions.” This is the heuristic principle which [CH, II, p.
179/231] saw in the Fredholm Alternative (see Chapter 2). Günter Hellwig [Hel]
(nicely explained in [Haa]) in the real setting and Ilya Nestorovich Vekua [Ve56]
in complex setting disproved it with their independently found example where the
principle fails for p 6= 1.
We remark that in addition to these oblique-angle boundary-value problems, cou-
pled oscillation equations, as well as restrictions of boundary-value problems, even
with vanishing index, to suitable half-spaces, furnish further elementary examples
for index 6= 0. The simplest example of a system of first order differential operators
on the disc is provided in Exercise 5.16, p. 151 below. A world of more advanced,
and for differential geometry much more meaningful examples, is approached by
the Atiyah–Patodi–Singer Index Theorem, see Section 14.8 below.
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Proof of Theorem 5.11. (after [Hö63, p.266f]): Since the coefficients of
the differential operators (∆, ∂∂ν ) are real, we may restrict ourselves to real func-
tions. Thus, u ∈ C∞(X) denotes a single real-valued function, rather than a
complex-valued function (i.e., a pair u1 + iu2 of real-valued functions u1 and u2).
Ad Ker(∆, ∂∂ν ): It is well-known that Ker(∆) consists of real (or imaginary) parts
of holomorphic functions on X (e.g., see [Ah, p.175f]). Such functions are called
harmonic. Hence, u ∈ Ker(∆), exactly when u = <(f) where f = u + iv is

holomorphic; i.e., the Cauchy-Riemann equation ∂f
∂z̄ = 0 holds, where ∂

∂z̄ := 1
2 ( ∂
∂x +

i ∂∂y ). Explicitly,

0 = ∂f
∂z̄ = 1

2

(
∂
∂x + i ∂∂y

)
(u+ iv) = 1

2

(
∂u
∂x −

∂v
∂y

)
+ i
(
∂u
∂y + ∂v

∂x

)
.

Every holomorphic (= complex differentiable) function f is twice complex differen-
tiable and its derivative is given by

∂f
∂z := 1

2

(
∂
∂x − i

∂
∂y

)
(u+ iv)

= 1
2

(
∂u
∂x + ∂v

∂y

)
+ i
(
−∂u∂y + ∂v

∂x

)
= ∂u

∂x − i
∂u
∂y .

In this way we have a holomorphic function φ := f ′ for each u ∈ Ker(∆). Since

∂u
∂ν = < (zp) ∂u∂x + Im (zp) ∂u∂y = <

((
∂u
∂x − i

∂u
∂y

)
zp
)

= < (φ (z) zp) ,

the boundary condition ∂u
∂ν = 0 (ν = zp) then means that the real part <(φ(z)zp)

vanishes for |z| = 1. For p > 0, φ(z)zp is holomorphic as well as φ, and hence for
φ(z) := ∂u

∂x − i
∂u
∂y , we have

u ∈ Ker
(
∆, ∂∂ν

)
with ν := zp, p ≥ 0

⇒ < (φ(z)zp) ∈ Ker (∆, R) where R (·) := (·) |∂X .

Thus, we have associated the oblique-angle boundary-value problem for u with a
Dirichlet boundary-value problem for < (φ(z)zp), which has only the trivial solution
by Exercise 5.9a. Since φ(z)zp is holomorphic with < (φ(z)zp) = 0, the partial
derivatives of the imaginary part vanish, and so there is a constant C ∈ R such that
φ(z)zp = iC for all z ∈ X. If p > 0, then we have C = 0 (set z = 0). Hence φ = 0,
and (by the definition of φ) the function u is constant (i.e., dim Ker

(
∆, ∂∂ν

)
= 1).

If p = 0, then φ(z) = iC; and so u(x, y) = −Cy + C̃, whence dim Ker
(
∆, ∂∂ν

)
= 2

in this case.
We now come to the case p < 0, which curiously is not immediately reducible

to the case q > 0 where q := −p. One can try to look for a solution by simply
turning ∂

∂ν around to − ∂
∂ν as illustrated in Figure 5.8. However, this is futile since

the winding numbers of ν and −ν about 0 are the same. Besides, if νp (z) = zp,

we do not have ∂
∂ν−p

= − ∂
∂νp

. In order to reduce the boundary-value problem with

p < 0 to the elementary Dirichlet problem, we must now go through a more careful
argument. Note that φ(z)zp can have a pole at z = 0, whence < (φ(z)zp) is not
necessarily harmonic. We write the holomorphic function φ(z) as a finite Taylor
series

φ(z) =
∑q

j=0
ajz

j + g (z) zq+1
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Figure 5.8. Replacing ν by −ν does not change the winding number

where q := −p and g is holomorphic. We define a holomorphic function ψ by

ψ(z) := g (z) z +
∑q−1

j=0
ājz

q−j ,

with ψ(0) = 0. Then one can write

(5.4) φ(z)zp = aq +
∑q−1

j=0

(
ajz

j−q − ājzq−j
)

+ ψ(z).

The boundary condition ∂u
∂ν = 0 implies < (φ(z)zp) = 0 for |z| = 1. By (5.4), we

have 0 = < (φ(z)zp) = <(ψ(z) + aq) for |z| = 1 since then z−1 = z̄. Since ψ is
holomorphic, we have again arrived at a Dirichlet boundary value problem; this time
for the function <(ψ(z) + aq). From Exercise 5.9a, it follows again that ψ(z) + aq
is an imaginary constant, whence ψ(z) = ψ(0) = 0 and aq is pure imaginary. We
have

φ(z) = φ(z)zpzq = aqz
q +

∑q−1

j=0

(
ajz

j − ājz2q−j)
for arbitrary a0, a1, ..., aq−1 ∈ C and aq ∈ iR. As a vector space over R, the set{

∂u
∂x − i

∂u
∂y : u ∈ Ker

(
∆, ∂∂ν

)}
has dimension 2q + 1; here we have restricted ourselves to real u, according to our
convention above. Since u is uniquely determined by φ up to an additive constant,
it follows that for ν = zp and p < 0,

dim Ker
(
∆, ∂∂ν

)
= 2q + 2 = 2− 2p.

Ad Coker
(
∆, ∂∂ν

)
: As Exercise 5.9b shows, the equation ∆u = F has a solution

for each F ∈ C∞(X). In view of this we can show

Coker
(
∆, ∂∂ν

)
=
C∞(X)× C∞(∂X)

Im
(
∆, ∂∂ν

) ∼=
C∞(∂X)
∂
∂ν (Ker ∆)

as follows. We assign to each representative pair (F, h) ∈ C∞(X) × C∞(∂X) the
class of h − ∂u

∂ν ∈ C∞(∂X), where u is chosen so that ∆u = F . This map is
clearly well defined on the quotient space of pairs, and the inverse map is given
by h 7→ (0, h). Hence, we have found a representation for Coker(∆, ∂∂ν ) in terms

of the boundary functions
{
∂u
∂ν : u ∈ Ker ∆

}
, rather than the cumbersome pairs in

Im
(
∆, ∂∂ν

)
. (This trick can always be applied for the boundary-value problems

(P,R), when the operator P is surjective.)
We therefore investigate the existence of solutions of the equation ∆u = 0 with

the inhomogeneous boundary condition ∂u
∂ν = h, where h is a given C∞ function on
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∂X. According to the trick introduced in the first part of our proof, it is equivalent
to ask for the existence of a holomorphic function φ with the boundary condition
< (φ(z)zp) = h, |z| = 1, i.e., for a solution of a Dirichlet problem for < (φ(z)zp).
By Exercise 5.9b, there is a unique harmonic function which restricts to h on the
boundary ∂X; hence, we have a (unique up to an additive imaginary constant)
holomorphic function θ with <θ(z) = h for |z| = 1.

In the case p ≤ 0, the boundary problem for φ is always solvable; namely, set
φ(z) := z−pθ(z). Hence, we have

dim Coker
(
∆, ∂∂ν

)
= 0 for ν(z) = zp and p ≤ 0.

For p > 0, we can construct a solution of the boundary-value problem for φ from
θ, if and only if there is a constant C ∈ R, such that (θ(z)− iC)/zp is holomorphic
(i.e., the holomorphic function θ(z) − iC has a zero of order at least p at z = 0).
Using the Cauchy Integral Formula, these conditions on the derivatives of θ at
z = 0 correspond to conditions on line integrals around ∂X. In this way, we have
2p− 1 linear (real) equations that h must satisfy in order that the boundary-value
problem have a solution. We summarize our results in Table 5.1 (ν(z) = zp) and
Figure 5.9. �

Table 5.1. Dimensions of kernel and cokernel for varying p

p dim Ker
(
∆, ∂∂ν

)
dim Coker

(
∆, ∂∂ν

)
index

(
∆, ∂∂ν

)
> 0 1 2p− 1 2− 2p
≤ 0 2− 2p 0 2− 2p

Warning 1: We already noted in the proof the peculiarity that the case p < 0
cannot simply be played back to the case p > 0. This is reflected here in the
asymmetry of the dimensions of kernel and cokernel and the index. It simply reflects
the fact that there are more rational functions with prescribed poles than there are
polynomials with corresponding zeros. See also Section 14.7, the Riemann-Roch
Theorem.

Warning 2: In contrast to the Dirichlet Problem, which we could solve via
integration by parts (i.e., via Stokes’ Theorem), the above proof is function-theoretic
in nature and cannot be used in higher dimensions. This is no loss in our special
case, since the index of the oblique-angle boundary-value problem must vanish
anyhow in higher dimensions for topological reasons; see [Hö63, p.265f] or Section
14.8 below. The actual mathematical challenge of the function-theoretic proof arises
less from the restriction dimX = 2 than from a certain arbitrariness, namely the
tricks and devices of the definitions of the auxiliary functions φ, ψ, θ, by means of
which the oblique-angle problem is reduced to the Dirichlet problem. Is there not
a canonical, straightforward general method for finding the index of a boundary
value problem? We will return to this question below (Section 14.8 ).

Warning 3: The theory of ordinary differential equations easily conveys the
impression that partial differential equations also possess a general solution in the
form of a functional relation between the unknown function (quantity) u, the in-
dependent variables x and some arbitrary constants or functions, and that every
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Figure 5.9. The dimensions of kernel and cokernel and the index
of the Laplacian with boundary condition given by ν(z) = zp for
varying p

particular solution is obtained by substituting certain constants or functions f, h,
etc. for the arbitrary constants and functions. (Corresponding to the higher degree
of freedom in partial differential equations, we deal not only with constants of in-
tegration but with arbitrary functions.) The preceding calculations, regarding the
boundary value problem of the Laplace operator, clearly indicate how limited this
notion is which was conceived in the 18th century on the basis of geometric intu-
ition and physical considerations. The classical recipe of first searching for general
solutions and only at the end determining the arbitrary constants and functions
fails. For example, the specific form of boundary conditions must enter the analysis
to begin with.

Exercise 5.15. Without using Theorem 5.11, show that Index(∆, ∂∂ν ) = 0 for

ν := z. This boundary-value problem, where ∂
∂ν is the field normal to the boundary

∂X is named after Carl Neumann. From the topological viewpoint it is equivalent
(modulo constant functions) to the Dirichlet boundary-value problem defined by a
tangent vector field, see Figure 5.10.

Exercise 5.16. Let X := {z = x+ iy : |z| < 1} be the unit disk and define an
operator

T : C∞(X)× C∞(X)→ C∞(X)⊕ C∞(X)⊕ C∞(∂X) by

T (u, v) :=
(
∂u
∂z̄ ,

∂v
∂z , (u− v) |∂X

)
,
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Figure 5.10. Topological equivalence of Neumann and Dirichlet
boundary condition

where C∞(X) := C∞(X,C) (i.e., we are back to complex-valued functions), ∂
∂z =

1
2 ( ∂
∂x − i

∂
∂y ) is complex differentiation and ∂

∂z̄ = 1
2 ( ∂
∂x + i ∂∂y ) denotes the Cauchy-

Riemann differential operator formally adjoint to ∂
∂z . Prove that index(T ) = 1.

[Hint: Show first that dim(KerT ) = 1: Suppose that (u, v) ∈ KerT . Then ∂u
∂z̄ = 0

and ∂v
∂z = 0 in which case u is holomorphic and v is conjugate-holomorphic (i.e., v is

holomorphic). In particular, u and v are harmonic. Then since (u− v) |∂X = 0, we
have u = v on X. Why? Now u′ (z) = ∂u

∂z = ∂v
∂z = 0, and so u and v are the same

constant function. Then show Coker(T ) = {0}, or more precisely (ImT )⊥ = {0};
see the footnote to Exercise 5.9. For this, choose arbitrary f, g ∈ C∞(X) and
h ∈ C∞(∂X) and prove that f , g and h must identically vanish, if

(5.5)

∫
X

(
∂u
∂z̄ f + ∂v

∂z g
)

+

∫
∂X

(u− v)h = 0 for all u, v ∈ C∞(X).

Note that for P,Q ∈ C∞(X)

d (Pdz +Qdz) = ∂P
∂z̄ dz ∧ dz + ∂Q

∂z dz ∧ dz =
(
∂P
∂z̄ −

∂Q
∂z

)
dz ∧ dz

=
(
∂P
∂z̄ −

∂Q
∂z

)
(dx− idy) ∧ (dx+ idy) = 2i

(
∂P
∂z̄ −

∂Q
∂z

)
dx ∧ dy

Thus you obtain the complex version of Stokes’ Theorem,∫
∂X

Pdz +Qdz =

∫
X

d (Pdz +Qdz) = 2i

∫
X

(
∂P
∂z̄ −

∂Q
∂z

)
.

From this, you get∫
X

∂u
∂z̄ f =

∫
X

∂
∂z̄ (uf)−

∫
X

u∂f∂z̄ =
1

2i

∫
∂X

uf dz −
∫
X

u∂f∂z̄ and∫
X

∂v
∂z g =

∫
X

∂
∂z (vg)−

∫
X

v ∂g∂z =
−1

2i

∫
∂X

vgdz̄ −
∫
X

v ∂g∂z .

Hence, ∫
X

(
∂u
∂z̄ f + ∂v

∂z g
)

= −
∫
X

(
u∂f∂z̄ + v ∂g∂z

)
+

1

2i

∫
∂X

(uf dz − vgdz̄) .
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Assuming (5.5), you have

0 =

∫
X

(
∂u
∂z̄ f + ∂v

∂z g
)

+

∫
∂X

(u− v)h

= −
∫
X

(
u∂f∂z̄ + v ∂g∂z

)
+

1

2i

∫
∂X

(uf dz − vg dz̄) +

∫
∂X

(u− v)h

By considering u and v with compact support inside the open disk, you can de-
duce that ∂f

∂z̄ = 0 and ∂g
∂z = 0 (i.e., f and g are analytic and conjugate analytic

respectively). Thus, (5.5) implies

0 =
1

2i

∫
∂X

(uf dz − vg dz̄) +

∫
∂X

(u− v)h,

for all u, v ∈ C∞(X). Choosing v = u, you have

0 =
1

2i

∫
∂X

u (f dz − g dz̄) for all u⇒ f dz = g dz̄ on ∂X

⇒ f
(
eiθ
)
ieiθdθ = −g

(
eiθ
)
ie−iθdθ ⇒ f

(
eiθ
)
eiθ = −g

(
eiθ
)
e−iθ.

However, since f is analytic, the Fourier series of f
(
eiθ
)
eiθ has a nonzero coefficient

for eimθ only when m > 0, and since g is conjugate analytic, g
(
eiθ
)
e−iθ only has a

nonzero coefficient for eimθ only when m < 0. Thus, f = g = 0. Choosing v = −u,
(5.5) then yields

0 =

∫
∂X

(u− v)h = 2

∫
∂X

uh for all u ∈ C∞(X)⇒ h = 0.

Remark 5.17. In engineering one calls a system of separate differential equa-
tions

Pu = f
Qv = g,

which are related by a transfer condition R(u, v) = h, a coupling problem; when the
domains of u and v are different, but have a common boundary (or boundary part)
on which the transfer condition is defined, then we have a transmission problem;
e.g., see [Bo72, p.7f]. Thus, we may think of T as an operator for a problem on
the spherical surface X ∪∂X X (see Exercise 6.46 below) with different behavior on
the upper and lower hemispheres, but with a fixed coupling along the equator.



CHAPTER 6

Differential Operators over Manifolds

Synopsis. Motivation. Differentiable Manifolds - Foundations: Implicit Function

Theorem, Tangent Space, Cotangent Space. Geometry of C∞ Mappings: Embeddings,

Immersions, Submersions, Embedding Theorems. Integration on Manifolds: Hypersur-

faces, Riemannian Manifolds, Geodesics, Orientation. Exterior Differential Forms and

Exterior Differentiation. Covariant Differentiation, Connections and Parallelity: Connec-

tions on Vector Bundles, Parallel Transport, Connections on the Tangent Bundle, Clifford

Modules and Operators of Dirac Type. Differential Operators on Manifolds and Symbols:

Our Data, Symbolic Calculus, Formal Adjoints. Elliptic Differential Operators: Definition

and Standard Examples. Manifolds with Boundary

1. Motivation

For many decades now, workers in differential geometry and mathematical physics

have been increasingly concerned with differential operators (exterior differentiation, con-

nections, Laplacians, Dirac operators, etc.) associated to underlying Riemannian or space–

time manifolds. Of particular interest is the interplay between the spectral decomposition

of such operators and the geometry/topology of the underlying manifold. This has become

a large, diverse field involving index theory, the distribution of eigenvalues, zero sets of

eigenfunctions, Green functions, heat and wave kernels, families of elliptic operators and

their determinants, canonical sections, etc.. Moreover, John Donaldson’s analysis of mod-

uli of solutions of the nonlinear Yang–Mills equations and Seiberg–Witten theory have led

to profound insights into the classification of four–manifolds, which were not accessible

by techniques that are effective in higher dimensions. We shall touch upon many of these

topics, but we focus on index theory and its applications (in Parts III-IV). In this Chapter

and the following of this Part, we shall present an elementary introduction into the basic

notions, concepts, and tools of global analysis.

We begin with the concept of a closed manifold. It allows us to generalize and si-

multaneously drastically simplify the index problem by eliminating boundary conditions.

For example, the homogeneous Laplace equation ∆u = 0 on the disk has infinitely many

linearly independent solutions (e.g., (x+ iy)n), while the corresponding Laplace equation

on the sphere has a one-dimensional solution space consisting of the constant functions.

In this respect the notion of differentiable manifold, does not make the mathematics more

complicated, but is a genuine first approximation to the difficult boundary value problems

in Euclidean space Rn.1

1The development of mathematics shows again and again how, in the growth of knowledge,

the conceptual and non-conceptual form a unit, alternating, and fading into one another. A

most striking example is furnished by the famous four-color problem, which characteristically still
presents many puzzles in the plane, even after its computer aided solution, while the corresponding

questions for closed manifolds have long been disposed of. “Most of the early attempts at solving

154
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But also from the point of view of immediate applications, the geometric concept of

a manifold played an important role. In fact, space-time problems defined initially and

canonically in Euclidean space frequently do not have unrestricted independent variables,

but these variables are restricted by side conditions to certain submanifolds of Euclidean

space. Examples are the constraints in mechanics; the path equations of electrodynamics

into which enter essentially the shape and surface of the conductor ; or the symmetry

conditions of elementary particle physics which replace the high dimensional Euclidean

state spaces by low dimensional state spaces in the form of manifolds.

2. Differentiable Manifolds - Foundations

We begin with a compilation of the basic notions and elementary relations
of the concept of a differentiable manifold. As a general reference, we refer to
[ST, BJ, Brd].

Exercise 6.1. Recall the following two classical theorems of differential calcu-
lus, which form the foundation of the concept of a differentiable manifold.

a. (Inverse Function Theorem). If f = (f1, ..., fn) is a C∞ map from
Rn to Rn whose n × n Jacobian matrix [(∂fi/∂xj)(p)] has rank n at p ∈ Rn (i.e.,
its determinant is nonzero), then there is a neighborhood U of p in Rn which is
diffeomorphic by f to a neighborhood V of f(p) in Rn.

b. (Implicit Function Theorem). Let O ⊂ Rm be open and f = (f1, ..., fn)
be a C∞ map from O to Rn (m > n), whose m×n Jacobian matrix [(∂fi/∂xj)(p)]
at the point p = (p1, ..., pm) ∈ U has maximal rank n. Thus, for some permutation
of the coordinates xj , the first n× n submatrix has rank n, i.e., we have

det[(∂fi/∂xj)(p)]i,j=1,...,n 6= 0.

Then the isolevel set {x ∈ O : f(x) = f(p)} can be parametrized locally. More
precisely (see Figure 6.1), there is a differentiable map (implicit function) g =
(g1, ..., gn) defined in a neighborhood V of (pn+1, ..., pm) ∈ Rm−n with values in a
neighborhood W of (p1, ..., pn), such that W × V ⊂ O and for all x ∈ W × V we
have:

f(x) = f(p)⇔ xi = gi(xn+1, ..., xm) for all i ∈ {1, ..., n} .

A topological manifold without boundary is a locally Euclidean, Hausdorff
topological space X. By locally Euclidean, we mean that for some n ∈ N, each point
of X has a neighborhood U which is homeomorphic via some function u : U → V
to an open subset V of Rn. The function u is called a chart for X. One might
concretely think of geography, where a curved and uneven piece of the earth’s
surface is mapped onto a flat piece of paper. A chart is also known as a local
coordinate system, when one wishes to stress the computational point of view.
A set A of charts, whose domains of definition form an open covering of X, is called
an atlas.

this problem were based on direct attack, and they not only failed, but did not even contribute any
useful mathematics.” Only “a new and highly indirect approach to the coloring problem based on

a generalization of Kirchhoff’s laws of circuit theory in a completely unforeseen direction”, proved

to be “successful in understanding a variety of combinatorial problems.” (Gian-Carlo Rota, The
Mathematical Sciences: A Report, 1969. Reprinted with the permisssion of the National Academy

of Sciences)
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Figure 6.1. The Implicit Function Theorem, recalled, prametriz-
ing locally (over V ) the isolevel set {x : f(x) = f(p)}

The number n, the local dimension, is constant on each connected component
of X. In our applications, n will not vary from component to component; so we
may speak of the dimension of the manifold X.

Now let X be an n-dimensional manifold and A an atlas for X. Of geometric
and analytic interest is the study of the coordinate changes u ◦ v−1, for two charts
u, v ∈ A whose domains have non-void intersection. The change u ◦ v−1 is a
continuous function from one open subset of Rn to another. This is trivial, by
definition. However, in Rn one has much richer structure, which permits to impose
further restrictions on the coordinate changes: The atlas A is called a C∞-atlas,
if all coordinate changes are C∞ maps.

Exercise 6.2. Show: Each atlas A for X induces on an open subset W of X
an atlas A|W := {u|W : u ∈ A}. If A is a C∞-atlas, then so is A|W .

Exercise 6.3. Show that for each C∞-atlas A on an n-dimensional manifold
X, there is a commutative subalgebra (consisting of “C∞ functions on X”) of the
algebra C0(X) of continuous complex-valued functions on X, namely

C∞(X) :=
{
φ ∈ C0(X) : φ ◦ u−1 is C∞ on Im (u) for all u ∈ A

}
.

Moreover, show that the usual properties hold; e.g.,
a) For φ ∈ C∞(X), we have φ|W ∈ C∞(W ), where W ⊆ X is open and C∞(W )
corresponds to the C∞ atlas A|W .
b) Suppose φ is a fixed complex-valued function that is locally smooth (i.e., φ|W ∈
C∞(W ) for all W ∈ W, where W is an open covering of X). Then φ ∈ C∞(X).
c) For φ ∈ C∞(X) and ψ ∈ C∞(C), we have ψ ◦ φ ∈ C∞(X).
d) The constant functions on X are in C∞(X).

A C∞ manifold is a topological manifold X with a “C∞-structure” C∞(X),
defined by a C∞-atlas A.

A C∞ map from a C∞-manifold X to a C∞-manifold Y is a function f : X →
Y with φ ◦ f ∈ C∞(X) for all φ ∈ C∞(Y ). One can express this condition in terms
of local coordinates as follows: For each u in the atlas for X and v in the atlas for
Y , we have v ◦ f ◦ u−1 is C∞, as a map from an open subset of Rn to Rm, where
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n = dimX and m = dimY . We denote the set of all C∞ maps from X to Y by
C∞(X,Y ).

The C∞ manifolds X and Y are called diffeomorphic if there is a diffeo-
morphism from X to Y ; i.e., a bijective C∞ map f ∈ C∞(X,Y ) whose inverse is
in C∞(Y,X). If X = Y , one also calls such a map an automorphism.

For technical reasons one frequently requires that a C∞ manifold be paracom-
pact. This means that every covering of X by open subsets {Uj}j∈J possesses a

locally finite refinement {Vk}k∈K , in the sense that each Vk is an open subset of
some Uj(k), and for each fixed x ∈ X there is a neighborhood Ox of x, such that the
set {k ∈ K : Ox ∩ Vk 6= ∅} is finite. Note that by defining Wj := ∪j(k)=jVk (pos-
sibly void), we can obtain a locally finite refinement {Wj}j∈J of {Uj}j∈J without

changing the index set J . Unlike the stronger condition of compactness, we do not
require that K is finite. It is well-known that every metric space is paracompact
[Du, p.186], and every paracompact space is normal [Du, p.163].

Theorem 6.4. Let {Uj}j∈J be an open covering of a paracompact C∞ n-

manifold X. Then there is a “C∞ partition of unity” subordinate to {Uj}j∈J ,

namely, a family {ϕj ∈ C∞(X)}j∈J such that the following hold:

(i) ϕj ≥ 0,
(ii) We have suppϕj := closure of {y ∈ X : ϕj (y) 6= 0} ⊆ Uj, and the family
{suppϕj : j ∈ J} is locally finite; i.e., for each x ∈ X, there is a neigh-
borhood Vx such that {j ∈ J : Vx ∩ suppϕj 6= ∅} is finite, and

(iii)
∑
j∈J ϕj (x) = 1 for all x ∈ X.

Proof. If we can produce a C∞ partition of unity subordinate to a refinement
of {Uj}j∈J , then it is subordinate to {Uj}j∈J itself. We can produce a refinement of

{Uj}j∈J consisting of open subsets each of which are contained within the domain

of a coordinate chart which maps the open subset to a bounded subset of Rn.
Since X is paracompact, we may then assume (without loss of generality) that the
covering {Uj}j∈J is locally finite and for each j ∈ J , Uj is a subset of the domain

Ũj of a coordinate chart uj : Ũj → Rn such that uj(Uj) has compact closure in Rn.
Step 1. We select an open neighborhood Wx about each point x ∈ X, such that
the closure W x is contained in some Uj . There is a subset Y ⊆ X, such that
{Wy : y ∈ Y } is a locally finite covering of X. By defining

Vj := ∪
{
Wy : y ∈ Y, W y ⊆ Uj

}
,

we have a covering {Vj}j∈J of X. We also have V j ⊆ Uj by the local finiteness

of {Wy : y ∈ Y }. Indeed, suppose that x ∈ V j , then every neighborhood Ox of x

intersects some Wy with W y ⊆ Uj . But there is some Ox such that only finitely
many of such Wy, say Wy1 , . . . ,Wym , intersect Ox. Since the union of finitely many
closed sets is closed,

x ∈Wy1 ∪ . . . ∪Wym ⊆W y1 ∪ . . . ∪W ym ⊆ Uj .

Step 2. For each j ∈ J , below we will construct a function ψj ∈ C∞ (M,R),
which is positive on Vj ⊂ Uj and identically zero on X \ Uj . Then, as {Uj}j∈J is

locally finite, about each point of X there is a neighborhood on which all but a
finite number of the ψj are identically 0, and so ψ :=

∑
j ψj is C∞ and positive

(since ∪j∈JVj = X). Set ϕj := ψj/ψ and note that conditions (i), (ii) and (iii)
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hold. With the help of the coordinate function uj : Ũj → Rn, we carry out the
construction of ψj as follows. Define η ∈ C∞ (Rn) by

η (x) :=

{
exp

(
−1

1−|x|2

)
, for |x| < 1,

0, for |x| ≥ 1.

Since uj(V j) is a closed subset of the compact subset uj(Uj) ⊂ Rn, uj(V j) is also

compact. Let δ > 0 be the distance from the compact set uj(V j) to the closed

subset Rn−uj (Uj). Cover uj(V j) with finitely many open balls of radius less than

δ and centers a1, . . . , am ∈ uj(V j). Finally, for any p ∈ X, let

ψj (p) :=

{ ∑m
k=1 η

(
uj(p)−ak

δ

)
, p ∈ Uj ,

0, p ∈ X \ Uj .

Note that ψj > 0 on Vj since η
(
x−ak
δ

)
> 0 for |x− ak| < δ, and supp ψj ⊆ Uj since∑m

k=1 η
(
x−ak
δ

)
is 0 for x in a neighborhood of Rn − uj (Uj). �

Remark 6.5. The preceding proof is typical for many non-constructive, set-
theoretic arguments in analysis. Actually, one almost always has canonically given
charts relative to which an explicit partition of unity can be provided.

Remark 6.6. The C∞ partition of unity is an important tool which is used
to globally piece together locally given data in a smooth way. Although in some
applications we deal with analytic manifolds, generally we will stay in the category
of C∞ manifolds, since there clearly is no analytic version of Theorem 6.4.

3. Geometry of C∞ Mappings

In elementary differential calculus, many geometrical questions concerning func-
tions (the location of extreme values, inflection points, etc.) can be answered by
investigating the derivatives (i.e., linear approximations) of the function. By means
of linear algebra, one can also study C∞ mappings between manifolds. The essential
concepts for this are:

1. The directional derivative. Let x be a point of a C∞ manifold X, ϕ ∈
C∞(X), and c : R → X a C∞ map (a C∞ curve) with c(0) = x. Then the
directional derivative of the function ϕ in the direction of the curve c is defined
to be (ϕ ◦ c)′(0), the derivative of ϕ ◦ c at 0 in the sense of elementary calculus.
Two such curves are equivalent, when the directional derivatives of each function
relative to the two curves are the same. We denote such an equivalence class by

ċ(0) :=
{
c̃ ∈ C∞ (R, X) : c̃(0) = x and ∀ϕ∈C∞(X) (ϕ ◦ c̃)′ (0) = (ϕ ◦ c)′(0)

}
.

Note that ċ(0) only depends on how c is defined near 0.
2. The tangent space. The set of directional derivatives, and hence the set of

equivalence classes of curves, forms a real vector space,

TxX := (TX)x := {ċ(0) : c ∈ C∞(R, X), c(0) = x}
called the tangent space of X at x. Clearly, the multiplication of the directional
derivative c′(0) by a real number λ is given by a λ-fold increase in the speed; i.e.,

λċ(0) := ˙̃c(0), where c̃ (t) := c (λt) , for t ∈ R.
Also, for two curves c1 and c2, we can add ċ1(0) and ċ2(0) by setting

ċ1(0) + ċ2(0) :=
(
u−1 (u ◦ c1 + u ◦ c2)

)′
(0) ,
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where u : U → Rn (n := dimX) is a chart with u (x) = 0 ∈ Rn and we arbitrarily
redefine c1 and c2 outside of a neighborhood of 0 ∈ R so that c1 (R) ∪ c2 (R) ⊂ U .
One can verify that these operations are well-defined and the axioms for a vector
space hold. Also one may check that dim(TxX) = dimX. For this, one chooses
a C∞ chart u : U → Rn, from the open neighborhood U of x to an open subset
of Rn. Then, for each positively directed coordinate line through u(x), there is
a corresponding C∞ curve in X, as depicted in Figure 6.2. The corresponding
directional derivatives are denoted by ∂

∂u1
|x, . . . , ∂

∂un
|x and these form a basis for

TxX.

Figure 6.2. Coordinate lines through u(x) and the corresponding
curves in X

3. The tangent bundle. The disjoint union TX := ∪x∈XTxX of tangent spaces
has the structure of a real C∞ vector bundle over X, namely the tangent bundle;
see Appendix, Exercise B.11, p. 683. A map s : X → TX is a section, if s(x) ∈ TxX
for all x ∈ X. Let x ∈ X and let cx ∈ C∞ (R, X) be a curve representing s(x); i.e.,
cx(0) = x and s(x) = ċx (0). Then the directional derivative of ϕ ∈ C∞(X) at x in
the direction s(x) is

s(x) [ϕ] := (cx ◦ ϕ)
′
(0) .

If the function

s [ϕ] : X → R given by s [ϕ] (x) := s(x) [ϕ]

is in C∞(X) for each ϕ ∈ C∞(X), then s : X → TX is a C∞ section of TX or a
C∞ vector field.

4. The differential. A C∞ map f : X → Y determines a linear map (the
differential of f at x)

f∗x : TxX → Tf(x)Y given by f∗x (ċx (0)) = ˙(f ◦ cx) (0) ,

where ċx (0) ∈ TxX. Sometimes we write f∗|x instead of f∗x to clarify that
the differential f∗ is evaluated at x. Let u = (u1, . . . , um) : U → Rm and
v = (v1, . . . , vn) : V → Rn be coordinates about x and f (x) respectively, and
let

(f1, . . . , fn) := v ◦ f ◦ u−1 : u(f−1 (V ) ∩ U)→ Rn.
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The matrix of f∗x with respect to the coordinate bases ( ∂
∂u1

∣∣∣
x
, . . . , ∂

∂um

∣∣∣
x
) and

( ∂
∂v1

∣∣∣
f(x)

, . . . , ∂
∂vn

∣∣∣
f(x)

) is given by[
∂
∂uj

∣∣∣
x

[fi]
]

=
[
∂fi
∂uj

(u (x))
]
,

which is the n×m Jacobian matrix of (f1, . . . , fn). Note that f∗ : TX → TY is a
bundle map (linear in the fibres, as explained in the Appendix p.676). Moreover, f
is called an immersion if f∗ is injective, an embedding if f and f∗ are injective,
and a submersion if f∗ is surjective at each x ∈ X.

5. Submanifolds. A subset Y ⊆ X is called a submanifold, if Y is a C∞

manifold with the induced topology and the inclusion i : Y → X is a C∞ embed-
ding. (One can also consider the image sets of immersions as submanifolds with
self-intersections, a concept that we will not pursue further.) For all y ∈ Y , TyY is
a linear subspace of TyX in a natural way.

The following theorem illustrates some closely related representations of C∞

manifolds.

Theorem 6.7. Let X and Y be C∞ manifolds of dimensions m and n (m > n).
a) (Definition of manifolds through equations) Let q ∈ Y and f : X → Y a
C∞ map with f∗x surjective for all x ∈ f−1 {q}. Then f−1 {q} has the structure of
an (m− n)-dimensional submanifold of X, in a natural way.
b) (Representation of submanifolds of RN ) If Y is a submanifold of RN and
y ∈ Y , then (for a certain renumbering of the Euclidean coordinates x1, ..., xN ),
the projection of Y to the n-dimensional subspace {(x1, ..., xn, 0, . . . , 0)} ∼= Rn is
a local coordinate system v : U → Rn for Y in some neighborhood U ⊆ Y of y.
Moreover, there is a neighborhood V of y in RN as in Figure 6.3, such that Y ∩ V
is the set of points satisfying the following system of equations for unique functions
gn+1, . . . , gN ∈ C∞ (v (U)):

xn+1 = gn+1 (x1, ..., xn) , . . . , xN = gN (x1, ..., xn) .

c) (Embedding Theorem) Every closed C∞ manifold X can be embedded in RN
for N sufficiently large.

Remark 6.8. One might consider the special cases of part a) of Theorem 6.7
where the sphere is represented as a level set of the distance function, or where the
matrix manifold SL(n,R) is represented as a level set of the determinant function.
One can visualize (b) with Y = S2 and N = 3. The proof of (a) and (b) follows
without difficulty from the Implicit Function Theorem (Exercise 6.1b). The com-
plete and elementary proofs for (b) and (c) can be found in [Wa, p.35-43] or [Brd,
p.91-92] where it is proved that every C∞ n-manifold X can be embedded in R2n+1.
Actually, H. Whitney proved that every C∞ n-manifold X can be embedded in R2n;
see [Wh]. Assuming moreover that X is orientable, X can be embedded in R2n−1.
For n 6= 4, this was done in [HH]. Decades later, the case n = 4 was finally settled
as a consequence of work by J. Boéchat, A. Haefliger and S. K. Donaldson; see the
posting “All smooth orientable 4-manifolds embedd in R7” by Paulo Ney de Souza
at http://math.berkeley.edu/˜desouza and the references therein.
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Figure 6.3. Local representation of a submanifold Y (depicted
as a curve) by projection

We will not repeat the quoted proofs here, since we aim not at minimizing the
dimension of the receiving Euclidean space. Instead of that we give an ultra-short
proof, following [Fu99, Section 2.2, pp.30-33]. This proof yields what we want,
namely an embedding into a finite-dimensional Euclidean space, but eventually of
quite high dimension. The basic idea goes back to work in algebraic geometry
by Kunihiko Kodaira, Fritz Hirzebruch and others, namely to fill large spaces of
functions or sections until an ample level is reached where one gets something
manageable or trivial.

Proof of Theorem 6.7c. We begin with an elemenary set-theoretical argu-
ment, to illustrate the idea of filling: Any manifold X can be embedded in a huge
Euclidean space of highly infinite dimension, for suitable definition of the terms
topology, differential and embedding for infinite-dimensional manifolds. Indeed,
consider the natural mapping

ι : X −→ RC∞(X)

x 7→ C∞(X) 3 f 7→ f(x) ∈ R,

where RC∞(X) denotes the set of all mappings from the space C∞(X) of smooth
(here real-valued) functions to R, or, differently put, the direct product of copies of
R over all elements of C∞(X). This is a really huge Euclidean space. Each single
f ∈ C∞(X) may be perceived as a coordinate function, namely a reader or parser
of all x ∈ X. We give a formal argument for the fact that the preceding map ι is
an embedding. First we address the immersiveness. An analog

ι∗ : TX −→ TRC∞(X)

ċx(0) 7→ C∞(X) 3 f 7→ ˙(f ◦ cx)(0) ∈ TR,

of the differential for ι is defined by taking the differential of each coordinate. Then
the mapping ι∗ maps any non-zero tangen vector v = ċx(0) to a non-vanishing
vector in TRC∞(X). More precisely, for a non-zero tangent vector v, there is a
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smooth function g so that the derivative of g in the direction of v is not zero. This
implies that the coordinate function, corresponding to g, of ι∗(v) is non-zero.

Now, we check the injectivity of the mapping ι. For a pair x0, x1 of distinct
points, there is a smooth function f so that the values f(x0) and f(x1) are distinct.
This implies that the points ι(x0), ι(x1) ∈ RC∞(X) take different values of the
coordinate function f , and we are done.

However, we want an embedding in a finite-dimensional Euclidean space. To do
that, we trimm the full set C∞(X) of coordinate functions down to a finite number.
The set of the coordinate functions to be selected must be suffciently ample to yield
still an embedding (the idea is very similar to the task of Exercise B.10).

Let’s begin anew. Denote by P(TX) the set of all possible tangent directions
over all points on X and call its elements tangent lines (as in our Exercise B.2 in the
Appendix). The space P(TX) is a fiber bundle over the compact base space X. (The
concept of a fiber bundle embraces the concept of vector bundles of our Appendix
B, and the concept of principal G-bundles of our Definition 16.1). Its fiber is a
real projective space, which is compact. Hence, the total space is also compact.
For any tangent line ` at any point x, we can choose a smooth function f`, whose
derivative in the direction of ` is not zero. Then there is an open neighborhood
U` of ` in P(TX) such that all derivatives of f` for all directions in U` are not
zero. Since P(TX) is compact, we can cover it with finitely many open subsets
U`1 , U`2 , . . . , U`s . Then the mapping F := (f`1 , f`2 , . . . , f`s) gives an immersion.

Unfortunately, the mapping F is not necessarily injective. However, since the
mapping F is an immersion, its restriction to a suffciently small neighborhood Ux
of an arbitrary x ∈ X is injective. We form the open subset

⋃
x∈X Ux ⊂ X × X.

Its complement K is compact. By definition, for each pair y = (x0, x1) ∈ K, the
points x0 and x1 are distinct. So there is an fy ∈ C∞(X) with fy(x1) 6= fy(x0).
Then there is an open neighborhood Vy of y in X ×X such that fy(x′1) 6= fy(x′0)
for all (x′0, x

′
1) ∈ Vy. We select finitely many such open subsets Vy1

, Vy2
, . . . , Vyu

to cover the compact K. Now we set G := (fy1 , fy2 , . . . , fyu). Then the mapping
(F,G) : X → Rs+u gives a desired embedding. �

6. The cotangent bundle. Let X be a C∞ manifold with x ∈ X. In place of the
tangent space TxX, one can consider its dual space T ∗xX (other valid notations are
(TxX)

∗
, (TX)

∗
x, and (T ∗X)x) of linear maps from TxX to R. An element of T ∗xX

can be identified with the differential (see 4. above) at x of a real-valued function
ϕ ∈ C∞ (X,R), namely ϕ∗x : TxX → Tϕ(x)R ∼= R. The notation (dϕ)x or dϕ|x is
also used for ϕ∗x. If u = (u1, ..., un) : U → X is a chart for X on a neighborhood
U of x, then the differentials (du1)x , ..., (dun)x form a basis for T ∗xX. One can also
give the disjoint union T ∗X = ∪x∈XT ∗xX a bundle structure, and indeed, T ∗X is
exactly the dual bundle of TX; see Appendix, Exercise B.4, p. 679. For short, T ∗X
is called the dual tangent bundle, covariant bundle, or most commonly, the
cotangent bundle.

Under a coordinate change v = κ ◦ u, the differentials change covariantly,

dvi =

n∑
j=1

∂κi
∂xj

duj

while the tangent vectors transform contravariantly by means of the Jacobian of
κ−1. From the standpoint of category theory, however, the tangent bundle is covari-
ant since f : X → Y yields a well-defined bundle map f∗ : TX → TY whereas there
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is a well defined bundle map f̃ : T ∗X → T ∗Y only when f is a diffeomorphism.
Then we may define

(6.1)
(
f̃ (αx)

)
(Z) := αx(f−1)∗ (Z) for αx ∈ T ∗xX and Z ∈ Tf(x)Y .

The situation for induced maps on sections is different, as we now explain. The
space of C∞ sections of TX is denoted by C∞ (TX) and such a section is known
as a vector field on X. A vector field on X generally does not push forward to
a well-defined vector field on Y unless f : X → Y is a diffeomorphism. Indeed,
if f is not onto, the purported push-forward will not be defined everywhere, while
if f is not 1-1, the purported push-forward may be ill-defined on f (X). The
sections in C∞ (T ∗X) (also denoted by Ω1 (X)) are known as 1-forms on X. For
any f ∈ C∞ (X,Y ) (not necessarily a diffeomorphism), there is a well-defined map

f∗ : C∞(T ∗Y )→ C∞(T ∗X) given by

f∗(µ)(Zx) := µf(x)(f∗Zx) for µ ∈ C∞(T ∗Y ) and Zx ∈ TxX,

which is known as the pull-back of 1-forms induced by f . Moreover, there is a
pull-back f∗ : Ωk (Y )→ Ωk (X) of k-forms (see Appendix B, Exercise 6.17, p. 169)
defined in the same way.

If X is a submanifold of Y with the embedding f : X → Y , then although f is
not necessarily a diffeomorphism, we can still easily define f∗ : T ∗Y |f(X) → T ∗X

via f∗
(
αf(x)

)
(Zx) := αf(x) (f∗ (Zx)) for αf(x) ∈ T ∗Y |f(X) and Zx ∈ TxX, and then

Ker f∗ is a subbundle of T ∗Y |f(X) known as the normal bundle of the embedding.
Put differently, the normal bundle consists of those covectors at points of f(X),
which annihilate all vectors tangent to f(X).

Remark 6.9. Cotangent bundles of manifolds arise naturally in abstract for-
mulations of classical mechanics and analytical mechanics, e.g., in the Hamiltonian
formulation of classical mechanics, which provides one of the major motivations
for the field: The set of all possible configurations of a system is modelled as a
manifold, and this manifold’s cotangent bundle describes the phase space of the
system. Locally, i.e., over a coordinate patch u(U) ⊂ X for a chart u : U → X,
we have T ∗X|u(U)

∼= R2n with the canonical (once the chart is chosen) coordi-
nates x1, . . . , xn, du1, . . . , dun, traditionally called the pairing of space and impulse
coordinates. For two such (x, µ) and (y, ν) we set

ω
(
(x, µ), (y, ν)

)
:= 〈(x, µ), J(y, ν)〉,

where 〈·, ·〉 denotes the standard inner product in R2n and J :=

(
0 In
−In 0

)
the

usual skew-symmetric 2n×2n block matrix. Then ω is a symplectic form (bilinear,
skew-symmetric and nondegenerate) for T ∗X|u(U). Actually, the whole bundle T ∗X
can be considered as a symplectic manifold by defining (rather trivially) an exterior
nondegenerate skew-symmetric differential 2-form ω on it with dω = 0, see also our
Definition 19.21, p.619. A very readable introduction to local symplectic geometry
and Hamilton-Jacobi theory is given in [GS, Chapter 5, pp.55-66, and Chapter
9, pp.97-106]. In the symbolic calculus of elliptic operators, the symplectic cone

T̊ ∗X := T ∗X \X plays a fundamental role. It consists of the punctured cotangent
spaces.
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4. Integration on Manifolds

Hypersurfaces. Suppose that X is an n-dimensional submanifold of Rn+1

(i.e., a hypersurface), and moreover assume that X is the boundary of a bounded
open subset of Rn+1. From the notion of integration on Rn+1 where one has a
canonical volume element, we have a surface element on X, whence integration
over X is well-defined.

Riemannian Manifolds. In principal one can use the same recipe for a com-
pact C∞ Riemannian manifold X.

Definition 6.10. A C∞ manifold X is Riemannian, if it has been given a
Riemannian metric (tensor), namely for all x ∈ X the tangent space TxX is
equipped with a fixed Euclidean metric tensor 〈··, ··〉 (positive, symmetric, nonde-
generate R-valued, bilinear form), such that for two C∞ sections s1 and s2 of the
tangent bundle TX, the function 〈s1, s2〉 is in C∞(X).

It may be helpful to understand the concept of a Riemannian metric in local
coordinates. Thus, let x ∈ X and u = (u1, . . . , un) : U → Rn be coordinates with
X ⊃ U 3 x, whence

(
∂
∂u1 |x, . . . , ∂

∂un |x
)

a basis for TxX. In these coordinates, a met-

ric is represented by a positive definite, symmetric matrix
(
gij(x)

)
i,j=1,...,n

, (i.e.,

gij(x) = gji(x) for all i, j and
∑
i,j gij(x)ξiξj > 0 for all Rn 3 ξ = (ξ1, . . . , ξn) 6= 0),

where the coefficients depend smoothly on x.
The inner product of two tangent vectors A,B ∈ TxX with coordinate rep-

resentations (a1, . . . , an) and (b1, . . . , bn) (i.e., A =
∑
i a
i ∂
∂ui and B =

∑
j b
j ∂
∂uj )

then is
〈A,B〉x =

∑
1≤i,j≤n

gij(x)aibj .

In particular,
〈
∂
∂ui ,

∂
∂uj

〉
x

= gij(x). Similarly, the length of A is given by ‖A‖ :=√
〈A,A〉x .

With the help of a C∞ partition of unity (see Theorem 6.4, p. 157), one can
furnish every paracompact manifold with a Riemannian metric. Indeed, let {Uj}j∈J
be a locally finite covering of the n-manifold X by domains of coordinate charts
uj : Uj → Rn, say uj =

(
u1
j , . . . , u

n
j

)
, and let {ϕj ∈ C∞(X)}j∈J be a partition of

unity subordinate to {Uj}j∈J , then, for x ∈ X and A,B ∈ TxX,

gx(A,B) :=
∑

j∈J with x ∈ Uj

(
ϕj (x)

∑n

k=1
d
(
ukj
)
x

(A) d
(
ukj
)
x

(B)
)

defines a Riemannian metric. Since there is no j-th term if x /∈ Uj , the sum over J
is really finite on a neighborhood of each point.

On any submanifoldX of the Euclidean space RN there is a natural Riemannian
metric induced by restricting the Euclidean inner product on RN to TX. Since we
have seen that any n-manifold X can be realized as a submanifold of RN for N
sufficiently large (Theorem 6.7c), we have another (less elementary) existence proof
for Riemannian metrics.

Geodesics. For a general metric space, a geodesic is defined as a curve which
realizes the shortest distance between any two sufficiently close points lying on it.
For Riemannian manifolds we can be more explicit. As in metric space, we ask that
geodesics are only locally the shortest distance between points. Additionally we ask
that they are parameterized with constant velocity, i.e., proportionally to arc length.
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It is very fortunate that (locally) minimizing the energy will also minimize the length
- and give the wanted parametrisation for free. The details of the argument can be
found in [Jo, Section 1.4] and any other textbook on Riemannian geometry.

Let [t0, t1] be a closed interval in R and c : [a, b] → X a smooth curve. The
length and the energy of c then are defined as

L(c) :=

∫ t1

t0

‖ċ(t)‖dt and E(c) :=
1

2

∫ t1

t0

‖ċ(t)‖2dt.

In physics, the massless term E(c) is usually called action of c where c is considered
as the orbit of a mass point. In local coordinates, we write ċ(t) =

∑
i γ

i(t) ∂
∂ui |c(t)

and obtain

L(c) =

∫ t1

t0

(∑
i,j

gij(c(t))γ
i(t)γj(t)

) 1
2

dt, E(c) =
1

2

∫ t1

t0

∑
i,j

gij(c(t))γ
i(t)γj(t)dt.

We also remark for later technical purposes that the length of a (continuous and)
piecewise smooth curve may be defined as the sum of the lengths of the smooth
pieces, and the same holds for the energy.

On a Riemannian manifold X, the distance dist(x, x′) between two points x, x′

can be defined as

inf{L(c) : c : [t0, t1]→ X piecewise smooth curve with c(t0) = x, c(t1) = x′}.
If X is connected, it is also pathwise connected, i.e., any two points x, x′ ∈ X
can be connected by a path, actually by a piecewise smooth path. [Prove it by
decomposing X into the open (!) set Xx of all p ∈ X which can be connected with
x by a piecewise smooth path, and the open (!) complement X \Xx consisting of
the union of all similarly defined sets Xq with q /∈ Xx. Since Xx is not empty, the
complement must be.] So, dist : X × X → [0,∞) is well defined, and one checks
easily that it is a metric for X.

Definition 6.11. A smooth curve c : [t0, t1] → X which is a critical point of
the energy functional is called a geodesic.

Recall that the Euler-Lagrange equations of a functional

I(c) :=

∫ t1

t0

f
(
t, c1(t), . . . , cn(t), ċ1(t), . . . , ċn(t)

)
dt

for c = (c1, . . . , cn) : [t0, t1]→ Rn, are given by

d

dt

∂f

∂ċi
− ∂f

∂ci
= 0, i = 1, . . . , n.

Then the critical points of our energy functional E(c) are given by the system of n
second order differential equations

c̈i(t) +
∑
j,k

Γijk(c(t))ċj(t)ċk(t) = 0, i = 1, . . . , n

with

Γijk :=
1

2

∑
`

gi`(gj`,k + gk`,j − gjk,`),

where

(gij)i,j=1,...,n := (gij)
−1, (i.e.,

∑
`

gi`g`j = δij), and gj`,k :=
∂

∂uk
gj`.
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The expressions Γijk are called Christoffel symbols. Christoffel symbols play a
prominent role in all concrete calculations with connections. In that context, they
show up below in Section 6.6, Equation (6.15), and become central in Section 16.5,
in Equation (18.62) of Section 18.4, p.525, and in analyzing Equations (19.108) in
Section 19.4, p.662f in our Part IV, beginning with Equations (16.47), (16.48) on
p.392. The details of the preceding deduction can be found in [Jo, Lemma 1.4.4]
and many other places.

From the Local Existence and Uniqueness Theorem for systems of ordinary
differential equations we obtain

Proposition 6.12. Let X be a Riemannian manifold, x ∈ X, v ∈ TxX. Then
there exist ε > 0 and precisely one geodesic c : [0, ε]→ X (to be denoted by cv) with
c(0) = x, ċ(0) = v.

One can show (and make precise) that, in addition, cv depends smoothly on x
and v. We then define

Definition 6.13. Let X be a Riemannian manifold, x ∈ X.
a) The mapping

expx : Vx → X
v 7→ cv(1)

with Vx := {v ∈ TxX : cv is defined on [0, 1]}

is called the exponential map of X at x.
b) The point injectivity radius of x is

ρ(x) := sup
{
ρ > 0 : expx is defined and injective on {v ∈ TxX : ‖v‖ ≤ ρ}

}
.

c) The injectivity radius of X is ρ(X) := inf{ρ(x) : x ∈ X}.

For example, the injectivity radius of the sphere X := Sn is π, since the expo-
nential map of any point x maps the open ball of radius π in TxX injectively onto
the complement of the antipodal point of x.

3. Orientation and Integrability. A C∞ manifold X is oriented when
an atlas for X has been chosen such that the Jacobian matrix for each coordinate
change is positive (i.e., det(∂κi/∂xj) > 0, for charts u and v, with u = κ ◦ v on
the intersection of their domains). More simply, without recourse to differential
calculus, we can also express this as follows. The bases of a finite-dimensional
vector space are divided into two orientation classes; two bases belong to the
same class, if their transformation matrix has positive determinant. By means of
an orientation of a C∞ manifold, one may select two classes of bases from each
tangent space (positive and negative bases with regard to the fixed orientation) in
such a way that in a neighborhood of each point the choice is given by a continuous
or differentiable choice of basis.

The familiar Möbius band is an example of a non-orientable manifold. A sub-
manifold Y of an orientable manifold X (even of codimension only 1) is therefore
not always orientable. On the other hand, Y is automatically orientable if it is the
boundary of an open, oriented manifold X. Then at each point y ∈ Y one can define
a basis of TyY to be positively oriented when a positive basis of TxX is obtained by
adjoining an outward pointing vector. Since we will only be interested in bounding
manifolds with classically defined surface elements in most of our applications, we
state without proof that with the help of a suitable partition of unity and local



6.4. INTEGRATION ON MANIFOLDS 167

charts in which the metric can be expressed in terms of curvilinear coordinates, the
concept of integration of functions on Rn carries over to the case of Riemannian
manifolds. Orientability is required for the integration of n-forms, because the sign
of an n-form will make sense since it will not vary under an orientation-preserving
change of chart (see Exercise 6.17, p. 169). Actually, the integration of R-valued
functions (as opposed to n-forms) requires only a measure or density (absolute value
of an n-form) since the sign of such a function is already unambiguous.

Definition 6.14. Let X be a smooth oriented paracompact Riemannian man-
ifold with dimX = n. We denote the metric tensor by g.
a) Let {Uj}j∈J be an open cover of X and {xj = (x1

j , . . . , x
n
j ) : Uj → Rn} local,

positively oriented coordinates on Uj . Then each

νj,g :=
√
|det(gik)|dx1

j ∧ · · · ∧ dxnj
defines a Lebesgue measure on each Uj and hence all together a Lebesgue measure
νg on X that is called the volume form of X.
b) Let π : E → X be a smooth complex vector bundle over X with Hermitian

metric 〈·, ·〉h. Set |e|h :=
√
〈e, e〉h for e ∈ E. An L2-section of E is a Lebesgue

measurable map ψ : X → E (i.e., ψ−1(U) is Lebesgue measurable for any open
subset U ⊂ E) such that

(i) π ◦ ψ(x) = x for almost all x ∈ X except possibly a negligible set.
(ii) The function x 7→ |ψ(x)|h belongs to L2(X,R).

The space of L2-sections of E is denoted by L2(E).

In the notation of Exercise 6.17 of the following section, we have νg = ∗0(1) ∈
Ωn(X). That yields a coordinate-free definition of the volume form. It is worth
mentioning that the volume vol(X) :=

∫
X
νg ∈ [0,∞) ∪ {∞} is well defined. We

leave it to the reader to check that L2(E) is a Hilbert space with respect to the
scalar product

(ϕ,ψ)0 :=

∫
X

〈ϕ(x), ψ(x)〉Ex,h νg ϕ,ψ ∈ L2(E).

Remark 6.15. For some computations on manifolds it is impractical and
confusing to constantly revert back to local coordinates. In such cases intrinsic
coordinate-invariant concepts of integration like the preceding definition of the vol-
ume form by the linear star operator are welcome, and they require in part weaker
hypotheses. For the integration of n-forms, the existence of a volume element is
essential, or, more generally in modern terminology, the existence of a distinguished
n-form where n = dimX. See, e.g., [ST, p.134/150].

Remark 6.16. For the time being, we will use only the above integration as-
pects of the Riemannian metric, and thus only scratch the surface of Riemannian
geometry which unfolds in the great classic theorems on parallel displacement (con-
nections), curvature and rigidity with their varied computations (see [Berg]). Our
Part IV deals extensively with such topics, in particular with connections on prin-
cipal G-bundles, rigorously defined in Section 16.2, p.366. Already in Section 6.6,
p.172ff, connections on vector bundles will be introduced and used for coordinate
free integration in our definition of Sobolev spaces and pseudo-differential oper-
ators in Chapters 7 and 8. We have noted (see (3.30), p. 117) that there is a
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close relationship (the Gauss-Bonnet Theorem) between the integral of the Gauss-
ian curvature and the topological form of a surface, namely the genus or Euler
characteristic. See also Chapters 13/14 below in Part III, and Part IV where the
higher-dimensional Gauss-Bonnet-Chern Theorem is proved using the local index
theorem (see Theorem 18.63, p. 580).

5. Exterior Differential Forms and Exterior Differentiation

It is possible to construct (see Exercise 6.17 below), from the tangent bundles,
bundles of exterior differential forms by means of multilinear algebra. These are
an important tool in describing physical laws mainly in the areas of electromag-
netism and special relativity. This is the case when empirical relationships are to
be expressed in terms of an integral in such a way that the physicist or engineer
can pursue qualitative and quantitative changes resulting from modifications of the
integrand or the domain of integration. For this reason, exterior bundles are of
interest also in differential topology; see Chapter 14.

We briefly summarize (details are found in [Brd, p.260f], [KN63, p.17f], and
[UN, p.111-161] and the literature given there): For a real n-dimensional vector
space V , we form the vector space Λp(V ) of p-fold skew-symmetric tensors (or
p-vectors); these are the multilinear maps

V ∗ ×
p times
· · · × V ∗ → R, p ∈ N, V ∗ := L(V,R)

which change, under a permutation of the arguments, by a factor equal to the sign
of the permutation. One sets Λ0(V ) := R and obtains Λ1(V ) = V , Λn−1(V ) ∼= V ,
Λn(V ) ∼= R and Λp(V ) = {0} for p > n. For v ∈ Λp(V ) and w ∈ Λq(V ), we define
v ∧ w ∈ Λp+q(V ) by

(v ∧ w)(a1, ..., ap+q) :=
1

p!q!

∑
σ

sgn(σ) (v ⊗ w) (aσ(1), ..., aσ(p+q))

(sum over all permutations), which gives the exterior multiplication Λp(V ) ×
Λq(V ) → Λp+q(V ). This multiplication makes Λ•(V ) :=

∑n
p=0 Λp(V ) a graded

algebra, the exterior algebra of V .
If e1, ..., en is a basis of V , then the

(
n
p

)
forms ei1 ∧ · · · ∧ eip with 1 ≤ i1 < · · · <

ip ≤ n yield a basis for Λp(V ). With this property, Λp(V ) is occasionally defined
(in order to avoid the suggestive but tedious definition via maps) as the space of
p-vectors: the space of formal linear combinations of the p-tuples of basis vectors
ei1 ∧ · · · ∧ eip with only the relation eσ(i1) ∧ · · · ∧ eσ(ip) = sgn(σ)ei1 ∧ · · · ∧ eip .

A scalar product (= inner product) for V induces a scalar product 〈·, ·〉 for
Λp(V ), and declaring an orthonormal basis e1, ..., en of V to be positively oriented
yields an explicit isomorphism Λn(V ) ∼= R via e1∧· · ·∧en 7→ 1, which only depends
on the chosen orientation and scalar product. The linear star operator

(6.2)
∗p : Λp(V ) → Λn−p(V )

is generated by ei1 ∧ · · · ∧ eip 7→ ej1 ∧ · · · ∧ ejn−p ,

where j1 . . . jn−p is selected such that ei1 , . . . eip , ej1 . . . ejn−p is a positive basis of
V .

Since the star operator is supposed to be linear, it is determined by its values
on some basis (6.2). It is characterized by the property u∧∗pv = 〈u, v〉 e1∧ · · ·∧ en
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for all u, v ∈ Λp(V ). In particular,

∗0(1) = e1 ∧ · · · ∧ en(6.3)

∗n(e1 ∧ · · · ∧ en) = 1,(6.4)

if e1, . . . , en is a positive basis. From the rules of multilinear algebra, it easily
follows that if A ∈ End(V ), and if f1, . . . , fp ∈ V , then

∗p(Af1 ∧ · · · ∧Afp) = (detA) ∗p (f1 ∧ · · · ∧ fp).
In particular, this implies that the star operator does not depend on the choice
of positive orthonormal basis in V , as any two such bases are related by a linear
transformation with determinant 1. For a negative basis instead of a positive one,
one gets a minus sign on the right hand sides of (6.2), (6.3), (6.4).

Exercise 6.17. Let X be a compact C∞ manifold of dimension n with or
without boundary, with metric tensor g.
a) Show that the family of vector spaces Λp(T ∗xX), x ∈ X, yields a real vector
bundle of fiber dimension

(
n
p

)
over X in a natural way. We denote this bundle

by Λp(T ∗X) or shortly Λp(X). Correspondingly, define a bundle Λ•(T ∗X) by
summation. Check that g induces a smoothly varying inner product on the fibres
of Λp(T ∗X) and Λ•(T ∗X).
b) Customarily, one writes Ωp(X) := C∞(Λp(T ∗X)), which is the space of exterior
differential p-forms on X and Ω•(X) =

∑n
p=0 Ωp(X). For a C∞ function f ,

consider the differential df (see also Section 6.6.2) and show that the operator
d : Ω0(X)→ Ω1(X) uniquely extends to a linear differential operator d : Ωp(X)→
Ωp+1(X) of first order (see Chapter 6) for each p, such that d2 := d ◦ d = 0 and

d (α ∧ β) = (dα) ∧ β + (−1)
p
α ∧ dβ

for all α ∈ Ωp(X) and β ∈ Ωq(X).
c) Once we have an orientation of X, the definition of the linear star operator carries
over from the vector spaces Λp(T ∗x ) to the vector bundles Λp(T ∗X) and, finally, to
the vector spaces Ω•(X), then called Hodge star operator. Apply (6.3) to obtain

(6.5) ∗0(1) =
√
|det (gik)|dx1 ∧ · · · ∧ dxn

in local coordinates.
Prove the Hodge duality ∗p : Ωp(X) ∼= Ωn−p(X). Assume n even, and check,
whether ∗ := ⊕np=0∗p is an involution. If not, how should one modify ∗ to ob-
tain an involution?
d) Prove that for a compact, oriented, n-dimensional, Riemannian manifold X with
boundary ∂X, we have Stokes’ Theorem∫

X

dω =

∫
∂X

ω, for ω ∈ Ωp(X).

[Hint for a): In principle, use the same mechanism as in Exercise B.4. Note that for
charts u and w forX in a neighborhood of x ∈ X, we have the simple transformation
rules, e.g., for a 1-form v ∈ Ω1(X),

v(x) =
∑n

j=1
aj(x) duj

∣∣
x

=
∑n

i=1
bi(x) dwi

∣∣
x
, where

bi(x) :=
∑n

j=1
aj(x)

∂
(
u ◦ w−1

)j
∂xi

(w (x)) .
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For b): d is characterized by the Leibniz rule

d(v ∧ w) = dv ∧ w + (−1)pv ∧ dw, for v ∈ Ωp(X), w ∈ Ωq(X).

How is d written in local coordinates?
For c): Note that ∗n−p∗p = (−1)p IdΩp(X). That yields Hodge duality, but noin-
volution ∗. Assuming n even, say n = 2m, does not help. However, try τp :=

im+p(p−1)∗p. Then

τ2m−p ◦ τp = im+(2m−p)(2m−p−1)im+p(p−1)(−1)p,

and so τ := ⊕2m
p=0τp is an involution (τ2 = 1 = IdΩ•(X)). The ±1 eigenspaces Ω±

of τ are crucial for defining the Hirzebruch signature operator, see Sections 13.2,
p.298, 14.4, p.312, and 18.6, Theorem 18.59, p.573, where some of the preceding
tasks are executed, both in greater generality - and in more detail.
For d): See [GP, p.182-187]. Incidentally, here one really needs the orientation.]

Remark 6.18. In algebraic terms, the exterior algebra Λ•(T ∗X) is the universal
unital algebra generated by T ∗X subject to the relations ξ ∧ ξ = 0 for ξ ∈ T ∗X.
To sum up, the wedge product extends to the full bundle Λ•(T ∗X) of exterior
algebras and to the space Ω•(X) of exterior differential forms on X. The mapping
w∧ : Ω•(X)→ Ω•(X) is called (left) exterior multiplication.

There is also an interior multiplication for skew-symmetric tensors, exterior
algebras and exterior differential forms. Exterior multiplication adds an index if
possible and increases the degree of forms; interior multiplication cancels an index
and decreases the degree of forms. More precisely, let V be a real vector space
equipped with an inner product 〈·, ·〉 and dimV = n. Then there is a linear mapping
wx: Λp(V )→ Λp−1(V ) for each w ∈ V , defined via

(6.6) wx(v1 ∧ · · · ∧ vp) :=

p∑
j=1

〈vj , w〉v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vp,

where v̂j means that the factor vj is omitted.
Relative to the induced inner product on Λ•(V ), the mapping w∧ and wx

are adjoints (see also Section 18.1 and Proposition 18.10, p.489). Like exterior
multiplication, the mapping wx induces endomorphisms of Λ•(T ∗X) and Ω•(X),
called the (left) interior multiplication.

The geometric meaning of interior multiplication is explained in Sections 6.7,
p.181 and 14.4, p.311 for the principal symbol of the codifferential δ (=the adjoint
of d, see below), in Section 14.5, p.316 for discussing the number of vector fields,
and in Section 18.10, p.489 for spinor representations.

The operator d : Ωp(X) → Ωp+1(X) is known as the exterior derivative
operator or exterior differentiation. In local coordinates, x1, . . . , xn defined
on a coordinate neighborhood U ⊆M , a form α ∈ Ωp(X) can be written as

α =
1

p!

n∑
1≤i1,...,ip≤1

αi1···ipdx
i1 ∧ · · · ∧ dxip ,
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where the αi1···ip ∈ C∞ (U) are antisymmetric in the indices i1, . . . , ip. On U ,

dα =
1

p!

n∑
1≤i1,...,ip≤n

d
(
αi1···ip

)
dxi1 ∧ · · · ∧ dxip

=
1

p!

n∑
1≤i1,...,ip≤n

∂
∂xi

(
αi1···ip

)
dxi ∧ dxi1 ∧ · · · ∧ dxip .

However, since d : Ωp(X)→ Ωp+1(X) is uniquely determined by the coordinate-free
operation d : Ω0(X)→ Ω1(X), one should be able to express d in a coordinate-free
manner. For this purpose (and because it is an important and basic notion), we
introduce Lie differentiation.

Let A ∈ C∞ (TX) be a vector field on X. The theory of systems of first-order
ordinary differential equations guarantees that for each point p ∈ X, there is ε > 0
and a curve αp : (−ε, ε) → X such that α̇′p (t) = Aαp(t). This curve α is known as
the integral curve of A through p. Furthermore, ε can be chosen so that for all q
in some neighborhood U of p, the integral curve αq : (−ε, ε)→ X exists, and there
is a well-defined C∞ map

α : U × (−ε, ε)→ X given by α(q, t) := αq (t) ,

such that αt := α (·, t) : U → α (U, t) is a diffeomorphism for each t ∈ (−ε, ε).
Moreover, αt+s = αt ◦αs whenever both sides are defined. In particular α−1

t = α−t
on α (U, t) ∩ U which is nonvoid for small t. Given a second vector field B ∈
C∞ (TX), we have

(
α−1
t

)
∗

(
Bαt(p)

)
∈ TpX and so the curve

t 7→
(
α−1
t

)
∗

(
Bαt(p)

)
= (α−t)∗

(
Bαt(p)

)
lies in the single vector space TpX. It then makes sense to differentiate this curve
at t = 0 to obtain a vector in TpX which is known as the Lie derivative of B with
respect to A at p, namely

(LAB)p := d
dt (α−t)∗

(
Bαt(p)

)∣∣
t=0

.

It is also called the Lie bracket of A and B at p. We explain why: The
assignment p 7→ (LAB)p defines a vector field LAB ∈ C∞ (TX). If A and B are

vector fields on Rn and p, δp ∈ Rn, then (where ≈ denotes equality modulo terms
of first-order in t) we have

(α−t)∗ (δp) ≈ δp− t (dA)p (δp) and Bαt(p) ≈ Bp+tAp ≈ Bp + t (dB)p (Ap) .

Thus,

(α−t)∗
(
Bαt(p)

)
≈ Bαt(p) − t (dA)p

(
Bαt(p)

)
≈ Bp + t (dB)p (Ap)− t (dA)p (Bp)

⇒ (LAB)p = (dB)p (Ap)− (dA)p (Bp) = Ap [B]−Bp [A] .

Hence, LAB = −LBA and viewing the vector fields A and B as differential opera-
tors on functions f , we have

(LAB)p (f) = (df)p (Ap [B]−Bp [A]) = Ap [B [f ]]−Bp [A [f ]] ,

and so as a differential operator LAB is the commutator of A and B, i.e.,

LAB = A ◦B −B ◦A = [A,B] .
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In local coordinates x1, . . . , xn, we have (automatically summing over repeated
indices)

LAB = LAB
[
xi
]
∂xi =

(
A
[
B
[
xi
]]
−B

[
A
[
xi
]])

∂xi

=
(
Aj∂xjB

i −Bj∂xjAi
)
∂xi .

Now we show how the exterior derivative can be expressed by the Lie derivative.
For a one-form ω, we then have the coordinate-free relation

(6.7) dω (A,B) = A [ω (B)]−B [ω (A)]− ω ([A,B]) , since

A [ω (B)]−B [ω (A)]− ω ([A,B])

= A
[
ωjB

j
]
−B

[
ωjA

j
]
− ω

(
Ai∂xi

(
Bj
)
∂xj −Bi∂xi

(
Aj
)
∂xj
)

= Ai
(
Bj∂xiωj + ωj∂xiB

j
)
−Bi

(
Aj∂xiωj + ωj∂xiA

j
)

− ωjAi∂xiBj + ωjB
i∂xiA

j

= ∂xiωj
(
AiBj −BiAj

)
= ∂xi (ωj)

(
dxi ∧ dxj

)
(A,B) = dω (A,B) .

Exercise 6.19. For ψ ∈ Ω2(X) and vector fields A,B,C ∈ C∞ (TX), show
that

dψ (A,B,C) = A [ψ (B,C)] +B [ψ (C,A)] + C [ψ (A,B)]

− ψ ([A,B] , C)− ψ ([C,A] , B)− ψ ([B,C] , A)

= S (A [ψ (B,C)]− ψ ([A,B] , C)) ,

where S denotes the sum over all cyclic permutations of (A,B,C). [Hint. Consider
the case ψ = ω ∧ ϕ, for ω, ϕ ∈ Ω1(X), and use dψ = dω ∧ ϕ− dϕ ∧ ω. The general
case follows by linearity, since any 2-form is locally a sum of wedges of 1-forms.]

More generally, one can show by induction that for ψ ∈ Ωk(X)

dψ (A1, . . . , Ak+1) =

k+1∑
i=1

(−1)
i+1

Ai

[
ψ
(
A1, . . . , Âi, . . . , Ak+1

)]
+

∑
1≤i<j≤k+1

(−1)
i+j

ψ
(

[Ai, Aj ] , A1, . . . , Âi, . . . , Âj , . . . , Ak+1

)
,(6.8)

where Âi indicates that Ai is omitted. For a proof, see [KN63, p.36]. Note that
the extra numerical factor of 1/ (k + 1) in the formula of [KN63, p.36] is ultimately
due to their convention that

(
dx1 ∧ · · · ∧ dxn

)
(∂x1 , . . . , ∂xn) = 1/n! (see [KN63,

p.7]), while our convention is that
(
dx1 ∧ · · · ∧ dxn

)
(∂x1 , . . . , ∂xn) = 1.

An extensive discussion of Lie brackets, and the general theory of Lie derivatives
can be found in [Bl81, Chapter 0] and [KMS, Chapters I-II]. In particular, see the
last reference (Sections II.7.6-II.7.9, pp.63-66) for the place of interior multiplication
and for further relations between exterior differentiation and Lie derivation.

6. Covariant Differentiation, Connections and Parallelity

Children of our motorized time are familiar with the concepts of speed and accellera-

tion and able to clearly distinguish between them: A car can move on a straight highway

with high speed, constant velocity and no accelleration; and it can move after a stop

light with low velocity, but high accelleration. So much for small children. When they
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grow older and have learned about the interpretation of force as a product of mass and

accelleration (Newton’s Second Law), most of them will fall back to the pre-Newtonian

identification of velocity and accelleration. Ask them to draw the trajectory of a thrown

ball or rock! Most will correctly draw a parabola which is a good approximation for a

rock that is thrown for short distances. But then ask them to mark the acting forces by

directed arrows along the trajectory! Most will draw tangent vectors of varying length

(the impulses) instead of the solely vertically acting constant gravitation. Some smarties

would talk away the apparent contradiction by referring to resulting force or to air resis-

tance. The smartest of all of them was the Greek philosopher and polymath Aristotle (384

- 322 BCE) who derived a straight trajectory of finite length for the thrown stone until

the impuls of the initial throw was consumed, followed by vertical fall-down. To his stu-

dent Alexander, the later famous military leader, he explained the visible deviation of his

theoretical trajectory from observed orbits by the complexity of full reality, air resistance,

wind influence, imperfect shape of the thrown object etc.

A modern geometer may have two comments to that continuing confusion of concepts.

(I) Analyzing a single trajectory is not very challenging. Elementary calculus yields sim-

ple definitions of the velocity ċ(t) ∈ R3 and the accelleration c̈(t) ∈ R3 of a sufficiently

smooth path c : [t0, t1] → R3 at a point c(t) ∈ R3 for t ∈ [t0, t1]. The student will see

at once that the vectors ċ(t) and c̈(t) have different direction, in general, and even can

be perpendicular to each other in natural parametrisation, namely c̈(t) pointing to the

center of the curvature. Moreover, writing the equations of motion for the curve c with

given initial position, velocity and accelleration c(t0), ċ(t0), c̈(t0) in (x, y, z) coordinates

gives a simple one-dimensional problem. Only the vertical z-coordinate is relevant. One

can neglect the y-coordinate for a plane movement and the movement in x direction is

not accellerated in the absence of forces in that direction. In flat R3, we can do without

distinguishing between the spaces of state (configuration), velocity (tangent) and acceller-

ation (forces) as long as we do correct calculations. At first, the geometer may wonder

about the success of classical mechanics with concepts that belong to different categories

but are commonly put in the same (Euclidean) space. Thinking about it, the geometer

will explain the astonishing correctness of sloppy and vague physics terminology by the

flatness of Euclidean space. There is nothing to worry about.

(II) In a second comment, the geometer would admit that there is a lot to worry
about. Recall Section 6.3, where it is natural to distinguish between the points of a
manifold X and equivalence classes of paths making its tangent bundle TX. We did it in a
coordinate-free manner, admitting non-Euclidean X, rigorously, canonically and without
special choices or ambiguities. Later we made choices, to put a Riemannian stucture,
i.e., smoothly varying metrics on the tangent spaces. But the basic concept of TX was
canonical. Now, similarly, we might wish to define a second derivative - canonically. That
is impossible. Why? Consider a vector field s ∈ C∞(X,TX), i.e., a section in the bundle
TX → X. It specifies a direction, i.e., a tangent vector s(x) ∈ TxX in each point x ∈ X.
We may consider the vector field s as a field of velocities. To get something like a second
derivative, an accelleration or a force we would specify a direction v ∈ TxX and take the
limit

(6.9) ∇vs|x :
!?
= lim
t→0

s(x+ tv)− s(x)

t
.

That looks familiar - except for two problems: We have to define a translation “+tv”

for small real t yielding a point x + tv in the neigborhood of x. That can be done using

a Riemannian metric for X (in contrast to the fact that the concept of tangent vector,

tangent space and tangent bundle was defined fully invariantly and without reference to
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a metric). The second problem is more serious: There is no canonical way in TX how to

compare two tangent vectors at different base points. We have to make choices. We have

to make parallel translations and to specify the ways to do them for a given bundle. That

is the idea of a connection.

In this Part II, we use only a very simple concept of connection, first, and most
general for real and complex vector bundles, and then more specifically for the
tangent bundle. We would like to emphasize that the concept of a connection has
many more ramifications than the few dry definition terms we give in this section.
It has become the central concept in modern low-dimensional geometry and, as
well, in gauge-theoretic quantum field theory and particle physics. That will be
explained in our Part IV.

Connections on Vector Bundles.

Definition 6.20. Let X be a smooth manifold and E a smooth real or com-
plex vector bundle over X. A connection (or covariant differentiation oper-
ator) ∇E on E is an R-linear first order differential operator ∇E : C∞(X,E) →
C∞(X,T ∗X ⊗ E) satisfying the Leibniz rule

(6.10) ∇E(fs) = df ⊗ s+ f∇Es

for all functions f ∈ C∞(X,R) and sections s ∈ C∞(X,E).

Recall that the bundles T ∗X ⊗ E and Hom(TX,E) are isomorphic (as real
vector bundles, see also Exercise B.4, p.679 for the complex category). Whence, we
can consider ∇E as a mapping

C∞(X,E)× C∞(X,TX) 3 (s, v) 7→ ∇Evs :=
(
∇E(s)

)
(v) ∈ C∞(X,E)

with the following properties for v, w ∈ C∞(X,TX), s, r ∈ C∞(X,E), f ∈ C∞(X,R)
and c ∈ R:

tensorial in v:

(6.11) ∇Ev+ws = ∇Evs+∇Ews and ∇Efvs = f∇Evs;

linear in s:

(6.12) ∇Ev (s+ r) = ∇Evs+∇Ev r and ∇Ev cs = c∇Evs;

product rule:

(6.13) ∇Ev (fs) = (df)
(
∇Evs

)
+ f

(
∇Evs

)
.

Exercise 6.21. a) Set X := Rn, E the (trivial) product bundle X × CN
(denoted by CNX in Exercise B.1a of the Appendix B, p.676) and show that the
attempted definition of (6.9) yields a connection.
b) Show that each complex or real vector bundle E over a smooth manifold X
admits a connection.
[Hint for (a): Check that all the properties of the preceding list are satisfied.
Hint for (b): Choose a locally finite covering of X by charts, and choose trivial-
izations of E; apply (a); assemble the local connections to a global operator; and
check the properties.]



6.6. COVARIANT DIFFERENTIATION, CONNECTIONS AND PARALLELITY 175

Parallel Transport. Closely related to the formal definition of a connection
is the concept of parallel transport of geometric information.

Definition 6.22. Let ∇E be a connection for a vector bundle πE : E → X.
A section s ∈ C∞(X,E) is called parallel relative to ∇E along a smooth path
c : [t0, t1]→ X in X, if

(6.14) ∇Eċ(t)s(c(t)) = 0 for all t ∈ (t0, t1).

Exercise 6.23. Let X,E,∇E , c be as in the preceding definition. Define a
parallel translation

τEc,t : Ec(t) −→ Ec(t0) for t ∈ (t0, t1).

[Hint: Begin with local coordinates around x0 := c(t0). So, choose a coordinate
patch X ⊃ U 3 x0 and coordinates x1, . . . , xn yielding coordinate vector fields
∂
∂x1 , . . . ,

∂
∂xn in TX|U . For simplicity, consider E as a real vector bundle of fiber di-

mension N . Through the identification E|U ∼= U×RN you obtain a basis s1, . . . , sN
of sections of E|U . For the given connection ∇E , define the so-called Christoffel
symbols Γkij (j, k = 1, . . . , N, i = 1, . . . , n) by the condition

(6.15) ∇E∂
∂xi
sj =:

N∑
k=1

Γkijsk .

See also our geometric interpretation of the Christoffel symbols in Equations (16.47)
and (16.48) of Part IV below on pp.392ff. Let now s ∈ C∞(X,E). Locally, you
may write s(y) =

∑
k a

k(y)sk(y). Putting s(t) := s(c(t)), you define a section of E

along c. Furthermore, let ċ(t) =:
∑
γi ∂
∂xi . Then by (6.11)-(6.13) and (6.15), find

∇Eċ(t)s(t) =
∑
k

ak(t)sk(c(t)) +
∑
i,k

γi(t)ak(t)
(
∇E∂

∂xi
sk
)
(c(t))

=
∑
k

ak(t)sk(c(t)) +
∑
i,j,k

γi(t)ak(t)Γjik(c(t))sj(c(t)).

Note that ∇Eċ(t)s(t) depends only on the values of s along the curve c, and not on all

the values of s in a neighborhood of the trajectory {c(t) : t ∈ [t0, t1]}. Our Equation
(6.14) thus represents a linear system of first order ordinary differential equations
for the coefficients a1(t), ..., aN (t) of the section s(t) along c you are looking for.
Therefore, for given initial values s(t0) ∈ Ec(t0), you obtain a unique solution of

(6.14). This gives you an isomorphism Ec(t0)

∼=−→ Ec(t) for all t ∈ [t0, t1]. Take the
inverse as the wanted parallel translation.]

Thus, if x, x′ ∈ X, the fibers of E above x and x′, Ex and Ex′ , respectively, can
be identified by choosing a curve c from x to x′ (x = c(0), x′ = c(1)) and moving
each s0 ∈ Ex along c to Ex′ by parallel translation. This identification depends
only on the choice of the curve c. Now assume that X is a compact manifold with
Riemannian metric g and injectivity radius ρ > 0 (see Definition 6.13, p. 166).
Then we have a geodesic with respect to the Riemannian metric g as canonical
curve, which is uniquely determined by the endpoints x, x′, if dist(x, x′) < ρ.

Definition 6.24. Let X be a compact Riemannian manifold with injectivity
radius ρ > 0 and let E → X be a vector bundle equipped with a connection ∇E .
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For x, x′ ∈ X, with dist(x, x′) < ρ, we denote the parallel translation relative to
∇E along the unique geodesic from x′ to x with minimal length dist(x, x′) by

τEx,x′ : Ex′ −→ Ex.

Remark 6.25. a) In the preceding definition, we obtain parallel translation on
a Riemannian manifold from a connection. Conversely, we can regain a connection
from parallel translation by the recipe of (6.9) at the beginning of this section.
b) To explain the name connection, we refer to our Section 16.2, p.366ff, where
we develop the topic Connections and Curvature. In particular, we refer to Figure
16.1, p.367. More precisely (replacing P by E and M by X in the figure), consider
the tangent space TpE at the point p ∈ E to the total space E of a vector bundle
π : E → X. Inside TpE, there is a distinguished subspace, namely the tangent
space to the fiber Ex containing p (x = π(p)). This space is called the vertical
space Vp . However, there is no distinguished horizontal space Hp complementary
to Vp, i.e., satisfying TpE = Vp ⊕ Hp. If we have a covariant derivative ∇E ,
however, we can parallely transport p for each v ∈ TxX along a curve cv(t) with
cv(0) = x, ċv(0) = v. Thus, for each v, we obtain a curve pv(t) in E. The subspace
of TpE spanned by all tangent vectors to E at p of the form d

dtpv(t)|t=0 then is a
suitable choice of a horizontal space Hp. In this manner, one obtains a rule how
the fibers in neighboring points are connected with each other.

Definition 6.26. Let π : E → X be a real or complex vector bundle on the
differentiable manifold X with Euclidean, respectively Hermitian bundle metric
〈·, ·〉. A connection ∇ on E is called metric (also Riemannian, respectively
Hermitian), if

(6.16) d〈s, r〉 = 〈∇s, r〉+ 〈s,∇r〉 for all s, r ∈ C∞(X,E).

A metric connection thus has to be compatible with the metric. To read
(6.16) correctly, you notice that 〈s, r〉 is a smooth function on X, whence d〈s, r〉 ∈
C∞(T ∗X). Applying the left side of (6.16) to a tangent vector field v ∈ C∞(TX)
yields a smooth function on X. Similarly, each of the two terms on the right
side of (6.16) yields a function when the vector field v is inserted into ∇s,∇r ∈
Hom(TX,E).

Connections on the Tangent Bundle. Connections on the tangent bundle
TX are particularly important:

Definition 6.27. Let ∇ be a connection on the tangent bundle TX of a dif-
ferentiable manifold X.
a) A curve c :→ X is called autoparallel or geodesic with respect to∇, if∇ċc ≡ 0,
i.e. if the tangent field ċ of c is parallel along c.
b) The torsion tensor of ∇ is defined as

T (X,Y ) := ∇XY −∇YX − [X,Y ] (X,Y ∈ C∞(TX)).

c) The connection ∇ is called torsion free, if T ≡ 0.

A classical result of Riemannian geometry (proved in [Jo, Section 3.3] and
many other places) is now
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Theorem 6.28. On each Riemannian manifold X, there is precisely one metric
and torsion free connection θ (on TX). It is determined by the formula

(6.17) 〈θXY,Z〉 =
1

2

(
X〈Y,Z〉 − Z〈X,Y 〉+ Y 〈Z,X〉

− 〈X, [Y,Z]〉+ 〈Z, [X,Y ]〉+ 〈Y, [Z,X]〉
)
.

The connection θ determined by (6.17) is called the Levi-Civita connection
of X. In the sequel, θ (or θg) will always denote the Levi-Civita connection.

Clifford Modules and Operators of Dirac Type. There are many different
concepts of a Dirac operator in global analysis: classical and twisted Dirac opera-
tors on spin manifolds; operators of Dirac type with a square with scalar principal
symbol; generalized (or compatible) Dirac operators defined by arbitrary (or com-
patible) connections on bundles of Clifford modules over Riemannian manifolds;
full and split (odd-parity) Dirac operators; boundary Dirac operators; etc. The
concepts depend on various geometrical features like dimension parity, orientation
and chirality, almost complex structure, and suitable boundary. Each definition
has its own merits and range of application and we will return to them.

Let X be a compact smooth oriented manifold (with or without boundary)
with Riemannian metric g. Let dimX = n. Let S be a complex vector bundle over
X of Clifford modules; i.e., we have a representation

c : C`(X) −→ Hom(S, S)

with

(6.18) c(v)2 = −‖v‖2 IdSx for v ∈ TXx and x ∈ X.

Recall that the Clifford bundle C`(X) consists of the Clifford algebras C`(TXx, gx),
x ∈ X, which are associative algebras with unit generated by TXx and subject to
the relation v ·w+w ·v = −2gx(v, w). We shall call c left Clifford multiplication
and occasionally write

c : C∞(X,TX ⊗ S) −→ C∞(X,S).

We may assume that S is equipped with a Hermitian metric which makes Clifford
multiplication skew-adjoint, i.e. c(v)∗ = −c(v) for all v ∈ TXx.

Definition 6.29. A connection ∇S : C∞(X,S) −→ C∞(X,T ∗X ⊗ S) for S
will be called compatible with the Clifford module structure of S, if ∇Sc = 0, i.e.,
∇S is a module derivation with

(6.19) (∇Sc)(v)(s) = ∇S(c(v)s)− c(θgv)s− c(v)(∇Ss) = 0,

where θg denotes the Levi-Civita connection on X.

Patching locally constructed spin connections together proves

Theorem 6.30 (Branson, Gilkey [BrGi]). There exist compatible connections
on S which extend the Riemannian connection on X to S.

Definition 6.31. Let D : C∞(X,S) −→ C∞(X,S) be a linear differential
operator of first order operating on smooth sections of a C`(X)-module S.
a) We call D an operator of Dirac type, if it can be written as

(6.20) D = c ◦ J ◦ ∇S ,
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where ∇S is a (not necessarily compatible) connection and J : C∞(X;T ∗X ⊗
S) ∼= C∞(X;TX ⊗ S) denotes the canonical identification. In terms of a local
orthonormal frame v1, . . . , vn of TX we then have

(6.21) Ds|x =

n∑
ν=1

c(vν)(∇Svνs)|x.

b) We callD a (compatible) Dirac operator, if it can be written asD = c◦J◦∇S ,
where ∇S is a compatible connection.

Note. The Dolbeault complex (to be studied extensively in Parts III-IV) is
an example of a non-compatible Dirac operator.

As we shall see below, all (total) Dirac operators are elliptic and formally self-
adjoint with a Green’s formula

(6.22) (Ds, s′)− (s,Ds′) = −
∫
Y

G(y)〈s|Y , s′|Y 〉,

where G(y) := c(n) denotes Clifford multiplication by the inward unit tangent
vector over the (possibly empty) boundary Y = ∂X.

For even n the splitting C`(X) = C`+(X) ⊕ C`−(X) of the Clifford bundles
induces a corresponding splitting of S = S+ ⊕ S− and a chiral decomposition

D =

(
0 D−

D+ 0

)
.

The partial (chiral) Dirac operators D± are especially interesting in index the-
ory since they are also elliptic, but in general not self-adjoint and provide interesting
integer-valued invariants as their indices. In this book, we shall come back to Dirac
type operators incessantly.

7. Differential Operators on Manifolds and Symbols

We shall define linear differential operators on differentiable manifolds, acting
on sections of complex vector bundles.

Our Data. Let X be a C∞ n-manifold. Let πE : E → X be a C∞ complex
vector bundle over X of fiber-dimension N , i.e., a family of N -dimensional complex
vector spaces Ex, with the parameter x ranging over X, whose disjoint union carries
C∞ structure in a natural way; see Appendix, Exercise B.11b, p. 683. We denote
the linear space of C∞ sections of E by C∞(X,E) or shortly C∞(E) := {s : X →
E : πE ◦ s = idX}. Unless otherwise stated, we remain in the C∞ category. For
example, let E denote the trivial product bundle X×CN , where we write CNX when
we wish to emphasize the bundle point of view. Then C∞(E) denotes the space
of CN -valued C∞ functions on X. Strictly speaking when N = 1, we should write
C∞(CX) instead of C∞(X), but when the context is clear this is not necessary.

Since manifolds and vector bundles can be locally described in terms of coor-
dinate functions, the following definition makes sense:

Definition 6.32. Let πE : E → X, πF : F → X be two C∞ complex vector
bundle over X of fiber-dimension N and M . A linear differential operator P of
integer order k ≥ 0 from E to F is a linear mapping P : C∞(E) → C∞(F ) that
satisfies the following conditions:
(i) For any element s ∈ C∞(E), the support of Ps is contained in the support of s.
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(ii) Via local coordinates, the mapping P can be represented as a vectorial differ-
ential operator (see before Exercise 5.7, p. 139) in which there derivatives of order
≤ k appear, but not of order > k. More precisely, for all coordinate neighborhoods
U ⊂ X and trivializations τE : E|U ∼= U × CN and τF : F |U ∼= U × CM , the
mapping P can be locally expressed in the form

(6.23) P [s](x) = τ−1
F

( ∑
|α|≤k

aα(x)Dα(τE ◦ s)|x
)
, x ∈ U,

where α ranges over all multi-indices (α1, . . . , αn) ∈ Z+ × n. . . × Z+ with |α| :=
α1 + · · ·+ αn, aα ∈ C∞(X,Hom(CN ,CM )), and

Dα := i−|α|
∂|α|

∂x1
α1 · · · ∂xnαn

,

where x1, . . . , xn denote the chosen local coordinates on U .

Note (1). The splitting of our definition in two parts is for convenience only.
Actually, condition (i) makes it sufficient to check condition (ii) solely for s with
compact support contained in the coordinate patch U . That would be a weaker
condition. However, to argue along that line excludes analytic differential operators
in the case that they should be applied only on analytic sections. Mathematically,
the splitting is redundant: (i) can be deduced from (ii) as in Exercise 5.2, p.136.
For the deduction of (ii) from (i), see Remark 5.3, p.136.

Note (2). The reason for inclusion of the factor i−|α| is explained in Remark
5.1, p.135. There we also emphasize why this tradition, originating from mathe-
maticians working in analysis, is a bit unfortunate for topologists, geometers and
physicists when they are interested in differential operators of first order on real
vector bundles.

We write P ∈ Diffk(E,F ) for linear differential operators of order ≤ k. A real
differential operator of order k is defined similarly with C replaced by R.

Symbolic calculus. Fourier analysis makes it natural to replace the differ-
ential expressions by multiplication, e.g., to replace the differentiation Dα by the
monomial ξα with ξ ∈ Rn. We can do that for all differential expressions in (6.23)
and obtain a polynomial in ξ at each x0 ∈ X. That polynomial depends heavily on
the choice of coordinates. To reduce that dependence, we can define the polyno-
mial in cotangent variables, i.e., choosing ξ ∈ T̊ ∗x0

X = T ∗x0
X \ {0}. The expression

defined in that way is called the total or complete symbol.
Workers in analysis use the complete symbol often. It is intimately related

to the concepts of quantization, see below. However, roughly speaking, it carries
too much information. Consequently, it is not defined independently of the choice
of coordinates, in general. In the geometric tradition of, e.g., classifying conic
sections or more advanced curves and surfaces, it is obvious that one has to select
the relevant information. For index theory, that is the principal symbol, i.e., the
leading term of the total symbol. Fortunately, it will turn out that the definition of
the principal symbol does not depend on the choice of local coordinates. Whence,
it is a genuinely geometric object.

Let π : T̊ ∗X → X denote the dotted cotangent bundle of X, i.e., the bundle
with the symplectic cone T̊ ∗X := T ∗X \ X as total space. Let π∗E → T̊ ∗X

and π∗F → T̊ ∗X denote the pull-backs of the vector bundles πE : E → X and
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πF : F → X via π. We then have a vector bundle Hom(π∗E, π∗F ) → T̊ ∗X. We
define a section σ(P ) of this bundle for each linear differential operator P , acting
between sections of E and F , i.e., σ ∈ C∞(Hom(π∗E, π∗F )). That is our view of
the principal symbol (similarly, e.g., [Wells, p.115-116]).

Definition 6.33. For a linear differential operator P : C∞(X,E)→ C∞(X;F )
of order k ≥ 0 we define the symbol (also called the principal or the leading
symbol to emphasize that only the principal or leading terms of P enter into the
definition) via the formula

(6.24) σ(P ) (x, ξx) (e) =
ik

k!
P
(
ϕkg

)
x
,

where x ∈ X; ξx ∈ T ∗xX, ξx 6= 0; e ∈ Ex; ϕ is a real-valued C∞ function on X with
dϕx = ξx and ϕ (x) = 0; and g ∈ C∞(E) with g(x) = e. (Such choices are always
possible.)

For ξx ∈ T ∗xX, note that the fiber (π∗E)ξx may be identified with Ex and we
will do so; we write the identification as (π∗E)ξx ∼ Ex .

Note. Most workers in analysis prefer to define the principal symbol in local
coordinates, i.e., taking the characteristic polynomial when the operator is given
by (6.23), see the following Exercise 6.34b. For the further treatment of elliptic
differential operators, this definition is somewhat opaque, since in that way the
principal symbol is defined in a piecewise unrelated fashion. Then, it may look
like a mystery that the locally given characteristic polynomials collectively define a
bundle homomorphism and that the principal symbol of a differential operator on
a manifold admits a geometric interpretation. Of course, basically it does not make
a big difference whether we introduce the principal symbol without coordinates or
with coordinates, as the following exercise shows. Even in our preferred coordinate-
free first way one has to use coordinates to show that (6.24) in Definition 6.33 is
well defined and yields a smooth section of the homorphism bundle.

Exercise 6.34. a) Show that the point σ(P ) (x, ξx) (e) ∈ Fx in Equation (6.24)
in the preceding Definition is well defined, i.e., it does not depend on the choices of
functions and sections representing cotangent vectors and fiber points. Moreover,
show that the definition yields a smooth section of the homomorphism bundle.
b) Choose a coordinate patch U ⊂ X and local coordinates x1, . . . , xn on U . Write
ξx = ξ1dx

1 + · · ·+ ξndx
n with (ξ1, . . . , ξn) ∈ Cn, and write the product ξα1

1 · · · ξαnn
as ξα. For e ∈ (π∗E)ξx ∼ Ex, define

σ(P )(ξx)(e) : = τ−1
F

(
x,
∑
|α|=k

aα(x)
(
τE(x, e)

)
ξα
)
∈ Fx ∼ (π∗F )ξx

=
∑
|α|=k

τ−1
F

(
x, a(α1,...,αn)(x)

(
τE(x, e)

))
ξα1
1 · · · ξαnn ,

where τE , τF are local bundle trivializations like in (6.23). Making identifications
(π∗E)ξx ∼ Ex ∼ CN (via τE) and (π∗F )ξx ∼ Fx ∼ CM (via τF ), we can write this
more transparently as

(6.25) σ(P )(ξx) =
∑
|α|=k

a(α1,...,αn)(x)ξα1
1 · · · ξαnn ∈ Hom(CN ,CM ).
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Show that in this way σ(P ) ∈ C∞
(
Hom(π∗E, π∗F )

)
is well-defined, i.e., indepen-

dent of the choice of local coordinates and trivializations τE and τF .
[Hint: You can prove (b) by (a), i.e., writing the mapping in coordinate-free manner;
and you can prove (a) by (b), i.e. checking all choices and transformations. In both
cases, you have to do some calculations at some point. There are no free lunches.
The result is not obvious. Indeed, if we had summed over α with |α| = k − 1, the
resulting so-called subprincipal symbol is not well-defined.]

In this way, we have defined a linear map σ : Diffk(E,F ) → Smblk(E,F ),
where

(6.26) Smblk(E,F ) :=

{σ ∈ Hom(π∗E, π∗F ) : σ(x, λv) = λkσ(x, v) for all (x, v) ∈ T̊ ∗X and λ > 0}.

Exercise 6.35. Show that the sequence of vector spaces

0→ Diffk−1(E,F )
j→ Diffk(E,F )

σ→ Smblk(E,F )

is exact, where j denotes the natural inclusion.
[Hint: This is clear from the representation in coordinates; see Exercise 6.34b.
Replacing Smblk(E,F ) by the subspace of polynomial symbols (see [Pal65, p.63]),
one gets a surjective symbol map, and the exact sequence may be extended by zero
on the right.]

Exercise 6.36. Show that for P ∈ Diffk(E,F ) and Q ∈ Diffj(F,G), the
operator QP is in Diffk+j(E,G) with σ(QP ) = σ(Q) ◦ σ(P ).
[Hint: Carry out the proof using the chain rule first for the local vector-valued
differential operators (see p. 139), and then generalize.]

Formal Adjoints. In the following, we assume that X is compact, oriented,
closed (i.e., without boundary) and Riemannian, and that the vector bundle E
is equipped with a Hermitian metric; i.e., each fiber Ex has a non-degenerate,
conjugate-symmetric bilinear form (··, ··)Ex which is C∞ in the sense that (e1, e2)E ∈
C∞(X) for any two sections e1, e2 ∈ C∞(E). Whence, we can form the integral∫
X

(e1, e2)E , obtaining a Hermitian bilinear form on the vector space C∞(E). As-
sume that the vector bundle F is also given a Hermitian metric.

Definition 6.37. In analogy with Hilbert space theory (see Chapter 2), we say
that two operators P ∈ Diffk(E,F ) and P ∗ ∈ Diffk(F,E) are formally adjoint
(or formal adjoints), if

∫
X

(Pe, f)F =
∫
X

(e, P ∗f)E for all sections e ∈ C∞(E)
and f ∈ C∞(F ).

Note. The definition extends to a compact manifold X with smooth boundary
Σ = ∂X. In that case we require the symmetry condition for sections e, f with
support in the interior X̊ := X \ Σ of X.

Exercise 6.38. Show:
a) There is at most one formally adjoint differential operator P ∗ for a given P .
b) (P +Q)∗ = P ∗ +Q∗, (P ◦Q)

∗
= Q∗ ◦ P ∗, and P ∗∗ = P .

Exercise 6.39. Show that for each P ∈ Diffk(E,F ) there is an adjoint differ-
ential operator P ∗ ∈ Diffk(F,E) such that σ(P ∗) = σ(P )∗, where σ(P )∗ : π∗(F )→
π∗(E) is the homomorphism pointwise adjoint to σ(P ).
[Hint: 1. Begin with the special case k = 0, where P ∈ Diff0(E,F ) is given by a
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vector bundle homomorphism h : E → F (i.e., a family of linear maps h : Ex → Fx
parametrized smoothly by x ∈ X). Then P (e)(x) = hx(e(x)) and σ(P )(x, v) = hx,

where e ∈ C∞(E) and v ∈ T̊xX). Let h∗x : Fx → Ex be the linear map adjoint to
hx relative to the Hermitian metrics on Ex and Fx. In this case, for f ∈ C∞(F )

(P ∗f)(x) = h∗x(f(x)) and σ(P ∗)(x, v) = h∗x.

Thus, the statement is proven for this trivial case.
2. For each χ ∈ C∞(TX) define an operator P ∈ Diff1(CX ,CX) by

Pϕ := 1
iχ [ϕ] = 1

i dϕ (χ) ,

where at any point x, χ [ϕ] (x) = dϕx (χ) is the derivative of ϕ in the direction of
χ|x. Then

σ (P ) (x, v) = v (χ|x) , where v ∈ T̊xX = T ∗xX \ {0} .
Furthermore, by the Stokes Theorem in the classical Green form (e.g., see [GP,
p.152 and 182-187] or the Cartan calculus in our Exercise 6.17, p. 169 below, which
we have already used in Exercise 5.9 (p. 144) and which also applies here), we have
for all ϕ,ψ ∈ C∞(X) ∫

X

(
χ [ϕ] ψ̄ + ϕdiv (ψχ)

)
= 0,

where div (ψχ) ∈ C∞(X) is the divergence of the vector field ψχ. Thus, P ∗ψ =
1
i div(ψχ). One further checks that

(σ(P ∗)(x, v)) (zx) = (σ(P )(x, v)) (zx) = v (χ|x) zx, zx ∈ (CX)x .

Since v (χ|x) is real and hence self-adjoint as a linear map from C to C, we have
e(P ∗) = e(P )∗.
3. One may now show that every global differential operator can be constructed
from the two preceding types via sums and compositions (locally, this is entirely
trivial), and thus Exercise 6.39 reduces to Exercise 6.38.]

Remark 6.40. In contrast to Exercise 6.38, the solution of the preceding Exer-
cise 6.38 is not so trivial, even though we only applied Stokes’ theorem in the weak
form. Alternatively, one can first assign to each vector-valued differential operator
P : C∞ (CU )→ C∞ (CU ) given (over an open set U ⊂ Rn) by

Pu =
∑
|α|≤k

aα (x)Dαu

the operator P ∗ : C∞ (CU )→ C∞ (CU ) given by

P ∗v :=
∑
|α|≤k

Dα(a∗αv),

where a∗α(x) is the adjoint (conjugate transpose) of the N ×N matrix aα(x). Using
integration-by-parts, it then follows at once that∫

U

(Pu, v) =

∫
U

(u, P ∗v) for all u, v ∈ C∞0 (CU ) , where

C∞0 (CU ) := {w ∈ C∞ (CU ) : suppw is a compact subset of U}
and where (·, ·) is the canonical Hermitian scalar product on CN . The major work
consists of globalizing this result; see [Pal65, p.70-75], [Na, p.181-183], or [Wells,
p.117 f].
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Elliptic Differential Operators. Definition and Standard Examples. Geo-

metrically defined linear differential operators on closed manifolds (i.e., operators of Laplace

type and operators of Dirac type, see below) are marked by two features, namely the

algebraic symmetry and regularity of their expression and the finite number of linearly

independent solutions. Geometers have always noticed these two features and exploited

them. They have been pleased with the easiness and transparency of manipulations, and

were enthusiastic when recognising geometric or topological invariants in the dimensions

of the solution spaces.

As seen from analysis, these two features are interrelated: algebraic regularity of

the principal symbol of a differential operator over a closed manifold implies that the

dimension of the kernel of the operator is finite. For that, the key notion is the ellipticity

of the principal symbol. That notion will be explained now. In Chapter 9, we deduce the

regularity (=smoothness) of the solutions and the Fredholm properties from the ellipticity.

Then in Part III, we prove the Atiyah-Singer Index Theorem for elliptic operators on closed

manifolds. Roughly speaking, it gives a thorough explanation for the astonishing and

previously as somewhat mysterious perceived interrelations between algebraic symmetries

of a formal expression (the principal symbol of a variety of geometric defined elliptic

operators) and geometric features of the underlying manifold. In Part IV, much wider

implications are drawn for law-dimensional topology and gauge-theoretic physics of the

same philosophy, namely exploiting symmetries and regularities of formal expressions for

sensing asymmetries and irregularities of related geometric or physical objects.

Definition 6.41. Let P : C∞(E) → C∞(F ) be a differential operator with
principal symbol σ(P ) : T ∗(X)→ Hom(π∗E, π∗F ). If σ(P )(ξx) is an isomorphism
for all nonzero ξx ∈ T ∗xX, then P is called an elliptic differential operator.

Whence, a differential operator P is elliptic, if in each chart all of the locally-
defined vectorial differential operators are elliptic (see Exercise 5.7); i.e., for each
local representation of P over the chart domain U , the characteristic polynomial
of the principal part (associated to the terms of highest order, i.e., what we call
the principal symbol)

(6.27) pk (x, ξ) :=
∑
|α|=k

aα (x) ξα

is an invertible linear map for all x in U and all ξ ∈ Rn \ {0}.

Exercise 6.42. Show P elliptic ⇒ P ∗ elliptic.

We consider some standard examples. Even though C∞(E) and C∞(F ) are
not Hilbert spaces (and hence P is not Fredholm), here we take the index of P to
be dim kerP − dim kerP ∗, where P ∗ denotes the formal adjoint of P . This is the
same as the usual index of a Fredholm extension of P to a suitable Sobolev space,
as is explained in Chapters 7 and 9 below.

Exercise 6.43. Check the principal symbols of Table 6.1 and derive the ellip-
ticity of all the listed standard operators.
[Hint to (1): This operator (and its counterpart on S1 for periodic matrices A) was
studied in Exercise 2.42, p.41f. Its principal symbol was calculated on p.42 (Note).
To (2): Let ∂xi be a shorthand notation for ∂

∂xi . Regard the domain C∞(Rn,C) as
the space of sections of the trivial bundle Rn×C→ Rn and write the spaces down
where the principal symbol of the Laplacian ∆ = ∂2

x1 + · · ·+ ∂2
xn acts. Do it slowly
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Table 6.1. The principal symbol of elliptic standard operators

Operator P Domain σ(P )(x, ξ)

1
ODE system P := ∇+A,

A ∈ C∞(R, gl(r,C)),∇ = d
dtI

r C∞(R,C) iξIr

2
Laplace operator

P := ∆ = ∂2
x1 + · · ·+ ∂2

xn
C∞(Rn,C) −(ξ2

1 + · · ·+ ξ2
n)

3
Cauchy-Riemann operator
P := ∂

∂z̄ = 1
2 ( ∂
∂x + i ∂∂y )

C∞(R2,C) 1
2 i(ξ1 + iξ2)

4 Euler operator P := d+ δ Ω•(X),Ωev(X) i(ξ ∧ − ξx)
5 Dirac type operator P := D = c ◦ ∇S C∞(X,S) c(iξ)

6
Dirac Laplacian P := D2

Riemannian metric g
C∞(X,S) −‖ξ‖2g(x) ISx

with the previous notations: Then you have

σ(∆) : T̊ ∗Rn −→ Hom
(
π∗(Rn × C), π∗(Rn × C)

)
(x, ξ1dx

1 + · · ·+ ξndx
n) 7→ −(ξ2

1 + · · ·+ ξ2
n) ∈ End (π∗(Rn × C)x,ξ) ,

regarded as multiplication on π∗(Rn × C)x,ξ ∼= C by a real.
To (3): The Cauchy-Riemann operator is a first-order operator on the same space
of sections as in Example (2), but with a different symbol

σ(
∂

∂z̄
)(x, ξ1dx

1 + ξ2dx
2) =

1

2
i(ξ1 + iξ2),

regarded as complex multiplication on π∗(Rn ×C)x,ξ ∼= C. Similarly, you have the

complex differentiation operator ∂
∂z̄ = 1

2 ( ∂
∂x − i

∂
∂y ). Note that ∆ = 4 ∂2

∂z̄∂z and at

ξ1dx
1 + ξ2dx

2 you confirm

σ(∆)(x, ξ1dx
1 + ξ2dx

2) = 4
1

2
i(ξ1 + iξ2)

1

2
i(ξ1 − iξ2) = −(ξ2

1 + ξ2
2).

There is a type of exterior derivative on Ω0,0(R2,C) := C∞(R2,C), namely the
Dolbeaut operator

∂̄ : Ω0,0(R2,C) −→ Ω0,1(R2,C) := {hdz̄ : h ∈ C∞(R2,C)},
f 7→ ∂f

∂z̄ dz̄
.

Here Ω0,1(R2,C) is called the space of complex forms of type (0, 1). For a compact
Riemann surface S a strictly analogous operator ∂̄ : Ω0,0(S,C) −→ Ω0,1(S,C) can
be defined. Its index yields the classical Riemann-Roch Theorem. For any higher-
dimensional compact, complex manifold X of dimCX = m, there is a Dolbeaut
operator complex ∂̄ : Ω0,k(X,C) → Ω0,k+1(X,C), k = 0, 1, . . .m which can be
rolled up to give an elliptic operator

∂̄ :

m⊕
k even

Ω0,k(X,C)→
m⊕

k odd

Ω0,k(X,C).

The Hirzebruch-Riemann-Roch Theorem expresses index ∂̄, called the arithmetic
genus of X in terms of so-called Chern numbers. We shall explain all that below in
Section 14.7, p.320ff, and present a comprehensive generalization in Section 18.6,
see in particular p.583ff.
To (4): Recall from Section 6.5
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• the definition of the bundle Λk(X) → X of complex exterior k-covectors
over the compact, orientable C∞ Riemannian n-manifold X with metric
tensor g;

• the wedge product ∧, the interior product x and the (Hodge) star operator
∗ on Λ•(X);

• the space Ωk(X) := C∞(Λ(X)) of C∞ sections of Λk(X), namely the
space of C-valued k-forms on X;

• the exterior derivative d : Ωk(X) → Ωk+1(X) and the codifferential δ :
Ωk+1(X)→ Ωk(X) which is the formal adjoint of d; i.e.,

(dα, gb) =

∫
X

〈dα, β〉gνg =

∫
X

〈α, δβ〉gνg = (α, δβ),

where νg denotes the volume form and 〈·, ·〉g denotes the inner product
on Λ•(X) induced by g; and

• set again Ω•(X) = ⊕nk=0Ωk(X).

Next, you bring δ in a manageable form. Try (here just for fun, but later highly
usable)

δ = −(−1)nk ∗n−k d∗k+1 : Ωk+1(X)→ Ωk(X).

Then you are ready to calculate the principal symbol of the first order operator
d + δ : Ω•(X) → Ω•(X). One way to do it would be the following exercise in the
manipulation of exterior forms (do it):

Choose a local system of coordinates x = (x1, . . . , xn) onX. Then {dx1, . . . , dxn}
is the corresponding local frame for T ∗X and {dxα := dxα1 ∧· · ·∧dxαk}α∈J a local
frame for the bundle Λ•(X), where J denotes the set of all coordinate selections
α = (α1, . . . , αk) with k ≤ n and 1 ≤ α1 < · · · < αk ≤ n). For given x ∈ X
and e ∈ Λ•(X)x expand e = ω(x) with ω =

∑
α∈J fαdx

α close to x with smooth
functions {fα}α∈J . Check that

dω = d
(∑
α∈J

fαdx
α
)

=
∑
α∈J

n∑
j=1

∂

∂xj
fαdx

j ∧ dxα .

For ξ = ξ1dx
1 +· · ·+ξndxn you will find σ(d)(x, ξ)(e) = iξ∧e. Then σ(δ)(x, ξ)(e) =

−iξxe since δ = d∗ and the principal symbol of the adjoint operator is the adjoint
of the principal symbol (as you have shown in Exercise 6.39, p.181). Check that
the mapping ξx is the dual of ξ∧ by applying the mappings to an orthonormal local
frame. In this way you obtain

σ(d+ δ) : T̊ ∗X −→ Hom
(
π∗Λ•(X), π∗Λ•(X)

)
(x, ξ) 7→ (π∗Λ•(X))(x,ξ) 3 e 7→ i(ξ ∧ e− ξxe).

Note that σ(d + δ)ξ is invertible (ξ 6= 0), and hence d + δ is elliptic. To see that,
please check σ(d+δ)ξ◦σ(d+δ)ξ = −‖ξ‖2Iπ∗Λ•(X)ξ

(
= σ((d+δ)2)ξ

)
. You can find the

details below in Section 14.4, p.309f. The second order operator (d+ δ)2 = dδ+ δd
is called the Beltrami Laplacian. Since d + δ is formally self-adjoint, its index is
zero. By definition, elements of ker(d + δ) are known as harmonic forms. Hodge
theory tells us that the algebra of harmonic forms, say H•(X), is isomorphic to the
cohomology algebra H∗(X;C) where wedge product of harmonic forms corresponds
to cup product in H∗(x;C) (see [GH, p.43f and p.59-61] for a quick orientation).
To get something more interesting, you must restrict d + δ to the even or to the
odd forms. The restricted operators are still elliptic with symbols that are inverses



186 6. DIFFERENTIAL OPERATORS OVER MANIFOLDS

modulo a factor of −‖ξ‖2. Their index is not necessarily zero. Indeed, restricting
to the even forms yields an operator with the Euler characteristic of X as index.
That will be explained in the mentioned Section 14.4.
To (5): The claim follows immediately from the definition of Dirac type operators
(see Definition 6.31, p.177 and the elemenary properties of Clifford multiplication.
You can use either the global definition of (6.20) or the local definition of (6.21).
Ellipticity follows at once. Also it follows that the principal symbol is symmetric,
if the defining connection is metric (i.e., compatible with the metric structure of
the bundle, as explained in Definition 6.26, p.176).

Actually, the standard operators ∇+A, ∂̄ and d+ δ of (1), (3) and (4) are all
special instances of Dirac type operators. You could have obtained your results for
these operators by clever Clifford multiplication alone! Indeed, take for instance
S := Λ• (T ∗X) and let c be the extension of c (ξ) (s) = ξ ∧ s− ξxs for ξ ∈ T ∗xX ⊂
C`(T ∗xX, gx) and s ∈ Λ• (T ∗xX) (here we identify TX and T ∗X). The extension is

guaranteed by the fact that c (ξ)
2

= −gx(ξ, ξ) I.
To (6): Apply Exercise 6.36 and simple Clifford multiplication. There is a zoo of
Laplacians, depending on the assumptions about the underlying manifold X and
the bundle S and the connection ∇S . Special cases (the connection Laplacian and
the Hodge Laplacian) are discussed in our Section 16.6, p.405ff.]

What is the meaning of the geometric description of the symbol of a differential,

and in particular elliptic operator? This is the basic question which will concern us from

now on. Recall from Remark 5.3 the geometric characterization of differential operators

as support compressing. Unfortunately, that property can not be quantified or graded.

Conversely, the symbol can express both quantitative and qualitative aspects. That for a

first vague answer.

For a second vague answer, imagine an electron microscope aimed at a point x of

our manifold. Under enlargement, both the neighborhood of x and the vector bundle

above it become linear, of course, while the hole in the cotangent bundle becomes large

like a sphere. With even greater magnification, we see, instead of a highly complicated

differential operator on infinite dimensional spaces of cross-sections (the object of study

of functional analysis), families of maps on spheres Sn−1 into the general linear group

GL(N,C) (the object of study of linear algebra and of topology). The Atiyah-Singer

Index Formula is (crudely) a manifestation of this change of the planes of investigation.

The term symbol suggests the symbolic method of Oliver Heaviside, which owes its

power to the transition between the plane of operator theory and the plane of polyno-

mial algebra. For this reason it is characterized in [CH, II, p.187/518] pointedly as the

separation of the algebraic part from the mathematical-conceptual part.
Initially, the relationship between the study of operators and the study of their sym-

bols was penetrated more deeply not by mathematicians, but by physicists with the ideas
of Erwin Schrödinger and Paul Adrien Maurice Dirac on the quantization of classical
mechanical systems according to which classical mechanics deals with symbols and quan-
tum mechanics with operators (for quantum mechanical systems with spin, these are
differential operators for nontrivial vector bundles). Thus first one considers a prob-
lem of classical physics (mechanics, electrodynamics), establishes the classical Hamilton-
ian function, changes to position and momentum coordinates, and obtains, e.g., for the
harmonic oscillator the function

h (x, p) =
1

2m
p2 +

k

2
x2.
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(Interpretation: Consider on the real axis the motion of a particle of mass m with
the kinetic energy m

2
ẋ2 = 1

2m
p2 where x(t) is the location at time t and p = mẋ is the

momentum. Then one supposes that, particle moves in a force field whose potential energy
is k

2
x2.) According to the quantization rule, we now choose a suitable Hilbert space, as

rule an L2 (or Sobolev space as in Chapter 7 below), replace the position coordinate x by
multiplication by x and the momentum coordinate by the differential operator }

i
d
dx

. We
then obtain (in the Schrödinger representation) the operator H with

Hf = − }
2

2m

d2f

dx2
+
k

2
x2f,

with the 2-symbol

σ2 (H) (x, ξ) =
1

2m
ξ2.

The total symbol (which is not invariant and therefore not defined here) is

σ2,1,0 (H) (x, ξ) =
1

2m
ξ2 +

k

2
x2.

So much for this simple example; see e.g. [He, II, p.257-293], who strongly advocates this

point of view. We shall return to this topic in our Part IV.

8. Manifolds with Boundary

Instead of modeling a manifold locally on open subsets of E, we can also work
with charts that map open subsets of the topological space X homeomorphically
onto open subsets of the half-space Rn+ := {(x1, ..., xn) ∈ Rn : xn ≥ 0} such that
the coordinate changes are again C∞. In this way, we introduce the concept of
a C∞ manifold with boundary, in the same way as we have done above for
(unbounded) manifolds. We call x ∈ X an interior point, if it has a neighborhood
which is mapped by a chart onto an open subset of Rn (i.e., contained in the
interior of Rn+). On the other hand, if there is a chart mapping x to a point on
the boundary of Rn+, then x is called a boundary point of X; we write ∂X for
the set of all boundary points. As examples, the closed solid sphere or torus are
three-dimensional C∞ manifolds with boundaries being the 2-sphere or 2-torus,
respectively.

Exercise 6.44. Let X be a C∞ manifold with boundary.
a) Carry the concepts C∞(X), TX, T ∗X, orientation, Riemannian metric, etc.,
over to this case.
b) Construct a C∞ atlas for ∂X from a C∞ atlas for X, showing ∂X is a C∞

manifold of dimension n − 1, when dimX = n. Show that ∂∂X = ∅ and that ∂X
inherits Riemannian structure and orientation from those on X.

For short, we write Y = ∂X here. Since each C∞ path in Y is a C∞ path in X,
we have a canonical embedding of TY into TX|Y . Over Y , we have the following
diagram of tangent and cotangent bundles

TY ∼= T ∗Y
∩ ∩

(TX) |Y ∼= (T ∗X) |Y
the left inclusion is canonical; the other isomorphisms and the right inclusion depend
on the choice of a Riemannian metric.
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Exercise 6.45. With the help of a Riemannian metric (·, ·), define a normal
field ν ∈ C∞(TX|Y ) such that (ν(y), w) = 0 and (ν(y), ν(y)) = 1 for all y ∈ Y and
w ∈ TyY , as depicted in Figure 6.4. Show that there are two such normal fields,
and characterize the inner one via the condition dϕ (v(y)) ≥ 0 for all real-valued
ϕ ∈ C∞(X) which are positive except at y. Characterize the dual normal field
v∗ ∈ C∞ ((T ∗X)|Y ).

Y

X
y

TyY

º( )y

Figure 6.4. The inner normal field over the boundary ∂X of a
Riemannian manifold X

Exercise 6.46. Let X1 and X2 be C∞ manifolds with boundaries, and let
f : Y1 → Y2 be a diffeomorphism of their boundaries. Show that one can construct
a C∞ manifold X1 ∪f X2 in a canonical way by identifying the boundaries of X1

and X2 via f as in Figure 6.5.

X1 X2

Y2Y1

U1
U2

y f y( )

Figure 6.5. Gluing two manifolds X1, X2 along their boundaries

[Hint: Form the disjoint union of X1 − Y1, X2 − Y2, and {(y, f (y)) : y ∈ Y1}.
It is clear what a coordinate neighborhood of x ∈ Xi − Yi (i = 1, 2) should be. For
x = (y, f(y)), choose a neighborhood U1 of y in X1, neighborhood U2 of f(y) in X2

with f (U1 ∩ Y1) = U2 ∩ Y2. Then U1 and U2 form a neighborhood of (y, f(y)), see
Figure 6.6. By this recipe, define an atlas for X1∪f X2 from the C∞ atlases for X1

and X2, such that X1 ∪f X2 becomes a topological manifold. It is not entirely easy
to prove that the coordinate changes are C∞. Without loss of generality, assume
X1 = X2 =: X and f = Id; in our applications, we always have this situation. In
order to avoid the difficulties with the corners originating from the way in which
the charts are joined, choose a Riemannian metric and extend the above-mentioned
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normal vector field (Exercise 6.45) to a neighborhood of ∂X := Y . The integral
curves of the vector field provide a diffeomorphism (collar) of Y × [0, 1] with a
neighborhood of Y in X. The differentiable doubling of Y × [0, 1] along Y × {0} is
trivial; see also [BJ, 13.5-13.11].]

X1

U1U2

X2
u

u±v {1

v

R
n
+

Figure 6.6. Defining an atlas for X1 ∪f X2 from charts for X1, X2

Remark 6.47. The definition of differential operators on manifolds with bound-
ary does not require any modification in relation to the case discussed above. The
following difference is essential, however: While every differential operator over a
closed (i.e., compact, without boundary) manifold has a formal adjoint by Exercise
6.39, one always has an extra term for manifolds with boundary∫

X

(Pe, f)−
∫
X

(e, P ∗f) =

∫
∂X

(· · · )

involving a differential operator over the boundary; e.g., see our discussion above
on the Sturm-Liouville boundary-value problem (Section 2.5), or more generally
[Pal65, p.73-75] and [BoWo, Proposition 3.4]. We will come back to this prob-
lem in Chapter 10. Thus, one of the advantages of the computations on compact
manifolds without boundary is the existence of formal adjoints. In passing to the
boundary-value problems of interest in applications, Exercise 6.46 comes into play.
More generally, in Chapter 10 and Section 14.8, we will assign to each boundary-
value problem over X associated operators over the two closed manifolds ∂X and
X ∪∂X X. Incidentally, these are manifolds which can be rather complicated topo-
logically, even in the classical case when X is a bounded domain in Rn. (See
the Heegaard diagrams, whereby each three-dimensional oriented manifold can rep-
resented as such a doubling with boundary diffeomorphism, not necessarily the
identity [ST, p.219].)



CHAPTER 7

Sobolev Spaces (Crash Course)

Synopsis. Motivation. Equivalence of Different Local Definitions. Various Isome-

tries. Global, Coordinate-Free Definition. Embedding Theorems: Dense Subspaces; Trun-

cation and Mollification; Differential Embedding; Rellich Compact Embedding. Sobolev

Spaces Over Half Spaces. Trace Theorem. Case Studies: Euclidean Space and Torus;

Counterexamples

1. Motivation

In this book, the concept of Sobolev spaces will be used to solve two different problems.

The first question is: How can we fit the analytic concept of (elliptic) differential operators

into the framework of functional analysis? That question is dealt with extensively in many

textbooks of modern analysis. One of the answers to that question is, that Sobolev spaces

permit a transition from Banach spaces (natural domains of differential operators) to easy

Hilbert spaces and provide a link to the theory of bounded Fredholm operators in Hilbert

space, as developed above in our Part I. We shall explain all the needed definitions and

results in the sequel. That is the easy question and we can be short dealing with it. The

second question is much deeper: How can we fit the geometric concept of a connection

into the framework of functional analysis?. Recall from Section 6.6, Definition 6.31 and

our Table 6.1, that all geometric standard operators are related to connections, namely

as operators of Dirac type, respectively, Dirac Laplacians (= squares). We will show the

fundamental role of connections in gauge theoretic physics and low-dimensional topology

in our Part IV. Then the key problem is to develop an all embracing view of the space of

all suitable connections in a given geometric or physics context. Such a view is provided by

the concept of a manifold. To establish the manifold character of spaces of connections, we

need linearisation and parametrisation tools. The most important are infinite-dimensional

analogues to the Implicit Function Theorem (IFT). There we shall use Sobolev spaces

once again. But then, our point will not be the rather trivial aspect of Sobolev spaces,

cultivated in this and the following sections and perhaps overemphasised in analysis main

stream literature (namely, the simple replacement of Banach space theory by Hilbert space

theory), but the replacement of Fréchet spaces (where we have no IFT) by Banach spaces

which will do.

Like we have two different motivations for the introduction of Sobolev spaces, we have

also two different ways of doing it. As so often in global analysis, we have the heritage from

calssical analysis with its proficiency in making calculations in coordinates. In this section,

we shall follow that tradition, making easier reading for a student or teacher who feels safer

with coordinates, does not care so much about global geometric meaning and accepts the

arbitrary and tiresome coordinate shifts. In Section 17.4, p.468 we present an alternative,

namely the natural (coordinate-free) Definition 17.17 of much more delicate families of

Sobolev Banach spaces. The global approach is mandatory in Part IV but would also

190
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be quite appropriate in this section for readers who seek a really simple, coordinate-free

presentation and are not afraid of abstract geometric concepts, see Remark 7.8 below.

Let us leave the connections for later and return to our first question regarding
differential operators and there relations to Hilbert spaces. There is first of all the L2

concept of a Lebesgue measurable square integrable function, which can transferred
naturally to sections in a Hermitian vector bundle E on a Riemannian manifold X:
A section u : X → E (not necessarily continuous) represents an element of L2(E) if∫
X

〈u, u〉 νg <∞. Here 〈·, ·〉 is a Hermitian metric for the vector bundle E, whence

〈u, u〉 is a R-valued function on X which is integrated with respect to the volume
element νg defined by the metric tensor g of X (see Section 6.4 above). In this way,

L2(E) becomes a Hilbert space with the usual identification of sections that differ
on a set of measure 0.

The traditional way of fitting a differential operator P ∈ Diff k(E,F ) into the
well-understood and powerful Hilbert space theory consists in considering P as a
map on L2(E) to L2(F ), restricted to functions with sufficient differentiability. We
proceeded this way above, when introducing the notion of formally adjoint operators
(Section 6.7). But even restricted to these subspaces, the differential operators are
not continuous in the norm topology of L2. A simple example is the operator d/dt

which maps the sequence
1

n
sinnt (converging to 0 in L2(S1)) to the sequence cosnt

which does not converge in L2(S1). This circumstance leads to the extensive field
of classical mathematical research on unbounded linear operators. We gave a taste
in Section 2.6.

Thanks to Sergey Lvovich Sobolev, we now have a more potent tool for the
definition of Hilbert spaces with various differentiability properties, namely the
Sobolev spaces W s(X). More common notations for these spaces are Hs(X) or
Ls2(X). We prefer the W s of the Russian literature where the “W” reminds at
weak solutions, namely in distributional sense, to be explained below in Exercise
7.7a. In a topology book like ours, Hs(X) is reserved for cohomology. The notation
Ls2(X) would be correct in emphasising that we model the Sobolev spaces after the
Hilbert space L2(X). However, it is a bit heavy and, moreover, we have so many
spaces of linear mappings, carrying an L. So we had better stick to W s(X).

These spaces have gained great importance in the theory of partial differential
equations, especially for existence questions where precise statements on the reg-
ularity of solutions are desired, but often cannot be expressed in the language of
Ck-Banach spaces. Since introducing Sobolev spaces by coordinates is an estab-
lished part of now classical analysis, we may keep it short and refer to the abundant
textbook literature: the classic [Ad], [BJS, Chs. III/IV], [Hö63, p.33-63], [LiMa,
p.1-118], [Na, p.184-200], [Pal65, p.125-174], and [Yo, p.55 and 173f], and the
more recent [GS, p.44ff] and [Gru, Sections 4.2, 6.2, 6.3 and 8.2].

2. Definition

Customary Definitions in Coordinates. In the following, we put together
some of the various customary equivalent definitions of Sobolev spaces. Here, we
restrict ourselves to the case of functions and where s ≥ 0. In the framework of
distribution theory, the spaces W s can be treated clearly and uniformly also for
s < 0; e.g., see the carefully written [GS] and [Gru].



192 7. SOBOLEV SPACES (CRASH COURSE)

The basic idea of Sobolev spaces is very simple: As explained above, we wish
a common functional analytic frame for linear differential operators. Let us try:

Definition 7.1. Let m ≥ 0 be an integer. We define the Sobolev space
Wm(Rn) as the intersection of the maximal domains of all elementary formally
self-adjoint differential operators

Dα := (−i)|α| ∂
α1

∂xα1
· · · ∂

αn

∂xαn
, |α| := α1 + · · ·+ αn ≤ m,

of order ≤ m, i.e., to consist of all u ∈ L2(Rn) such that Dαu ∈ L2(Rn) for all
multiindices α with |α| ≤ m.

Recall that for u ∈ L2(Rn), we mean by Dαu ∈ L2(Rn) that there exists a
v ∈ L2 such that the distribution Dαu acts like v on all test functions w, i.e.,(

Dαu
)
(w) := 〈u, (Dα)

∗
w〉0 = 〈u,Dαw〉0 :=

∫
Rn
u(x)Dαw(x) dx

!
=

∫
Rn
v(x)w(x) dx = 〈v, w〉0 for all w ∈ C∞0 (Rn).

By Fourier analysis (Differentiation-Multiplication Conversion and Plancherel For-
mula, Exercises A.5b,d of Appendix A), this is equivalent to requiring ξα û(ξ) ∈ L2

for |α| ≤ m, or, what is the same, (1 + |ξ|)m û ∈ L2. The following exercise makes
you familiar with the arguments.

Exercise 7.2. Show that, for u ∈ C∞0 (Rn), the two following norms | · |m and
‖·‖m are equivalent (m ∈ N):
a)

|u|m :=

(∑
|α|≤m

|Dαu|20

)1/2

, where |u|20 := 〈u, u〉0 =

∫
Rn
u (x)u (x) dx.

b) For ∆ = −
(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)
,

‖u‖m :=

(∫
Rn

(1 + |ξ|2)m |û (ξ)|2 dξ
)1/2

=

(∫
Rn
〈(1 + ∆)mu, u〉 dx

)1/2

,

where the last equality is due to Exercise A.5(b,d), p. 675 in Appendix A.
[Hint: Start with the Fourier differentiation formula (see Appendix A), giving

|u|2m :=

∫
Rn

(∑
|α|≤m

(ξα)
2

)
|û (ξ)|2 dξ.

Then prove that for some constant c,(
1 + |ξ|2

)m
≤
∑
|α|≤m

(ξα)
2 ≤ c

(
1 + |ξ|2

)m
and deduce ‖u‖m ≤ |u|m ≤

√
c ‖u‖m .]

This leads to the following more general definition.

Exercise 7.3. For real non-negative s, define the Sobolev space

W s(Rn) :=
{
u ∈ L2(Rn) : ξ 7→ (1 + |ξ|2)s/2 û(ξ) ∈ L2(Rn)

}
and show:
a) For all s ∈ N, the space W s(R) is the completion of C∞0 (Rn) relative to the



7.2. DEFINITION 193

(equivalent, by Exercise 7.2) s-norms |·|s and ‖·‖s, and whence a Banach space.
b) By considering scalar products which induce the respective norms, W s(Rn)
becomes a Hilbert space.
c) The following inclusions are defined in a natural way, and are continuous and
dense (where W s = W s(Rn) for short)

C∞0 (Rn) ⊂W∞ :=
⋂∞

s=0
W s ⊂ . . . ⊂W s+t ⊂ . . . ⊂W s ⊂ . . . ⊂W 0 := L2(Rn).

See also Theorem 7.13, p. 197.
[Hint: For a: Investigate Cauchy sequences in C∞0 (Rn) relative to |·|s.
For b: For natural s, this is clear by (a). For arbitrary real s, see the classical
[Hö63, p.37 and 45f] or [LiMa, p.35-37] or the more recent [GS] and [Gru].

For c: For the inclusions, note the monotonicity of
(

1 + |ξ|2
)s

in s. For the proof

that C∞0 (Rn) is dense in W s (Rn), note that

• C∞0 (Rn) is dense in the Schwartz space C∞↓ (Rn) of rapidly decreasing
functions;

• the Fourier transform is an isometric isomorphism

F : W s(Rn) −→ L2
(
Rn,

(
1 + |ξ|2

)s
dξ
)
; and

• F−1
(
C∞↓ (Rn)

)
= C∞↓ (Rn).

Since C∞↓ (Rn) is clearly dense in L2
(
Rn,

(
1 + |ξ|2

)s
dξ
)
, it follows that C∞↓ (Rn) is

dense in W s(Rn), and you are done.
You may try another more direct proof of the density: Note that the space W s

K(Rn)
of functions with support in compact K ⊂ Rn is dense in W s(Rn). So, given

u ∈ W s
K(Rn), how can you construct a sequence uν ∈ C∞0 (Rn) with suppuν ⊂ K̃

(another compact subset with K ⊂ Int K̃), such that ‖uν − u‖s → 0 for ν → ∞?
Exploit the convolution (see Definition A.4c, p.674): You can choose compactly
supported standard test function ϕ ∈ C∞0 (Rn), real valued with ϕ ≥ 0, suppϕ ⊂
{|x| < 1} and

∫
Rn ϕ(x)dx = 1. Then put

ϕε(x) := ε−nϕ(x/ε) and uε(x) := (ϕε ∗ u)(x) = 〈u(y), ϕε(x− y)〉0, ε > 0.

Note that suppϕε ⊂ {|x| < ε} and
∫
ϕε(x)dx = 1. To show that uε ∈ C∞0 (Rn) is an

easy exercise in the differentiability of integrals with parameters. The interesting
part is to prove that limε→0+‖uε − u‖s = 0. For that, work with the Fourier
transform: Since ϕ̂ε(ξ) = ϕ̂(εξ) and ϕ̂(0) = 1, the question reduces to establishing
the relation

lim
ε→0+

∫
|ϕ̂(εξ)− 1|2 |û(ξ)|2

(
ξ2s
1 + · · ·+ ξ2s

n

)
dξ = 0,

which is evident from the dominated convergence theorem.]

Remark 7.4. a) The family
(
ϕε
)

0<ε<1
(more precisely the family of linear

scalar operators
(
Jε
)

0<ε<1
with Jε(·) := ϕε ∗ ·, mapping integrable functions to

smooth functions) is called a mollifying family because Jε smoothes out the as-
perities and we have Jε → Id in the appropriate norm.
b) There is a second basic technique for dealing with Sobolev spaces, namely trun-
cation. The essentials are contained in the following result: Let u ∈ W k(Rn).
Consider for each R > 0 a smooth bump (cut-off) function χR ∈ C∞0 (Rn) with
χR(x) ≡ 1 for |x| ≤ R, χR(x) ≡ 0 for |x| ≥ R + 1, but sufficiently moderate, say
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with differential |dχR(x)| ≤ 2 for all x ∈ Rn. Then χr · u ∈ W k(Rn) for all R > 0
and, moreover,

χR · u
Wk

−→ f, as R −→∞.
We leave the proof to the reader (else see [Nic, Lemma 9.2.9]).

Exercise 7.5. Show that for s ∈ R, the formally self-adjoint operator (in fact,
a pseudo-differential operator, see the following chapter)

(Λsu)(x) :=

∫
Rn
ei〈x,ξ〉

(
1 + |ξ|2

)s/2
û (ξ) d̄ξ,

with d̄x = (2π)−n/2dx1 · · · dxn, defines an isomorphism (in particular, isometry)
Λs : W t+s (Rn)→W t (Rn) of Hilbert spaces for t ≥ 0 and t+ s ≥ 0.
[Hint: Note that Parseval’s Formula (Appendix A, Exercise A.5d, p. 675) implies
the equality ‖u‖s = ‖Λsu‖0 for u ∈ W s (Rn), and that the family {Λs : s ∈ R}
forms a group since Λs ◦ Λr = Λs+r.]

Remark 7.6. A common abbreviation of the expression
(
1 + |ξ|2

) 1
2 is the sym-

bol 〈ξ〉. Whence, in the notation of pseudo-differential operators of Chapter 8, we
can write Λs = Op(〈ξ〉s).

Global and Coordinate-Free Definitions. From the preceding presenta-
tion of Sobolev spaces in local Euclidean coordinates, the reader can catch the basic
idea, namely that Sobolev spaces are closures of spaces of differentiable functions
with regard to the L2-norms of the highest derivative. However, it seems to us
that the power of the concept of Sobolev spaces becomes clearer in global and
coordinate-free presentation. We shall give several choices.

Exercise 7.7. Let X be a compact, oriented, C∞ Riemannian n-manifold
(without boundary), and let E be a C∞ Hermitian vector bundle over X of fiber
dimension N .
a) For a positive integer s, define the Sobolev space (to begin with, only the
underlying vector space)

(7.1) W s(E) := {u ∈ L2(E) : for each P ∈ Diffs(E,E), there is v ∈ L2(E)

such that 〈u, Pw〉0 = 〈v, w〉0 for all w ∈ C∞ (E)}.

Show that a section u ∈ L2(E) lies in W s(E), exactly when, for each local repre-
sentation of u in the form u(x) =

∑
ui(x)ei(x) relative to a local chart and local

basis e1, ..., eN of E, we have ϕui ∈ W s(Rn), for all C∞ functions ϕ with support
in the domain of the chart.
b) Define W s(E) for s ∈ R+, using this local recipe.
[Hint: For a: Definition 7.1 and Exercise 7.2a. Note that v is uniquely determined
by P . One says that v arises by weak application of the formal adjoint opera-
tor P ∗ on u (differentiation in the distributional sense, i.e., “P ∗u = v” ⇐⇒
P ∗u and v act identically on all test vector valued functions w ∈ C∞(E) with
〈P ∗u,w〉0 = 〈u, Pw〉0).
For b: The crucial point is the independence of the set W s(E) of the choice of
charts, local trivializations, the smoothing functions. Take care with the coordinate
changes: It is not entirely trivial that each diffeomorphism κ : U → V between open
subsets of Rn induces (via v 7→ v ◦ κ) an isomorphism W s

K (Rn) → W s
κ−1(K) (Rn),
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where K ⊂ V is compact and W s
K (Rn) := {v ∈W s(Rn) : supp v ⊆ K}. An ele-

mentary proof for this is found in [Hö63, p.57-59]. In our context it is simpler
to jump forward to Theorem 8.18, p. 220, where we shall show the invariance of
the space Lspc of (principally classical) pseudo-differential operators under a coor-

dinate change (but only for s ∈ Z+). However, the proof goes through smoothly
for s ∈ R+. Then define W s(E) as in (a), where P ∈ Lspc(E,E). Instead of coor-
dinate invariance, which is self-evident, one must show, as in (a), that one obtains
elements of W s(Rn) locally. Details are found in [Hö66b, p.169f] or [Ni, p.151f].]

Remark 7.8. (a) For a fixed choice of atlas, local trivializations of the bundle
E, and an appropriate C∞ partition of unity, one obtains a norm and scalar prod-
uct which makes W s(E) a Hilbert space. Without such choices, we must do with
a Hilbertable space ([Pal65]’s notation).
(b) Instead of arguing with all elements in Diffs(E,E) we can define W s(E) both
as set and as Hilbert space by specifying a single generating operator ΛE,s, ac-
tually a (principally classical) pseudo-differential operator (belonging to Lspc(E,E),
a space to be defined below in Section 8.3): Let {Uj}j∈J be a locally finite covering

of the underlying n-manifold X by domains of coordinate charts κj : Uj → Rn and
local trivializations τj : E|Uj → Uj ×CN , and let {ϕj ∈ C∞(X)}j∈J be a partition

of unity subordinate to {Uj}j∈J . Let u ∈ L2(E), i.e.,
∫
X
〈u, u〉hνg < ∞ where

νg denotes the volume element for the Riemannian metric g on X and 〈·, ·〉h the
Hermitian product on the vector bundle E, see Definition 6.14b, p.167. We set

(7.2) ΛE,su :=
∑
j∈J

ϕj ·
(
τ−1
j ◦

(
ΛNs uj

)
◦ κj

)
,

where uj :=

{
τj ◦ u ◦ κ−1

j , on κj(Uj),

0, on Rn \ κj(Uj),
and ΛNs := Λs ⊕ · · · ⊕ Λs with Λs :

W s(Rn) → L2(Rn) as defined in Exercise 7.5. The process used in Equation (7.2)
to construct the operator ΛE,s from the operators ΛNs given in local coordinates is
called gluing together. Similarly, we defined differential operators globally via local
coordinates in Definition 6.32, p.178 and shall define pseudo-differential operators
globally via local coordinates in Definition 8.12, p.212. We set

(7.3) W s(E) := Λ−1
E,s

(
L2(E)

)
and 〈u, v〉s := 〈ΛE,su,ΛE,sv〉0

for u, v ∈ W s(E). One checks that the Equations (7.1) and (7.3) yield the same
vector space W s(E). Contrary to the definition of the Sobolev space by (7.1), the
preceding definition based on the generating ΛE,s yields a scalar product at once
and makes W s(E) a Hilbert space. As before, however, the inner product is not
canonical but depends also here on the choice of coordinates etc, entering into the
definition of ΛE,s.
Warning: While we had Λ−s ◦ Λs = Id on W s(Rn) we get now an error term

(7.4) Rs := ΛE,−s ◦ ΛE,s − IdW s(E),

which is by definition an integral operator (Rsu)(x) =
∫
X
Ks(x, x− y)u(y)dy with

smooth kernel Ks and therefore compact in B (W s(E),W s(E)) (to be proved like
in Exercise 2.29, p.25) and extendable to the whole L2(E) and transforming it into
C∞(E).
(c) However, there are other choices to fix the scalar product: As with Exercise
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7.2b, on manifolds one may define a Laplace operator ∆ which is an elliptic, self-
adjoint, positive-definite second-order differential operator. For a natural s (and
also for real s, via the Spectral Theorem 2.61, p.51), we then may explicitly set

‖u‖s := 〈(Id +∆)
s
u, u〉0 , u ∈ C∞(E).

(d) By [AS68a, p.511] (the idea goes back to [Mag, p.134-197], see also [LiMa,
p.42]), one can proceed in this way even further, if the vector bundle E is furnished
with a C∞ connection ∇E (defined and discussed in Section 6.6, 172ff). Consider
∇E : C∞(E) → C∞(E ⊗ T ∗X) as differential operator. By composition with its
formally adjoint ∇∗ : C∞(E⊗T ∗X)→ C∞(E), we obtain a positive, semi-definite,
formally self-adjoint, Laplacian, namely ∆ := ∇∗ ◦ ∇.

Following up on this remark, we may replace our conventional introduction of
the Sobolev spaces via lengthy and, in principle, artificial coordinate transforma-
tions, by an alternative geometric (in particular, coordinate-free) definition, namely
by specifying one single generating differential operator ∇j .

Definition 7.9. We equip the bundle E → X with a Hermitian structure h
and a metric covariant differentiation operator ∇E : C∞(E) → C∞(T ∗X ⊗ E).
By also employing a Riemannian metric g and Levi-Civita connection θg on X, we
obtain for any k = 0, 1, 2, . . . a connection in the tensor products (⊗kT ∗X)⊗ E

∇k,E : C∞
(
(⊗kT ∗X)⊗ E

)
→ C∞

(
(⊗k+1T ∗X)⊗ E

)
.

For each j = 1, 2, . . . we write shortly ∇j : C∞(E) → C∞
(
(⊗jT ∗X)⊗ E

)
for the

composition

∇j : C∞(E)
∇E−→ C∞(T ∗X ⊗ E)

∇1,E

−→ C∞(T ∗X ⊗ T ∗X ⊗ E)

∇2,E

−→ · · · ∇j−1,E

−→ C∞
(
(⊗jT ∗X)⊗ E

)
.

a) For u, v ∈ C∞(E) and m > 0, we then set

(u, v)m :=

m∑
j=0

∫
X

〈∇ju,∇jv〉νg , and ‖u‖m :=
√

(u, u)m ,

where νg denotes the volume element for g, and the inner product 〈∇ju,∇jv〉 is the
natural one constructed from the one induced by g on ⊗jT ∗X and the Hermitian
structure on E.
b) The Sobolev space Wm(E) is the completion of C∞(E) with the norm ‖·‖m .

Differently put, Wm(E) is the space of sections u ∈ L2(E) such that for all
j = 1, . . . ,m there exists vj ∈ L2

(
(⊗jT ∗X)⊗ E

)
with ∇ju = vj weakly, i.e.,∫

X

〈v, w〉 νg =

∫
X

〈u,
(
∇j
)∗
w〉 νg, for all w ∈ C∞

(
(⊗jT ∗X)⊗ E

)
.

We shall come back to this global type of definition in Section 17.4, Definition 17.17,
p.468. For now, we leave it to the reader to check the accordance between our two
Definitions, i.e., the conventional definition by combining Exercises ?? and 7.7, and
the preceding global Definition 7.9.

Remark 7.10. Not the underlying set of the Sobolev space Wm(E) introduced
here, but its scalar product depends (as before, but differently) on several choices:
the metrics on X and E and the connection on E. It was pointed out in [Nic,
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Theorem 9.2.24] that the identity map between two such versions of Wm(E) is a
Banach space isomorphism, if we restrict ourselves to compatible connections (i.e.,
metric in the sense of Definition 6.26, p.176). When we expand our definition to
non-compact X this dependence is very dramatic and has to be seriously taken into
consideration.

Remark 7.11. In the literature and in our Part IV, much more general Sobolev
spaces (Bessel potentials, etc.) are treated. For these, one starts with Lp theory
instead of the Hilbert spaces L2, and works with weights other than our (1 +

|ξ|2)s/2. It is interesting that in “the study of classes of differential equations with
variable coefficients which are defined by conditions on their highest-order part”
(Hörmander) only those W -spaces play a role which are distinguished in a way by
their invariance on manifolds (translation invariance of L2 and diagonalizability of
the derivative by means of Fourier transformation). Indeed, in the present part
of our book, the L2-modelled Sobolev spaces suffice. To describe the manifold
structure of moduli of self-dual connections, however, we shall, as mentioned before,
define wider Sobolev spaces in Section 17.4, in immediate generalization of the
preceding Definition 7.9.

Sobolev Spaces Over Half-Spaces. In many applications it is natural to
consider manifolds with boundary, modelled on half-spaces. For a comprehensive
treatment we refer to [BoWo]. For now, the following Exercise may suffice.

Exercise 7.12. Let m be a positive integer.
a) For Rn+ := {x ∈ Rn : xn ≥ 0}, define (as in Exercise 7.7a) the space

Wm(Rn+) := {u ∈ L2(Rn+) : for each P ∈ Diffm(Rn+), there is
v ∈ L2(Rn+) such that 〈u, Pw〉0 = 〈v, w〉0 for all w ∈ C∞

(
Rn+
)
}.

Prove that

Wm(Rn+) = {u ∈ L2(Rn+) : there is v ∈Wm(Rn) with v|Rn+ = u}.

Show that Wm(Rn+) is a Hilbert space.
b) Define the space Wm(X) for a compact, orientable manifold X with boundary
via localization, and carry over Exercise 7.3c.
[Hint: For a: Set ‖u‖m := inf{‖v‖m : v ∈Wm(Rn) and v|Rn+ = u}. Be careful with

restricting to the half-space: For m 6= 0, one must distinguish between Wm(Rn+)
and Wm

Rn+
(Rn), the space of Wm functions with support in Rn+; see [Hö63, p.51-54].

For b: The invariance under diffeomorphism is trivial here, since (without any loss
in the applications; see Chapter 10) we only consider whole numbers m. See also
[Hö63, p.60f].]

3. The Main Theorems on Sobolev Spaces

Here, we discuss briefly (partly without full proofs, for which we refer to the
literature) the three main theorems. The content of these results is illustrated in
Section 7.4, Case Studies.

We begin with a regularity theorem showing how one can pass from Hilbert
space results given in the language of Sobolev spaces to results in classical form.

Theorem 7.13 (S. L. Sobolev, 1938). Let X be a compact C∞ manifold (with
or without boundary) and s > 0. Define the strength of the Sobolev space W s(X)
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by

str (W s(X)) := s− dimX

2
.

Then W s(X) ⊂ Ck(X) for all k < str(W s(X)), and the embedding is continuous
with the Sobolev inequality

‖u‖Ck ≤ ε ‖u‖W s + Cε ‖u‖L2 for u ∈W s(X) and k < strW s(X),

where ε > 0 can be made arbitrarily small, if Cε is sufficiently large.

Note . Whence, the strength of W s(X) is a measure for the regularity of
its elements: the bigger the strength the more regular are the functions in that
space and thus it consists of fewer functions or, rather, elements or classes. More
precisely, an element u of W s(X) ⊂ L2(X) is a class of functions which agree
almost everywhere. The theorem means this: In each class u ∈ W s(X), there is a
representative in Ck(X), and each sequence of elements in W s(X) which converges
in the norm ofW s(X) yields a sequence of representatives in Ck(X) which converges
in the norm of the Banach space Ck(X).

Proof. For the euclidean case, we give a taste of the proof below in Theorem
7.16. Else see [BJS, p.167] and [Pal65, p.159f] for X = Tn := S1 × · · · × S1,
and [Pal65, p.169] for the transition to arbitrary X and to sections of vector
bundles. For the Sobolev inequality, see [Ad, 75-76/97f], where X is a codimension
0 submanifold (with boundary) of Rn. �

The treatment of boundary value problems with Hilbert space methods is prob-
lematic, since in a fixed L2 space a function is only uniquely defined modulo its
values on sets of measure zero such as the boundary. Thus, the restriction of such a
function to the boundary is completely arbitrary. However, the following restriction
theorem, which also goes back to S.L. Sobolev, is helpful (e.g., for Y = ∂X and
m = 1).

Theorem 7.14. Let X be a compact, C∞ manifold (possibly with boundary)
with a compact submanifold Y of codimension m, and let E be a vector bundle
over X. Then, for each integer s > m/2, the canonical restriction map C∞(E)→
C∞(E|Y ) extends to a continuous, linear, surjective map W s(E)→W s−m2 (E|Y ).

Proof. For the periodic case X = Tn, Y = Tn−1 and E the trivial line
bundle, we give a full proof below in Theorem 7.17. For the hyperplane problem
W (Rn+) → W s− 1

2 (Rn−1), see [Hö63, p.54f] or [LiMa, p.38]; for Y = ∂X, see
[LiMa, p.44-48]; for X = Tn and Y = Tn−m and the general case, see [Pal65,
p.161 f]. �

Finally, the following lemma, named after Franz Rellich and proved by him in
a different formulation, brings in compact operators (see our Chapters 2 ff.), and
will furnish a further connection with the Fredholm theory of elliptic operators.

Theorem 7.15 (F. Rellich, 1930). If X is a compact, C∞ manifold (possi-
bly with boundary) and E is a complex vector bundle over X, then the inclusion
Wm(E) ↪→W s(E) is compact for m > s ≥ 0.

There are many different proofs in the literature: See [Ad, p.144], when X
is a codimension 0 submanifold of Rn. For X = Tn := S1 × · · · × S1, see [BJS,
p.169f] or [Pal65, p.158f], similarly the very clear presentation [Gru, Theorem
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8.2], and [Pal65, p.168] for the general case. We shall give an explicit proof in the
special scalar and compact-supported euclidean case of W 1

K(Rn) ↪→ L2(Rn) (closely
following [Nic, Theorem 9.2.14]). One may wonder about a shorter, structural and
more general proof. Inspiration may be found in [Shu, Theorem 7.4]). See also our
Remark 7.8b with the compact error term Rs := ΛE,−sΛE,s − IdW s(E) of (7.4) on
p.195.

Explicit proof in scalar, Euclidean, compactly supported case. Let
R > 0 and let us show that the inclusion W 1

BR
(Rn) ↪→ L2(Rn) is compact. Let (uµ)

be a bounded sequence in W 1(Rn) supported in the ball BR = BR(0) := {|x| ≤ R}.
We have to show that the sequence contains a subsequence convergent in L2. The
proof will be carried out in two steps.
Step 1. We will prove that for every 0 < δ < 1 the mollified sequence (see
Remark 7.4) (uµ,δ := ϕδ ∗ uµ) admits a subsequence uniformly convergent on
BR+1 := BR+1(0).

To prove this we will apply the Arzela-Ascoli Theorem (Theorem 2.17 and
Corollary 2.18, p.19f.). Whence, we shall show that

(i) ∃C=C(δ) ∀µ ∀|x|≤R+1 |uµ,δ(x)| < C,
(ii) ∀µ ∀|x|,|x′|≤R+1 |uµ,δ(x)− uµ,δ(x′)| < C|x− x′|.

Indeed,

| (ϕδ ∗ uµ) (x)| ≤ δ−n
∫
|y−x| ≤ δ

ϕ

(
x− y
δ

)
|uµ(y)| dy ≤ δ−n

∫
Bδ(x)

|uµ(y)| dy

Schwarz
≤ C(n)δ−N ‖uµ‖L2(Rn) · vol(Bδ)

1/2 ≤ C(δ) ‖uµ‖W 1(Rn),

by the continuous embedding of W 1 ↪→ L2, Exercise 7.3c.
Similarly,

|uµ,δ(x)− uµ,δ(x′)| ≤
∫
BR+1

|ϕδ(x− y)− ϕδ(x′ − y)| · |uµ(y)| dy

≤ C(δ) · |x− x′|
∫
BR+1

|uµ(y)| dy ≤ C(δ) · |x− x′| ‖uµ‖W 1(Rn).

Step 1 is completed.
Step 2. So, for each δ ∈ (0, 1) we have a uniformly convergent subsequence (vν,δ)
of the mollifier sequence (uµ,δ). Using the diagonal procedure for δ = 1/ν → 0 and
ν → ∞, we pick for each ν ∈ N the function vν,1/ν and denote the corresponding
element of the original sequence (uµ) by u′ν = uµ′ , i.e., the element uµ′ that yields
exactly vν,1/ν = ϕ1/ν∗uµ′ by convolution with ϕ1/ν . Note that the sequence

(
vν,1/ν

)
is uniformly convergent on BR by Step 1 and limν→∞‖vν,1/ν−u′ν‖W 1(Rn) = 0 under
mollification.

We claim the subsequence (u′ν) ⊂ (uµ) is convergent in L2(BR). Indeed, for all
natural ν and ρ

‖u′ν−u′ρ‖L2(BR) ≤ ‖u′ν−vν,1/ν‖L2(BR)+‖vν,1/ν−vρ,1/ρ‖L2(BR)+‖vρ,1/ρ−u′ρ‖L2(BR).

Each of the three terms on the right tends to 0 for ν → ∞ since the embedding
W 1 ↪→ L2 is continuous (once again, Exercise 7.3c). Hence the subsequence (u′ν)
of our original bounded sequence (uµ) is a Cauchy sequence in L2(BR) and thus it
converges. The compactness theorem is proved. �
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4. Case Studies

To illustrate the preceding theorems, we consider some simple special cases. To
begin with we prove a simple euclidean version of Theorem 7.13.

Theorem 7.16. If s > n/2, then each u ∈W s(Rn) is bounded and continuous,
and the inclusion W s(Rn) ↪−→ C0(Rn) is continuous.

Proof. By the Fourier Inversion Formula and the Integrable-Continuous Con-
version (Exercise A.5, p.675 in Appendix A), it suffices to prove û is in L1(Rn).
Indeed, we get

(7.5)

∫
Rn
|û(ξ)| dξ ≤

∫
Rn
|û(ξ)|

(
1 + |ξ|2

)s/2 (
1 + |ξ|2

)−s/2
dξ

≤
(∫

Rn
|û(ξ)|2

(
1 + |ξ|2

)s
dξ

)1/2(∫
Rn

(
1 + |ξ|2

)−s
dξ

)1/2

.

Here we have used the Schwarz Inequality 〈a, b〉 ≤ 〈a, a〉1/2 〈b, b〉1/2; note that the
first factor is finite by assumption and the latter factor is finite precisely for s > n/2.
By the Riemann-Lebesgue Lemma, we can even conclude that u(x) vanishes at
infinity. To prove the continuity of the inclusion, let u ∈ C∞0 (Rn). We have for
x ∈ Rn, with our convention d̄ξ := (2π)−n/2dξ,

|u(x)| =
∣∣∣∣∫

Rn
eixξû(ξ) d̄ξ

∣∣∣∣ ≤ ∫
Rn
|û(ξ)| d̄ξ.

Estimate (7.5) and the definition in Exercise 7.2b then yield

sup
x∈Rn

|u(x)| ≤ K ‖u‖W s(Rn) ,

where the constant K (e.g., (2π)−n/2
(∫

Rn(1 + |ξ|2)−sdξ
)1/2

) does not depend on

u. Since C∞0 (Rn) is dense in W s (Rn) (see Exercise 7.3c, p. 192), we are done. �

Theorem 7.17. We write the n-dimensional torus Tn in the form Rn/ (2πZn).
Then the restriction map C∞(Tn)→ C∞(Tn−1) (induced by the projection (y, θ) 7→
y of Tn onto Tn−1) extends to a continuous linear map W s(Tn)→ W s− 1

2 (Tn−1),
for s ≥ 1/2.

Proof. We follow [Pal65, p.143-162], while previously Peter Lax1 had re-
marked that, in the periodic case, certain technical difficulties vanish:

Step 1: C∞(Tn) consists of functions on Rn which are periodic of period 2π
in each variable. The functions

eν(x) := (2π)
−n/2

e2πi〈ν,x〉, ν ∈ Zn

form a complete orthonormal system for L(Tn); see the theory of Fourier series
(Appendix A). By definition (see Exercise 7.2b), we have u ∈ W s(Tn) exactly
when

‖u‖2s :=
∑

ν∈Zn
|û(ν)|2 (1 + |ν|2)s <∞,

1P. Lax, Comm. Pure Appl. Math. 8 (1955), 615-633.
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where the ν-th Fourier coefficient û(ν) is given by

û(ν) := (2π)
−n/2

∫
Tn
u (x) e−2πi〈ν,x〉dx = 〈u, eν〉L2(Tn) , with

〈ν, x〉 := ν1x1 + · · ·+ νnxn and |ν|2 = 〈ν, ν〉 .
Then the series

∑
ν û(ν)eν converges absolutely to u in the W s(Tn) topology.

Step 2: For x = (y, θ) ∈ Tn−1 × S1 and u ∈ C∞(Tn), we have u(y, θ) =∑
(λ,µ) û(λ, µ)eλ(y)eµ(θ), where the sum is over all (λ, µ) ∈ Zn−1 × Z and the

convergence on Tn is uniform. Since eµ(0) = (2π)−1/2, it follows that

u(y, 0) = (2π)−1/2
∑

λ∈Zn−1
eλ(y)

∑
µ∈Z

û(λ, µ),

where the series converges uniformly on Tn. Thus, we have

(u|Tn−1) (̂λ) = (2π)−1/2
∑

µ∈Z
û(λ, µ).

Step 3: We essentially follow [Pal65, p.143f] (but avoid a minor error, the last
inequality on p. 143). For s ≥ 1

2 , b ≥ 1 and a : Z+ → R+, we set

xµ = b−1/4
(

1 + µ2

b

)−s/2
and yµ = aµb

1/4
(

1 + µ2

b

)s/2
.

The Schwarz inequality
(∑

µ∈Z xµyµ

)2

≤
∑
µ∈Z x

2
µ

∑
µ∈Z y

2
µ yields(∑

µ∈Z
aµ

)2

≤
∑

µ∈Z
b−1/2

(
1 + µ2

b

)−s∑
µ∈Z

a2
µb

1/2
(

1 + µ2

b

)s
or (∑

µ∈Z
aµ

)2

bs−
1
2 ≤

∑
µ∈Z

b−1/2
(

1 + µ2

b

)−s∑
µ∈Z

a2
µ

(
b+ µ2

)s
.

By integral comparison,∑
µ∈Z

b−1/2
(

1 + µ2

b

)−s
≤ b−1/2 + 2

∫ ∞
0

b−1/2
(

1 + x2

b

)−s
dx

= b−1/2 + 2

∫ ∞
0

(
1 + y2

)−s
dx = b−1/2 +

√
πΓ
(
s− 1

2

)
Γ (s)

.

For Cs := 1 +
√
πΓ(s− 1

2 )
Γ(s) , we have (since b ≥ 1)(∑

µ∈Z
aµ

)2

bs−
1
2 ≤ Cs

∑
µ∈Z

a2
µ

(
b+ µ2

)s
.

We set aµ := |û(λ, µ)| and b := 1 + |λ|2 and then obtain(∑
µ∈Z
|û(λ, µ)|

)2 (
1 + |λ|2

)s− 1
2 ≤ Cs

∑
µ∈Z
|û(λ, µ)|2

(
1 + |λ|2 + µ2

)s
,

Thus, with the above Step 2, we have

‖(u|Tn−1)‖2s− 1
2

=
∑

λ∈Zn−1
|(u|Tn−1 )̂ (λ)|2 (1 + |λ|2)s−

1
2

=
∑

λ∈Zn−1

∣∣∣(2π)−1
∑

µ∈Z
û(λ, µ)

∣∣∣2 (1 + |λ|2)s−
1
2

≤ (2π)−1
∑

λ∈Zn−1

(∑
µ∈Z
|û(λ, µ)|

)2

(1 + |λ|2)s−
1
2

≤ (2π)−1Cs
∑

λ∈Zn−1

∑
µ∈Z
|û(λ, µ)|2

(
1 + |λ|2 + µ2

)s
.
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Thus,

‖(u|Tn−1)‖s− 1
2
≤
√
Cs/2π ‖u‖s ,

and we are done, since C∞(Tn) is dense in W s(Tn). �

The following case study gives insight into the possible loss of differentiability
under restrictions of Sobolev spaces, in contrast to the gain of differentiability in
the Ck theory:

Theorem 7.18. There is no continuous, linear map W s(Rn) → W s(Rn−1)
which extends the restriction map C∞0 (Rn)→ C∞0 (Rn−1) defined by u 7→ u(·, 0).

Proof. On the ball Bn := {x ∈ Rn : |x| ≤ 1}, the function |x|α is integrable,
if α > −n, since then in polar coordinates, we have∫

Bn
|x|α dx ≤ C

∫ 1

0

rα+n−1dr <∞.

Now consider the function u(x) := |x|α χ(x), where χ is a C∞ function with com-
pact support and χ(x) = 1 for all x ∈ Bn. For α = −1/2 and n = 2, we have

u ∈ L2(R2), but u(·, 0) /∈ L2(R), since
∫ 1

0
x−1dx = ∞. Thus, the theorem is veri-

fied for s = 0, since there is a sequence {uν}∞ν=1 with uν ∈ C∞0 (R2) which converges
in W 0(R2) (= L2(R2)) to u, but {uν(·, 0)}∞ν=1 is not a Cauchy sequence in W 0(R)
(= L2(R)). One can also easily construct counterexamples for s > 0, since by the
above argument it follows that the function u (defined there) lies in W 1(Rn) ex-

actly when 2α > 2− n (see Exercise 7.2a). For example, u(x) := |x|−1/4
χ(x) is an

element of W 1(R3), but u(·, ·, 0) /∈ W 1(R2) and u(·, 0, 0) /∈ W 1(R). If a sequence
uν ∈ C∞0 (R3) converges to u ∈W 1(R3) and the restrictions uν(·, 0, 0) were to con-
verge in W 1(R), then the limit in W 1(R) would also be in C0(R) by Theorem 7.16;
this contradicts the form of u. �

Theorem 7.19. Without the assumption that X is compact, Theorem 7.15
above is false.

Proof. For each n ∈ N, one constructs un ∈ W 1(R) with ‖un‖1 < 3, as in

Figure 7.1. However, we have ‖un − u2n‖20 ≥ 2n
(
1/
√
n− 1/

√
2n
)2

=
(√

2− 1
)2

,

Figure 7.1. No Rellich Theorem for non-compact X := R

independent of n. Thus, the un lie in a bounded subset of W 1(R), but there is no
subsequence convergent in W 0(R) = L2(R). �



CHAPTER 8

Pseudo-Differential Operators

Synopsis. Motivation: Fourier Inversion; Symbolic Calculus; Quantization. Canon-

ical and Principally Classical Pseudo-Differential Operators. Pseudo-Locality; Singular

Support. Standard Examples: Differential Operators; Singular Integral Operators. Oscil-

latory Integrals. Kuranishi Theorem. Change of Coordinates. Pseudo-differential Opera-

tors on Manifolds. Graded ∗-Algebra. Invariant Principal Symbol; Exact Sequence; Non-

Canonical Op-Construction as Right Inverse. Coordinate-Free (Truly Global) Approach:

Normalized Fourier Transformation; Normalized Amplitudes; Normalized Invertible Op-

Construction; Approximation of Differential Operators

1. Motivation

For better reading by a traditionally educated student, this chapter is based on
a local definition of pseudo-differential operators and then generalizing to operators
acting on sections of vector bundles over manifolds by charts and local trivializations
of the bundles. That approach has its merits since it has become the standard way of
introducing pseudo-differential operators and since it admits some easy elementary
calculations. However, for geometrically defined operators, the arbitrary character of
the coordinate shifts does not facilitate calculations and even can block for natural
constructions (like the product of pseudo-differential operators in non-trivial cases).

Whence, a self-confident reader may skip the first four sections of this chapter
and advance directly to Section 8.5 where we give a coordinate-free description of
pseudo-differential operators. As we shall see in our Part III, that global description
is more powerful for the investigation of the analytical index under embedding.
That said, the reader must be reminded that also our global description of pseudo-
differential operators is neither really invariant nor canonical : While it does not
depend on coordinates, it depends heavily on other choices, namely the choice of
metric structures on the manifold and the involved bundles and on the choice of
connections for that bundles.

We will now turn to a class of operators which, roughly speaking (details below),
are locally presentable in the form

(Pu) (x) :=

∫
Rn
ei〈x,ξ〉p(x, ξ)û(ξ) d̄ξ,

where we use the convenient shorthand

d̄ξ = (2π)
−n/2

dξ

for Lebesgue measure on Rn divided by (2π)
n/2

. Here p is called the amplitude
of the operator P , 〈x, ξ〉 is its phase function, and

û(ξ) :=

∫
Rn
e−i〈x,ξ〉u (x) d̄x

203
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denotes the Fourier transform of u (see the crash course in Appendix A).
There are a number of reasons why these pseudo-differential operators have

commanded increasing attention since the appearance of the pioneering studies by
Solomon Grigoryevich Mikhlin on Singular Integral Equations (1948). We mention
the following overlapping aspects.

1. This class is large enough to contain in addition to the differential operators
(Exercise 8.5 below, p.209) the Green operators (see also Chapter 2) and other sin-
gular integral operators which play a role in solving partial differential equations.
In particular this class of pseudo-differential operators contains, with each elliptic
operator, its parametrix, i.e., a quasi-inverse modulo an operator of lower order. In
Theorem 9.7 (p.236) below we will incorporate this operator calculus into Hilbert
space theory and in this fashion, we will be able to derive easily the classical results
on elliptic operators (regularity theorems, finiteness of the index) using the ele-
mentary theory of Fredholm operators developed in Chapters 1-3. Thereby “some
of the techniques used in the case of differential operators appear here as general
properties of the class of integro-differential operators considered” (Seeley).

2. The class is small enough and close enough to the differential operators to
allow convenient computations. This standpoint is important, particularly because
the progress in functional analysis of the past decades permitted the definition of
more and more general and involved operator classes and phantom spaces (Thom),
while the exploration of their properties was too difficult and lagged behind. In
contrast, turning to pseudo-differential operators, for which an exact calculus was
developed, signalled “a trend in the theory of general partial differential equations
towards essentially constructive methods” (Hörmander).

3. A special aspect is the attempt to deal with differential operators with vari-
able coefficients, by means of pseudo-differential operators in first approximation, in
the same way differential operators with constant coefficients are treated by means
of the Fourier transform: For example, for f ∈ C∞(Rn) with compact support and
n > 2, consider the inhomogeneous equation ∆u = f , where ∆ = ∂2/∂x2

1 + · · · +
∂2/∂x2

n is the Laplace operator. With the Fourier transform (see the multiplication

rule in Exercise A.5b, Appendix A), we obtain −(ξ2
1 +· · ·+ξ2

n)û(ξ) = ∆̂u(ξ) = f̂(ξ),

i.e., û(ξ) = −f̂(ξ)/ |ξ|2, as an L2 function (for n > 2), and further with the Fourier
inversion formula,

(Qf)(x) = u(x) = −
∫
Rn
ei〈x,ξ〉 |ξ|−2

f̂(ξ)d̄ξ,

where Q is the inverse operator (fundamental solution) of ∆. In general, suppose
P is a differential operator with constant coefficients which can be written as a
polynomial P = p(D) where D = (−i∂/∂x1, . . . ,−i∂/∂xn), and consider the inho-
mogeneous equation p(D)u = f , f ∈ C∞(Rn) of compact support. We obtain in
the same way, at least formally, a solution u = Qf , where

(Qf)(x) :=

∫
Rn
ei〈x,ξ〉q(ξ)f̂(ξ) d̄ξ,

and q(ξ) := p(ξ)−1 is the amplitude. In the process, a number of difficulties arise.
Indeed, Qf is in general not C∞, and possibly only a distribution, and the integral
must be interpreted, since the zeros of p can cause divergences. But these problems
can be resolved almost completely; e.g., see the following references of quite different
depth: [Gru, pp.108-110],[Hö63, Chs. III and IV ], [Hö2], [Tay1, Chapter 3].
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Now, if (as in Chapter 5) U ⊆ Rn is open and

P = p(x,D) =
∑
|α|≤k

aα (x)Dα, with aα ∈ C∞ (U) ,

is a differential operator with variable coefficients, then all these methods fail ini-
tially. But we can, “as a good physicist would” (Atiyah), formally invert the op-
erator P by freezing the coefficients at a point x0 ∈ U and considering P as a
perturbation of p(x0, D) which is a differential operator with constant coefficients.
In this way we obtain as an approximate inverse of P a pseudo-differential operator
with the amplitude q(ξ) = p(x0, ξ)

−1. In order to get a better approximate inverse
it is natural to slowly thaw the coefficients, i.e., to let the point x0 vary in U . This
yields the operator

(Qf)(x) :=

∫
Rn
ei〈x,ξ〉q (x, ξ) f̂(ξ) d̄ξ

with the amplitude q(x, ξ) = p (x, ξ)
−1

(x ∈ U, f ∈ C∞(Rn) with compact sup-
port). This basic perturbation argument, which was supplied in the study of elliptic
differential equations by the Italian mathematician Eugenio Elia Levi already in the
year 1907, thus finds its theoretical framework within the class of pseudo-differential
operators.

We remark (see Theorem 9.7, p. 236) that in the elliptic case an equally good
approximation is obtained by choosing as amplitude the inverse of the principal
part (symbol), i.e., the function pk(x, ξ)−1 which is homogeneous of degree −k in
ξ. There is a particularly simple calculus of such operators, since the asymptotic
expansions of p(x, ξ) and q(x, ξ) and the underlying iteration (usually necessary) is
avoidable here.

4. The theory of pseudo-differential operators allows a certain relaxing of cus-
tomary precision, a precision which is senseless, or at least exaggerated, in a number
of practical problems. Thus, in order to investigate regularity and solvability of the
differential equation Pu = f , we do not need an actual inverse operator (funda-
mental solution), but (in the framework of Fredholm theory) it suffices to have a
parametrix, i.e., a quasi-inverse modulo certain elementary operators (see Chap-
ter 3). This has considerable computational advantages. In the case of differential
operators P = p(D) with constant coefficients (as in Item 3 above), we may take
the amplitude to be

q(ξ) := χ(ξ)p(ξ)−1

where χ (ξ) is a fixed C∞ function which is identically zero in a disk about the
origin and identically 1 for large ξ. In this fashion we avoid the delicate convergence
problems for the integral

(Qf)(x) :=

∫
Rn
ei〈x,ξ〉q (ξ) f̂(ξ) d̄ξ

which are required for the amplitude p(ξ)−1 because of singularity at the zeros of
p. While PQ = Id and QP = Id are not valid, we still have

PQf = f +Rf for f ∈ C∞(U), where

(Rf) (x) :=

∫
Rn
r (x− ξ) f (ξ) d̄ξ.
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and r̂ = χ− 1; so r ∈ C∞, and R is a smoothing operator. Indeed,

(P (Qf)) (x) =

∫
Rn
ei〈x,ξ〉p(ξ)Q̂f(ξ) d̄ξ and

Q̂f(ξ) =

∫
Rn
e−i〈y,ξ〉

(∫
Rn
ei〈y,η〉q (η) f̂(η) d̄η

)
d̄y = q(ξ)f̂(ξ) = χ(ξ)p(ξ)−1f̂(ξ).

Using the convolution formula of Exercise A.5e in Appendix A, we then have

(P (Qf)) (x) =

∫
Rn
ei〈x,ξ〉p(ξ)χ(ξ)p(ξ)−1f̂(ξ)d̄y d̄ξ

=

∫
Rn
ei〈x,ξ〉 (1 + (χ(ξ)− 1)) f̂(ξ) d̄ξ

= f(x) +

∫
Rn
ei〈x,ξ〉 (χ(ξ)− 1) f̂(ξ) d̄ξ = f(x) +

∫
Rn
r (x− ξ) f (ξ) d̄ξ.

Since much is known about simple correction or residue operators such as R, a
parametrixQ serves just as well as a true fundamental solution for whichR vanishes.
At any rate, fundamental solutions do not usually exist when passing to variable
coefficients in the perturbation method (sketched in Item 3) and when replacing
operators and their amplitudes by principal symbols (the terms of highest order in
the amplitudes). However, the simple computations modulo smoothing operators
and other operators of lower order can be used very efficiently and arise naturally
in the theory of pseudo-differential operators.

5. In Section 6.7 (p. 186) we pointed out, in connection with the symbolic cal-
culus, the basic significance of the change of levels in passing from operators to the
functions which characterize them in approximation. The pseudo-differential oper-
ators form a class (and this is tied to the perturbation argument) whose operators
can at least in approximation (actually, precise in the global approach described
below in Section 8.5) be described by their amplitudes and symbols. The latter are
functions satisfying simple rules of computation resulting in a particularly simple
approximation theory for the corresponding operators; see for example the compo-
sition rules in Theorem 8.26, p. 226. Surely, mathematicians such as Vito Volterra,
Erik Ivar Fredholm, David Hilbert and Friedrich (Frigyes) Riesz had this goal in
mind when they developed the theory of integral equations as a means of dealing
with differential operators. However, starting with the classical representation

(Qf)(x) =

∫
K(x, z)f(z) dx,

it turns out that the formulation of the correct conditions for the weights K are by
far not as simple and natural as are those for the amplitudes and symbols in the
representation via Fourier transform. The same is true for the transformation and
composition rules (see Theorem 8.3, p. 208, and Theorem 8.13, p. 213).

6. From the topological standpoint, the following issues are particularly im-
portant: In the passage between the levels of consideration, we prefer to operate
with symbols (they are more accessible by topological means) rather than oper-
ators. In Part III below, the larger class of pseudo-differential operators has a
decisive advantage. Indeed, the associated extension of the symbol space beyond
the polynomial maps to arbitrary C∞ functions permits lifting a homotopy of the
symbol of a differential operator to a homotopy of the operator itself in the space of
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pseudo-differential operators. This is generally impossible in the space of differen-
tial operators. Using heavier topological machinery, this difficulty can be dealt with
without the use of pseudo-differential operators. However, the difficulties which oc-
cur are not to be underestimated. For example, not much is known about the
simplest question of the existence an elliptic system (in Rn) of N differential equa-
tions of order k with constant coefficients. For k = 1, this is the case exactly when
the (N −1)-sphere SN−1 admits n−1 linearly independent vector fields; hence, for
N = n, (according to a famous theorem of John Frank Adams) exactly for the val-
ues 2, 4, and 8. More about this is in [Ati70a]. In [Fu99], M. Furuta presented a
full proof of the Atiyah-Singer Index Theorem without the use of pseudo-differential
operators.

7. Finally, we point out that the class of pseudo-differential operators origi-
nally was developed only in connection with elliptic differential equations, and only
there (and with the closely related hypo-elliptic differential equations) the beautiful
properties listed above unfold fully. However, Lars Hörmander and other authors
succeeded, in a series of papers and monographs, in generalizing the concept of a
pseudo-differential operator in such a way that the theory Fourier integral opera-
tors so created leads to new results also in heat transfer and wave operators, for
example. For this aspect, which we cannot pursue further, see [Hö71b, Hö4], and
[Tay74, Chapters II, IV, VI and VII].

2. Canonical Pseudo-Differential Operators

We begin with the definition of the prototypes of our pseudo-differential oper-
ators in local form over the open subset U ⊆ Rn and acting on functions only:

(8.1) (Pu)(x) =

∫
Rn
ei〈x,ξ〉p (x, ξ) û(ξ) d̄ξ =: (Op(p)u) (x),

where x ∈ U , u ∈ C∞0 (U) (i.e., u ∈ C∞(U) and the support of u is compact).

Definition 8.1. a) The operator P = Op(p) is called a canonical pseudo-

differential operator of order k ∈ R, shortly P ∈ Lk(U), if the amplitude p ∈
C∞(U×Rn) satisfies the following asymptotic conditions of growth as |ξ| → ∞: For
each compact subset K ⊂ U and multi-indices α = (α1, ..., αn), β = (β1, ..., βn) ∈
Zn+, there is a C ∈ R such that for all x ∈ K and ξ ∈ Rn, we have

(8.2)
∣∣Dβ

xD
α
ξ p(x, ξ)

∣∣ ≤ C (1 + |ξ|)k−|α| .

Recall that |α| := |α1 + · · ·+ αn| and that D
(0,...,1,...0)
x := −i∂/∂xj where “1”

stands in the j-th place of the multi-index (0, . . . , 1, . . . 0).

b) The set of amplitudes satisfying (8.2) will be denoted by Sk(U × Rn). We set

S•(U × Rn) :=
⋃
k∈R Sk(U × Rn) and L•(U) :=

⋃
k∈R Lk(U).

Remark 8.2. a) Amplitudes satisfying (8.2) are often called symbols of Hörmander
type (1, 0). The definition extends to matrix valued amplitudes, needed below for
defining pseudo-differential operators acting on sections of vector bundles.
b) A global version of the estimates (8.2) is given below in (8.16).
c) The best constants in (8.2) provide a set of semi-norms which endow S•(U ×Rn)
with the structure of a Fréchet algebra.

The estimate (8.2) plays a key role in the derivation of many useful properties
of pseudo-differential operators, as in the following
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Theorem 8.3. Each canonical pseudo-differential operator is a linear map from
C∞0 (U) to C∞(U).

Proof. For all ξ ∈ R, the integrand x 7→ ei〈x,ξ〉p (x, ξ) û(ξ) is obviously a C∞

function. To show that the function

x 7→ (Op(p)u) (x) =

∫
Rn
ei〈x,ξ〉p (x, ξ) û(ξ) d̄ξ

is also C∞, we must show that the integral converges sufficiently well so that the
order of integration and differentiation may be switched. More precisely, by the
Dominated Convergence Theorem of Henri Lebesgue, a function which is the limit
of a sequence of measurable functions, uniformly bounded by an (absolutely) inte-
grable function, is itself integrable and the limit and integral may be interchanged.
To apply this to our situation, we must show that, for each x ∈ U and each multi-
index β, the function

ξ 7→
∣∣∣Dβ

x

(
ei〈x,ξ〉p (x, ξ)

)
û(ξ)

∣∣∣ (ξ ∈ Rn)

can be estimated by an integrable function. Since the support of u is compact, we
have (see Exercise A.5b, p. 675 of Appendix A) that

ξαû(ξ) =

∫
Rn
e−i〈x,ξ〉Dαu (x) d̄x,

which goes to 0 as |ξ| → ∞. Hence the function ξ 7→ |ξαû(ξ)| is bounded for each

multiindex α. Thus, û(ξ) decreases faster than any power of |ξ|−1
as |ξ| → ∞; i.e.,

for each N there is a constant C1 such that for all ξ ∈ Rn,

|û(ξ)| ≤ C1(1 + |ξ|)−N .

By (8.2), we have
∣∣∣Dβ′

x p(x, ξ)
∣∣∣ ≤ C2(1 + |ξ|)k for any β′ ≤ β. Hence∣∣∣Dβ

x

(
ei〈x,ξ〉p (x, ξ)

)∣∣∣ ≤ C3 |ξ||β| (1 + |ξ|)k, and so∣∣∣Dβ
x

(
ei〈x,ξ〉p (x, ξ)

)
û(ξ)

∣∣∣ ≤ C3(1 + |ξ|)k+|β|−N ,

the right side being integrable for N sufficiently large. �

Remark 8.4. a) Recall roughly that quantization in quantum mechanics at-
tempts to convert functions of position and momentum (i.e., functions on T ∗X) into
operators. One may think of Op(p) as a quantization of p. See also [GS, Exercise
3.1, p.36f]. There you find a sketch of how, e.g., the common commutator relations
of Weyl quantization can be derived from properties of Op. Readers, however, who
have a geometric antenna and are truly interested in physics will be bothered by the
fact that our Op(p) is naturally defined only in Euclidean space. A generalization
of that quantization concept to manifolds depends on many choices. The common
way depends on the choice of charts. That does not lead very far, see our Exercise
8.19, p.221 and our Chapter 9 or [GS, Exercise 3.4] and [Gru, Section 8.2]. Below
in Section 8.5, we shall describe an alternative, thoroughly global way to define
Op(p) for suitable p over a closed manifold. However, that approach will also de-
pend on many choices (e.g., the choice of metric, connection and bump function),
as we will see. Apart from these choices, there are other choices one can make.
As [GS, Chapter 11] indicates, one probably has to return to the visionary notes
by J.B. Keller, 1958, V.P. Maslov, 1972, and J. Leray, 1981 (precise references are
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given in [GS, p.130]) to find ideas for a quantization concept which is physically
realistic and geometrically meaningful.
b) The continuity of the operator Op(p) will be discussed later, see Theorem 9.2,
p.234.
c) We also postpone the discussion, whether an amplitude is determined from a
given pseudo-differential operator to Example 8.15, p.215.

Exercise 8.5. Show that the following standard operators define canonical
pseudo-differential operators modulo smoothing operators (i.e., pseudo-differential
operators, whose amplitudes have compact support in the second variable; see also
Remark 8.8, p. 210).
a) P =

∑
|α|≤k aαD

α, where aα ∈ C∞ (U).

b) (Pu)(x) =
∫
Rn K(x, y)u(y)dy, where K ∈ C∞(U×U) and the support of K(x, ·)

is compact for all x ∈ U . For example, the convolution u 7→ u ∗ϕ with ϕ ∈ C∞0 (U)
(where K(x, y) = ϕ(x− y)) is a canonical pseudo-differential operator.
c) The Riesz operator P =

∑
aαR

α, where aα ∈ C∞0 (U), with aα = 0 for all but
finitely many multi-indices α, and

(Rαu)(x) :=

∫
Rn
ei〈x,ξ〉

(
ξ
|ξ|

)α
û(ξ)d̄ξ.

(See the footnote for Exercise 8.23, p. 223 below.)
[Hint: For a: One applies the differential operator P to

u(x) =

∫
Rn
ei〈x,ξ〉û(ξ) d̄ξ,

and then obtains a pseudo-differential operator with amplitude

p (x, ξ) =
∑
|α|≤k

aα (x) ξα, x ∈ U, ξ ∈ Rn.

For b: Here also, we begin with the Fourier Inversion Formula. One obtains the
amplitude

p (x, ξ) =

∫
Rn
ei〈y,ξ〉K(x, y) dy.

For each fixed x, this is a multiple of the inverse Fourier transform of a function
with compact support, and hence p (x, ·) ∈ C∞↓ (Rn), the space of rapidly decreasing

functions in C∞(Rn). (Argue as in the proof of Theorem 8.3, where partial integra-
tion interchanges multiplication and differentiation.) Thus, the required conditions
on the amplitude hold for each k ∈ Z.
For c: p(x, ξ) = χ (ξ)

∑
aα (x) (ξ/ |ξ|)α where χ (ξ) is a cut-off function, i.e.,

χ (ξ) = 0 for |ξ| < ρ, ρ > 0, and χ (ξ) = 1 for |ξ| > ρ′ > ρ. The order of P
is therefore k = 0, and different choices of χ lead, modulo smoothing functions, to
the same pseudo-differential operator. One also calls Riesz operators singular inte-
gral operators, since they can be alternatively represented by singular convolutions.
For example, if α = (1, 0, ..., 0), then one can (up to a constant factor, which we
will ignore) write

(aαR
αu)(x) = lim

ε→0

∫
|x−y|>ε

K(x, x− y)u(y) dy, where K(x, z) := aα(x)z1 |z|−n−1
,

whence the weight function K has a singularity at the point z = 0. For the connec-
tion between Riesz operators, Hilbert transformations, and Wiener-Hopf operators
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in the case n = 1, see above our Chapter 4, [Tay74, p.36], and [Prö72], where
an algebra of pseudo-multiplication operators in the half-space Rn+ is investigated.
This algebra is formed with the help of pseudo-differential operators and contains
the Wiener-Hopf operators.]

Remark 8.6. While differential operators are local operators (see Exercise
5.2, p.136), a pseudo-differential operator can increase supports. For example, if
P is defined as convolution with ϕ ∈ C∞(U) as in Exercise 8.5b, we can have
suppPu = suppu+ suppϕ. The translation operator with amplitude

p(x, ξ) := ei〈x0,ξ〉, x0 fixed,

which sends u(x) to u(x+ x0) is not a canonical pseudo-differential operator. Ac-
tually, the asymptotic amplitude estimate guarantees pseudo-locality, a kind of
locality modulo operators of lower order, whereby (rather than the support) the
singular support (the closure of the set where a function is not C∞) is not in-
creased. Details are found in [Gru, p.177], [Hö3, Theorem 18.1.16], [Ni, p.151f]
or [Pal65, p.260].

Exercise 8.7. Show that one can write every canonical pseudo-differential
operator P as an integral operator (for some λ ∈ R)

(Pu) (x) =

∫
U

Kλ (x, x− y) (1−∆)
λ
u (y) d̄y, u ∈ C∞0 (U),

where the weight function Kλ (x, z) is C∞ for z 6= 0.
[Hint: Suppose the operator P has order k ∈ Z and amplitude p ∈ C∞(U × R).
The case k < −n is easily analyzed: Without loss of generality, suppose z 6= 0 and
show as in the proof of Theorem 8.3 (repeated partial integration) that K(x, z) :=∫
ei〈z,ξ〉p(x, ξ) d̄ξ is actually C∞ for z 6= 0, and λ = 0. K(x, z) is continuous even

at z = 0, and differentiable there for k sufficiently negative. In the case k ≥ −n,
formally write the integral for K(x, z) as in the case k < −n where λ = 0. The
integral need not converge, since one no longer has the estimate

|p(x, ξ)| ≤ (1 + |ξ|)−n−1 .

Hence, insert the factor (= 1)

(1 + |ξ|2)λ(1 + |ξ|2)−λ

in the integrand. Then note that for the usual Laplace operator ∆z = −
∑n
j=1D

2
j

(Dj = −i∂/∂zj), we have

ei〈z,ξ〉(1 + |ξ|2)λ = (1−∆z)
λ
ei〈z,ξ〉.

If λ > k + n, the case k ≥ −n reduces to the case λ = 0. Details are found in [Ni,
p.152].]

Remark 8.8. By Definition 8.1, a canonical pseudo-differential operator, whose
amplitude has compact support in the second variable, is of arbitrarily small order
(“k = −∞”), and so it can be presented as an integral operator with C∞ weight
function (i.e., a smoothing operator).

Remark 8.9. Contrary to the classical notation for integral operators (where
the singularities of the weight function lie on the diagonal of U × U), we write
K(x, x − y) instead of K(x, y) under the integral, and by this artifice obtain a
weight function K(x, z) that is singular only at z = 0.
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3. Principally Classical Pseudo-Differential Operators

In order to adapt the theory of pseudo-differential operators to our problem
of treating elliptic differential equations, first on closed manifolds and then on
bordered domains, we must solve two problems.

Task 1 - Homogeneous Principal Symbol. Instead of the weight function
K or the amplitude p, we require the notion of principal symbol, a sort of homoge-
neous main part of the amplitude. For a differential operator P =

∑
|α|≤k aαD

α,

the amplitude was the polynomial function (Exercise 8.5a)

p(x, ξ) =
∑
|α|≤k

aα(x)ξα, x ∈ U, ξ ∈ Rn.

From this, the principal symbol (or shortly “symbol”) σ(P )(x, ξ) of P was taken
to be the homogeneous polynomial in ξ of order k obtained by taking the sum only
over the terms of highest order (|α| = k); see Chapter 5. This process of separation
does not carry over to the amplitude of an arbitrary canonical pseudo-differential
operator. Thus, we make the following four assumptions about the amplitude p of
a pseudo-differential operator of order k ∈ Z:

Assumptions 8.10. (i) For each compact subset K ⊂ U and multi-
indices α, β ∈ Zn+, there is a C ∈ R such that for all x ∈ K and ξ ∈ Rn,
we have ∣∣Dβ

xD
α
ξ p(x, ξ)

∣∣ ≤ C (1 + |ξ|)k−|α| .

(ii) The limit σk(p)(x, ξ) := limλ→∞
p(x,λξ)
λk

exists for all x ∈ U and ξ ∈
Rn \ {0}.

(iii) For some cut-off function χ ∈ C∞(Rn) with χ(ξ) =

{
0, for |ξ| small,

1, |ξ| ≥ 1,

p(x, ξ)−χ(ξ)σk(p)(x, ξ) is the amplitude of a canonical pseudo-differential
operator of order k − 1.

(iv) p(x, ξ) has compact support in the variable x.

Note that (i) is just a repeat of (8.2). For us, conditions (iii) and (iv) serve only
a technical purpose, since we then obtain convergence of integrals and estimates
more easily (e.g., see the above hint to Exercise 8.7b). Actually, one can forgo
these conditions and, as in Theorem 8.13 (p. 213), go over to a Fourier integral
operator with a three-slot amplitude. For applications, we must drop these further
assumptions, and we do so for the additional reason that we define our global pseudo-
differential operators so that they possess amplitudes with compact support only
in their localized form (see below).

In contrast to the canonical pseudo-differential operators, whose amplitudes
only satisfy the estimate (i), we now say that P is a pseudo-differential operator
(with compact support), if the amplitude p of P meets all four conditions (i) –

(iv). We shall write P ∈ Lkpc(U), where the acronym “pc” stands for principally
classical in accordance with one branch of modern literature, see [BCLZ, Section
2.3].

Remark 8.11. a) Main stream deals with classical pseudo-differential oper-

ators (written P ∈ CLk(U)). That are operators generated by elements of the

subspace CSk(U ×Rn) ⊂ Sk(U ×Rn) consisting of classical (polyhomogeneous)
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symbols. More precisely, an amplitude p ∈ Sk(U × Rn) belongs to CSk(U × Rn),
if it admits sequences pk−j ∈ C∞(U × Rn), j ∈ Z+ with

(8.3) pk−j(x, rξ) = rk−jpk−j(x, ξ), r ≥ 1, |ξ| ≥ 1,

such that

(8.4) p−
N−1∑
j=0

pk−j ∈ Sm−N (U × Rn) for all N ∈ Z+.

The latter property is usually abbreviated p ∼
∞∑
j=0

pk−j .

b) Clearly we have CLk(U) ⊂ Lkpc(U) ⊂ Lk(U), more precisely:

(8.5) Lkpc(U) = CLk(U) + Lk−1(U).

For index theory of elliptic operators, it seems to us that the common restriction
to classical pseudo-differential operators is not necessary. All we need can be done
within the wider space L•pc =

⋃
Lkpc .

Task 2 - Manifolds and Coordinate Change. Our second task consists
of defining pseudo-differential operators on a paracompact C∞ manifold X. Thus,
consider a linear map P : C∞0 (X)→ C∞(X), where C∞0 (X) again denotes the space
of C∞ functions with compact support. (We will consider operators on sections of
vector bundles below in Exercise 8.20, p. 222). For each local coordinate system
κ : U → Rn with U open in X, P yields a local operator

Pκu := P (u ◦ κ) ◦ κ−1, u ∈ C∞0 (κ(U)), where u ◦ κ :=

{
u ◦ κ, on U,

0, on X \ U.

Definition 8.12. P : C∞0 (X) → C∞(X) is called a pseudo-differential
operator of order k on X, if Pκ is a pseudo-differential operator (with compact
support) for all C∞ charts κ with relatively compact image. We write

P ∈ Lkpc(X).

The definition seems to be analogous to the introduction of differential opera-
tors on manifolds. Actually, the situation here is different and more complex, since
pseudo-differential operators do not need to be local (see the warning of Remark
8.6, p.210), while differential operators may actually be characterized by their local-
ity (i.e., suppPu ⊆ suppu); see Exercise 5.2, p. 136 and Remark 5.3. In particular,
we have the following problems:

1. How invariant is the definition of Lkpc(X)? Must one actually show that
the induced local operators are pseudo-differential operators for all charts, or is it
enough to check this for an atlas. This difficulty lies in the fact that the formation
of the local operators is not transitive; i.e., in general, one obtains two different
operators, if one first restricts a chart κ on U ⊆ X to a open subset U ′ ⊆ U
obtaining P(κ|U′ ) and then considers the restriction P to C∞0 (κ(U ′)). However, it
turns out that the difference is a smoothing operator of the simple form treated in
Exercise 8.5b.

2. With a differential operator P , the amplitude p(x, ξ) and symbol σ(P )(x, ξ)
can be obtained intrinsically from the action of the operator, without explicitly
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representing it in terms of local coordinates first. Namely, we have (see Exercise
6.34, p. 180 above) in a local chart

σ(P )(x, ξ)e =
ik

k!
P
(

(ϕ− ϕ (x))
k
u
)

(x), with dϕx = ξ, u(x) = e,

and trivially

p(x, ξ) = e−i〈x,ξ〉P
(
ψei〈x,ξ〉

)
(x) ,

where ψ ∈ C∞0 (X) with ψ = 1 in a neighborhood of x.
For pseudo-differential operators (in general, k is not positive) the first formula

does not make sense, and there is no known simple fully invariant formula for
the symbol of a pseudo-differential operator; the second formula holds only in an
approximate sense (e.g., see [Ni, p.152f]); the amplitude of a pseudo-differential
operator is not unique, but is only asymptotically determined by the operator.
Thus, the task of defining a global symbol (for pseudo-differential operators defined
on the whole manifold X) lies before us now. (Later, as announced before, we
shall give a genuinely global definition of the principal symbol and the total symbol
(amplitude), see Section 8.5 below.)

3. For this, we investigate the behavior of the local operators and their sym-
bols under a coordinate change, and determine the transformation rule in order to
obtain a global symbol. These calculations are somewhat lengthy, since under a
coordinate change, the phase 〈x, ξ〉 and the amplitude p(x, ξ) cannot be directly
expressed in the form 〈y, η〉 and q(y, η) in the new coordinates. By passing over
to an apparently larger operator class (the so-called Kuranishi Trick, see also [GS,
p.34f]), one can drastically simplify these computations (Theorem 8.18, p. 220), as
well as the derivation of the composition rules, the formula for the symbol of the
adjoint operator (Theorem 8.26, p. 226), and the multiplicative properties under
tensor product (see [Pal65, p.206-209] and [Hö71b, p.96]).

The Kuranishi Trick. The following theorem is our entrance ticket to the
micro-local analysis of pseudo-differential operators on manifolds. It is also of
independent interest.

Theorem 8.13 (M. Kuranishi, 1969). Let U ⊆ Rn be open and k ∈ Z. Let Q
be an operator of the form
(8.6)

(Qu)(x) =

∫
Rn

∫
U

eiϕ(x,y,ξ)q (x, y, ξ)u(y) d̄y d̄ξ, x ∈ U, u ∈ C∞0 (U) =:
(
Op(q)u

)
(x),

where the phase function ϕ is C∞ and real-valued on U × U × Rn, and linear in
the variable ξ with

(8.7) ∂ϕ
∂ξ1

(x, y, ξ) = · · · = ∂ϕ
∂ξn

(x, y, ξ) = 0 for ξ 6= 0 ⇔ x = y,

and for each fixed x (resp. y) ϕ is without critical points (y, ξ) (resp. (x, ξ)). In
other words, for all (x, y, ξ) ∈ U × U × (Rn \ {0}),

(dξϕ)(x,y,ξ) = 0 ⇔ x = y,
(
d(y,ξ)ϕ

)
(x,y,ξ)

6= 0 and
(
d(x,ξ)ϕ

)
(x,y,ξ)

6= 0.
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Moreover, we assume that the amplitude q ∈ C∞(U × U × Rn) meets the follow-
ing conditions (analogous to the conditions (i)–(iv) on the amplitude of a pseudo-
differential operator, p. 211):

(i′) For each compact subset K ⊂ U and multi-indices α, β, γ ∈ Zn+,
there is a Cα,β,γ ∈ R such that for all x, y ∈ K and ξ ∈ Rn, we have∣∣∣Dα

ξD
β
xD

γ
y q (x, y, ξ)

∣∣∣ ≤ Cα,β,γ(1 + |ξ|)k−|α|.
(ii′) σk(q)(x, y, ξ) := limλ→∞

q(x,y,λξ)
λk

exists for ξ 6= 0 and (x, y) ∈ U × U .

(iii′) For some cut-off function χ ∈ C∞(Rn) with χ(ξ) =

{
0, for |ξ| small,
1, |ξ| ≥ 1,

q (x, x, ξ)− χ (ξ)σk(q)(x, x, ξ) is the amplitude of an element of Lk−1
pc (U).

(iv′) q (x, y, ξ) has compact support in the x and y variables.

Then Q can be written as a pseudo-differential operator (with compact support) of

order k, i.e., Q ∈ Lkpc(U).

Note . Recall that we in this book deal mostly with the principal symbol
of pseudo-differential operators and write shortly “symbol” and σ(x, ξ) when we
mean “principal symbol” and “σk(x, ξ)”. In some places, however, we wish to mark
the order of the operator in the notation for the symbol. That is the case in the
preceding assumption (ii’).

Remark 8.14. a) These operators are special types of Fourier integral oper-
ators. The term is due to L. Hörmander who in a series of papers, developed a
precise theory for them, which can be applied to the general theory of partial dif-
ferential equations. In doing so, he could resort to ideas of the Dutch mathemati-
cian and physicist Christian Huygens (1629-1695) and of the Russian mathemati-
cians Vladimir Igorevich Arnold, Yuriy Vladimirovich Egorov, and Venyaminovich
Clavdiy Maslov, who dealt with fundamentals of geometric optics and the formal-
ization of its more or less intuitive methods (aggregation principle, quantization,
etc., see also our Remark 8.4, p.208).
b) Below, in Step 1 of the proof of the preceding theorem, we shall address the
delicate convergence questions related to the integral in (8.6). Such integrals are
called oscillatory integrals. More precisely, let U ⊂ Rm and ϕ = ϕ(x, θ) ∈
C∞ (U × (Rn \ {0})) real valued (or, at least of non-negative imaginary part) with
ϕ(x, λθ) = λϕ(x, θ) for λ > 0 and dϕ 6= 0 on all U×(Rn\{0}). Let p ∈ C∞(U×Rn)
satisfy the asymptotic estimate (8.2) introduced on p.207 for fixed order k ∈ R.
Then the oscillatory integral

I(p, ϕ)(x) :=

∫
Rn\{0}

eiϕ(x,θ)p(x, θ)dθ

belongs to Cj(U), if k is sufficiently negative, more precisely if k+ j < −n. That is
not very deep. The interesting aspect of oscillatory integrals is that they give also
a meaning as distributions even if the order k of p is large. We shall explain that
below in Step 1 for our special case where we replace U by U ×U , m by 2n, ϕ(x, θ)
by φ(x, y, θ) and p(x, θ) by q(x, y, θ). A general and more systematic treatment of
oscillatory integrals can be found in [GS, Chapter 1] and [Gru, p.168].
c) Obviously, every pseudo-differential operator with amplitude p(x, ξ) can be writ-
ten as a Fourier integral operator with q(x, y, ξ) := p(x, ξ) and ϕ(x, y, ξ) := 〈x− y, ξ〉.
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Before the proof of the preceding theorem, we shall emphasize that an ampli-
tude is not determined from a given pseudo-differential operator.

Example 8.15. Let U ⊂ Rn, φ(x, y, ξ) := 〈x − y, ξ〉, a ∈ C∞0 (U) \ {0} and
1 ≤ j ≤ n. Then the amplitude

q(x, y, ξ) := ξja(y)− a(x)ξj −Dxja(x)

meets the conditions (i’)-(iv’) of Theorem 8.13 for k = 1, but Op(q) is just the zero
operator.

Remark 8.16. For pseudo-differential operators, the amplitude (also called
the total symbol or the dequantization) p(x, ξ) is neither uniquely determined from
Op(p) in general, since a perturbation by an infinitely smoothing amplitude can gen-
erate the same operator. For the precise results we refer to [Gru, Proposition 7.8].
There is a vast literature on properly supported pseudo-differential operators,
which have the nice (and somewhat misleading) property that they have uniquely
determined amplitudes, see [GS, Chapter 3], [Gru, Section 7.2], [Hö3, Section
18.1], [Shu, Section 3.1], [Tay81, Section II.3]. The sad fact is the following: If
you build on coordinates and coordinate shifts, it seems that only the symbol (i.e.,
what is also called the principal symbol) has a geometric meaning. That is well and
easily defined for differential and pseudo-differential operators. It suppresses sub-
stantial parts of the underlying operator, but is sufficient for finding parametrices
and calculating the index of elliptic operators, as we shall show below in Chapter 9.
The good news is that there is a coordinate free definition of Fourier transformation
and pseudo-differential operators leading to a one-to-one quantization p 7→ Op(p),
see below Section 8.5. For the full embedding proof of the Atiyah-Singer Index
Theorem, mastering our coordinate free introduction of pseudo-differential oper-
ators and the one-to-one correspondence between operator and amplitude will be
decisive. The non-geometric constructions of the analysis main-stream do not suf-
fice. However, also our geometric construction below depends on choices (of metrics
and connections, as mentioned already in Remark 8.4a, p. 208). So, it supports a
powerful and transparent proof of the Index Theorem, but it does not offer a formal
solution to the mysteries of dequantization.

Proof of Theorem 8.13. Step 0: First we show the convergence of the
integral defining Qu(x). As the integral stands, it is only absolutely convergent
when the order k of Q is very negative. However, the following integral is absolutely
convergent for sufficiently large r ∈ N:∫

Rn

∫
U

eiϕ(x,y,ξ)
(
tL
)r

(q (x, y, ξ)u(y)) d̄y d̄ξ, x ∈ U,

where tL denotes the formal adjoint of the operator

L := −i (dyϕ) · dy + (dξϕ) · dξ
|dyϕ|2 + |ξ|2 |dξϕ|2

: C∞(U × Rn) −→ C∞(U × Rn),

which (under the assumptions) is a well-defined differential operator such that

Leiϕ(x,·,·) = eiϕ(x,·,·).

In this way, the original integral can be replaced by an absolutely-convergent in-
tegral via repeated integration by parts. (Note that owing to the linearity of ϕ in

ξ and the assumption d(y,ξ)ϕ 6= 0, the term |dyϕ|2 in the denominator of L grows
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like |ξ|2 for fixed x and y, while u (y) has compact support in y). Hence Qu(x) is
well-defined. Without difficulty it follows that Q is a linear map from C∞0 (U) to
C∞(U).

Step 1: We now show that on a neighborhood Ω of the diagonal in U ×U , one
can find a C∞ map ψ : Ω→ GL(n,R) (see Figure 8.1) such that for all (x, y) ∈ Ω
and ξ ∈ Rn, we have

ϕ (x, y, ψ(x, y)ξ) = 〈x− y, ξ〉 .

By the assumption that ϕ is linear in ξ, we can write ϕ in the form

ϕ (x, y, ξ) =
∑n

j=1
ϕj(x, y)ξj , where ϕj(x, y) := ∂ϕ

∂ξj
(x, y, ξ) .

We now show that the functional matrix

Figure 8.1. Finding ψ on a neighborhood Ω of the diagonal U × U

F (x, y) :=


∂ϕ1

∂x1
(x, y) · · · ∂ϕ1

∂xn
(x, y)

...
...

∂ϕn
∂x1

(x, y) · · · ∂ϕn
∂xn

(x, y)


is invertible for x = y. However, for all y ∈ U , ϕ|U×{y}×(Rn\{0}) has no critical
points, and so

ξ 6= 0 ⇒
∑n

j=1

∣∣∣ ∂ϕ∂xj (x, y, ξ)
∣∣∣+
∑n

j=1

∣∣∣ ∂ϕ∂ξj (x, y, ξ)
∣∣∣ 6= 0.

By (8.7)
∑n
j=1

∣∣∣ ∂ϕ∂ξj (x, y, ξ)
∣∣∣ = 0⇔ x = y. Thus, if x = y, then for any ξ 6= 0 there

is some j ∈ {1, ..., n} such that

0 6= ∂ϕ
∂xj

(x, y, ξ) = ∂
∂xj

(∑n

k=1

∂ϕ
∂ξk

(x, y, ξ) ξk

)
=
∑n

j=1
ξk
∂ϕk
∂xj

(x, y) .

Hence, the matrix F (x, x) has a trivial kernel and must be invertible. By assump-
tion ϕj(x, x) = 0. Thus we have the short Taylor expansion

ϕj(x, y) =
∑n

µ=1
ϕµj(x, y)(xµ − yµ),
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where the functions ϕµj(x, y) are C∞ near the diagonal of U × V . The matrix
ϕ(x, y) = [ϕµj(x, y)] is invertible in a neighborhood Ω of the diagonal, because
ϕ(x, x) = tF (x, x). Since

ϕ(x, y, ξ) =
∑n

j=1
ϕj(x, y)ξj

=
∑n

µ=1
(xµ − yµ)

∑n

j=1
ϕµj(x, y)ξj = 〈x− y, ϕ(x, y)ξ〉 ,

we have the desired property

ϕ(x, y, ψ (x, y) ξ) = 〈x− y, ξ〉 ,
where ψ (x, y) := ϕ(x, y)−1 for (x, y) ∈ Ω. For later, we note that

ϕ(x, x) = tF (x, x) = ϕ′′xξ(x, y, ξ)
∣∣
y=x

:=

[
∂2ϕ

∂xi∂ξj
(x, y, ξ)

∣∣∣
y=x

]
,

whence in particular,

detψ (x, x) =
1

det ϕ′′xξ(x, y, ξ)
∣∣∣
y=x

.

Step 2: Now we eliminate the phase function ϕ. For this, we assume that for all
ξ,

supp q (·, ·, ξ) ⊆ Ω.

Then, for all x ∈ U , the integration domain in the formula for (Qu) (x) (see above)
is small enough so that the change of variable transformation ξ = ψ(x, y)θ can be
applied to obtain

(8.8) (Qu) (x) =

∫
U

∫
Rn
ei〈x−y,θ〉q(x, y, ψ(x, y)θ) |detψ(x, y)|u(y) d̄y d̄θ.

The new amplitude
(x, y, θ) 7→ a(x, y, θ) |detψ(x, y)|

with a(x, y, θ) := q(x, y, ψ(x, y)θ) then automatically satisfies the conditions (ii′),
(iii′), and (iv′). To check (i′), we must calculate: By the chain rule, we obtain the
formula (for z := (x, y) ∈ R2n)

(∂za (z, θ) , ∂θa (z, θ)) = (∂zq(z, ψ(z)θ), ∂ξq(z, ψ(z)θ))

[
Id 0

ψ′(z)θ ψ(z)

]
,

where ∂z denotes the partial derivatives with respect to the first 2n variables and
∂θ or ∂ξ denote those with respect to the last n variables. Hence, we have∣∣∣∣ ∂a∂θi (z, θ)

∣∣∣∣ =

∣∣∣∣∑n

j=1

∂q

∂ξj
(z, ψ (z) θ)ψij (z)

∣∣∣∣
≤ nCk (1 + |ψ(z)θ|)k−1

max
i,j,z

∣∣ψij (z)
∣∣ ,

where Ck is a real number from assumption (i′) for q when z varies within a compact
domain K ⊆ Ω ⊆ U × U ⊆ R2n. Since we can find positive constants C1 and C2

with
C1 |θ| ≤ |ψ (z) θ| ≤ C2 |θ| , for all z ∈ K and θ ∈ Rn,

we finally have the estimate∣∣∣∣ ∂a∂θi (z, θ)

∣∣∣∣ ≤ C̃k (1 + |θ|)k−1
, where C̃k ∈ R.
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Similarly one can obtain estimates for the higher derivatives, wherein the factor
|detψ(x, y)| of the amplitude in (8.8) is irrelevant.

Step 3: Now, we consider the general case, where support q(·, ·, ξ) is not
necessarily contained in Ω. In our applications of the theorem of Kuranishi (see
Theorem 8.18, p. 220) we are only concerned with a local argument; i.e., we can
manage with the case treated in step 2. We will therefore be brief in showing that
in general we may assume the first case without loss of generality. We choose a
non-negative C∞ function χ on U ×U having support in Ω and being equal to 1 in
a neighborhood of the diagonal. Then Q can be written as the sum of two Fourier
integral operators, where one has the amplitude χq of the form in step 2, and the
other has the form

(Ru)(x) =

∫
U

∫
Rn
eiθ(x,y,ξ)r (x, y, ξ)u(y) d̄y d̄ξ,

where r = (1 − χ)q is a C∞ function vanishing in a neighborhood of the diagonal
in U × U . Just as in Exercise 8.7, it follows that R can be written in the form

(Ru)(x) =

∫
U

K(x, y) (1−∆)
λ
u(y) dy,

where the weight function K is C∞ off the diagonal of U ×U according to Exercise
8.7, and vanishes in a neighborhood of the diagonal by construction; K is then
C∞ everywhere. By Exercise 8.5b, R can then be written as a canonical pseudo-
differential operator; the corresponding, conditions (ii), (iii), and (iv) are met
without difficulty.

Step 4: Without loss of generality, we may now assume that the operator Q
is given in the form

(Qu)(x) =

∫
Rn

∫
Rn
ei〈x−y,ξ〉q(x, y, ξ)u(y) d̄y d̄ξ

=

∫
Rn
ei〈x,ξ〉

{∫
Rn
e−i〈y,ξ〉q(x, y, ξ)u(y)d̄y

}
d̄ξ,

where the braces enclose the Fourier transform of the product function q(x, y, ξ)u(y)
(extended by 0 values outside U) or equivalently, by Appendix A, the convolution
of the Fourier transforms in the variable ξ∫

Rn
e−i〈y,ξ〉q(x, y, ξ)u(y) d̄y =

∫
Rn
q̂(x, ξ − η, ξ)û(η) d̄η,

where q̂(x, ·, ξ) is the Fourier transform of y 7→ q (x, y, ξ). Inserting the factor
ei〈x,η〉e−i〈x,η〉 and reversing the order of integration, we obtain

(Qu)(x) =

∫
Rn
ei〈x,η〉

(∫
Rn
ei〈x,ξ−η〉q̂(x, ξ − η, ξ)d̄ξ

)
û(η) d̄η

=

∫
Rn
ei〈x,η〉p (x, η) û(η) d̄η,

where (by a change of variables ζ = ξ − η)

p(x, η) :=

∫
Rn
ei〈x,ζ〉q̂(x, ζ, ζ + η) d̄ζ.

We now show that p(x, η) is actually the amplitude of a pseudo-differential operator
(the support is trivially compact by construction, whence (iv) already holds):
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(i): Let α and β be multi-indices and let x range over a compact subset of Rn.
For the estimation of

∣∣Dβ
xD

α
η p(x, η)

∣∣, we first note that by the Fourier multiplication
rule (Appendix A, Exercise A.5b, p. 675), we have∣∣Dβ

xM
γ
θD

α
η q̂(x, θ, η)

∣∣ =

∣∣∣∣∫
Rn
e−i〈y,ζ〉Dβ

xD
γ
yD

α
η q(x, y, η) d̄y

∣∣∣∣ ≤ c (1 + |η|)k−α ,

where γ is a further multi-index and Mγ
θ is multiplication by θγ = θγ1

1 · · · θγnn ; the
inequality follows from the assumptions (i′) and (iv′) for q. Hence, for each positive
ν, we have

(8.9)
∣∣Dβ

xD
α
η q̂(x, θ, η)

∣∣ ≤ c′ (1 + |η|)k−α (1 + |θ|)−ν .

Thus, by definition of p and by means of differentiation under the integral, we get∣∣Dβ
xD

α
η p (x, η)

∣∣ ≤ c′′ (1 + |η|)k−α

(ii): By the Mean-Value Theorem, we obtain for suitable ζ0 between 0 and ζ

p(x, η) =

∫
Rn

(
ei〈x,ζ〉q̂(x, ζ, η) +

∑
|α|=1

ei〈x,ζ〉Dα
η q̂(x, ζ, η + ζ0)ζα

)
d̄ζ

= q(x, x, η) + a correction term E (x, η) .

We have already seen (see (8.9)) that∣∣Dα
η q̂(x, ζ, η + ζ0)

∣∣ ≤ Cν(1 + |η + ζ0|)k−1 (1 + |ζ|)−ν ,

for arbitrarily large ν. Since |ζ0| < |ζ|, we have∣∣Dα
η q̂(x, ζ, η + ζ0)

∣∣ ≤ c′ (1 + |η|)k−1
(1 + |ζ|)−ν+k−1

.

Integrating with respect to ξ, we find |E (x, η)| ≤ C (1 + |η|)k−1
. Thus,

lim
λ→∞

E (x, λη)

λk
≤ lim
λ→∞

∣∣∣∣∣C (1 + |λη|)k−1

λk

∣∣∣∣∣ = 0, and so

σk(p)(x, η) = lim
λ→∞

p (x, λη)

λk
= lim
λ→∞

q(x, x, λη)

λk
= σk(q)(x, x, η).

(iii): It follows easily from the estimate E (x, η) ≤ C (1 + |η|)k−1
and the

corresponding assumption (iii′) for q(x, x, η), that p(x, η)− χ (η)σk(p)(x, η) is the
amplitude of a canonical pseudo-differential operator of order k − 1. �

Remark 8.17. We note that, from the preceding constructive proof of Masa-
take Kuranishi, a simple formula for the symbol follows from steps 2 and 4:

σk(p)(x, η) =
σk(q)(x, x, ψ (x, x) η)∣∣∣∣det ϕ′′x,ξ (x, y, ξ)

∣∣∣
y=x

∣∣∣∣ ,
where ψ (x, x) is the inverse of the functional matrix (also denoted F (x, x)) in step 1,
namely

ϕ′′x,ξ (x, y, ξ)
∣∣
y=x

=

[
∂2ϕ

∂xi∂ξj
(x, y, ξ)

∣∣∣
y=x

]
.

The term Ru in step 3 with amplitude r does not affect the symbol formula, since
r(x, x, η) = 0 for all x and η, whence σk(r)(x, x, η) = 0.
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Coordinate Change and Pseudo-Differential Operators on Manifold.
Now we investigate the behavior of pseudo-differential operators under a coordinate
change, exploiting the Kuranishi Trick of transgressing to Fourier integral operators,
similarly in [GS, p.34f]:

Theorem 8.18. Let κ : U → V be a diffeomorphism between relatively compact
open subsets of Rn. If P is a pseudo-differential operator (with compact support)
of order k ∈ Z on V , then the transported operator

Pκ (u) := P (u ◦ κ−1) ◦ κ, u ∈ C∞0 (U)

is a pseudo-differential operator (with compact support) of order k over U . If p and
q are amplitudes for P and Pκ resp., then their symbols are related by

σk(q)(x, ξ) = σk(p)(κ (x) , (tκ
′
(x))−1ξ), x ∈ U, ξ ∈ Rn \ {0} ,

where

tκ
′
(x) =


∂κ1

∂x1
· · · ∂κn

∂x1

...
...

∂κ1

∂xn
· · · ∂κn

∂xn


is the transpose of the functional matrix of κ at x.

Proof. Suppose that the operator P is of the form

(Pv)(y) =

∫
Rn
ei〈y,η〉p (y, η) v̂(η) d̄η

=

∫
Rn

∫
Rn
ei〈y−θ,η〉p (y, η) v(θ) d̄θ d̄η, v ∈ C∞0 (V ) , y ∈ V,

whence for v = u ◦ κ−1 and y = κ(x), u ∈ C∞0 (U) and x ∈ U :

Pκ (u) (x) =

∫
Rn

∫
Rn
ei〈κ(x)−θ,η〉p (κ(x), η)u

(
κ−1 (θ)

)
d̄θd̄η

=

∫
Rn

∫
Rn
ei〈κ(x)−κ(ξ),η〉p (κ(x), η) |detκ′(ξ)|u (ξ) d̄ξd̄η

by means of the change of variable κ(ξ) = θ. The transported operator is then a
Fourier integral operator with the phase function ϕ(x, ξ, η) := 〈κ(x)− κ(ξ), η〉 and
amplitude q(x, ξ, η) := p (κ(x), η) |detκ′(ξ)|. Since ϕ and q meet the hypotheses of
the Theorem of Kuranishi (Theorem 8.13, p. 213), we have

Pκ (u) (x) =

∫
Rn

∫
Rn
ei〈x−ξ,η〉p (κ(x), ψ (x, ξ) η)D (x, ξ)u (ξ) d̄ξd̄η,

where
D (x, ξ) := |detκ′(ξ)| |detψ(x, ξ)|

and ψ(x, ξ) is the matrix-valued function constructed in step 1 of the proof of
Theorem 8.13; in particular,

ψ(x, x)−1 = ϕ′′x,η (x, ξ, η)
∣∣
ξ=x

=
[
∂κj
∂xν

]
= tκ

′
(x)

and D(x, x) = 1.
By the Theorem of Kuranishi, Pκ is a pseudo-differential operator for which we

derived an explicit formula for the amplitude in the above proof. For the symbol,
we have

σk(q)(x, η) = σk(q̃)(x, x, η),



8.3. PRINCIPALLY CLASSICAL PSEUDO-DIFFERENTIAL OPERATORS 221

where

q̃(x, ξ, η) = p (κ(x), ψ (x, ξ) η)D(x, ξ).

Since ψ(x, x)−1 = tκ
′
(x) and D(x, x) = 1, we then obtain

σk(q)(x, η) = σk(p)(κ (x) ,
(
tκ
′
(x)
)−1

η).

�

Exercise 8.19. Let X be a (paracompact) C∞ n-manifold and k ∈ Z.

a) Show that the space Lkpc(X), defined by localization at the beginning of this
section just before Definition 8.12, coincides with the space of pseudo-differential
operators of order k on X, when X is a bounded open subset of Rn.
b) Define a canonical vector space structure on Lkpc(X).

c) Show Lkpc(X) ⊂ Lk+1
pc (X).

d) Let κ : U → Rn, U open in X, be a local coordinate system for X, f ∈ C∞0 (U),

and P ∈ Lkpc(X). Show that if f ∈ C∞(X) is identically 1 in a neighborhood of

κ−1(x), then the formula

(x, ξ) 7→ qf (x, ξ) := e−i〈x,ξ〉
(
P (f (·) ei〈κ(·),ξ〉)

)
(κ−1(x)); x ∈ κ(U), ξ ∈ Rn,

defines the amplitude of a pseudo-differential operator of order k on κ(U), and that
if p is the amplitude for the localized operator Pκ, then

σk (qf ) (x, ξ) = σk(p)(x, ξ).

e) Set Smblk(X) := Smblk(CX ,CX); see our definition in Equation (6.26), p. 181,

in Chapter 6 above. Thus, s ∈ Smblk(X)⇔ s : T̊ ∗X → C with s(x, λv) = λks(x, v)
for all x ∈ X and v ∈ T ∗xX, v 6= 0. Show that the linear map

σk : Lkpc(X)→ Smblk(X)

is well defined and coincides with the earlier definition (see Exercise 6.34, p.180)

on Diffk(X) ⊂ Lkpc(X).
[Hint: For a: Theorem 8.18.
For b: Proceed by using the vector space structure of C∞(X).
For c: Use amplitude estimates.
For d: One can characterize Lkpc(X) within the space of linear operators from
C∞0 (x), to C∞(X) as those such that, for all local coordinate systems cut-off func-
tions f , the associated qf is the amplitude of a pseudo-differential operator of order
k on an open subset of Rn. For details of the computation, see [Hö71b, p.112] and
[Ni].

For e: Recall that T̊ ∗X denotes the symplectic cone T ∗X \X that consists of the
punctured cotangent spaces. It remains only to show that the locally well defined
symbol in d) transforms correctly under a coordinate change, so that it forms global

homomorphism from T̊ ∗X × C to T̊ ∗X × C (which is homogeneous of degree k in
the cotangent vectors. For this, check that the transformation rule in Theorem 8.18
can be written in the form

σ(q)(x, κ̃ (η)) = σk(p)(κ (x) , η),
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where η lies in T ∗(Rn)κ(x), which is the space of covectors at the point κ (x) canon-
ically identified with Rn, and κ̃ (η) is the pull back covector via κ; see (6.1), p.163,
in Appendix B; further details are found in [AB67, p.404-407].]

Exercise 8.20. Define the space Lkpc(E,F ) when E and F are complex vector
bundles over the C∞ manifold X, and show the existence of a canonical linear map
σk : Lkpc(E,F )→ Smblk(E,F ).
[Hint: Represent an operator P : C∞0 (E) → C∞(F ) locally; i.e., choose a chart
κ : U → Rn, U ⊆ X open, and κ(U) relatively compact, and trivializations E|U ∼=
U × CN and F |U ∼= U × CM as a M × N matrix of pseudo-differential operators
(with compact support) of order k.]

Remark 8.21. a) There is a slight ambiguity in our definition of the symbol
space Smblk(E,F ). As explained in our defining Equation 6.26, p.181, we require
homogeneity

(8.10) σ(x, rξ) = rkσ(x, ξ) for x ∈ X, ξ ∈ T ∗xX \ {0} and r > 0

for σ ∈ Smblk(E,F ). Our Assumption 8.10(ii),p.211 ensures (8.10). Clearly, homo-
geneity and smoothness at ξ = 0 contradict each other except for monomials. Our
convention is that Smblk(E,F ) denotes the space of homogeneous bundle homomor-

phisms of the lifted bundles π∗E, π∗F , where π : T̊ ∗X → X and T̊ ∗X = T ∗X \X,
i.e., we exclude ξ = 0. In various applications, however, symbols should be smooth
functions, thus the σ(x, ξ) should be smooth everywhere but homogeneous only in
the restricted sense:

(8.11) σ(x, rξ) = rkσ(x, ξ) for x ∈ X, |ξ| ≥ 1 and r ≥ 1

with a suitable Riemannian metric that yields the length of cotangent vectors.
b) In many places, we shall tacitly identify the homogeneous bundle mappings on
T ∗X \ X by restriction with the smooth sections C∞

(
S∗X,Hom(ρ∗(E), ρ∗(F ))

)
.

Here S∗X denotes the sphere bundle of cotangent vectors (relative to a fixed Rie-
mannian metric), ρ : S∗X → X the natural projection, and Hom

(
ρ∗(E), ρ∗(F )

)
the bundle of smooth bundle homomorphisms.

Remark 8.22. The definition of Lkpc(E,F ) through localizations is unsatisfac-
tory from a computational point of view. The choice of coordinates is awkward
with its avalanche of subscripts which are frequently unavoidable even in fairly
simple situations. The method is particularly unsatisfactory, when the operator (as
in Exercise 8.23 below) can be written in closed, global form explicitly and much

more clearly. [Hö71b, p.113f] contains the following idea for writing Lkpc(E,F ) by
means of the Kuranishi Theorem directly as a space of Fourier Integral Operators
with phase function ϕ : G→ R and amplitude q : G→ Hom(E,F ): Let G be a real
vector bundle of fiber dimension n over a neighborhood of the diagonal in X ×X,
e.g., G = π∗(T ∗X) where π is the projection π(x, y) := y, and

q(x, y, ξ) ∈ Hom(Ey, Fx).

It turns out that one can formulate the necessary conditions on ϕ and q directly,
globally and with little difficulty: For example, ϕ is linear in the fibers and the
restriction of ϕ to a fiber has a critical point exactly when the fiber lies above a
point of the diagonal of X ×X. Then (loc. cit.) Lkpc(E,F ) consists of all operators
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that can be written as the sum of an operator with C∞ kernel and one of the form

(Pe)(x) := (2π)−n
∫
T∗X

eiϕ(x,y,η)q(x, y, η)e(y) dydη,

where e ∈ C∞0 (E), dydη is the invariant volume element on the cotangent bundle
T ∗X, and q an amplitude of order k which vanishes for (x, y) outside a small
neighborhood of the diagonal of X ×X. By step 4 of the proof of Theorem 8.13, it
follows that

σk (P ) (x, η) = lim
λ→∞

q(x, x, λη)

λk
, x ∈ X, η ∈ T ∗xX \ {0} .

We shall devote the whole Section 8.5, p.228ff to the details of a truly global con-
struction of a normalized total symbol.

Singular Integral Operators. We show that the classical singular integral
operators fit nicely under our heading of principally classical pseudo-differential
operators.

Exercise 8.23. Show that the following singular integral operators are pseudo-
differential operators of order 0 over R or S1 = R/2πZ 1 and determine their
symbols:
a) The Hilbert transform Q : C∞0 (R)→ C∞(R), defined for u ∈ C∞0 (R) by

(Qu)(x) :=
−1

πi
(p.v.)

∫ ∞
−∞

u (y)

x− y
dy :=

−1

πi
lim
ε→0+

∫
|x−y|>ε

u (y)

x− y
dy.

b) The projection operator P : C∞(S1)→ C∞(S1), defined by

Peimθ :=

{
eimθ, for m ≥ 0,

0, for m < 0.

c) The Toeplitz operator

gP + (Id−P ), for g ∈ C∞(S1).

[Hint: For a: Show that

(Qu)(x) =

∫ ∞
−∞

eixξ sign (ξ) û (ξ) d̄ξ,

as follows. We have∫
|x−y|>ε

u (y)

x− y
dy =

∫
|y|>ε

u (x− y)

y
dy = (u ∗ gε)(x)

=

∫ ∞
−∞

eixξû (ξ) ĝε (ξ) dξ, where

gε (x) :=

{
1
x , for |x| > ε,
0, for |x| ≤ ε,

1More precisely: Write them as a sum of a pseudo-differential operator of the kind treated
so far and a smoothing operator. Many classical pseudo-differential operators Q are defined as

here via an amplitude q which is homogeneous in the second variable, but has a singularity at the
origin. Through multiplication by a C∞ function χ which is identically 1 in a neighborhood of∞,

we obtain a singularity-free amplitude q̃(x, ξ) := χ(ξ)q(x, ξ), which defines a pseudo-differential

for Q̃ in our (Hörmander’s) sense. Then Q̃ − Q has an amplitude with compact support and
consequently (with reasoning as in Remark 8.8, p.210) can be represented as an integral operator
with a C∞ weight function.
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and for the last equality the well-known convolution formula is used. Thus, it is
natural to try to evaluate the improper integral

(p.v.)

∫ ∞
−∞

e−iξt

t
dt :=

√
2π lim

ε→0
ĝε(ξ).

Now distinguish cases according to the sign of ξ! One obtains

√
2π lim

ε→0
ĝε(ξ) = −2i sign (ξ) lim

ε→0

∫ ∞
|ξ|ε

sin t

t
dt = −πi sign (ξ) ,

since
∫∞

0
sin t
t dt = π

2 via contour integration of the function f(z) := eiz

z , z = t+ is,
along the curve shown in Figure 8.2. Compare also [DM, p.93 and 150].

R

s

t

{R {" "

Figure 8.2. Contour for integrating the function f

For b: Reduce to a) by means of the formula Pu = 1
2 (u+Hu), where

(Hu)(eiθ) :=
1

πi
(p.v.)

∫
S1

u (z)

z − eiθ
dz, u ∈ C∞(S1),

is the Cauchy-Hilbert transformation (on the circle) which is carried over to the
Hilbert transformation Q (on the line R) by means of the Cayley transformation;
see p. 130 in Chapter 4. Details for this are in [Tay74, p.4-5, 36]. A more direct way
may be found in [AS68a, p.525]. For this, as in Exercise 8.19d form the expression

qf (x, ξ) := e−ixξP (f(x)eixξ) =
∑∞

n=0

√
2πf̂(n− ξ)eix(n−ξ)

= f(x)−
√

2π
∑−∞

n=−1
f̂(n− ξ)eix(n−ξ),

where f ∈ C∞0 (R) with compact support in an interval of length < 2π, so that f
may be regarded as a function on the circle with support in a canonical coordinate
domain.
Trick: For ξ < 0, estimate

∑∞
n=0 f̂(n− ξ)eix(n−ξ) and its derivatives, showing that

as ξ → −∞ they go to 0 faster than any power of |ξ|−1
. Show that for ξ > 0,

the sum
∑−∞
n=−1 f̂(n − ξ)eix(n−ξ) has the corresponding property. By the hint for

Exercise 8.19d, one is done and obtains

σ0(P )(x, ξ) =

{
1, for ξ > 0,
0, for ξ < 0.

For c: Reduce to b). Note that in the notation of Chapter 4

gP + (Id−P ) =

{
Tg, on C∞

(
S1
)
∩H0,

Id, on C∞
(
S1
)
∩H⊥0 (in L2(S1)),



8.4. ALGEBRAIC PROPERTIES AND SYMBOLIC CALCULUS 225

where Tg is the Wiener-Hopf operator induced by g with indexTg = −W (g, 0), if g
is nowhere zero on S1. In particular, by Exercise 1.5 (p. 5), index(gP + Id−P ) =
−W (g, 0).]

4. Algebraic Properties and Symbolic Calculus

Here we will show that all C∞ symbols are obtained as symbols of pseudo-
differential operators. Moreover, we explain how one can calculate with symbols
instead of operators, using some simple rules. In a wording borrowed from algebraic
topology, th symbolic calculus is a functor from the category of infinite-dimensional
function spaces and systems of linear differential and pseudo-differential equations
to parameter dependent linear algebra in finite dimensions.

Theorem 8.24. Let E and F be complex vector bundles over a C∞ manifold
X. Then there is an exact sequence

(8.12) 0 −→ CLk−1(E,F ) ↪−→ Lkpc(E,F )
σk−→ Smblk(E,F ) −→ 0 ,

where σk(A) denotes the principal (homogeneous leading) symbol of A ∈ Lkpc(E,F ).

Recall that Lk−1(E,F ) (respectively CLk(E,F )) denote the space of (k− 1)th
order canonical pseudo-differential operators from sections of E to sections of F
(respectively kth order classical pseudo-differential operators) and that

(8.13) Lkpc(E,F ) = CLk(E,F ) + Lk−1(E,F ),

like in Remark 8.11b, p.211.

Proof. Since CLk(E,F ) ∩ Lk−1(E,F ) = CLk−1(E,F ), the principal symbol
map σk : Lkpc(E,F ) → Smblk(E,F ) is well defined. Because of the decomposition
(8.13), it only remains to show that the symbol map is surjective.
Let s ∈ Smblk(E,F ). If π : X × X → X is the projection given by π(x, y) = y,
then the pull-back bundle

G := π∗(T ∗X)→ X ×X,
is a real vector bundle of fiber dimension n. In reference to Remark 8.22 after
Exercise 8.20 it suffices to give a phase function ϕ : G → R and an amplitude
a : G → Hom(E,F ) with the properties required by definition (see the conditions
(i′)–(iv′) in Theorem 8.13, p. 213) such that

a(x, y, η) = s(x, η), x ∈ X, η ∈ T ∗xX \ {0} .
For ϕ, we choose a real-valued function with ϕ(x, x, η) = 0 and

dϕ(x,x,η) = η ⊕−η ⊕ 0 : T ∗(x,x,η)G→ R, where

T ∗(x,y,η)G
∼= T ∗xX ⊕ T ∗yX ⊕ T ∗η (T ∗X) and η ∈ T ∗xX.

Such a map ϕ, which is also linear on the fiber and only possesses critical points
over the diagonal of X × X, is locally easy to construct relative to a chart κ
about the point x. One simply sets ϕ (x, y, η) =

〈
κx− κy,

(
κ−1

)̃
η
〉

(see (6.1),
p. 163 for the definition of “˜”). A global construction may be carried out using
a partition of unity (see Theorem 6.4, p. 157) in a neighborhood of the diagonal.
For a : G → Hom(E,F ), we choose an arbitrary extension of a(x, x, η) := s(x, η)
to a neighborhood of the diagonal; then we can smoothly extend a by multiplying
by a C∞ function (with support in the neighborhood) which is identically 1 in
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a smaller neighborhood of the diagonal. An extension can be found, since the
diagonal is closed in X × X, and a can be regarded as a section of the lift of the
bundle Hom(E,F ) by means of the projection (x, y, η) 7→ (x, y). Compare with
step 1 of the proof of Theorem B.5 (p. 680) in Appendix B, in connection with the
Whitney Approximation Theorem; e.g., [Na, p.34f] or [BJ, 14.8]. With this, the
proof (which strongly depends on the Theorem of Kuranishi, Theorem 8.13, p.213)
is done. A direct proof can be found in [Wells, p.134f]. �

Remark 8.25. We can fix a right inverse

Op : Smblk(E,F ) −→ Lkpc(E,F )

of σk, obtained by patching together the local Op-maps (8.1) via a fixed partition
of unity.

Theorem 8.26. The direct sum L•pc(E,F ) :=
⊕

k Lkpc(E,F ) forms a graded
algebra via composition, and is closed under the operation of taking formal adjoints.
For the symbols, we have the following calculation rules:
(a) If E,F , and G are complex vector bundles over the C∞ manifold X, and P ∈
Lkpc(E,F ) and Q ∈ Ljpc(F,G), then Q ◦ P ∈ Lj+kpc (E,G) and

σj+k (Q ◦ P ) (x, η) = σj (Q) (x, η) ◦ σk (P ) (x, η), x ∈ X, η ∈ T ∗xX \ {0} .

(b) Let P ∈ Lkpc(E,F ), where the bundles E and F are equipped with Hermitian
metrics and the manifold X is Riemannian and oriented. Then, there is a unique
operator P ∗ ∈ Lkpc(F,E) with∫

X

〈Pu, v〉F =

∫
X

〈u, P ∗v〉E , for all u ∈ C∞0 (E), v ∈ C∞0 (F ), and

σk (P ∗) (x, η) = σk (P ) (x, η)∗, for x ∈ X, η ∈ T ∗xX \ {0} .

Proof. We begin with (b): The uniqueness of P ∗ is clear. For the proof of
existence, we need only to show that for each v ∈ C∞0 (F ) and each open coordinate
domain U ⊆ X (with E|U and F |U trivial) there is P ∗Uv ∈ C∞(E|U ) such that∫

X

〈Pu, v〉F =

∫
X

〈u, P ∗Uv〉E for all u ∈ C∞0 (E|U ).

Indeed, when such a P ∗Uv exists, then it is uniquely determined, and so for a second
coordinate domain U ′

P ∗Uv|U∩U ′ = P ∗U ′v|U∩U ′ .

Then we have a global C∞ section P ∗v ∈ C∞(E) with∫
X

〈Pu, v〉F =

∫
X

〈u, P ∗v〉E for all u ∈ C∞0 (E),

which is constructed by covering X with finitely many coordinate domains U and
writing u =

∑
j uj with uj ∈ C∞0

(
E|Uj

)
by means of a C∞ partition of unity.

Hence, let v and U be given. Without loss of generality, we, assume that there
is a coordinate domain V which contains U as well as supp(v). (Otherwise one
covers supp(v) with finitely many coordinate domains and pieces v together from a
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C∞ partition of unity.) In local coordinates, relative to a C∞ N -framing for E|V
and M -framing for F |V , one can write P in the form

(Pu)(x) =

∫
Rn
ei〈x,ξ〉 〈p(x, ξ)û (ξ) , v (x)〉 d̄ξ, u ∈ C∞0 (E|V )

where p is an M ×N matrix of amplitude functions with compact support. Hence,

〈Pu, v〉 =

∫ ∫
ei〈x,ξ〉 〈p(x, ξ)û (ξ) , v (x)〉CM d̄ξ dx

=

∫ ∫ ∫
ei〈x−y,ξ〉 〈p(x, ξ)u (y) , v (x)〉CM d̄y d̄ξ dx

=

∫ 〈
u (y) ,

∫ ∫
ei〈x−y,ξ〉p∗(x, ξ)v (x) d′x d̄ξ

〉
CN

dy,

where p∗(x, ξ) is the adjoint of p(x, ξ) (i.e., complex-conjugate transpose), an N×M
matrix of complex numbers for each x ∈ V , ξ ∈ Rn, and the integrals here and
below are over Rn. Thus, we get 〈Pu, v〉 = 〈u, P ∗v〉 for

(P ∗v) (y) :=

∫
ei〈x−y,ξ〉p∗(x, ξ)v (x) d̄xd̄ξ =

∫
eiϕ(x,y,ξ)q(y, x, ξ)v (x) d′xd̄ξ,

where q(y, x, ξ) := p∗(x, ξ) and ϕ (x, y, ξ) = 〈x− y, ξ〉 . By the Theorem of Kuran-
ishi, there now exists an amplitude p̃ so that

(P ∗v)(y) =

∫
ei〈y,ξ〉p̃(y, ξ)v̂ (ξ) d̄ξ.

Hence, we have found P ∗v ∈ P Diffk(CN ,CM ) with the desired property. Also, we
have

σ(P ∗)(x, ξ) = lim
λ→∞

λ−kq(x, x, λξ) = lim
λ→∞

λ−kp∗(x, λξ) = (σ(P )(x, ξ))
∗
.

Furthermore, we remark that with this we obtain (for all u ∈ C∞(CNV ) and v ∈
C∞(CMV ))

〈Pu, v〉 =

∫ 〈
u (y) ,

∫
ei〈y,ξ〉p̃(y, ξ)v̂ (ξ) d̄ξ

〉
CN

dy

=

∫ 〈{∫
e−i〈y,ξ〉p̃(y, ξ)∗u (y) d̄y

}
, v̂ (ξ)

〉
CM

d̄ξ,

where p̃(y, ξ)∗ is the adjoint matrix of the amplitude p̃(y, ξ) of the operator P ∗. By

Parseval’s Formula, P̂ u(ξ) is exactly the expression in the curly braces. Hence, we
have the additional formula

(8.14) P̂ u(ξ) =

∫
e−i〈y,ξ〉 (p̃(y, ξ))

∗
u (y) d′y.

For (a): This time we do not rely on the global representation of P and Q, but
rather on their definition by localizations. Without loss of generality, let X be an
open, relatively compact subset of Rn. Let p and q be the amplitudes of orders k
and j, belonging to P and Q, respectively. By (8.14), we obtain for

(QPu)(x) =

∫
ei〈x−y,ξ〉q (x, ξ) (p̃(y, ξ))

∗
u(y) d̄y d̄ξ.
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which is thus a pseudo-differential operator (of order k + j) by Theorem 8.13 (of
Kuranishi), p. 213, and

σk+j(Q ◦ P )(x, η) = lim
λ→∞

q(x, λη) (p̃(y, λη))
∗

λk+j

= lim
λ→∞

q(x, λη)

λj
lim
λ→∞

(p̃(y, λη))
∗

λk

= σj(Q)(x, η) ◦ σk(P )(x, η),

since σk(p̃) = σk(p)∗ by (b). �

Remark 8.27. The derivation of the formally adjoint operator seems trivial
here in comparison to the lengthy calculation for differential operators; see Exer-
cise 6.39, p.181. Actually, we have three entirely different problems: By definition,
it is trivial that every Fourier-integral operator P possesses a formal adjoint P ∗. To
prove that P ∗ is a pseudo-differential operator if P is, we need more (namely, the
Theorem of Kuranishi or somewhat long-winded direct computations). It is possi-
ble, by the way, to prove the sharper result P ∈ Diffk ⇒ P ∗ ∈ Diffk in this fashion,
by analyzing carefully the various transformations in the Theorem of Kuranishi
with this goal in mind.

5. Normalized (Global) Amplitudes

Motivation. Our aim is to provide a framework for a proof of the Index The-
orem, which, when compared to existing approaches, we believe is somewhat more
streamlined and globally expressed (i.e., free of local coordinates). This method
is based on defining pseudo-differential operators from sections of a vector bundle
E → X to sections of a bundle F → X in terms of a globally defined symbol which
is a section p ∈ C∞(Hom(π∗E, π∗F )) of the bundle of homomorphisms between
the lifts π∗E and π∗F to the cotangent bundle T ∗X, where π : T ∗X → X. The
definition of the operator, say Op(p) ∈ C∞(E,F ), associated with p entails the in-
troduction of a metric on X and connections on E and F . It could be argued that
(without a considerable background in modern differential geometry) this is not
easier than using local coordinates and framings, but there are advantages. This
global approach to pseudo-differential operators is not new. It seems to have first
appeared in the paper of Juliane Bokobza-Haggiag [Bok]. Many subsequent devel-
opments and applications have appeared steadily since then, in the work of Harold
Widom [Wid], Ezra Getzler [Get], Marcus Pflaum [Pf] and Theodore Voronov
[Vor], just to mention a few.

The application of the global approach to the index theorem, has been mostly
in the context of the heat equation proof, rather than in the embedding proof.
Nevertheless, in preliminaries leading up to their treatment of the embedding proof
in their enlightening book, H. Blaine Lawson and Marie-Louise Michelsohn [LaMi,
p. 188], point out the possible desirability of defining pseudo-differential operators
with a global symbol. In essence, here we are exploring this possibility. We find that
some of the difficulties are softened. In particular, the lifting a pseudo-differential
operator to an invariant one in the proof of the twisted multiplication formula
is made easier, since the global symbol can be lifted by means of a connection.
Moreover the thorny problem of forming suitable products of individual pseudo-
differential operators with identity operators over product manifolds (see [LaMi,
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p. 250f] or [AS68a, p. 514f]) is alleviated by performing operations on the globally-
defined total product symbols. This will be made clearer below. One fundamental
challenge inspired by this program is the task of constructing a global symbol whose
associated pseudo-differential operator is exactly the operator that one may want, as
opposed to an approximate operator with essentially the same asymptotic principal
symbol.

Normalized Fourier Transform. We work within the C∞ category unless
stated otherwise. Let ρ be the injectivity radius of the compact manifold X with
Riemannian metric g and Levi-Civita connection ∇; i.e., for all x ∈ X, the ex-
ponential map expx : TxX → X relative to g is injective on the disk of radius ρ
about 0x ∈ TxX. Let πE : E → X and πF : F → X be complex Hermitian vec-
tor bundles equipped with Hermitian connections ∇E : C∞(E) → C∞(T ∗X ⊗ E)
and ∇F : C∞(F ) → C∞(T ∗X ⊗ F ), where C∞(E) denotes the space of (smooth)
sections of πE : E → X. For x, y ∈ X, with d(x, y) < ρ, let τEx,y : Ey → Ex
denote parallel translation relative to ∇E along the unique geodesic from y to x
with minimal length d(x, y). Here We emphasized in italics the terms which were
introduced more precisely in Sections 6.4 and 6.6.

Let ψ : [0,∞) → [0, 1] be smooth, with ψ(r) = 1 for r ∈ [0, ρ/3] and ψ(r) = 0
for r ∈ [2ρ/3,∞].

Definition 8.28. For π : T ∗X → X and u ∈ C∞(E), we define the nor-
malized Fourier transform u∧ ∈ C∞(π∗E) (where x = π(ξ) and ξ ∈ T ∗X)
by

u∧(ξ) :=

∫
TxX

e−iξ(v)ψ(|v|)τEx,expx v
[u(expx v)] d̄v ∈ Ex for ξ ∈ T ∗xX.

where d̄v = (2π)−n/2dv and dv is the volume element on TxX associated with gx.

For x, y ∈ X with d(x, y) < ρ, we have y = expx v for a unique v ∈ TxX with
|v| = d(x, y), and we may define α ∈ C∞(X ×X, [0, 1]) by

α(x, y) :=

{
ψ (d(x, y)) = ψ(|v|), for d(x, y) < ρ ,
0, for d(x, y) ≥ ρ.

Note that we can think of the function (in C∞(TxX,Ex))

v 7→ ψ(|v|)τEx,expx v
[u(expx v)] = τEx,expx v

[α(x, expx v)u(expx v)] (v ∈ TxX)

as a pull-back (of sorts), using τE and expx : TxX → X, of the bump function
α(x, ·) times u(·) in a neighborhood of x, and u∧|T∗xX is the Fourier transform
of this “pull-back” of α(x, ·)u(·). The normalized inverse Fourier transform
(u∧)

∨
: TX → E of u∧ is given by

(u∧)
∨

(v) :=

∫
T∗xX

eiξ(v)u∧(ξ) d̄ξ = ψ(|v|)τx,expx v [u(expx v)],

where d̄ξ = (2π)−n/2dξ. Since (u∧)
∨

(v) ∈ Ex, (u∧)
∨

is a section of the pull-back
of E to TX via π : T ∗X → X. Moreover, we can recover u locally about x from
u∧|T∗xX . In particular, for v = 0x ∈ TxX, we have (u∧)

∨
(0x) = u(x).
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Pseudo-Differential Operators and Normalized Amplitudes. For π :
T ∗X → X and a section p ∈ C∞ (Hom(π∗E, π∗F )) , (of Hom(π∗E, π∗F ) → T ∗X)
we define an operator Op(p) : C∞(E)→ C∞(F ) via

Op(p)(u)x :=

∫
T∗xX

eiξ(v)p(ξ) (u∧(ξ)) d̄ξ

∣∣∣∣∣
v=0

=

∫
T∗xX

p(ξ) (u∧(ξ)) d̄ξ

=

∫
T∗xX

p(ξ)

(∫
TxX

e−iξ(v)ψ(|v|)τEx,expx v
[u(expx v)] d′v

)
d̄ξ

=

∫
TxX×T∗xX

p(ξ)
(
e−iξ(v)ψ(|v|)τEx,expx v

[u(expx v)]
)
d̄vd̄ξ

=

∫
TxX×T∗xX

e−iξ(v)p(ξ)
(
τEx,expx v

[α(x, expx v)u(expx v)]
)
d̄vd̄ξ.(8.15)

Remark 8.29. a) In the spirit of Remark 8.4, p.208, one may think of Op(p)
as a quantization of p, but Op(p) continues to depend on many choices also in our
global setting (e.g., the choice of metric, connections, and α : X ×X → [0, 1]).
b) Apart from these choices, there are other choices one can make, as is discussed
in [Vor]. For example, if s ∈ [0, 1], let

Tx,expx sv : T ∗expx sv
X → T ∗xX

denote parallel translation (with respect to the Levi-Civita connection) for T ∗X
along the geodesic t 7→ expx tv in the reverse direction from expx sv to x. In [Vor]
(but with notation that differs from ours), an operator Op(p; s) (depending on s)
is associated to p via

Op(p; s)(u)x =

∫
TxX×T∗xX

d̄vd̄ξ e−iξ(v)

α(x, expx v)τFx,expx sv
p(Tx,expx sv (ξ))τEexpx sv, expx v

u (expx v) .

When s = 0, we get

Op(p; 0)(u)x =

∫
TxX×T∗xX

d̄vd̄ξ e−iξ(v)α(x, expx v)p(ξ)τEx, expx v
(u (expx v))

which is precisely our Op(p). In cases of interest, the operators Op(p; s) for different
s differ by “lower order” operators which do not affect the index (if defined). Hence,
for simplicity, we only use s = 0. As stated in [Vor] the choice of s is related to
the choice of operator ordering of monomials in position and momentum variables
under quantization.

The connections ∇E and ∇F pull back via π : T ∗X → X to connections
on the bundles π∗E → T ∗X and π∗F → T ∗X, which we continue to denote by
∇E and ∇F . The Levi-Civita connection for (X, g) determines a subbundle H of
T (T ∗X) consisting of horizontal subspaces of T (T ∗X), which is complementary to
the subbundle V of T (T ∗X) consisting of vectors which are tangent to the fibers
of T ∗X → X. There is a natural Riemannian metric, say g∗, on T ∗X such that
V and H are orthogonal and g∗ equals g on V and π∗g on H. Using ∇E and ∇F ,
along with the Levi-Civita connection for g∗, say ∇∗, we may construct a covariant
derivative

∇̃ : C∞ (Hom(π∗E, π∗F ))→ C∞ (T ∗ (T ∗X)⊗Hom(π∗E, π∗F )) .
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Since ∇∗ extends to ⊗kT ∗ (T ∗X), we may “iterate” ∇̃ to obtain

∇̃k : C∞ (Hom(π∗E, π∗F ))→ C∞
(
⊗kT ∗ (T ∗X)⊗Hom(π∗E, π∗F )

)
.

Now we are ready to give a geometric and truly global definition of a variant of
our spaces of principally classical pseudo-differential operators, introduced locally
in Section 8.3.

Definition 8.30. a) We say that p ∈ C∞(Hom(π∗E,π∗F ) is a normalized
amplitude (or total symbol) of order k ∈ R if for any H1, . . . ,HI ∈ C∞(H) with
|H1|, . . . , |HI | ≤ 1 and V1, . . . , VJ ∈ C∞(V ), there are constants CIJ (depending
only on I, J and p), such that

(8.16)
∣∣∣(∇̃I+Jp) (H1, . . . ,HI , V1, . . . , VJ)

∣∣∣ ≤ CIJ (1 +
∑J

j=1
|Vj |
)k−J

.

Moreover, we require that the k-th order asymptotic symbol (or principal sym-
bol) of p, namely

(8.17) σk(p) (ξ) := lim
t→∞

p (tξ)

tk
(for ξ 6= 0)

exists, where the convergence is uniform on S(T ∗X).
b) Then we call Op(p) a normalized pseudo-differential operator of order k

and write Op(p) ∈ Lknorm(E,F ). We set L•norm(E,F ) :=
⋃

Lknorm(E,F ).
c) We denote the set of amplitudes of order k by Amplk(E,F ).

Clearly, for k′ > k,

Amplk′(E,F ) ⊃ Amplk(E,F ) ⊃ Ampl−∞(E,F ) :=
⋂−∞

k=0
Amplk(E,F ).

For p ∈ Amplk(E,F ), we then have the operator, say Op(p) : C∞(E) → C∞(F ),
given by (8.15), which extends to a bounded operator Ops(p) : W s(E)→W s−k(F ),
where for any s ∈ R, W s(E) denotes the s-th Sobolev space of sections of E,
namely the completion of C∞(E) with respect to the norm ‖·‖s defined by

‖u‖2s :=

∫
T∗X

(
1 + |ξ|2

)s
|u∧(ξ)|2 dξ.

Recall that for k ∈ Z+, and s > n/2 + k, there is a compact inclusion W s(E) ⊂
Ck(E). For each s, the linear map

(8.18) Ops : Amplk(E,F )→ B(W s(E),W s−k(F ))

into the Banach space B(W s(E),W s−k(F )) of bounded linear transformations is
continuous (see [LaMi, p. 177f]). Moreover, for ϕ ∈ Ampl−∞(E,F ), Ops(ϕ) is a
compact operator for any s ∈ R, and Ops(ϕ) (W s(E)) ⊂ C∞(F ); i.e., Ops(ϕ) is a
smoothing operator.

Definition 8.31. We say that p ∈ Amplk(E,F ), and the corresponding oper-
ator Op(p), are elliptic if for some constant c > 0, p(ξ)−1 exists for |ξ| > c, and
for some constant K > 0∣∣p(ξ)−1

∣∣ ≤ K (1 + |ξ|)−k for all ξ ∈ T ∗X with |ξ| > c.

We set Ellk(E,F ) := {p ∈ Amplk(E,F ) : p is elliptic} .
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For p ∈ Ellk(E,F ), there are q ∈ Ampl−k(E,F ), ϕE ∈ Ampl−∞(E,E) and
ϕF ∈ Ampl−∞(F, F ), such that

Ops−k(q) ◦Ops(p) = IdW s(E) + Ops(ϕE) and

Ops(p) ◦Ops−k(q) = IdW s−k(F ) + Ops−k(ϕF ).

Since Ops(ϕE) and Ops−k(ϕF ) are compact operators, it follows that Ops(p) is
Fredholm, and hence we may define

index(Ops(p)) := dim ker(Ops(p))− dim coker(Ops(p)).

Note also that if Ops(p)u ∈ C∞(F ), then

u = Ops−k(q) (Ops(p)u)−Ops(ϕE)u ∈ C∞(E).

Thus, dim ker (Ops(p)) < ∞, ker (Ops(p)) ⊂ C∞(E), and ker (Ops(p)) is indepen-
dent of s. As a consequence,

index(Ops(p)) = dim ker(Op(p))− dim coker(Op(p))

is independent of s.

Approximation of Differential Operators. The reader should be aware
of a minor technical problem when dealing with our normalized amplitudes and
normalized pseudo-differential operators: There can be differential operators which
can not be generated by a normalized amplitude.

Let us have a closer look at the familiar case of an elliptic, linear differential
operator D : C∞(E)→ C∞(F ) of given order k. As we have seen in the preceding
chapter, associated with D is its principal symbol σk(D) ∈ C∞ (Hom(π∗E, π∗F )).
We have checked that σk(D) is independent of the choice of local coordinates and
observed that this would not be the case if lower-order terms were included. If σk(D)
is invertible outside of the zero section of T ∗X, then D is said to be elliptic, which
we assume. If lower order terms were included and if we denoted this coordinate-
dependent, locally-defined “full symbol” by ploc(D) (ξ), then σk(D) (ξ) at ξ ∈ T ∗xX
would be given by

lim
t→∞

ploc(D) (tξ)

tk

in comparison with (8.17). However, it is not clear that D is precisely Op(p) for
some globally defined p ∈ Amplk(E,F ). In the language of physicists, it is not clear
that D can be precisely dequantized. If such p exists, it would clearly depend on
choices of a Riemannian metric on X, connections for E and F and on the function
α : X ×X → [0, 1] supported near the diagonal. However, in [Bok] and [Wid], it
is shown that given such choices, p can be found so that Op(p) and D differ by an
operator which is infinitely smoothing (and hence compact); i.e.,

D −Op(p) = Op(a) for a ∈ Ampl−∞(E,F ).

By methods that are standard by now and to be summarized in the following chap-
ter, it follows that D has Fredholm Sobolev extensions Ds : W s(E) → W s−m(F )
for all s, with a common index, which is sometimes called the analytic index of D;
it is just the usual operator-theoretic index. It is simply denoted by index(D) and
if D∗ : C∞(F )→ C∞(E) denotes the formal L2-adjoint of D, then

dim ker(D)− dim ker(D∗) = index(D)

= index(Op(p) + Op(a)) = index(Op(p)).



8.5. NORMALIZED (GLOBAL) AMPLITUDES 233

Thus, readers (including the authors) who are bothered by the fact that differential
operators may not be precisely dequantized, may take some solace in the fact that
elliptic differential operators may be approximated by a pseudo-differential operator
of the form Op(p), modulo smoothing operators which preserve the index.

We close this section with a few exercises. Better hints? All
correct?

Exercise 8.32. a) Show that L•norm(E,F ) of Definition 8.30b is a graded ∗-
algebra.
b) Show that the quantization Op : Amplk(E,F ) → Lknorm(E,F ) is a bijection for
all k ∈ R.
c) Show that the spaces Amplk(E,F ) and Lknorm(E,F ) are independent of the choice
of metrics and connections (contrary to the definition of Op).

d) Prove Lknorm(E,F ) ⊂ Lkpc(E,F ).
e) Find a closed Riemannian manifold X, Hermitian bundles E,F → X with

fixed connections and k ∈ N such that Diffk(E,F ) 6⊂ Lknorm(E,F ). Conclude

Lknorm(E,F ) 6= Lkpc(E,F ). For that, can E,F be trivial bundles? Can you choose

X = S1 or, more generally, X = Sn?
[Hint: To a: Check composition and taking formal adjoints like in Section 8.4.

To b: By definition of Lknorm(E,F ) and the linearity of Op it suffices to prove the
injectivity of Ops of (8.18) for s = 0. How can you exclude the existence of a not
identically vanishing p ∈ Amplk(E,F ) with Op(p) = 0 in spite of the Example 8.15,
p.215?
To c: Nasty!
To d: Fix the metric structures and connections. Then check the claim in coordi-
nates.
To e: See the references given at the beginning of this section, in particular [Bok],
[Wid] and [Pf].]



CHAPTER 9

Elliptic Operators over Closed Manifolds

In this chapter, we show that out of formal properties (e.g., invertibility) of
elliptic symbols, a series of existence, regularity, and finiteness results for the as-
sociated differential and pseudo-differential operators (as Fredholm operators) can
be obtained.

1. Continuity of Pseudo-Differential Operators

Convention: In what follows, the manifold X is closed, i.e. compact, without
boundary. We make this convention, in part for convenience (in order to make
some proofs go easier), but also because otherwise some of the following theorems
would be meaningless or false; see Exercise 9.16 below. Moreover, X continues
to be oriented and is furnished with a fixed Riemannian metric; E and F are
Hermitian vector bundles. Without loss of generality, we will occasionally assume
that the Hilbertable Sobolev spaces are already furnished with a fixed norm or scalar
product.

Definition 9.1. A linear operator P : C∞0 (E)→ C∞(F ) is called an operator
of order k ∈ Z if it extends to a continuous map Ps : W s(E) → W s−k(F ) for all
s ∈ R with s, s− k > 0. We denote by OPk(E,F ) the set of operators of order k.

Theorem 9.2. For k ∈ Z, Lkpc(E,F ) ⊆ OPk(E,F ).

Proof. Formally, this theorem says that the analytical order of a pseudo-
differential operator (determined by the asymptotic behavior its amplitude) coin-
cides with its order in the context of functional analysis (which is expressed by
its continuity relative to the norms of the Sobolev spaces). We need to prove the

estimate ‖Pu‖s−k ≤ C ‖u‖s, u ∈ C∞0 (E), where C only depends on P ∈ Lkpc(E,F )
and s, and not on u. Since C∞0 (E) is dense in W s(E), the theorem follows, because
then P can be extended to a continuous linear operator Ps : W s(E)→W s−k(F ).

Since the norms in W s(E) and W s−k(F ) are locally defined by Exercise 7.7
(p. 194), it suffices to show the inequality for u ∈ C∞0 (Rn). By Exercise 7.5 (p. 194)
we can further assume without loss of generality that k = 0 and s = 0. Let

(Pu)(x) =

∫
ei〈x,ξ〉p(x, ξ)û(ξ) d̄ξ, u ∈ C∞0 (Rn),

be a pseudo-differential operator, whose amplitude p(x, ξ) vanishes for sufficiently
large x and satisfies the estimate (see 8.2, p. 207)∣∣Dβ

xD
α
ξ p(x, ξ)

∣∣ ≤ C (1 + |ξ|)k−|α| , (x, ξ) ∈ Rn × Rn,
for all multi-indices α and β. Then the Fourier transform p̂(·, ξ) of the function
x 7→ p(x, ξ) can be estimated by

(9.1) |p̂(z, ξ)| ≤ CN (1 + |z|)−N for all N ∈ N,

234
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as was done for û in the proof of Theorem 8.3, p. 208. We have

P̂ u(η) =

∫ ∫
e−i〈η,x〉ei〈x,ξ〉p(x, ξ) d̄x û(ξ) d̄ξ

=

∫
p̂(η − ξ, ξ) û(ξ) d̄ξ.

By (9.1) and the Schwarz Inequality,

|P̂ u(η)|2 ≤ C2
N

∣∣∣∣∫ (1 + |η − ξ|)−N û(ξ) d̄ξ

∣∣∣∣2
≤ (2π)−nC2

N

(∫
(1 + |η − ξ|)−2N dξ

)
‖û‖20 .

For N sufficiently large, integrating this with respect to η and using Parseval’s
Formula (Appendix A, Exercise A.5d), we obtain the desired result

‖Pu‖20 = ||P̂ u||20 ≤ C ′ ‖û‖
2
0 = C ′ ‖u‖20 .

�

Exercise 9.3. Interpret and prove:

P ∈ Lkpc(E,F )⇒ (P0)∗ = (P ∗)0.

Exercise 9.4. Let σk : Lkpc(E,F ) → Smblk(E,F ) be the well-defined (Exer-
cise 8.19, p. 221), surjective (Theorem 8.24, p. 225) symbol map. Show Kerσk ⊆
OPk−1(E,F ). [Hint: This is trivial by axiom (iii) (see Section 8.3, p. 211) and the
preceding Theorem 9.2.]

Exercise 9.5. Show that the short exact sequence

Lkpc(E,F )
σk→ Smblk(E,F )→ 0

splits; i.e., σk has a linear right inverse χk : Smblk(E,F ) → Lkpc(E,F ) which
satisfies the continuity condition

sup
{
‖χk (ρ) (u)‖s−k : u ∈ C∞ (X) and ‖u‖s = 1

}
≤ C sup {|ρ (x, ξ)| : x ∈ X, |ξ| = 1} (s, s− k > 0),

where C does not depend on ρ ∈ Smblk(E,F ), and |ρ (x, ξ)| is the usual matrix
norm which may be defined via the Hermitian inner products on Ex and Fx. [Hint:
Go through the proof of Theorem 8.24 (p. 225) again.]

Exercise 9.6. Show conversely, that for all s, s−k > 0 and all P ∈ Lkpc(E,F ),
we have the following inequality

sup {|σk (P ) (x, ξ)| : x ∈ X, |ξ| = 1}
≤ sup

{
‖Pu‖s−k : u ∈ C∞ (X) and ‖u‖s = 1

}
.

[Hint: By a theorem of Israil Gohberg (see also [See65, p.171]), one can find a
sequence {ϕν} of functions in C∞0 (Rn) such that

(i) ϕν(x) = 0 for |x− x0| > 1/ν
(ii) ‖ϕν‖0 = 1 for all ν, and
(iii) ‖Pϕν − σ (P ) (x0, ξ0)ϕν‖0 → 0 as v →∞, where

(x0, ξ0) ∈ Rn × (Rn \ {0}) is any given point.
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Details are found in [See65, p.179] or [CaSc, 22-05]. Caution: On Lkpc(E,F ) itself
there is a topology which is defined in a natural way by the condition that the map
P 7→ Ps be continuous for all s. However, then σk is not continuous; see [Pal65,
p.175].]

2. Elliptic Operators - Regularity and Fredholm Property

As a generalization of our earlier definition for differential operators (see Sec-

tion 6.7 above), we call P ∈ Lkpc(E,F ) elliptic, if σk(P ) (x, ξ) is an isomorphism
from Ex to Fx for all x ∈ X and ξ ∈ T ∗xX, ξ 6= 0. We write P ∈ Ellk(E,F ).

Theorem 9.7 (Main result). For any P ∈ Ellk(E,F ), there is Q ∈ Ell−k(E,F ),
such that PQ− IdF ∈ OP−1(F, F ) and QP − IdE ∈ OP−1(E,E).

Remark 9.8. This existence theorem forms the foundation of our theory of
elliptic operators. Using the terminology introduced by David Hilbert, one calls
Q a parametrix for P , although a crude one: The classical parametrix (Green’s
function) inverts P , not only modulo operators of order −1, but also of order −∞
(i.e., modulo so-called smoothing operators; see [Hö71a]).

Proof. Theorem 8.24 (p. 225) guarantees the existence of a Q ∈ L−kpc (F,E)

with σ−k(Q)(x, ξ) := σk(P )(x, ξ)−1, whence PQ ∈ L0
pc(F, F ) by Theorem 8.26a

(p. 226) and σ0 (PQ− IdF ) = 0, and σ0 (PQ− IdF ) ∈ OP−1(F, F ) by Exercise 9.4.
�

Theorem 9.9. Let P ∈ Ellk(E,F ) and s, s− k ≥ 0. Then we have:

a) Finiteness: The extension Ps : W s(E)→W s−k(F ) is a Fredholm operator
with index independent of s.

b) Existence: P ∗ is elliptic and CokerPs ∼= Ker(P ∗)s−k .
c) Regularity: KerPs = KerP .
d) Homotopy-invariance: indexP = indexPs depends only on the homotopy

class of σ(P ) in IsoSX(E,F ). Here IsoSX(E,F ) is the space of C∞ bundle
isomorphisms π∗E ∼= π∗F , where π : SX → X is the base-point map and
SX := {ξ ∈ T ∗xX : x ∈ X and |ξ|x = 1)} is the co-sphere bundle;
IsoSX(E,F ) is equipped with a supremum norm as in Exercise 9.5.

Remark 9.10. In conjunction with c), existence says that the inhomogeneous
equation Pu = f has a solution exactly when f⊥KerP ∗, and the solution is unique
if constrained to be orthogonal to KerP in W 0(E). By regularity, all classical
solutions (i.e., u ∈ Ck(E)) of homogeneous elliptic differential equations Pu = 0
(with C∞ coefficients) lie in C∞(E). In the context of distribution theory (see
[Hö63]), one obtains the sharper result that every weak solution (in the distribution
sense) is a strong solution (in the function sense); i.e., from the assumption u ∈
W 0(E) and 〈u, P ∗f〉0 = 0 for all f ∈ C∞(F ), the conclusions u ∈ C∞(E) and
Pu = 0 follow. Such regularity results, which were first proved in 1940 by Herman
Weyl in the case of the Laplace operator P := ∆, are of special importance when
one is solving partial differential equations by variational methods (i.e., solving
through extremal conditions); see [Hö63, p.96] and [LiMa, p.214f].

Proof. For a: If Q ∈ L−kpc (F,E) is a parametrix (see Theorem 9.7) for P ,
then it follows from the Theorem of Franz Rellich (Theorem 7.15, p. 198) that the
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composition

W s(E)
Qs−kPs−Id−→ W s+1(E) ↪→W s(E)

is a compact operator on W s(E), and correspondingly, PsQs−k − Id is a compact
operator on W s−k(F ). Thus, Ps : W s(E) → W s−k(F ) is a Fredholm operator by
Theorem 3.2, p. 64. (There, actually the proof was explicitly given only for endo-
morphisms, but this is no restriction for separable Hilbert spaces, since they are all
isomorphic.) By continuity considerations (Theorem 3.11, p. 68 and the preceding
Exercises 9.5 and 9.6, or easy norm comparison for Ps and Pt by means of Λs−r of
Exercise 7.5, p. 194) it follows that indexPs = indexPt.
For b: Without loss of generality (Λ argument of Exercise 7.5, p. 194), let k = s =
0. Then b) follows directly from Exercise 9.3 and Theorem 2.7.
For c: By definition, we have KerPs+1 ⊆ KerPs, since W s+1(E) ⊆ W s(E). Con-
versely, by Theorem 9.7 there is a bounded operator K : W s(E)→W s+1(E), such
that Qs−kPsu − Idu = Ku for all u ∈ W s(E), where Q is a parametrix for P .
Thus u ∈ W s+1(E), if Psu = 0. Hence, KerPs = KerPs+1 = · · · = KerP , since
C∞ = ∩W s; see Exercise 7.3c (p. 192) and Theorem 7.13, p. 197).
For d: For Q ∈ Ellk(E,F ) and σk(Q) = σk(P ), we obtain indexQ = indexP
from Exercise 9.4 and the invariance of the index under perturbation by com-
pact operators (Exercise 3.10, p. 65). In general, by Exercise 9.5, each continuous
curve ρ : I → Smblk(E,F ) lifts to a corresponding continuous (in the operator

norm) curve r : I → Lkpc(E,F ) with σk ◦ r = ρ. Thus, if one can connect σk(Q)
with σk(P ) by a continuous curve in Iso∞SX(E,F ), then P and Q can be con-
nected in Ellk(E,F ). Hence for all s, the Fredholm operators Qs and Ps lie in
the same component and have the same index by Theorem 3.11, p. 68. Finally, if
Q ∈ Ellj(E,F ) is an operator whose symbol σj(Q) coincides with σk(P ) on SX,
then σj(Q)−1 ◦ σk(P ) is the symbol of a self-adjoint operator R ∈ Ellk−j(E,E).
From σk(P ) = σj(Q) ◦ σk−j (R) = σk(QR), it follows by preceding arguments that

indexP = indexQR = indexQ+ indexR = indexQ,

since indexR = 0 by (c) (see also the composition rule in Exercise 1.10, p. 9, and
the following Exercise 9.11a). �

Convention: In the following, we write for short σ(P ) for the restriction of
σk(P ) to SX.

Exercise 9.11. Let E,F,G,H be Hermitian vector bundles over the closed,
oriented Riemannian manifold X; P ∈ Ellk(E,F ), Q ∈ Ellj(F,G), R ∈ Ellk′(G,H).
Show that the following expressions are defined, and prove the formulas:
a) indexP ∗ = − indexP
b) indexQP = indexP + indexQ
c) indexP ⊕R = indexP + indexR
d) indexP = 0, if σ(P )(x, ξ) depends only on x and not on ξ ∈ (SX)x
[Hint for d: A bundle isomorphism E → F and a multiplication operator Mψ ∈
Ell0(E,F ) are defined via ψ(x) := σ(P )(x, ξ) for ξ ∈ (SX)x. Apply Theorem 9.9d.]

Exercise 9.12. a) Form the closure Smblk(E,F ) of Smblk(E,F ) in the supre-
mum norm, and show that one then obtains all the continuous symbols. In particu-
lar, the space IsoSX(E,F ) of all continuous isomorphisms from π∗E to π∗F , where

π : SX → X is the projection, consists of the restrictions p|SX for p ∈ Smblk(E,F )
b) For each s, s − k ≥ 0, form the closure (in the operator norm) of the set of all
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operators Ps with P ∈ Lkpc(E,F ), and show that σk can be continuously extended

to a surjective map on this space if the target of σk is enlarged to Smblk(E,F ).

We now write P ∈ Lkpc(E,F ), if P lies in the closure formed in Exercise 9.12, for
all s ≥ 0 (and s−k ≥ 0). One easily sees that our results up to now (in particular on
elliptic operators) remain valid in this larger class. The most important reason for
passing to the closure arises from the multiplicative behavior of pseudo-differential
operators:

Exercise 9.13. Consider two closed, oriented, Riemannian manifolds X and
Y ; and Hermitian vector bundles E and F over X, and G and H over Y . Moreover,
let P ∈ Lkpc(E,F ) and Q ∈ Lkpc(G,H), k ∈ N.

a) Show that an operator P ⊗ IdG ∈ Lkpc(E ⊗G,F ⊗G) is defined by

(P ⊗ IdG) (u⊗ v) := Pu⊗ v, u ∈ C∞(E), v ∈ C∞(G),

which does not always lie in Lkpc(E ⊗G,F ⊗G).
b) Over the manifold X × Y , define the operator

P#Q : C∞(E ⊗G)⊗ C∞(F ⊗H)→ C∞(F ⊗G)⊗ C∞(E ⊗H)

by the matrix

P#Q :=

[
P ⊗ IdG − IdF ⊗Q∗
IdE ⊗Q P ∗ ⊗ IdH

]
.

Prove the Multiplication Theorem: If P and Q are elliptic, then P#Q is elliptic,
and index (P#Q) = (indexP )(indexQ).
[Hint for a: For the sake of simplicity, assume that all bundles are trivial line
bundles (i.e., the case of functions). Then P ⊗ IdCY : C∞ (X × Y )→ C∞ (X × Y )
is the operator obtained when P acts on the first variable while the second is held
fixed. In local coordinates, for (x, y) ∈ X × Y and u ∈ C∞ (X × Y ), we have:

(P ⊗ IdCY )u(x, y) =

∫ ∫
ei〈x−x̄,ξ〉p(x, ξ)u(x̄, y) d′x̄ d̄ξ.

The amplitude p̃ of P⊗IdCY is then given by p̃(x, y, ξ, η) = p(x, ξ) (up to a constant
of integration). Show that the amplitude estimate∣∣Dβ

xD
α
ξ p(x, ξ)

∣∣ ≤ C (1 + |ξ|+ |η|)k−|α| .

can only hold for large |α| when Dβ
xD

α
ξ p(x, ξ) is identically zero (i.e., when p is a

polynomial in ξ). For the proof that

P ⊗ IdCY ∈ Lkpc(X × Y ) := Lkpc(CX×Y ,CX×Y ),

explicitly construct a family {Rt : t ∈ (0, 1]} with

Rt ∈ L0
pc(X × Y ) and (P ⊗ IdCY )Rt ∈ Lkpc(X × Y ),

such that (P ⊗ IdCY )Rt converges in the operator norm to P ⊗ IdCY as t ↓ 0, as
in [AS68a, p.513-516]. Another proof can be found in [Hö71b, p.96f], where the
consideration of the difference variable z in x and y (and ζ in ξ and η) is carried out
in the framework of the theory of Fourier integral operators, with its more flexible
methods; see also the theorem of Kuranishi (Theorem 8.13, p. 213).
For b: For the origin of the somewhat strange form of P#Q compare with golden
rule of tensoring chain complexes; see also Chapters 11 and 12. Details may be
found in [See65, p.190-193], [CaSc, exp. 22], [AS68a, p.526-529].]
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Exercise 9.14. Let P ∈ Lkpc(E,F ) be an elliptic operator (i.e., σ(P ) ∈ IsoSX(E,F )).
Show that indexP = 0, if σ(P ) can be extended to an isomorphism over all of
BX := {ξ ∈ T ∗X : |ξ| ≤ 1}.
[Hint: Show that a homotopy between the symbol of P and the symbol of the multi-
plication operator (Mu)(x) := σ(P )(x, 0)(u(x)) can be defined and apply Theorem
9.9d and Exercise 9.11d.]

Exercise 9.15. Now, let E and F be trivial line bundles over the closed man-
ifold X. Show that indexP = 0, if dimX > 2. [Hint: Reduce this to Exercise
9.14 by a suitable deformation of σ(P )(x, ξ); see [Ni, p.160f]. Compare also with
Section 14.3 below.]

Exercise 9.16. Carry the following theorems and exercises over to the case of
manifolds with boundary: Theorem 9.2, Exercise 9.3 (if the formal adjoint operator
is defined by 〈Pu, v〉 = 〈u, P ∗v〉 for all u and v with support contained in the interior
of X), Exercises 9.4–9.6, Theorem 9.7 (Why not Theorem 9.9?), Exercise 9.12, and
Exercise 9.13a.



CHAPTER 10

Local Elliptic Boundary-Value Systems

In this chapter, we shall develop a systematic theory of local elliptic boundary-
value systems. Here systematic means a generality and simplicity historically cre-
ated to yield convenient proofs, and hence apparent arbitrariness. Put differently, as
in the preceding chapters on Sobolev spaces, pseudo-differential operators and sym-
bolic calculus, we mostly follow the course of history and the analysis mainstream,
contrary to our own view and preferences: With hindsight, any rational discussion
of elliptic boundary conditions should begin with R.T. Seeley’s profound view of
1968 in [See68], on what kind of boundary conditions yield Fredholm operators
and regularity, the two essentials of the idea of ellipticity. Seeley’s ideas found
a spectacular application in the famous Atiyah-Patodi-Singer Index Theorem for
boundary conditions defined by spectral projections, see our Section 14.8, p.323ff
in Part III. There we shall give a short summary of Seeley’s ideas and the main
subsequent results. For a comprehensive presentation we refer to the monograph
[BoWo] and the more recent review [BruLes].

We postpone our principal, global view upon the index theory of elliptic bound-
ary value problems for two reasons: firstly to compromise with the preference of
analysis mainstream for local theory, and secondly to show the beautiful relations
between the local theory and global invariants.

1. Differential Equations in Half-Space

Here we shall discuss the idea of ellipticity of local boundary-value conditions,
i.e., the connection between boundary-value problems of partial differential equa-
tions and initial conditions of ordinary differential equations and thus finally the
algebraic essence of that idea of local ellipticity.

We begin with the local considerations which arise from the classical theory
of homogeneous differential equations with constant coefficients in the half-space.
Thus, for the moment, let p be a homogeneous, complex-valued polynomial of
degree k in n variables and p(D) = p(−i ∂

∂x1
, ...,−i ∂

∂xn
) be the associated ho-

mogeneous differential operator of order k with constant coefficients. In general,
Ker p(D) = {u ∈ C∞ (Rn) : p(D)u = 0} will be an infinite dimensional function
space. For example, for n = 2, let p(ξ1, ξ2) = ξ2

1 + ξ2
2 , hence p(D) = −∆, whose

kernel consists of all harmonic functions. From numerical mathematics, which is
concerned with the approximation of arbitrary solutions by solutions of particularly
simple form, we know the importance (beyond the realm of ordinary linear differ-
ential equations) of the exponential solutions. These are functions u ∈ Ker p(D)
which can be written in the form u(x) = f(x) exp i(x1ξ1 + ...+ xnξn) where f is a
polynomial in n variables and ξ1, ..., ξn ∈ C. In [Hö63, p.76 f], we find the exact
formulations and the proof that the exponential solutions are dense in Ker p(D) for
a suitable topology. While systems of ordinary differential equations with constant

240
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coefficients can be solved completely by means of elementary functions, the same
is true in approximation only, for the analogous partial differential equations.

The exponential solutions play a similarly significant role in the characterization
of boundary value problems:

For each (n−1)-tuple η = (ξ1, ..., ξn−1) ∈ Rn−1, define in Ker p(D) the subspace

Mη := {u ∈ Ker p(D) : u(x) = h (xn) exp i(x1ξ1 + ...+ xn−1ξn−1), h ∈ C∞(R)}

and show that

Mη
∼=
{
h ∈ C∞(R) : h ∈ Ker p(ξ1, ..., ξn−1,−i ddt )

}
.

Trick: Compute that

p(D)[(exp i(x1ξ1 + ...+ xn−1ξn−1)h (xn)]

= [exp i(x1ξ1 + ...+ xn−1ξn−1)]p(ξ1, ..., ξn−1,−i d
dxn

)h (xn)

and obtain the isomorphic representation ofMη by a mere separation of variables.
In this fashion we associated with the partial differential operator p(D) a family

of vector spaces parametrized by η ∈ Rn−1 whose elements are solutions of ordinary
differential equations with constant coefficients. A number of results about the
structure of the spaces Mη follow painlessly by means of the most elementary
stability considerations. From these, we will then develop the notion of ellipticity
of boundary-value problems both in its analytic and its algebraic form.

Theorem 10.1. For a homogeneous polynomial p of degree k in n variables and
for η ∈ Rn−1, Mη consists of exponential solutions (i.e., coefficient functions h are
polynomials). If p is elliptic (i.e., ξ ∈ Rn \ {0} ⇒ p (ξ) 6= 0), then dimMη = k,
and Mη decomposes in a natural way into two subspaces and M+

η and M−η which
are complementary for η 6= 0.

Proof. It is well-known (see [Po, p.45 ff]) that the solutions of the differential
equations q(−i ddt )h(t) = 0 (where q is a polynomial, in one variable, of degree k)
are completely determined by the zeros of q. Namely, when λ1, ..., λm are the roots
of q with respective multiplicities r1, ..., rm, then Ker q(−i ddt ) is the linear span of
the k exponential functions

tp exp iλµt, µ = 1, ...,m and p = 0, ..., rµ − 1.

For p elliptic, q(t) = p(ξ1, ..., ξn−1, t) remains degree k, and Mη is a k-dimensional
subspace of the vector space of exponential solutions of the equation p(D)u = 0.
The asymptotic behavior as t→ ±∞ (i.e., xn → ±∞) is determined by the imag-
inary parts of the zeros. If η = (ξ1, ..., ξn−1) 6= 0, then q(t) has no real zeros (at
least for p elliptic), and Mη is the direct sum of M+

η and M−η , consisting of so-
lutions which remain bounded (more precisely, go to zero) as t → +∞, resp. as
t→ −∞. �

Remark 10.2. Conversely, the ellipticity of p(D) can be defined by the condi-
tion

M+
η ∩M−η =

{
{0} , for η 6= 0,
{constant functions} , for η = 0.

This means that p(D) possesses no bounded exponential solutions other than con-
stant functions.
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Remark 10.3. In order to move on to boundary (or initial-value) problems,
we consider the trajectories (integral curves) h(t) of solutions together with their
derivatives up to order k − 1 in phase space Ck. Each trajectory corresponds
uniquely to its initial values (h(0), Dh|0, . . . , Dk−1h|0), where D := −i ddt . The
trajectories, corresponding to points inM+

η (η 6= 0) which tend to the origin, have

initial values which lie in a subspace K+
η (the plus-stable subspace, see Figure 10.1)

in phase space. The corresponding initial values for M−η lie in a subspace K−η

K
+

´

K
{

´

0

C
k

Figure 10.1. The plus- and minus-stable subspaces in phase space

(the minus-stable subspace) complementary to K+
η . The remaining integral curves,

whose initial values lie in the open set Ck − (K+
η ∪K−η ), have a positive distance

from the origin and are unbounded as t→ ±∞. The isomorphic images K+
η ofM+

η

and K−η of M−η form the level set through a generalized saddle point at the origin

of the phase space Ck.1 The necessary simple calculations may be found in [NS,
p.187 f].

We come now to the definition of ellipticity of boundary-value problems in the
half-space xn ≥ 0 of Rn for a single elliptic differential equation

(10.1) p(D)u = 0

with the boundary conditions

(10.2) pj(D)u|xn=0 = 0, j = 1, ..., r.

Here p and p1, ..., pr are homogeneous polynomials of degree k and k1, ..., kr < k,
respectively.

Definition 10.4. We call (10.1), (10.2) an elliptic boundary-value prob-
lem, if

(10.3) k = 2r

and if

the system of equations (10.1), (10.2) has no nontrivial(10.4)

solutions in M+
η for each η 6= 0.

1Note that the spaces K+
η and M+

η are canonically isomorphic (for given p and η); thus we

can identify them with each other. Therefore, in the following, we will only speak of M+
η , and

take M+
η as a space of functions or initial values, depending on context.
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Detailed motivation for this definition may be found in [Hö63, p.242-246].
According to this reference, the ellipticity of a boundary-value problem is important
primarily for the proof of regularity theorems and finiteness of the index (see below).
In addition, L. Hörmander proved that from a regularity assumption, saying that all
solutions are still C∞ on the boundary, it already follows that system (10.1), (10.2)
can possess no bounded exponential solutions in the xn-direction and that k = 2r.
(The ellipticity of p(D) is not needed here.) Elliptic boundary-value conditions,
first formulated in this sense by Jaroslav Boresovich Lopatinsky and ???, are thus
exactly those local conditions which insure the smoothness of solutions also on the
boundary.

In order to isolate the algebraic kernel of the ellipticity conditions for the
boundary-value system (10.1), (10.2), we again translate the conditions (10.3) and
(10.4) into the language of ordinary differential equations and their initial condi-
tions. Thus, let p, p1, ..., pr be homogeneous polynomials as above, with p elliptic
of degree k, and let η ∈ Rn−1 \ {0}. As before, we assign, to the pair (p, η), the
vector space M+

η which we can identify with the plus-stable subspace K+
η . Now

show:

Exercise 10.5. The data p, p1, ..., pr of a boundary-value problem (p elliptic)
defines a linear map β+

η :M+
η → Cr, for each point η ∈ Rn−1 \ {0} .

Trick: Assign to each boundary operator pj(D), j = 1, ..., r, and each point η =
(ξ1, ..., ξn−1) ∈ Rn−1 \ {0}, the initial value problem

C∞(R+) 3 h 7→ pj(ξ1, ..., ξn−1,−i ddt )h|t=0,

and thus a linear functional on the phase space Ck =Mη. The p1, ..., pr together
define (for each η 6= 0) a linear map βη from Ck to Cr; then consider the restriction
to the plus-stable subspace M+

η .

Theorem 10.6. A boundary-value system (10.1), (10.2) is elliptic, exactly when
the map β+

η :M+
η → Cr is an isomorphism for each η 6= 0. Written out: For each

η = (ξ1, ..., ξn−1) ∈ Rn−1\{0} and for each r-tuple of complex numbers (g1, ..., gr) ∈
Cr, there is exactly one bounded (as t → +∞) function h ∈ C∞(R) such that
p(ξ1, ..., ξn−1,−i ddt )h = 0 and pj(ξ1, ..., ξn−1,−i ddt )h|t=0 = gj for j = 1, . . . , r.

Proof. First, suppose that (10.1), (10.2) is elliptic. The condition (10.4) says
thatM+

η ∩
{
g ∈ Ck : βη (g) = 0

}
= {0} for all η 6= 0; this means that β+

η is injective.

To prove that β+
η is surjective, we use the condition (10.3). Recall (see Remark

10.2 after Theorem 10.1 above) that M+
η and M−η together span the whole phase

space Ck and are complementary to each other; in particular,

(10.5) dimM+
η + dimM−η = k.

Since β+
η is injective, we have dimM+

η ≤ r. However, M−η ∼= M+
−η, since u ∈

Ker p(D)⇔ ũ ∈ Ker p(D), where

u(x1, ..., xn) = (exp i(x1ξ1 + ...+ xn−1ξn−1))h(xn) and

ũ(x1, ..., xn) = (exp−i(x1ξ1 + ...+ xn−1ξn−1))h(−xn).

Thus, we also have dimM−η ≤ r, whence dimM+
η = k − dimM−η ≥ k − r = r,

since k = 2r by (10.3). Thus, dimM+
η = r, and so β+

η is bijective.

Conversely, (10.4) follows easily from the bijectivity of β+
η . Moreover, dimM+

η =

dimM−η = r, and because of (10.5), we obtain condition (10.3). �
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Remark 10.7. Since the boundary conditions p1, ..., pr are supposed to define
a linear map from phase space Ck to Cr, we had to first assume that the degrees
of the polynomials p1, ..., pr are smaller than the degree k of the elliptic polyno-
mial p. Actually, we can algebraically reduce every polynomial of degree greater
than p (e.g., see [vdW, Ch. 18]) and come to equivalent boundary (resp. initial)
conditions.

Remark 10.8. For an elliptic differential equation with constant coefficients
(homogeneous of degree 2r), we have first the natural (initial-value) isomorphism
Mη

∼= C2r. Thus, elliptic boundary conditions cannot exist unless dimM+
η = r,

i.e., M+
η
∼= Cr, and this isomorphism is not canonically defined but depends on a

choice of boundary conditions. In this sense, the algebraic-geometrical meaning of
elliptic boundary-value problems lies in providing a fixed coordinate system (i.e., a
fixed basis) for M+

η .

Exercise 10.9. a) For a boundary-value system of your choice, determine the
families of vector spaces Mη, M+

η , K+
η and the maps β+

η . For example show for

the Laplace equation with p(ξ1, ξ2) = ξ2
1 + ξ2

2 that, at the point η = ξ1 > 0,

Mη =
{
c1e

η(ix+y) + c2e
η(ix−y) : c1, c2 ∈ C

}
∼=
{
c1e

ηt + c2e
−ηt : c1, c2 ∈ C

} ∼= C2, and

M+
η =

{
ceη(ix−y) : c ∈ C

}
∼=
{
ce−ηt : c ∈ C

} ∼= C.

Then determine the linear map β+
η , e.g., for the Neumann boundary-value problem

with p1(ξ1, ξ2) = ξ2, and show that it selects the basis vector (0,−i/η) in M+
η .

b) Show that, for the Cauchy-Riemann equation with p(ξ1, ξ2) := ξ1 + iξ2, the
vector spaces M+

η (η ∈ R \ {0}) have different dimensions depending on whether
η > 0 or η < 0.

2. Systems of Differential Equations with Constant Coefficients

In this section, p is a N × N matrix of homogeneous polynomials of degree k
in n variables, and p is elliptic; i.e., det p(ξ) 6= 0 for ξ = (ξ1, ..., ξn) 6= 0.

Exercise 10.10. For η = (ξ1, ..., ξn−1) ∈ Rn−1 \ {0} define Mη, M+
η , M−η as

above.

Theorem 10.11. The following statements hold for η 6= 0.

(i) dimMη = Nk .
(ii) Each solution is uniquely determined by

its initial value in the phase space CNk.
(iii) The vector spaces M+

η and M−η , interpreted as the plus-stable,
resp. minus-stable subspaces, are complementary in CNk.

Proof. For fixed η = (ξ1, ..., ξn−1), the elements of Mη are of the form

u(x) =

 u1(x) = (exp i(x1ξ1 + ...+ xn−1ξn−1))h1(xn)
...
uN (x) = (exp i(x1ξ1 + ...+ xn−1ξn−1))hN (xn)
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where x = (x1, ..., xn) ∈ Rn; or more simply of the form

h(t) =

 h1(t)
...

hN (t)


where t ∈ R. For such C∞ functions on R with values in CN , we write h ∈ C∞(CNR );
i.e., h is a C∞ section of CNR , the N -dimensional trivial bundle over R.

For the proof of (i), we go through the canonical transformation of the N ×N
system

p(ξ1, ..., ξn−1,−i ddt )h = 0, h ∈ C∞(CNR )

of order k to a Nk ×Nk system

dh̃

dt
−Ah̃ = 0, h̃ ∈ C∞(CNkR )

of order 1 (as in [Po, p.89f]). The solutions h can be written ([Po, p.97]) explicitly

in the form
(ν)
q (t) exp iλt, where λ is an eigenvalue of A, v ∈ {1, ..., r}, r is the

multiplicity of λ,

(ν)
q (t) :=

tv−1

(v − 1)!
e1 +

tv−2

(v − 2)!
e2 + · · ·+ ev,

and e1, e2, ..., eν is a system of vectors in CNk given through the Jordan normal
form (see [Po, p.277-295]) so that

Ae1 = λe1, Ae2 = λe2 − ie1, . . . , Aer = λer − ier−1.

In this way, we establish (ii) and (iii) along with (i).
In [Hö63, p.269], we find a direct proof of (i) by directly working out the

algebraic essence of the statement – without the conceptual, but perhaps somewhat
diverting, discussion of solution curves: Set P (t) := p(ξ1, ..., ξn−1, t). One knows
from the theory of elementary divisors (e.g., [Alb]) that invertible N ×N matrices
A(t) and B(t) exist, whose elements are polynomials as are the entries of the inverse
matrices, such that A(t)P (t)B(t) = Q(t), where Q(t) is a diagonal matrix. For
D := −i ddt , the operators A(D) and B(D) are bijective on C∞(CNR ), and we have

P (D) = A−1(D)Q(D)B−1(D). Thus,

Mη
∼=
{
h ∈ C∞(CNR ) : P (D)h = 0

}
=
{
B(D)g : g ∈ C∞(CNR ) and A−1(D)Q(D)g = 0

}
= {B(D)g : Q(D)g = 0} ∼=

{
g ∈ C∞(CNR ) : Q(D)g = 0

}
.

Because of the polynomial form of A(t) and A(t)−1, detA(t) does not depend
on t. The same holds for detB(t). Thus, there is a constant C 6= 0 such that
detQ(t) = C detP (t). The sum of the degrees of diagonal elements of Q(t) (and
hence, dimMη) is the same as the degree of detP (t), namely Nk if p is elliptic of
degree k.

Note that the transformation B(D) does not alter the asymptotic behavior of
g. Thus, the direct decomposition of Mη into M+

η and M−η is directly given via
Q(D) (or through detP (t) and its zeros with positive imaginary part). �



246 10. LOCAL ELLIPTIC BOUNDARY-VALUE SYSTEMS

For the differential operator p(D1, ..., Dn), a system of boundary conditions is
given by N ×Mj matrices pj (j = 1, ..., r), whose elements are homogeneous poly-
nomials of degree kj . The boundary-value problem is written exactly as in (10.1),
(10.2) above. For ellipticity, the condition (10.3) must be correspondingly general-
ized to Nk = 2

∑r
j=1Mj , while condition (10.4) needs no further modification.

Exercise 10.12. As above, define the initial-value map βη : CNk →
⊕r

j=1CMj

and show that the boundary-value system is elliptic exactly when the restriction
β+
η :M+

η →
⊕r

j=1CMj is an isomorphism for all η 6= 0.

3. Variable Coefficients

The preceding developments easily carry over to the case where X is a C∞

n-manifold (with boundary Y ) equipped with a Riemannian metric, E and F are
N -dimensional C∞ complex vector bundles over X, and P : C∞(E) → C∞(F ) is
an elliptic differential operator of order k. Here, the geometrical character of our
definitions (their invariance under coordinate changes) is manifest, so that we may
pass to global concepts. For this, first show:

Exercise 10.13. For each y ∈ Y , the symbol σ(P )(y, ·) of P defines a homoge-
neous partial differential operator with constant coefficients P : Ey⊗Ey → Ey⊗Fy,
where Ey is the space (isomorphic to C∞(Rn)) of C∞ functions on the tangent
space TyX; thus Ey ⊗ Ey is the space of C∞ functions on TyX with values in Ey
(isomorphic to the N -fold product C∞(Rn)× · · · × C∞(Rn)).
[Warning: Here it does not matter whether P is actually elliptic or not, and this
somewhat contrived construction of P applies at each y ∈ X, not only at boundary
points.]

As usual, let T ′Y be the bundle of nonvanishing covectors for Y ; i.e., T ∗Y
without the zero section. We obtain, as the first main result of the heuristic con-
siderations of this paragraph, the following

Theorem 10.14. Each elliptic differential operator P over the manifold X with
boundary Y defines C∞ vector bundles M, M+ , and M− (with fiber dimension
not necessarily constant; see Exercise 10.9b) over T ′Y .

Proof. By selecting an inner normal ν ∈ T ∗yX by means of the Riemannian

metric, we obtain a half-space problem, which defines the spaces Mη, M+
η , and

M−η as above, where now η ∈ T ∗y Y , η 6= 0. Namely, set

Mη := {f ∈ KerPy : f = exp (〈·, η〉)h, where h ∈ C∞ (TyX/TyY,Ey)}
(i.e., h is a C∞ function on TyX/TyY with values in Ey), and correspondingly
define, with the appropriate boundedness conditions, the spaces M+

η , and M−η ,
where TyX/TyY is identified with R in an oriented way by means of the Riemannian
metric so that we know what it means to go to +∞ or−∞. Passing to the equivalent
system of ordinary differential equations, we obtain the polynomial σ(P )(y, η+tv) =∑k
κ=0 cκt

κ of degree k with coefficients in Hom(Ey, Fy). In a local coordinate
system u = (u1, ..., un) about y (which respects the Riemannian metric at y and
maps the neighborhood of the boundary Y near y to Rn−1, the linear ordinary
differential operator σ(P )(y, η + Dv) takes the familiar form p(ξ1, ..., ξn−1,−i ddt ),
where η = ξ1du1 + ...+ ξn−1dun−1 and v = dun. In this way, the families M, M+

, and M− of vector spaces are defined and parametrized by T ′Y . Considerations
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º

Figure 10.2. xxx1

in local coordinates show that M, M+, and M− are actually C∞ vector bundles,
since the respective solutions (resp., their initial values in phase space) depend
smoothly on the coefficients c0, ..., ck, or more generally, on (y, η): This follows
easily from the explicit form of the solutions given in the proof of Theorem 10.11
(see also the alternative proof there). �

Now let G =
⊕r

j=1Gj be a vector bundle on the boundary Y of X where

Gj ∈ Vect(Y ) has fiber dimension Mj ∈ N. Let R = (R1, ..., Rr), for differential
boundary operators Rj : C∞(E) → C∞(G) of order lj . Our second main result
introduces a further global invariant. For this, let πY : T ′Y → Y be the natural
projection (base-point map).

Theorem 10.15. For P : C∞(E)→ C∞(F ) elliptic, each boundary-value sys-
tem

(P,R) : C∞(E)→ C∞(F )⊕ C∞(G)

defines, in a natural way, a vector bundle homomorphism β+ :M+ → π∗Y (G).

Proof. M+ is the bundle defined from σ(P ) in Theorem 10.14, and β+ is the
initial-value map given, at the point (y, η), by the composition

β+
η :M+

η

Ry|M+
η−→ Ey ⊕Gy

δ→ Gy.

Here, Ry : Ey ⊕ Gy → Ey ⊕ Gy is the differential operator with constant coeffi-
cients defined via the symbol σ(R) = (σ(R1), ..., σ(Rr)) taken at the point y as in
Exercise 10.13, and δ is the map defined by δ(f) := f(0). �

The boundary-value system (P,R) is defined to be elliptic when β+ is an
isomorphism.

Exercise 10.16. By introducing a coordinate system, show that this definition
of ellipticity corresponds to the local ellipticity defined above (see Exercise 10.12
and before).

4. The Topology of Local Boundary Value Conditions (Case Study)

In Chapter 9 we saw that a topological object σ(P ) ∈ IsoSX(E,F ) is associated
with each elliptic operator P : C∞(E) → C∞(F ), whereby indexP depends only
on the homotopy type of σ(P ). Here SX is the covariant sphere bundle for a
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Riemannian metric for X, and E and F are Hermitian vector bundles over the
closed manifold X.

Now we consider, on a manifold X with boundary the local elliptic boundary-
value system (P,R) : C∞(E) → C∞(F ) ⊕ C∞(G), where E, F are vector bun-
dles over X, and G is a vector bundle over the boundary Y of X. The object
σ(P ) ∈ IsoSX(E,F ) is well defined, but it does not contain the necessary informa-
tion on the index of the boundary value problem (P,R) which may depend on the
specific choice of the boundary conditions R, by the Theorem of I. N. Vekua (The-
orem 5.11, p.146). In the case of a differential operator P of first order (but see Ex-
ercise 10.20) we will show, roughly, how the given boundary conditions canonically
determine a continuation of σ(P ) beyond SX to the closed manifold SX ∪BX|Y .
We obtain a topologically more significant object (conceptually: a closed line packs
more topological information than an open one) whose homotopy type does in fact
determine index(P,R), as we will see in Section 14.8. Contrary to the technical
explanations of the algebraic meaning of ellipticity of boundary-value problems
in the preceding sections, we are concerned in the following case study with the
geometric-topological interpretation.

Theorem 10.17. An elliptic system (P,R) of N partial differential equations of
first-order over the compact, oriented, Riemannian manifold X with N/2 boundary
conditions over the boundary Y of X defines (uniquely, up to homotopy) a con-
tinuous map of the closed manifold SX ∪ (BX|Y ) into GL(2N,C) which coincides
with σ(P )⊕ IdN on SX. Here, GL(2N,C) denotes the group of complex, invertible
2N × 2N matrices and BX := {ξ ∈ T ∗X : |ξ| ≤ 1}.

Proof. (a verbal communication of I. M. Singer; see also [AB64a, p.180-184],
[CaSc, 20/05-25/07] and [Pal65, p.346-350]): Let

(P,R) : C∞(E)→ C∞(F )⊕ C∞(G)

be an elliptic boundary-value system with P ∈ Diff1(E,F ) and E = F = CNX and

G = CN/2Y , N even. Let ν ∈ T ∗yX be the inner normal at the point y ∈ Y . Each
covector ξ ∈ T ∗yX can be written in the form zν+η with z ∈ R and η ∈ T ∗y Y , where
T ∗y Y can be taken to be a proper subspace of T ∗yX by means of the Riemannian
metric (see Exercise 6.45, p. 188). We write σ(ξ) := σ1(P )(y, ξ) and obtain (since
σ(ξ) is a homogeneous polynomial in ξ = (zν, η)) :

σ(zν + η) = σ(zν) + σ(η) = zσ(ν) + σ(η) : Ey → Fy (linear).

By a corresponding choice of basis for Fy, we may assume (without loss of general-
ity) that σ(ν) = Id, whence

(10.6) σ(zν + η) = z Id +σ(η).

Consider the space M+
η , defined as in Theorem 10.14 (p. 246), consisting of the

C∞ functions h : R → E with σ(Dν + η)h = Dh + σ(η)h = 0 which remain
bounded as t→ +∞; here D := −i ddt . M

+
η is spanned by the functions of the form

h(t) = h0e
iλt, where λ is an eigenvalue of the endomorphism σ(η) : Ey → Ey with

Imλ > 0 and h0 ∈ Ey is an element of the associated eigenspace. Corresponding
remarks hold for M−η . Thus, the spaces M±η are naturally isomorphic to the
sum of the (+) (resp. (−)) eigenspaces of σ(η). For η 6= 0, the homomorphism
λ Id +σ(η) = σ(λν + η) is regular for λ ∈ R by the ellipticity of P ; i.e., σ(η) has no
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real eigenvalues and Ey can be represented as the direct sum

(10.7) Ey ∼=M+
η ⊕M−η .

Now let G1, ..., Gr be vector bundles over Y with
⊕
Gj = G and

Rj : C∞(E)→ C∞(G), j = 1, ..., r,

be boundary conditions given by differential expressions such that associated initial
value map

(10.8) β+
η :M+

η → Gy

is an isomorphism for all y ∈ Y and η ∈ T ∗y Y \ {0} . By Theorem 10.15 (p. 247)
and Exercise 10.16, this is the condition of ellipticity for boundary-value systems.
We now show that σ(p)(y, ·) : (SX)y → Iso(Ey, Ey) is (stably) homotopic to
a constant map, and that the homotopy is defined in a natural way by using{
β+
η : η ∈ T ∗y Y \ {0}

}
. Thus, σ(P ) (more precisely σ(P ) ⊕ IdCN , see the Homo-

º

´

( )SX y

( )BX y

y

Figure 10.3. xxx2

topy 2 below) can be extended to (BX) |Y .
Homotopy 1: For η ∈ T ∗y Y \ {0}, let π±η : Ey → M±η ⊂ Ey be the projections
defined by (10.7) . By means of

(10.9) sσ(η) + (1− s)(iπ+
η − iπ−η ), s ∈ I,

we obtain a homotopy of σ(η) to the map iπ+
η − iπ−η ; the geometric meaning of

this is that one may concentrate the eigenvalues of σ(η) on the eigenvalues +i and

+i

{i

Figure 10.4. xxx3

−i which are independent of η, while the eigenspaces still depend on η. By using
h0 = h+

0 + h−0 ∈ Ey with h±0 ∈ M±η one calculates that the eigenvalues of the
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endomorphism defined in (10.9) always remain non-real; thus, z Id + (10.9) is non-
singular for z ∈ R. Hence, we have a homotopy in the space of elliptic symbols
(i.e., in (SX)|Y → GL(N,C) here) from σ to σ1 with σ1 (zν + η) := z Id +iπ+

η −iπ−η .

Homotopy 2: By means of e−iϕiπ+
η −eiϕiπ−η , ϕ ∈ [0, π/2], each σ1(η) in Iso(Ey, Ey)

can be connected with the identity, but this deformation depends on the choice of
η and does not go through uniformly for all η ∈ T ∗y Y \ {0}. GL(N,C) is too small
to implement the further homotopy. Hence, we enlarge σ1 by direct sum with
IdG⊕ IdG to a map (SX)|Y → Iso(E ⊕G⊕G,E ⊕G⊕G), which we also denote
by σ1. Because of the splitting Ey ∼=M−η ⊕M+

η , η ∈ T ∗y Y \ {0}, we have

σ1 (η) =


−i 0 0 0
0 i 0 0
0 0 1 0
0 0 0 1

 ,
where the diagonal elements mean respectively the identities on M+

η or M−η or G

multiplied by the coefficients−i or +i or I. By the deformation e−i
1
2πs IdG⊕ei

1
2πs IdG,

s ∈ [0, 1], we can uniformly deform σ1 (η) to

σ2 (η) =


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 on M−η ⊕M+
η ⊕Gy ⊕Gy.

Homotopy 3: Now it remains to deform σ2(η) to a constant (σ2(η) still depends
on the positions of the eigenspaces M±η ), in such a way that no real eigenvalues
appear and σ2(zν + η) := z Id +σ2(η) does not become singular for z ∈ R under
the deformation. This we achieve with the help of the boundary isomorphism
β+
η : M−η ∼= Gy given by the ellipticity of the boundary-value problem in (10.8).

Indeed, there is a homotopy (which switches the second and third diagonal members
in σ2 (η)) of σ2 (η) to a constant map (on (SY )y)

η 7→ σ3 (η) :=


1 0 0 0

0 0
(
β+
η

)−1
0

0 β+
η 0 0

0 0 0 1

 ◦ σ2 (η) =


−i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 i


which is multiplication by −i on Ey and by i on Gy ⊕Gy; the homotopy[

0
(
β+
η

)−1

β+
η 0

]
∼
[

Id 0
0 Id

]
follows from the Homotopy Lemma which says that[

0 B
A 0

]
∼
[

Id 0
0 AB

]
in the space of automorphisms of the vector space V ×W , if V and W are complex
vector spaces and A : V → W and B : W → V are linear with AB ∈ Iso(W,W ).
One proves the Homotopy Lemma by composing two homotopies: First connect[

0 B
A 0

]
and

[
i Id 0
0 iAB

]
via

[
(i sinϕ) Id (cosϕ)B
(cosϕ)A (i sinϕ)AB

]
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ϕ ∈ [0, π/2], and then multiplication by e−iψ, ψ ∈ [0, π/2], provides the final
homotopy.
Homotopy 4: We have now deformed σ ⊕ Id to the constant map σ3 on (SY )y;
we extend this map to a map on all of (SX)y which is homotopic to σ1 ⊕ Id, by
means of the parametrization

(SX)y = {(cos θ) ν + (sin θ) η : η ∈ (SY )y and θ ∈ [0, π]} .
Namely, define on Ey ⊕ (Gy ⊕Gy) the automorphism

º

µ
´

( )SY y

y
( )SX y

Figure 10.5. xxx4

σ3 ((cos θ) ν + (sin θ) η) :=

[
cos θ − i sin θ 0

0 cos θ + i sin θ

]
which by definition is homotopic to the constant map Id⊕ Id. �

5. Generalizations (Heuristic)

Remark 10.18. In the preceding proof, we have explicitly shown with a se-
quence of homotopies how one can continuously extend the map σ ⊕ Id : SX →
GL(2N,C) to a map σ̃ : SX ∪ (BX)|Y → GL(2N,C) with σ̃(y, 0) = Id2N for all
y ∈ Y :=boundary of X. In that proof, we have chosen formulations that make the
generalization for arbitrary bundles clear. To be sure, we must make precise what
we understand by stable homotopy ; i.e., why we are content with an extension of
σ ⊕ Id2G : (SX)|Y → Iso (E ⊕G⊕G,F ⊕G⊕G) on (BX)|Y , even though this
object does not immediately extend over all of SX, since G is defined only over Y .
See also under Section 11.3. To bring about further generalizations of the proof,
we remark that the special form of the boundary conditions (which were given by
differential operators) played no role, since only the isomorphism β+

η was needed;

β+
η possibly could be defined through pseudo-differential boundary conditions. The

definition of the spaces M±η and the construction of the symbol homotopies are
made very easy by the polynomial form of σ(P ), i.e., its derivation from a differen-
tial operator. This is why we have devoted so much space to this case study. The
construction of an extension of σ(P ) ⊕ IdN as an isomorphism over (BX)|Y goes
through more generally for elliptic pseudo-differential operators with transmission
properties which allow elliptic boundary problems; see Chapter 10 and Section 14.8.

Remark 10.19. To each elliptic operator P ∈ Lkpc(E,F ) over the Riemannian
n-manifold X, one can assign a local index, namely the homotopy class of

σ(P ) (x, ·) : (SX)x → Iso (Ex, Fx)
l l

Sn−1 → GL (N,C)
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where N is the fiber dimension of E. By the Bott Periodicity Theorem, whereby
(see Exercise 11.18, p. 282) for N sufficiently large (which we achieve here by adding
the identity)

πn−1(GL(N,C)) =

{
Z, for n even,
0, for n odd,

we obtain an integer deg(P ) for the local index; by continuity, it is independent of
the choice of x. If X is a manifold with boundary Y , then (as in Chapter 10) we
can determine the vector spaces M±η and the integer µ(P ) := dimM+

η − dimM−η ,
which is independent of the choice of η ∈ T ′Y and does not automatically vanish
for n = 2.

If the operator P admits elliptic boundary conditions, then the condition
µ(P ) = 0 follows from Theorem 10.6 and Theorem 10.15, and by the preceding
Theorem 10.17, the condition deg(P ) = 0 holds. These two conditions are closely
connected. By a communication from M. F. Atiyah, in the special case N = 1, n = 2
(where deg(P ) is the classical winding number of σ(P )(x, ·) in C \ {0} about the
point 0), the equation

(10.10) deg(P ) = ±µ(P )

holds. Also, in the general case, we have

(10.11) deg(P ) = ±degM+

where degM+ is the integer degree of a map fy : Sn−3 → GL(M,C), y ∈ Y , which
is used to join together the trivial bundles over the upper and lower hemispheres
of Sn−2 along the equator Sn−3 (see Appendix B, Exercise B.7, 681) to obtain the
bundle M+

y :=
{
M+

η : η ∈ T ∗y Y \ {0}
}

over (SY )y ∼= Sn−2. Again, by continuity

arguments, it is clear that degree degM+ does not depend on the choice of y
in fy. Equations (10.10) and (10.11) then represent a reformulation of the Bott
Periodicity Theorem. For this, see also [AB64a, p.178], [CaSc, 25-05], and in
particular [Pal65, p.351], where a K-theoretic formulation of (10.10) and (10.11)
is given; see also the Hint for Exercise 10.20.

As a result of Theorem 10.17, we have obtained (in deg(P ) 6= 0) a topological
obstruction to there being elliptic boundary conditions for the elliptic differential
operator P . In the classical theory E = F = CX , the obstruction can arise only
in the case n = 2, since for n ≥ 3 every homogeneous elliptic polynomial is of
even degree 2k and possesses an equal number k of zeros in the upper and lower
half-planes [Hö63, p.246]. The situation is different for n = 2, where deg( ∂∂z̄ ) = 1.
However, for all even n ≥ 4 there are elliptic differential operators P with deg(P ) 6=
0; e.g., the Dirac operators (see [Pal65, p.91f] or [Bo72, p.26f]), defined using the

Clifford module R2m−1

over X = R2m, have local index 1.
The example is comparable to the peculiarity shown by the Cauchy-Riemann

operator ∂
∂z̄ in the classical theory for n = 2. Actually, there are many elliptic

operators which arise in Riemannian geometry, that have a nonvanishing local in-
dex, and, for closed manifolds, characterize important topological invariants such
as the Euler number and signature by their global indices; see [Bo72, p.30] and
[APS75, p.46]. In the last work, as an expedient for the calculation involving the
corresponding topological invariants of manifolds with boundary, a nonlocal theory
of boundary-value problems is applied, with which one obtains a Fredholm theory
in which the above obstructions become irrelevant.
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Exercise 10.20. For each elliptic system

(P,R) : C∞ (E)→ C∞ (E)⊕ C∞(G)

of partial differential equations of order k > 1 with boundary conditions on the
bounded domain X of R , where E,F,G are trivial bundles, construct an equivalent
(in which sense?) elliptic system

(P̃ , R̃) : C∞(Ẽ)→ C∞(Ẽ)⊕ C∞(G̃)

of differential equations of order 1 with boundary conditions.

[Hint: For the exact formulations, see [ADN]. The operator P̃ which we de-
fine here is only elliptic in an extended sense, which one calls Douglis-Nirenberg

elliptic. For reduction to the classical case (i.e., by splitting Ẽ and applying Λ-
type operators componentwise), see also [Hö66a, p.134-136]. Here, we only give
the rough idea (note also the Remark 10.22 below). Let P =

∑
|α|≤k aαD

α,

where aα ∈ C∞ (Hom (E,F )) (i.e., aα(x) is a linear map from CN to CN , if
E = F = CNX and x ∈ X. Then begin with the order lowering procedure for
ordinary differential equations of higher order, constructing a differential opera-

tor P̃ ∈ Diff1(Ẽ, Ẽ), where we set Ẽ = F̃ =
∑
|α|≤k E × {α} and P̃ is given by

the following matrix. (We consider only the case N = 1, n = k = 2, whence
P = a00 + a10D1 + a01D2 + a20D

2
1 + a11D1D2 + a02D

2
2, where Dj = −i∂/∂xj .)

a00 a10 a01 a20 a11 a02

−D1 1 0 0 0 0
−D2 0 1 0 0 0

0 −D1 0 1 0 0
0 0 −D1 0 1 0
0 0 −D2 0 0 1


Write the matrix in greater generality! How does the corresponding R̃ appear, if
R = (R1, ..., Rr) are differential boundary operators with Rj : C∞(E) → C∞(Gj)
of order kj , where Gj = ∂X × CNj and G =

⊕r
j=1Gj . Compare Ker(P,R) and

Ker(P̃ , R̃) and correspondingly, Coker(P,R) and Coker(P̃ , R̃); show index(P,R) =

index(P̃ , R̃).]

Exercise 10.21. Consider the disk X := {z ∈ C : |z| ≤ 1} with the circle Y :=
{z ∈ C : |z| = 1} as boundary.
a) Go through the construction of Theorem 10.17 for the transmission operator (see
Exercise 5.16)

T (u, v) :=

(
∂u

∂z̄
,
∂v

∂z
, (u− v) |Y

)
b) Change the Laplace operator ∆ on X as in Exercise 10.20 to a system ∆̃ of

partial differential operators of order 1, and check that ∆̃ is elliptic. What are
the new boundary conditions that are obtained for the Dirichlet boundary-value

problem u|Y = 0? For y ∈ Y and η ∈ (SY )y = {±1}, determine the spaces M̃±η
and the isomorphism β̃+

η . As in Theorem 10.17, extend σ(∆̃) by means of β̃+ from

(SX)|Y = S1 × S1 to a map σ(∆̃, β̃+) on the solid torus (BX)|Y .
c) Go through the corresponding construction for the Neumann boundary-value

problem ∂u
∂ν |Y = 0, and compare σ(∆̃, β̃+) with σ(∆̃, γ̃+), where γ̃+

η denotes the
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boundary isomorphism obtained from the Neumann boundary-value problem rela-

tive to ∆̃.
d) Does the map σ(∆), which is the constant −i on SX, have different extensions
to SX ∪ (BX)|Y ? Can one apply the boundary isomorphisms β+

η or γ+
η here, and

relate them to the results of a), b), and c)?

Remark 10.22. For the practical calculation of the index of an elliptic boundary-

value system, the explicit determination of P̃ is often lengthy and in fact su-
perfluous, since the index is completely determined by the symbol and bound-
ary isomorphisms; see Theorem 10.32 below. In particular, it suffices to reduce
elliptic boundary-value systems of order k to elliptic systems of order 1 on the
symbol level, just as in the previous Exercise where σ(P ) ⊕ IdẼ is homotopic in

IsoSX(E ⊕ Ẽ, F ⊕ Ẽ) to σ(P̃ ). This deformation procedure on the symbol level
was introduced in [AB64a, p.180f], and is entirely analogous to the linearization
of polynomial clutching functions, which plays a decisive role in one of the proofs of
the Bott Periodicity Theorem (see [AB64b, p.241f]). It has the merit of also car-
rying over to the case of arbitrary manifolds with boundary and nontrivial bundles
E, F , and G. This requires some standard tricks: One must identify the bundles
E and F in a neighborhood of the boundary Y of X, by means of the isomorphism
σ(P )(y, ν) : Ey → Fy, where ν is the inner normal at the boundary point y, etc..
In such general cases it is possibly advantageous to go yet a step higher: One does
not specify a homotopy-theoretic extension of σ(P ) and IsoSX to an isomorphism
over SX ∪BX|Y by means of the boundary isomorphism β, but rather one directly
constructs, from σ(P ) and β, a difference vector bundle in K(BX,SX ∪BX|Y ), as
sketched in [Pal65, p.346-351].

Beside these two ways of finding the correct topological object while preserving
the information about the index of an elliptic boundary-value problem, viz.

• linearization and continuation of the symbol by means of homotopies, and
• K-theoretic axiomatic characterization of a difference vector bundle,

there is a third way oriented more strongly towards functional analysis, viz.

• assignment of families of Wiener-Hopf operators to elliptic boundary-value
problems.

All three approaches depend not only on the Bott Periodicity Theorem (see
Chapter 11), but on essential elements of the different proofs. Conversely, the
Periodicity Theorem be derived via an investigation of a simple boundary-value
problem on the disk (see Exercise 11.19, p. 282).

In Theorem 4.4, we already provided the Index Theorem for Wiener-Hopf op-
erators. We will prove the Periodicity Theorem, following [Ati69, p.116-120], as a
generalization of this theorem. Hence, the third approach via Hilbert space theory
is most convenient for us, and offers some formal advantages for the demonstration
of the analytical main theorems on the index of elliptic boundary-value problems.
Admittedly, this approach may be less conceptual than the first, and less elegant
than the second.
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6. The Poisson Principle

Before coming to the definition and treatment of a class of boundary-value
systems, chosen very large for our purposes, we elucidate by means of simple ex-
amples the technique of reducing a boundary-value problem to a problem on the
boundary. This Poisson principle provides the main idea for the solution of elliptic
boundary-value problems, particularly for the computation of the index.

Siméon-Denis Poisson and other mathematicians of the beginning of the 19-th
century occupied themselves with the observation that in equilibrium the tempera-
ture and heat distribution in a three dimensional body is completely determined by
the temperature distribution on its surface. Similar statements are true for static
magnetic and electric fields (e.g., the potential of an electric field in a conductor
is determined by the charge density on the surface). The mathematical content of
such laws of nature can be expressed variously depending on the context:

Exercise 10.23. (Poisson Integral Formula): Show that every harmonic func-
tion on the disk {z ∈ C : |z| < ρ}, which has a continuous extension to the boundary,
can be expressed in terms of its restriction u0 to the boundary curve {z ∈ C : |z| = ρ}.
[Hint: For 0 ≤ r < ρ and 0 < ψ < 2π, prove the formula u = Lu0, where L is the
Poisson operator given by

Lu0

(
reiψ

)
:=

1

2π

∫ 2π

0

ρ2 − r2

ρ2 + r2 − 2rρ cos (ψ − ϕ)
u0

(
ρeiϕ

)
dϕ,

by going back to the Cauchy Integral Formula

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ, |z| < ρ, where γ (ϕ) = ρeiϕ, ϕ ∈ [0, 2π] ,

which holds when f is holomorphic for |z| < ρ and continuous for |z| ≤ ρ. Recall
that u is harmonic (∆u = 0) in a disk (or simply-connected region) exactly when
u is the real part of a holomorphic function. Details are found in [Ah, p.175f], but
see also [DM, p.164].]

Exercise 10.24. Let X be a codimension 0, bounded, submanifold of Rn with
C∞ boundary Y , and let ∆ be the Laplace operator and R0, R1 be differential
operators on Y . Set u0 := u|Y and u1 := ∂u

∂ν |Y for u ∈ C∞(X), where ∂
∂ν is

the outward normal field on the boundary Y of X. Show: The solution of the
boundary-value problem

(∗) ∆u = 0 in X and R0u0 +R1u1 = f on Y

is equivalent to the solution of a system of pseudo-differential equations

(∗∗) (Id−Q0)u0 −Q1u1 = 0 and R0u0 +R1u1 = f on Y ,

where Q0, Q1 ∈ P Diff0(Y ) can be given explicitly.
[Hint: Begin with Green’s Formula,∫

X

(u∆v − v∆u) dx =

∫
∂X

(u0v1 − v0u1) dy, u, v ∈ C∞(X),

where dy is the volume element on ∂X = Y . (More generally, for every differential
operator P ∈ Diffk(X), the difference 〈u, Pv〉 − 〈P ∗u, v〉 can be estimated, using
Stokes’ Theorem, by a form on ∂X in which only the derivatives on ∂X of u and v of
order ≤ k−1 enter; see Exercise 6.17 (p. 169), and [Pal65, p.73-75]. Now determine
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(e.g., by elementary distribution theory) a fundamental solution E (x− x′) of the
Laplace operator (i.e., (∆xE) (x− x′) = δ (x− x′)); in classical terminology E is the
Newtonian kernel of ∆. For u ∈ Ker ∆ and v (x) := E (x− x′), derive the Poisson
Integral Formula (for x′ ∈ X − ∂X)

u(x′) = L(u0, u1)(x′) :=

∫
∂X

u0 (y) ∂E∂ν (x′ − y) dy −
∫
∂X

u1(y)E (x′ − y) dy.

Now show (by letting x′ → ∂X) that pseudo-differential operators Q0 and Q1 are
defined such that for each solution u ∈ C∞(X) of the boundary-value problem (∗),
we have the equation u0 = Q0u0 +Q1u1.

Y

Y X
(*)

(**)

Figure 10.6. xxx5

Conversely, show that each solution pair (u0, u1) of the pseudo-differential sys-
tem (∗∗) furnishes a solution u := L(u0, u1) of (∗) by means of the Poisson integral,
such that u1 = ∂u

∂ν . Details are found in [Hö66a, p.187] or [Jö, 9.3-9.5].]

Remark 10.25. Pseudo-differential operators thus turn up very naturally when
one goes from a boundary-value system, which may only contain differential oper-
ators, to a problem on the boundary.

7. The Green Algebra

The treatment of boundary-value problems via functional analysis is often trou-
blesome. One reason for this lies in the natural asymmetry of operators

(P,R) : C∞(E)→ C∞(F )⊕ C∞(G), u 7→ (Pu,Ru),

where E and F are vector bundles over X, and G is a vector bundle over ∂X; so,
a formal adjoint operator to (P,R) would be of an entirely different form and no
longer defines a boundary-value problem. Also, one has no clear composition rules.
Here, the following algebra which extends the class of boundary-value systems, is
helpful; the construction goes back, in particular, to the work of Mark Josifovich
Vishik and Grigory Ilyich Eskin. However, for the most part, we follow the specific
approach of Louis Boutet de Monvel and employ his definition and method of proof;
see [Bou] and [GruG], where there is a non-technical introduction to the Boutet-
de-Monvelian calculus in the appendix.

We consider systems of equations of the form

(P + G)e+ Lg = f

Re+Qg = h
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or (in other words) operators of the form[
P + G L
R Q

]
:
C∞(E)
⊕

C∞(G)
→

C∞(F )
⊕

C∞(H)
,

where E and F are Hermitian vector bundles over the compact, oriented, C∞

Riemannian manifold X with boundary Y := ∂X, and G and H are Hermitian
vector bundles over Y ; e, f, g, h are C∞ sections of the corresponding vector bundles.
Here, P ∈ Lkpc(E,F ) is a pseudo-differential operator over X (G is described in

the next paragraph), Q ∈ Lk
′

pc(G,H) is a pseudo-differential operator over the
boundary Y of X, R :=

∑
Qi(Pi(·)|Y ) is a trace operator which is composed of

pseudo-differential operators Qi over Y and Pi over all of X. Moreover, L :=

{P0((·)δ(Y ))} |X\Y is a Poisson operator, where P0 ∈ Lkpc(G̃, F ) where G̃ is a vector

bundle over X with G̃|Y = G and δ(Y ) is the Lebesgue measure on the boundary
Y of X, so that gδ(Y ) can be regarded as a generalized section of the vector bundle

G̃ for g ∈ C∞(G). Hence, the operator L is defined in the sense of distribution
theory. For a direct definition of these Poisson operators (potentials) by means
of Fourier representation (without distributions) see [Bou, p.26-28]. By a certain
symmetry condition (the transmission condition) on the behavior of the amplitudes
of the pseudo-differential operators on the boundary, it follows that the images of
C∞(E) under P and C∞(G) under L lie in C∞(F ); this symmetry condition holds
in particular for differential operators and more generally for rational symbols, and
represents no real restriction for our considerations. More precisely, one shows that,
for each g ∈ C∞(G), Lg lies in C∞(F |(X\Y )) and extends to a C∞ section of F
(over all of X), which we also denote by Lg.

One has to add to P a singular Green operator G which is finite sum of our
Poisson operators and trace operators if one wants to describe (for example) the
changes in the solution of an elliptic boundary-value problem resulting from a mod-
ification of the boundary conditions, or, more generally, if one wishes to secure the
existence of a parametrix of this form (see Theorem 10.32a, p. 260) for arbitrary or
only differential boundary-value systems. We have the following theorems; we refer
to [Bou] and [VE] for their proofs.

Theorem 10.26. Let P,G, L,R,Q be defined as above, and let m be order (the
homogeneity of the symbol) of P , l the order of L, r order of R, and −m+ l+ r+ 1
the order of Q. Then the operator

A =

[
P + G L
R Q

]
:
C∞(E)
⊕

C∞(G)
→

C∞(F )
⊕

C∞(H)

possesses (for s sufficiently large) a continuous extension

As =

W s(E)
⊕

W t+l− 1
2 (G)

→
W t(F )
⊕

W s−r− 1
2 (H)

, t := s−m

to Sobolev spaces. (See Chapter 7 above.)

Theorem 10.27. The operators of the stated type form an algebra (called the
Green algebra by Boutet de Monvel) which is closed under sums A+B, and compos-
ites A◦C (in so far as they are defined, and in particular their bundles or domains
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and codomains fit). In certain cases2, it is also closed under the formation of formal
adjoints. Moreover, we have

σX(A+B) = σX(A) + σX(B) and σX(A ◦B) = σX(A) ◦ σX(B),

where σX(A) := σ(P ) ∈ HomSX(E,F ) is the inner symbol of A; hence, σ(P )(x, ξ) ∈
Hom(E,F ) for x ∈ X and ξ ∈ T ∗xX with |ξ| = 1. (The notion of boundary sym-
bol may be also introduced in greater generality, see the following discussion of the
elliptic case.)

8. The Elliptic Case

We first recall the approach chosen for deriving the main analytic theorems
for elliptic operators on closed manifolds in Chapter 9 above: There, we were
successful in deriving the various results (Fredholm properties) of the operators
from formal properties of the associated symbols. Roughly speaking, the symbol
map yields an algebraic version of the operator. The symbol is defined pointwise
and for each cotangent vector individually so that this type of snapshot (pointwise
freezing) produced, from an operator of functional analysis, a family of matrices
which could be investigated with the tools of linear algebra. For example, ellipticity
of the operator P was characterized by the condition that the matrices σ(P )(x, ξ)
are invertible for all non-vanishing covectors ξ.

For the analytical treatment of elliptic boundary-value systems, we need a
refinement of this symbol calculus. For example, let us take an element

A =

[
P + G L
R Q

]
:
C∞(E)
⊕

C∞(G)
→

C∞(F )
⊕

C∞(H)

of the Green algebra over the manifold X with boundary Y . For elliptic P ,
by definition, σ(P )(y, η + tν) : Ey → Fy is an isomorphism of vector spaces,
where y ∈ Y , η ∈ (SY )y, ν ∈ (SX)y is the inwardly directed normal rela-
tive to a Riemannian metric, and t ∈ R. We denote by p(y, η) the function
defined on R by t → σ(P )(y, η + tν) with values in Aut(Ey), if we identify F
with E by means of σ(P )(y, η + 0). If P is an elliptic operator of order 0 and
limt→+∞ p(y, η+ tν) = limt→−∞ p(y, η+ tν), then p(y, η) defines (e.g., by means of
the Cayley transformation; see p. 6) a continuous map S1 → Aut(E) and hence a
discrete Wiener-Hopf operator

Tp(y,η) : H0(S1)⊗ Ey → H0(S1)⊗ Ey,
which is a Fredholm operator with

indexTp(y,η) = −W (det(p(y, η)), 0).

Here (as in Chapter 4), H0(S1)⊗Ey is the Hilbert space of square integrable func-
tions on the circle S1, with values in the vector space Ey, which can be analytically
continued to the disk {z ∈ C : |z| < 1} and Tf (for f : S1 → Aut(Ey)) is the opera-
tor defined by pointwise multiplication by f and subsequent orthogonal projection
onto H0(S1)⊗Ey. See Chapter 4 for details, and in particular, Exercise 4.7, p. 128.

2While the adjoint L∗ of a Poisson operator L always is a trace operator, the adjoint of a
restriction operator C∞(E) → C∞ (E|Y ) (which arises in the Dirichlet problem, for example) is

not a Poisson operator of the form C∞ (E|Y )→ C∞ (E). One can place necessary and sufficient
conditions on the corresponding symbol classes so that R∗ is a Poisson operator (namely, if R is

of class 0 ; see [GruG]). Similar restrictions hold for G.
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If p(y, η) does not define a continuous map S1 → Aut(Ey), these constructions
go through with certain modifications: One then works, as in Exercise 4.10 and
Theorem 4.11 (p.129), on the real line and forms the corresponding multiplication
operators with projection, the continuous Wiener-Hopf operators Wp(y,η) which
are Fredholm operators on suitably chose Hardy spaces. If the order k 6= 0, we
must develop the Hardy spaces H0(R) (introduced in (4.1), p.130) into a Sobolev
chain, as we have done with the Hilbert space L2(X) in Chapter 7. Details may
be found in [VE, p.304-311, esp. Lemma 3.1] and [Bou, p.14-20]; see also [GruG,
Appendix]. In each case, from the ellipticity of P there follows the invertibility of
p(y, η), regarded as a homomorphism σ(P )(y, η+ tν) : Ey → Ey for all t ∈ Ey (but
not the invertibility of p(y, η), regarded as a Wiener-Hopf operator). To each elliptic
operator P on a manifold X with boundary Y , we can assign a family of Fredholm
operators Wp(y,η) which depends continuously on the unit covector η ∈ SY whose
base point y lies in Y . By Theorem 3.30 (p. 84), an index bundle in K(SY ) can be
constructed in a canonical way from such a family. We denote this bundle by j(P ),
the indicator bundle of P .

Exercise 10.28. Compare the construction of j(P ) with the definition of the
bundle M+ in Chapter 10 for an elliptic differential operator P . In particular,
investigate P ∈ {∆, ∂/∂z̄, ∂/∂z̄ ⊕ ∂/∂z}. [Hint: [Bou, p.35], [VE, p.328-331].]

Exercise 10.29. Show that each operator A =

[
P + G L
R Q

]
of the Green

algebra defines a family σY (A) of Wiener-Hopf operators σY (A)(y, η) parametrized
by η ∈ S(Y ), and that the usual addition and composition rules for these boundary
symbols hold. [Hint: [GruG, Appendix].]

Exercise 10.30. Show that, for y ∈ Y and η ∈ (SY )y, σY (A)(y, η) is a Fred-
holm operator, if P is elliptic. Then define the indicator bundle j(A) ∈ K(SY ),
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as the index bundle of this family of Fredholm operators, and show j(A) = j(P ) +
[π∗(G)]− [π∗(H)], where π : SY → Y is the projection. [Hint: The boundary sym-

bol σY (Ã)(y, η) with Ã =

[
0 L
R Q

]
is an operator of finite rank for each y ∈ Y

and η ∈ (SY )y.]

We can now define A =

[
P + G L
R Q

]
to be elliptic when P is elliptic and the

Wiener-Hopf operator σY (A)(y, η) is invertible, for all y ∈ Y and η ∈ (SY )y. The
purpose of the boundary conditions R and the potential L is, by this definition,
exactly to use up the kernel and cokernel of the Wiener-Hopf operators Wp(y,η).
We then have j(A) = 0, and hence j(P ) = [π∗(H)]− [π∗(G)].

Exercise 10.31. For a differential operator P with (differential) boundary
operator R, show that (P,R) is an elliptic boundary-value system in the sense

of Chapter 10, exactly when

[
P 0
R 0

]
is an elliptic operator in the Green alge-

bra. [Hint: Compare the condition of invertibility of the Wiener-Hopf operators
σY (A)(y, η) with the Lopatinsky condition (10.4), p. 242. See also Exercise 10.28.
How can β+ be interpreted? [Bou, p.45f].]

Theorem 10.32. If Ellk(X;Y ) is the class of elliptic operators in the Green
algebra over the compact, oriented, Riemannian C∞ manifold X with boundary
∂X = Y , then we have
a) Each A ∈ Ellk(X;Y ) possesses a parametrix B ∈ Ell−k(X;Y ); i.e., AB− Id and
BA− Id are operators of order −1.
b) If A ∈ Ellk(X;Y ), then the extensions As, defined above in Theorem 10.26 for
s� 0, are Fredholm operators on the corresponding Sobolev spaces.
c) If A,B, and C are elliptic, then index(A ⊕ B) = indexA + indexB. Also, if
A ◦ C is well defined, then index(A ◦ C) = indexA+ indexB.
d) Two elliptic operators A and B are called stably equivalent (A ∼ B), if the
interior and boundary symbols of A⊕IdN and B⊕IdM can be continuously deformed
into each other while maintaining ellipticity. Then, we have indexA = indexB.
e) If R,R′ are boundary operators, and L,L′ are Poisson operators, and Q is a
pseudo-differential operator on the boundary, then[

Id−L′R′ L
R Q

]
∼
[

Id−R′L′ −R′L
−RL′ Q−RL

]
,

where the second operator is a pseudo-differential operator on the boundary.

Arguments: a) follows easily from the definition of ellipticity, if one knows
that the inverse of the boundary symbol σY (A) is again the boundary symbol of an
operator of the Green algebra; see [Bou, p.19f and 34f]. Incidentally, for an elliptic

boundary system A =

[
P
Q

]
in the sense of Chapter 10, one can find a parametrix

of the form B = (P̃ + G,L). One obtains b), c), and d) from Theorem 10.26 and
the general theory of Fredholm operators in Hilbert space as the corresponding
statements in Chapter 9. e) is the consequential (see Exercise 10.33 below) result
of a topological exercise [Bou, p.44f].
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Exercise 10.33. (M. S. Agranovich and A. S. Dynkin, 1962): If A1 =

[
P
R1

]
and A2 =

[
P
R2

]
are two elliptic boundary-value systems for the same elliptic

operator P on the manifold X with boundary Y , then indexA1 − indexA2 =
indexQ, where Q is a pseudo-differential operator on Y defined in a canonical way
by means of A1 and A2.

[Hint. If B1 :=

[
P ′ L1

0 0

]
is a parametrix for A1, set Q := R2L1, and show that

A2B1 ∼ Q with Theorem 10.32e.]
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“In perhaps most cases when we fail to find the answer to a question, the failure
is caused by unsolved or insufficiently solved simpler and easier problems. Thus all
depends on finding the easier problem and solving it with tools that are as perfect
as possible and with notions that are capable of generalization.” (D. Hilbert, 1900)



CHAPTER 11

Introduction to Algebraic Topology (K-Theory)

It is the goal of this part to develop a larger portion of algebraic topology by
means of a theorem of Raoul Bott concerning the topology of the general linear
group GL(N,C) on the basis of linear algebra, rather than the theory of “simplicial
complexes” and their “homology” and “cohomology”. There are several reasons
for doing so. First of all, is of course a matter of taste and familiarity as to
which approach “codifying qualitative information in algebraic form” (Atiyah) one
prefers. In addition, there are objective criteria such as simplicity, accessibility and
transparency, which speak for this path to algebraic topology. Finally, it turns
out that this part of topology is most relevant for the investigation of the index
problem.

Before developing the necessary machinery, it seems advisable to explain some
basic facts on winding numbers and the topology of the general linear group GL(N,C).
Note that the group GL(N,C) moved to fore in Part II already in connection with
the symbol of an elliptic operator, and that the group Z of integers was in a cer-
tain sense the topic of Part I, the Fredholm theory. In the following, Part III, the
concern is (roughly) the deeper connection between the previous parts. Thereby
we will be guided by the search for the “correct” and “promising” generalizations
of the theorem of Israil Gohberg and Mark Krein on the index of Wiener-Hopf
operators. See Chapter 4, Theorem 4.4 (p.126), Exercise 4.9 (p.128), and Theorem
4.11 (p.129).

1. Winding Numbers

“How can numerical invariants be extracted from the raw material of geometry
and analysis?” (Hirsch). A good example is the concept of winding number, surely
the best known item of algebraic topology: In his studies of celestial mechanics the
French physicist and mathematician Henri Poincaré turned to stability questions of
planetary orbits. Many of the related problems are not completely solved even today
(e.g., the “three body problem” of describing all possible motions of three points
which are interact via gravitation. However, this problem is solved for practical
purposes, as is shown by the successful landing of the lunar module Luna 1.)

As a tool for the qualitative investigation of nonlinear (ordinary) differential
equations, Poincaré introduced in 1881 the notion of the “index” I(P0) of a “singular
point” P0 for a system of two ordinary differential equations

ẋ = F (x, y), ẏ = G(x, y).

To do this, surround P0 by a closed curve C in the phase portrait (see the following
examples) and measure on it the angle of the rotation
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P0

I ) = 1(P0 = 1

= 1 = {1 = {2 = 2

= 1 = 1

performed by the vector field (F (x, y), G(x, y)) when (x, y) traverses C once coun-
terclockwise. The angle is an integral multiple of 2π, and this integer is I(P0). In
case of a magnetic field one can actually see I(P0) in the rotation of the needle,
when a compass is moved along C. Among other things, one has the theorem (see
[AM, p.75-76]): If the equilibrium position P0 is stable, then I (P0) = 1. We will
come back to this in Section 14.14.5.

Poincaré returned to this topological argument in 1895, when he considered all
closed curves in an arbitrary “space” and classified them according to their defor-
mation properties.1 His simplest result can be expressed in today’s terminology
(we follow [Ati67b, p.237-241]) follows:

Theorem 11.1. Let f : S1 → C× := C \ {0} be a continuous mapping of the
circle X to the punctured plane of non-zero complex numbers C×. In other words,
we have a closed path in the plane not passing through the origin. The following
hold:
(i) f possesses a “winding number” which states how many times path rounds the
origin; we write W (f, 0) or deg(f).
(ii) This degree is invariant under continuous deformations.
(iii) deg(f) is the only such invariant, i.e., f can be deformed to g, if and only if
deg(f) = deg(g).
(iv) For each integer m, there is a mapping f with deg(f) = m.

Arguments: Instead of a formal proof, we briefly assemble the different ways
of defining or computing deg(f).

Geometrically: Replace f by g := f/ |f |. This is a mapping from S1 to S1.
Approximate g by a differentiable map h, and count (algebraically, i.e. with a sign

1The “fundamental group” was introduced in Poincaré’s work Analysis Situs (Oeuvres 6,
193-288), whose theme is purely topological-geometric-algebraic: an “analysis situs in more than
three dimensions.” Poincaré expected the abstract formalism to “do in certain cases the service

usually expected of the figures of geometry.” He mentioned three areas of application: In addition

to the Riemann-Picard problem of classifying algebraic curves and the Klein-Jordan problem of
determining all subgroups of finite order in an arbitrary continuous group, he particularly stressed

its relevance for analysis and physics: “one easily recognizes that the generalized analysis situs
would allow treating the equations of higher order and specifically those of celestial mechanics
(the same way as H. P. had done it before with simpler types of differential equations; B.B.). . . I

also believe that I did not produce a useless work, when I wrote this treatise.” The complexity
and limited understanding of the topological problems did not however permit Poincare to carry

out his program completely: “Each time I tried to limit myself I slipped into darkness.”
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convention according to the derivative of the number of points in the preimage of
a point which is in general position. This method can also be characterized as
“counting of the intersection numbers”: Draw an arbitrary ray emanating from the
origin which does not pass through a self-intersection point of the path. Now count
the intersections of the path with the ray according to the “traffic of the right of
way” (H. Weyl) - thus with a plus sign if the path has the right of way, and a minus
sign when the ray has the right of way.

+

2

2

0

2

+

+

+
+

{

+

+

Combinatorially: We approximate with a piecewise linear path g, and then
use combinatorial methods; i.e., we permit deleting and adding of those edges of
our polygonal path which are boundaries of 2-simplices (these are triangles whose
interior is completely contained in C×, and thus do not contain the origin.

2)1)

0 0

4)3)

00
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Differential: We approximate by a differentiable g, and then set deg (f) :=
1

2πi

∫
dg
g . Here, we have regarded g as a map [0, 2π] → C×, and then the integral

is defined as
∫ 2π

0
g′(τ)
g(τ) dτ . From the Cauchy Integral Formula, it follows that the

integral is a multiple of 2πi, and hence deg (f) is an integer.
Algebraic: Approximate by a finite Fourier series

g (φ) =

k∑
ν=−k

aνe
iνφ

We regard g as a map S1 → C× with S1 = {z ∈ C : |z| = 1}. Consider now the
extension of g to the disk |z| < 1, where it is a finite Laurent series. We then obtain
a meromorphic function h, and set deg (f) := N(h) − P (h) where N(h) and P (h)
denote the number of zeros and poles of h in |z| < 1.

Function Analytic: Set deg (f) := − index Tf , where Tf is the Wiener-Hopf
operator, assigned to f , on the space H0(S1) ⊂ L2(S1) spanned by the functions
z0, z1, z2, . . . . Tf is defined (for u ∈ H0(S1)) by(

T ˆ
f u
)

(n) :=

{ ∑∞
k=0 f̂ (n− k) û (k) for n ≥ 0

0 for n < 0,

where f̂ (m) := 〈f, zm〉 is the m-th Fourier coefficient of f . For the details of
this, see Theorem 4.4 above and Theorem 4.11 for the analogous representation
deg (f) = index(I +Kφ) via the (continuous) Wiener-Hopf operator

(Kφu)(x) :=

∫ ∞
0

φ(x− y)u(y) dy; x ∈ R+, u ∈ L2(R+),

where φ ∈ L1(R) with φ̂ = f ◦ κ−1 and κt := t−i
t+i is the Cayley transformation.

As a first example, one may recall the standard map a : S1 → C× which is given
by a(z) = z, z ∈ C, |z| = 1. Here the equivalence of the various definitions is clear.
We omit the proof for complicated cases and refer to [Ah, p.151]. Compare also
Theorem 11.2 (p. 269) and Theorem 11.17 (p. 281) below and in another context
[Hir, p.120-131] or [BJ, p.161 f].

In Theorem 11.1 all closed curves in the punctured plane are compared and the
“essentially different” ones separated. The different definitions of winding number
listed there reflect the main branches of topology with their different techniques,
goals and connections. Accordingly, depending on the point of view chosen, very
many generalizations of Theorem 11.1 to higher dimensions are possible (see also
Exercise 11.22, p. 284):

If one sticks with the classification of systems of ordinary differential equations
(which was the point of departure for Poincaré’s topological papers) one would first
try to distinguish the different possibilities of bending the real line into a closed
curve in space or other higher dimensional spaces. In this fashion H. Poincaré
(but also see the footnote above) conceived (among other things) the “fundamental
group” π1(X,x0) of a space X which arises from the homotopic classification of
closed paths S1 → X which pass through the point x0 ∈ X. Here only the em-
bedding question (which depends on the structure of X) is of interest, while the
embedded images themselves of the compactified line are topologically identical.
The reason is that there is just one way of bending the real line into a closed man-
ifold, namely the form of a circle which may be traversed several times and may
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wind so many times around one or the other hole, but still remains topologically a
circle.

The situation is different, when we pass from ordinary to partial differential
equations. Here the classification essentially requires a differentiation between the
various possibilities of bending the plane or higher dimensional Euclidean spaces
into closed manifolds (see also [Ati76b].)

R
2

R

Now “genuine” global difficulties arise, since (as the above diagrams illustrate)
there are already for the plane R2 different ways of “bending it together.” For R2

it is still possible to survey completely the different forms which can be classified
according to the “genus” of the surface, the number of its “handles” (see for instance
[Hir, p.204 f]). The corresponding problem of the “bending of R3 has not been
solved, although it is of special importance for the analysis of space-time processes
of the real world by means of partial differential equations. For example, it took 100
years until the “Poincaré conjecture” was confirmed by Grigori Perelman in [Per02,
Per03a, Per03b] (according to which every simply-connected, three-dimensional,
closed manifold is homeomorphic to the 3-sphere S3). We shall not comment on
the proof in this monograph.

The following generalization of Theorem 11.1 is due to Raoul Bott. It is a
true and fully understood achievement of topology, and in addition, touches on the
heart, of the index prob1em for systems of elliptic differential equations.

2. The Topology of the General Linear Group

We consider continuous maps f : Sn−1 → GL(N,C), 2N ≥ n, where Sn−1 is
the unit sphere in Rn and GL(N,C) is the general linear group of all invertible
linear maps from CN to CN .

Theorem 11.2. (R. Bott, 1958). If n is odd, each such f can be deformed to
a constant map. If n is even, one can define an integer deg(f), such that f can be
deformed to another map g exactly when deg(f) = deg(g). Moreover, there exist
maps having arbitrarily prescribed integer degree.
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Arguments. (We will completely prove Theorem 11.2 in a different form
below):

1. Theorem 11.1 is the special case of Theorem 11.2 for n = 2 and N = l. For
n = 1 and N arbitrary, we recover the well-known fact that GL(N,C) is pathwise
connected; see the paragraph following Exercise 3.20, p. 74.

2. As we have formulated it here, the Bott Theorem is expressed in terms of
deformations (i.e., “homotopies”), a central theme of topology. In the formalism
of homotopy theory, the Bott Theorem says that for all n, N with 2N ≥ n the
homotopy groups πn−1(GL(N,C)) (i.e., the group of homotopy classes of maps
Sn−1 → GL(N,C)) are given as follows:

πn−1(GL(N,C)) ∼=
{

0 if n is odd
Z if n is even.

In the second case, the isomorphism is given by

deg : πn−1(GL(N,C))
∼=→ Z.

Using these concepts the classically expressed result of our Theorem 11.1 above
means that the first homotopy group (the “fundamental group”) of C× is isomorphic
to Z.

Since Theorem 11.2 yields an isomorphism of πn+1(GL(N,C)) with πn−1(GL(N,C)),
it is also known as a “periodicity theorem.” Incidentally, there is a corresponding
theorem (with period 8) for GL(N,R). It has close connections with the theory of
real elliptic skew-adjoint operators; see Section 14.9 below.

3. As with Theorem 11.1 above, there are various ways in which the degree
(for even n) can be defined: First, a differential definition of deg(f) is possible with
the help of a known, explicitly defined, invariant differential form ω on the C∞

manifold GL(N,C). For the not entirely simple definition of this “Weltkonstante”
(F. Hirzebruch), we refer to [Hi66b, p.587 f]. One then sets

deg(f) =

∫
Sn−1

f∗ (ω) ,

where f∗(ω) is the pull-back form over Sn−1, and shows (!) that the invariant,
so defined, is an integer. As an alternative to this direct, somewhat computation-
ally cumbersome definition, one can also define deg(f) geometrically, by means of
a stepwise reduction to the more intuitive, but topologically no less demanding,
notion of “mapping degree” of a continuous mapping of the (n − 1)-sphere into
itself. (In Theorem 11.1 the two concepts still coincided.) First one shows that,
without loss of generality, one can take 2N = n, since in the case 2N > 2, f can be
deformed into a map of the form

g(x) =

[
h(x) 0

0 Id

]
,

where h : Sn−1 → GL(n/2,C). All further constructions, do not depend on the
choice of g, since this gives, more precisely,

πn−1(GL(N,C)) ∼= πn−1(GL(n/2,C)) for N ≥ n/2.

For those with enough background, we offer the following explanation of this:
From the exact homotopy sequence

πi+1(U (m) ,U (n))→ πi(U (n))→ πi(U (m))→ πi(U (m) ,U (n))
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induced by U(n) ↪→ U(m) for n ≤ m (where U(n) := {A ∈ GL(n,C) : AA∗ = I},
and the exact sequence

πi+1

(
S2n+1

)
→ πi(U (n))→ πi(U (n+ 1))→ πi

(
S2n+1

)
from the “fibration” U(n)→ U(n+1)→ S2n+1. For i < 2n, we have πi+1

(
S2n+1

) ∼=
πi
(
S2n+1

)
= 0; namely, show with the Sard Theorem (after differentiable ap-

proximation) that on account of different dimensions, not every map in such ho-
motopy classes can be surjective, whence one always has a point in the comple-
ment of the image in S2n+1 from which’ one can contract. Thus, it follows that
πi−1(U(m))→ πi−1(U(n)) for 1 ≤ i ≤ 2n ≤ 2m. Since the unitary group U(n) is a
deformation ret of GL(n,C) (prove!), the statement follows; see [Ste, 5.6 and 19.5].

Hence, let 2N = n. Then the first column of the matrix f define a map
f1 : Sn−1 → CN \ {0}. Since CN \ {0} = Rn \ {0}, we have a map g := f1/ |f1|,
for which a degree (the “mapping degree”, the “most” natural generalization of
Theorem 11.1) may be easily defined: One approximates g by a differentiable map
h, chooses a point y ∈ Sn−1 in “general position”. This means that the differential
h∗x (see Section 6.3 above) has maximal rank for all x ∈ h−1(y); i.e., that h∗x
is an isomorphism of tangent spaces. Then one counts the algebraic number of
points in h−1(y) (i.e., the points x where h∗x reverses orientation are counted
negatively). Details for this are found in [Hir, p.121-131]. For other definitions
of the “mapping degree” of g, see [BJ, 14.9.6-10] (on “intersection numbers” –
thus again a geometrical definition, but in a more general setting), and [ES, p304
ff] (on the “homology” of Sn−1; i.e., fundamentally a combinatorial definition);
furthermore, see Exercise 11.22, p. 284 (“K-theoretical” definition).

It turns out that the mapping degree of g
(a) contains the essential information on the qualitative behavior of f and
(b) is always divisible by (N − 1)!, so that we then define

deg(f) :=
(−1)N−1 deg (g)

(N − 1)!
,

where the sign (−1)N−1 is there for secondary technical reasons.
One can perhaps best visualize (a) (concerning the term “visualize” see 4 below.

Strictly speaking it is more a comprehension aid.) as follows: Topologically, the
linear independence of the column vectors of a matrix means “approximately” the
same as their being perpendicular. Thus, if such is the case, each function Sn−1 →
GL(N,C) is so “rigid” that it can be completely classified topologically by means
of a single column.

In fact (and this now concerns (b)) the maps Sn−1 → GL(N,C) are so “rigid”
that in general, by far not every function Sn−1 → CN \ {0} can appear as the first
column. What is the reason? Isn’t it possible to make an invertible matrix out of
any non-zero vector by adding orthogonal vectors? Yes and no: It is possible to
do so at each single point, but not if the additions are to be made uniformly in
continuous dependence on the points of Sn−1. One may think of a sphere which
as the 2-sphere has no unit tangential vector field (see Exercise 11.23, p. 284), and
thus eliminates the identity map as a possible first column.

For an evaluation of the “difficulty” of the divisibility theorem (b), see [?,
p.182], where the theorem was proven in somewhat different form “pretty much at
the end of the study (on the Theorem of Riemann-Roch, B.B.) as a corollary of
cobordism theory, but which on the other hand, belongs “not at the end, but at
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the beginning”, namely with “the Bott periodicity theory which is the basis of the
newer proofs of the Riemann-Roch Theorem”.2

4. What can be said so far on the substance of the Bott Periodicity Theorem?
We stay in the case n even, 2N ≥ n. Then, we have three statements:
(i) degree : πn−1 (GL (N,C))→ Z is well defined,
(ii) the map is surjective, and
(iii) the map is injective.
As we have seen, for (i) two approaches are available, a “differential” one and a
“geometrical” one. In this way, the degree was defined one time as an integral of
a differential form (hence it is, a priori, a real number), and the other time as a
quotient of two integers (a priori, as a rational number). Either way, statement (i)
causes no difficulties except for the integrability and divisibility theorems needed,
since the homotopy invariance of degree is rather clear from the definition. One
might simply say: (i) concerns the definition of an integer homotopy invariant -
this is homology and comparatively simple.

Also, (ii) is comparatively simple: Namely, one can form (as when tensoring el-
liptic operators in Exercise 9.13, p. 238) the tensor product of f : Sn−1 → GL(N,C)
and g : Sm−1 → GL(M,C),

f#g : Sm+n−1 → GL(2MN,C), defined by

(f#g) (x, y) :=

[
f (x)⊗ IdM − IdN ⊗g∗ (y)
IdN ⊗g (y) f∗ (x)⊗ IdM

]
,

where f and g are extended homogeneously to all of Rn resp. Rm. From the simple
multiplication formula deg(f#g) = (deg f) (deg g) it then follows that deg(ak) = 1,
where a : S1 → GL(1,C) is the standard map (a(z) := z) of degree 1 and the map
ak is its k-fold power:

ak := a#
k times· · · #a : S2k−1 → GL(2k−1,C).

Thus, product theory furnishes a generating map meaning a generating element of
the infinite cyclic group of homotopy classes of maps Sn−1 → GL(N,C) for n = 2k,
whence the surjectivity of “degree” follows.

The statement (iii) is in contrast highly nontrivial: While in (i) and (ii) one
had to construct particular objects (a homotopy-invariant “number” and a suitable
homotopically nontrivial map), one must now show that mappings of the same
degree may be deformed into each other, in particular, that each map of degree 0
is homotopic to a constant map. Having defined the invariants, one wants to verify
their relevance and determine their value. This is exactly “homotopy” and not at
all intuitive. It can be seen from the fact that, although the homotopy classes of
maps Sn−1 → GL(N,C) (for 2N < n) as well as those from spheres to spheres are
in a fashion “closer” to our space-time comprehension, they are largely unknown,
because of their extreme complexity.

2In the language of Section 14.1, the facts are the following: The Chern character chN :

K̃(S2N ) → H2N (S2N ;Q) is given by (−1)N−1cN/(N − 1)!, since all other terms in the formula

for chN cancel because of Bott periodicity which here takes the form K̃(S2N ) ∼= H2N (S2N ;Q).

If E is the vector bundle over S2N of complex dimension N , which is constructed by gluing with
f : S2N−1 → GL (N,C), then (regarding the sign see above) deg f = chN ([E] − [CN

S2N ]), where

[E] is the class of E in K
(
S2N

)
furthermore the N -th Chern class CN (E) is mapped to deg(g)

under the isomorphism H2N (S2N ;Z) = Z, where g : S2N−1 → S2N−1 is defined by means of f

as before.
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5. Without commenting on the very different proofs of the Periodicity Theorem
which exist to date, we would like to point out that all proofs proceed by induction
on n, more precisely by induction from n to n+ 2. In the language of the product
theory presented above, it must be shown that f 7→ f#a is an isomorphism of the
homotopy group of dimension n− 1 with the homotopy group of dimension n+ 1.

6. Interestingly, the “algebraic” definition of winding number (see Theorem 1)
was initially not susceptible to generalization to the present situation. However,
the discovery of the topological significance of elliptic boundary-value problems (see
above Chapters 10-?? and below, Section 14.14.8) lead Raoul Bott and Michael F.
Atiyah to a new and elementary3 proof of the Periodicity Theorem. In a very deep
sense, which we will explain below in a particularly suitable form when presenting
the proof, this proof generalizes and unifies the algebraic and function analytic
definitions and furthermore “gets to the heart of the problem” (Atiyah).

The “Lie group” GL(N,C) and its real analogue play an important role every-
where in mathematics. Accordingly the Periodicity Theorem and its off-spring
“K-theory” (see below) not only have immediate applications to the index prob-
lem of elliptic oscillations (see particularly Chapters 12-14 below) but also proved
to be a useful tool for a number of deep geometric problems. An example is the
computation of the number of linearly independent vector fields on a sphere which
the British mathematician John Frank Adams carried out in 1962 with just these
tools. A detailed exposition of this and some other applications can be found in
[Hu, Ch.15].

The deep relation between the topology of the general linear group and the
geometry of differentiable manifolds, which becomes manifest in these successes, can
be described intuitively as follows: Among the simplest global topological invariants
of a compact oriented n-dimensional manifold X is the “Euler characteristic” e(X).
A famous theorem, proven in 1895 by Henri Poincaré for n = 2, and in general by
Heinz Hopf in 1925, says that e(X) can be found by means of a differentiable
structure on X as the number of “singularities”. Here a singularity is an isolated
zero x of a tangent vector field v on X, and the counting must be done with the
proper multiplicity, namely the (local) “index” of v at x (i.e., the degree of the
mapping Sn−1 → Sn−1) which is given by v on the surface of a ball about x. For a
conceptually very plausible proof for n = 2 see [Bri76, p.166-171], see also Sections
14.4 and 14.5 below.

Today very many global topological invariants are known which are .) defined
on X by means of a classical (Riemannian or complex) structures see [Hi66a].
These “characteristic classes” are without exception generalizations of the Euler
characteristic since “roughly, considers the cycles where a given number of vector
fields become dependent”, as [Ati68b, p.59] remarks. The question, of which way
a system of linearly independent vectors can become dependent, forms the link
between topology and GL(N,C) (and GL(N,R)).

3in comparison with the original proof which employed essentially the tools of the modern
calculus of variations due to Marston Morse; see, e.g. [Mil, p.124-132].
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3. The Ring of Vector Bundles

Let X be a compact topological space. We consider the abelian semigroup
Vect(X) (defined in the Appendix) of isomorphism classes of complex vector bun-
dles over X. If X consists of a single point, then Vect(X) ∼= Z. Now we generalize
the construction which one uses to go from the semi-group Z+ to the group Z, in
such a way that we can assign a group K(X) to the semigroup Vect(X).

Theorem 11.3. Each abelian semi-group A (with zero element) yields in canon-
ical way an abelian group B := A × A/ ∼ and a semi-group homomorphism
g : A → B induced by a → (a, 0). Here ∼ is the equivalence relation on A × A
defined by

(a1, a2) ∼ (a′1, a
′
2)

⇔ ∃a, a′ ∈ A such that (a1 ⊕ a, a2 ⊕ a) = (a′1 ⊕ a′, a′2 ⊕ a′) .

Proof. Let ∆ : A → A × A be the diagonal homomorphism a → (a, a)
of semi-groups. Then B consists of the cosets of ∆(A) in A × A; i.e., B =
{(a1, a2) + ∆(A) : ai ∈ A, i = 1, 2}, where

(a1, a2) + ∆(A) := {(a1 ⊕ a, a2 ⊕ a) : a ∈ A} .

B is a quotient semi-group in which there is an inverse for each element given by

− (a1, a2) + ∆(A) = (a2, a1) + ∆(A).

Thus, B is a group. In this notation, the semi-group homomorphism is given by

φ(a) := (a, 0) + ∆(A).

�

Remark 11.4. It is advisable to go through the definition of B carefully as
we did in the proof, since the intuition one gains in the transition from Z+ to Z is
partly deceptive: Namely, a semi-group is not always embedded in a group. (The
cancellation rule must already hold in the semi-group). The natural homomorphism
φ : A→ B is not necessarily injective; see Exercise 11.7 below.

Remark 11.5. In a certain sense, B is the “best possible” group that can be
made from the semi-group A. More precisely, the following universal property of φ
holds: Every semi-group homomorphism h : A → G from A to an arbitrary group
G can be “factored” through φ in exactly one way; i.e., there is exactly one group
homomorphism h′ : B → G such that the adjacent diagram

A
φ→ B

h↘ ↓ h′
G

is commutative. The universal property is a generalization of the trivial observation
that φ becomes an isomorphism, if A is already a group, and, conversely, the latter
follows from the functorial property of the assignment A 7→ (B,φ) on the category
of semi-groups; see [Ati67a, p.42f]. Alternatively, B can be defined as a quotient
group FA/RA, where FA is the “free abelian group” on A (which consists of all
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finite linear combinations of elements of A with coefficients in Z), and RA is the
subgroup of FA generated by the subset

{1 (a1 ⊕ a2) + (−1) a1 + (−1) a2} .
The homomorphism φ : A→ FA/RA is defined in the natural way and fulfills the
homomorphism condition φ (a1 ⊕ a2) = φ (a1) + φ (a2), since φ (a1 ⊕ a2)− φ (a1)−
φ (a2) is represented by 1 (a1 ⊕ a2) + (−1) a1 + (−1) a2. That φ is the “universal
solution of the factorization problem” is shown as follows: The uniqueness of h′ is
clear, since “h′(φ(a)) = h(a) for a ∈ A” implies that h′ is already given on a set of
generators of FA/RA, whence h′ itself is uniquely defined. From h′ (φ (a1 ⊕ a2))−
h′ (φ (a1))− h′ (φ (a2)) = 0, it follows that h′ is a group homomorphism. From the
universal property, it follows easily that the two methods of group construction are
equivalent, and in particular that B and FA/RA are isomorphic.

Now let A := Vect(X), X compact. We denote the associated abelian group B
by K(X). Then, for each vector bundle E over X, we obtain (by means of φ) an
element [E] ∈ K(X), and every element of K(X) be written as a linear combination
of such elements; see also Exercise 11.9a below. For

[
CNX
]

we also simply write N .

Exercise 11.6. In the formalism developed here, describe the canonical ex-
tension of subtraction δ : Z+ × Z+ → Z to the “difference-bundle construction”
Vect(X)×Vect(X)→ K(X). First show K(X) ∼= Z, if X is a point.

Exercise 11.7. Show that the cancellation rule does not always hold in Vect(X).
[Hint: First illustrate with the two real bundles TS2 and R2

S2 over the 2-sphere.
These are not isomorphic (see Exercise 11.23, p. 284), but forming the direct sum
of each with the trivial line bundle RS2 , we arrive at isomorphic bundles (with the
tangent bundle TS2 one thinks of the direct sum with the normal bundle NS2 of
the canonical embedding of S2 in R3). In general search for a nontrivial vector bun-
dle that becomes trivial when a trivial bundle is added to it. A detailed discussion
of special “cancellation type” rules can be found in [Hu, Ch.8]; for example, the
“Uniqueness Theorem for Vector Bundles” says that trivial bundles over manifolds
of dimension n may be cancelled when the other summand has fiber dimension
≥ n/2.]

Exercise 11.8. a) Show that each element of K(X) can be written in form
[E]−N , where E ∈ Vect(X) and N ∈ N.
b) Show that two vector bundles E and F define the same element of K(X) (i.e.,
[E] = [F ] exactly when E ⊕ CNX = F ⊕ CNX , for some N .
c) One says that the bundles E and F are stably-equivalent when there are
natural numbers M and N such that

E ⊕ CNX ∼= F ⊕ CMX .
Show that the set I(X) of stable equivalence classes form a group relative to the
operation of direct sum. [Hint for c): See Appendix, Exercise 11.8, p. 275.]

Exercise 11.9. a) Show that, by means of the tensor product ⊗ for vector
bundles (see Appendix, Exercise B.4, p. 679), a multiplicative structure for K(X)
is furnished, making it a commutative ring with unit [CX ].
b) Show that each continuous map f : Y → X induces a ring homomorphism
f∗ : K (X)→ K(Y ) which only depends on the homotopy class of f .
c) Let i : Y → X be the inclusion of a closed subset Y of X. Set K(X,Y ) :=
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Ker(K(X/Y ) → K(Y/Y )), where X/Y is the space obtained from X when Y is
“collapsed” to a point {Y/Y }.
(i) Let Y consist only of a single point x0. Show that the group K(X,Y ) forms an
ideal in K(X), and that K(X) splits into a direct sum

K(X) ∼= K(X,x0)⊕K(x0) ∼= K(X,x0)⊕ Z = K̃(X)⊕ Z,

where K̃(X) := K(X,x0), the “essential” part of K(X), is isomorphic to I(X).
(ii) In general, define a natural map j∗ : K(X,Y ) → K(X), and show that the

short sequence K(X,Y )
j∗→ K(X)

i∗→ K(Y ) is exact.
[Hint for a): Use the “universal property” (Remark 2) to factorize Vect(X) ×
Vect(X) → K(X) through K(X) × K(X). For b): See Appendix, Theorem B.8,
p. 682; in particular, K(X) ∼= K(Y ) when X and Y are homotopy equivalent. For
c): Work with the retraction r : X → x0, for the splitting in (i). See Exercise 11.8
for I(X). First define j∗ in (ii) more generally, when f : (X ′, Y ′) → (X,Y ) is a
map of pairs of spaces (i.e., j : X ′ → X continuous with j(Y ′) ⊆ Y ). Then set
X ′ = X and Y ′ = Y . To check that Im(j∗)c = Ker(i∗), factor

(Y, φ)
j◦i→ (Y,X)
↘ ↓

(Y, Y )

and note that K(Y, Y ) = 0. To prove the other direction, work with the represen-
tation as in Exercise 11.8a. See also [Ati67a, p.69 f].]

Theorem 11.10. Let X be a compact space and [X,F ] the set of homotopy
classes of continuous maps T : X → F , where F is the space of Fredholm operators
in a Hilbert space H. The construction of index bundles (see Section 3.3.7 above)
induces a bijective map index : [X,F ]→ K(X) under which composition in F and
addition in K(X) correspond, as do adjoints in F and negatives in K(X).

Proof. See Theorem 3.40, p. 89. �

1. K-Theory and Functional Analysis. In the proof of Theorem 11.3 the
subsequent remark, we learned two different constructions of the group K(X) and
of these the first is probably the most natural in connection with functional analysis
(as in Theorem 11.10) . On the other hand, the second construction immediately
yields the “universal property” which historically motivated this formal group con-
struction in the papers of Claude Chevalley and Alexandre Grothendieck concerned
with algebraic geometry. It arose as a tool for the study of problems in which func-
tions are involved which are additive on a semigroup with integral values. This also
explain the relevance of K(X) for our index problem of elliptic operators:

In Part II, we associated with each elliptic pseudo-differential operator P :
C∞(E)→ C∞(F ) (E and F complex C∞ bundles over the closed, C∞ Riemannian
n-manifold X) its symbol σ(P ) ∈ IsoSX(E,F ), and we proved that indexP only
depends on the homotopy type of σ(P ). Now let S′X := B+X ∪SX B−X be the
n-sphere bundle over X which arises by gluing two copies B+X and B−X of the
covariant unit-ball bundle BX := {(x, ξ) : x ∈ X and ξ ∈ T ∗xX with |ξ| ≤ 1} along
their common boundary SX. We lift E over B+X and F over B−X and glue
them (see Appendix, Exercise B.7, p. 681) over SX by means of σ(P ). This way we

obtain a vector bundle on S′X whose isomorphism class [E
σ(P )→ F ] only depends on
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the homotopy type of σ(P ). Conversely, the space of pseudo-differential operators
is so rich that σ(P ) has any desired homotopy type for suitable P . Because of the
special form of S′X, we therefore obtain all isomorphism classes of vector bundles
over S′X in this fashion. Thus the theory of elliptic equations yields a semigroup
homomorphism index : Vect(S′X)→ Z which fits into the following diagram

Ell (X) → Vect(S′X) → K (S′X)
index

↘ ↓index
K- index

↙
Z

Here Ell(X) is the class of elliptic pseudo-differential operators on the closed man-
ifold X. Thus the universal property of K (S′X) guarantees the existence and
uniqueness of a K-index, which makes the diagram commutative and which being
a group homomorphism is easier to analyze especially after more is known about
the group K (S′X).4

2. K-theory and cohomology. Exercise 11.8 says that K is a contravariant
functor on the category of compact topological spaces and continuous maps into
the category of commutative rings (with identity) and ring homomorphisms, and
this functor bears great resemblance (also in aspects not explained here) with the
cohomology functor H∗; see [ES, p.13 f]. The “characteristic classes” of vector
bundles (see [Hi66a]) yield a variety of interesting operations K → H∗, and one
can show that in fact K(X)⊗Z R ∼= Heven(X;R); see [Ati67a].

4. K-Theory with Compact Support

Until now, we have only defined K(X) for compact X. For locally compact X,

we now setK(X) := K(X+,+) = Ker(K(X)
i∗→ K(+)), whereX+ = X∪{+} is the

1-point compactification of X (by the addition of the point +, where i : {+} → X
is the inclusion of this point). For compact X, this definition brings nothing new.
Alternatively, K(X) can be expressed in terms of “complexes” of vector bundles -
see [Ati68a, p.489 ff]; e.g., the elements of K(Y −Z) = K(Y,Z) can be taken to be
equivalence classes of isomorphisms σ : E|Z ∼= F |Z , where E and F are (complex)
vector bundles over the compact set Y with closed subset Z. (One thinks of the

4Presently, three different ways are known for associating with an elliptic operator P a K-

theoretic object via its symbol. The construction presented here which ends up in K(B+X ∪SX
B−X) is the most conceptual, since [E

σ(P )→ F ] ∈ K(B+X∪SX B−X) can be represented directly

by a vector bundle on B+X ∪SX B−X. The other constructions yield objects in K(BX,SX) or

(equivalently, see the following section) in K(TX) and basically amount to forming the difference

class [E
σ(P )→ F ]− [F ]. The advantage of this “non-conceptual” construction of a difference bundle

(for details see Chapters 12 and 13 below) rests on the fact that the object [E
σ(P )→ F ] contains too

much useless information on the specific form of the vector bundles E and F which is completely
irrelevant to the index problem. For example, one can make E (or F ) trivial by adding a vector
bundle V (Appendix, Exercise B.10, p.683) while the index of P⊕IdV : C∞(E⊕V )→ C∞(E⊕V )

does not change. More precisely: By evaluating the row-exact commutative diagram

← K
(
B+X

)
← K

(
B+X ∪SX B−X

)
← K

(
B+X ∪SX B−X,B−X

)
←

↓∼= ↙↗ ↓∼=
K (X) K

(
B+X,SX

)
,

where↙ ◦ ↗ is the identity on K(X), one finds that K(B+X∪SXB−X) ∼= K(X)⊕K(BX,SX),
whereby the first summand is irrelevant for the index problem and the second one is best dealt

with in the non-relative form K(TX) in the framework of “K-theory with compact support.”
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symbol of an elliptic operator over the manifold X and sets Y := BX and Z := SX,
where Y − Z is then diffeomorphic to the full cotangent bundle T ∗X.)

Exercise 11.11. a) Verify that K(X) is a ring (without unit element) when
X is non-compact. b) Show functoriality for proper maps f : Y → X these are the
maps which can be continuously extended to Y +.
[Hint for b): One may also define f to be proper exactly when f−1(K) is compact
for all compact subsets K ⊆ X. From this comes the notion of “K-Theory with
compact support” - see also [ES, p.5 and 269 ff]. In particular, each homeomor-
phism is proper, and we have K(X) ∼= K(Y ) for homeomorphic X and Y , and
f∗ = Id, if Y = X and f is homotopic (within the class of homeomorphisms) to the
identity. On the other hand, the mere homotopy type of X does not ’ determine
K(X). (Example: K(R) � K(point)).]

Theorem 11.12. If X and Y are locally compact spaces, then (in addition to the
ring structures of K(X) and K(Y )) there is an outer product � : K(X)⊗K(Y )→
K(X × Y ).

Remark 11.13. The outer product admits a particularly simple and natural
definition, if one adopts the above introduction of K(X) via complexes, and forms
the tensor product of complexes; see [AS68a, p.490] and also the outer tensor prod-
uct for elliptic operators in Exercise 9.13b, (p. 238) and for matrix-valued functions
in Section 11.2 above.

Proof. 1) If X and Y are compact, then � is defined by forming the vector
bundle E � F over X × Y , where E is a vector bundle over X, F is over Y , and
E � F has fiber Ex ⊗ Fy over (x, y).
2) In order to carry this definition over to locally compact X and Y , we prove the
exactness of the short sequence

(11.1) 0→ K(X × Y )→ K(X+ × Y +)→ K(X+)⊕K(Y +),

whereby K(X ×Y ) is identified with the subgroup of K(X+×Y +) which vanishes
on the “axes” X+ and Y +. For this, we begin with the short exact sequence

(11.2) K(A,B)
j∗→ K(A)

i∗→ K(B)

from Exercise 11.9c (above) for compact topological spaces A and B with i : B →
A and for the case where B is a “retract” of A; i.e., there is a continuous map
r : A→ B which is the identity on B. Then ri = Id on B and i∗r∗ = Id on K(B),
where r∗ : K(B) → K(A) is naturally defined; thus, we see that i∗ is surjective
and r∗ is injective. Furthermore, we obtain (prove!) a g∗ : K(A)→ K(A,B) with
g∗j∗ = Id, whence j∗ is injective. One says: The sequence “splits” (see [ES, p.229
f]), and we obtain a decomposition

(11.3) K(A) ∼= K(A,B)⊕K(B).

From (11.3), we get (11.1): one time we set

(11.4a) A := X+ × Y + and B := X+ × {+}
and then

(11.5) A :=
(
X+ × Y +

)
/X+ and B := Y +.

Since B is a retract of A in both cases, (11.2) splits and we obtain the formulas

(11.6) K(X+ × Y +) ∼= K(X+)⊕K(X+ × Y +, X+)
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and

(11.7) K(
(
X+ × Y +

)
/X+) ∼= K(Y +)⊕K(

(
X+ × Y +

)
/X+, Y +),

from which the desired splitting

K(X+ × Y +) ∼= K(X+)⊕K(Y +)⊕K(X × Y )

follows because K((X+ × Y +) /X+, Y +) ∼= K(X+×Y +,+) = K(X×Y ). One can
check that the splitting is compatible with the naturally defined arrows in (11.1).
3) Now let x ∈ K(X) ⊆ K(X+) and y ∈ K(Y ) ⊆ K(Y +). Then x� y ∈ K(X+ ×
Y +) is well defined by 1). Actually, x � y can be regarded also as an element of
K(X×Y ) by (11.1), since i∗(x�y) = 0, where i : X+ ↪→ X+×Y + is the canonical
inclusion (and correspondingly for Y + ↪→ X+×Y + ). For a proof of this, we write
(Exercise 11.8a, p. 275) x = [E] − N and y = [F ] −M , where E ∈ Vect(X) and
F ∈ Vect (Y ) , N,M ∈ Z+; we then have

x� y = [E � F ]− [N � F ]− [E �M ] + [N �M ] , and so

i∗ (x� y) = [E ⊗ F+]− [E ⊗M ]− [N ⊗ F+] + [N ⊗M ] = 0,

since the fiber F+
∼= CM . (Beware: M denotes the trivial M -dimensional bundle

over Y in the first formula, but in the second, it is only vector space CM .) �

An important example of a locally compact space is furnished by Euclid-
ean space Rn, whose 1-point compactification is the n-sphere Sn; by definition
K(Sn) ∼= K(Rn) ⊕ Z holds, where the second summand is K({+}) := Z, given
by the dimension of the vector bundle. This shows that K(Rn) is actually the
interesting part of K(Sn).

Exercise 11.14. For an arbitrary paracompact X, go through the splitting
K(Sn ×X) ∼= K(Rn ×X)⊕K(X).
[Hint: Work with the sequence (11.2) from step 2 of the preceding proof, where

B := X+ is a retract of A := Sn ×X+/Sn. Note that A = (S ×X)
+

and A/B =

(Rn ×X)
+

, homeomorphically.]

+

Sn£f g+
X

+

The importance of K-theory with compact support stems for one thing from the
fact that applications frequently involve non-compact, but locally compact, spaces
such as Euclidean space or tangent spaces. Of course it is possible, without undue
difficulties, to avoid non-compact spaces altogether (as with the passage from the
tangent bundle, TX to the double ball bundle B+X ∪ B−X in the Section 11.3
above) - as artificial as this construction may appear. However, the splitting of
Exercise 11.14 (also see the footnote p. 277) makes the locally compact formalism
genuinely simpler and perhaps conceptually clearer. In the following proof of the
Bott Periodicity Theorem which we adopt from [Ati69], we will therefore stay in the
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category of locally compact spaces: We already know that K(R0) = K(point) ∼= Z
and we obtain K(R1) = 0, since all complex vector bundles on the circle are trivial
(GL(N,C) is connected..., see the gluing classification in the Appendix, Theorem
B.8, p. 682). With some pains (as well as some projective geometry, see Appendix,
Exercise B.2a, p. 678, and [Ati69, p.46 f]), we could still compute K(R2) ∼= Z. How
does it go?

The theorem which we will prove says that the sequence of these K-groups
continues. Thus, K(R3) = 0, K(R4) ∼= Z, K(R5) ∼= 0, etc., and that, more
generally, for each locally compact X, there is a natural isomorphism K(R2×X) ∼=
K(X).

5. Proof of the Periodicity Theorem of R. Bott

In Chapter 4, we became acquainted with Wiener-Hopf operators, and as a
generalization of the discrete (and there rather trivial) index theorem of Israil Go-
hberg and Mark Krein (Theorem 4.4, p. 126), we gave a construction (V, f) 7→ F 7→
indexF . In the pair (V, f), V is a vector bundle over a compact parameter space
X, and f is an automorphism of π∗V , where π : S1 × X → X is the projection.
For z ∈ S1 and x ∈ X, f(z, x) is then an automorphism of the fiber Vx, and it
depends continuously on x and z. Now, F : X → F is the associated family of
Fredholm operators (after the Wiener-Hopf recipe, formed on certain Hilbert spaces
of “half-space functions”) and index F ∈ K(X) is the “index bundle” of F , which is
defined (in the special case that the kernels of all of the Fredholm operators Fx have
constant dimension) as [KerF ] − [CokerF ]. Moreover, we have seen that indexF
only depends on the homotopy class of f .

Exercise 11.15. a) From the pair (V, f), how can one construct a vector bundle
over S2 ×X that only depends on V and the homotopy class of f?
b) Show that every E ∈ Vect(S2 ×X) can be obtained in this way.
[Hint for a): Decompose S2 into the two hemispheres B+ and B− with B+∩B− =
S1, and form the bundle (π+)∗V ∪f (π−)∗ by means of the clutching construction
(see Appendix, Exercise B.7, p. 681), where π± : B ×X → X is the projection.
For b): Argue as in the proof of Theorem B.8 (p. 682) of the Appendix, where X
consists only of a single point. The parameter space plays only a subordinate role,
and so the proof actually carries over. It is convenient to normalize the map f that
one obtains so that f(1, x) is the identity on Vx.]

Theorem 11.16. Let X be locally compact. Then a homomorphism α : K(R2×
X)→ K(X) can be defined (here, by the index of a Wiener-Hopf family of Fredholm
operators; see also Exercise 11.19) with the following properties:
(i) α is functorial in X.
(ii) If Y is another locally compact space, then we have the following multiplication
rule, expressed by the commutative diagram:

K(R2 ×X)⊗K (Y )
t′→ K(R2 ×X × Y )

↓ αX ⊗ Id ↓ αX×Y
K(X)⊗K (Y )

t→ K(X × Y ),

where t and t′ are the outer tensor products � defined in Theorem 11.12
(iii) α(b) = 1, where b is the Bott class, a kind of basis in K(R2) that we define
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by b : [E−1]− [E0] ∈ K(S2), where the line bundle defined over S2 by means of the
clutching function, f(z) = z; see Appendix, Theorem B.8 (p. 682) or the preceding
Exercise 11.15a. Since E−1 and E0 have the same dimension (one), b lies in
K(S2, {+}) = K(R2). Thus, here we set X = {point}, and identify K(point) with
Z as in Exercise 11.6.

Proof. 1) We start withX compact. By Theorem 4.4 (p. 126) and Exercise 4.9
(p. 128), in conjunction with the preceding Exercise 11.15, we can (for each vector
bundle E over S2 ×X) go through a construction E 7→ (V, f) 7→ F 7→ IndexF . In
this way, a semi-group homomorphism Vect(S×X)→ K(X) is defined, which can
be extended (see 11.5, p. 274) uniquely to a group homomorphism α′ : K(S2×X)→
K(X). The restriction of α′ to K(R2 × V ) (which may be regarded as a subgroup
of K(S2×X) by Exercise 11.14) then provides a homomorphism α : K(R2×X)→
K (X). The “functoriality” of α means that, for each element u ∈ K(R2 ×X) and
each continuous map g : X ′ → X (where X ′ is another compact space), we have

αX′
(
(g × IdR2)

∗
u
)

= g∗αX (u) ,

which is clear from the functorial nature of index bundles (Exercise 3.37, p. 88).
2) We apply this definition for X = {point} and calculate α (b) = α′[E−1] −

α′[E0]. By construction, we have α′[Em] = −m (m ∈ Z), since by Theorem 4.4
(p. 126) we have the assignments

Em
clutch7−→ (C, zm)

Wiener-Hopf7−→ Tzm
index7−→ −m,

Hence α (b) = 1, and so (iii) is fulfilled.
3) To prove the multiplication rule (ii) – first for X,Y compact – we must

consider the difference t(αX ⊗ Id)(u ⊗ v) − αX×Y (t(u ⊗ v)) for u ∈ K(R2 × X)
and v ∈ K(Y ); without loss of generality, we may assume v = 1 (the class of the
trivial line bundle CY over Y ), since all of the maps arising here are K(Y )-module
homomorphisms. By the functoriality of α, the difference π∗αX(u) − αX×Y (π∗u)
vanishes, as needed. (Here π : X × Y → X is the projection.)

4) The definition of u : K(E ×X)→ K(X) for locally compact X carries over
just as in the proof of (ii) in the compact case via the one-point compactification
with the decomposition above in the proof of Theorem 11.12 and in Exercise 11.14.

�

Theorem 11.17. (Periodicity Theorem). For each locally compact space
X, we have that α : K(R2 × X) → K(X) is an isomorphism, whose inverse β :
K(X) → K(R2 × X) is given via outer multiplication x 7→ β(x) := b � x by the
Bott class b.

Proof. The proof follows by repeated use of the multiplicative property of α
expressed in Theorem 11.16(ii). In the following, for short we write only xy for the
outer product x� y or t(x⊗ y).

αβ = Id: For the proof here, in (ii) substitute (point) for X and X for Y ; then
we have αβ(x) = (α (b)) (x) for each x ∈ K(X) by (ii), whence αβ = Id, since
α (b) = 1 by (iii).

βα = Id: Let u ∈ K(R2 ×X). We want to show that βαu := b(α(u)) = u, or
equivalently (if multiplying by b from the right) (a(u))b = ũ, where ũ := ρ∗u and
ρ : X × R2 → R2 × X switches factors. From (ii) with R2 for Y , it follows that
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(α(u))(b) equals α(ub). Now comes the trick, through which the proof of βα = Id
can be reduced to the rather banal fact αβ = Id already proven: On K(R2×X×R2),
where the element ub lies, the map τ∗, which is the “lifting” along the switching
map

τ : R2 ×X × R2 → R2 ×X × R2, where τ (a, b, c) = (c, b, a) ,

is the identity, since τ is homotopic to the identity on R2 ×X ×R2 through home-
omorphisms. (See the hint for Exercise 11.11b.) Namely, on R4 = R2 × R2, τ is
given by the matrix 

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


which has determinant +1 and hence (one thinks of the transition to Jordan normal
form) lies in the same connected component of GL(4,R) as the identity. Hence, we
have

(α(u))b = α(ub) = α(τ∗(ub)) = α(bũ) = αβũ = ũ.

�

Exercise 11.18. Show the following consequences of Theorem 11.17:
a) K(X × S2) ∼= K(X)⊗K(S2) for X compact.

b) K(X × Rn) =

{
Z for n even
0 for n odd.

c) K(Sn) =

{
Z⊕ Z for n even

0 for n odd.

d) N ≥ n/2⇒ πn−1(GL(N,C)) =

{
Z for n even
0 for n odd.

.

[Hint: While a), b) and c) follow directly from Theorem 11.17 with Exercise
11.14, the derivation of d) requires two further considerations. First, for a com-
pact manifold X of dimension n − 1, we have that for each E ∈ V ectN (X) with

N ≥ m := [n/2− 1], there is an F ∈ Vect(X) such that E = F ⊕ CN−mX , i.e., each
vector bundle over X is stably equivalent (see Exercise 11.8c, p. 275) to a vector
bundle of fiber dimension m. This is the “basis theorem” for vector bundles. The
“uniqueness theorem” says that (under the same assumptions) stably-equivalent
vector bundle fiber dimension N ≥ m + 1 are isomorphic. For the proofs of these
two lemmas (e.g., see [Hu, Ch.8]) one needs some homotopy theory. The rest is
trivial, since we can now represent the group I (X) of stable-equivalence classes
of bundles for N ≥ n/2 by Vect(X). In particular (see Exercise 11.9c, p. 275),
VectN (Sn) ∼= I(Sn) ∼= K(Rn). The “classical” form of the periodicity theorem
now follows, since πn−1(GL(N,C)) ∼= VectN (Sn) by Theorem B.8 (p. 682) of the
Appendix.]

Exercise 11.19. As an alternative to Theorem 11.16, give a construction of
the isomorphism α : K(R2×X)→ K(X) by means of a family of elliptic boundary-
value problems.
[Hint: For X = {point} and f : S1 → GL(N,C), consider (over the disk |z| < 1)
the “transmission operator” (see Exercise 5.16, p. 151)

Af : (u, v) 7→
(
∂u

∂z̄
,
∂v

∂z
, fu|S1 − v|S1

)
,
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where u, v are N -tuples of complex-valued functions. By the same recipe, one can
also treat families of such boundary-value problems which are parametrized over a
space X; see [Ati68a, p.118-122].]

Remark 11.20. The connection with the construction of α via Wiener-Hopf
operators lies, roughly speaking, in the “Poisson principle” (i.e., in the Agranovich-
Dynkin formula in Exercise 10.33, p. 260), by which boundary-value problems can
be translated into problems on the boundary. Namely, extend (as in Exercise 8.23,
p. 223) the discrete Wiener-Hopf operator Tf to a pseudo-differential operator of
order 0 on the circle S1 (via the identity on the basis elements of the form zm with
m < 0), which we still denote by Tf . Then, we have that

Sf : (u, v) 7→
(
∂u

∂z̄
,
∂v

∂z
, Tf (zu|S1 − v|S1)

)
is an elliptic problem with pseudo-differential boundary conditions; it has the same
kernel as the transmission problem Azf and isomorphic cokernel. On the other
hand, the operator Sf is formed directly by the composition of Az Id with the
“primitive boundary-value problem” (u, v, w)→ (u, v, Tfw). Here Id is the constant
function that assigns the identity in GL(N,C) to each z ∈ S1. While Exercise 5.16
says that indexAId = 1, one finds indexAz Id = 0, whence indexAzf = indexSf =
indexTf . Within the Green algebra (see Chapter ??), then induces the connection ∂

∂z̄ 0 0
0 ∂

∂z 0
Mzf ◦ r Id ◦r 0

 Sf↔

 Id 0 0
0 Id 0
0 0 Tf


between a conventional elliptic system of partial differential equations of the first
order over the disk B2 with “ideally simple” boundary-value conditions which are
formed via the restriction r : C∞(B2) → C∞(S1) and a trivial multiplication
operator, and a “primitive boundary-value problem” that consists of a (some-
what complex) elliptic pseudo-differential operator only on the boundary. Actu-
ally, the “change of planes” from differential boundary value problems in the plane
to pseudo-differential operators on the boundary line can be pushed further, and
using a polynomial approximation to f , a purely algebraic definition of the ho-
momorphism α can be given. In doing so, no Hilbert space theory and Fredholm
operators are needed, just as in the wholly elementary, but in parts quite tedious,
proof [AB64b]. A detailed discussion of the advantages and disadvantages of the
different methods for the construction of α is in [Ati68a, p.131-136].

As a simple corollary of the periodicity theorem, we prove the classical fixed
point theorem of topology.

Theorem 11.21. (L. E. J. Brouwer, 1911): Each continuous map f of the
closed n-dimensional ball Bn into itself has a fixed point.

Proof. If f(x) 6= x for all x ∈ Bn, a continuous map g : Bn → Sn−1 is defined
by

g(x) := (1− α(x))f(x) + α(x)x,

where α(x) ≥ 0 is chosen such that ‖g(x)‖ = 1; g is the identity on Sn−1, and
therefore a retraction of Bn to Sn−1 (i.e., g ◦ i = Id, where i : Sn−1 → Bn is
inclusion). For odd n, we note that the composition
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y

x

Sn{1

Bn

g )(y

f )(y

f )(x

g )(x

K(Sn−1)
g∗→ K(Bn)

i∗→ K(Sn−1)

is the identity since g◦i = Id. But it cannot be the identity, since K(Sn−1) ∼= Z⊕Z
is not cyclic, whereas i∗ (K(Bn)) is cyclic because K(Bn) ∼= Z. For even n, note
that the corresponding composition of “suspensions” (see Appendix, Exercise B.7,
p. 681):

K(Sn)
(Sg)∗→ K(SBn)

(Si)∗→ K(Sn)

is the identity, and yet it cannot the identity since K(Sn−1) ∼= Z ⊕ Z is not the
image of K(SBn) ∼= Z. �

Exercise 11.22. Define the mapping degree, deg f ∈ Z, of an arbitrary
continuous map f : Sn → Sn, and show that homotopic maps have the same
mapping degree.
[Hint: Each homomorphism h : Z→ Z clearly has a “degree”, namely d, such that
h(m) = dm for all m ∈ Z. Thus, for even n work with the subgroup K(Rn) ∼= Z
of K(Sn), which is carried into itself by f∗. For odd n, consider the suspension
Sf : Sn+1 → Sn+1.]

Exercise 11.23. Show that the tangent bundle T (Sn) is nontrivial, for even
n ≥ 2.
[Hint: More generally, each nowhere vanishing vector field v on Sn (v ∈ C∞(TSn))
provides a homotopy between the identity and the antipodal map A : Sn → Sn,
while deg Id 6= degA for even n ≥ 2, contradicting Exercise 11.22.]

The preceding examples show that important notions and results of classical
algebraic topology can be developed as well, and perhaps more quickly and more
easily, on the basis of linear algebra via K-theory than they can by establishing,
say, homology theory by means of simplicial theory.

A number of sharper results, such as the well-known converse by Hopf of Ex-
ercise 11.22 (equality of mapping degrees implies homotopy) in case n ≥ 2, cannot
be obtained by K-theoretic means but require deeper geometric considerations. At
least according to Atiyah, the Periodicity Theorem is not only simpler than most
major theorems of classical algebraic topology, but also more relevant for the in-
dex problem and, more generally, for many investigations of manifolds. Hereby,
the “philosophy” is that the usual algebraic topology destroys the structures too
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much while K-theory “comparable to molecular biology” (Atiyah) searches for the
essential macromolecules which make up the manifold. It is then clear that for a
“comparison” of the topology of the intricate manifold with the “building blocks”
one needs to first know the topology of the general linear group which comprises the
transition functions and, more generally, the Periodicity Theorem in its K-theoretic
form.

In the following chapters we will apply the Periodicity Theorem in various
ways for computing the index of elliptic problems. Conversely, the index of special
elliptic differential equations served to prove the Periodicity Theorem; see especially
Theorem 11.16 and Exercise 11.19. This is no contradiction but an indication of
how closely K-theory and index theory of linear elliptic oscillation equations are
related both being linked by the catchwords “linear”, “finite dimensional” and
“deformation invariant”.



CHAPTER 12

The Index Formula in the Euclidean Case

1. Index Formula and Bott Periodicity

In the preceding chapter, we used analytic tools (the Gohberg-Krein Index
Theorem for Wiener-Hopf operators) to prove the Bott Periodicity Theorem. We
will now use it to derive an index theorem for elliptic integral operators in Rn. The
basic idea is perhaps best described via homotopy theory:

An elliptic pseudo-differential operator of order k in Rn given in the form

(Pu)(x) = (2π)−n
∫
Rn
ei〈x,ξ〉p(x, ξ)û(ξ) dξ,

where u is a C∞ function on Rn with compact support and values in CN , and the
“amplitude” (see above Chapter 8) p is an N ×N matrix-valued function with

σ(P )(x, ξ) := lim
λ→∞

p(x, λξ)

λk
∈ GL(N,C), ξ 6= 0.

Thus for fixed x, we have a continuous map

σ(P )(x, ·) : Sn−1 → GL(N,C)

that has a well-defined degree for n even and N sufficiently large. This degree does
not depend on x, because of continuity (Rn is connected) and it was denoted by
deg(P ) in Remark 10.19, p. 251.

In order to get interesting global problems, P is usually combined with Nk/2
boundary conditions to form an elliptic system in the sense of Chapter 10. However,
this is only possible in the stated fashion if the “local index” deg(P ) vanishes. A
sort of extremely simple boundary condition lacking the topological and analytical
difficult discussed in Sections 10.4 and ?? arises when we put k = 0 and p(x, ξ) = Id
for x outside a compact subset K of Rn. The class of elliptic pseudo-differential
operators of order 0 in Rn with this property of “being equal to identity at infin-
ity” was first investigated by Robert T. Seeley and will be denoted by Ellc(Rn).
Obviously, see Exercise 12.1 below, every P ∈ Ellc(Rn) has a finite dimensional
kernel and cokernel; therefore indexP is well-defined. If furthermore p(x, ξ) = Id
for |x| ≥ r, r real, then σ(P )(x, ξ) ∈ GL(N,C) for |x|+ |ξ| ≥ r. In this way P de-
fines a continuous mapping S2n−1 → GL(N,C) where S2n−1 is the (2n− 1)-sphere
of radius r in R2n (the (x, ξ) -space). Since indexP = index (P + Id) (Id the iden-
tity operator on functions), we may assume without loss of generality that N ≥ n.
By the homotopy theoretic form of the Bott Periodicity Theorem (Theorem 11.2,
p. 269, or Exercise 11.18d, p. 282), we have π2n−1 (GL(N,C)) ∼= Z. Thus we have
three integral invariants:

286
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indexP

{
the analytic index (defined in the sense
of analytic function theory,

deg (σ(P )(·, ·))
{

the topological index (defined via homotopy
theory by the global behavior of σ(P ),

degP

{
the local index (defined via homotopy for
even n by the pointwise behavior of σ(P )(x, ·).

We have deg(P ) = 0 (which is trivial) and indexP = ±deg(σ(P )(·, ·)) (see Theorem
12.3, p. 291; be careful with the sign). The second formula is not trivial. Just as
with the Gohberg-Krein Index Formula for Wiener-Hopf operators on the circle
and the straight line [Theorem 4.4 (p. 126), Exercise 4.7 (p. 128), and Theorem
4.11 (p. 129)], its significance derives from the fact that on the left side the analytic
index defined globally by the operator P is an object of the analysis of infinite-
dimensional function spaces, while on the right side the topological index is given
by the symbol, i.e., by locally defined data of the linear algebra of finite dimensional
vector spaces (which are suitably “integrated”).

The proof of this index formula (see Theorem 12.3, p. 291) roughly rests on
the fact that Ellc(Rn) is so rich that the analytic index (which as in Theorem 9.9d,
p. 236, only depends on the symbol and does not change under “small” deformations
of the symbol) can be considered an additive function on π2n−1(GL(N,C)), and thus
as a multiple of the topological index. Comparing the topological and the analytic
index for the generators of the homotopy groups, we obtain equality.

2. The Difference Bundle of an Elliptic Operator

We will no longer pursue these homotopy-theoretic arguments, but rather we
carry out the details of the proofs in the more convenient formalism of K-theory,
which also permits an easier transition to the more general situation of the following
section.

Exercise 12.1. Let X be a (not necessarily compact) oriented C∞ Riemannian
manifold, and let Ellc(X) be the class of elliptic pseudo-differential operators of
order 0 on X which are “equal to the identity at infinity”; i.e., for each P ∈ Ellc(X),
there is a compact subset K ⊆ X, such that Pϕ = ϕ for all C∞ sections ϕ (in the
domain of definition of P ) with support ϕ ∩ K = φ. The same condition should
hold for the formal adjoint operator P ∗.

supp '
K

X
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a) Show that this definition coincides with the definition given in Section 12.1 for
X = Rn.
b) Show that indexP is well defined, depends only on σ(P ), remains constant
under a C∞ homotopy of the symbol within the space elliptic symbols which are
the identity at infinity.
[Hint for b): Instead of repeating the proofs of Chapter 9, one can also reduce
the present case to the results of Chapter 9 directly. Indeed, one can embed K in
a bounded, compact, codimension-zero submanifold Y of X and then investigate
the “doubled” operator P̃ on the closed manifold X̃ := Y ∪∂Y Y . Show that
index P̃ = 2 indexP .]

Much more generally one can define, for locally compact Y , the group K(Y )
through “complexes of vector bundles with compact support”, these are

short sequences 0→ E0 α→ E1 → 0, where E0 and E1 are complex vector bundles
over Y and α is a vector bundle isomorphism outside a compact subset of Y .

Two complexes E· = 0 → E0 α→ E1 → 0 and F · = 0 → F 0 β→ F 1 → 0 are

called equivalent, if there is a complex G· = 0 → G0 γ→ G1 → 0 with compact
support over Y × I such that E· = G·|Y×{0} and F · = G·|Y×{1}. The equivalence
classes form a semigroup C(Y ) with sub-semigroup Cφ(Y ) of elementary complexes
with empty “support” (i.e., the bundle maps over Y are isomorphisms). Then the
sequence

0→ C(Y )/Cφ(Y )
d→ K(Y +)

i∗→ K(+)→ 0

is exact and splits; hence, C(Y )/Cφ(Y ) proves to be isomorphic to K(Y ).
The construction (which goes back to Michael Atiyah and Friedrich Hirzebruch)

of “difference bundles” d(E·) for complexes E· = 0 → E0 α→ E1 → 0 over Y with
compact support K goes roughly as follows: We choose a compact neighborhood
L of K, such that K is contained in the interior L0 of L. In order to extend the
complex E· to all of Y +,

L{L0

K E= supp
.

we replace it by an equivalent complex whose bundles are trivial over L− L0:

0→ E0|L ⊕ F
α⊕Id→ E1|L ⊕ F → 0

where F ∈ Vect(L) is chosen (by means of Appendix, Exercise B.10, p. 683) so
that E1|L ⊕ F is trivial. Since α is an isomorphism on L− L0, we must have that
E0|L ⊕ F is trivial at least on L− L0. Let

τi :
(
Ei|L − L0

)
⊕
(
F |L − L0

)
→
(
L− L0

)
× CN , i = 0, 1,
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be trivializations with τ1 arbitrary and τ0 := τ1◦(α⊕Id). Then the clutched bundle
(see Appendix, Theorem B.8, p. 682)

Gi :=
(
Ei|L ⊕ F

)
∪τi ((Y + − L0)× CN ) ∈ Vect(Y +),

and we set d(E·) := [G0] − [G1] ∈ K(Y +). Since the fiber dimensions of G0 and
G1 coincide, d(E·) lies in K(Y ). Incidentally, one calculates easily that d(E·) =
d(E·⊕H ·), if H · is an elementary complex, and that d(E·) does not depend on the
choice of F .

Because of the universal property (see Remark 11.5, p. 11.5) of K, it suffices to
define the splitting homomorphism

(12.1) b : K(Y +)→ C(Y )/Cφ(Y )

additively on Vect(Y +). For E ∈ Vect(Y +), one sets b(E) := E·|Y , where E· is

the complex 0 → E
β→ p∗i∗E → 0, p : Y + → {+} is the retraction, and β is an

arbitrary extension of β+ := Id to an isomorphism on a neighborhood of +. The
support of E· is then compact and contained in Y , and hence b(E) ∈ C(Y ). As an
element of C(X)/Cφ(X), b(E) is independent of the choice of the extension β. One
sees immediately that db ⊕ p∗i∗ = Id, whence in particular K(+) is the cokernel
of d; and with suitable homotopies for the vector bundle homomorphisms, we have
bd = Id, whence d is injective.

Further details of this construction are found in [AS68a, p.489 ff] and in [Seg,
p.139-151], where complexes

0→ E0 α1→ E1 α2→ · · · αn→ En → 0

of length n with ai+1 ◦ ai = 0 are considered, which are exact outside a compact
subset of Y . Incidentally, by means of tensor products of complexes of arbitrary
length (e.g., see [ES, p.140 ff] a ring structure on K(Y ) may be introduced in a
natural way1.

If the locally compact space Y can be represented in the form Z −A (where Z
is compact and A is closed in Z), then often in the literature for this special ease
one sees

K(Y ) = K (Z −A) = K(Z,A) = CZ−A(Z)/Cφ(Z).

Hence, an element of K(Y ) is written as an equivalence class of an isomorphism
σ : E0|A → E1|A, where E0 and E1 are complex vector bundles over Z. In
our applications (where Y is the tangent bundle TX) one prefers K(BX,SX) to
K(TX), sinceB(X) and S(X) are compact forX compact. In fact, the construction

1For complexes E· = 0 → E0 α→ E1 → 0 and F · = 0 → F 0 β→ F 1 → 0 of length 1, one
obtains as an outer product the complex

E· � F · := 0→ E0 � F 0 φ→
(
E1 � F 0

)
⊕
(
E0 � F 1

) ψ→ E1 � F 1 → 0

of length 2 where (“golden rule” of multilinear algebra)

φ := α � Id + Id�β and ψ := − Id�β + α � Id

With the help of Hermitian metrics on the vector bundles one can rewrite E· � F · as a complex

of length 1

0→
(
E0 � F 0

)
⊕
(
E1 � F 1

) θ→
(
E1 � F 0

)
⊕
(
E0 � F 1

)
→ 0, where

θ :=

[
α � Id − Id�β∗

Id�β α∗ � Id

]
and α∗ and β∗ sre the adjoint homomorphisms. Details are in [Ati67a, p.93 f].
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of the difference bundles in K-theory began with compact base space, although the
proof (see e.g., [Ati67a, p.88-94]) in its basic idea is not as simple as that for the
more general locally compact space.

Exercise 12.2. Show that the symbol σ(P ) of an elliptic operator P ∈ Ellc(X)
defines an element [σ(P )] ∈ K(TX) in a natural way, and that each a ∈ K(TX)
can be represented in this way; here, X is as in Exercise 12.1 and TX is the tangent
bundle of X, which can be identified with the cotangent bundle T ∗X by means of
the Riemannian metric on X.
[Hint: Construct the “difference bundle” [σ(P )] ∈ K(TX) as in the preceding. In
addition, show

[σ(P )] =
[
CNB0
∪σ(P ) CNB∞

]
− [N ]

in the special case X = Rn where TX+ = (R2n)+ = S2n = B0∪B∞ with B0∩B∞ =
S2n−1, and

σ(P )(·, ·) : S2n−1 = {(x, ξ) : |x|+ |ξ| = r} → GL(N,CN ),

where r is so large that Pϕ = ϕ for all N -tuples ϕ of complex-valued functions
such that support(ϕ) ∩ {x : |x| ≤ r} = φ.
For the reverse direction set V := TX and represent a ∈ K(V ) (as with the

“splitting homomorphism” (12.1)) by a complex 0 → F 0 φ→ F 1 → 0, where the
bundles F i are restrictions to V of bundles of the same fiber dimension N over
V ; i.e., outside a compact subset L ⊆ V , we have isomorphisms τi : F i|(V−L)

∼=→
(V − L)× CN such that φ := (τ1)

−1
τ0 is a bundle isomorphism over V − L.

If π : V → X is the base point map, then replace the bundles F i on V − L (where
they are trivial) by π∗Ei, where Ei is the restriction of F i to the zero section of
V . On L this cannot be done in general. However, the following artifice (after
[AS68a, p.492 f]) is helpful: Choose an open, relatively compact subset Y of X
that includes π(L) and a real number ρ > 0, such that the compact set L is

V

Y

Xx L

v

¼

¼( )L

S V½( ) B V Y
{

½( )j

contained in the “ball bundle” Bρ(V )|Ȳ . Now show that Ȳ is a deformation retract
of Bρ(V )|Ȳ , and conclude (with Appendix, Theorem B.5, p. 680) that there are
isomorphisms, θi : F i|(Bρ(V )|Ȳ ) → π∗Ei|(Bρ(V )|Ȳ ), which are extensions of the
trivialization isomorphisms given above over Ȳ − Y . Thus one must show that θi
can be chosen so that the homomorphisms

θi (v) : F iv →
(
π∗Ei

)
v

= F ix, x ∈ Ȳ − Y and π (x) = v

coincide with the composition (τi (x))
−1
τ0 (v). (Furthermore, if we require that θi

is the identity on the zero section then it is uniquely determined up to homotopy.)
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Now define α := θ1 ◦ φ ◦ θ−1
0 over ∂ (Bρ(V )|Ȳ ) = (Sρ(V )|Ȳ )∪

(
Bρ(V )|(Ȳ−Y )

)
, and

on V |Ȳ (modulo the zero section) extend it to be homogeneous of degree 0, and the
given trivialization on π−1(Y − Ȳ ).

homogeneous extension

trivial extension trivial extension

homogeneous extension

homogeneous extension

homogeneous extension

Finally, approximate the complex 0→ π∗E0 α→ π∗E1 → 0 so obtained (where α is
homogeneous of degree 0, and is induced by an isomorphism E0 → E1 outside a
compact subset of the base X) by a C∞ mapping with the same properties, where
(without loss of generality – see Appendix, Exercise B.11b, 683) the Ei can be
taken to be C∞ vector bundles. Incidentally, what simplifications can be made for
X = RN?]

3. The Index Formula

Theorem 12.3. For all P ∈ Ellc(Rn), we have the index formula

indexP = (−1)nαn([σ(P )]).

Here an : K(R2n)
∼=→ K(R0) = Z is the “periodicity homomorphism” produced by

iteration of

αX : K(R2 ×X)→ K(X) for X = R2(n−1), R2(n−2), . . . ;

(see Theorem 11.17, p. 281).

Proof. 1) For locally compact X, we have the following commutative diagram:

Ellc(X)
[σ(·)]−→ K(TX)

index ↘ ↙index

Z
Here the “analytical index” is defined on Ellc(X) by Exercise 12.1b, and by Exercise
12.2 (surjectivity of the difference bundle construction [σ(·)]) it is well defined on
K(TX) and trivially additive (Exercise 1.5, p. 5). Hence, for X = Rn (where
K(TX) is isomorphic to Z by the Bott Periodicity Theorem above), the index is a
multiple of this isomorphism, whence

indexP = Cnα
n[σ(P )],

where the constant does not depend on P , but indeed may depend on n.
2) We now want to show that Cn = (−1)n. For this we must find a P ∈ Ellc(R)

with [σ(P )] = b � · · · � b ∈ K(R2n) (b ∈ K(R2) the Bott class of Theorem 11.16,
p. 280) and index P = (−1)n. The main problem consists in finding a sufficiently
simple operator P , so that one can compute its analytical index. We already know
that P cannot have constant coefficients, since P is the identity at infinity; also,
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P is not a differential operator, since it has vanishing order. These days, there are
various ways to solve this problem; see [Ati67b, p.243 f], [Ati70a, p.110 ff], and
[Hö71, p.141-146]. For us, it is most convenient to first show that we can restrict
ourselves to the case n = l. As in Exercise 9.13b (p. 238), we have (with analogous
proof) the following multiplicative properties: P = Q#R, P ∈ Ellc(Rn), Q ∈
Ellc(Rm), R ∈ Ellc(Rk), and m + k = n imply σ(P ) = σ(Q)#σ(R) and [σ(P )] =
[σ(Q)] � [σ(R)] and indexP = (indexQ)(indexR). Since αn is multiplicative by
construction, we have Cn = Cn1 .

3) Thus, let n = 1 (i.e., X = R and TX = R2 = C = {x+ iξ}. By definition, b
is represented by the complex

0 → CC
·(x+iξ)−1

→ CC → 0
↓ ↓
TX TX,

which, as it stands, still does not represent any pseudo-differential operator. As in
Exercise 12.2, we can deform the bundle map φ, which at the point (x, ξ) is defined
on the fiber C by

φ(x, ξ) : z 7→ z(x+ iξ)−1

to a map α with

α(x, ξ) = 1 for |x| ≥ 1
α(x, λξ) = α(x, ξ) for λ > 0

α(x, ξ) 6= 0 for ξ 6= 0.

For |x| ≤ 1, we explicitly set

α(x, ξ) =

{
eiπ(x−1) for ξ > 0

1 for ξ < 0

»

' ®

x x x

( +x i»)
{1

x x1

1 1
1 1

1

11

1

0{1

1 11 1

1 1

1 e¼i( )x{1

Deformation: dilation of one

Thus, after smoothing, we can represent α as the symbol of an elliptic pseudo-
differential operator T of order 0 on R, which is the identity outside of the interval
[−1, 1] and inside it equals the “Toeplitz operator” T̃ := eiπ(x−1)P +(Id−P ) on the
circle S1 ∼= [−1, 1], where P :

∑∞
−∞ aνz

ν 7→
∑∞

0 aνz
ν is the projection operator.

By construction, indexT = index T̃ , and according to Exercise 8.23c, we obtain
index T̃ = W (eiπ(x−1), 0) = −1. Thus, index(b) = −1, and C1 = −1 then follows.

�

Exercise 12.4. How can one directly prove C2 = 1, without using induction
from step 2 of the preceding proof?
[Hint: Consider, on the disk X := B2, the “transmission operator”

A : (u, v) 7→
(
∂u

∂z̄
,
∂v

∂z
, (u− v) |S1

)
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with indexA = 1 (Exercise 5.16, p. 151), and construct an operator A′ ( in the Green
algebra Ell(X, ∂X)) which is stably equivalent to A, and is equal to the identity in
a neighborhood of ∂X; use the deformation procedure of Exercise 10.21a (p. 253)
or Theorem 10.17, p. 248. Show indexA′ = indexA with Theorem 10.32d, whence
indexA′′ = 1 if A′′ ∈ Ellc(K) is the extension of A′ to all of R2 with A′′ = Id
outside B2.
Then it only remains to show that [σ(A′′)] is actually b � b. For this, represent

b as in Theorem 12.3 by the complex 0 → CC
·ζ−1

→ CC → 0 and derive (using the
recipe given in the above footnote, p. 289) the representation of b�b by the complex

0 → CTZ ⊕ CTZ
θ→ CTZ ⊕ CTZ → 0 over the tangent bundle TZ = C2 = {(z, ζ)}

of the space Z = R2 = C = {z}. Then

θ (z, ζ) :=

[
z−1 −

(
ζ̄
)−1

ζ−1 (z̄)
−1

]

can be deformed into σ(A′) (z, ζ).]

Theorem 12.3 is a beautiful result of a purposeful application of modern topo-
logical methods to questions of analysis. Its theoretical ramifications are manifold,
and we mention briefly:

(i) Generalizations of the Gohberg-Krein Index Formula for Wiener-Hopf oper-
ators on the circle or half-line (see above Chapter 4) to elliptic pseudo-differential
operators of order 0 on n-dimensional Euclidean space. See also [Prö72] for a
systematic comparison of these two interesting operator classes.

(ii) Analytic definition of the degree of a (2n−1)-dimensional homotopy class of
GL(N,C): In its homotopy theoretic form (see Section 12.1), Theorem 12.3 supplies
an explicit formula for the index, if one uses either one of the definitions of “degree”
given explicitly in Section 11.2 above. Conversely, one can use Theorem 12.3 to
define the degree (by analytic means) and generalize in this fashion the “algebraic”
definition, which in Section 11.1 was available only for n = 1, to the case n > 1.
Although “the index of an operator is usually a less computable quantity than an
integral, say, the actual computation is for many theoretical goals not important,
while the analytic definition entails numerous theoretical advantages.” ([Ati67b,
p.244], where a number of “advantages” – a priori integrality, connections with
analytic function theory and Lie groups are discussed in detail.)

(iii) Applications to Boundary-Value Problems. In Section 10.4, we learned
methods for “trivializing” the symbol of an elliptic boundary-value problem along
the boundary. Thereby (more precise discussion in [Bou, p.40] one usually obtains
an operator of order 0 which equals the identity near the boundary and therefore
can be continued to an operator of Ellc(Rn), if the manifold with boundary is a
region with boundary in Rn. As was sketched in the hint to Exercise 12.4, the index
does not change under these manipulations. Therefore, the index of a boundary-
value problem can be computed as the case may be via Theorem 12.3; however,
the derivation of a closed formula (see Chapter 14 below) requires a reduction to
the Agranovich-Dynkin Formula (Theorem 10.32e, p. 260 or Exercise 10.33, p. 260)
and thus to the study of pseudo-differential operators also on the boundary which
is a closed manifold.
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(iv) In the following chapter, finally, we will derive from Theorem 12.3, an index
formula for elliptic operators on closed (= compact without boundary) manifolds,
provided the latter can be imbedded in Euclidean space “trivially” (i.e. with trivial
normal bundle).



CHAPTER 13

The Index Theorem for Closed Manifolds

1. The Index Formula

Let X be a closed (i.e., compact, without boundary), oriented, Riemannian
manifold of dimension n, which is “trivially” embedded (i.e., with trivial normal
bundle) in the Euclidean space Rn+m. Let E and F be Hermitian vector bundles
over X and P ∈ Ellk(E,F ), k ∈ Z. Then we have the following formula:

Theorem 13.1. (M. F. Atiyah, I. M. Singer 1963).

indexP = (−1)nαn+m([σ(P )]� bm),

where [σ(P )] ∈ K(TX) is the “symbol class” of P , b ∈ K(R2) is the “Bott class”,
and αn+m : K(R2(n+m))→ Z is the iteration of the Bott isomorphism.

Remark 13.2. The preceding situation of “trivial” embedding arises in appli-
cations; e.g., when X is a hypersurface, in particular the boundary of a bounded
domain in Rn+1. For the more general case of “non-trivial” embedding, for different
modes of expressing the “topological index” (the right side of the formula), and for
a comparison of the various proofs, see the commentary below.

Proof. 1) First, we want to visualize the contents of the formula. The left
side is a well-defined (by Chapter 9) integer which depends only on the homotopy
type of the symbol σ [P ] ∈ IsoSX(E,F ). However, how is the right side defined?
The construction of σ [P ] ∈ K(TX) was carried out in Exercise 12.2 (p.290) for
k = 0; the case k 6= 0 adds nothing new. (One can reduce it to the case k = 0
directly via composition with Λ−k.)

Now, consider the following figure:

embedding

X

X

N

R
n+m

295
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Here N is a “tubular neighborhood” of X in Rn+m; i.e., a neighborhood of X which
locally (and also globally, because of the “triviality” of the embedding) has the form
X × Rm.

The index formula then says that the following diagram is commutative:1

Ellk (E,F )
[σ(·)]→ K(TX)

�(−b)m→ K(TX × R2m) = K(TN)
↘index � ↓ ext

Z (−1)n+mαn+m

← K(TRn+m) = K(R2(n+m))

Here, ext is induced by the map K(TRn+m)+ → (TN)+, which maps the
complement of the open set TN in TRn+m to the point at infinity + ∈ (TN)+.

2) We choose a very direct way for the proof of the index formula by sys-
tematically replacing the horizontal homomorphisms (K-theoretic operations) by
operations associated with corresponding elliptic operators: Thus, for each elliptic
operator P over X, we construct an elliptic operator P ′ over N , which is the identity
at infinity and satisfies indexP ′ = (−1)m indexP and [σ(P ′)] = [σ(P )]� bm.

We take P ′ to be P#Tm, where T ∈ Ellc(R) is the standard operator with
indexT = −1 given in the proof of Theorem 12.3, p. 291; further note that in
Exercise 9.13 (p.238) the tensor product # was only defined. operators of order
k > 0. Hence, more precisely, we take P ′ ∈ Ellc (N) to be an operator whose

symbol on the unit cosphere bundle coincides with σ(P )#σ(T )#
m· · ·#σ(T ); e.g., for

m = 1

(σ(P )#σ(T )) (x, t; ξ, τ) =

[
σ(P )(x, ξ) − IdFx ⊗ σ(T ∗)(t, τ)

IdEx ⊗ σ(T )(t, τ) σ(P ∗)(x, ξ)

]
,

where (x, t; ξ, τ) ∈ (X × R)×S (X × R). As in Exercise 12.2 (p.290) (since σ(T )(t, τ) =
1 for t sufficiently large and for τ negative), this symbol can be conveniently de-
formed to a symbol σ′ with σ′(x, t; ξ, τ) = Id for t sufficiently large, if we identify
E′ ⊕ F ′ and F ′ ⊕E′ by means of switching the summands. Here E′ := p∗E where
p : N = X × E → X is the projection, whence E′x,t = Ex, and F ′ is defined
similarly.

5) Without loss of generality, we can take E′ ⊕ F ′ to be a trivial bundle, since
otherwise we can form P ′ ⊕ IdG, where the bundle G over N is chosen so that
E′ ⊕ F ′ ⊕ G is trivial. Hence, E′ ⊕ F ′ is extended to a trivial bundle over all of
Rn+m. Then extend the operator P ′ to all of Rn+m, by the identity outside N , to
an operator P ′′ ∈ Ellc(Rn+m). Since P ′ is the identity near the “boundary” N̄ −N
of N it follows that if P ′′u = 0 (on Rn+m), then the support of u lies entirely in
the interior of N , whence KerP ′′ = KerP ′. By the same argument for the formal
adjoint operators, it follows that indexP ′′ = indexP ′; [σ(P ′′)] = ext[σ(P ′)] by
construction.

4) The formula given for index P then follows from the index formula in the
Euclidean case (Theorem 12.3, p.291). �

1We prefer working with the finitely generated abelian groups K(TX), rather than with

single elliptic operators or classes of such: It is precisely the advantage of topological methods
that complicated objects of analysis, whose structure is only partially explored, can be replaced

purposely by simple “quantities” (in the case before us, by the rank r of the group K(TX)).

Incidentally, it is known that r =
∑n
k=0 rankH2k(TX). Therefore, justified by Exercise 12.2,

we will henceforth consider the “analytic index” not on Ellk (E,F ) but directly on K(TX) as

indicated by the double arrow in the diagram.
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Remark 13.3. Instead of tensoring with the standard operator T ∈ Ellc(R),
we can also (for m = 2) tensor with the standard transmission operator T ∈
Ell(B2, S1), thereby constructing an elliptic boundary-value problem over the bounded
manifold N̄ , whose inner symbol can be deformed by the well-known procedure (us-
ing the boundary symbols) such that it becomes the identity near the boundary
N̄ −N . The desired operators P ′ and P ′′ are then provided. Correspondingly, for
arbitrary m, one can find a boundary-value problem whose index is 1 and whose
symbol induces the bundle b � · · · � b (m-times): For this, one takes the differen-
tial operator d+ d∗ (in the exterior calculus of differential forms; see Exercise 6.17,
p. 169) from the forms of even order to those with odd order, with a suitable elliptic
boundary-value problem in the sense of Chapter 10.

Remark 13.4. The advantage of the construction of P ′ via boundary-value
problems is best exhibited, when the embedding of X in Rn+m is not “trivial”
i.e., when N is no longer X × Rm. In [Ati68a] and [Ati70a] devices of “equi-
variant K-theory” (with transformation groups) are employed for explicitly stating
or axiomatically characterizing the desired operator P ′ with the help of symmetry
properties of standard operators over the sphere. The use of “equivariant K-theory”
is avoided (also in the case N 6= X×Rm not treated by us) by passing to boundary-
value problems and by another method proposed by [Hö71c] using “hypo-elliptic”
operators and stronger analytical tools.

Remark 13.5. Just as we learned (in Sections 11.1 and 11.2) different ways
for defining “degree”, the index, computed here in K-theoretic terms, can be deter-
mined in cohomological or integral form; see Section 14.14.1. This is possible with-
out new or modified proofs, but simply by routine exercises in algebraic topology,
the transition from K-theory to cohomology, whereby simply “one set of topological
invariants is translated into another....” Which formula provides the “best answer”
is largely a matter of taste. It depends on which invariants are most familiar or can
be computed most easily (M. F. Atiyah, I. M. Singer).

2. Comparison of the Proofs: The Cobordism Proof

Michael Atiyah and Isadore Singer gave two more proofs of the Index Formula,
in addition to the “embedding proof” given above. These are the original “cobor-
dism proof” and the newer “heat equation proof”. We cannot summarize them
here, but we will comment briefly (see the tabulated crude survey at the end of
this section). Since all three of these proofs appear to be somewhat complicated,
several authors (among others, [Boj], [Cald67], [See65] and [See67]) tried to give
simpler or more elementary proofs for the Euclidean case. In the judgement of
[Ati67b, p.245] “these different proofs differ only in the use and presentation of
algebraic topology” (instead of, and at times together with, the Bott Periodicity
Theorem “older but not at all elementary parts of topology” are employed) –“the
analysis is essentially the same in origin”.

The “Cobordism proof” is sketched in [AS63] and worked out in detail in
[Bri63], [CaSc] and [Pal65]. It was the first proof: It begins with a compact,
oriented Riemannian manifold (without boundary) of dimension 2l and defines d :
Ωj → Ωj+1 and d∗ : Ωj+1 → Ωj as the exterior (“Cartan”-) derivative of forms
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and its adjoint. (These are considered in Exercise 6.17, p. 169. More precisely,

we have here Ωj := C∞
(
Λj (T ∗X)⊗ C

)
.) For Ω :=

∑2l
j=0 Ωj , d + d∗ : Ω → Ω is

a self-adjoint, elliptic differential operator of first or whose square is the Laplace
operator ∆ of Hodge theory. If ∗ : Ωp → Ω2l−p is the Hodge star (duality) operator,
the formula

(13.1) τ (v) := ip(p−1)+l ∗ v, v ∈ Ωp

defines on Ω an “involution” (i.e., τ ◦ τ = Id). If Ω± denote the ±1 eigenspaces of
τ , we define the signature operator (see Section 14.4 below and [AS68b, p.575])

(d+ d∗)
+

: Ω+ → Ω− to be the restriction of d + d∗ to Ω+. One can show that

(d+ d∗)
+

is an elliptic operator and its index is the “signature” of the manifold X,
and is often named after Friedrich Hirzebruch.

For sufficiently many special manifolds (specifically for X = S2l and X =
Pl (C) := complex projective space of complex dimension l) one can now compute

the signature (index (d+ d∗)
+

) using cohomology theory and derive an index for-
mula for manifolds of even dimension. “Sufficiently many” here means four things:

(i) By a deep result of cobordism theory by René Thom, every even-dimensional
manifold Y is in a certain sense “cobordant” to the special manifolds; in other words,
there is a bounded manifold Z whose boundary is “built up” from X and Y .

X

Z Y

(ii) Furthermore, René Thom proved the vanishing of the signature for bounded
manifolds. Hence the index of the signature operator on an arbitrary 2l-dimensional
manifold X can be computed from the indices of the special signature operators
[Hi66a, p.58].

(iii) For a Hermitian C∞-vector bundle E over X, let

ΩjE := C∞
(
E ⊗ Λj (T ∗X)

)
be the space of j-forms “with coefficients in E”. By means of a “covariant deriva-
tive” ∇E (inducing parallel translation along paths), one can define the operator

dE : ΩjE → Ωj+1
E via

dE (v ⊗ u) := ∇Ev ∧ u+ v ⊗ du, for u ∈ ΩjE and v ∈ C∞(E).

and its adjoint dE∗, and one can establish the index formula for the generalized

signature operator
(
dE + dE∗

)+
for the vector bundle E which is defined by means

of an involution on ΩE :=
∑2l
j=0 ΩjE .

This concludes the proof since every elliptic operator on a closed even-dimensional
oriented manifold X is “equivalent” in the sense of K-theory to a generalized signa-
ture operator. More precisely: K(TX) is a ring over K(X) and the subgroup K(X)·
[σ((d+ d∗)

+
)] generated by generalized signature operators via

[
σ
((
dE + dE∗

)+)]
=

[E] · [σ((d+ d∗)
+

)] is so large, namely a “subgroup of finite index”, that “practi-
cally” all of K(TX) is generated. Here “practically” means up to the image of
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K(X) in K(TX) and up to 2-torsion, where the index must vanish as an additive
function with values in Z.

At this place, the theory of pseudo-differential operators enters in order to
achieve that the symbols are arbitrary bundle isomorphisms over SX, and to allow
reduction of the index computation from Ell(X) to K(TX). Further, the Bott
Periodicity Theorem is used in somewhat generalized form in representing K(TX)
approximately by K(X); see [ABP, p.321 f].

(iv) The general index formula can be extended to an odd-dimensional manifold
X, using the multiplicative property of the index by tensoring with the standard
operator T with index 1 on S1 and by passing to the even-dimensional manifold
X × S1. If one is not interested in the sign in the index formula, one can avoid
the explicit definition of T and simply pass to the “squared” (relative to the tensor
product) operator on the even-dimensional manifold X ×X.

3. Comparison of the Proofs: The Imbedding Proof

The “Imbedding Proof”, which was given in Section 13.1, following [Ati67b],
[Ati68a] and [Ati70a]. In this proof, the methods remain topological with the
consideration of K(TX) instead of the operator space Ell(X). The idea goes back
to the proof of the Riemann-Roch Theorem by Alexander Grothendieck, Section
14.7 below. One shows first using the Bott Periodicity Theorem that every elliptic
operator on the sphere or Euclidean space is equivalent, in sense of K-theory, to
one of infinite many (more precisely (|Z|-many), standard operators, and then the
case of an arbitrary elliptic operator on arbitrary closed manifold is reduced to the
standard case by imbedding.

The advantage, as well as the weakness, of this proof lies in its perhaps some-
what forced directness. It succeeds on the one hand in eliminating cohomology and
cobordism theory completely, bringing out the function analytic and topological pil-
lars (Theorems of Gohberg-Krein and Bott) plainly and in their most elementary
form, and in achieving through this simplicity of tools the greatest susceptibility
to generalization (see Section 14.11). On the other hand, under the imbedding
(except for particularly smooth ones, e.g. holomorphic embeddings of algebraic
manifolds in a complex projective space) the special structure of “classical” opera-
tors is completely destroyed. For example, the signature operator does not become
another signature operator under the imbedding, and to prove the Riemann-Roch
Theorem for arbitrary compact complex manifolds (to mention another problem
defined by “classical” operators; see also Section 14.7 below), one has to leave this
category, whereby many of the interesting and sometimes open problems of modern
differential topology become less transparent.

4. Comparison of the Proofs: The Heat Equation Proof

In comparison with the first two proofs, which argue more topologically, the
“heat equation proof” offers a completely different and initially, purely analytic
approach to the index problem. The germinal idea goes back to papers of Marcel
Riesz on spectral theory of positive self-adjoint operators, and was presented by
M. F. Atiyah as early as 1966 at the International Congress of Mathematicians in
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Moscow, and then published, also in connection with applications of the Index For-
mula to fixed point problems in [AB67], [Ati68b] and in related form in [Cald67]
and [See67]:

l. One starts with an operator P ∈ Ellk(E,F ), k > 0, where E and F are
Hermitian C∞ vector bundles on the n-dimensional, closed, oriented, Riemannian
manifold X. Then the operator P ∗P is a non-negative self-adjoint operator of
order 2k with a discrete spectrum (see Chapter 3 above) of non-negative eigenvalues
0 ≤ λ1 ≤ λ2 ≤ · · · (the multiplicity may be larger than 1, hence “≤”); and the
series

(13.2) θP∗P (t) :=
∑∞

m=1
e−tλm

converges for all t > 0. By the way, for X = S1 and P = −i ddx , we obtain the

“theta function” θ(t) =
∑∞
m=0 e

−tm2

of analytic number theory since the square
integers are exactly the eigenvalues of P ∗P = ∆ = −d2/dx2.

Correspondingly, one forms the function θPP∗ . The operators P ∗P and PP ∗

have the same non-zero eigenvalues, and only the eigenvalue 0 has in general differ-
ent multiplicities, namely dim KerP and dim KerP ∗ (see the Remark 2.11, p. 17).
This way, one has a new index formula

(13.3) indexP = θP∗P (t)− θPP∗(t), t > 0.

Trivially, one may choose an arbitrary function φ on E with φ(0) = 1 instead of
the function m 7→ e−tm and thus obtain for each φ a further index formula

indexP =
∑

λ∈Spec(P∗P )

φ(λ)−
∑

λ∈Spec(PP∗)

φ(λ)

Now, the theta function is distinguished by permitting near t = 0 an asymptotic
development

(13.4) θP∗P (t) ∼
∑
m≥−n

tm/2k
∫
X

µm (P ∗P ) , (as t→ 0+)

where µm (P ∗P ) is, for each m ∈ Z, a certain density on X which can be formed
canonically with the coefficients of the operator P ∗P . Using (13.3) we get from
(13.4) the explicit integral representation

(13.5) indexP =

∫
X

µ0 (P ∗P )− µ0 (PP ∗) .

2. The convergence of the series in (13.2) has implications for the construction
of solutions of the heat conduction equation (where � := P ∗P is a generalized
Laplace operator) [Gi95, p.64-65].

∂u

∂t
(x, t) +�u (x, t) = 0, x ∈ X, t ∈ [0,∞)

with the initial condition u(·, 0) = u0 ∈ L2(E). Here u is the unknown function on
X × [0,∞) with values in the bundle E (the “heat distribution”). Then

Ht := e−t� = Id−t�+
t2

2!
�2 − t3

3!
�3 + · · · , t ≥ 0
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is a well-defined family of bounded operators on the Hilbert space L2(E) which
satisfies the heat equation

dHt

dt
+�Ht = 0

with initial value H0 = Id. Thus H yields for each initial distribution u0 the heat
distribution at time t via the formula u(·, t) = Htu0.

Since the eigenfunctions {vm : m ∈ Z+} of a form a complete orthogonal system
for L2(E), the formula

trace e−t� = θ�(t) =
∑∞

m=1
e−tλm

is meaningful. The convergence of the series in (13.2) means that the evolution
operators Ht of the parabolic heat conduction equation belongs to the “trace class”
for t > 0. By means of the theory of pseudo-differential operators it follows more
precisely that Ht is a “smoothing operator”, i.e., an operator of order −∞ which
is representable as an integral operator

(Htv)(x) =

∫
X

Kt (x, y) v (y) ωy, v ∈ L2(E), x ∈ X

with C∞ weight function (x, y) 7→ Kt(x, y) ∈ L(Ey, Ex) and volume element ω.
Then θ�(t) = traceHt =

∫
X
µt, t > 0, where

µt (x) := trace (Kt (x, x))ωx =
∑∞

m=1
e−tλm |vm (x)|2 ωx

defines a density on X which at each x ∈ X is the pointwise trace of the operator
Kt, times ωx. While µt can be expressed in terms of the coefficients of the operator
P only very indirectly (via the eigenvalues and eigenfunctions of � = P ∗P ), one
has at each point x ∈ X an asymptotic expansion

µt (x) ∼
∑
m≥−n

tm/2kµm (x)

where the µm are purely local invariants of P ∗P which then implies (13.4).
4. A proof of (13.4) with a recipe for the computation of µm extracted from

the theory of pseudo-differential operators is due to [See67]. It shows that the
µm depend rationally on the coefficients of P and their derivatives of orders ≤ n.
A more intuitive and heuristic description of the µm for the special case X =
Tn := Rn/(2πZn), to which we paid special attention in our Sobolev case studies
(Chapter 7), can be found in [APS73, p.300 f]. The idea of the proof goes back
to the mathematicians Subbaramiah Minakshisundaram and Åke Pleijel, who in
1949 (long before an effective machinery for pseudo-differential operators was es-
tablished) computed the µm for the case P ∗P = ∆, where ∆ is the invariantly
defined Laplace-Beltrami operator which depends only on the Riemannian metric
on X, i.e., k = 1 and E = CX . Precisely, S. Minakshisundaram and Å. Pleijel
(and later R. T. Seeley, when generalizing their results) studied in place of P ∗P the
positive self-adjoint operator � = Id +P ∗P and, in place of the theta function, the
zeta function ζ(z) :=

∑∞
m=1 (λm)

−z
summed over all (discrete positive) eigenvalues

of �. As is well-known, the zeta function is well-defined for Re(z) > dimX and
can be continued to a meromorphic function in the z-plane with finitely many real
poles of order 1 with behavior at poles known in principle. Among other things it
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is found that z = 0 is not a pole and that the value ζ(0) can be expressed explicitly
in terms of �; in fact,

(13.6) ζ(0) =

∫
X

ρ0 (�) ,

where the right hand side is fairly complicated but can be computed in principle.
On the other hand, ζ(z) can be interpreted within spectral theory as trace(�−z),
and finally ζ(0) appears as the constant term in the asymptotic expansion of θ(t)
as t → +∞. This establishes the connection with the heat conduction approach.
In particular, the measure µ0(�) sought there is identical with the measure ρ0 (�)
in equation (13.6), and (13.4) follows from (13.6) and similar computations of the
residues of ζ at its poles.

5. Thus, a general algorithm is available that is capable of producing the right
hand side of the index formula (13.5) in finitely many steps by means of a computer
for example. In contrast to the index formulas of the cobordism and imbedding
proofs (into which enter the derivatives of the coefficient of P up to order 2 only) this
formula is in the general case complicated numerically and algebraically mainly by
the appearance of derivatives up to order n (= dimX). While for algebraic curves of
complex dimension 1 (= Riemannian surfaces, n = 2), the formula can be handled
well computationally, the general situation requires so much effort that M. F. Atiyah
and R. Bott by their own admission had initially “little hope for interpreting these
integrals directly in terms of the characteristic classes of E and X”, and therefore
“the beautiful formula appeared, be useless in this context.” Only a series of more
recent papers on curvature tensors revealed that in the special case when X is even-
dimemsional and P is the signature operator (d+ d∗)

+
, all higher order derivatives

“cancel out” in Seeley’s formula for the measure µ0(P ∗P ), and only the derivatives
up to order 3 remain. Details of such computations appear first in [MS], in the
case (not all that fortunate for aspect) that P is the operator d+d∗ : Ωeven → Ωodd

with the Euler characteristic as index (see Section 14.4). This was generalized in
1971 by V. K. Patodi – again by means of symmetry considerations – and extend
to Riemann-Roch operators (see Section 14.7) in particular. P. Gilkey succeeded
shortly thereafter in replacing Patodi’s complicated group theoretic cancellation
procedure for the higher derivatives by an axiomatic argument which was drastically
simplified in [ABP] through the use of stronger tools of Riemannian geometry. It
says roughly that in each integrand with the general qualitative properties of the
annoying higher derivatives can be disregarded and µ0(P ∗P ) can identified with
the (normalized) Gaussian curvature.

In this fashion, a new purely analytic proof of the Hirzebruch Signature The-
orem (the index formula for “classical” operators) is achieved which implies the
general index formula, as in the cobordism proof (see above, items (iii) and (iv) in
the Section 13.2), and with the same topological arguments.

6. The significance of the heat equation proof, which cannot be extended
(just like the cobordism proof) to families of elliptic operators and operators with
group action, is at present difficult to estimate. Its authors, who (as an aside)
acknowledge that their “whole thinking on these questions has been stimulated and
influenced very strongly by the recent paper of Gelfand on Lie algebra cohomology”
[Ge], point out that their proof is hardly shorter than the imbedding proof since
it “uses more analysis, more differential geometry and no less topology. On the
other hand, it is more direct and explicit for the classical operators associated with
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Riemannian structures: In particular, the local form of the Signature Theorem and
its generalizations are of considerable interest in itself and should lead to further
developments” [ABP, p.281].

This prediction appears to materialize even beyond the realm of differential
geometry: The approach via the zeta function of the Laplace-Beltrami operator ∆
on X (whose values yield real-valued invariants of the Riemannian metric ρ of X
– spectral invariants – at any point where the zeta function does not have a pole)
has been extended to the systems case, where the Laplace equation is replaced by
the system of partial differential equations of the total Laplace operator of Hodge
theory which can be represented as the square of a formally self-adjoint operator A
(the Dirac operator). In analogy to the zeta function, one considers for an operator

A, which is not positive, the function η(z) :=
∑
λ 6=0(signλ) |λ|−z where summation

is over the eigenvalues of A with proper multiplicity. Again η (z) is a holomorphic
function for large |z|, which can be continued meromorphically to the whole z-plane.
Corresponding to the asymptotic expansion above in equation (13.4) for the theta
and zeta functions, one can look for an integral formula for η (0). Such a formula

(13.7) η (0) =

∫
γ

α (ρ̃)− integer

is proven in [APS75, Thm. 4.14], when X can be obtained as the boundary of a
4-dimensional manifold Y with Riemannian metric ρ̃.

X

Y

Here ρ̃ is assumed to induce on X the metric ρ and to render a neighborhood of
X in Y isometric to X × [0, 1). The integrand α (ρ̃) is explicitly known (the “l-th
Hirzebruch L-polynomial in Pontryagin forms of the Riemannian metric ρ̃”), as
well as the integral correction term (the “signature of Y ” defined by the topology
of Y ). In this way, a formula is obtained which relates the spectral invariant η(0),
measuring the asymmetry of the spectrum of A, with a differential geometric and
a purely topological invariant.

This formula lies deeper than (13.4) or (13.5), where the integrand was of lo-
cal type, and has numerous relations to the cobordism as well as the imbedding
(particularly via boundary-value problems) proof. It is not as esoteric as it may
appear to someone not so much interested in differential-topological problems, since
it yields (roughly) a direct geometric interpretation for the peculiarities of the dis-
tribution of the eigenvalues of A: Newer results in this direction by Victor W.
Guillemin and others, say for example, that a Riemannian manifold X is isometric
with Sn if the spectra of the Laplace operators coincide. One cannot always expect
that two manifolds with equal spectra of their Laplace operators are isometric (the
16-dimensional tori yield a counterexample, see ), but it appears that at least “ex-
treme” distributions of the eigenvalues (when they are not randomly distributed,
but lumped together near integers for example) carry with them “extreme” geo-
metric situations (in our example the closedness of the geodesics). According to an
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announcement in [Si75], this answers in principle the classical question “Can you
hear the shape of the drum?” (Mark Kac) which had already motivated [MS].

?

Further, a gate opened to the “inverse problem”2 of “mathematical modelling” of
real phenomena: Theoreticians frequently and perforce only “apply” theory; i.e.,
they try, similar to the axiomatic method within mathematics, to draw conclusions
as far-reaching as possible about the concrete behavior from relatively modest as-
sumptions about the existence of certain laws. Conversely, the practitioner needs
in general the “inverse” of the theory, namely the exposure of regularities in the
observations at hand. (Somewhat overstated, the practitioner desires to fit a curve
to given measurements, while the theoretician sees his strength in a detailed dis-
cussion of the properties of a given curve.) In this sense, the novelty consists in the
attempt to estimate the parameters of a differential equation, when information
about special solutions (eigenfunctions and eigenvalues, for example) is available.
The following last chapter contains a survey on some reformulations, applications
and generalizations of the Atiyah-Singer Index Formula.

2According to a communication by Richard Bellmann, the “inverse problem” in its most
general formulation goes back to Carl Gustav Jacob Jacobi (1804-1851). Today, the Inverse
Problem is studied frequently in very different contexts, reaching from algebraic problems [Ul,

p.32] “structure identification and parameter estimation” in control theory. A special version
of the Inverse Problem is the inversion of spectral analysis, “spectral synthesis”, which goes far
beyond the newer results of Riemannian geometry presented here [Ben].



CHAPTER 14

Applications (Survey)

With the Atiyah-Singer Index Formula, we proved “one of the deepest and
hardest results of mathematics” which “is probably enmeshed more widely with
topology and analysis than any other single result” [HiZa, VIII]. In this book, we
are mainly interested in the varied sources and parts which flow together or are put
together in the Index Formula. But the formula itself is of great interest also. It can
express important and far-reaching ideas in various areas of application, through
numerous corollaries, specializations, reformulations and generalizations.

The appraisals of the role of the Atiyah-Singer Index Formula in these applications
are contradictory: On the one hand, it permits us to attack complicated topolog-
ical questions with relatively simple analytic methods; on the other hand, this
formula frequently serves only “to derive a number of wholly elementary identities,
which could have been proved much more easily by direct means.” This is the
judgement of Friedrich Hirzebruch and Don Zagier about the relationship between
the Index Formula and topics from elementary number theory. Some of the fol-
lowing principal theorems, which at first could be proved only in the framework
of the Atiyah-Singer theory, have been proved directly in the meantime. This is
true for the general Riemann-Roch Theorem (see Section 14.7 below) in [TT], its
consequences for the classification of certain algebraic surfaces drawn by Kunihiko
Kodaira in [Hi73], and for some of the vector field computations of Atiyah-Dupont
(see Section 14.5) in [Kos]. There is much that is unclear in the relationship be-
tween the Atiyah-Singer Index Theorem and its applications. It is important and
interesting that these many relationships exist, although considerable future efforts
will be required to bare the real reasons for these relationships, and, in the end,
to better understand the unity of mathematics and the specifics, and interrelation-
ships of its parts. Once again, we quote [HiZa, VII]: “That a connection exists,
a number of people realized essentially at the same time.... And since neither we
nor anybody knows why there must be such a connection, this seemed like an ideal
topic for a book in order to confront other mathematicians with a puzzle for their
embarrassment or their entertainment – as the case may be.” While some of the
following areas of applications will be presented in more detail in Part IV, this
chapter is more of an overview and a literature survey.

1. Cohomological Formulation of the Index Formula

In Theorem 13.1 (p. 295), the Index Formula is phrased in the language of
K-theory: Its right side only involves vector bundles and operations vector bun-
dles. The conversion to cohomological form is carried out in [Ati68b, p.546-559].
While the individual calculations are somewhat complicated (if more or less routine
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topological exercises days), the underlying method (namely, the construction of a
“functor” that assigns to each vector bundle a “characteristic” cohomology class of
the base X of E with coefficients in Z, Q, or R) is rather clear. Here, we follow
[MilS].

Let E be a complex vector bundle of fiber dimension N over paracompact
space X, with projection π : E → X, and let E0 be the subspace of E obtained
by removing the zero section. As a real vector bundle of fiber dimension 2N , E is
oriented, since all complex bases e1, ..., eN of the fiber Ex, x ∈ X, yield real bases e1,
ie1, e2, ie2, . . . ,eN , ieN of the same orientation. In the language of cohomology, an
orientation for Ex is the choice of a generating element Ox for H2N (Ex, Ex\{0} ;Z).
Now, the following observations go back to R. Thom:

(i) Hi(E,E0;Z) = 0 for all i < 2N .
(ii) The orientation of E defines a “total orientation class” U ∈ H2N (E,E0;Z)

by the condition (jx)∗U = Ox for all x ∈ X, where jx : (Ex, Ex \ {0})→ (E,E0) is
the embedding.

(iii) Via the cup product u 7→ π∗ (u)∪U , u ∈ Hi(X;Z), with the orientation
class U , an isomorphism Φ : H∗(X;Z) ∼= H∗(E,E0, 2E) is defined which raises the
dimension of the cohomology classes by 2N . This is the Thom isomorphism that
can be given more generally for all real, oriented vector bundles of arbitrary fiber
dimension. For a comparison with the Bott isomorphism of K-theory, see [Ati68b,
p.546-559].

The N -th Chern class cN (E) of E is the class Φ−1(U ∪ U) ∈ H2N (X;Z), the
total Chern class

c(E) = 1 + c1(E) + ...+ cN (E); ci(E) ∈ H2i(X,Z)

is obtained (for example) by the axiomatic conditions of functoriality (i.e., f∗c(E) =
c(f∗E) for f : Y → X) and homomorphy (i.e., c(E⊕F ) = c(E)∪c(F )). Because of
this homomorphism property, the Chern classes are not only defined on Vect(X),
but also on K(X), since c(E) = 1 if E is a trivial bundle.

By means of the formal factorization c(E) = (1 + y1) ∪ · · · ∪ (1 + yN ) with
yi ∈ H2(X,Z), where the −yi. are the hypothetical “zeros” of the polynomial
1 + c1(E)t+ ...+ cN (E)tN , one obtains the Chern character

ch(E) :=
∑N

i=1
eyi = N +

∑N

i=1
yi +

1

2!

∑N

i=1
y2
i + · · ·

which extends to a ring homomorphism ch : K(X) → H∗(X;Z), thereby provid-
ing a natural transformation from K-theory to singular cohomology theory with
rational coefficients and compact support.

Results. a) If P is an elliptic operator on a closed oriented manifold X of
dimension n, then we have

indexP = (−1)n(n+1){Φ−1ch[σ(P )] ∪ τ(TX ⊗ C)} [X] .

Here [σ(P )] ∈ K(X) is the difference bundle of the symbol σ(P ) of P , ch[σ(P )] ∈
H∗(TX;Q) is its Chern character, Φ : H∗(X;Q)→ H∗(TX, (TX)0,Q) = Hc(TX;Q)
is the Thom isomorphism, [X] ∈ Hn(X;Q) is the fundamental cycle of the orien-
tation of X, and

τ(E) :=
y1

1− e−y1
· · · · · yN

1− e−yN
∈ H∗(X;Q)
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is the Todd class of the complex vector bundle E of fiber dimension N , whose
Chern class is factored as above. (Here, take E to be the complexification TX ⊗C
with fiber dimension n.) Incidentally, by means of Riemannian geometry one can
express ch(E) and τ(E) by the “curvature matrix” of the vector bundle E which
one equips with a Hermitian metric; e.g., see [AS68b, p.551] and [APS73, p.310],
or Section 16.7.

b) More generally, one can drop the orientability of X and obtain the formula

indexP = (−1)n {ch[σ(P )] ∪ π∗τ(TX ⊗R C)} [TX].

Here [TX] is the fundamental cycle of the tangent bundle TX which admits an
orientation as an “almost-complex manifold” (namely, divide the tangent space
of TX into a “horizontal” = “real” and a ”vertical” = “imaginary” part); and
π : TX → X is the projection. The calculation of the right sides in a) and b),
naturally involves only the evaluation the highest dimensional components of the
cup product of the respective fundamental cycles.

2. The Case of Systems (Trivial Bundles)

In [Ati68b, p.600-602], a drastic simplification of the Index Formula is proved
for the case of trivial vector bundles (i.e., the elliptic operator P is applied to a
system of N complex-valued functions). The symbol of such an operator is then a
continuous map σ(P ) : SX → GL(N,C), where SX is the unit sphere bundle of
X. Look at the induced cohomology homomorphism (σ(P ))∗ : H∗(GL(N,C)) →
H∗(SX) (coefficients arbitrary), it becomes evident that in order to obtain a use-
ful formula in this case, one must know something about the cohomology of the
Lie group GL(N,C). Since the unitary group U(N) is a deformation retract of
GL(N,C) we have H∗(GL(N,C)) = H(U(N)). Moreover, since we have a natural
map ρN : U(N)→ U(N)/U(N − 1) = S2N−1, we may obtain all essential informa-
tion on H∗(GL(N,C)) from the well-known cohomology of S2N−1. More precisely:
Let ui ∈ H2i−1(S2i−1) be the natural generating element, where S2i−1 is oriented
as the boundary of the ball in Ci. Then set hii : (ρi)

∗
(ui) ∈ H2i−1(U(i)); e.g.,

hNN ∈ H(U(N)). For i ≤ N , we obtain additional elements hNi ∈ H2i−1(U(N)) by
means of the the normalization condition j∗hNi = hii, where j : U(i)→ U(N) is the
canonical embedding. The hNi (i ≤ N) which form a system of generators for the
algebra H∗(U(N)).

Results. For an elliptic system P of N pseudo-differential equations for N
complex-valued functions on a closed manifold X of dimension n, we have

a)

indexP = (−1)n
{∑N

i=1
(−1)

i−1 (σ (P ))
∗
hNi

(i− 1)!
∪ τ (X)

}
[SX] .

Here [SX] is the fundamental cycle of the canonical orientation of SX and τ(X)
is the lift to SX of the Todd class of the complexification of TX; see Section 14.1
above.
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b) If n ≤ 3 or if X is a hypersurface in Rn+1, then τ(X) = 1, and hence

index(P ) =


(−1)

N+n−1 (σ(P ))∗hNn
(n−1)! for N > n

−mapping degree (ρ◦σ(P ))
(n−1)! for N = n

0 for N < n.

For the determination of the mapping degree of the composition ρ ◦ σ (P ) : SX →
S2n−1, see [BJ, 14.9.6-10].

c) In the framework of Hodge theory (which provides a canonical isomorphism
between the “harmonic differential forms” of degree p on a manifold and the p-th co-
homology of the manifold with coefficients in C – see also Section 14.4 below), there
are explicit differential forms ωi ∈ Ω2i−1(U(N)) (so-called “bi-invariant forms”),
which represent the generators hNi . If π : SX → X is the projection, τ ∈ Ω∗(X) is
the total differential form corresponding to the Todd class (involving the curvature

of the Riemannian manifold X) and ω :=
∑N
i=1

(−1)i−1ωi
(i−1)! ∈ Ω2i−1(U(N)) is the

“total bi-invariant form”, then one obtains the integral formula

indexP = (−1)n
∫
SX

σ (P )
∗
ω ∧ π∗τ .

3. Examples of Vanishing Index

In a series of special cases one can conclude that the index of an operator
vanishes by using the index formula in Theorem 13.1 (p. 295) or its alternative
formulations in Sections 14.1 and 14.2 above, without having to go through all
of the somewhat complicated topological computations. For some of these results
[e.g., for a) and the special case N = 1 and n > 2 in b)], one does not need the full
index formula, but rather only the simpler theorem (see Exercise 12.2, p. 290) that
the index is a homomorphism K(TX)→ Z.

Results. Let X be a closed manifold of dimension n, E,F ∈ VectN (X) and
P ∈ Ellk(E,F ). Then we have index(P ) = 0 in the following cases

a) n odd and P a differential operator.
b) N < n and (X a hypersurface in Rn+1or n ≤ 3)
c) N = n/2 and Euler number e(X) 6= 0
d) N = n/2 and n not divisible by four
e) N < n/2.

 and E and F trivial

Arguments. We went over b) in Result b) . The derivation c)–e) from the Result
a) of Section 14.2 can be found in [AS68b, p.602 f]We show that a) follows very
nicely from Result b) of Section 14.1: Let α : ξ → −ξ be the antipodal map on
the tangent bundle TX. Since σ(P ) at the point x written in terms of a matrix of
homogeneous polynomials of the k-th degree with coefficients in C and coordinates
in T ∗xX as variables, we have the symmetry condition

(14.1) σ(P ) (α(ξ)) = (−1)kσ(P )(ξ), ξ ∈ TxX.

Here we have identified TX and T ∗X by means of a Riemannian metric on X. Via
multiplication by eitπ, t ∈ [0, 1], one obtains a homotopy in IsoSX(E,F ) from σ(P )
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to −σ(P ), hence [σ(P )] and [−σ(P )] are equal in K(TX). We can then neglect the
sign in (14.1) and obtain

(14.2) α∗ [σ(P )] = [σ(P )]

if P is a differential operator. We now apply Result b) of Section 14.1:

indexP = (−1)n {ch [σ(P )] ∪ τ(X)} [Tx]

= (−1)n {α∗ch [σ(P )] ∪ τ(X)} (α∗[TX])

= (−1)n {ch [σ(P )] ∪ τ(X)} ((−1)n[TX])

= −index P, whence indexP = 0.

Here we have used (14.2) in the third equality, to obtain α∗ch [σ(P )] = ch [σ(P )]
in H∗(TX,Q). Note also that α inverts only the vertical part of the tangent space
TX, leaving the horizontal part unchanged: in local coordinates (x1, ..., xn), with
ξ represented by (x1, ..., xn, ξ1, ..., ξn) where ξ =

∑
ξidx

i, we have α(ξ) represented
by (x1, ..., xn,−ξ1, ...,−ξn). Thus, the orientation of TX is reversed by α, precisely
when n is odd.

Incidentally, with somewhat more topology, (see [AS68b, p.600] one can show
directly for odd n and P a differential operator that σ(P )(α(·)) and (σ(P )(·))−1 are
stably homotopic, whence [σ(P )] + [σ(P )] = 0 and [σ(P )] is of finite order. Then
indexP ∈ Z must also be of finite order and hence zero, since index : K(TX)→ Z
is a homomorphism. In this way, one obtains a) without recourse to the explicit
index formula.

One can also directly prove e) for the special case N = 1 and n > 2 without
the full index theorem (see also Exercise 9.15, p. 239, and the literature given there,
where the same result is derived topologically in a “pedestrian” way). For trivial
line bundles the space of elliptic symbols can be expressed very simply: Since
GL(1,C) = C× can be contracted to the circle S1, the index is defined on the set
of homotopy classes [SX,S1] = H1(SX;Z). Since (by Exercise 9.14, p. 239) the
index of an elliptic operator P is zero when its symbol σ(P ) depends only on x
(and not on ξ ∈ (SX)x), it follows that the index vanishes on the image of π∗ in
the following long exact cohomology sequence:

· · · → H1(BX) → H1(SX) → H2(BX,SX)→ H2(BX)→ · · ·
↗π∗ ↓ index

H1(X) Z
(We have omitted the coefficient ring Z from the cohomology groups here.) As
we already reported in (i) of Section 14.1 above, by a classical result of R. Thom,
H2(BX,SX;Z) = 0 for n > 2, whence π∗ is surjective. Thus, we have proved
that indexP = 0 for each elliptic operator P defined on the space of complex-
valued functions on a manifold of dimension > 3. Compare with [Ati70a, p.103 f],
where similar topological arguments are needed in certain cases for n = 2 and for
nontrivial bundles.

4. Euler Number and Signature

We have seen already how (e.g., in our proof of the Bott Periodicity Theorem)
analytic methods are utilized in topology and, conversely, how the Index Formula
expresses the analytic index by topological means. This deep inner relationship
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between the topology of manifolds and the analysis of linear elliptic operators is
further revealed by the fact that certain invariants of manifolds can be realized as
indices of “classical” elliptic operators which can be defined quite naturally on these
manifolds. A detailed presentation is contained in [May]; for the case bordered
manifolds, which remained obscure for a long time (since the “classical” operators
do not all admit elliptic boundary value systems in the sense of 10-??; see [Bo72]),
we refer to [APS75].

The invariant which we consider here is the Euler number e(X). It is defined
by the observation (a matter of solid geometry and probably known long ago to
Greek mathematicians) that, for every “triangulation” of a closed oriented surface
X, the alternating sum e(X) = α0 − α1 + α2 of the number α0 of vertices (α0),
edges (α1) and faces (α2) is the same and depends only on the number of “handles”,
the “genus” the surface: e(X) = 2 − 2g. (The picture shows the beginning of a
triangulation and the surface has genus 4.)

The Euler number can be interpreted as the alternating sum e(X) = β0 − β1 + β2

of the 0-, 1- and 2-dimensional “holes” whereby the interior of X consists of a 0-
dimensional and g 1-dimensional holes and the exterior of further g 1-dimensional
holes and the 2-dimensional total space, thus β0 = β2 = 1 and β1 = 2g.

In the language of singular homology g is the rank of the i-th group of homology
Hi(X;Z), the i-th “Betti number”, and in this form the definition of the Euler
number can be extended to a topological manifold X of dimension n > 2. If the αi
are again defined by a triangulation of X, then we obtain

e(X) = α0 − α1 + · · ·+ (−1)
n
α2 = β0 − β1 + · · ·+ (−1)

n
βn

The Euler number is among the best understood topological invariants. For example
one knows (see e.g., [AH, p.309 and 358], [ST, p.246] and [Gr, p.99-103]):

(i) e (X × Y ) = e (X) · e (Y ) ,
(ii) dimX odd⇒ e (X) = 0,
(iii) e

(
S2m

)
= 2 and e (Pm (C)) = m+ 1

An invariant which is sharper in several aspects (see Section 14.5) is the signa-
ture of an oriented topological manifold X of dimension 4q defined as follows. Let
the real-valued symmetric bilinear form

Q : H2q (X;R)×H2q (X;R)→ R be defined by

Q (a, b) := (a ` b) [X] ,
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where a ` b is the cup product and [X] is the fundamental cycle of the orientation
of X. Then

sig(X) := sig(Q) := p+ − p−

where p+ (resp. p−) denotes the maximal dimension of subspaces of H2q (X;R) on
which Q is positive (resp. negative)-definite.

Q is non-degenerate, whence p+ + p− = β2q (recall βi = dimHi(X;R) =
dimHi(X;R)). Furthermore, the Poincaré duality Hi(X;R) ∼= H4q−i(X;R) im-
plies e(X) ≡ β2q mod 2, and we obtain the formula

(iv) dimX = 4q ⇒ e(X) ≡ sig(X) mod 2.

We now want to describe these two invariants analytically, when the oriented,
closed manifold X, with dimX = n even, is equipped with a differentiable structure
and a Riemannian metric. Referring to Exercise 6.17 (p. 169) and Section 13.2
above, let Ω :=

⊕n
j=1 Ωj be the space of (complexified) exterior differential forms,

with exterior derivative d : Ω→ Ω and its adjoint d∗ : Ω→ Ω.
Results. a) The operator d+ d∗ : Ω→ Ω is an elliptic, self-adjoint differential

operator of order 1, whence index(d + d∗) = 0. To show the ellipticity, one first
checks that

(14.3) σ(d)(x, ξ)ν = iξ ∧ ν and σ(d∗)(x, ξ)ν = −i ∗ (ξ ∧ ∗ν),

For this, note that

ν ∈ Ωk, α ∈ Ωk+1 ⇒ ∗α ∈ Ωn−(k+1) and ξ ∧ ∗α ∈ Ωn−k.

Thus, if µ is the volume element, we have

〈ξ ∧ ν, α〉µ = (ξ ∧ ν) ∧ ∗α = (−1)
k
ν ∧ (ξ ∧ ∗α)

= (−1)
k
ν ∧

(
(−1)

(n−k)k ∗ ∗
)

(ξ ∧ ∗α) = (−1)
nk 〈ν, ∗ (ξ ∧ ∗α)〉µ

= 〈ν, ∗ (ξ ∧ ∗α)〉µ .

since n is even. The square of d+ d∗ is the (Hodge) Laplace operator

∆ := (d+ d∗)2 = dd∗ + d∗d : Ω→ Ω

which is of order 2 and homogeneous (i.e., ∆
(
Ωj
)
⊆ Ωj). The ellipticity d+d∗, (as

well as that of ∆) follows, once it is shown that

(σ(d+ d∗)(x, ξ) ◦ σ(d+ d∗)(x, ξ)) ν = ‖ξ‖2 v,

since then (σ(d+ d∗)(x, ξ))
−1

= ‖ξ‖−2
σ(d+ d∗)(x, ξ). We have

(σ(d+ d∗)(x, ξ) ◦ σ(d+ d∗)(x, ξ)) ν

= iξ ∧ (iξ ∧ ν − i ∗ (ξ ∧ ∗ν))− i ∗ (ξ ∧ ∗ (iξ ∧ ν − i ∗ (ξ ∧ ∗ν)))

= ξ ∧ (∗(ξ ∧ ∗ν)) + ∗(ξ ∧ (∗ξ ∧ ν − ∗ ∗ (ξ ∧ ∗ν)))

= ξ ∧ (∗(ξ ∧ ∗ν)) + ∗((ξ ∧ ∗ξ ∧ ν − ξ ∧ ∗ ∗ (ξ ∧ ∗ν)))

= ξ ∧ (∗(ξ ∧ ∗ν)) + ∗((ξ ∧ ∗ (ξ ∧ ν)± ξ ∧ ξ ∧ ∗ν))

= ξ ∧ (∗(ξ ∧ ∗ν)) + ∗((ξ ∧ ∗ (ξ ∧ ν)) = ‖ξ‖2 ν,

where suffices to check the last equality for ‖ξ‖ = 1 in the case ν ∈ Λk
(
ξ⊥
)
, and in

the case ν = ξ ∧ η where η ∈ Λk−1
(
ξ⊥
)
, both of which are straightforward (extend

ξ to an oriented, orthonormal basis).
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For ∆j := ∆|Ωj , we have the “main theorem of Hodge theory”

Ker
(
(d+ d∗) |Ωj

)
= Ker ∆j

∼= Hj(X;C).

Moreover, there is a splitting of Ωj into an L2 orthogonal direct sums

Ωj = Ker ∆⊕ Im ∆ = Ker ∆⊕ Im dj−1 ⊕ Im d∗j .

For the details, see Theorem 18.57, p. 571, and Corollary 18.58.
b) By restricting d + d∗ to the space Ωeven :=

⊕
j even Ωj of even forms, we

obtain an elliptic differential operator

(d+ d∗)even : Ωeven → Ωodd :=
⊕

j odd
Ωj

of order 1. By b) we have

index ((d+ d∗)even) =
∑
j even

dim Ker ∆j −
∑
j odd

dim Ker ∆j

=
∑
j even

dimHj(X;C)−
∑
j odd

dimHj(X;C) = e(X).

c) If n ≡ 0 mod 4, say n = 4q, and τ : Ω → Ω is the involution (defined by
(13.1), p. 298) with the ±1-eigenspaces Ω±, then (d+ d∗) (Ω+) = Ω−. We show
that the index of the elliptic operator (d+ d∗)+ : Ω+ → Ω− is given by

(14.4) index(d+ d∗)+ = sig(X).

First note that since ∆ and τ commute, it follows that

Ker(d+ d∗)+ = (1 + τ) Ker ∆ =

2q⊕
j=0

(1 + τ) Ker ∆j and

Ker
(
(d+ d∗)+

)∗
= Ker(d+ d∗)− = (1− τ) Ker ∆ =

2q⊕
j=0

(1− τ) Ker ∆j .

For j < 2q (strict), (1− τ) Ker ∆j
∼= Ker ∆j

∼= (1 + τ) Ker ∆j , and so

index(d+ d∗)+ = dim Ker(d+ d∗)+ − dim Ker(d+ d∗)−

= dim ((1 + τ) Ker ∆2q)− dim ((1− τ) Ker ∆2q)

= dim ((1 + ∗) Ker ∆2q)− dim ((1− ∗) Ker ∆2q) ,

where we have used the fact that for v ∈ Ω2q,

τ (v) = i2q(2q−1)+2q ∗ v = i4q
2

∗ v = ∗v.

For n = 4q and k = 2q, we have ∗2|Ωk = (−1)
k(n−k)

= Id. Hence, for v ∈ Ker ∆2q
∼=

Hj(X;C), we get∫
X

v ∧ v =

∫
X

v ∧ (∗ ∗ v) =

∫
X

〈v, ∗v〉 =

{
≥ 0 for ∗ v = v
≤ 0 for ∗ v = −v,

and so index(d+ d∗)+ = p+ − p−; i.e., (14.4) holds.
d) As defined in Section 14.1, let U ∈ Hn (TX, (TX)0) be the orientation

class and let Φ : Hn (X) → H2n (TX, (TX)0) be the Thom isomorphism. There
is a characteristic class χ (TX) = Φ−1 (U ` U) ∈ Hn (X;Z), namely the Euler
class of the tangent bundle TX, for which χ (TX) [X] = e(X). The class χ (TX)
is represented by the a certain n-form GB

(
Ωθ
)
, the Gauss-Bonnet form, which is
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defined in terms of the curvature Ωθ of X; i.e., GB
(
Ωθ
)

is a multiple of the Pfaffian

of Ωθ. Thus,

(14.5) e(X) =

∫
X

GB
(
Ωθ
)
,

and this is known as the Gauss-Bonnet-Chern formula. The formula (14.5) is
proved directly (i.e., without reference to U , Φ, or the fact that Φ−1 (U ` U) [X] =
χ (TX) [X] = e(X)) using the Local Index Theorem in Part IV (see Theorem 18.63,
p. 580) applied to certain components of the operator (d + d∗)even. When n = 2,
the formula reduces to the classical result e(X) = 1

2π

∫
X
K of C. F. Gauss and O.

Bonnet, where K is the Gaussian curvature of the closed surface X.
e) If n = 4q, the signature sig(X) can also be expressed as

(14.6) sig(X) = Lq (p1, . . . , pq) [X] =

∫
X

Lq (p̃1, . . . , p̃q) ,

which is known as the Hirzebruch Signature Formula. Here the pj are the Pon-
tryagin characteristic classes which are defined in terms of Chern classes via pj :=

(−1)
j
c2j (TX ⊗ C) and the polynomial Lq (p1, . . . , pq) (in which the pj are multi-

plied via cup product) is described as follows. We have an expansion

x1

tanhx1
· · · xq

tanhxq
=

∞∑
k=1

Lk (σ1, . . . , σq)

where σ1, . . . , σq denote the elementary symmetric polynomials in x2
1, . . . , x

2
q and

Lk (σ1, . . . , σq) is ultimately homogeneous of degree k in x2
1, . . . , x

2
q. We then replace

σ1, . . . , σq in Lq (σ1, . . . , σq) by p1, . . . , pq to obtain Lq (p1, . . . , pq). In particular,
L1 (p1) = 1

3p1, L2 (p1, p2) = 1
45

(
7p2 − p2

1

)
, etc.; see (16.109), p. 421. One can

represent pk by a 4k-form p̃k which involves the curvature tensor of X. The formula
for p̃k in terms of the curvature tensor of X is found in Section 16.7, specifically
(16.100), p. 418, where p̃j is denoted there by pk

(
Ωθ
)

to indicate its dependence on

the curvature form Ωθ of the Levi-Civita connection θ. In Lq (p̃1, . . . , p̃q) the forms
p̃k are multiplied via wedge product. For a statement and proof (using the Local
Index Theorem) of the twisted generalization of the Hirzebruch Signature Formula,
see Theorem 18.60, p. 574.

5. Vector Fields on Manifolds

Among the basic concepts of the analysis of a dynamical system, as well as of
the geometry of a differential manifold X, is the notion of a “vector field”. It is
a C∞ section v of the tangent bundle (in classical terminology a “variety of line
elements”), thus v ∈ C∞(TX).
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X

x

Each v defines an ordinary differential equation c′(t) = v(c(t)) for differentiable
paths (“trajectories”) c : R→ X. According to the classical existence and unique-
ness theorems, the equation has a unique solution (at least defined on some open
interval about 0) for any given “initial value” c(0) = x ∈ X; for details see [BJ,
p.74-87]. In every theory of flows the “singularities” in Σ := {x ∈ X : v(x) = 0} are
of special interest, as they are the “stagnation points” of dynamics, the equilibrium
points, or the so-called “stationary solutions” (the constant paths c(t) = x). For
applications, one may think intuitively of examples from oceanography, of a mag-
netic field, or of dynamic laws of economics. We saw above in Section 11.1 that
every isolated singularity x of a vector field v defines locally a map Sn−1 → Sn−1,
n = dimX, whose mapping degree we denote by Iv(x). The geometric interest in
vector fields usually stems from the question of “parallelizability” of the manifold:
Is it possible to assign to a tangent vector v ∈ TxX at a point x a tangent vector
v′ ∈ Tx′X “parallel” to v in a way which is independent of the path from x to x′

used in the process?

x

x 0

v 0

v

X

This question is important for the physical notion of space and finally for the analy-
sis of motion (since the concept of acceleration depends on parallel displacement).
It is equivalent to the question of whether an n-dimensional manifold X possesses
n vector fields that are linearly independent at each point x ∈ X; i.e., whether the
tangent bundle TX is trivial. (For example, by a famous theorem of J. F. Adams,
Sn−1 is parallelizable if and only if Rn is a “division algebra”, i.e., for n = 2m and
m = 1, 2, 4.)

The geometrical idea and also the historical origin (with Eduard Stiefel, 1935,
and almost simultaneously and in a similar connection with Hassler Whitney) of
the topological invariants of Riemannian or complex manifolds (nowadays called
“characteristic classes”– see Section 14.1 above) lies in the general investigation of
r vector fields v1, ..., vr on a manifold and their singular set Σ consisting of those
points x where, v1 (x) , ..., vr (x) are linearly dependent. One knows, for example,
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that set Σ generically has dimension r−1, and that the “cycle” Σ defines a homology
class (with suitable coefficient group) which is a “characteristic class” of X and is
independent of v1, ..., vr; see also the large survey [Th].

The index formula (see Section 14.1 above) says that the symbol of an elliptic
operator is a kind of characteristic class, and its index is a “characteristic” inte-
ger. From this arose the program to illuminate the connection between elliptic
operators and vector fields on manifolds. Specifically, the existence of a certain
number of vector fields implies certain symmetry properties for “classical opera-
tors” and corresponding results for their indices such as Euler number, signature
and “characteristic numbers”.

Results. Let X be a closed, oriented, Riemannian manifold.
a) Each vector field v “generically” has only finitely many zeros (i.e., by an

arbitrarily small perturbation a vector field can be put in this form), and we have
e(X) =

∑
x∈Σ Iv(x), where Iv(x) is the local index of v at x defined above. Thus,

the right side of the formula consists of the finite weighted sum of zeros of v.
b) If dimX = 4q and X has a tangent field of 2-dimensional planes (i.e., an

oriented 2-dimensional subbundle of the tangent bundle), then e(X) ≡ 0 mod 2 and
sig(X) = e(X) mod 4.

c) If the 4q-dimensional manifold X has at least r vector fields that are inde-
pendent everywhere, then sig(X) = 0 mod br, where the values of br are given in
the following table (br+8 = 16br):

r 1 2 3 4 5 6 7 8
br 2 4 8 16 16 16 16 32

Arguments: For dimX = 2, a) is a classical result of H. Poincaré, for which one
can find a very clear sketch of the proof in [Bri76, p.166-171]. The generalization
for dimX > 2 originated from H. Hopf, who also showed that e(X) = 0, if and
only if, there is a nowhere zero vector field on X. For b) and c), we refer to [May],
[Ati70c] and [AD], where a series of related results are proved by combining results
of analysis, topology, and algebra, and in some cases using the theory of real elliptic
operators (see Section 14.9 below). To illustrate the methods, we will only treat
the theorem

∃v ∈ C∞(TX) with v(x) 6= 0 ∀x ∈ X ⇒ e(X) = 0.

One can obtain this from the explicit Atiyah-Singer Index Formula or the Gauss-
Bonnet Formula which says that e(X) = χ(TX)[X] (see Section 14.4d). By defi-
nition, χ(TX) = Φ−1(U ` U) = ṽ∗i∗U , where U ∈ Hn(BX,SX;Z) is the orien-
tation class of TX, Φ : Hj(X;Z) → Hj+n(BX,SX;Z) is the Thom isomorphism,
i : (BX,φ)→ (BX,SX) is the trivial embedding, and ṽ : X → BX is the normal-
ized vector field ṽ = v/ |v|, where |v| 6= 0 by assumption. Since iṽ(X) ⊂ SX, we
have ṽ∗i∗ = 0.

To get the same result, without recourse to the explicit index formula, one
can apply the general theory of elliptic operators (see Chapter 9 above) and the
results of Section 14.4 b and c of Hodge theory. The key issue for this is the fact
that σ(d + d∗)(x, ξ)w = iξ × w for x ∈ X, ξ ∈ T ∗xX, and w ∈ Λ∗(T ∗xX). Here
× : Λ∗ (V ) × Λ∗ (V ) → Λ∗ (V ), V := T ∗xX is the Clifford product (in contrast to
the “exterior” multiplication) given (in particular) for ξ ∈ T ∗xX and w ∈ Λ∗(T ∗xX)
by

ξ × w = ξ ∧ w − ξxw and w × ξ = ξ ∧ w − wyξ
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where x and y are left and right interior multiplication. [Note ξxw = ∗(ξ ∧ ∗ν)
when n is even, so that indeed σ(d + d∗)(x, ξ)w = iξ × w by (14.3), p. 311]. A
general treatment of Clifford algebras is provided in Section 18.1. By means of
the Riemannian metric on X, a vector field v can be regarded as a 1-form which
yields a 0-th order differential operator Rv : Ω∗ (X) → Ω∗ (X) given by Rv (u) :=
u × v, u ∈ Ω∗ (X) (i.e., via pointwise right Clifford multiplication by v). Since

(u× v)× v = u× (v × v) = − |v|2 u, |v| > 0 implies that Rv is a automorphism of
Ω∗ (X) which maps Ωeven/odd (X) bijectively to Ωodd/even (X). Since

Rv ◦ σ(d+ d∗)(x, ξ) = w(iξ × w)× v(x)

= iξ × (w × v(x)) = σ(d+ d∗) ◦Rv(x, ξ),

σ(d+ d∗) commutes with σ (Rv) = Rv. Let Rodd
v := Rv|Ωodd(X). Then(

Rodd
v

)−1 ◦ (d+ d∗)even ◦Rodd
v − (d+ d∗)odd ∈ OP0 .

Using ((d+ d∗)even)
∗

= (d+ d∗)odd, we then have

index(d+ d∗)even = index
((
Rodd
v

)−1
(d+ d∗)even ◦ ◦Rodd

v

)
= index(d+ d∗)odd = − index(d+ d∗)even,

whence e(X) = index(d+ d∗)even = 0.

6. Abelian Integrals and Riemann Surfaces

Perhaps one of the first (in our topological sense) “quantitative” results of
analysis is contained in the major work of the Norwegian mathematician Niels
Henrik Abel entitled “Mémoire sur une propriété générale d’une classe trés étendue
de fonctions transcendantes”. It was written in 1826, but published only posthu-
mously in 1841. In it Abel takes up a dispute of the numerical analysis of the
18th century about “rectifiability”, the possibility of solving integrals by means of
elementary functions (algebraic functions, circular functions, logarithm and expo-
nential functions). Since Jakob Bernoulli and Gottfried Wilhelm Leibniz1 there
was an interest particularly in the integration of irrational functions, turn up in
many problems of science and technology. The efforts (already of the 17th cen-
tury) to rectify the ellipse, whose arc length important for astronomy, leads to the
computation of the integral

I (x) = a

∫ x

0

1− k2t2√
(1− t2) (1− k2t2)

dt, k = 1− b2

a2
.

While investigating the deformation of an elastic rod under the influence of forces
acting at its extremities, Jakob Bernoulli (1694) came across further irrational
integrands. In this connection he also introduced the “lemniscate”{

(±
√

(x2 + x4)/2,±
√

(x2 − x4)/2) : 0 ≤ x ≤ 1
}
,

whose arclength is given by

I (x) =

∫ x

0

dt√
1− t4

.

1Who drew the attention of the mathematicians to constructions and curves “quas natura

ipsa simplici et expedito motu producere potest” (which nature itself can produce by simple and

complete motions), quoted after [BN, p.124]. See also [Kli, p.411 f].
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x

x

I(x/a) I(x)

(For this and the following, see [Sie, 1.1-1.2].) For the “lemniscate integral” Leon-
hard Euler proved (1753) the addition theorem

I(u) + I(v) = I(w) where w =
u
√

1− v4 + v
√

1− u4

1 + u2v2

It generalized a result of the Italian mathematician Giulio Carlo de’Toschi di Fag-
nano (1714) on the doubling of the circumference of the lemniscate with compass
and ruler alone:

2I(u) = I(w) for w2 =
4u2

(
1− u4

)
(1 + u4)

2

Prior to this, Johann Bernoulli (1698) “accidentally” discovered that the difference
of two arcs of the cubic parabola (y = x3) is integrable by elementary functions
and added to,the problem of rectifying curves2 the new problem of finding arcs
of parabolas, ellipses, hyperbolas etc. whose sum or difference is an elementary
quantity – “just as arcs of a circle could be compared with one another through the
expressions for sin(α+ β), sin 2α, etc.” [BN, p.206].

A little later L. Euler succeeded in extending his addition theorem for the
leminiscatic integral to “elliptic integrals of the first kind” i.e., in proving that

(14.7) I(u) + I(v) = I(w) with w =
u
√
P (v) + v

√
P (u)

1 + u2v2
, where

I(u) =

∫ u

0

dt√
P (t)

and P (t) := 1 + at2 − t4

Based on a comparison of elliptic arcs also due to Fagnano, Euler finally found
another generalization to “elliptic integrals of higher kind”. These are integrals of
the form

I(u) =

∫ u

0

r (t)√
P (t)

dt,

where r is a rational function in one variable and P is a polynomial of third or
fourth degree with simple zeros. Here the addition theorem takes the form

(14.8) I(u) + I(v) = I(w) +W (u, v)

where w is, as above, an algebraic function of the arbitrary upper integration limits
u and v and W (u, v) = S1(u, v) + logS2(u, v) with rational functions S1, S2.

2It was suspected already that this was impossible. But only in 1835, did J. Liouville prove

rigorously that the “elliptic integrals” could not be solved “elementarily”, i.e., expressed by a

finite combination of algebraic, circular, logarithmic and exponential functions. (As an aside, it
is now known that the problem of the elementary integration of arbitrary functions is recursively

undecidable.)
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Euler already noticed that his methods cannot be used for the treatment of
“hyperelliptic integrals” (with a polynomial P of fifth or higher degree). But only
N. H. Abel found the explanation for “the difficulties which Euler’s formulation
necessarily encountered when dealing with hyperelliptic integrals: The constant of
integration (I(w) in (14.7) or (14.8)), appearing in the transcendental equation,
could not be replaced, as in the elliptic case, by a single integral but only by two
or more hyperelliptic integrals – a remarkable circumstance which was in no way
predictable... The question about the minimal number of integrals which a given
sum of integrals could be reduced, remained as the cardinal question; it caused Abel
to produce the elaborate and laborious counts which constitute the main results of
his great Paris paper and which brought him into the possession of the notion of
“genus” of an algebraic structure long before Riemann” [BN, p.211 f]

Abelian Addition Theorem. Let R be a rational function and F a polyno-
mial in two variables. For a, x ∈ R (a fixed), consider the “Abelian integral” I(x) :=∫ x
a
R(t, y)dt, where y satisfies the equation F (t, y) = 0. (For F (t, y) = y2 − P (t)

with P as above and R(t, y) = 1/y, we obtain an elliptic integral of the first kind;
and for R(t, y) = r(t)/y with r a rational function, we get an elliptic integral of a
higher kind.) For a given value of t, there may be several corresponding solutions
(“roots”) of the equation F (t, y) = 0. Thus, one must specify which root will be
substituted for y in R(t, y). Hence, one selects an integration path γ : I → C in the
plane (with Re γ(0) = a, Re γ(1) = x, and F (Re γ, Im γ) = 0), and regards I(x) as
a line integral. Then the sum of m (m sufficiently large) arbitrary Abelian integrals
I(xi) with respective fixed integration paths (xi ∈ R, i = 1, ...,m) can be written
as the sum of only g Abelian integrals I(x̂j) (j = 1, ..., g) and a remainder term
W (x1, ..., xm) which is the sum of a rational function S1 and the log of another
rational function S2 of the limits of integration x1, ..., xm:∑m

i=1
I(xi) =

∑g

j=1
I(x̂j) +W (x1, ..., xm), where

where the x̂j = x̂j(x1, ..., xm) are algebraic functions and the number g only depends
on the specific form of the polynomial F .

According to C. G. J. Jacobi, Abel attempted to solve two problems with his
addition theorem, “the representability of an integral by closed expressions”, and
“the investigation of general properties of integrals of algebraic functions” [BN,
p.205]. In fact, for one thing, the addition theorem says something about the rec-
tification question: If g = 0 then I(x) = W (x) for m = 1 where W is constructed
from rational functions and the logarithm. Thus, in this case, the integral I(x) can
be solved by elementary functions. If g > 0 then in general at least g additional
higher transcendental functions are needed, namely the I(x̂j). Most of all, the the-
orem is an addition theorem just like the sum formulas for trigonometric functions,
and can be used in the back-up files of computers as interpolation formulas for
realizing standard functions of science and technology.3

We quoted Abel’s theorem, in order to point out one of the earliest occurrences
of the fundamental invariant g which, as the index, possess the dual character of be-
ing both analytic and algebraic. Without entering a discussion of the deep function
theoretic aspects and geometric interpretations of Abel’s addition theorem, we will

3See Hart, J. F. and E. W. Cheney, Computer Approximations, SIAM Series in Applied
Mathematics, Wiley, New York, 1968, §§1.5, 4.2.
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note some results exhibiting the significance of the quantity g. These essentially
are due to Bernhard Riemann (except c).

Results. a) Each polynomial F (t, y) defines a compact Riemann surface, an
oriented surface with a complex-analytic structure (i.e., a topological manifold with
a distinguished atlas whose coordinate changes are holomorphic functions). Con-
versely, one can define a complex-analytic structure on each compact, oriented
topological surface X such that Xcan be regarded as the Riemann surface of a
polynomial F (t, y).

b) Topologically, a compact Riemann surface X is characterized by its “genus”
g, the number of handles that must be fastened to the sphere in order to obtain X.
Twice g is the number of closed curves needed to generate the first homology of X;
i.e., there are γ1, . . . , γ2g closed curves (namely, along the lengths and girths of the
handles) such that every closed curve γ in X is “homologous” to a unique integral
linear combination

∑
niγi.

g = 2

Analytically (see the Abelian Addition Theorem) X has another invariant, the max-
imal number g1 of linearly independent holomorphic differential forms α1, ..., αg1

of
degree 1 on X. Actually, g = g1; i.e., the “numerical complexity”4 of the Abelian
integral

∫
R(t, y)dt with F (t, y) = 0 is equal to the genus of the Riemann surface F .

In particular, for the elliptic integrals, one obtains an “elliptic curve”, namely the
torus of genus 1 with two generating cycles γ1 and γ2 (For the connection with the
classical notion of “double periodicity” in elliptic integrals, see [Mu, p.149-155], for
example.)

°
1

°
2

More generally, one can define a “periodicity matrix” ωij :=
∫
γi
αj for i = 1, ..., 2g,

which determines the complex-analytic structure of X by a theorem of R. Torelli.
c) On each Riemann surfaceX of genus g there is a “Cauchy-Riemann operator”

∂̄ : f 7→ ∂f
∂z̄ dz̄ which assigns to each complex-valued C∞ function f on X a complex

deferential form of degree 1. ∂̄ is an elliptic operator and index ∂̄ = 1− g.

4Riemann (1857) calls this quanity the “Klassenzahl” (class number). The term “genus”
originated with Alfred Clebsch (1864).
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Arguments: a) and b) follow from the classical theory of Riemann surfaces.
For c), note that dim Ker ∂̄ = 1, since Ker ∂̄ consists of the global holomorphic
functions and these must be constant by the maximum principle. Coker ∂̄ = Ker ∂̄∗

consists of the “(anti-) holomorphic differential forms” which constitute a vector
space isomorphic to the space of holomorphic 1-forms.

One can also directly obtain c) from the Atiyah-Singer Index Formula, since
the Euler class χ(TX) is the only Chern class of a Riemann surface, whence for
some constant C

index ∂̄ = Cχ(TX)[X] = Ce(X) = C(1− 2g + 1) = C(2− 2g).

It is then not difficult to derive that C = 1/2; see also the following Section 14.7
(Results a), c) and d)), which include c) as a special case; and [Mu, p.132-141] where
c) is proven, with these generalizations in mind, in the form “arithmetic genus
= geometrical genus” by elementary geometrical and algebraic tools of classical
projective geometry.

7. The Theorem of Riemann-Roch-Hirzebruch

We deal next with a class of theorems for which the Atiyah-Singer Index For-
mula yields new proofs or generalizations (see d)). According to [BN, p.280 f], who
introduced the term “Riemann-Roch Theorem”, it deals with the “counting of the
constants of an algebraic function”, and more generally, with establishing relations
between the “constants” (number of singularities, degree, order, genus etc.) of an
algebraic curve, algebraic surface or complex manifold. Thus the history and mo-
tivation of “Riemann-Roch” – detailed in [BN]5 – are closely tied to the unsolved
problem of “completely” classifying algebraic varieties, see [Hi73]. We cannot con-
vey the abundance of results in this subject. They are still too scattered and the
diversity of approaches too uncertain6. We therefore restrict ourselves to a few
stages which are essential for us, and where, out of the complexity of the problems,
developed little by little, some unifying, very rich, and consequential aspects:

– Bernhard Riemann’s “transcendental” idea of the analysis on Riemannian
manifolds, i.e., his attempt to consider the totality of integrals of a fixed algebraic
function field (just the Abelian integrals).

– The function theoretic treatment of the problems by Karl Weierstrass.
– The interpretation from the point of view of differential geometry in the lan-

guage of Hodge theory due to Kunihiko Kodaira which was the basis for Friedrich
Hirzebruch’s generalization of Riemann-Roch to higher dimensional algebraic vari-
eties.

Results: a) On a compact Riemann surface X of genus g, we consider mero-
morphic functions w : X → C which have poles at the points xi ∈ X (i = 1, ..., r)
of order at most mi ∈ N and zeros at the points xj ∈ X (j = r + 1, ..., s) of order

5For a function theoretic interpretation of Riemann-Roch, see also [Sie, 4.6-4.7], where
Riemann-Roch is used to prove Abel’s theorem and is expressly called “algebraic” in contrast

to the “transcendental nature” of Abel’s Theorem.
6Alfred Clebsch, “who surely did not lack knowledge and versatility” wrote very openly in a

letter of August 1864 to Gustav Roch that he himself “under- stood very little of Riemann’s treatise
even after greatest efforts, and that Roch’s dissertation remained for the most part incomprehen-
sible to him.” (Quoted after [BN, p.320].) The historical process of “correctly understanding”
the theorem apparently has not reached its conclusion at least as far as algebraic functions are

concerned.
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at least −mj ∈ N. These form a complex vector space L(D) whose dimension l(D)
is given by the following formula

l(D)− l′(D) = deg (D)− g + 1,

x1
X

x2

xs

where D :=
∑s
j=1mjxj (formal sum), deg (D) :=

∑s
j=1mj and l′(D) is the di-

mension of vector space L′(D) of meromorphic differential 1-forms on X with the
corresponding behavior on the zeros and poles.

b) For deg (D) ≥ 2g − 1, l′(D) vanishes, whence one obtains a proper formula
for l(D) in this case.

c) For each formal integral linear combination D of points of X called a divisor),
there is a holomorphic vector bundle {D} of complex fiber dimension 1 such that
L(D) is isomorphic to the vector space Ker ∂̄{D} of holomorphic sections of {D},
and L′(D) is isomorphic to the vector space Coker ∂̄{D} ∼= Ker ∂̄∗{D} of (anti-) holo-

morphic 1-forms “with coefficients in {D}”. Here, ∂̄{D} : Ω0 ({D})→ Ω0,1 ({D}) is

the elliptic differential operator obtained from ∂̄ by “tensoring (see d) below). With
this construction, we can write result a) in the form index ∂̄{D} = deg(D)− g + 1.

d) More generally, one can consider the Dolbeault complex

0→ Ω0 ∂̄→ Ω0,1 ∂̄→ · · · ∂̄→ Ω0,n → 0

for a Kähler manifold X of (complex) dimension n (i.e., a complex manifold with
Hermitian metric

∑
gikdzidz̄k, whose associated 2-form α =

∑
gikdzi∧dz̄k is closed,

i.e., dα = 0). Here Ω0,p denotes the space of complex exterior differential forms of
degree p, which can be written in the form

∑
(i) ai1···ipdz̄i1∧· · ·∧dz̄ip relative to local

coordinates z1, . . . , zn. As in Exercise 6.17b (p. 169), ∂̄ is the exterior derivative.
If V is a holomorphic vector bundle over X, then via tensoring (as above with the
signature operator) one can construct the generalized Dolbeault complex

0→ Ω0 (V )
∂̄V→ Ω0,1 (V )

∂̄V→ · · · ∂̄V→ Ω0,n (V )→ 0,

where Ω0 (V ) = C∞(V ). Using the fact that V is holomorphic, one verifies that
∂̄2
V = 0, and thus one can define the Dolbeault cohomology groups

Hq (OV ) :=
Ker

(
∂̄V |Ω0,q(V )

)
∂̄V (Ω0,q−1 (V ))

.

In analogy with the above definition of the Euler number, one defines the Euler
characteristic of V as

χ (X,V ) :=
⊕n

q=0
(−1)

q
dimHq (OV ) .
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As with Hodge theory in the real category

Hq (OV ) ∼= Hq (V ) := Ker
((
∂̄V + ∂̄∗V

)
|Ω0,q(V )

)
= Ker

(
�̄V |Ω0,q(V )

)
,

where �̄V :=
(
∂̄V + ∂̄∗V

)2
= ∂̄V ∂̄

∗
V + ∂̄∗V ∂̄V , so that

χ (X,V ) = index
((
∂̄V + ∂̄∗V

)even
:
⊕

j even
Ω0,j (V )→

⊕
j odd

Ω0,j (V )
)

The “Riemann-Roch-Hirzebruch Theorem” then states that

(14.9) χ (X,V ) = (ch(V ) ` τ(TX))[X].

Here ch(V ) is the Chern character of V and τ(TX) is the Todd class of X; see
Section 14.1 above.

If V is the trivial line bundle CX , then χ(X) := χ(X,CX) is called the
arithmetic genus of X and (14.9) states that this is the same as the Todd genus
τ(TX)[X]. We denote by cpi the evaluation ci (TX)

p
[X] of the p-th power (with

i·p = dimCX) of the Chern class ci (TX) on the fundamental class [X] ∈ H2n (X;Z)
(cpi is called a “Chern number”). One then computes the table

dimCX 1 2 3 4

χ(X) 1
2c1

1
12

(
c2 + c21

)
1
24c1c2

1
720

(
−c4 + c3c1 + 3c22 + 4c2c

2
1 − c41

)
.

Arguments: a) follows using c) and d) from the Atiyah-Singer Index For-
mula; a direct proof can be found in [We64, p.117-119]. If D = 0 (in particular,
deg(D) = 0), then one recovers results b) and c) of Section 14.6. Notice that
l′(D) = l(KX − D), where KX like D is a divisor which canonically (up to a cer-
tain “linear equivalence”) defined by the zeros and poles of an arbitrary nontrivial
form on X. One has deg(KX) = 2− 2g, For details of the definition of “canonical
divisors”, and for an elementary proof of l(D) − l(KX − D) = deg(D) − g + 1,
see [Mu, p.104-107 and 145-147]; the duality l′(D) = l(KX − D) originated with
Richard Dedekind and Heinrich Weber, and is a special case of a very general,
duality theorem of Jean-Pierre Serre (cf. [Hi66a, 15.4]).

For b): A non-trivial meromorphic function on a compact Riemann surface
has as many poles as zeros (counting orders). Thus, l(D) = 0 if deg(0) < 0. Since
deg(KX) = 2g − 2, it follows that deg(KX −D) < 0, for deg(D) ≥ 2g − 1.

For c): For the construction of the line bundle {D}, we cover X with a finite
collection of open sets {Uj}j∈J such that on each Uj there is defined a meromorphic

function f which has the zero and pole behavior that is the opposite of the portion
of D involving points of Uj ; so that fi/fj is a nowhere-zero holomorphic function
on Ui ∩Uj . For example, one can choose Uj so small that at most one point (of the
finitely many points x1, ..., xs found in D) lies in Uj , and then take fj to be a locally
defined rational monomial which has a zero of order mk if mk > 0, and a pole of
order −mk if mk < 0. The clutching construction (Exercise B.7, p. 681, of the
Appendix) then yields the bundle {D} for which {fi} defines a global meromorphic
section f with zero behavior opposite D. Via g 7→ g/f , an isomorphism is defined
from the global holomorphic sections of {D} to the vector space of meromorphic
functions on X with the zero and pole behavior prescribed by the divisor D. Details
of this construction, which is rather typical for the topological approach to analytic
problems of function theory and algebraic geometry, can be found in [Hi66a, 15.2].

For d): The derivation from the Atiyah-Singer Index Formula can found in
Section 18.6 (beginning p. 583); see also [Pal65, p.324 ff] and [Schw66], and in a



14.8. THE INDEX OF ELLIPTIC BOUNDARY-VALUE PROBLEMS 323

somewhat more general context (see Section 14.11 below) also in [AS68b, p.563-
565]. This transition from the classical Riemann-Roch Theorem to complex mani-
folds of arbitrary dimension was initiated by Friedrich Hirzebruch (1953). His proof
depended essentially on the additional condition that X can be holomorphically em-
bedded in a complex projective space of a suitable dimension. By going back to
the index formula for elliptic operators, one can drop this restriction. Moreover, re-
cently a rather differential geometric proof using the heat equation has been given
for d). Also, our proof in Section 18.6 ultimately depends on the heat equation
approach to the Local Index Theorem for Dirac operators. For the rather easily
calculable ease of an elliptic curve (n = 1, g = 1) refer to [ABP, p.311 f], and for
a sketch of the general case see [loc. cit., p. 317 f].

The Riemann-Roch-Hirzebruch Theorem appears here as a special application
of the Atiyah-Singer Index Formula for elliptic operators of which one, namely
∂̄V + ∂̄∗V , was constructed taking advantage of the complex structure. Even so, d)
and already a) are the quintessential models for the structure of the Index Formula:
On the left side we have the difference of globally defined quantities each of which
can change even under small variations of the initial data (as the dimension l(D)
in a)), while on the right we have an expression in terms of topological invariants
of the problem [in a) it is the genus g of the Riemannian surface X and the degree
of the divisor D].

In the end, for complex manifolds, the general index formula and the Riemann-
Roch-Hirzebruch Theorem (the special index formula for elliptic operators D̄V :=(
∂̄V + ∂̄∗V

)even
) are equivalent: Let

D̄ =
(
∂̄ + ∂̄∗

)even
: Ω0,even (Cn)→ Ω0,odd (Cn)

be the “Riemann-Roch operator” for X = Cn. Then σ
(
D̄
)

produces a generator of

the homotopy group π2n−1(GL(N,C)), N = 2n−1, and all of K(TX) is generated
by the

[
σ
(
D̄V

)]
modulo the image of K(X); see [ABP, p.321 f]

A survey of function theoretic and geometric applications (e.g., estimates for
the dimensions of systems of curves or differential forms and determination of Betti
numbers of complicated manifolds) can be found for the case of curves, dimCX = 1)
in [Mu, p.147 ff], for the classification of surfaces (dimCX = 2) in [Kod] includ-
ing a multitude of very concrete geometric facts which are derived directly from
the general Riemann-Roch-Hirzebruch Theorem (d) for line bundles), and for the
general case in [Schw66].

8. The Index of Elliptic Boundary-Value Problems

We will now have a look at the index problem for boundary-value problems
which was solved in the forties and fifties for a number of special cases in [Ve62,
p.316-330], [Boj, p.15-18] and the sources stated there (see also Theorem 5.11,
p. 146). In the programmatic article of [Ge], it was called “description of linear
elliptic equations and their boundary problems in topological terms”, and this ini-
tiated the search for the index formula for elliptic operators on closed manifolds
[AS63]. In the center of the rapid development of “elliptic topology” (1963-1975),
with alternate forms and proofs of the index formula and their widespread appli-
cations, remained manifolds without boundary, although [AB64a] demonstrated
the topological significance of elliptic boundary conditions, and showed how, in
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principle, an index formula for elliptic boundary value problems may be obtained
by reducing it to the unbordered case (“Poisson principle”, see Sections 10.4 and
10.6). In connection with Section 14.3, one can in this fashion very quick proofs
(and supplements) for the boundary-value problems with vanishing index listed in
[Ag].

In working out the details of the Atiyah-Bott concept, one encounters two main
difficulties:

1. Let σ ∈ IsoSX(E,F ) be the symbol of an elliptic (differential operator
P ∈ Ell(E,F ) over the bordered Riemannian manifold X with boundary Y , where
E and F are vector bundles over X. If N is a sufficiently large natural number, it
is relatively easy to extend (as exercised in Section 10.4) σ ⊕ IdCN on the “symbol
level” to an elliptic symbol σ′ ∈ IsoSX∪BX|Y (E′, F ′), using elements of the proof of
the Bott Periodicity Theorem in such a way that σ′(y, ξ) = IdE′y for all y ∈ Y , and

ξ ∈ T ∗yX with |ξ| ≤ 1. There Ey was identified with Fy by means of σ(y, ν), where

ν was an inner normal, and E′ := E ⊕ CNX . The only hypothesis needed is that P
admits elliptic boundary-value problems. The particular choice of boundary-value
problem determines more exactly the way in which σ ⊕ IdCN is extended.

Doing the corresponding deformation on the “operator level”, i.e., deforming
P ⊕ IdN to P ′ “stably equivalent” to P and P ′ = Id′ near Y , poses some essential
difficulties. It is, for example, necessary to pass from differential operators to the
class of pseudo-differential operators, and for the transition, the boundary behavior
must be suitably restricted (see above before Theorem 10.26, p. 257); specifically,
in [Bou, p.39 f] it is shown that if the “transmission condition” σ(P )(y,−ν) =
(−1)kσ(P )(y, ν) is postulated, then the desired operator deformation is possible if
and only if the indicator bundle j(P ) ∈ K(SY ) (see before Exercise 10.28, p. 259)
vanishes. On the other hand, the “free” extension of σ ⊕ IdCN characterized above
exists (see result b) below), if only the difference bundle j(P ) lies in the image of
the “lifting” π∗y : K(Y )→ K(SY ).

It was mainly L. Boutet de Monvel, M. I. Vishik and G. I. Eskin who dealt
in long series of papers with this predominantly analytic problem of finding the
“correct” operator class for the formation of the “parametrix” and the necessary
operator deformations. On the positive side, these difficulties demonstrate the
effectiveness of topological methods in analysis: Once the index formula (see result
d) below) is established, the computation of the index of a boundary-value problem
with, say, a partial differential operator, does not require the deformation of the
operators with all its difficulties, but only that of the symbol according to the simple
rules given in Section 10.4.

2. Another basic difficulty is the following. Operators (such as the signature

operator D+ := (d+ d∗)
+

) which play such an important role for closed manifolds
in applications of the index formula as well as in the ”cobordism” and “heat equa-
tion” proofs (see above Sections 14.4, 13.2 and 13.4) do not admit elliptic boundary
value problems in the sense of Chapters 10-?? on a bordered manifold X. See re-
sult b) below and [APS75, p.46]. Accordingly σ((d+ d∗)

+
) cannot be deformed

over the boundary Y of X to the identity (or any map which only depends on the
base point y ∈ Y but not on the covectors ξ ∈ T ∗yX). However, M. F. Atiyah, V.

K. Patodi and I. M. Singer (loc. cit.) discovered that D+ admits in an extended
sense certain “globally elliptic” boundary conditions R+ which canonically belong
to D+ and for which index (D+ ⊕R+) is well-defined and equal to sig(X). Using
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the Gauss-Bonnet Formula e(X) = (2π)−1(
∫
X
K+

∫
Y
s) for the Euler number e(X)

as a model (where X is a bordered surface with Gaussian curvature K on X and
with “geodesic curvature” s of Y in X), they (loc. cit., p. 54-57) could derive an
index formula for a certain class of boundary value problems (P,R). The right hand
side of this formula is the sum of two terms which are given explicitly in the “heat
equation proof” and of which one only depends on the behavior of P in the interior
(or the doubling of X), and the other only depends on the boundary behavior of
(P,R). In particular, they obtained for P := D+ the new formula

sig(X) =

∫
X

Lq(p1, . . . , pq)− η(0)

(recall 13.7, p. 303) for the signature of a 4q-dimensional compact, oriented, bor-
dered Riemannian manifold. See also [Gi75] Efforts to obtain similar explicit “an-
alytic” formulas for arbitrary elliptic boundary-value problems apparently did not
achieve full success; see especially [Cald67], [See69] and [Fe]. Thus for the time
being, we depend on our crude topological methods of symbol formation [see below
results a) and d) below], in spite of the associated computationally unfortunate
destruction of the special problem structure which may be simpler initially, and de-
spite the delicate technical questions of lifting homotopies to the “operator levels”
in the proofs. (The the topology chosen for the symbol deformation is not clear.
While we deformed in the C0-topology (see p. 235), there is also the C1-topology
which (according to a recent theorem of F. Waldhausen) has possibly less room for
movement but a richer homotopy type.)

Results: Let X be an n-dimensional, compact, oriented Riemannian manifold
with boundary Y .

a) There is a unique construction, whereby one can assign to elliptic element A
of the Green algebra over X (see Chapter ?? a difference bundle [A] ∈ K(T (X−Y ))
such that the following conditions hold:

(i) [A] = [B], if A and B are stably equivalent,
(ii) [A⊕ B] = [A] + [B] and [A ◦ B] = [A] + [B], when the composition is

defined,

(iii) [A] = [σ(P )] + t [σ(Q)], for A =

[
P 0
0 Q

]
and P = Id near Y so

that [σ(P )] ∈ K(T (X − Y )) is well defined. Here t is the composition already
investigated above in Chapter 13, namely

K(TY )
�b∼= K(TY × R2) ∼= K(TN)

ext→ K(TX̂) ∼= K(T (X − Y ))

for the “trivial” embedding of Y into the open manifold X̂ = X∪(Y × [0,∞)) with

trivial normal bundle N ; X̂ and X − Y are diffeomorphic,

Y Y

X X X̂

whence we have the isomorphism on the right.
(iv) [A] = [σ̄(P, β+)], if A = (P,R) is an elliptic boundary-value system of

differential operators and σ̄(P, β+) is the extension of σ(P )⊕IdCN ∈ IsoSX (defined
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by the boundary isomorphism β+) to an object in IsoSX∪BX|Y , see Chapter 10 and,
in particular, Section 10.4.

b) For a differential operator P , at each point y ∈ Y , there is a vector bun-
dle M+

y over the base (SY )y = Sn−2, and a difference bundle [σy(P )] ∈ K(Rn)

arising from σy(P ) := σ(P )(y, ·). Now, M+
y − dimM+

y defines an element of

K(Rn−2), and we have (because of an unfortunate sign choice, we use P ∗ instead
of P ) [σy(P ∗)] = −b � (M+

y − dimM+
y ). The tensoring with the Bott element

on the right side extends to a homomorphism γ : K(SY ) → K(BX|Y , SX|Y ),
and we have the global formula r∗[σ(P ∗)] = −γ(M+), which can be written in
the form r∗[σ(P )] = γ(j(P )) in the case that P is a pseudo-differential operator.
Here r∗ : K(BX,SX) → K(BX|Y , SX|Y ) is the restriction homomorphism, and
M+ resp. j(P ) are the “indicator bundles” defined via ordinary differential equa-
tions (Chapter 10) or Wiener-Hopf operators (Chapter ??); these indicator bundles
coincide (up to a sign convention) for differential operators.

c) An elliptic pseudo-differential operator P over X can then be completed to

produce an elliptic element

[
P ∗
∗ ∗

]
of the Green algebra over X, if and only if

the following two equivalent conditions are met (for suitable N):
(i) j(P ) ∈ Ker γ
(ii) σ(P )⊕ IdCN extends to an isomorphism over SX ∪BX|Y .

If P is a differential operator, then deg(P ) = ν(P ), where deg(P ) is defined as
the “degree” of σ(P )(y, ·) : (SY )y → GL(N,C), y ∈ Y (i.e., the local degree of P ),
and ν(P ) is the difference dimM+

η − dimM−η , η ∈ (SY )y.
d) Each embedding of the bordered manifold X in a Euclidean space Rm defines

(as in Chapter 13 and also in a(iii) above) a homomorphism t′ : K(T (X − Y )) →
K(R2m), and we then have the formula indexA = αmt′[A] for each elliptic element
A of the Green algebra. Here [A] is the difference bundle of A (well defined by a),
and αm : K(R2m)→ K({0}) is the iteration of the Bott isomorphism.

The cohomological version (see Section 14.1 above) of the index formula is

indexA = (−1)n(n+1)/2
{

Φ−1ch [A] ` τ (TX ⊗ C)
}

[X].

In this formula, [X] ∈ Hn(X,Y ;Q) denotes the fundamental cycle of the ori-
entation of X, τ (TX ⊗ C) ∈ H∗(X;Q) is the Todd class of the complexification of
TX,

ch : K(T (X − Y ))→ H∗(BX,SX ∪BX|Y ;Q) = H∗c (T (X − Y ));Q)

is the “Chern character ring homomorphism”, Φ : H∗(X,Y ;Q) → H∗(BX,SX ∪
BX|Y ;Q) is the “relative Thom isomorphism”, and `: H∗(X,Y ;Q)×H∗(X;Q)→
H∗(X,Y ;Q) is the “relative-cup product”.

In the case of systems (see Section 14.2 above), where A is given by a system of
equations, [A] is defined by a continuous matrix-valued map σ(A) : SX ∪BX|Y →
GL, and we have the integral formula

indexA =

∫
∂(BX)

σ(A)∗ω ∧ π∗τ ,

where ω and τ are the explicit differential operators (given in Section 14.2 above)
on U resp. GL and on X, and π : ∂ (BX)→ X is the projection.
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In the classical case, where X is a bounded domain in Rn, one finally obtains the

simple formula indexA = σn[A], which coincides, in the special case A =

[
P 0
0 Q

]
with P = Id near Y , with Theorem 12.3 (p. 291) and Theorem 13.1 (p.295).

Arguments: a) was announced in [Pal65, p.349 f], and proved in [Bou, p.47-
50]. There, (iv) is replaced by the weaker requirement that [A] = 0, if A belongs to
a certain list of canonical operators of “Dirichlet type”.

For b) and c), note that r∗ and γ fit into the short exact sequences which are
horizontal and vertical in the following diagram

K (BX,SX ∪BX|Y ) ∼= K (T (X − Y ))
↓ q∗

K (BX,SX) ∼= K (TX)
↓ r∗

K (Y )
π∗Y→ K (SY )

γ→ K (BX|Y , SX|Y ) ∼= K (R× TY )

Here, πY : SY → Y is the projection, and r and q are both embeddings; γ is the

composition K(SY )
∼=→ K(R × TY ) ∼= K(BX|Y , SX|Y ). See [Bou, p.39 f], and

also, for the local version, [Pal65, p.351].
c) is a trivial consequence of Exercise 10.30, p. 259: By definition, j(A) =

j(P ) + [π∗G] − [π∗H] vanishes for each elliptic element A : C∞ (E) ⊕ C∞ (G) →
C∞ (F )⊕C∞ (H) of the Green algebra (G and H vector bundles over Y ). Hence,
j(P ) ∈ K(SY ) lies in the image of π∗Y , and hence in the kernel of γ. Because
of b) and the exactness of the horizontal sequence, this means that it is possible
to “lift” [σ(P )] ∈ K(BX,SX) to K (BX,SX ∪BX|Y ), obtaining the difference
bundle [A] ∈ K(T (X − Y )). Incidentally, a) goes much further than c), since it is
shown in a) how a special completion of the elliptic operator P to an element A of
the Green algebra, generates the “lifting”. In [Bou, p.35 f] it is shown in addition
that each bundle π∗(G) with arbitrary G ∈ K(Y ) is the “indicator bundle” j(P ) of
an elliptic pseudo-differential operator P on X.

With d), concrete computations are made easy for some classical boundary-
value problems. Indeed, one recovers without difficulty the Theorem of Vekua
(Theorem 5.11, p. 146) using Exercise 10.21, p. 253. In view of the Atiyah-Patodi-
Singer Signature Formula (see Difficulty 2 above), it seems probable (in order to
remain in the language of integral formulas) that the index integral over the “in-
tegration domain” ∂(BX) = SX ∪ BX|Y should be replaced by the sum of two
integrals with different integration domains. In fact, the proof of d) (in which one
lifts the K-theoretic resp. homotopy-theoretic construction in a) to the level of
operators) already runs in this direction. Roughly speaking, the proof of d) goes
as follows: We start with A ∈ Ellk(X;Y ). Via composition with certain stan-
dard operators (construction modeled on operators like the Riesz Λ-operators; see
Exercise 7.5, p. 194) of vanishing index, we obtain an operator A′ ∈ Ell0(X;Y )
with indexA′ = indexA. To A′, we can now add another elementary boundary-
value system B with indexB = 0, such that the indicator bundle j(A′ ⊕ B) van-
ishes. With a topological argument, it follows that A′ ⊕ B is stably equivalent to

a A′′ =

[
P ′′ L′′

R′′ Q′′

]
∈ Ell0(X;Y ), where P ′′ equals the identity near Y . With

Theorem 10.32e (p. 260), this allows a deformation of A′′ to A′′′ :=

[
P ′′ 0
0 Q′′

]
,
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whence indexA = indexA′′′ = indexP ′′ + indexQ′′. Thus, in principle, the index
problem for boundary-value systems is reduced to the index problem over closed
manifolds, since indexP ′′ = index P̄ ′′, where P̄ ′′ is the operator extended to X ∪X
by means of the identity. Details are in [Bou, p.47 f], where a) and d) are proved
simultaneously. For a heuristic treatment of the situation, when all the operators
arising are differential operators at the outset, see also [CaSc, 25-08 f], [Schu76a]
and [Schu76b].

9. Real Operators

Up to now, we have considered operators between spaces of sections of com-
plex vector bundles. One can also consider operators with real coefficients which
operate only on sections of real bundles. If such a real elliptic and skew-adjoint
operator, then trivially indexP = 0. This is uninteresting, but now dim(KerP )
is a homotopy-invariant mod 2. The reason for this stems from the fact that the
nonzero eigenvalues of P all come in complex conjugate pairs (λ, λ̄); if one deforms
the the operator P so that λ goes to zero, then λ̄ goes to zero and consequently
dim(KerP ) increases by two. Already in 1959, R. Bott had discovered a real ana-
logue to his “periodicity theorem” (see Chapter 11 above) and proved that the
homotopy groups πi(GL(N,R)), for large N , periodic in i with period 8, and for
i ≡ 0 or i ≡ 1 mod 8 are isomorphic to Z.

In [AS69] the connection between these two analytic and topological mod 2
invariants was determined, and the index theorem was carried over to the real case,
see also the elaboration in [Fu99]. (Actually, linear differential operators on real
vector bundles are decisive for M. Furuta’s geometric proof of the Index Theorem,
avoiding the use of pseudo-differential operators.) Together, these considerations
provide a new and topologically much simpler proof of the real Bott Periodicity
Theorem. Two details are particularly noteworthy: First, in order to connect the
two invariants of the real theory, one must go outside of the real theory, since the
amplitude p of a real skew self-adjoint differential operator P is defined via the
Fourier transform, and is thus not real in general, but rather complex with the con-
dition p (x,−ξ) = p (x, ξ). Thus, the symbol of a real operator does not immediately
yield a suitable element of πi(GL(N,R)), but rather, must be interpreted as a map-

ping f : S2n−1 → GL(N,C) (as in Chapter 12) with the condition f(−ξ) = f(ξ).
Another peculiarity lies in the fact that these mod 2 invariants (although having
only the values 0 or 1) in a certain sense are more complicated topologically, or in
any case, of a different type than the usual homology or cohomology classes (also
if one takes Z2 coefficients). Thus, in concrete situations they can provide decisive
additional information. This program was carried out for vector fields (see Sec-
tion 14.5 above) in [Ati70c] and [AD]. For a different approach see also the cited
[Fu99].

10. The Lefschetz Fixed-Point Formula

Let f : X → X be a continuous map with X compact, and let Fix(f) =
{x ∈ X : f(x) = x} be the fixed-point set of f . Salomon Lefschetz (1926) intro-
duced the formula L(f) =

∑
ν(x), where the sum is over all fixed-points of f .

For details of the definition of the integer ν(x) (which is 1 for an isolated fixed
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point and equals 0 for a point where f = Id in a neighborhood) For the proof,
see [AH, p.531-542] or [Gr, p.222-224]. The Lefschetz number” L(f) is defined as
the alternating sum

∑
(−1)i trace(Hif), where Hif : Hi(X,C)→ Hi(X,C) is the

cohomology endomorphism of the complex vector space Hi(X,C) induced by f . M.
F. Atiyah and R. Bott refined this beautiful formula in the mid 60’s. Furthermore,
the formula is simplicially defined and in general hardly computable or in other
words, only the topology of X enters into the formula, while additional structures
are ignored. Atiyah and Bott removed this weakness by bringing the additional
structures into play.

Results. Let X be a compact C∞ manifold without boundary, and let P be
an elliptic differential operator. Let f : X → X be differentiable and commute
with P ; where we need to assume that f “lifts” to a bundle mapping, say f̃ ,
so that f acts on sections via (f · s) (x) = f̃(s(f−1(x))). Then f yields a well
defined endomorphism of the finite-dimensional vector spaces KerP and CokerP .
We define the Atiyah-Bott-Lefschetz number as

L(f, P ) := trace(f |KerP )− trace(f |CokerP ).

If f is the identity, then by definition L(f, P ) = indexP , and one can apply the
Atiyah-Singer Index Formula. In the other “extreme case”, where f has only iso-
lated fixed points with multiplicity +1, one obtains the formula L(f, P ) =

∑
v(x)

where x runs over the fixed-points of f and the complex number v(x) depends only
on the differential f∗(x) : TxX → TxX. (The “simplicity” or “transversality” of
the fixed-point x means that the endomorphism Id−f∗(x) is invertible, and the
“multiplicity” ±1 is understood to be the sign of det(Id−f∗(x)).)

X

f

X

In the following list, there are some applications of the Atiyah-Bott-Lefschetz for-
mula (ABL) with the expressions fog the respective values of v(x):

For further details and the proof of (ABL), we refer to [AB65], [AB66], and
[AB67]. Incidentally, the proof is essentially simpler than the proof of the index
formula (AS), and represents a “weak” version of the “heat equation proof” dis-
cussed above in 13.4: One considers the zeta function ζ(z) : trace (f∗ ◦∆−z) whose
value at z = 0 is easier to calculate, since it turns out that this zeta function
is holomorphic not only for Re(z) > dimX, but also in all of C because of the
assumptions on the fixed points; see also the following section.
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AS

ABL

z

11. Analysis on Symmetric Spaces

Let X be a closed C∞ manifold and G a compact group of diffeomorphisms
of X. One may think of G = {Id} or G =

{
Id, g, g2, ..., gr−1

}
, where g is a

diffeomorphism of order r (i.e., gr = Id). G can also be a more general finite
group, or a compact Lie group. Let P be a “G-invariant” elliptic operator over
X, which commutes with the operations of the group elements (via suitable bundle
automorphisms), so that KerP and CokerP are not only finite-dimensional complex
vector spaces, but can be regarded as G-modules. The homomorphism g 7→ g|KerP ,
g ∈ G, is then a finite-dimensional representation of G, and g 7→ trace(g|KerP ) is
its character. Corresponding considerations apply to CokerP . As in the preceding
section, we have

indexG(P ) : g 7→ L(g, P ) := trace(g|KerP )− trace(g|CokerP ), g ∈ G,
which is a “virtual” character (i.e., an element of the “representation ring” R(G)).
If G = {Id}, then R(G) = K(point) = Z and indexG(P ) = indexP . In the general
case, R(G) ∼= K(∗) ∼= ∗ is a complicated object and correspondingly, index(P ) is a
sharper (also homotopy-) invariant than the integer index(P ).

Results. In the framework of “equivariant” K-theory with groups KG(X)
(esp. KG(TX)) for the “symmetric space” X, one obtains an analogous index
formula for indexG(P ) ∈ R(G), and for each g ∈ G a Lefschetz formula

L(g, P ) =
∑l

i=1

∫
Xi

αi,

where the sum on the right is over the connected components X1, ..., Xl of the
fixed point set Fix(g). Incidentally, Fix(g) is a mixed-dimensional submanifold of
X, since one can introduce local coordinates in a suitable neighborhood of any
fixed-point such that g operates linearly. Each individual term in the formula has
the form of our index formula (see Section 14.1 or Chapter 13 above). For the
precise definitions and the various formulations of these formulas, we refer to ??
and ??, as well as ??, ?? and ??. An abundance of applications mainly for the
case of a complex manifold X with P :=

(
∂ + ∂̄

)even
and holomorphic g (and more

generally, applications in the domain of elementary number theory) can be found
in [HiZa]. Here P is held fixed and attention is paid to the correct choice of
G or g. Conversely, in [Bott] or [Wal, p.114-138] one finds an investigation of
“homogeneous differential operators” on a fixed homogeneous space X = G/H,



where H is a closed subgroup of G. Here the relevance lies in the fact that these
formulas connect the fixed points of the action by G with global invariants of the
symmetric space X. Thus, deep formulas are obtained for the way in which (in
the language of cohomology) individual characteristic classes of invariants can be
synthesized to yield invariants of the entire cohomology ring of the manifold.

The proof follows essentially as in the argument carried out here in Chapters
12 and 13. For the construction of the “topological” IndexKG(TX) → R(G), one
needs an equivariant sharpening of the Bott Periodicity Theorem which can be
obtained by the same function analytic tools used in 11 for the “classical” Bott
Periodicity Theorem; incidentally, it is noteworthy that these tools are necessary,
since (roughly) only this approach can be freed of the inductive argument which
cannot succeed in general for the equivariant case. See [Ati68a], and for a non-
technical introduction [Ati67b, p.246 f].

12. Further Applications

With the preceding overview, we have in no way encompassed all of the con-
nections, alternative formulations, generalizations and special applications of the
Atiyah-Singer Index Formula, but we have only touched those which have reached
a certain definitive form in their development. For an insight into further perspec-
tives and open problems, we refer to [Si69], ??, and [Ati76b] and the literature
given there.
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CHAPTER 15

Physical Motivation and Overview

Synopsis. Mode of Reasoning in Physics. String Theory and Quantum Gravity.

The Experimental Side. Classical Field Theory: Newton-Maxwell-Lorentz, Faraday 2-

Form, Abstract Flat Minkowski Space-Time, Relativistic Mass, Relativistic Kinetic En-

ergy, Inertial System, Lorentz Transformations and Poincaré Group, Relativistic Deviation

from Flatness, Twin Paradox, Variational Principles. Kaluza-Klein Theory: Simultane-

ous Geometrization of Electro-Magnetism and Gravity, Other Grand Unified Theories,

String Theory. Quantum Theory: Photo-Electric Effect, Atomic Spectra, Quantizing En-

ergy, State Spaces of Systems of Particles, Basic Interpretive Assumptions. Heisenberg

Uncertainty Principle. Evolution with Time - The Schrödinger Picture. Nonrelativis-

tic Schrödinger Equation and Atomic Phenomena. Minimal Replacement and Covariant

Differentiation. Anti-Particles and Negative-Energy States. Unreasaonable Success of

Standard Model. Dirac Operator vs. Klein-Gordon Equation. Feynman Diagrams

Both the goals and methods of physics are different from those of mathemat-
ics. Mathematicians have the rather nebulous goal of exploring and establishing
that which is logically possible and interesting, depending on the fashions of the
time and the tastes of the individual. Physicists have the sharper goals of dis-
covering, explaining and predicting actual phenomena in the physical world. The
mode of reasoning in physics is rather fuzzy by mathematical standards, as it is
often partly based on conventional wisdom and folklore rather than clear axioms.
However, this reasoning is of great value if it provides a satisfying explanation of
experimental data and makes promising, testable predictions. If physicists were
forced to be mathematically rigorous every step of the way, physics would not have
advanced toward its goals nearly as much as it has. Although the creative process
in mathematics is generally fuzzy in its initial phases, a result is not usually pub-
lishable until it has been proven within a quite definite framework of commonly
accepted logical standards, which goes far beyond the notion of “reasonable doubt”
in a court of law. Mathematicians are uneasy with many of the heuristic arguments
used by physicists sometimes involving manipulations of expressions which have not
been shown to exist (e.g., path integrals, infinite renormalizations, nonconvergent
series, etc.). On the other hand, physicists cannot be expected to have interest in
mathematics that seems unrelated to physical phenomena.

Since index theory was developed as a mathematical achievement, there has
emerged a prominent group of theoretical physicists who appear to be somewhat
unconventional, namely the string theorists (and we may include supersymmetrists
and quantum gravitists as well). It is clear that most string theorists believe that
what they are doing is of physical relevance, but as yet no direct experimental
confirmation has emerged. What they have certainly uncovered is a truly awesome
body of mathematics that has had a big positive impact on purely mathemati-
cal research in neighboring areas. Many mathematicians envy the mathematical
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insights that string theorists have had. Indeed, Seiberg-Witten Theory is but a
small portion of the mathematics inspired largely by the insights of Edward Wit-
ten, one of the leading string theorists. However, one characteristic of a physical
theory that conventional physicists deem essential is that the theory be testable
by experiment. Currently, the physical refutation of string theory seems just as
remote as its confirmation. Based on this, the conventional physicist can argue
that string theory (or quantum gravity) is not really a physical theory at all. This
is not because it is false, but because it is not falsifiable, in the sense that it seems
unlikely that it can be proven or disproved experimentally in the foreseeable future.
José Gracia-Bond́ıa [Gra, p.6], e.g., emphasises that masses and energies on our
planet are much too small to make a difference for possible falsifications of common
ideas of string theory and quantum gravity. However,when Giampiero Esposito
in [Esp11, Section 8.1] addresses the experimental side of quantum gravity, one
of his points is the immense capacity of modern computer supported and partly
space based astronomy, which gives access to data involving previously unimagin-
able large masses and energies. See also the recent Nobel citations in physics for
a non-technical view on the new observational capacities. Moreover, as noted by
Bryce DeWitt in [DeWi, p.417], string theory provides (in some cases) substan-
tially simplified schemes and diagrams for basic calculations. His example is the
replacement of four different Feynman diagrams by a single one in string theory: a
thing “that, from a nonspecialists point of view, make it look rather pretty”.

If it were suddenly found that string theory has no physical relevance, most
likely only a handful of string theorists would remain, namely those who really
consider themselves to be primarily mathematicians.

There are such mathematicians (misnamed mathematical physicists) who are
interested in strict mathematics that seems to have physical relevance or is mo-
tivated by physical considerations. In the overview that follows, it is hoped that
the reader may gain some understanding of why many concepts in this book (e.g.,
elliptic operators, complex vector bundles, pseudo-differential operators, Hilbert
spaces, distributions, etc.) may have great physical relevance and how in large part
they were initially motivated by physical considerations. Of course, mathematics
being motivated by physics is not a new phenomena, but rather an old one. There
was hardly any distinction between mathematics and theoretical physics before the
1900s. The dubious mid-twentieth century goal of attaining ivory purity in mathe-
matics, devoid of any hint of lowly physical application, seems to have been largely
temporary, although many practitioners remain.

The reader is not expected to understand every detail in the following lengthy
(yet necessarily incomplete and historically vague) overview of quantum field theo-
ries in modern physics. However, she or he may take whatever is digestible, realizing
that this material is neither a prerequisite nor a substitute for the more precise (if
drier) mathematics of the chapters that follow. Those who are unfamiliar with
relativity or quantum physics are likely to discover that the logical possibilities of
the world of physics can be every bit as beautiful and strange as those encountered
in far-reaching mathematical diversions.

1. Classical Field Theory

In classical (as opposed to quantum) physics, particles are viewed as point-like
objects that move along paths which are solution curves of systems of ordinary
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differential equations determined by a force field. For example, there is Newton’s
equation mr′′ (t) = F (r (t)) , where F :R3 → R3 is a given force field. More
generally, the force may also depend on the velocity r′ (t) as well as r (t). Indeed,
an electromagnetic (E-M) field consists of a pair of vector fields E and B (which may
be time-dependent). A test particle of charge e moves according to the Lorentz
force law

(15.1)
d

dt
(mr′ (t)) = eE (r (t) , t) +

e

c
r′ (t)×B (r (t) , t) .

The situation is complicated not only by the fact that a real (not test) particle
contributes to E and B, but also by the fact that E and B satisfy a system of
partial differential equations, namely Maxwell’s equations

(15.2)
(1) ∇×E +

1

c

∂B

∂t
= 0 (2) ∇ ·B = 0

(3) ∇ ·E = ρ (4) ∇×B− 1

c

∂E

∂t
=

1

c
J.

Here c denotes the speed of light, ρ : R3 → R is proportional to the charge density of
a continuous medium of charged particles, and J is essentially the current density of
the medium (i.e., J =ρv, where v is the velocity vector field of the medium). Thus,
E and B are influenced by each other, as well as the by the motions of the charged
medium that they are supposed to influence via the Lorentz force law (15.1).

Maxwell’s equations can be simplified conceptually by considering the following
2-form, called the E-M field strength or Faraday 2-form

(15.3) F := cE1dx ∧ dt+ cE2dy ∧ dt+ cE3dz ∧ dt
+B1dy ∧ dz +B2dz ∧ dx+B3dx ∧ dy.

Exercise 15.1. (a) Check that Maxwell’s equations (1) and (2) are equivalent
to dF = 0.
(b) Defining the source 1-form j by

(15.4) j = ρdt− c−2 (J1dx+ J2dy + J3dz) ,

verify that the Maxwell equations (3) and (4) say that δF = j, where δ is the
codifferential (the formal adjoint of d) relative to the Lorentz-Minkowski metric
c2dt2 − dx2 − dy2 − dz2.

This exercise implies that Maxwell’s equations can be immediately generalized
to arbitrary 4-manifolds with Lorentz metric tensors (i.e., space-times). Hence,
Maxwell’s equations fit quite naturally into general relativity, although historically,
relativity was built around Maxwell’s equations. The Lorentz force law (15.1) also
can be written invariantly on a space-time M . Indeed, the “world line” of a test
particle of rest mass m0 and charge e is a curve s 7→ γ (s) ∈ M which obeys the
equation

(15.5) m0
D

ds
γ′ (s) =

e

c
F (γ′ (s) , ·)#

where γ′ denotes the tangent vector field of γ, Dds denotes covariant differentiation
along γ (i.e., ∇γ′) and the sharp “#” on the right side indicates that the covector
F (γ′ (s) , ·) has been converted to a vector by “raising indices” using the metric. In
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flat Minkowski space, D
ds (γ′ (s)) is simply γ′′ (s), but s is not necessarily the time

coordinate. Rather think of s as the arc length as an inherent parametrisation.
Equation (15.5) implies that the length of γ′ (s) is constant. Indeed,

1
2m0

d
ds |γ

′ (s)|2 = m0

〈
D

ds
γ′ (s) , γ′ (s)

〉
=
e

c

〈
F (γ′ (s) , ·)#

, γ′ (s)
〉

=
e

c
F (γ′ (s) , γ′ (s)) = 0,(15.6)

since F is anti-symmetric. Note that (15.5) is not scale invariant; i.e., if γ is
replaced by γa where γa (s) := γ (as), then γa is not necessarily a solution of (15.5)
for a 6= 1. In Minkowski space with the metric c2dt2 − dx2 − dy2 − dz2, equation
(15.5) splits into spatial and temporal components which are empirically correct

only when |γ′ (s)|2 = c2. Indeed,

γ (s) = (t (s) , x (s) , y (s) , z (s)) =: (t (s) , r (s))

⇒ |γ′ (s)|2 = c2t′ (s)
2 − |r′ (s)|2 = c2t′ (s)

2

(
1− c−2

∣∣∣∣r′ (s)t′ (s)

∣∣∣∣2
)

= c2t′ (s)
2

(
1− |v (t (s))|2

c2

)
,(15.7)

where v (t) = d
dtr (s (t)) assuming that t′ (s) > 0, so that t = t (s) can be inverted.

Then

(15.8) |γ′ (s)|2 = c2 ⇔ t′ (s) =

(
1− |v (t (s))|2

c2

)− 1
2

=: β (s) ,

and γ′ (s) = (β (s) , β (s) v (t (s))).

Exercise 15.2. Check that (15.5) splits into the pair of equations

(15.9) (a) d
dt (m0βv) = e

(
E +

v

c
×B

)
(b) d

dt

(
m0βc

2
)

= eE · v

Note that (a) is the Lorentz force law (15.1), where m = m0β is the so-called
relativistic mass (m ≈ m0 for |v| � c, and m→ +∞ as |v| ↑ c). The right side
of (b) is the rate at which the E-M field does work on the particle; note that B
does no work since (v ×B) ·v = 0. Thus, mc2 = m0βc

2 on the left side of (b) must
be the energy E of the particle (i.e., E = mc2). Note that m0c

2 is the rest energy
and the relativistic kinetic energy is

mc2 −m0c
2 = m0c

2 (β − 1)

= 1
2m0 |v|2 + c2O

(
(|v| /c)4

)
as |v| /c→ 0.(15.10)

Abstract Minkowski space-time consists of a four-dimensional vector space
(or more precisely, affine space)M with scalar product 〈·, ·〉 of signature (+,−,−,−).
By translation and the usual indentifications, 〈·, ·〉 determines a scalar product on
the tangent space at each point of M . A coordinate system (t, r) := (t, x, y, z) on
M is called an inertial system if 〈·, ·〉 = c2dt2− dr2 := c2dt2− dx2− dy2− dz2. If
(t̄, r̄) := (t̄, x̄, ȳ, z̄) is another inertial system, then there is a linear transformation
L : R4 → R4 and a point (t0, r0) ∈ R4, such that

(15.11) (t̄, r̄) = L ((t, r)) + (t0, r0).
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The fact that c2dt̄2−dr̄2 = 〈·, ·〉 = c2dt2−dr2 places a restriction on L. It preserves
the scalar product with diagonal matrix I1,3 having diagonal entries 1,−1,−1,−1,

in the sense that [L]
T
I1,3 [L] = I1,3, where [L] is the matrix of L relative to the

standard basis of R4. Such L ∈ GL
(
R4
)

are known as Lorentz transformations
and comprise the Lorentz group O (1, 3). The Lorentz transformations together
with the translations of R4, generate the Poincaré group. Even if inertial sys-
tems (t̄, r̄) and (t, r) are based at the same point O ∈ M, we do not necessarily
have the equality t̄ = t of time coordinate functions (i.e., coordinate time has no
absolute meaning). On the other hand, if γ : (a, b) → M is a smooth curve, the

condition |γ′ (s)|2 := 〈γ′ (s) , γ′ (s)〉 = c2 does have invariant meaning. The correct
interpretation is that s represents the time on a clock carried by the particle with
world line γ. Equation (15.8) tells us that t′ (s) = β ≥ 1 meaning that coordinate
time in the inertial system (t, r) generally runs faster than the proper time of a
particle which is moving relative to this inertial system. Assuming that the earth
does not deviate from the t-axis of some inertial system in a nearly Minkowskian
space-time, a high velocity space traveler with world line γ will find his earth-bound
twin is older when he returns. The earth-bound twin ages according to his proper
time which coincides with coordinate time t, while the space traveler ages according

to his proper time, namely s, where |γ′ (s)|2 = c2. Thus, assuming that their clocks
are synchronized just before departure at t = s = 0, we then have

(15.12) t′ (s) =
(

1− |v|2 /c2
)− 1

2
> 1⇒ t > s.

One might argue that by symmetry, we should also have that s > t, but the situation
is not symmetric, since the world line of the space traveler is not close to the time
axis of an inertial system, because his acceleration is considerable (i.e., his world
line is not nearly straight). Thus, while we have the so-called twin paradox, there
is no contradiction. The result has been confirmed by experiment using particles
instead of humans.

Things are complicated by the fact the metric tensor gµν on a realistic space-
time is not flat like that of Minkowski space. The deviation from flatness is due
to the presence of E-M fields (i.e., radiation), particles (neutral and charged) and
gravity waves that can propagate in space-time even in the absence of radiation
and matter. One measure of curvature is the symmetric Ricci curvature tensor
Rµν (where µ, ν = 0, 1, 2, 3) to be defined later (see 16.61). The vanishing of the
Ricci tensor is necessary (but not sufficient) in order that a space-time be locally
isometric to Minkowski space. The scalar curvature is the trace S = gµνRµν ,
where we automatically sum over repeated indices on different levels (the Einstein
convention). The Einstein field equation (10 scalar equations) is

(15.13) Rµν − 1
2Sgµν =

−8πK

c2
Tµν ,

where K is the universal gravitational constant and Tµν is the symmetric stress-
energy-momentum tensor which is formed in a canonical way from the E-M field and
a continuous approximation of the energy-momentum density of particle-like matter
(cosmologists sometimes take these particles to be entire galaxies). In essence,
the Einstein field equation (15.13) tells us how the nongravitational stress-energy-
momentum Tµν of radiation and matter influences the curvature of space-time.

Neutral particles “move” along geodesics γ (s) of space-time such that |γ′ (s)|2 = c2.
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The apparent curvature of such geodesics when projected onto what we perceive as
space, is due to gravity which is just the geometry of space-time.

The vanishing of the Ricci tensor (and hence the scalar curvature) does not
imply that space-time is locally flat. Indeed, the full curvature tensor has ten ad-
ditional components that constitute the Weyl conformal curvature tensor (defined
in Section 16.5). Thus, it is quite possible to have a curved space-time which is
devoid of matter and radiation (i.e., Tµν = 0) which satisfies the so-called empty
space equation Rµν − 1

2Sgµν = 0. This equation can be formulated in terms of a
variational principle. Indeed, let D be a compact domain in a space-time M with
metric tensor g. Let L be the functional that assigns to each metric tensor g′, the
quantity

(15.14) LD (g) :=

∫
D

S (g) µg,

where S (g) is the scalar curvature of g and µg is its volume element. It is found
(e.g., see [Bl81, p. 125] for a coordinate-free proof) that g is a critical point of L
within the space of those g′ agreeing with g on the boundary of D, if and only if
g satisfies the empty space equation Rµν − 1

2Sgµν = 0 in D. In order to obtain
the full equation (15.13) including Tµν , it is necessary to add additional terms to L
for each type of nongravitational particle or field that resides in space-time. These
terms are known as “actions” or Lagrangians (L itself is the purely gravitational
Lagrangian). The action over D for an E-M field F = Fµνdx

µ ∧ dxν (see (15.3))

for a fixed metric g is proportional to − 1
2

∫
D
|F |2g µg, where

(15.15) |F |2g := 1
2g
µνgρσFµρFνσ

(i.e., the standard “Lorentz-invariant” norm-square relative to the metric tensor
g). In the special case of Minkowski space with flat metric g, writing F in terms of
inertial coordinates as in (15.3), we have

(15.16) − 1
2 |F |

2
g = 1

2

(
|E|2 − |B|2

)
.

Under a change of inertial coordinate system on Minkowski space |E|2 and |B|2

can change, but |E|2 − |B|2 is invariant. The 2-form F is a “covariant object”, but
(as with coordinate time) E and B separately have no absolute significance. The
combined Lagrangian over D is

(15.17) LD (g, F ) :=

∫
D

S (g) µg − k
2

∫
D

|F |2g µg,

For an arbitrary covariant symmetric 2-tensor h, we have the following for the
partial directional derivative of L (g, F ) at g in the direction h

d
dtL (g + th, F )

∣∣
t=0

=

∫
D

(
−Rµν + 1

2Sgµν + kF σ
µ Fνσ − k

4 |F |
2
g gµν

)
hµν µg(15.18)

Thus, g is a critical point for L (g, F ) in the sense that this directional derivative
is 0 for all h, when

(15.19) Rµν − 1
2Sgµν = k

(
F σ
µ Fνσ − 1

4 |F |
2
g gµν

)
.
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For suitable k, depending on the choice of units, this is the Einstein field equation
(15.13) for a space-time with E-M radiation. The right side is indeed proportional
to the accepted stress-energy-momentum tensor for the E-M field F .

We can also get Maxwell’s equation δF = 0 from a variational principle; note
that j = 0 in the absence of sources which we assume here. Indeed, consider
1
2

∫
D
|F |2g µg as a functional of F , instead of g. We assume that F and its variations

satisfy the other Maxwell equation dF = 0. Assuming that D is simply-connected,
we can write any variation of F ′ of F as dA′ for some 1-form A′. The associated
variation of 1

2

∫
D
|F |2g µg is the directional derivative

d
dt

(
1
2

∫
D

|F + tF ′|2g µg
)∣∣∣∣

t=0

=

∫
D

〈F ′, F 〉 µg

=

∫
D

〈dA′, F 〉 µg =

∫
D

〈A′, δF 〉 µg,(15.20)

assuming that A′ vanishes on the boundary of D. This variation is 0 for all such
A′ exactly when δF = 0 in D. In summary, the vanishing of the first variations
of L (g, F ) with respect to g and F are Einstein’s equation (15.19) and Maxwell’s
equation δF = 0, respectively.

The Maxwell equation dF = 0 implies that F can be written locally as F =
−dA, where A is a 1-form known to physicists as the “4-vector potential”, and
the minus sign stems from the fact that in mechanics forces generally act in the
direction opposite the gradient of the potential energy. Such an A (satisfying F =
−dA) exists on any simply-connected domain where dF = 0 and is called a gauge
potential for F . However, A is not unique, since for any function ϕ ∈ C∞ (M),
F = −dA = −d (A+ dϕ), whence A + dϕ also serves as a gauge potential for F .
The transformation A 7→ A+dϕ is called a “gauge transformation”. In terms of A,
the equation δF = 0 becomes the wave equation −δdA = 0; in Minkowski space,
−δd = c−2∂2

t −∂2
x−∂2

y−∂2
z . It is convenient to regard A as more fundamental than

F, since dF = 0 follows immediately from F = −dA, and from the wave equation
δdA = 0, we see that singularities of A propagate with speed c. However, the fact
that A is not uniquely determined by F is somewhat of a drawback. To alleviate
this, the so-called Lorentz condition δA = 0 is sometimes imposed on A, but there
are generally plenty of functions ϕ for which δ (A+ dϕ) = 0, namely solutions ϕ of
the scalar wave equation δdϕ = 0.

The E-M field strength F is not built into the metric gµν , and Einstein spent
many years trying to incorporate F into the geometry of space-time, thereby ob-
taining a “unified field theory”. Actually, in [Kal] and [Kle26], it was shown that
E-M and gravity could be geometrized simultaneously by forming a 5-dimensional
manifold by attaching circles to the points of space-time. In this remarkable Kaluza-
Klein theory, the illusion that the universe has only four space-time dimensions is
not necessarily due to the smallness of the circles (although the theory predicts
that they are very small), but rather it is due to the perfect homogeneity in the
circular direction. Off hand, it is difficult to believe that anything useful can come
from adding an unobservable dimension, but indeed all “grand unified theories”
(GUTs) add at least 24 dimensions in order to unify all known non-gravitational
forces. The strings in string theory live in a 10 or 26 dimensional space-time (de-
pending on whether supersymmetry is incorporated or not), not even counting the



15.1. CLASSICAL FIELD THEORY 341

gauge dimensions. For the remainder of this section we describe the geometrical
unification that occurs for the simplest Kaluza-Klein theory.

In modern terminology (made precise in Section 16.1), the original Kaluza-
Klein theory introduces a fiber bundle π : P →M over space-time M , whose fibers
π−1 (x) are circles. The pull-back π∗g of the metric g on M is degenerate on the
fibers. Thus, we need additional structures to complete π∗g to a Lorentzian metric
on P . While we do not assume that each fiber π−1 (x) is explicitly identified with
a standard circle, we do suppose that there is a notion of what it means for a point
p ∈ P to be rotated through an angle θ along its fiber, say p 7→ Rθ (p). We let ∂θ
be the vector field given by

(15.21) (∂θ)p = d
dθRθ (p)

∣∣
θ=0

Of course, there is a standard metric on the fibers which gives ∂θ fixed length
throughout P , but we need to specify what vectors in TP should be orthogonal to
the fibers. This is conveniently accomplished by introducing a 1-form Ã on P , such
that Ã (∂θ) = 1 and R∗θÃ = Ã, so that the distribution of kernels of Ã is preserved
by Rθ. A non-degenerate metric g̃ on P is then given (for X,Y ∈ TpP ) by

(15.22) g̃ (X,Y ) = (π∗g) (X,Y ) + kÃ (X) Ã (Y ) = g (π∗X,π∗Y ) + kÃ (X) Ã (Y ) ,

where k > 0 is some constant to be determined (i.e., g̃ = π∗g + kÃ ⊗ Ã). The
subspace of TpP which is orthogonal to the fiber through p (i.e., orthogonal to

(∂θ)p) is then the kernel of Ãp. Note that the rotation Rθ : P → P is an isometry

of (P, g̃) since

R∗θ g̃ = R∗θπ
∗g + kR∗θ

(
Ã⊗ Ã

)
= (π ◦Rθ)∗ g + k

(
R∗θÃ

)
⊗
(
R∗θÃ

)
= π∗g + kÃ⊗ Ã(15.23)

where we have used the fact that π ◦Rθ = π (i.e., Rθ preserves fibers setwise), and

R∗θÃ = Ã. Note that Ã can be recovered from g̃ by taking Ker
(
Ãp

)
to be the

subspace of TpP which is g̃-orthogonal to ∂θ, and Ãp (∂θ) = 1.
We now come to the main reasons for introducing this 5-dimensional cylindrical

universe (P, g̃) with its associated 1-form Ã derived from g̃ and the circle action
Rθ. The first very striking fact (e.g., see [Bl81]) is that if γ is a geodesic in P

relative to g̃, with Ã (γ′) 6= 0, then the projection γ̄ := π ◦ γ of γ onto M is the
path of a charged particle subject to an E-M field. The Faraday 2-form F of this
E-M field is the unique 2-form on M such that π∗F = −dÃ. The existence of such
F is in part a consequence of the invariance of A under pull back by Rθ. The
charge/mass ratio of the particle is proportional to Ã (γ′), or equivalently g̃ (γ′, ∂θ),

i.e., essentially the vertical component of γ′ relative to g̃. If Ã (γ′) = 0, then γ̄ is
the path of neutral particle in (M, g), i.e., a space-time geodesic. The fact that ∂θ
is a vector field generated by a 1-parameter group of isometries Rθ implies that the
charge/mass ratio g̃ (γ′ (s) , ∂θ) is constant, independent of s, as it should be. The

equation π∗F = −dÃ suggests that Ã is related to potential 1-forms of F . Indeed,
suppose that there is an open set U ⊆M and a map σ : U → P , such that π◦σ = I
(i.e., σ is a local section of the bundle π : P → M). Then Aσ := σ∗Ã is locally a
potential 1-form of F , since on U we have

(15.24) −dAσ = −d
(
σ∗Ã

)
= −σ∗dÃ = σ∗π∗F = (π ◦ σ)

∗
F = F.
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Exercise 15.3. Suppose that σ′ : U → P is another local section, say σ′ (x) =
Rϕ(x) (σ (x)), for some function ϕ ∈ C∞ (U). Verify that

(15.25) Aσ′ := σ′∗Ã = σ∗Ã+ dϕ = Aσ + dϕ.

Thus, Aσ′ is related to Aσ by a gauge transformation.

Remark 15.4. Actually, nowadays many refer to the transformation p 7→
Rϕ(π(p)) (p) of π−1 (U) as a gauge transformation, and the transformation Aσ 7→
Aσ′ = Aσ + dϕ is induced by it. Moreover, differential geometers refer to the in-
variant 1-form Ã on P as a connection 1-form. We will develop these notions much
more systematically in the next chapter.

The crucial point here is that E-M forces and gravity are simultaneously en-
coded in the metric g̃ on P , thereby achieving a geometrical unification of these
forces. It is interesting to observe that the addition of an extra dimension to space-
time to geometrize E-M is very much in the same spirit that time was adjoined to
space in order to geometrize gravity in general relativity.

Even by itself, the fact that the geodesics of (P, g̃) project to paths of charged
particles would be sufficient to take the 5-dimensional Kaluza-Klein theory seriously,
but there is yet another surprise. The scalar curvature S (g̃) of the metric g̃ is
constant on each fiber and thus projects to a well-defined function on M, still
denoted by S (g̃). However, S (g̃) is not just the scalar curvature S (g) of g, but
rather it is given (e.g., see [Bl81]) by

(15.26) S (g̃) = S (g)− 1
2k |F |

2
g .

Consequently, the combined Lagrangian of gravity and E-M (see (15.17)) can then
be written simply as

(15.27) LD (g, F ) =

∫
D

S (g) µg − k
2

∫
D

|F |2g µg =

∫
D

S (g̃) µg.

Thus, the scalar curvature S (g̃) of P yields the combined Lagrangian. Roughly
put, the Einstein field equation in a non-empty universe with an E-M field (but
no matter) is obtained from an empty bundle universe, in the sense that the E-M
stress-energy-momentum source is encoded in the geometry of the metric g̃. All of
this admits suitable generalization to the case where the fibers are not just circles,
but rather general Lie groups (typically SU (N) , SO (N) or products of these in
physical applications). The 1-forms on these higher dimensional bundles are Lie-
algebra-valued connection 1-forms which physicists call “gauge potentials” when
they are pulled down to M via a local section. The corresponding field strengths
(known as “curvatures” to differential geometers) are no longer R-valued 2-forms
such as the Faraday F , but rather they have values in certain vector bundles over M .
There is the rather obvious hope that these field strengths describe the other forces.
For example there are the weak forces that cause, among other events, the decay
of the neutron; and the strong forces that are indirectly responsible for holding
the nucleus together and directly responsible for binding quarks together inside
individual hadrons such as the proton, neutron, pions, etc.. However, one must be
wary about extrapolating classical field theory (which is all we have discussed up
to this point) to such small systems which are governed by quantum theory.
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2. Quantum Theory

Just as Newtonian mechanics breaks down for systems moving at high speeds
near that of light, classical field theory does not describe systems of atomic di-
mensions or smaller very well. The classical picture told us that there are diffuse
and wave-like background fields such as the electromagnetic (E-M) field F and the
metric tensor g of general relativity, and in sharp distinction to these there were
point-like particles that move in trajectories determined by these fields, as well
as influencing them. However, the reader has no doubt heard that under certain
conditions, light (E-M radiation) produces results that are better understood by
assuming that it is made of a stream of particles, known as photons. Notably, when
light falls on certain metallic surfaces in a vacuum electrons are emitted from the
atoms at a rate which can typically be billions of times larger than the rate that
is calculated under the assumption that each atom absorbs all of the energy of the
energy it receives from the continuous E-M wave that contacts it. The most natural
explanation of this photoelectric effect, is that the E-M wave is not continuous, but
rather it is made of chunks (quanta) that have sufficient energy (depending on the
wave length) to immediately dislodge the electrons from the atoms they come in
contact with. It was Einstein who was awarded a Nobel Prize in 1922 in part for
his explanation of the photo-electric effect in terms of the quantum theory of light.
However, he veered away from the dramatic developments in quantum mechanics,
preferring to work on unifying the classical field theories of E-M and gravity with-
out adding an extra dimension as in the Kaluza-Klein theory. He did not succeed.
Just as electro-magnetic fields exhibit particle-like properties, it was also discovered
that particles (e.g., electrons) exhibit wave-like properties. In an experiment where
electrons are fired at a double-slit they collectively make a diffraction pattern of im-
pacts on a screen behind the slit. Thus, the sharp “particle versus wave” dichotomy
in classical physics must admit some fuzziness.

Quantum mechanics and quantum field theory grew out of the attempt to
describe this state of affairs and to make predictions as accurately as possible. One
of the most perplexing phenomena confronting the founders of quantum mechanics
was that of atomic spectra. A spectrograph reveals that atoms emit and absorb
light at fairly discrete wave-lengths or energies. The classical “planetary model”
for the hydrogen atom has the electron circling the proton under the inverse square
Coulomb law. It predicts that the electron will radiate E-M energy at a continuously
increasing rate and will actually spiral into the proton as it gives up its energy in
a short time, rendering the atom unstable. Although it first seems speculative, one
might hypothesize that the various energy levels of the atom are actually eigenvalues
of some differential operator, just as the frequencies of a vibrating string are the

eigenvalues of a constant multiple of d2

dx2 acting on the space of functions vanishing
at the ends. If the eigenvalues of the operator are to represent energies, the operator
should have the physical dimensions of energy. The Coulomb potential energy
(due to the charge of the nucleus) of an electron at distance r to the nucleus of a
hydrogenic atom (or ion) with Z protons is −Ze2/r, where e is the proportional to
the charge of the electron, depending on the system of units. Moreover, the simplest
rotationally invariant differential operator on R3 is the Laplacian ∆ = ∂2

x+∂2
y +∂2

z .

The most obvious operator, having dimensions of energy, formed from −Ze2/r
and ∆ is α∆ − Ze2/r where α is a constant with dimensions of energy times
length2. The point spectrum (assuming α < 0) of this operator (densely defined on
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L2
(
R3
)
) is found to be Z2e4/(4αn2), n = 1, 2, 3, . . . . For hydrogenic atoms, there

is a choice of α such that this spectrum is consistent with the observed energy
spectrum. (Note that the observed spectral lines are at energies which are actually
differences of the above eigenvalues, as the electron jumps between the possible
energy levels.) In order to describe α, let m be the mass of the electron and let M
be the much larger mass of the nucleus. We define the reduced mass of the system
to be µ = m (1 +m/M) ≈ m. The experimentally suitable value for α is found

to be − ~2

2µ , where ~ = h
2π ≈ 6.6256 × 10−27 erg. sec., and h is Planck’s constant

introduced by Max Planck around 1900 in connection with black body radiation.

One can easily check that ~2

2µ has units of energy times length2 so that − ~2

2µ∆ has

units of energy. Hence we have the striking coincidence that the point spectrum of
the operator

(15.28) Ê := − ~
2

2µ
∆− Ze2/r

coincides to good approximation with the energy levels

(15.29)
Z2e4

4αn2
= − Z2e4

4 ~2

2µn
2

= −µZ
2e4

2~2n2

of a hydrogenic atom with Z protons.
A procedure, by which one replaces a classical observable A (e.g., energy, mo-

mentum, position) by an operator Â whose spectrum ranges over all possible exper-
imentally observed values of the observable, is known as a “quantization.” Thus,
we have roughly succeeded in quantizing the energy, say E, of an electron in a
Coulomb potential, by replacing this energy by the operator Ê (15.28). Note that

(15.30) − ~
2

2µ
∆ = − ~

2

2µ

(
∂2
x + ∂2

y + ∂2
z

)
=

1

2µ

(
(±i~∂x)

2
+ (±i~∂y)

2
+ (±i~∂z)2

)
resembles the classical expression 1

2µ

(
p2
x + p2

y + p2
z

)
for the kinetic energy of an

object of mass m and momentum p = pxi + pyj + pzk. This suggests that the
quantization of the classical observable p should be (where the minus sign is con-
ventional)

(15.31) p̂ = p̂xi + p̂yj + p̂zk := (−i~∂x) i+ (−i~∂y) j+ (−i~∂z) k,

and − ~2

2µ∆ is the quantization of the kinetic energy of an object of mass µ. Our

atomic example then suggests that the quantization of a classical potential energy
function V (r) would be the multiplication operator should be the multiplication

operator V̂ given by V̂ (ψ) (r) := V (r)ψ (r) , for ψ : R3 → C. In particular,
for the coordinate function x, we should have x̂ (ψ) (r) = xψ (r), etc.. We have
been very vague about the domains (spaces of functions ψ : R3 → C) of these
operators. In practice, physicists feel comfortable with this vagueness, as long
as they can make physical sense of their results. For example, if a ∈ R3, the
function ψ (r) = eia·r/~ is a simultaneous eigenfunction of the momentum operators
p̂x, p̂y, p̂z in the sense that p̂x (ψ) = a1ψ, etc., but this ψ is not in L2

(
R3,C

)
.

Also, the Dirac delta distribution δ (r− a) might be regarded as an eigenfunction
for the position operators x̂, ŷ, ẑ. Perhaps the most appropriate domain would
be the space of tempered distributions (i.e., continuous linear functionals on the
Schwartz space of rapidly decreasing functions); at least this would be big enough
to encompass the above examples. At any rate, the “functions” in the domains of
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these operators are known as states of the particle (e.g., the electron, in the above
atomic example). We mention that the states describing systems of particles are
essentially tensor products (sometimes symmetric and sometimes skew-symmetric)
of the individual particles. States which differ by a constant, complex factor are
identified (considered physically indistinguishable), making the space of states an
infinite-dimensional complex projective space. The following is a basic interpretive
assumption of quantum mechanics, which gives it some physical sense.

Postulate. Let [ψ] be a state with representative ψ of norm ‖ψ‖ = 1 in a
Hilbert space H (typically L2

(
R3,C

)
in the single particle case). Suppose that a

quantized observable (i.e., a self-adjoint operator) A has a eigenvalue λ. Then the
probability that the observable is measured to be λ when the particle (or system)
is in the state [ψ] is the norm-square of the projection of ψ onto the eigenspace of
λ. More generally, if the self-adjoint operator A has a spectral resolution (i.e., a
projection-valued measure P on R with A =

∫∞
−∞ λ dPλ), then the probability that

the observable is measured to be in some interval I when the particle (or system)
is in state [ψ] is

〈(∫
I
dPλ

)
(ψ) , ψ

〉
.

If the self-adjoint, quantized observable A has a complete set of eigenvectors
un, n = 1, 2, 3, . . . , with Aun = λnun, then according to the Postulate, the expec-
tation of measurements of this observable for the state [ψ] (‖ψ‖ = 1) is simply

∞∑
n=1

λn |〈ψ, un〉|2 =

∞∑
n=1

λn 〈ψ, un〉 〈ψ, un〉 =

∞∑
n=1

〈ψ,Aun〉 〈ψ, un〉

=

〈
Aψ,

∞∑
n=1

〈ψ, un〉un

〉
= 〈Aψ,ψ〉 .(15.32)

We get the same end result in the general case where A has a spectral resolution.
As a consequence of (15.32) in the single particle case, we show that r 7→ |ψ (r)|2

(where ‖ψ‖2 =
∫
R3 |ψ (r)|2 d3r = 1) is the probability density for the position of

the particle in state [ψ]. Indeed, for a domain D ⊆ R3, let χD : R3 → {0, 1} be
the characteristic function of D. Classically, this observable is 1 if the particle is
in D and 0 otherwise. As for functions on R3 in general, the quantization of χD
is the multiplication operator χ̂D on L2

(
R3,C

)
given by χ̂D (u) (r) = χD (r)u (r).

According to (15.32), the quantum mechanical expectation of this observable for
the state [ψ] is

(15.33) 〈χ̂Dψ,ψ〉 =

∫
R3

〈χD (r)ψ (r) , ψ (r)〉 d3r =

∫
D

|ψ (r)|2 d3r.

This shows that |ψ|2 is the probability density for the position of the particle. Our
aim now is to show that the probability density for the momentum of the particle

is the function p 7→
∣∣∣ψ̃ (p)

∣∣∣2, where

(15.34) ψ̃ (p) := (2π~)−3/2
∫
R3

ψ (r) e−ip·r/~ d3r,

which is essentially the Fourier transform of ψ. By the Fourier Inversion Theorem,

(15.35) ψ (r) = (2π~)−3/2
∫
R3

ψ̃ (p) eip·r/~ d3p,



346 15. PHYSICAL MOTIVATION AND OVERVIEW

and formally

(15.36) p̂x (ψ) (r) = −i~∂xψ (r) = (2π~)−3/2
∫
R3

pxψ̃ (p) eip·r/~ d3p.

More generally, for suitable functions f (p) (momentum-dependent observables), it
is natural to let

(15.37) f̂ (ψ) (r) := (2π~)−3/2
∫
R3

f (p) ψ̃ (p) eip·r/~ d3p.

For a domain D in momentum space and associated characteristic function χD (p),
we then have

(15.38) χ̂D (ψ) (r) = (2π~)−3/2
∫
R3

χD (p) ψ̃ (p) eip·r/~ d3p.

The quantum mechanical expectation that the particle has momentum in D is then

(15.39) 〈χ̂D (ψ) , ψ〉 =
〈
χDψ̃, ψ̃

〉
=

∫
D

∣∣∣ψ̃ (p)
∣∣∣2 d3p,

where we have used Parseval’s equality. This identifies
∣∣∣ψ̃∣∣∣2 as the probability

density for the momentum of the particle in the state
[
ψ̃
]
. Note that pseudo-

differential operators are essentially quantizations of functions of momentum.
In classical physics, particles move along trajectories and have well-defined po-

sitions and momenta at all times. In quantum mechanics, position and momentum
cannot both be simultaneously determined with arbitrarily high precision. This is a
consequence of the (Heisenberg) Uncertainty Principle which can be deduced as fol-
lows. The uncertainty of an observable A for a particle in state [ψ] (with ‖ψ‖ = 1) is
the standard deviation of the measurements of the observable, or equivalently, the
root of the expectation of measurements of the observable (A− 〈Aψ,ψ〉)2

, namely

(15.40) ∆ψA :=
〈

(A− 〈Aψ,ψ〉)2
ψ,ψ

〉1/2

= ‖(A− 〈Aψ,ψ〉)ψ‖

As shown below, the Cauchy-Schwarz inequality and a little algebra reveal that for
observables A and B we have the Uncertainty Principle

(15.41) ∆ψA ·∆ψB ≥ 1
2 |([A,B]ψ,ψ)| ,

where [A,B] = AB −BA. Indeed,

∆ψA ·∆ψB =
(

(A− (Aψ,ψ))
2
ψ,ψ

)1/2 (
(B − (Bψ,ψ))

2
ψ,ψ

)1/2

= ‖(A− (Aψ,ψ))ψ‖ ‖(B − (Bψ,ψ))ψ‖
≥ |((A− (Aψ,ψ))ψ, (B − (Bψ,ψ))ψ)|
≥ |Im ((A− (Aψ,ψ))ψ, (B − (Bψ,ψ))ψ)|

= 1
2

∣∣∣∣ ((A− (Aψ,ψ))ψ, (B − (Bψ,ψ))ψ)
− ((B − (Bψ,ψ))ψ, (A− (Aψ,ψ))ψ)

∣∣∣∣
= 1

2

∣∣∣∣( (A− (Aψ,ψ)) (B − (Bψ,ψ))−
((B − (Bψ,ψ)) (A− (Aψ,ψ)))ψ,ψ

)∣∣∣∣
= 1

2 |((AB −BA)ψ,ψ)| = 1
2 |([A,B]ψ,ψ)| .(15.42)

Consequently, for two noncommuting quantized observables, there is a possible
obstruction to obtaining arbitrarily low uncertainties in the measurements of both.
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For example, [x̂, p̂x] (ψ) = x (−i~∂xψ) − (−i~∂x (xψ)) = i~ψ (i.e., [x̂, p̂x] = i~I),
and so

(15.43) ∆ψx̂ ·∆ψp̂x ≥ 1
2 |(i~ψ,ψ)| = ~

2 |(ψ,ψ)| = ~
2 .

Thus in quantum mechanics, the position and momentum of a particle in the same
direction cannot both be determined with arbitrarily high precision. For example,
initial conditions for Newton’s equation (or its relativistic analogs) for a particle
cannot be exactly specified, and the philosophy of determinism loses its grip on
reality. However, classical mechanics works well in ordinary circumstances due to
the smallness of ~.

Exercise 15.5. Show that if a function ψ ∈ C1
(
R3
)
∩ L2

(
R3
)

is a state for

which ∆ψx̂ ·∆ψp̂x, ∆ψ ŷ ·∆ψp̂y and ∆ψ ẑ ·∆ψp̂z all have the minimal value ~
2 , then

|ψ|2 is a normal (Gaussian) distribution in each variable. For simplicity, you may
wish to assume (at first) that (x̂ψ, ψ) = (p̂xψ,ψ) = 0 (and similarly for y and z).
To proceed, consider when the inequalities in 15.42 are equalities.

So far we have said nothing about how states and/or observables evolve with
time in quantum mechanics. While there are a number of standard ways of in-
troducing time evolution, here we will proceed in a somewhat unusual manner, by
drawing upon special relativity for motivation. Suppose that

(15.44) γ (s) =
(
x0 (s) , x1 (s) , x2 (s) , x3 (s)

)
= (ct (s) , r (s))

is the trajectory of a particle of rest mass m0 in Minkowski space-time, parametrized

in the standard way so that 〈γ′ (s) , γ′ (s)〉 = c2t′ (s)
2 − ‖r′ (s)‖2 = c2. The energy-

momentum 4-vector of the particle is

p (s) := m0γ
′ (s) = m0 (ct′ (s) , r′ (s))

= m0 (cβ (s) , β (s) v (t (s))) = (mc,mv) = (E/c,p) .(15.45)

Since the quantization of p is p̂ =−i~∇, it is fitting that (on the basis of covariance)
more generally we should have p̂µ = i~gµν∂ν . As gii = −1 for i = 1, 2, 3, we then
have p̂ = − i~∇, whereas for µ = 0, we obtain Ê/c = p̂0 = i~g00∂0 = +i~∂0 =

+i~ 1
c∂t (plus!). In other words, one ought to have Ê = i~∂t. However, most

physicists do not think of i~∂t as being the quantization Ê of the classical energy E,
since Ê is generally determined by other means. For example, in the nonrelativistic
setting where E = 1

2m ‖p‖
2

+ V (r) for some potential V , we have seen that Ê =

− ~2

2m∆ + V̂ . In the so-called Schrödinger picture, the relation Ê = i~∂t is regarded
as defining the time evolution of states [ψ], in the sense that

(15.46) i~∂tψ = Êψ.

Actually, we should be more precise here. The E in p = (E/c,p) is the total energy
of the particle, which is close to the sum of kinetic energy, potential energy, and
rest energy

(15.47) E ≈ 1

2m0
‖p‖2 + V (r) +m0c

2,



348 15. PHYSICAL MOTIVATION AND OVERVIEW

where we assume that V (r) is shifted to zero by adding a constant when p = 0, so
that E = m0c

2 when the particle is at rest. Thus, according to (15.46)

(15.48) i~∂tψ = Êψ = − ~2

2m0
∆ψ + V (r)ψ +m0c

2ψ.

This is not quite the usual Schrödinger equation because of the term m0c
2ψ. How-

ever, if in (15.48) we make the replacement ψ (r, t) → e−im0c
2t/~ψ (r, t) (which

at each time replaces ψ by an equivalent state), we then obtain the official time-
dependent Schrödinger equation

(15.49) i~∂tψ = − ~2

2m0
∆ψ + V (r)ψ

An obvious defect of (15.49) is its noninvariance under Lorentz transformations
which arises from the approximation (15.47). However, it does have the virtue

that ψ (·, 0) 7→ ψ (·, t) is a unitary transformation, so that for each time t, |ψ (·, t)|2
may be regarded as a probability density if ‖ψ (·, 0)‖ = 1. This unitary property

can be seen from the fact that the infinitesimal generator 1
i~

(
− ~2

2m0
∆ + V̂

)
is a

skew-hermitian operator because of the factor of i.

Exercise 15.6. Show that
∫
R3 |ψ (r, t)|2 d3r is constant by formally differenti-

ating under the integral, using (15.49). You may assume that ψ (·, t) and its spacial
derivatives decay rapidly enough as |r|→ ∞ to neglect boundary terms when inte-
grating by parts.

Another nice consequence of (15.49) is that (under suitable decay assumptions
on ψ (r, t) and its derivatives as ‖r‖ → ∞) the expectation of the position vector
of the particle in state [ψ], namely

(15.50) R (t) :=

∫
R3

|ψ (r, t)|2 r d3r,

obeys not only

(15.51) R′ (t) =
1

m0
P (t) :=

1

m0
〈p̂ψ,ψ〉 =

1

m0

∫
R3

−i~∇ψ (r, t)ψ (r, t)
∗
d3r

where P (t) is the expectation of the momentum, but also “Newton’s equation”

(15.52) m0R
′′ (t) = −

∫
R3

|ψ (r, t)|2∇V (r) d3r,

where we note that the right side is the expectation of the force on the particle in
state [ψ].

Exercise 15.7. Formally derive equations (15.51) and (15.52). Again, assume
that ψ and its derivatives suitably decay so that the boundary terms produced
when integrating by parts can be discarded.

One reason why the nonrelativistic (15.49) and its many-particle generalizations
are so successful in dealing with atomic phenomena is that electrons in atoms
“travel” at speeds of only around c/100, according to a simple approximate classical
calculation.
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Perhaps it would have been better to insist on Lorentz invariance from the
beginning, thereby replacing the relation (E/c)

2 − ‖p‖2 = m2
0c

2 by its “quan-
tized” analog, namely the Klein-Gordon equation for the C-valued function ψ on
Minkowski space

(15.53) −~2
(
c−2∂2

t −∆
)
ψ = m2

0c
2ψ.

However, note that there is no vestige of a potential in this equation. If we are
to introduce electromagnetism in some way, we should do it in a Lorentz invariant
way. If we write (15.53) in the covariant form

(15.54) −~2gµν∂µ∂νψ = m2
0c

2ψ,

then the most obvious way of introducing E-M is simply to add a multiple of the
gauge potential A = (Aµ) to the operator ∂ = (∂µ). However, in order that the
resulting equation be invariant under gauge transformations A → A′ := A + dϕ,
where ϕ : M → R, we need to subject ψ to a gauge transformation. In order to keep
|ψ|2 gauge-invariant, we might try ψ → ψ′ := eiϕψ. Indeed, we have the identity

(∂µ − i (Aµ + ∂µϕ)) eiϕψ = eiϕ (∂µ − iAµ)ψ

or
(
∂µ − iA′µ

)
ψ′ =

((
∂µ − iA′µ

)
ψ
)′

(15.55)

Thus, we obtain the desired invariance

−~2gµν (∂µ − iAµ) (∂ν − iAν)ψ = m2
0c

2ψ ⇔
−~2gµν

(
∂µ − iA′µ

)
(∂ν − iA′ν)ψ′ = m2

0c
2ψ′.(15.56)

In order for the units to work out, Aµ must be replaced by (const.) ·Aµ having the

same dimensions as ∂µ, namely (length)
−1

. The natural choice is e
c~Aµ where e

is the charge. Thus, one may incorporate E-M into the Klein-Gordon equation by
replacing ∂µ by ∂µ − ie

c~Aµ, obtaining

(15.57) −~2gµν
(
∂µ −

ie

c~
Aµ

)(
∂ν −

ie

c~
Aν

)
ψ = m2

0c
2ψ.

Physicists call this “minimal replacement,” while differential geometers recognize
that this amounts to replacing ordinary derivatives by covariant derivatives. Note
that ψ changes under a change of gauge. Thus, rather than taking ψ to be a C-
valued function on space-time, this wave function is more properly regarded as an
equivariant C-valued function on the Kaluza-Klein circle bundle P (or equivalently
as a section of the associated complex line bundle). Covariant differentiation is then
forced upon us, since ordinary differentiation of sections of a vector bundle makes

no invariant sense. Observe that
∣∣eiϕψ∣∣2 = |ψ|2, whence |ψ|2 is gauge invariant.

However there is a problem with interpreting |ψ (t, ·)|2 as a probability, because,

even with A = 0, it does not follow from (15.57) that
∫
R3 |ψ (t, r)|2 d3r is constant,

as with solutions of Schrödinger’s equation (15.49). Instead, one finds that the real
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quantity ∫
R3

2 Im

(
ψ (t, r)

(
∂0 +

ie

c~
A0 (t, r)

)
ψ (t, r)

∗
)
d3r

=

∫
R3

i

(
ψ∗
(
∂0 −

ie

c~
A0

)
ψ − ψ

(
∂0 +

ie

c~
A0

)
ψ∗
)
d3r

=

∫
R3

i (ψ∗∂0ψ − ψ∂0ψ
∗)− 2e

c~
A0 |ψ|2 d3r(15.58)

is conserved (i.e., independent of t). However, the integrand, say ρ (t, r), is not
necessarily of fixed sign everywhere even if A0 = 0, and thus does not represent
a probability density. The usual interpretation is that ρ (t, r) is proportional to
a charge probability density, but this is odd because ψ is supposedly the state
of a single particle of a definite charge e. This difficulty foreshadows the fact
that relativistic quantum theories are generally multi-particle theories in which
the number of particles is not fixed in the presence of an external potential, and
anti-particles of charge −e are naturally built in at the outset. The presence of
anti-particles manifests itself in “negative-energy states” ψ for which i~∂tψ = Eψ
with E < 0.

The full story is known as quantum field theory, as opposed to relativistic
quantum mechanics. For physicists, quantum field theory (particularly, quantum
electrodynamics (QED)) is enormously successful, since very accurate, verifiable
predictions are made. However, for mathematicians, conventional quantum field
theory leads to an unsatisfactory state of affairs. Indeed, no mathematical quantum
field theory (which satisfies a reasonable set of axioms) with realistic interacting
particles has ever been constructed in four space-time dimensions. From a math-
ematical perspective, the great tragedy is that conventional physicists are getting
fantastic answers, with little concern that a solid theoretical foundation has yet to
be found.

Returning to the Klein-Gordon equation (15.57), it is possible to make contact
with nonrelativistic quantum mechanics in a limiting sense, as follows. In order
to relate (15.57) to Schrödinger’s equation (15.49), for a solution ψ of (15.57), we

define ψs := eim0c
2t/~ψ. Note that

(15.59) i~∂tψs = i~∂t
(
eim0c

2t/~ψ
)

= eim0c
2t/~ (i~∂tψ −m0c

2ψ
)
.

Thus, the transformation ψ → ψs has the effect of removing the rest energy m0c
2

from ψ. For a solution ψ of (15.57), we expect that ψs will approximately satisfy
(15.49) for some choice of V . We will show this under the assumptions that Ai = 0
for i = 1, 2, 3, A0 is time-independent (∂tA0 = 0) and terms without factors of c2

are negligible in comparison with those that do. Using (15.59), we then have

i~∂tψ = e−im0c
2t/~ (i~∂tψs +m0c

2ψs
)
≈ e−im0c

2t/~m0c
2ψs

−~2∂2
t ψ = i~∂t (i~∂tψ) = i~∂t

(
e−im0c

2t/~ (i~∂tψs +m0c
2ψs
))

= e−im0c
2t/~

(
−~2∂2

t ψs + 2m0c
2i~∂tψs +

(
m0c

2
)2
ψs

)
≈ e−im0c

2t/~
(

2m0c
2i~∂tψs +

(
m0c

2
)2
ψs

)
.(15.60)



15.2. QUANTUM THEORY 351

Then under the above assumptions, (15.57) yields

m2
0c

2ψ = −~2

(
c−1∂t −

ie

c~
A0

)(
c−1∂t −

ie

c~
A0

)
ψ + ~2∆ψ

≈ −c−2~2∂2
t ψ + 2c−2eA0i~∂tψ +

e2

c2
A2

0ψ + ~2∆ψ

≈ c−2
(
e−im0c

2t/~
(

2m0c
2i~∂tψs +

(
m0c

2
)2
ψs

))
+ 2c−2eA0

(
e−im0c

2t/~m0c
2ψs

)
+
e2

c2
A2

0ψ + ~2∆ψ(15.61)

or

i~∂tψs ≈
−~2

2m0
∆ψs − eA0ψs +

e2

2m0c2
A2

0ψs

=
−~2

2m0
∆ψs − eA0

(
1− eA0

2m0c2

)
ψs(15.62)

Thus, assuming that the electrostatic potential energy eA0 is small compared
with the rest energy m0c

2 so that eA0

2m0c2
is negligible, we approximately have

Schrödinger’s equation (15.49) with potential V = −eA0. Incidentally, we men-
tion that expressing the density in the conserved quantity (15.58) in terms of

ψs = eim0c
2t/~ψ (using the first equation in (15.60)) yields

i (ψ∗∂0ψ − ψ∂0ψ
∗)− 2e

c~
A0 |ψ|2

=
1

c~

(
i~ (ψ∗s∂tψs − ψs∂tψ∗s ) + 2

(
m0c

2 − eA0

)
|ψs|2

)
=

2m0c

~

(
i~

2m0c2
(ψ∗s∂tψs − ψs∂tψ∗s ) +

(
1− eA0

m0c2

)
|ψs|2

)
.(15.63)

Thus, the density in (15.58) is for eA0 � m0c
2, etc., is approximately 2m0c/~ times

the usual Schrödinger probability density |ψs|2.
For the hydrogenic atom where A0 = Ze/r and A = 0, the relevant exact

product solutions ψ (t, r) = e−iEt/~R (r)Yl,m (θ, ϕ) of (15.57) can be found (see
[Schi, p. 470]) and the corresponding energies levels to order 4 in the parameter
γ := Ze2/(~c) are given by

(15.64) En,l = m0c
2

(
1− γ2

2n2
− γ4

2n4

(
n

l + 1
2

− 3

4

)
+ O

(
γ6
))

where n = 1, 2, 3, . . . is the total quantum number and l = 0, 1, . . . , n − 1 is the
azimuthal quantum number of the state. The first term m0c

2 is the rest energy
and the second term is

(15.65) −m0c
2 γ

2

2n4
= −m0c

2

(
Ze2/(~c)

)2
2n4

= −m0e
4Z2

2~2n4

which coincides with (15.29) with m0 = µ. The third term is a relativistic correction
that predicts that there is a small spread (fine structure) in the energy levels for a
fixed n, since the different values l = 0, 1, . . . , n− 1 yield different energies (i.e., the
degeneracy is broken). However, the predicted spread is larger than the observed
spread. The problem is that, while the Klein-Gordon equation 15.57 is the most
obvious relativistic wave equation, it is not the correct one for electrons. Indeed,
there is a first-order relativistic equation for a multi-component (spinorial) wave
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function that works much better, namely the Dirac equation which we consider
next.

The search for a first-order relativistic wave equation was partly motivated by
the fact that Schrödinger’s equation only involves a first derivative with respect
to t, and the evolution of states is simply given by a one-parameter group of uni-
tary transformations on L2

(
R3
)

generated by the skew-Hermitian operator −iÊ/~
formed from the quantized energy Ê. As was eventually discovered, the problem
with the Klein-Gordon equation really is not with the second-order time derivative
per se, but Dirac’s search for a first-order relativistic equation led to the correct
equation for electron wave functions. What follows is a rough outline of his reason-
ing. Consider a first-order differential operator with constant (but possibly complex
matrix) coefficients γµ, say

(15.66) A = γµ∂µ = γ0∂0 + γ1∂1 + γ2∂2 + γ3∂3

(
∂0 := c−1∂t

)
.

If A is relativistically (or Lorentz) invariant, then so is

(15.67) A2 = (γµ∂µ)
2

= 1
2 (γµγν + γνγµ) ∂µ∂ν .

For gµνdx
µdxν =

(
dx0
)2 − (dx1

)2 − (dx2
)2 − (dx3

)2
, we have gµν = gµν , and con-

stant multiples of the operator gµν∂µ∂ν are Lorentz invariant. Thus, it is reasonable
to impose the condition (for some scalar or matrix K 6= 0) that

(15.68) 1
2 (γµγν + γνγµ) = Kgµν .

If the γµ and K are assumed to be complex scalars then there are no such γµ, since
these scalars would be nonzero and would anticommute. With some perseverance,
one can prove that if the γµ are n × n matrices and K = In (the n × n identity),
then the least n for which there are solutions to (15.68) is n = 4. One standard
solution is

(15.69) γ0 =

[
I2 0
0 −I2

]
, γj =

[
0 σj
−σj 0

]
,

where

(15.70) σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
are the so-called Pauli matrices. A source of headaches is the fact that the γµ are
not unique, since we can replace γµ by BγµB−1 for any invertible 4× 4 matrix B.
At any rate, Dirac’s equation for a C4-valued (4-component) wave function ψ is

(15.71) i~γµ∂µψ = m0cψ

where m0 is the rest mass of the particle associated with ψ. The electromagnetic
gauge potential 1-form A = Aµdx

µ is again naturally introduced via minimal re-
placement:

(15.72) i~γµ
(
∂µ −

ie

c~
Aµ

)
ψ = m0cψ.

For (Aµ) = (Ze/r,0), this equation can be separated (see [Schi, p. 486]) and

one finds that there are solutions of the form ψ (t, r) = e−iEt/~Ψ (r), where Ψ (r)
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decays suitably as r → ∞ the energy levels. They are indexed by n = 1, 2, 3, . . .
and |k| = 1, 2, . . . , n and are given (to fourth order in γ := Ze2/ (~c)) by

(15.73) En,|k| = m0c
2

(
1− γ2

2n2
+

γ4

2n4

(
n

|k|
− 3

4

)
+ O

(
γ6
))

.

The fine structure exhibited by the third term agrees much better with observa-
tions than that predicted by the Klein-Gordon equation (see (15.64)). Although
discrepancies with the observed spectrum still exist (e.g., the Lamb shift), they
are accounted for within the more accurate context of quantum electrodynamics
(QED) which is a quantum field theory. In this theory, the wave function ψ and
the E-M gauge potential A are replaced by distributions with values that are oper-
ators in a multi-particle Hilbert space of states. Although the mathematics of QED
is shady, the formalities involved give rise to recipes for computing physical quan-
tities in terms of formal power series in the dimensionless fine structure constant
α := e2/(c~) ≈ 1/137. Such series are known are called renormalized perturbations
series. The coefficients of such series are computed by summing up integrals asso-
ciated with so-called Feynman diagrams. One trouble is that integrals associated
with Feynman diagrams that have loops are infinite. By various procedures known
as renormalization techniques, finite values for the coefficients of the perturbations
series are extracted. Field theories for which this is the case (e.g., QED) are known
as renormalizable. The various renormalization techniques all lead to the same
values for the coefficients, which is reassuring. For QED, the terms of these series
become smaller at least initially. Eventually, the coefficients become incalculable
due to the huge number and complexity of the Feynman diagrams. The consensus
among those who have studied these series in some detail is that the coefficients
eventually increase rapidly enough so that the series do not converge. Contrary
to popular misconceptions (even held by good physicists) a formal power series in
α does not necessarily converge, even if α ≈ 1/137. However, as with asymptotic
series, before divergence sets in, one obtains amazing accuracy compared with ex-
perimental results. For example, we have the following values for the magnetic
moment of the electron:

(15.74)
Experiment: e~

2mec
(1.00115965241± 20)

QED: e~
2mec

(1.00115965238± 26)

Thus, in spite of the profound mathematical problems with QED (e.g., its very ex-
istence as a mathematical theory, beyond computational recipes), QED is hailed as
one of the most successful physical theories from the perspective of most physicists.

Returning to the Dirac equation (15.71), we have not yet indicated the sense
in which it is Lorentz invariant. For the Klein-Gordon equation (15.54), Lorentz-
invariance means that if ψ is a solution and L ∈ O (1, 3) is a Lorentz transformation,
then ψ ◦ L is also a solution. For the Dirac equation, one considers the universal
double cover C : SL (2,C)→ O0 (1, 3) of the identity component O0 (1, 3) of O (1, 3).
There is a representation r : SL (2,C) → GL (4,C), such that if ψ is a solution
of Dirac’s equation i~γµ∂µψ = m0cψ, and A ∈ SL (2,C) then A−1ψ ◦ r (A) is
also a solution. This is the meaning of Lorentz-invariance for the Dirac equation.
Since the representation r is the sum of two irreducible spin- 1

2 representations, the
Dirac equation not only takes into account the spin of the electron, but it forecasts
the existence of the positron. In the terminology of modern differential geometry
(introduced in the next Chapter), the Dirac wave function is a section of a complex
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4-dimensional vector bundle (the Dirac bispinor bundle) which is associated to a
double cover (by spinor frames) of the bundle of space-time oriented orthonormal
Lorentz frames. If the E-M gauge potential is included, then gauge invariance
dictates that the Dirac bispinor bundle is associated with the fibered product of
the spinor frame bundle and the Kaluza-Klein U(1) (circle) bundle.

Of course, electrons and photons are just part of the total picture. In place of
the U(1) circle bundle used in the original Kaluza-Klein theory to introduce E-M,
one uses a principal bundles P with a larger Lie group to incorporate other non-
gravitational forces. The wave functions of the fundamental particles of matter are
sections of various vector bundles that are associated (via group representations) to
the so-called fibered product of the bundle P with the bundle of spinor frames over
space-time. The known fundamental particles of matter include the 6 “flavors” of
quarks (u (up), d (down), s (strange), c (charm), t (top), b (bottom)) each in three
“colors” (R (red), G (green), B (blue)) together with the leptons (e− (electron), µ−

(muon), τ− (tau)) together with their associated neutrinos (νe (electron neutrino),
νµ (muon neutrino), τ− (tau neutrino)). These are organized into three generations
(see the table below) which are essentially identical except in the masses of the cor-
responding particles, higher generation particles generally being heavier than their
lower generation counterparts; e.g., the masses of e−, µ−, τ− are approximately
.511, 105.66, and 1784 MeV, respectively.

Generation 1 2 3

quarks

{
charge + 2

3
charge − 2

3

u(R,G,B)

d(R,G,B)

c(R,G,B)

s(R,G,B)

t(R,G,B)

b(R,G,B)

leptons

{
charge − 1
charge 0

e−

νe

µ−

νµ

τ−

ντ

We mention that for each quark q(R,G,B), there is an anti-quark q̄(C,M,Y ) of the
opposite complementary color (C,M, Y ) = (cyan, magenta, yellow). In addition
to gravity, the known forces are as follows. There is the strong force of QCD
(quantum chromodynamics) acting between the quarks inside strongly interacting
particles (hadrons) such as neutrons, protons and pions, which is mediated by 8
gluons (one for each vector in a basis for su(3) :=Lie algebra of SU(3)). The col-
ors of the quarks can be regarded as charges that respond to the strong force in
the sense that electrically charged particles respond to E-M fields. The fact that
quarks are confined within hadrons seems to be related to the fact that SU(3) is
nonabelian, which causes gluons to interact with each other. Unlike the coulomb
force, gluon forces between quarks weaken as the separation distance decreases
to zero, but gluon forces strengthen dramatically when the distance increases to
the diameter of a hadron. Individual leptons (e.g., electrons, neutrinos) appear
in the open (unconfined) since, being colorless, they are unaffected by gluons. In
mathematical terms, SU(3) acts trivially on the lepton sector of the relevant repre-
sentation. Corresponding to 4 generators of the Lie algebra of SU(2)× U(1), there is
the weak force mediated by the Z and ±W vector bosons and the E-M force due to
photons. Incidentally, U (1) of E-M is not simply the U (1) factor in SU(2)× U(1).
In terms of the Pauli matrices σk of (15.70), a set of standard generators for the
complexified Lie algebra su(2) ⊗ C are the matrices 1

2σ3 and σ± := 1
2 (σ1 ± iσ2).

The generator for electric charge in the Lie algebra su(2)⊕ u (1) is a linear combi-
nation of i

2σ3 ∈ su(2) and the generator i ∈ u (1), while the Z boson is associated
with an independent linear combination of these generators. The ±W bosons are
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associated with σ±. The weak force acts on leptons as well as quarks. Among
other things, it is responsible for the decay of an isolated neutron into a proton,
electron and antineutrino in about 15 minutes on average. It was primarily for their
work in exhibiting that the electro-weak unification was feasible in the context of a
spontaneously broken SU(2)× U(1) gauge theory (the GWS-theory) that Sheldon
Glashow, Steven Weinberg and Abdus Salam were awarded the 1979 Nobel Prize
for Physics. The Z and ±W vector bosons were detected by experimentalists in
1983. Unlike true gauge bosons such as the photon and gluons, the Z and ±W are
massive, due to the fact that the SU(2) × U (1) gauge symmetry is broken, leav-
ing the U(1) of E-M as the surviving gauge group. The standard explanation for
how the symmetry was broken is known as the “Higgs mechanism,” but the Higgs
particles in the theory have yet to be found. There is another peculiarity of the
weak force in that it acts only the so-called left halves of quarks and leptons. To
understand this a little better, recall that a bispinor field for a particle is locally
C4-valued. Two of these components correspond to the particle and two correspond
to the antiparticle. Of the two components for the particle, one is the left-handed
component and one is the right-handed component, and these are called the chiral
halves of the particle; the antiparticle part also has chiral halves. Mathematically,
the weak force associated with “su(2)-like” broken generators in the complexified
su(2)⊕ u (1) act in the usual way (as SU (2) acts on C2) on certain chiral doublets,
such as

(
e−L , veL

)
and (uL, d

′
L). In a less complicated world, d′L might simply be the

left-handed chiral half dL of the down quark, but in this world, d′L is a linear com-
bination of dL, sL, and bL, where the coefficients form the first row of the so-called
Cabibbo-Kobayashi-Maskawa 3×3 matrix. The other rows of the CKM matrix are
determined by the weak SU(2) doublets (cL, s

′
L) and (tL, b

′
L), when s′L and b′L are

written as linear combinations of dL, sL, and bL. Incidentally, in a less complicated
world where d′L = dL, etc. or where there are fewer than 3 generations, we might
not exist. Indeed, then certain time-asymmetric weak reactions (e.g., K0 meson
decay) would not occur (see [?, p. 725]. It has been speculated that in the absence
of such reactions, certain quark-nonconservation processes in grand unified theories
might cause so much matter and anti-matter annihilation that there would be too
few quarks left to make enough nucleons (see [CD, p. 176-7]). At any rate, to
account for all of these known nongravitational forces, the gauge group of the prin-
cipal bundle, say P , over space time M (before symmetry-breaking) must include
SU(3) × SU(2) × U (1), a far cry from the U (1) group for the circle bundle of the
original Kaluza-Klein theory. As a point of historical interest, Oscar Klein was the
first to introduce SU (2) gauge fields (commonly known as Yang-Mills fields) and
he even anticipated their use in modeling weak interactions in [Kle38], 30 years
before the GWS model was developed.

In the search for symmetry, many have attempted to incorporate the group
SU(3) × SU(2) × U (1) into a larger simple group (e.g., SU(5), SO(10), etc.),
thereby obtaining a grand unified theory (GUT). The SO(10) (or more precisely,
Spin (10)) GUT is particularly tidy, since the two fundamental spinor representation
of Spin (10) are 16-dimensional and the left chiral halves of an individual generation
of fundamental particles of matter fits perfectly (and correctly) into one of these
16-dimensional representations, while the right chiral halves fit into the other. For
the first generation of (say, left) chiral halves, 12 of the 16 dimensions are accounted
for by the 4 left chiral halves of the up and down quarks and antiquarks replicated
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in three colors, 2 dimensions come from the left chiral halves for the electron and
positron, and the remaining 2 dimensions are occupied by the left chiral halves for
the electron neutrino and antineutrino. Incidentally, for years many believed that
neutrinos were massless and not bispinorial (i.e., having just 2-component wave
functions), but recent experiments strongly suggest (if not prove) that neutrinos
have a small mass which necessitates the existence of left-handed and right-handed
neutrinos and antineutrinos, instead of just left-handed neutrinos and right-handed
antineutrinos. It should be emphasized that not only do all of the left chiral halves
of the fundamental particles fit by virtue of dimension count into a fundamental
representation of Spin (10), but under the usual inclusions

(15.75) su(3)× su(2)× u (1) ⊂ su(5) ⊂ so(10) ∼= spin(10)

of Lie algebras the left chiral halves all respond correctly to the various forces
under the spinor representation. In the Lie algebras of possible grand unification
groups, there are generators which are not in su(3)× su(2)×u (1) and hence do not
correspond to standard known forces. The forces associated with these generators
are thought to be involved in processes that convert quarks to leptons, which for
example can lead to proton decay, a process which has yet to be detected. The force
of gravity is not encoded in a grand unification group, but rather it is “gauged”
in a different sense by the Lorentz group (or its cover SL (2,C)) for the bundle of
frames (or spinor frames) for space-time itself. In this way, gravity seems to resist
attempts to unify it with other forces, and no universally convincing method of
quantizing it has been forthcoming. The best hope seems to reside in string theory.

It must be stressed that unlike the Schrödinger wave function ψs which speci-
fies the quantum state of a single particle in nonrelativistic quantum mechanics and
whose modulus square |ψs|2 is the position probability density, the Dirac bispinor
wave functions ψ (or sections) for leptons and quarks, do not admit such an easy
interpretation. One source of confusion is that these wave functions are not re-
garded as quantum fields even though in a certain nonrelativistic limit, two of the
components of the Dirac wave function ψ can be identified with the two compo-
nents of the Pauli wave function that satisfies the so-called Pauli equation which
is a Schrödinger equation for single particles with spin 1

2 . In view of this, Dirac
bispinor wave functions ψ are referred to as “first quantized” wave functions, while
the process that converts such ψ to operator-valued distributions is known as “sec-
ond quantization.” However, as some correctly point out, an object should only
be quantized once. Thus, one should regard Dirac bispinor wave functions ψ as
classical states which have yet to be quantized. However, there are difficulties with
interpreting such ψ as classical states. For example, there are two pointwise scalar
products for Dirac bispinors ψ, one is simply ψ∗ψ, where ψ∗ is conjugate trans-
pose of the C4-valued, while the other is ψ̄ψ := ψ∗γ0ψ where ψ̄ := ψ∗γ0 is the
so-called dual bispinor. Since ψ∗ψ ≥ 0 and its integral over R3 is time-independent
(as a consequence of Dirac’s equation γµ∂µψ = mcψ), one might be tempted to
think of it as a probability density. However, when ψ is quantized (i.e., turned
into a suitable operator-valued distribution), the expectation values of ψ∗ψ have
the interpretation as the charge density of a collection of positively and negatively
charged particles and antiparticles, and so the positivity of ψ∗ψ does not survive
quantization. Moreover, the prequantum indefinite scalar product ψ̄ψ has posi-
tive expectation values after quantization and is interpreted as an energy operator.
Generally, many classical fields cannot be given a reasonable physical significance
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until they are quantized. For example, although the forces of QCD are mediated by
mass 0 gluons (corresponding to photons in QED) and thus might be expected to
have a long range (decaying as r−2, rather than exponentially), no unconfined, long
range effects of gluons are evident, unlike the case of E-M fields of photons. Since
gluons seem to be confined to very small regions inside hadrons, it would appear
very speculative to treat them as classical wave-like fields. By the photoelectric ef-
fect, we know that E-M does not behave much like a wave even at the vastly greater
dimensions of an atom. It is nevertheless believed that the classical solutions of the
field equations for nonabelian gauge fields (particularly, in 4-dimensional Euclidean
space, with positive-definite metric) do yield at least a first-order approximation to
certain quantum effects for such fields, especially with regard to “tunneling phe-
nomena.” Although we cannot go into the details of how this works in quantum field
theory, there is a similar situation in quantum mechanics, which can be understood
through the following discussion.

Consider the Schrödinger operator H := H0 + V where H0 := − ~2

2m∆ and

V : R3 → R is a suitable potential (e.g., V− := min (V, 0) ∈ L2
(
R3
)

+ L∞
(
R3
)

and V+ := max (V, 0) ∈ L2
loc

(
R3
)
). Then H0 + V is an unbounded essentially

self-adjoint on the dense domain C∞0
(
R3
)

of L2
(
R3
)
, see [ReSi75, p. 185]. One

then obtains a strongly continuous 1-parameter group of unitary transformations
exp (−itH/~) of L2

(
R3
)
, see [ReSi72, p. 265]. For f in the Schwartz space of

rapidly decreasing functions on R3, the solution of the problem

(15.76) i~∂tψ = − ~
2

2m
∆ψ + V ψ, ψ (x, 0) = f (x)

is given by ψ (x, t) = [exp (−itH/~) f ] (x). Even though H0 and V do not commute
in general, there is a formula due to T. Kato and H. F. Trotter (see [Kato] and
[Tro]) that yields

(15.77) exp

(
− i
~
tH

)
= lim
k→∞

([
exp

(
−it
~k

V

)
exp

(
−it
~k

H0

)]k)
.

It is well-known (and not hard to prove) that

(15.78) exp

(
− i
~
tH0

)
[f ] (x) =

(
2πi~t
m

)−3/2 ∫
R3

exp

(
im |x− y|2

2~t

)
f (y) d3y,

whence

exp

(
−it
~k

V

)
exp

(
−it
~k

H0

)
[f ] (x)

=

[
2πi~t
mk

]−3/2∫
R3

e
it
~k

(
m
2
|x−x0|

2

(t/k)2
−V (x)

)
f (x0) d3x0.(15.79)

For x0, x1, . . . , xk ∈ R3, let

(15.80) At (x0, x1, . . . , xk) :=

k∑
j=1

(
m

2

|xj − xj−1|2

(t/k)
2 − V (xj)

)
t

k
.
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Taking xk = x, the Kato-Trotter formula then yields

ψ (x, t) = [exp (−itH/~) f ] (x)

= lim
k→∞

[
exp

(
−it
~k

V

)
exp

(
−it
~k

H0

)
f

]k
(x)

= lim
k→∞

[
2πi~t
mk

]−3k/2∫
R3k

e
i
~At(x0,...,xk)f (x0) d3x0 · · · d3xk−1.(15.81)

Let γ : [0, t]→ R3 be a path with γ (jt/k) = xj for j = 0, . . . , k − 1 and

(15.82) γ (s) = (xj+1 − xj)
(
k

t
s− j

)
+ xj for s ∈ [jt/k, (j + 1) t/k] .

Then the “classical action” for the path γ is

A (γ) :=

∫ t

0

m

2
|γ′ (s)|2 − V (γ (s)) ds

=

k−1∑
j=0

∫ (j+1)t/k

jt/k

m

2

(
|xj − xj−1|

t/k

)2

− V (γ (s)) ds

≈
k∑
j=1

(
m

2

(
|xj − xj−1|

t/k

)2

− V (xj)

)
t

k

= At (x0, x1, . . . , xk) .(15.83)

Now, integrating with respect to x1, . . . , xk−1 is like integrating over all polygonal
paths have k − 1 segments, starting at x0 at time 0 and ending at some arbitrary
point x at time t. As k →∞, the variety of such paths is sufficiently great so that
we (as R. P. Feynman) are tempted to write

(15.84) ψ (x, t) =

∫
R3

(∫
Pt(x0,x)

e
i
~A(γ)dγ

)
f (x0) d3x0,

where Pt (x0, x) is the space of continuous paths γ : [0, t]→ R3 with γ (0) = x0 and
γ (t) = x, A (γ) is the action defined in (??), and dγ is some kind of “measure” on
Pt (x0, x). In other words, the kernel for the operator exp

(
− i

~ tH
)

is formally

(15.85) K (x0, x, t) =

∫
Pt(x0,x)

e
i
~A(γ)dγ.

The integrand e
i
~At(γ) oscillates the least about paths for which A (γ) is stationary

among paths in Pt (x0, x), namely classical paths that are solutions of Newton’s
equation mγ′′ = −∇V. Hence we expect K (x0, x, t) to be most greatly influenced
by classical paths (typically only one) with γ (0) = x0 and γ (t) = x. As ~→ 0, this
effect becomes more pronounced, and presumably we obtain classical mechanics in
the limit. Note that formally

(15.86) |K (x0, x, t)|2 =

∣∣∣∣〈exp

(
− i
~
tH

)
δ (x0) , δ (x)

〉∣∣∣∣2
is the probability density that at time t the particle will be found at x, given that
it was at x0 at time t. While the path integral is a suggestive formalism for the
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rigorous Kato-Trotter limit, M. Kac (see [Kac]) noticed that if one replaces the
time variable t by a pure imaginary parameter −iτ , then we obtain

i

~
A−iτ (x0, x1, . . . , xk) = −1

~

k∑
j=1

(
m

2

|xj − xj−1|2

(τ/k)
2 + V (xj)

)
τ

k

= −1

~

∫ τ

0

m

2
|γ′ (s)|2 + V (γ (s)) ds =: −1

~
AE (γ) ,(15.87)

where γ : [0, τ ] → R3 is a polygonal path through x0, x1, . . . , xk and AE (γ) is
the so-called “Euclidean action.” Then M. Kac was able to express K (x0, x,−iτ)
rigorously as a path integral in terms of conditional Wiener measure W τ

x0,x on the

set Pτ (x0, x) of continuous paths γ : [0, τ ] → R3 with γ (0) = x0 and γ (τ) = x.
The Feynman-Kac Formula (see [GJ, Theorem 3.2.3]) is then

(15.88) K (x0, x,−iτ) =

∫
exp

(
−1

~

∫ τ/2

−τ/2
V (γ (s)) ds

)
dW τ

x0,x (γ) .

Note that the kinetic part
∫ τ

0
m
2 |γ

′ (s)|2 ds of the Euclidean action AE (γ) has been
absorbed into the measure W τ

x0,x, and (since it is convenient for some purposes)
the paths γ are reparametrized symmetrically using [−τ/2, τ/2] instead of [0, τ ].
It is also of interest that the subset of paths γ with Hölder exponent larger than
1
2 (which includes the piecewise C1 paths) has Wiener measure 0 and hence this
subset does not contribute to the integral. However, one still expects that the
greatest contributions to K (x0, x,−iτ) come from fluctuations about a path which
minimizes the Euclidean action AE (γ). Such paths are solutions of the Euler-
Lagrange equation (with conditions γ (0) = x0 and γ (τ) = x)

(15.89) mγ′′ (s) = ∇V (γ (s))

which differs from Newton’s equation mγ′′ (s) = −∇V (γ (s)) by a minus sign.
We now interpret K (x0, x,−iτ), at least formally. For simplicity, suppose that

H = − ~2

2m∆ + V where V (r) increases rapidly enough as ‖r‖ → ∞ so that there is
a complete orthonormal set of eigenfunctions u0, u1, u2, . . . of H with eigenvalues
(energies) arranged in increasing order, say E0 ≤ E1 ≤ E2 ≤ . . . (degeneracy
allowed). The kernel of exp

(
− i

~ tH
)

is given by

(15.90) K (x0, x, t) =

∞∑
n=0

e−
i
~ tEnun (x)un (x0).

Indeed,

(15.91) ψ (x, t) :=

∫
R3

( ∞∑
n=0

e−
i
~ tEnun (x)un (x0)

)
f (x0) d3x0

solves Schrödinger’s equation at least formally and ψ (x, 0) is the eigenfunction
expansion of f (x). Replacing t by −iτ , we obtain

(15.92) K (x0, x,−iτ) =

∞∑
n=0

e−
τ
~Enun (x)un (x0).
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Letting τ →∞, we formally obtain (for some k > 0)

(15.93) e
τ
~E0K (x0, x,−iτ) =

∑
En=E0

un (x)un (x0) + O
(
e−kt

)
where the sum is only over lowest energy states. If x0 is a minimum for V ,
then the constant path γ : [0, τ ] → {x0} clearly minimizes the Euclidean action∫ τ

0
m
2 |γ

′ (s)|2 + V (γ (s)) ds for loops at x0. Hence, such paths are likely to make

K (x0, x0,−iτ) ≈ e−
τ
~E0

∑∞
En=E0

|un (x0)|2 larger at minima for V than at other
x0. Indeed, we expect the position probability densities for ground energy states
to be concentrated about the minima for V . Classical intuition leads us to suspect
that if there are N absolute minima for V , then there ought to be N independent
eigenfunctions, each peaked at a different minimum; i.e., that there is an N -fold de-
generacy in the lowest energy level (i.e., En = E0 for n = 0, 1, . . . , N−1). However,
there is a very general result stating that if V is continuous and bounded below and

H = − ~2

2m∆ + V is essentially self-adjoint, then the ground state is nondegenerate
and is represented by a real, positive function. Indeed, there is an elegant proof of
this in [GJ, Corollary 3.3.4] based in part on the Feynman-Kac Formula (15.88).
We will examine a simple example in dimension 1 (i.e., x ∈ R) to illustrate this and
to introduce the concept of an instanton.

Figure 15.1. Quartic potential and its negative (dashed)

Let V (x) = 1
2

(
x2 − x2

0

)2
, as shown in Figure 15.1. Note that the Schrödinger

operator H = − ~2

2m∆+V commutes with the parity operator P given by (Pf) (x) :=
f (−x), and hence the eigenspaces of H split into even functions and odd functions
(+1 and −1 eigenspaces of P ). Classical intuition falsely suggests that there are two
normalized E0-energy eigenfunctions, say ψ peaked at x0 and Pψ peaked at −x0

(‖ψ‖2 = ‖Pψ‖2 = 1). Suppose that this is the case, and let ψ+ = (ψ + Pψ) /
√

2

and ψ− = (ψ − Pψ) /
√

2 be the associated even and odd states. Then for any
x ∈ R, as τ →∞,

e
τ
~E0K (x,−x,−iτ) ∼ ψ+ (−x)ψ+ (x) + ψ− (−x)ψ− (x)

= |ψ+ (x)|2 − |ψ− (x)|2 .(15.94)
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From (15.88), K (x0, x,−iτ) is the path integral of a positive function, and hence
e
τ
~E0K (x,−x,−iτ) ≥ 0 so that

(15.95) |ψ+ (x)|2 − |ψ− (x)|2 ≥ 0.

If this inequality were strict even at a single point, then we would get the contra-
diction

(15.96) 0 < ‖ψ+ (x)‖2 − ‖ψ− (x)‖2 = 1− 1 = 0.

We now argue (as physicists might) that the inequality (15.95) is strict near x = x0.
Consider the Euclidean potential −V whose graph is shown dashed in Figure 15.1.
There is a classical solution γ∞ : (−∞,∞) → (−x0, x0) of the Euclidean equation

of motion mγ′′ (s) = ∇V (γ (s)) for a particle, with total energy 1
2mγ

′
∞ (s)

2 −
V (γ∞ (s)) = 0, that moves from the top of the left hill to the top of the right
hill. Physicists call such trajectories (and their analogs in quantum field theory)

“instantons.” The Euclidean action AE (γ) =
∫ τ

0
m
2 |γ

′ (s)|2 + V (γ (s)) ds of the
instanton is finite, since making the change of variable x = γ∞ (s), we have∫ ∞

−∞

1
2mγ

′
∞ (s)

2
+ V (γ∞ (s)) ds =

∫ ∞
−∞

2V (γ∞ (s)) ds

=

∫ x0

−x0

2V (x)
(
dx
ds

)−1
dx =

∫ x0

−x0

2V (x)
1√

2V (x) /m
dx

=

∫ x0

−x0

√
2mV (x) dx <∞.(15.97)

The instanton γ∞ minimizes the action functional AE (γ) among suitable competing
paths from −x0 to −x0. Let γτ := γ∞|[−τ/2,τ/2]. We have for all τ > 0,

(15.98) AE (γτ ) =

∫ τ/2

−τ/2
2V (γτ (s)) ds <

∫ x0

−x0

√
2mV (x) dx <∞.

Since the kinetic part of AE (γτ ) is implicit in dW τ
−x0,x0

, by a formal applica-
tion of Laplace’s method, we expect that there is a finite, nonzero contribution to

K (−x0, x0,−iτ) proportional to exp
(
− 1

~
∫ τ/2
−τ/2AE (γτ ) ds

)
; i.e., for some constant

C > 0,

K (x0,−x0,−iτ) =

∫
exp

(
−1

~

∫ τ/2

−τ/2
V (γ (s)) ds

)
dW τ

x0,−x0
(γ)

≥ C exp

(
−1

~

∫ τ/2

−τ/2
AE (γτ ) ds

)
≥ C exp

(
−1

~

∫ ∞
−∞

AE (γ∞) ds

)
= C exp

(
−1

~

∫ x0

−x0

√
2mV (x) dx

)
> 0.(15.99)

Since E0 ≥ 0, as τ →∞,

|ψ+ (x0)|2 − |ψ (x0)|2 ∼ e τ~E0K (−x0, x0,−iτ)

≥ C exp

(
−1

~
AE (γ∞)

)
≥ C exp

(
−1

~

∫ x0

−x0

√
2mV (x) dx

)
> 0.(15.100)



362 15. PHYSICAL MOTIVATION AND OVERVIEW

Hence, we arrive at the contradiction (15.96). In the above heuristic argument, the
contradiction was produced by the instanton γ∞, and hence physicists are led to
attribute the nondegeneracy of the ground state to the presence of this instanton.
From our previous discussion, we know that in fact there is a unique ground state
represented by a positive wave function ψ0. Since H commutes with the parity
operator P , we know that Pψ0 also is a positive representative of the ground state
and hence Pψ0 = ψ0 (i.e., ψ0 is even). The evenness of the ground state is also a

consequence of (??). Regardless of whether ψ0 is even or odd, we have that |ψ0|2
is even and hence a particle in the state ψ0 has the same probability of appearing
in an interval about x0 as it does in the reflected interval about −x0, even for
measurements made in rapid succession. This is so even though the height of the
potential barrier between −x0 and x0 forbids travel of a classical particle of energy
E0 between these two points. In other words, we have the phenomenon of “quantum
tunneling.” There is also a quantitative link between the instanton and quantum
tunneling. It turns out that by WKB methods, the transmission amplitude for
a particle to penetrate the potential barrier from x0 to −x0 is proportional to
exp

(
− 1

~AE (γ∞)
)

(see [Kak, p. 545-554]).
Much of this discussion on the role of instantons in removing degeneracy and

tunneling caries over, at least metaphorically, to quantum field theory. Since we
will be primarily concerned with nonabelian gauge fields (e.g., where the gauge
group is SU(2), isomorphic to the unit quaternions S3), we confine ourselves to a
very brief account of what instantons are in context of the quantum field theory of
pure Yang-Mills fields and how they correspond to the ones we have discussed in
relation to quantum mechanics. The configuration space in the quantum mechanics
of a single particle is simply R3, but for pure Yang-Mills fields, the configuration
space is essentially the space Ω1

(
R3, su (2)

)
of all smooth 1-forms on R3 (with

values in the Lie algebra su (2) of traceless skew-Hermitian matrices), modulo the
action by the group of gauge transformations. Of course, any SU(2)-bundle over R3

is just a product, R3×SU(2). Hence, a gauge transformation amounts to a map φ :
R3 → SU(2);i.e., φ ∈ C∞

(
R3,SU(2)

)
. The right action of φ on A ∈ Ω1

(
R3, su (2)

)
is given by

(15.101) A · φ := φ−1 (Aφ+ dφ) .

Note that

A · (φη) = (φη)
−1

(A (φη) + d (φη)) = η−1φ−1 (A (φη) + (dφ) η + φdη)

= η−1
((
φ−1Aφ+ φ−1dφ

)
η + dη

)
= η−1

((
φ−1 (Aφ+ dφ)

)
η + dη

)
= (A · φ) · η.(15.102)

We require that φ (r) → Id ∈ SU(2) as ‖r‖ → ∞, and φ yields a map φ′ : S3 →
SU(2) ∼= S3 which is classified up to homotopy by its degree. A gauge transforma-
tion φ is called homotopically trivial if φ′ has degree 0. Moreover, it is required of
A ∈ Ω1

(
R3, su (2)

)
that the field strength

(15.103) FA := dA+A ∧A ∈ Ω2
(
R3, su (2)

)
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be square integrable; i.e.,
∫
R3 |FA|2 < ∞, where |b|2 := 1

2Tr (b∗b) for b ∈ su (2).
More precisely, for

(15.104) Ω1
(
R3, su (2)

)
finite

:=

{
A ∈ Ω1

(
R3, su (2)

)
:

∫
R3

|FA|2 <∞
}

the configuration space is

(15.105) C :=
Ω1
(
R3, su (2)

)
finite

C∞ (R3,SU(2))0

where C∞
(
R3,SU(2)

)
0

is the group of homotopically trivial gauge transformations.

The nonlinear “Yang-Mills” functional V : C → [0,∞) , defined by

(15.106) V ([A]) := 1
2

∫
R3

|FA|2 ,

plays the role of the potential energy function V in quantum mechanical setting of a
single particle. Note that V is well defined, since one can verify that FA·φ = φ−1FAφ

and |FA·φ|2 =
∣∣φ−1FAφ

∣∣2 = |FA|2 using the fact that for b ∈ su (2) and C ∈ SU(2)∣∣C−1bC
∣∣2 = 1

2Tr
((
C−1bC

)∗ (
C−1bC

))
= 1

2Tr
(
C−1b∗

(
CC−1

)
bC
)

= 1
2Tr

(
C−1b∗bC

)
= |b|2 .(15.107)

Suppose that φi : R3 → SU (2) (i = 1, 2) are inequivalent (i.e., deg (φ′1) 6= deg (φ′2)).
For Ai := φ−1

i dφi ∈ Ω1
(
R3, su (2)

)
, we have Ai = 0 ·φi and so FAi = F0 = 0. There

is no φ with deg (φ′) = 0 such that A1 · φ = A2. Indeed,

A1 · φ = A2 ⇒ φ−1
1 dφ1 · φ = φ−1

2 dφ2 ⇒ (0 · φ1) · φ = 0 · φ2

⇒ 0 ·
(
φ1φφ

−1
2

)
= 0⇒ d

(
φ1φφ

−1
2

)
= 0

⇒ φ1φφ
−1
2 = Id⇒ φ1φ = φ2 ⇒ deg (φ′1) = deg (φ′2) .(15.108)

Thus, [A1] and [A2] are distinct, absolute minima for the “potential” V, and there
are infinitely many distinct minima of the form

[
φ−1dφ

]
, one for each possible value

of deg (φ′). In analogy with the single particle setting, an instanton is a certain curve
connecting minimum [A1] to [A2] in the configuration space C parametrized by τ ∈
(−∞,∞). Such a curve can be regarded as the class of point, say A ∈ Ω1

(
R4, su (2)

)
where we mod out by suitable gauge transformations in C∞

(
R4,SU(2)

)
0
. Again by

analogy, we want to minimize the Euclidean action of this curve among competitors
running from [A1] to [A2]. This Euclidean action is naturally taken to be

∫
R4 |FA|2,

where FA := dA+A∧A as before, and |FA|2 is computed using the Euclidean metric
on R4, as opposed to the Minkowski metric. Note that this is analogous to replacing
t by −iτ in the single particle setting. One major goal of the following chapters is to
use the Atiyah-Singer Index Theorem to prove that the set of instantons connecting
[A1] =

[
φ−1

1 dφ1

]
to [A2] =

[
φ−1

2 dφ2

]
form an (8k − 3)-dimensional manifold, where

k = |deg φ1 − deg φ2|. It is important to know this dimension in order to estimate
its full effect with regard to vacuum tunneling between [A1] and [A2]. The interested
reader may find some insight into this very tricky business in [Ber] and [CG]. It
should also be noted that the Lagrangians (actions) of other fields (e.g., Dirac
bispinor fields for fundamental particles) must be added to the self-actions of pure
gauge potentials. The Index Theorem is also essential for estimating the effects
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of these other fields (e.g., Euclidean fermionic lowest energy modes) on Green’s
functions of quantum field theory (see [Schw79]).



CHAPTER 16

Geometric Preliminaries

Here we provide fundamental definitions and results concerning the geometry
and topology of fiber bundles that is essential to understanding gauge theories.
In most journal articles on the subject, it is assumed that the reader knows this
material or can dig it out from various sources. To cut down on the frustration, we
develop the following topics, assuming a more modest background:

16.1. Principal G-bundles
16.2. Connections and Curvature
16.3. Equivariant Forms and Associated Bundles
16.4. Gauge Transformations
16.5. Curvature in Riemannian Geometry
16.6. Bochner-Weitzenböck Formulas
16.7. Characteristic Classes and Curvature Forms
16.8. Holonomy

1. Principal G-Bundles

A Lie group is simply a group which is a smooth (C∞) manifold for which the
map (g1, g2) 7→ g1g

−1
2 is a C∞ map from G×G to G. Let P be a manifold on which

a Lie group G acts freely and smoothly on the right. Thus, there is a smooth map
P×G→ P which we denote by (p, g) 7→ pg such that (pg1) g2 = pg1g2, and if pg = p
for some (p, g) ∈ P ×G, then g is the group identity, say e. For our purposes, one
may assume that G is a matrix group, such as SU (N) , SO (N) , etc.. We assume
that the quotient space M := P/G can be made into a manifold such that the
projection π : P → M is smooth. Also, we assume that P is locally trivial. This
means that each x ∈M has a neighborhood U , such that there is a diffeomorphism
T : π−1 (U) → U × G with T (pg) = (π (p) , s (p)) where s : π−1 (U) → G satisfies
s (pg) = s (p) g for all p ∈ π−1 (U) and g ∈ G. In other words, P is locally equivalent
to a product with the standard action.

Definition 16.1. If the conditions of the preceding paragraph hold, then we
say that π : P → M is a principal G-bundle with total space P , base space
M , and projection π.

The diffeomorphism T : π−1 (U)→ U ×G is known as a local trivialization. In
the case where U can be taken to be all of M (i.e., T : P = π−1 (M) → M × G),
we say that principal G-bundle π : P → M is (globally) trivial. Let U be an open
subset of M , and let σ : U → P be a map such that π ◦ σ = 0. Then σ is called a
local section. There is a one-to-one correspondence between local sections and local
trivializations. Indeed, given σ, define T : π−1 (U)→ U ×G by T (σ (x) g) = (x, g).

365
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Note that T is well-defined since any p ∈ π−1 (U) can be written uniquely as σ (x) g
since G acts freely and transitively on the fiber π−1 (π (p)). Conversely, given
a local trivialization T , the equation T (σ (x) g) = (x, g) serves to define σ (i.e.,
σ (x) = T−1 (x, g) g−1 = T−1 (x, 1)). It follows that a principal G-bundle is trivial
precisely when it has a global section (i.e., local section σ : U → P with U = M).
The corresponding statement for sphere bundles is false. For example, the unit
tangent bundle S (K) of a Klein bottle K is a circle bundle which is not globally
a product, since otherwise one could define a frame field on K even though K is
nonorientable. Nevertheless, K does have a unit tangent vector field. This also
shows that S (K) cannot be made into a principal S1 bundle, where S1 is regarded
as the group U (1) :=

{
eiθ : θ ∈ R

}
. Indeed, an orientation is precisely what is

necessary in order to define a free S1 action on the unit tangent bundle S (M) of a
surface M (with metric). Thus, for orientable surfaces M , S (M) is trivial exactly
when there is a unit tangent vector field.

Exercise 16.2. Recall that

SU (2) := {A ∈ GL (2,C) : A∗A = I2, detA = 1}

=

{[
a −b
b a

]
: a, b ∈ C, |a|2 + |b|2 = 1

}
∼= S3.

Let G ∼= S1 be the subgroup of elements with b = 0 (i.e., a = eiθ). Show that the
left coset space SU (2) /G =

{
AS1 : A ∈ SU (2)

}
can be identified with S2 so that

the quotient map Q : SU (2)→ SU (2) /G may be regarded as a principal S1-bundle
π : SU (2) → S2 (which is known as a Hopf bundle). Show that this bundle is
nontrivial. [Hint. Identify R3 with the space of traceless Hermitian matrices via
the “Pauli map”

σ : r = (x, y, z) 7→
[

z x− iy
x+ iy −z

]
.

For A ∈ SU (2), show that c (A) (r) := σ−1 (Aσ (r)A∗) defines a homomorphism
c : SU (2) → SO (3). Let π : SU (2) → S2 be given by π (A) := c (A) e3 where
e3 := (0, 0, 1) and check that π

(
Aeiθ

)
= π (A).]

2. Connections and Curvature

Connections (or gauge fields) on principal G-bundles can be defined in various
equivalent ways. From a conceptual standpoint, the following definition is perhaps
best:

Definition 16.3. A connection on a principal G-bundle π : P →M smoothly
assigns to each p ∈ P a subspace Hp of the tangent space TpP , such that π∗p : Hp →
Tπ(p)M is an isomorphism and Rg∗ (Hp) = Hpg, where Rg : P → P is defined by
Rg (p) = pg.

The so-called horizontal subspace Hp is complementary to the vertical subspace
Vp := Ker (π∗p) which is the tangent space of the fiber π−1 (π (p)) at p. Thus, a
connection serves to select a “horizontal” complement to each vertical subspace in
a smooth G-invariant fashion, see Figure 16.1. One way of defining Hp would be
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P

T Pp

Vp
Hp

p

M

x p=¼( )

¼ ( ){1 x

¼

¼

Figure 16.1. Selecting a horizontal complement Hp to each ver-
tical subspace Vp of the tangent space TpP at p ∈ P

to let it be the subspaces of TpP annihilated by a differential 1-form of maximal
rank with values in a fixed vector space having the same dimension as Vp, namely
dimP −dimM = dimG. The natural choice for this vector space is the Lie algebra
of G which we denote by g. The Lie algebra of G is the tangent space TeG of G at
the identity e ∈ G, and for A,B ∈ g, there is a Lie bracket [A,B] ∈ g. While we
will not go into the definition of [A,B] for general Lie groups, in the case matrix Lie
groups G ⊆ GL (N,C) it is easy to describe. Indeed, as GL (N,C) is an open subset
of the linear space gl (N,C) of all N × N complex matrices, the tangent space of
TIG at the identity matrix I may be identified with a subspace of gl (N,C), and
for the A,B ∈ g = TIG ⊆ gl (N,C), the Lie bracket [A,B] is just the commutator
AB−BA. In all of what follows, we will assume that G is a matrix Lie group. For
a matrix A ∈ gl (N,C), we define

exp (A) :=

∞∑
k=0

1

k!
Ak.

Then we show that g is the set, say s, of all A ∈ gl (N,C) such that exp (tA) ∈ G
for all t ∈ R. Since g := TIG, it is clear that s ⊆ g. To show g ⊆ s, suppose

that A ∈ g, and let Ã be the vector field on G defined by Ãg := Lg∗ (A), where
Lg : G → G is given by Lg (g′) = gg′. Since G is a matrix group where tangent
vectors are considered to reside in gl (N,C) and Lg is a linear transformation of

gl (N,C), Ãg = Lg∗ (A) is simply gA. Now, t 7→ exp (tA) is the solution curve at I

of the vector field Ã on G, since

d
dt (exp (tA)) = d

dt

( ∞∑
k=0

1

k!
tkAk

)
=

∞∑
k=1

1

(k − 1)!
tk−1Ak

=

( ∞∑
k=1

1

(k − 1)!
tk−1Ak−1

)
A = exp (tA)A = Ãexp(tA).
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In particular, exp (tA) ∈ G for all t ∈ R and hence g ⊆ s. Note that for g ∈ G,
the map Adg : G → G given by Adg (h) := ghg−1 fixes the identity I. Thus its
derivative (Adg∗)I at I is a linear transformation of TIG or g. For A ∈ g, we have
(at t = 0)

(Adg∗)I (A) = d
dtAdg (exp (tA))

= d
dt

(
g exp (tA) g−1

)
= d

dt exp
(
tgAg−1

)
= gAg−1.

We denote (Adg∗)I (A) by adg (A) and the homomorphism ad : G → GL (g) given
by g 7→ adg is known as the adjoint representation of G. Observe that for A,B ∈ g,

adexp(tA) (B) = exp (tA)B exp (−tA) = B + t (AB −BA) + O
(
t2
)
,

and so
d
dt

(
adexp(tA) (B)

)∣∣
t=0

= AB −BA = [A,B] .

Thus, the derivative ad∗I : g → End (g) of the map ad : G → GL (g) at I is
given by (ad∗I (A)) (B) = [A,B]. It is convenient to denote ad∗I by ad, and so
ad : g→ End (g) is given by

(ad (A)) (B) = (ad∗I (A)) (B) = [A,B] .

For a principal G-bundle π : P → M and any A ∈ g, there is a vector field A∗

(known as a fundamental vertical vector field) defined at p ∈ P by

A∗p := d
dt (p exp (tA))

∣∣
t=0

.

Definition 16.4. A connection 1-form for the principal G-bundle π : P →
M is a g-valued 1-form ω on P , such that for each A ∈ g, g ∈ G, p ∈ P and
X ∈ TpM , we have

(16.1)
(C1) ω (A∗) = A and
(C2) ωpg (Rg∗X) = adg−1 (ωp (X)) = g−1ωp (X) g.

The Definitions 16.3 and 16.4 are related as follows. Given ω as in definition
16.4, define

Hp := {X ∈ TpM : ωp (X) = 0} .
Then condition C1 in (16.1) insures that π∗p : Hp → Tπ(p)M is an isomorphism,
and C2 guarantees that Rg∗ (Hp) = Hpg. Note that adg−1 in C2 is needed so that
it be consistent with C1, since

Rg∗ (A∗) = d
dt (p exp (tA) g) = d

dt

(
pgg−1 exp (tA) g

)
= d

dt

(
pgAdg−1 (exp (tA))

)
=
(
adg−1 (A)

)∗
pg

and C1 imply that

ωpg (Rg∗ (A∗)) = ωpg

((
adg−1 (A)

)∗
pg

)
= adg−1 (A) = adg−1 (ωp (A∗)) .

Of course, when G is abelian, adg−1 is the identity and C2 says that ωpg is invariant
under Rg (i.e., R∗gω = ω when G is abelian).

Exercise 16.5. Let G be a (closed) Lie subgroup of a matrix Lie Group G.
It can be verified that G/G naturally has the structure of a manifold and that
π : G → G/G is a principal G-bundle. Let g denote the Lie algebra of G. The

Maurer-Cartan form for G is the g-valued 1-form ω ∈ Ω1
(
G, g

)
on G̃ given at

g by ωg (Lg∗A) = ωg (gA) = A. Suppose that g = g⊕m where adg (m) = m for all
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g ∈ G (i.e., m is an adG-invariant subspace of g). Let πg : g→ g be the projection
onto g along m.
(a) Check that the form ω := πg ◦ ω ∈ Ω1

(
G, g

)
is a connection 1-form for

π : G→ G/G. Why do we need adg (m) = m?
(b) Use this construction to explicitly find a natural connection 1-form ω ∈ Ω1 (SU (2) , g)
in the case of the Hopf bundle SU (2)→ SU (2) /G in Exercise 16.2.

Given a connection 1-form ω, we can decompose any X ∈ TpP into horizontal
and vertical parts, XH and XV respectively, where ωp

(
XH

)
= 0, π∗p

(
XV

)
= 0,

and X = XH + XV . If φ is a k-form on P with values in a vector space W , then
we may define a new k-form φH on P by

φH (X1, . . . , Xk) := φ
(
XH

1 , . . . , X
H
k

)
.

We define the covariant derivative Dωφ of φ relative to ω to be the W -valued
(k + 1)-form

(16.2) Dωφ := (dφ)
H
.

The curvature Ωω of ω is simply the covariant derivative of ω relative to itself

(16.3) Ωω := Dωω = (dω)
H
.

Proposition 16.6. We have

(16.4) Ωω = Dωω = dω + ω ∧ ω,
where

(ω ∧ ω) (X,Y ) := ω (X)ω (Y )− ω (Y )ω (X) .

Proof. Both sides of (16.4) agree on any pair (X,Y ) of vectors where one of
XV or Y V is 0, since then ω (X) = 0 or ω (Y ) = 0. Thus, it suffices to show that
both sides agree on a pair (A∗, B∗) of fundamental vertical fields. In this case,
(Dωω) (A∗, B∗) = 0, and

dω (A∗, B∗) + (ω ∧ ω) (A∗, B∗)

= A∗ [ω (B∗)]−B∗ [ω (A∗)]− ω ([A∗, B∗]) + (ω ∧ ω) (A∗, B∗)

= −ω ([A∗, B∗]) + ω (A∗)ω (B∗)− ω (B∗)ω (A∗)

= −ω ([A∗, B∗]) + [A,B] .

Thus, it suffices to check that

(16.5) [A∗, B∗] = [A,B]
∗
.

We have (evaluating derivatives with respect to s and t at 0)

[A∗, B∗]p = d
dtRexp(−tA)∗

(
B∗p exp(tA)

)
= d

dtRexp(−tA)∗
(
d
dsp exp (tA) exp (sB)

)
= d

dt
d
ds (p exp (tA) exp (sB) exp (−tA))

= d
ds

d
dtp exp (tA) exp (sB) exp (−tA)

= d
dspAdI∗ (A) (sB) = d

ds (p exp (s [A,B]))

= [A,B]
∗
p ,

verifying (16.5). �
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We mention that for general Lie groups (16.4) is written as

(16.6) Dωω = dω + 1
2 [ω, ω] ,

where
1
2 [ω, ω] (X,Y ) := 1

2 ([ω (X) , ω (Y )]− [ω (Y ) , ω (X)])

is defined purely in terms of Lie brackets instead of commutators of matrices.

Exercise 16.7. We use the notation in Exercise 16.5. For A ∈ g, let Ã ∈
C∞

(
TG
)

be the vector field on G given by Ãg := Lg∗A = gA. Similarly, for B ∈ g,

we define B̃.

(a) Show that
[
Ã, B̃

]
= [̃A,B].

(b) Use formula 6.7 (p. 172) to show that

dω
(
Ã, B̃

)
= −ω

([
Ã, B̃

])
= − [A,B] .

(c) Conclude that the curvature Ωω ∈ Ω2
(
G, g

)
of the connection ω in Exercise

16.5, is given by Ωω
(
Ã, B̃

)
= πg ([A,B]).

(d) Consider the special case G = SU (2) and G = {exp (itσ (e3)) : t ∈ R} , as in
Example 16.2. Check that

{
− i

2σ (e1) ,− i
2σ (e2) ,− i

2σ (e3)
}

is a basis for su (2) and[
− i

2σ (v) ,− i
2σ (w)

]
= − i

2σ (v ×w) for v,w ∈R3. Conclude that if m ⊆ su (2) in

Exercise 16.7 (b) is chosen to be span
{
− i

2σ (e1) ,− i
2σ (e2)

}
, then at any g ∈ SU (2)

we have

Ωωg
(
g
(
− i

2σ (v)
)
, g
(
− i

2σ (w)
))

= (e3 · (v ×w)) i
2σ (e3) .

The following notion of horizontal lift will be crucial in many key computations.

Definition 16.8. For principal G-bundle π : P →M with connection ω and a
vector field Y on M the vector field X on P , such that ω (X) = 0 and π∗ (X) = Y
is called the horizontal lift of Y .

Remark 16.9. Note that X is unique since π∗ : Hp → Tπ(p)M is an iso-
morphism. Moreover, for any g ∈ G, note that Rg∗ (X) satisfies π∗ (Rg∗ (X)) =
(π ◦Rg)∗ (X) = π∗ (X) = Y and ω (Rg∗ (X)) = 0. Thus, Rg∗ (X) is also a horizon-
tal lift of Y , and by uniqueness Rg∗ (X) = X (i.e., horizontal lifts are Rg∗-invariant).
In particular, for a fundamental vertical vector field A∗ (A ∈ g) and a horizontal
lift X, we have (at any p ∈ P )

(16.7) [A∗, X]p = d
dt

(
Rexp(−tA)∗

(
Xp exp(tA)

))∣∣
t=0

= d
dt (Xp)

∣∣
t=0

= 0.

3. Equivariant Forms and Associated Bundles

Let r : G→ GL (W ) be a representation (i.e., a homomorphism), where GL (W )
is the general linear group of a vector space W . For a principal G-bundle π : P →
M , there is a right action of G on P ×W given by (p, w) g =

(
pg, r

(
g−1

)
w
)
. Let

[p, w] denote the orbit {(p, w) g : g ∈ G} of (p, w), and let P ×GW be the quotient
space

P ×GW :=
P ×W
G

= {[p, w] : (p, w) ∈ P ×W} .
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It is not difficult to verify that πW : P ×G W → M, where πW ([p, w]) := π (p) , is
a vector bundle which is known as an associated vector bundle of P via r. Note
that for p ∈ P and x = π (p), any two points in the fiber π−1

W (x) have unique
representatives of the form (p, w1) and (p, w2), and it is easily verified that [p, w1]+
[p, w2] := [p, w1 + w2] is a well-defined addition. The fibers π−1

W (x) are isomorphic
to W , but not canonically so, since the isomorphism [p, w] 7→ w depends on the
choice of p ∈ π−1 (x).

Let s : M → P ×G W be a section, and define f : P → W by the equation
s (π (p)) = [p, f (p)]. Since

[p, f (p)] = s (π (p)) = s (π (pg)) = [pg, f (pg)] = [p, r (g) f (pg)] ,

f has the equivariance property

f (pg) = r (g)
−1
f (p) .

Thus, we have an isomorphism (s 7→ f)

C∞ (P ×GW ) ∼= Ω
0

(P,W ) :=
{
f ∈ C∞ (P,W ) : f (pg) = r (g)

−1
f (p)

}
.

Ω
0

(P,W ) is called the space of W -valued equivariant functions (0-forms) on P .
Whether one works with sections or equivariant functions, is largely a matter of
taste or convenience. We will use equivariant forms as well.

Definition 16.10. Let π : P → M be a principal G-bundle and let r : G →
GL (W ) be a representation. We denote the space of C∞, W -valued k-forms on
P by Ωk (P,W ). For k > 0, the space of horizontal, equivariant, W -valued

k-forms on P , denoted by Ω
k

(P,W ), consists of all α ∈ Ωk (P,W ), such that for
all vector fields X1, . . . , Xk and g ∈ G, we have

(H) α (X1, . . . , Xk) = 0 if π∗ (Xi) = 0 for some i ∈ {1, . . . , k} and

(E) α (Rg∗X1, . . . , Rg∗Xk) = r (g)
−1
α (X1, . . . , Xk) (i.e., R∗gα = r (g)

−1
α).

Remark 16.11. Note for the representation ad : G→ GL (g), we may consider

Ω
k

(P, g). However, a connection 1-form ω is not in Ω
1

(P, g), since ω (A∗) = A in
violation of Condition H in Definition 16.10. Nevertheless, if ω′ is another connec-

tion, then ω − ω′ ∈ Ω
1

(P, g), since (ω − ω′) (A∗) = 0. In other words, C (P ) is an

affine space based on Ω
1

(P, g).

Exercise 16.12. (a) In the notation of the preceeding Remark, while ω /∈
Ω

1
(P, g), show that the curvature 2-form Ωω ∈ Ω

2
(P, g), relative to the represen-

tation ad : G → GL (g). [Hint. One may use (16.3) and (16.4) in conjuction with
(C2) in (16.1).]
(b) If G is abelian, deduce that Ωω = π∗Ωω0 for a unique form Ωω0 ∈ Ω2 (M, g),
where π∗ is pull-back on forms induced by π : P → M . (c) If ω is as in Exer-
cise 16.7 (d) and π : SU (2) → S2 (see also Exercise 16.2, p. 366), show that the
form Ωω0 in (b) is i

2σ (e3) ν, where ν is the area 2-form of S2. [Hint. Show that

πg∗
(
g
(
− i

2σ (v)
))

= c (g) (v × e3) and note that νx (a,b) = x · (a× b) for x ∈ S2

and a,b ∈ TxS2 ⊂ R3.]
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Remark 16.13 (basic forms). Let s ∈ Ω
0

(P,W ), η ∈ Ωk (M,R) and β = π∗η.
Define s⊗ β ∈ Ωk (P,W ) by

(s⊗ β)p (X1, . . . , Xk) := β (X1, . . . , Xk) s (p) = η (π∗X1, . . . , π∗Xk) s (p) .

Then s⊗ β clearly meets Condition H, and it meets Condition E, since

(s⊗ β)pg (Rg∗X1, . . . , Rg∗Xk) = η (π∗ (Rg∗X1) , . . . , π∗ (Rg∗Xk)) s (pg)

= η (π∗X1, . . . , π∗Xk) r (g)
−1
s (p) = r (g)

−1
(η (π∗X1, . . . , π∗Xk) s (p))

= r (g)
−1

(s⊗ β)p (X1, . . . , Xk) .

Thus, s ⊗ β ∈ Ω
k

(P,W ), and we call such forms basic. Although not every α ∈
Ω
k

(P,W ) is basic, any α ∈ Ω
k

(P,W ) can be written as a finite sum
∑
i si ⊗ βi of

basic forms. Hence many facts concerning forms in Ω
k

(P,W ) can be verified first
for basic forms, and then extended by linearity.

Equivariance is preserved by covariant differentiation, namely

Dω : Ω
k

(P,W )→ Ω
k+1

(P,W ) .

For this, note that Dωα = dαH satisfies condition H in Definition 16.10, and since

the distribution of horizontal subspaces is Rg∗ invariant, Rg∗
(
XH

)
= Rg∗ (X)

H

and so
(
R∗gβ

)H
= R∗g

(
βH
)

for any form β on P . Then Dωα meets condition E,
since

R∗g (Dωα) = R∗g

(
(dα)

H
)

=
(
R∗gdα

)H
=
(
d
(
R∗gα

))H
=
(
d
(
r (g)

−1
α
))H

=
(
r (g)

−1
dα
)H

= r (g)
−1

(dα)
H

= r (g)
−1
Dωα.

Moreover, there is a very convenient formula given in the following

Proposition 16.14. For a representation r : G→ GL (W ) and α ∈ Ω
k

(P,W ),
we have

(16.8) Dωα = dα+ r′ (ω) ∧ α,
where r′ is the Lie algebra representation (i.e., the derivative of r : G → GL (W )
at I) and (where σ runs over all permutations of {1, . . . , k})

(r′ (ω) ∧ α) (X1, . . . , Xk+1) :=
1

k!

∑
σ

(−1)
σ
r′ (ω (Xσ1

))α
(
Xσ2

, . . . , Xσk+1

)
.

Proof. To verify (16.8), we need to show that

Dωα (X1, . . . , Xk+1)

= dα (X1, . . . , Xk+1) + (r′ (ω) ∧ α) (X1, . . . , Xk+1)(16.9)

when each Xi is a fundamental vertical field or horizontal. If all of the Xi are
horizontal, then both sides of (16.9) agree, since ω (Xi) = 0. By (6.8), p. 172,

dα (X1, . . . , Xk+1) =

k+1∑
i=1

(−1)
i+1

Xi

[
α
(
X1, . . . , X̂i, . . . , Xk+1

)]
+

k+1∑
1≤i<j≤k+1

(−1)
i+j

α
(

[Xi, Xj ] , X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1

)
(16.10)
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Note that for fundamental vertical fields A∗ and B∗, we have [A∗, B∗] = [A,B]
∗
.

Thus, both sides of (16.9) are zero when two or more of the Xi are vertical. In the
remaining case, one of the Xi is vertical (say X1 = A∗) and the rest are horizontal.
Then, the left side of (16.9) is 0 and it remains to verify the right side is 0. For
this we may assume that the horizontal X2, . . . , Xk+1 are horizontal lifts of vector
fields Y2, . . . , Yk+1 on M . By (16.7), [A∗, X2] = · · · = [A∗, Xk+1] = 0 and the right
side of (16.9) is (at p ∈ P )

A∗ [α (X2, . . . , Xk+1)] + r′ (ω (A∗))α (X2, . . . , Xk)

= d
dtαp exp tA

(
R(exp tA)∗X2, . . . , R(exp tA)∗Xk+1

)∣∣
t=0

+ r′ (A)α (X2, . . . , Xk)

= d
dt

(
R∗exp tAα (X2, . . . , Xk+1)

)∣∣
t=0

+ r′ (A)α (X2, . . . , Xk)

= d
dtr (exp (−tA))αp (X2, . . . , Xk+1)

∣∣
t=0

+ r′ (A)α (X2, . . . , Xk)

= r′ (−A)α (X2, . . . , Xk) + r′ (A)α (X2, . . . , Xk) = 0.

�

The space Ω
k

(P,W ) can be identified with the space Ωk (P ×GW ) of k-forms
with values in the vector bundle P×GW as follows. If Y1, . . . , Yk are vector fields on

M , with horizontal lifts Ỹ1, . . . , Ỹk, then it is easy to check that for α ∈ Ω
k

(P,W ),
we have

α
(
Ỹ1, . . . , Ỹk

)
∈ Ω

0
(P,W ) ∼= C∞ (P ×GW ) .

Then we define a form αM ∈ Ωk (P ×GW ) at x = π (p) by

αM (Y1, . . . , Yk) =
[
p, α (p)

(
Ỹ1, . . . , Ỹk

)]
.

Conversely, the same equation can be used to define α ∈ Ω
k

(P,W ) for a given
αM ∈ Ωk (P ×GW ). It is easy to see that the correspondence

(16.11) Ω
k

(P,W ) ∼= Ωk (P ×GW ) (α↔ αM )

is actually independent of the choice of connection ω. Moreover, via this correspon-

dence Dω : Ω
k

(P,W ) → Ω
k+1

(P,W ) provides us with a corresponding operator
(also denoted Dω), say

Dω : Ωk (P ×GW )→ Ωk+1 (P ×GW ) .

Remark 16.15. Since it would be cumbersome to adhere to the notation αM ,

we shall simply use the same symbol α, whether we regard α as in Ω
k

(P,W ) or as
in Ωk (P ×GW ). The context will either be clear, irrelevant, or made explicit.

Of fundamental importance is

Proposition 16.16 (Bianchi Identity). If ω is any connection on a principal

G-bundle π : P →M and Ωω ∈ Ω
2

(P, g) is the curvature of ω, then

(16.12) Dω (Ωω) = 0.
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Proof. We compute

Dω (Ωω) = dΩω + ad (ω) ∧ Ωω

= dΩω + ω ∧ Ωω − Ωω ∧ ω
= d (dω + ω ∧ ω) + ω ∧ (dω + ω ∧ ω)− (dω + ω ∧ ω) ∧ ω
= d (ω ∧ ω) + ω ∧ dω − (dω) ∧ ω
= ((dω) ∧ ω − ω ∧ dω) + ω ∧ dω − dω ∧ ω = 0.

�

Note that Dω (Dωω) = Dω (Ωω) = 0. However, unlike ordinary exterior dif-
ferentiation d : Ωk (M,R) → Ωk+1 (M,R) which satisfies d2 = 0, the composition

Dω ◦Dω : Ω
k

(P,W ) → Ω
k+2

(P,W ) is not zero in general, and the curvature Ωω

is the obstruction in the following sense.

Proposition 16.17. If ω is any connection on a principal G-bundle π : P →
M , Ωω ∈ Ω

2
(P, g) is the curvature of ω, and α ∈ Ω

k
(P,W ), we have

(16.13) Dω (Dωα) = r′ (Ωω) ∧ α.

Proof. We compute

Dω (Dωα) = Dω (dα+ r′ (ω) ∧ α)

= d (dα+ r′ (ω) ∧ α) + r′ (ω) ∧ (dα+ r′ (ω) ∧ α)

= d (r′ (ω) ∧ α) + r′ (ω) ∧ dα+ r′ (ω) ∧ (r′ (ω) ∧ α)

= (d (r′ (ω))) ∧ α− r′ (ω) ∧ dα+ r′ (ω) ∧ dα+ (r′ (ω) ∧ r′ (ω)) ∧ α
= (r′ (dω) + r′ (ω) ∧ r′ (ω)) ∧ α
= r′ (dω + ω ∧ ω) ∧ α = r′ (Ωω) ∧ α.

�

In order to define a formal adjoint to Dω, we need to introduce some inner
products. Let h be a Riemannian metric on M , and suppose that K is an inner
product on W for which r : G→ GL (W ) is orthogonal ; i.e., for all g ∈ G,

r (g) ⊆ O (W ) := {A ∈ GL (W ) : K (Aw1, Aw2) = K (w1, w2)} .

Such a K always exists if G is compact, by an averaging argument. Then we
define an inner product on each fiber π−1

W (x) of the associated vector bundle πW :
P ×GW →M by

〈[p, w1] , [p, w2]〉x := K (w1, w2) ,

which is independent of the choice of representatives (p, wi) ∈ [p, w1] by the orthog-
onality of r : G→ GL (W ). This pointwise inner product gives us a pairing

〈·, ·〉 : C∞ (P ×GW )× C∞ (P ×GW )→ C∞ (M,R)

by simply defining 〈s, t〉 (x) := 〈s (x) , t (x)〉x for s, t ∈ C∞ (P ×GW ). We can show
that

(16.14) d 〈s, t〉 = 〈Dωs, t〉+ 〈s,Dωt〉 ∈ Ω1 (M,R) ,
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where the inner product on the right is just between the values in P ×GW . First
note that for A ∈ g, the product rule for differentiation yields (at u = 0)

0 = d
duK (r (expuA)w1, r (expuA)w2) = K (r′ (A)w1, w2) +K (w1, r

′ (A)w2)

Then regarding s, t ∈ Ω
0

(P,W ) and using (16.8), we get

d (K (s, t)) = K (ds, t) +K (s, dt)

= K (ds, t) +K (s, dt) +K (r′ (ω) s, t) +K (s, r′ (ω) t)

= K (ds+ r′ (ω) s, t) +K (s, dt+ r′ (ω) t)

= K (Dωs, t) +K (s,Dωt) ,

an equality of right-invariant R-valued 1-forms on P , which yields (16.14). Using
the Riemannian metric h, there is a pairing

(16.15) 〈·, ·〉 : Ωk (P ×GW )× Ωk (P ×GW )→ C∞ (M,R) ,

such that for s, t ∈ C∞ (P ×GW ) and β, γ ∈ Ωk (M,R)

〈s⊗ β, t⊗ γ〉 = 〈s, t〉h (β, γ) ,

where h (β, γ) is given locally by

(16.16) h (β, γ) :=
1

k!
βi1···ikγi1···ik :=

1

k!
hi1j1 · · ·hikjkβj1···jkγi1···ik .

Here, βj1···jk = β (∂j1 , . . . , ∂jk) for local coordinate vector fields ∂1, . . . , ∂n and the
hij are the entries of the inverse of the matrix [hij ], where hij := h (∂i, ∂j). In
(16.16) and elsewhere we adopt the Einstein summation convention where repeated
indices on different levels are assumed to be summed from 1 to n = dimM . Rather
than introducing sections with compact support, let us assume that M is compact.
Then we have the inner product

(16.17) (·, ·) : Ωk (P ×GW )× Ωk (P ×GW )→ R

given by

(α1, α2) :=

∫
M

〈α1, α2〉 |νh| ,

where |νh| is the density onM relative to h, given locally in coordinates
(
x1, · · · , xn

)
by

|νh| = |det (hij)|1/2 dx1 · · · dxn.
For α ∈ Ωk (P ×GW ), we define

‖α‖2 := (α, α) ∈ R and |α|2 := 〈α, α〉 ∈ C∞ (M,R) .

Suitable modifications can be made to handle the case where W is complex, with
Hermitian scalar product K and r : G→ GL (W ) is a unitary representation.

To explicitly construct a formal adjoint of Dω on Ωk (P ×GW ), we introduce
the (Hodge) star operator (for k ∈ {1, . . . , n = dimM}

∗ : Ωm (M,R)→ Ωn−m (M,R) for m ∈ {1, . . . , n = dimM} .

In order to define ∗, we need to assume that M is oriented with volume form given
locally in an oriented coordinate system

(
x1, · · · , xn

)
by

νh := |det [hij ]|1/2 dx1 ∧ · · · ∧ dxn
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Then ∗ is defined to be the unique linear map, such that for all α, β ∈ Ωm (M,R)

(16.18) α ∧ ∗β = 〈α, β〉 νh.

Note that ∗ can be defined pointwise. There also is a local formula (proven in
[Bl81, p. 5])

(16.19) (∗β)jm+1···jn =
1

m!
|det [hij ]|1/2 βj1···jmεj1···jmjm+1···jn ,

where ε is antisymmetric in its indices with ε12···n = 1 and νh (∂1, . . . , ∂n) > 0. In
[Bl81, p. 5-6] it is also shown that for β ∈ Ωm (M,R),

∗2β := ∗ (∗β) = sign (det [hij ]) (−1)
m(n−m)

β.

For a Riemannian (positive definite) metric h, sign(det [hij ]) = 1, but for h Lorentzian
sign(det [hij ]) = −1. In particular, for n = dimM = 4, note that ∗2 = Id on
Ω2 (M,R) for Riemannian h, while ∗2 = − Id for Lorentzian h. Thus, for Riemann-
ian h, one has a decomposition

Ω2 (M,R) = Ω2
+ (M,R)⊕ Ω2

− (M,R)

where

Ω2
± (M,R) :=

{
β ∈ Ω2 (M,R) : ∗β = ±β

}
.

Forms in Ω2
+ (M,R) are called self-dual, while forms in Ω2

− (M,R) are called anti-
self-dual. For a Lorentzian 4-manifold, there is a similar notion, but only after
complexification where we can decompose Ω2 (M,C) into the ±i eigenspaces of
∗. Unless otherwise stated, we assume that h is Riemannian. Of course, we can
extend the notion of star operator to the spaces Ωm (P ×GW ) ∼= C∞ (P ×GW )⊗
Ωm (M,R) via ∗ (s⊗ β) = s ⊗ ∗β. Moreover, for dimM = 4, we still have a
decomposition

Ω2 (P ×GW ) = Ω2
+ (P ×GW )⊕ Ω2

− (P ×GW )

into self-dual and anti-self-dual 2-forms. Note that if the orientation of M is re-
versed, then according to (16.18), ∗ changes sign, and Ω2

+ (·) and Ω2
− (·) are inter-

changed. Also, for dimM = 4, ∗ : Ω2 (·) → Ω2 (·) is invariant under a conformal
change of metric. Indeed, if h is replaced by λh for a positive λ ∈ C∞ (M,R), in the

local formula (16.19) |det (hij)|1/2 gains a factor of λ2, while βj1j2 gains a factor of
λ−2 from the raising of the two indices (since hij becomes λ−1hij).

For s, s′ ∈ C∞ (P ×GW ), β ∈ Ωm (M,R) and β′ ∈ Ωm
′
(M,R), the following

definition is convenient

K ((s⊗ β) ∧ (s′ ⊗ β′)) := K (s, s′)β ∧ β′.

Then for α ∈ Ωm (P ×GW ) and α′ ∈ Ωm
′
(P ×GW ),

K (α ∧ α′) ∈ Ωm+m′ (M,R)

is defined by linearity. We have

(16.20) d (K (α ∧ ∗α′)) = K (Dωα ∧ α′) + (−1)
m
K (α ∧Dωα′) ,
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since (using (16.14))

dK ((s⊗ β) ∧ (s′ ⊗ β′)) = d (K (s, s′)) ∧ β ∧ β′

+K (s, s′) dβ ∧ β′ +K (s, s′) (−1)
m
β ∧ dβ′

= K (Dωs, s′) ∧ β ∧ β′ +K (s,Dωs′) ∧ β ∧ β′

+K (s, s′) dβ ∧ β′ +K (s, s′) (−1)
m
β ∧ dβ′

= K ((Dωs ∧ β + s⊗ dβ) ∧ (s′ ⊗ β′))
+ (−1)

m
K ((s⊗ β) ∧ (Dωs′ ∧ β′ + s⊗ dβ′))

= K (Dω (s⊗ β) ∧ (s′ ⊗ β′))
+ (−1)

m
K ((s⊗ β) ∧Dω (s′ ⊗ β′)) .

Moreover, if m′ = m, we have

K (α ∧ ∗α′) = 〈α, α′〉 vh.
Proposition 16.18. The formal adjoint of Dω : Ωm (P ×GW )→ Ωm+1 (P ×GW )

on a compact, oriented, Riemannian n-manifold M is the covariant codifferential
δω : Ωm+1 (P ×GW )→ Ωm (P ×GW ) given by

(16.21) δω := − (−1)
nm ∗Dω∗

In other words, for α ∈ Ωm (P ×GW ) and α′ ∈ Ωm+1 (P ×GW ), we have

(Dωα, α′) = (α, δωα′) .

Proof. If we show that

dγ = (〈Dωα, α′〉 − 〈α, δωα′〉) vh,
then (Dωα, α′) − (α, δωα′) =

∫
M
dγ = 0 by Stoke’s Theorem. Using (16.20), we

compute

dγ = d (K (α ∧ ∗α′))
= K (Dωα ∧ ∗α′) + (−1)

m
K (α ∧Dω (∗α′))

= K (Dωα ∧ ∗α′) + (−1)
m
K
(
α ∧ (−1)

(n−m)m ∗2 Dω (∗α′)
)

= K (Dωα ∧ ∗α′) +K (α ∧ ∗ ((−1)
nm ∗Dω (∗α′)))

= K (Dωα ∧ ∗α′)−K (α ∧ ∗ (δωα′))

= (〈Dωα, α′〉 − 〈α, δωα′〉) vh,
as required. �

To obtain formulas for Dω and δω in local coordinates, let σ : U → P be a
local section on a coordinate neighborhood U , and let α ∈ Ωm (P ×GW ). For each
x ∈ U , we have an isomorphism (P ×GW )x = π−1

W (x)→W given by [σ (x) , w] 7→
w. This yields an isomorphism Ωm ( (P ×GW )|U) ∼= Ωm (U,W ) which we denote

by α 7→ α̃. One can easily check that if α ∈ Ω
k

(P,W ) is the equivariant form
corresponding to α, then α̃ = σ∗α. By (16.8), we have Dωα = dα+ r′ (ω) ∧ α and

D̃ωα = σ∗ (Dωα) = σ∗ (dα+ r′ (ω) ∧ α)

= d (σ∗α) + r′ (σ∗ω) ∧ σ∗α
= dα̃+ r′ (σ∗ω) ∧ α̃.
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In the local coordinates
(
x1, . . . , xm

)
on U we may write

α̃ =
1

m!

∑
α̃i1...imdx

i1 ∧ · · · ∧ dxim ,

where it is assumed that α̃i1...im is antisymmetric in i1, . . . , im. Then
(16.22)(
D̃ωα

)
j1...jm+1

=

n∑
k=1

(−1)
k+1

(
∂jk

(
α̃j1...ĵk...jm+1

)
+ r′ (σ∗ω (∂jk)) α̃j1...ĵk...jm+1

)
,

where ĵk means that jk is omitted. Using ∗̃α = ∗α̃, we have

− (−1)
n(m−1)

δ̃ωα = ˜∗Dω ∗ α = ∗D̃ω ∗ α
= ∗ (d (∗̃α) + r′ (σ∗ω) ∧ ∗̃α)

= ∗ (d (∗α̃) + r′ (σ∗ω) ∧ ∗α̃) .(16.23)

While it is possible to get this formula with (16.19), in order to find the components

(δωα)i1...im−1
, it is easier to compute the formal adjoint of the operator α̃ 7→ D̃ωα,

using (16.22) and integration by parts assuming that α is compactly supported in
U . The final result is(

δ̃ωα
)
i1...im−1

= − |h|−1/2
hi1j1 · · ·him−1jm−1∂i

(
|h|1/2 α̃ij1...jm−1

)
− r′ ((σ∗ω) (∂i)) α̃

i
i1...im−1

.(16.24)

Associated principal bundles induced by Lie group homomorphisms
The construction of vector bundles associated to a given principal G-bundle

π : P → M via a representation r : G → GL (W ) can be generalized to the case
where r is replaced by left action of G on any manifold F , say r : G→ C∞ (F, F ).
Of particular use to us in applications will be the case where G acts on a second
group G′ via g · g′ := γ (g) g′ where γ : G→ G′ is a homomorphism. The following
proposition shows that in this case the associated bundle is a principal G′-bundle
P ′ →M . Also, a connection for π : P →M gives rise to a connection for π : P ′ →
M . Moreover, an equivarant map between vector representation spaces V and V ′

of G and G′ gives rise to a vector bundle morphism between the associated vector
bundles P ×G V and P ′ ×G′ V ′.

Proposition 16.19. For Lie groups G and G′, let π : P → M be a principal
G-bundle and let γ : G → G′ be a homomorphism. Then there is a canonically
constructed principal G′-bundle π′ : P ′ → M . Moreover, there is a canonical map
Γ : P → P ′ which is γ-equivariant, in the sense that Γ (pg) = Γ (p) γ (g) (i.e.,
Γ ◦Rg = Rγ(g) ◦ Γ). For any p′ ∈ P ′, Γ−1 (p′) is an orbit of the action of Ker γ on
P , so that Γ is an embedding only if Ker γ = 0.

Proof. We define the principal G′-bundle π′ : P ′ →M as follows. There is a
right action R : (P ×G′)×G→ P ×G′ of G on P0 ×G′ given by

R (g) (p, g′) = (p, g′) · g :=
(
pg, γ

(
g−1

)
g′
)
.

Let the orbit of (p, g′) be [p, g′] := {(p, g′) · g : g ∈ G} and let

P ′ := P ×G G′ :=
P ×G′

G
= {[p, g′] : p ∈ P, g ∈ G′} .
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Define an action of G′ on P by [p, g′] · h′ := [p, g′h′] for h′ ∈ G′. Since[
pg, h

(
g−1

)
g′h′

]
= [p, g′h′] ,

this action is well defined. The action is free, since

[p, g′h′] = [p, g′]⇒ (p, g′h′) =
(
pg, γ

(
g−1

)
g′
)

for some g ∈ G
⇒ g = e and g′h′ = γ

(
g−1

)
g′ = g′ ⇒ h′ = e′,

where e ∈ G and e′ ∈ G′ are the identities. Then π′ : P ′ → M (with π′ ([p, g′]) =
π (p)) is a principal G′-bundle. Let Γ : P → P ′ be given by Γ (p) := [p, e′]. We
check that Γ is γ-equivariant:

Γ (pg) = [pg, e′] =
[
pgg−1, γ (g) e′

]
= [p, e′] γ (g) = Γ (p) γ (g) .

Note that Γ−1 (p′) is an orbit of the action of Ker γ on P : For p1, p2 ∈ P ,

Γ (p1) = Γ (p2) = p⇔ [p1, e
′] = [p2, e

′]

⇔ ∃g ∈ G, s.t.
(
p1g, γ

(
g−1

)
e′
)

= (p2, e
′)

⇔ p2 = p1g and γ
(
g−1

)
= e′ (i.e. g ∈ Ker γ).

�

Remark 16.20. If P̃ ′ is a another principal G′-bundle and Γ̃ : P → P̃ ′ is

γ-equivariant, then P̃ ′ is isomorphic to P ′ via the bijection Γ (p) g′ ←→ Γ̃ (p) g′.
This bijection is well defined (and then clearly G′-equivariant). Indeed, for π (p1) =
π (p2), we have p2 = p1g for some g ∈ G, and

Γ (p1) g′1 = Γ (p2) g′2 ⇔ Γ (p1) g′1 = Γ (p1g) g′2 = Γ (p1) γ (g) g′2

⇔ g′1 = γ (g) g′2 ⇔ Γ̃ (p1) g′1 = Γ̃ (p1) γ (g) g′2 = Γ̃ (p2) g′2.

With regard to induced connections, we have

Proposition 16.21. Let γ′ : g→ g′ denote the Lie algebra map for γ : G→ G′.
For any connection 1-form ω ∈ Ω1 (P, g) on P , there is a unique connection 1-form

ω′ ∈ Ω1 (P ′, g′), such that Γ∗ω′ = γ′ ◦ ω. Moreover, we have Γ∗
(

Ωω
′
)

= γ′ ◦ Ωω.

Proof. Since Γ◦Rg = Rγ(g)◦Γ for all g ∈ G, the G-invariant distribution H of
ω-horizontal subspaces is mapped by Γ∗ : P → P ′ to a well-defined γ (G)-invariant
distribution of horizontal subspaces, say Γ (H) on Γ (P ). Via the various Rg′∗ for
g′ ∈ G′, Γ (H) uniquely extends to a G′-invariant horizontal distribution, say H′,
on all of P ′. Then H′ determines a connection 1-form ω′ on P ′. By definition of
ω′, we have Γ∗ω′ = 0 on the horizontal subspaces of ω. Thus, Γ∗ω′ = γ′ ◦ ω on H.
As for vertical vectors, if A ∈ g, we have

Γ∗
(
A∗p
)

= d
dtΓ (p exp (tA)) = d

dtΓ (p) γ (exp (tA))

= d
dt (Γ (p) exp (tγ′ (A))) = γ′ (A)

∗
Γ(p) , and so

(Γ∗ω′) (A∗) = ω′ (Γ∗ (A∗)) = ω′
(
γ′ (A)

∗)
= γ′ (A) = (γ′ ◦ ω) (A∗) .
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Hence, Γ∗ω′ = γ′ ◦ ω, and uniqueness is clear. Moreover,

Γ∗
(

Ωω
′
)

= Γ∗
(
dω′ + 1

2 [ω′, ω′]
)

= dΓ∗ω′ + 1
2 [Γ∗ω′,Γ∗ω′]

= d (γ′ ◦ ω) + 1
2 [γ′ ◦ ω, γ′ ◦ ω] = γ′ ◦

(
dω + 1

2 [ω, ω]
)

= γ′ ◦ Ωω.

�

Another useful fact concerns associated bundles.

Proposition 16.22. Suppose that we have representations

r : G→ GL (V ) and r′ : G′ → GL (V ′)

and a linear map φ : V → V ′ which is equivariant, in the sense that

φ (r (g) (v)) = r′ (γ (g)) (φ (v)) .

Then there is a vector bundle morphism

Φ : P ×G V → P ′ ×G′ V ′ given by Φ ([p, v]) = [Γ (p) , φ (v)] .

Proof. Note that Φ is well-defined, since

[p1, v1] = [p2, v2]

⇒ (p1, v1) =
(
p2g,

(
r
(
g−1

))
(v2)

)
for some g ∈ G

⇒ ([p1, e
′], φ (v1)) = ([p2g, e

′], φ
(
r
(
g−1

)
v2

)
) for some g ∈ G

⇒ ([p1, e
′], φ (v1)) = ([p2, e

′]γ (g) , r′
(
γ (g)

−1
)

(φ (v2))) for some g ∈ G

⇒ [[p1, e
′], φ (v1)] = [[p2, e

′], φ (v2)]

⇒ [Γ (p1) , φ (v1)] = [Γ (p2) , φ (v2)] .

�

Remark 16.23. It is easy to see that Φ is injective (or surjective) if and only
if φ is injective (or surjective). In particular, if φ is an an isomorphism, then so is
Φ : P ×G V → P ×G′ V ′.

4. Gauge Transformations

While physicists speak of gauge transformations of particle fields and gauge
potentials, each of these is induced by gauge transformations of a principal bundle
defined as follows.

Definition 16.24. A gauge transformation of a principal G-bundle π : P →
M is a diffeomorphism F : P → P , such that for all p ∈ P and g ∈ G,

(G1) F (pg) = F (p) g and
(G2) π (F (p)) = π (p) .

We denote the group of gauge transformations by GA (P ).

Remark 16.25. Condition G2 implies that the fibers are mapped into them-
selves. If G2 were dropped, then G1 and the fact that F is a diffeomorphism imply
that there is a diffeomorphism f : M →M , such that π (F (p)) = f (π (p)). In this
more general case (i.e., if G2 is dropped), F is called an automorphism of P . We
denote the group of automorphisms of P by Aut (P ).
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Aut (P ) acts to the left on the space C (P ) of connection 1-forms on P , as

well as the spaces Ω
k

(P,W ) of horizontal, equivariant k-forms on P (relative to a
representation r : G→ GL (W )) via pull-back:

F · α :=
(
F−1

)∗
α, α ∈

{
C (P )

Ω
k

(P,W ) .

To prove that F ·α ∈ C (P ) for α ∈ C (P ), note that F−1 preserves the fundamental
vertical fields A∗ for A ∈ g, since F−1 (p exp tA) = F−1 (p) exp tA. Thus,((

F−1
)∗
α
)

(A∗) = α
(
F−1
∗ (A∗)

)
= α (A∗) = A.

(i.e., Condition C1 of (16.1) is met by
(
F−1

)∗
α). Also, since F−1 ◦Rg = Rg ◦F−1,

(16.25) R∗g

((
F−1

)∗
α
)

=
(
F−1

)∗
R∗g (α) =

(
F−1

)∗ (
g−1αg

)
= g−1

((
F−1

)∗
α
)
g,

so that C2 of (16.1) is met. It is also easy to prove that F · α ∈ Ω
k

(P,W ) for

α ∈ Ω
k

(P,W ). Indeed, for any fundamental vertical field A∗,

F · α (A∗, · · · ) =
(
F−1

)∗
α (A∗, · · · ) = α

((
F−1

)
∗ (A∗) , · · ·

)
= 0,

since we have observed that
(
F−1

)
∗ (A∗) is vertical. AlsoR∗g (F · α) = r

(
g−1

)
(F · α)

by the same sort of computation as (16.25). Since Ω
k

(P,W ) ∼= Ωk (P ×GW )
(see (16.11)), GA (P ) also acts on Ωk (P ×GW ). Recall (see (16.15)) that if
the representation r : G → GL (W ) is orthogonal relative to some inner prod-
uct k on W and there is a Riemannian metric h on M , then there is a pairing
〈·, ·〉 : Ωm (P ×GW )× Ωm (P ×GW )→ C∞ (M,R). It is straightforward to check
that this pairing is invariant under GA (P ), and it follows that GA (P ) acts by
isometries on the pre-Hilbert spaces Ωm (P ×GW ); for this, it may be easier to

work with the related pairing on Ω
k

(P,W ).

Proposition 16.26. For F ∈ GA (P ) and α ∈ Ω
k

(P,W ), we have

F · (Dωα) = DF ·ω (F · α) .

Proof. Since wedge and d commute with pull-back,

F · (Dωα) =
(
F−1

)∗
(Dωα) =

(
F−1

)∗
(dα+ r (ω) ∧ α)

=
(
F−1

)∗
(dα) +

(
F−1

)∗
(r (ω) ∧ α)

= d
((
F−1

)∗
α
)

+
(
r
((
F−1

)∗
ω
)
∧
(
F−1

)∗
α
)

= DF ·ω (F · α) .

�

There is another way of looking at GA (P ). Let

(16.26) C (P,G) :=
{
f ∈ C∞ (P,G) : f (pg) = g−1f (p) g = Adg−1f (p)

}
.

Since we have assumed that G is a matrix Lie group (i.e., G ⊆ GL (N,C)), the
adjoint action of G on itself (i.e., g · g0 = Adg (g0) = gg0g

−1) can be regarded as a
representation Ad : G→ GL (gl (N,C)). Hence

C (P,G) ⊆ Ω
0

(P, gl (N,C)) ∼= Ω0 (P ×G gl (N,C)) .
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Note that C (P,G) has a group operation given, for f1, f2 ∈ C (P,G), by (f1f2) (p) =
f1 (p) f2 (p).

Proposition 16.27. There is an isomorphism Φ : C (P,G) → GA (P,G) of
groups given by

Φ (f) (p) := pf (p)
−1

for f ∈ C (P,G) .

Proof. Note that Φ (f) ∈ GA (P,G), since

Φ (f) (pg) = pgf (pg)
−1

= pg
(
g−1f (p) g

)−1
= pf (p)

−1
g = Φ (f) (p) g,

and Φ is a homomorphism, since

Φ (f1f2) (p) = p (f1 (p) f2 (p))
−1

= p
(
f2 (p)

−1
f1 (p)

−1
)

= (Φ (f1) ◦ Φ (f2)) (p) .

For F ∈ GA (P,G), define Ψ (F ) ∈ C∞ (P,G) by F (p) = pΨ (F ) (p)
−1

. Then
Ψ (F ) ∈ C (P,G), since

pgΨ (F ) (pg)
−1

= F (pg) = F (p) g = pΨ (F ) (p)
−1
g

⇒ gΨ (F ) (pg)
−1

= Ψ (F ) (p)
−1
g

⇒ Ψ (F ) (pg) = g−1Ψ (F ) (p) g.

Note that Ψ is the inverse of Φ, since pΨ (Φ (f)) (p)
−1

= Φ (f) (p) = pf (p)
−1

and

Φ (Ψ (F )) (p) = pΨ (F ) (p)
−1

= F (p). �

Proposition 16.28. Let f ∈ C (P,G) . For ω ∈ C (P ) and X ∈ TpP , we have

(16.27) (Φ (f) · ω) (X) = f (p)
(
f−1

)
∗p (X) + f (p)ω (X) f (p)

−1
.

For α ∈ Ω
m

(P,W ) and X1, . . . , Xk ∈ TpP, we have

(16.28) (Φ (f) · α)p (X1, . . . , Xm) = r (f (p)) (αp (X1, . . . , Xm)) .

Proof. Let γ : R→P be a curve with γ′ (0) = X ∈ TpP, and let f ∈ C (P,G).
At t = 0, we have

Φ (f)∗ (X) = d
dtΦ (f) (γ (t)) = d

dtγ (t) f (γ (t))

= d
dtpf (γ (t)) + d

dtγ (t) f (p)

= d
dtpf (p) f (p)

−1
f (γ (t)) + d

dtRf(p) (γ (t))

=
(
f (p)

−1
f∗p (X)

)∗
pf(p)

+Rf(p)∗ (X) .

We have used the fact that t 7→ f (p)
−1
f (γ (t)) is a curve through I ∈ G with

tangent vector f (p)
−1
f∗p (X) ∈ TIG = g, and hence d

dtpf (p) f (p)
−1
f (γ (t))

coincides with the fundamental vertical field f (p)
−1
dfp (X)

∗
at pf (p). Since

Φ (f)
−1

= Φ
(
f−1

)
, we also have(

Φ (f)
−1
)
∗

(X) =
(
f (p)

(
f−1

)
∗p (X)

)∗
pf(p)−1

+Rf(p)−1∗ (X)
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Thus,

(Φ (f) · ω) (X) =
((

Φ (f)
−1
)∗
ω
)

(X) = ω
((

Φ (f)
−1
)
∗

(X)
)

= ω

((
f (p)

(
f−1

)
∗p (X)

)∗
pf(p)−1

+Rf(p)−1∗ (X)

)
= f (p)

(
f−1

)
∗p (X) +R∗

f(p)−1ω (X)

= f (p)
(
f−1

)
∗p (X) + f (p)ω (X) f (p)

−1
.

Using the fact that α vanishes on vertical vectors, we also have

(Φ (f) · α)p (X1, . . . , Xm) =
(

Φ (f)
−1∗

α
)
p

(X1, . . . , Xm)

= α
((

Φ (f)
−1
)
∗
X1, . . . ,

(
Φ (f)

−1
)
∗
Xm

)
= α

(
Rf(p)−1∗ (X1) , . . . , Rf(p)−1∗Xm

)
=
(
R∗
f(p)−1α

)
(X1, . . . , Xm) = r

(
f (p)

−1
)−1

(αp (X1, . . . , Xm))

= r (f (p)) (αp (X1, . . . , Xm)) ,

yielding (16.28). �

Corollary 16.29. For ω ∈ C (P ) and f ∈ C (P,G) ,

ΩΦ(f)·ω = fΩωf−1.

Proof. Using Proposition 16.6 (p. 369) and (16.28) where the representation
r is ad : G→ GL (g),

ΩΦ(f)·ω = ΩΦ(f)−1∗ω = dΦ (f)
−1∗

ω + Φ (f)
−1∗

ω ∧ Φ (f)
−1∗

ω

= Φ (f)
−1∗

dω + Φ (f)
−1∗

(ω ∧ ω) = Φ (f)
−1∗

Ωω

= Φ (f) · Ωω = ad (f) Ωω = fΩωf−1.

�

Corollary 16.30. The pairing

〈·, ·〉 : Ωk (P ×GW )× Ωk (P ×GW )→ C∞ (M,R) ,

of (16.15) is preserved under the action of GA (P ) on Ωk (P ×GW ) ∼= Ω
k

(P,W )
in the sense that for α, α′ ∈ Ωk (P ×GW ),

(16.29) 〈F · α, F · α′〉 = 〈α, α′〉 .

Proof. In the special case k = 0, with s, s′ ∈ Ω
0

(P,W ) ∼= Ω0 (P ×GW ), and
letting F = Φ (f), we have

〈F · s, F · s′〉 = 〈Φ (f) · s,Φ (f) · s′〉
= K (r (f) (s) , r (f) (s′)) = K (s, s′) = 〈s, s′〉 ,

since r : G → GL (W ) is orthogonal relative to K. For s, s′ ∈ Ω0 (P ×GW ) and
β, β′ ∈ Ωk (P ×GW ), for the basic forms s⊗ β and s′ ⊗ β′, we have

〈F · (s⊗ β) , F · (s′ ⊗ β′)〉 = 〈(F · s)⊗ β, (F · s′)⊗ β′〉
= 〈F · s, F · s′〉h (β, β′) = 〈s, s′〉h (β, β′) = 〈s⊗ β, s′ ⊗ β′〉 .
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For arbitrary α, α′ ∈ Ωk (P ×GW ) , (16.29) follows by linearity. �

Corollary 16.31. For F ∈ GA (P ) and β ∈ Ω
k+1

(P,W ), we have

F · (δωβ) = δF ·ω (F · β) .

Proof. In view of Corollary 16.30, the global inner product (·, ·) of (16.17) is

also preserved by the action of GA (P ). Thus, for all α ∈ Ω
k

(P,W ), we have(
F · α, δF ·ω (F · β)

)
=
(
DF ·ω (F · α) , F · β

)
= (F ·Dωα, F · β) = (Dωα, β) = (α, δωβ)

= (F · α, F · δωβ) ,

and it follows that F · (δωβ) = δF ·ω (F · β). �

Let

C (P, g) := Ω
0

(P, g) =
{
s ∈ C∞ (P, g) : s (pg) = adg−1s (p)

}
.

There is a map Exp: C (P, g)→ C (P,G), defined for s ∈ C (P, g) by

(16.30) Exp (s) (p) := exp (s (p)) =

∞∑
m=0

1

m!
s (p)

m
.

Note that s (p) ∈ g ⊆ gl (N,C) so that s (p)
m

makes sense, and Exp(s) ∈ C (P,G)
since

Exp (s) (pg) = pg exp (s (pg)) = pg exp
(
g−1s (p) g

)
= pgg−1 exp (s (p)) g = p exp (s (p)) g = Exp (s) (p) g.

Thus, we also have

Φ ◦ Exp : C (P, g)→ GA (P,G) .

Just as exp : g → G is a local diffeomorphism on a neighborhood of 0 ∈ g to a
neighborhood of I ∈ G, relative to the Ck topology (k ≥ 0), Φ◦Exp is a continuous
bijection of a neighborhood of 0 ∈ C (P, g) to a neighborhood of Id ∈ GA (P,G).
One might think of C (P, g) as the “Lie algebra” of the “Lie group” GA (P,G).

Then corresponding to the group representation of GA (P,G) on Ω
k

(P,W ), we

have a Lie algebra representation given, for s ∈ C (P, g) and α ∈ Ω
k

(P,W ), by

(s · α)p (X1, . . . , Xm) := d
dt

(
(Φ (Exp (ts)) · α)p (X1, . . . , Xm)

)∣∣∣
t=0

= d
dt (r (Exp (ts) (p))α (X1, . . . , Xm))

∣∣
t=0

= d
dt (r (exp (ts (p)))α (X1, . . . , Xm))

∣∣
t=0

= r′ (s (p)) (α (X1, . . . , Xm)) .

There is also an infinitesimal version of the action of C (P, g) on C (P ) defined by

s · ω := d
dt (Φ (Exp (ts)) · ω)

∣∣
t=0

.

Proposition 16.32. For s ∈ C (P, g) and ω ∈ C (P ),

s · ω = − (ds+ [ω, s]) = −Dωs ∈ Ω
1

(P, g) .
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Proof. For X ∈ TpP ,

s · ω = d
dt (Φ (Exp (ts)) · ω) (X)

∣∣
t=0

= d
dt

(
Exp (ts) (p)

(
Exp (ts)

−1
)
∗

(X) + Exp (ts)ω (X) Exp (ts)
−1
)∣∣∣
t=0

= −ds (X)− [ω (X) , s] .

We computed the derivative of the first term as follows. For γ : R→P a curve with
γ′ (0) = X ∈ TpP , we have (at t = u = 0)

d
dt

(
Exp (ts) (p)

(
Exp (ts)

−1
)
∗

(X)
)

= d
dt

(
exp (ts (p)) d

duexp (−ts (γ (u)))
)

= d
dt (exp (ts (p)) (−tds (γ′ (0))))

= d
dt (exp (ts (p)) (−tds (X)))

= d
dt (exp (ts (p))) (0) + I ddt (−tds (X)) = −ds (X) .

�

Exercise 16.33. Let π : P →M be a principal G-bundle. Suppose that Uα is
open in M and Tα : π−1 (Uα)→ Uα ×G is a local trivialization of P , so that

Tα (p) = (π (p) , sα (p)) , where sα (pg) = sα (p) g.

Similarly let Tβ = π × sβ : π−1 (Uβ)→ Uβ ×G be another local trivialization with
Uα ∩ Uα 6= φ. Define a local section σα : Uα → π−1 (Uα) by σα (x) = T−1

α (x, e),
where e is the identity of G, and similarly define σβ : Uβ → π−1 (Uβ).

(a) Show that Tα (σα (x) g) = (x, g) and
(
Tα ◦ T−1

β

)
: (Uα ∩ Uβ)×G←↩ is given by(

Tα ◦ T−1
β

)
(x, g′) = (x, gαβ (x) g′) ,

where gαβ : Uα ∩ Uβ → G is a well-defined function (known as a transition
function for P ) given by

gαβ (π (p)) := sα (p) sβ (p)
−1
.

Conclude that Tα ◦ T−1
β is a gauge transformation of the trivial principal G-bundle

(Uα ∩ Uβ)×G→ G.
(b) Let ω ∈ Λ1 (P, g) be a connection 1-form on P . Show that

σβ (x) = σα (x) gαβ (x) ,

σβ
∗ω = g−1

αβ (σ∗αω) gαβ + g−1
αβdgαβ , and

σβ
∗Ωω = g−1

αβ (σ∗αΩω) gαβ .
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5. Curvature in Riemannian Geometry

Let M be a C∞ n-manifold. A linear frame of M at x ∈ M is an isomor-
phism u : Rn → TxM . Note that if e1, . . . , en is the standard basis of Rn, then
u (e1) , . . . , u (en) is a basis of TxM . Let LMx denote the set of all linear frames
at x, let LM = ∪x∈MLMx, and let π : LM → M be the map u 7→ x. For
A ∈ GL (n,R) and u ∈ LMx, we have u ◦ A ∈ LMx, with u ◦ A = u only if A = I.
Thus, GL (n,R) acts freely to the right on LM . Indeed, LM can by made into a
C∞

(
n+ n2

)
-manifold, such that π : LM → M is a principal GL (n,R)-bundle,

known as the bundle of linear frames for M . The reader is probably familiar with
tensor representations of GL (n,R). For example, let S2 (Rn) ⊂ (Rn)

∗ ⊗ (Rn)
∗

be
the space of symmetric, bilinear forms on Rn. We have the tensor representation
r : GL (n,R)→ GL

(
S2 (Rn)

)
given, for s ∈ S2 (Rn) and A ∈ GL (n,R), by

(16.31) (r (A) (s)) (v1, v2) := s
(
A−1v1, A

−1v2

)
for v1, v2 ∈ Rn.

Using the abbreviation Gn = GL (n,R) , the associated bundle LM ×Gn S2 (Rn)→
M is the bundle of symmetric, bilinear forms on the tangent spaces of M . For
[u, s] ∈ LM×GnS2 (Rn) andX,Y ∈ TxM , note that [u, s] (X,Y ) := s (u (X) , u (Y ))
defines a bilinear form on TxM . In the case of the “defining representation” r :
GL (n,R)→ GL (n,R), namely the identity map A 7→ A, we have the isomorphism

(16.32) LM ×Gn Rn ∼= TM given by [u, v] 7→ u (v) ,

for u ∈ LM and v ∈ Rn.

Definition 16.34. The canonical 1-form on LM is the element ϕ ∈ Ω
1

(LM,Rn)
defined for u ∈ LM and X ∈ TuLM by

ϕu (X) := u−1 (π∗ (X)) .

We know (see (16.11)) that Ω
1

(LM,Rn) is isomorphic to Ω1 (LM ×Gn Rn) =
Ω1 (TM), the space of 1-forms on M with values in TM , or in other words, the
space of endomorphisms of TM . The canonical 1-form ϕ corresponds to the identity
endomorphism. Indeed, for u ∈ LM and X ∈ TuLM , we have

ϕM (π∗X) := [u, ϕu (X)] =
[
u, u−1 (π∗ (X))

]
= u

(
u−1 (π∗ (X))

)
= π∗ (X) ,

where we have used the identification (16.32).
A connection 1-form ω for the principal GL (n,R)-bundle π : LM → M is

called a linear connection for M . The torsion Φ of ω is the covariant derivative of
the canonical 1-form with respect to ω, namely

(16.33) Φ := Dωϕ ∈ Ω
2

(LM,Rn) ∼= Ω2 (M,TM) ,

which (as indicated) can be regarded as a 2-form on M with values in TM . A linear
connection gives us a way of differentiating a vector field, say Y on M , with respect

to another vector field X, as follows. Let Ỹ be the ω-horizontal lift of Y to LM .

Then ϕ
(
Ỹ
)
∈ Ω

0
(LM,Rn), and Dω

(
ϕ
(
Ỹ
))
∈ Ω

1
(LM,Rn) ∼= Ω1 (M,TM).

Thus, we may regard Dω
(
ϕ
(
Ỹ
))

as a 1-form with values in TM . Evaluating this
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1-form on X gives us a vector field, commonly denoted by ∇XY . Explicitly, for
any u ∈ LM , we have

(∇XY )π(u) = u
(
Dω

(
ϕ
(
Ỹ
))

u

(
X̃
))

= u
(
d
(
ϕ
(
Ỹ
))

u

(
X̃
))

= u
(
X̃u[ϕ

(
Ỹ
)

]
)
∈ Tπ(u)M.(16.34)

Exercise 16.35. (a) Show that for vector fields X,Y ∈ C∞ (TM) and f ∈
C∞ (M) ,

K1. ∇fXY = f∇XY and

K2. ∇X (fY ) = df (X)Y + f∇XY.

(b) A Kozul connection ∇ for M is defined to be a map C∞ (TM)×C∞ (TM)→
C∞ (TM) written as (X,Y ) 7→ ∇XY such that K1 and K2 hold. Show that a
Kozul connection arises from a unique linear connection for M .
(c) LetM be a submanifold of Rn+k. ForX,Y ∈ C∞ (TM) , sayX = (X1, . . . , Xn+k)
and Y = (Y1, . . . , Yn+k) , where Xi, Yi ∈ C∞ (M), define

X [Y ] := (X [Y1] , . . . , X [Yn+k]) ,

where X [Yi]x := d
dtYi (γ (t))

∣∣
t=0

and γ is a curve in M with γ′ (0) = Xx. Verify
that the following defines a Kozul connection for M :

(∇XY )x := Px (X [Y ]) for any x ∈M,

where Px is orthogonal projection of Rn+k onto TxM .

The torsion Φ of ω is 0, if and only if ∇XY −∇YX − [X,Y ] = 0 for all vector
fields X and Y . Indeed, for u ∈ LM , we have

u
(

Φ
(
X̃, Ỹ

))
= u

(
(Dωϕ)

(
X̃, Ỹ

))
= u

(
X̃
(
ϕ
(
Ỹ
)))

− u
(
Ỹ
(
ϕ
(
X̃
)))

− u
(
ϕ
([
X̃, Ỹ

]))
= ∇XY −∇YX − π∗

([
X̃, Ỹ

])
= ∇XY −∇YX − [X,Y ] .(16.35)

We can similarly express the curvature Ωω in terms of ∇. First note that

Ωω
(
X̃, Ỹ

)
= dω

(
X̃, Ỹ

)
= X̃

[
ω
(
Ỹ
)]
− Ỹ

[
ω
(
X̃
)]
− ω

([
X̃, Ỹ

])
= −ω

([
X̃, Ỹ

])
⇒
[
X̃, Ỹ

]V
u

= −Ωωu

(
X̃, Ỹ

)∗
.

Then recall that for A ∈ gl (n,Rn) and A∗ the fundamental vertical vector field on
LM , we have

A∗
[
ϕ
(
Z̃
)]

= d
dt

[
ϕu exp(tA)

(
Z̃
)]

= d
dt

(
exp (tA)

−1
)
ϕu

(
Z̃
)

= −Aϕu
(
Z̃
)
.
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Thus,

∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= u
(
X̃u

[
Ỹ
[
ϕ
(
Z̃
)]])

− u
(
Ỹu

[
X̃
[
ϕ
(
Z̃
)]])

− u
([
X̃, Ỹ

]H [
ϕ
(
Z̃
)])

= u

(([
X̃, Ỹ

]
−
[
X̃, Ỹ

]H)[
ϕ
(
Z̃
)])

= u

([
X̃, Ỹ

]V [
ϕ
(
Z̃
)])

= u
(
−Ωωu

(
X̃, Ỹ

)∗ [
ϕ
(
Z̃
)])

= u
(

Ωω
(
X̃u, Ỹu

)
ϕu

(
Z̃
))

=: Ωω (X,Y ) (Z) ,

(16.36)

where the final equality defines what it means to regard the curvature form Ωω ∈
Ω

2
(LM, gl (n,Rn)) as being in Ω2 (EndTM).
Now, suppose that h is a Riemannian metric on M . Then u ∈ LMx is called

an orthonormal frame if u : Rn → TxM is an isometry where Rn has its standard
inner product (i.e., h (u (v) , u (w)) = v ·w = v1w1 + · · ·+vnwn). The set FM of all
orthonormal frames at all points of M is the total space of a principal O (n)-bundle
π : FM → M called the orthonormal frame bundle of M relative to h. Note that
FM is a submanifold of LM .

Definition 16.36. If ω is a linear connection for M whose horizontal subspaces
(those subspaces annihilated by ω) at points of FM are contained in tangent spaces
of FM , then ω is called a metric connection (relative to h).

Note that ω|FM is automatically a connection 1-form for the principal O (n)-
bundle FM → M , but the horizontal subspace of ω at u ∈ FM is not necessarily
Ker (ω|TuFM ); i.e., ω is not necessarily metric. There is another useful characteri-
zation of metric connections described as follows. The metric h on M corresponds

to some H ∈ Ω
0 (
LM,S2 (Rn)

)
, where r : GL (n,R) → GL

(
S2 (Rn)

)
is the tensor

representation for the space S2 (Rn) of symmetric bilinear forms, defined in (16.31).
Indeed for u ∈ LM and v1, v2 ∈ Rn,

(16.37) H (u) (v1, v2) := h (u (v1) , u (v2)) .

For u ∈ FM , H (u) (v1, v2) = v1 · v2, so that H|FM is constant, namely the usual
dot product. In fact, if ι denotes the usual dot product, FM = H−1 (ι). Let ω be
a connection on 1-form on LM . According to (16.8),

DωH = dH + r′ (ω) (H) .

Proposition 16.37. The following are equivalent

1. ω is a metric connection

2. DωH = 0 on LM

3. X [h (Y, Z)] = h (∇XY,Z) + h (Y,∇XZ) , for all vector fields X,Y and Z.

Proof. Since H|FM is constant, for X ∈ TuFM , we have dH (X) = 0 and

((DωH) (X)) (v1, v2) = dH (X) (v1, v2) + (r′ (ω (X)) (H)) (v1, v2)

= − (ω (X) v1) · v2 − v1 · (ω (X) v2)

Since the left side is 0 for X vertical and the right side is 0 for X horizontal, both
sides are zero for all X ∈ TuFM , namely

(16.38) (DωH) (X) = 0 and (ω (X) v1) · v2 + v1 · (ω (X) v2) = 0
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Suppose that ω is metric. Then for any u ∈ FM , all horizontal Y ∈ TuLM are
in TuFM , and hence (DωH) (Y ) = 0 by (16.38). Since GL (n,R) acts transitively
via Rg∗ on the set of all horizontal subspaces of LM at points of a given fiber, we
then have that (DωH) (Y ) = 0 for all horizontal Y ∈ TuLM for all u ∈ LM . Since
(DωH) (Y ) = 0 for all vertical Y , we then have ω metric ⇒ DωH = 0 on LM .
Now, suppose that DωH = 0 on LM , and ω (Y ) = 0 for Y ∈ TuLM . To show that
ω is metric, we need to prove that Y ∈ TuFM . However,

0 = (DωH) (Y ) = dH (Y ) + (r′ (ω (Y )) (H)) = dH (Y ) .

Thus, as dH has maximal rank at u ∈ FM (Exercise), Y ∈ Tu
(
H−1 (ι)

)
= TuFM.

For (3) note that for x = π (u) ,

Xx [h (Y,Z)] = X̃u

[
H
(
ϕ
(
Ỹ
)
, ϕ
(
Z̃
))]

= X̃u [H]
(
ϕ
(
Ỹ
)
, ϕ
(
Z̃
))

+Hu

(
X̃u

[
ϕ
(
Ỹ
)]
, ϕ
(
Z̃
))

+Hu

(
ϕ
(
Ỹ
)
, X̃u

[
ϕ
(
Z̃
)])

= (DωH)u

(
ϕ
(
Ỹ
)
, ϕ
(
Z̃
))

+ hx (∇XY, Z) + hx (Y,∇XZ) .

�

Proposition 16.38 (Fundamental Lemma of Riemannian Geometry). For each
Riemannian metric h on a manifold M , there is a unique metric linear connection
1-form ω on LM relative to h with torsion 0 (i.e., Φ = Dωϕ = 0).

Remark 16.39. The connection ω in this proposition restricts to an so (n)-
valued connection θ := ω|FM which we call the Levi Civita connection for h.
The existence and uniqueness proof below is also valid for nondegenerate, indefi-
nite metrics h. One just replaces the standard dot product on Rn by a standard,
nondegenerate, indefinite scalar product.

Proof. By (16.8), for the canonical 1-form ϕ, we have

Dωϕ = dϕ+ ω ∧ ϕ,

or more precisely, for all u ∈ LM and W1,W2 ∈ TuLM ,

Dωϕ (W1,W2) = dϕ (W1,W2) + ω (W1)ϕ (W2)− ω (W2)ϕ (W1)

where ω (W1) ∈ gl (n,R) is operating on ϕ (W2) ∈ Rn. A vector field Z on M

corresponds to some Z ′ ∈ Ω
0

(LM,Rn) via Z ′ (u) = u−1 (Z). Let Z̃ be the unique

vector field on LM such that π∗Z̃ = Z and Z̃ is the horizontal lift of Z relative to

some arbitrary, fixed connection ω0 on LM (i.e., ω0

(
Z̃
)

= 0). From the fact that

horizontal subspaces are sent to horizontal subspaces by Rg∗, it follows that Z̃ is

invariant under Rg∗. Moreover, we have ϕ
(
Z̃
)

= Z ′. Indeed, at each u ∈ LM,

Z ′ (u) = u−1
(
Zπ(u)

)
= u−1(π∗(Z̃u)) = ϕu(Z̃u).

Let X and Y be vector fields on M . Then for an arbitrary connection 1-form ω on
LM

Dωϕ(X̃, Ỹ ) = dϕ(X̃, Ỹ ) + ω(X̃)ϕ(Ỹ )− ω(Ỹ )ϕ(X̃)

= dϕ(X̃, Ỹ ) + ω(X̃)Y ′ − ω(Ỹ )Y ′,
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or for all vector fields Z on M with corresponding Z ′ ∈ Ω
0

(LM,Rn),

H(Dωϕ(X̃, Ỹ ), Z ′)

= H(dϕ(X̃, Ỹ ), Z ′) +H(ω(X̃)Y ′, Z ′)−H(ω(Ỹ )X ′, Z ′).(16.39)

We also have

(DωH) (Z̃) (X ′, Y ′) = dH(Z̃) (X ′, Y ′) + r′(ω(Z̃)) (H) (X ′, Y ′)

= dH(Z̃) (X ′, Y ′)−H(ω(Z̃)X ′, Y ′)−H(X ′, ω(Z̃)Y ′)(16.40)

From (16.39) and (16.40), we see that if Dωϕ = 0 and DωH = 0, then

H(dϕ(X̃, Ỹ ), Z ′) = H(ω(Ỹ )X ′, Z ′)−H(ω(X̃)Y ′, Z ′)

and

dH(Z̃) (X ′, Y ′) = H(ω(Z̃)X ′, Y ′) +H(X ′, ω(Z̃)Y ′).

We want to solve for H(ω(X̃)Y ′, Z ′). This is accomplished by forming the following
mysterious combination which one can derive from Young diagrams for 3-tensors
(see [We46]), or (with a little luck) by trial and error.

dH(X̃) (Y ′, Z ′) + dH(Ỹ ) (X ′, Z ′)− dH(Z̃) (X ′, Y ′)

−
(
H(dϕ(X̃, Ỹ ), Z ′) +H(dϕ(Z̃, X̃), Y ′) +H(dϕ(Z̃, Ỹ ), X ′)

)

=



 H(ω(X̃)Y ′, Z ′) +H(Y ′, ω(X̃)Z ′)

+H(ω(Ỹ )X ′, Z ′) +H(X ′, ω(Ỹ )Z ′)

−H(ω(Z̃)X ′, Y ′)−H(X ′, ω(Z̃)Y ′)


−

 H(ω(Ỹ )X ′, Z ′)−H(ω(X̃)Y ′, Z ′)

+H(ω(X̃)Z ′, Y ′)−H(ω(Z̃)X ′, Y ′)

+H(ω(Ỹ )Z ′, X ′)−H(ω(Z̃)Y ′, X ′)




= 2H(ω(X̃)Y ′, Z ′).

Thus, we have

2H(ω(X̃)Y ′, Z ′)

= dH(X̃) (Y ′, Z ′) + dH(Ỹ ) (X ′, Z ′)− dH(Z̃) (X ′, Y ′)

−
(
H(dϕ(X̃, Ỹ ), Z ′) +H(dϕ(Z̃, X̃), Y ′) +H(dϕ(Z̃, Ỹ ), X ′)

)
.(16.41)

Hence, if Dωϕ = 0 and DωH = 0, then ω is uniquely determined by (16.41).
Conversely, suppose that we define ω by (16.41) and by the requirement that
ω (A∗) = A. Then using (16.41), it is straightforward to check that not only do we
have that ω is torsion-free, namely

H(Dωϕ(X̃, Ỹ ), Z ′)

= H(dϕ(X̃, Ỹ ), Z ′) +H(ω(X̃)Y ′, Z ′)−H(ω(Ỹ )X ′, Z ′) = 0,

but also that ω is a metric connection, namely

(DωH) (Z̃) (X ′, Y ′)

= dH(Z̃) (X ′, Y ′)−H
(
ω(Z̃)X ′, Y ′

)
−H

(
X ′, ω(Z̃)Y ′

)
= 0.
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Of course one should also check that ω defined by (16.41) and ω (A∗) = A, also
has the property R∗gω = g−1ωg. This is automatic on vertical vectors, but we need(

R∗gω
)

(X̃u) = g−1ω(X̃u)g.

for all vector fields X on M and g ∈ GL (n,R), or equivalently,
(16.42)

H (ug)
((
R∗gω

)
(X̃u)Y ′ (ug) , Z ′ (ug)

)
= H (ug)

(
g−1ω(X̃u)gY ′ (ug) , Z ′ (ug)

)
for all vector fields X,Y, Z on M and g ∈ GL (n,R). For this we use

H (ug)
((
R∗gω

)
(X̃u)Y ′ (ug) , Z ′ (ug)

)
= H (ug)

(
ω(Rg∗X̃u)Y ′ (ug) , Z ′ (ug)

)
= H (ug)

(
ω(X̃ug)Y

′ (ug) , Z ′ (ug)
)

(16.43)

and

H (ug)
(
g−1ω(X̃u)gY ′ (ug) , Z ′ (ug)

)
=
(
r
(
g−1

)
·H (u)

) (
g−1ω(X̃u)gY ′ (ug) , Z ′ (ug)

)
= H (u)

(
ω(X̃u)gY ′ (ug) , gZ ′ (ug)

)
= H (u)

(
ω(X̃u)Y ′ (u) , Z ′ (u)

)
,(16.44)

and then apply (16.41) to the final expressions in (16.43) and (16.44). The result

(16.42) then follows by showing that the R-valued functions of the form dH(X̃) (Y ′, Z ′)

and H
(
dϕ(X̃, Ỹ ), Z ′

)
are Rg invariant. As can be easily checked, this follows from

the fact that H,ϕ and X ′ are equivariant, and Rg∗(X̃) = X̃ (and similarly for Y
and Z). Thus, the 1-form ω defined by (16.41) is a connection, and is the unique
torsionless metric connection on LM relative to h. �

Let
(
x1, . . . , xn

)
be a system of local coordinates in a neighborhood U of M .

Then the coordinate vector fields ∂k := ∂
∂xk

yield a section σ : U → LM of the

frame bundle given, for v ∈ Rn and x ∈ U , by σ (x) (v) =
∑
vk (∂k)x. The image

σ∗ (TxM) is a subspace of Tσ(x)LM which is a complement of the vertical subspace

of Tσ(x)LM . As A ∈ GL (n,R) varies, the subspaces H0
σ(x)A := RA∗

(
Tσ(x)LM

)
then define a connection on LM |π−1(U). This may locally serve to define the fixed

connection ω0 in the above proof. For a vector field V (x) =
∑n
k=1 v (x)

k
∂k, note

that Ṽσ(x)A := RA∗ (σ∗x (Vx)) is the ω0-horizontal lift of V , and

V ′σ(x)A := ϕ
(
Ṽ
)

= (σ (x)A)
−1

(π∗ (RA∗ (σ∗x (Vx)))) = (σ (x)A)
−1

(Vx)

= A−1σ (x)
−1

(Vx) = A−1v (x) .

We have H (σ (x)A) (v, w) = h (σ (x)A (v) , σ (x)A (v)), and in particular

hij (x) := hx (∂i, ∂j) = h (σ (x) (ei) , σ (x) (ej)) = H (σ (x)) (ei, ej) or

(σ∗H) (ei, ej) = σ∗ (H (ei, ej)) = hij .
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We have ∂̃kσ(x) = σ∗x (∂k) and (∂′k)σ(x) = ϕ (σ∗x (∂k)) = σ (x)
−1

(∂k) = ek. Thus,

the result (see (16.41))

2H(ω(ẽi)e
′
j , e
′
k)

= dH(ẽi)
(
e′j , e

′
k

)
+ dH(ẽj) (e′i, e

′
k)− dH(ẽk)

(
e′i, e

′
j

)
− (H(dϕ(ẽi, ẽj), e

′
k) +H(dϕ(ẽk, ẽi), Y

′) +H(dϕ(ẽk, ẽj), e
′
i))(16.45)

becomes (on the image σ (U))

2H((ω(σ∗x (∂i))ej , ek)

= dH(∂̃i) (ej , ek) + dH(∂̃j) (ei, ek)− dH(∂̃k) (ei, ej)

−
(
Hσ(x)(dϕ(∂̃i, ∂̃j), ek) +H(dϕ(∂̃k, ∂̃i), Y

′) +H(dϕ(∂̃k, ∂̃j), ei)
)
.(16.46)

On the image σ (U) again,

H(dϕ(∂̃i, ∂̃j), ek) = H(∂̃i

[
ϕ(∂̃j)

]
− ∂̃j

[
ϕ(∂̃i)

]
− ϕ

([
∂̃i, ∂̃j

])
, ek)

= H(∂̃i [ej ]− ∂̃j [ei]− ϕ (0) , ek) = 0,

and

(dH)σ(x) (∂̃i) (ej , ek) = d
(
H|σ(U)

)
(ej , ek) (σ∗x (∂i))

=
(
σ∗d

(
H|σ(U)

))
(∂i) (ej , ek)

=
(
d
(
σ∗
(
H|σ(U)

)
(ej , ek)

))
(∂i)

= ∂i (hjk) .

Thus, letting (ωi)
k
j be defined by

(σ∗ω) (∂i) (ej) = ω(σ∗ (∂i)) (ej) = ω(ẽi) (ej) =
∑
k

(ωi)
k
j ek,

we have

2Hσ(x)(ω(∂̃i)ej , ek) = 2Hσ(x)(
∑
k

(ωi)
l
j el, ek) = 2Hσ(x)(

∑
k

(ωi)
l
j el, ek)

= 2
∑
l

hkl (ωi)
l
j .

Hence, using the classical notation for the Christoffel symbols Γkij := (ωi)
k
j , we get

2
∑
l

hklΓ
l
ij = 2

∑
l

hkl (ωi)
l
j = ∂i [hjk] + ∂j [hik]− ∂k [hij ] or

Γlij = (ωi)
l
j = 1

2h
lk (∂i [hjk] + ∂j [hik]− ∂k [hij ]) ,(16.47)

which is the classical formula. Note that Γlij is symmetric in i and j, and hence the
Levi Civita connection is often called a symmetric connection. We now show that

(16.48) ∇∂i∂j =

n∑
l=1

Γlij∂l.
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Since ϕσ(x)

(
∂̃i

)
= ei is constant, we have d

(
ϕ
(
∂̃i

))
= 0, and so

Hσ(x)

(
Dω

(
ϕ
(
∂̃i

))(
∂̃j

)
, ek

)
= Hσ(x)

(
d
(
ϕ
(
∂̃i

))
+ ω

(
∂̃j

)
ϕ
(
∂̃i

)
, ek

)
= Hσ(x)

(
ω
(
∂̃j

)
ei, ek

)
=
∑
l

hkl (ωj)
l
i =

∑
l

hklΓ
l
ji.

Then for each k,

hx

(∑
l

Γlji∂l, ∂k

)
=
∑
l

Γljihx (∂l, ∂k) =
∑
l

hklΓ
l
ji

= Hσ(x)

(
Dω

(
ϕ
(
∂̃i

))(
∂̃j

)
, ek

)
= hx

(
σ (x)

(
Dω

(
ϕ
(
∂̃i

))(
∂̃j

))
, σ (x) (ek)

)
= hx (∇∂i∂j , ∂k) ,

from which (16.48) follows. Let h denote the matrix whose entries are hij . There
is a key identity that we will use later, namely (using the summation convention)

hij∇∂i∂j = −
n∑
l=1

1√
det h

∂i

(
hli
√

det h
)
∂l or

hijΓlij = − 1√
det h

∂i

[
hli
√

det h
]
.(16.49)

This is based on the identity

∂k [det h] = (det h)

n∑
i,j=1

hij∂k [hij ] or hij∂k [hij ] = ∂k [log det h] ,

which is shown as follows. Let hj be the j-th column of h and write the determinant
as a multilinear function of its columns, say det h = det (h1, . . . ,hn). Then (where
we use Cramer’s rule for the third equality)

∂k [det h] =

n∑
j=1

det (h1, . . . ,hj−1, ∂k [hj ] ,hj+1, . . . ,hn)

= (det h)

n∑
j=1

1

det h
det (h1, . . . ,hj−1, ∂k (hj) ,hj+1, . . . ,hn)

= (det h)

n∑
j=1

(
h−1∂k (hj)

)j
= (det h)

n∑
i,j=1

hji∂k (hij) = (det h)

n∑
i,j=1

hij∂k (hij) .
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To obtain (16.49), we then compute (where a sum over i and j is implicit)

hijΓlij = hijΓlij = 1
2h

ijhlk (∂i [hjk] + ∂j [hik]− ∂k [hij ])

= hij
(
hlk∂i [hjk]− 1

2h
lk∂k [hij ]

)
= hij

(
∂i
[
hlkhjk

]
− ∂i

[
hlk
]
hjk − 1

2h
lk∂k [hij ]

)
= −∂i

[
hlk
]
hijhjk − 1

2h
lkhij∂k [hij ] = −∂i

[
hli
]
− 1

2h
lkhij∂k [hij ]

= −∂i
[
hli
]
− 1

2h
lk∂k (log det h) = −∂i

[
hli
]
− hlk∂k

(
log
√

det h
)

=
−1√
det h

(√
det h∂i

[
hli
]

+ hlk∂k

[√
det h

])
=

−1√
det h

∂i

[
hli
√

det h
]
.

As in (16.4) and (16.6), the curvature of the Levi-Civita connection θ = ω|FM
is

Ωθ := Dθθ = dθ + θ ∧ θ = dθ + 1
2 [θ, θ] ∈ Ω

2
(FM, so (n)) ,

where so (n) = o (n) :=
{
A ∈ gl (n,R) : AT = −A

}
is the Lie algebra of O(n) (or

SO (n)). Let us denote the bundle of skew-symmetric (relative to h) endomorphisms
of the tangent spaces TxM by so (TM). Then so (TM) = FM ×O(n) so (n) and

Ω
2

(FM, so (n)) ∼= Ω2
(
M,FM ×O(n) so (n)

)
= Ω2 (M, so (TM))

Thus, we may regard Ωθ as in Ω2 (M, so (TM)), and for vectors X,Y ∈ TxM ,
Ωθ (X,Y ) ∈ so (TxM), we define R ∈ C∞

(
M,⊗4 (TM)

∗)
by

(16.50) R (W,Z,X, Y ) := h
(
Ωθ (X,Y ) (Z) ,W

)
.

Note that R (W,Z,X, Y ) is antisymmetric in (X,Y ) and in (W,Z). We can relate
the curvature tensor to the Gaussian curvature of surfaces as follows. Let X,Y ∈
TxM be and let S be the surface composed of geodesic segments issuing from x with
initial tangent vectors in the 2-plane Π = span (X,Y ) ⊆ TxM . Then the Gaussian
curvature of S (with the induced metric) at x is given by

(16.51) K (Π) :=
R (X,Y,X, Y )

h (X,X)h (Y, Y )− h (X,Y )
2 ,

which is independent of the choice of the basis {X,Y } and is known as the sectional
curvature of Π.

Exercise 16.40. Here we show that the curvature tensor of the unit n-sphere
Sn (with metric tensor induced from Rn+1) at the point x ∈ Sn is given by

(16.52) R (W,Z,X, Y ) = 〈X,Z〉 〈Y,W 〉 − 〈Y,Z〉 〈X,W 〉
where W,Z,X, Y ∈ TxSn = x⊥ ⊂ Rn+1, and 〈·, ·〉 is the usual dot product. This
implies that all the sectional curvatures K (Π) of Sn are equal to 1.
(a) Let en+1 = (0, . . . , 0, 1) ∈ Sn. Show that the subgroup {g ∈ O (n+ 1) : gen+1 = en+1}
can be identified with O (n) and that the map π : O (n+ 1) → Sn given by

π (g) = gen+1 induces a diffeomorphism O(n+1)
O(n)

∼= Sn. Hence, π : O (n+ 1) → Sn

is the special case of the bundle π : G → G/G in Exercise 16.5, where where
G = O (n+ 1) and G = O (n).
(b) Show that for x ∈ Sn and g ∈ π−1 (x) , we have g|Rn : Rn ∼= x⊥ = TxS

n is an
isometry. This shows that π : O (n+ 1)→ Sn may be regarded as the orthonormal
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frame bundle π : F (Sn)→ Sn.
(c) Noting that any vector in Tg (F (Sn)) = Tg (O (n+ 1)) is of the form gA for
some A ∈ o (n+ 1) =

{
A ∈ gl (n+ 1,R) : AT = −A

}
, show that the canonical 1-

form ϕ ∈ Ω
1

(F (Sn) ,Rn) is given by

ϕ (gA) = Aen+1

Note that A ∈ o (n+ 1)⇒ Aen+1 · en+1 = 0⇒ Aen+1 ∈ Rn.
(d) Show that

o (n+ 1) = o (n)⊕m, where

m := {A ∈ o (n+ 1) : Aen+1 · en+1 = 0} ∼= Rn,

and where the isomorphism m ∼= Rn is defined by A 7→ Aen+1, with inverse α :
Rn → m given by

α (x) (y) := 〈en+1, y〉x− 〈x, y〉 en+1 for x, y ∈ Rn.

Also verify that adgm = gmg−1 = m, and for all x, y ∈ Rn

[α (x) , α (y)] (en+1) = 0 so that [α (x) , α (y)] ∈ o (n) , while

[α (x) , α (y)] (z) = 〈x, z〉 y − 〈y, z〉x for x, y, z ∈ Rn.

(e) According to Exercise 16.5 (p. 368) with G = O (n+ 1) and G = O (n), the
o (n)-valued 1-form

ω := πo(n) ◦ ω ∈ Ω1 (O (n+ 1) , o (n)) (where ω (gA) := A)

is a connection 1-form for π : O (n+ 1) → O (n+ 1) /O (n) or π : F (Sn) → Sn.
Show that ω is the Levi-Civita connection for Sn (i.e., Dωϕ = 0). For this it is best
to evaluate Dωϕ on the pair horizontal vector fields g 7→ gα (v) and g 7→ gα (w) for
some v, w ∈ Rn.

(f) For X ∈ TxS
n = x⊥ ⊆ Rn+1, show that the horizontal lift X̃g of X at g ∈

O (n+ 1) = FSn is gα
(
g−1X

)
. Then, using the formula Ωω

(
Ã, B̃

)
= πg ([A,B])

of Exercise 16.7 (p. 370) and Part (d) above, show that for X,Y, Z ∈ TxSn,

R (X,Y ) (Z) := gΩωg

(
X̃, Ỹ

)(
ϕg

(
Z̃
))

= 〈X,Z〉Y − 〈Y,Z〉X,

so that (16.52) holds.

Remark 16.41. Note that under a dialation of the metric, say h 7→ ch for some
c > 0, the Levi-Civita connection ∇ does not change, as is apparent from (16.48)
and (16.47). Hence by virtue of (16.36), the curvature Ωω ∈ Ω2 (EndTM) does
not change However, the curvature tensor R (W,Z,X, Y ) := h

(
Ωθ (X,Y ) (Z) ,W

)
changes by a factor of c, because of the involvement of the metric. Moreover, due to
the factor of c2 in the denominator of (16.51), the sectional curvatures then change
by a factor of c−1. Thus, a sphere of radius r (whose metric tensor is c = r2 times
that of the unit sphere) sectional curvatures all equal to r−2, which is the Gaussian
curvature of all its great 2-spheres.
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Proposition 16.43 below implies (by linearity) that R is uniquely determined at
a point x by its sectional curvatures at x, but first we need to derive the so-called
First Bianchi Identity. Using the fact that θ is torsion-free and (16.13), we obtain

0 = DθΦ = Dθ
(
Dθϕ

)
= Ωθ ∧ ϕ,

Regarding Ωθ ∈ Ω2 (M, so (TM)) and ϕ = Id ∈ Ω1 (M,End (TM)), we then have

0 =
(
Ωθ ∧ ϕ

)
(X,Y, Z) = 1

3

(
Ωθ (X,Y ) (Z) + Ωθ (Z,X) (Y ) + Ωθ (Y, Z) (X)

)
Taking the h inner product with W yields the First Bianchi Identity, namely

(16.53) R (W,Z,X, Y ) +R (W,Y,Z,X) +R (W,X, Y, Z) = 0.

Exercise 16.42. From the antisymmetry of R (W,Z,X, Y ) in (W,Z) and in
(X,Y ) and the First Bianchi Identity identity (16.53), obtain the identity

(16.54) R (W,Z,X, Y ) = R (X,Y,W,Z) .

[Hint. Add the equations (each a First Bianchi Identity)

R (W,Z,X, Y ) +R (W,Y,Z,X) +R (W,X, Y, Z) = 0
R (Y,W,Z,X) +R (Y,X,W,Z) +R (Y, Z,X,W ) = 0
−R (X,Y,W,Z)−R (X,Z, Y,W )−R (X,W,Z, Y ) = 0
−R (Z,X, Y,W )−R (Z,W,X, Y )−R (Z, Y,W,X) = 0.

and use the above antisymmetry.]

Proposition 16.43. If R (X,Y,X, Y ) = 0 for all X,Y ∈ TxM , then R = 0
at x.

Proof. We know that R (W,X, Y, Z) is antisymmetric in (W,X) and in (Y,Z).
Hence, if we knew that R (W,X, Y, Z) is antisymmetric in any other pair, say
(W,Y ), then it would be antisymmetric in all pairs; e.g., for (X,Y ),

R (W,X, Y, Z) = −R (X,W, Y, Z) = R (Y,W,X,Z) = −R (W,Y,X,Z) .

The First Bianchi Identity would then yield the desired result

0 = R (W,X, Y, Z) +R (W,Y,Z,X) +R (W,Z,X, Y )

= R (W,X, Y, Z)−R (W,X,Z, Y )−R (W,X,Z, Y )

= R (W,X, Y, Z) +R (W,X, Y, Z) +R (W,X, Y, Z)

= 3R (W,X, Y, Z) .

Thus, it remains to prove R (Y,X,W,Z) = −R (W,X, Y, Z). By assumption,

0 = R (W,X + Z,W,X + Z)

= R (W,X,W,X) +R (W,X,W,Z) +R (W,Z,W,X) +R (W,Z,W,Z)

= R (W,X,W,Z) +R (W,Z,W,X)

= 2R (W,X,W,Z) by (16.54).

Then, as required,

0 = R (Y +W,X, Y +W,Z)

= R (Y,X, Y, Z) +R (W,X, Y, Z) +R (Y,X,W,Z) +R (W,X,W,Z)

= R (W,X, Y, Z) +R (Y,X,W,Z) .

�
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The general Bianchi Identity of (16.12), yields Dθ
(
Ωθ
)

= 0 which in the context
of Levi-Civita connections is called the Second Bianchi Identity. In order to write
this identity in terms of R, it is convenient to introduce the notion of the standard
horizontal vector field w on FM associated to w ∈ Rn

Definition 16.44. Given w ∈ Rn, the standard horizontal vector field w
on FM associated to w assigns to each u ∈ FM the unique vector wu ∈ TuFM ,
such that θ (wu) = 0 and ϕ (wu) = w.

A standard horizontal vector field w is not Rg∗ invariant, since

(16.55) ϕ (Rg∗wu) = g−1ϕ (wu) = g−1w ⇒ Rg∗wu =
(
g−1w

)
ug
,

and so w is not a horizontal lift. One can also define w on LM relative to a given
linear connection ω on LM .

For x, y, z ∈ Rn, we let x, y, z be the associated standard horizontal vector
fields. Now Dθϕ = 0 implies (using the fact that ϕ (y) = y is constant) that

(16.56) 0 =
(
Dθϕ

)
(x, y) = x [ϕ (y)]− y [ϕ (x)]− ϕ ([x, y]) = ϕ ([x, y]) ,

In other words, the Lie bracket [x, y] is a vertical vector field. Indeed, from

Ωθ (x, y) =
(
Dθθ

)
(x, y) = dθ (x, y)

= x [θ (y)]− y [θ (x)]− θ ([x, y]) = −θ ([x, y]) ,(16.57)

we see that the vertical part of [x, y] is −Ωθ (x, y). Using (16.56), we have

0 = 1
2D

θ
(
Ωθ
)

(x, y, z) = 1
2dΩθ (x, y, z)

= x
[
Ωθ (y, z)

]
+ y

[
Ωθ (z, x)

]
+ z

[
Ωθ (x, y)

]
+ Ωθ ([x, y] , z) + Ωθ ([z, x] , y) + Ωθ ([y, z] , x)

= x
[
Ωθ (y, z)

]
+ y

[
Ωθ (z, x)

]
+ z

[
Ωθ (x, y)

]
= d

(
Ωθ (y, z)

)
(x) + d

(
Ωθ (z, x)

)
(y) + d

(
Ωθ (x, y)

)
(z) .(16.58)

We can identify R ∈ C∞
(
M,⊗4 (TM)

∗)
with R ∈ Ω0

(
FM,⊗4Rn∗

)
defined, for

u ∈ FM , by

R (u) (w, z, x, y) =
(
Ωθu (x, y) (z)

)
· w,

Since(
DθR

)
(v) (w, z, x, y) = ((dR) (v)) (w, z, x, y) =

(
d
(
Ωθ (x, y)

)
(v) (z)

)
· w,

we see from (16.58) that

(16.59)
(
DθR

)
(x) (w, v, y, z) +

(
DθR

)
(y) (w, v, z, x) +

(
DθR

)
(z) (w, v, x, y) = 0.

In terms of R this identity (the Second Bianchi Identity) is typically written as

(16.60) (∇XR) (W,V, Y, Z) + (∇YR) (W,V,Z,X) + (∇ZR) (W,V,X, Y ) = 0.

Exercise 16.45. A C∞ Riemannian manifold M with metric h has constant
sectional curvaure at a point x if all of the 2-planes Π in TxM have the same
sectional curvature (automatic if dimM = 2.) Use (16.60) to show that if dimM ≥
3, M is connected, and M has constant sectional curvature K (x) at each x ∈
M , then in fact K (x) is independent of x. This is known as Schur’s Theorem.
[Hint. First use Proposition 16.43 to deduce that at x ∈ M R (W,Z,X, Y ) =
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K (x) (h (X,Z)h (Y,W )− h (Y, Z)h (X,W )). Then apply (16.60), and choose W =
Z and V = Y with X,Y, Z orthogonal.]

Definition 16.46. The Ricci curvature of h is the contraction (trace) of R
in the first and third slots, namely for an orthonormal basis E1, . . . , En of TxM
and X,Y ∈ TxM,

(16.61) Ric (X,Y ) :=

n∑
i=1

R (Ei, X,Ei, Y ) =

n∑
i=1

R (Ei, Y, Ei, X) = Ric (Y,X) ,

where we have used (16.54) to deduce that Ric is a symmetric 2-tensor. The scalar
curvature S is the contraction of Ric, namely

S =

n∑
i=1

Ric (Ei, Ei) .

Exercise 16.47. The Einstein tensor of h is defined to be Ric − 1
2Sh. By

contracting (16.60) in the pairs (W,Y ) and (V,Z). Show that

0 = div
(
Ric− 1

2Sh
)

:= ∇Ei
(
Ric− 1

2Sh
)

(Ei, ·) ∈ Ω1 (M) .

When h has signature (3, 1) (e.g, when (M,h) is a space-time), the Einstein equation
of general relativity is Ric− 1

2h = −8πK
c2 T (see (15.13)), where T is the symmetric

stress-energy-momentum tensor which is known to be divergence-free by conserva-
tion of energy and momentum. The left side Ric− 1

2h of Einstein’s equation is the
most obvious geometric candidate for a divergence-free symmetric tensor.

We will need to study the abstract spaceR (Rn) of all possible curvature tensors
on Rn, defined as follows. Let e1, . . . , en be the standard basis of Rn. For R ∈
⊗4 (Rn)

∗
, let Rhijk := R (eh, ei, ej , ek). We define R (Rn) to be the set of all

R ∈ ⊗4 (Rn)
∗
, such that

(16.62)
(A) Rhijk = −Rihjk = Rihkj
(B) Rhijk +Rhkij +Rhjki = 0.

Thus, R (Rn) consists of those R ∈ ⊗4 (Rn)
∗

antisymmetric in the first pair and
the last pair of indices, and which satisfy the First Bianchi Identity. We have seen
that Rhijk = Rjkhi then follows. Hence, R (Rn) can be regarded as the subspace of
the vector space S

(
Λ2 (Rn)

)
of symmetric linear endomorphisms of Λ2 (Rn) which

satisfy Condition B in (16.62). Since Condition B is automatic in S
(
Λ2 (Rn)

)
except when h, i, j,and k are distinct,

dim (R (Rn)) = dim
(
S
(
Λ2 (Rn)

))
−
(
n
4

)
= 1

2
n(n−1)

2

(
n(n−1)

2 + 1
)
−
(
n
4

)
= 1

12n
2
(
n2 − 1

)
.

Let S (Rn) be the space of symmetric bilinear forms on Rn. There is a linear map,
which we call the Ricci map,

r : R (Rn)→ S (Rn) given by r (R) :=

n∑
h=1

Rhihk,
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and a scalar map

s : R (Rn)→ R given by s (R) := Tr (R) :=

n∑
i=1

r (R)ii =

n∑
h,i=1

Rhihi .

Note that Ker r ⊆ Ker s, so that Ker s =
(

Ker s ∩ (Ker r)
⊥
)
⊕ Ker r. Thus, we

have a decomposition

(16.63) R (Rn) = R1 ⊕R2 ⊕R3 := (Ker s)
⊥ ⊕

(
Ker s ∩ (Ker r)

⊥
)
⊕Ker r.

The tensor representation O(n)→ GL (R (Rn)) is given for g ∈O(n) by

(g ·R) (v1, . . . , v4) := R
(
g−1v1, . . . , g

−1v4

)
.

and the representation O(n) → GL (S (Rn)) is defined similarly. Since the map r
is O(n)-invariant and s is O(n)-equivariant (i.e., g · s (R) = s (g ·R) , for g ∈O(n)),
(16.63) is a decomposition of R (Rn) into subspaces which are O(n)-invariant. The
subspace R1,R2 and R3 are actually irreducible, since R (Rn) is irreducible as a
GL (n,Rn)-module corresponding to the Young symmetrizer diagram

(16.64)
1 3
2 4

and r and s are the only independent contractions in R (Rn) (see [We46, 153ff]).
This symmetrizer takes a tensor in ⊗4 (Rn)

∗
and symmetrizes it in the indices in

positions 1 and 3 (the top row of the diagram), and in positions 2 and 4 (the bottom
row of the diagram). Then the result is antisymmetrized in the indices in positions 1
and 2 (the first column of the diagram) and in positions 3 and 4 (the second column
of the diagram). In order to determine the R1, R2, R3 components of R ∈ R (Rn),
we introduce a bilinear, symmetric map (the Kulkarni-Nomizu product, up to a
constant factor)

∨ : S2 (Rn)× S2 (Rn)→ R (Rn)

say ∨ (P,Q) := P ∨Q, where

(16.65) (P ∨Q)hijk := 1
2 (PhjQik − PijQhk + PikQhj − PhkQij) .

Note that this is simply twice the result of applying the diagram (16.64) to P ⊗Q.

Exercise 16.48. Check that P ∨ Q ∈ R (Rn);i.e., verify conditions (A) and
(B) in (16.62).

Moreover, if I denotes the usual dot product on Rn (i.e., Iij = δij =Kronecker
delta), then

(I ∨Q)hijk = 1
2 (δhjQik − δijQhk + δikQhj − δhkQij) ,

r (I ∨Q)ik = 1
2 (nQik −Qik + δikTr (Q)−Qik)

= 1
2 ((n− 2)Qik + Tr (Q) δik) .

Hence,

r (I ∨Q) = 1
2 ((n− 2)Q+ Tr (Q) I) ,(16.66)

s (I ∨Q) = (n− 1)Tr (Q) ,(16.67)
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and in particular,

r (I ∨ I) = 1
2 ((n− 2) I + nI) = (n− 1) I, and(16.68)

s (I ∨ I) = (n− 1)n.(16.69)

Proposition 16.49. The adjoint r∗ of r : R (Rn)→ S (Rn) is 1
2I∨ : S (Rn)→

R (Rn) ; i.e., r∗ (Q) = 2I ∨Q, in the sense that for R ∈ R (Rn) and Q ∈ S (Rn),

〈r (R) , Q〉 =
〈
R, 1

2I ∨Q
〉
.

For n > 2, I∨ : S (Rn) → R1 ⊕ R2 is an isomorphism of vector spaces. More
precisely, if

S0 (Rn) := {P ∈ S (Rn) : Tr (P ) = 0} ,
then

I∨ : S0 (Rn)
⊥ ⊕ S0 (Rn)→ R1 ⊕R2

respects the summands, and for P,Q ∈ S0 (Rn),

(16.70) 〈I ∨ P, I ∨Q〉 = (n− 2) 〈P,Q〉 .

Proof. For R ∈ R (Rn) and Q ∈ S (Rn), we have (summing over repeated
indices),

〈R, I ∨Q〉 = Rhijk (I ∨Q)hijk

= 1
2Rhijk (δhjQik − δijQhk + δikQhj − δhkQij)

= 1
2

(
r (R)ikQik + r (R)hkQhk + r (R)hj Qhj + r (R)ij Qij

)
= 2r (R)ikQik = 〈2r (R) , Q〉 .

This shows that r∗ (Q) = 1
2I ∨ Q. Also, 〈R, I ∨ I〉 = 〈2r (R) , I〉 = 2s (R) , which

shows that Ker (s)
⊥

is spanned by I ∨ I. Since the image of r∗ is (Ker r)
⊥

, the

mapping I∨ : S (Rn)→ R (Rn) is onto (Ker r)
⊥

= R1 ⊕R2. Moreover, for P,Q ∈
S (Rn),

〈I ∨ P, I ∨Q〉 = 〈2r (I ∨ P ) , Q〉 = 〈((n− 2)P + Tr (P ) I) , Q〉
= (n− 2) 〈P,Q〉+ Tr (P )Tr (Q) .(16.71)

In particular, (16.70) holds for P,Q ∈ S0 (Rn), and

(16.72) |I ∨Q|2 = (n− 2) |Q|2 + Tr (Q)
2
,

which shows that I∨ : S (Rn)→ R (Rn) is injective for n 6= 2.Note that (I∨) (S0 (Rn)) =
R2, since

I ∨Q ∈ R2 ⇔ 0 = s (I ∨Q) = Tr (r (I ∨Q)) = (n− 1)Tr (Q) .

Also, as S0 (Rn)
⊥

is spanned by I, (I∨)
(
S0 (Rn)

⊥
)

= R1 by (16.68). �

For R ∈ R (Rn), suppose that according to the decomposition (16.63)

R = R1 +R2 +R3.

Then R1 is the projection of R onto Ker (s), namely

R1 := 〈R,I∨I〉
‖I∨I‖2 (I ∨ I) = s(R)

n(n−1) (I ∨ I) ,
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where (16.71) is used to compute ‖I ∨ I‖2 = (n− 2)n + n2 = 2n (n− 1). For
n = 2, dim

(
R
(
R2
))

= 1, and hence R = R1 = 1
2s (R) (I ∨ I), and R2 = R3 = 0.

Thus, we now assume n > 2. A candidate for R2 is obtained as follows. Note that

I ∨ r (R) = 2r∗ (r (R)) ∈ (Ker r)
⊥

, and subtracting off the (Ker s)
⊥

component, we

get an element of Ker s ∩ (Ker r)
⊥

= R2, namely (n− 2) 〈P,Q〉+ Tr (P )Tr (Q)

I ∨ r (R)− 〈I∨r(R),I∨I〉
|I∨I|2 (I ∨ I) = I ∨

(
r (R)− (n−2)s(R)+ns(R)

n(n−1) I
)

= I ∨
(
r (R)− 1

ns (R) I
)
.

The operator A : R (Rn)→ R2, given by

A (R) := I ∨
(
r (R)− 1

ns (R) I
)

is not quite a projection onto Ker s ∩ (Ker r)
⊥

, but rather note that for R ∈ R2,
say R = I ∨Q with Tr (Q) = 0, we have (using (16.66) and (16.67))

A (R) = A (I ∨Q) = I ∨
(
r (I ∨Q)− 1

ns (I ∨Q) I
)

= 1
2 (n− 2) (I ∨Q) .

Hence for n > 2, 2
n−2A|R2

is the identity and A|(R1⊕R3) = 0, since clearly A|R3
=

A|Ker r = 0 and

A (I ∨ I) = I ∨
(
r (I ∨ I)− 1

ns (I ∨ I) I
)

= I ∨
(
(n− 1) I − 1

n (n− 1)nI
)

= 0.

Thus, 2
n−2A : R (Rn)→ R2 is orthogonal projection and

R2 = 2
n−2A (R) = 2

n−2I ∨
(
r (R)− 1

ns (R) I
)
.

In summary, we have

Proposition 16.50. For n = 2, R = R1 = s (R) (I ∨ I) , while for n > 2,
R = R1 +R2 +R3, where

R1 = s(R)
n(n−1) (I ∨ I) ∈ R1 = (Ker s)

⊥

R2 = 2
n−2I ∨

(
r (R)− 1

ns (R) I
)
∈ R2 = Ker s ∩ (Ker r)

⊥

R3 = R−R1 −R2 ∈ Ker r.

The parts R1, R2 and R3 have names:

R1 is the constant curvature part of R

R2 is the traceless Ricci part of R

R3 (usually denoted W ) is the Weyl part of R.(16.73)

R1 gets its name as follows. For R of the form s(R)
n(n−1) (I ∨ I) , we have (from (16.65))

that for independent vectors X,Y ∈ Rn with Π := span (X,Y ),

R (X,Y,X, Y ) = s(R)
n(n−1) (I ∨ I) (X,Y,X, Y )

= s(R)
n(n−1)

(
(X ·X) (Y · Y )− (X · Y )

2
)
,

so that the sectional curvature (see (16.51, p. 394)) of Π, namely

K (Π) =
R (X,Y,X, Y )

‖X‖2 ‖Y ‖2 − (X · Y )
2 =

s (R)

n (n− 1)
,
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is independent of the plane Π (i.e., K is a constant function on the set of planes).
Note R2 = 2

n−2I ∨
(
r (R)− 1

ns (R) I
)
, is determined by the traceless Ricci tensor

r (R) − 1
ns (R) I, called so since Tr

(
r (R)− 1

ns (R) I
)

= s (R) − s (R) = 0. The
Weyl part of the curvature tensor of a Riemannian manifold M with metric h is
known as the Weyl conformal curvature tensor (or simply Weyl tensor) of (M,h) ,
and is denoted by W . We should mention that each TxM can be isometrically
identified with Rn. Such an identification is unique up to O(n) and the various
spaces R1, R2, R3 are O(n)-invariant, so that the split R = R1 + R2 + R3 can
be made invariantly. Indeed, for the curvature tensor field R, we can replace I in
(16.73) by the metric h to define R1, R2 and R3. Thus,

W = R3 = R−R1 −R2

= R− s(R)
n(n−1) (h ∨ h)− 2

n−2h ∨
(
r (R)− 1

ns (R)h
)

.

Let W# be the (1, 3)-tensor obtained from W by raising the first index, namely(
W#

)i
jkl

= himWmjkl. Then W# has the property that it is invariant under a

conformal change of metric, say h 7→ e2σh for some σ ∈ C∞ (M). If (Rσ)
#σ is the

(1, 3) version of the Riemann curvature tensor of e2σh, then a somewhat lengthy
computation in [Ei] yields

(16.74) R# − (Rσ)
#σ = |dσ|2 (h ∨ h)

#
+ 2 (σ̃ ∨ h)

#
,

where σ̃ := ∇ (dσ) − dσ ⊗ dσ is a symmetric 2-tensor. The 2-tensor ∇ (dσ) is the
covariant derivative of dσ with respect to the Levi-Civita connection θ of h, and it is
known as the Hessian of σ. The symmetry of ∇ (dσ) is due to fact that θ is torsion-
free. Since the right side of (16.74) has Weyl part 0, the (1, 3)-version of the Weyl
tensor is unchanged. Also in [Ei] it is shown that if W = 0 and dim (M) ≥ 4, then
about each point x ∈ M , there is a neighborhood U and a function σ ∈ C∞ (U),
such that the curvature tensor Rσ of e2σh is 0 (i.e., (M,h) is conformally flat). The
result (16.74) shows that W = 0 is necessary in order that (M,h) be conformally
flat. If dim (M) = 3, then W = 0 is automatic, since

6 =
1

12

(
32
) (

32 − 1
)

= dim
(
R
(
R3
))

= dim
(
R1

(
R3
)
⊕R2

(
R3
))

Thus, for dim (M) = 3, R is determined by the Ricci tensor. However for dim (M) =
3, W = 0 does not imply that (M,h) is conformally flat. For dim (M) = 2, W = 0
is again automatic, but conformal flatness does not follow from W = 0. Instead,
one proves conformal flatness (i.e., the existence of isothermal parameters) by other
means.

We will focus on oriented Riemannian 4-manifolds (M,h). First however, in
any dimension, due of the antisymmetry of R (W,Z,X, Y ) in (X,Y ) and in (W,Z),
we can view R as a section of End

(
Λ2 (TM∗)

)
, or an operator sending 2-forms to

2-forms. This operator is called the curvature operator. In terms of a local frame

field, the curvature operator applied to a 2-form α yields the 2-form R̂ (α) defined
by

(16.75) R̂ (α)ij := 1
2Rijklα

kl,

where αkl = hkphlqαpq. Note that for a metric of constant sectional curvature 1, R̂

is the identity. The symmetry R (W,Z,X, Y ) = R (X,Y,W,Z) implies that R̂ is a
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symmetric endomorphisms of Λ2 (TM∗), since

h(R̂ (α) , β) = 1
4Rijklα

klβij = 1
4Rklijα

klβij = h(α, R̂ (β)).

For oriented Riemannian 4-manifolds, we have another automorphism of Λ2 (TM∗),
namely the Hodge star ∗ : Λ2 (TM∗) → Λ4−2 (TM∗). While the decomposition,
R (Rn) = R1 ⊕R2 ⊕R3 of (16.63) consists of O(n)-irreducible subspaces, we now
show that, for n = 4, R3 is not SO (4)-irreducible. Recall that the Hodge star ∗
satisfies ∗2 = Id on Λ2

(
R4∗), and we have Λ2

(
R4∗) = Λ2

+ ⊕ Λ2
−, where

Λ2
+ := (1 + ∗)

(
Λ2
(
R4∗)) and Λ2

− = (1− ∗)
(
Λ2
(
R4∗))

are the self-dual and anti-self-dual subspaces (±1 eigenspaces of ∗). Relative to the
standard basis e1, e2, e3, e4 of R4∗, a basis of Λ2

± is

e2 ∧ e3 ± e1 ∧ e4, e3 ∧ e1 ± e2 ∧ e4, e1 ∧ e2 ± e3 ∧ e4.

We can write R̂ and ∗ in block form relative to the decomposition Λ2
(
R4∗) =

Λ2
+ ⊕ Λ2

−, say

(16.76) R̂ =

[
A B
BT C

]
, ∗ =

[
I 0
0 −I

]
,

where A = AT and C = CT since R̂ is symmetric. We know that dimR
(
R4
)

=
1
1242

(
42 − 1

)
= 20, but the dimension of the space of all 6× 6 symmetric matrices

is 6 (6 + 1) /2 = 21. The discrepancy is due to the fact that ∗ is orthogonal to
R
(
R4
)

in the space S
(
Λ2
)

of all symmetric endomorphisms of Λ2
(
R4∗) due to the

Bianchi Identity, namely for R ∈ R
(
R4
)

(16.77) 0 = εijkl (Rijkl +Riljk +Riklj) = 3εijklRijkl = 3 〈∗, R〉 ,

where we recall from (16.19) that (∗α)ij = 1
2ε
ijklαkl. Thus,

(16.78) R
(
R4
) ∼= S ′ (Λ2

)
:= ∗⊥ :=

{
S ∈ S

(
Λ2
)

: 〈S, ∗〉 = 0
}
.

By (16.76) and (16.77), we have 0 = 〈∗, R〉 = Tr (A) − Tr (C), while Tr (A) +

Tr (C) = Tr (R) = 1
2R

ij
ij = 1

2s (R). Hence, Tr (A) = Tr (C) = 1
4s (R), and

defining Ã := A− 1
3Tr (A) I and C̃ := C − 1

3Tr (C) I, we have

(16.79) R =
s (R)

12

[
I 0
0 I

]
+

[
0 B
BT 0

]
+

[
Ã 0
0 0

]
+

[
0 0

0 C̃

]
.

As s (R) , B, and (traceless symmetric) Ã and C̃ vary independently, each of the
summands in (16.79) varies over a subspace of R

(
R4
)
, say C1, C2, C3, and C4, from

left to right. Note that

C1 =
{
α Id ∈ S

(
Λ2
)

: α ∈ R
}
,

C2 =
{
R ∈ S

(
Λ2
)

: R ◦ ∗ = − ∗ ◦R
}
,

C3 =
{
R ∈ S

(
Λ2
)

: 〈∗, R〉 = 0, R ◦ ∗ = ∗ ◦R = R
}

and
C4 =

{
R ∈ S

(
Λ2
)

: 〈∗, R〉 = 0, R ◦ ∗ = ∗ ◦R = −R
}
.

Thus, as ∗ is SO (4)-invariant, each of Ci is an SO (4)-invariant subspace for the
tensor representation SO (4) → O

(
S
(
Λ2
))

. For Proposition 16.52 below, we will
use the following
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Lemma 16.51. Let r : O (n) → O (V ) be an irreducible representation. Then
the restriction r|SO(n) is either irreducible, or V is the direct sum of two irreducible
r|SO(n)-invariant subspaces of equal dimension.

Proof. Suppose that r|SO(n) is not irreducible, and let V ′ be a proper, irre-
ducible r|SO(n)-invariant subspace of V . Let A ∈ O (n) with detA = −1. Then

r (A) (V ′) is r|SO(n)-invariant, since for any B ∈ SO (n) , we have C := A−1BA ∈
SO (n), and

r (B) (r (A) (V ′)) = r (BA) (V ′) = r (AC) (V ′) = r (A) (r (C)V ′) ⊆ r (A) (V ′) .

Since V ′ is irreducible, either r (A) (V ′) ∩ V ′ = V ′ or r (A) (V ′) ∩ V ′ = {0}. If
r (A) (V ′) ∩ V ′ = V ′, then V ′ is a proper r-invariant subspace of V , contrary to
assumption. If r (A) (V ′)∩V ′ = {0}, then V ′+r (A) (V ′) is a direct sum. Moreover,
V ′ + r (A) (V ′) is also r-invariant, since any C ∈ O (n) is of the form BA−1 and
AB′ for some B,B′ ∈ SO (n), and we have

r (C) (V ′ + r (A) (V ′)) = r (C) (V ′) + r (C) r (A) (V ′)

= r (AB′) (V ′) + r
(
BA−1

)
r (A) (V ′)

= r (A) (V ′) + r (B) (V ′) = V ′ + r (A) (V ′) .

Thus, V = V ′ + r (A) (V ′) is a direct sum of two r|SO(n)-invariant subspaces of
equal dimension. It remains to show that r (A) (V ′) is r|SO(n)-irreducible. If W is
a proper, irreducible r|SO(n)-invariant subspace of r (A) (V ′), then (contrary to the

r|SO(n)-irreducibility of V ′) r (A)
−1

(W ) is a proper, r|SO(n)-invariant subspace of

V ′, since for any B ∈ SO (n) , BA−1 = A−1B′ for some B′ ∈ SO (n) , and so

r (B)
(
r (A)

−1
(W )

)
= r (A)

−1
(r (B′) (W )) = r (A)

−1
(W ) .

�

Proposition 16.52. With respect to the decomposition (see (16.63))

(16.80) R
(
R4
)

= R1 ⊕R2 ⊕R3 := (Ker s)
⊥ ⊕

(
Ker s ∩ (Ker r)

⊥
)
⊕Ker r,

under the identification R
(
R4
) ∼= S ′ (Λ2

)
of (16.78), we have

C1 ∼= R1 = {constant curvature parts} ,
C2 ∼= R2 = {traceless Ricci parts} and
C3 + C4 ∼= R3 = {Weyl parts} ,

in the terminology of (16.73).

Proof. We know that the Ri are irreducible, O (4)-invariant subspaces of
R
(
R4
)
, with dim (R1) = 1, dim (R2) = dim

(
S0

(
R4
))

= 4 (4 + 1) /2− 1 = 9, and

dim (R3) = dim
(
R
(
R4
))
− 10 = 42

(
42 − 1

)
/12− 10 = 10.

By Lemma 16.51, the odd-dimensional O (4)-irreducible subspaces R1 and R2 re-
main irreducible under SO (4). Since the isomorphism R

(
R4
) ∼= S ′ (Λ2

)
is SO (4)-

equivariant and there are four SO (4)-invariant summands Ci, R3 must split into two
irreducible, SO (4)-invariant summands, each of dimension 5. These are necessarily
C3 and C4, and then clearly C1 ∼= R1 and C2 ∼= R2. �
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We can decompose the Riemann curvature tensor R of an oriented, Riemannian
4-manifold (M,h) as

R = R1 +R2 +W = R1 +R2 +W+ +W−,

where W+ and W− correspond respectively to the C3 and C4 components of the
Weyl tensor W . If W− = 0, then (M,h) is called self-dual, and if W− = 0, then
(M,h) is called anti-self-dual. The terminology is fitting, since considering ∗ and
W± ∈ C∞ (End (Λ (TM∗))), we have ∗ ◦W± = W± ◦ ∗ = ±W±.

6. Bochner-Weitzenböck Formulas

Let π : P → M be a principal G-bundle and let ω be a connection1-form on

P . Suppose that ρ : G → GL (W ) is a representation, and let Ω
k

(P,W ) be the
space of horizontal equivariant forms (see Definition 16.10, p. 371). In this section,
we assume that M is compact, oriented Riemannian n-manifold with metric h.
Let θ be the Levi-Civita connection (see Remark 16.39, p. 389) on the principal
SO (n)-bundle πF : FM →M of oriented, orthonormal frames. Let

P ×f FM := {(p, u) ∈ P × FM : π (p) = πF (u)} .

The group G× SO (n) acts freely on P ×f FM via (p, u) (g1, g2) = (pg1, ug2), and

π ×f πF : P ×f FM →M

is readily verified to be a principal G× SO (n)-bundle, called the fibered product of
P and FM . The subscript f in ×f stands for “fibered” (note that P ×f FM 6=
P × FM). Observe that

π1 : P ×f FM → P and π2 : P ×f FM → FM

given by π1 (p, u) := p and π2 (p, u) := u are principal bundles with groups SO (n)
and G respectively. Note that π∗1ω is a g-valued 1-form on P ×f FM , while π∗2θ is a
so (n)-valued 1-form on P ×f FM . The direct sum π∗1ω⊕π∗2θ is a g⊕ so (n)-valued
1-form on P ×f FM . It is not hard to verify that π∗1ω⊕π∗2θ is a connection 1-form
for π ×f πF : P ×f FM →M . To avoid cumbersome expressions, let us adopt the
notation

(16.81) ω ⊕ θ := π∗1ω ⊕ π∗2θ.

If Rn∗ denotes the dual space of Rn, then we define the space of tensors contravariant
of degree r and covariant of degree s by

T r,s := Rn ⊗ r· · · ⊗ Rn ⊗ Rn∗ ⊗ s· · · ⊗ Rn∗.

and the tensor representation tr,s : SO (n)→ GL (T r,s) is given by

tr,s (A) (v1 ⊗ · · · ⊗ vr ⊗ η1 ⊗ · · · ⊗ ηs)
= Av1 ⊗ · · · ⊗Avr ⊗

(
η1 ◦A−1

)
⊗ · · · ⊗

(
ηs ◦A−1

)
.(16.82)

Then we have a representation ρ⊗ tr,s : G× SO (n)→ GL (W ⊗ T r,s), and we may

consider the spaces Ω
k

(P ×f FM,W ⊗ T r,s) of horizontal, equivariant W ⊗ T r,s-
valued k-forms on P ×f FM . We have the usual isomorphism (see (16.11), p. 373)

(16.83) Ω
k

(P ×f FM,W ⊗ T r,s) ∼= Ωk
(
M, (P ×f FM)×G×SO(n) (W ⊗ T r,s)

)
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between horizontal, equivariant k-forms and k-forms with values in the associated
vector bundle. More significantly for this section is the fact that either of the spaces
in (16.83) can be identified with the subspace of elements of

Ω
0 (
P ×f FM,W ⊗ T r,s+k

) ∼= C∞
(
M, (P ×GW )⊗ T (M)

r,s+k
)

which are antisymmetric in the last k slots. This is accomplished via standard
horizontal vector fields (see Definition 16.44, p. 397). Recall that for w ∈ Rn,
the standard horizontal vector field w is defined on FM . However, we can take the
horizontal lift of w to P ×f FM , relative to the connection π∗1ω on π2 : P ×f FM →
FM, in order to obtain a vector field w̃ on P×fFM . Let us just call w̃ the standard
horizontal vector field on P ×f FM associated to w ∈ Rn, and to avoid notational
complication use the same notation w as we do for w on FM . Note that for
(g,A) ∈ G×O(n), we have

(16.84a) (R)(g,A)∗
(
w(p,u)

)
= (A−1w)(pg,u◦A).

(cf. (16.55), p. 397). Thus, regarding G and O(n) as subgroups of G×O(n), note
that w on P×fFM is G-invariant, and although not SO (n)-invariant, it transforms

“nicely.” For α ∈ Ω
k

(P ×f FM,W ⊗ T r,s), we define α′ ∈ Ω
0 (
P ×f FM,W ⊗ T r,s+k

)
by

α′ (p, u) (η1, . . . , ηr, v1, . . . , vs+k)

:= α(p,u) (η1, . . . , ηr, v1, . . . , vs) (vs+1, . . . , vs+k) ,

where η1, . . . , ηr ∈ Rn∗, v1, . . . , vs+k ∈ Rn, and vs+1, . . . , vs+k are the standard
horizontal vector fields on P ×f FM associated with vs+1, . . . , vs+k. Note that

α′ ∈ Ω
0 (
P ×f FM,W ⊗ T r,s+k

)
, since (using (16.84a))

α′ ((p, u) (g,A)) (η1, . . . , ηr, v1, . . . , vs+k)

= α(pg,u◦A) (η1, . . . , ηr, v1, . . . , vs) (vs+1, . . . , vs+k)

= α(p,u) (η1, . . . , ηr, v1, . . . , vs)
(
R(g,A)∗

(
Avs+1

)
, . . . , R(g,A)∗

(
Avs+k

))
=
(
R∗(g,A)α

)
(p,u)

(η1, . . . , ηr, v1, . . . , vs)
(
Avs+1, . . . , Avs+k

)
= (ρ⊗ tr,s)

(
(g,A)

−1
) (
α(p,u) (η1, . . . , ηr, v1, . . . , vs)

(
Avs+1, . . . , Avs+k

))
= ρ

(
g−1

) (
α(p,u) (η1 ◦A, . . . , ηr ◦A,Av1, . . . , Avs)

) (
Avs+1, . . . , Avs+k

)
= ρ

(
g−1

)
(α′ (p, u) (η1 ◦A, . . . , ηr ◦A,Av1, . . . , Avs+k))

=
(
ρ⊗ tr,s+k

) (
(g,A)

−1
)

(α′ (p, u)) (η1, . . . , ηr, v1, . . . , vs+k) .

In addition to the covariant exterior differentiation operator

(16.85) Dω⊕θ : Ω
k

(P ×f FM,W ⊗ T r,s)→ Ω
k+1

(P ×f FM,W ⊗ T r,s) ,
we also have

∇ω⊕θ := Dω⊕θ : Ω
0 (
P ×f FM,W ⊗ T r,s+k

)
→ Ω

1 (
P ×f FM,W ⊗ T r,s+k

)
.(16.86)

Even though one can regard

Ω
k

(P ×f FM,W ⊗ T r,s) ⊆ Ω
0 (
P ×f FM,W ⊗ T r,s+k

)
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and

Ω
k+1

(P ×f FM,W ⊗ T r,s) ⊆ Ω
0 (
P ×f FM,W ⊗ T r,s+k+1

)
∼= Ω

1 (
P ×f FM,W ⊗ T r,s+k

)
,

the operator in (16.85) is not a restriction of the operator in (16.86) if k > 0.
Hence, we have introduced a different notation, namely ∇ω⊕θ in (16.86). We also
add that it is customary to denote the evaluation of the 1-form ∇ω⊕θα on a vector

X by ∇ω⊕θX α, namely for α ∈ Ω
0 (
P ×f FM,W ⊗ T r,s+k

)
and X ∈ T (P ×f FM),

∇ω⊕θX α :=
(
∇ω⊕θα

)
(X)

Although not equal, Dω⊕θα and ∇ω⊕θα are nevertheless related by

Proposition 16.53. For

α ∈ Ω
k

(P ×f FM,W ⊗ T r,s) ⊆ Ω
0 (
P ×f FM,W ⊗ T r,s+k

)
and x1, . . . , xk+1 standard horizontal vector fields on P ×f FM associated with
x1, . . . , xk+1 ∈ Rn, we have

(16.87)
(
Dω⊕θα

)
(x1, . . . , xk+1) =

k+1∑
i=1

(−1)
i+1 (∇ω⊕θxi

α
)

(x1, . . . , x̂i, . . . , xk+1) .

Proof. Using the fact that [xi, xj ] is vertical (see (16.56)), we compute(
Dω⊕θα

)
(x1, . . . , xk+1) = (dα) (x1, . . . , xk+1)

=

k+1∑
i=1

(−1)
i+1

xi

[
α
(
x1, . . . , x̂i, . . . , xk+1

)]
+

k+1∑
1≤i<j≤k+1

(−1)
i+j

α
(

[xi, xj ] , x1, . . . , x̂i, . . . , x̂j , . . . , xk+1

)

=

k+1∑
i=1

(−1)
i+1

xi

[
α
(
x1, . . . , x̂i, . . . , xk+1

)]
=

k+1∑
i=1

(−1)
i+1

d
(
α
(
x1, . . . , x̂i, . . . , xk+1

))
(xi)

=

k+1∑
i=1

(−1)
i+1

d (α (x1, . . . , x̂i, . . . , xk+1)) (xi)

=

k+1∑
i=1

(−1)
i+1 (∇ω⊕θxi

α
)

(x1, . . . , x̂i, . . . , xk+1) .

�

Contractions of tensor fields are most efficiently displayed in terms of compo-
nents. While one usually thinks that this involves the choice of some coordinate
system or ad hoc choice of basis, one of the advantages of working on the frame bun-
dle (or more generally P ×f FM) is that one can use the standard horizontal vector
fields e1, . . . , en corresponding to the standard basis e1, . . . , en of Rn and standard
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dual basis e1, · · · , en ∈ Rn∗. Thus, there are standard W -valued components of

α ∈ Ω
k

(P ×f FM,W ⊗ T r,s) defined at each (p, u) ∈ P ×f FM by

αi1···irj1···js;q1···qk (p, u) := α(p,u) (eq1 , · · · , eqk)
(
ei1 , · · · , eir , ej1 , · · · , ejs

)
∈W.

(If r = s = 0, we drop the semicolon.) Let ϕ ∈ Ω
1

(FM,Rn) be the canonical
1-form. Note that the components ϕ1, . . . , ϕn of ϕ are R-valued forms vanishing
on vertical vectors. Using π2 : P ×f FM → FM , we can pull back the form ϕ to

a form π∗2 (ϕ) ∈ Ω
m

(P ×f FM,Rn), which we continue to denote by ϕ and whose

components are still denoted by ϕ1, . . . , ϕn. For α ∈ Ω
k

(P ×f FM,W ⊗ T r,s), we
can write

α
(
ei1 , · · · , eir , ej1 , · · · , ejs

)
=

1

k!

∑
q1,...,qk

αi1···irj1···js;q1···qkϕ
q1 ∧ · · · ∧ ϕqk .

Also, for α ∈ Ω
0

(P ×f FM,W ⊗ T r,s), we use the notation

αi1···irj1···js|q :=
(
∇ω⊕θeq

α
)i1···ir
j1···js

=
(
∇ω⊕θα

)i1···ir
j1···js;q

.

Note for any f ∈ C∞ (P ×f FM,W ) , (df)
H

(ei) = df (ei) = ei [f ], from which it
follows that

(16.88) αi1···irj1···js|q = d
(
αi1···irj1···js

)
(ei) = eq

[
αi1···irj1···js

]
.

In terms of this notation, (16.87) can be rewritten as

(16.89)
(
Dω⊕θα

)i1···ir
j1···js;q0···qk

=

k∑
l=0

(−1)
l
αi1···irj1···js;q0···q̂l···qk|ql .

Moreover, if h denotes the Riemannian metric on M , and H ∈ Ω
0 (
P ×f FM,T 0,2

)
is defined by

H (p, u) (v1, v2) := h (u (v1) , u (v2)) ,

then as u : Rn → Tπ(u)M is an isometry,

H (p, u) (ei, ej) = h (u (ei) , u (ej)) = δij .

Thus, the components of H are constant functions. Thus, in view of (16.88), indices
can be raised (or lowered) before or after applying ∇ω⊕θ or Dω⊕θ producing the
same result. We have already found (see Proposition 16.18, p. 377) the formal
adjoint of Dω : Ωm (P ×GW )→ Ωm+1 (P ×GW ) to be δω := − (−1)

nm ∗Dω∗, but
for the purpose of stating and proving the B-W formulas, it is convenient to have a
lifted version of δω defined directly on Ω

m
(P ×f FM,W ) instead of Ωm (P ×GW ).

Since there is a composition of isomorphisms

Ψ : Ωm (M,P ×GW ) ∼= Ω
m

(P,W ) ∼= Ω
m

(P ×f FM,W ) ,

all we really need is the lifted version ∗, say

(16.90) ∗ := Ψ−1 ◦ ∗ ◦Ψ,

in which case the lifted version of δω is given by

(16.91) δω = − (−1)
nm ∗Dω ∗ : Ω

m+1
(P ×f FM,W )→ Ω

m
(P ×f FM,W ) .

For a (ω ⊕ θ)-horizontal subspace H ⊆ T(p,u) (P ×f FM), it is not hard to see that
∗ is simply the usual star operator acting on the restrictions of horizontal forms
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to H, where H is given the metric and orientation which make (π ×f πF )∗ : H →
Tπ(p)M an orientation-preserving isometry. In terms of the components αq1···qm of

α ∈ Ω
m

(P,W ), one can verify that ∗α ∈ Ω
n−m

(P,W ) is given by

(∗α)qm+1···qn =
1

m!
αq1···qmεq1···qmqm+1···qn .

where εq1···qn is antisymmetric in its indices with ε1···n = 1.

Proposition 16.54. For

Dω : Ω
m

(P ×f FM,W )→ Ω
m+1

(P ×f FM,W )

and α ∈ Ω
m

(P ×f FM,W ),

(16.92) (Dωα)q0···qm =
(
Dω⊕θα

)
q0···qm

=

m∑
l=0

(−1)
l
αq0···q̂l···qm|ql .

For δω : Ω
m+1

(P ×f FM,W ) → Ω
m

(P ×f FM,W ) given by (16.91) and β ∈
Ω
m+1

(P ×f FM,W ), we have

(16.93) (δωβ)q1···qm = (− (−1)
nm ∗Dω (∗β))q1···qm = −

m∑
i=1

βiq1···qm|i.

Proof. The equation (16.92) is just a restatement of (16.87) in the special
case T r,s = T 0,0 = R. For (16.93) we compute as follows. From

(∗β)qm+2···qn =
1

(m+ 1)!
βq1···qm+1

ε
q1···qm+1

qm+2···qn

we obtain

Dω (∗β)rm+1···rn =

n∑
l=m+1

(−1)
l−m−1

(∗β)rm+1···r̂l···rn|rl

=
1

(m+ 1)!

n∑
l=m+1

(−1)
l−m−1

(
βq1···qm+1|rl ε

q1···qm+1

rm+1···r̂l···rn

)
.

In the following, we use the identity

εi1···ipkp+1···knεj1···jpkp+1···kn = (n− p)!δi1···ipj1···jp

where the generalized Kronecker delta δ
i1···ip
j1···jp := +1 (or −1), depending on whether

j1 · · · jp is an even (or odd) permutation of i1 · · · ip, and 0 otherwise.
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(n−m− 1)! (m+ 1)!∗Dω (∗β)r1···rm
= Dω (∗β)

rm+1···rn εrm+1···rnr1···rm

=

(
n∑

l=m+1

(−1)
l−m−1

βq1···qm+1|rlε
q1···qm+1rm+1···r̂l···rn

)
εrm+1···rnr1···rm

=

(
n∑

l=m+1

(−1)
m(n−m)

βq1···qm+1|rlε
q1···qm+1rm+1···r̂l···rn

)
εr1···rmrlrm+1···r̂l···rn

= (n−m− 1)! (−1)
mn−m

n∑
l=m+1

β
|rl

q1···qm+1 δ
q1···qm+1
r1···rmrl

= (n−m− 1)! (m+ 1)! (−1)
mn−m

n∑
l=m+1

β
|rl

r1···rmrl

= (n−m− 1)! (m+ 1)! (−1)
mn

n∑
l=m+1

βrlr1···rm|rl ,

and multiplication by − (−1)nm

(n−m−1)!(m+1)! yields (16.93). �

If we regard Ω
k

(P,W ) ∼= Ω
k

(P ×f FM,W ) ⊆ Ω
0 (
P ×f FM,W ⊗ T 0,k

)
, then

we have

∇ω⊕θ : Ω
k

(P,W )→ Ω
1 (
P ×f FM,W ⊗ T 0,k

)
.

We denote the formal adjoint of this map by
(
∇ω⊕θ

)∗
. We then have the so-called

connection Laplacian(
∇ω⊕θ

)∗∇ω⊕θ : Ω
k

(P,W )→ Ω
k

(P,W ) .

Since ∇ω⊕θ is the same as Dω⊕θ on Ω
0 (
P ×f FM,W ⊗ T 0,k

)
, we can use Propo-

sition 16.54 (with m = 0) to obtain

Corollary 16.55. For α ∈ Ω
k

(P,W ) ∼= Ω
k

(P ×f FM,W ) ∼= Ωk (M,P ×GW ) ,
we have ((

∇ω⊕θ
)∗∇ω⊕θα)

i1···ik
= −α j

i1···ik| j

We also have the Hodge Laplacian

∆ω := δωDω +Dωδω : Ω
k

(P ×f FM,W )→ Ω
k

(P ×f FM,W )

which does not depend on the Levi-Civita connection and only depends on the
metric h on M via the Hodge star operator. The next result Bochner-Weitzenböck
formula relates the two Laplacians

(
∇ω⊕θ

)∗∇ω⊕θ and ∆ω. First, there is some
notation. Let

Ωωij = (π∗1Ωω) (ei, ej) ,

where π1 : P ×f FM → P and Ωω is the curvature form of ω. Let

Rijkl := ei ·
(
Ωθ (ek, el) (ej)

)
.
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These are the components of the Riemann curvature tensor R regarded as in

Ω
0 (
FM,T 0,4 (Rn)

)
or Ω

0 (
P ×f FM,T 0,4 (Rn)

)
. The components of the Ricci cur-

vature are then
Rjl := δikRijkl = Rijil.

Theorem 16.56 (Bochner-Weitzenböck Formula). For α ∈ Ω
k

(P,W ), we have

(∆ωα)i1···ik =
((
∇ω⊕θ

)∗∇ω⊕θα)
i1···ik

+

k∑
l=1

(−1)
l
ρ′
(
Ωωilj

) (
αj
i1···îl···ik

)
−

k∑
l=1

(−1)
l
Riljα

j

i1···îl···ik

−
k∑

l 6=m=1

(−1)
l
Rjmimiljα

j

i1···im−1jmim+1···îl···ik.
(16.94)

Proof. Using Proposition 16.54, we have

(δωDωα)i1···ik = − (Dωα)
j
i1···ik|j

= −α j
i1···ik| j −

k∑
l=1

(−1)
l
αj
i1···îl···ik|ilj

and

(Dωδωα)i1···ik =

k∑
l=1

(−1)
l+1

(δωα)i1···îl···ik|il

= −
k∑
l=1

(−1)
l+1

αj
i1···îl···ik|jil

.

Thus,

(∆ωα)i1···ik = −α j
i1···ik| j +

k∑
l=1

(−1)
l
(
αj
i1···îl···ik|jil

− αj
i1···îl···ik|ilj

)
The first term−α j

i1···ik| j =
((
∇ω⊕θ

)∗∇ω⊕θα)
i1···ik

. Regarding α ∈ Ω
0 (
P ×f FM,W ⊗ T 0,k

)
and using (16.92) and (16.13), we have

αj
i1···îl···ik|jil

− αj
i1···îl···ik|ilj

=
(
Dω⊕θ (Dω⊕θα

))j
i1···îl···ik;ilj

=
((
ρ⊗ t0,k

)′ (
Ωω⊕θ

)
(α)
)j
i1···îl···ik;ilj

.

Recall that for w ∈W , β ∈ Λk (Rn∗), g ∈ G and B ∈ SO (n), we have(((
ρ⊗ t0,k

)
(g,A)

)
(w ⊗ β)

)
i1···ik

=
(
B−1

)j1
i1
. . .
(
B−1

)jk
ik
βj1···jkρ (g) (w) .

Thus, for A ∈ g and C ∈ so (n), we have((
ρ⊗ t0,k

)′
(A,C) (w ⊗ β)

)
i1···ik

=
((
ρ′ ⊗ I + I ⊗

(
t0,k
)′)

(A,C) (w ⊗ β)
)
i1···ik

= ρ′ (A) (w)βj1···jk −
(
Cj1i1βj1···jk + . . .+ Cjkikβj1···jk

)
w.
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Hence, ((
ρ⊗ t0,k

)′ (
Ωω⊕θ

)
(α)
)
i0i1···îl···ik;ilj

= ρ′
(
Ωωilj

) (
αi0i1···îl···ik

)
−Rj0i0iljαj0i1···îl···ik

−
∑

m∈{1,...,l̂,...,k}
Rjmimiljαi0i1···im−1jmim+1···îl···ik ,

where in the sum, we do not mean to imply that m < l, only that m 6= l. Thus,
raising i0 and contracting i0 with j, we obtain((

ρ⊗ t0,k
)′ (

Ωω⊕θ
)

(α)
)j
i1···îl···ik;ilj

= ρ′
(
Ωωilj

) (
αj
i1···îl···ik

)
−Rj0ilαj0i1···îl···ik

−
∑

m∈{1,...,l̂,...,k}
Rjmimiljα

j

i1···im−1jmim+1···îl···ik

Finally we obtain

(∆ωα)i1···ik =
((
∇ω⊕θ

)∗∇ω⊕θα)
i1···ik

+

k∑
l=1

(−1)
l
(
αj
i1···îl···ik|jil

− αj
i1···îl···ik|ilj

)
=
((
∇ω⊕θ

)∗∇ω⊕θα)
i1···ik

+

k∑
l=1

(−1)
l
((
ρ⊗ t0,k

)′ (
Ωω⊕θ

)
(α)
)j
i1···îl···ik;ilj

=
((
∇ω⊕θ

)∗∇ω⊕θα)
i1···ik

+

k∑
l=1

(−1)
l

 ρ′
(
Ωωilj

) (
αj
i1···îl···ik

)
−Rj0ilαj0i1···îl···ik

−
∑
m∈{1,...,l̂,...,k}R

jm
imilj

αj
i1···im−1jmim+1···îl···ik


=
((
∇ω⊕θ

)∗∇ω⊕θα)
i1···ik

+

k∑
l=1

(−1)
l
ρ′
(
Ωωilj

) (
αj
i1···îl···ik

)
−

k∑
l=1

(−1)
l
Riljα

j

i1···îl···ik
−

k∑
l 6=m=1

(−1)
l
Rjmimiljα

j

i1···im−1jmim+1···îl···ik
,

as required. �

We consider some special cases.

1. (k = 1) For 1-forms α ∈ Ω
1

(P,W ) ∼= Ω1 (M,P ×GW ), the last term in
(16.94) is absent. Taking the L2 inner product of ∆ωα with α, we then have

(∆ωα, α) =
∥∥∇ω⊕θα∥∥2

+ (Ric (α) , α)− (ρ′ (Ωω)α, α) .

It follows that if Ric − ρ′ (Ωω) ∈End
(
Ω1 (M,P ×GW )

)
is pointwise nonnegative,

but not zero everywhere, then ∆ωα = 0 ⇒ α = 0. In particular, if G is trivial, we
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obtain S. Bochner’s result (see [Boc]) that a compact, Riemannian manifold with
positive Ricci curvature admits no nonzero harmonic 1-form.

2. (k = 2) For α ∈ Ω
2

(P,W ) ∼= Ω
2

(P,W ) ∼= Ω2 (M,P ×GW ) , we get

(∆ωα)i1i2 =
((
∇ω⊕θ

)∗∇ω⊕θα)
i1i2

−
(
ρ′
(
Ωωi1j

) (
αji2

)
− ρ′

(
Ωωi2j

) (
αji1

))
+
(
Ri1jα

j
i2
−Ri2jα

j
i1

)
+
(
Rmi2i1jα

j
m −Rmi1i2jα

j
m

)
.

In terms of the product ∨ (see (16.65), p. 399) and using the hat “∧” for converting
curvature type tensors to operators on 2-forms (see (16.75), p. 402), we have

Ri1jα
j
i2
−Ri2jα

j
i1

= 2
(
(h ∨ Ric)

∧
(α)
)
i1i2

.

Using the first Bianchi identity (16.53) and known symmetries of R,

Rmi2i1jα
j
m −Rmi1i2jα

j
m = Rmi2i1jα

j
m +Rmi1ji2α

j
m

= −Rmji2i1α
j
m = Rmji1i2α

j
m = −Ri1i2jmαjm = −2R̂ (α)i1i2 ,

where R (α) is the image of α under the curvature operator R (see (16.75), p. 402).
Moreover, it is convenient to define [ρ′ (Ωω) , α] via

(16.95) [ρ′ (Ωω) , α]i1i2 := ρ′
(
Ωωi1j

) (
αji2

)
− ρ′

(
Ωωi2j

) (
αji1

)
.

Then (for α ∈ Ω
2

(P,W )), we can write

∆ωα =
(
∇ω⊕θ

)∗∇ω⊕θα− [ρ′ (Ωω) , α] + 2 (h ∨Ric)∧ (α)− 2R̂ (α) .

When n = dimM = 3, note that by Proposition 16.50 (p. 16.50) and the fact
that the Weyl tensor is zero for n = 3,

R = 1
6S (h ∨ h) + 2h ∨

(
Ric− 1

3Sh
)

= h ∨
(
2Ric− 1

2Sh
)

Thus for n = 3,

∆ωα =
(
∇ω⊕θ

)∗∇ω⊕θα− [ρ′ (Ωω) , α] + 2 (h ∨Ric)∧ (α)− 2R̂ (α)

=
(
∇ω⊕θ

)∗∇ω⊕θα− [ρ′ (Ωω) , α] + 2 (h ∨Ric)∧ (α)

− 2
(
h ∨

(
2Ric− 1

2Sh
))∧

(α)

=
(
∇ω⊕θ

)∗∇ω⊕θα− [ρ′ (Ωω) , α]− 2 (h ∨Ric)∧ (α) + Sα.

If n = 4, we have

R = 1
12S (h ∨ h) + h ∨

(
Ric− 1

4Sh
)

+W,

and so

∆ωα =
(
∇ω⊕θ

)∗∇ω⊕θα− [ρ′ (Ωω) , α] + 2 (h ∨Ric)∧ (α)− 2R̂ (α)

=
(
∇ω⊕θ

)∗∇ω⊕θα− [ρ′ (Ωω) , α] + 2 (h ∨Ric)∧ (α)

− 2
(

1
12S (h ∨ h) + h ∨

(
Ric− 1

4Sh
)

+W
)∧

(α)

=
(
∇ω⊕θ

)∗∇ω⊕θα− [ρ′ (Ωω) , α] + 1
3Sα+W (α) .

We have decompositions

α = α+ + α−, Ωω = Ωω+ + Ωω− and W = W+ +W−
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into self-dual and anti-self-dual parts. Under the SO (4)-equivariant isomorphism
so (4) ∼= Λ2

(
R4∗) given by lowering an index, the irreducible, SO (4)-invariant

subspaces Λ+ and Λ−, correspond to irreducible, subspaces, say so+ and so− which
are SO (4)-invariant with respect to the adjoint action. Thus,

(16.96) so (4) ∼= so+ ⊕ so−

with [so (4) , so±] ⊆ so±, and so [so−, so+] ⊆ so−∩so+ = {0} and [so±, so±] ⊆ so±.
It then follows from (16.95) that [ρ′ (Ωω−) , α+] = [ρ′ (Ωω+) , α−] = 0, where the
fact that α is W -valued is irrelevant to the argument. Thus,

∆ωα =
(
∇ω⊕θ

)∗∇ω⊕θα− [ρ′ (Ωω+
)
, α+

]
−
[
ρ′
(
Ωω−

)
, α−

]
+ 1

3Sα+W+
(
α+
)

+W−
(
α−
)
.

The following direct consequence will be useful to us later.

Proposition 16.57. When α ∈ Ω
2

(P,W ) is anti-self-dual (α+ = 0), Ωω is
self-dual (Ωω− = 0) and h is a self-dual metric (i.e., Weyl− = 0), we have

∆ωα =
(
∇ω⊕θ

)∗∇ω⊕θα+ 1
3Sα.

Thus,

(∆ωα, α) =
∥∥∇ω⊕θα∥∥2

+ 1
3 (Sα, α) .

If S ≥ 0 and ∆ωα = 0, then either S = 0 and ∇ω⊕θα = 0, or S 6= 0 and α = 0.

7. Characteristic Classes and Curvature Forms

Let E →M be a C∞ complex, Hermitian vector bundle of complex dimension
m, with Hermitian inner product 〈·, ·〉. For x ∈ M, a (unitary) frame of Ex is a
linear, isometry u : Cm → Ex (i.e., 〈u (z) , u (w)〉 = z1w1 + · · · + zmwm). If u is a
frame and A ∈ U (m), then uA := u ◦A is a frame. The set U (E) consisting of all
frames at all points ofM can be made into a C∞ manifold, such that π : U (E)→M
is a principal U (m)-bundle, namely the bundle of unitary frames of E. Without
difficulty, one can prove that U (E) ×U(m) Cm ∼= E, via [u,w] 7→ u (w), where the
representation is inclusion U (m)→ GL (m,C).

Let ω be a connection 1-form on U (E), which is a 1-form with values in the
Lie algebra u (m) = {A ∈ gl (m,C) : A∗ = −A} of U (m), and with the required
properties of Definition 16.4, p. 368. We will express the Chern classes of E → M
in terms of the curvature Ωω of ω.

We begin by defining functions sk : gl (m,C)→ C by means of

det (A+ tI) =

m∑
k=0

sk (A) tm−k.

Note that sk (A) is a homogeneous polynomial of degree k in the entries of A,
namely

sk (A) =
1

k!

∑
(i),(j)

δj1···jki1···ik a
i1
j1
· · · aikjk ,

where A =
(
aij
)
, (i) := (i1, . . . , ik) ranges over all sequences of k distinct elements

of {1, . . . ,m}, and δj1···jki1···ik = +1 (resp. −1), depending on whether (i) is an even
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(resp. odd) permutation of (j), and δj1···jki1···ik = 0 if {i1, . . . , ik} 6= {j1, . . . , jk}. The
sk are invariant under the adjoint action of GL (m,C) on gl (m,C), in the sense
that sk

(
BAB−1

)
= sk (A) for all A ∈ gl (m,C) and B ∈ GL (m,C), since

det
(
BAB−1 + tI

)
= det

(
B (A+ tI)B−1

)
= det (A+ tI) .

The curvature Ωω ∈ Ω
2

(U (E) , u (m)) can be regarded as a matrix of C-valued

2-forms, say Ωω =
(
Ωij
)
, such that Ωij = −Ω

j

i, and we define

sk (Ωω) :=
1

k!

∑
(i),(j)

δj1···jki1···ik Ωi1j1 ∧ · · · ∧ Ωikjk ∈ Ω2k (U (E) ,C) .

From the fact R∗gΩ
ω = adg−1Ωω for all g ∈ U (m) and the invariance of sk under the

adjoint action, it follows that sk (Ωω) is invariant under R∗g. Since Ωω also vanishes

on vertical vectors, we know that there is a 2k-form, say σk (Ωω) ∈ Ω2k (M,C), on
M such that sk (Ωω) = π∗σk (Ωω). Note that

π∗ (dσk (Ωω)) = d (π∗σk (Ωω)) = d (π∗σk (Ωω))
H

= d (sk (Ωω))
H

=
1

k!

∑
(i),(j)

k∑
p=1

δj1···jki1···ik Ωi1j1 ∧ · · · ∧ (dΩ
ip
jp

)H ∧ · · · ∧ Ωikjk = 0,

since (Ωi j)
H = Ωi j and (dΩ

ip
jp

)H = (DωΩω)
ip
jp

= 0 by the Bianchi identity.

Thus, σk (Ωω) is closed and determines a de Rham cohomology class [σk (Ωω)] ∈
H2k (M,C).

Definition 16.58. The k-th Chern class of the complex, Hermitian vector
bundle E is defined as

ck (E) :=
(
i

2π

)k
[σk (Ωω)] =

[
σk
(
i

2πΩω
)]

The form

ck (E,ω) := σk

(
i

2π
Ωω
)
∈ Ω2k (M,C)

is the k-th Chern form of the complex Hermitian vector bundle E → M for the
connection 1-form ω on U (E).

The factor i in i
2πΩω ensures that σk

(
i

2πΩω
)
∈ Ω2k (M,R), since

iΩ
iq
jq = −iΩiqjq = iΩ

jq
iq
⇒ σk (iΩω) = σk

(
iΩω

)
= σk (iΩω) ,

and so ck (E) ∈ H2k (M,R). The factor of 2π in i
2πΩω is a normalization implying[

σk
(
i

2πΩω
)]
∈ H2k (M,Z). A full proof of this would carry us too far afield.

However, we will show that [σk (Ωω)], and hence ck (E), is independent of the
choice of ω. Indeed, let

α := ω1 − ω0 ∈ Ω
1

(U (E) , u (m)) and ωt := ω0 + tα, 0 ≤ t ≤ 1

Then ωt is a connection with curvature Ωωt = dωt+
1
2 [ωt, ωt]. Let s̃k be the k-linear

symmetric form such that sk (A) = s̃k
(
A, k. . ., A

)
. Note that the invariance of sk

and hence s̃k under the adjoint action yields (at u = 0)

0 = d
du

(
s̃k
(
exp (uB)A1 exp (−uB) , k. . ., exp (uB)Ak exp (−uB)

))
= s̃k ([B,A1] , A2, . . . , Ak) + s̃k (A1, [B,A2] , A3, . . . , Ak)

+ . . .+ s̃k (A1, A2, A3, . . . , [B,Ak])



416 16. GEOMETRIC PRELIMINARIES

Using this and the Bianchi identity dΩωt + [ωt,Ω
ωt ] = 0, we have

1

k

d

dt
sk (Ωωt) = s̃k

(
d
dt (Ωωt) ,Ωωt , k−1. . . ,Ωωt

)
= s̃k

(
dα+ [ωt, α] ,Ωωt , k−1. . . ,Ωωt

)
= s̃k

(
dα,Ωωt , k−1. . . ,Ωωt

)
+ s̃k

(
[ωt, α] ,Ωωt , k−1. . . ,Ωωt

)
= s̃k

(
dα,Ωωt , k−1. . . ,Ωωt

)
− (k − 1) s̃k

(
α, [ωt,Ω

ωt ] ,Ωωt , k−2. . . ,Ωωt
)

= s̃k
(
dα,Ωωt , k−1. . . ,Ωωt

)
+ (k − 1) s̃k

(
α, dΩωt ,Ωωt , k−2. . . ,Ωωt

)
= d

(
s̃k
(
α,Ωωt , k−1. . . ,Ωωt

))
.

Thus,

sk (Ωω1)− sk (Ωω0) = kd

(∫ 1

0

s̃k (α,Ωωt , . . . ,Ωωt) dt

)
.

Since, s̃k (α,Ωωt , . . . ,Ωωt) ∈ Ω
2k

(U (E) ,C) is invariant under Rg∗,∫ 1

0

s̃k (α,Ωωt , . . . ,Ωωt) dt = π∗β,

for some unique form β ∈ Ω2k (M,C), and σk (Ωω1) − σk (Ωω0) = dβ. Hence,
[σk (Ωω0)] = [σk (Ωω1)], as required.

Remark 16.59. Suppose that U (E) is reducible to an SU (m)-bundle, say we
have a subprincipal SU (m)-bundle U (E)0 → M . Then we show that c1 (E) = 0.
Let ω0 be an arbitrary connection 1-form on U (E)0. We can extend the distribution
of horizontal subspaces for ω0 on U (E)0 to all of U (E) by the requiring that the
distribution be Rg∗-invariant for all g ∈ U (m). Let ω be the resulting connection
on U (E). We know that ω0 and Ωω0 are su (m)-valued. While ω is u (m)-valued
and has values outside su (m), we can show that Ωω is su (m)-valued. Indeed,

Ωω|U(E)0
= (dω)

H |U(E)0
= (dω0)

H
= Ωω0 .

Thus, Ωω has values in su (m) on ω-horizontal subspaces at points of U (E)0. Since
su (m) is invariant under the adjoint action of U (m) and R∗gΩ

ω = adg−1Ωω, we
know that Ωω is su (m)-valued throughout U (E). Since s1 (A) = Tr (A) = 0 for
A ∈ su (m), we have c1 (E) = 0, when U (E) is reducible to an SU (m)-bundle.

Once the Chern classes ck (E) are determined, the Chern character ch (E) ∈
H∗ (M,Q) may be defined in terms of the ck (E). Alternatively, we can get ch (E)
directly as follows. For A ∈ u (m) ,

Tr

(
exp

(
t
i

2π
A

))
=

∞∑
k=0

rk (A) tk, for rk (A) :=
1

k!
Tr

((
i

2π
A

)k)
.

As with the sk, the rk are invariant under the adjoint action of U(m) on u (m).
Hence the horizontal form rk (Ωω) is R∗g-invariant and rk (Ωω) = π∗ (ρk (Ωω)) for

some closed form ρk (Ωω) ∈ H2k (M,R) (actually H2k (M,Q) , where Q is the field
of rational numbers) whose class [ρk (Ωω)] is independent of ω. Then

(16.97) ch (E) :=

∞∑
k=0

[ρk (Ωω)] ∈
[ 1
2 dimM]⊕
k=0

H2k (M,Q) .
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Note that 8π2r2 (A) = −Tr
(
A2
)

for A ∈ u (m), and so

(16.98) ch (E)2 = [ρ2 (Ωω)] =
−1

8π2
[Tr (Ωω ∧ Ωω)] ∈ H4 (M,Q) ,

where we have regarded Ωω ∈ Ω2 (M,End (E)) ⊆ Ω
2

(U (E) , u (m)) and composi-
tion of endomorphisms is implicit in the wedge Ωω ∧ Ωω.

Other characteristic classes can be represented by forms. The Euler class of an
oriented Riemannian 2m-manifold is represented by the Gauss-Bonnet form

(16.99) GB
(
Ωθ
)

:=
1

22mπmm!

∑
(i)

εi1···i2mΩθi1i2 ∧ · · · ∧ Ωθi2m−1i2m

where Ωθ is the curvature form of any connection θ (not necessarily Levi-Civita)
on the principal SO (2m)-bundle πF : FM → M of oriented orthonormal frames.
In (16.99), we may regard Ωθ ∈ Ω2 (M,End (TM)) and the components Ωθij are
relative to a locally defined orthonormal frame field. Alternatively, (16.99) may be
regarded as the unique form on M which when pulled back to FM via π∗F is the
form given by the same formula, but where Ωθij = Ωθ (ei, ej), the components of

Ωθ ∈ Ω
2

(FM, so (2m)) relative to the standard, horizontal fields e1, . . . , e2m. The
form (16.99) arises from the homogenous polynomial of degree m on so(2m) known
as the Pfaffian, defined for A ∈ so(2m), by

Pf (A) :=
(−1)

m

2mm!

∑
(i)

εi1···i2mAi1i2 · · ·Ai2m−1i2m .

Thus, GB
(
Ωθ
)

= Pf
(

1
2πΩθ

)
. The Pfaffian is invariant under the adjoint action of

SO (2m) (but not O (2m)). Indeed, for B ∈ O (2m), we have

Pf
(
BAB−1

)
= Pf

(
BABT

)
=

(−1)
m

2mm!

∑
(i)

εi1···i2m (Bi1j1Aj1j2Bi2j2) · · ·
(
Bi2m−1j2m−1

Aj2m−1j2mBi2mj2m
)

=
(−1)

m

2mm!

∑
(i)

εi1···i2mBi1j1Bi2j2 · · ·Bi2m−1j2m−1Bi2mj2mAj1j2 · · ·Aj2m−1j2m

= det (B) Pf (A) .

The Gauss Bonnet Theorem, which is a special case of the Index Theorem, asserts
that the integral of the Gauss-Bonnet form over (compact) M is χ (M).

We will also encounter the Pontryagin classes pk (M) ∈ H4k (M,Z) of M .
These may be defined in terms of the Chern classes of the complexified tangent
bundle TCM := C⊗TM, which can be regarded as the associated bundle FM×SO(n)

Cn where the representation SO (n) → U (n) is just inclusion. Note that FM is
a principal subbundle of the unitary frame bundle U (TCM) of TCM, where the
Hermitian metric H on TCM is given in terms of the complex bilinear extension hC
of the Riemannain metric h via

H (X,Y ) = hC
(
X, Ȳ

)
for X,Y ∈ TCM.

A connection θ on FM determines a unique connection 1-form θc ∈ Ω1 (U (TCM) , u (n)),
such θ = θc|FM . By definition, the Pontryagin class pk (M) ∈ H4k (M,Z) is
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represented by the unique 4k-form σ2k

(
1

2πΩθc
)
∈ Ω4k (M), such that, for πc :

U (TCM)→M ,

pk
(
Ωθ
)

:= πc
∗σ2k

(
1

2πΩθc
)

= s2k

(
1

2πΩθc
)

= (−i)2k
s2k

(
i

2πΩθc
)

= (−1)
k
s2k

(
i

2πΩθc
)

=
1

(2π)
2k

(2k)!

∑
(i),(j)

δj1···j2ki1···i2k Ωθci1j1 ∧ · · · ∧ Ωθci2kj2k .(16.100)

In other words, since c2k (TCM) =
[
σ2k

(
i

2πΩθc
)]

, we have

(16.101) pk (M) = (−1)
k
c2k (TCM) ∈ H4k (M,Z) .

Since Ωθ = Ωθc |FM , it follows that σ2k

(
Ωθc
)

= σ2k

(
Ωθ
)
, where σ2k

(
Ωθ
)

is the
unique 4k-form, such that for π : FM →M ,

π∗σ2k

(
Ωθ
)

= s2k

(
1

2πΩθ
)

=
1

(2π)
2k

(2k)!

∑
(i),(j)

δj1···j2ki1···i2k Ωθi1j1 ∧ · · · ∧ Ωθi2kj2k

Note that Ωθ has values in so (n). For A ∈ so (n) (so that AT = −A), we have
sk
(

1
2πΩθ

)
= 0 for k odd, since

n∑
k=0

sk (A) tn−k = det (A+ tI) = det
(
AT + tI

)
= det (−A+ tI)

= (−1)
n

det (A− tI) = (−1)
n

n∑
k=0

sk (A) (−t)n−k =

n∑
k=0

sk (A) (−1)
k
tn−k.

By the same argument, when E is a real Riemannian vector bundle we have
ck (C⊗ E) = 0 for k odd. For more information on this approach to character-
istic classes, see [KN69] and [MilS].

There are other characteristic classes that will arise in index theorems. Some
of these are defined and manipulated more efficiently through the use of power
series as follows. First note that for A ∈ gl (ν,C) with eigenvalues {λ1, . . . , λν},
there is B ∈ GL (m,C) such that BAB−1 is upper triangular with diagonal entries
λ1, . . . , λν . Then

ν∑
k=0

sk (A) tν−k = det (A+ tI) =

ν∏
j=1

(λj + t) =

ν∑
k=0

σk (λ1, . . . , λν) tν−k,

where σ0 := 1, σ1 :=
∑ν
i=1 λi, and generally

σk (λ1, . . . , λν) :=
∑

1≤i1<···<ik≤ν
λi1 · · ·λik

is the elementary symmetric polynomial of degree k in x1, . . . , xν . We have seen
that each sk (A) (and hence each σk) together with a Hermitian vector bundle
E →M and connection gives rise to a characteristic form or class, namely the k-th
Chern form σk

(
i

2πΩω
)

or class ck (E). Now any polynomial in the σk gives rise

to a corresponding polynomial in the σk
(
i

2πΩω
)

where the multiplication is wedge
product, or a polynomial in the ck (E) where the multiplication is cup product. By
the Fundamental Theorem of Symmetric Polynomials, any symmetric polynomial in
(λ1, . . . , λν) can be expressed uniquely as a polynomial in σ1, . . . , σν . Hence, from a
symmetric polynomial in (λ1, . . . , λν), we can obtain “new” characteristic forms or
classes, which are (however) ultimately polynomials in Chern forms or classes. One
way to manufacture symmetric polynomials forming a symmetric function (e.g., the
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product) of a given power series in each λk, and considering the Taylor polynomials,
as follows. Let b (x) =

∑∞
n=0 bnx

n be a formal power series in the single variable x
with bn ∈ C. We may form the product
(16.102)

b (x1) . . . b (xν) =

∞∑
k=0

∞∑
k1+···+kν=k

βk1,...,kνx
k1
1 · · ·xkνν =

∞∑
k=0

Bk (σ1, . . . , σk) ,

where σj := σj (x1, . . . , xν) for j = 1, . . . , ν. By the Fundamental Theorem of
Elementary Polynomials, the Bk (σ1, . . . , σk) are uniquely determined by b. The
sequence {Bk (σ1, . . . , σk)} is known as the multiplicative sequence determined by
b (x); the ideas here are due to F. Hirzebruch (see [Hi66a]). Given A ∈ gl (ν,C),
and taking {x1, . . . , xν} = {iλ1, . . . , iλν} where {λ1, . . . , λν} is the set of eigenvalues
of A, we obtain a function

A 7→ Bk (A) := Bk (σ1 (iλ1, . . . , iλν) , . . . , σk (iλ1, . . . , iλν))

which (like the set of eigenvalues of A) is invariant under the adjoint action. Note
that if A ∈ u (ν), then the iλj are real. If each σj in Bk (σ1, . . . , σk) is replaced by
the Chern form σk

(
i

2πΩω
)

where Ωω is the curvature form of a connection 1-form
ω on the unitary frame bundle U (E) for a Hermitian vector bundle E →M , then
we obtain a closed 2k-form

Bk (E,ω) := Bk
(
σ1

(
i

2πΩω
)
, . . . , σk

(
i

2πΩω
))
∈ Ω2k (M,C)

which determines a cohomology class, say Bk (E) ∈ H2k (M,C). Hence, for each
formal power series b (x) =

∑
n=0 bnx

n, there is an associated total form and total
class, namely

B (E,ω) := B0 (E,ω) +B1 (E,ω) + · · · ∈ Ω∗ (M,C) , and

B (E) := B0 (E) +B1 (E) + · · · ∈ H∗ (M,C) .

Since there seems to be no official notation to denote the assignments

(b (x) , E, ω) 7→ B (E,ω) ∈ Ω∗ (M,C) and (b (x) , E) 7→ B (E) ∈ H∗ (M,C)

of a characteristic form (or class) to a formal power series and bundle with connec-
tion, let

MF (b (x) , E, ω) := B (E,ω) and MC (b (x) , E) := B (E) ,

where MF stands for “muliplicative form” and MC stands for “muliplicative class”.
We use MFk (b (x) , E, ω) and MCk (b (x) , E) for the homogeneous parts:

MF (b (x) , E, ω) =
∑

k
MFk (b (x) , E, ω) and

MC (b (x) , E) =
∑

k
MCk (b (x) , E) .

For two formal power series b1 (x) and b2 (x), we have

(16.103) MC (b1 (x) b2 (x) , E) = MC (b1 (x) , E) MC (b2 (x) , E) ,

using b1 (x1) b2 (x1) · · · b1 (xν) b2 (xν) = b1 (x1) . . . b1 (xν) b2 (x1) . . . b2 (xν).
Given another Hermitian vector bundle E′ →M of dimension ν′, we may form

the direct sum E ⊕ E′ → M . Connections ω and ω′ on U (E) and U (E′) yield a
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connection ω ⊕ ω′ on U (E ⊕ E′) , with curvature form Ωω⊕ω
′

= Ωω ⊕ Ωω
′
. Note

that for
(
x′′1 . . . , x

′′
ν , x
′′
ν+1, . . . , x

′′
ν+ν′

)
= (x1 . . . , xν , x

′
1, . . . , x

′
ν′), we have

∞∑
k′′=0

Bk′′ (σ
′′
1 , . . . , σ

′′
k′′) = b (x′′1) . . . b (x′′ν) b

(
x′′ν+1

)
. . . b

(
x′′ν+ν′

)
= b (x1) . . . b (xν) b (x′1) . . . b (x′ν′)

=

∞∑
k=0

Bk (σ1, . . . , σk)

∞∑
k′=0

Bk′ (σ
′
1, . . . , σ

′
k) .

Consequently, in the ring H∗ (M,C) we have

(16.104) MC (b (x) , E ⊕ E′) = MC (b (x) , E) MC (b (x) , E′) .

Since the conjugate bundle E is the associated bundle U (E)×U(ν) Cν relative

to the conjugate representation, the curvature form for the conjugate bundle E
is − i

2πΩ
ω

. If A ∈ u (ν), and {x1, . . . , xν} = {iλ1, . . . , iλν} where {λ1, . . . , λν}
is the set of eigenvalues of A, then the eigenvalues of A are {−λ1, . . . ,−λν} and
{−iλ1, . . . ,−iλν} = {−x1, . . . ,−xν}. Thus,

(16.105) MC
(
b (x) , E

)
= MC (b (−x) , E) .

Note that

the total Chern class of E = c (E) = MC (1 + x,E) .

A class which arises in the Hirzebruch-Riemann-Roch Theorem is

the total Todd class of E = Td (E) := MC

(
x

1− e−x
, E

)
∈ H∗ (M,Q) ,

where Q denotes the rationals. For a compact, complex manifold M , Td (TM) [M ]
is the Todd genus of M , which is a kind of holomorphic Euler characteristic of
M . One can compute Td (E) in terms of Chern classes. Indeed, using <<Algebra
‘SymmetricPolynomials‘ in Mathematica, we get (where ck = ck (E))

Td0 (E) = 1, Td1 (E) = 1
2c1, Td2 (E) = 1

12

(
c2 + c21

)
,

Td3 (E) = 1
24c1c2, Td4 (E) = 1

720

(
−c4 + c3c1 + 3c22 + 4c2c

2
1 − c41

)
, . . . .

In treating the case where E is the complexification of a real, even-dimensional
Riemannian bundle F → M (i.e., E = C ⊗ F ), we proceed as follows. If A ∈
so (ν,R), where ν = 2µ is even, then the λj are not only pure imaginary, but they
come in conjugate pairs, so that

(16.106) (x1, . . . , xν) = (iλ1, . . . , iλν) = (y1,−y1, . . . , yµ,−yµ) for yl ∈ R.

Hence it seems more appropriate to express σj (x1, . . . , xν) in terms of σl
(
y2

1 , . . . , y
2
µ

)
.

To this end, note that∑ν

j=1
σj (x1, . . . , xν) =

∏ν

k=1
(1 + xk) =

∏µ

l=1
(1 + yl) (1− yl)

=
∏µ

l=1

(
1− y2

l

)
=
∑µ

l=1
(−1)

l
σl
(
y2

1 , . . . , y
2
µ

)
.

Hence if (16.106) holds, then

σj (x1, . . . , xν) =

{
0 for j odd

(−1)
l
σl
(
y2

1 , . . . , y
2
µ

)
for j = 2l even
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Since pk (M) = (−1)
k
c2k (TCM) (16.101), it makes sense to define the Pontryagin

classes of F by

pk (F ) := (−1)
k
c2k (C⊗ F ) ∈ H4k (M,Z)

This implies that for b (x) even, MC (b (x) ,C⊗ F ) can be obtained by writing

b (x1) . . . b (xν) = b (y1) b (−y1) . . . b (yµ) b (−yµ) = b (y1)
2 · · · b (yµ)

2

=

∞∑
k=0

B̃k
(
σ1

(
y2

1 , . . . , y
2
µ

)
, . . . , σk

(
y2

1 , . . . , y
2
µ

))
,

and then replacing σj
(
y2

1 , . . . , y
2
µ

)
by the j-th Pontryagin class pj (F ) ∈ H4j (M,Z).

Thus, for real, even-dimensional, Riemannian bundles F and b (x) even, we use the
more direct notation

MC
(
b (y)

2
, F
)

:= MC (b (x) ,C⊗ F ) .

There are various special cases arising in index theorems, which we now consider.
For a real, 2µ-dimensional Riemannian bundle F →M , we have

(16.107) the total Â class of F = Â (F ) := MC

(
y/2

sinh (y/2)
, F

)
,

which occurs in the index formula for the Dirac operator and its twists. We have∏ν/2

j=1

yj/2

sinh (yj/2)
=

∞∑
k=0

Âk
(
σ1

(
y2

1 , . . . , y
2
µ

)
, . . . , σk

(
y2

1 , . . . , y
2
µ

))
,

where (with the aid of Mathematica if desired)

Â0 = 1, Â1 (σ1) =
−1

24
σ1, Â2 (σ1, σ2) =

−4σ2 + 7σ2
1

5760

Â3 (σ1, σ2, σ3) =
−16σ3 + 44σ2σ1 − 31σ3

1

967680

Â4 (σ1, . . . , σ3) =
−192σ4 + 512σ3σ1 + 208σ2

2 − 904σ2σ
2
1 + 381σ4

1

464486400
, . . . .(16.108)

To obtain Âk (F ), replace each σj by pj (F ). In connection with the Hirzebruch-
Signature Theorem, we have

the total Hirzebruch L class of F = L (F ) := MC

(
y

tanh y
, F

)
, and

L0 = 1, L1 (σ1) =
1

3
σ1, L2 (σ1, σ2) =

7σ2 − σ2
1

45

L3 (σ1, σ2, σ3) =
62σ3 − 13σ2σ1 − 2σ3

1

945

L4 (σ1, . . . , σ3) =
381σ4 − 71σ3σ1 − 19σ2

2 + 22σ2σ
2
1 − 3σ4

1

14175
, . . . .(16.109)

Suppose that F → M is the realification of complex bundle FC → M (i.e., we
just restrict scalar multiplication for FC to real scalars). If J : F → F is the map
given by scalar multiplication by

√
−1, then there is C-linear extension of J , say

JC : C⊗F → C⊗F . Since J2
C = − Id, we have C⊗F = F 1,0⊕F 0,1, where F 1,0 :=

{V − iJV : V ∈ F} is the +i eigenbundle of the JC and F 0,1 := {V + iJV : V ∈ F}
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is the −i eigenbundle of JC. Note that FC ∼= F 1,0 via V 7→ V − iJV , and FC ∼= F 0,1

via V 7→ V + iJV . Since(
x/2

sinh (x/2)

)2

=
x2(

ex/2 − e−x/2
)2 =

x2

ex/2
(
ex/2 − e−x/2

)
e−x/2

(
ex/2 − e−x/2

)
=

x2

(ex − 1) (1− e−x)
=

x

1− e−x
−x

1− ex
,

it follows from (16.103), (16.105) and (16.104) that

Â (F )
2

= Td (FC) Td
(
FC
)

= Td
(
FC ⊕ FC

)
= Td (C⊗ F ) .

Some characteristic classes are not expressible in terms of MC (b (x) , E) for
some formal power series b (x), but they can be described in a similar way. The
Chern character ch (E) is not MC (ex, E). However, adding (instead of multiplying
as in (16.102)) one obtains

ex1 + · · ·+ exν =

∞∑
k=0

chk (σ1, . . . , σk)

If each σj in chk (σ1, . . . , σk) is replaced by the Chern class cj (E), then we obtain

(16.110) ch (E) = ch0 (E) + ch1 (E) + · · · ∈ H∗ (M,R) .

We compute

ch0 (E) = dimE, ch1 (E) = c1, ch2 (E) = 1
2c

2
1 − c2,

ch3 (E) = 1
6

(
3c3 − 3c2c1 + c31

)
,

ch4 (E) = 1
24

(
−4c4 + 4c3c1 + 2c22 − 4c2c

2
1 + c41

)
, . . . .

While we do not have ch (E ⊕ E′) = ch (E) ch (E′) as in (16.104),

ch (E ⊕ E′) = ch (E) + ch (E′) and ch (E ⊗ E′) = ch (E) ch (E′) .

In terms of curvature forms, the first relation is clear from Ωω⊕ω
′

= Ωω⊕Ωω
′
, while

the second follows from the fact that the curvature form for E ⊗E′ is (Ωω ⊗ Id)⊕(
Id⊗Ωω

′
)

together with

∑ν

k=1

∑ν′

k′=1
exk+x′

k′ =
∑ν

k=1
exk
∑ν′

k′=1
ex
′
k′ .

More generally, one could consider elementary polynomals σk (b (x1) , . . . , b (xν)) for
k other than 1 or ν, although finding uses for such might be a challenge.

The Euler class of a real, oriented Riemannian bundle F of dimension 2µ is
not generally expressible in terms of Pontriagin classes of C ⊗ F . We proceed as
follows. If A ∈ so (2µ,R), then A is SO (2µ)-similar to a matrix of the form

µ⊕
k=1

[
0 −yk
yk 0

]
.
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The eigenvalues λj of A come in pure imaginary conjugate pairs ±iyk, so that

(x1, . . . , xν) := (iλ1, . . . , iλν) = (y1,−y1, . . . , yµ,−yµ) for yl ∈ R, and

Pf (A) :=
(−1)

µ

2µµ!

∑
(i)

εi1···i2µAi1i2 · · ·Ai2µ−1i2µ

= (−1)
µ
A12 · · ·A2µ−1,2µ = (−1)

µ
(−y1) · · · (−yµ) = y1 · · · yµ.

Note that y1 · · · yµ is not a symmetric polynomial in y2
1 , · · · , y2

µ. However, if ω is a
connection on the bundle π : SO (F ) → M of oriented frames of F and Ωω is the
curvature, then

(16.111) π∗χ (F, ω) = (−1)
µ

Pf
(

1
2πΩω

)
for a unique closed, 2µ-form χ (F, ω) ∈ Ω2µ (M,R), the Euler form of E relative to
ω, which by definition represents the Euler class

(16.112) χ (F ) := [χ (F, ω)] ∈ H2µ (M,R) .

In the case F = TM and ω = θ, note that

π∗GB
(
Ωθ
)

= (−1)
m

Pf
(

1
2πΩθ

)
= π∗χ (TM, θ)

⇒ GB
(
Ωθ
)

= χ (TM, θ) .(16.113)

Remark 16.60. We prefer to write χ (TM) as GB (TM). There is a good rea-
son for this. The Gauss-Bonnet-Chern Theorem states that the Euler characteristic
χ (M) of M, defined as the alternating sum of numbers of faces (or Betti numbers)
of M , is given by

χ (M) =

∫
M

GB
(
Ωθ
)

= GB (TM) [M ] .

On the other hand, for a generic characteristic class, say C (TM) ∈ H∗ (M), fre-
quently one defines C (M) to be C (TM) [M ]. The Gauss-Bonnet-Chern Theorem
is not simply a definition, and yet that is exactly what it looks like if one writes
it as χ (M) = χ (TM) [M ]. Thus, we prefer to use GB (TM) in place of χ (TM),
although admittedly changing established notation is a losing battle, no matter how
noble the cause.

Observe that A ∈ so (2µ) is the realification of B = diag (iy1, . . . , iyµ) ∈ su (µ),
and

(16.114) det (iB) = (−1)
µ
y1 · · · yµ = (−1)

µ
Pf (A) .

For a manifold M , J ∈ End (TM) is an almost-complex structure if J2 = −I. If
J exists, then TM becomes a complex vector bundle by defining (a+ ib)X = aX+
bJX and M is an almost-complex manifold. The formula (16.114) will now be
used to show that for a compact, almost-complex, manifold M with dimRM = 2m,
we have cm (TM) = GB (TM) = χ (TM). If h0 is any Riemannian metric on M ,
then h (X,Y ) := h0 (X,Y )+h0 (JX, JY ) is compatible with the complex structure,
say J , on TM (i.e., h (JX, JY ) = h (X,Y )). We then have a Hermitian metric
〈X,Y 〉 := h (X,Y ) + ih (X, JY ) on TM regarded as a complex vector space. Note
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that

〈JX, Y 〉 = h (JX, Y ) + ih (JX, JY ) = h (JX, Y ) + ih (X,Y )

= −h (X,JY ) + ih (X,Y ) = i (h (X,Y ) + ih (X, JY )) = i 〈X,Y 〉
〈X, JY 〉 = h (X, JY ) + ih

(
X, J2Y

)
= h (X, JY )− ih (X,Y )

= −i (h (X,Y ) + ih (X, JY )) = −i 〈X,Y 〉 .

The unitary frame bundle UM := U (TM) (relative to 〈·, ·〉) is then a subbundle
of FM . We may regard FM as the principal bundle UM ×U(m) O (2m) associated
to UM via the inclusion U (m) → O (2m); see 16.19, p.378. If the Levi-Civita
connection for h on FM restricts to a connection, say ω, on UM (i.e., the horizontal
subspaces at points in UM are contained in T (UM)), then M is Kähler (by one
definition). However, if this is not the case, then we can still uniquely extend any
connection ω on UM to a connection, say θ, on FM (see 16.21, 379). If we regard
ω as u (m)-valued, then Ωθ|UM is just the realification of the curvature Ωω. Now,

GB
(
Ωθ
)

=
1

22mπmm!

∑
(i)
εi1···i2mΩθi1i2 ∧ · · · ∧ Ωθi2m−1i2m

=
1

2mm!

(
1

2π

)m∑
(i)
εi1···i2mΩθi1i2 ∧ · · · ∧ Ωθi2m−1i2m

= (−1)
m

Pf
(

1
2πΩθ

)
, and

σm

(
i

2π
Ωω
)

=
1

m!

(
i

2π

)m ∑
(i),(j)

δj1···jmi1···im (Ωω)
i1
j1
∧ · · · ∧ (Ωω)

im
jm

= det
(
i

2πΩω
)
.

Hence, in view of (16.114) and restricting to UM , we have

GB
(
Ωθ
)

= (−1)
M

Pf
(

1
2πΩθ

)
= det

(
i

2πΩω
)

= σm
(
i

2πΩω
)

, and

(16.115) cm (TM) = GB (TM) = χ (TM) .

It often happens that a Hermitian bundle E arises an associated bundle E =
P ×GW , relative to some unitary representation r : G→ U (W ), for some principal
G-bundle P → M which is not necessarily the unitary frame bundle U (E). Since
r : G → U (W ) is a homomorphism of the Lie group for P to U (W ), there is an
associated principal U (W )-bundle (see Proposition 16.19, p. 378)

P ′ = P ×G U (W ) :=
P × U (W )

G
= {[p, g′] : p ∈ P, g′ ∈ U (W )} ,

and an r-equivariant map Γ : P → P ′. There is also a map F : P ′ → U (E) given
by

F ([p, g′]) (w) = [p, g′ (w)] , for p ∈ P, g′ ∈ U (W ) , w ∈W.
Note that F is well-defined and equivariant, since

F
([
pg, r

(
g−1

)
g′
])

(w) =
[
pg, r

(
g−1

)
g′ (w)

]
= [p, g′ (w)] , and for h′ ∈ U (W ) ,

F ([p, g′]h′) (w) = F ([p, g′ ◦ h′]) (w) = [p, g′ (h′ (w))]

= F ([p, g′]) (h′ (w)) = (F ([p, g′]) ◦ h′) (w) .
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As F is also bijective, it is an isomorphism of principal bundles. Thus we have a
morphism

R := F ◦ Γ : P → U (E)

and R (P ) may be regarded as a principal r (G)-subbundle of the U (W )-bundle
U (E). Using Proposition 16.21 (p.16.21), if ω is a connection on P , then there is a
unique connection ω′ on P ′ such that ω = Γ∗ω′. For the connection ωE := F−1∗ω′

on U (E), we then have

(16.116) r′ ◦ ω = R−1∗ωE and r′ ◦ Ωω = R−1∗ΩωE .

In the notation of (16.102), let

Bk (P, ω, r′) := Bk
(
σ1

(
i

2π r
′ ◦ Ωω

)
, . . . , σk

(
i

2π r
′ ◦ Ωω

))
, and

MF (b (x) , P, ω, r′) := B0 (ω, r′) +B1 (ω0, r
′) + · · · ∈ Ω∗ (M,C) .

From r′ ◦ Ωω = R−1∗ΩωE , we get Bk (P, ω, r′) = Bk (E,ωE). Thus,

MF (b (x) , E, ωE) = MF (b (x) , P, ω, r′) and

MC (b (x) , E) = MC (b (x) , P, r′) := class of MF (b (x) , P, ω, r′) .

With similar notation, one also has

c (E,ωE) = c (P, ω, r′) and c (E) = c (P, r′) , and similarly

ch (E,ωE) = ch (P, ω, r′) and ch (E) = ch (P, r′) .(16.117)

Consider the special case G = U (ν) = U (Cν) and r : U (ν) → U (W ). If
E0 := P ×U(ν) Cν , then we can often find MC (b (x) , E) = MC (b (x) , ω, r′) or
other characteristic of E classes (such as ch (E)) in terms of the Chern classes
ck (E0). If possible, one just expresses the elementary symmetric polynomials in
the eigenvalues of r′ (A) in terms of those for A ∈ u (ν). For example, consider the
exterior product bundle E = Λp (E0), where r : U (ν) → U (Λp (Cν)). If A ∈ u (ν)
has eigenvectors e1, . . . , eν with eigenvalues λ1, . . . , λν , then an eigenbasis of r′ (A)
is {

ei1 ∧ · · · ∧ eip : 1 ≤ i1 < · · · < ip ≤ n
}
,

and the associated eigenvalues of r′ (A) are λi1 + · · · + λip . For {x1, . . . , xν} =
{iλ1, . . . , iλν}, the j-th elementary symmetric polynomial in the xi1 + · · · + xip
(1 ≤ i1 < · · · < ip ≤ n) is the coefficient of tj in the expansion of∏

(i)p

(
1 +

(
xi1 + · · ·+ xip

)
t
)
,

where the multi-index (i)p ranges over {1 ≤ i1 < · · · < ip ≤ n}. These coefficients
can in turn be expressed as polynomials in the σk (x1, . . . , xν). The Chern classes
of Λp (E0) are then the same polynomials in the ck (E0). Since∏ν

k=1
(1 + exk) =

∑ν

p=1

∑
(i)p

exp
(
xi1 + · · ·+ xip

)
,

the Chern character chj (Λ∗ (E0)) ∈ H2j (M,Q) can be found by expanding the
product on the left and writing the symmetric, homogeneous j-th degree part of
the power series as a polynomial in the σk (x1, . . . , xν) , regarded as ck (E0).
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When E0 = C⊗F0 for some real, Riemannian bundle F0 of dimension 2µ, then
ch (Λ∗ (C⊗ F0)) may be obtained by expanding∏µ

k=1
(1 + eyk)

(
1 + e−yk

)
=
∏µ

k=1
eyk/2

(
e−yk/2 + eyk/2

)
e−yk/2

(
eyk/2 + e−yk/2

)
=
∏µ

k=1
4 cosh2 (yk/2)(16.118)

in terms of σk
(
y2

1 , . . . , y
2
µ

)
which are then replaced by the Pontryagin classes pk (F0).

In other words,

(16.119) ch (Λ∗ (C⊗ F0)) = MC
(
4 cosh2 (y/2) , F0

)
.

8. Holonomy

In this section, we assume that M is connected. Let ω be a connection 1-form
on the principal G-bundle π : P → M . Fix a point p0 ∈ P , and let P0 be the
set of all points p ∈ P which can be joined to p0 by a smooth horizontal curve
γ : [a, b] → P , say γ (a) = p0, γ (b) = p and ω (γ′ (t)) = 0 for t ∈ (a, b). The
holonomy group of ω with reference point p0 is G0 := {g ∈ G : p0g ∈ P0}. It can
be proven that (see [KN63, 83-85]) that P0 is an immersed submanifold of P , and
π|P0 : P0 → M is a principal G0-bundle, which is known as the holonomy bundle
of ω through p0. If G0 is a proper subgroup of G, then ω is said to be reducible to
G0. If G0 = G, then ω is irreducible.

The isotropy subgroup at ω for the action of the group GA (P ) of gauge trans-
formations on the space C (P ) of connection 1-forms on P will be denoted by
Iω := {F ∈ GA (P ) : F · ω = ω}. Under the isomorphism Φ : C (P,G) → GA (P )
of Proposition 16.27 (p. 382), we can identify Iω with the subgroup Φ−1 (Iω) of
C (P,G).

Proposition 16.61. The homomorphism Iω → G given by Φ (f) 7→ f (p0)
maps Iω isomorphically onto the centralizer of G0 in G, namely

Z (G0) := {g ∈ G : gg0 = g0g for all g0 ∈ G0} .

Proof. Let Φ (f) ∈ Iω and g0 ∈ G0. To prove that f (p0) ∈ Z (G0), we need to
show that f (p0) g0 = g0f (p0). Let γ be a horizontal curve joining p0 to p0g0. Then
γ · f (p0) is a horizontal curve joining p0f (p0) to p0g0f (p0). Since Φ (f)

∗
ω = ω,

Φ (f) ◦ γ is a horizontal curve joining p0f (p0) to Φ (f) (p0g0) = Φ (f) (p0) g0 =
p0f (p0) g0. Since

π (γ (t) · f (p0)) = π (Φ (f) (γ (t))) ,

the curves γ · f (p0) and Φ (f) ◦ γ are horizontal lifts of the same curve in M , and
they have the same initial point these curves have p0f (p0). By the uniqueness
of horizontal lifts with the same starting point (see [KN63, 69]), the endpoints
p0g0f (p0) and p0f (p0) g0 must agree, whence g0f (p0) = f (p0) g0 (i.e., f (p0) ∈
Z (G0)). To see that Iω → G is injective, we use (16.27) on p. 382, namely

(16.120) (Φ (f) · ω) (X) = f (p)
(
f−1

)
∗p (X) + f (p)ω (X) f (p)

−1
,

for X ∈ TpP . If Φ (f) ∈ Iω, then Φ (f) · ω = ω and (16.120) implies that if X
is horizontal, then

(
f−1

)
∗p (X) = 0. Then f−1 (and hence f) is constant on all
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horizontal curves and in particular f is the constant f (p0) on P0. Since P0 meets
each fiber of P and f is equivariant, f is uniquely determined by f (p0). Thus,
Iω → G is injective. To prove that Iω → Z (G0) is onto, let g′ ∈ Z (G0) , and let
f (q0) = g′ for all q0 ∈ P0. For arbitrary p ∈ P , there is some g ∈ G such that
pg ∈ P0, and we define

f (p) := gf (pg) g−1 = g−1g′g.

To show that f is well-defined, suppose that ph ∈ P0. Then gh−1 ∈ G0 and

g′ ∈ Z (G0)⇒ g′
(
gh−1

)
=
(
gh−1

)
g′ ⇒ g−1g′g = h−1g′h.

Note that by the definition of P0, the horizontal subspace Hq0 of ω at any q0 ∈ P0

is contained in Tq0P0. Since f |P0
is constant, for each X ∈ Hq0 , we have

(Φ (f) · ω) (X) = f (q0)ω (X) f (q0)
−1

= 0.

Thus, the horizontal subspace of Φ (f) ·ω at any q0 ∈ P0 coincides with Hq0 . Since
P0 meets each fiber of P and horizontal subspaces are Rg∗-invariant, the horizontal
subspaces of Φ (f) · ω and ω coincide at all points of P . Thus, Φ (f) ∈ Iω. �

Proposition 16.62. The curvature Ωω ∈ Ω
2

(P, g) at any point of the holo-
nomy bundle P0 of ω (with reference point p0) has values in the Lie algebra g0 of
the holonomy group G0.

Proof. Note that ω|P0 clearly has values in g0. Thus, (dω) |P0 = d (ω|P0) has
values in g0. Since the horizontal subspace of ω at any q0 ∈ P0 is contained in
Tq0P0, we have Ωω (X,Y ) = dω

(
XH , Y H

)
∈ g0 for all X,Y ∈ Tq0P . �

Proposition 16.63. Let π : P → M be a principal U (1)-bundle with a
connection 1-form ω, and let ρ : V → P be a local trivialization of P . Let
D =

{
reit : r ∈ [0, 1] , t ∈ R

}
be the closed unit disk in C, and let f : D → V

be the restriction of a smooth immersion of a larger open disk. Then there is a
unique function h : [0, 2π] → R, such that γ̃ (t) := ρ (γ (t)) eih(t) defines an ω-

horizontal lift of γ (t) and h (0) = 0. If Ωω = dω ∈ Ω
2

(P, iR) is the curvature
2-form of ω, then the element eih(2π) of the holonomy group of ω at p0 = ρ (f (1))
determined by γ̃ is given by

(16.121) eih(2π) = exp

(
−
∫
D

(ρ ◦ f)
∗

Ωω
)
.

Proof. For γ : [0, 2π] → V given by γ (t) = f
(
eit
)
, a curve γ̃ : [0, 2π] → P

with π ◦ γ̃ = γ and γ̃ (0) = ρ (γ (0)) has the the form γ̃ (t) = ρ (γ (t)) eih(t) for some
h : [0, 2π] → R with h (0) = 0. The curve γ̃ is a horizontal lift of γ if and only if
ω (γ̃′ (t)) = 0 for all t ∈ [0, 2π]. Note that

γ̃′ (t0) = d
dt

(
ρ (γ (t)) eih(t)

)
= d

dt

(
ρ (γ (t)) eih(t0)

)
+ d

dt

(
ρ (γ (t0)) eih(t)

)
= Reih(t0)∗ (ρ∗ (γ′ (t0))) + (ih′ (t0))

∗
ρ(γ(t0)) , and so
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ω (γ̃′ (t0)) = ω (Reih(t0)∗ (ρ∗ (γ′ (t0)))) + ω
(
ih′ (t0)

∗
ρ(γ(t0))

)
= adeih(t0)ω (ρ∗ (γ′ (t0))) + ih′ (t0)

= ω (ρ∗ (γ′ (t0))) + ih′ (t0) .

Thus, γ̃ is a horizontal lift of γ (i.e., ω (γ̃′ (t)) = 0) if and only if

h′ (t) = iω (ρ∗ (γ′ (t))) = i (ρ∗ω) (γ′ (t)) ; i.e.,

h (t) = h (t)− h (0) = i

∫ t

0

(ρ∗ω) (γ′ (τ)) dτ = i

∫ t

0

(ρ∗ω)
(
f∗
(
d
dτ e

iτ
))
dτ

= i

∫ t

0

(ρ∗ω)
(
f∗
(
ieiτ

))
dτ = i

∫ t

0

(
(ρ ◦ f)

∗
ω
) (
ieiτ

)
dτ.

We then have (16.121), since using Stokes’ Theorem,∫
D

(ρ ◦ f)
∗

Ωω =

∫
D

d
(
(ρ ◦ f)

∗
ω
)

=

∫
∂D

(ρ ◦ f)
∗
ω

=

∫ 2π

0

(
(ρ ◦ f)

∗
ω
) (
ieiτ

)
dτ = −ih (2π) .

�

Remark 16.64. Note that since U (1) is abelian, we have that Ωω ∈ Ω
2

(P, iR)
is right-invariant as well as horizontal, and so there is a unique Fω ∈ Ω2 (M,R)
such that π∗ (Fω) = iΩω. Thus,

h (2π) = i

∫
D

(ρ ◦ f)
∗

Ωω =

∫
D

f∗Fω,

note that
∫
D
f∗Fω is defined even if f (D)  V . Moreover, the element say gγ of

the holonomy group of ω at p0 = ρ (f (1)) determined by a horizontal lift γ̃ of γ is
also defined even if f (D)  V . Thus, it makes sense to ask whether

gγ = exp

(
i

∫
D

f∗Fω
)
.

This is the case, and it can be proven by first establishing a version of Proposition
16.63 for domains with corners and then partitioning D into such domains each of
which is mapped by F into an open set over which P is trivial. Incidentally, if we
define AV ∈ Ω1 (V,R) by ρ∗ (ω) = iAV , then AV does depend on ρ, and it has the
interpretation of being an electromagnetic gauge potential. Then Fω = ρ∗ (iΩω) =
ρ∗ (idω) = d (iρ∗ (ω)) = −dAV , is the electromagnetic field, regarded as a 2-form.

Let πE : E → M be a Hermitian line bundle over a compact surface M
(dimRM = 2, without boundary) and let π : P →M be the principal U (1)-bundle
of unitary frames with a connection 1-form ω. Suppose that ψ ∈ C∞ (E) with finite
zero set Z := {z ∈M : ψ (z) = 0} = {z1, z2, . . . , zn}. LetD =

{
reit : r ∈ [0, 1] , t ∈ R

}
be the closed unit disk in C and for k ∈ {1, . . . ,m}, let fk : D →M be the restric-
tion of a smooth embedding of a larger open disk, such that P is trivial over fj (D).
Assume that fj (D) ∩ fk (D) = φ for j 6= k. Then for M1 := M − ∪nj=1fj (D), we
have a section ψ0 := ψ/ |ψ| and a section ρ : M1 → P , where ρ (x) : C→ Ex is the
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frame given by ρ (x) (z) := zψ0 (x) ∈ Ex. Since P is trivial over fj (D), we have a
local section ρj : fj (D)→ P . Let gj : U (1)→ U (1) be defined by

(ρ ◦ fj)
(
eit
)

= ρ
(
fj
(
eit
))

= (ρj ◦ fj)
(
eit
)
gj
(
eit
)

=: ((ρj ◦ fj) · gj)
(
eit
)
.

The degree of the zero zj of ψ, denoted deg (ψ; zj), is defined to be the degree (or
winding number) of gj . There is a function g̃j : R→ R (unique up to an additive

multiple of 2π), such that gj
(
eit
)

= eig̃j(t) and 2π deg (ψ; zj) = g̃j (2π) − g̃j (0).

Since d
dt

(
eig̃j(t)

)
= eig̃j(t)ig̃′j (t), we then have

(16.122) 2π deg (ψ; zj) =

∫ 2π

0

g̃′j (t) dt =

∫ 2π

0

−igj
(
eit
)−1 d

dtgj
(
eit
)
dt.

Theorem 16.65. As above, let πE : E → M be a Hermitian line bundle over
a compact, orientable 2-manifold M , let ω be a connection on the U (1)-bundle
of P of unitary frames of E, and let ψ ∈ C∞ (E) have finitely many zeros. For
Fω ∈ Ω2 (M,R) determined by π∗ (Fω) = iΩω, we have

(16.123) c1 (E) [M ] =
1

2π

∫
M

Fω =
∑n

j=1
deg (ψ; zj) .

Proof. Recall from Definition 16.58 that c1 (E) [M ] := i
2π

∫
M
σ1 (Ωω) which

is 1
2π

∫
M
Fω. Using the notation above and A := ρ∗ (−iω), we compute∫
M1

Fω =

∫
M1

−dA = −
∫
∂M1

A =

∫
∂M1

ρ∗ (iω)

= −
∑n

j=1

∫
∂fj(D)

ρ∗ (iω) = −
∑n

j=1

∫
∂D

(ρ ◦ fj)∗ (iω)

= −
∑n

j=1

∫
∂D

((ρj ◦ fj) · gj)∗ (iω)

= −
∑n

j=1

∫ 2π

0

iω
(
((ρj ◦ fj) · gj)∗

(
ieit
))

dt.(16.124)

We have

((ρj ◦ fj) · gj)∗
(
ieit0

)
= d

dt

(
(ρj ◦ fj)

(
eit
)
gj
(
eit
))∣∣

t=t0

= d
dt

(
(ρj ◦ fj)

(
eit
))∣∣

t=t0
gj
(
eit0
)

+ d
dt

(
(ρj ◦ fj)

(
eit0
)
gj
(
eit0
)
gj

(
ei(t−t0)

))∣∣∣
t=t0

= Rgj(eit0 )∗
(
(ρj ◦ fj)∗

(
ieit0

))
+
(
gj
(
ieit0

)−1
gj∗
(
ieit0

))∗
((ρj◦fj)·gj)(eit0 )

,

Since ω is Rg-invariant and ω (B∗) = B for B ∈ u (1) = iR, we then have

iω
(
((ρj ◦ fj) · gj)∗

(
ieit
))

= iω
(
(ρj ◦ fj)∗

(
ieit0

))
+ igj

(
ieit0

)−1
gj∗
(
ieit0

)
.

Thus, using (16.122) and (16.124),

(16.125)

∫
M1

Fω = −
∑n

j=1

∫
∂D

(ρj ◦ fj)∗ iω + 2π
∑n

j=1
ord (ψ; zj) .

For r ∈ (0, 1] , let Dr = rD and let fj,r : D → M be given by fj,r (z) :=
fj (rz). Since ω

(
(ρj ◦ fj)∗

(
ieit
))

is bounded on D \ {0} and
(
f∗j,r
)
eit

(
ieit
)

=
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r
(
f∗j
)
reit

(
ieit
)
, we have∫

∂D

(ρj ◦ fj,r)∗ ω =

∫
∂D

f∗j,r
(
ρ∗jω

)
=

∫
∂Dr

rf∗j
(
ρ∗jω

)
= O (r) .

Thus, using fj,r in place of fj in (16.125) and letting r → 0+, we obtain∫
M1

Fω = 2π
∑n

j=1
deg (ψ; zj) .

�

Remark 16.66. In Theorem 16.65 if the image ψ (M) ⊂ E intersects the image
0 (M) ∼= M of the zero section 0 ∈ C∞ (E) transversally, then

∑n
j=1 deg (ψ; zj) is

the intersection number of the surfaces 0 (M) and ψ (M) in E (i.e., the algebraic
number of signed intersections, where the sign is ±1, depending on whether the
combined orientation of surfaces at an intersection point agrees with that of E). In
particular, if M is a compact, orientable, embedded surface M in an orientable 4-
manifold X and NM is the normal bundle with the orientation induced by those X
and M . Then the intersection number of M and the exponential of a small section
of C∞ (NM) transverse to the zero section is the self-intersection number of M
in X, and by Theorem 16.65 this is c1 (NM) [M ].



CHAPTER 17

Gauge Theoretic Instantons

1. The Yang-Mills Functional

In order to define the Yang-Mills functional on the space C (P ) of connections
on a principal G-bundle π : P →M , we need an inner product K on the Lie algebra
g of G. This inner product needs to be invariant under the adjoint action of G on
g, namely

K (A,B) = K (adg (A) , adg (B)) = K
(
gAg−1, gBg−1

)
for all g ∈ G and A,B ∈ g, where we continue to assume that G is a matrix
group, so that adg (A) = gAg−1. When G is O(n) or SO (n), g = so (n) ={
A ∈ GL (n,R) : AT = −A

}
, we can use the clearly ad-invariant

K (A,B) = −Tr (AB) = Tr
(
ABT

)
.

Note that K (A,B) = Tr
(
AAT

)
=
∑n
i,j=1A

2
ij > 0 for A 6= 0. When G is U (n),

g = u (n) = {A ∈ GL (n,C) : A∗ = −A}, one can take

K (A,B) = −Re (Tr (AB)) = Re (Tr (AB∗)) .

Note that K (A,A) = Re (Tr (AA∗)) =
∑n
i,j=1AijAij =

∑n
i,j=1 |Aij |

2
> 0 for

A 6= 0. If these are the only cases which are of interest, the reader may skip the
next two paragraphs.

For a compact Lie group G, such an ad-invariant K can be produced via in-
tegration as follows. Select an arbitrary nonzero v0 ∈ Λm (g,R). A volume form
v ∈ Ωm (G,R) is defined at any g′ ∈ G by

vg′ (A1, . . . , Am) := v0

(
R−1
g′∗ (A1) , . . . , R−1

g′∗ (Am)
)

.

Note that v is right-invariant in the sense that R∗gv = v. Indeed, noting that

Rg′g = Rg ◦Rg′ ⇒ Rg′g∗ = Rg∗ ◦Rg′∗ ⇒ R−1
g′g∗ = R−1

g′∗ ◦R
−1
g∗ ,

we have(
R∗gv

)
g′

(A1, . . . , Am) = vg′g (Rg∗A1, . . . , Rg∗Am)

= v0

(
R−1
g′g∗Rg∗A1, . . . , R

−1
g′g∗Rg∗Am

)
= v0

(
R−1
g′∗R

−1
g∗ Rg∗ (A1) , . . . , R−1

g′∗R
−1
g∗ Rg∗ (Am)

)
= v0

(
R−1
g′∗ (A1) , . . . , R−1

g′∗ (Am)
)

= vg′ (A1, . . . , Am) .

431
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For A,B ∈ g and an arbitrary inner product K0 on g, consider the form α(A,B) ∈
Ωm (G,R), defined by

α(A,B) (g′) := K0 (adg′ (A) , adg′ (B)) vg′ .

Then let

K (A,B) :=

∫
G

α(A,B).

We have α(adgA,adgB) = R∗g
(
α(A,B)

)
, since

α(adgA,adgB) (g1) = K0 (adg1
(adgA) , adg1

(adgB)) vg1

= K0 (adg1gA, adg1g (B)) R∗g (v) (g1)

= R∗g
(
α(A,B)

)
(g1) .

The ad-invariance of K then follows, since

K (adgA, adgB) =

∫
G

α(adgA,adgB) =

∫
G

R∗g
(
α(A,B)

)
=

∫
G

α(A,B) = K (A,B) .

There are other ways of producing ad-invariant inner products K on g. Recall
that ad : g → End (g) is the derivative of ad at the identity, and is given by
ad (A) (B) = [A,B]. The Killing form β is a symmetric bilinear form on g defined
for A,B ∈ g by

β (A,B) := Tr (ad (A) ◦ ad (B)) ,

Note that ad
(
gAg−1

)
= adg ◦ ad (A) ◦ adg−1 , since

ad
(
gAg−1

)
(B) =

[
gAg−1, B

]
= gAg−1B −BgAg−1

= gA
(
g−1Bg

)
g−1 − g

(
g−1Bg

)
Ag−1

= adg
(
ad (A)

(
adg−1 (B)

))
.

Then β is invariant under the adjoint action, since

β
(
gAg−1, gBg−1

)
= Tr

(
ad
(
gAg−1

)
◦ ad

(
gBg−1

))
= Tr

(
adg ◦ ad (A) ◦ adg−1 ◦ adg ◦ ad (B) ◦ adg−1

)
= Tr

(
adg ◦ ad (A) ◦ ad (B) ◦ adg−1

)
= Tr (ad (A) ◦ ad (B)) .

Of course, β need not be definite; e.g., β = 0 for abelian groups such as U (1).
However, for compact, semi-simple G, Cartan’s criterion guarantees that −β is
positive definite, and hence would serve as an ad-invariant inner product K. If
ad : G → GL (g) is irreducible, then any two ad-invariant inner products, say K1

and K2, on g must agree up to a multiplicative constant, since any eigenspace of
K1 relative to K2 would be invariant. In what follows, we will assume that G is
compact, connected and semi-simple, in which case we can and do take K on g to
be −β.

Definition 17.1. Let π : P → M be principal G-bundle, where M has a
Riemannian metric h, g has an ad-invariant inner product K, and M and G are
compact. Let C (P ) denote the set of connection 1-forms on P . The Yang-Mills
functional

YM : C (P )→ R+ := [0,∞)
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is defined by

YM (ω) := 1
2 ‖Ω

ω‖2 = 1
2

∫
M

|Ωω|2 vh,

where

Ωω = dω + ω ∧ ω = dω + 1
2 [ω, ω] ∈ Ω

2
(P, g) ∼= Ω2 (M,P ×G g) .

is the curvature of the connection ω ∈ C (P ), and |Ωω|2 = 〈Ωω,Ωω〉 in terms of the
pairing (16.15) on p. 375.

Recall from Remark 16.11, p. 371, that C (P ) has the structure of an affine

space based on the vector space Ω
1

(P, g) which can then be regarded as a formal

tangent space of C (P ) at any ω ∈ C (P ). For τ ∈ Ω
1

(P, g) and t ∈ R, note that
ωt := ω + tτ ∈ C (P ). At t = 0,

d
dtΩ

ωt = d
dt

(
dωt + 1

2 [ωt, ωt]
)

= dτ + 1
2 ([τ, ω] + [ω, τ ])

= dτ + [ω, τ ] = dτ + ad (ω) ∧ τ = Dωτ.

Thus at t = 0, we have

d
dtYM (ωt) = d

dt
1
2 (Ωω,Ωω) = (Dωτ,Ωω) = (τ, δωΩω) ,

where

δω = (−1)
n+1 ∗Dω∗ : Ω2 (M,P ×G g)→ Ω1 (M,P ×G g)

is the formal adjoint of

Dω : Ω1 (M,P ×G g)→ Ω2 (M,P ×G g) ,

namely δω is the covariant codifferential (see Proposition 16.18, p. 377). Since
all inner products involved are positive definite, all the “directional derivatives”
d
dtYM (ω + tτ)

∣∣
t=0

will be zero precisely when

δωΩω = 0.

This is called the (source-free) Yang-Mills equation. Formally, it characterizes the
critical points (connections) for the Yang-Mills functional.

We mention that YM : C (P ) → R+ is invariant under the action on C (P ) of

the group GA (P ) of gauge transformations, since for F ∈ GA (P ) , F ·ω =
(
F−1

)∗
ω

yields

ΩF ·ω = d (F · ω) + (F · ω) ∧ (F · ω) =
(
F−1

)∗
(dω + ω ∧ ω)

=
(
F−1

)∗
Ωω = F · Ωω,

and then |F · Ωω|2 = |Ωω|2 by Corollary 16.30.
If dimM = 4 and M is oriented, then we have the Hodge ∗ operator on

Ω2 (M,P ×G g), and it makes sense to speak of Ωω as being self-dual (∗Ωω = Ωω)
or anti-self-dual (∗Ωω = −Ωω). For these, the Yang-Mills equation always holds,
since

δωΩω = − ∗Dω ∗ Ωω = − ∗Dω ∗ ±Ωω = ∓ ∗ (DωΩω) = 0,

by the Bianchi identity DωΩω = 0 (see Proposition 16.16, p. 373).

Proposition 17.2. In the notation of Definition 17.1, if Ωω is self-dual or
anti-self-dual, then ω is an absolute minimum of the functional YM .
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Proof. Let gC = C⊗ g be the complexification of g. The inner product K on
g extends to a Hermitian inner product KC on gC via

KC (z ⊗A,w ⊗B) = zwKC (A,B) for A,B ∈ g and z, w ∈ C.

Then the orthogonal (relative to K) representation ad : G → SO (g) extends to
adC : G → SU (gC), and we may form the associated complex vector bundle E :=
P×GgC which has a Hermitian structure inherited from KC. Let U (E)→M be the
bundle of unitary frames. Each p ∈ P gives rise to a unitary mapping p̂ : g→Eπ(p),
simply via

p̂ (A) = [p,A] .

In this way we have an embedding P → U (E) given by p 7→ p̂, which makes P a
principal subbundle of U (E). A connection ω on P uniquely extends to a connection
ωE on U (E) in such a way that the horizontal subspaces of ωE at points of P are
those of ω. The second Chern character class of E is (see 16.98, p. 417)

ch (E)2 =
−1

8π2
[Tr (ΩωE ∧ ΩωE )] ∈ H4 (M,Q)

Note that ΩωE |P ∈ Ω
k

(P, u (gC)) ∼= Ω2 (M,End (E)) is related to Ωω via

ΩωE |P = ad (Ωω) .

Hence, for Xi ∈ TpP,

Tr (ΩωE (X1, X2) ◦ ΩωE (X3, X4))

= Tr (ad (Ωω (X1, X2)) ◦ ad (Ωω (X1, X2)))

= −K (Ωω (X1, X2) ,Ωω (X1, X2)) .

Thus, we have

Tr (ΩωE ∧ ΩωE ) (X1, X2, X3, X4)

=
1

2!2!

∑
σ

(−1)
σ
Tr (ΩωE (Xσ1

, Xσ2
) ◦ ΩωE (Xσ3

, Xσ4
))

= − 1
4

∑
σ

(−1)
σ
K (Ωω (Xσ1

, Xσ2
) ,Ωω (Xσ3

, Xσ4
))

= −K (Ωω ∧ Ωω) (X1, X2, X3, X4)

= −K (Ωω ∧ ∗ ∗ Ωω) (X1, X2, X3, X4)

= −K (Ωω, ∗Ωω) π∗ (νh) (X1, X2, X3, X4) .

Hence,

ch (E)2 [M ] =
−1

8π2

∫
M

Tr (ΩωE ∧ ΩωE ) =
1

8π2

∫
M

〈Ωω, ∗Ωω〉 νh.

Incidentally, since adC : G→ SU (gC) we have c1 (E) = 0, in which case

ch (E)2 = 1
2

(
c1 (E)

2 − 2c2 (E)
)

= −c2 (E) .

Writing Ωω = Ωω+ + Ωω−, we then have

8π2ch (E)2 [M ] =

∫
M

〈Ωω, ∗Ωω〉 νh =

∫
M

∣∣Ωω+
∣∣2 νh − ∫

M

∣∣Ωω−∣∣2 νh
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Thus,

YM (ω) = 1
2

∫
M

|Ωω|2 vh = 1
2

∫
M

∣∣Ωω+
∣∣2 νh + 1

2

∫
M

∣∣Ωω−∣∣2 νh
= 1

2

∫
M

∣∣Ωω+
∣∣2 νh + 1

2

(∫
M

∣∣Ωω+
∣∣2 νh − 8π2ch (E)2 [M ]

)
=

∫
M

∣∣Ωω+
∣∣2 νh − 4π2ch (E)2 [M ] ,(17.1)

and similarly

(17.2) YM (ω) = 1
2

∫
M

|Ωω|2 vh =

∫
M

∣∣Ωω−∣∣2 νh + 4π2ch (E)2 [M ] .

Thus, if Ωω self-dual or anti-self-dual, then ω will furnish an absolute minimum for
YM . �

Taking the difference of (17.1) and (17.2) yields

Corollary 17.3. In the notation of the proof of Proposition 17.2,

(17.3) 8π2ch (E)2 [M ] =

∫
M

∣∣Ωω+
∣∣2 νh − ∫

M

∣∣Ωω−∣∣2 νh.
Thus if ch (E)2 [M ] > 0, then there is no connection ω ∈ C (P ) with anti-self-dual
curvature Ωω (i.e., Ωω+ = 0). If ch (E)2 [M ] < 0,then there is no ω ∈ C (P ) with
self-dual curvature Ωω (i.e., Ωω− = 0). If ch (E)2 [M ] = 0, then Ωω+ = 0⇒ Ωω =
0, and Ωω− = 0 ⇒ Ωω = 0 (i.e., all ω ∈ C (P ) with self-dual or anti-self-dual
curvature are flat).

By a convenient abuse of terminology, connections ω for which Ωω is self-dual
(resp. anti-self-dual) are known as self-dual (resp. anti-self-dual) connections.
Such connections are also known as instantons, particularly when the base M is
S4. This deserves some explanation. We saw in Section 15.15.2 (p. 361-363) that,
generally speaking, an instanton is a solution of a Euclidean action principle, which
minimizes the Euclidean action among all suitable paths joining two minima for
a potential function. When the general concept is applied to the configuration
space of connections (gauge potentials) modulo gauge transformations, an instanton

is a minimum for the Yang-Mills functional 1
2

∫
R4 |Ωω|2 vh for Euclidean R4 with

the standard metric h, where certain asymptotic conditions at ∞ are imposed on
ω which make the integral converge. Moreover, the functional is defined on the
quotient space of connections modulo the group of gauge transformations defined
on R4 which tend to the identity at infinity. Recall that the star operator on 2-forms
in dimension 4 is conformally invariant, so that self-duality and anti-self-duality are
preserved under conformal changes of metric. Moreover, the invariance of ∗ implies
that the functional YM is invariant under conformal changes, since

1
2

∫
R4

|Ωω|2 vh = 1
2

∫
R4

K (Ωω ∧ ∗Ωω) .

Alternatively, note that replacing h by λh, |Ωω|2 and vh acquire factors of λ−2 and
λ2 respectively. Since R4 is conformally equivalent to S4 − {∞} via stereographic
projection, we can work over S4 − {∞}. It turns out that via a crucial theorem in
[?], the physically reasonable asymptotic conditions imposed on ω and the gauge
transformations at ∞ are precisely those that enable one to extend (over the point
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∞ ∈ S4) a self-dual connection ω for the bundle R4 × G → R4 to a self-dual
connection ω for a principal G-bundle π : P → S4. The extension of the bundle
R4 × G → R4 is generally nontrivial, depending on the homotopy class of gauge
transformations over the slice S3 =

(
R3 ∪ {∞}

)
× {0}. For G = SU (2) this homo-

topy class is determined by the degree of φ′ : S3 → SU (2) ∼= S3, discussed at the
end of Section 15.2. Of course, one can work over compact, orientable Riemannian
4-manifolds M other than S4.

2. Instantons on Euclidean 4-Space

In the sections that follow, we will construct manifolds of gauge-equivalence
classes of self-dual connections (instantons) and compute their dimensions. How-
ever, these results require the existence of such connections, or else they might
just be sophisticated statements about the empty set. Here our primary goal is to
produce self-dual connections for principal SU (2)-bundles P → S4 with arbitrary
nonpositive Chern number −k := c2

(
P ×SU(2) C2

)
[S4]. Our construction will be

motivated from the standpoint of the Riemannian geometry of conformally related
metrics on S4 or R4, but first we give a brief history.

The first such instanton that came from the physics community was the BPST
instanton, named after A. A. Belavin, A. M. Polykov, A. S. Schwarz and Y. S.
Tyupkin (see [BPST]). The standard BPST instanton was given on R4, in the sense
that it was presented as an su (2)-valued 1-form on R4, which can be regarded as
the pullback of a connection 1-form, say ω0, on the trivial principal SU (2)-bundle
R4 × SU (2) by the global section x 7→ (x, I). It is not difficult to extend ω0

to a connection 1-form ω on nontrivial principal SU (2)-bundle P → S4, namely
the quaternionic Hopf bundle S7 → S4. Then ω turns out to be the well-known
universal connection on this bundle. Conformal transformations of S4 act on the
space of (anti-)self-dual connections on S4. While the conformal transformations
which are isometries of S4 preserve ω, the 5-parameter family of “boosts” acts
effectively on ω to produce a 5-parameter family of instantons. Here, a “boost” is a
conformal transformation of a sphere which contracts toward one point of the sphere
and dilates about the antipode. The standard example is the function z 7→ αz on
the extended complex plane (Riemann sphere). For S4, four parameters suffice to
locate the pair of antipodal points and the dilation factor is the fifth parameter.
The Chern number of the bundle S7 → S4 is −1, and so the 5-parameter BPST
family of instantons pertains to this case. Instantons for arbitrary negative Chern
number −k were exhibited in [Wit], and 5k-parameter families of such instantons
were produced by t’Hooft (unpublished), in [Wil], and in [CF]. In [JNR] R.
Jackiw, C. Nohl and C. Rebbi used the fact that these families could be augmented
to conformally invariant families, to enlarge the number of parameters to 5k+4. In
[AHS1], M. F. Atiyah, N. J. Hitchen and I. M. Singer applied the index theorem
to find that the maximal number of effective parameters is 8k− 3 (k ≥ 1), a result
which was also derived in [Schw79]. Not long after, the analysis was applied to
arbitrary principal G-bundles over S4 (G simple and compact); see [AHS2] and
[BCGW]. The problem of actually constructing the most general 8k − 3 family
of solutions was solved in [AW] using the techniques originating with the twistor
theory of Roger Penrose and some algebraic geometry. A construction involving
“only” linear algebra was finally developed by M. F. Atiyah, V. G. Drinfield, N. J.
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Hitchen and Y. I. Manin in [ADHM]. We will describe this construction later in
this section. The interested reader may augment this brief history by consulting
the excellent surveys [EGH] and [Mad].

In what follows, we will derive the Jackiw-Nohl-Rebbi (5k + 4)-parameter fam-
ily of instantons in a very natural way from the viewpoint of Riemannian geom-
etry. Recall from (16.96) that corresponding to the decomposition Λ2

(
R4
) ∼=

Λ+ ⊕ Λ− into self-dual and anti-self-dual 2-forms, there is a Lie algebra decom-
position so (4) ∼= so+ ⊕ so− which we can make explicit as follows. Under the
index-lowering isomorphism Λ2

(
R4
) ∼= so (4), we have e2∧e3±e1∧e4, e3∧e1±e2∧e4,

and e1 ∧ e2 ± e3 ∧ e4 corresponding to

(17.4a)


0 0 0 ±1
0 0 1 0
0 −1 0 0
∓1 0 0 0

 ,


0 0 −1 0
0 0 0 ±1
1 0 0 0
0 ∓1 0 0

 ,


0 1 0 0
−1 0 0 0
0 0 0 ±1
0 0 ∓1 0


respectively. Choosing + in ± (and − in ∓), these are the self-dual ’t Hooft matrices
η1, η2 and η3, which form a basis of so+. Choosing − in ± (and + in ∓), we have
the anti -self-dual ’t Hooft matrices η1, η2 and η3 which form a basis of so−. One
readily verifies that [ηa, ηb] = −2εabcηc and [ηa, ηb] = −2εabcηc. For the Hermitian
Pauli matrices

σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
,

we have iσa ∈ su (2) with [iσa, iσb] = −2εabciσc. Thus, ηa 7→ iσa defines an
isomorphism so+ ∼= su (2), while ηa 7→ iσa yields so− ∼= su (2).

Recall from Definition 16.39 that the Levi-Civita connection θ for a Riemannian
4-manifold M is an so (4)-valued connection 1-form on the bundle of FM of ortho-
normal frames. Relative to the isomorphisms so (4) ∼= so+⊕so− ∼= su (2)⊕su (2), the
connection θ splits into two su (2)-valued forms θ+ and θ−. Suppose that M is sim-
ply R4 with some metric tensor h. Then there is a global section σ : R4 → FR4 (e.g.,
apply the Gram-Schmidt procedure to the standard coordinate fields ∂i := ∂

∂xi ,
i = 1, · · · , n). We may pull back θ+ and θ− to obtain the su (2)-valued forms
A± := σ∗θ± on R4. Let

F± := σ∗
(

Ωθ
±
)

= dA± + 1
2

[
A±, A±

]
be the field strengths. It is not difficult to find conditions on the metric h such
that ∗F+ = F+ or ∗F− = F−. Indeed, F+ ⊕ F− is the decomposition of the

curvature operator R̂ ∈ End
(
Ω2 (M)

)
according to the decomposition of its values

in Ω2 (M) = Ω+ (M)⊕ Ω− (M). Writing

R̂ =

[
A B
BT C

]
, ∗ =

[
I 0
0 −I

]
,

as in (16.76), we have F+ =
[
A B

]
while F− =

[
BT C

]
. Then

∗F+ =
[
A B

] [ I 0
0 −I

]
=
[
A −B

]
∗F− =

[
BT C

] [ I 0
0 −I

]
=
[
BT −C

]
.(17.5)
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Hence,

F− is self-dual⇔ C = 0

F+ is anti-self-dual⇔ A = 0

F+ is self-dual⇔ B = 0⇔ F−is anti-self-dual.

From (16.79) we have

A =
s (R)

12
+ Ã and C =

s (R)

12
+ C̃

and the Weyl tensor (as a curvature type operator) is

W =

[
Ã 0

0 C̃

]
.

Thus, if W = 0 (i.e., h is conformally flat) and s (R) = 0, then A = 0 and C = 0.
Hence, in this case F− is self-dual and F+ is anti-self-dual. Recall that B = 0 if
the traceless Ricci tensor Rij − 1

4s (R)h = 0, in which case h is an Einstein metric.
It is not easy to produce Einstein metrics, but it is trivial to produce conformally
flat metrics, namely take

(17.6) h = f2ds2 := f2
((
dx1
)2

+ · · · (dxn)
2
)

for 0 < f ∈ C∞ (Rn) .

The next proposition provides the Levi-Civita connection and the curvature tensor
of such h for arbitrary n. We also need s (R) = 0 to conclude that F− is self-dual
and F+ is anti-self-dual. In the case n = 4, this proposition says that s (R) = 0⇔
∆f = 0 (i.e., f is harmonic).

Proposition 17.4. Let FRn → Rn be the frame bundle of Rn with the metric
h = f2ds2, and let τ : Rn → FRn be the global section τ (x) = 1

f(x) (∂1, · · · , ∂n) ,

where ∂i = ∂/∂xi are the standard coordinate vector fields. If θ ∈ C (FRn) ⊆
Ω1 (FRn, so (4)) is the Levi-Civita connection of h, then τ∗θ ∈ Ω1 (Rn, so (4)) is
given by

(τ∗θ)
i
j =

1

f

(
∂jf dx

i − ∂if dxj
)
.

Let Ωθ ∈ Ω
2

(Rn, so (4)) be the curvature of θ. With(
τ∗Ωθ

)h
i

= 1
2

∑(
τ∗Ωθ

)h
ijk

dxj ∧ dxk

= 1
2

∑
Rh ijkdx

j ∧ dxk,

the curvature tensor R ∈ C∞
(
Rn, T 0,4Rn

)
with Rhijk := f2Rh ijk is given in terms

of the K-N product ∨ (see (16.65)) by

R = −2f ∇2f ∨ I + 4 (df ⊗ df) ∨ I − |df |2 I ∨ I

=
(
−2f ∇2f + 4 (df ⊗ df)− |df |2 I

)
∨ I,(17.7)

where
(
∇2f

)
ij

= ∂i∂jf, (df ⊗ df)ij = ∂if∂jf, and |df |2 =
∑n
i=1 (∂if)

2
. The scalar

curvature s (R) of h is

s (R) = f−4 (n− 1)
(
−2f ∆f + (4− n) |df |2

)
,

which is −6f −3∆f when n = 4.
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Proof. Regarding τ (x) as an isometry Rn → TxRn we have τ (x) (ei) =

f (x)
−1

(∂i)x where ei is the i-th standard unit vector in Rn. Recall that the

canonical 1-form ϕ ∈ Ω
1

(FRn,Rn) is given by ϕu (X) = u−1π∗ (X). Thus,

(τ∗ϕ)x

(
f (x)

−1
(∂i)x

)
= ϕ

(
τ∗

(
f (x)

−1
(∂i)x

))
= τ (x)

−1
(
π∗τ∗

(
f (x)

−1
(∂i)x

))
= τ (x)

−1
(
f (x)

−1
(∂i)x

)
= ei.

Hence,

(
φ1, . . . , φn

)
:= φ := τ∗ϕ ∈ Ω1 (Rn,Rn)

is the dual coframe field for
(
f−1∂1, . . . , f

−1∂n
)

in the sense that

φj
(
f−1∂i

)
=
(

(τ∗ϕ)
(
f (x)

−1
(∂i)x

))j
= (ei)

j
= δji .

In other words, φi = fdxi. The Levi-Civita connection 1-form θ ∈ C (FRn) ⊆
Ω1 (FRn, so (n)) on FRn is uniquely determined by the condition that the torsion
vanishes; i.e., 0 = Dθϕ = dϕ+ θ ∧ ϕ. We have

0 = τ∗
(
Dθϕ

)
= τ∗ (dϕ+ θ ∧ ϕ)

= d (τ∗ϕ) + τ∗ (θ) ∧ (τ∗ϕ) = dφ+ τ∗ (θ) ∧ φ.

Writing τ∗ (θ) as a skew-symmetric matrix (θij) of 1-forms θij , this becomes dφi =

−
∑n
j=1 θ

i
j ∧ φj . On the other hand,

dφi = d
(
fdxi

)
= df ∧ dxi =

n∑
j=1

∂jf dx
j ∧ dxi

= −
n∑
j=1

∂jf dx
i ∧ dxj = −

n∑
j=1

f−1∂jf dx
i ∧ φj

= −
n∑
j=1

f−1
(
∂jf dx

i − ∂if dxj
)
∧ φj .

Thus, by the uniqueness of θ, we have

θij = f−1
(
∂jf dx

i − ∂if dxj
)
.
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Since the curvature Ωθ ∈ Ω
2

(FRn, so (n)) is given by Ωθ = dθ + θ ∧ θ,

τ∗
(
Ωθ
)h
i

= dθhi +

n∑
p=1

θhp ∧ θ
p
i

= d
(
f−1

(
∂if dx

h − ∂hf dxi
))

+ f−2
n∑
p=1

(
∂pf dx

h − ∂hf dxp
)
∧
(
∂if dx

p − ∂pf dxi
)

= d
(
f−1

)
∧
(
∂if dx

h − ∂hf dxi
)

+ f−1d
(
∂if dx

h − ∂hf dxi
)

+ f−2
n∑
p=1

(
∂pf dx

h − ∂hf dxp
)
∧
(
∂if dx

p − ∂pf dxi
)

= −f−2
n∑
q=1

(
∂qf ∂if dx

q ∧ dxh − ∂qf ∂hf dxq ∧ dxi
)

+ f−1
n∑
q=1

(
∂q∂if dx

q ∧ dxh − ∂q∂hf dxq ∧ dxi
)

+ f−2
n∑
p=1

(
∂pf ∂if dx

h ∧ dxp + ∂hf ∂pf dx
p ∧ dxi − (∂pf)

2
dxh ∧ dxi

)
= f−1

n∑
q=1

(
∂q∂if dx

q ∧ dxh − ∂q∂hf dxq ∧ dxi
)

+ f−2
n∑
p=1

(
2∂pf ∂if dx

h ∧ dxp + 2∂hf ∂pf dx
p ∧ dxi − (∂pf)

2
dxh ∧ dxi

)
.

Thus, using the fact
(
dxq ∧ dxh

)
(∂j , ∂k) = δqj δ

h
k − δ

q
kδ
h
j ,

Rhijk = f2Rhijk = τ∗
(
Ωθ
)h
i
(∂j , ∂k)

= f

n∑
q=1

(
∂q∂if

(
δqj δ

h
k − δ

q
kδ
h
j

)
− ∂q∂hf

(
δqj δ

i
k − δ

q
kδ
i
j

))
+

n∑
p=1

(
2∂pf ∂if

(
δhj δ

p
k − δ

h
kδ
p
j

)
+ 2∂hf ∂pf

(
δpj δ

i
k − δ

p
kδ
i
j

))
−

n∑
p=1

(∂pf)
2 (

δhj δ
i
k − δhkδij

)

= f
(
∂j∂if δ

h
k − ∂k∂if δhj −

(
∂j∂hf δ

i
k − ∂k∂hf δij

))
+ 2

n∑
p=1

((
∂kf ∂if δ

h
j − ∂jf ∂if δhk

)
+
(
∂hf ∂jf δ

i
k − ∂hf ∂kf δij

))
+ (

n∑
p=1

− (∂pf)
2
)
(
δhj δ

i
k − δhkδij

)
.
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In terms of the K-N product (see (16.65))

(Q ∨ I)hijk = 1
2 (Qikδhj −Qhkδij +Qhjδik −Qijδhk) ,

we can write

R = −2f ∇2f ∨ I + 4 (df ⊗ df) ∨ I − |df |2 I ∨ I

=
(
−2f ∇2f + 4 (df ⊗ df)− |df |2 I

)
∨ I,(17.8)

where
(
∇2f

)
ij

= ∂i∂jf, (df ⊗ df)ij = ∂if∂jf, and |df |2 =
∑n
i=1 (∂if)

2
. The scalar

curvature of h is then

s (R) = f−4 (n− 1)Tr
(
−2f ∇2f + 4 (df ⊗ df)− |df |2 I

)
= f−4 (n− 1)

(
−2f ∆f + (4− n) |df |2

)
,

where the factor of f−4 comes from raising two indices using h (i.e., s (R) = Rhi hi).
�

We can express the connection A− := τ∗θ− ∈ Ω1
(
R4, su (2)

)
and field strength

F− := τ∗
(
Ωθ−

)
∈ Ω−

(
R4, su (2)

)
using the ’t Hooft and Pauli matrices as follows.

The projection of τ∗θ ∈ Ω1
(
R4, so (4)

)
onto Ω1

(
R4, so−

)
is

1
4

3∑
a=1

 4∑
i,j=1

(τ∗θ)
ij

(ηa)ij

 ηa,

where the 1
4 comes from the fact that

∑4
i,j=1 (ηa)ij (ηa)ij = 4 for each a. Under

the isomorphism so− ∼= su (2) given by ηa 7→ iσa,

A− =
1

4

3∑
a=1

 4∑
k,j=1

(τ∗θ)
kj

(ηa)kj

 iσa

=
1

4

3∑
a=1

 4∑
k,j=1

f−1
(
∂jf dx

k − ∂kf dxj
)

(ηa)kj

 iσa

=
1

2

3∑
a=1

4∑
k,j=1

(ηa)kj ∂j (log f) dxk (iσa) .(17.9)

There is an alternate expression in terms of vector notation. First, for
(
u, u4

)
:=(

u1, u2, u3, u4
)
, we have (using the Einstein summation convention)

ukvjηakjσa = ukvj
(
εabcδ

b
kδ
c
j −

(
δakδ

4
j − δaj δ4

k

))
σa

=
(
εabcδ

b
kδ
c
ju
kvj −

(
δakδ

4
ju

kvj − δaj δ4
ku

kvj
))
σa

=
(
εabcu

bvc −
(
v4ua − vau4

))
σa

=
(
u× v + u4v − v4u

)
· σ,(17.10)

where

w · σ := w1σ1 + w2σ2 + w3σ3.

Readers who have worked with the algebra H of quaternions

u = u4 + u1i + u2j + u3k,
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where i2 = j2 = k2 = −1, ij = −ji = k, etc., will sense their involvement in (17.10).
As ensuing developments are more easily expressed with quaternions, we recall some
basic facts. By definition

Im (u) := u1i + u2j + u3k = u· (i, j,k) and

u := u4 − u1i− u2j− u3k = u4 − Im (u) = u4 − u· (i, j,k) ,

One computes that the quaternion product uv of u ∈ H with v ∈ H is given by

uv = u · v −
(
u× v + u4v − v4u

)
· (i, j,k) ,

where u · v is the ordinary dot product of u and v as vectors in R4. Note that
uu = u · u and

vu = v · u−
(
v × u + v4u− u4v

)
· (i, j,k)

= u · v +
(
u× v + u4v − v4u

)
· (i, j,k)

= uv

There is an algebra isomorphism H ∼= RI + isu (2) given by

u4 + u1i + u2j + u3k←→ u4I − u1iσ1 − u2iσ2 − u2iσ3 = u4I − u·iσ.

Under this isomorphism, we have

ukvjηakj (iσ)a =
(
u× v + u4v − v4u

)
· iσ

←→ −
(
u× v + u4v − v4u

)
· (i, j,k) = Im (uv) .

Hence, we obtain

A− =
1

2

3∑
a=1

4∑
k,j=1

(ηa)kj ∂j (log f) dxk (iσa)

←→ 1
2 Im

(
dx∂ (log f)

)
= − 1

2 Im (∂ (log f) dx) ,(17.11)

where the quaternion differential dx is

dx = dx4 + dx1i + dx2j + dx3k,

and the quaternion-valued function ∂ (log f) is given by

∂ (log f) := ∂4 (log f) +∇ (log f) · (i, j,k)

:= ∂4 (log f) + ∂1 (log f) i + ∂2 (log f) j + ∂3 (log f) k.

Alternatively, in non-quaternionic notation with u = dx =
(
dx, dx4

)
and v =

∂ log f = (∇ (log f) , ∂4 (log f)), we have

(17.12) A− =
i

2

(
dx×∇ (log f) + dx4∇ (log f)− ∂4 (log f) dx

)
· σ,
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which is considerably less tidy than (17.11). Before considering the field strength
F−, we mention that a direct computation yields

(17.13)

− 1
2dx ∧ dx =

(
dx2 ∧ dx3 + dx1 ∧ dx4

)
i

+
(
dx3 ∧ dx1 + dx2 ∧ dx4

)
j

+
(
dx1 ∧ dx2 + dx3 ∧ dx4

)
k and

− 1
2dx ∧ dx =

(
dx2 ∧ dx3 − dx1 ∧ dx4

)
i

+
(
dx3 ∧ dx1 − dx2 ∧ dx4

)
j

+
(
dx1 ∧ dx2 − dx3 ∧ dx4

)
k.

Thus, dx ∧ dx is self-dual and dx ∧ dx is anti-self-dual.
According to (17.8),

F−jk =
i

4

3∑
a=1

 4∑
h,i=1

(ηa)hi (Pf ∨ I)hijk

σa,

where

(17.14) Pf := −2f ∇2f + 4 (df ⊗ df)− |df |2 I.

We now consider some obvious choices for the harmonic dilation factor f . Of course
for f = 1, we obtain the standard flat metric ds2 with R = 0, A± = 0 and F± = 0.
For f (x) = λ2r−2 (where 0 < λ ∈ R and r := |x| > 0) one also finds that R = 0,
either by direct computation of Pf , or by verifying that f2ds2 is the pull-back of
ds2 under the inversion x 7→ λ2r−2x of R4 in the sphere r = λ. If we add, taking

(17.15) f = 1 + λ2r−2 = 1 + f0 (x) ,

then

Pf = −2 (1 + f0)∇2f0 + 4 (df0 ⊗ df0)− |df0|2 I
= −2∇2f0 = −4λ2r−6

(
4x⊗ x− r2I

)
,

since (
∇2f0

)
ij

= ∂j∂if0 = −2λ2∂j
(
r−4xi

)
= −2λ2∂j

(
r−4
)
xi − 2λ2r−4δij

= 4λ2
(
r2
)−3

∂j
(
r2
)
xi − 2λ2r−4δij

= 2λ2r−6
(
4xjxi − r2δij

)
.(17.16)

Thus, for f = 1 + λ2r−2, we have a nonzero field strength. Moreover, in this case

∂i (log f) = ∂i
(
log
(
1 + λ2r−2

))
=
λ2∂i

(
r−2
)

1 + λ2r−2

=
−2λ2r−4xi

1 + λ2r−2
= −2

λ2

r2

xi

r2 + λ2
,

or in quaternion notation,

∂ (log f) = −2
λ2

r2

x

r2 + λ2
and ∂ (log f) = −2

λ2

r2

x

r2 + λ2
.
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Hence,

A− (x)←→ 1
2 Im

(
dx∂ (log f)

)
= 1

2 Im

(
dx

(
−2

λ2

r2

x

r2 + λ2

))
= −Im

(
dx

(
λ2

r2

x

r2 + λ2

))
= Im

(
λ2

r2

xdx

r2 + λ2

)
=
λ2

r2

1

r2 + λ2
Im (xdx) ∈ H,

or alternatively,

A− (x) = −λ
2

r2

1

r2 + λ2

(
(dx)×x + dx4x− x4dx

)
· iσ

=
λ2

r2

1

r2 + λ2

(
x×dx + x4dx− dx4x

)
· iσ.

Note that f = 1+λ2r−2 and A− are singular at x = 0. However, we will find that a
gauge transformation can be applied to A− to yield a local connection form which
extends smoothly over x = 0. For now, we will compute the value YM (A−) of the
Yang-Mills functional at A−.

Proposition 17.5. We have

YM
(
A−
)

= 1
2

∫
R4

∣∣F−∣∣2
h
νh = 16π2.

Proof. To avoid confusion in what follows, we denote norms computed with

h =
(
1 + λ2r−2

)2
ds2 by | · |h and norms computed with ds2 by | · |e. Note that due

to conformal invariance of the YM functional,∫
R4

∣∣F−∣∣2
h
νh =

∫
R4

∣∣F−∣∣2
e
d4x,

As stated earlier, we are also using the metric K = −β (minus the Killing form on
su(2)). To compute this, we use

ad (iσb) (iσc) = [iσb, iσc] = −2

3∑
d=1

εbcdiσd and

ad (iσa) ad (iσb) (iσc) = −2

3∑
d=1

εdbcad (iσa) (iσd) = −4

3∑
d,e=1

εdbcεdae (iσe)

to deduce that

K (iσa, iσb) = −Tr (ad (iσa) ad (iσb)) = 4

3∑
c,d=1

εdbcεdac = 8δab.

The inner product on so− under the isomorphism so− ∼= su(2), given by ηa 7→ iσa,

is then twice the contraction inner product (ηa)ij (ηb)
ij

= 4δab. Since A = C = 0
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in (17.5), F+ and F− have equal magnitude. Thus, we find∣∣F−∣∣2
e

= 1
2

4∑
i,j=1

K
(
F−ij , F

−
ij

)
= 1

4

4∑
i,j=1

(
K
(
F−ij , F

−
ij

)
+K

(
F+
ij , F

+
ij

))
= 1

42

4∑
h,k,i,j=1

(
Rhkij

)2
= 1

2f
−4

4∑
h,k,i,j=1

(Rhkij)
2

= 1
2f
−4 |R|2e

= 1
2f
−4 |Pf ∨ I|2e .(17.17)

Using (16.72) with n = 4 and (17.16), we have

|Pf ∨ I|2e = 2 |Pf |2e + Tr (Pf )
2

= 2 |Pf |2e
= 2

∣∣−4λ2r−6
(
4x⊗ x− r2I

)∣∣2
e

= 32λ4r−12
∣∣4x⊗ x− r2I

∣∣2
e

= 32λ4r−12
(
4xixj − r2δij

) (
4xixj − r2δij

)
= 32λ4r−12

(
16xixjx

ixj − 8r2xixjδ
ij + r4δijδ

ij
)

= 32λ4r−12
(
16r4 − 8r4 + 4r4

)
= 384λ4r−8.

Thus, ∣∣F−∣∣2
e

= 1
2f
−4 |Pf ∨ I|2e = 1

2f
−4
(
384λ4r−8

)
=
(
1 + λ2r−2

)−4 (
192λ4r−8

)
=

192λ4

(r2 + λ2)
4 ,(17.18)

and ∫
R4

∣∣F−∣∣2
e
d4x = Vol

(
S3
) ∫ ∞

0

192λ4

(r2 + λ2)
4 r

3dr

= 2π2 · 192λ4

∫ ∞
0

r3

(r2 + λ2)
4 dr.

Using the substitution y = r2 + λ2 (with dy = 2rdr), we compute∫ ∞
0

r3

(r2 + λ2)
4 dr = 1

2

∫ ∞
λ2

r2

(r2 + λ2)
4 dy

= 1
2

∫ ∞
λ2

y − λ2

y4
dy

= 1
2

∫ ∞
λ2

y−3 − λ2y−4dy

= − 1
4y
−2 + 1

6λ
2y−3

∣∣∞
λ2

=
1

12λ4
.

Hence, ∫
R4

∣∣F−∣∣2
h
νh =

∫
R4

∣∣F−∣∣2
e
d4x =

2π2 · 192λ4

12λ4
= 32π2.

�
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Remark 17.6. If we had only integrated over the ball r ≤ λ, we would have
obtained half this value, since

− 1
4y
−2 + 1

6λ
2y−3

∣∣∞
2λ2 =

1

24λ4
=

1

2

1

12λ4
.

Thus, the total field strength
∫
R4 |F−|

2
h νh of the instanton is 32π2, and as half of

this is in the ball r ≤ λ, we say that the size of the instanton is λ.

Let π0 : P0 =
(
R4 \ {0}

)
× SU (2) → R4 \ {0} be the trivial principal SU (2)-

bundle, and let ρ : R4 \ {0} be the section ρ (x) = (x, I). There is a unique
connection 1-form ω0 ∈ C (P ), such that ρ∗ω0 = A−. Since we have found that
YM (A−) <∞, the results in [?] imply that the P0 can be extended over 0 and ∞
to a bundle P → S4 in such a way that ω0 extends to a smooth connection 1-form
ω on P . However, it is instructive to do this explicitly.

We can always extend π0 : P0 → R4 \ {0} trivially to π : R4 × SU (2) → R4

with π (x,B) = x, but ω0 will not extend smoothly. Another possibility is to take
a trivial bundle π1 : P1 → R4 but identify it nontrivially with π0 : P0 → R4 \ {0}
over R4 \ {0}. In other words, identify (x,B) ∈ P1 with (x, g (x)B) ∈ P0 for some
function g : R4 \ {0} → SU (2). This identification mapping Q : P1 → P0 given by

Q (x,B) := (x, g (x)B) = (x,B)
(
B−1g (x)B

)
,

defines a gauge transformation of P0, since for C ∈ SU (2) , we have

Q ((x,B)C) = Q (x,BC) = (x, g (x)BC) = Q (x,B)C.

The associated function q ∈ C (P0,SU (2)) of Proposition 16.27 is given by

q (x,B) = B−1g (x)B.

Under the identification Q the connection form ω0 on P0 when viewed on P1|(R4\{0})
is just Q∗ω0. Our task is then to find g : R4 \{0} → SU (2) such that Q∗ω0 extends
smoothly to all of P1. According to (16.27) in Proposition 16.28,

Q∗ω0 = q−1dq + q−1ω0q.

Let ρ1 : R4 \ {0} → P1 denote the section ρ1 (x) = (x, I). If ρ̃ := Q ◦ ρ1, then using
the fact q (ρ1 (x)) = q (x, I) = I−1g (x) I = g (x) , we have

ρ̃∗ω0 = ρ∗1 (Q∗ω0) = ρ∗1
(
q−1dq + q−1ω0q

)
= (q ◦ ρ1)

−1
d (q ◦ ρ1) + (q ◦ ρ1)

−1
ρ∗1ω0 (q ◦ ρ)

= g−1dg + g−1A−g.(17.19)

We claim that there is g : R4 \ {0} → SU (2), such that ρ̃∗ω0 = ρ∗1 (Q∗ω0) extends
smoothly at 0 ∈ R4. Indeed, take

(17.20) g (x) :=
1

r
(x4I − ix · σ)←→ x

r
,

We compute

g−1dg =
x

r
d
(x
r

)
=
x

r

(
dx

r
− xrdr

r3

)
=
x

r

(
dx

r
− x (x · dx)

r3

)
=

1

r2
(xdx− (x · dx)) =

1

r2
Im (xdx) ,
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and similarly

gd
(
g−1

)
=

1

r2
Im (xdx) .

Thus,

A− =
λ2

r2

1

r2 + λ2
Im (xdx) =

λ2

r2 + λ2
gd
(
g−1

)
.

Hence, using the fact 0 = dI = d
(
g−1g

)
= d

(
g−1

)
g + g−1dg, we have

ρ̃∗ω0 = g−1dg + g−1A−g = g−1dg + g−1

(
λ2

r2 + λ2
gd
(
g−1

))
g

= g−1dg +
λ2

r2 + λ2
d
(
g−1

)
g = g−1dg − λ2

r2 + λ2
g−1dg

=
r2

r2 + λ2
g−1dg =

r2

r2 + λ2

1

r2
Im (xdx)

=
1

r2 + λ2
Im (xdx) ,

which is smooth at 0 ∈ R4. We can show A− itself (without gauge transformation)
extends smoothly at∞ as follows. Let J : R4 \{0} ∼= R4 \{0} be the inversion map
J (x) = 1

x = x
r2 . For A− to extend smoothly at ∞, we need to check that J∗A−

extends smoothly across 0. We have J∗g = g−1 (and J∗
(
g−1

)
= g), since

g (J (x)) = g

(
x

r2

)
=

x
r2∣∣ x
r2

∣∣ =
x

r
= g (x)

−1
.

Then J∗A− extends smoothly over x = 0 by the computation

J∗A− = J∗
(

λ2

r2 + λ2
gd
(
g−1

))
=

λ2

J∗ (r2) + λ2
J∗ (g) dJ∗

(
g−1

)
=

1

r−2 + λ2
g−1dg =

1

r−2 + λ2

1

r2
Im (xdx) =

1

1 + r2λ2
Im (xdx) .

The function g : R4 \ {0} → SU (2) ∼= S3 is used to identify (clutch) P0 and P1

over R4 \{0} to obtain π : P → S4. Since g restricts to the (degree 1) identity map
S3 → S3 on S3 ⊆ R4 \ {0}, we suspect that the Chern number c2 (E′) [S4] of the
associated bundle E′ := P ×SU(2) C2 is ±1, where the representation r : SU (2) →
GL
(
C2
)

is just inclusion. We now verify that c2 (E′) [S4] = −1, using the result∫
R4 |F−|

2
h νh = 32π2 of Proposition 17.5.

Proposition 17.7. Let π : P → M be an arbitrary principal SU (2)-bundle
over a compact 4-manifold M . If E′ := P ×SU(2) C2 and E := P ×SU(2) su (2)C,
then

(17.21) 4c2 (E′) = c2 (E) = −ch2 (E) .

For the bundle π : P → S4 defined above by clutching P0 and P1 over R4 \ {0}, we
have c2 (E′) [S4] = −1.

Proof. Note that any C ∈End
(
C2
) ∼= C2 ⊗ C2∗ can be written uniquely in

the form C = zB + wI where B ∈ su (2) and z, w ∈ C, so that End
(
C2
)

=
su (2)C⊕CI and the summands are SU (2)-invariant subspaces of the representation

ρ : SU (2)→End
(
C2
)

given by

ρ (B) (ξ) = B ◦ ξ ◦B−1.
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Hence,

C2 ⊗ C2 ∼= C2 ⊗ C2∗ = End
(
C2
)

= su (2)C ⊕ CI
Here we have used the fact that r : SU (2)→ GL

(
C2
)

and r∗ : SU (2)→ GL
(
C2∗)

are equivalent. This follows from the fact that the irreducible representations of
SU (2) are determined by dimension 2s + 1 (s = spin = 0, 1

2 , 1, · · · ), but a direct
equivalence can be exhibited as follows. There is a standard skew-symmetric bilin-
ear form ε on C2 given by

ε ((v1, v2) , (w1, w2)) := v1w2 − v2w1 = det

[
v1 w1

v2 w2

]
.

Define C2 → C2∗ by v 7→ ε (v, ·). Then for any B ∈ SU (2) ,

B (v) 7→ ε (B (v) , ·) = ε
(
B−1B (v) , B−1 (·)

)
= det

(
B−1

)
ε
(
v,B−1 (·)

)
= ε

(
v,B−1 (·)

)
,

since det
(
B−1

)
= det (B)

−1
= 1, and so v 7→ ε (v, ·) is an equivalence. In terms of

the bundles

E′ := P ×SU(2) C2 and E = P ×SU(2) su (2)C

we have (where 1C is the trivial line bundle over S4)

E ⊕ 1C ∼= E′ ⊗ E′

We have observed (see Remark 16.59) that for associated SU (2)-bundles V , ch1 (V ) =

c1 (V ) = 0 and ch2 (V ) = 1
2c1 (V )

2 − c2 (V ) = −c2 (V ). Hence,

ch (E)⊕ ch (1C) = 4− 2c2 (E) and

ch (E′ ⊗ E′) = ch (E′)
2

= (2− c2 (E′))
2

= 4− 4c2 (E′)

imply that 4c2 (E′) = c2 (E) = −ch2 (E). In the case of the clutched bundle
π : P → S4, we have found that

8π2ch (E)2

[
S4
]

=

∫
S4

∣∣Ωω+
∣∣2 νh − ∫

S4

∣∣Ωω−∣∣2 νh
=

∫
S4

∣∣Ωω+
∣∣2 νS4 =

∫
R4

∣∣F−∣∣2
h
νh

=

∫
R4

∣∣F−∣∣2
e
νe = 32π2.

Hence ch (E)2

[
S4
]

= 4 and 4c2 (E′)
[
S4
]

= −ch2 (E)
[
S4
]

= −4, and so c2 (E′)
[
S4
]

=
−1. �

Before going on to find instantons for bundles π : P → S4 with arbitrary

negative c2 (E′)
[
S4
]
, we will compute the field strength F− = τ∗Ωθ

−
rather easily

by using the gauge equivalent local connection form Ã := ρ̃∗ω0 = 1
r2+λ2 Im(xdx)

instead of A−.

Proposition 17.8. The local field strength F̃ := ρ̃∗Ωω0 = dÃ+ Ã∧ Ã is given
by

(17.22) F̃ (x) =
λ2

(r2 + λ2)
2 dx ∧ dx,
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where x ∈ H ∼= R4. Moreover, F− = τ∗Ωθ
−

is given by

(17.23) F− (x) = g (x) F̃ (x) g (x)
−1

=
λ2

(r2 + λ2)
2

x

r
(dx ∧ dx)

x

r
.

Proof. We have

F ′ = dA′ +A′ ∧A′

= d

(
1

r2 + λ2
Im (xdx)

)
+

1

r2 + λ2
Im (xdx) ∧ 1

r2 + λ2
Im (xdx)

=
1

(r2 + λ2)
2

(
− Im (d (xx) ∧ xdx)
+
(
r2 + λ2

)
Im (dx ∧ dx) + Im (xdx) ∧ Im (xdx)

)
=

1

(r2 + λ2)
2

(
− Im ((d (x)x+ xdx) ∧ xdx)
+
(
r2 + λ2

)
Im (dx ∧ dx) + Im (xdx) ∧ Im (xdx)

)
=

1

(r2 + λ2)
2

(
−r2 Im (dx ∧ dx)− Im (xdx ∧ xdx)
+
(
r2 + λ2

)
Im (dx ∧ dx) + Im (xdx) ∧ Im (xdx)

)
=

1

(r2 + λ2)
2

(
λ2 Im (dx ∧ dx) + Im (xdx) ∧ Im (xdx)− Im (xdx ∧ xdx)

)
To obtain (17.22), it remains to show that

(17.24) Im (xdx ∧ xdx) = Im (xdx) ∧ Im (xdx) .

For this, we have

xdx ∧ xdx
= (Re (xdx) + Im (xdx)) ∧ (Re (xdx) + Im (xdx))

= Re (xdx) ∧ Re (xdx) + Im (xdx) ∧ Im (xdx)

+ Im (xdx) ∧ Re (xdx) + Re (xdx) ∧ Im (xdx)

= Re (xdx) ∧ Re (xdx) + Im (xdx) ∧ Im (xdx) ,(17.25)

where Im (xdx)∧Re (xdx) + Re (xdx)∧ Im (xdx) = 0 since real and pure imaginary
quaternions commute, while 1-forms anticommute. Note that

Im (xdx) ∧ Im (xdx) = −Im (xdx) ∧ Im (xdx)

= − (− Im (xdx)) ∧ (− Im (xdx))

= − Im (xdx) ∧ Im (xdx) .

So that Im (xdx) ∧ Im (xdx) is pure imaginary, and taking the imaginary part of
(17.25) yields (17.24). We have (17.23), either by direct computation using (17.19)
or by using the general result (16.28). �

Remark 17.9. Recall (see (17.13)) that

− 1
2dx ∧ dx =

(
dx2 ∧ dx3 + dx1 ∧ dx4

)
i + · · ·.

Since the 2-forms dx2 ∧ dx3 + dx1 ∧ dx4,. . . are each of norm-square 2 and i,
j, and k have norm-square 8 with the Killing metric on S3 ∼= SU (2), we have that

|dx ∧ dx|2 = 4 (3 · (2 · 8)) = 192. Thus,∣∣F−∣∣2
e

= |F ′|2e =
192λ4

(r2 + λ2)
4 ,

in agreement with (17.18).
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Suppose that we have found a principal SU (2)-bundle π : P → S4 with
c2 (E′)

[
S4
]

= −k (recall E′ := P ×SU(2) C2). Then (see (17.3)) for any connection
1-form ω on P ,
(17.26)

−4k = 4c2 (E′)
[
S4
]

= −ch2 (E)
[
S4
]

=
1

8π2

(∫
S4

∣∣Ωω−∣∣2 νh − ∫
S4

∣∣Ωω+
∣∣2 νh)

Thus, we can only have self-dual connections (Ωω− = 0) if k ≥ 0 and only anti-self-
dual connections (Ωω+ = 0) if k ≤ 0. If k = 0 (e.g., P = S4 × SU (2)), then all
such (anti-)self-dual connections are flat, namely Ωω = 0. We produced self-dual
connections in the case k = 1, by considering the so−(∼= su (2))-valued component
θ− of the Levi-Civita connection θ for the metric h = f2ds2 on R4 by taking
f = 1 + λ2r−2. If we had considered θ+ for such h, then we would have found
anti-self-dual connections for the case k = −1. It is reasonable (and correct) that
for arbitrary k ≥ 1, we should consider the harmonic function

f (x) := 1 +

k∑
i=1

λ2
i

|x− xi|2

for nonzero λ1, . . . , λk ∈ R and distinct points x1, . . . , xk ∈ R4. In order to show
that the self-dual connection θ− with

(17.27) A− = τ∗θ− = − 1
2 Im (∂ (log f) dx)

yields a self-dual connection on some principal SU (2)-bundle π : P → S4 with
c2 (E′)

[
S4
]

= −k, we proceed as follows. From (17.17),

(17.28)
∣∣F−∣∣2

e
= 1

2f
−4 ‖Pf ∨ I‖2e = f−4 ‖Pf‖2e .

Letting fi (x) = λ2
i |x− xi|

−2
, we have f = 1 +

∑
i fi (1 ≤ i ≤ k) and

Pf = −2f ∇2f + 4 (df ⊗ df)− |df |2 I

= −2
(

1 +
∑

i
fi

)
∇2
(

1 +
∑

j
fi

)
+ 4

(∑
i
dfi ⊗

∑
j
dfj

)
−
∣∣∣∑

i
dfi

∣∣∣2 I
= −2

∑
i
∇2fi +

∑
i,j

(
−2fj∇2fi + 4dfi ⊗ dfj − 〈dfi, dfj〉 I

)
= −2

∑
i
∇2fi +

∑
i 6=j

(
−2fj∇2fi + 4dfi ⊗ dfj − 〈dfi, dfj〉 I

)
,

where in the last equality we have used the fact that f2
i ds

2 is flat (so that Pfi = 0)
to deduce that the terms with i = j vanish. Setting ri (x) := |x− xi|, we have

fi = λ2
i r
−2
i ,

dfi = λ2
i d
(
r−2
i

)
= λ2

i d
((
r2
i

)−1
)

= −λ2
i

(
r2
i

)−2
d
(
r2
i

)
= −λ2

i

(
r2
i

)−2
2 (x− xi) · dx, and(

∇2fi
)
pq

= ∂p∂qfi = ∂p∂q
(
λ2
i r
−2
i

)
= λ2

i ∂p∂q
(
r−2
i

)
= 2λ2

i r
−6
i

(
4 (xp − xpi ) (xq − xqi )− r

2
i δpq

)
, and so

|dfi|2 =
∣∣∣−λ2

i

(
r2
i

)−2
2 (x− xi) · dx

∣∣∣2 = 4λ4
i r
−6
i∣∣∇2fi

∣∣2 = 48λ4r−8
i .
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For j 6= i, the quantities fj , |dfj | and
∣∣∇2fj

∣∣ are bounded about xi. Thus as ri → 0,

‖Pf‖2e = 4
∣∣∇2fj

∣∣2 + O
(
r−6
i

)
= 192λ4

i r
−8
i + O

(
r−6
i

)
.

Then ∣∣F−∣∣2
e

= f−4 |Pf |2e =
(

1 +
∑

i
λ2
i r
−2
i

)−4

|Pf |2e

=
(

1 + λ2
i r
−2
i +

∑
i 6=j

λ2
jr
−2
j

)−4 (
192λ4

i r
−8
i + O

(
r−6
i

))
= 192λ4

i

(
r2
i + λ2

i +
∑

i6=j
λ2
j (ri/rj)

2
)−4

+ O
(
r2
i

)
,

which is bounded near xi. Also, as r := |x| → ∞, we have∣∣F−∣∣2
e

= f−4 |Pf |2e = 4
∑

i

∣∣∇2fi
∣∣2 + O

(
r−10

)
≤ Cr−8.

for some constant C which tends to 0 as (λ1, . . . , λk)→ 0. Thus, |F−|2e is integrable.
By K. Uhlenbeck’s theorem (or by directly using clutching functions gi as in (17.20)
about the xi), one can deduce that A−, defined by (17.27) on R4 − {x1, . . . , xk},
lifts to a smooth connection 1-form, say ω, for some principal SU (2)-bundle π :
P → S4. By (17.26), we can determine the Chern number c2 (E′)

[
S4
]
, where

E′ := P ×SU(2) C2. Indeed,

c2 (E′)
[
S4
]

=
−1

32π2

∫
S4

∣∣Ωω+
∣∣2 νh =

−1

32π2

∫
R4

∣∣F−∣∣2
e
νe.

This integral is independent of the nonzero λ1, . . . , λk ∈ R and the positions distinct
points x1, . . . , xk ∈ R4. We can evaluate the integral by first choosing x1, . . . , xk far
enough apart so that if Bi is the Euclidean ball of radius 1 about xi, then ri/rj ≤ ε
in Bi for all j 6= i. Then∫

Bi

∣∣F−∣∣2
e
νe = 192λ4

i

∫
Bi

(
r2
i + λ2

i

)−4
νe + O (ε) .

Since
∫
R4−∪iBi |F

−|2e νe → 0 as (λ1, . . . , λk)→ 0, and

lim
λi→0

192λ4
i

∫
Bi

(
r2
i + λ2

i

)−4
νe = 2π2 · 192 lim

λ→0
λ4

∫ 1

0

r3

(r2 + λ2)
4 dr

= 2π2 · 192 lim
λ→0

λ4
(
− 1

4y
−2 + 1

6λ
2y−3

)∣∣1
λ2

= 2π2 · 192 · 1

12
= 32π2,

we obtain, as ε→ 0 and (λ1, . . . , λk)→ 0,

c2 (E′)
[
S4
]

=
−1

32π2

∫
R4

∣∣F−∣∣2
e
νe → −k

But, c2 (E′)
[
S4
]

is independent of ε and λ1, . . . , λk. Thus, c2 (E′)
[
S4
]

= −k.
We can extend the k + 4k = 5k-parameter family of harmonic functions

1 +

k∑
i=1

λ2
i

|x− xi|2
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to the (5k + 5)-parameter family

k∑
i=0

λ2
i

|x− xi|2
.

The first family is a limiting case of the second if we take λ0 = |x0| and let x0 →∞.
Moreover, the analysis of A− and F− about the points xi is the same as before so
that the singularities of A− are removable and A− lifts and extends to a smooth
connection on a principal SU (2)-bundle π : P → S4. The first family is a limiting
case of the second if we take λ0 = |x0| and let x0 → ∞. Thus, the Chern number
c2 (E′)

[
S4
]

for the associated bundle E′ = P ×SU(2) C2 for functions of the second
family will also be −k. Not all of the parameters of the 5k + 5 are effective,
since multiplying f by a constant does not change A− by (17.9) or (17.12). Thus,
there are at most 5k + 4 effective parameters. Actually, there are 5k + 4 effective
parameters only for k ≥ 3. For k = 1, there are only 5 effective parameters
corresponding to the position and size of the BPST instanton, while for k = 2 there
are 13 effective parameters (see [JNR]). In the next section, we prove that the
correct number of parameters is 8k − 3 for all k. There was really no guarantee
that the procedure that we used (i.e., generating connections from conformally-flat
metrics f2ds2 with vanishing scalar curvature) would give us all of the instantons.
There is a procedure (the ADHM procedure) developed by M. F. Atiyah, V. G.
Drinfield, N. J. Hitchen, and Y. I. Manin in [ADHM] for capturing all instantons,
which we describe below. However, we mention that the singular metrics

(17.29) f2ds2 =

(
k∑
i=0

λ2
i

|x− xi|2

)2

ds2

are interesting in their own right. We have noticed that for f (x) = λ2r−2 (i.e.,
the case k = 1) one finds that f2ds2 is the pull-back of ds2 under the inversion
x 7→ λ2r−2x of R4 in the sphere r = λ. In other words, when a ball about the
origin is given the metric f2ds2 it becomes isometric to the exterior of a ball of R4

with the flat metric. While f2ds2 in (17.29) is not perfectly flat in a ball about an
xi, the influence of the other terms is comparatively slight, so that the metric is
asymptotically flat as one approaches xi. Thus, the manifold R4−{x1, . . . , xk} with
metric f2ds2 joins together k asymptotically flat regions, and serves to motivate
the study of gravitational instantons.

It is not difficult to describe the instantons constructed by the ADHM proce-
dure. The difficulty lies in proving that all instantons are captured by the proce-
dure. We will content ourselves with a suitably motivated description. Recall that
for a harmonic function f on R4, a su (2)-valued connection 1-form with self-dual
curvature is defined by

Af = − 1
2 Im (∂ (log f) dx) ,

where we have identified su (2) with the pure imaginary quaternions. When

f (x) = 1 +

k∑
j=1

λ2
j

|x− xj |2
,
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Af (x) = − 1
2 Im (∂ (log f) dx) = − 1

2 Im

(
∂f

f
dx

)

= Im

 1

f (x)

k∑
j=1

λ2
j

x− xj
|x− xj |4

d (x− xj)

(17.30)

For a quaternion variable x, we apply the convenient identity

Im

(
x

|x|4
dx

)
= Im

((
1

x

)
d

(
1

x

))
,

which is derived from the computation(
1

x

)
d

(
1

x

)
=

(
x

|x|2

)
d

(
x

|x|2

)

=
x

|x|2
d

(
x

|x|2

)
=

x

|x|2

(
xd

(
1

|x|2

)
+

1

|x|2
dx

)

=
x

|x|2
xd

(
1

|x|2

)
+

x

|x|2
1

|x|2
dx

= d
(
|x|−2

)
+

x

|x|4
dx,

using the fact that d
(
|x|−2

)
is real. Thus, we may rewrite (17.30) as

Af (x) = Im


∑k
j=1

(
λj
x−xj

)
d
(

λj
x−xj

)
1 +

∑k
j=1

(
λj
x−xj

)(
λj
x−xj

)
 .

We can generalize this (admittedly with some hindsight) as follows. Although the
λj were taken to be real, we now let them be quaternions. For a column matrix

λ = [λ1, . . . , λk]
T ∈ Hk and B a k× k matrix of quaternions, define u : H→ Hk by

u (x) := (B − xIk)
−1
λ.

For

u∗ := u (x)
T

=
[
u1 (x), . . . , uk (x)

]
,

u∗du :=

k∑
j=1

uj (x)duj , and

|u (x)|2 := u∗u =

k∑
j=1

|uj (x)|2 , let

Aλ,B (x) := Im

(
u∗du

1 + |u (x)|2

)
.

Note that Af (x) in (17.30) is the special case where the B is the diagonal k × k
matrix with diagonal entries x1, . . . , xk ∈ R4 ∼= H. In order that Aλ,B define a
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connection with self-dual curvature and removable singularities, we need to assume

that the following two conditions hold (where B∗ = B
T

) :

(17.31)
(I) B is symmetric and λλ∗ +BB∗ is a real k × k matrix.
(II) For any x ∈ H, and ξ ∈ Hk, we have

( (B − xIk) ξ = 0 and λ∗ξ = 0)⇒ ξ = 0.

In the special case that B is diagonal then (I) is obviously met. If, in addition, we
assume that all λi are nonzero and B has distinct diagonal entries, then (II) is met.
Indeed, with these assumptions,

(B − x) ξ = 0 and λT ξ = 0

⇒ for each i, (bii − x) ξi = 0 and λT ξ = 0

⇒ for each i, ξi = 0 or x = bii and λT ξ = 0

⇒ ξ = 0, or there is at most one i, with ξi 6= 0 and λiξi = λT ξ = 0

⇒ ξ = 0.

Theorem 17.10. If (λ,B) satisfies Conditions (I) and (II), then Aλ,B is an
instanton (i.e., the curvature Fλ,B of Aλ,B is self-dual). Also, Aλ,B lifts and extends
to a connection on a principal SU (2)-bundle π : P → S4. Moreover, if λ′ = Tλq
and B′ = TBT−1 for some unit q ∈ H (i.e., q ∈ S3) and some T ∈ SO (k) , then
(λ′, B′) also satisfies Conditions (I) and (II), and

Aλ′,B′ = q−1Aλ,Bq,

so that Aλ′,B′ is equivalent (via a gauge transformation) to Aλ,B.

Proof. First we introduce the following notation

σ (x) :=

√
1 + |u (x)|2

U (x) :=
1

σ (x)

[
1

u (x)

]
=

1

σ (x)

[
1

(B − xIk)
−1
λ

]
.

Note that

U∗dU = σ−1
[

1 u∗
]
d

(
σ−1

[
1
u

])
= σ−1

[
1 u∗

](
σ−1

[
0
du

]
+ d

(
σ−1

) [ 1
u

])
= σ−2u∗du+ σ−1d

(
σ−1

) [
1 u∗

] [ 1
u

]
= σ−2u∗du+ σd

(
σ−1

)
.

Since σd
(
σ−1

)
is real, we then have

Aλ,B (x) := Im

(
u∗du

1 + |u (x)|2

)
= Im (U∗dU) .
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Moreover,

Fλ,B = dAλ,B +Aλ,B ∧Aλ,B
= d Im (U∗dU) + Im (U∗dU) ∧ Im (U∗dU)

= Im (d (U∗dU)) + Im ((U∗dU) ∧ (U∗dU)) ,

since d commutes with the algebraic projection Im, and Im (U∗dU)∧ Im (U∗dU) =
Im(U∗dU) ∧ Im(U∗dU) by the computation

U∗dU ∧ U∗dU
= (Re (U∗dU) + Im (U∗dU)) ∧ (Re (U∗dU) + Im (U∗dU))

= Im (U∗dU) ∧ Im (U∗dU) + Re (U∗dU) ∧ Re (U∗dU)

+ Im (U∗dU) ∧ Re (U∗dU) + Re (U∗dU) ∧ ImU∗dU

= Re (U∗dU) ∧ Re (U∗dU) + Im (U∗dU) ∧ Im (U∗dU) ,

where the cross terms cancel, since 1-forms anti-commute, while real and pure
imaginary quaternions commute. Thus,

Fλ,B = Im (d (U∗dU) + (U∗dU) ∧ (U∗dU))

= Im (dU∗ ∧ dU + (U∗dU) ∧ (U∗dU))

= Im (FU ) ,

where

FU := dU∗ ∧ dU + (U∗dU) ∧ (U∗dU) .

Let Mm,n (H) denote the set of m × n matrices with quaternion entries. While
U∗U = 1, we have

P := UU∗ ∈Mk+1,k+1 (H) .

Note that P 2 = UU∗UU∗ = P and P : Hk+1 → Hk+1 is a projection onto

span (U) := {Uq : q ∈ H} .

We have

FU = U∗ (dP ∧ dP )U

by the computation (where we use d (U∗U) = d (1) = 0)

U∗ (dP ∧ dP )U = U∗ (d (UU∗) ∧ d (UU∗))U

= U∗ (((dU)U∗ + UdU∗) ∧ ((dU)U∗ + UdU∗))U

= (U∗ (dU)U∗ + dU∗) ∧ (dU + U (dU∗)U)

= dU∗ ∧ dU + U∗dU ∧ U∗dU
+ ((dU∗)U + U∗ (dU)) ∧ (dU∗)U

= dU∗ ∧ dU + U∗dU ∧ U∗dU + d (U∗U) ∧ (dU∗)U

= FU .

Hence, the self-duality of FU will follow, once the self-duality of dP ∧ dP is shown.
To demonstrate that dP ∧dP is self-dual, it turns out to be easier to work with the
complementary projection Q := I − P . Note that

Q := I − P ⇒ dP ∧ dP = d (I − P ) ∧ d (I − P ) = dQ ∧ dQ.



456 17. GAUGE THEORETIC INSTANTONS

In order to find an appropriate formula for Q, we first seek v ∈Mk+1,k (H), whose
columns span a subspace, say U⊥, of Mk+1 (H) which is orthogonal to U ; i.e.,
U∗v = 0. Writing

v =

[
v1

v2

]
∈Mk+1,k (H) ,

where v1 ∈M1,k (H) and v2 ∈Mk,k (H), we want

0 = σU∗v =
[

1 u∗
] [ v1

v2

]
= v1 + u∗v2

= v1 +
(

(B − xIk)
−1
λ
)∗
v2

= v1 + λ∗ (B − xIk)
∗−1

v2.

This is achieved by taking v2 = (B − xIk)
∗

and v1 = −λ∗. Thus, we take

v =

[
−λ∗

(B − xIk)
∗

]
∈Mk+1,k (H) .

Note that Condition II says precisely that v has rank k. Then v∗v = Mk,k (H)
is invertible, and the orthogonal projection Q of Hk+1 onto U⊥ is given by the
quaternionic version of the usual formula, namely

Q = v (v∗v)
−1
v∗.

Indeed,

QU = v (v∗v)
−1

(v∗U) = 0 and

Qv = v (v∗v)
−1
v∗v = v.

Now,

U∗ (dP ∧ dP )U = U∗d (1−Q) ∧ d (1−Q)U

= U∗dQ ∧ (dQ)U

Since U∗v = 0, we have

U∗dQ = U∗d
(
v (v∗v)

−1
v∗
)

= U∗
(

(dv) (v∗v)
−1
v∗ + vd

(
(v∗v)

−1
v∗
))

= U∗ (dv) (v∗v)
−1
v∗ + U∗vd

(
(v∗v)

−1
v∗
)

= U∗ (dv) (v∗v)
−1
v∗.

Similarly, since v∗U = (U∗v)
∗

= 0, we have

(dQ)U = d
(
v (v∗v)

−1
v∗
)
U = v (v∗v)

−1
(dv∗)U.

Thus,

FU = U∗dQ ∧ (dQ)U = U∗ (dv) (v∗v)
−1
v∗ ∧ v (v∗v)

−1
(dv∗)U

= U∗ (dv) (v∗v)
−1 ∧ (dv∗)U.

Note that

dv = d

[
−λ∗

(B − xIk)
∗

]
=

[
0

− (dx) Ik

]
=

[
0
−Ik

]
dx

dv∗ = d [−λ,B − xIk] = dx [0,−Ik] .
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Hence,

FU = U∗dQ ∧ (dQ)U = U∗ (dv) (v∗v)
−1 ∧ (dv∗)U

= U∗
[

0
−Ik

]
dx (v∗v)

−1 ∧ dx [0,−Ik]U

= σ−1
[

1 u∗
] [ 0
−Ik

]
dx (v∗v)

−1 ∧ dx [0,−Ik]σ−1

[
1
u

]
= σ−2u∗ (dx) (v∗v)

−1 ∧ (dx)u

By (17.13), dx ∧ dx is a self-dual, quaternion-valued form. The intervening factor

(v∗v)
−1

in (dx) (v∗v)
−1 ∧ (dx) prevents us from asserting that FU is self-dual. On

the other hand, if (v∗v)
−1 ∈Mk,k (H) has real entries, then (v∗v)

−1
commutes with

dx, and

FU = σ−2u∗
(

(v∗v)
−1
dx ∧ dx

)
u

is indeed self-dual. It is precisely Condition (I) which guarantees that v∗v (and

hence (v∗v)
−1

) is real. To show this, first note that

v∗v =
[
−λ B − xIk

] [ −λ∗
(B − xIk)

∗

]
= λλ∗ + (B − xIk) (B − xIk)

∗

= λλ∗ +BB∗ − (Bx+ xB∗) + |x|2 Ik

This is real for all x ∈ H⇔ λλ∗ +BB∗ is real and Bx+ xB∗ is real for all x ∈ H.
We show that Bx+xB∗ is real for all x ∈ H⇔ B symmetric. We have B symmetric
⇔ BT = B ⇔ B∗ = B. Assume that Bx+ xB∗ is real for all x ∈ H. Then

xB∗ = (Bx) = xB,

and in particular for x = 1, B∗ = B (i.e., BT = B). Conversely, for B symmetric,
we have B∗ = B and so for all x ∈ H,

Bx+ xB∗ = Bx+ xB =
(
xB +Bx

)
= (Bx+ xB∗),

namely Bx+ xB∗ is real.
It is easy to check that FU is pure imaginary. Thus,

Fλ,B = Im (FU ) = FU = σ−2u∗
(

(v∗v)
−1
dx ∧ dx

)
u.

It is also easy to verify that as |x| → ∞

|Fλ,B |2 = O
(
|x|−8

)
,

so that |Fλ,B |2 ∈ L2
(
R4
)
, and Uhlenbeck’s Theorem then implies that Aλ,B lifts

and extends to a connection on a principal SU (2)-bundle π : P → S4.
The verification of the fact that (λ′, B′) also satisfies Conditions (I) and (II) is

routine. Note that B′ is symmetric, since

B′T =
(
RBR−1

)T
= R−1TBTRT

= RBTR−1 = B′.
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Moreover B′B′∗ + λ′λ′∗ is real, since

B′B′∗ + λ′λ′∗ = RBR−1
(
RBR−1

)∗
+ (Rλq) (Rλq)

∗

= RBR−1
(
R−1∗B∗R∗

)
+ (Rλq) (q∗λ∗R∗)

= RBR−1
(
RB∗RT

)
+Rλλ∗RT

= RBB∗RT +Rλλ∗RT

= R (BB∗ + λλ∗)RT .

Finally,

(B′ − xIk) ξ = 0 and λ′∗ξ = 0

⇒
(
RBR−1 − xIk

)
ξ = 0 and (Rλq)

∗
ξ = 0

⇒ R (B − xIk)R−1ξ = 0 and q∗λ∗RT ξ = 0

⇒ (B − xIk)
(
R−1ξ

)
= 0 and λ∗R−1ξ = 0

⇒ R−1ξ = 0⇒ ξ = 0.

Finally note that for uλ,B (x) := (B − xIk)
−1
λ, we have

uλ′,B′ (x) = (B′ − xIk)
−1
λ′ =

(
TBT−1 − xIk

)−1
Tλq

=
(
T (B − xIk)T−1

)−1
Tλq

= (B − xIk)
−1
λq

= uλ,B (x) q,

and so

Aλ′,B′ (x) = Im

(
(uq)

∗
d (uq)

1 + |uq (x)|2

)
= Im

(
qu∗ (du) q

1 + |u (x)|2

)

= q Im

(
u∗ (du)

1 + |u (x)|2

)
q = qAλ,B (x) q.

�

Remark 17.11. The principal SU (2)-bundle π : P → S4 in Theorem 17.10
has c2 (E′) [S4] = −k, for k in (17.31) and E′ = P ×SU(2) C2. We have shown
this for the special case where the B is the diagonal k × k matrix with distinct
diagonal entries. If the set of (λ,B) satisfying Conditions (I) and (II) is connected,
then c2 (E′) [S4] = −k for all such (λ,B) by continuity. A much more difficult task
would be to show that every instanton arises in this fashion, as stated in Theorem
17.12 below. Using methods from algebraic geometry and twistor theory, this was
accomplished in [ADHM]. An excellent, expanded presentation is found in [?],
in which Theorem 17.12 appears on p. 26. The reader will notice some differences
between our presentation and Atiyah’s, since Atiyah writes his quaternions as x =
x1 + x2i+x3j+x4k, whereas we have written x = x4 + x1i+x2j+x3k. This causes
a reversal of orientation. It also (for our own good) made us feel obligated to
go through the entire construction in the uncommon detail found in the proof of
Theorem 17.10.
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Theorem 17.12. Every instanton on R4, which extends to an instanton on a
principal SU (2)-bundle π : P → S4 with c2

(
P × C2

)
[S4] = −k, is of the form

Aλ,B for (λ,B) satisfying Conditions (I) and (II). Moreover, Aλ,B is equivalent
(via a gauge transformation) to Aλ′,B′ ⇔ λ′ = Tλq and B′ = TBT−1 for some
unit q ∈ H (i.e., q ∈ S3) and some T ∈ SO (k).

Given Theorem 17.12, we can count the number of independent parameters
in the space of instantons modulo gauge transformations. For a fixed k, the real
dimension of the space of (λ,B) for which B is symmetric, is

4k + 4 · 1
2k (k + 1) = 2k2 + 6k.

Since (B∗B + λ∗λ)
∗

= B∗B + λ∗λ, we have (B∗B + λ∗λ)
T

= B∗B + λ∗λ, and so

(Im (B∗B + λ∗λ))
T

= Im
(
B∗B + λ∗λ

)
= − Im (B∗B + λ∗λ) .

Thus, Im (B∗B + λ∗λ) is skew symmetric and setting it equal to 0 eliminates at
most 3· 12k (k − 1) dimensions. Quotienting by the group S3×SO (k) of gauge equiv-

alences among the Aλ,B further reduces the dimension by at most 3 + 1
2k (k − 1).

Thus, the dimension of the space of Aλ,B satisfying conditions (I) and (II) is at
least

2k2 + 6k − 3 · 1
2k (k − 1)−

(
3 + 1

2k (k − 1)
)

= 8k − 3.

In the next section, we apply the index theorem to prove that the space of instantons
modulo gauge transformations is a manifold of dimension 8k − 3. Thus, the naive
dimension count is actually correct. In other words, the conditions imposed are
actually all independent, in case there was any doubt.

3. Linearization of the Manifold of Moduli of Self-dual Connections

In Section 17.1 we observed that YM : C (P )→ R+ is invariant under the action
on C (P ) of the group GA (P ) of gauge transformations, since for F ∈ GA (P ) ,

F · ω =
(
F−1

)∗
ω yields

ΩF ·ω = d (F · ω) + (F · ω) ∧ (F · ω) =
(
F−1

)∗
(dω + ω ∧ ω)

=
(
F−1

)∗
Ωω = F · Ωω,

and then |F · Ωω|2 = |Ωω|2 by Corollary 16.30. In particular, the set of critical
points of YM is preserved by this action, as well as the (possibly empty) set of
(anti-) self-dual connections (absolute minima of YM , if they exist). Thus, the
quotient spaceM := C (P ) /GA(P ) is a natural object for study. In particular, one
would like to know the extent to which may regard M as a manifold, say modeled
on some infinite dimensional Fréchet space. Also, if C(P )+ is the space of self-dual
connections (i.e., with self-dual curvature), it would be of interest to compute the

dimension of “the space of moduli of self-dual connections”M+ := C (P )
+
/GA(P ),

at least where it is a submanifold of M. In the heuristic discussion which follows,
we will talk rather loosely about infinite dimensional manifolds, and their tangent
spaces and normal spaces. However, this discussion will motivate a precise theorem
with a precise proof. In Section 17.4, we will provide the framework within which
it makes sense to speak of M+ as being a submanifold of M.
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Heuristic discussion: For ω ∈ C (P ), the orbit of the action of GA(P ) on
C (P ) is

GA(P ) · ω := {F · ω : F ∈ GA(P )} = {Φ (f) · ω : f ∈ C(P,G)}

in the notation of Proposition 16.27, p. 382. Formally, the Lie algebra of C(P,G)
is C(P, g) and the infinitesimal action of C(P, g) on C (P ) is given (see Proposition
16.32, p. 384), for s ∈ C (P, g) and ω ∈ C (P ), by

s · ω = d
dt (Φ (Exp (ts)) · ω)

∣∣
t=0

= − (ds+ [ω, s]) = −Dωs ∈ Ω
1

(P, g) .

Thus the “formal tangent space” at ω ∈ C (P ) of the orbit GA(P ) · ω is

Tω (GA(P ) · ω) :=
{
Dωs ∈ Ω

1
(P, g) : s ∈ C (P, g)

}
.

Note that Tω (GA(P ) · ω) ⊆ Ω
1

(P, g) which is the vector space on which the affine

space C (P ) is modeled (see Remark 16.11, p. 371). For τ ∈ Ω
1

(P, g) and s ∈
C (P, g), we have

(τ,Dωs) = (δωτ, s) ,

where δω is covariant codifferential, the formal adjoint of Dω (see Proposition 16.18,
p. 377). Thus, the “formal normal space” to GA(P ) · ω at ω is

(17.32) Nω (GA(P ) · ω) :=
{
τ ∈ Ω

1
(P, g) : δωτ = 0

}
.

The “formal slice of the action” is

(17.33) Sω := {ω + τ : τ ∈ Nω (GA(P ) · ω)} = {ω + τ : δωτ = 0} .

Intuitively, we expect that every connection ω′ in a “suitably small neighborhood”
of ω will be gauge-equivalent to a connection in Sω; i.e., there is some F ∈ GA(P ),
such that F · ω′ ∈ Sω. �

Recall from Section 16.8, that the isotropy subgroup of ω is

Iω := {F ∈ GA(P ) : F · ω = ω} .

Note that Iω leaves S setwise fixed, since, for τ ∈ Nω (GA(P ) · ω),

F ∈ Iω ⇒ F · (ω + τ) = ω + F · τ and

δω (F · τ) = F · δF ·ωτ = F · δωτ = 0,

where we have used Corollary 16.31 on p. 384 Unless Iω acts trivially on Sω, there
will be gauge-equivalent connections in Sω, and so Sω will not parametrize M :=
C (P ) /GA(P ) in a 1-1 fashion even locally about ω. Note that if g ∈ Z (G) :=
the center of G, then Rg : P → P is in GA(P ) and for any ω′ ∈ C(P ), we have
R∗gω

′ = ω′ by (16.27), p. 382. A condition which implies that Iω consists of only
these “central” gauge transformations is that ω be irreducible; this is immediate
from Proposition 16.61, p. 426, which asserts that Iω is isomorphic to the centralizer
Z (G0) (in G) of the holonomy group G0. The center of a semi-simple, compact
G must be finite. In this case, for irreducible ω, there can be no nontrivial one-
parameter subgroup in Iω.
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Proposition 17.13. Let α ∈ C (P, g). Then Φ (Exp (tα)) ∈ Iω for all real t, if
and only if Dωα = 0. Thus, the following are equivalent (where G0 is the holonomy
group of ω with arbitrary reference point p ∈ P ) :

(i) Ker
(
Dω : C (P, g)→ Ω

1
(P, g)

)
= {0}

(ii) Z (G0) = {g ∈ G : gg0 = g0g for all g0 ∈ G0} is discrete.

Proof. Using (16.32) on p. 384, for any real t0, we have

d
dt (Φ (Exp (tα)) · ω)

∣∣
t=t0

= d
dt (Φ (Exp ((t0 + t)α)) · ω)

∣∣
t=0

= d
dt (Φ (Exp (t0α) Exp (tα)) · ω)

∣∣
t=0

= d
dt ((Φ (Exp (t0α)) · Φ (Exp (tα))) · ω)

∣∣
t=0

= d
dt (Φ (Exp (t0α)) · (Φ (Exp (tα)) · ω))

∣∣
t=0

= d
dt

(
Φ
(

Exp (t0α)
−1
)∗

(Φ (Exp (tα)) · ω)
)∣∣∣
t=0

= Φ (Exp (−t0α))
∗ ( d

dtΦ (Exp (tα)) · ω
∣∣
t=0

)
= Φ (Exp (−t0α))

∗
(−Dωα) .

Since Φ (Exp (0 · α)) · ω = ω, Φ (Exp (tα)) · ω = ω for all t⇔ Dωα = 0. �

Definition 17.14. Let π : P →M principal G-bundle where G is a compact,
semi-simple Lie group. A connection 1-form ω on P is called weakly irreducible
if (i), or equivalently (ii), holds in Proposition 17.13.

If ω ∈ C(P )+ is a weakly-irreducible, self-dual connection, then

ω′ ∈ C(P )+ ∩ Sω ⇔ ∗Ωω
′

= Ωω
′

and δω (ω′ − ω) = 0.

Writing τ = ω′ − ω (or ω′ = ω + τ), we have

Ωω
′

= dω′ + 1
2 [ω′, ω′] = dω + 1

2 [ω, ω] + dτ + ad (ω) ∧ τ + 1
2 [τ, τ ]

= Ωω +Dωτ + 1
2 [τ, τ ] .

Thus, ∗Ωω′ = Ωω ⇔ (1− ∗)
(
Dωτ + 1

2 [τ, τ ]
)

= 0. Hence,

(17.34) ω′ ∈ C(P )+ ∩ Sω ⇔
{

(A) δωτ = 0 and
(B) (1− ∗)

(
Dωτ + 1

2 [τ, τ ]
)

= 0.

Condition (A) is linear and the linearization of the quadratic Condition (B) is
(1− ∗)Dωτ = 0. Hence, the “formal tangent space” of C(P )+ ∩ Sω at ω is

(17.35) Tω
(
C(P )+ ∩ Sω

)
:=
{
τ ∈ Ω

1
(P, g) : δωτ = 0 and (1− ∗)Dωτ = 0

}
The preceding motivates the following key result which specifies the dimension of
the hypothetical manifold C(P )+∩Sω near a weakly-irreducible self-dual connection
ω for a suitable principalG-bundle π : P →M . The original proof in [AHS2] makes

use of the Dirac operator on spinor fields and the Â genus, along with the Index
Theorem. The proof here is spinor-free, and is essentially Hodge-theoretic. The
Index Theorem is used mainly to handle the “twist” in the bundle P ×G gC.



462 17. GAUGE THEORETIC INSTANTONS

Theorem 17.15. Let G be a compact, semi-simple Lie group and let ω ∈ C(P )+

be a weakly-irreducible, self-dual connection for a principal G-bundle π : P → M
over a self-dual, compact, connected, oriented Riemannian 4-manifold M with non-
negative scalar curvature S 6= 0. For Tω (C(P )+ ∩ Sω) defined by (17.35), we have
(17.36)

dimTω
(
C(P )+ ∩ Sω

)
= 2ch (P ×G gC) [M ]− 1

2 dim (G) (χ (M)− sig (M)) ,

where P ×G gC → M is the vector bundle associated to π : P → M via the com-
plex adjoint representation adC : G → GL (gC) , gC := C ⊗ g, χ (M) is the Euler
characteristic of M , and sig(M) is the signature of M .

Proof. Let E := P×GgC, and let Ωk (E) denote the space of E-valued k-forms
on M . By (16.11), p. 373, we may (and often do) make the identification

Ωk (E) ∼= Ω
k

(P, gC) .

Let Ω2
− (E) denote the space of anti-self-dual E-valued 2-forms on M . Define

T : Ω1 (E)→ Ω0 (E)⊕ Ω2
− (E) , for τ ∈ Ωk (E) , by

(17.37) T (τ) :=
(
δωτ, 1

2 (1− ∗)Dωτ
)
.

Note that Ker T = Tω (C(P )+ ∩ Sω). Of course, Ω0 (E) ⊕ Ω2
− (E) can be re-

garded as the space of sections of the single bundle E ⊗
(
Λ0 (T ∗M)⊕ Λ2

− (T ∗M)
)
,

and so T is a differential operator (of order 1) mapping C∞
(
E ⊗ Λ1 (T ∗M)

)
to

C∞
(
E ⊗

(
Λ0 (T ∗M)⊕ Λ2

− (T ∗M)
))

. Since

dim Λ0 (T ∗M) = 4 = 1 + 3 = dim
(
Λ0 (T ∗M)⊕ Λ2

− (T ∗M)
)
,

we know that T will be elliptic if its symbol σ(T ) is injective. From the local
formulas for Dω and δω (see (16.22) and (16.24), p. 378), it follows that σ(T ) =
IdE ⊗σ(T0), where σ(T0) is the symbol of the “untwisted” (i.e., coefficients no longer
in E) operator T0 : Ω1 (M)→ Ω0 (M)⊕ Ω2

− (M) given by

T0 (γ) :=
(
δγ, 1

2 (1− ∗) dγ
)
.

Let S (M) ⊆ T ∗M be the unit cosphere bundle. Then

σ(T0) : S (M)→ Hom
(
T ∗M,Λ0 (T ∗M)⊕ Λ2

− (T ∗M)
)

is given, for ξ ∈ S (M) and η ∈ T ∗xM , by

σξ (η) =
(
−〈ξ, η〉 , 1

2 (1− ∗) ξ ∧ η
)
.

Now, σ(T0)ξ (η) = 0⇒ 〈ξ, η〉 = 0 and ∗ (ξ ∧ η) = ξ ∧ η. If ∗ (ξ ∧ η) = ξ ∧ η and νx
is the volume element at x, then

|ξ ∧ η|2 νx = ξ ∧ η ∧ ∗ (ξ ∧ η) = ξ ∧ η ∧ ξ ∧ η = 0,

and so η = cξ for some constant c. However, then 0 = 〈ξ, η〉 = c 〈ξ, ξ〉 = c, in which
case η = 0. Thus, σ(T0)ξ is injective for all ξ ∈ S (M), and T is elliptic.

Since Ker T = Tω (C(P )+ ∩ Sω), our goal is to compute dim Ker T . We show
that Ker T ∗ = 0, and then go on to compute

dim Ker T = dim Ker T − dim Ker T ∗ = index T
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via the index formula. To obtain a formula for T ∗, we compute (where α ∈ Ω0 (E),
β ∈ Ω2

− (E), and τ ∈ Ω1 (E))

(T ∗ (α, β) , τ) = ((α, β) , T (τ)) =
(
(α, β) ,

(
δωτ, 1

2 (1− ∗)Dωτ
))

= (α, δωτ) +
(
β, 1

2 (1− ∗)Dωτ
)

= (Dωα, τ) + (β,Dωτ) = (Dωα+ δωβ, τ) ,(17.38)

where we note that 1
2 (1− ∗) is projection onto Ω2

− (E) in which β resides, so that(
β, 1

2 (1− ∗)Dωτ
)

= (β,Dωτ). Thus,

T ∗ (α, β) = Dωα+ δωβ.

We now prove that Ker T ∗ = 0. Suppose that T ∗ (α, β) = 0, so that Dωα = −δωβ.

Since ω ∈ C(P )+ (i.e., Ωω ∈ Ω2
+ (E)) and β ∈ Ω2

− (E) ⊆ Ω2
+ (E)

⊥
, we have

‖Dωα‖2 = (−δωβ,Dωα) = − (β,DωDωα) = − (β, [Ωω, α]) = 0.

Thus, T ∗ (α, β) = 0 ⇒ −δωβ = Dωα = 0. Since we have assumed that ω is
weakly-irreducible, Dωα = 0⇒ α = 0. As β ∈ Ω2

− (E),

δωβ = 0⇒ Dωβ = −Dω ∗ β = ∗ (∗Dω ∗ β) = − ∗ δωβ = 0

⇒ ∆ωβ = δωDωβ +Dωδωβ = 0⇒ β = 0,

by Proposition 16.57, p. 414 which applies under our assumptions on ω and M .
Hence, Ker T ∗ = 0, and dim Ker T = index T .

To compute index T , we use the formula of (III.4.A)

index T =
(
φ−1ch (σ (T )) ` τ (TM ⊗ C)

)
[M ]

=
(
φ−1ch (IdE ⊗σ(T0)) ` τ (TM ⊗ C)

)
[M ]

=
(
ch (E) ` φ−1 (ch (σ(T0))) ` τ (TM ⊗ C)

)
[M ] ,

where we recall that σ(T ) = IdE ⊗σ(T0), φ is the Thom isomorphism, and τ (TM ⊗ C)
is the Todd class. The unitary frame bundle U (E) of E = P ×G gC is reducible
to an SU (N) bundle (N = dim g), since the orthogonal (relative to K) represen-
tation ad : G → SO (g) extends to adC : G → SU (gC) which serves to define
E = P ×G gC. By the Remark 16.59, p. 416, we then have ch1 (E) = c1 (E) = 0,
and then ch (E) = dim g + ch (E)2. Note that(

φ−1 (ch (σ(T0))) ` τ (TM ⊗ C)
)

2
[M ] = index T0.

We will save the verification that(
φ−1 (ch (σ(T0))) ` τ (TM ⊗ C)

)
0

= 2

for last, but assuming that this is correct, we have

(17.39) index T = 2ch2 (E) [M ] + (dim g) index T0.

We now show that

(17.40) index T0 = − 1
2 (χ (M)− sig (M)) .

By Hodge theory (see III.4.D) the cohomology space Hk (M,R) can be identified
with the space of harmonic k-forms:

β ∈ Hk (M,R)⇔ ∆β = 0⇔ dβ = 0 and δβ = 0.

Let bk := dimHk (M,R) denote the k-th Betti number. It is easy to check that
∗ commutes with ∆. Thus H2 (M,R) is preserved by ∗ and splits into the ±1
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eigenspaces of ∗, say H2
±(M,R) of dimensions b±2 , with b2 = b+2 + b−2 . For α ∈

H2
+(M,R) and β ∈ H2

−(M,R), we have α∧α = α∧∗α = |α|2 ν, β ∧β = −β ∧∗β =

− |β|2 ν, and

α ∧ β = −α ∧ ∗β = −〈α, β〉 ν = −〈β, α〉 ν
= −β ∧ ∗α = −β ∧ α⇒ α ∧ β = 0,

since 2-forms commute. Thus, sig (M) = b+2 −b
−
2 .Since ∗ : H1 (M,R) ∼= H3 (M,R) ,

we have b3 = b1, and

− 1
2 (χ (M)− sig (M))

= − 1
2

(
b0 − b1 + b2 − b3 + b4 −

(
b+2 − b

−
2

))
= − 1

2

(
2− 2b1 + 2b−2

)
= b1 −

(
1 + b−2

)
.

Thus, it suffices to prove that dim Ker T0 = b1and dim Ker T ∗0 = 1 + b−2 . We claim
Ker T0 = H1 (M,R). Since T0 (γ) =

(
δγ, 1

2 (1− ∗) dγ
)
, it is clear that H1 (M,R) ⊆

Ker T0. If γ ∈ Ker T0, then δγ = 0 and (1− ∗) dγ = 0. Hence,

0 = δ ((1− ∗) dγ) = δdγ − δ ∗ dγ = δdγ + ∗d ∗ ∗dγ
= δdγ + ∗d2γ = δdγ, and

δdγ = 0⇒ 0 = (δdγ, γ) = (dγ, dγ)⇒ dγ = 0.

Thus, Ker T0 = H1 (M,R), and dim Ker T0 = b1. We now prove that Ker T ∗0 =
H0 (M,R)⊕H2

− (M,R). By a computation strictly analogous to (17.38), T ∗0 (α, β) =
dα+ δβ. Thus, clearly H0 (M,R)⊕H2

− (M,R) ⊆ Ker T ∗0 . If (α, β) ∈ Ker T ∗0 , then
dα+ δβ = 0 and

0 = δ (dα+ δβ) = δdα+ δ2β = δdα.

Hence, 0 = (δdα, α) = (dα, dα) and dα = 0, so that α ∈ H0 (M,R). Then dα+δβ =
0⇒ δβ = 0, and since β ∈ Ω2

− (M,R),

0 = ∗δβ = − ∗ ∗d ∗ β = d ∗ β = −dβ.

Thus, β ∈ H2
− (M,R), and Ker T ∗0 = H0 (M,R)⊕H2

− (M,R).
We now prove that the degree 0 part of φ−1 (ch (σ(T0))) ` τ (TM ⊗ C) is 2. The

degree 0 part of τ (TM ⊗ C) is 1 (directly from the definition in Section 14.14.1),
and so we need to show that the degree 0 part of φ−1 (ch (σ(T0))) is 2. We use the
fact that the Thom class U ∈ H4 (BM,SM) and Euler class χ (TM) ∈ H4 (M) are
related by π∗χ (TM) = i∗U, where π : BM → M and i : (BM,φ) → (BM,SM).
For V := Λ1 (T ∗M)C and F := Λ0 (T ∗M)C ⊕ Λ2

− (T ∗M)C , we prove

(17.41) χ (TM) ` φ−1 (ch (σ(T0)))0 = ch (V )2 − ch (F )2 .

We have the commutative diagram (where the coefficients are rational)

H0 (M)
`χ(TM)→ H4 (M)

π∗,0B ↙ π∗,0B,S ↓
φ

↘ ↓ π∗,4B,S ↘ π∗,4B

H0 (BM)
i∗,0← H0 (BM,SM)

`U→ H4 (BM,SM)
i∗,4→ H4 (BM) .
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Since φ−1 lowers degree by 4, φ−1 (ch (σ(T0)))0 = φ−1 (ch (σ(T0))2). Thus,

π∗,4B
(
χ (TM) ` φ−1 (ch (σ(T0)))0

)
= π∗,4B (χ (TM)) ` π∗,0B

(
φ−1 (ch (σ(T0)))0

)
= π∗,4B (χ (TM)) ` π∗,0B

(
φ−1 (ch (σ(T0))2)

)
= i∗,4U ` i∗,0π∗,0B,S

(
φ−1 (ch (σ(T0))2)

)
= i∗,4

(
U ` π∗,0B,S

(
φ−1 (ch (σ(T0))2)

))
= i∗,4

(
φφ−1ch (σ(T0))2

)
= i∗,4 (ch (σ(T0))2) = ch (π∗BV )2 − ch (π∗BF )2

= π∗,4B (ch (V )2 − ch (F )2) .

Since M is homotopic to BM , we know that π∗,4B is an isomorphism, and the
identity (17.41) is proven. To show φ−1 (ch (σ(T0)))0 = 2, it suffices to prove that
ch (V )2 − ch (F )2 = 2χ (TM) when χ (TM) 6= 0. This identity is conveniently
proved by representing the characteristic classes in terms of forms, as in Section
16.7. The Hermitian vector bundles, V = Λ1 (T ∗M)C and F = Λ0 (T ∗M)C ⊕
Λ2
− (T ∗M)C, are complexifications of Riemannian bundles. Hence the principal

unitary frame bundles of V and F reduce to principal orthogonal frame bundles,
say O(V ) and O(F ). When the curvature forms of the unitary frame bundles are
restricted to O(V ) and O(F ), they have values in spaces of skew-symmetric real
matrices (i.e., Lie algebras of orthogonal groups). Hence, in verifying ch (V )2 −
ch (F )2 = 2χ (TM), it suffices to work with real skew-symmetric matrices when
checking the corresponding identity on the level of invariant polynomials. The
representation of SO(4) associated with TM is just the identity Id : SO(4)→ SO(4).

The dual representation is B 7→
(
B−1

)T
, which is also Id for B ∈ SO(4), hence the

representation of SO(4) associated with Λ1 (T ∗M) is also Id. The representation
for Λ0 (T ∗M) ⊕ Λ2

− (T ∗M) is the direct sum of the trivial representation and the
representation SO(4) → GL(Λ2

− (Rn∗)) ∼= GL(so−). On the Lie algebra level, the
second representation can be expressed in terms of the ’t Hooft matrices ηa ∈ so−

(a = 1, 2, 3) given in (17.4a), p. 437. For A ∈ SO(4), we compute

[A, ηb] = 1
4

3∑
c=1

(A · ηc) [ηc, ηb] = 1
4

3∑
a,c=1

(A · ηc) (−2εcbaηa)

= 1
2

3∑
a,c=1

(A · ηc) εabcηa.

Defining the matrix S (A) ∈ so (3) by [A, ηb] =
∑3
a=1 S (A)ab ηa, we have

S (A)ab = 1
2

3∑
c=1

(A · ηc) εabc.

Thus,

S (A)12 = 1
2A · η3 = A12 −A34

S (A)23 = 1
2A · η1 = A23 −A14, and

S (A)31 = 1
2A · η2 = A31 −A24.
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Hence for A ∈ so (4),

1
2 tr
(
−A2

)
− 1

2 tr
(
−S (A)

2
)

=
∑
i<j

(Aij)
2 − (A12 −A34)

2 − (A23 −A14)
2 − (A31 −A24)

2

= 2 (A12A34 +A23A14 +A31A24)

= 1
4

∑
(i)

εi1i2i3i4Ai1i2Ai3i4 .

Thus,

1
8π2 tr

(
−A2

)
− 1

8π2 tr
(
−S (A)

2
)

= 2 1
32π2

∑
(i)

εi1i2i3i4Ai1i2Ai3i4 ,

which yields the result ch (V )2 − ch (F )2 = 2χ (TM), upon replacing A by the
curvature form Ωθ of the Levi-Civita connection θ (or actually any connection) on
FM . �

If G = SU(2), by (17.26), p. 450, we have

(17.42) c2
(
P ×SU(2) C2

) [
S4
]

= −k ⇔ ch2

(
P ×SU(2) su(2)

) [
S4
]

= 4k,

Also, for M = S4, we have χ (M) = 2 and sig(M) = 0. Thus, (17.36) becomes
(17.43) below. Moreover for k ≥ 1, in the proof of the following, we show that any
ω ∈ C(P )+ is irreducible.

Corollary 17.16. Let P → S4 be a principal SU(2)-bundle with

c2
(
P ×SU(2) C2

) [
S4
]

= −k, for k ≥ 1.

If ω is a self-dual connection on P (i.e., ω ∈ C(P )+), then ω is irreducible and

(17.43) dimTω
(
C(P )+ ∩ Sω

)
= 8k − 3,

in the notation of (17.35).

Proof. Once ω is shown to be irreducible, (17.43) follows from (17.36) and
(17.42). Suppose that the holonomy group of such ω is a subgroup G0 $ SU(2).
The Lie algebra g0 of G0 has dimension at most 1, since two independent elements
of su(2) have a bracket outside of their span, and g0 cannot be su(2) since then
SU(2) = exp (g0) ⊆ G0. By Proposition 16.62, p. 427, the restriction Ωω|P0 has
values in g0. Thus, dim g0 6= 0, since

Ωω|P0
= 0⇒ Ωω = 0⇒ −k = c2

(
P ×SU(2) C2

)
= 0.

Hence, dim g0 = 1, and the connected component of G0 containing Id is a circle.
Thus, ad : G0 → GL (g0) is trivial. Then for g ∈ G0, we have R∗g (Ωω|P0

) =
adg−1Ωω|P0

= Ωω|P0
(i.e., Ωω|P0

is invariant under G0). Hence, Ωω|P0
= π∗α for a

unique g0-valued 2-form α on M . For a local section σ : S4 → P0, we have (by the
Bianchi identity dΩω + [ω,Ωω] = 0)

dα = d (σ∗π∗α) = σ∗d (Ωω|P0
)

= σ∗ (dΩω|P0
) = σ∗ (− [ω,Ωω] |P0

) = 0,

since ω|P0
and Ωω|P0

have values in g0 which has a trivial bracket. Since ∗Ωω = Ωω,
it follows that ∗α = α and δα = − ∗ d ∗ α = − ∗ dα = 0, so that α is a g0-valued,
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harmonic 2-form on S4. However, any such form on S4 is zero, since H2(S4) = 0.
Finally, by the transitivity of the SU (2) action on P and the equivariance of Ωω,

α = 0⇒ Ωω|P0
= π∗α = 0⇒ Ωω = 0⇒ k = 0.

�

4. Manifold Structure for Moduli of Self-dual connections

Let C(P )+ be the set of weakly-irreducible, self-dual connections on a principal
G-bundle P over a compact, oriented, Riemannian 4-manifold M . We assume
that G is semi-simple, C(P )+ 6= φ, and that there are no ∆ω-harmonic forms in
Ω2
− (P ×G g) (e.g., M is self-dual with nonnegative scalar curvature S 6= 0; see

Proposition 16.57, p. 414). Let ω ∈ C(P )+ and recall from (17.33)

(17.44) Sω :=
{
ω + τ : τ ∈ Ω

1
(P, P ×G g) and δωτ = 0

}
.

In this section we wil1 prove that (in a suitable sense) C(P )+∩Sω is a submanifold
of the affine space C(P ) in a neighborhood of ω, and this submanifold has dimension

dimTω
(
C(P )+ ∩ Sω

)
:= 2ch (P ×G gC) [M ]− 1

2 dim (G) (χ (M)− sig (M)) ,

in the notation of Theorem 17.15. We introduce the space C(P )+
m ⊆ C(P )+ of

“mildly-irreducible” self-dual connections, and show that C(P )+
m/GA(P ) can be

made into a Hausdorff topological space, such that each class [ω] ∈ C(P )+
m/GA(P )

possesses a neighborhood U which is homeomorphic to a neighborhood of ω in Sω.
These homeomorphisms are shown to constitute an atlas which makes C(P )+

m/GA(P )
a C∞ manifold. In doing all of this, we need to state some basic results about Lp-
Sobolev Banach spaces of sections of vector bundles. Proofs or references to proofs
can be found in the excellent survey article [Can, 1981] and [Pal68]. In the fol-
lowing review of these results, M is a compact Riemannian n-manifold with metric
h, where n is not necessarily 4 until further notice.

Let E →M be a C∞ Hermitian vector bundle, say E = P×GW , for a principal
G-bundle π : P → M , and unitary representation ρ : G → U (W ). Let θ be the
Levi-Civita connection on FM and let ω0 be a connection 1-form on P . In the
notation of Section 16.6, there is a connection ω0 ⊕ θ on P ×f FM (see (16.81),
p. 405), and a covariant derivative operator

∇ω0⊕θ : C∞ (E ⊗ T r,s (M))→ C∞
(
E ⊗ T r,s+1 (M)

)
For this, see (16.86), p. 406, with k = 1, and note that

C∞ (E ⊗ T r,s (M)) ∼= Ω
0

(P ×f FM,W ⊗ T r,s) , while

C∞
(
E ⊗ T r,s+1 (M)

) ∼= Ω
1

(P ×f FM,W ⊗ T r,s) .

To shorten notation, we write ∇ω0⊕θ simply as ∇. For a nonnegative integer k and
p ∈ [1,∞), and u ∈ C∞ (E) = C∞

(
E ⊗ T 0,0 (M)

)
, we set

(17.45) ‖u‖p,k :=

 k∑
j=0

∫
M

|∇ju|p νh

 1
p

,
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where νh is the volume element of the Riemannian metric h, ∇0u = u and ∇k is
the k-fold composition

∇ku :=
(
∇ ◦ k times· · · ◦ ∇

)
u ∈ C∞

(
E ⊗ T 0,k (M)

)
.

In (17.45), |∇ku| is computed using the Hermitian structure on E and the metric
h on M .

Definition 17.17. The Sobolev space W p,k(E) is the completion of C∞(E)
with the norm ‖·‖p,k.

Remark 17.18. The Banach space W p,k(E) coincides with the subspace of
Lp(E) := W p,0(E) consisting of sections that have “weak derivatives” of orders ≤ k
in Lp. More precisely, u ∈W p,k(E), if for each j ≤ k, there is vj ∈ Lp(E⊗T 0,j (M)),
such that for all w ∈ C∞(E ⊗ T 0,j (M)), we have∫

M

〈vj , w〉 νh =

∫
M

〈
u, (∇∗)j w

〉
νh,

where ∇∗ is the formal adjoint of ∇. We say that “∇ju = vj in the weak (or
distributional sense)”.

We have the following standard results (see [Can] and [Pal68]).

Proposition 17.19. Let D : C∞(E)→ C∞(F ) be a linear differential operator
of order m (E, F Hermitian vector bundles over M). For each k ≥ 0, D has a
unique continuous extension

Dp,k+m : W p,k+m(E)→W p,k(E) with ‖Dp,k+m (α)‖p,k ≤ K ‖α‖p,k+m ,

for some K > 0, independent of α ∈W p,k+m(E).

Proposition 17.20. Let Cm (E) be the Banach space of m-times (strongly)
differentiable sections of E with norm

‖u‖Cm :=

m∑
j=0

sup
x∈M

∣∣(∇ju)
x

∣∣ .
Let n = dimM , k ∈ {0, 1, 2, . . .} and p ∈ [1,∞). For 0 ≤ m < k − n

p , we have a

compact (i.e., completely continuous) inclusion

(17.46) W p,k(E) ⊆ Cm (E) .

For k > m and k − n
p > m− n

q , we also have a compact inclusion

(17.47) W p,k(E) ⊆W q,m(E).

Proposition 17.21 (Fundamental Elliptic Estimate). Assume that D : C∞(E)→
C∞(F ) is an elliptic of order m, with formal adjoint D∗ : C∞(F )→ C∞(E). Sup-
pose that for some u ∈ Lp(E), we have v ∈W p,k(F ) such that∫

M

〈v, w〉 νh =

∫
M

〈u,D∗w〉 νh,

for all w ∈ C∞(F ) (i.e., Du := v exists weakly in W p,k(F )). Then u ∈W p,k+m(E).
Moreover, for each k ≥ 0, there is a constant Ck > 0 independent of u, such that

(17.48) ‖u‖p,k+m ≤ Ck
(
‖Du‖p,k + ‖u‖p

)
.
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If Du ∈ C∞(F ), then for all k ≥ 0, ‖Du‖p,k < ∞, and we have ‖u‖p,k+m < ∞,

in which case u ∈ C∞ (E) by (17.46). In particular, weak solutions of Du = 0 are
C∞.

Proposition 17.22 (Sobolev Multiplication). Let Q : E1 × E2 → E3 be a
smooth, bilinear map of Riemannian (or Hermitian) vector bundles over M (com-
pact with dim (M) = n). Then subject to the conditions below, the induced map
Q : C∞ (E1) × C∞ (E2) → C∞ (E3) extends uniquely to a bounded bilinear map
Q : Lp1,k1(E1)× Lp2,k2(E2)→ Lp3,k3(E3), i.e.,∥∥Q (x1, x2)

∥∥
p3,k3

≤ C ‖x1‖p1,k1
‖x2‖p2,k2

for C depending only on Q, the connections ∇E1 , ∇E2 , ∇E3 , and the Riemannian
metric on M . The conditions are that k3 ≤ min {k1, k2} and

k3 − n
p3
≤


(
k1 − n

p1

)
+
(
k2 − n

p2

)
if max

{
k1 − n

p1
, k2 − n

p2

}
< 0

min
{
k1 − n

p1
, k2 − n

p2

}
if max

{
k1 − n

p1
, k2 − n

p2

}
> 0.

If max
{
k1 − n

p1
, k2 − n

p2

}
= 0, then it suffices that

k3 − n
p3
< min

{
k1 − n

p1
, k2 − n

p2

}
=
(
k1 − n

p1

)
+
(
k2 − n

p2

)
,

where the inequality is strict. When p1 = p2 = p3 = p and k3 = k2 = j ≤ k = k1 >
n/p, we obtain the boundedness of

Q : W p,k(E1)×W p,j(E2)→W p,j(E3).

(Note that by (17.46) we have W p,k(E1) ⊆ C0 (E1) for k > n/p, whence the induced
map Q may be defined pointwise.)

Proposition 17.23 (Elliptic Decomposition). Let D : C∞(E) → C∞(F ) be
a differential operator of order m with a symbol which is injective or surjective,
and let D∗ be the formal adjoint of D. If D∗p,k+m : Lp,k+m(F ) → Lp,k(E) is the
Sobolev extension of D∗, then we have the following direct sum decompositions into
closed subspaces for k ≥ 0 and p ≥ 2n/(2m+ n) (e.g., p ≥ 2),

W p,k+m(E) = Ker(Dp,k+m)⊕ Im(D∗p,k+2m) and

W p,k+m(F ) = Ker(D∗p,k+m)⊕ Im(Dp,k+2m).

If the symbol of D is injective, then D∗ ◦D is elliptic and

Ker(Dp,k+m) = Ker(D) = Ker(D∗ ◦D) ⊆ C∞(E)

is finite-dimensional. If the symbol of D is surjective, then D ◦D∗ is elliptic and

Ker(D∗p,k+m) = Ker(D∗) = Ker(D ◦D∗) ⊆ C∞(F )

is finite-dimensional. In particular, if D is elliptic (i.e., with injective and surjective
symbol), then both Ker(D) and Ker(D∗) are finite-dimensional.

Given the estimate (17.48), this last result is not difficult to prove (e.g., see
[Can]). Proposition 17.23 is indispensable in verifying the hypotheses of the fol-
lowing implicit function theorems for Banach spaces in applications where the dif-
ferential of the map is an elliptic operator.
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Theorem 17.24 (Implicit Function Theorem I). Let B1 and B2 be Banach
spaces and let F : B1 → B2 be Ck (1 ≤ k ≤ ∞). Assume that F∗x : TxB1 →
TF (x)B2 is a surjection and TxB1 = Ker (F∗x) ⊕ H, where H is closed. Then

F−1(F (x)) is a Ck submanifold of B1 in a neighborhood of x, and its tangent space
at x is Ker (F∗x).

We will also need the following version, whose proof is also in [Lan].

Theorem 17.25 (Implicit Function Theorem II). Let B1, B2 and B3 be Banach
spaces and let F : B1 × B2 → B3 be a Ck map (1 ≤ k ≤ ∞) with F (x1, x2) =
x3. Suppose that the partial derivative of F in the B2-direction at (x1, x2) (i.e.,
(D2F )(x1,x2) : B2 → B3) . Then there are neighborhoods U1 of x1 and U2 of x2,

such that there is a unique Ck map G : U1 → U2 whose graph {(x,G(x)) : x ∈ U1}
is F−1(x3) ∩ U1 × U2. Indeed, there is a neighborhood U3 of x3 and a unique Ck

function H : U1 × U3 → U2 such that for all z ∈ U3 we have F (x,H (x, z)) = z.

When B1 = {0}, we obtain a special case of Theorem 17.25 which is usually estab-
lished beforehand, namely

Theorem 17.26 (Inverse Function Theorem). F : B2 → B3 be a Ck map (1 ≤
k ≤ ∞) with F (x2) = x3. If (DF )x2

: B2 → B3 is a bicontinuous isomorphism,

then there are neighborhoods U1 of x1 and U3 of x3 and a unique Ck function
H : U3 → U2, such that for all z ∈ U3 we have F (H (z)) = z.

In the rest of this section, the assumptions of the opening paragraph are in
force (e.g., dimM = 4). We set E := P ×G g and make the identification of

the space Ω
k

(P, g) (of equivariant forms on P ) with Ωk(E). For any (smooth)

ω ∈ C(P ), recall that C(P ) = ω + Ω
1

(P, g). Thus, we can identify C(P ) with the

set of equivalence classes of pairs in C(P )× Ω
1

(P, g), where

(17.49) (ω1, α1) ≡ (ω2, α2)⇔ ω1 + α1 = ω2 + α2 ⇔ ω1 − ω2 = α2 − α1

Since Ω
1

(P, g) ∼= C∞(E ⊗ Λ1 (M)), say α ←→ α̃, we can also regard C(P ) as the
set of equivalence classes of pairs in C(P )× C∞(E ⊗ Λ1 (M)), where

(ω1, α̃1) ≡ (ω2, α̃2)⇔ ˜(ω1 − ω2) = α̃2 − α̃1.

We define C(P )p,k as the set of equivalence classes of C(P ) ×W p,k
(
E ⊗ Λ1 (M)

)
,

where the equivalence relation is still defined by (17.49), and ω1 and ω2 are still
smooth, but α̃1 and α̃2 are not necessarily smooth elements of W p,k

(
E ⊗ Λ1 (M)

)
(although α̃2 − α̃1 is smooth). One may wish to think of C(P )p,k as the set of all
“generalized” connection 1-forms on P which differ from a smooth connection by
an element of W p,k

(
E ⊗ Λ1 (M)

)
. We have only given a more precise meaning to

this thought. In what follows, for simplicity we will not adhere to the notation α̃,
but simply use α. Note that each ω ∈ C(P ) defines a bijection

φω : C(P )p,k →W p,k
(
E ⊗ Λ1 (M)

)
, where φω ([(ω, α)]) = α.

For ω1, ω2 ∈ C(P ), φω1 ◦ φ−1
ω2

is a translation of W p,k
(
E ⊗ Λ1 (M)

)
, since(

φω1 ◦ φ−1
ω2

)
(α) = φω1 ([(ω2, α)])

= φω1
([(ω1, α+ (ω2 − ω1))]) = α+ (ω2 − ω1)
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Thus, the φω serve as a collection of charts making C(P )p,k a C∞ Banach manifold.

Theorem 17.27. Let ω ∈ C(P )+ and assume that there are no nonzero ∆ω-
harmonic forms in Ω2

− (E) (E = P ×G g). Let Sω be defined by (17.44). For
2 ≤ k ∈ Z and p ∈ [1,∞) with pk > 4, we have that C(P )+ ∩ Sω is a C∞

submanifold of C(P )p,k+1.

Proof. Recall from (17.34) that

ω + τ ∈ C(P )+ ∩ Sω ⇔ 0 = Q (τ) :=
(
δωτ, (1− ∗)

(
Dωτ + 1

2 [τ, τ ]
))
.

Thus, C(P )+ ∩ Sω = Q−1 (0) and we wish to apply Implicit Function Theorem
I (say, IFT I) to a “Sobolev extension” of Q. To this end, we first show that
Q : C∞

(
E ⊗ Λ1 (M)

)
→ C∞

(
E ⊗

(
Λ0 (M)⊕ Λ2

− (M)
))

has a C∞ extension to

(17.50) Qp,k+1 : W p,k+1
(
E ⊗ Λ1 (M)

)
→W p,k

(
E ⊗

(
Λ0 (M)⊕ Λ2

− (M)
))
,

provided that p (k + 1) > 4; the stronger inequality pk > 4 will be used later. Note
thatQ is a sum of the first-order elliptic differential operator τ 7→ (δωτ, (1− ∗)Dωτ)
and the quadratic map τ 7→ (1− ∗) 1

2 [τ, τ ]. The differential operator has an ex-

tension to W p,k+1
(
E ⊗ Λ1 (M)

)
by Proposition 17.19. To show that the quadratic

map also extends, first note since p (k + 1) > 4, Proposition 17.22 yields a bounded
bilinear extension

W p,k+1
(
E ⊗ Λ1 (M)

)
×W p,k+1

(
E ⊗ Λ1 (M)

)
→W p,k+1

(
E ⊗ Λ2 (M)

)
of the bilinear function (τ1, τ2) 7→ [τ1, τ2]. Since τ 7→ (τ, τ) is clearly bounded and
linear and (1− ∗) is a differential operator of order 0 so that Proposition 17.19
applies, the composition

τ 7→ (τ, τ) 7→ (1− ∗) 1
2 [τ, τ ]

defines a bounded, quadratic map

W p,k+1
(
E ⊗ Λ1 (M)

)
→W p,k+1

(
E ⊗ Λ2

− (M)
)
⊆W p,k

(
E ⊗ Λ2

− (M)
)
.

Thus, Q has the extension Qp,k+1 in (17.50). The differential (Qp,k+1)∗0 of Qp,k+1

at τ = 0 is the linear part given for τ ′ ∈W p,k+1
(
E ⊗ Λ1 (M)

)
by

(Qp,k+1)∗0 (τ ′) :=
(

(δω)p,k+1 τ
′, (1− ∗) (Dω)p,k+1 τ

′
)
.

This is just the Sobolev extension Tp,k+1 of the elliptic operator

T (τ ′) :=
(
δωτ ′, 1

2 (1− ∗)Dωτ ′
)

used in the proof of Theorem 17.15, p. 462. There we showed that KerT ∗ = {0},
under the assumptions that ω is weakly-irreducible and the space of ∆ω-harmonic
forms in Ω2

− (E) is trivial. With the goal of applying IFT I to Qp,k+1, we wish to
use Proposition 17.23 with D = T ∗ to deduce that (Qp,k+1)∗0 is onto, but we need
to show that T ∗ is elliptic first. Since T ∗ (α, β) = Dωα+ δωβ (see (17.38), p. 463),
the symbol of T ∗ is given by

σ (T ∗)ξ (α, β) = αξ − β(ξ#, ·),

where ξ# is defined by ξ = h(ξ#, ·). If ξ 6= 0 and σ (T ∗)ξ (α, β) = 0, then

0 = αξ(ξ#)− β(ξ#, ξ#) = α |ξ|2 ⇒ α = 0,
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and so β(ξ#, ·) = 0. This means that β is a sum of bicovectors in the 3-dimensional
orthogonal complement of ξ, in which case

0 = β ∧ β = −β ∧ ∗β = − |β|2 νh,

since β ∈ Λ2
− (TM∗). Thus, σ (T ∗)ξ is injective, and an isomorphism for dimen-

sional reasons. Hence T ∗ is elliptic, and (Qp,k+1)∗ is onto by Proposition 17.23
with D = T ∗. Using the ellipticity of T , we have the spliting

W p,k+1
(
E ⊗ Λ1 (M)

)
= KerT ⊕ Im

(
T ∗p,k+2

)
of the domain of (Qp,k+1)∗0. Then we may then finally apply IFT I to deduce that

in a neighborhood U of ω, (Qp,k+1)
−1

(0) is a submanifold of W p,k+1
(
E ⊗ Λ1 (M)

)
of dim KerT . Since C(P )+ ∩ U ⊆ (Qp,k+1)

−1
(0) ∩ U is clear, it remains to show

that (Qp,k+1)
−1

(0) ∩ U ⊆ C(P )+ ∩ U , where U is possibly replaced by a smaller
neighborhood of ω. For τ ∈W p,k+1

(
E ⊗ Λ1 (M)

)
with Qp,k+1 (τ) = 0, we have

Tp,k+1 (τ) = −
(
0, (1− ∗) 1

2 [τ, τ ]
)
∈W p,k+1

(
E ⊗ Λ1 (M)

)
,

and then using (17.48),

‖τ‖p,k+2 ≤ C
(
‖Tp,k+1 (τ)‖p,k+1 + ‖τ‖p

)
= C

(∥∥ 1
2 [τ, τ ]

∥∥
p,k+1

+ ‖τ‖p
)

≤ C
(
C ′ ‖τ‖2p,k+1 + ‖τ‖p

)
.

Replacing k by k + 1, k + 2,. . ., we have ‖τ‖p,j < ∞ for all j. Thus, τ ∈
C∞

(
E ⊗ Λ1 (M)

)
by (17.46) and ω+ τ is a C∞ self-dual connection. It remains to

show that U can be chosen so that the C∞ elements of U are weakly-irreducible.
Let L be the Banach space of bounded (continuous) linear transformations from
W p,k+1 (E) to W p,k

(
E ⊗ Λ1 (M)

)
. For τ ∈ C∞

(
E ⊗ Λ1 (M)

)
, by Proposition

17.19, (Dω+τ )p,k+1 ∈ L. Indeed, for α ∈W p,k+1 (E), we have∥∥∥(Dω+τ
)
p,k+1

(α)
∥∥∥
p,k

=
∥∥∥(Dω)p,k+1 (α) + [τ, α]

∥∥∥
p,k

≤
∥∥∥(Dω)p,k+1 (α)

∥∥∥
p,k

+ ‖[τ, α]‖p,k+1

≤ C1 ‖α‖p,k+1 + C2 ‖τ‖p,k+1 ‖α‖p,k+1

≤
(
C1 + C2 ‖τ‖p,k+1

)
‖α‖p,k+1 ,

by Propositions 17.19 and 17.22. Indeed, this shows that the function

τ 7→
(
Dω+τ

)
p,k+1

∈ L

extends to a continuous affine map

Φ : W p,k+1
(
E ⊗ Λ1 (M)

)
→ L.

We know that Ker
(
Dω : C∞ (E)→ C∞

(
E ⊗ Λ1 (M)

))
= {0}, since we have as-

sumed that ω is weakly-irreducible. Moreover, Ker (Dω) = Ker (δωDω) and δωDω

is elliptic. Suppose that (Dω)p,k+1 (α) = 0, for α ∈ W p,k+1 (E). By Proposition
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17.20, α ∈ C1 (E) for 1 < k + 1− 4
p or kp > 4. Then (δωDω) (α) = 0 weakly, since

for α ∈ C1 (E) and β ∈ C∞ (E), we can perform integration by parts:∫
M

〈
α, (δωDω)

∗
β
〉
νh =

∫
M

〈α, δωDωβ〉 νh =

∫
M

〈Dωα,Dωβ〉 νh = 0,

where the last equality holds since 0 = (Dω)p,k+1 (α) = Dωα for α ∈W p,k+1 (E) ⊆
C1 (E). Thus, for α ∈W p,k+1 (E) with pk > 4, we may apply Proposition 17.21 to
obtain

(Dω)p,k+1 (α) = 0⇒ (δωDω) (α) = 0 weakly

⇒ α ∈ C∞ (E) and (δωDω) (α) = 0

⇒ α ∈ C∞ (E) and ‖Dω (α)‖2 = (δωDωα, α) = 0

⇒ α ∈ Ker (Dω)⇒ α = 0,

by the assumption that ω is weakly-irreducible. Thus, Ker (Dω)p,k+1 = {0}, and

so Φ (0) is in the open set, say L0, of injective elements of L. Since Φ is continuous,
there is some neighborhood U0 of 0 in W p,k+1 (E) such that Φ (τ) ∈ L0 for τ ∈ U0.
Thus replacing U with U ∩ U0, we are assured that the C∞ elements of U are
weakly-irreducible. �

Theorem 17.28. Let ω ∈ C(P ) be weakly-irreducible. For 1 ≤ p < ∞ and
k ∈ Z with pk > 4, there are positive constants C1 and C2, such that for every
τ ∈W p,k+1

(
E ⊗ Λ1 (M)

)
with ‖τ‖p,k+1 < C1, there is a unique σ (τ) ∈W p,k+2 (E)

with ‖σ (τ)‖p,k+2 < C2 and

(17.51) (δω)p,k+1 (Φ (Exp (σ (τ))) · (ω + τ)− ω) = 0.

Here, the function (τ, s) 7→ Φ (Exp (s)) · (ω + τ)−ω, which has meaning for smooth
pairs (τ, s), is proved to analytically extend to a function on W p,k+1

(
E ⊗ Λ1 (M)

)
×

W p,k+2 (E) with values in W p,k+1
(
E ⊗ Λ1 (M)

)
, so that (17.51) makes sense. In

other words, Φ (Exp (σ (τ))) · (ω + τ) ∈ Sp,k+1
ω , where

(17.52) Sp,k+1
ω :=

{
ω + τ ′ ∈ C(P )p,k+1 : (δω)p,k+1 (τ ′) = 0

}
.

Moreover, τ 7→ σ (τ) is a C∞ function.

Proof. Let

(17.53) Q : C∞
(
E ⊗ Λ1 (M)

)
× C∞ (E)→ C∞ (E)

be defined by

Q (τ, s) := δω (Φ (Exp (s)) · (ω + τ)− ω) .

As in (16.30), p. 384, let f = Exp (s) ∈ C (P,G) ⊆ C
(
P,GL

(
CN
))

, where we
continue to assume that G is a matrix group. According to (16.27), p. 382, we have

Φ (f) · ω = fd
(
f−1

)
+ fωf−1, and so

Φ (Exp (s)) · (ω + τ) = Exp (s) d (Exp (−s)) + Exp (s) (ω + τ) Exp (−s) .
For A,B ∈ g, we will use the following identity:

Exp (A)B Exp (−A) =

∞∑
i=0

1

i!
(adA)

i
(B) ,
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where adA (B) = [A,B]. This follows from

1

i!
(adA)

i
B =

∑
m+n=i

1

n!m!
AnBAm, i ≥ 0,

which can be proved by straightforward induction. Similarly, we have

1

(i+ 1)!
(ads)

i
(ds) = −

∑
m+n=i+1

1

n!m!
snd (sm) ,

for s ∈ C (P, g) ∼= C∞ (E), and this yields

Exp (s) d (Exp (−s)) = −
∞∑
i=0

1

(i+ 1)!
(ads)

i
(ds) , and

Φ (Exp (s)) · (ω + τ) = Exp (s) d (Exp (−s)) + Exp (s) (ω + τ) Exp (−s)

= −
∞∑
i=0

1

(i+ 1)!
(ads)

i
(ds) +

∞∑
i=0

1

i!
(ads)

i
(ω + τ)

= −
∞∑
i=0

1

(i+ 1)!
(ads)

i
(ds) + ω −

∞∑
i=1

1

i!
(ads)

i−1
([ω, s]) +

∞∑
i=0

1

i!
(ads)

i
(τ)

= ω −
∞∑
i=0

1

(i+ 1)!
(ads)

i
(ds+ [ω, s]) +

∞∑
i=0

1

i!
(ads)

i
(τ)

= ω −
∞∑
i=0

1

(i+ 1)!
(ads)

i
(Dωs) +

∞∑
i=0

1

i!
(ads)

i
(τ) .

Hence for p (k + 1) > 4, by repeated use of Proposition 17.22,

(τ, s) 7→ Φ (Exp (s)) · (ω + τ)− ω

= −
∞∑
i=0

1

(i+ 1)!
(ads)

i
(Dωs) +

∞∑
i=0

1

i!
(ads)

i
(τ) ,

extends to a C∞ (indeed, analytic) map

W p,k+1
(
E ⊗ Λ1 (M)

)
×W p,k+2 (E)→W p,k+1

(
E ⊗ Λ1 (M)

)
.

Composing this map with (δω)p,k+1 gives us an extension of Q in (17.53), say

Qp,k+1 : W p,k+1
(
E ⊗ Λ1 (M)

)
×W p,k+2 (E)→W p,k

(
E ⊗ Λ1 (M)

)
.

The derivative of Qp,k+1 at (0, 0) is

(Qp,k+1)∗(0,0) (τ ′, s′) = (δω)p,k+1

(
− (Dω)p,k+2 (s′) + τ ′

)
.

As we wish to apply Implicit Function Theorem II (IFT II) to Qp,k+1, we note
that the partial derivative D2 (Qp,k+1)(0,0) of Qp,k+1 in the W p,k+2 (E) direction

is the Sobolev extension (−∆ω)p,k+2 of the formally self-adjoint elliptic operator
−∆ω = −δωDω. By Proposition 17.23,

W p,k(E) = Ker (−∆ω)⊕ (−∆ω)p,k+2

(
W p,k+2(E)

)
= (−∆ω)p,k+2

(
W p,k+2(E)

)
,
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since ω weakly-irreducible implies that Ker (−∆ω) = KerDω = 0. Thus, our
D2 (Qp,k+1)(0,0) = (−∆ω)p,k+2 is onto with trivial kernel, and hence is a bicontinu-

ous isomorphism by the Open Mapping Theorem. Thus, the IFT II applies to give
us the constants C1 and C2, and C∞ function σ. �

Theorem 17.28 provides us with a “local slice” for the action of a “Sobolev
extension” of GA(P ) on the space C(P )p,k+1. In other words, every connection
ω′ ∈ C(P )p,k+1 in a suitably small neighborhood of ω ∈ C(P ) is gauge-equivalent to
a connection in Sp,k+1

ω via some “generalized” gauge transformation Exp s where
‖s‖p,k+2 small. Of course, one would like to precisely define a Sobolev extension

GA (P )
p,k+2

of GA (P ). Since GA (P ) (or equivalently C (P,G)) is not the space
of sections of a vector bundle, some elaboration is needed. We have assumed that
G is a matrix group, say a Lie subgroup of GL

(
CN
)
. Now GL

(
CN
)

(and hence G)

is contained in the vector space gl
(
CN
)

of all linear endomorphisms of CN . Thus,

C (P,G) (and hence GA (P )) can identified with a subset of Ω
0 (
P, gl

(
CN
))

, where

the representation G → GL
(
gl
(
CN
))

is the adjoint representation (i.e., g · A =

gAg−1, g ∈ G and A ∈ gl
(
CN
)
). Now Ω

0 (
P, gl

(
CN
)) ∼= C∞

(
P ×G gl

(
CN
))

which has a Sobolev extension W p,k
(
P ×G gl

(
CN
))

. Thus, it makes sense to define

C (P,G)
p,k

to be the closure in W p,k
(
P ×G gl

(
CN
))

of the subset corresponding

to C (P,G) ⊆ Ω
0 (
P, gl

(
CN
))

. Since (by Proposition 17.20) we have a continuous

inclusion W p,k
(
P ×G gl

(
CN
))
⊆ C0

(
P ×G gl

(
CN
))

for pk > 4 , it follows that

C (P,G)
p,k

consists of continuous, ad-equivariant, G-valued functions on P . Note

that C (P,G)
p,k

may then be identified with a certain set, say GA (P )
p,k

, of “con-
tinuous gauge transformations” (i.e., continuous (as opposed to C∞), equivariant,

fiber-preserving homeomorphisms of P ). A proof that (for pk > dimM) GA (P )
p,k

is actually a Lie group, modelled on the Banach space W p,k (E) in such a way that

Exp : W p,k (E) → GA (P )
p,k

is a local diffeomorphism, can be found in [MV] for
the case p = 2, but their proof works for pk > dimM as well. Although as a map
between Banach spaces, σ in Theorem 17.28 is a C∞ function of τ , we still need to
prove that σ (τ) is C∞ if τ is C∞ as the next result states.

Theorem 17.29. In Theorem 17.28, σ (τ) is C∞ if τ is C∞, provided C1 is
chosen small enough.

Proof. From the proof of Theorem 17.28, we know that s := σ (τ) ∈W p,k+2 (E)
obeys the equation

0 = (δω)p,k+1 (Φ (Exp (s)) · (ω + τ)− ω)

= (δω)p,k+1 (Exp (s) d (Exp (−s)) + Exp (s) (ω + τ) Exp (−s)− ω)

= (δω)p,k+1

(
−
∞∑
i=0

1

(i+ 1)!
(ads)

i
(

(Dω)p,k+2 (s)
)

+

∞∑
i=0

1

i!
(ads)

i
(τ)

)

= (δω)p,k+1

(
− (Dω)p,k+2 (s)−

∑∞
i=1

1
(i+1)! (ads)

i
(

(Dω)p,k+2 (s)
)

+
∑∞
i=0

1
i! (ads)

i
(τ)

)
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Thus,

(∆ω)p,k+2 (s) = (δω)p,k+1 (Dω)p,k+2 (s)

= (δω)p,k+1

(
R
(
s, (Dω)p,k+2 (s) , τ

))
, where

R
(
s, (Dω)p,k+2 (s) , τ

)
= −

∞∑
i=1

1

(i+ 1)!
(ads)

i
(

(Dω)p,k+2 (s)
)

+

∞∑
i=0

1

i!
(ads)

i
(τ) .

Note that

(δω)p,k+1

(
R
(
s, (Dω)p,k+2 (s) , τ

))
= −

∞∑
i=1

1

(i+ 1)!
(ads)

i
(

(∆ω)p,k+2 (s)
)

+ P
(
s, (δω)p,k+1 (s) , (Dω)p,k+2 (s) , τ, (δω)p,k+1 (τ)

)
,

where P is a power series in its arguments and contains terms which result when

(δω)p,k+1 is passed through the “factor” (ads)
i

in (ads)
i
(

(Dω)p,k+2 (s)
)

. Thus,(
1 +

∞∑
i=1

1

(i+ 1)!
(ads)

i

)
(∆ω)p,k+2 (s)

= P
(
s, (δω)p,k+1 (s) , (Dω)p,k+2 (s) , τ, (δω)p,k+1 (τ)

)
For arbitrarily small C2 in Theorem 17.28, the constant C1 exists. By (17.46), we
may then assume that C2 is small enough so that ‖s‖p,k+2 < C2 ⇒ ‖s‖C0 is small
enough so that the endomorphism

Ψ (s) :=

(
1 +

∞∑
i=1

1

(i+ 1)!
(ads)

i

)
: W p,k (E)→W p,k (E)

can be inverted. Thus,

(∆ω)p,k+2 (s) = Ψ (s)
−1 P

(
s, (δω)p,k+1 (s) , (Dω)p,k+2 (s) , τ, (δω)p,k+1 (τ)

)
.

Since the Wp,k norm of Ψ (s)
−1

is finite, as well as the Wp,k norms of all of the argu-

ments of Q (recall that τ ∈ C∞
(
E ⊗ Λ1 (M)

)
), it follows that

∥∥∥(∆ω)p,k+2 (s)
∥∥∥
p,k

<

∞. Hence by (17.48), s ∈W p,k+4 (E), and repeating the argument with k replaced
by k by k + 2, etc., yields s ∈ C∞ (E). �

We have proved that every C∞ connection in a sufficiently small neighborhood
(in C(P )p,k+1, pk > 4) of a weakly-irreducible ω ∈ C(P ) is gauge equivalent, via
a unique small (i.e., close to Id in GA(P )p,k+2) gauge transformation which is
necessarily smooth, to a connection in Sω. We have yet to introduce hypotheses
which will enable us to prove that no two smooth connections near ω in Sω are gauge
equivalent by a possibly large gauge transformation. For this we need a stronger
condition on ω than weak-irreducibility. If we insist that ω be irreducible, then at
some later point, we would have to face the problem of proving that every connection
near an irreducible connection is irreducible. While this is quite believable, there
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seems to be no simple proof. To get around the difficulty, we introduce a milder
irreducibility condition which is still stronger than weak-irreducibility. To this end,
note that the adjoint representation ad : G → GL(g) induces a representation
r = ad ⊗ ad∗ : G → GL(End g) given by r(g)(h) = adg ◦ h ◦ adg−1 . There is an
inner product k ⊗ k∗ on End g induced from k (minus the Killing form) on g, and
r is orthogonal with respect to k ⊗ k∗. Now End g = H1 ⊕ H⊥1 , where H1 is the
invariant subspace

(17.54) H1 := {h ∈ End (g) : r (g) (h) = h, for all g ∈ G} .

Proposition 17.30. Suppose that G is connected and semi-simple. If adg′ ∈
H1 for some g′ ∈ G, then g′ ∈ Z (G) := the center of G.

Proof. For all g ∈ G, we have adg′ = r (g) (adg′) = adg ◦ adg′ ◦ adg−1 or
adgg′g−1g′−1 = Id. We claim that gg′g−1g′−1 ∈ Z (G). Indeed, since G is connected,
any g′′ ∈ G can be written as expA. Using the fact that exp ◦adg = Adg ◦ exp for
all g ∈ G, we then have

Adgg′g−1g′−1 (g′′) = Adgg′g−1g′−1 (expA)

= exp
(
adgg′g−1g′−1A

)
= expA = g′′.

Thus, gg′g−1g′−1 ∈ Z (G). Since G is semi-simple, Z (G) is discrete. It follows that
gg′g−1g′−1 is the identity of G, because g (and hence gg′g−1g′−1) can be connected
to the identity by a path in G. Thus, gg′ = g′g and g′ ∈ Z (G) . �

Definition 17.31. We call ω ∈ C(P ) mildly-irreducible if there is no nonzero
element of H⊥1 , which is fixed by all transformations r(g0) as g0 ranges over the
holonomy group G0 of ω.

Clearly, ω irreducible (i.e., G0 = G) ⇒ ω mildly-irreducible (i.e., Z(G0) is
discrete). Moreover, we have

Proposition 17.32. Let π : P →M be a principal G-bundle, where G is con-
nected and semi-simple, let ω ∈ C(P ). For E := P ×G g, let End (E) = End1 (E)⊕
End1 (E)

⊥
be the orthogonal decomposition arising from End g = H1 ⊕ H⊥1 in

(17.54). We have ω mildly-irreducible, if and only if

Ker
(
Dω : C∞(End1 (E)

⊥
)→ Ω1

(
End1 (E)

⊥
))

= 0.

Moreover, if ω is mildly-irreducible, then

1. Z(G0) = Z (G)
2. The isotropy group Iω of ω is {Rg : g ∈ Z (G)}
3. ω is weakly-irreducible (see Definition 17.14, p. 461).

Proof. Suppose that Dωα = 0 for α ∈ C∞(End1 (E)
⊥

) where ω is mildly-
irreducible. Then α (regarded as in C(P,H⊥1 )) is constant on the holonomy bundle
P0 of ω through some p0 ∈ P (see Section 16.16.8). Since α is equivariant as well,
we have (for g0 ∈ G0 = holonomy group of ω) r(g−1

0 )α(p0) = α(p0g0) = α(p0),
whence α(p0) ∈ H⊥1 is fixed by all members of r(G0). Thus, α(p0) = 0 since ω is
mildly-irreducible, and so α = 0. Conversely, if ω is not mildly-irreducible, then
there is 0 6= h ∈ H⊥1 invariant under r(G0). Let α be the constant function h on
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P0, and note that α extends by equivariance to a nonzero element of C(P,H⊥1 ) in
KerDω.

For (1), suppose that gc ∈ Z (G0). Then adgc ∈ End (g) is invariant under all
elements of r(G0), since for all A ∈ g and g0 ∈ G0,

(r(g0) (adgc)) (A) = adg0
◦ adgc ◦ adg−1

0
(A)

= g0gc
(
g−1

0 Ag0

)
gc
−1g−1

0 = gcAgc
−1 = adgc (A) .

The same is true of the projection of adgc onto H⊥1 . Hence, ω mildly-irreducible
implies that adgc ∈ H1. Then gc ∈ Z (G) by Proposition 17.30. For (2) note that
any z ∈ Z (G), Rz : P → P is a gauge transformation which acts trivially on C(P ),
since Rz · ω = R∗z−1ω = adzω = ω for all ω ∈ C(P ). By Proposition 16.61, p. 426,
the homomorphism Iω → G given by Φ (f) 7→ f (p0) maps the isotropy group
Iω isomorphically onto the centralizer Z (G0). Thus, for ω mildly-irreducible, it
follows from Z (G0) = Z (G) that Iω = {Rz : z ∈ Z (G)}. For (3), note that since
Z(G0) = Z (G) is discrete by (1), ω is weakly-irreducible by Proposition 17.13,
p. 461. �

In distinction to Proposition 17.28, the following result essentially states that
near a mildly-irreducible connection ω, the set

Sω =
{
ω + τ : τ ∈ Ω

1
(P, P ×G g) and δωτ = 0

}
serves as a global slice. In other words, no two distinct connections in Sω near a
mildly-irreducible ω are gauge equivalent by a possibly large gauge transformation.
Some key ideas we use in the proof were inspired by [AHS2].

Theorem 17.33. Let ω ∈ C(P ) be mildly-irreducible. Then there is a constant
C > 0, such that if ‖ω − ω′‖p,k+1 ≤ C for ω′ ∈ C(P ), then ω′ is mildly-irreducible.

Also, if pk > 4, ω1, ω2 ∈ Sω with ‖ω − ωi‖p,k+1 ≤ C (i = 1, 2), and there is

F ∈ GA (P )
p,k+2 ⊆ W p,k+2

(
P ×G End

(
CN
))

with ω2 = F−1∗ω1, then F ∈ Iω =
{Rz : z ∈ Z (G)}, and hence ω2 = ω1.

Proof. By Proposition 17.32, we know that ω′ ∈ C(P ) is mildly-irreducible if
and only if

Ker
(
Dω′ : C∞(End1 (E)

⊥
)→ Ω1

(
End1 (E)

⊥
))

= 0.

Using Proposition 17.22, note that ω′ 7→ Dω′ extends to a C∞ map

C(P )p,k+1 → L(W p,k+1(End1 (E)
⊥

),W p,k(End1 (E)
⊥ ⊗ Λ1(M)),

where L (V1, V2) := bounded linear maps from V1 to V2. Since the subset of injective
bounded linear maps is open, we see that the mildly-irreducible connections form
an open subset of C(P )p,k+1. This proves the first assertion of Theorem 17.33.

Let τ = ω2 − ω1 ∈W p,k+1
(
E ⊗ Λ1 (M)

)
, and let

f ∈ C (P,G)
p,k+2 ⊆W p,k+2

(
P ×G gl

(
CN
))

correspond to F−1 ∈ GA (P )
p,k+2

(i.e., f = Φ
(
F−1

)
or F (p) = pf(p) for all

p ∈ P ). Note that 2 < (k + 2)− 4/p for pk > 4, whence f is C2 by (17.46), p. 468.
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By (16.27), p. 382, we have

ω2 = F−1∗ω1

⇔ ω2 = f−1df + f−1ω1f

= f−1 (df + ω1f) = f−1 (df + ω1f − fω1) + ω1

⇔ τ = ω2 − ω1 = f−1 (df + [ω1, f ]) = f−1 (Dω1f) .(17.55)

The idea is to prove that if C is sufficiently small (so that ‖τ‖p,k+1 will also be

small), then F will be close to some Rz (z ∈ Z (G)) or equivalently z−1f will be
close enough to the constant map (to the identity Id of G) so that we can apply
Theorem 17.28 to conclude (since ω1, ω2 ∈ Sω) that Rz−1 ◦ F = Id (or F = Rz).

Since Ker
(
Dω1 |End1(E)⊥

)
= 0, we know that the positive self-adjoint elliptic

operator

∆ω1 = δω1Dω1 : C∞
(

End1 (E)
⊥
)
→ C∞

(
End1 (E)

⊥
)

has a positive smallest eigenvalue λ. Thus, for η ∈ C∞
(

End1 (E)
⊥
)
,

(17.56) ‖Dω1η‖2 = (∆ω1η, η) ≥ λ ‖η‖2 .
Recall from (17.55) that τ = f−1 (Dω1f) ∈ W p,k+1

(
E ⊗ Λ1 (M)

)
, where f ∈

C (P,G)
p,k+2

. Via the representation ad : G →O(g) ⊂ End (g), we may associate

to each f ∈ C (P,G)
p,k+2

, some fEnd ∈W p,k+2 (End (E)). Note also that ad : g→
End(g) induces a map

W p,k+1
(
E ⊗ Λ1 (M)

)
→W p,k+1

(
End (E)⊗ Λ1 (M)

)
Applying this to both sides of the equation τ = f−1 (Dω1f), we obtain an equation,
say

τEnd =
(
f−1 (Dω1f)

)
End

= f−1
End (Dω1fEnd) ,

where both sides are in W p,k+1
(
End (E)⊗ Λ1 (M)

)
. According to End (E) =

End1 (E)⊕ End1 (E)
⊥

, we can orthogonally decompose(
f−1 (Dω1f)

)
End

=
(
f−1 (Dω1f)

)
End1

+
(
f−1 (Dω1f)

)
End⊥1

.

Then, pointwise,

|τEnd|2 =
∣∣(f−1 (Dω1f)

)
End

∣∣2 = |(Dω1f)End|
2 ≥

∣∣∣(Dω1f)End⊥1

∣∣∣2 .
Upon integrating this, (17.56) yields

(17.57a) ‖τEnd‖2 ≥
∥∥∥(Dω1f)End⊥1

∥∥∥2

≥ λ
∥∥∥fEnd⊥1

∥∥∥2

.

From Proposition 17.20, we know that there is a constant K so that

(17.58a) max (|τEnd|) ≤ K ‖τEnd‖p,k+1 .

Since d

(∣∣∣fEnd⊥1

∣∣∣2) = 2
〈
fEnd⊥1

, Dω1fEnd⊥1

〉
,∣∣∣∣d(∣∣∣fEnd⊥1

∣∣∣2)∣∣∣∣ ≤ 2
∣∣∣Dω1

(
fEnd⊥1

)∣∣∣ ∣∣∣fEnd⊥1

∣∣∣
= 2 |τEnd|

∣∣∣fEnd⊥1

∣∣∣ ≤ K ‖τEnd‖p,k+1

∣∣∣fEnd⊥1

∣∣∣ .
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Hence, for ‖τ‖p,k+1 sufficiently small, can assure that

∣∣∣∣d(∣∣∣fEnd⊥1

∣∣∣2)∣∣∣∣ < ε on M.

This implies that
∣∣∣fEnd⊥1

∣∣∣ can be made arbitrarily close to a constant function

on M as ‖τ‖p,k+1 → 0. In fact, by (17.57a) and (17.58a), we know this constant
function must be zero. Consequently, fEnd = fEnd1 +fEnd⊥1

can be made arbitrarily

C0 close to the subbundle End (E)1. By Proposition 17.30 and the definition of

fEnd, it follows that f ∈ C (P,G)
p,k+2

can be made arbitrarily C0 close to the
constant map P → {z} for some z ∈ Z (G) for ‖τ‖p,k+1 sufficiently small. Then

zf−1 ∈ C (P,G)
p,k+2

is C0 close to the constant map with value I ∈ G. Thus,

zf−1 = Exp s for some s ∈ C (P,G)
p,k+2

, and

(Exp s) · ω1 =
(
zf−1

)
· ω1 =

(
zf−1

)
d
((
zf−1

)−1
)

+
(
zf−1

)
ω1

(
zf−1

)−1

= f−1df + f−1ω1f = F · ω1 = ω2.

By the same computation as in the proof of Theorem 17.28, the equation

(Exp s) · ω1 − ω1 = ω2 − ω1 = τ

can be expanded to yield(
1 +

∞∑
n=1

1

(n+ 1)!
adns

)
Dω1s = τ.

Since max |s| can be made arbitrarily small for ‖τ‖p,k+1 sufficiently small. Thus,

for sufficiently small ‖τ‖p,k+1 , |ads| will be small enough so that the series can be
inverted, say (

1 +

∞∑
n=1

1

(n+ 1)!
adns

)−1

= 1 +

∞∑
n=1

cnad
n
s

for constants cn. We then have Dω1s = (1 +
∑∞
n=1 cnad

n
s )τ , and by Proposition

17.22

(17.59) ‖Dω1s‖p,j ≤ (1 +

∞∑
n=1

cnK
n ‖s‖np,j) ‖τ‖p,k+1 ,

for each j ∈ {0, . . . , k + 1} and some constant K > 0, independent of s and τ . As
a consequence of the definition of Sobolev spaces, we have

(17.60) ‖s‖p,j+1 ≤ C
(
‖Dω1s‖p,j + ‖s‖p,0

)
.

As ‖τ‖p,k+1 → 0, we have ‖s‖p,0 → 0 (since then max |s| → 0 and M has finite

volume). By (17.59), as ‖τ‖p,k+1 → 0, we then have ‖Dω1s‖p,0 → 0, in which case

‖s‖p,1 → 0 by (17.60). We then see inductively that if ‖s‖p,j → 0 as ‖τ‖p,k+1 → 0,

then ‖s‖p,j+1 → 0 as ‖τ‖p,k+1 → 0 for j ∈ {0, . . . , k + 1}. Thus, ‖s‖p,k+2 → 0 as

‖τ‖p,k+1 → 0. Hence for ‖τ‖p,k+1 sufficiently small, we will have ‖s‖p,k+2 small
enough so that if Exp s · ω1 = ω2, then Exp s = Id by Theorem 17.28 since ω1 and
ω2 are in Sω. �

Let C (P )
+
m denote the set (assumed nonvoid) of mildly irreducible self-dual

C∞ connections on P . We now show how to use the local slices Sω, ω ∈ C (P )
+
m
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to introduce a C∞ atlas on M+ := C (P )
+
m /GA(P ) in such a way that the topol-

ogy induced on M+ by the atlas is Hausdorff and dim (M+) = 2ch(E)[M ] −
dimG(χ(M)− sig(M)) found in Theorem 17.15, p. 462.

For each ω ∈ C (P )
+
m, we choose a neighborhood of ω, say Uω ⊆ Sω ∩ C (P )

+
m,

such that the function Uω →M+ given by

ω′ 7→ [ω′] := {F · ω′ : F ∈ GA(P )}

is injective; Uω exists by Theorem 17.33. Let [Uω] denote the image of Uω in M+,
and let φω : [Uω]→ Uω be the inverse. We know from Theorem 17.27, that we can

(and do) choose Uω small enough so that Uω is a C∞ submanifold of C (P )
p,k+1

.
To show that the φω constitute an atlas, we need to prove that

φω ◦ φ−1
ω′ : φω′ ([Uω] ∩ [Uω′ ])→ φω ([Uω] ∩ [Uω′ ])

is C∞ if [Uω] ∩ [Uω′ ] is nonempty. Select ω′′ ∈ Uω′ , such that [ω′′] ∈ [Uω]. Then,
there is F ∈ GA(P ), such that F · ω′′ ∈ Uω. The map ω̃ 7→ F · ω̃ is a C∞

diffeomorphism of C (P )
p,k+1

, as one can verify using Proposition 16.28, p. 382, and

Proposition 17.22. Hence F · Uω′ is a C∞ submanifold of C (P )
p,k+1

containing
F · ω′′ ∈ Uω. A neighborhood of F · ω′′ in F · Uω′ will be contained in the ball
of radius C1 about ω in Theorem 17.28, provided we choose the Uω small enough.
Then Theorem 17.28 provides us with a C∞ map ω+ τ 7→ Exp(σ (τ))(ω+ τ) which
will carry this neighborhood of F · ω′′ smoothly into Uω, proving that φω ◦ φ−1

ω′ is
C∞ at the arbitrary ω′′ ∈ φω′ ([Uω] ∩ [Uω′ ]). Note that Theorem 17.29 is needed to
ensure that if ω + τ is C∞, then Exp(σ (τ)) given by Theorem 17.28 is in GA(P )
(i.e., Exp(σ (τ)) is C∞). The topology onM+ is the smallest topology that makes
the maps φω continuous. To show that M+ is Hausdorff, select ω and ω′ with
[ω] 6= [ω′], and set τ = ω′ − ω ∈ Ω1(E). We argue as in [AHS2] by first noting
that [ω] 6= [ω′] means that for all f ∈ C (P,G) ∼= GA (P )

0 6= f−1 · ω − ω′ = f−1df + f−1ωf − ω + ω − ω′

= f−1 (df + ωf − fω) + ω − ω′ = f−1Dωf − τ.(17.61)

As in the proof of Theorem 17.33, we can consider the fEnd ∈ C∞(EndE) (E :=
P ×G g) associated with f ∈ C (P,G); and τEnd ∈ Ω1(EndE) associated with
τ ∈ Ω1(E). If we can show that

(17.62)
∥∥f−1

EndD
ω (fEnd)− τEnd

∥∥
2,0

> ε > 0.

as f varies, over C (P,G), then
∥∥f−1 · ω − ω′

∥∥
2,0

will be bounded away from 0. For

pk > 4 (indeed p (k + 1) > 2), by (17.47) we would then have
∥∥f−1 · ω − ω′

∥∥
p,k+1

bounded away from 0. Thus, the orbits of ω and ω′ will be bounded away from each
other in C(P )p,k+1, and we will have that M+ is Hausdorff. In order to establish
(17.62), we introduce

Dω − τEnd : C∞(EndE)→ Ω1(EndE) given by

(Dω − τEnd) (fEnd) := Dω (fEnd)− fEndτEnd, and

∆ω,τ := (Dω − τEnd)
∗

(Dω − τEnd) : C∞(EndE)→ C∞(EndE).
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Now, since fEnd is an isometry of EndE, we have∥∥f−1
EndD

ω (fEnd)− τEnd

∥∥
2,0

= ‖Dω (fEnd)− fEndτEnd‖2,0
= ‖(Dω − τEnd) (fEnd)‖2,0 ≥ λ

∥∥f⊥End

∥∥
2,0
,

where f⊥End is the projection of fEnd onto the orthogonal complement of K :=
Ker (∆ω,τ ) and λ is the smallest positive eigenvalue of ∆ω,τ . We need to show
that

∥∥f⊥End

∥∥
2,0

is bounded away from 0. Suppose, on the contrary, that there is a

sequence fn ∈ GA(P ), such that ‖ (fn)
⊥
End 2,0 ‖ → 0. Since (fn)End is an isometry,

‖(fn)End‖2,0 is constant, and so (fn)End − (fn)
⊥
End is a bounded sequence in K,

with dimK <∞ since ∆ω,τ is elliptic. Thus, by passing to a subsequence, we may

assume that (fn)End − (fn)
⊥
End converges. Calling the limit h∞ ∈ K, we have

‖h∞ − (fn)End‖
2
2,0

=
∥∥∥h∞ − ((fn)End − (fn)

⊥
End

)∥∥∥2

2,0
+
∥∥∥(fn)

⊥
End

∥∥∥2

2,0
→ 0,

whence (fn)End → h∞ in L2 (EndE). We remark that h∞ = (f∞)End for some
f∞ ∈ GA (P ). To see this, note that ad : G → O (g) has discrete kernel Z (G).
Thus, if (f)End = (f ′)End, then f ′ = zf for some z ∈ Z (G). Hence, fn may
be replaced by znfn which converges in L2 to some f∞ ∈ GA (P ) for which
(f∞)End = limn→∞ (znfn)End = limn→∞ (fn)End = h∞. Thus, Dωf∞ − f∞τ = 0
or f−1

∞ Dωf∞ − τ = 0 in violation of (17.61). In summary, we have proved the
following.

Theorem 17.34. Let π : P →M be a principal G-bundle with G compact and
semi-simple over a compact, oriented, self-dual, Riemannian 4-manifold with scalar
curvature S ≥ 0 and S 6= 0. Then the space C(P )+

m/GA(P ) of moduli of mildly-
irreducible self-dual connections has (if non-empty) the structure of a Hausdorff
C∞ manifold of dimension

2ch (P ×G gC) [M ]− 1
2 dim (G) (χ (M)− sig (M)) .

Remark 17.35. If

C0 (P )
+
m :=

{
ω ∈ C (P )

+
m : Ker

(
∆ω : Ω2

− (P ×G gC)←↩
)

= {0}
}

is nonempty, then the same conclusion holds for C0 (P )
+
m /GA(P ), and we may

drop the self-duality and positive scalar curvature assumptions on M . It is likely a
proof that C0 (P )

+
m = C (P )

+
m for a generic class of metrics on M can be constructed

along the lines found [FU].



CHAPTER 18

The Local Index Theorem for Twisted Dirac
Operators

One of our main goals in this chapter, will be to show that the classical geomet-
ric operators such as the signature operator, the de Rham operator, the Dolbeaut
operator and even the Yang-Mills operator can all be locally expressed in terms of
twisted Dirac operators. The index of any of these operators (and their twists) can
then be obtained from the Local Index Theorem for twisted Dirac operators which
is proved in unusual detail. This theorem supplies a globally-defined n-form on
M , whose integral is the index of an operator which is perhaps only locally of the
form of a twisted Dirac operator, as with the classical geometric operators. This n-
form (or “index density”) is expressed in terms of curvature forms of characteristic
classes. The Index Theorem thus obtained then becomes a formula that relates a
global invariant quantity, namely the index of an operator, to the integral of a local
quantity involving curvature. This is in the spirit of the Gauss-Bonnet Theorem
which is a special case.

1. Clifford Algebras and Spinors

Let V be a real vector space with positive-definite inner product 〈·, ·〉.
Definition 18.1. The Clifford algebra Cl (V ) is the real algebra generated

by V and R with the relation

vw + wv = −2 〈v, w〉 , for all v, w ∈ V.
Note that the product of v and w in Cl (V ) is denoted by the plain juxtaposition

vw. Also, v2 := vv = −〈v, v〉 = −‖v‖2, and vw = −wv if 〈v, w〉 = 0. In the
following, we take {e1, . . . , en} to be an orthonormal basis of V .

Example 18.2. If dimV = 1, then e2
1 := e1e1 = −1, and Cl (V ) is isomorphic

to the algebra C of complex numbers, via α0 + α1e1 7→ α0 + iα1, for α0, α1 ∈ R.

Example 18.3. If dimV = 2, then it is easy to check that

α0 + α1e1 + α2e2 + α3e1e2 7→ α0 + α1i + α2j + α3k

defines an isomorphism Cl (V ) with the algebra H of quaternions. Note that

(e1e2)
2

= e1e2e1e2 = −e1e1e2e2 = −1, and (e1e2) e1 = −e2
1e2 = e2, etc..

Example 18.4. For dimV = 3, one can check that there is an isomorphism
Cl (V ) ∼= H⊕H determined by

e1 7→ (−i, i) , e2 7→ (−j, j) , e3 7→ (−k,k) .

483
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Example 18.5. If dimV = 4, we have an isomorphism, Cl (V ) ∼= H (2) := the
algebra of 2× 2 quaternionic matrices, determined by

(18.1) e1 7→
[

0 i
i 0

]
, e2 7→

[
0 j
j 0

]
, e3 7→

[
0 k
k 0

]
, e4 7→

[
0 −1
1 0

]
For dimV = n, we write Cl (V ) = Cln. In [LaMi], it is shown that there is

the following table of algebra isomorphisms
(18.2)

n 0 1 2 3 4 5 6 7 8
Cln ∼= R C H H⊕H H (2) C (4) R (8) R (8)⊕ R (8) R (16)

Here R (k), C (k) and H (k) denote the algebras of k×k matrices with entries in R,
C and H respectively. Moreover, it is also proven that there is periodicity relation
Cln+8

∼= Cl8 ⊗Cln = R (16)⊗Cln, so that this table can be extended indefinitely.
The case of non-degenerate indefinite inner products with signature (r, s) is also
handled in [LaMi]; we have only considered (n, 0).

Let Λ∗ (V ) = ⊕nk=1Λk (V ) be the exterior algebra of V . While Λ∗ (V ) is not
isomorphic to Cl (V ) as an algebra, there is a linear isomorphism of vector spaces

L : Λ∗ (V ) ∼= Cl (V ) determined by

L (ei1 ∧ · · · ∧ eik) := ei1 · · · eik , (i1 < · · · < ik) ,

where we continue to let {e1, . . . , en} be an orthonormal basis of V . It can be
shown that L is O(n)-equivariant and independent of the choice of orthonormal
basis. Moreover via L, the natural inner product on Λ∗ (V ) gives us an inner
product and norm on Cl (V ). There is an exponential map exp : Cl (V )→ Cl (V )
given by

exp (x) =

∞∑
k=0

1

k!
xk, x ∈ Cl (V ) ,

which converges, since
∥∥xk∥∥ ≤ ck ‖x‖k for some constant c depending on n but

not on x. Indeed, for x, y ∈ Cl (V ), each of the 2n components of xy (relative
to the basis {e1 · · · ek : i1 < · · · < ik}) can be no larger than 2n ‖x‖ ‖y‖, and so

‖xy‖ ≤
√

2n (2n ‖x‖ ‖y‖)2
= 23n/2 ‖x‖ ‖y‖.

We define the bracket (or commutator) of any x, y ∈ Cl (V ) , by [x, y] = xy−yx.
The linear subspace L

(
Λ2 (V )

)
is closed under bracket, since

[eiej , ehek] = eiejehek − ehekeiej = eiejehek + eh (eiek + 2δik) ej

= eiejehek + eheiekej + 2δikehej

= eiejehek − (eieh + 2δih) ekej + 2δikehej

= eiejehek − eiehekej − 2δihekej + 2δikehej

= eiejehek + eieh (ejek + 2δjk)− 2δihekej + 2δikehej

= eiejehek + eiehejek + 2δjkeieh − 2δihekej + 2δikehej

= eiejehek − ei (ejeh + 2δjh) ek + 2δjkeieh − 2δihekej + 2δikehej

= −2δjheiek + 2δjkeieh − 2δihekej + 2δikehej .
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For A = [aij ] , B = [bij ] ∈ so (n) (i.e., A,B anti-symmetric), we have (where we
implicitly sum over all indices)

[aijeiej , bhkehek] = aijbhk [eiej , ehek]

= −2aijbhkδjheiek + 2δjkaijbhkeieh − 2δihaijbhkekej + 2δikaijbhkehej

= −2 (AB)ik eiek − 2 (AB)ih eieh + 2 (BA)kj ekej + 2 (BA)hj ehej

= −4 [A,B]ij eiej .

Thus,

[− 1
4

∑
i,j

aijeiej ,− 1
4

∑
h,k

bhkehek] = − 1
4

∑
i,j

[A,B]ij eiej ,

which implies that

(18.3) c′ : L
(
Λ2 (V )

) ∼= so (n) , given by c′(− 1
4

∑
i,j

aijeiej) := A

is an isomorphism L
(
Λ2 (V )

) ∼= so (n) of Lie algebras. We define

Spin (n) := exp
(
L
(
Λ2 (V )

))
.

Before showing that

c : Spin (n)→ SO (n) , given by c (expx) := exp (c′ (x))

is a well defined double cover, we consider some examples.

Example 18.6. For Cl2, L
(
Λ2
(
R2
))

= {te1e2 : t ∈ R} , and

exp (te1e2) =

∞∑
k=1

1

k!
(te1e2)

k

= 1 + te1e2 + 1
2 t

2 (e1e2)
2

+ 1
6 t

2 (e1e2)
3

+ · · ·
= 1− 1

2 t
2 + · · ·+

(
t− 1

6 t
2 + · · ·

)
e1e2 = cos (t) + sin (t) e1e2.

Thus, Spin (2) = {cos (t) + sin (t) e1e2 : t ∈ R} .

Example 18.7. For Cl3, L
(
Λ2
(
R3
))

= {a1e2e3 + a2e3e1 + a3e1e2 : a1, a2, a2 ∈ R}.
If a : = a1e2e3 + a2e3e1 + a3e1e2, then

a2 = (a1e2e3 + a2e3e1 + a3e1e2)
2

= a2
1 (e2e3)

2
+ a2

2 (e3e1)
2

+ a2
3 (e1e2)

2

+ a1a2 (e2e3e3e1 + e3e1e2e3) + · · ·

= −
(
a2

1 + a2
2 + a2

3

)
= −‖a‖2 .

Thus, with sin t
t := 1− 1

6 t
2 + · · · (analytic), it follows that

exp (a) = cos (‖a‖) +
(
a− 1

6a3 + · · ·
)

= cos (‖a‖) +
sin (‖a‖)
‖a‖

a, and

Spin (3) =

{
α0 + α1e2e3 + α2e3e1 + α3e1e2 :

∑3

k=0
α2
k = 1

}
,

which may be regarded as the 3-sphere of unit quaternions.
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Example 18.8. To exhibit Spin (4), it is convenient to utilize the duality de-
composition Λ2

(
R4
)

= Λ+ ⊕ Λ−. Then L
(
Λ2
(
R4
))

= L (Λ+) ⊕ L (Λ−) and we
set

a = a1
1
2 (e2e3 + e1e4) + a2

1
2 (e3e1 + e2e4) + a3

1
2 (e1e2 + e3e4) ∈ L

(
Λ+
)

b = b1
1
2 (e2e3 − e1e4) + b2

1
2 (e3e1 − e2e4) + b3

1
2 (e1e2 − e3e4) ∈ L

(
Λ−
)
.

Under the isomorphism F : Cl4 ∼= H (2) determined by (18.1), it is easy to check
that

F (a + b) =

[
a1i+a2j + a3k 0

0 b1i+b2j + b3k

]
, and so

F (exp (a + b)) =

[
exp (a1i+a2j + a3k) 0

0 exp (b1i+b2j + b3k)

]
=

[
cos (‖a‖) + sin(‖a‖)

‖a‖ a 0

0 cos (‖b‖) + sin(‖b‖)
‖b‖ b

]
.

Thus, we have F : Spin (4) ∼= S3 × S3. To delineate Spin (4) itself, first note that
for v4 = e1e2e3e4,

F (v4) = F (e1e2e3e4) =

[
−1 0
0 1

]
.

Hence, Spin (4) consists of all elements of Cl4 of the form

exp (a + b) = F−1 (F (exp (a + b)))

= 1
2 (1− ν4) cos ‖a‖+

sin (‖a‖)
‖a‖

a+ 1
2 (1 + ν4) cos ‖b‖+

sin (‖b‖)
‖b‖

b

= 1
2 (cos ‖a‖+ cos ‖b‖) +

sin (‖a‖)
‖a‖

a

+
sin (‖b‖)
‖b‖

b + 1
2 (cos ‖b‖ − cos ‖a‖) ν4.

Note that here exp (a) exp (b) = exp (a + b) = exp (a) + exp (b)!

The “vector representation” or double cover c : Spin (n)→ SO (n) is defined by
means of the next result. Here dim (V ) = n, and L

(
Λ1 (V )

)
⊂ Cl (V ) are identified.

Proposition 18.9. For g ∈ Spin (n) and v ∈ V = L
(
Λ1 (V )

)
, let

(18.4) c (g) (v) := gvg−1 ∈ Cl (V ) .

Then c (g) (v) ∈ L
(
Λ1 (V )

)
= V . Also, c (g) ∈ SO (n) := SO (V ) and

(18.5) c : Spin (n)→ SO (n) .

is a double covering homomorphism (universal for n ≥ 3). Moreover, for c′ defined
as in (18.3), we have

(18.6) c (exp a) = exp (c′ (a)) ,

and so c′ is the Lie algebra homomorphism for c.

Proof. We write g = exp (a) = exp
(
− 1

4

∑
i,j aijeiej

)
for a ∈ L

(
Λ2 (V )

)
. To

show that gvg−1 ∈ V , it suffices to verify that

(18.7) exp (ta) v exp (−ta) = exp (tA) v,
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where A = c′ (a) ∈ so (n). Since each side of (18.7) is a Cl (V )-valued power series
in t with infinite radius of convergence, we need only check that all derivatives of
both sides agree at t = 0; i.e.,

(18.8) dk

dtk
(exp (ta) v exp (−ta))

∣∣∣
t=0

= Ak (v) , k = 0, 1, 2, . . . ,

In verifying this, we will use the identity

eiejek − ekeiej = ei (−ekej − 2δkj)− ekeiej = −eiekej − 2δkjei − ekeiej
= − (−ekei − 2δki) ej − 2δkjei − ekeiej
= 2 (δkiej − δkjei) .

At t = 0,

d
dt (exp (ta) v exp (−ta)) = [a, v] = − 1

4

∑
i,j

aij [eiej , v]

= − 1
4

∑
i,j,k

aij [eiej , vkek] = − 1
4

∑
i,j,k

aijvk (eiejek − ekeiej)

= − 1
4

∑
i,j,k

aijvk2 (δkiej − δkjei) = − 1
2

∑
i,j,k

(aijvkδkiej − aijvkδkjei)

= − 1
2

∑
i,j

(aijviej − aijvjei) =
∑
i,j

aijvjei = A (v) .

At arbitary t,

d
dt (exp (ta) v exp (−ta)) = d

du (exp ((t+ u) a) v exp (− (t+ u) a))|u=0

= exp (ta) d
du (exp (ua) v exp (−ua))|u=0 exp (−ta)

= exp (ta)A (v) exp (−ta) .

Hence,

dk

dtk
(exp (ta) v exp (−ta)) = exp (ta)Ak (v) exp (−ta) ,

and evaluating both sides at t = 0 yields (18.8).
Now, c (g) ∈ SO (n), since

−‖c (g) v‖2 = −
∥∥gvg−1

∥∥2
=
(
gvg−1

) (
gvg−1

)
= gvvg−1 = −‖v‖2 g−1g = −‖v‖2 .

Thus, c (Spin (n)) ⊆ SO (n). Note that (18.6) does in fact hold by (18.7) with
t = 1. Since Spin (n) and SO (n) are connected and c′ : spin (n) → so (n) is an
isomorphism, it follows that c (Spin (n)) is the connected component of I ∈ SO (n),
namely SO (n) itself, and c : Spin (n) → SO (n) is a covering homomorphism.
Since π1 (SO (n)) ∼= Z2 for n > 2, it follows from covering space theory that
π1 (Spin (n)) ∼= π1 (SO (n)) /Ker c. Then for n > 2, Spin (n) is the universal,
(simply-connected) covering space of SO (n) if ±1 ∈ Ker c. Certainly, 1 ∈ Ker c,

and if −1 ∈ Spin (n), then −1 ∈ Ker c, since c (−1) (v) = −1v (−1)
−1

= v. Thus,
it remains to check that −1 ∈ Spin (n), but this is immediate from exp (te1e2) =
cos (t) + sin (t) e1e2 with t = π. For n = 2, c : Spin (2) → SO (2) is still a double
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cover, since

c (exp (te1e2)) (e1) = exp (te1e2) e1 exp (−te1e2)

= (cos (t) + sin (t) e1e2) e1 (cos (t)− sin (t) e1e2)

= cos2 (t) e1 − cos (t) sin (t) e1e1e2

+ sin (t) cos (t) e1e2e1 − sin2 (t) e1e2e1e1e2

=
(
cos2 (t)− sin2 (t)

)
e1 + 2 cos (t) sin (t) e2

= cos (2t) e1 + sin (2t) e2.

However, π1 (SO (2)) ∼= Z so that the covering is not universal for n = 2. �

Besides the vector representation c : Spin (n)→ SO (n), there are fundamental
spinor representations, which we will describe. Since the index of an elliptic operator
on a compact, odd-dimensional manifold is always 0, for simplicity we assume that
n is even, say n = 2m. Then there is a unique (up to equivalence) irreducible
representation (homomorphism of algebras over R)

ρ : Cl2m → End (Σ2m) ,

where End (Σ2m) is the algebra of C-linear endomorphisms of some complex vector
space Σ2m, the elements of which are called spinors. Here “irreducible” means that
Σ2m has no proper subspace which is invariant under all operators in ρ (Cl2m). In
the following we give an explicit construction of Σ2m and ρ.

Let 〈·, ·〉 be the standard Hermitian inner product on Cm given by

〈z, w〉 =
∑m

k=1
zkwk.

We identify Cm with Rn = R2m, and for w ∈ Cm, we have C-linear function

w∧ : Λk (Cm)→ Λk+1 (Cm)

given by α 7→ w ∧ α for α ∈ Λk (Cm). Moreover, there is a C-linear function

wx : Λk (Cm)→ Λk−1 (Cm) , defined via

wx(v1 ∧ · · · ∧ vk) :=

k∑
j=1

(−1)
j+1 〈vj , w〉 v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vk,

where v̂j means that the factor vj is omitted. While wx is C-linear, the function
Cm → End (Λ∗ (Cm)) given by w 7→ wx is R-linear (but C-conjugate linear). There
is a Hermitian inner product 〈·, ·〉 on Λk (Cm) induced by that on Cm, such that
{ei1 ∧ · · · ∧ eik : i1 < · · · < ik} is an orthonormal basis for Λk (Cm) if e1, . . . , em
is an orthonormal basis for Cm. Relative to this inner product, wx and w∧ are
adjoints, since for all v1, · · · , vk, u1, · · · , uk−1 ∈ Cm we have

〈v1 ∧ · · · ∧ vk, w ∧ u1 ∧ · · · ∧ uk−1〉

=

k∑
j=1

(−1)
j+1 〈vj , w〉 〈v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vk, u1 ∧ · · · ∧ uk−1〉

=

〈∑k

j=1
(−1)

j+1 〈vj , w〉 v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vk, u1 ∧ · · · ∧ uk−1

〉
= 〈wx(v1 ∧ · · · ∧ vk) , u1 ∧ · · · ∧ uk−1〉 .
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Proposition 18.10. Let ρ1 : Cm → End (Λ∗ (Cm)) be given by

ρ1 (w) (α) := (w ∧ − wx) (α) = w ∧ α− wxα.

Then ρ1 uniquely extends to an R-linear homomorphism

ρ : Cl2m → End (Λ∗ (Cm)) ,

of algebras over R.

Proof. Using w ∧ w ∧ α = 0 and wx(wxα) = 0, we obtain

(ρ1 (w) ◦ ρ1 (w)) (α) = w ∧ (w ∧ α− wxα)− wx(w ∧ α− wxα)

= w ∧ w ∧ α− w ∧ (wxα)− wx(w ∧ α) + wx(wxα)

= −w ∧ (wxα)− wx(w ∧ α)

= −〈w,w〉α,(18.9)

where in the last equality we used

wx(w ∧ (v1 ∧ · · · ∧ vk))

= 〈w,w〉 v1 ∧ · · · ∧ vk −
∑k

j=1
(−1)

j+1 〈vj , w〉w ∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vk

= 〈w,w〉 v1 ∧ · · · ∧ vk − w ∧ (wx(v1 ∧ · · · ∧ vk)) .

It follows from (18.9) that

ρ1 (w1) ◦ ρ1 (w2) + ρ1 (w1) ◦ ρ1 (w2)

= − (〈w1, w2〉+ 〈w2, w1〉) Id = −2 Re 〈w1, w2〉 Id .

Since Re 〈w1, w2〉 is the standard inner product on R2m ∼= Cm, ρ1 extends uniquely
to an R-linear homomorphism

ρ : Cl2m → End (Λ∗ (Cm)) ,

of algebras over R. �

Let Cl2m := C⊗R Cl2m be the complex Clifford algebra. One of our goals is to
prove that the complex linear extension of ρ, say

ρC : Cl2m → End (Λ∗ (Cm)) ,

is an isomorphism of algebras over C. For this and other reasons, it is convenient
to introduce more notation. Let (f1, · · · , fm) be an orthonormal basis of Cm, then

(18.10) (e1, · · · , e2m) := (f1, if1, · · · , fm, ifm)

is an oriented, orthonormal basis of R2m, and the complex volume element is

(18.11) ωC := ime1 · · · e2m ∈ Cl2m;

this is independent of the choice of oriented orthonormal basis of R2m. We have

ω2
C = (−1)

m
e1 · · · e2me1 · · · e2m

= (−1)
m

(−1)
2m

(−1)
(2m−1)+(2m−2)+···+1

= (−1)
m+2m(2m−1)/2

= (−1)
m+m(2m−1)

= (−1)
2m2

= 1, and so

ρC (ωC)
2

= ρC
(
ω2
C
)

= ρC (1) = Id .(18.12)
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Since ρ1 (w) = w ∧ − wx is the difference between an operator and its adjoint,
ρ1 (w) is skew-adjoint. We define skew-adjoint operators

γj := ρC (ej) = ρ (ej) , for j ∈ {1, . . . , 2m} .
In harmony with the physics literature, we set γn+1 = γ2m+1 := γ1 · · · γn, so that
ρC (ωC) = imγ2m+1. The case n = 4 abounds in physics, as does γ5 = γ1γ2γ3γ4,
but due to the indefiniteness of the metric in relativity, γ2

4 = −γ2
i for i = 1, 2, 3. We

will remain in the Euclidean category. Using the fact that the γj are skew-adjoint,
it is straightforward (but tedious) to show directly that ρC (ωC) is self-adjoint. But,
we can easily get this from the fact that ρC (ωC) is clearly either self-adjoint or
skew-adjoint, and, unlike ρC (ωC), the square of a skew-adjoint transformation has

nonpositive eigenvalues (squares of pure imaginaries). Since ρC (ωC)
2

= Id, the
eigenvalues of ρC (ωC) are ±1. As ρC (ωC) is self-adjoint, the eigenspaces of ρC (ωC),
say

(18.13) Σ+
2m := (ρC (ωC) + Id) Λ∗ (Cm) and Σ−2m := (ρC (ωC)− Id) Λ∗ (Cm) ,

are orthogonal. Using the notation (18.10),

ρ (e1e2) = (e1 ∧ − e1x) ◦ (e2 ∧ − e2x)

= (f1 ∧ − f1x) ◦ (if1 ∧ − (if1) x)

= (f1 ∧ − f1x) ◦ (if1 ∧ + i (f1) x)

= (i (f1∧) ◦ (f1x)− i (f1x) ◦ (f1∧))

= i ((f1∧) ◦ (f1x)− (f1x) ◦ (f1∧)) , and in general

ρ (e2j−1e2j) = i ((fj∧) ◦ (fj x)− (fj x) ◦ (fj∧)) .

Thus, the action of ρ (e2j−1e2j) on fj1 ∧ fj2 ∧ · · · ∧ fjl is given by

ρ (e2j−1e2j) (fj1 ∧ fj2 ∧ · · · ∧ fjl)

=

{
i (fj1 ∧ fj2 ∧ · · · ∧ fjl) if jk = j for some k
−i (fj1 ∧ fj2 ∧ · · · ∧ fjl) if jk 6= j for all k.

(18.14)

Hence, when restricted to Λl (Cm), ρC (ωC) is

imρ (e1 · · · e2m) |Λl(Cm) = imil (−i)m−l Id = (−1)
l
Id , and so

Σ+
2m = Λeven (Cm) :=

⊕
l even

Λl (Cm) , while

Σ−2m = Λodd (Cm) :=
⊕

l odd
Λl (Cm) .

Using this (or the easy fact that for j ∈ {1, . . . , 2m} , γ2m+1 ◦ γj = −γ2m+1 ◦ γj),
we have γj

(
Σ±2m

)
= Σ∓2m, and indeed γj : Σ±2m

∼= Σ∓2m with inverse −γj . Moreover,

for j, k ∈ {1, . . . , 2m} , the spaces Σ±2m are each invariant under the compositions
γj ◦ γk, and so ρ (spin (2m))

(
Σ±2m

)
⊂ Σ±2m. For j 6= k,

(γj ◦ γk)
∗

= γ∗k ◦ γ∗j = −γk ◦ −γj = −γj ◦ γk and

Tr (γj ◦ γk) = −Tr (γk ◦ γj) = −Tr (γj ◦ γk) .

Thus, the elements of ρ (spin (2m)) are skew-adjoint and traceless, and so ρ (Spin (2m)) ⊂
SU (Λ∗ (Cm)). In summary, ρ : Spin (2m)→ SU (Λ∗ (Cm)) is the orthogonal direct
sum of two special unitary “half-spinor” or “chiral” representations

(18.15) ρ± : Spin (2m)→ SU
(
Σ±2m

)
.
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Definition 18.11. Let

Σ2m := Λ∗ (Cm) and π± := 1
2 (ρC (ωC)± Id) : Σ2m → Σ±2m.

The supertrace of an endomorphism A ∈ End (Σ2m) is

Str (A) := Tr
(
π+ ◦

(
A|Σ+

2m

))
− Tr

(
π− ◦

(
A|Σ−2m

))
= Tr (A ◦ ρC (ωC)) = imTr (A ◦ γ2m+1) .

The following result will be crucial in evaluating the local index density of the
twisted Dirac operator.

Proposition 18.12. For k ∈ {1, . . . , 2m} with j1, j2, . . . , jk distinct, we have

Tr (γj1γj2 · · · γjk) = 0, and

Str (γj1γj2 · · · γjk) = im Tr (γj1γj2 · · · γjkγ2m+1)

=

{
0 if k < 2m

(−2i)
m
εj1···j2m if k = 2m.

The 2n endomorphisms consisting of Id and those γj1γj2 · · · γjk with j1 < j2 < · · · <
jk, k ∈ {1, . . . , 2m}, form a basis of End (Σ2m).

Proof. Since γj
(
Σ±2m

)
⊆ Σ∓2m, we have Tr (γj) = 0. More generally, for k odd

and j1, j2, . . . , jk distinct, we have γj1γj2 · · · γjk
(
Σ±2m

)
⊆ Σ∓2m and Tr (γj1γj2 · · · γjk) =

0. For k even and j1, j2, . . . , jk distinct, we have

γj1γj2 · · · γjk = (−1)
k−1

γj2 · · · γjkγj1 = − (γj2 · · · γjk) γj1 , and so

Tr (γj1γj2 · · · γjk) = −Tr ((γj2 · · · γjk) γj1) = −Tr (γj1 (γj2 · · · γjk)) = 0.

If k < 2m, j1, j2, . . . , jk are distinct, and the complementary set of indices is
{h1, . . . , h2m−k} := {1, . . . , 2m} − {j1, j2, . . . , jk}, then

Str (γj1γj2 · · · γjk) = im Tr (γj1γj2 · · · γjkγ2m+1)

= ±im Tr
(
γh1γh2 · · · γh2m−k

)
= 0.

If k = 2m and j1, j2, . . . , jk are distinct, then

Str (γj1γj2 · · · γj2m) = εj1···j2m Str (γ1γ2 · · · γ2m)

= εj1···j2mi
m Tr

(
(γ2m+1)

2
)

= εj1···j2mi
m Tr

((
i−mρC (ωC)

)2)
= εj1···j2mi

m (−1)
m

Tr (Id) = εj1···j2m (−i)m 2m = εj1···j2m (−2i)
m
.

Since dim End (Σ2m) = (dim Σ2m)
2

= 22m, the 2n endomorphisms consisting of Id
and the γj1γj2 · · · γjk with j1 < j2 < · · · < jk will form a basis of End (Σ2m), if they
are shown to be independent. For this, let

c0I +
∑

j1<j2<···<jk
cj1 . . .jk γj1γj2 · · · γjk = 0,
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for c0, cj1 . . .jk ∈ C and let {h1, . . . , h2m−k} := {1, . . . , 2m}−{l1, l2, . . . , lk} for some
l1 < l2 < · · · < lk. Then

0 = Str
(
γh1γh2 · · · γh2m−k

(
c0I +

∑
j1<j2<···<jk

cj1 . . .jk γj1γj2 · · · γjk
))

= cl1 . . .lk Str
(
γh1γh2 · · · γh2m−kγl1γl2 · · · γlk

)
= ± (−2i)

m
cl1 . . .lk ,

with the convention that cl1 . . .lk = c0 if k = 0. �

Corollary 18.13. The representation ρC : Cl2m → End (Σ2m) is irreducible
and an isomorphism of complex algebras. Moreover, the representations ρ± : Spin (2m)→
End

(
Σ±2m

)
are irreducible and inequivalent.

Proof. The last statement of Proposition 18.12 implies that ρC : Cl2m →
End (Σ2m) is an isomorphism, so that in particular ρC (Cl2m) = End (Σ2m). As
End (Σ2m) acts transitively on the set of subspaces of Σ2m of a given dimension,
End (Σ2m) leaves no proper subspace of Σ2m invariant, and hence ρC is irreducible.
Let

End0 (Σ2m) :=
{
A ∈ End (Σ2m) : A

(
Σ±2m

)
⊆ Σ±2m

}
and

End1 (Σ2m) :=
{
A ∈ End (Σ2m) : A

(
Σ±2m

)
⊆ Σ∓2m

}
.

The linear isomorphism L : Λ∗
(
R2m

) ∼= Cl2m extends to LC : Λ∗
(
C2m

) ∼= Cl2m.
We have

Cl2m = LC
(
Λeven

(
C2m

))
⊕ LC

(
Λodd

(
C2m

))
,

ρC
(
L
(
Λeven

(
C2m

)))
⊆ End0 (Σ2m) , and

ρC
(
L
(
Λodd

(
C2m

)))
⊆ End1 (Σ2m) .

As ρC is an isomorphism, these last two inclusions are equalities. In particular, the
restrictions

π± ◦ ρC : L
(
Λeven

(
C2m

))
→ End

(
Σ±2m

)
are irreducible representations of the subalgebra L

(
Λeven

(
C2m

))
⊂ Cl2m. Since

L
(
Λeven

(
C2m

))
is generated by L

(
Λ2
(
R2m

))
= spin (2m), there is also no proper

subspace of Σ+
2m or Σ−2m which is invariant under spin (2m) or under Spin (2m) =

exp (spin (2m)). Thus, ρ± : Spin (2m) → SU
(
Σ±2m

)
are irreducible representations

of Spin (2m). Using the computation in Example 18.6, each of e1e2, . . . , e2m−1e2m

are in Spin (2m). Hence e1e2 · · · e2m−1e2m ∈ Spin (2m). Since ρ (e1e2 · · · e2m−1e2m) =
γ2m+1 = ±i−m on Σ±2m, the representations π+ ◦ ρ and π− ◦ ρ are inequivalent. �

Proposition 18.14. Let R : Cl2m → End (V ) be a finite-dimensional repre-

sentation. Then V =
⊕N

k=1Wk where W1, . . . ,WN of V are invariant subspaces,
such that Rk : Cl2m → End (Wk) defined by Rk (α) = R (α) |Wk

is equivalent to
ρC : Cl2m → End (Λ∗ (Cm)) for all k = {1, . . . , N}. In particular, all irreducible
representations of Cl2m are equivalent to ρC. Moreover, let

Hom0 (Σ2m, V ) := {F ∈ Hom (Σ2m, V ) : F (ρC (α) (w)) = R (α) (F (w))}
be the subspace of Hom (Σ2m, V ) of Cl2m-equivariant linear maps; note that Cl2m
acts trivially on Hom0 (Σ2m, V ). There is then an isomorphism of Cl2m-modules

Φ : Hom0 (Σ2m, V )⊗ Σ2m
∼= V given by Φ (φ⊗ ψ) := φ (ψ) ;
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Proof. Let e1, . . . , e2m be an oriented, orthonormal basis for R2m. Let σj =
ie2j−1e2j ∈ Cl2m for j ∈ {1, . . . ,m}. Note that [e2j−1e2j , e2k−1e2k] = 0 for all
j, k ∈ {1, . . . ,m}, and so [σj , σk] = 0 and [R (σj) , R (σk)] = 0. Since σ2

j =
ie2j−1e2jie2j−1e2j = e2j−1e2j−1e2je2j = 1, the eigenvalues of R (σj) are ±1. Thus,
there are simultaneous eigenspaces of the R (σj), j ∈ {1, . . . ,m} , indexed by

ε = (ε1, . . . , εm) ∈ Zm2 := {1,−1} × m· · · × {1,−1} , namely

V (ε) := {v ∈ V : R (σj) (v) = εjv} .

We have V =
⊕

ε∈Zm2
V (ε). Let

α (ε) = 1
2 (1− ε1) e2 · · · 1

2 (1− εm) e2m =

m∏
j=1

1
2 (1− εj) e2j =

∏
{j: εj=−1}

e2j .

Then

σkα (ε) = ie2k−1e2kα (ε) =

{
α (ε)σk if εk = 1
−α (ε)σk if εk = −1

= εkα (ε)σk

For 1m := (1, . . . , 1) ∈ Zm2 , we claim

R (α (ε)) : V (1m)→ V (ε)

is a well-defined isomorphism. Indeed, for v ∈ V (1m), we have R (α (ε)) v ∈ V (ε),
since

R (σk) (R (α (ε)) v) = R (σkα (ε)) v = R (εkα (ε)σk) v

= εkR (α (ε))R (σk) v = εk (R (α (ε)) v) ,

and α (ε)
2

= ±1⇒ R (α (ε))
2

= ± Id. Thus,

dimV = dim(
⊕

ε∈Zm2
V (ε)) = 2m dimV (1m) .

Let {v1, . . . , vN} be a basis for V (1m) and for k ∈ {1, . . . , N}, let

Wk = span {R (α (ε)) vk : ε ∈ Zm2 } .

We claim that Wk is a Cl2m-module. For this first note that Cl2m is generated by

{α (ε) : ε ∈ Zm2 } ∪ {σj : j ∈ {1, . . . ,m}} ,

since for any j ∈ {1, . . . ,m}, e2j ∈ {α (ε) : ε ∈ Zm2 }, σje2j = −e2j−1, and {e1, . . . , e2m}
generate Cl2m. Thus, it suffices to show that R (α (ε)) (Wk) ⊂ Wk for all ε ∈ Zm2 ,
and R (σj) (Wk) ⊂Wk. To this end,

ε, ε′ ∈ Zm2 ⇒ α (ε′)α (ε) = ±α (ε′′) for some ε′′ ∈ Zm2
⇒ R (α (ε′))R (α (ε)) vk = ±R (ε′′) vk

⇒ R (α (ε)) (Wk) ⊂Wk for all ε ∈ Zm2 ; moroever,

vk ∈ V (1m)⇒ R (σj)R (α (ε)) vk = ±R (α (ε))R (σj) vk = ±R (α (ε)) vk

⇒ R (σj) (Wk) ⊂Wk.

Thus, V =
⊕N

k=1Wk. Note that dimWk ≤ 2m, since {R (α (ε)) vk : ε ∈ Zm2 } spans
Wk. Since Wk is a Cl2m-module, the same proof as that of Proposition 18.12
yields that the 22m endomorphisms consisting of Id and those R (ej1 · · · ejk) with
1 ≤ j1 < j2 < · · · < jk ≤ 2m, k ∈ {1, . . . , 2m}, form a linearly independent subset



494 18. THE LOCAL INDEX THEOREM FOR TWISTED DIRAC OPERATORS

of End (Wk). Since dim (End (Wk)) = (dimWk)
2

= 22m, we obtain End (Wk) =
{R (α) |Wk

: α ∈ Cl2m}. Indeed

Cl2m ∼= End (Wk) via α 7→ R (α) |Wk
,

and hence each Wk is an irreducible Cl2m-module and Wk is isomorphic to the
specific module Λ∗ (Cm). Note that Φ : Hom0 (Σ2m, V ) ⊗ Σ2m → V is indeed a
morphism, since

Φ (α · (φ⊗ ψ)) = Φ
((
R (α) ◦ φ ◦ ρC (α)

−1 ⊗ ρC (α) (ψ)
))

=
(
R (α) ◦ φ ◦ ρC (α)

−1
)

(ρC (α) (ψ)) = R (α) (φ (ψ)) .

Since Σ2m is irreducible, Hom0 (Σ2m,Σ2m) = C Id. Since V ∼=
⊕N

k=1 Σ2m, we then

have (where πk :
⊕N

k=1 Σ2m → Σ2m is the projection)

Hom0 (Σ2m, V ) ∼= Hom0

(
Σ2m,

⊕N

k=1
Σ2m

)
=
⊕N

k=1
Cπk.

and hence dim (Hom0 (Σ2m, V )⊗ Σ2m) = N · 2m = dim (V ). For zk ∈ C,

Φ

(⊕N

k=1
zkπk ⊗ ψk

)
= (z1ψ1, . . . , zNψN ) ,

and Φ is then onto, and an isomorphism for dimensional reasons. �

Remark 18.15. Alternatively, it is known (see [We46]) that, up to equivalence,
the only irreducible representation of the algebra End (W ) for any complex or real
vector space W is the defining representation, namely Id : End (W ) → End (W ).
Since Cl2m ∼= End (Σ2m), it follows that, up to equivalence, ρC : Cl2m → End (Σ2m)
is the only irreducible representation of Cl2m. Note that ρC restricts to ρ : Cl2m →
End (Σ2m). For dimensional reasons, ρ is not an isomorphism of real algebras. How-
ever, it is clearly an irreducible complex representation of Cl2m, since any invariant
subspace for ρ would also be invariant for ρC. Additional considerations found
in [LaMi] imply that ρ : Cl2m → End (Σ2m) is the unique (up to isomorphism)
irreducible real representation of Cl2m, but we will not be using this fact.

2. Spin Structures and Twisted Dirac Operators

Let M be a compact, oriented Riemannian n-manifold. Until further notice,
we do not assume that n is even. Let FM be the principal SO (n)-bundle of ori-
ented, orthonormal frames. A spin structure for M consists of a principal Spin (n)-
bundle P → M and a map C : P → FM which is equivariant in the sense that
C (pg) = C (p) c (g), where c : Spin (n) → SO (n) is the double cover of (18.4),
namely c (g) (v) = gvg−1. Spin structures do not always exist, but given a coordi-
nate ball U ⊆ M and a local trivialization T : FM |U ∼= U × SO (n), there is the
obvious local spin structure

T ◦ (Id×c) : U × Spin (n)→ U × SO (n) ∼= FM |U .
Our immediate goal is to establish the meaning and sketch the proof Proposition
18.18 below which exhibits the obstruction to finding a (global) spin structure for
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M . Suppose that U = {Uα : α ∈ J} is an open covering of M , such that each
intersection Uα1 ∩ · · · ∩ Uαk of finitely many of the Uα is contractible (e.g., take
each Uα to be a convex, normal coordinate ball). Such a covering is known as a
Leray covering. There is then a local trivialization Tα : FM |Uα ∼= Uα× SO (n), say

Tα (u) = (π (u) , sα (u)) ,

where sα (ug) = sα (u) g for all g ∈ SO (n). Since

sα (ug) sβ (ug)
−1

= sα (u) g (sβ (u) g)
−1

= sα (u) gg−1sβ (u)
−1

= sα (u) sβ (u)
−1
,

there is a well defined transition function

gαβ : Uα ∩ Uβ → SO (n) given by gαβ (π (u)) := sα (u) sβ (u)
−1
.

Note that gβα = g−1
αβ and, more generally, we have the so-called cocycle condition

gαβgβγgγα = I.

Conversely, if we are given functions gαβ : Uα∩Uβ → SO (n), satisfying the cocycle
condition (together with gαα ≡ I), then a principal SO (n)-bundle over M can be
constructed as the set of equivalence classes for the relation on the disjoint union
of the Uα × SO (n), where we declare that (x,Aα) ∈ Uα × SO (n) is equivalent
to (x,Aβ) ∈ Uβ × SO (n) if Aα = gαβ (x)Aβ for x ∈ Uα ∩ Uβ . Since, gαα ≡ I,

gβα = g−1
αβ , and gαβgβγgγα = I, this is an equivalence relation. As each of the

Uα ∩ Uβ is contractible, we can find a lift g′αβ : Uα ∩ Uβ → Spin (n) of gαβ :

Uα ∩ Uβ → SO (n) with c ◦ g′αβ = gαβ , where c : Spin (n) → SO (n) is the double

covering (vector representation). We can (and do) choose the collection of g′αβ so

that g′βα = (g′αβ)−1. Now, on Uα ∩ Uβ ∩ Uγ , we have

c
(
g′αβg

′
βγg
′
γα

)
= gαβgβγgγα = I ⇒ g′αβg

′
βγg
′
γα = ±1 ∈ Z2 ⊆ Spin (n) .

Let

E′αβγ := g′αβg
′
βγg
′
γα : Uα ∩ Uβ ∩ Uγ → Z2.

Note that E′αβγ is symmetric (as well as antisymmetric, as E′αβγ ∈ Z2) in α, β, γ,
since

g′αβg
′
βγg
′
γα = ±1⇒ g′αβg

′
βγ = ±g′αγ

⇒ E′αβγ =
(
g′αβg

′
βγ

)
g′γα = g′γα

(
g′αβg

′
βγ

)
= E′γαβ , and

E′αβγ =
(
E′αβγ

)−1
=
(
g′γα
)−1 (

g′βγ
)−1 (

g′αβ
)−1

= g′αγg
′
γβg
′
βα = E′αγβ .

The collection E′ =
{
E′αβγ

}
is an example of a Čech 2-cochain (with values in

Z2) relative to the cover U , the group of which we denote by C2 (U ,Z2). The
coboundary of E′ is the Čech 3-cochain in C3 (U ,Z2) defined by

(δE′)αβγδ := E′βγδ ·
(
E′αγδ

)−1 · E′αβδ ·
(
E′αβγ

)−1

The following shows that δE′ = 1:

(δE′)αβγδ = E′βγδE
′
αγδE

′
αβδE

′
αβγ =

(
E′δβγE

′
δγα

) (
E′βδαE

′
βαγ

)
=
(
g′δβg

′
βγg
′
γαg
′
αδ

) (
g′βδg

′
δαg
′
αγg
′
γβ

)
=
(
g′δβg

′
βγg
′
γαg
′
αδ

) (
g′δαg

′
αγg
′
γβg
′
βδ

)
= 1,
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meaning that E′ is a Čech 2-cocycle, the group of which is denoted by Z2 (U ,Z2).
Suppose that we choose a different set of lifts of the gαβ , say g′′αβ , say g′′αβ = hαβg

′
αβ

for h = {hαβ} ∈ C1 (U ,Z2). Then for E′′αβγ := g′′αβg
′′
βγg
′′
γα,

E′′αβγ
(
E′αβγ

)−1
=
(
g′′αβg

′′
βγg
′′
γα

) (
g′αβg

′
βγg
′
γα

)−1

=
(
g′′αβg

′′
βγg
′′
γα

) (
g′γα
)−1 (

g′βγ
)−1 (

g′αβ
)−1

= hαβhβγhγα = hβγhγαhαβ =: (δh)αβγ ,

so that E′′ and E′ differ by δh. The group of 2-coboundaries is

B2 (U ,Z2) :=
{
δh : h ∈ C1 (U ,Z2)

}
,

and it is easy to check that for any h ∈ C1 (U ,Z2), δδh = 1, so that B2 (U ,Z2) ⊂
Z2 (U ,Z2). Hence, we have shown that E′ and E′′ determine the same Čech coho-
mology class

[E′] = [E′′] ∈ H2 (U ,Z2) :=
Z2 (U ,Z2)

B2 (U ,Z2)
.

Of course Hk (U ,Z2) can be defined for k = 0, 1, 2, . . .. It can be shown that for
Leray coverings U , Hk (U ,Z2) is naturally isomorphic to the usual (say, singular)
cohomology group Hk (M,Z2), with Z2-coefficients.

Definition 18.16. Let E′ ∈ Z2 (U ,Z2) be the Čech 2-cocycle given by

E′αβγ := g′αβg
′
βγg
′
γα : Uα ∩ Uβ ∩ Uγ → Z2,

where the g′αβ : Uα ∩ Uβ → Spin (n) are lifts of the transition functions gαβ :

Uα ∩ Uβ → SO (n) for the oriented frame bundle FM of a compact, oriented
Riemannian n-manifold relative to a Leray covering U = {Uα : α ∈ J}. The class
w2 (M) := [E′] ∈ H2 (M,Z2) is known as the second Stiefel-Whitney class
of M . More generally, by using transition functions, any equivalence class of a
principal SO (k)-bundle P → M (where k is not necessarily the dimension of M)
can be identified with some [P ] ∈ H1 (M, SO (k)) and a function

w2 : H1 (M,SO (k))→ H2 (M,Z2)

may be defined in the same way as w2 (M) was defined in the case of FM . Thus,
w2 (M) is w2 ([P ]) in the special case P = FM , but for convenience we write w2 (M)
instead of w2 ([FM ]).

Remark 18.17. Given a principal SO (k1)-bundle P1 → M and a principal
SO (k2)-bundle P2 → M , one can define a principal SO (k1) × SO (k2) bundle
P1 × P2 →M (fibered product) which determines an SO (k1 + k2)-bundle P →M
by means of the injection SO (k1)×SO (k2)→ SO (k1 + k2) as in Proposition 16.19,
p.378. Since transition functions for P → M can be taken to be products of tran-
sition functions for P1 →M (with values in SO (k1)× Id) and transition functions
for P2 →M (with values in Id×SO (k2)). Since such products commute, it is clear
from our construction that w2 ([P ]) = w2 ([P1])w2 ([P2]), or regarding H2 (M,Z2)
as an additive group (as in usually the case) we have

(18.16) w2 ([P ]) = w2 ([P1]) + w2 ([P2]) .
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This formula may seem wrong to those already familiar with Stiefel-Whitney classes,
since generally there is also a cup product term w1 ([P1]) ` w1 ([P2]) on the right.
However, w1 ([P ]) is trivial for SO (k)-bundles, which sufficient for our purposes.

Proposition 18.18. Let M be a compact, oriented Riemannian n-manifold.
Then M admits a spin structure if and only if w2 (M) = 0 (i.e., w2 (M) is the
identity of H2 (M,Z2)). In this case H1 (M,Z2) acts freely on the set of inequivalent
spin structures.

Proof. If w2 (M) = 0, then E′ ∈ B2 (U ,Z2) and so E′ is the Čech coboundary
of a Čech 1-cochain, say F = {Fαβ}; i.e.,

E′αβγ = (δF )αβγ = Fβγ (Fαγ)
−1
Fαβ = FβγFγαFαβ = FαβFβγFγα.

We construct a spin structure C : P → FM as follows. Let g̃′αβ := Fαβg
′
αβ ∈

Spin (n), and note that while the g′αβ did not necessarily satisfy the cocyle condition,

the g̃′αβ do:

g̃′αβ g̃
′
βγ g̃
′
γα = Fαβg

′
αβFβγg

′
βγFγαg

′
γα

= FαβFβγFγαg
′
αβg
′
βγg
′
γα =

(
E′αβγ

)2
= 1.

Thus, a principal Spin (n)-bundle P → M can be constructed from the transition
functions g̃′αβ . Since c(g̃′αβ) = c(Fαβg

′
αβ) = c(±g′αβ) = gαβ , where c : Spin (n) →

SO (n) is the double cover, we obtain a spin structure C : P ′ → FM . Conversely,
given a spin structure C : P ′ → FM , with transition functions g̃′αβ , there is F ∈
C1 (U ,Z2) with g̃′αβ = Fαβg

′
αβ . However, a choice F ′, differing from F , with

δF ′ = δF = E′ might lead to different spin stucture P ′ →M , defined via transition
functions g̃′′αβ := F ′αβg

′
αβ . While F and F ′ are not cocycles, their “difference”

F ′F−1 is a cocycle, since δ
(
F ′F−1

)
= E′E′−1 = 1. If F ′F−1 is a coboundary, say

F ′F−1 = δk for some k ∈ C0 (U ,Z2), then

F ′βαFαβ = kβk
−1
α or Fαβ = k−1

α F ′αβkβ

This condition yields a well defined principal bundle isomorphism φ : P → P ′

determined locally via the maps φα : Uα × Spin (n)→ Uα × Spin (n) defined by

φα (x, aα) = (x, kαaα) .

To see that the φα yeild a well defined φ : P → P ′, note that (where ≡′denotes the
equivalence relation used in defining P ′ from the g̃′′αβ)

(x, kαaα) ≡′ (x, kβaβ)⇔ kαaα = g̃′′αβkβaβ

⇔ kαaα = F ′αβg
′
αβkβaβ ⇔ aα = k−1

α F ′αβkβg
′
αβaβ

⇔ aα = Fαβg
′
αβaβ ⇔ aα = g̃′αβaβ ⇔ (x, aα) ≡ (x, aβ) .

That φ : P → P ′ is Spin (n)-equivariant and φ ◦ C = C ′ ◦ φ for the coverings
C : P → FM and C ′ : P ′ → FM , follows from these obvious properties for the φα
(recall kα ∈ Z2 = {1,−1}, so that c (aα) = c (kαaα)). Thus, if F ′F−1 = δk (i.e.,
F ′ and F differ by a coboundary), then F and F ′ define equivalent spin structures
and the converse also holds. Note that

g̃′′αβ = F ′αβg
′
αβ = F ′αβF

−1
αβ Fαβg

′
αβ = F ′αβF

−1
αβ g̃

′
αβ =

(
F ′F−1

)
αβ
g̃′αβ .
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In other words, for a given F , there is a one-to-one correspondence betweenH1 (M,Z2)
and the set S (M) of inequivalent spin structures, induced by F ′F−1 7→

(
F ′F−1

)
g̃′.

Alternatively, there is a free action of H1 (M,Z2) on S (M), given simply by mul-
tiplication, namely (z · g̃′)αβ := zαβ g̃

′
αβ for z ∈ H1 (M,Z2). �

Proposition 18.19. Let P be a principal U (1)-bundle over a connected, ori-
ented 2-manifold M . Since U (1) ∼= SO (2) , we may regard P as a principal SO (2)-
bundle. Thus, P possesses a Stiefel-Whitney class w2 (P ) ∈ H2 (M ;Z2) as well as
a Chern class c1 (P ) ∈ H2 (M ;Z). We have

w2 (P ) [M ] = c1 (P ) [M ] mod 2.

In the special case P = FM , we have (see (16.115), p.424) c1 (FM) [M ] = χ [M ] =
2− 2 genus (M) which is even and so w2 (M) := w2 (FM) = 0.

Proof. Let ω ∈ Λ1 (P, u (1)) be a connection 1-form for P as a U (1)-bundle,
and let U = {Uα : α ∈ J} be a Leray covering by smoothly embedded disks so that
we have trivalizing local sections σα : Uα → P |Uα . For a U (1)-bundle, the formula
(see Exercise 16.33, p. 385) relating σ∗αω to σ∗βω simplifies:

σβ
∗ω = g−1

αβ (σ∗αω) gαβ + g−1
αβdgαβ = σ∗αω + g−1

αβdgαβ or

σβ
∗ω − σ∗αω = g−1

αβdgαβ = d (log gαβ)

Let iAα := σ∗αω. The local curvature forms Ωα = dσ∗αω = idAα and Ωβ = dσ∗βω =

idAβ agree on the overlaps Uα ∩ Uβ to yield a well-defined 2-form F ∈ Ω2 (M,R)
given locally by F := −dAα, and 1

2πF represents c1 (P ) ∈ H2 (M ;Z) in de Rham
cohomology. The isomorphism

H2 (M,R)→ H2 (U ,R) :=
Z2 (U ,R)

B2 (U ,R)

from de Rham cohomology to Čech cohomology is obtained via the intermediate
isomorphisms

H2 (M,R) =
H0
(
U ,Z2

)
dH0 (U ,A1)

∼= H1
(
U ,Z1

) ∼= H2 (U ,R) ,

which we describe as follows. For a Leray cover U of M and for 0 ≤ j, k ≤ 2, let
Cj
(
U ,Ak

)
be the group of Čech j-cochains c which assign to an ordered (j + 1)-

tuple
(
Uα0

, . . . , Uαj
)
, with Uαi ∈ U , a k-form cα0...αj ∈ Ωk

(
Uα0
∩ . . . ∩ Uαj ,R

)
.

Similarly, let

Cj
(
U ,Zk

)
:=
{
c ∈ Cj

(
U ,Ak

)
: dcα0...αj = 0 for all (α0, . . . , αj)

}
and

Cj
(
U ,Bk

)
:=

{
c ∈ Cj

(
U ,Ak

)
: cα0...αj = dbα0...αj for some

bα0...αj ∈ Ωk−1
(
Uα0
∩ . . . ∩ Uαj ,R

) }
The short exact sequences of cochain complexes

0→ C∗
(
U ,Z0 ∼= R

) i→ C∗
(
U ,A0

) d→ C∗
(
U ,Z1

)
→ 0 and

0→ C∗
(
U ,Z1

) i→ C∗
(
U ,A1

) d→ C∗
(
U ,Z2

)
→ 0



18.2. SPIN STRUCTURES AND TWISTED DIRAC OPERATORS 499

give rise (in the standard way) to long exact sequences of cohomology groups

0→ H0
(
U ,Z0

)
→ H0

(
U ,A0

)
→ H0

(
U ,Z1

)
→ H1

(
U ,Z0

)
→ H1

(
U ,A0

)
→ H1

(
U ,Z1

) δ1→ H2
(
U ,Z0

)
→ H2

(
U ,A0

)
· · · and

0→ H0
(
U ,Z1

)
→ H0

(
U ,A1

)
→ H0

(
U ,Z2

) δ0→ H1
(
U ,Z1

)
→ H1

(
U ,A1

)
· · ·

(18.17)

Since the Aj are fine sheaves (admitting partitions of unity), we have (see [Wells,
Theorem 3.11, p.56]) Hi

(
U ,Aj

)
= 0 for i > 0 and j ≥ 0. Thus,

H2
de Rham (M,R) ∼=

H0
(
U ,Z2

)
dH0 (U ,A1)

δ0∼= H1
(
U ,Z1

) δ1= H2
(
U ,Z0

)
= H2

Čech
(U ,R) .

The first isomorphism is obtained by noting that

H0
(
U ,Z2

)
= Z0

(
U ,Z2

)
=

{
c ∈ C0

(
U ,A2

)
: dcα0

= 0 and
0 = (δc)α0α1

= cα1
− cα0

for all α0, α1

}
,

and so any c ∈ H0
(
U ,Z2

)
gives rise to a globally defined, closed 2-form on M .

Similarly H0
(
U ,A1

)
can be identified with the space of globally defined 1-forms

on M , and dH0
(
U ,A1

) ∼= the space of exact 2-forms on M . The isomorphism δ0
in (18.17) is given as follows. Let [F ] ∈ H2

de Rham (M,R) for a closed 2-form F ∈
Ω2 (M,R). We have that F |Uα is exact, say F |Uα = −dAα for some Aα ∈ Ω1 (Uα)
or A ∈ C0

(
U ,A1

)
. We have (δA)αβ = Aβ −Aα. Now

d
(

(δA)αβ

)
= dωβ − dωα = F |(Uα∩Uβ) − F |(Uα∩Uβ) = 0,

so that δA ∈ C1
(
U ,Z1

)
and δ (δA) = 0 so that δA ∈ Z1

(
U ,Z1

)
and [δA] ∈

H1
(
U ,Z1

)
. Note that [δA] is not necessarily 0, since A ∈ C0

(
U ,A1

)
is not nec-

essarily in C0
(
U ,Z1

)
. At any rate, δ0 in (18.17) is given by δ0 [F ] := [−δA]. We

now define δ1 in (18.17). For [B] ∈ H1
(
U ,Z1

)
we have dBα0α1

= 0 and 0 =

δB ∈ C2
(
U ,Z1

)
, and so there is Cα0α1 ∈ C1

(
U ,A0

)
, such that dCα0α1 = Bα0α1 .

Moreover,

δ (C)α0α1α2
= Cα1α2

− Cα0α2
+ Cα0α1

d
(
δ (C)α0α1α2

)
= dCα1α2

− dCα0α2
+ dCα0α1

= Bα1α2
−Bα0α2

+Bα0α1

= (δB)α0α1α2
= 0.

Thus, δC ∈ C2
(
U ,Z0

)
and δ (δC) = 0 so that δC ∈ Z2

(
U ,Z0

)
and δ1 ([B]) :=

[δC] ∈ H2
(
U ,Z0

)
. We wish compute

δ1δ0c1 (P ) = δ1δ0
([

1
2πF

])
Recall that F |Uα = −dAα, and

iAβ − iAα = σβ
∗ω − σ∗αω = g−1

αβdgαβ = d log gαβ ,

where the simple-connectedness of Uα ∩Uβ yields a well-defined function log gαβ ∈
Ω0 (Uα ∩ Uβ , iR) (unique up to additive multiples of 2πi), such that exp (log gαβ) =
gαβ .

δ1δ0c1 (P ) = δ1δ0
([

1
2πF

])
= δ1

([
− 1

2π δA
])

=
[
δ
(

1
2πi log g

)]
∈ H2 (U ,R)
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In fact δ1δ0c1 (P ) ∈ H2 (U ,Z), since gα1α2
g−1
α0α2

gα0α1
= 1 implies

δ
(

1
2πi log g

)
α0α1α2

= 1
2πi (log gα1α2

− log gα0α2
+ log gα0α1

)

= 1
2πi log

(
gα1α2

g−1
α0α2

gα0α1

)
∈ Z.

Thus,
[
δ
(

1
2πi log g

)]
∈ H2 (U ,Z) is the Čech cohomological version of c1 (P ) ∈

H2 (M ;Z). The Stiefel-Whitney class w2 (P ) ∈ H2 (U ;Z2) is [E′] = [δg′], where
we may take g′αβ =

√
gαβ := exp

(
1

4πi log gαβ
)

(see ()). Then δ
(

1
2πi log g

)
α0α1α2

is

an odd integer on Uα0
∩ Uα1

∩ Uα2
⇔ (δg′)α0α1α2

is −1, and it follows that the

mod 2 reduction of
[
δ
(

1
2πi log g

)]
is [δg′]. Thus, w2 (P ) ∈ H2 (U ;Z2) is the mod 2

reduction of c1 (P ) ∈ H2 (M ;Z), and w2 (P ) [M ] = c1 (P ) [M ] mod 2. �

Until further notice, we again assume that 2m = n = dimM is even, and

moreover that there is a spin structure P
C→ FM → M . We may then form

the Hermitian positive and negative spinor bundles Σ± (M) := P ×Spin(n) Σ±2m
associated to the half-spinor representations ρ± : Spin (n) → SU

(
Σ±2m

)
of (18.15),

p. 490. Recall that ρ+ ⊕ ρ− : Spin (n)→ SU (Σ2m) is the restriction of ρ : Cl2m →
End (Σ2m). For v ∈ R2m ⊂ Cl2m, we have ρ (v) : Σ±2m → Σ∓2m, with

ρ (c (a) v) = ρ
(
ava−1

)
= ρ (a) ρ (v) ρ (a)

−1
for a ∈ Spin (n) .

Thus, v 7→ ρ (v) induces a well defined vector bundle morphism TM → End (Σ (M))
where Σ (M) := Σ+ (M)⊕ Σ− (M), or equivalently a so-called Clifford multiplica-
tion

cl : TM ⊗ Σ (M)→ Σ (M) .

with cl (TM ⊗ Σ± (M)) ⊆ Σ∓ (M). The Riemannian metric on M gives an identi-
fication of TM∗ with TM and hence we may regard cl : TM∗ ⊗ Σ (M) → Σ (M),
which induces a map (still denoted by cl) on the level of sections

cl : Ω1 (M)⊗ C∞ (Σ (M))→ C∞ (Σ (M)) .

The Levi-Civita conection θ ∈ Ω1 (FM, so (n)) on FM pulls back via C : P → FM
to a form C∗ (θ) ∈ Ω1 (P, so (n)), which when composed with the isomorphism
c′−1 : so (n) ∼= spin (n), gives us a form ω = c′−1 (C∗ (θ)) ∈ Ω1 (P, spin (n)). It
follows from the equivariance of C : P → FM with respect to c : Spin (n)→ SO (n)
(i.e., C (pg) = C (p) c (g)), that ω is a connection 1-form for P → M . Thus, we
have a covariant differentiation operator associated with ω, say

∇Σ : C∞ (Σ (M))→ Ω1 (M)⊗ C∞ (Σ (M)) .

Definition 18.20. For an oriented Riemannian manifold M with spin struc-
ture, the (standard) Dirac operator (also known as the Atiyah-Singer operator
in [LaMi]), is the composition

DΣ := cl ◦ ∇Σ : C∞ (Σ (M))→ C∞ (Σ (M)) .

For many applications, it will be necessary to use twisted Dirac operators which
are defined as follows. Let E →M be a Hermitian vector bundle, and let U (E)→
M be the principal bundle of unitary frames of E. We equip U (E) with any
connection 1-form, say ε ∈ C (U (E)), and then we have an associated covariant
differentiation operator ∇E : C∞ (E) → Ω1 (M) ⊗ C∞ (E). For the bundle E ⊗
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Σ (M) (which is an associated bundle of the fibered product U (E)×f P ), we have
a covariant differentiation operator

∇ := ∇E ⊗ 1 + 1⊗∇Σ : C∞ (E ⊗ Σ (M))→ Ω1 (M)⊗ C∞ (E ⊗ Σ (M)) .

This corresponds to the connection 1-form on U (E)×f P which is the direct sum
of the pull-backs of the connection 1-forms on U (E) and P to a U (E)×f P .

Definition 18.21. For an oriented Riemannian manifold M with spin struc-
ture, and a Hermitian vector bundle E →M with unitary connection ε ∈ C (U (E)),
the twisted Dirac operator D associated with (E, ε) is

(18.18) D := (1⊗ cl) ◦ ∇ : C∞ (E ⊗ Σ (M))→ C∞ (E ⊗ Σ (M)) .

Note that ∇ (C∞ (E ⊗ Σ± (M))) ⊆ Ω1 (M)⊗ C∞ (E ⊗ Σ± (M)), while

(1⊗ cl)
(
Ω1 (M)⊗ C∞

(
E ⊗ Σ± (M)

))
⊆ C∞

(
E ⊗ Σ∓ (M)

)
.

Thus,

D = D+ ⊕D−, where

D± : C∞
(
E ⊗ Σ± (M)

)
→ C∞

(
E ⊗ Σ∓ (M)

)
.

The symbol of the first-order differential operator D is computed as follows. For
φ ∈ C∞ (M) with φ (x) = 0 and ψ ∈ C∞ (E ⊗ Σ (M)) , we have at x

(1⊗ cl) ◦ ∇ (φψ) = (1⊗ cl) ◦ ((dφ)ψ + φ∇ψ) = (1⊗ cl) ◦ (dφ)ψ

= (1⊗ cl (dφ))ψ.

Thus, the symbol σ (D) : TxM
∗ → End (Σ (M)) at the covector ξx ∈ TxM∗ is given

by

σ (D) (ξx) = 1⊗ cl (ξx) : Σx → Σx.

For ξx 6= 0, σ (D) (ξx) is an isomorphism, since

σ (D) (ξx) ◦ σ (D) (ξx) = 1⊗ cl (ξx)
2

= − |ξx|2 Id .

Thus, D is an elliptic operator. Moreover, since σ (D+) and σ (D−) are restrictions
of σ (D), it follows that D+ and D− are elliptic. In what follows, we show that D
is formally self-adjoint, and D+ and D− are formal adjoints of each other.

At times it best to express Dψ in terms of a local orthonormal frame field
E1, . . . , En on M . If ϕ1, . . . , ϕn is the dual coframe, then, for any vector field X,
we have

(∇ψ) (X) = (∇ψ) (
∑
j

ϕj (X)Ej)ψ

=
∑
j

ϕj (X) (∇ψ) (Ej) =
∑
j

ϕj (X)∇Ejψ; i.e.,

∇ψ =
∑
j

ϕj ⊗∇Ejψ.

Thus, with “·” denoting Clifford multipication (1⊗ cl) and using T ∗M ∼= TM , we
have

(18.19) Dψ =
∑
j

ϕj · ∇Ejψ =
∑
j

Ej · ∇Ejψ.
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Note that Dψ is independent of the choice of local orthonormal frame field. More-
over, in terms of local coordinates, say y1, . . . , yn with associated coordinate fields
∂i := ∂/∂yi, we have

(18.20) Dψ =
∑
i,j

hij∂i · ∇∂jψ,

where hij are the entries of the inverse of the matrix [hij ] = [h (∂i, ∂j)]. In the proof
of Proposition 18.23 below, we take advantage of the fact that we can always choose
E1, . . . , En in a neighborhood U of a point x ∈ M so that ∇EjEk = 0 at x, where
∇ is the covariant derivative for the Levi-Civita connection θ. More generally we
have

Proposition 18.22. Let σ : U → FM be a local section of the frame bundle of a
Riemannian manifold M , where U ⊆M is open. Let E1, . . . , En be the orthonormal
frame field on U given, at y ∈ U , by (Ej)y := σ (y) (ej), where ej is the j-th

standard unit vector in Rn. If θ ∈ Ω1 (FM, so (n)) is a connection 1-form on FM ,
with associated covariant differentiation operator ∇, then we have

(18.21) ∇EjEk =

n∑
i=1

(σ∗θ)ik (Ej)Ei =

n∑
i=1

θik (σ∗y (Ej))Ei.

For x ∈ M and u ∈ π−1
F (x), let N be an embedded submanifold of FM with

TuN = Hu := Ker θu. There is a neighborhood V of x, such that there is a unique
section σ : V → FM with σ (x) = u, σ (V ) ⊆ N and σ∗x (TxM) = Hu. In this
case, ∇EjEk = 0 at x by (18.21).

Proof. For a vector field Y on M , the corresponding equivariant function

Ω
0

(FM,Rn) is ϕ(Ỹ ), where Ỹ is the horizontal lift of Y relative to the connection

θ and ϕ ∈ Ω
1

(FM,Rn) is the canonical 1-form (ϕu (Y ) := u−1 (πF∗Y )). For

horizontal lifts Ỹ , W̃ of vector fields Y and W on M , we have

ϕ(∇̃YW ) = Dθ(ϕ(W̃ ))
(
Ỹ
)

= Ỹ [ϕ(W̃ )].

Let Ẽ1, . . . , Ẽn be the horizontal lifts of E1, . . . , En. Note that ϕ(Ẽk) is constant
on σ (U), since

ϕσ(y)(Ẽk) = σ (y)
−1

(πF∗(Ẽk)) = σ (y)
−1

((Ek)y) = ek,

and so d(ϕ(Ẽk)) (σ∗y (Ej)) = 0. Then, as Ẽj = σ∗x (Ej)H and Dθ = d+ θ, we have

Dθ(ϕ(Ẽk))(Ẽj) = Dθ(ϕ(Ẽk)) (σ∗y (Ej))

= d(ϕ(Ẽk)) (σ∗y (Ej)) + θ (σ∗y (Ej)) (ϕ(Ẽk))

= θ (σ∗y (Ej)) (ϕ(Ẽk)).

Hence, it follows that

∇̃EjEk = (ϕ|H)
−1
(
Dθ(ϕ(Ẽk))(Ẽj)

)
=

n∑
i=1

θik (σ∗x (Ej)) (ϕ|H)
−1

(ei) =

n∑
i=1

θik (σ∗y (Ej)) Ẽi
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and (18.21) follows by applying (πF )∗ to both sides. The remaining assertions
follow directly from the implicit function theorem. �

For ψ,ψ′ ∈ C∞ (E ⊗ Σ (M)) and ν the volume form for (M,h), let

(ψ,ψ′) :=

∫
M

〈ψ,ψ′〉 ν

Proposition 18.23. The twisted Dirac operator D of (18.18) is formally self-
adjoint, namely

(18.22) (Dψ1, ψ2) = (ψ1,Dψ2) .

Moreover, D+ is the formal adjoint of D−; i.e., for ψ+
1 ∈ C∞ (E ⊗ Σ+ (M)) and

ψ−2 ∈ C∞ (E ⊗ Σ− (M)) , we have

(18.23)
(
D+ψ+

1 , ψ
−
2

)
=
(
ψ+

1 ,D−ψ
−
2

)
.

Proof. Let ψ1, ψ2 ∈ C∞ (E ⊗ Σ (M)). Since ∇ is the covariant differentiation
for a connection on U (E) ×f P with group U (N) × Spin (n) which preseves the
Hermitian structure on CN ⊗ Σn, it follows that

(18.24) d 〈ψ1, ψ2〉 = 〈∇ψ1, ψ2〉+ 〈ψ1,∇ψ2〉 .

Moreover, for ρ : Cln → End (Σn), a ∈ Spin (n), v ∈ Rn, and σ ∈ Σn, we have

ρ (a) (ρ (v)σ) =
(
ρ (a) ◦ ρ (v) ◦ ρ (a)

−1 ◦ ρ (a)
)

(σ)

= ρ
(
ava−1

)
(ρ (a)σ) = ρ (c (a) v) (ρ (a)σ) .(18.25)

Replacing a with exp (ta′) for a′ ∈ spin (n) and differentiating (18.25) with respect
to t at t = 0, we get

(18.26) ρ′ (a′) (ρ (v)σ) = ρ (c′ (a′) v) (σ) + ρ (v) (ρ′ (a′)σ)

From this it follows that, for ϕ ∈ Ω1 (M) and ψ ∈ C∞ (E ⊗ Σ (M)),

∇ (ϕ · ψ) = (∇θϕ) · ψ + ϕ · ∇ψ.

For a local orthonormal frame field E1, . . . , En, chosen so that ∇EjEj = 0 at some
fixed x ∈M , using (18.24) and (18.26), we have (at x)

〈Dψ1, ψ2〉 =
∑

j

〈
Ej · ∇Ejψ1, ψ2

〉
=
∑

j
−
〈
∇Ejψ1, Ej · ψ2

〉
=
∑

j
−
(
Ej [〈ψ1, Ej · ψ2〉]−

〈
ψ1,∇Ej (Ej · ψ2)

〉)
=
∑

j
−Ej [〈ψ1, Ej · ψ2〉] +

〈
ψ1,
((
∇EjEj

)
· ψ2 + Ej · ∇Ejψ2

)〉
=
∑

j
−Ej [〈ψ1, Ej · ψ2〉] +

〈
ψ1, Ej · ∇Ejψ2

〉
=
∑

j
−Ej [〈ψ1, Ej · ψ2〉] + 〈ψ1,Dψ2〉 .

Consider the 1-form α given by

α (Y ) = 〈ψ1, Y · ψ2〉

We claim that at x,

δα := ∗d (∗α) = −
∑

j
Ej [α (Ej)] = −

∑
j
Ej [〈ψ1, Ej · ψ2〉] .
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The j-th component of the related α̃ ∈ Ω0
(
FM,T 0,1

)
on FM is given at u ∈ FM

by α̃j = α̃ (u) (ej) = α (πF∗ (ej)), where ej is the j-th standard horizontal vector
field at u. According to (16.93) on p. 409,

δα = −
∑

j
ej [α̃j ] ,

which is constant on each fiber of FM . For any y ∈ U , we have ej (σ (y)) =

Ẽj (σ (y)), since both sides are horizontal and

ϕ
(
Ẽj (σ (y))

)
= σ (y)

−1
(
πF∗Ẽj (σ (y))

)
= σ (y)

−1
(Ej (y)) = ej = ϕ (ej (σ (y))) ,

where ϕ ∈ Ω
1

(FM,Rn) is the canonical 1-form. For any y ∈ U ,

(σ∗α̃j) (y) = α̃j (σ (y)) = α (πF∗ej (σ (y)))

= α
(
πF∗Ẽj (σ (y))

)
= α (Ej (y)) , and so

Ej [α (Ej)] = d (α (Ej)) (Ej) = d (σ∗α̃j) (Ej) = σ∗ (dα̃j) (Ej)

= dα̃j (σ∗ (Ej)) = σ∗ (Ej) [α̃j ] .

However at u = σ (x), we have σ∗ (Ej) [α̃j ] = ej [α̃j ]. Thus,

δα = −
∑

j
ej [α̃j ] = −

∑
j
Ej [α (Ej)] at x.

Then (18.22) follows, since

〈Dψ1, ψ2〉 ν − 〈ψ1,Dψ2〉 ν = −
∑

j
Ej 〈ψ1, Ej · ψ2〉 ν

= (δα) ν = ∗ (δα) = − ∗ ∗d (∗α) = −d (∗α)

⇒ (Dψ1, ψ2)− (Dψ2, ψ1) =

∫
M

(〈Dψ1, ψ2〉 − 〈ψ1,Dψ2〉) ν

= −
∫
M

d (∗α) = 0.

Applying (18.22) when ψ1 has values in E ⊗ Σ+ (M) and ψ2 has values in the
orthogonal bundle E ⊗ Σ− (M), we obtain (18.23). �

The index of the self-adjoint operator D is 0, but the index of D+ (or D−) is
not necessarily 0. Using the fact that D+ and D− are adjoints, we have

index
(
D+
)

= dim Ker
(
D+
)
− dim Coker

(
D+
)

= dim Ker
(
D+
)
− dim Ker

(
D−
)

= dim Ker
(
D− ◦ D+

)
− dim Ker

(
D+ ◦ D−

)
.

Moreover, since D2 = (D− ◦ D+)⊕ (D+ ◦ D−), it is convenient to define

D2
+ := D2|C∞(E⊗Σ+(M)) = D− ◦ D+

D2
− := D2|C∞(E⊗Σ−(M)) = D+ ◦ D−.(18.27)

A detailed study of D2 is desirable, since the above yields

index
(
D+
)

= dim Ker
(
D2

+

)
− dim Ker

(
D2
−
)

.
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To develop a suitable formula for D2, we compute (at x ∈M where∇EjEk = 0)

D2ψ = D (Dψ) = D(
∑
j

Ej · ∇Ejψ) =
∑
j

Ej · ∇Ej (
∑
k

Ek · ∇Ekψ)

=
∑
j

Ej ·
∑
k

∇Ej (Ek · ∇Ekψ)

=
∑
j,k

Ej ·
(
∇EjEk · ∇Ekψ + Ek · ∇Ej (∇Ekψ)

)
=
∑
j,k

Ej · Ek · ∇Ej (∇Ekψ)

=
∑
j

Ej · Ej · ∇Ej (∇Ekψ) +
∑
j 6=k

Ej · Ek · ∇Ej (∇Ekψ)

= −
∑
j

∇Ej
(
∇Ejψ

)
+ 1

2

∑
j 6=k

Ej · Ek ·
(
∇Ej (∇Ekψ)−∇Ek

(
∇Ejψ

))
.

There is an invariant second-derivative ∇2ψ ∈ C∞
(
M,E ⊗ Σ (M)⊗ T 0,2 (M)

)
de-

fined by

∇2
X,Y ψ = ∇X (∇Y ψ)−∇∇XY ψ.

The value of ∇2
(X,Y )ψ at x ∈ M depends on Xx but is independent of how Xx is

extended, this is also true for Yx, but less obviously so. Indeed,

∇2
X,Y ψ −∇2

Y,Xψ = ∇X (∇Y ψ)−∇Y (∇Xψ)−∇∇XY−∇YX
= ∇X (∇Y ψ)−∇Y (∇Xψ)−∇[X,Y ]ψ

=
((
Dε⊕ω)2 ψ) (X,Y ) = Ωε⊕ω (X,Y )ψ,

and we know that Ωε⊕ω (X,Y ) is independent of extensions. The trace of ∇2ψ is
the connection Laplacian, whichs since ∇EjEk = 0 at x, is given at x by

(18.28) ∆ψ :=
∑
j

∇2
Ej ,Ejψ = ∇Ej

(
∇Ejψ

)
−∇∇EjEjψ = ∇Ej

(
∇Ejψ

)
.

Remark 18.24. The connection Laplacian ∆ coincides with

−δε⊕ω ◦Dε⊕ω : Ω0 (M,E ⊗ Σ (M))→ Ω0 (M,E ⊗ Σ (M))

where Dε⊕ω : Ω0 (M,E ⊗ Σ (M)) → Ω1 (M,E ⊗ Σ (M)) is the covariant deriva-
tive and δε⊕ω is its formal adjoint, namely the covariant codifferential given in
Proposition 16.18.

We have ∇Ej (∇Ekψ)−∇Ek
(
∇Ejψ

)
= Ωε⊕ω (Ej , Ek)ψ, and so

D2ψ = −∆ψ + 1
2

∑
j 6=k

Ej · Ek · Ωε⊕ω (Ej , Ek)ψ

= −∆ψ + 1
2

∑
j 6=k

Ej · Ek ·
(

(Ωε (Ej , Ek)⊗ Id) (ψ)− 1
4

∑
h,i
RhijkEh · Ei · ψ

)
= −∆ψ + 1

2

∑
j,k

ΩεjkEj · Ekψ − 1
8

∑
h,i,j,k

RhijkEh · Ei · Ej · Ek · ψ,
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where Ωεjk = Ωε (Ej , Ek)⊗ Id ∈ Ω2 (M,End (E ⊗ Σ (M))). We show that

(18.29) − 1
8

∑
h,i,j,k

RhijkEj · Ek · Eh · Eiψ = 1
4Sψ,

where S =
∑
h,iRhihi is the scalar curvature of M . For i, j, k distinct Ei · Ej · Ek

is invariant under cyclic permutation. Hence, by the first Bianchi identity,∑
i,j,k distinct

RhijkEiEjEk = 1
3

∑
i,j,k distinct

(Rhijk +Rhkij +Rhjki)EiEjEk = 0.

Thus, in view of the symmetries of Rhijk, we may assume that in the sum on the
left of (18.29), no three indices are distinct. Then (18.29) follows from∑

h,i,j,k

RhijkEjEkEhEi = 2
∑
h,i

RhihiEhEiEhEi

= −2
∑
h,i

RhihiEhEhEiEi = −2
∑
h,i

Rhihi = −2S.

In summary, we have

Proposition 18.25. Let Ωε ∈ Ω2 (M,End (E)) denote the curvature of the con-
nection ε on U (E) and let S be the scalar curvature of M . For ψ ∈ C∞ (E ⊗ Σ (M)),
and an orthonormal frame E1, . . . , En at x ∈M , let

(Rεψ) (x) := 1
2

∑
j,k

ΩεjkEj · Ek · ψ (x) ,

where Ωεjk = Ωε (Ej , Ek)⊗ Id ∈ Ω2 (M,End (E ⊗ Σ (M))). We have

(18.30) D2ψ = −∆ψ + Rεψ + 1
4Sψ.

Corollary 18.26. Let M be a compact Riemannian manifold with spin struc-
ture and let E be a Hermitian vector bundle over M . If the symmetric transforma-
tion

(18.31)
(
Rε + 1

4S
)

(x) ∈ End (Ex ⊗ Σx (M))

is nonnegative semi-definite at each x ∈ M , then Dψ = 0 ⇒ ∇ψ = 0;i.e., all
harmonic twisted spinors on M are parallel. If M is connected and (18.31) is
nonnegative semi-definite at each x ∈ M and positive definite at some x0 ∈ M ,
then KerD = 0 (i.e., there are no nonzero twisted harmonic spinors on M). In
particular (taking E = 0), if S ≥ 0 and S 6= 0, then there are no nonzero harmonic
spinors on M .

Proof. By Proposition 18.23 and Remark 18.24,

‖Dψ‖2 =
(
D2ψ,ψ

)
=
(
−∆ψ + Rεψ + 1

4Sψ, ψ
)

=
(
δε⊕ω ◦Dε⊕ωψ,ψ

)
+
((
Rε + 1

4S
)
ψ,ψ

)
= ‖∇ψ‖2 +

((
Rε + 1

4S
)
ψ,ψ

)
≥ 0,(18.32)

where the inequality is strict if ∇ψ 6= 0. Thus, Dψ = 0⇒ ∇ψ = 0. Now

∇ψ = 0⇒ d
(
|ψ|2

)
= 〈∇ψ,ψ〉+ 〈ψ,∇ψ〉 = 0

⇒ |ψ|2 constant⇒ ψ = 0 or ψ (x) 6= 0 for all x ∈M .
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Hence, if Dψ = 0 for ψ 6= 0, then ψ (x0) 6= 0 and assuming that
(
Rε + 1

4S
)

(x0) is

positive definite, we have
〈(
Rε + 1

4S
)
ψ,ψ

〉
> 0 at x0 and so

((
Rε + 1

4S
)
ψ,ψ

)
> 0,

which contradicts (18.32). Thus, Dψ = 0 ⇒ ψ = 0, if
(
Rε + 1

4S
)

(x0) is positive
definite for some x0. �

3. The Spinorial Heat Kernel

Recall from (18.27) that we have a pair of self-adjoint elliptic operators

D2
+ := D2|C∞(E⊗Σ+(M)) = D− ◦ D+

D2
− := D2|C∞(E⊗Σ−(M)) = D+ ◦ D−.

For λ ∈ C, let

Vλ
(
D2
±
)

:=
{
ψ ∈ C∞

(
E ⊗ Σ± (M)

)
: D2
±ψ = λψ

}
.

From the general theory of formally self-adjoint, elliptic operators on compact man-
ifolds, we know that

Spec
(
D2
±
)

=
{
λ ∈ C : Vλ

(
D2
±
)
6= {0}

}
.

consists of the eigenvalues of D2
± and is a discrete subset of [0,∞), the eigenspaces

Vλ
(
D2
±
)

are finite-dimensional, and an L2 (E ⊗ Σ± (M))-complete orthonormal set

of vectors can be selected from the Vλ
(
D2
±
)
. Note that D+

(
Vλ
(
D2

+

))
⊆ Vλ

(
D2
−
)
,

since for ψ ∈ Vλ
(
D2

+

)
D2
−
(
D+ψ

)
=
(
D+ ◦ D−

) (
D+ψ

)
= D+

((
D− ◦ D+

)
(ψ)
)

= D+
(
D2

+ (ψ)
)

= D+ (λψ) = λD+ (ψ) ,

and similarly D−
(
Vλ
(
D2
−
))
⊆ Vλ

(
D2

+

)
. For λ 6= 0,

D±|Vλ(D2
±) : Vλ

(
D2
±
)
→ Vλ

(
D2
∓
)

is an isomorphism, since it has inverse 1
λD
∓. Thus the set of nonzero eigenvalues

(and their multiplicities) of D2
+ coincides with that of D2

−. However, in general

dimV0

(
D2

+

)
− dimV0

(
D2
−
)

= dim Ker
(
D2

+

)
− dim Ker

(
D2
−
)

= index
(
D+
)
6= 0.

Since dimVλ
(
D2

+

)
− dimVλ

(
D2
−
)

= 0 for λ 6= 0, obviously

index
(
D+
)

= dimV0

(
D2

+

)
− dimV0

(
D2
−
)

=
∑

λ∈Spec(D2
+)
e−tλ

(
dimVλ

(
D2

+

)
− dimVλ

(
D2
−
))
.

The point is that the sum can be expressed as the integral of the supertrace of
the heat kernel for the spinorial heat equation ∂ψ

∂t = −D2ψ, from which the local
index theorem for D+ will eventually follow. However, first we need to establish
the existence of the heat kernel.

Let the positive eigenvalues of D2
± be placed in a sequence 0 < λ1 ≤ λ2 ≤ λ3 ≤

. . . where each eigenvalue is repeated according to its multiplicity. Let u±1 , u
±
2 , . . . be

an L2-orthonormal sequence in C∞ (E ⊗ Σ+ (M)) with D2
±
(
u±j
)

= λju
±
j (i.e., u±j ∈

Vλj
(
D2
±
)
). We let u+

01
, . . . , u+

0n+
be an L2-orthonormal basis of KerD2

+ = KerD+,

and u−01
, . . . , u−0n−

be an L2-orthonormal basis of KerD2
− = KerD−. We can pull
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back the bundle E ⊗ Σ± (M) via either of the projections M ×M × (0,∞) → M
given by π1 (x, y, t) := x and π2 (x, y, t) := y and take the tensor product of the
results to form a bundle

K± := π∗1
(
E ⊗ Σ± (M)

)
⊗ π∗2

(
E ⊗ Σ± (M)

)
→M ×M × (0,∞) .

Proposition 18.27. For t > t0 > 0, the series k′±, defined by

k′± (x, y, t) :=

∞∑
j=1

e−λjtu±j (x)⊗ u±j (y) ,

converges uniformly in Cq(K±|M×M×(t0,∞)) for all q ≥ 0. Hence k′± ∈ C∞ (K±),
and (for t > 0)

(18.33)
∂

∂t
k± (x, y, t) = −

∞∑
j=1

λje
−λjtu±j (x)⊗ u±j (y) = −D2

±k
± (x, y, t) .

Proof. Recall from (17.46), p. 468, that there are constants ck > 0 such that∥∥u±j ∥∥Cq ≤ ck ∥∥u±j ∥∥2,k
for 0 ≤ q < k − n

2

Thus for

k (q) := q +
n

2
+ τ,

where τ > 0 so that q < k − n
2 , we have∥∥e−λjtu±j ⊗ u±j ∥∥Cq ≤ e−λjt ∥∥u±j ∥∥Cq ∥∥u±j ∥∥Cq ≤ e−λjtc2k(q)

∥∥u±j ∥∥2

2,k(q)
.

Moreover, by Proposition 17.21, p. 468, there are constants Ck independent of j,
such that ∥∥u±j ∥∥2,k+2

≤ Ck
(∥∥D2

±u
±
j

∥∥
2,k

+
∥∥u±j ∥∥2

)
= Ck

(∥∥λju±j ∥∥2,k
+
∥∥u±j ∥∥2

)
≤ Ck (λj + 1)

∥∥u±j ∥∥2,k
.

As
∥∥u±j ∥∥2,0

= 1, iteration yields contants C ′k(q), such that∥∥u±j ∥∥2,k(q)
≤ C ′k(q) (λj + 1)

[k(q)/2] ∥∥u±j ∥∥2,0
= C ′k(q) (λj + 1)

[k(q)/2]
and∥∥u±j ∥∥Cq ≤ ck(q)

∥∥u±j ∥∥2,k(q)
≤ ck(q)C

′
k(q) (λj + 1)

[k(q)/2]
.(18.34)

Combining the above estimates, we then have (for j sufficiently large)∥∥e−λjtu±j ⊗ u±j ∥∥Cq ≤ e−λjtc2k(q)

∥∥u±j ∥∥2

2,k(q)

≤ e−λjtc2k(q)C
′2
k(q) (λj + 1)

k(q) ≤ e−λjtc2k(q)C
′2
k(q) (2λj)

k(q)

≤ C ′′k(q)e
−λjtλ

k(q)
j , where C ′′k(q) := 2k(q)c2k(q)C

′2
k(q).

In order to apply the Weierstrass M-test to deduce the (uniform) convergence of∑∞
j=1 e

−λjtu±j ⊗u
±
j in Cq(K|M×M×(t,∞)), we need to show that

∑∞
j=1 e

−λjtλ
k(q)
j <

∞; note that the inclusion of the arbitrary positive parameter τ in the definition
of k (q) is designed to handle the uniform Cq convergence in t as well. It is easy to
check that

e−x/2xk ≤ Dk := e−k (2k)
k

,
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by noting that

d
dx

(
e−x/2xk

)
= xk−1

(
− 1

2x+ k
)
e−

1
2x = 0 for x = 2k.

Thus,

e−λjt/2 (λjt)
k(q) ≤ Dk(q),

e−λjtλ
k(q)
j ≤ Dk(q)t

−k(q)e−λjt/2, and
∞∑
j=1

e−λjtλ
k(q)
j ≤ Dk(q)t

−k(q)
∞∑
j=1

e−λjt/2.

If we can show that λj ≥ Cjα for some positive constants C and α, then

∞∑
j=1

e−λjt/2 ≤
∞∑
j=1

e−Cj
αt/2 <∞,

by comparison with an integral of the form (for α,β ∈ (0,∞))∫ ∞
0

e−βx
α

dx =
1

α
β−

1
αΓ

(
1

α

)
<∞.

Thus, it remains to show that λj ≥ Cjα for some positive constants C and α. Let

V ±j :=
{∑j

i=1 aiu
±
i : ai ∈ C

}
. For u± =

∑j
i=1 aiu

±
i ∈ V ±n and k > n

2 , we have

(using Proposition 17.21, p. 468)

∥∥u±∥∥
C0 ≤ ck

∥∥u±∥∥
2,k
≤ ckCk

∥∥∥(D2
± + 1

)[k/2] (
u±
)∥∥∥

2,0

≤ ckCk (λj + 1)
[k/2] ∥∥u±∥∥

2,0

= C ′′k (λj + 1)
[k/2]

(∑j

i=1
|ai|2

) 1
2
,

where we have used the characterization

(λj + 1)
[k/2]

= sup
u±∈V ±j

∥∥∥(D2
± + 1

)[k/2]
(u±)

∥∥∥
2,0

‖u±‖2,0
.

Hence, for any x ∈M and ai ∈ C,

∣∣∣∣∑j

i=1
aiu
±
i (x)

∣∣∣∣ ≤ C ′′k (λj + 1)
[k/2]

(∑j

i=1
|ai|2

) 1
2
.

Let F1 (x) , . . . , FN (x) (N = dimE · dim Σ±n ) be an orthonormal basis for Ex ⊗
Σ± (M)x, and for fixed h ∈ {1, . . . , N}, we make the specific choice aj =

〈
u±j (x) , Fh (x)

〉∗
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for the aj . Then, not summing over h,∑j

i=1

∣∣〈u±i (x) , Fh (x)
〉∣∣2 =

∑j

i=1
ai
〈
u±i (x) , Fh (x)

〉
|Fh (x)|

=

∣∣∣∣∑j

i=1
ai
〈
u±i (x) , Fh (x)

〉
Fh (x)

∣∣∣∣ ≤ ∣∣∣∣∑j

i=1
aiu
±
i (x)

∣∣∣∣
≤ C ′′k (λj + 1)

[k/2]

(∑j

i=1
|ai|2

) 1
2

= C ′′k (λj + 1)
[k/2]

(∑j

i=1

∣∣〈u±i (x) , Fh (x)
〉∣∣2) 1

2
.

Dividing this by
(∑j

i=1

∣∣〈u±i (x) , Fh (x)
〉∣∣2) 1

2
and squaring, we have∑j

i=1

∣∣〈u±j (x) , Fh (x)
〉∣∣2 ≤ C ′′2k (λj + 1)

k
.

Now summing over h, we get

j∑
i=1

∣∣u±i (x)
∣∣2 =

∑N

h=1

∑j

i=1

∣∣〈u±i (x) , Fh (x)
〉∣∣2 ≤ NC ′′2k (λj + 1)

k
.

Integrating over M , we obtain

j =

j∑
i=1

∥∥u±i ∥∥2

2,0
≤ NC ′′2k (λj + 1)

k
Vol (M) .

Thus, for k > n/2 and j sufficiently large, we have the desired result

(18.35) λj ≥
(

j

C ′′2k Vol (M)

) 1
k

− 1 ≥ 2

(
1

C ′′2k Vol (M)

) 1
k

j
1
k .

�

Definition 18.28. The positive and negative twisted spinorial heat ker-
nels (or the heat kernels for D2

±) k± ∈ C∞ (K±) are given by

k± (x, y, t) :=

n±∑
i=1

u±0i (x)⊗ u±0i (y) +

∞∑
j=1

e−λjtu±j (x)⊗ u±j (y) .

The total twisted spinorial heat kernel (or the heat kernel for D2) is

k =
(
k+, k−

)
∈ C∞

(
K+
)
⊕ C∞

(
K−
) ∼= C∞

(
K+ ⊕K−

)
⊆ C∞ (K) ,

where K := π∗1 (E ⊗ Σ (M))⊗ π∗2 (E ⊗ Σ (M)) .(18.36)

The terminology is justified in view of the following

Proposition 18.29. Let ψ±0 ∈ C∞ (E ⊗ Σ± (M)) and let

ψ± (x, t) =

∫
M

〈
k± (x, y, t) , ψ±0 (y)

〉
y
ν (y) .
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Then for t > 0, ψ± solves the heat equation with initial spinor ψ±0 :

∂ψ±

∂t
= −D2

±ψ and

lim
t→0+

ψ± (·, t) = ψ±0 in Cq for all q ≥ 0.

Moreover, for ψ0 ∈ C∞ (E ⊗ Σ (M)) and

ψ (x, t) :=

∫
M

〈k (x, y, t) , ψ0〉 ν,

we have
∂ψ

∂t
= −D2ψ and limt→0+ ψ (·, t) = ψ0 (·) in Cq for all q ≥ 0.

Proof. Since k± is C∞, we may differentiate under the integral and use (18.33)

to deduce that
∂ψ±

∂t
= −D2

±ψ. We now show that limt→0+ ψ± (·, t) = ψ±0 in Cq for

all q ≥ 0. First note that

ψ± (x, t) =

∫
M

〈
k± (x, y, t) , ψ±0 (y)

〉
y
ν (y)

=

∫
M

〈
n±∑
i=1

u±0i (x)⊗ u±0i (y) +

∞∑
j=1

e−λjtu±j (x)⊗ u±j (y) , ψ±0 (y)

〉
ν (y)

=

n±∑
i=1

(∫
M

〈
u±0i (y) , ψ±0 (y)

〉
ν (y)

)
u±0i (x)

+

∞∑
j=1

e−λjt
(∫

M

〈
u±j (y) , ψ±0 (y)

〉
ν (y)

)
u±j (x)

=

n±∑
i=1

(
u±0i , ψ

±
0

)
u±0i (x) +

∞∑
j=1

e−λjt
(
u±j , ψ

±
0

)
u±j (x) ,

where we have used the uniform convergence of the series to interchange sum and
integral. It remains to prove that in the Cq norm, the limit as t → 0+ may be
taken under the infinite sum. This is permitted if

∞∑
j=1

∥∥(u±j , ψ±0 )u±j (x)
∥∥
Cq

<∞.

Since ψ±0 is C∞, for any l = 0, 1, . . . , we have(
D2
±
)l
ψ±0 ∈ C∞

(
E ⊗ Σ± (M)

)
⊆ L2

(
E ⊗ Σ± (M)

)
, and(

u±j ,
(
D2
±
)l
ψ±0

)
2,0

=
((
D2
±
)l
u±j , ψ

±
0

)
2,0

= λlj
(
u±j , ψ

±
0

)
2,0
.

Thus, for any l = 0, 1, . . . ,

∞∑
j=1

λ2l
j

∣∣∣(u±j , ψ±0 )2,0∣∣∣2 =
∥∥∥(D2

±
)l
ψ±0

∥∥∥2

<∞, and so∣∣∣(u±j , ψ±0 )2,0∣∣∣ ≤ Klλ
−l
j for some Kl > 0.
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Using
∥∥u±j ∥∥Cq ≤ ck(q)C

′
k(q) (λj + 1)

[k(q)/2]
(see 18.34), we have

∞∑
j=1

∥∥(u±j , ψ±0 )u±j ∥∥Cq ≤ ∞∑
j=1

Klλ
−l
j

∥∥u±j ∥∥Cq
≤
∞∑
j=1

Klck(q)C
′
k(q)λ

−l
j (λj + 1)

[k(q)/2]
<∞,

since we can choose l arbitrarily large and we have shown (see (18.35)) that λj ≥
Cjα for some positive constants C and α. Thus, the sum

n±∑
i=1

(
u±0i , ψ

±
0

)
u±0i +

∞∑
j=1

(
u±j , ψ

±
0

)
u±j ,

which is known to converge in L2 (E ⊗ Σ± (M)) to ψ±0 , in fact converges in Cq (E ⊗ Σ± (M))
to ψ±0 . By dominated convergence,

∞∑
j=1

∥∥e−λjt (u±j , ψ±0 )u±j ∥∥Cq ≤ ∞∑
j=1

∥∥(u±j , ψ±0 )u±j ∥∥Cq <∞,

implies that we have have the following limit in Cq:

lim
t→0+

ψ± (·, t) =

n±∑
i=1

(
u±0i , ψ

±
0

)
u±0i +

∞∑
j=1

lim
t→0+

e−λjt
(
u±j , ψ

±
0

)
u±j

=

n±∑
i=1

(
u±0i , ψ

±
0

)
u±0i +

∞∑
j=1

(
u±j , ψ

±
0

)
u±j = ψ±0 .

The analogous assertions for ψ0 and ψ are proved in the same way. �

Note that for x ∈ M , the Hermitian inner product 〈 , 〉x on (E ⊗ Σ (M))x
gives us a conjugate-linear map ψ 7→ ψ∗ (·) := 〈·, ψ〉x from (E ⊗ Σ (M))x to its
dual (E ⊗ Σ (M))

∗
x. Thus, for t > 0, we may regard

k (x, y, t) ∈ Hom
(

(E ⊗ Σ (M))x , (E ⊗ Σ (M))y

)
,

and simailarly for k± (x, y, t). For any finite dimensional Hermitian vector space
(V, 〈·, ·〉) with orthonormal basis e1, . . . , eN , we have (for v ∈ V )

Tr (v∗ ⊗ v) =
∑N

i=1
〈(v∗ ⊗ v) (ei) , ei〉 =

∑N

i=1
〈v∗ (ei) v, ei〉

=
∑N

i=1
〈〈ei, v〉 v, ei〉 =

∑N

i=1
〈ei, v〉 〈v, ei〉 =

∑N

i=1
|〈ei, v〉|2 = |v|2 .

In particular, k± (x, x, t) ∈ End ((E ⊗ Σ± (M))x) and

Tr
(
k± (x, x, t)

)
=

n±∑
i=1

∣∣u±0i (x)
∣∣2 +

∞∑
j=1

e−λjt
∣∣u±j (x)

∣∣2 .
Since this series converges uniformly and

∥∥u±0i∥∥2,0
=
∥∥u±j ∥∥2,0

= 1, we have∫
M

Tr
(
k± (x, x, t)

)
νx = n± +

∞∑
j=1

e−λjt <∞.
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For t > 0, we define the bounded linear operator e−tD
2
± ∈ End

(
L2 (E ⊗ Σ± (M))

)
by

e−tD
2
±
(
ψ±
)

=

n±∑
i=1

(
u±0i , ψ

±
0

)
u±0i +

∞∑
j=1

e−λjt
(
u±j , ψ

±
0

)
u±j .

Note that e−tD
2
± is of trace class, since

Tr
(
e−tD

2
±

)
= n± +

∞∑
j=1

e−λjt =

∫
M

Tr
(
k± (x, x, t)

)
νx <∞.

Now, we have

index
(
D+
)

= dimV0

(
D2

+

)
− dimV0

(
D2
−
)

= n+ − n− +

∞∑
j=1

(
e−λjt − e−λjt

)

= n+ +

∞∑
j=1

e−λjt −

n− +

∞∑
j=1

e−λjt


=

∫
M

Tr
(
k+ (x, x, t)

)
νx −

∫
M

Tr
(
k− (x, x, t)

)
νx

=

∫
M

(
Tr
(
k+ (x, x, t)

)
− Tr

(
k− (x, x, t)

))
νx.(18.37)

SinceD2 = D2
+⊕D2

−, we also have the trace-class operator e−tD
2 ∈ End

(
L2 (E ⊗ Σ (M))

)
,

whose trace is given by

Tr
(
e−tD

2
)

=

∫
M

Tr (k (x, x, t)) νx =

∫
M

(
Tr
(
k+ (x, x, t)

)
+ Tr

(
k− (x, x, t)

))
νx.

The supertrace of k (x, x, t) is defined by

Str (k (x, x, t)) := Tr
(
k+ (x, x, t)

)
− Tr

(
k− (x, x, t)

)
,

and in view of (18.37), we have

(18.38) index
(
D+
)

=

∫
M

Str (k (x, x, t)) νx.

The left side is independent of t and so the right side is also independent of t.
The main task now is to determine the behavior of Str (k (x, x, t)) as t → 0+.
We suspect that for each x ∈ M , as t → 0+, k (x, x, t) and Str (k (x, x, t)) are
influenced primarily by the geometry (e.g., curvature of M and E) near x, since
the heat sources of points far from x are not felt very strongly at x for small t. In
the sections to follow, we show that

(18.39) lim
t→0+

Str (k (x, x, t)) =

〈
Tr
(
eiΩ

ε/2π
)
∧ det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

, νx

〉
,

where the meaning of the right side is explained in the following digression.
The curvature form of the connection ε on E is denoted by Ωε, while Ωθ is

the curvature form of the Levi-Civita connection θ for FM . We have (recall 2m =
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dimM)

(18.40) eiΩ
ε/2π :=

∞∑
k=0

1

k!

(
i

2π

)k
Ωε ∧ k· · · ∧ Ωε =

m∑
k=0

1

k!

(
i

2π

)k
Ωε ∧ k· · · ∧ Ωε,

where Ωε ∧ k· · · ∧ Ωε ∈ Ω2k (End (E)). Also Tr
(

Ωε ∧ k· · · ∧ Ωε
)
∈ Ω2k (M) and

Tr
(
eiΩ

ε/2π
)
∈

m⊕
k=1

Ω2k (M) .

This (by one of many equivalent definitions) is a representative of the total Chern
character ch (E) ∈

⊕m
k=1H

2k (M,Q). Now Ωθ ∈ Ω2 (End (TM)) has values in the
skew-symmetric endomorphisms of TM . A skew-symmetric endomorphism of R2m,
say B ∈ so (n), has pure imaginary eigenvalues ±irk, where rk ∈ R (1 ≤ k ≤ m).

Thus, iB has real eigenvalues ±rk. Now z/2
sinh(z/2) is a power series in z with radius

of convergence 2π. Thus, isB/2
sinh(isB/2) is defined for s sufficiently small and has

eigenvalues rks/2
sinh(rks/2) each repeated twice. Hence

det

(
isB/2

sinh (isB/2)

)
=

m∏
k=1

(
rks/2

sinh (rks/2)

)2

and

det

(
isB/2

sinh (isB/2)

) 1
2

=

m∏
k=1

rks/2

sinh (rks/2)
.

The last product is a power series in s of the form

(18.41)

m∏
k=1

rks/2

sinh (rks/2)
=

∞∑
j=0

ak
(
r2
1, . . . , r

2
m

)
s2k,

where the coefficient ak
(
r2
1, . . . , r

2
m

)
is a homogeneous, symmetric polynomial in

r2
1, . . . , r

2
m of degree k. One can always express any such a symmetric polynomial

as a polynomial in the elementary symmetric polynomials σ1, . . . , σm in r2
1, . . . , r

2
m,

where
σ1 =

∑m

i=1
r2
i , σ2 =

∑m

i<j
r2
i r

2
j , σ2 =

∑m

i<j<k
r2
i r

2
j r

2
k, . . . .

These in turn may be expressed in terms of SO (n)-invariant polynomials in the
entries of B ∈ so (n) via

det (λI −B) =

m∏
j=1

(λ+ irj) (λ− irj) =

m∏
j=1

(
λ2 + r2

j

)
=

m∑
k=1

σk
(
r2
1, . . . , r

2
m

)
λ2(m−k).

On the other hand,

det (λI −B) =

m∑
k=1

 1

(2k)!

∑
(i),(j)

δj1···j2ki1···i2k B
i1
j1
· · ·Bi2kj2k

λ2(m−k), and so

σk
(
r2
1, . . . , r

2
m

)
=

1

(2k)!

∑
(i),(j)

δj1···j2ki1···i2k B
i1
j1
· · ·Bi2kj2k ,
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where (i) = (i1, · · · , i2k) is an ordered 2k-tuple of distinct elements of {1, . . . , 2m}
and (j) is a permutation of (i) with sign δj1···j2ki1···i2k . If we replace Bij with the 2-form
1

2π

(
Ωθ
)i
j

relative to an orthonormal frame field, we obtain the Pontryagin forms

pk
(
Ωθ
)

=
1

(2π)
2k

(2k)!

∑
(i),(j)

δj1···j2ki1···i2k Ωθi1j1 ∧ · · · ∧ Ωθi2kj2k ,

which represent the Pontryagin classes of the SO (n) bundle FM. Note that pk
(
Ωθ
)

is independent of the choice of framing by the ad-invariance of the polynomials
σk. Getting back to (18.39), if we express the ak

(
r2
1, . . . , r

2
m

)
as polynomials, say

Ak (σ1, . . . , σk), in the σj (j ≤ k), we can ultimately write

det

(
isB/2

sinh (isB/2)

) 1
2

=

∞∑
k=0

Ak (σ1, . . . , σk) s2k.

Formally replacing B by 1
2πΩθ, we finally have motivated the definition

det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

:=

∞∑
k=0

Ak
(
p1

(
Ωθ
)
, . . . , pk

(
Ωθ
))
,

where the pj
(
Ωθ
)

are multiplied via wedge product when evaluating theAk
(
p1

(
Ωθ
)
, . . . , pk

(
Ωθ
))

;

the order of multiplication does not matter since pj
(
Ωθ
)

is of even degree 4j. Also,

since Ak
(
p1

(
Ωθ
)
, . . . , pk

(
Ωθ
))

is a 4k-form, there are only a finite number of

nonzero terms in the infinite sum. Abbreviating pj
(
Ωθ
)

simply by pj , one finds

det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

= 1− 1

24
p1 +

1

5760

(
7p2

1 − 4p2

)
− 1

967 680

(
31p3

1 − 44p1p2 + 16p3

)
+ · · · .(18.42)

This (by one definition) represents the total Â-class of M , denoted by

(18.43) Â (M) ∈
m⊕
k=1

H2k (M,Q) ,

where actually Â (M) has only nonzero components in H2k (M,Q) when k is even
(or 2k ≡ 0 mod 4). In (18.39) the multi-degree forms (18.40) and (18.42) have been
wedged, and the top (2m-degree) component (relative to the volume form) has been
harvested. In terms of characteristic classes, (18.38) and (18.39) yield

(18.44) index
(
D+
)

=
(
ch (E) ` Â (M)

)
[M ] ,

which is the index formula for the twisted Dirac operator D+.
In the next section, we give a different construction of the total twisted spinorial

heat kernel, which yields its asymptotic expansion as t → 0+. In order to deduce
that this construction actually yields the same result as (18.36), we introduce the
definition of a general heat kernel for D2. Propositions 18.27 and 18.29 imply that
the heat kernel (18.36) satisfies the criteria in this definition. We prove below
that any two general heat kernels are the same. Hence, if a differently constructed
function also fits this definition, it must agree with the heat kernel (18.36). We set

H := π∗1 (E ⊗ Σ (M))
∗ ⊗ π∗2 (E ⊗ Σ (M))→M ×M × (0,∞) ,
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where π1 (x, y, t) := x and π2 (x, y, t) := y.

Definition 18.30. A general heat kernel for D2 is a section κ ∈ C0 (H),

where κ (x, y, t) ∈ hom
(

(E ⊗ Σ± (M))x , (E ⊗ Σ± (M))y

)
is C2 in x, C1 in t, and(

∂t +D2
x

)
κ (x, y, t) = 0. Moreover, for all ψ ∈ C0 (E ⊗ Σ± (M)), we require

(18.45) lim
t→0+

∫
M

κ (y, x, t)ψ (y) vh (y) = ψ (x) .

Remark 18.31. Here and elsewhere, the phrase “C2 in x” means not only that
κ (x, y, t) is C2 in x for fixed t, but that the second partials with respect to local
coordinates for x are jointly continuous in (x, y, t). Also “C1 in t” means that
∂tκ (x, y, t) is jointly continuous in (x, y, t).

Lemma 18.32. Let π : M × [0,∞) → M be given by π (x, t) = x, and let ψ1,
ψ2 ∈ C0 (π∗ (E ⊗ Σ (M))) be C2 in x and C1 in t. Suppose that

(
∂t +D2

)
ψ1 = 0

and
(
∂t +D2

)
ψ2 = 0. Then for any t > 0, we have

d

ds

∫
M

〈ψ1 (x, t− s) , ψ2 (x, s)〉x vh (x) = 0 for s ∈ (0, t) .

In other words,
∫
M
〈ψ1 (x, t− s) , ψ2 (x, s)〉x vh (x) is independent of s in [0, t].

Proof. For L := ∂t +D2,

0 = 〈(Lψ1) (x, t− s) , ψ2 (x, s)〉 − 〈ψ1 (x, t− s) , (Lψ2) (x, s)〉
= 〈−∂s (ψ1 (x, t− s)) , ψ2 (x, s)〉 − 〈ψ1 (x, t− s) , ∂s (ψ2 (x, s))〉
+
〈
D2
xψ1 (x, t− s) , ψ2 (x, s)

〉
−
〈
ψ1 (x, t− s) ,D2

xψ2 (x, s)
〉

= ∂
∂s (〈(ψ1 (x, t− s)) , ψ2 (x, s)〉)

+
〈
D2
xψ1 (x, t− s) , ψ2 (x, s)

〉
−
〈
ψ1 (x, t− s) ,D2

xψ2 (x, s)
〉
.

Since D2 is formally self-adjoint, integrating over M , we then have

d

ds

∫
M

〈ψ1 (x, t− s) , ψ2 (x, s)〉x vh (x)

=

∫
M

∂
∂s 〈ψ1 (x, t− s) , ψ2 (x, s)〉x vh (x) = 0,

since the integrand 〈ψ1 (x, t− s) , ψ2 (x, s)〉x is C1 in t. �

Proposition 18.33. If κ is a general heat kernel for D2, then κ (y, x, t) =
κ (x, y, t)

∗
. Moreover, if κ1 and κ2 are general heat kernels for D2, then κ1 = κ2.

Proof. For any fixed α ∈ (E ⊗ Σ± (M))x and β ∈ (E ⊗ Σ± (M))y, let ψ1 (z, t) :=

κ1 (z, x, t)
∗

(α) and ψ2 (z, t) := κ2 (z, y, t)
∗

(β) for (z, t) ∈M × (0,∞). Then(
∂t +D2

z

)
ψ1 =

(
∂t +D2

z

) (
κ1 (z, x, t)

∗
(α)
)

=
((
∂t +D2

z

)
κ1 (z, x, t)

)∗
(α) = 0,
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and similarly
(
∂t +D2

z

)
ψ2 = 0. According to (18.45),

〈ψ1 (y, t) , β〉 =

〈
lim
s→0+

∫
M

κ2 (z, y, s)ψ1 (z, t− s) vh (z) , β

〉
y

= lim
s→0+

∫
M

〈κ2 (z, y, s)ψ1 (z, t− s) , β〉y vh (z)

= lim
s→0+

∫
M

〈
ψ1 (z, t− s) , κ2 (z, y, s)

∗
(β)
〉
z
vh (z)

= lim
s→0+

∫
M

〈ψ1 (z, t− s) , ψ2 (z, s)〉z vh (z) , and

〈α,ψ2 (x, t)〉 =

〈
α, lim

s→t−

∫
M

κ1 (z, x, t− s)ψ2 (z, s) vh (z)

〉
x

= lim
s→t−

∫
M

〈α, κ1 (z, x, t− s)ψ2 (z, s)〉x vh (z)

= lim
s→t−

∫
M

〈
κ1 (z, x, t− s)∗ (α) , ψ2 (z, s)

〉
z
vh (z)

= lim
s→t−

∫
M

〈ψ1 (z, t− s) , ψ2 (z, s)〉z vh (z) .

Hence, using Lemma 18.32,〈
κ1 (y, x, t)

∗
(α) , β

〉
= 〈ψ1 (y, t) , β〉

= lim
s→0+

∫
M

〈ψ1 (z, t− s) , ψ2 (z, s)〉z vh (z)

= lim
s→t−

∫
M

〈ψ1 (z, t− s) , ψ2 (z, s)〉z vh (z)

= 〈α,ψ2 (x, t)〉 =
〈
α, κ2 (x, y, t)

∗
(β)
〉
,

from which we have κ2 (x, y, t) = κ1 (y, x, t)
∗
. In the case κ1 = κ2 = κ, we have

κ (x, y, t) = κ (y, x, t)
∗
, and so κ1 (x, y, t) = κ1 (y, x, t)

∗
= κ2 (x, y, t). �

4. The Asymptotic Formula for the Heat Kernel

The well-known heat kernel (or fundamental solution) for the ordinary heat
equation ut = ∆u in Euclidean space Rn, is given by

(18.46) e (x, y, t) = (4πt)
−n/2

exp
(
− |x− y|2 /4t

)
.

Since H (x, y, t) only depends on r = |x− y| and t, it is convenient to write

(18.47) e (x, y, t) = E (r, t) := (4πt)
−n/2

exp
(
−r2/4t

)
.

We do not expect such a simple expression for the heat kernel k = (k+, k−) of
Definition 18.28 on p. 510. However, we will show that for x, y ∈ M (of even
dimension n = 2m) with r = d(x, y) := Riemannian distance from x to y sufficiently
small, we have an asymptotic expansion as t→ 0+ for k (x, y, t) of the form

k (x, y, t) ∼ HQ (x, y, t) := E (r, t)
∑Q

j=0
hj (x, y) tj ,
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for any fixed integer Q > m+ 4, where

hj (x, y) ∈ Hom
(

(E ⊗ Σ (M))x , (E ⊗ Σ (M))y

)
, j ∈ {0, 1, . . . , Q} .

The meaning of k (x, y, t) ∼ HQ (x, y, t) is that for d(x, y) and t sufficiently small,

|k (x, y, t)− kQ (x, y, t)| ≤ CQE (r, t) tQ+1 ≤ CQtQ−m+1,

where CQ is a constant, independent of (x, y, t). We then will have

(18.48) k (x, x, t) ∼ (4πt)
−m

Q∑
j=0

hj (x, x) tj = (4π)
−m

Q∑
j=0

hj (x, x) tj−m.

This may seem a bit odd, since we know from (18.38) that for any t > 0,∫
M

Str (k (x, x, t)) νh (x) = index
(
D+
)
,

which is constant, independent of t. As t→ 0+, we deduce from (18.48) that∫
M

Str (hj (x, x)) νh (x) = 0 for j ∈ {0, 1, . . . ,m− 1} , while

(4π)
−m
∫
M

Str (hm (x, x)) νh (x) = index
(
D+
)
.

Thus, to prove the Local Index Formula, it will suffice to show that

(4π)
−m

Str (hm (x, x)) =

〈
Tr
(
eiΩ

ε/2π
)
∧ det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

, νh (x)

〉
.

While this may not be the intellectual equivalent of climbing Mount Everest, it is
not for the faint of heart. We will find some shortcuts, and we encourage the reader
to find other approaches to the summit. In what follows, we develop machinery to
a obtain local formula D2 about a point x ∈M using a local section (known as the
radial gauge) of the frame bundle, which is as simple as possible. We will then use
this to construct what ought to be the asymptotic expansion for the heat kernel of
the spinorial heat equation ψt = D2ψ. The proof that this is indeed the asymptotic
expansion for the heat kernel will then be carried out. This will be the foundation
for the proof of the Local Index Formula in the next chapter.

In this paragraph, we construct the radial gauge. For any v ∈ Rn, we denote the
standard horizontal vector field on FM (with respect to the Levi-Civita connection
θ) by v. Recall that v is determined by the conditions

θ (v) = 0 and v = ϕ (vu) = u−1 (πF∗ (vu)) , for all u ∈ FM,

where ϕ ∈ Ω
1

(P,Rn) is the canonical 1-form. Let C : P → FM be the spin
structure for M and let πU(E) : U (E) → M be the unitary frame bundle of E
with connection ε. We then have the fibered-product bundle πU(E) ×f (πF ◦ C) :

U (E)×f P → M with connection ε⊕ θ̃, where θ̃ := c′−1 (C∗θ). We may pullback

the canonical form ϕ to a form in Ω
1

(U (E)×f P,Rn) via the map U (E)×f P →
P → FM . For simplicity, we will denote this pullback of ϕ by the same symbol
ϕ. Moreover, we can define the notion of the standard horizontal vector field v on
U (E)×f P for v ∈ Rn by means of the conditions(

ε⊕ θ̃
)

(v) = 0 and v = ϕ (v) .
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For fixed x ∈M , select a frame ux ∈ (FM)x and some u′x ∈ P with C(u′x) = ux; u′x
is sometimes called a spinor frame at x. Also select a (unitary) frame w′x ∈ U (E)x.
Then let wx := (w′x, u

′
x) ∈ (U (E)×f P )x. For v ∈ Rn, let ηv : R→ U (E)×f P be

the integral curve of v with initial point ηv (0) = wx. Thus, for πf : U (E)×fP →M ,

η′v (t) = vηv(t) and ϕ (η′v (t)) = ϕ
(
vηv(t)

)
= u−1

(
πf∗

(
vηv(t)

))
= v.

Define ζ : Rn → U (E)×fP by ζ (v) = ηv (1). Note that ζ (tv) = ηtv (1) = ηv (t) and
ζ (0) = ηv (0) = wx. By the implicit function theorem, there is a ball B (0, r0) ⊆ Rn
(r0 > 0) about 0 ∈ Rn, such that ζ|B(0,r0) defines a smoothly embedded submanifold
of U (E) ×f P through wx and πf ◦ ζ|B(0,r0) : B (0, r0) → M is a diffeomorphism
onto its image, say B. There is a unique local section σ : B → U (E) ×f P whose
image is ζ (B (0, r0)). This local section σ is known as the radial gauge for the choice

(w′x, u
′
x) ∈ (U (E)×f P )x; it depends on the connection ε⊕ θ̃. Since U (E)×f P ⊂

U (E)× P, the map σ has two component local sections; i.e.,

σ = σ1 × σ2, where σ1 : B → U (E) and σ2 : B → P .

Using the spin structure C : P → FM , we also have a local section

(18.49) u := C ◦ σ2 : B → FM

of the frame bundle (i.e., a frame field). For y ∈ B and the standard basis vectors
ek ∈ Rn, we set

(18.50) Ek (y) := ((C ◦ σ2) (y)) (ek) .

Proposition 18.34. For v ∈ Rn, the curve ξv := πf ◦ ηv is a geodesic relative
to the metric h on M with ξ′v (0) = ux (v). If ξv (1) ∈ B, the map

φ :=
(
πf ◦ ζ|B(0,r0)

)−1
: B → B (0, r0)

assigns to the point ξv (1) ∈ B, the components relative to the frame ux of ξ′v (0),
namely

(18.51) φ (ξv (1)) = u−1
x (ξ′v (0)) = v.

In other words, φ : B → B (0, r0) is a normal coordinate system.

Proof. We claim that the Ek are parallel along the each of the curves ξv :=

πf ◦ηv in the sense that ∇θξ′vEk = 0. Let u = C◦σ2 as in (18.49) and let Ẽk (u (y)) ∈
Tu(y)FM be the θ-horizontal lift of Ek (y). We have that ϕηv(t)(Ẽk) = ek, since

ϕu(ξv(t))(Ẽk) = u (ξv (t))
−1

(π∗(Ẽk)) = u (ξv (t))
−1

(Ek (ξv (t)))

= u (ξv (t))
−1

(u (ξv (t)) (ek)) = ek.

Then using the definition ∇θXY := π∗(ϕ
−1(X̃[ϕ(Ỹ )])),

∇θξ′v(t)Ek = π∗

(
ϕ−1
u(ξv(t))

(
ξ̃′v (t)u(ξv(t))

[
ϕu(ξv(·))(Ẽk (ηv (·)))

]))
= π∗

(
ϕ−1
u(ξv(t))

(
ξ̃′v (t)u(ξv(t)) [ek]

))
= 0.
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In particular, the curve ξv is a geodesic (for the metric h on M), with ξ′v (0) =
ux (v), since its tangent vector field ξ′v (t) is a linear combination (with constant
coefficients) of the parallel vector fields Ek; explicitly,

ξ′v (t) = (πf ◦ ηv)′ (t) = πf∗ (η′v (t)) = πf∗
(
vηv(t)

)
= πF∗

(
vu(ξv(t))

)
= u (ξv (t)) (v) (where we used v = ϕ (vu) = u−1 (πF∗ (vu)) )

= u (ξv (t))
(∑n

k=1
vkek

)
=
∑n

k=1
vku (ξv (t)) (ek)

=
∑n

k=1
vk (Ek)ξv(t) .(18.52)

We get (18.51) from

ζ (v) = ηv (1)⇒ (πf ◦ ζ) (v) = (πf ◦ ηv) (1) = ξv (1)

⇒ φ (ξv (1)) = v = u−1
x (ξ′v (0)) .

In other words, φ is the restriction of the exponential map from TxM to M . These
are called the normal coordinates about x relative to the frame ux. �

We denote the Cartesian coordinates of points inB (0, r0) ⊆ Rn by
(
y1, . . . , yn

)
,

and we let r2 =
(
y1
)2

+ · · ·+ (yn)
2
. In what follows, we identify points y ∈ B with

their coordinate points in B (0, r0). In particular the original point x, about which
all of these constructions started, is 0 ∈ B (0, r0), and the curve ξv is simply given
by

ξv (t) = tv = t (v1, . . . , vn)

We use the notation ∂j := ∂/∂yj for the standard coordinate vector fields. By
(18.52) we have u (ξv (t)) (v) = ξ′v (t), and so

Ek (0) = ux (ek) = u (ξek (0)) (ek) = ξ′ek (0) = d
dt (tek)

∣∣
t=0

= ∂k|y=0

Thus, the orthonormal vector fields E1 (y) , . . . , En (y) coincide with ∂1, . . . , ∂n at
y = 0, but not necessarily elsewhere in B (0, r0) unless the metric h is flat, as we
shall see. In general, the functions

hij (y) := hy (∂i, ∂j)

are not the constant functions δij = hy (Ei, Ej), and we will eventually need to
determine them to second order about y = 0.

The radial vector field ∂r on B − {x} (or B (0, r0) \ {0}) is defined by

(∂r)y :=
1

r

∑n

j=1
yj (∂j)y =

1

r
d
dt (y + ty)

∣∣
t=0

=
1

r
d
dt (1 + t) y

∣∣
t=0

=
1

r
ξ′y (1) .

More generally, for t > 0, we have

(∂r)ξy(t) =
1

|y|
ξ′y (t) ,

since for |y| > 0,

(∂r)ξy(t) =
1

|ξy (t)|
∑n

j=1
ξy (t)

j
(∂j)ξy(t) =

∑n

j=1

ξy (t)
j

|ξy (t)|
(∂j)ξy(t)

=
∑n

j=1

tyj
|ty|

(∂j)ξy(t) =
1

|y|
∑n

j=1
yj (∂j)ξy(t) =

1

|y|
d
dt (ty) =

1

|y|
ξ′y (t) .
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If σ : U → U (E)×f P is a radial gauge for the connection ε⊕ θ̃, then

σ∗
(
ε⊕ θ̃

)
(∂r) = 0, since for y 6= 0,

σ∗
(
ε⊕ θ̃

)(
(∂r)y

)
=
(
ε⊕ θ̃

)
(σ∗∂r) =

(
ε⊕ θ̃

)(
σ∗

(
1

r
ξ′y (1)

))
=

1

r

(
ε⊕ θ̃

) (
σ∗
(
ξ′y (1)

))
=

1

r

(
ε⊕ θ̃

) (
η′y (1)

)
= 0.(18.53)

This fact simplifies covariant differentiation of twisted spinor fields in the radial
direction. The next pair of basic results will also be very useful.

Lemma 18.35 (Gauss’s Lemma). Let t ∈ R and let u, v ∈ Rn be nonzero
orthogonal vectors relative to the standard inner product. Then at any point tu ∈
B (0, r0), the vectors

∑n
i=1 u

i∂i and
∑n
j=1 v

j∂j are orthogonal relative to h. In

other words, for tu ∈ B (0, r0),∑n

i,j=1
δiju

ivj =
∑n

i,j=1
hij (0)uivj = 0⇒

∑n

i,j=1
hij (tu)uivj = 0.

Proof. We may assume that |u| = |v| = 1. Define V : R× [0, r0) → B (0, r0)
by

V (s, t) = t (u cos s+ v sin s) .

Then for any s, the curve t 7→ V (s, t) is a unit speed geodesic. Let ∂tV = V∗ (∂t)
and ∂sV = V∗ (∂s). These are well-defined vector fields on span (u, v)∩B (0, r0)\{0}
with [∂tV, ∂sV ] = V∗ ([∂t, ∂s]) = 0. Since t 7→ V (s, t) is a geodesic for any fixed s,
we have ∇∂tV ∂tV = 0. Thus, as the Levi-Civita connection is a metric connection,

∂tV [h (∂tV, ∂tV )] = 2h (∇∂tV ∂tV, ∂tV ) = 0, so that

hV (s,t) (∂tV, ∂tV ) = hV (s,0) (∂tV, ∂tV ) = 1.

Since the Levi-Civita connection is also torsion-free, we then have

∂tV [h (∂tV, ∂sV )] = h (∇∂tV ∂tV, ∂sV ) + h (∂tV,∇∂tV ∂sV )

= h (∂tV,∇∂tV ∂sV ) = h (∂tV,∇∂sV ∂tV + [∂tV, ∂sV ])

= h (∂tV,∇∂sV ∂tV ) = 1
2∂sV [h (∂tV, ∂tV )] = 1

2∂sV [1] = 0.

Writing
∑n
i=1 (cos s)ui∂i + (sin s) vi∂i sin s simply as u cos s+ v sin s, we have

0 = ∂tV [h (∂tV, ∂sV )] = d
dthV (s,t) ((u cos s+ v sin s) , t (−u sin s+ v cos s))

⇒ hV (s,t) ((u cos s+ v sin s) , t (−u sin s+ v cos s))

= hV (s,0) (u cos s+ v sin s, 0) = 0.

In particular, for all t ∈ [0, r0), we have 0 = hV (0,t) (u, tv) = thut (u, v), and so
hut (u, v) = 0, as required. �

Proposition 18.36. If y =
(
y1, . . . , yn

)
is a normal coordinate system on

B (0, r0) about x ∈ M relative to the Riemannian metric h, ∂1, . . . , ∂n are the
coordinate vector fields, and hij (y) := hy (∂i, ∂j) for y ∈ B (0, r0), then

(18.54)
∑n

j=1
hij (y) yj = yi.
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If Rikjl (0) denotes the component R (∂i, ∂k, ∂j , ∂l) of the Riemann curvature tensor
for the Levi-Civita connection at y = 0, then

hij (y) = δij − 1
3

∑n

k,l=1
Rikjl (0) ykyl + O

(
|y|3
)
,

hij (y) = δij + 1
3

∑n

k,l=1
Rikjl (0) ykyl + O

(
|y|3
)
,

hα := (det h)
α

= 1− 1
3α
∑n

k,l=1
Rkl (0) ykyl + O

(
|y|3
)
.(18.55)

Proof. Since t 7→ ty is a geodesic with speed |y|, we have

|y|2 =
∑n

i,j=1
hty
(
yi∂i, y

j∂j
)

=
∑n

i,j=1
hij (ty) yiyj for all t.

By Gauss’s Lemma, we have

n∑
i,j=1

hij (y) yivj = 0 for any v ∈ Rn with 〈y, v〉 = 0.

We may write any w ∈ Rn as w = αy + v for some α ∈ R. Then

n∑
i,j=1

hij (y) yiwj = α

n∑
i,j=1

hij (y) yiyj +

n∑
i,j=1

hij (y) yivj = α |y|2

= 〈y, αy + v〉 = 〈y, w〉 =

n∑
j=1

yjwj ,

from which (18.54) is immediate.
To obtain (18.55), we first differentiate (18.54):

δik = ∂k
(
yi
)

= ∂k

(∑n

j=1
hij (y) yj

)
=
∑n

j=1

(
∂k (hij (y)) yj + hij (y) ∂ky

j
)
,

Using the convenient notation hij,k (y) = ∂k (hij (y)), we then have

δik = hik (y) +
∑n

j=1
hij,k (y) yj .

Setting y = 0, we obtain hik (0) = δik. Differentiating again,

0 = ∂l

(
hik (y) +

∑n

j=1
hij,k (y) yj

)
= hik,l (y) +

∑n

j=1

(
hij,kl (y) yj + hij,k (y) δlj

)
= hik,l (y) + hil,k (y) +

∑n

j=1
hij,kl (y) yj ,(18.56)

and setting y = 0, we obtain

hil,k (0) + hik,l (0) = 0.

This implies hil,k (0) = 0, since

hil,k (0) = hli,k (0) = −hlk,i (0) = −hkl,i (0)

= hki,l (0) = hik,l (0) = −hil,k (0) .



18.4. THE ASYMPTOTIC FORMULA FOR THE HEAT KERNEL 523

Thus,

hij (y) = δij + 1
2

∑n

k,l=1
hij,kl (0) ykyl + O

(
|y|3
)
.

Note that

δpi =
∑n

j=1
hij (y)hjp (y)

=
∑n

j=1

(
δij + 1

2

∑n

k,l=1
hij,kl (0) ykyl + O

(
|y|3
))

hjp (y)

= hip (y) + 1
2

∑n

j,k,l=1
hij,kl (0) ykylhjp (y) + O

(
|y|3
)

= hip (y) + 1
2

∑n

j,k,l=1
hij,kl (0)hjp (0) ykyl + O

(
|y|3
)

⇒ hip (y) = δip − 1
2

∑n

k,l=1
hip,kl (0) ykyl + O

(
|y|3
)
.(18.57)

Differentiation of (18.56) yields

0 = ∂p

(∑n

j=1
hij,kl (y) yj + hil,k (y) + hik,l (y)

)
=
∑n

j=1
hij,klp (y) yj + hip,kl (y) + hil,kp (y) + hik,lp (y) , and so

hip,kl + hil,pk + hik,lp = 0 at y = 0.(18.58)

This implies that hij,kl (0) = hkl,ij (0), since at y = 0,

2hij,kl = hij,kl + hji,kl = − (hik,lj + hil,jk)− (hjk,li + hjl,ik)

= − (hki,lj + hkj,il)− (hli,jk + hlj,ki)

= hkl,ji + hlk,ij = 2hkl,ij .(18.59)

We will use this to show that

1
2

∑n

k,l=1
hij,kl (0) ykyl = − 1

3

∑n

k,l=1
Rikjl (0) ykyl.

We also need to write Rikjl (0) in terms of the derivatives of the hij at 0. If
ω ∈ Ω1 (B,GL (n)) denotes the pull-back of the Levi-Civita connection 1-form on
LM via the y-coordinate frame field, then

Rikjl = (dω + ω ∧ ω)ik (∂j , ∂l) .

By (16.47)

(18.60) ω (∂i)
l
j = Γlij := 1

2h
lk (∂i [hjk] + ∂j [hik]− ∂k [hij ]) ,

which is 0 at y = 0, since we have shown hil,k (0) = 0. Thus, ω ∧ ω = 0 at y = 0
and

Rikjl (0) = Rikjl (0) =
(
dωik

)
(∂j , ∂l) = ∂j

[
ω (∂l)

i
k

]
− ∂l

[
ω (∂j)

i
k

]
.

Since hlk = δlk + O
(
|y|2
)

by (18.57), (18.60) yields

ω (∂i)
l
j = 1

2 (hjl,i + hil,j − hij,l) + O
(
|y|2
)
.
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Thus (where henceforth all terms are evaluated at y = 0),

Rikjl = ∂j

[
ω (∂l)

i
k

]
− ∂l

[
ω (∂j)

i
k

]
= ∂j

[
1
2 (hki,l + hli,k − hlk,i)

]
− ∂l

[
1
2 (hki,j + hji,k − hjk,i)

]
= 1

2 (hki,lj + hli,kj − hlk,ij)− 1
2 (hki,jl + hji,kl − hjk,il)

= 1
2 (hli,kj − hlk,ij)− 1

2 (hji,kl − hjk,il)
= 1

2 (hli,kj − hji,kl + hjk,il − hlk,ij)
= hli,kj − hji,kl.

using (18.59). We show

hij,lk = − 1
3 (Rikjl +Riljk)

Indeed,

Rikjl +Riljk = (hli,kj − hji,kl) + (hki,lj − hji,lk)

= −2hji,kl + hli,kj + hki,lj = −2hji,kl + hil,jk + hik,lj

= −2hji,kl − hij,kl = −3hji,kl.

Hence,

1
2

∑n

k,l=1
hij,kly

kyl = − 1
2

1
3

∑n

k,l=1
(Rikjl +Riljk) ykyl

= − 1
3

∑n

k,l=1
Rikjly

kyl.

Now

(det h)
α

= det
(
δij − 1

3Rikjl (0) ykyl + O
(
|y|3
))

= det (δij)− Tr
(

1
3Rikjl (0) ykyl

)
+ O

(
|y|3
)

= 1− 1
3Rikil (0) ykyl + O

(
|y|3
)

and so

(det h)
α

= 1− 1
3αRikil (0) ykyl + O

(
|y|3
)
.

�

The Levi-Civita connection θ ∈ Ω1 (FM, so (n)) is a form on FM and it is the
restriction of the linear connection ω ∈ Ω1 (LM, gl (n)) on LM . For

u := C ◦ σ2 : B → FM,

the framing E1 := u (e1) , . . . , En := u (en) , is a local section of FM , while the
coordinate framing ∂1, . . . , ∂n is a local section, say I : B → LM . We have the
pull-backs u∗θ ∈ Ω1 (B, so (n)) and I∗ω ∈ Ω1 (B, gl (n)). Moreover, if ∇θ denotes
the covariant derivative operator for the Levi-Civita connection, we have

∇ω∂i∂j =
∑n

k=1
((I∗ω) (∂i))

k
j ∂k and

∇θEiEj =
∑n

k=1
((u∗θ) (Ei))

k
j Ek.(18.61)

We verify the second of the equations (18.61). The proof of the first equation is
completely analogous, and we have shown that

∇ω∂i∂j =
∑n

k=1
Γkij∂j ,
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where the Γkij are the Christoffel symbols given by (16.47), namely

((I∗ω) (∂i))
k
j = Γkij = 1

2h
lk (∂i [hjk] + ∂j [hik]− ∂k [hij ]) .

By definition (see (16.34)), for vector fields X and Y ,(
∇θXY

)
y

:= u (y) (Dθ
(
ϕ(Ỹ )

)
u(y)

(X̃)).

Using

u∗
(
ϕ(Ẽj)

)
y

= ϕu(y)(Ẽj) = u (y)
−1
π∗(Ẽj)

= u (y)
−1
π∗(u∗y (Ej)) = u (y)

−1
(Ej) = ej ,

we then have(
∇θEiEj

)
y

= u (y) (Dθ
(
ϕ(Ẽj)

)
u(y)

(
Ẽi

)
)

= u (y) (Dθ(ϕ(Ẽj))u(y) (u∗y (Ei)))

= u (y) (d(ϕ(Ẽj))u(y) (u∗y (Ei)) + θu(y) (u∗y (Ei))ϕu(y)(Ẽj))

= u (y)
(

(u∗d(ϕ(Ẽj))y (Ei)
)

+ u (y)
(

(u∗θ)y (Ei) ej)
)

= u (y)
(

(d(u∗(ϕ(Ẽj)))y (Ei)
)

+ u (y)
(

(u∗θ)y (Ei) ej)
)

= u (y) ((d(ej)y (Ei)) + u (y)
(

(u∗θ)y (Ei) ej)
)

= u (y)
(

(u∗θ)y (Ei) ej)
)

= u (y)

(
n∑
k=1

(
(u∗θ)y (Ei)

)k
j
ek

)
=
∑n

k=1
((u∗θ) (Ei))

k
j (Ek)y .

Proposition 18.37. We use the notation of Proposition 18.36. Let I∗ω ∈
Ω1 (B,GL (n)) denote the pull-back of the Levi-Civita connection 1-form on LM via
the y-coordinate frame field ∂1, . . . , ∂n, and let ∇ denote the covariant derivative
for the Levi-Civita connection so that

∇∂i∂j =
∑n

k=1
((I∗ω) (∂i))

k
j ∂k =

n∑
k=1

Γkij (y) ∂k.

Then the Christoffel symbols Γkij (y) := ω (∂i)
k
j obey

(18.62) Γkij (y) = 1
3

∑n

p=1
(Ripjk (0) +Rikjp (0)) yp + O

(
|y|2
)
.

Moreover, if Ej (y) := u (ej) := (C ◦ σ2)y (ej) (j = 1, . . . n) is the radial framing

(which equals ∂1, . . . , ∂n at y = 0 and is parallel along the geodesics through y = 0),
then

(18.63) Ej (y) =
∑n

k=1

(
δkj + 1

6

∑n

i,l=1
Riklj (0) yiyl +O

(
|y|3
))

∂k,
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and

∇EiEj =
∑n

k=1

(
(u∗θ)y (Ei)

)k
j
Ek

= 1
2

∑n

k,l=1
Rkjli (0) ylEk +O

(
|y|2
)
.(18.64)

Proof. Using the summation convention and (18.58), we have

Γkij = 1
2h

lk (∂i [hjl] + ∂j [hil]− ∂l [hij ]) (y)

= 1
2h

lk (hjl,i + hil,j − hij,l) (y)

= 1
2δ
lk (hjl,ip + hil,jp − hij,lp) yp + O

(
|y|2
)

= 1
2 (hjk,ip + hik,jp − hij,kp) yp + O

(
|y|2
)

= 1
2 (−hkp,ij − hij,kp) yp + O

(
|y|2
)

= −hkp,ijyp + O
(
|y|2
)

= −hij,kpyp + O
(
|y|2
)

= 1
3 (Ripjk (0) +Rikjp (0)) yp + O

(
|y|2
)
,

and so (18.62) holds.
Since Ej = ∂j at y = 0, there are functions bkjl, such that

Ej (y) =
(
δkj + bkjl (y) yl

)
∂k.

As the Ej are parallel in the ∂r direction, for all y ∈ B (0, r0) we have

0 = r∇∂rEj (y) = r∇∂r
(
∂j + bkjl (y) yl∂k

)
= ∇yi∂i

(
∂j + bkjl (y) yl∂k

)
= yi∇∂i

(
∂j + bkjl (y) yl∂k

)
= yi

(
∇∂i∂j +∇∂i

(
bkjl (y) yl∂k

))
= Γkij (y) yi∂k + bkjl (y) yiyl∇∂i∂k + ∂i

(
bkjl (y) yl

)
yi∂k

= Γkij (y) yi∂k + bkjl (y) yiylΓpik (y) ∂p +
(
∂i
(
bkjl (y)

)
yiyl + bkji (y) yi

)
∂k

=
(
bkji (y) yi + Γkij (y) yi + ∂i

(
bkjl (y)

)
yiyl + bqjl (y) Γkiq (y) yiyl

)
∂k.

Since Γkij (y) = O (|y|), all terms except possibly bkji (y) yi are O
(
|y|2
)

. As the

entire expression vanishes to all orders, we must have bkji (0) = 0, and so

bkji (y) = bkji,l (0) yl + O
(
|y|2
)
.

Considering the second-order part and using (18.62), we get

0 =
(

1
3 (Riljk (0) +Rikjl (0)) + bkji,l (0) + bkjl,i (0)

)
yiyl

=
(
− 1

3Riklj (0) + bkji,l (0) + bkjl,i (0)
)
yiyl, and so

bkji,l (0) + bkjl,i (0) = 1
6 (Riklj (0) +Rlkij (0)) .
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Hence,

Ej (y) =
(
δkj + bkjl (y) yl

)
∂k =

(
δkj + bkjl,i (0) yiyl +O

(
|y|3
))

∂k

=
(
δkj + 1

2

(
bkjl,i (0) + bkji,l (0)

)
yiyl +O

(
|y|3
))

∂k

=
(
δkj + 1

6Rikljy
iyl +O

(
|y|3
))

∂k,

and we have (18.63). As for (18.64), we have, modulo O
(
|y|2
)

,

∇EiEj = ∇∂iEj

= ∇∂i∂j +∇∂i
((

1
6

∑n

k,p,l=1
Rpklj (0) ypyl

)
∂k

)
= ∇∂i∂j + ∂i

(
1
6

∑n

k,p,l=1
Rpklj (0) ypyl

)
∂k

= ∇∂i∂j +
(

1
6

∑n

k,l=1
Riklj (0) yl + 1

6

∑n

k,p=1
Rpkij (0) yp

)
∂k

= ∇∂i∂j + 1
6

∑n

k,l=1
(Riklj (0) +Rlkij (0)) yl∂k

=
∑n

k=1
Γkij (y) ∂k + 1

6

∑n

k,l=1
(Riklj (0) +Rlkij (0)) yl∂k

=
∑n

k=1

1
3

∑n

l=1
(Riljk (0) +Rikjl (0)) yl∂k

+ 1
6

∑n

k,l=1
(Riklj (0) +Rlkij (0)) yl∂k

=
∑n

k,l=1

(
1
3 (Riljk (0) +Rikjl (0)) + 1

6 (Riklj (0) +Rlkij (0))
)
yl∂k

=
∑n

k,l=1

(
1
3Riljk (0) + 1

6Rikjl (0) + 1
6Rlkij (0)

)
yl∂k

=
∑n

k,l=1

(
1
3Rkjli (0)− 1

6Rkijl (0)− 1
6Rklij (0)

)
yl∂k

=
∑n

k,l=1

(
1
2Rkjli (0)− 1

6 (Rkjli (0) +Rkijl (0) +Rklij (0))
)
yl∂k

= 1
2

∑n

k,l=1
Rkjli (0) ylEk

�

A section ψ ∈ C∞ (E ⊗ Σ (M)) can be identified with an equivariant function

ψ̃ ∈ Ω
0 (
U (E)×f P,CN ⊗ Σ2m

)
. The local section σ : B → U (E) ×f P allows us

form the pullback σ∗ψ̃ = ψ̃◦σ ∈ C∞
(
B,CN ⊗ Σ2m

)
and pulling back once more via

φ−1 : B (0, r0)→ B, we have ψ̃ ◦ σ ◦ φ−1 ∈ C∞
(
B (0, r0) ,CN ⊗ Σ2m

)
. This allows

us to locally treat the twisted spinor field ψ ∈ C∞ (E ⊗ Σ (M)) as a function on
B (0, r0) with values in the single vector space CN⊗Σ2m. In particular, expressions
such as ∂iψ, which are encountered in the following results then make sense. For
y ∈ B (0, r0), let h (y) denote the matrix whose entries are hij (y) = hy (∂i, ∂j). It
is customary and convenient to use the abusive notation√

h (y) :=
√

det h (y) =
√

det[hy (∂i, ∂j)],
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so that
√
hdy1 ∧ · · · ∧ dyn is the volume element for h on B (0, r0). To save vertical

space, we set

h−1/2 :=
1√
h

Moreover, we adhere to the summation convention whereby sums are automatically
taken over repeated indices if they are not summed explicitly.

Recall that in terms of a local orthonormal framing E1, . . . , En we have

Dψ =
∑
j

ϕj · ∇Ejψ =
∑
j

Ej · ∇Ejψ.

This is independent of the local orthonormal framing. However, if take E1, . . . , En
to be the radial framing and identify ψ and Dψ with ψ̃ ◦σ ◦φ−1 and D̃ψ ◦σ ◦φ−1 ∈
C∞

(
B (0, r0) ,CN ⊗ Σ2m

)
, then

D̃ψ ◦ σ ◦ φ−1 =
∑
j

γj
(
d
(
ψ̃ ◦ σ ◦ φ−1

)
(Ej) + σ∗

(
ε⊕ θ̃

)
(Ej)

(
ψ̃ ◦ σ ◦ φ−1

))
.

Of course it would be cumbersome to maintain the notation ψ̃ ◦ σ ◦ φ−1, and so we

will simply denote ψ̃ ◦ σ ◦ φ−1 ∈ C∞
(
B (0, r0) ,CN ⊗ Σ2m

)
by ψ, in which case

Dψ =
∑
j

γjEj [ψ] + γjσ∗
(
ε⊕ θ̃

)
(Ej)ψ

=
∑
j

γjEj [ψ] + γj (σ∗ε) (Ej)ψ + γj
(
σ∗θ̃
)

(Ej)ψ.

Note that ψ can be written locally a sum ψ (y) =
∑N
p=1

∑2m

q=1 ap,q (y) vp⊗φq, where

ap,q ∈ C∞ (B (0, r0) ,C) , vp ∈ CN and φq ∈ Σ2m. Also, (σ∗ε)y (∂j) ∈ End
(
CN
)

acts only on vp in vp ⊗ φq, while
(
σ∗θ̃
)
y

(∂j) ∈ End (⊀2m), as well as γj , act only

on φq in vp ⊗ φq.
At y = 0, Ej = ∂j and σ∗

(
ε (Ej)⊕ θ̃ (Ej)

)
= 0. Hence we simply have

(Dψ) (0) =
∑
j

γj (∂jψ) (0)

We will need the lead-order terms of (σ∗ε)y (Ej) and
(
σ∗θ̃
)
y

(Ej) as functions of

y. Since (σ∗ε)0 (∂j) = 0 in the radial gauge, we have

(σ∗ε)y (∂j) =
∑n

i=1
εijy

i +O
(
|y|2
)

or (σ∗ε)y =
∑n

i=1

(
εijy

i +O
(
|y|2
))

dyj

for some εij ∈ End
(
CN
)
. At y = 0, the pull-back of the curvature is

(σ∗Ωε)0 = d (σ∗ε)0 + (σ∗ε)0 ∧ (σ∗ε)0 = d (σ∗ε)0

=
∑n

i=1
d
(
εijy

idyj
)

=
∑n

i,j=1
εijdy

i ∧ dyj .

Denoting the pull-back σ∗Ωε by F , we then have

εij = Fij := (σ∗Ωε)0 (∂i, ∂j) .

Since Ej = ∂j +O
(
|y|2
)

by (18.63),

(18.65) (σ∗ε)y (Ej) = (σ∗ε)y (∂j) =
∑n

i=1
Fijy

i +O
(
|y|2
)
.
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Using (18.3) and (18.64), we have(
σ∗θ̃
)
y

(Ej) =
(
σ∗2
(
c−1C∗θ

))
y

(Ej) = c−1 ((σ∗2 ◦ C∗) θ)y (Ej)

= c−1
(
(C ◦ σ2)

∗
θ
)
y

(Ej) = c−1 (u∗θ)y (Ej)

= −
∑n

k,l=1

1
4γ

kγl
(

(u∗θ)y (Ej)
)
kl

= −
∑n

k,l=1

1
4γ

kγl 1
2

∑n

i=1
Rklij (0) yi

= − 1
8

∑n

i,k,l=1
γkγlRklij (0) yi.(18.66)

Proposition 18.38. For ψ ∈ C∞
(
B (0, r0) ,CN ⊗ Σ2m

)
, we have

∆ψ = h−1/2∇∂j
(
hij
√
h∇∂iψ

)
.

Proof. Using (16.49), p. 393, we have

∆ψ = hij∇2
∂i,∂jψ = hij∇∂j (∇∂iψ)− hij∇ψ

(
∇∂j∂i

)
= hij∇∂j (∇∂iψ)−∇ψ

(
hij∇∂j∂i

)
= hij∂j (∇∂iψ) + hij

(
ε⊕ θ̃

)
(∂j) (∇∂iψ) +∇ψ

(
h−1/2∂j

(
hij
√
h
)
∂i

)
= hij∂j (∇∂iψ) + hij

(
ε⊕ θ̃

)
(∂j) (∇∂iψ) + h−1/2∂j

(
hij
√
h
)
∇∂iψ

= h−1/2
(
hij
√
h∂j (∇∂iψ) + ∂j

(
hij
√
h
)
∇∂iψ

)
+ h−1/2hij

√
h
(
ε⊕ θ̃

)
(∂j) (∇∂iψ)

= h−1/2∂j

(
hij
√
h∇∂iψ

)
+ h−1/2hij

√
h
(
ε⊕ θ̃

)
(∂j) (∇∂iψ)

= h−1/2∇∂j
(
hij
√
h∇∂iψ

)
.

�

We will generalize this a bit (see Proposition 18.40 below), but first we need

Proposition 18.39. Let F : B (0, r0) → R be of the form F (y) = f (‖y‖) =
f (r). Then

(18.67) ∆F := hij∇2
∂i,∂j (F ) = f ′′ (r) +

(
h−1/2∂r[

√
h] +

n− 1

r

)
f ′ (r) .
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Proof. By the same computation as in the proof of Proposition 18.38, we

have ∆F = h−1/2∇∂j
(
hij
√
h∇∂iF

)
= h−1/2∂j

(
hij
√
h∂iF

)
. Then

h−1/2∂j

(
hij
√
h∂iF

)
= h−1/2∂j

(
hij
√
hf ′ (r)

yi

r

)
= h−1/2∂j

(
yj
√
h
f ′ (r)

r

)
(using (18.36))

= h−1/2yj∂j

(√
h
f ′ (r)

r

)
+ h−1/2∂j

(
yj
)(√

h
f ′ (r)

r

)
= yj∂j

(
f ′ (r)

r

)
+ h−1/2yj∂j

(√
h
) f ′ (r)

r
+
nf ′ (r)

r

= yj
(
rf ′′ (r)− f ′ (r)

r2

yj
r

)
+ h−1/2yj∂j

(√
h
) f ′ (r)

r
+
nf ′ (r)

r

= f ′′ (r)− f ′ (r)

r
+ h−1/2∂r

(√
h
)
f ′ (r) +

nf ′ (r)

r

= f ′′ (r) +

(
h−1/2∂r[

√
h] +

n− 1

r

)
f ′ (r) .

�

Proposition 18.40. Let F : B (0, r0) → R be of the form F (y) = f (‖y‖) =
f (r). Then for ψ ∈ C∞

(
B (0, r0) ,CN ⊗ Σ2m

)
as above, we have (where r =

|y| , y ∈ B (0, r0))

∆ (Fψ) (y) = (∆F )ψ + 2hij (∇∂iF )∇∂jψ + F∆ψ

= f ′′ (r)ψ (y) +

(
h−1/2∂r[

√
h] +

n− 1

r

)
f ′ (r)ψ (y)

+ 2f ′ (r) ∂rψ + f (r) ∆ψ.(18.68)

Proof. By repeated use of the product rule,

∆ (Fψ) = h−1/2∇∂j
(
hij
√
h∇∂i (Fψ)

)
= h−1/2∇∂j

(
hij
√
h (∇∂iF )ψ + hij

√
hF∇∂iψ

)
= (∆F )ψ + 2hij (∇∂iF )∇∂jψ + F∆ψ.

In view of Proposition 18.39, it remains to compute

hij (y) (∇∂iF )∇∂jψ = hij (y) (∂r (f) ∂ir)∇∂jψ = hij (y)
(
∂r (f) yi/r

)
∇∂jψ

= hij (y) yi
∂r (f)

r
∇∂jψ = ∂r (f)∇ yj

r ∂j
ψ = ∂r (f)∇∂rψ,

where we have used Proposition 18.36. Note that (18.54) says that y is an eigen-
vector of the matrix [hij (y)], and hence y is also eigenvector of the inverse matrix

[hij (y)]. Finally note that ∇∂rψ = ∂rψ + σ∗
(
ε⊕ θ̃

)
(∂r)ψ = ∂rψ in the radial

gauge by (18.53). �

Let ∆e = ∂2
1 + · · · + ∂2

n be the usual Laplace operator in Rn with coordinates(
y1, . . . , yn

)
and ∂i := ∂/∂yi. Setting x = 0 in (18.47), p. 517), the fundamental



18.4. THE ASYMPTOTIC FORMULA FOR THE HEAT KERNEL 531

solution of ut = ∆eu in Euclidean n-space is

(18.69) E (r, t) := (4πt)
−n/2

exp
(
− 1

4r
2/t
)

, for t > 0.

where r2 =
(
y1
)2

+ . . .+ (yn)
2
. Using Proposition 18.39,

(18.70) ∂tE = ∆eE = ∂2
rE +

n− 1

r
∂rE .

If ∆ denotes the Laplace operator on B for the metric h, then by (18.67),

(18.71) ∆E = ∂2
rE +

(
h−1/2∂r[

√
h] +

n− 1

r

)
∂rE = ∆eE + h−1/2∂r[

√
h]∂rE .

For 0 ≤ Q ∈ Z, let ΨQ ∈ C∞
(
B × (0,∞) ,CN ⊗ Σ2m

)
be of the form

ΨQ (y, t) := E (r, t)
∑Q

k=0
Uk (y) tk,

where Uk ∈ C∞
(
B,CN ⊗ Σ2m

)
. If U0 (0) ∈ CN ⊗ Σ2m is arbitrarily specified, we

seek a formula for Uk (y), k = 0, . . . , Q, such that

(18.72)
(
D2 + ∂t

)
ΨQ (y, t) = E (r, t) tQD2 (UQ) (y) ,

where the square of the Dirac operator D is given by

D2ψ = −∆ψ + 1
2

∑
j,k

ΩεjkEj · Ek · ψ + 1
4Sψ,

as computed in Proposition 18.25, p. 506. It is convenient to define the 0-th order
operator F on C∞

(
B,CN ⊗ Σ2m

)
via

F [ψ] := 1
2

∑
j,k

ΩεjkEj · Ek · ψ, so that

D2 = −∆ψ +
(
F + 1

4S
)

[ψ] .

The desired formula for the Uk (y) involves the operator A on C∞
(
B,CN ⊗ Σ2m

)
given (where h1/4 := (

√
h)1/2 and h−1/4 := (h−1/2)1/2) by

A [ψ] := −h1/4D2
[
h−1/4ψ

]
= h1/4∆

[
h−1/4ψ

]
−
(
F + 1

4S
)

[ψ] .

For s ∈ [0, 1], let

As [ψ] (y) := A [ψ] (sy) .

Proposition 18.41. Let U0 (0) ∈ CN ⊗Σ2m, and let V0 ∈ C∞
(
B,CN ⊗ Σ2m

)
be the constant function V0 (y) ≡ U0 (0). Then the Uk (y) which satisfy (18.72) are
given by

Uk (y) = h (y)
−1/4

Vk (y) , where

Vk (y) =

∫
Ik

∏k−1

i=0
(si)

i (
Ask−1

◦ · · · ◦As0 [V0]
)

(y) ds0 . . . dsk−1,(18.73)

and where Ik = {(s0, . . . sk) : si ∈ [0, 1] , i ∈ {0, . . . , k − 1} } .
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Proof. Let Σ (y, t) :=
∑Q
k=0 Uk (y) tk. Using (18.68) and (18.71), we compute(

∂t +D2
)

[ΨQ (y, t)] =
(
∂t −∆ + F + 1

4S
)

[E (r, t) Σ (y, t)]

= ∂t [E (r, t)] Σ (y, t) + E (r, t) ∂tΣ (y, t)

−∆ [E (r, t) Σ (y, t)] +
(
F + 1

4S
)
E (r, t) Σ (y, t)

= ∂t [E (r, t)] Σ (y, t) + E (r, t) ∂tΣ (y, t)

−∆ (E (r, t)) Σ (y, t)− 2∂r (E (r, t)) ∂rΣ (y, t)− E (r, t) ∆ (Σ (y, t))

+
(
F + 1

4S
)
E (r, t) Σ (y, t)

= (∂t −∆e) [E (r, t)] Σ (y, t)− h−1/2∂r

[√
h
]
∂r [E (r, t)] Σ (y, t)

− 2∂r (E (r, t)) ∂rΣ (y, t) + E (r, t) (∂tΣ (y, t)−∆Σ (y, t))

+
(
F + 1

4S
)
E (r, t) Σ (y, t)

= −∂r [E (r, t)]
(
h−1/2∂r

[√
h
]

Σ (y, t) + 2∂rΣ (y, t)
)

+ E (r, t)
(
∂tΣ (y, t)−∆Σ (y, t) +

(
F + 1

4S
)

Σ (y, t)
)
.

Since

∂r [E (r, t)] = (4πt)
−n/2

∂r
[
exp

(
− 1

4r
2/t
)]

= (4πt)
−n/2

exp
(
− 1

4r
2/t
)
∂r
[
− 1

4r
2/t
]

= − r
2tE (r, t) ,

we have

E (r, t)
−1 (

∂t +D2
)

[ΨQ (y, t)]

=
r

2t
h−1/2∂r

[√
h
]

Σ (y, t) + 2∂rΣ (y, t)

+ ∂tΣ (y, t)−∆Σ (y, t) +
(
F + 1

4S
)

Σ (y, t)

=

Q∑
k=0

 r

2t
h−1/2∂r

[√
h
]
Uk (y) +

r

t
∂rUk (y)

+
k

t
Uk (y)−∆Uk (y) +

(
F + 1

4S
)
Uk (y)

 tk

=

Q∑
k=0

( (
k + r

2h
−1/2∂r

[√
h
])
Uk (y) + r∂rUk (y)

+
(
−∆ + F + 1

4S
)

[Uk−1 (y)]

)
tk−1

+
(
−∆ + F + 1

4S
)

[UQ (y)] tQ,

where U−1 (y) := 0. Thus, to achieve (18.72), we need

r∂rUk (y) +
(
k +

r

2
h−1/2∂r

[√
h
])
Uk (y) =

(
∆−F − 1

4S
)

[Uk−1 (y)] .

For fixed 0 6= y0 ∈ B, we define

uk (s) := Uk (sy0) for s ∈ [0, 1] .

At sy0, we have r = s ‖y0‖ and so r∂r = s ‖y0‖ (d/ds) ∂rs = sd/ds. Thus, we obtain
the first-order, linear ODE

s
duk
ds

+

(
k +

s

2
h−1/2 d

ds

[√
h (sy0)

])
uk (s) =

(
∆−F − 1

4S
)

[uk−1 (sy0)] .
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The integrating factor is

exp

∫ (
k

s
+ 1

2h
−1/2 d

ds

[√
h (sy0)

])
ds = skh (sy0)

1/4
.

Hence, for k > 0, we obtain

d

ds

(
skh (sy0)

1/4
uk (s)

)
= sk−1h (sy0)

1/4 (
∆−F − 1

4S
)

[uk−1 (sy0)] and

skh (sy0)
1/4

uk (s) =

∫ s

0

s̃k−1h (s̃y0)
1/4 (

∆−F − 1
4S
)

[uk−1 (s̃y0)] ds̃,

where we note that both sides are 0 for s = 0 when k > 0. Setting s = 1, replacing
y0 by y, we have Uk (y) = uk (1) and (for k > 0),

Uk (y) = h (y)
−1/4

∫ 1

0

sk−1h (sy)
1/4 (

∆−F − 1
4S
)

[Uk−1] (sy) ds.

When k = 0,

d

ds

(
h (sy0)

1/4
u0 (s)

)
= 0⇒ u0 (s) = h (sy0)

−1/4
u0 (0)

⇒ U0 (y) = h (y)
−1/4

U0 (0) .

Since Uk (y) = h (y)
−1/4

Vk (y) , we have V0 (y) = U0 (0) and

Vk (y) =

∫ 1

0

sk−1h (sy)
1/4 (

∆−F − 1
4S
) [
h−1/4Vk−1

]
(sy) ds

=

∫ 1

0

sk−1As [Vk−1] (y) ds =

∫ 1

0

(sk−1)
k−1

Ask−1
[Vk−1] (y) dsk−1

=

∫ 1

0

(sk−1)
k−1

Ask−1

[∫ 1

0

(sk−2)
k−2

Ask−2
[Vk−2] dsk−2

]
(y) dsk−1

=

∫ 1

0

∫ 1

0

(sk−1)
k−1

(sk−2)
k−2 (

Ask−1
◦Ask−2

)
[Vk−2] (y) dsk−2dsk−1

=

∫
Ik

(∏k−1

i=0
(si)

i

)(
Ask−1

◦Ask−2
◦ · · · ◦As0 [V0]

)
(y) ds0 . . . dsk−1,

where we have used the fact that the As are linear differential operators and all
functions are C∞ in order to bring the Asj inside the the si-integrals for i 6= j. �

Note that U0 (0) ∈ CN ⊗ Σ2m may be arbitrarily specified, and once U0 (0) is
chosen, the Um (y) are uniquely determined via (18.73). Let hk (y) ∈ End

(
CN ⊗ Σ2m

)
be given by

(18.74) hk (y) (U0 (0)) := Uk (y)

(in particular, h0 (0) = Id ∈ End
(
CN ⊗ Σ2m

)
), and

(18.75) HQ (0, y, t) := E (r, t)

Q∑
k=0

hk (y) tk ∈ C∞
(
B,End

(
CN ⊗ Σ2m

))
.

We may regard HQ (0, y, t) as

HQ (x, y, t) ∈ Hom
(
Ex ⊗ Σ (M)x , Ey ⊗ Σ (M)y

)
,



534 18. THE LOCAL INDEX THEOREM FOR TWISTED DIRAC OPERATORS

where x ∈ M is the point about which we have chosen normal coordinates. For y
sufficiently close to x, we set

(18.76) HQ (x, y, t) := E (d (x, y) , t)

Q∑
k=0

hk (x, y) tk.

To obtain a globally defined version of HQ we proceed as follows. For r > 0, let

δr (M ×M) := {(x, y) ∈M ×M : d (x, y) < r} .

For sufficiently small r, say 0 < r < rM = injectivity radius of M , the HQ (x, y, t)
yield a section of the bundle H|δr(M×M)×[0,∞), where (as in Section 18.3)

H := π∗1 (E ⊗ Σ (M))
∗ ⊗ (π∗2 (E ⊗ Σ (M)))

∼= K := π∗1 (E ⊗ Σ (M))⊗ π∗2 (E ⊗ Σ (M)) ,(18.77)

and πi : M ×M × [0,∞) → M (i = 1, 2) are the projections. For some constants
r1, r2 with 0 < r1 < r2 < rM , there is a C∞ function ρ : [0,∞) → [0, 1] with
ρ|[0,r1] = 1 and ρ|[r2,∞) = 0. Then we have ϕ ∈ C∞ (M ×M,R) defined by

ϕ (x, y) := ρ (d (x, y)) .

with ϕ|δr1 (M×M) = 1 and ϕ = 0 on the complement of δr2 (M ×M). Then ϕHQ

extends by zero values to a section GQ ∈ C∞ (H), namely,

(18.78) GQ (x, y, t) :=

{
ϕ (x, y)HQ (x, y, t) for (x, y) ∈ δr2 (M ×M) , t > 0

0 for (x, y) /∈ δr2 (M ×M) , t > 0.

From GQ (x, y, t) we will give a different construction of the heat kernel k (x, y, t)
and obtain its asymptotic expansion as t → 0+. However, before the proof of the
validity of the construction, it is best to provide some motivation for it, as follows.

One expects that at least for small t, GQ (x, y, t) is a good approximation for
k (x, y, t), since the effect at small time t of a heat source at x should not be
appreciably felt at a distant point y. Nevertheless, unlike the true heat kernel, we
do not expect that

(
∂t +D2

x

)
GQ (x, y, t) = 0 exactly. Let

KQ,0 (x, y, t) :=
(
∂t +D2

x

)
GQ (x, y, t) .

In order to begin the correction process, we consider the problem(
∂t +D2

x

)
ψ (x, y, t) = −KQ,0 (x, y, t) , with ψ (x, y, 0) = 0.

The solution of this problem should be given approximately by

ψ (x, y, t) ≈ −
∫ t

0

∫
M

GQ (x, z, s)KQ,0 (z, y, t− s) v (z) ds

= −
∫ t

0

∫
M

GQ (x, z, t− s)KQ,0 (z, y, s) v (z) ds.(18.79)

To compactify the expressions to follow, it is conventient to introduce

Definition 18.42. For f1, f2 ∈ C0 (H) , the convolution f1 ∗ f2 ∈ C0 (H) is
defined by

(18.80) (f1 ∗ f2) (x, y, t) :=

∫ t

0

∫
M

f1 (x, z, s) ◦ f2 (z, y, t− s) νh (z) ds.
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By a change of variable, we also have the alternate expression

(f1 ∗ f2) (x, y, t) =

∫ t

0

∫
M

f1 (x, z, s) ◦ f2 (z, y, t− s) νh (z) ds

=

∫ 0

t

∫
M

f1 (x, z, t− σ) ◦ f2 (z, y, σ) νh (z) (−dσ)

=

∫ t

0

∫
M

f1 (x, z, t− s) ◦ f2 (z, y, s) νh (z) ds.(18.81)

It is convenient to record here that when f1 and f2 are C1,

∂xi ((f1 ∗ f2) (x, y, t)) = (∂xif1 ∗ f2) (x, y, t)

∂yi ((f1 ∗ f2) (x, y, t)) =
(
f1 ∗ ∂yif2

)
(x, y, t) , and(18.82)

Moreover using (18.80) and (18.81),

∂t ((f1 ∗ f2) (x, y, t)) =

∫
M

f1 (x, z, t) ◦ f2 (z, y, 0) νh (z)

+

∫ t

0

∫
M

f1 (x, z, s) ◦ ∂tf2 (z, y, t− s) νh (z) ds, and

∂t ((f1 ∗ f2) (x, y, t)) =

∫
M

f1 (x, z, 0) ◦ f2 (z, y, t) νh (z)

+

∫ t

0

∫
M

∂tf1 (x, z, t− s) ◦ f2 (z, y, s) νh (z) ds.

Thus, when f1 (·, ·, 0) ≡ 0 and f2 (·, ·, 0) ≡ 0, we have

(18.83) ∂t ((f1 ∗ f2) (x, y, t)) = (f1 ∗ ∂t (f2)) (x, y, t) = (∂t (f1) ∗ f2) (x, y, t) .

In terms of convolution, (18.79) can be written as

ψ (x, y, t) ≈ − (GQ ∗KQ,0) (x, y, t) .

At least formally, we have(
∂t +D2

x

)
ψ (x, y, t) = −

(
∂t +D2

x

)
(GQ ∗KQ,0) (x, y, t)

= −
(
∂t +D2

x

) ∫ t

0

∫
M

GQ (x, z, t− s) ◦KQ,0 (z, y, s) v (z) ds

= −∂t
∫ t

0

∫
M

GQ (x, z, t− s) ◦KQ,0 (z, y, s) v (z) ds

−D2
x

∫ t

0

∫
M

GQ (x, z, t− s) ◦KQ,0 (z, y, s) v (z) ds

= − lim
s→t−

∫
M

GQ (x, z, t− s) ◦KQ,0 (z, y, s) v (z) ds

−
∫ t

0

∫
M

(
∂t +D2

x

)
GQ (x, z, t− s) ◦KQ,0 (z, y, s) v (z) ds

= −KQ,0 (x, y, t)−
∫ t

0

∫
M

KQ,0 (x, z, t− s) ◦KQ,0 (z, y, s) v (z) ds

= −KQ,0 (x, y, t)− (KQ,0 ∗KQ,0) (x, y, t) .
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Then one expects that, to greater accuracy than
(
∂t +D2

x

)
GQ (x, y, t) ≈ 0, we have(

∂t +D2
x

)
(GQ −GQ ∗KQ,0) (x, y, t) ≈ 0.

We compute (
∂t +D2

x

)
(GQ −GQ ∗KQ,0) (x, y, t)

= KQ,0 (x, y, t) +
(
∂t +D2

x

)
(ψ (x, y, t))

= KQ,0 (x, y, t)−KQ,0 (x, y, t)− (KQ,0 ∗KQ,0) (x, y, t)

= − (KQ,0 ∗KQ,0) (x, y, t) .

Then we consider the problem(
∂t +D2

x

)
ψ (x, y, t) = (KQ,0 ∗KQ,0) (x, y, t) ,

whose solution should be given approximately by

ψ (x, y, t) ≈ (GQ −GQ ∗KQ,0) ∗ (KQ,0 ∗KQ,0) (x, y, t)

= GQ ∗ (KQ,0 ∗KQ,0) (x, y, t)−GQ ∗KQ,0 ∗ (KQ,0 ∗KQ,0) (x, y, t) .

Adding this correction to GQ − GQ ∗ KQ,0, presumably gives a more accurate
approximation to the fundamental solution, namely

GQ −GQ ∗KQ,0 +GQ ∗ (KQ,0 ∗KQ,0)−GQ ∗KQ,0 ∗ (KQ,0 ∗KQ,0) .

Repeating, we conjecture that the exact fundamental solution is

GQ +GQ ∗
∞∑
k=1

(−1)
k
KQ,0 ∗

k factors· · · ∗KQ,0.

To prepare the rigorous demonstration of this, we first establish some boundedness
properties of the operator whose kernel is GQ.

Proposition 18.43. For ψ ∈ Cl (E ⊗ Σ (M)) (l ≥ 0) and

(GQψ) (y, t) :=

∫
M

GQ (x, y, t)ψ (x) νh (x) ,

there is a constant cl independent of t, such that

(18.84) ‖(GQψ) (·, t)‖Cl ≤ cl ‖ψ‖Cl .

Also,

(18.85) lim
t→0+

(GQψ) (y, t) = ψ (y) .

Moreover for K ∈ Cl (H) (H as in (18.77)), we have

(18.86) ‖GQ ∗K‖Cl(T ) ≤ cl,T ‖K‖Cl(T ) ,

where Cl (T ) is the Cl norm for restrictions of sections in Cl (H) to M×M× [0, T ],
where T may be chosen arbitrarily large, and cl,T is a constant depending on l and
T .
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Proof. Making the change of variable w = (x− y) /
√
t, x = y + w

√
t,

(GQψ) (y, t) =

∫
M

ϕ (x, y)HQ (x, y, t)ψ (x) νh (x)

=

∫
M

ϕ (x, y) E (r, t)
∑Q

k=0
hk (x, y)ψ (x) tk νh (x)

=

∫
M

ϕ (x, y) (4πt)
−n/2

e−
1
4 |y−x|

2/t
∑Q

k=0
hk (x, y)ψ (x) tk νh (x)

= (4π)
−n/2∑Q

k=0
tk
∫
Rn

(
ρ
(
|w|
√
t
)
e−

1
4 |w|

2 ·
·hk
(
y + w

√
t, y
)
ψ
(
y + w

√
t
) ) νh (w) .

Thus, as the hk are C∞, for any fixed t > 0,

‖(GQψ) (·, t)‖Cl ≤ cl ‖ψ‖Cl .

for some constant cl, and we have (18.84). For (18.85), note that each integrand
in the above final expression for (GQψ) (y, t) is bounded by an integrable function,

namely a constant multiple of e−
1
4 |w|

2

. Thus, we may apply the Lebesgue Domi-
nated Convergence Theorem to obtain (18.85):

lim
t→0+

(GQψ) (y, t)

= (4π)
−n/2

Q∑
k=0

lim
t→0+

tk
∫
Rn

(
ρ
(
|w|
√
t
)
e−

1
4 |w|

2 ·
·hk
(
y + w

√
t, y
)
ψ
(
y + w

√
t
) ) νh (w)

= (4π)
−n/2

∫
Rn

lim
t→0+

ρ
(
|w|
√
t
)
e−

1
4 |w|

2

h0

(
y + w

√
t, y
)
ψ
(
y + w

√
t
)
νh (w)

= (4π)
−n/2

∫
Rn
e−

1
4 |w|

2

h0 (y, y)ψ (y) νe (w) = h0 (y, y)ψ (y) = ψ (y) .

To see (18.86), we make the change of variables w = (z − x) /
√
s, z = x+w

√
s

in computing

(GQ ∗K) (x, y, t) =

∫ t

0

∫
Rn
ϕ (x, z)HQ (x, z, s) ◦K (z, y, t− s) νh (z) ds

=

∫ t

0

∫
Rn
ϕ (x, z) (4πs)

−m
e−

1
4 |z−x|

2/s
∑Q

k=0
hk (x, z) ◦K (z, y, t− s) sk νh (z) ds

=

∫ t

0

∫
Rn

(
ϕ (x, x+ w

√
s) (4π)

−m
e−

1
4w

2 ·
·
∑Q
k=0 hk (x, x+ w

√
s) ◦K (x+ w

√
s, y, t− s) sk

)
νh (w) ds.

(18.87)

Moreover, we have

∂
∂t (GQ ∗K) (x, y, t)

=

∫
Rn

(
ϕ (x, x+ w

√
s) (4π)

−m
exp

(
− 1

4w
2
)
·

·
∑Q
k=0 hk (x, x+ w

√
s) ◦K (x+ w

√
s, y, t− s) sk

)
νh (w)

+

∫ t

0

∫
Rn

(
ϕ (x, x+ w

√
s) (4π)

−m
exp

(
− 1

4w
2
)
·

·
∑Q
k=0 hk (x, x+ w

√
s) ◦ ∂

∂tK (x+ w
√
s, y, t− s) sk

)
·

· νh (w) ds.(18.88)
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Using the fact that the hk are fixed C∞ sections, the forms of (18.87) and (18.88)
imply that the derivatives of GQ ∗K of order ≤ l on M ×M × [0, T ] have bounds
(depending on T ) in terms of those of K, so that ‖(GQ ∗K)‖Cl(T ) ≤ cl,T ‖K‖Cl(T ).

�

We set

KQ,0 (x, y, t) :=
(
∂t +D2

y

)
GQ (x, y, t) and

KQ,j (x, y, t) :=

∫ t

0

∫
M

KQ,0 (x, z, s) ◦KQ,j−1 (z, y, t− s) νh (z) ds

= (KQ,0 ∗KQ,j−1) (x, y, t) for j ≥ 1.

The next result implies that for Q sufficiently large,

(18.89) κQ := GQ +

∞∑
j=0

(−1)
j+1

GQ ∗KQ,j ; i.e.

exists and is a general heat kernel for D2; in particular, κQ is independent of Q.

Theorem 18.44. For any integer k ≥ 2, if we choose Q > m + 2k and T >
t0 > 0, the series (18.89) defining κQ (x, y, t) converges in Ck

(
H|M×M×[t0,T ]

)
,

κQ (x, y, t) satisfies
(
∂t +D2

x

)
κQ = 0, and

(18.90) lim
t→0+

∫
M

κQ (y, x, t)ψ (y) vh (y) = ψ (x) ,

for all ψ ∈ C0 (E ⊗ Σ± (M)) (i.e., κQ is a general heat kernel in the sense of
Definition 18.30, p. 516). Moreover,

(18.91) |κQ (x, y, t)−GQ (x, y, t)| ≤ CtQ−m+1,

for some constant C independent of (x, y, t) ∈M ×M × (0, T ).

Proof. Once we prove that for k ≥ 2 and Q > m+ 2k + 1 the series

KQ (x, y, t) :=
∞∑
j=0

(−1)
j+1

KQ,j (x, y, t)

converges in Ck
(
H|M×M×[0,T ]

)
, then according to Proposition 18.43,

GQ +

∞∑
j=0

(−1)
j+1

GQ ∗KQ,j = GQ +GQ ∗
∞∑
k=0

(−1)
j+1

KQ,j

= GQ +GQ ∗KQ,

where the convergence of the first infinite sum is in Ck
(
H|M×M×[0,T ]

)
. Thus,

noting that although GQ is not Ck at t = 0,

κQ := GQ +

∞∑
j=0

(−1)
j+1

GQ ∗KQ,j ∈ Ck
(
H|M×M×(0,∞)

)
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will exist and the convergence will be in Ck
(
H|M×M×[t0,T ]

)
if 0 < t0 < T < ∞.

Then for k ≥ 2,
(
∂t +D2

x

)
κQ can be computed via term-by-term differentiation:(

∂t +D2
x

)
κQ (x, y, t)

=
(
∂t +D2

x

)
GQ (x, y, t)

+

∞∑
j=0

(−1)
j+1 (

∂t +D2
x

) ∫ t

0

∫
M

GQ (x, z, s) ◦KQ,j (z, y, t− s) νh (z) ds

= KQ,0 (x, y, t) +

∞∑
j=0

(−1)
j+1

lim
s→t−

∫
M

GQ (x, z, t− s) ◦KQ,j (z, y, s) νh (z)

+

∞∑
j=1

(−1)
j+1

∫ t

0

∫
M

KQ,0 (x, z, s) ◦KQ,j (z, y, t− s) νh (z) ds

= KQ,0 (x, y, t) +

∞∑
j=0

(−1)
j+1

KQ,j (x, y, t) +

∞∑
k=0

(−1)
j+1

KQ,j+1 (x, y, t) = 0.

To prove that the series for KQ (x, y, t) converges in the Ck
(
H|M×M×[t0,T ]

)
, we

will estimate the terms of this sum and their derivatives so that the Weierstrass
M -test can be applied. Recall that

KQ,0 (x, y, t) :=
(
∂t +D2

x

)
GQ (x, y, t) , where

GQ (x, y, t) :=

{
ϕ (x, y)HQ (x, y, t) for (x, y) ∈ δr2 (M ×M) , t > 0

0 for (x, y) /∈ δr2 (M ×M) , t > 0,

and ϕ (x, y) := ρ (d (x, y)). Note that GQ (x, y, t) and all of its local derivatives
vanish for d (x, y) ≥ r2, and so we assume that d (x, y) < r2 in what follows. For
d (x, y) < r1, we have ϕ (x, y) = ρ (d (x, y)) = 1, and

KQ,0 (x, y, t) =
(
∂t +D2

x

)
GQ (x, y, t) =

(
∂t +D2

x

)
(ϕ (x, y)HQ (x, y, t))

=
(
∂t +D2

x

)
HQ (x, y, t) = E (d (x, y) , t) tQD2 (UQ) (x, y) .

For r := d (x, y) ∈ [r1, r2) ,

KQ,0 (x, y, t) =
(
∂t +D2

x

)
GQ (x, y, t) =

(
∂t +D2

x

)
(ϕ (x, y)HQ (x, y, t))

=
(
∂t +D2

x

)
HQ (x, y, t) +

(
∂t +D2

x

)
((ϕ (x, y)− 1)HQ (x, y, t))

= E (r, t) tQD2 (UQ) (y) +
(
∂t +D2

x

)
((ϕ (x, y)− 1)HQ (x, y, t)) ,

and because of the factor t−me−d(x,y)2/4t in HQ (x, y, t),

|KQ,0 (x, y, t)| ≤ E (r, t) tQ
∣∣D2 (UQ) (y)

∣∣+ C0t
−m−2e−r

2
1/t

for some (x, y, t)-independent constant C0. Since e−r
2
1/t is O

(
tk
)

for all k > 0,
putting this together with the result for d (x, y) < r1, we have

|KQ,0 (x, y, t)| ≤ CQe−r
2/4ttQ−m ≤ CQtQ−m,

for all (x, y, t) ∈M×M× [0,∞), for some (x, y, t)-independent constant CQ. Using

the same reasoning, and noting that differentiation of e−d(x,y)2/4t with respect to
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local coordinates xi or yi introduces factors of t−1, while applying ∂t introduces
factors of t−2, it is straightforward to see that
(18.92)∣∣(∂t)s ∂xi1 · · · ∂xip∂yj1 · · · ∂yjqKQ,0 (x, y, t)

∣∣ ≤ CQ (p+ q + s) tQ−m−p−q−2s,

for some constant CQ (N) depending monotonically on N = 0, 1, 2, . . . , say with
CQ (0) = CQ. We will use this below. Now,

|KQ,1 (x, y, t)| =
∣∣∣∣∫ t

0

∫
M

KQ,0 (x, z, s) ◦KQ,0 (z, y, t− s) νh (z) ds

∣∣∣∣
≤
∫ t

0

∫
M

|KQ,0 (x, z, s) ◦KQ,0 (z, y, t− s)| νh (z) ds

≤
∫ t

0

∫
M

|KQ,0 (x, z, s)| |KQ,0 (z, y, t− s)| νh (z) ds

≤
∫ t

0

∫
M

CQ
2sQ−m (t− s)Q−m νh (z) ds

= V (M)CQ
2

∫ t

0

sQ−m (t− s)Q−m ds

= V (M)CQ
2t2Q−2m+1 Γ (Q−m+ 1)

2

Γ (2Q− 2m+ 2)
.

For the last equality, recall that for a, b ≥ 0,∫ 1

0

xa (1− x)
b
dx =

Γ (a+ 1) Γ (b+ 1)

Γ (a+ b+ 2)
.

Thus, ∫ t

0

sa (t− s)b ds =

∫ t

0

((s
t

)a
ta
)
tb
(

1− s

t

)b
ds

= ta+b

∫ t

0

(s
t

)a (
1− s

t

)b
ds =

(
with x =

s

t
, tdx = ds

)
= ta+b

∫ 1

0

xa (1− x)
b
tdx = ta+b+1

∫ 1

0

xa (1− x)
b
dx

= ta+b+1 Γ (a+ 1) Γ (b+ 1)

Γ (a+ b+ 2)
.

More generally, if f1, f2 ∈ C0 (H) with

|f1 (x, y, t)| ≤ C1t
p1 and |f2 (x, y, t)| ≤ C2t

p2 (for p1, p2 ≥ 0),

|(f1 ∗ f2) (x, y, t)| =
∣∣∣∣∫ t

0

∫
M

f1 (x, z, s) ◦ f2 (z, y, t− s) νh (z) ds

∣∣∣∣
≤ C1C2V (M)

∫ t

0

sp1 (t− s)p2 ds

= C1C2
Γ (p1 + 1) Γ (p2 + 1)

Γ (p1 + p2 + 2)
V (M) tp1+p2+1.
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Applying this, we get the following fact that will also be needed,

|(f1 ∗ f2 ∗ f3) (x, y, t)| ≤ C1

(
C2C3

Γ (p2 + 1) Γ (p3 + 1)

Γ (p2 + p3 + 2)
V (M)

)
·

· Γ (p1 + 1) Γ (p2 + p3 + 2)

Γ (p1 + p2 + p3 + 3)
V (M) tp1+p2+p3+2

= C1C2C3V (M)
2 Γ (p1 + 1) Γ (p2 + 1) Γ (p3 + 1)

Γ (p1 + p2 + p3 + 3)
tp1+p2+p3+2.(18.93)

Consequently, ∣∣(∗3f1

)
(x, y, t)

∣∣ := |(f1 ∗ f1 ∗ f1) (x, y, t)|

≤ C3
1V (M)

2 Γ (p1 + 1)
3

Γ (3 (p1 + 1))
t3p1+2,

and by induction, we see that∣∣(∗kf1

)
(x, y, t)

∣∣ :=
∣∣∣(f1 ∗

k factors· · · ∗ f1

)
(x, y, t)

∣∣∣
≤ Ck1V (M)

k−1 Γ (p1 + 1)
k

Γ ((p1 + 1) k)
t(p1+1)k−1.

Thus,

|KQ,j (x, y, t)| =
∣∣∗j+1KQ,0 (x, y, t)

∣∣
≤ Cj+1

Q V (M)
j Γ (Q−m+ 1)

j+1

Γ ((Q−m+ 1) (j + 1))
t(Q−m+1)(j+1)−1.

Since we have assumed thatQ > m+2k and k ≥ 2, all the powers (Q−m+ 1) (j + 1)−
1 of t are positive. Hence, the M -test will apply to give uniform convergence of the

series
∑∞
j=0 (−1)

j+1
KQ,j (x, y, t) on M ×M × [0, T ] if for every constant R ≥ 0

∞∑
j=0

Rj

Γ ((Q−m+ 1) (j + 1))
<∞,

but as Q > m, this holds by comparison with
∑∞
j=0

Rj

Γ(j+1) = eR.

We now show the Ck
(
H|M×M×[0,T ]

)
-convergence of

KQ (x, y, t) =

∞∑
j=0

(−1)
j+1

KQ,j (x, y, t) ,

for Q > m+ 2k. Through repeated use of (18.82) and (18.83), we have for j ≥ 3

(∂t)
s
∂xi1 · · · ∂xip∂yj1 · · · ∂yjqKQ,j (x, y, t)

=
(
((∂t)

s
∂xi1 · · · ∂xipKQ,0) ∗ (KQ,j−3) ∗

(
∂yj1 · · · ∂yjqKQ,0

))
(x, y, t) .

For N = p+ q + s ≤ k, we have

|(∂t)s ∂xi1 · · · ∂xipKQ,0| ≤ CQ (N) tQ−m−p−2s

|KQ,j−3| ≤ Cj−2
Q (N)V (M)

j−3 ·

· Γ (Q−m+ 1)
j−2

Γ ((Q−m+ 1) (j − 2))
t(Q−m+1)(j−2)−1, and∣∣∂yj1 · · · ∂yjqKQ,0

∣∣ ≤ CQ (N) tQ−m−q,(18.94)
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where all the powers of t are positive, since Q > m+ 2k ≥ m+ 2 (p+ q + s).

C1C2C3V (M)
2 Γ (p1 + 1) Γ (p2 + 1) Γ (p3 + 1)

Γ (p1 + p2 + p3 + 3)
tp1+p2+p3+2

Using (18.82), (18.83), (18.93), and (18.94), we have∣∣(∂t)s ∂xi1 · · · ∂xip∂yj1 · · · ∂yjqKQ,j (x, y, t)
∣∣

=
∣∣(((∂t)s ∂xi1 · · · ∂xipKQ,0) ∗ (KQ,j−3) ∗

(
∂yj1 · · · ∂yjqKQ,0

))
(x, y, t)

∣∣
≤ CQ (N)

j
V (M)

j−1 Γ (Q−m+ 1)
j−2

Γ ((Q−m+ 1) (j − 2))
· t(Q−m+1)j−(q+2s+p)−1·

Γ (Q−m− p− 2s+ 1) Γ ((Q−m+ 1) (j − 2)) Γ (Q−m− q + 1)

Γ (Q−m− p− 2s+ (Q−m+ 1) (j − 2)− 1 +Q−m− q + 3)

≤ CQ (N)
j
V (M)

j−1 · t(Q−m+1)j−(q+2s+p)−1·

· Γ (Q−m− p− 2s+ 1) Γ (Q−m+ 1)
j−2

Γ (Q−m− q + 1)

Γ ((Q−m+ 1) j − (p+ 2s+ q))

Since Γ ((Q−m+ 1) j − (p+ 2s+ q)) ≥ Cj! for some constant C, the series of
these terms can be estimated from above, using

∑
Rj/j! <∞ as in the case k = 0.

Thus, the M -test can be used to obtain the uniform convergence (for Q > m+ 2k)
on M ×M × [0, T ] of

∞∑
j=0

(−1)
j+1

(∂t)
s
∂xi1 · · · ∂xip∂yj1 · · · ∂yjqKQ,j (x, y, t) ,

and hence the Ck
(
H|M×M×[0,T ]

)
-convergence of KQ =

∑∞
j=0 (−1)

j+1
KQ,j (x, y, t).

We now prove (18.91). From κQ = GQ +
∑∞
j=0 (−1)

j+1
GQ ∗KQ,j , we have

|κQ (x, y, t)−GQ (x, y, t)| = |(GQ ∗KQ) (x, y, t)| .

Moreover for some constant C,

|KQ (x, y, t)| ≤
∑∞

j=0
|KQ,j (x, y, t)|

≤
∑∞

j=0
Cj+1
Q V (M)

j Γ (Q−m+ 1)
j+1

Γ ((Q−m+ 1) (j + 1))
t(Q−m+1)(j+1)−1

= tQ−m
∑∞

j=0
Cj+1
Q V (M)

j Γ (Q−m+ 1)
j+1

Γ ((Q−m+ 1) (j + 1))
t(Q−m+1)j

≤ CtQ−m.(18.95)

With K = KQ in (18.87), we obtain

(GQ ∗KQ) (x, y, t) =

=

∫ t

0

∫
M

(
ϕ (x, x+ w

√
s) (4π)

−m
e−

1
4w

2 ·
·
∑Q
k=0 hk (x, x+ w

√
s) ◦KQ (x+ w

√
s, y, t− s) sk

)
νh (w) ds.
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Then using (18.95), for some constants C ′ and C ′′, we have

|κQ (x, y, t)−GQ (x, y, t)| = |(GQ ∗KQ) (x, y, t)|

≤ C ′
∫ t

0

Q∑
k=0

(t− s)Q−m sk ds =

Q∑
k=0

C ′tQ−m+k+1 ≤ C ′′tQ−m+1 as t→ 0+,

which yields (18.91). Finally, note that∣∣∣∣∫
M

κQ (y, x, t)ψ (y) vy − ψ (x)

∣∣∣∣
≤
∣∣∣∣∫
M

(κQ (y, x, t)−GQ (y, x, t))ψ (y) vy

∣∣∣∣+

∣∣∣∣∫
M

GQ (y, x, t)ψ (y) vy − ψ (x)

∣∣∣∣
≤ CtQ−m+1

∫
M

|ψ (y)| vy +

∣∣∣∣∫
M

GQ (y, x, t)ψ (y) vy − ψ (x)

∣∣∣∣ .
Thus, (18.90) follows from (18.85) in Proposition 18.43, p. 536. �

5. The Local Index Formula

In the previous section, we showed that for x, y ∈ M (of even dimension n =
2m) with r = d(x, y) := Riemannian distance from x to y sufficiently small, the
heat kernel k (x, y, t) of D2 has an asymptotic expansion as t→ 0+ of the form

k (x, y, t) ∼ HQ (x, y, t) := E (r, t)
∑Q

j=0
hj (x, y) tj ,

for any fixed integer Q > m+ 4, where

hj (x, y) ∈ Hom
(

(E ⊗ Σ (M))x , (E ⊗ Σ (M))y

)
, j ∈ {0, 1, . . . , Q} .

In particular, with y = x, we have

(18.96) k (x, x, t) ∼ (4πt)
−m

Q∑
j=0

hj (x, x) tj = (4π)
−m

Q∑
j=0

hj (x, x) tj−m.

From (18.38) we know that for any t > 0,∫
M

Str (k (x, x, t)) νh (x) = index
(
D+
)
,

which is constant, independent of t. As t→ 0+, we deduce from (18.96) that∫
M

Str (hj (x, x)) νh (x) = 0 for j ∈ {0, 1, . . . ,m− 1} , while

(4π)
−m
∫
M

Str (hm (x, x)) νh (x) = index
(
D+
)
.(18.97)

We have a somewhat cumbersome formula for hm (x, x), and it is already clear
from the formula that hm (x, x) is determined by the metric h and the connection
ε on U (E) in a neighborhood of the point x (indeed by finitely many derivatives
of h and ε at x). One might regard the gist of the Index Formula for twisted
Dirac operator as exhibiting the global quantity index (D+) as the integral of form
which may be locally computed. From this perspective, (18.97) does the job. The
direct computation of hm (x, x) is actually not very difficult for m = 1 and 2
(i.e., for dim (M) = 2 or 4), and we will carry it out explicitly. However, for



544 18. THE LOCAL INDEX THEOREM FOR TWISTED DIRAC OPERATORS

large values of m it is rather cumbersome and one would like a more tractable
formula for hm (x, x). It is also desireable to express hm (x, x) in terms of curvature
forms, thereby showing that hm (x, x) only depends on the 2-jet of the metric and
the 1-jet of ε. Moreover, since index (D+) is insensitive to pertubations in h and
ε, one expects that hm (x, x) νh can be expressed in terms of curvature forms of
characteristic classes for M and E. The Local Index Formula below does this.
Moreover, since the Local Index Formula is a purely local result, it may be applied
to obtain the (global) Index Formula for elliptic operators which are only locally of
the form of twisted Dirac operator D+. Indeed, if A is such an operator (possibly
on a nonspin manifold) and k is the heat kernel for A∗A ⊕ AA∗, then from the
spectral resolution of A, we still have∫

M

Str (hm (x, x)) νh (x) = index (A) ,

where the supertrace Str is defined in the natural way. Now, the crucial observation
is that the Local Index Formula allows us to compute Str (hm (x, x)) once A is
represented locally as a twisted Dirac operator. We will see a number of examples
of such A in the next section. In fact, it is not easy to find any first-order elliptic
operators of geometrical significance which are not locally twisted Dirac operators,
or 0-th order perturbations thereof. Our goal in this section is to prove

Theorem 18.45 (The Local Index Formula). For dimM = 2m, let hm (x, x)
be as in the diagonal asymptotic expansion (18.96) of the heat kernel of an operator
which in some neighborhood B about x ∈ M is of the form D2 for a twisted Dirac
operator D : C∞ (B,E (B)⊗ Σ (B)) ←↩. Here D is determined by a connection ε
on E (B), a metric h on B with Levi-Civita connection θ, and a spin structure over
FB. If Ωε is the curvature of ε and Ωθ is the curvature of θ, then
(18.98)

(4π)
−m

Str (hm (x, x)) =

〈
Tr
(
eiΩ

ε/2π
)
∧ det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

, νh (x)

〉
,

where the meaning of the right side was explained in the paragraph following (18.39),
p. 513.

Using normal coordinates
(
y1, . . . , y2m

)
∈ B (r0, 0) about x ∈M and the radial

gauge, and selecting V0 ∈ CN ⊗Σ2m, we have (see (18.76), (18.74) and Proposition
18.41, p. 531),
(18.99)

hm (x, x) (V0) =

∫
Im

∏m−1

i=0
(si)

i
((
Asm−1

◦ · · · ◦As0
) [
Ṽ0

])
(0) ds0 . . . dsm−1,

where Ṽ0 ∈ C∞
(
B (r0, 0) ,CN ⊗ Σ2m

)
is the constant extension of V0. Recall that

for ψ ∈ C∞
(
B (r0, 0) ,CN ⊗ Σ2m

)
, we have

As [ψ] (y) := A [ψ] (sy) , where

A [ψ] := h1/4∆
[
h−1/4ψ

]
−
(
F + 1

4S
)

[ψ] .

While the right side of (18.99) may seem unwieldy, there is substantial simplification

due to facts that
(
Asm−1

◦ · · · ◦As0
) [
Ṽ0

]
(y) is evaluated at y = 0 in (18.99) and
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that only those terms of Asm−1
◦ · · · ◦As0

[
Ṽ0

]
(0) which involve γn+1 := γ1 · · · γ2m

will survive when the supertrace Str (hm (x, x)) is taken (see Proposition 18.12,
p. 491). To see how we may take advantage of these facts, we need to expand

A [ψ] = −h1/4D2
[
h−1/4ψ

]
= h1/4∆

[
h−1/4ψ

]
−
(
F + 1

4S
)

[ψ]

= h−1/4∇∂j
(
hij
√
h∇∂i

(
h−1/4ψ

))
−
(
F + 1

4S
)

[ψ]

= h−1/4

 ∂j

(
hij
√
h∇∂i

(
h−1/4ψ

))
+hij

√
h
(
ε⊕ θ̃

)
(∂j)∇∂i

(
h−1/4ψ

)
− (F + 1

4S
)

[ψ]

= h−1/4

 ∂j

(
hij
√
h
(
∂i
(
h−1/4ψ

)
+
(
ε⊕ θ̃

)
(∂i)h

−1/4ψ
))

+hij
√
h
(
ε⊕ θ̃

)
(∂j)

(
∂i
(
h−1/4ψ

)
+
(
ε⊕ θ̃

)
(∂i)h

−1/4ψ
) 

−
(
F + 1

4S
)

[ψ]

= h−1/4∂j

(
hij
√
h∂i

(
h−1/4ψ

))
+ h−1/4∂j

(
h1/4hij

(
ε⊕ θ̃

)
(∂i)ψ

)
+ hijh1/4

(
ε⊕ θ̃

)
(∂j) ∂i

(
h−1/4ψ

)
+ hij

(
ε⊕ θ̃

)
(∂j)

(
ε⊕ θ̃

)
(∂i)ψ

− 1
2

(
Ωεjk ⊗ γjγk

)
ψ − 1

4Sψ.

In order to exhibit the parts of A which are of pure order 0, 1 and 2, we expand
further:

A [ψ] = hij∂j∂iψ +
(
h−1/4∂j

(
hijh1/4

)
+ h1/4hji∂j

(
h−1/4

))
∂iψ

+ h−1/4∂j

(
hij
√
h∂i

(
h−1/4

))
ψ

+ hij
(
ε⊕ θ̃

)
(∂i) ∂jψ + h−1/4∂j

(
h1/4hij

(
ε⊕ θ̃

)
(∂i)

)
ψ

+ hij
(
ε⊕ θ̃

)
(∂j) ∂iψ + hijh1/4

(
ε⊕ θ̃

)
(∂j) ∂i

(
h−1/4

)
ψ

+ hij
(
ε⊕ θ̃

)
(∂j)

(
ε⊕ θ̃

)
(∂i)ψ − 1

2

(
Ωεjk ⊗ γjγk

)
ψ − 1

4Sψ

= hij∂j∂iψ

+
(
h−1/4∂j

(
hijh1/4

)
+ h1/4hji∂j

(
h−1/4

))
∂iψ

+ hij
(
ε⊕ θ̃

)
(∂i) ∂jψ + hij

(
ε⊕ θ̃

)
(∂j) ∂iψ

+ h−1/4∂j

(
h1/4hij

(
ε⊕ θ̃

)
(∂i)

)
ψ + hijh1/4

(
ε⊕ θ̃

)
(∂j) ∂i

(
h−1/4

)
ψ

+ hij
(
ε⊕ θ̃

)
(∂j)

(
ε⊕ θ̃

)
(∂i)ψ − 1

2

(
Ωεjk ⊗ γjγk

)
ψ − 1

4Sψ.
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Finally,

A [ψ] = hij∂j∂iψ

+
(
h−1/4∂j

(
hijh1/4

)
+ h1/4hji∂j

(
h−1/4

)
+ 2hji

(
ε⊕ θ̃

)
(∂j)

)
∂iψ

+

 h−1/4∂j

(
h1/4hij

(
ε⊕ θ̃

)
(∂i)

)
+ hijh1/4

(
ε⊕ θ̃

)
(∂j) ∂i

(
h−1/4

)
hij
(
ε⊕ θ̃

)
(∂j)

(
ε⊕ θ̃

)
(∂i)− 1

2

(
Ωεjk ⊗ γjγk

)
− 1

4S

ψ.

(18.100)

We wish to alter the operator A in such a way that the alteration does not affect
Str (hm (0, 0)), but the altered operator is much simpler. Note that in (18.100),
differential operator A has three parts of orders 2, 1, and 0 which contain 1, 3, and
5 terms each. Correspondingly, there are (1+3+5)m = 9m terms in the composition
Asm−1

◦ · · · ◦ As0 . However, any of these terms of Asm−1
◦ · · · ◦ As0 which involve

fewer than 2m gamma matrices γi will not contribute to Str (hm (0, 0)). The term

of A which produces the most (four) γi is a subterm of hij
(
ε⊕ θ̃

)
(∂j)

(
ε⊕ θ̃

)
(∂i),

namely
(18.101)

hij θ̃ (∂j) θ̃ (∂i)ψ = hij
(
Rklpj (0) 1

8γ
kγlyp

) (
Rk′l′qi (0) 1

8γ
k′γl

′
)
yqψ +O

(
|y|3
)
.

Although this subterm contributes four γi, it introduces two factors of yi which
must be differentiated by terms in subseqent factors of Asm−1

◦ · · · ◦ As0 in order
to contribute to Str (hm (0, 0)). We say that the degree of contribution (degc) of
the subterm (18.101) to Str (hm (0, 0)) is 4− 2 or 2. Note that hij∂j∂iψ has no γi,
but it contains two differentiations which can serve to eliminate two factors of yi in
previous terms. Hence, although hij∂j∂i contains no γi, we take degc

(
hij∂j∂iψ

)
=

2. In general, we have

Definition 18.46. For B (0, r0) = {y ∈ Rn : |y| ≤ r0}, let

T : C∞
(
B (0, r0) ,CN ⊗ Σ2m

)
→ C∞

(
B (0, r0) ,CN ⊗ Σ2m

)
be an operator of the form

T (ψ) (y) =
∑

(i),(j)

f i1···ikj1···jp (y) γj1 · · · γjp (∂i1 · · · ∂ikψ) (y) ,

where f i1···ikj1···jp ∈ C
∞ (B (0, r0) ,R) and (i) ranges over all multi-indices (i1, . . . , ik) ∈

×k {1, . . . , n}. Then the degree of contribution of T is

degc (T ) := p+ q − r, where

r := min
(i),(j)

{
d : f i1···ikj1···jp (y) = O

(
|y|d
)}

;

i.e., r is smallest of the degrees of the lead parts of the Taylor expansions of the
coefficients f i1···ikj1···jp . For an integer k ≥ 0, we use Oc (k) to denote an operator with

degc ≤ k.

Refering to (18.100), the only term in(
h−1/4∂j

(
hijh1/4

)
+ h1/4hji∂j

(
h−1/4

)
+ 2hji

(
ε⊕ θ̃

)
(∂j)

)
∂i
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which has an degc of at least 2 is

2hjiθ̃ (∂j) ∂i.

In (18.100), the sum of the terms of h−1/4∂j

(
h1/4hij

(
ε⊕ θ̃

)
(∂i)

)
+ hijh1/4

(
ε⊕ θ̃

)
(∂j) ∂i

(
h−1/4

)
hij
(
ε⊕ θ̃

)
(∂j)

(
ε⊕ θ̃

)
(∂i)− 1

2

(
Ωεjk ⊗ γjγk

)
− 1

4S


which have degc ≥ 2 is

hij∂j

(
θ̃ (∂i)

)
+ hij θ̃ (∂j) θ̃ (∂i)− 1

2

(
Ωεjk ⊗ γjγk

)
.

Since there are only m factors in Asm−1
◦ · · · ◦ As0 , the maximim number of γi in

factors of the terms of Asm−1
◦· · ·◦As0 will be 2m. To achieve this maximal number

it is necessary (but not sufficient) that such a term be a composition of m factors
each with the maximal degc, namely 2. Thus, we can alter A without changing
Str (hm (0, 0)) by retaining only those terms of A with degc = 2. Moreover, only
the lead part of the Taylor expansion in y of such terms need be retained. In the
next lemma, we collect the relevant expansions that we have already found for the
metric and the connections in terms of normal coordinates and the radial gauge, at
least to the order we need.

Lemma 18.47. We have

εy (∂j) = 1
2Fijy

i + O
(
|y|2
)

= 1
2Ωεij (0) yi + O

(
|y|2
)

θ̃y (∂j) = 1
8Rklji (0) γkγlyi + O

(
|y|2
)

hij (y) = δij − 1
3Rikjl (0) ykyl + O

(
|y|3
)

hij (y) = δij + 1
3Rikjl (0) ykyl + O

(
|y|3
)

hα := (det h)
α

= 1− 1
3αRkl (0) ykyl + O

(
|y|3
)

1
2Ωεjkγ

jγkψ = 1
2

∑
i,j

Ωεij (0)⊗ γiγj + O (|y|)

γi = hijγj = γi + O
(
|y|2
)
.

We define

θ̃1 (∂j) := 1
8Rklji (0) γkγlyi and

F0 := 1
2

∑
i,j
Fij ⊗ γiγj = 1

2

∑
i,j

Ωεij (0)⊗ γiγj(18.102)

Thus, a permissible alteration of A is

A′ :=
∑

i

(
∂2
i + 2θ̃ (∂i) ∂i + ∂i

(
θ̃ (∂i)

)
+ θ̃ (∂i)

2
)
−F0

=
∑

i

(
∂2
i + 2θ̃ (∂i) ∂i + θ̃ (∂i)

2
)
−F0,

where we have used

∂i

(
θ̃ (∂i)

)
= ∂i

(
1
8Rklij (0) γkγlyj

)
= 1

8Rklij (0) γkγlδji = 1
8Rklii (0) γkγl = 0.
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We now show that even though

degc

(
2θ̃ (∂i) ∂i

)
= degc

(
1
4

∑
j
Rklij (0) γkγlyj∂i

)
= 2,

the term 2θ̃ (∂i) ∂i may be dropped without changing Str (hm (0, 0)). Note that if

this 2θ̃ (∂i) ∂i is on the far left in a term of A′sm−1
◦ · · · ◦A′s0 , then the contribution

of this term to A′sm−1
◦ · · · ◦ A′s0 [V0] (0) will be zero, because of the factor of yj

in 2θ̃ (∂i) ∂i which is set to 0. Thus, it suffices to prove that 2θ̃ (∂i) ∂i commutes

with ∂2
i , θ̃ (∂i)

2
and F0, modulo terms which do not affect Str (hm (0, 0)). In other

words, we need to check that the commutators

[∑
i
θ̃ (∂i) ∂i,F0

]
,[∑

i
θ̃ (∂i) ∂i,

∑
j
∂2
j

]
, and[∑

i
θ̃ (∂i) ∂i,

∑
j
θ̃ (∂j)

2
]
.(18.103)

each have degc < 4. We have

[∑
i
θ̃ (∂i) ∂i,F0

]
=
[∑

i
θ̃ (∂i) ∂i,

1
2

∑
jk

(
Fjk ⊗ γjγk

)]
= 1

2

∑
i,j,k

[
θ̃ (∂i) ∂i,

(
Fjk ⊗ γjγk

)]
= 1

2

∑
i,j,k,p

[
1
8Rpliq (0) γpγlyq∂i,

(
Fjk ⊗ γjγk

)]
= 1

2

∑
i,j,k

1
8y
qRpliq (0)Fjk ⊗

[
γpγl, γjγk

]
∂i.

Since degc
([
γpγl, γjγk

])
≤ 2, we have degc

([∑
i θ̃ (∂i) ∂i,F0

])
≤ 2. Moreover,

[∑
i
θ̃ (∂i) ∂i,

∑
j
∂2
j

]
=
∑

i,j
θ̃ (∂i) ∂i∂

2
j − ∂2

j

(
θ̃ (∂i) ∂i

)
=
∑

i,j
θ̃ (∂i) ∂i∂

2
j − ∂j

(
∂j

(
θ̃ (∂i)

)
∂i + θ̃ (∂i) ∂j∂i

)
=
∑

i,j
θ̃ (∂i) ∂i∂

2
j − 2

(
∂2
j

(
θ̃ (∂i)

)
∂i + 2∂j

(
θ̃ (∂i)

)
∂j∂i + θ̃ (∂i) ∂

2
j ∂i

)
=
∑

i,j
−4∂j

(
θ̃ (∂i)

)
∂j∂i =

∑
i,j
−4∂j

(
− 1

8Rklji (0) γkγlyj
)
∂j∂i

= 1
2

∑
i,j
Rklji (0) γkγl∂j∂i = 0,
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since Rklji is anti-symmetric in i and j, while ∂j∂i is symmetric. We show

degc

([∑
i θ̃ (∂i) ∂i,

∑
j θ̃ (∂j)

2
])
≤ 2 as follows:

[∑
i
θ̃ (∂i) ∂i,

∑
j
θ̃ (∂j)

2
]

=
∑

i,j
θ̃ (∂i) ∂i ◦

(
θ̃ (∂j)

2
)
− θ̃ (∂j)

2
θ̃ (∂i) ∂i

=
∑

i,j
θ̃ (∂i) ∂i

(
θ̃ (∂j)

2
)

+ θ̃ (∂i) θ̃ (∂j)
2
∂i − θ̃ (∂j)

2
θ̃ (∂i) ∂i

=
∑

i,j
θ̃ (∂i) ∂i

(
θ̃ (∂j)

2
)

+
[
θ̃ (∂i) , θ̃ (∂j)

2
]
∂i

=
∑

i,j
θ̃ (∂i) ∂i

(
θ̃ (∂j)

2
)

+ Oc (4− 3 + 1)

=
∑

i,j
θ̃ (∂i) ∂i

(
θ̃ (∂j)

2
)

+ Oc (2) .

The first term appears to have degc 4 which is too high, but we now show that it
actually has degc 2. Using

−8θ̃ (∂j) = Rrsqjγ
rγsyq and

82θ̃ (∂j)
2

= RrsqjRr′s′q′jγ
rγsγr

′
γs
′
yqyq

′
,

we have

− 83θ̃ (∂i) ∂i

(
θ̃ (∂j)

2
)

= Rklpiγ
kγlyp∂i

(
RrsqjRr′s′q′jγ

rγsγr
′
γs
′
yqyq

′
)

= Rklpiγ
kγlypRrsqjRr′s′q′jγ

rγsγr
′
γs
′
(
δiqy

q′ + δiq′y
q
)

= RklpiRrsijRr′s′q′j

(
γkγlγrγsγr

′
γs
′
)
ypyq

′
+RklpiRrsqjRr′s′ij

(
γkγlγrγsγr

′
γs
′
)
ypyq

= RklpiRrsijRr′s′qj

(
γkγlγrγsγr

′
γs
′
)
ypyq +RklpiRrsqjRr′s′ij

(
γkγlγrγsγr

′
γs
′
)
ypyq

= RklpiRr′s′ijRrsqj

(
γkγlγrγsγr

′
γs
′
)
ypyq

+RklpiRrsqjRr′s′ij

(
γkγlγrγsγr

′
γs
′
)
ypyq + Oc (4− 2)

= 2RklpiRrsqjRr′s′ij

(
γkγlγrγsγr

′
γs
′
)
ypyq + Oc (2)
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The first term which appears to be Oc (4) is actually Oc (2), since

RklpiRrsqjRr′s′ij

(
γkγlγrγsγr

′
γs
′
)
ypyq

= RklqiRrspjRr′s′ij

(
γkγlγrγsγr

′
γs
′
)
ypyq

= −RklqiRrspjRr′s′ji
(
γkγlγrγsγr

′
γs
′
)
ypyq

= −RklqjRrspiRr′s′ij
(
γkγlγrγsγr

′
γs
′
)
ypyq

= −RrspiRklqjRr′s′ij
(
γkγlγrγsγr

′
γs
′
)
ypyq

= −RklpiRrsqjRr′s′ij
(
γrγsγkγlγr

′
γs
′
)
ypyq

= −RklpiRrsqjRr′s′ij
(
γkγlγrγsγr

′
γs
′
)
ypyq + Oc (4− 2) ,

where we have used
[
γrγs, γkγl

]
= Oc (2) in the last equality.

Thus, we have shown that all the commutators in (18.103) have degc ≤ 2 < 4.
In summary, we have

Proposition 18.48. Let

θ̃1 (∂j) := 1
8

∑
k,l,i

Rklji (0) γkγlyi,

F0 := 1
2

∑
i,j
Fij ⊗ γiγj = 1

2

∑
i,j

Ωεij (0)⊗ γiγj , and

A0 :=
∑
i

(
∂2
i + θ̃ (∂i)

2
)
−F0.(18.104)

For V0 ∈ CN ⊗ Σ2m, define
(18.105)

h0
m (0, 0) (V0) :=

∫
Ik

∏m−1

i=0
(si)

i
((
A0
sm−1

◦ · · · ◦A0
s0

) [
Ṽ0

])
(0) ds0 . . . dsm−1,

where Ṽ0 ∈ C∞
(
B (r0, 0) ,CN ⊗ Σ2m

)
is the constant extension of V0 ∈ CN ⊗Σ2m.

Then

(18.106) Str (hm (0, 0)) = Str
(
h0
m (0, 0)

)
.

In other words, in the computation of Str (hm (0, 0)) given by (18.99), we may
replace A by A0.

At this point, we have that

index
(
D+
)

= (4π)
−m
∫
M

Str (hm (x, x)) νh (x)

where the form Str (hm (x, x)) νh (x) only depends on νh (x), the curvature of the
Levi-Civita connection of h at x, and the curvature of the connection ε on U (E)
at x. Since the index (D+) is invariant under perturbations of the metric h and
the connection ε, we suspect that in fact Str (hm (x, x)) νh (x) can be expressed in
terms of curvature forms of characteristic classes, whose integrals are also invariant.
It remains to do this by establishing (18.98). Before doing this in general, we verify
(18.98) in the cases m = 1 and m = 2 (i.e., for surfaces and 4-manifolds). For
readers who have no use for the Local Index Theorem beyond dimension 4, this
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is sufficient. For m = 1 and m = 2, we do not need to use Mehler’s Formula but
rather we proceed directly using (18.105), (18.106) and

A0
s [ψ] (y) := A0 [ψ] (sy)

=
∑
i

(
∂2
i [ψ]

)
(sy) + s2

∑
i

θ̃ (∂i)
2
ψ (sy)− 1

2

∑
j,k

(
Fjk ⊗ γjγkψ (sy)

)
.

5.1. The case m = 1 (surfaces). We have

h0
1 (0, 0) (V0) =

∫ 1

0

(s0)
0
A0
s0 [V0] (0) ds0 =

∫ 1

0

A0
s0 [V0] (0) ds0

=

∫ 1

0

A0 [V0] (s00) ds0 =

∫ 1

0

A0 [V0] (0) ds0 = A0 [V0] (0)

= ∂2
i [V0] (0) + θ̃ (∂i)

2
[V0] (0)− 1

2

(∑
j,k
Fjk ⊗ γjγk

)
(V0)

= − 1
2

∑
j,k

(
Fjk ⊗ γjγk

)
(V0)

For m = 1, Str (γ2m+1) = (−2i)
m

yields Str (γ1γ2) = −2i. Hence,

(4π)
−1

Str (h1 (0, 0)) = (4π)
−1

Str
(
− 1

2

∑
j,k

(
Fjk ⊗ γjγk

))
= (4π)

−1
Tr (−F12) Str (γ1γ2) = − (4π)

−1
Tr (Ωε12 (0)) (−2i)

1

=
i

2π
Tr Ωε12 (0) .

Thus, we have (18.98) in the case m = 1, since

〈
Tr
(
eiΩ

ε/2π
)
∧ det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

, νh (0)

〉

= 〈Tr (iΩε (0) /2π) , νh (0)〉 =
i

2π
Tr Ωε12 (0) . �
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5.2. The case m = 2 (4-manifolds). For m = 2, we have

h0
2 (0, 0) (V0) =

∫ 1

0

∫ 1

0

(s1)
1

(s0)
0
A0
s1A

0
s0 [V0] (0) ds0ds1

=

∫ 1

0

∫ 1

0

(s1)
1
A0A0

s0 [V0] (s10) ds0ds1

=

∫ 1

0

∫ 1

0

(s1)
1
A0
[
A0
s0 [V0]

]
(0) ds0ds1

= 1
2

∫ 1

0

A0
[
A0
s0 [V0]

]
(0) ds0

= 1
2

∫ 1

0

A0
[
s2

0

∑
i
θ̃ (∂i)

2
V0 − 1

2

∑
j,k

(
Fjk ⊗ γjγkV0

)]
(0) ds0

= 1
2

∫ 1

0

s2
0A

0
[∑

i
θ̃ (∂i)

2
V0

]
(0) ds0 − 1

2A
0
[

1
2

∑
j,k

(
Fjk ⊗ γjγkV0

)]
(0)

= 1
6A

0
[∑

i
θ̃ (∂i)

2
V0

]
(0)− 1

2A
0
[

1
2

∑
j,k

(
Fjk ⊗ γjγkV0

)]
(0)

= 1
6

∑
i,j

(∂j)
2
[
θ̃ (∂i)

2
V0

]
+ 1

2 ·
1
2

∑
j,k,j′,k′

(
Fj′k′ ⊗ γj

′
γk
′
) [

1
2

(
Fjk ⊗ γjγkV0

)]
= 1

6

∑
i,j

(∂j)
2
[
θ̃ (∂i)

2
V0

]
+ 1

8

∑
j,k,j′,k′

(
Fj′k′ ◦ Fjk ⊗ γj

′
γk
′
γjγk

)
[V0]

= 1
6

1
82 2
∑

i,p,k,l,k′,l′
Rklpi (0)Rk′l′pi (0) γkγlγk

′
γl
′
[V0]

+ 1
8

∑
j,k,j′,k′

(
Ωεj′k′ (0) ◦ Ωεjk (0)⊗ γj

′
γk
′
γjγk

)
[V0] ,

where we have used

1
6

∑
i,j

(∂j)
2
[
θ̃ (∂i)

2
V0

]
= 1

6

∑
i,j,p,k,l

(∂j)
2 (
Rklip (0)

(
1
8γ

kγl
)
yp
)2

[V0]

= 1
6

1
82

∑
i,j,p,q,k,l,k′,l′

(∂j)
2
(
Rklip (0)Rk′l′iq (0) γkγlγk

′
γl
′
ypyq

)
[V0]

= 1
6

1
82 2
∑

i,p,k,l,k′,l′
Rklip (0)Rk′l′ip (0) γkγlγk

′
γl
′
[V0] .
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Since Str (γ2m+1) = (−2i)
m ⇒ Str

(
γkγlγk

′
γl
′
)

= (−2i)
2
εklk′l′ when m = 2, we

get

Str (h2 (0, 0))

= 1
3

1
82 Tr (IdE)

∑
i,p,k,l,k′,l′

Rklip (0)Rk′l′ip (0) Str
(
γkγlγk

′
γl
′
)

+ 1
8

∑
j,k,j′,k′

Tr
(
Ωεj′k′ (0) ◦ Ωεjk (0)

)
Str
(
γj
′
γk
′
γjγk

)
= 1

3
1
82 dimE ·

∑
i,p,k,l,k′,l′

Rklip (0)Rk′l′ip (0) (−2i)
2
εklk′l′

+ 1
8

∑
j,k,j′,k′

Tr
(
Ωεj′k′ (0) ◦ Ωεjk (0)

)
(−2i)

2
εj′k′jk

= 1
3

4
82 dimE ·

∑
i,p,k,l,k′,l′

Ripkl (0)Rpik′l′ (0) εklk′l′

− 1
2

∑
j,k,j′,k′

Tr
(
Ωεj′k′ (0) ◦ Ωεjk (0)

)
εj′k′jk

We rewrite this as follows. In R4, for 2-forms α = 1
2

∑
k,l αkldy

k ∧ dyl and β =
1
2

∑
k,l βk′l′dy

k′ ∧ dyl′ , ∑
k,l,k′,l′

αklβk′l′εklk′l′ = 4 〈α ∧ β, νh〉 .

Thus, we have∑
j,k,j′,k′

Tr
(
Ωεj′k′ (0) ◦ Ωεjk (0)

)
εj′k′jk = 4 〈Tr (Ωε ∧ Ωε) , νh (0)〉 .

and

Str (h2 (0, 0))

= 1
3

4
82 dimE ·

∑
i,p,k,l,k′,l′

Rpikl (0)Ripk′l′ (0) εklk′l′ − 2 〈Tr (Ωε ∧ Ωε) , νh (0)〉 .

We can write the first sum as follows. Since

Ωθpi = 1
2

∑
k,l
Rpikldy

k ∧ dyl, we have

(
Ωθ ∧ Ωθ

)
ji

=
∑

p

(
Ωθjp ∧ Ωθpi

)
= 1

4

∑
p,k,l,k′,l′

RjpklRpik′l′dy
k ∧ dyl ∧ dyk

′
∧ dyl

′

= 1
4

∑
p,k,l,k′,l′

(RjpklRpik′l′εklk′l′) ν, and

Tr
(
Ωθ ∧ Ωθ

)
=
∑

i

(
Ωθ ∧ Ωθ

)
ii

= 1
4

∑
i,p,k,l,k′,l′

(RipklRpik′l′εklk′l′) ν.

Thus,

Str (h2 (0, 0))

= 1
3

4
82 dimE · 4

〈
Tr
(
Ωθ ∧ Ωθ

)
, νh (0)

〉
− 2 〈Tr (Ωε ∧ Ωε) , νh (0)〉

=
〈

1
12 dimE · Tr

(
Ωθ ∧ Ωθ

)
− 2 Tr (Ωε ∧ Ωε) , νh (0)

〉
.
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From the definition (16.100) of the Pontryagin forms,

p1

(
Ωθ
)

=
1

(2π)
2

2!

∑
i1,i2,j1,j2

δj1j2i1i2
Ωθi1j1 ∧ Ωθi2j2

=
−1

8π2

∑
i1,i2

Ωθi1i2 ∧ Ωθi2i1 =
−1

8π2
Tr
(
Ωθ ∧ Ωθ

)
.

In dimension 4, we have

Tr
(
eiΩ

ε/2π
)

= Tr IE +
i

2π
Tr (Ωε) + 1

2

(
i

2π

)2

Tr (Ωε ∧ Ωε)

= dimE +
i

2π
Tr (Ωε)− 1

8π2
Tr (Ωε ∧ Ωε) , and

det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

= 1− 1

24
p1

(
Ωθ
)
.

Thus, as required,〈
Tr
(
eiΩ

ε/2π
)
∧ det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

, νh (0)

〉

=

〈
− 1

24
(dimE) p1

(
Ωθ
)
− 1

8π2
Tr (Ωε ∧ Ωε) , νh (0)

〉
=

〈
− 1

24
(dimE)

(
−1

8π2
Tr
(
Ωθ ∧ Ωθ

))
− 1

8π2
Tr (Ωε ∧ Ωε) , νh (0)

〉
=

1

16π2

〈
1
12 dimE · Tr

(
Ωθ ∧ Ωθ

)
− 2 Tr (Ωε ∧ Ωε) , νh (0)

〉
=

1

(4π)
2 Str (h2 (0, 0)) . �

Our starting point for the derivation of the Local Index Formula (18.98) for
arbitrary even dimensions is the determination of the kernel, say ea (x, y, t), for the
generalized 1-dimensional heat equation

ut = uyy − a2y2u, u (y, t) ∈ R, (y, t) ∈ R× (0,∞) ,

where a ∈ R is a given constant. If a = 0, we have the familiar result

e0 (x, y, t) =
1√
4πt

e−
1
4t (y−x)2

.

For a 6= 0, we derive Mehler’s formula
(18.107)

ea (x, y, t) =
1√

4π sinh(2at)
2a

exp

(
− 1

4 sinh(2at)
2a

(
cosh (2at)

(
x2 + y2

)
− 2xy

))
.

Note that we recover e0 (x, y, t) as a → 0. We know that ea (x, y, t) should be
symmetric in x and y, but not necessarily a function of y−x, since ut = uyy−a2y2u
is not translation invariant. The simplest suitable form is

ea (x, y, t) = f (t)
− 1

2 exp
(

1
4g (t)

(
x2 + y2

)
+ h (t)xy

)
.
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We have

(ea)y (x, y, t) = ea (x, y, t)
(

1
2g (t) y + h (t)x

)
(ea)yy (x, y, t) = (ea)y (x, y, t)

(
1
2g (t) y + h (t)x

)
+ Ea

1
2g (t)

= ea (x, y, t)
((

1
2g (t) y + h (t)x

)2
+ 1

2g (t)
)
, and

e−1
a

(
(ea)t − (ea)yy + a2y2ea

)
(x, y, t)

= − 1
2

f ′ (t)

f (t)
+ 1

4g
′ (t)

(
x2 + y2

)
+ h′ (t)xy

−
(

1
4g (t)

2
y2 + g (t)h (t)xy + h (t)

2
x2 + 1

2g (t)
)

+ a2y2

= − 1
2

(
f ′ (t)

f (t)
+ g (t)

)
+ 1

4

(
g′ (t)− g (t)

2
+ 4a2

)
y2

+
(

1
4g
′ (t)− h (t)

2
)
x2 + (h′ (t)− g (t)h (t))xy.

Equating to zero the coefficients of this quadratic polynomial in (x, y), we get

g′ = g2 − 4a2 ⇒ g (t) = −2a coth (2at+ C)

h (t) = 1
2

√
g′ (t) = 1

2

√
(2a)

2
csch2 (2at+ C) =

a

sinh (2at+ C)

f ′

f
= −g ⇒ f (t) = C ′ exp

(
2a

∫
coth (2at+ C) dt

)
= C ′ exp (ln sinh (2at+ C)) = C ′ sinh (2at+ C) .

Luckily (?), we also have h′ (t) = g (t)h (t). Hence,

ea (x, y, t)

=
1√

C ′ sinh (2at+ C)
exp

(
− 1

4 sinh(2at)
2a

(
cosh (2at+ C)

(
x2 + y2

)
− 2xy

))
The behavior is correct as a and t approach 0 if and only if C = 0 and C ′ = 2π/a,
and we have (18.107).

Now suppose that B is a real, skew-symmetric n × n matrix where n = 2m is
even. We will find the heat kernel for
(18.108)

ut (y, t) = ∆u− |By|2 u = ∆u+
〈
B2y, y

〉
u, u (y, t) ∈ R, (y, t) ∈ Rn× (0,∞) ,

where ∆u = ∂2
1u+ · · ·+ ∂2

nu. The eigenvalues of B are of the form ±ir1, . . . ,±irm,
and for some R ∈ SO (n),

R−1B2R = −diag
(
r2
1, r

2
1, . . . , r

2
m, r

2
m

)
.

Let y′ := R−1y and u′ (y′, t) := u (y, t) = u (Ry′, t). If ut = ∆u+
〈
B2y, y

〉
u, then

u′t (y′, t) = ut (Ry′, t) = ∆u (Ry′, t) +
〈
B2Ry′, Ry′

〉
u (Ry′, t)

= ∆′u′ (y′, t) +
〈
R−1B2Ry′, y′

〉
u′ (y′, t)

= ∆′u′ (y′, t)−
∑m

j=1
r2
j

(
y′22j−1 + y′22j

)
u′ (y′, t) .(18.109)
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Let v1 = v1 (y1, t) with v1t = ∂2
1v1−a2

1v1, and v2 = v2 (y2, t) with v2t = ∂2
2v2−a2

2v2.
Then for v (y1, y2, t) := v1 (y1, t) v2 (y2, t), we have

vt (y1, y2, t) = v1t (y1, t) v2 (y2, t) + v1 (y1, t) v2t (y2, t)

=
(
∂2

1v1 − a2
1v1

)
v2 (y2, t) + v1 (y1, t)

(
∂2

2v2 − a2
2v2

)
=
(
∂2

1v1 (y1, t) v2 (y2, t)− a2
1v1 (y1, t) v2 (y2, t)

)
+
(
v1 (y1, t) ∂

2
2v2 − v1 (y1, t) a

2
2v2 (y2, t)

)
=
(
∂2

1 + ∂2
2

)
v (y1, y2, t)−

(
a2

1 + a2
2

)
v (y1, y2, t) .

Thus, the heat kernel for (18.109) is

e′ (x′, y′, t) :=

m∏
j=1

erj
(
x′2j−1, y

′
2j−1, t

)
erj
(
x′2j , y

′
2j , t

)
.

The heat kernel for (18.108) is then

eB (x, y, t) = e′ (x′, y′, t) = e′
(
R−1x,R−1y, t

)
, and

eB (0, 0, t) = e′
(
R−10, R−10, t

)
= (4π)

−m
m∏
j=1

2rj
sinh (2rjt)

.(18.110)

Let AB : C∞ (Rn)→ C∞ (Rn) be the operator defined by

AB [f ] (y) := ∆u (y)− |By|2 f (y) , and let

ABs [f ] (y) := AB [f ] (sy) .

With E (r, t) := (4πt)
−n/2

exp
(
−r2/4t

)
, just as before (only easier) we have an

asymptotic expansion (as t→ 0+)

E (|y| , t)−1
eB (0, y, t) ∼

∑Q

j=0
hBj (0, y) tj , where

hBj (0, y) =

∫
Im

∏j−1

i=0
(si)

i
((
ABsj−1

◦ · · · ◦ABs0
)

[1]
)

(y) ds0 . . . dsj−1.

In particular,

E (0, t)
−1
eB (0, 0, t) ∼

∑Q

j=0
hBj (0, 0) tj ,

and in view of (18.110),

E (0, t)
−1
eB (0, 0, t) = (4πt)

n/2
(4π)

−m
m∏
j=1

2rj
sinh (2rjt)

=

m∏
j=1

2rjt

sinh (2rjt)
,

which is analytic at t = 0. Thus for t sufficiently small,

m∏
j=1

2rjt

sinh (2rjt)
=
∑∞

j=0
hBj (0, 0) tj

Since the eigenvalues of iB are ±r1, . . . ,±rm, we have

m∏
j=1

2rjt

sinh (2rjt)
= det

(
2tiB

sinh (2tiB)

) 1
2

.
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Recall (see (18.41)) that

m∏
k=1

rks/2

sinh (rks/2)
=

∞∑
j=0

ak
(
r2
1, . . . , r

2
m

)
s2k =

∞∑
k=0

Ak (σ1, . . . , σk) s2k,

where the coefficient ak
(
r2
1, . . . , r

2
m

)
is a homogeneous, symmetric polynomial in

r2
1, . . . , r

2
m of degree k. We have written ak

(
r2
1, . . . , r

2
m

)
as a polynomialAk (σ1, . . . , σk)

in the elementary symmetric polynomials σk = σk
(
r2
1, . . . , r

2
m

)
. With s/2 = 2t so

that s = 4t,

det

(
2tiB

sinh (2tiB)

) 1
2

=

m∏
j=1

2rjt

sinh (2rjt)

=

∞∑
k=0

Ak (σ1, . . . , σk) (4t)
2k

=

∞∑
k=0

42kAk (σ1, . . . , σk) t2k.

Thus, hBj (0, 0) = 0 for j odd, and with

Ak (B) := Ak (σ1, . . . , σk) , where

σl :=
1

(2l)!

∑
(i),(j)

δj1···j2li1···i2l B
i1
j1
· · ·Bi2lj2l ,

we have

42kAk (B) = hB2k (0, 0)

=

∫
I2k

∏2k−1

i=0
(si)

i
(
ABs2k−1

◦ · · · ◦ABs0
)

[1] (0) ds0 . . . ds2k−1.

Let C ∈ R. If u satisfies (18.108), and v (y, t) := eCtu (y, t), then v satisfies

(18.111) vt (y, t) = ∆v − |By|2 v + Cv

Thus, the kernel for the heat equation (18.111) is

eB,C (x, y, t) := eCteB (x, y, t) ,

since this solution has the correct behavior as t→ 0+. With

AB,C [f ] (y) := ∆f (y)− |By|2 f (y) + Cf (y) ,

AB,Cs [f ] (y) := AB,C [f ] (sy) , and

Aj (B,C) := hB,Cj (0, 0)

:=

∫
Ij

∏j−1

i=0
(si)

i
(
AB,Csj−1

◦ · · · ◦AB,Cs0

)
[1] (0) ds0 . . . dsj−1,
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we then have∑∞

l=0
hB,Cl (0, 0) tl = E (|y| , t)−1

eB,C (0, 0, t)

= eCt
m∏
j=1

2rjt

sinh (2rjt)
= eCt

∑∞

j=0
hBj (0, 0) tj = eCt

∑∞

k=0
42kAk (B) t2k

=
∑∞

j=0

Cjtj

j!

∑∞

k=0
Ak (B) t2k =

∑∞

j,k=0

1

j!
Cj42kAk (B) tj+2k

=
∑∞

l=0

(∑
j+2k=l

1

j!
Cj42kAk (B)

)
tl, or

(18.112)∫
Il

∏l−1

i=0
(si)

i
(
AB,Csl−1

◦ · · · ◦AB,Cs0

)
[1] (0) ds0 . . . dsl−1 =

∑
j+2k=l

1

j!
Cj42kAk (B) .

Observe that both sides are ultimately homogeneous polynomials of degree l in the

“variables” C and Bij . Suppose that we replace these variables by operators Ĉ and

B̂ij in End (W ) for a finite dimensional vector space W , specifically

W := CN ⊗ Σ2m

Ĉ := − 1
2

∑
p,q

Ωεpq (0)⊗ γpγq, and

B̂pj := 1
8

∑
k,l
Rklpj (0)

(
IdCN ⊗iγkγl

)
.

The replacement of B by B̂ and C by Ĉ in AB,C gives us an operator AB̂,Ĉ :
C∞ (Rn,W )←↩, namely

AB̂,Ĉ (ψ) := ∆ψ −
∑

p,j,j′
B̂pjy

jB̂pj′y
j′ψ + Ĉψ

=
∑

i
∂2
i +

∑
p

(
1
8

∑
k,l,j

Rklpj (0) γkγlyj
)(

1
8

∑
k′,l′,j′

Rk′l′pj′ (0) γk
′
γl
′
yj
′
)

− 1
2

∑
i,j

Ωεij (0)⊗ γiγj ,

which is the same as the operator A0 in (18.104); note the presence of the factor

of i =
√
−1 in the definition of B̂pj which accounts for a crucial sign change in

order that AB̂,Ĉ = A0. The right side of (18.112) still makes sense as an element
of End (W ) if multiplication is taken to be composition. But, since generally op-
erators do not commute, one could get a different result unless some ordering in

compositions of the factors Ĉ and B̂ij in monomials is specified. With operator
replacement, the left side may also be interpreted as in End (W ), if for a given
w ∈W , we define

hB̂,Ĉl (0, 0) :=

(∫
Il

∏l−1

i=0
(si)

i
(
AB̂,Ĉsl−1

◦ · · · ◦AB̂,Ĉs0

)
[1] (0) ds0 . . . dsl−1

)
(w)

:=

(∫
Il

∏l−1

i=0
(si)

i
(
AB̂,Ĉsl−1

◦ · · · ◦AB̂,Ĉs0

)
[w̃] (0) ds0 . . . dsl−1

)
,

(18.113)

where w̃ is the constant function in C∞ (Rn,W ) with value w; note that the 1 in
[1] of (18.113) may be regarded as the map w 7→ w̃. There is already a definite
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ordering of the factors in the various terms of the expansion of∫
Il

∏l−1

i=0
(si)

i
(
AB̂,Ĉsl−1

◦ · · · ◦AB̂,Ĉs0

)
[1] (0) ds0 . . . dsl−1.

Since we know that the two sides of (18.112) agree as polynomials in commuting
variables C and Bij , if we replace these variables by operators, there is a corre-
sponding reordering of operators within the terms of the right side so that both
sides are the same element of End (W ). In other words,∫

Il

∏l−1

i=0
(si)

i
(
AB̂,Ĉsl−1

◦ · · · ◦AB̂,Ĉs0

)
[1] (0) ds0 . . . dsl−1

=
∑

j+2k=l

42k

j!
R(ĈjAk(B̂)),(18.114)

where R(ĈjAk(B̂)) is a reordering of the operators Ĉ and B̂ij in the monomial

terms of ĈjAk(B̂) so that (18.114) holds. Now,

Ĉ ◦ B̂pj =
(
− 1

2

∑
p,r

Ωεqr (0)⊗ γqγr
)
◦
(

1
8

∑
k,l
Rklpj (0)

(
IdCN ⊗iγkγl

))
= − 1

16

∑
q,r,k,l

Rklpj (0) Ωεqr (0)⊗ iγqγrγkγl

= − 1
16

∑
q,r,k,l

Rklpj (0) Ωεqr (0)⊗ iγkγlγqγr + Oc (2)

= B̂pj ◦ Ĉ + Oc (2) .

Thus, for j + 2k = m = n/2,

Str
(
R(ĈjAk(B̂))

)
= Str

(
ĈjR(Ak(B̂))

)
,

where R(Ak(B̂)) is Ak(B̂) with a possible reordering within the monimial terms of

Ak(B̂). However, these monomial terms are products of the operators

B̂pj = 1
8

∑
k,l
Rklpj (0) iγkγl,

and since the Rklij (0) are just scalars, such operators commute modulo terms of
degc 2. Hence, for j + 2k = m = n/2,

Str
(
R(ĈjAk(B̂))

)
= Str

(
ĈjR(Ak(B̂))

)
= Str

(
ĈjAk(B̂))

)
.

Thus, while a reordering R is needed to make (18.114) correct, when l = m = n/2,
we have

Str
(
hB̂,Ĉm (0, 0)

)
= Str

(∑
j+2k=m

42k

j!
R(ĈjAk(B̂))

)
= Str

(∑
j+2k=m

42k

j!
ĈjAk(B̂)

)
.(18.115)

With ν := dy1 ∧ · · · ∧ dyn and n = 2m,

Str
(
γj1γj2 · · · γj2k−1γj2k

)
= (−2i)

m 〈(
dyj1 ∧ dyj2

)
∧ · · · ∧

(
dyj2k−1 ∧ dyj2k

)
, ν
〉

=
〈(
−2idyj1 ∧ dyj2

)
∧ · · · ∧

(
−2idyj2k−1 ∧ dyj2k

)
, ν
〉
,



560 18. THE LOCAL INDEX THEOREM FOR TWISTED DIRAC OPERATORS

where both sides are 0 if k < m. Thus, in (18.115) we may replace

Ĉ = − 1
2

∑
p,q

Ωεpq ⊗ γpγq by

2iΩε = − 1
2

∑
p,q

Ωεpq (−2idyp ∧ dyq) , and

B̂pj = 1
8

∑
k,l
Rklpjiγ

kγl by

1
2Ωθpj = 1

8

∑
k,l
Rklpji

(
−2idyk ∧ dyl

)
provided we take the inner product, with ν, of the trace (in End

(
CN
)
) of the result.

The following computation then completes the proof of the Local Index Theorem
(i.e., Theorem 18.45, p. 544):

(4π)
−m

Str (hm (0, 0)) = (4π)
−m

Str(hB̂,Ĉm (0, 0))

= Str

(
(4π)

−m∑
j+2k=m

1

j!
(Ĉ)j42kAk(B̂)

)
=

〈∑
j+2k=m

1

j!
∧j (

2i

4π
Ωε) ∧ 42k

(4π)
2k
Ak( 1

2Ωθ), ν

〉

=

〈∑∞

j=0

1

j!
Tr
(
∧j( i

2πΩε
)
∧
∑∞

k=0
Ak( 1

2πΩθ), ν

〉

=

〈
Tr
(
eiΩ

ε/2π
)
∧ det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

, ν

〉
.

As a consequence of the Local Index Theorem for twisted Dirac Operator we
have the “integrated version” itself, namely

Theorem 18.49. (Index Theorem for Twisted Dirac Operators) Let M be a
compact, oriented Riemannian 2m-manifold with a spin structure, and let E be a
Hermitian vector bundle over M with unitary connection ε ∈ C (U (E)). Then the
index of the Dirac operator

D+ : C∞
(
E ⊗ Σ+ (M)

)
→ C∞

(
E ⊗ Σ− (M)

)
is given by

indexD+ =
(
ch (E) ` Â (M)

)
[M ] ,

where ch (E) ∈ H∗ (M,Q) is the Chern character of E (see (16.97) or (16.110))

and Â (M) ∈ H∗ (M,Q) is the total Â class of M (see (16.107) with F = TM and

Â (M) := Â (TM) or the equivalent formulation (18.43)).

Proof. We have implicitly proven this already in the discussion preceeding
(18.44) on p. 515, but there we assumed the Local Index Theorem (p. 544). As this
was done many pages ago, it is fitting to recall the computation, especially now
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that we have finally established the Local Index Theorem:

index
(
D+
)

=

∫
M

(
Tr
(
k+ (x, x, t)

)
− Tr

(
k− (x, x, t)

))
νx by (18.37)

=

∫
M

Str (k (x, x, t)) νx =

∫
M

lim
t→0+

Str (k (x, x, t)) νx

=

∫
M

〈Tr
(
eiΩ

ε/2π
)
∧ det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

, νx〉 νx by Theorem 18.45

=
(
ch (E) ` Â (M)

)
[M ] ,

where the final equality was explained on p. 515. �

Corollary 18.50. Let M be a compact, oriented Riemannian 2m-manifold

with a spin structure and positive scalar curvature, then Â (M) := Â (M) [M ] = 0.

Proof. Take E = 0. By Corollary 18.26, p. 506, KerD+ = KerD− = {0} so

that Â (M) = indexD+ = 0. �

As an application, especially relevant to the study intersection forms of smooth
4-manifolds and Seiberg-Witten theory, we have

Theorem 18.51. If M is a compact, orientable C∞ 4k-manifold with a spin

structure, then Â (M) := Â (M) [M ] is an integer. Moreover, if k is odd, then

Â (M) is even.

Proof. By Theorem 18.49 with E trivial, Â (M) = Â (M) [M ] = indexD+

and so Â (M) is an integer. If k = 2a+ 1 is odd, then according to the table (18.2)
and the periodicity Cln+8

∼= Cl8 ⊗ Cln = R (16)⊗ Cln, for the real Cl4k we have

Cl4k ∼= Cl8a+4
∼= (⊗aR (16))⊗ Cl4 ∼= R

(
24a
)
⊗H (2) ∼= H

(
24a+1

)
.

Thus, Cl4k can be identified with the algebra of 24a+1×24a+1 matrices with entrees

in H (the quaternions) which act via R-linear transformations to the left on H24a+1

.

Of course, there is right action of H on H24a+1

via H-scalar multiplication, and this

right action commutes with the left action of H
(
24a+1

)
on H24a+1

. If we define a

complex on structure on H24a+1

via right multiplication by a pure imaginary unit

quaternion (e.g., −k), then H24a+1

becomes a complex vector space of dimension

24a+2. The left action of H
(
24a+1

)
on H24a+1

is C-linear, and the complexified

Cl4k is the full algebra (∼= C
(
24a+2

)
) of C-linear transformations of H24a+1

. The

complex spinor space Σ4k is then H24a+1

with its complex structure. We still have
the R-linear right action of H on H4a+1, and although this not C-linear, this right
action commutes with left multiplication by the volume element ωC = i2ke1 · · · e4k =

(−1)
k
e1 · · · e4k, since ωC is in the real Cl4k = H

(
24a+1

)
. Thus, the spinor spaces

Σ±4k := (1± ωC) Σ4k are invariant under the R-linear right action of H on Σ4k
∼=

H24a+1

. In other words Σ±4k are right H-modules over R. The spinor bundles

Σ±4k (M) := P ×Spin(4k) Σ±4k are also right H-modules since the right H-action on

Σ±4k commutes with the spinor representations ρ± : Spin (4k) → SU
(
Σ±4k

)
which
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are just restrictions of Clifford multiplication to Spin (4k) ⊂ Cl4k. For the same
reason, the H-action on Σ±4k (M) commutes with

Clifford multiplication cl : Ω1 (M)⊗ C∞ (Σ (M))→ C∞ (Σ (M)) ,

covariant differentiation ∇Σ : C∞ (Σ (M))→ Ω1 (M)⊗ C∞ (Σ (M)) .

and hence with the Dirac operatorD = cl◦∇Σ. Thus, the spaces Ker (D± : C∞ (Σ± (M))→ C∞ (Σ∓ (M)))
are right H-modules. The real dimension of any H-module V is a multiple of 4 (see
Exercise 18.53 below). Hence,

Â (M) = Â (M) [M ] = indexD+ = dimC KerD+ − dimC KerD− is even.

�

Corollary 18.52. (Rochlin’s Theorem)The signature τ (M) of a compact, ori-
entable C∞ 4-manifold M with a spin structure is a multiple of 16.

Proof. The Hirzebruch Signature Theorem (to be proven independently in
Section 18.6; see Theorem 18.59, p. 573) states that τ (M) = 1

3p1 (M). Since

Â (M) = −1
24 p1 (M) by 16.108, we obtain τ (M) = −8Â (M) , which is a multi-

ple of 16 by Theorem 18.51. �

Exercise 18.53. Let φ : H → EndR (V ) be a real right representation (i.e.,
φ (qq′) = φ (q′)φ (q)) with dimV < ∞. By completing parts (a),(b) and (c), show
that V = V1⊕· · ·⊕Vh where the Vi are invariant subspaces on which φ is equivalent
to the right action of H on itself.
(a) Let r : H→ EndR (H) be given by r (q) (q′) = q′q. Show that r is irreducible;i.e.,
r (W ) ⊆ W for some subspace W ⊆ H implies that W is {0} or H. [Hint. H is a
division algebra.]
(b) For any nonzero v ∈ V , show that φv : H → End (φ (H) v) given by φv (q) =
φ (q) |φ(H)v is equivalent to r. [Hint. For fv : H→ φ (H) v given by fv (q) = φ (q) v,
show first that Ker fv is r-invariant.]
(c) Show that V = φ (H) v1 ⊕ · · · ⊕ φ (H) vh for some v1, . . . , vh ∈ V .

6. The Index Theorem for Standard Geometric Operators

Our goal here is to obtain index formulas for the standard elliptic geometric
operators and their twists. The standard elliptic geometric operators include

the signature operator d+ δ : (1 + ∗) Ω∗ (M)→ (1− ∗) Ω∗ (M) ,

the Euler-Dirac operator d+ δ : Ωeven (M)→ Ωodd (M) , and

the Dolbeult-Dirac operator
√

2
(
∂̄ + ∂̄∗

)
: Ω0,even (M)→ Ω0,odd (M) .

Here, d denotes exterior derivative, δ denotes the exterior coderivative (i.e., the
formal adjoint d∗ of d), ∗ denotes the Hodge star operator, and ∂̄ and its adjoint ∂̄∗

denotes the complex analogs of d and d∗ on complex manifolds, which, along with
Ω0,∗ (M), will be defined. The index formula obtained for the above operators yields
the Hirzebruch Signature Theorem, the Chern-Gauss-Bonnet Theorem, and the
Hirzebruch-Riemann-Roch Theorem, respectively. While these operators generally
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are not globally twisted Dirac operators, locally they expressible in these terms.
Thus, even if the underlying Riemannian manifold M (still assumed to be oriented
and and of even dimension n = 2m) does not admit a spin structure, we may still
use the Local Index Theorem for twisted Dirac operators to compute the index
density and hence the index of these operators. While it is possible to carry this
out separately for each of the geometric operators, basically all of these theorems
are consequences of an index theorem for generalized Dirac operators on Clifford
module bundles (defined below). Using the Local Index Theorem for twisted Dirac
operators, we prove this index theorem first, and then we apply it to obtain the
geometric index theorems.

For a compact, oriented manifold M of even dimension n = 2m with Riemann-
ian metric h, let Cl (TxM) be the complexified Clifford algebra of TxM with inner
product hx. Then Cl (TM) := ∪x∈MCl (TxM) is the total space of the so-called
complex Clifford bundle Cl (TM) → M . This bundle of algebras is defined
whether M admits a spin structure or not. As a complex vector bundle, it is
canonically isomorphic to Λ∗ (M,C), but the algebra structure is different. We can
also describe Cl (TM) as follows. Let c : Spin (n) → SO (n) be the covering given
by c (g) (v) = gvg−1, where v ∈ Rn and we identify Rn with L

(
Λ1 (Rn)

)
⊂ Cln.

Define the representation

r : SO (n)→ End (Cln) by

r (c (g)) (α) = gαg−1 for g ∈ Spin (n) .

This is simply the extension to Cln of the defining representation of SO (n) on
Rn ∼= L

(
Λ1 (Rn)

)
⊂ Cln. Relative to r, Cl (TM) is then the associated bundle

FM ×SO(n) Cln. Note that Clifford multiplication is SO (n)-equivariant, in the
sense that for A ∈ SO (n), r (A) ∈ End (Cln) is an algebra automorphism of Cln.
Thus, regarding Cl (TM) as FM ×SO(n) Cln, a well-defined algebra structure on
each fiber is given by [p, α1] [p, α2] := [p, α1α2], since[

pA, r
(
A−1

)
(α1) r

(
A−1

)
(α2)

]
=
[
pA, r

(
A−1

)
(α1α2)

]
= [p, α1α2]

Let Q : Cln → End (W ) be an algebra representation where W is a complex
vector space with dim (W ) < ∞. There is a Hermitian inner product 〈·, ·〉 on W ,
such that for any unit vector v ∈ Sn ⊂ Rn, we have Q (v) ∈ U (W ) :=unitary group
for W with 〈·, ·〉. Indeed, for any Hermitian inner product 〈·, ·〉′ on W , let

〈w1, w2〉 :=

∫
Sn
〈Q (v)w1, Q (v)w2〉′ dv

Using Q (v)
2

= −I for v ∈ Sn, we deduce that Q (v)
∗

= −Q (v) from

〈Q (v)w1, w2〉 =
〈
Q (v)

2
w1, Q (v)w2

〉
= 〈−w1, Q (v)w2〉 .

Definition 18.54. Let q : Spin (n)→ U (W ) be a representation such that

(18.116) q (g) ◦Q (α) ◦ q
(
g−1

)
= Q (r (c (g))α) for all g ∈ Spin (n) and α ∈ Cln.

If M admits a spin structure C : P → FM , the representation q provides us with
an associated bundle

W (M) := P ×Spin(n) W.

In the case q : Spin (n)→ U (W ) is of the form q0 ◦ c, where c : Spin (n)→ SO (n)
is the double cover and q0 : SO (n)→ U (W ) is a representation, then we may form
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a bundle

W (M) := FM ×SO(n) W ,

whether M admits a spin structure or not. In either case, we call a W (M) Clifford
module bundle.

We consider some examples. Note that Cl (TM) ∼= Λ∗ (M,C) is a Clifford mod-
ule bundle. Indeed, let W = Cln and Q : Cln → End (Cln) be left multiplication of
Cln on itself, and let q : Spin (n) → U (Cln) be given by q (g) (β) = gβg−1. Then
as required (

q (g) ◦Q (α) ◦ q
(
g−1

))
(β) = g

(
α
(
g−1βg

))
g−1

= gαg−1β = Q
(
gαg−1

)
β = Q (r (c (g))α) (β) .

If M admits a spin structure, the primary example is the spin bundle Σ (M). Here
W = Σn, and Q = ρC : Cln → End (Σn) is the unique irreducible representation,
which restricts to q = ρ : Spin (n)→ End (Σn). Then(

q (g) ◦Q (α) ◦ q
(
g−1

))
(β) = ρ (g) ◦ ρC (α) ◦ ρ

(
g−1

)
(β)

= ρC
(
gαg−1

)
(β) = ρC (r (c (g))α) (β) = Q (r (c (g))α) (β) .

Note that when M admits a spin structure, P → FM , one can also consider the
bundle P ×Spin(n) W relative to the representation Q|Spin(n) : Spin (n) → U (W ),
but since it may not be the case that q = Q|Spin(n), this bundle is not necessarly
isomorphic to W (M) obtained from q. For example when Q : Cln → End (Cln)
is left muliplication, the bundle P ×Spin(n) W relative to Q|Spin(n) is not Cl (TM),
but rather it is designated by ClSpin (TM) which is actually isomorphic to a direct
sum of 2m copies of Σ (M) , m = 1

2 dimM .
To show that a Clifford module bundle W (M) is indeed a bundle of Cl (TM)x-

modules, we let

cl : Cl (TM)⊗W (M)→W (M) be defined via

cl ([p, α]⊗ [p, w]) := [p,Q (α)w] .

which is a well-defined “Clifford multiplication”. Indeed, using (18.116),

cl
([
pA, r (A)

−1
α
]
⊗
[
pA, q (A)

−1
w
])

=
[
pA,Q

(
r
(
A−1

)
α
) (
q (A)

−1
w
)]

=
[
pA, q

(
A−1

)
Q (α) q (A) q (A)

−1
(w)
]

=
[
pA, q

(
A−1

)
Q (α) (w)

]
= [p,Q (α) (w)] = cl ([p, α]⊗ [p, w]) .

Moreover, for α ∈ L
(
Λ1 (Rn)

)
⊂ Cln, we have

cl ([p, α]⊗ cl ([p, α]⊗ [p, w])) =
[
p,Q (α)

2
w
]

= − |[p, α]|2 [p, w] ,

so that cl does in fact make W (M)x a Cl (TM)x-module. As in the special case of
Σ (M), there is a decomposition W (M) = W+ (M)⊕W− (M) defined as follows.
If E1, . . . , En is a positively oriented orthonormal frame at x ∈M , let

(18.117) ωC (x) := imE1 · · ·En ∈ Cl (TM)x .
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It is easy to check that this is independent of the choice of frame and ωC (x)
2

= 1
(see (18.12), p. 489). Then

µC (x) := cl (ωC (x)) ∈ End (W (M)x) and µC (x)
2

= Id, and

W± (M) := (I ± µC)W (M)⇒W (M) = W+ (M)⊕W− (M) .(18.118)

For any 0 6= X ∈ TxM, we may take E1 = X/ |X|. Since cl (E1) is an isomorphism
of Wx (M) which anticommutes with µC (x), we have

(18.119) cl (X) = |X| cl (E1) : W± (M) ∼= W∓ (M) .

Since W (M) is an associated bundle of FM or the Spin (n)-bundle P of a spin
structure P → FM , the Levi-Civita connection θ on FM (or its lift to P ) yields a
covariant derivative operator

∇W : C∞ (W (M))→ Ω1 (W (M)) ∼= C∞
(
Ω1 (M)⊗W (M)

)
.

Moreover, cl : Cl (TM)⊗W (M)→W (M) induces map on sections,

cl : C∞ (Cl (TM))⊗ C∞ (W (M))→ C∞ (W (M)) (same notation).

For α ∈ C∞ (Cl (TM)) and ψ ∈ C∞ (W (M)), we have

(18.120) ∇W (cl (α⊗ ψ)) = cl (∇α⊗ ψ) + cl
(
α⊗∇Wψ

)
,

where∇ is the usual Levi-Civita covariant derivative on C∞ (Cl (TM)) ∼= Ω∗ (M,C).
Indeed, using the infinitesimal verison of (18.116), namely q′ (A)Q (α)−Q (α) q (A′) =

Q (r′ (A)α), it follows that on FM where α ⊗ ψ ∈ Ω
0

(Cl2m ⊗W ) := equivariant
Cl2m ⊗W -valued functions on FM ,

Dθ (Q (α⊗ ψ)) = d (Q (α⊗ ψ)) + q′ (θ)Q (α⊗ ψ)

= Q (dα⊗ ψ) +Q (α⊗ dψ) +Q ((r′ (θ)α)⊗ ψ + α⊗ q′ (θ)ψ)

= Q (dα⊗ ψ) +Q (r′ (θ) (α)⊗ ψ) +Q (α⊗ dψ) +Q (α⊗ q′ (θ)ψ)

= Q
(
Dθ (α)⊗ ψ

)
+Q

(
α⊗Dθψ

)
.

Via the Riemannian metric, Λ1 (TxM
∗) ∼= Λ1 (TxM) ⊂ Cl (TM) , and so

Ω1 (M)⊗ C∞ (W (M)) ⊂ C∞ (Cl (TM))⊗ C∞ (W (M))

Thus, we have an operator DW := cl ◦ ∇W ∈ End (C∞ (W (M))),

DW : C∞ (W (M))
∇W→ Ω1 (M)⊗ C∞ (W (M))

cl→ C∞ (W (M)) ,

which we call a generalized Dirac operator. In view of (18.119), we also have

DW± : C∞
(
W± (M)

)
→ C∞

(
W∓ (M)

)
,

as with Dirac operators. We now show that DW is locally a twisted Dirac operator.
Indeed, we show that DW is globally a twisted Dirac operator when M admits a spin
structure P → FM , from which the local statement follows since locally M admits
spin structures. Recall (see Proposition 18.14, p. 492) that for any Cl2m-module
W , we have a Cl2m-equivariant linear isomorphism

Φ : Hom0 (Σ2m,W )⊗ Σ2m
∼= W via Φ (φ⊗ ψ) := φ (ψ) ,
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where Hom0 (Σ2m,W ) consists of the Cl2m-equivariant linear maps Σ2m → W . If
M admits a spin structure P → FM , then Φ yields an isomorphism

ΦM : W (M) ∼= E ⊗ Σ (M) ∼= End0 (Σ (M) ,W (M))⊗ Σ (M) , where

E0 := End0 (Σ (M) ,W (M)) = P ×Spin(n) End0 (Σ2m,W ) .

Since φ ∈ Hom0 (Σ2m,W ) , we have

Φ (φ⊗ ρ (ωC)ψ) = φ (ρ (ωC)ψ) = cl (ωC)φ (ψ) = µCφ (ψ) , and so

ΦM

(
W (M)

±
)

= E0 ⊗ Σ (M)
±
.(18.121)

As both C∞ (Σ (M)) and C∞ (W (M)) have covariant differentiation operators aris-
ing ultimately from the Levi-Civita connection, C∞

(
W (M)⊗ Σ (M)

∗)
also has

such an operator, say ∇W⊗Σ∗ . Now E0 is a subbundle of W (M) ⊗ Σ (M)
∗
, and

∇W⊗Σ∗ (C∞ (E0)) ⊂ Ω1 (E0) as a consequence of (18.120). Indeed,

φ ∈ C∞ (E0)⇒ clW (v)φ (σ) = φ (clΣ (v)σ)

⇒ ∇X (clW (v)φ (σ)) = ∇X (φ (clΣ (v)σ))

⇒ clW (∇Xv) (φ (σ)) + clW (v)
(
∇W⊗Σ∗

X φ
)

(σ) + clW (v) (φ (∇Xσ))

=
(
∇W⊗Σ∗

X φ
)

(clΣ (v)σ) + φ (clΣ (∇Xv)σ) + φ (clΣ (v)∇Xσ)

⇒ clW (v)
(
∇W⊗Σ∗

X φ
)

(σ) =
(
∇W⊗Σ∗

X φ
)

(clΣ (v)σ)

⇒ ∇Xφ ∈ C∞ (E0) .

For ∇E0 := ∇W⊗Σ∗ |C∞(E0), we then have the twisted Dirac operator

DE0 := (1⊗ clΣ) ◦ ∇ : C∞ (E0 ⊗ Σ (M))→ C∞ (E0 ⊗ Σ (M)) , where

∇ := ∇E0 ⊗ 1 + 1⊗∇Σ : C∞ (E0 ⊗ Σ (M))→ Ω1 (M)⊗ C∞ (E0 ⊗ Σ (M)) .

For ΦM : C∞ (W (M)) ∼= C∞ (E0 ⊗ Σ (M)) corresponding toW (M) ∼= E0⊗Σ (M),
we then have

DW = Φ−1
M ◦ D

E0 ◦ ΦM .

Since ΦM is canonical, this shows that DW is canonically equivalent to twisted
Dirac operator in the case M has a spin structure, and in the general case DW is
locally such. If M admits a spin structure, then the Index Theorem for twisted
Dirac operators yields

Index
(
DW

)
= (ch (E0) ` Â (M)) [M ]

However, we will see that

(18.122) ch (E0) ` Â (M) = ch (W (M)) ` Ã (M) ,

where Ã (M) is the total characteristic class defined by

(18.123) Ã (M) := MC
(

y/2
sinh(y) , TM

)
,

which is “almost” the same as Â (M) = MC
(

y/2
sinh(y/2) , TM

)
. A key observation is

that the right side of (18.122) is defined even if M does not admit a spin structure.
Shortly we will see that the standard total forms that represent the total classes

ch (E0) ` Â (M) and ch (W (M)) ` Ã (M) are identical. The local index density
for DW is computed using a local spin structure about a point. However, the
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result of that local computation is identical to the restriction of a globally-defined

form which represents ch (W (M)) ` Ã (M). In essense, the local spin structure
is a computational aid, while the index density itself can be expressed without
reference to spin structures. Thus, once (18.122) is shown on the level of forms, we
have an index formula for the generalized Dirac operator DW+ : C∞ (W+ (M))→
C∞ (W− (M)), namely

Theorem 18.55 (Index Theorem for Generalized Dirac Operators). For a Clif-
ford module bundle W (M) over an oriented, compact Riemannian manifold M , we
have

(18.124) Index
(
DW+

)
=
(
ch (W (M)) ` Ã (M)

)
[M ] ,

where Ã (M) is defined in (18.123).

Proof. For a normal coordinate ball V ⊂ M , let C : PSpin → FM |V be a
spin structure. The Levi-Civita connection θ on FM lifts to a unique connection,

say θ̃ := c′−1 (C∗ (θ)) ∈ Ω1 (P, spin (n)). Note that Σ (V ) = P ×Spin(n) Σn. Let
R : PSpin → U (Σ (V )) be the morphism determined by the representation ρ :
Spin (n) → U (Σ (V )), as in (16.116), p. 425. To compute the Chern forms for

Σ (V ) relative to the connection ω on U (Σ (V )) , such ρ′ ◦ θ̃ = R∗ω, we make use
of the result (see (16.117), p.425)

cj (Σ (V ) , ω) = cj

(
Σ (V ) , θ̃, ρ′

)
Hence we need to determine the eigenvalues of ρ′ (b) for b ∈ spin (n). Any b ∈
spin (n), can be written in the form

b = bλ := 1
2

∑m

j=1
λje2j−1e2j

for some oriented, orthonormal basis e1, . . . , en of Rn. Recall that Proposition 18.10
(p.489) provides us with an explicit representation

ρ : Cl2m → End (Λ∗ (Cm)) .

If (f1, · · · , fm) is an orthonormal basis of Cm, then

(e1, · · · , e2m) := (f1, if1, · · · , fm, ifm)

is an oriented orthonormal basis of Rn. By (18.14), p.490, we have

ρ (e2j−1e2j)
(
fj1 ∧ fj2 ∧ · · · ∧ fjp

)
=

{
i
(
fj1 ∧ fj2 ∧ · · · ∧ fjp

)
if jk = j for some k

−i
(
fj1 ∧ fj2 ∧ · · · ∧ fjp

)
if jk 6= j for all k

.

Hence, fj1∧fj2∧· · ·∧fjp is an eigenvector of ρ
(

1
2

∑m
j=1 λje2j−1e2j

)
with eigenvalue

i
2

(∑
j∈{j1,...,jp}

λj −
∑

j /∈{j1,...,jp}
λj

)
Thus, in order to find the total Chern character form ch (Σ (V ) , ω), we compute∑m

p=1

∑
(j)p

e
1
2

(∑
j∈{j1,...,jp} λj−

∑
j /∈{j1,...,jp} λj

)

=
∏m

k=1

(
eλk/2 + e−iλk/2

)
=
∏m

k=1
2 cosh

(
1
2λk

)
.
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and replace each σk
(
λ2

1, . . . , λ
2
k

)
by pk

(
Ωθ
)
. Hence chk (Σ (V ) , ω), which is de-

fined on V , coincides with polynomial in Pontryagin forms pj
(
Ωθ
)

that are defined
throughout M . Note also that since W (M) := FM ×SO(n)W is associated to FM,

ch (W ) is expressible in terms of the gobally-defined curvature form Ωθ. Thus, the
same is true for ch

(
W (M)⊗ Σ (V )

∗)
and ch (E0). Since∏m

k=1

1
2λi

sinh
(

1
2λi
) =

∏m

k=1

1
2λi

2 sinh
(

1
2λi
)

cosh
(

1
2λi
) ∏m

k=1
2 cosh

(
1
2λi
)

=
∏m

k=1

1
2λi

sinh (λi)

∏m

k=1
2 cosh

(
1
2λi
)
,

we have the following equality of forms

Â (V, θ) = Ã (V, θ) ∧ ch (Σ (V ) , θ) .

The desired equality (18.122) on the level of forms then follows from

ch (E0|V , θ) ∧ Â (V, θ) = ch (E0|V , θ) ∧
(
Ã (V, θ) ∧ ch (Σ (V ) , θ)

)
= (ch (E0|V , θ) ∧ ch (Σ (V ) , θ)) ∧ Ã (V, θ)

= ch (E0|V ⊗ Σ (V ) , θ) ∧ Ã (V, θ) = ch (W (M) , θ) ∧ Ã (V, θ) .(18.125)

In view of the preliminary discussion, we have shown (18.124). �

Recall that W (M) is an associated bundle of FM or a covering P . Thus, The-
orem 18.55 does not yet include the case of arbitrary twisting, say by a Hermitian
vector bundle E → M with a covariant derivative ∇E arising from a unitary con-
nection 1-form ε on U (E). To handle this, we proceed as follows. If we let Cl (TM)
act trivially on E, we have

IdE ⊗cl : C∞ (Cl (TM))⊗ C∞ (E ⊗W (M))→ C∞ (E ⊗W (M))

and can define a twisted generalized Dirac operator

DE,W : C∞ (E ⊗W (M))
∇E⊗W→ Ω1 (M)⊗ C∞ (E ⊗W (M))

IdE ⊗cl→ C∞ (E ⊗W (M)) ,

Moreover, we have a decomposition

E ⊗W (M) =
(
E ⊗W (M)

+
)
⊕
(
E ⊗W (M)

−
)

and operator

DE,W+ : C∞
(
E ⊗W (M)

+
)
→ C∞

(
E ⊗W (M)

−
)
.

Theorem 18.56 (Index Theorem for Twisted Generalized Dirac Operators).
For a Clifford module bundle W (M) over an oriented, compact Riemannian man-
ifold M and a Hermitian vector bundle E → M with a covariant derivative ∇E
arising from a unitary connection 1-form ε on U (E), we have

Index
(
DE,W+

)
=
(
ch (E) `

(
ch (W (M)) ` Ã (M)

))
[M ]

=
(
ch (E ⊗W (M)) ` Ã (M)

)
[M ] ,(18.126)

where Ã (M) is defined in (18.123).
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Proof. We proceed as in the proof of Theorem 18.55, noting that now DE,W is
locally a twisted Dirac operator just as DW was, except that there is an additional
twist by E. In other words, while the generalized Dirac operator DW is locally the
twisted Dirac operator DE0 , the twisted generalized Dirac operator DE,W is locally
the twisted Dirac operator DE⊗E0 . The computation (18.125) generalizes to

ch (E ⊗ E0|V , ε⊗ θ) ∧ Â (V, θ)

= ch (E ⊗ E0|V , ε⊗ θ) ∧
(
Ã (V, θ) ∧ ch (Σ (V ) , θ)

)
= ch (E|V , ε) ∧ (ch (E0|V , θ) ∧ ch (Σ (V ) , θ)) ∧ Ã (V, θ)

= ch (E|V , ε) ∧ ch (E0|V ⊗ Σ (V ) , θ) ` Ã (V, θ)

= ch (E|V , ε) ∧ ch (W (M) , θ) ∧ Ã (V, θ) ,(18.127)

which implies (18.126) as before. �

The Hirzebruch Signature Formula.
The standard irreducible representation of Cl (n) is the C-linear extension ρC :

Cl2m → End (Λ∗ (Cm)) of ρ : Cl2m → End (Λ∗ (Cm)) which is described as follows.
Let ρ1 : Cm → End (Λ∗ (Cm)) be given by

ρ1 (w) (α) := (w ∧ − wx) (α) = w ∧ α− wxα.
We think of Cm as R2m. By Proposition 18.10, p. 489, ρ1 uniquely extends to an
R-linear homomorphism

ρ : Cl2m → End (Λ∗ (Cm)) ,

of algebras over R. Then ρC : Cl2m → End (Λ∗ (Cm)) is the C-linear extension of
ρ. There is also a highly reducible representation Q : Cl2m → End

(
Λ∗
(
C2m

))
that

is determined (where we regard C2m ⊂ Cl2m) by

Q1 : C2m → End
(
Λ∗
(
C2m

))
,

which is the same as ρ1 : Cm → End (Λ∗ (Cm)) with m replaced by 2m. However in
the case of Q, we think of C2m as being the complexification of R2m instead of R2m

as the realification of Cm. Let q0 : SO (2m) → End
(
Λ∗
(
C2m

))
be the complex

extension of the usual representation SO (2m) → End
(
Λ∗
(
R2m

))
. Since ∧ and x

are SO (2m)-invariant operations, for A ∈ SO (2m) and v ∈ C2m, we have

q0 (A) ◦Q1 (v) ◦ q0

(
A−1

)
= Q1 (A (v)) = Q1 (r (A) v)

It follows that for A ∈ SO (2m), and α ∈ Cl2m, we have

q0 (A) ◦Q (α) ◦ q0

(
A−1

)
= Q (r (A)α) , and

q (g)Q (α) q
(
g−1

)
= Q (r (c (g))α) for all g ∈ Spin (n) and α ∈ Cln,

where q = q0 ◦ c. Hence, Λ∗ (TCM) := FM ×SO(2m) Λ∗
(
C2m

)
is a Clifford module

bundle. We now determine Λ∗ (TCM)
+

and Λ∗ (TCM)
−

. For e1, . . . , en an oriented,
orthonormal basis of Rn and ωC = ime1 · · · en, we show that

Q (ωC) (ei1 ∧ · · · ∧ eik) = im+k(k−1) ∗ (ei1 ∧ · · · ∧ eik) ,

where ∗ is the Hodge star operator on Λ∗
(
C2m

)
. Let

∗ (ei1 ∧ · · · ∧ eik) = ej1 ∧ · · · ∧ ejn−k .
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Since ei1 · · · eikej1 · · · ejn−k = e1 · · · en in Cln, we have

Q (ωC) (ei1 ∧ · · · ∧ eik) = Q
(
imei1 · · · eikej1 · · · ejn−k

)
(ei1 ∧ · · · ∧ eik)

= im (−1)
k(n−k)

Q
(
ej1 · · · ejn−kei1 · · · eik

)
(ei1 ∧ · · · ∧ eik)

= im (−1)
k(2m−k)

Q
(
ej1 · · · ejn−k

)
Q (ei1 · · · eik) (ei1 ∧ · · · ∧ eik)

= im (−1)
−k2

Q
(
ej1 · · · ejn−k

)
(−1)

k(k−1)/2
Q (eik · · · ei1) (ei1 ∧ · · · ∧ eik)

= im (−1)
−k+k(k−1)/2

Q
(
ej1 · · · ejn−k

)
(−1)

k
1

= im (−1)
k(k−1)/2

ej1 ∧ · · · ∧ ejn−k = im+k(k−1) ∗ (ei1 ∧ · · · ∧ eik) .

Hence if ∗k := ∗|Λk(C2m),

(18.128) Q (ωC) =
⊕n

k=0
im+k(k−1) ∗k .

Usually one defines the star operator on forms, sections of exterior products of
T ∗M , instead of sections of exterior products of TM , but the Riemannian metric
identifies T ∗M with TM , and so we have a choice of leaving the above alone or
dualizing it, replacing ρ1 : Cm → End (Λ∗ (Cm)) by

ρ∗1 : Cm → End
(
Λ∗
(
(Cm)

∗))
defined by

ρ∗1 (w) (α) := (w[ ∧ − wx) (α) = w ∧ α− wxα.

The advantage of dualizing is that we will find that then the Dirac operator DW
is the familiar sum d + δ of the exterior derivative d and its adjoint (the exterior
codifferential δ), instead of the less familiar operators on C∞ (Λ∗ (TM)). Thus,

we go ahead and dualize, in which case W = Λ∗
((
C2m

)∗)
. Refering to (18.117),

(18.118) and (18.128), we then have that µC (x) := cl (ωC (x)) ∈ End (W (M)x) is
given by

µC (x) = τ (x) :=

n⊕
k=0

τk :=

n⊕
k=0

im+k(k−1) ∗k at x ∈M , and

W± (M) = Λ± (M) := (1± τ) Λ∗
(
(TCM)

∗)
.

We may directly check that τ (x)
2

= Id. Indeed,(
im+(2m−k)(2m−k−1)∗2m−k

)(
im+k(k−1)∗k

)
= im+(2m−k)(2m−k−1)+m+k(k−1) (∗2m−k∗k)

= i2k
2+4m2−4mk (−1)

k(2m−k)
Id = (−1)

k2

(−1)
−k2

Id = Id .

Note that DW = d+ δ, since

DWϕ = cl
(
Ek
)

(∇Ekα) = ϕk ∧ (∇Ekα)− Ekx(∇Ekα) = (d+ δ)ϕ.

In view of this and the theorem and corollary below, d+ δ is sometimes called the
DeRham-Dirac operator. A form ϕ ∈ Ωk (M) := Ωk (M,C) is harmonic if
(d+ δ)ϕ = 0. We let

Hk (M) :=
{
ϕ ∈ Ωk (M,C) : (d+ δ)ϕ = 0

}
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denote the space of harmonic forms. Since DW is elliptic, Ker
(
DW

)
is finite-

dimensional. Moreover, we have

Theorem 18.57 (Hodge-DeRham Decomposition). For 0 ≤ k ≤ n, there is an
orthogonal decomposition

Ωq (M) = Hq (M)⊕ d
(
Ωq−1 (M)

)
⊕ δ

(
Ωq+1 (M)

)
= Hq (M)⊕ dδ (Ωq (M))⊕ δd (Ωq (M)) .(18.129)

Proof. The operator

∆ := dδ + δd = (d+ δ)
2

: Ω0,q (M)→ Ω0,q (M)

is elliptic, and hence we have the orthogonal decomposition

Ωq (M) = Ker ∆⊕∆ (Ωq (M)) .

Moreover, Ker ∆ = Hq (M). Indeed,

α ∈ Hq (M)⇒ (d+ δ)α = 0

⇒ dα = 0 and δα = 0⇒ (dδ + δd)α = 0,

and conversely if α ∈ Ker ∆, then

0 = ((dδ + δd)α, α) = ‖δα‖2 + ‖dα‖2 ⇒ dα+ δα = 0.

It remains to prove that we have an orthogonal decompostion

(18.130) ∆ (Ωq (M)) = d (Ωq (M))⊕ δ
(
Ωq+1 (M)

)
.

The summands are orthogonal since

β ∈ Ωq−1 (M) and γ ∈ Ωq+1 (M)⇒ (dβ, δγ) = (dβ, γ) = 0.

Moreover, for any α ∈ Ωq (M), we have

(18.131) ∆α = dδα+ δdα ∈ d
(
Ωq−1 (M)

)
⊕ δ

(
Ωq+1 (M)

)
,

and so ∆ (Ωq (M)) ⊆ d
(
Ωq−1 (M)

)
⊕ δ

(
Ωq+1 (M)

)
.

For the reverse inclusion, note that d
(
Ω0,q−1 (M)

)
and δ

(
Ω0,q−1 (M)

)
are both in

Hq (M)
⊥

, since

α ∈ Hq (M)⇒ (dβ, α) = (β, δα) = 0 = (γ, dα) = (δγ, α) ,

and so d
(
Ωq−1 (M)

)
⊕ δ

(
Ωq+1 (M)

)
⊆ Hq (M)

⊥
= ∆ (Ωq (M)) .

Note that (18.131) and (18.130) then give the second equality of (18.129). �

Corollary 18.58. Suppose that dγ = 0 for some γ ∈ Ωq (M). There is a
unique α ∈ Hq (M), such that for some β ∈ Ωq−1 (M), γ = α+dβ. In other words,
every cohomology class in the DeRham cohomology space

Hq (M) :=
Ker

(
d : Ωq (M)→ Ωq+1 (M)

)
dΩq−1 (M)

has a unique harmonic representative.
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Proof. Theorem 18.57 yields a unique α ∈ Hq (M) such that

γ = α+ dβ + δβ′

for some β ∈ Ωq−1 (M) and β′ ∈ Ωq+1 (M). Now

0 = dγ = dα+ d2β + dδβ′ = dδβ′

⇒ (dδβ′, β′) = 0⇒ ‖δβ′‖2 = 0⇒ δβ′ = 0.

�

If Hm (M,R) (∼= Hm (M,R)) denotes the space of R-valued harmonic forms on
M , we have a bilinear form

B : Hm (M,R)×Hm (M,R)→ R given by B (α, β) :=

∫
M

α ∧ β

If m is odd, B is anti-symmetric. If m is even (i.e. dimM = 2m ≡ 0 mod 4), B is

symmetric. Let (α, β) :=
∫
M
α∧∗β =

∫
M
〈α, β〉 νM . Since (∗m)

2
= (−1)

m(2m−m)
Id =

(−1)
m

Id, we have

B (α, β) =

∫
M

α ∧ β =

∫
M

α ∧ ∗m (∗mβ) = (α, (−1)
m ∗m β) .

Note that τm = im+m(m−1)∗m = im
2∗m. Thus,

m even⇒ τm = ∗m ⇒ B (α, β) = (α, ∗mβ) = (α, τmβ) .

Observe that α ∈ Hk (M,R)⇔ ∗α ∈ Hn−k (M,R), since (using δ = ± ∗ d∗)
dα = 0 and δα = 0⇔ dα = 0 and d (∗α) = 0

⇔ d (∗ (∗α)) = 0 and d (∗α) = 0⇔ δα = 0 and d (∗α) = 0.

Alternatively, we know on general grounds that τ = cl (ωC) and d + δ = DW
anti-commute. At any rate,

Hk (M,R)
∗k∼= Hn−k (M,R) and Hk (M,C)

τk∼= Hn−k (M,C)

Moreover, B (α, β) = (α, ∗mβ) = (α, τmβ) implies that

sig (M) := signature of B

= dimR ((1 + ∗)Hm (M,R))− dimR ((1− ∗)Hm (M,R))

= dimC ((1 + τ)Hm (M,C))− dimC ((1− τ)Hm (M,C)) ;

i.e., sig (M) is the difference between the dimensions of the spaces of self-dual and
anti-self-dual harmonic forms. In the present case, the generalized Dirac operator
DW+ = (d+ δ)

+
is known as the signature operator, because

Index
(

(d+ δ)
+

: C∞
(
Λ+ (M)

)
→ C∞

(
Λ− (M)

))
= dim Ker (d+ δ)

+ − dim Ker (d+ δ)
−

= dim ((1 + τ)H∗ (M,C))− dim ((1− τ)H∗ (M,C))

= dim ((1 + τ)Hm (M,C))− dim ((1− τ)Hm (M,C))

= sig (M) .

The last inequality follows from the fact that for k 6= m,

1± τk : Hk (M,C)→ Hk (M,C)⊕H2m−k (M,C)
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is clearly injective, and so for k 6= m,

dim (1 + τ)Hk (M,C) = dimHk (M,C) = dim (1− τ)Hk (M,C) .

Now Theorem 18.55 yields

sig (M) = Index
(
DW,+

)
=
(
ch (W (M)) ` Ã (M)

)
[M ]

=
(
ch (Λ∗ (T ∗M)) ` Ã (M)

)
[M ] .

Using (16.118), p.426, and (18.123), we obtain

ch
(
Λ∗
(
(TCM)

∗)) ` Ã (M)

= MC
(
4 cosh2 (y/2) , TM

)
`MC

(
y/2

sinh y
, TM

)
= MC

(
4 cosh2 (y/2)

y/2

sinh y
, TM

)
= MC

(
4 cosh2 (y/2)

y/2

2 sinh (y/2) cosh (y/2)
, TM

)
= MC

(
y

tanh (y/2)
, TM

)
.(18.132)

Let degm denote the m-th degree part of a power series in y1, . . . , ym. Then

degm

(∏m

k=1

yk
tanh (yk/2)

)
= 2m degm

(∏m

k=1

yk/2

tanh (yk/2)

)
= 2m2−m degm

(∏m

k=1

yk
tanh yk

)
= degm

(∏m

k=1

yk
tanh yk

)
.

Since L (M) := L (TM) = MC
(

y
tanh y , TM

)
, we then obtain

Theorem 18.59 (Hirzebruch Signature Theorem). Let M be a compact, ori-
ented Riemannian 2m-manifold, where m is even. Then

sig (M) = L (M) [M ] =: L (M) = L-genus of M .

In terms of the Pontryagin classes pk = pk (TM) , we have

2m = 4 ⇒ sig (M) = 1
3p1 [M ]

2m = 8 ⇒ sig (M) = 1
45

(
7p2 − p2

1

)
[M ] ,

in particular, and one may extend this using (16.109).

There is a twisted version of this theorem which we describe as follows. Let
E →M be a Hermitian vector bundle with a covariant derivative ∇E arising from
a unitary connection 1-form ε on U (E). Recall from Section 16.16.3, that there
is an exterior covariant derivative operator Dε : Ωk (M,E) → Ωk+1 (M,E) which
generalizes d : Ωk (M)→ Ωk+1 (M), but Dε◦Dε 6= 0 in general. Moreover, Dε has a
formal adjoint δε : Ωk+1 (M,E)→ Ωk (M,E). Using the local formulas (16.22) and

(16.23), we see that for W = Λ∗
((
C2m

)∗)
, the twisted generalized Dirac operator

is

(18.133) DE,W = (d+ δ)
E

:= Dε + δε : Ω∗ (M,E)→ Ω∗ (M,E) .
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which is called the twisted DeRham-Dirac operator. The twisted version of
the Hirzebruch Signature Theorem has the additional “twist” that perhaps unex-

pectedly, Index
(

(d+ δ)
E,+
)
6= (ch (E) ` L (M)) [M ] in general.

Theorem 18.60 (Twisted Hirzebruch Signature Theorem). Let M be a com-
pact, oriented Riemannian 2m-manifold, where m is even, and let E → M be a
Hermitian vector bundle with a covariant derivative ∇E arising from a unitary
connection 1-form ε on U (E). Then the index of the twisted signature operator

(d+ δ)
E,+

= DE,W+ : Ω+ (M,E)→ Ω− (M,E)

(where Ω± (M,E) := C∞ (E ⊗ Λ± (M))) is given by

Index
(

(d+ δ)
E,+
)

=

(
ch (E) `MC

(
y

tanh (y/2)
, TM

))
[M ]

=

(
ch2 (E) `MC

(
y

tanh y
, TM

))
[M ] = (ch2 (E) ` L (M)) [M ] ,

where ch2 (E) :=
⊕m

j=0 2jchj (E) .

Proof. Using Theorem 18.56 and (18.132),

Index
(

(d+ δ)
E,+
)

=
(
ch (E) `

(
ch
(
Λ∗
(
(TCM)

∗)) ` Ã (M)
))

[M ]

=

(
ch (E) `MC

(
y

tanh y/2
, TM

))
[M ]

Now

MC

(
y

tanh y/2
, TM

)
= 2mMC

(
y/2

tanh y/2
, TM

)
= 2m

⊕m

k=1
2−2kLk (y) .

Thus,

ch (E) `MC

(
y

tanh y/2
, TM

)
[M ]

=
(⊕m

j=1
chj (E) ` 2m

⊕m

k=1
2−2kLk (y)

)
[M ]

=

(⊕
{(j,k):j+2k=m}

2m−2kchj (E) ` Lk (y)

)
[M ]

=

(⊕
{(j,k):j+2k=m}

2jchj (E) ` Lk (y)

)
[M ]

= (ch2 (E) ` L (M)) [M ] .

�

Recall that J ∈ End (TM) is an almost complex structure of a manifold M ,
if J2 = −I. If J exists, then TM becomes a complex vector bundle by defining
(a+ ib)X = aX + bJX. For a complex structure to exist, dimM must be even.
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Exercise 18.61. Here we use Theorem 18.60 to show if the sphere Sn (n = 2m > 0)
admits an almost complex structure, then n = 1, 2 or 3.
(a) Show that the total Pontryagin class p (Sn) is 1 ∈ H0 (Sn). [Hint. If N is the
(trivial) normal bundle of Sn ⊆ Rn+1, then TSn ⊕N is trivial.]
(b) In the identity (x+ x1) · · · (x+ xm) = xm + σ1x

m−1 + · · · + σm, where σi
is the i-th elementary symmetric polynomial in the xi, sucessively subtitute x =
x1, . . . , x = xm and add the results to get Newton’s formula

(18.134) 0 = (−1)
m

m∑
i=1

xmi + (−1)
m−1

σ1

m∑
i=1

xm−1
i + · · ·+mσm.

(b) Assuming that S2m admits an almost complex structure, use (18.134) and the
fact cm

(
TS2m

)
= χ

(
S2m

)
(see (16.115) p. 424) to deduce that

2mchm
(
TS2m

) [
S2m

]
=

(−1)
m+1

2m+1

(m− 1)!
,

(c) Finally show that (b) and Theorem 18.60 imply that m must be 1, 2, or 3.

Remark 18.62. Of course S2 has a complex (and hence almost-complex) struc-
ture. S4 does not have a complex structure, since otherwise,

1 = 1− p1

(
TS4

)
= c

(
C⊗ TS4

)
= c

(
TS4 ⊕ TS4

)
= c

(
TS4

)
` c

(
TS4

)
=
(
1 + c2

(
TS4

))2
= 1 + 2c2

(
TS4

)
,

but c2
(
TS4

)
= χ

(
S2m

)
6= 0; the same argument works for S4k, using 1+(−1)

k
pk
(
TS4

)
=

c
(
C⊗ TS4k

)
. We show that S6 has a complex structure as follows. Recall that

the Cayley numbers O := H×H, with multiplication

pq = (p1, p2) (q1, q2) = (p1q1 − q2p2, q2p1 + p2q1) ,

are neither associative nor commutative, but (1, 0) is a multiplicative identity. Let
p := (p1,−p2) and Re (p) := 1

2 (p+ p) = Re (p1). Then

〈p, q〉 := Re (pq) = Re (p1q1 + q2p2) and

|p|2 = 〈p, p〉 = Re (p1p1 + p2p2) = |p1|2 + |p2|2 .

Thus, if we identify p and q with vectors in R8, then 〈p, q〉 is just the usual dot
product, and

Σ6 := {p ∈ O : |p| = 1 and 〈p, (1, 0)〉 = 0}
is a 6-sphere. Note that

p ∈ Σ6 ⇒ p2 = (p1p1 − p2p2, p2p1 + p2p1)

= (−p1p1 − p2p2, p2p1 − p2p1) = − |p|2 (1, 0) = − (1, 0) .

One can check that |pq| = |p| |q| and that (in spite of nonassociativity), p (pq) = p2q.
These are rather involved computations, where, e.g., one eventually needs to use
Re (xy) = Re (yx) for x, y ∈ H, and

p2q1p1 + p2q1p1 − (p2p1q1 + p2p1q1)

= (p2q1) (p1 + p1)− p2 (p1 + p1) q1 = 0.
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For p ∈ Σ6, we have 〈pq, pq′〉 = 〈q, q′〉 for all q, q′ ∈ O, since |pq| = |p| |q| = |q| .
Suppose that 〈q, (1, 0)〉 = 0 and 〈q, p〉 = 0, so that q ∈ TpΣ6. Then

〈pq, (1, 0)〉 = 〈pq,−pp〉 = −〈q, p〉 = 0 and

〈pq, p〉 = 〈pq, p (1, 0)〉 = 〈q, (1, 0)〉 = 0.

Thus, we have a well-defined linear map Jp : TpΣ
6 → TpΣ

6 given by Jpq = pq.
Moreover, Jp defines a complex structure since

J2
p (q) = p (pq) = p2q = − |p|2 q = −q.

The Gauss-Bonnet-Chern Formula.
As noted before, the representation

Q : Cl2m → End
(
Λ∗
(
C2m

))
,

determined by Q (w) = w ∧ α − wxα for w ∈ C2m, is highly reducible. Indeed for
purely dimensional reasons, Q is the sum of 2m copies of the unique irreducible
representation ρC : Cl2m → End (Λ∗ (Cm)). We now describe a courser (if m > 1)
decomposition of Λ∗

(
C2m

)
into just two Cl2m-modules, which leads to the Gauss-

Bonnet-Chern Formula. Let

Λ± := (1± ωC (Q)) (Λ∗ (Cm)) and Λeven(odd),± := Λeven(odd)
(
C2m

)
∩ Λ±.

In view of the fact that for w ∈ C2m,

Q (w)
(
Λ±
)

= Λ∓ and Q (w)
(

Λeven(odd)
(
C2m

))
= Λodd(even)

(
C2m

)
⇒ Q (w)

(
Λeven(odd),±

)
= Λodd(even),∓,

the Cl2m-module Λ∗
(
C2m

)
splits into two submodules:

Λ∗
(
C2m

)
=
(
Λeven,+ ⊕ Λodd,−

)
⊕
(
Λodd,+ ⊕ Λeven,−

)
=: W e ⊕W o.

Consequently, we have two generalized Dirac operators

DW
e

= d+ δ ∈ End
(
Ωeven,+ (M)⊕ Ωodd,− (M)

)
DW

o

= d+ δ ∈ End
(
Ωodd,+ (M)⊕ Ωeven,− (M)

)
,(18.135)

where Ωeven(odd),± (M) := C∞
(
Λeven(odd),± (M)

)
. Note that

DW
e+ : Ωeven,+ (M)→ Ωodd,− (M) and

DW
o+ : Ωodd,+ (M)→ Ωeven,− (M) , with

Index
(
DW

e+
)

=
(
ch
(
Λeven,+ (M)⊕ Λodd,− (M)

)
` Ã (M)

)
[M ]

Index
(
DW

o+
)

=
(
ch
(
Λodd,+ (M)⊕ Λeven,− (M)

)
` Ã (M)

)
[M ] .

The signature operator can be written as

(d+ δ)
+

= DW
e+ ⊕DW

o+ : Ω+ (M)→ Ω− (M) .

The Euler operator is

(18.136) (d+ δ)
χ

:= d+ δ : Ωeven (M)→ Ωodd (M) ,
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whose index (according to Hodge Theory) is χ (M). Indeed,

χ (M) := dim
(⊕m

k=0
H2k (M)

)
− dim

(⊕m

k=1
H2k−1 (M)

)
= dim

(⊕m

k=0
H2k (M)

)
− dim

(⊕m

k=1
H2k−1 (M)

)
= dim (Ker (d+ δ)

χ
)− dim

(
Ker ((d+ δ)

χ
)
∗)

= Index ((d+ δ)
χ
) .(18.137)

In terms of DW e+ and DW o+, we have that (d+ δ)
χ

is

DW
e+ ⊕

(
DW

o+
)∗

: Ωeven,+ (M)⊕ Ωeven,− (M)→ Ωodd,− (M)⊕ Ωodd,+ (M) .

Hence,

Index ((d+ δ)
χ
) = Index

(
DW

e,+
)

+ Index
((
DW

o,+
)∗)

= Index
(
DW

e,+
)
− Index

(
DW

o,+
)

=
(
ch
(
Λeven,+ (M)⊕ Λodd,− (M)

)
` Ã (M)

)
[M ]

−
(
ch
(
Λodd,+ (M)⊕ Λeven,− (M)

)
` Ã (M)

)
[M ]

=

(
ch (Λeven,+ (M))− ch (Λeven,− (M))
+ch

(
Λodd,− (M)

)
− ch

(
Λodd,+ (M)

) ) ` Ã (M) [M ](18.138)

The individual results for the ch
(
Λeven(odd),± (M)

)
are not all that simple or in-

teresting (as far as we know), but the two combinations

ch
(
Λeven,+ (M)

)
− ch

(
Λeven,− (M)

)
and ch

(
Λodd,− (M)

)
− ch

(
Λodd,+ (M)

)
admit dramatic simplification. Indeed, we will find that when m := 1

2 dimM is odd

the first of these is 0 and the second, when cupped with Ã (M), is the Euler class.
When m is even, the opposite is the case. Thus, whether m is even or odd, we will
obtain the Gauss-Bonnet-Chern Theorem.

Let Λ : SO (n)→ U
(
Λ∗
(
(Cn)

∗))
be the representation determined by

Λ (A) (α) =
(
AT
)∗
α = α ◦AT for α ∈ (Cn)

∗
= Λ1

(
(Cn)

∗)
, A ∈ SO (n) .

The various ch
(
Λeven(odd),± (M)

)
can be computed by finding the eigenvalues of

of Λ′ (B) ∈ End
(
Λ∗
(
(Cn)

∗))
for B ∈ so (n), where Λ′ : so (n)→ u

(
Λ∗
(
(Cn)

∗))
is

the Lie algebra representation. There is an orthonormal basis e1, . . . , en of Rn for

which B has the matrix
⊕m

k=1

[
0 −yk
yk 0

]
. One purpose of the rather lengthy

digression in the next paragraph is to show that

ch
(

Λ′ (B)
even,+

)
− ch

(
Λ′ (B)

even,−
)

+ ch
(

Λ′ (B)
odd,−

)
− ch

(
Λ′ (B)

odd,+
)

=
∏m

k=1
(−2 sinh yk) ,

from which the Gauss-Bonnet-Chern Theorem will follow. The results in digression
are also used in proving Hirzebruch-Riemann-Roch Theorem.
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Let ϕ1, . . . , ϕn be the basis of (Rn)
∗

dual to e1, . . . , en. Then

Λ′ (B) (ϕ1 + iϕ2) (e1) = (ϕ1 + iϕ2)
(
BT e1

)
= (ϕ1 + iϕ2) (−Be1)

= (ϕ1 + iϕ2) (−y1e2) = −iy1

Λ′ (B) (ϕ1 + iϕ2) (e2) = (ϕ1 + iϕ2) (−Be2) = (ϕ1 + iϕ2) (y1e1) = y1

Λ′ (B) (ϕ1 + iϕ2) = −iy1ϕ1 + y1ϕ2 = −iy1 (ϕ1 + iϕ2)

Thus,

Λ′ (B) (ϕ1 + iϕ2) = −iy1 (ϕ1 + iϕ2)

Λ′ (B) (ϕ1 − iϕ2) = iy1 (ϕ1 − iϕ2)

For j = 1, . . . ,m, let ξj = ϕ2j−1 + iϕ2j and ξ̄j = ϕ2j−1 − iϕ2j . For a multi-index
(i)k := (i1, . . . , ih) where 1 ≤ i1 < · · · < ih ≤ m, we let

ξ(i)h := ξi1 ∧ · · · ∧ ξih and ξ̄(i)h = ξ̄i1 ∧ · · · ∧ ξ̄ih .

Note that ξ(i)m = ξ1 ∧ · · · ∧ ξm and ξ̄(i)m = ξ̄1 ∧ · · · ∧ ξ̄m. The 2m · 2m = 2n forms

ξ(i)h ∧ ξ̄(j)k make a basis of eigenvectors of Λ′ (B) on Λ∗
(
(Cn)

∗)
since

Λ′ (B)
(
ξ(i)h ∧ ξ̄(j)k

)
= −i ((yi1 + · · ·+ yih)− (yj1 + · · ·+ yjk)) ξ(i)h ∧ ξ̄(j)k .

However, we need a basis in Λeven(odd),±. For this, we will determine ∗
(
ξ(i)h ∧ ξ̄(j)k

)
where ∗ is the complex-linear extension of usual star operator on Λ∗ (Rn). If b (α, β)
is the symmetric, bilinear (not Hermitian) extension of the usual inner product on
Λ∗ (Rn), we have

α ∧ ∗β = b (α, β)ϕ1 ∧ · · · ∧ ϕn.
Note that

b (ξj , ξj) = b (ϕ2j−1 + iϕ2j , ϕ2j−1 + iϕ2j) = |ϕ2j−1|2 − |ϕ2j |2 = 0, and

b
(
ξj , ξ̄j

)
= b (ϕ2j−1 + iϕ2j , ϕ2j−1 − iϕ2j) = |ϕ2j−1|2 + |ϕ2j |2 = 2.

Hence,

b
(
ξ̄(i′)h′ ∧ ξ(j′)k′ , ξ(i)h ∧ ξ̄(j)k

)
=

{
2h+k if (i′)h′ = (i)h , (j′)k′ = (j)k

0 otherwise.

Moreover, using ξ1 ∧ ξ̄1 = (ϕ1 + iϕ2) ∧ (ϕ1 − iϕ2) = −2iϕ1 ∧ ϕ2, we get

(−2i)
m
ϕ1 ∧ · · · ∧ ϕn = ξ1 ∧ ξ̄1 ∧ · · · ∧ ξm ∧ ξ̄m

= (−1)
m(m−1)/2

ξ1 ∧ · · · ∧ ξm ∧ ξ̄1 ∧ · · · ∧ ξ̄m
= im(m−1)ξ1 ∧ · · · ∧ ξm ∧ ξ̄1 ∧ · · · ∧ ξ̄m, or

νn := ϕ1 ∧ · · · ∧ ϕn = (−2i)
−m

im(m−1)ξ1 ∧ · · · ∧ ξm ∧ ξ̄1 ∧ · · · ∧ ξ̄m
= 2−mim

2

ξ1 ∧ · · · ∧ ξm ∧ ξ̄1 ∧ · · · ∧ ξ̄m = 2−mim
2

ξ(i)m ∧ ξ̄(i)m .(18.139)

From (
ξ̄(i′)h′ ∧ ξ(j′)k′

)
∧ ∗
(
ξ(i)h ∧ ξ̄(j)k

)
= b

(
ξ̄(i′)h′ ∧ ξ(j′)k′ , ξ(i)h ∧ ξ̄(j)k

)
νn,

we deduce that for some scalar C = C ((i)h , (j)k) ∈ C,

(18.140) ∗
(
ξ(i)h ∧ ξ̄(j)k

)
= Cξ(jc)m−k ∧ ξ̄(ic)m−h ,
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where (jc)m−k is the multi-index complementary (j)k in the sense that

{j1, . . . , jk} ∪
{
jc1, . . . , j

c
m−k

}
= {1, . . . ,m} .

We find below that

(18.141) C = C ((i)h , (j)k) = 2h+k−m (−1)
h
im

2

ε(ic)m−h(i)h
ε(j)k(jc)m−k

.

Indeed if (i′)h′ 6= (i)h or (j′)k′ 6= (j)k, then(
ξ̄(i′)h′ ∧ ξ(j′)k′

)
∧ ξ(jc)m−k ∧ ξ̄(ic)m−h = b

(
ξ̄(i′)h′ ∧ ξ(j′)k′ , ξ(i)h ∧ ξ̄(j)k

)
νn = 0,

while if (i′)h′ = (i)h and (j′)k′ = (j)k , then(
ξ̄(i)h ∧ ξ(j)k

)
∧ Cξ(jc)m−k ∧ ξ̄(ic)m−h = C (−1)

hm
ξ(j)k ∧ ξ(jc)m−k ∧ ξ̄(i)h ∧ ξ̄(ic)m−h

= C (−1)
hm

ε(j)k(jc)m−k
ε(i)h(ic)m−h

ξ(j)m ∧ ξ̄(i)m
= C (−1)

hm
ε(i)h(ic)m−h

ε(j)k(jc)m−k
ξ(j)m ∧ ξ̄(i)m

= C (−1)
hm

(−1)
h(m−h)

ε(ic)m−h(i)h
ε(j)k(jc)m−k

ξ(j)m ∧ ξ̄(i)m
= C (−1)

h
ε(ic)m−h(i)h

ε(j)k(jc)m−k
ξ(j)m ∧ ξ̄(i)m

= C (−1)
h
ε(ic)m−h(i)h

ε(j)k(jc)m−k

1

2−mim2 νn

= b
(
ξ̄(i)h ∧ ξ(j)k , ξ(i)h ∧ ξ̄(j)k

)
νn = 2h+kνn,

which yields the value of C in (18.141). We have

τh+k

(
ξ(i)h ∧ ξ̄(j)k

)
= im+(h+k)(h+k−1) ∗

(
ξ(i)h ∧ ξ̄(j)k

)
= im+(h+k)(h+k−1)C ((i)h , (j)k) ξ(jc)m−k ∧ ξ̄(ic)m−h
= im+(h+k)(h+k−1)2h+k−m (−1)

h
im

2

ε(ic)m−h(i)h
ε(j)k(jc)m−k

ξ(jc)m−k ∧ ξ̄(ic)m−h
= im(m+1)i(h+k)(h+k−1)+2h2h+k−mε(ic)m−h(i)h

ε(j)k(jc)m−k
ξ(jc)m−k ∧ ξ̄(ic)m−h

= (−1)
1
2m(m+1)+ 1

2 (h−k)(h−k+1)
2h+k−mε(ic)m−h(i)h

ε(j)k(jc)m−k
ξ(jc)m−k ∧ ξ̄(ic)m−h ,

where we have used

(h+ k) (h+ k − 1) + 2h = ((h− k) (h− k + 1)) + 4hk.

In the case h+ k = m, we have

1

2
m (m+ 1) +

1

2
(h− k) (h− k + 1)

=
1

2
m (m+ 1) +

1

2
(2h−m) (2h−m+ 1)

= m2 + 2h2 − 2mh+ h ≡ m+ h mod 2, and so

h+k = m⇒ τm
(
ξ(i)h ∧ ξ̄(j)k

)
= (−1)

m+h
ε(ic)m−h(i)h

ε(j)k(jc)m−k
ξ(jc)m−k∧ ξ̄(ic)m−h .

Note that if h + k = m, then (1± τm)
(
ξ(i)h ∧ ξ̄(j)k

)
are both eigenvectors of

τm (with the same eigenvalue for Λ′ (B)), unless one is 0. To determine when
(1± τm)

(
ξ(i)h ∧ ξ̄(j)k

)
= 0, note that (18.140) yields

τm
(
ξ(i)h ∧ ξ̄(j)k

)
= ±ξ(i)h ∧ ξ̄(j)k ⇔ (j)k = (ic)m−h (or (i)h = (jc)m−k ).
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In this case, ε(ic)m−h(i)h
ε(j)k(jc)m−k

=
(
ε(ic)m−h(i)h

)2

= 1, and so

(18.142) τm

(
ξ(i)h ∧ ξ̄(ic)m−h

)
= (−1)

m+h
ξ(i)h ∧ ξ̄(ic)m−h , for 0 ≤ h ≤ m,

while (1± τm)
(
ξ(i)h ∧ ξ̄(j)k

)
6= 0 for (i)h 6= (jc)m−k. Consequently, if (j)k 6=

(ic)m−h, the eigenvector (1 + τh+k)
(
ξ(i)h ∧ ξ̄(j)k

)
of Λ′ (B) |Λeven(odd),+

(
(Cm)

∗)
cor-

responds to an eigenvector (1− τh+k)
(
ξ(i)h ∧ ξ̄(j)k

)
of Λ′ (B) |Λeven(odd),−

(
(Cm)

∗)
with the same eigenvalue. In the remaining case (j)k = (ic)m−h, we have

Λ′ (B)
(
ξ(i)h ∧ ξ̄(ic)m−h

)
= −i

(
(yi1 + · · ·+ yih)−

(
yic1 + · · ·+ yicm−h

))
Thus taking (18.142) into account, we have

ch
(

Λ′ (B)
even,+

)
− ch

(
Λ′ (B)

even,−
)

+ ch
(

Λ′ (B)
odd,−

)
− ch

(
Λ′ (B)

odd,+
)

=
∑m

h=0

∑
(i)h

(−1)
m+h

exp
(
−
(

(yi1 + · · ·+ yih)−
(
yic1 + · · ·+ yicm−h

)))
= (−1)

m
∑m

h=0

∑
(i)h

(−1)
h

exp
((
yic1 + · · ·+ yicm−h

)
− (yi1 + · · ·+ yih)

)
= (−1)

m
∏m

k=1

(
eyk − e−yk

)
=
∏m

k=1
(−2 sinh yk) , and so

 ch
(

Λ′ (B)
even,+

)
− ch

(
Λ′ (B)

even,−
)

+ch
(

Λ′ (B)
odd,−

)
− ch

(
Λ′ (B)

odd,+
)  Ã (B)

=
∏m

k=1
(−2 sinh yk)

∏m

k=1

yk/2

sinh yk
= (−1)

m
y1 . . . ym = (−1)

m
Pf (B) .(18.143)

Theorem 18.63 (Gauss-Bonnet-Chern Theorem). Let M be a compact, ori-
entable, Riemannian manifold of even dimension n = 2m, and let Hk (M) be the
space of harmonic k-forms on M . Then

χ (M) = Index ((d+ δ)
χ
) =

n∑
k=0

(−1)
k

dim
(
Hk (M)

)
= GB (TM) [M ] =

∫
M

GB
(
Ωθ
)
,

where GB
(
Ωθ
)
∈ Ωn (M) is the Gauss-Bonnet form, determined by

π∗GB
(
Ωθ
)

= (−1)
m

Pf
(

1
2πΩθ

)
=

1

22mπmm!

∑
(i)
εi1···i2mΩθi1i2 ∧ · · · ∧ Ωθi2m−1i2m ,

where Ωθ is the curvature of the Levi-Civita connection θ (or indeed any connection)
on the bundle π : FM →M of oriented, orthonormal frames.
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Proof. Using (18.137), (18.143) and (16.113), p.423,∑n

k=0
(−1)

k
dim

(
Hk (M)

)
= Index ((d+ δ)

χ
)

=

(
ch (Λeven,+ (M))− ch (Λeven,− (M))
+ch

(
Λodd,− (M)

)
− ch

(
Λodd,+ (M)

) ) ` Ã (M) [M ]

= GB (TM) [M ] =

∫
M

GB
(
Ωθ
)
.

�

There is also a twisted version of the Gauss-Bonnet-Chern Theorem, which has
the additional “twist” (or rather “untwist”) that the index of the twisted Euler
operator is only affected by the dimension of the twisting bundle E, rather than
any actual twisting (i.e., nontriviality) of E. We define the twisted Euler operator

(d+ δ)
E,χ

: Ωeven (M,E)→ Ωodd (M,E) := (d+ δ)
E |Ωeven(M,E)

as the restriction (d+ δ)
E |Ωeven(M,E) of the twisted DeRham-Dirac operator (d+ δ)

E

in (18.133).

Theorem 18.64 (Twisted Gauss-Bonnet-Chern Theorem). Let M be a com-
pact, oriented Riemannian 2m-manifold, and let E → M be a Hermitian vector
bundle with a covariant derivative ∇E arising from a unitary connection 1-form ε
on U (E). Then the index of the twisted Euler operator is given by

Index
(

(d+ δ)
E,χ
)

= dimE ·GB [TM ] [M ] = dimE · χ (M) .

Proof. We compute

Index
(

(d+ δ)
E,χ
)

= Index
(
DW

e,E+
)

+ Index
((
DW

o,E+
)∗)

= Index
(
DW

e,E+
)
− Index

(
DW

o,E+
)

=
(
ch (E) ` ch

(
Λeven,+ (M)⊕ Λodd,− (M)

)
` Ã (M)

)
[M ]

−
(
ch (E) ` ch

(
Λodd,+ (M)⊕ Λeven,− (M)

)
` Ã (M)

)
[M ]

= ch (E) `

(
ch (Λeven,+ (M))− ch (Λeven,− (M))
+ch

(
Λodd,− (M)

)
− ch

(
Λodd,+ (M)

) ) ` Ã (M) [M ]

= (ch (E) ` GB (TM)) [M ] = (ch0 (E) ` GB (TM)) [M ]

= dimE ·GB (TM) [M ] .

�

The Generalized Yang-Mills Index Theorem
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Recall that in (18.135) we introduced the two generalized Dirac operators DW e

and DW o

and we used their twisted versions

DW
e,E = (d+ δ)

E ∈ End
(
Ωeven,+ (E)⊕ Ωodd,− (E)

)
DW

o,E = (d+ δ)
E ∈ End

(
Ωodd,+ (E)⊕ Ωeven,− (E)

)
(18.144)

in the proof of the Twisted Gauss-Bonnet Theorem. For reasons that will be ex-
plained below, we call DW e,E and DW o,E Yang-Mills-Dirac operators.

Theorem 18.65 (The Yang-Mills-Dirac Index Theorem). Let M be a compact,
oriented Riemannian 2m-manifold, where m is even, and let E →M be a Hermitian
vector bundle with a covariant derivative ∇E arising from a unitary connection 1-
form ε on U (E). Then

Index
(
DW

e,E+
)

= 1
2 (ch2 (E) ` L (M)) [M ] + 1

2 dimE · χ (M) and

Index
(
DW

o,E+
)

= 1
2 (ch2 (E) ` L (M)) [M ]− 1

2 dimE · χ (M) .

Proof. Using (d+ δ)
E,+

= DW e,+ ⊕DW o,+ and the above proof of Theorem
18.64, we have

Index
(

(d+ δ)
E,+
)

= Index
(
DW

e,+
)

+ Index
(
DW

o,+
)

Index
(

(d+ δ)
E,χ
)

= Index
(
DW

e,+
)
− Index

(
DW

o,+
)
.

The results follow from adding and subtracting, since

Index
(

(d+ δ)
E,+
)

= (ch2 (E) ` L (M)) [M ]

Index
(

(d+ δ)
E,χ
)

= dimE · χ (M) ,

by Theorems 18.60 (p.574) and 18.64. �

We now explain the “Yang-Mills-Dirac” nomenclature. In the proof of Theorem
17.15 (p.462), we computed the index of the operator

T : Ω1 (E)→ Ω0 (E)⊕ Ω2
− (E) , given by

T (α) :=
(
δωα, 1

2 (1− ∗)Dωα
)
,

where E = P ×G gC for some principal G-bundle over a compact Riemannian 4-
manifold M and where gC is the complexification of the Lie algebra of G. The
kernel of T can be regarded as the formal dimension of tangent space (at ω) of the
manifold of moduli of connections on P with self-dual curvature. The operator T
bears a strong resemblence to the operator

DW
o,E+ : Ωodd,+ (E)→ Ωeven,− (E) ,

which is the restriction of (d+ δ)
E

:= Dω + δω ∈ End (Ω∗ (E)). Indeed, for

π± := 1
2 (1± τ) : Ω∗ (E)→ Ω∗,± (E) ,

we have π− ◦ T = DW o,E ◦ π+. We have isomorphisms

π+|Ω1(E) : Ω1 (E) ∼= Ωodd,+ (E) ⊂ Ω1 (E)⊕ Ω3 (E) , and

π−|Ω0(E)⊕Ω2
−(E) : Ω0 (E)⊕ Ω2

− (E) ∼= Ωeven,− (E) .
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Thus, using ch2 (E) = dimE + 2ch1 (E) + 4ch2 (E), it follows that

Index (T ) = Index
(
π−|Ω0(E)

)−1 ◦ DW
o,E ◦

(
π−|Ω0(E) ⊕ Ω2

− (E)
)

= Index
(
DW

o,E+
)

= 1
2 (ch2 (E) ` L (M)) [M ]− 1

2 dimE · χ (M)

= 1
2 ((dimE + 2ch1 (E) + 4ch2 (E)) ` L (M)) [M ]− 1

2 dimE · χ (M)

= 1
2 (4ch2 (E) [M ] + dimE · L (M) [M ])− 1

2 dimE · χ (M)

= 2ch2 (E) [M ]− 1
2 dimE · (χ (M)− sig (M)) ,(18.145)

in agreement with computation in the proof of Theorem 17.15 (p.462).

The Hirzebruch-Riemann-Roch Formula

Let M be a complex manifold with n = dimM = 2 dimCM = 2m. In other
words, M is a smooth n-manifold, and there is a covering {U} of M and a collection
{ϕU} of coordinate charts ϕU : U → Cm, such that ϕV ◦ ϕ−1

U : ϕU (U ∩ V ) →
ϕV (U ∩ V ) is holomorphic (i.e.,

(
ϕV ◦ ϕ−1

U

)
∗ : TϕU (x)Cm → TϕV (p)Cm is complex

linear for each x ∈ U∩V ). The tangent spaces TxM then possess a well-defined map
Jx ∈ TxM (with J2

x = − Idx) which corresponds to multiplication by i =
√
−1 under

(ϕU )∗ : TxM → TϕU (x)Cm ∼= Cm (i.e., Jx (X) = (ϕU )
−1
∗ (iϕU (X))). The bundle

automorphism J ∈ End (TM) is known as the complex structure of the complex
manifold M . While it is tempting to explicitly make TxM a complex vector space
by defining iX to be JX for X ∈ TxM , this ultimately leads to profound confusion,
since it is customary (and of great utility) to consider the complexification of the
real vector space TxM , namely

(TCM)x := C⊗ TxM = {V + iW : V,W ∈ TxM} .

of complex dimension 2m. The problem is that multiplication by i in TCM is
not the same as the complex linear extension of J to TCM . In particular while J
preserves the real subspace TxM ⊂ (TCM)x, multiplication by i does not. Thus, to
avoid confusion, we use Jx instead of i for the complex structure on TxM . Let

ϕU (x) =
(
z1 (x) , . . . , zm (x)

)
=
(
x1 (x) + iy1 (x) , . . . , xm (x) + iym (x)

)
.

We define C-valued, R-linear functionals dzj and dz̄j on TxM via

dzj := dxj + idyj : TxM → C and

dz̄j := dxj − idyj : TxM → C

Any R-linear functional on TxM , such as dzk or dz̄k, extends uniquely to a C-linear
functional on (TCM)x, and we use the same symbols to denote these extensions;
i.e., dzj , dz̄j ∈ (TCM)

∗
x. The local complex vector fields (local sections of TCM)

∂zk := 1
2

(
∂xk − i∂yk

)
, ∂z̄k := 1

2

(
∂xk + i∂yk

)
are dual to dzj and dz̄j ∈ (TCM)

∗
, in the sense that

dzj (∂zk) = 1
2

(
dxj + idyj

) (
∂xk − i∂yk

)
= δjk

dz̄j (∂z̄k) = 1
2

(
dxj − idyj

) (
∂xk + i∂yk

)
= δjk

dz̄j (∂zk) = dzj (∂z̄k) = 0.



584 18. THE LOCAL INDEX THEOREM FOR TWISTED DIRAC OPERATORS

There is complex-linear extension of Jx to (TCM)x. We denote this extension by
the same symbol Jx. Since J2

x = − Id, the eigenvalues of Jx are i and −i, and the
eigenspaces of Jx ∈ End ((TCM)x) are

T 1,0
x M := {V − iJV : V ∈ TxM} and T 0,1

x M := {V + iJV : V ∈ TxM} ,
respectively. Note that {∂z1 , . . . , ∂zm} and {∂z̄1 , . . . , ∂z̄m} are local framings of
C∞

(
T 1,0
x M

)
and C∞

(
T 0,1
x M

)
, respectively. We set

Λp,0 (TCM
∗)x := the vector space of all anti-symmetric multi-complex-linear

functionals defined on T 1,0
x M ×

p
· · · × T 1,0

x M.

The Λp,0 (TCM
∗)x are the fibers of a complex vector bundle Λp,0 (TCM

∗) → M .
Let Ωp,0 (M) be the space of C∞ sections of Λp,0 (TCM

∗); i.e.,

Ωp,0 (M) := C∞
(
Λp,0 (TCM

∗)
)
.

On a coordinate neighborhood U , such a section is of the form

1

p!

∑
(j)

fj1···jpdz
j1 ∧ · · · ∧ dzjp ,

where the fj1···jp ∈ C∞ (U,C) are antisymmetric in j1 · · · jp. Similarly, we may

define Λ0,q (TCM
∗)x and the bundles Λ0,q (TCM

∗), and the space Ω0,q (M) :=

C∞
(
Λ0,q (TCM

∗)
)

of sections which locally are of the form

1

q!

∑
(k)

fk1···kqdz̄
k1 ∧ · · · ∧ dz̄kq .

More generally, one has the bundles Λp,q (TCM
∗) whose sections in Ωp,q (M) :=

C∞ (Λp,q (TCM
∗)) are locally of the form

1

p!q!

∑
(j)(k)

fj1···jp;k1···kqdz
j1 ∧ · · · ∧ dzjp ∧ dz̄k1 · · · ∧ dz̄kq

and are called forms of bidegree (p, q). By writing dzj = dxj + idyj and dz̄j =
dxj− idyj , we can regard such forms as ordinary forms in Ωp+q (M,C). Conversely,
writing dxj = 1

2

(
dzj + dz̄j

)
and dyj = 1

2i

(
dzj − dz̄j

)
, we see that

Λl (TM∗,C) := C⊗ Λl (TM∗,R) ∼=
⊕

p+q=l
Λp,q (TCM

∗) and

Ωl (M,C) := C⊗ Ωl (M,R) ∼=
∑
p+q=l

Ωp,q (M) .

There is an operator ∂̄ : Ω0,q (M)→ Ω0,q+1 (M) given locally by

∂̄

(
1

q!

∑
(k)
fk1···kqdz̄

k1 ∧ · · · ∧ dz̄kq
)

:=
1

q!

∑
(k)

∑m

k0=1
∂z̄k0

(
fk1···kq

)
dz̄k0 ∧ dz̄k1 ∧ · · · ∧ dz̄kq .

More generally, one analogously defines ∂̄ : Ωp,q (M) → Ωp,q+1 (M), as well as
∂ : Ωp,q (M) → Ωp+1,q (M). While we have given these operators locally, they are
independent of local holomorphic coordinates. The operator ∂+ ∂̄ is the restriction
of the usual exterior derivative on Ωp,q (M) ⊂ Ωp+q (M,C), namely

∂ + ∂̄ = d|Ωp,q(M) : Ωp,q (M)→ Ωp+1,q (M) + Ωp,q+1 (M) .
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This is a consequence of the fact that, for f ∈ C∞ (M,C), locally we have(
∂ + ∂̄

)
f =

m∑
k=1

∂zk (f) dzj + ∂z̄k (f) dz̄j

=

m∑
j=1

1
2

(
∂xkf − i∂ykf

) (
dxk + idyk

)
+ 1

2

(
∂xkf + i∂ykf

) (
dxk − idyk

)
=

m∑
j=1

∂xk (f) dxk + ∂yk (f) dyk = df.

We have ∂2 = 0, ∂∂̄ + ∂̄∂ = 0 and ∂̄2 = 0, since

0 = d2 =
(
∂ + ∂̄

)2
= ∂2 ⊕

(
∂∂̄ + ∂̄∂

)
⊕ ∂̄2.

In particular, since ∂̄2 = 0, we have a chain complex

0→ Ω0,0 (M)
∂̄→ Ω0,1 (M)

∂̄→ · · · ∂̄→ Ω0,m (M)

and Dolbeault cohomology spaces

H0,q (M) :=
Ker

(
∂̄|Ω0,q(M)

)
∂̄ (Ω0,q−1 (M))

.

In order to define harmonic representatives of Dolbeault cohomology classes,
we need a Hermitian metric to define an adjoint

∂̄∗ : Ω0,q+1 (M)→ Ω0,q (M) ,

for ∂̄ : Ω0,q (M)→ Ω0,q+1 (M). Suppose that we are given a Riemannian metric h
on M , so that for all all x ∈M and V,W ∈ TxM, we have

h (JV,W ) = −h (V, JW ) , or equivalently h (JV, JW ) = h (V,W ) .

Such can always found by setting h (V,W ) = h0 (JV, JW ) + h0 (V,W ) for an ar-
bitrary metric h0. Then hx uniquely extends to a complex bilinear form hC on
C⊗R TxM, so that for V1, V2,W1,W2 ∈ TxM

hC (V1 + iV2,W1 + iW2)

:= h (V1,W1)− h (V2,W2) + i (h (V1,W2) + h (V2,W1)) .

We have

hC (V ± iJV,W ± iJW )

= h (V1,W1)− h (JV, JW )± i (h (V, JW ) + h (JV,W )) = 0.

Thus, the restrictions of hC to T 1,0M and T 0,1M are 0. For

(hC)jk̄ := hC (∂zj , ∂z̄k) = hC (∂z̄k , ∂zj ) =: (hC)k̄j ,

we have (hC)j̄k = (hC)jk̄ and (where ⊗sdenotes symmetric tensor product)

hC =
∑

j,k
(hC)jk̄ dz

j ⊗ dz̄k + (hC)k̄j dz̄
k ⊗ dzj

= 2
∑

j,k
(hC)jk̄

1
2

(
dzj ⊗ dz̄k + dz̄k ⊗ dzj

)
= 2

∑
j,k

(hC)jk̄ dz
j ⊗s dz̄k.
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Definition 18.66. The Kähler 2-form κ ∈ Ω2 (M,C) on a complex manifold
with Riemannian metric h with h (JV, JW ) = h (V,W ) is given by

κ (X,Y ) := hC (JX, Y ) .

Note that κ ∈ Ω1,1 (M), since locally

κ (∂zj , ∂z̄k) = hC (J∂zj , ∂z̄k) = hC (i∂zj , ∂z̄k) = i (hC)jk̄ , and

κ (∂z̄j , ∂z̄k) = κ (∂zj , ∂zk) = 0⇒ κ = i
∑

j,k
(hC)jk̄ dz

j ∧ dz̄k.

If
(
∂x1 , ∂y1 , . . . , ∂xm , ∂ym

)
is orthonormal at x ∈M , then

(hC)jk̄ = hC (∂zj , ∂z̄k) = hC
(

1
2

(
∂xj − i∂yj

)
, 1

2

(
∂xk + i∂yk

))
= 1

4h (∂xj , ∂xk) + 1
4h
(
∂yj , ∂yk

)
= 1

2δjk.

Thus, for example, (hC)kk̄ = 1
2h (∂xk , ∂xk) = 1

2h
(
∂yk , ∂yk

)
= 1

2 , which is why we
use the notation (hC)jk̄, instead of simply hjk̄. Perhaps the bar over one of the
indices suffices to avoid any confusion in practice, but there remain oddities, such
as 0 = (hC)11 6= h11 = h (∂x1 , ∂x1) = 1, which would yield contradictions if we were
to denote (hC)11 simply by h11.

If
(
∂x1 , ∂y1 , . . . , ∂xm , ∂ym

)
is orthonormal at x ∈M , then at x

κ = i
∑m

j,k=1
(hC)jk̄ dz

j ∧ dz̄k = i
∑m

k=1
(hC)kk̄ dz

k ∧ dz̄k

=
i

2

∑m

k=1
dzk ∧ dz̄k =

i

2

∑m

k=1

(
dxk + idyk

)
∧
(
dxk − idyk

)
=
∑m

k=1
dxk ∧ dyk, and

∧mκ =
(∑m

k1=1
dxk1 ∧ dyk1

)
∧ · · · ∧

(∑m

km=1
dxkm ∧ dykm

)
= m!dx1 ∧ dy1 ∧ · · · ∧ dxm ∧ dym

Moreover, according to (18.139), we have

(18.146) νh = dx1∧dy1∧· · ·∧dxm∧dym = 2−mim
2

dz1∧· · ·∧dzm∧dz̄1∧· · ·∧dz̄m

If
(
∂x1 , ∂y1 , . . . , ∂xm , ∂ym

)
is not necessarily orthonormal, we still have

νh = 1
m! ∧

m κ = im

m! ∧
m
(∑

j,k
(hC)jk̄ dz

j ∧ dz̄k
)
.

Define a Hermitian metric Hx (complex linear in first slot and conjugate linear
in the second slot) on C⊗R TxM by

(18.147) H (V,W ) := (hC)
(
V,W

)
.

Note thatH|T 1,0
x M andH|T 0,1

x M are nondegenerate and relative toH, T 1,0
x M⊥T 0,1

x M .
Indeed, for V,W ∈ TxM, we have

H (V ± iJV,W ± iJW ) = H (V,W ) +H (V,±iJW ) +H (±iJV,W ) +H (iJV, iJW )

= H (V,W ) +H (JV, JW ) = 2h (V,W )

H (V ± iJV,W ∓ iJW ) = H (V,W ) +H (V,∓iJW ) +H (±iJV,W )−H (iJV, iJW )

= ±i (h (V, JW ) + h (JV,W )) = 0.
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We set

Hjk := H (∂zj , ∂zk) = (hC) (∂zj , ∂z̄k) = (hC)jk̄

Hjk̄ := H (∂zj , ∂z̄k) = (hC) (∂zj , ∂zk) = (hC)jk = 0

Hk̄j := H (∂z̄k , ∂zj ) = (hC) (∂z̄k , ∂z̄j ) = (hC)k̄j̄ = 0 and

Hj̄k̄ := H (∂z̄j , ∂z̄k) = (hC) (∂z̄j , ∂zk) = (hC)j̄k .

In particular, if
(
∂x1 , ∂y1 , . . . , ∂xm , ∂ym

)
is orthonormal at x ∈M , then

Hjk = H (∂zj , ∂zk) = (hC)jk̄ = 1
2δjk = (hC)j̄k = H (∂z̄j , ∂z̄k) = Hj̄k̄

⇒
(√

2∂z1 , . . . ,
√

2∂zm ,
√

2∂z̄1 , . . . ,
√

2∂z̄m
)

is orthonormal for H.
There is a conjugate-linear bundle isomorphism

[ : (TCM)x → (TCM)
∗
x

given, for V,W ∈ (TCM)x, by

[x (V ) (W ) = H (W,V ) .

We have [
(
T 1,0M

)
= Λ1,0 (TM∗) and [

(
T 0,1M

)
= Λ0,1 (TM∗). Indeed,

[ (∂zk) =
∑m

l=1
Hlkdz

l and [ (∂z̄k) =
∑m

l=1
Hl̄k̄dz̄

l, since

[ (∂zk) (∂zj ) = H (∂zj , ∂zk) = Hjk =
∑m

l=1
Hlkdz

l (∂zj )

[ (∂zk) (∂z̄j ) = H (∂z̄j , ∂zk) = Hj̄k = 0

[ (∂z̄k) (∂z̄j ) = H (∂z̄j , ∂z̄k) = Hj̄k̄ =
∑m

l̄=1
Hl̄k̄dz̄

l (∂z̄j )

[ (∂z̄k) (∂zj ) = H (∂zj , ∂z̄k) = Hjk̄ = 0.

In particular, if
(
∂x1 , ∂y1 , . . . , ∂xm , ∂ym

)
is orthonormal for h at x ∈ M , then

[ (∂zk) = 1
2dz

k and [ (∂z̄k) = 1
2dz̄

k. There is a conjugate-linear inverse to [, denoted
by

# : (TCM)
∗
x → (TCM)x

Now H on (TCM)x induces a Hermitian inner product (still denoted by H) on

Λ1
(
(TCM)

∗
x

)
, given for α, β ∈ Λ1

(
(TCM)

∗
x

)
, by

H (α, β) = H (#β,#α) ,

where the switch in the order is due to the conjugate linearity of #. We then
have an induced Hermitian inner product on Λk

(
(TCM)

∗
x

)
for 1 ≤ k ≤ m, where

{ei1 ∧ · · · ∧ eik : i1 < · · · < ik} is an orthonormal basis for Λk
(
(TCM)

∗
x

)
if e1, . . . , em

is an orthonormal basis of Λ1
(
(TCM)

∗
x

)
. By restriction, we have Hermitian inner

products on Λp,q
(
(TCM)

∗
x

)
as well.

Let (·, ·) be the Hermitian L2 inner product on Ω0,q (M) induced by H, namely

(α, β) :=

∫
M

H (α, β) vh, with ‖α‖ :=
√

(α, α).

We may then speak of the formal adjoint ∂̄∗ : Ωp,q+1 (M) → Ωp,q (M) of ∂̄ :
Ωp,q (M)→ Ωp,q+1 (M), having the property(

∂̄α, β
)

=
(
α, ∂̄∗β

)
.
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In order to exhibit a formula for ∂̄∗, we have a C-linear star operator

∗ : Ωk (M,C)→ Ωn−k (M,C) determined by

α ∧ ∗β := hC (α, β) vh for α, β ∈ Ωk (M,C) .

Some authors (e.g., [GH]) and use H instead of hC in the definition of ∗, which
makes ∗ conjugate linear, while we, as others (e.g., [Go]), use a C-linear star oper-
ator. Thus, here

α ∧ ∗β̄ := gC
(
α, β̄

)
vh = H (α, β) vh.

Since dimRM = 2m is even, ∗2|Ωk(M,C) = (−1)
k

Id and the formal adjoint of

d : Ωk (M,R) → Ωk+1 (M,R) is δ := − ∗ d∗. By the C-linearity of ∗ and the fact
that d is the C-linear extension of ∂ + ∂̄, δ has the C-linear extension

δ = − ∗ d∗ = − ∗
(
∂ + ∂̄

)
∗ = (− ∗ ∂∗)⊕

(
− ∗ ∂̄∗

)
By (18.140), we have ∗Ωp,q (M) = Ωm−q,m−p (M), and so(

− ∗ ∂̄∗
) (

Ωp+1,q (M)
)
⊆
(
− ∗ ∂̄

) (
Ωm−q,m−(p+1) (M)

)
⊆ (−∗)

(
Ωm−q,m−p (M)

)
⊆ Ωp,q (M) , while

(− ∗ ∂∗)
(
Ωp+1,q (M)

)
⊆ (− ∗ ∂)

(
Ωm−q,m−p−1 (M)

)
⊆ (−∗)

(
Ωm−q+1,m−p−1 (M)

)
⊆ Ωp+1,q−1 (M) .

Thus, for α ∈ Ωp,q (M) and β ∈ Ωp+1,q (M), we have

H (dα, β) = H
(
∂α+ ∂̄α, β

)
= H (∂α, β)

H (α, δβ) = H
(
α,− ∗ ∂ ∗ β − ∗∂̄ ∗ β

)
= H

(
α,− ∗ ∂̄ ∗ β

)
, and so

∫
M

H (∂α, β) vh =

∫
M

H (dα, β) vh =

∫
M

hC
(
dα, β̄

)
vh

=

∫
M

hC
(
α, δβ̄

)
vh =

∫
M

hC
(
α, δβ

)
vh

=

∫
M

H (α, δβ) vh =

∫
M

H
(
α,
(
− ∗ ∂̄∗

)
β
)
vh.

Similarly, ∫
M

H
(
∂̄α, β

)
vh =

∫
M

H (α, (− ∗ ∂∗)β) vh.

Thus, the formal adjoints of ∂ and ∂̄ are given by

∂∗ = − ∗ ∂̄ ∗ and ∂̄∗ = − ∗ ∂ ∗ .

We define the space of harmonic (0, q)-forms by

H0,q (M) :=
{
α ∈ Ω0,q (M) :

(
∂̄ + ∂̄∗

)
α = 0

}
.

Theorem 18.67 (Hodge Decomposition). There is an orthogonal decomposition

Ω0,q (M) = H0,q (M)⊕ ∂̄
(
Ω0,q−1 (M)

)
⊕ ∂̄∗

(
Ω0,q+1 (M)

)
= H0,q (M)⊕

(
∂̄∂̄∗

) (
Ω0,q (M)

)
⊕
(
∂̄∗∂̄

) (
Ω0,q (M)

)
.(18.148)
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Proof. The operator

∆∂̄ :=
(
∂̄∂̄∗ + ∂̄∗∂̄

)
=
(
∂̄ + ∂̄∗

)2
: Ω0,q (M)→ Ω0,q (M)

is elliptic, and hence we have the orthogonal decomposition

Ω0,q (M) = Ker ∆∂̄ ⊕∆∂̄

(
Ω0,q (M)

)
.

Moreover, Ker ∆∂̄ = H0,q (M). Indeed,

α ∈ H0,q (M)⇒
(
∂̄ + ∂̄∗

)
α = 0

⇒ ∂̄α = 0 and ∂̄∗α = 0⇒
(
∂̄∂̄∗ + ∂̄∗∂̄

)
α = 0,

and conversely if α ∈ Ker ∆∂̄ , then

0 =
((
∂̄∂̄∗ + ∂̄∗∂̄

)
α, α

)
=
∥∥∂̄α∥∥2

+
∥∥∂̄α∥∥2 ⇒ ∂̄α+ ∂̄∗α = 0.

It remains to prove that we have an orthogonal decompostion

(18.149) ∆∂̄

(
Ω0,q (M)

)
= ∂̄

(
Ω0,q−1 (M)

)
⊕ ∂̄∗

(
Ω0,q+1 (M)

)
.

The summands are orthogonal since

β ∈ Ω0,q−1 (M) and γ ∈ Ω0,q+1 (M)⇒
(
∂̄β, ∂̄∗γ

)
=
(
∂̄2β, γ

)
= 0.

Moreover, for any α ∈ Ω0,q (M), we have

(18.150) ∆∂̄α = ∂̄
(
∂̄∗α

)
+ ∂̄∗

(
∂̄α
)
∈ ∂̄

(
Ω0,q−1 (M)

)
⊕ ∂̄∗

(
Ω0,q+1 (M)

)
,

and so ∆∂̄

(
Ω0,q (M)

)
⊆ ∂̄

(
Ω0,q−1 (M)

)
⊕ ∂̄∗

(
Ω0,q+1 (M)

)
.

For the reverse inclusion, note that ∂̄
(
Ω0,q−1 (M)

)
and ∂̄∗

(
Ω0,q−1 (M)

)
are both

in H0,q (M)
⊥

, since

α ∈ H0,q (M)⇒
(
∂̄β, α

)
=
(
β, ∂̄∗α

)
= 0 =

(
γ, ∂̄α

)
=
(
∂̄∗γ, α

)
,

and so ∂̄
(
Ω0,q−1 (M)

)
⊕ ∂̄∗

(
Ω0,q+1 (M)

)
⊆ H0,q (M)

⊥
= ∆∂̄

(
Ω0,q (M)

)
.

Note that (18.150) and (18.149) then give the second equality of (18.148). �

Corollary 18.68. Suppose that ∂̄γ = 0 for some γ ∈ Ω0,q (M). There is a
unique α ∈ H0,q (M), such that for some β ∈ Ω0,q−1 (M), γ = α + ∂̄β. In other
words, every cohomology class in H0,q (M) has a unique harmonic representative.

Proof. Theorem 18.67 yields a unique α ∈ H0,q (M) such that

γ = α+ ∂̄β + ∂̄∗β′

for some β ∈ Ω0,q−1 (M) and β′ ∈ Ω0,q+1 (M). Now

0 = ∂̄γ = ∂̄α+ ∂̄2β + ∂̄∂̄∗β′ = ∂̄∂̄∗β′

⇒
(
∂̄∂̄∗β′, β′

)
= 0⇒

∥∥∂̄∗β′∥∥2
= 0⇒ ∂̄∗β′ = 0.

�

Suppose that ∇ is the covariant derivative for the Levi-Civita connection of
the Riemannian metric h. We have seen that it is always possible to choose co-
ordinates about a point x ∈ M such that the coordinate vector fields have van-
ishing ∇-derivatives at x. However, it is not necessarily the case that such co-
ordinates can be chosen of the form

(
x1, y1, . . . , xm, ym

)
, where

(
z1, . . . , zm

)
=(

x1 + iy1, . . . , xm + iym
)

is a complex-analytic coordinate chart. If for each x ∈M
such coordinates can be found, then the complex manifold M with Riemannian
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metric h is a Kähler manifold. While one can take this to be the definition of a
Kähler manifold, usually one of the other equivalent conditions in the following
theorem is taken to be the definition.

Theorem 18.69. Let M be a complex manifold with complex structure J , and
Riemannian metric h, with Levi-Civita covariant derivative ∇. The following are
equivalent.

I. About each x ∈M, there is a complex chart
(
x1 + iy1, . . . , xm + iym

)
,

such that ∇ (∂xi) = ∇
(
∂yi
)

= 0 at x.

II. ∇J = 0 (i.e., (∇J) (X) = J (∇X)−∇ (J (X)) = 0).

III. The 2-form Kähler 2-form κ ∈ Ω2 (M,R) , given by

κ (X,Y ) := h (X, JY ) , is closed (i.e., dκ = 0).

Proof. Assuming I, at any point x we have II, since

(∇J) (∂xk) = J (∇∂xk)−∇ (J (∂xk)) = 0−∇
(
∂yk
)

= 0 and

(∇J)
(
∂yk
)

= J
(
∇∂yk

)
−∇

(
J
(
∂yk
))

= 0 +∇ (∂xk) = 0.

that induced Hermitian metric H on C⊗RTM defined by (18.147), and Levi-Civita
covariant derivative ∇. We now show that II⇒ III. For vector fields X,Y, Z, we
have

3 (dκ) (X,Y, Z) = X [κ (Y,Z)] + Y [κ (Z,X)] + Z [κ (X,Y )]

− κ ([X,Y ] , Z)− κ ([Y, Z] , X)− κ ([Z,X] , Y ) .

If X, J, Z are coordinate vector fields, then (since ∇ is torion-free)

∇XY −∇YX = [X,Y ] = 0, and so

3 (dκ) (X,Y, Z) = X [κ (Y,Z)] + Y [κ (Z,X)] + Z [κ (X,Y )]

= X [h (Y, JZ)] + Y [h (Z, JX)] + Z [h (X, JY )]

= h (∇XY, JZ) + h (Y,∇X (JZ)) + h (∇Y Z, JX) + h (Z,∇Y (JX))

+ h (∇ZX, JY ) + h (X,∇Z (JY ))

= h (∇XY, JZ)− h (∇XZ, JY ) + h (∇Y Z, JX)− h (∇YX, JZ)

+ h (∇ZX, JY )− h (∇ZY, JX)

= h (∇XY −∇YX, JZ) + h (∇ZX −∇XZ, JY ) + h (∇Y Z −∇ZY, JX) = 0.

To show that III⇒ I, we note that by a C-linear change of complex coordinates
about x, we may assume (since h is positive definite) that

hC = 2
∑

j,k
(hC)jk̄ dz

j ⊗s dz̄k

=
∑

j,k,l

(
δjk +

∑
l

(
ajk̄lz

l + ajk̄l̄z̄
l
)

+ O
(
‖z‖2

))
dzj ⊗s dz̄k,

where ‖z‖2 =
∑m
j=1 z

j z̄j and

(hC)jk̄ = (hC)j̄k = (hC)kj̄

⇒
∑

l
ajk̄lz̄

l + ajk̄l̄z
l =

∑
l
ajk̄lz

l + ajk̄l̄z̄
l =

∑
l

(
akj̄lz

l + akj̄l̄z̄
l
)

⇒ ajk̄l̄ = akj̄l and ajk̄l̄ = akj̄l.(18.151)
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Since

κ (∂zj , ∂z̄k) = hC (∂zj , J∂z̄k) = hC (∂zj ,−i∂z̄k)

= −ihC (∂zj , ∂z̄k) = −i (hC)jk̄ , and

similarly κ (∂zj , ∂zk) = κ (∂z̄j , ∂z̄k) = 0, we have

κ = 1
2

∑m

j,k=1
κ (∂zj , ∂z̄k) dzj ∧ dz̄k = − i

2

∑m

j,k=1
(hC)jk̄ dz

j ∧ dz̄k.

Thus,

0 = dκ = − i
2

∑m

j,k=1

(
∂zl (hC)jk̄ dz

l + ∂z̄l (hC)jk̄ dz̄
l
)
∧ dzj ∧ dz̄k

= − i
2

∑m

j,k=1

(
ajk̄ldz

l + ajk̄l̄dz̄
l
)
∧ dzj ∧ dz̄k

⇒ ajk̄l = alk̄j and ajk̄l̄ = ajl̄k̄.

For bkpq = bkqp ∈ C, let

zk = wk + 1
2

∑m

p,q=1
bkpqw

pwq

dzk = dwk +
∑m

p,q=1
bkpqw

qdwp

Then, modulo O
(
‖w‖2

)
or O

(
‖z‖2

)
terms,

hC =
∑

j,k

(
δjk + ajk̄lz

l + ajk̄l̄z̄
l
)
dzj ⊗s dz̄k

=
∑

j,k

(
δjk +

∑
l

(
ajk̄lw

l + ajk̄l̄w̄
l
))

(
dwj +

∑m

p,q=1
bjpqw

qdwp
)
⊗s
(
dw̄k +

∑m

p,q=1
bkp′q′w̄

q′dw̄p
′
)

=
∑

j,k

(
δjk +

∑
l

(
ajk̄lw

l + ajk̄l̄w̄
l
))
·(

dwj ⊗s dw̄k +
∑m
p,q=1 b

j
pqw

qdwp ⊗s dw̄k

+
∑m
p,q=1 b

k
p′q′w̄

q′dwj ⊗s dw̄p
′

)
=
∑

j,k

(
δjk +

∑
l

(
ajk̄lw

l + ajk̄l̄w̄
l
))
dwj ⊗s dw̄k

+
∑

j,k
δjk
∑m

p,q=1
bjpqw

qdwp ⊗s dw̄k

+
∑

j,k
δjk
∑m

p,q=1
bkp′q′w̄

q′dwj ⊗s dw̄p
′

=
∑

j,k

(
δjk +

∑
l

(
ajk̄lw

l + ajk̄l̄w̄
l
))
dwj ⊗s dw̄k

+
∑m

j,k,l=1
bkjlw

ldwj ⊗s dw̄k +
∑m

j,k,l=1
bjklw̄

ldwj ⊗s dw̄k

=
∑

j,k

(
δjk +

∑
l

((
ajk̄l + bkjl

)
wl +

(
ajk̄l̄ + bjkl

)
w̄l
))

dwj ⊗s dw̄k.

Thus, we should (if possible) choose

bkjl = −ajk̄l and bjkl = −ajk̄l̄ (i.e., bkjl = −akj̄l̄)
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We can do this provided that

1. ajk̄l = alk̄j , so that bkjl is symmetrical j and l, and

2. ajk̄l = akj̄l̄, so that bkjl = −ajk̄l ⇒ bjkl = −ajk̄l̄.

but this is the case, since we have seen that dκ = 0⇒ ajk̄l = alk̄j and akj̄l̄ = ak̄jl =
ajk̄l by (18.151). �

Until further notice, we assume that M (with Riemannian metric h) is a Kähler
manifold, we let

(
x1 + iy1, . . . , xm + iym

)
be complex coordinates about some point

x ∈ M such that
(
∂x1 , ∂y1 , . . . , ∂xm , ∂ym

)
are orthonormal at x relative to hx, and

∇ (∂xi) = ∇
(
∂yi
)

= 0 at x. We find a formula for ∂̄∗ : Ω0,q (M)→ Ω0,q (M) which

will allow us to exhibit
√

2
(
∂̄ + ∂̄∗

)
locally as a twisted Dirac operator. In view of

Theorem 18.69, for α ∈ Ω0,q (M), we have

∂̄α =
∑m

j=1
dz̄j ∧∇∂z̄jα at x ∈M ,

since ∇∂z̄j
(
dz̄k
)

(∂z̄l) = ∂z̄j
(
dz̄k (∂z̄l)

)
− dz̄k

(
∇∂z̄j ∂z̄l

)
= 0 at x implies that

∇∂z̄j
(
αk1···kqdz̄

k1 ∧ · · · ∧ dz̄kq
)

= ∂z̄j
(
αk1···kq

)
dz̄k1 ∧ · · · ∧ dz̄kq at x.

We derive a formula for ∂̄∗, namely for α ∈ Ω0,q (M),

(18.152) ∂̄∗α = −
∑m

j=1

(
dz̄j
)
x∇∂z̄jα at x.

We use the result (18.140), namely
(18.153)

∗
(
ξ(i)h ∧ ξ̄(j)k

)
= 2h+k−m (−1)

h
im

2

ε(ic)m−h(i)h
ε(j)k(jc)m−k

ξ(jc)m−k ∧ ξ̄(ic)m−h ,

where (j)k is the multi-index (j1, . . . , jk) with 1 ≤ j1 < · · · < jk ≤ m, and (jc)m−k
is the multi-index complementary (j)k in the sense that

{j1, . . . , jk} ∪
{
jc1, . . . , j

c
m−k

}
= {1, . . . ,m} .

and 1 ≤ jc1 < · · · < jcm−k < m. Note that (18.153) implies

∗
(
dzh ∗

(
dz̄(j)k

))
= ∗

(
dzq ∧ 2k−mim

2

ε(j)k(jc)m−k
dz(jc)m−k ∧ dz̄(ic)m

)
= 2k−mim

2

ε(j)k(jc)m−k
∗
(
dzq ∧ dz(jc)m−k ∧ dz̄(ic)m

)
,

which is zero unless h is jp for some jp in (j)k. In the following,
(
ĵp, j

)
k−1

denotes

(j)k , but with jp removed, and (jp, j
c)m−k+1 denotes the multi-index (jc)m−k with

jp inserted in the “correct” position which produces an increasing order. Note that

(18.154) ε(ĵp,j)
k−1

(jp,jc)m−k+1
= (−1)

k−p
δ
jpj

c

(jp,jc)
ε(j)k(jc)m−k

,

since jp is moved through k−p indices in (j)k (jc)m−k to produce
(
ĵp, j

)
k−1

jp (jc)m−k+1,

and jp is moved through δ
jpj

c

(jp,jc)
indices in jp (jc)m−k+1 to produce (jp, j

c)m−k+1.
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We use (18.154) in the following computation

∗
(
dzjp ∗

(
dz̄(j)k

))
= 2k−mim

2

ε(j)k(jc)m−k
∗
(
dzjp ∧ dz(jc)m−k ∧ dz̄(ic)m

)
= 2k−mim

2

ε(j)k(jc)m−k
δ
jpj

c

(jp,jc)
∗
(
dz(jp,j

c)m−k+1 ∧ dz̄(ic)m

)
= 2k−mim

2

ε(j)k(jc)m−k
δ
jpj

c

(jp,jc)
2(m−k+1)+m−m (−1)

m−k+1
im

2

ε(ĵp,j)
k−1

(jp,jc)m−k+1
dz̄(

ĵp,j)
k−1

= 2 (−1)
m2

(−1)
m−k+1

ε(j)k(jc)m−k
δ
jpj

c

(jp,jc)
ε(ĵp,j)

k−1
(jp,jc)m−k+1

dz̄(
ĵp,j)

k−1

= 2 (−1)
k−1

ε(j)k(jc)m−k
δ
jpj

c

(jp,jc)
ε(ĵp,j)

k−1
(jp,jc)m−k+1

dz̄(
ĵp,j)

k−1

= 2 (−1)
k−1

(−1)
k−p

dz̄(
ĵp,j)

k−1 = 2 (−1)
p−1

dz̄(
ĵp,j)

k−1 = dz̄jpxdz̄(j)k .

It then follows that for β ∈ Ω1,0 (M) and α ∈ Ω0,q (M) ,

∗ (β ∧ ∗α) = β̄xα.

Thus, with α = 1
q!

∑
(k) αk1···kqdz̄

k1 ∧ · · · ∧ dz̄kq and formally substituting ∂ =∑
k0
∂zk0dz

k0∧ for β∧, we have

∂̄∗α = − ∗ (∂ ∗ α) = −∂̄xα

= −
(∑

k0

(
dz̄k0

)
∂z̄k0

)
x

1

q!

∑
(k)
αk1···kqdz̄

k1 ∧ · · · ∧ dz̄kq

= − 1

q!

∑
k0,(k)

∂z̄k0

(
αk1···kq

) (
dz̄k0

)
x
(
dz̄k1 ∧ · · · ∧ dz̄kq

)
.

At x ∈M (where the ∂z̄k are parallel), we then have (18.152).
Ideally, we would like to show that Ω0,∗ (M) is a Clifford module bundle W (M)

and that DW =
√

2
(
∂̄ + ∂̄∗

)
. We could then obtain the Hirzebruch-Riemann-Roch

Theorem as a consequence of the Index Theorem for Generalized Dirac Operators
(Theorem 18.55, p.567). However, there are technical details of great consequence
which stand in the way of doing this, as we now explain.

Note that

Cm → (C⊗ Cm)
1,0 ⊂ C⊗ Cm given by

v 7→ 2
1
2 v0,1 := 2

1
2 1

2 (v + iJv) = 2−
1
2 (v + iJv)

is an isometry. Indeed, if 〈·, ·〉m is the standard Hermitian inner product on Cm

H
(

2−
1
2 (v + iJv) , 2−

1
2 (v + iJv)

)
=
〈

2−
1
2 (v + iJv) , 2−

1
2 (v − iJv)

〉
= 1

2 (〈v, v〉+ 〈Jv, Jv〉) = 〈v, v〉 .

We take W := Λ0,∗ ((C⊗ Cm)
∗) ∼= Λ∗ (Cm) and let Q : Cln → End (W ) be deter-

mined by

Q1 (v)α = 2
1
2

(
[
(
v0,1

)
∧ α− [

(
v0,1

)
xα
)
,

for v ∈ Rn = Cm. Let q : U (m)→ U (W ) = Λ0,∗ ((Cm)
∗)

be the usual representa-

tion induced by q1 : U (m) → U
(
Λ0,1

(
(Cm)

∗))
which we describe as follows. For
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A ∈ U (m) ⊂ SO (2m), we have the C-linear extension Ac ∈ U (2m) which preserves
the summands of the decomposition

C⊗R Cm = (C⊗R Cm)
1,0 ⊕ (C⊗R Cm)

0,1

We also Â ∈ U
(
(Cm)

∗)
given by Â (ϕ) = ϕ ◦ A−1, and its C-linear extension

Âc ∈ U
((
C2m

)∗)
= U

(
(C⊗R Cm)

∗)
which preserves the summands of

(C⊗R Cm)
∗

= (C⊗R Cm)
∗1,0 ⊕ (C⊗R Cm)

∗0,1

For A ∈ U (m) , we take

q1 (A) = (Âc)
0,1 ∈ End

(
(C⊗R Cm)

∗0,1
)

= End
(
Λ0,1

(
(C⊗R Cm)

∗))
,

and let q (A) be the natural extension of q1 (A) to all of Λ0,∗ ((C⊗R Cm)
∗)

. For
A ∈ U (m) and v ∈ Cm, we have

q (A) ◦Q (v) ◦ q
(
A−1

)
= Q (Av) .

Indeed for α ∈W = Λ0,∗ ((Cm)
∗)

Λ0,∗ ((C⊗R Cm)
∗) ∼= Cln,(

q (A) ◦Q (v) ◦ q
(
A−1

))
α = q (A)

(
Q (v)

(
q
(
A−1

)
α
))

= 2
1
2 q (A)

(
[
(
v0,1

)
∧
(
q
(
A−1

)
(α)
)
− [

(
v0,1

)
x
(
q
(
A−1

)
(α)
))

= 2
1
2 q (A)

(
[
(
v0,1

))
∧ (α)− q (A)

(
[
(
v0,1

))
xα

= 2
1
2 [
(

(Av)
0,1
)
∧ α− [

(
(Av)

0,1
)
xα

= Q (Av) (α) .

Hence for A ∈ U (m) and α ∈ Cln, we have

q (A)Q (α) q
(
A−1

)
= Q (r (A)α) .

In view of this, there is a well-defined

cl : Cl (TM)⊗W (M)→W (M)

cl : Cl (TM)⊗ Λ0,∗ (TCM
∗)→ Λ0,∗ (TCM

∗)

Moreover, cl : Cl (TM)⊗W (M)→W (M) induces map on sections,

cl : C∞ (Cl (TM))⊗ C∞ (W (M))→ C∞ (W (M))

cl : C∞ (Cl (TM))⊗ Ω0,∗ (M)→ Ω0,∗ (M) .

For α ∈ C∞ (Cl (TM)) and ψ ∈ C∞
(
Ω0,∗ (M)

)
, we have

(18.155) ∇0,1 (cl (α⊗ ψ)) = cl (∇α⊗ ψ) + cl
(
α⊗∇0,1ψ

)
where

∇0,1 : Ω0,∗ (M)
∇0,1

→ Ω1 (M)⊗ Ω0,∗ (M)

is just the complex extention of Levi-Civita covariant derivative which has the
property that

ψ ∈ Ω0,k (M)⇒ ∇Xψ ∈ Ω0,k (M)

and “generalized Dirac operator”

DW : Ω0,∗ (M)
∇0,1

→ Ω1 (M)⊗ Ω0,∗ (M)
cl→ Ω0,∗ (M) .
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which is found to be 2
1
2

(
∂̄ + ∂̄∗

)
. However, the problem is that

W (M) = Λ0,∗ (TCM
∗) = UM ×U(m) Λ0,∗ ((C⊗R Cm)

∗)
is an associated bundle of UM instead of FM or P for a spin structure P → FM ,
as is required in the proof of Theorem 18.55, p. 567; otherwise, it is not clear that
DW is locally a twisted Dirac operator. Let us assume, for the moment, that this
does not matter. Then Theorem 18.55 would yield

Index
(
∂̄ + ∂̄∗

)
= Index

(
DW+

)
=
(
ch
(
Λ0,∗ (TCM

∗)
)
` Ã (M)

)
[M ] .

Now, identifying ck (TM) with σk (y1, . . . , ym), we have

ch
(
Λ0,∗ (TCM

∗)
)

=
∑m

h=0

∑
(j)h

eyj1+···+yjh =
∏m

k=1
(1 + eyk) , and

ch
(
Λ0,∗ (TCM

∗)
)
` Ã (M) =

∏m

k=1
(1 + eyk)

∏m

k=1

yk/2
sinh(yk)

=
∏m

k=1
(1 + eyk) yk/2

sinh(yk) =
∏m

k=1

yk
1− e−yk

= Td
(
T 1,0 (M)

)
= Td (TM) , and so(18.156)

Index
(
∂̄ + ∂̄∗

)
= Td (TM) [M ] .

This is correct and indeed it is the Hirzebruch-Riemann-Roch formula, but since
W (M) = Λ0,∗ (TCM

∗) is associated to U (M) instead of FM or a spin structure
bundle P , Theorem 18.55 does not apply. This suggests that the notion of Clifford
module bundle can be generalized in such a way that Theorem 18.55 still holds. In
fact this is the case, and we will examine the case at hand to determine a suitable
generalization.

To fix the fact that Λ0,∗ (TCM
∗) is associated to U (M), instead of FM or P ,

ideally one would like to find a homomorphism

h : U (m)→ SO (2m) ,

a representation r : SO (2m)→ GL (V ), and an equivariant isomorphism

φ : Λ0,∗ ((C⊗ Cm)
∗)→ V

Then we would have Λ0,∗ (TCM
∗) ∼= FM ×SO(2m) V , exhibiting Λ0,∗ (TCM

∗) as
a bundle associated with FM . It is natural to take h to be inclusion and φ to
be the identity. However, Λ0,∗ ((C⊗ Cm)

∗)
is not an invariant subspace of the

representation SO (2m) → Λ∗
(
(C⊗ Cm)

∗)
, but rather of its restriction to U (m).

While we will not prove the fact that there is no suitable choice r and φ, at least the
most obvious attempt fails. The somewhat involved resolution of this difficulty is
doubly worthwhile, since it also provides is a nice way of motivating Seiberg-Witten
theory. In a nutshell, we will exploit the fact that while

Λ0,∗ : U (m)→ End
(
Λ0,∗ ((C⊗ Cm)

∗))
does not extend to a representation of SO (2m), we have linear isomorphisms

Λ0,∗ ((C⊗ Cm)
∗) ∼= Λ∗ (Cm) ∼= Σ2m,

and there is the spinor representation ρ : Spin (2m)→ End (Σ2m). However on the
Lie algebra level, the restriction of ρ′ : spin (2m)→ End (Σ2m) to u (m) ⊂ s0 (2m) ∼=
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spin (2m) does not coincide with
(
Λ0,∗)′ : u (m) → End

(
Λ0,∗ ((C⊗ Cm)

∗))
. In-

deed, there is a crucial 1-dimensional twist which is needed to make a correct
identification. We proceed with the details.

Since we will be considering C⊗ Cm, we use J to denote multiplication by√
−1 in Cm and i to denote multiplication by

√
−1 in C⊗ Cm. Note that the

map [0,1 : Cm →
(
(C⊗ Cm)

∗)0,1
given by [0,1 (v) = 2−

1
2 [ (v + iJv) is a C-linear

isometry, since it is clearly an R-linear isometry and

[0,1 (Jv) = 2−
1
2 [ (Jv − iv) = 2−

1
2 [ (−i (v − iJv)) = i2−

1
2 [ (v − iJv) = i[0,1 (v)

Thus, [0,1 extends to a C-linear isometry

Λ
(
[0,1
)

: Λ∗ (Cm) ∼= Λ0,∗ ((C⊗ Cm)
∗)
.

Recall that Λ∗ (Cm) provides a representation space for an irreducible Cl2m-module

ρC : Cl2m → End (Λ∗ (Cm)) .

Here ρC is the C-linear extension of

ρ : Cl2m → End (Λ∗ (Cm)) ,

which was described as follows. Let R2m ∼= Cm be the usual isomorphism

(x1, y1, . . . , xm, ym) = (x1 + iy1, . . . , xm + iym) .

For w ∈ Cm, define

ρ1 : R2m ∼= Cm → End (Λ∗ (Cm)) by

ρ1 (w) (α) := (w ∧ − wx) (α) = w ∧ α− wxα.

We verified that ρ1 extends to ρ : Cl2m → End (Λ∗ (Cm)). In this way one may view
the space Σ2m of spinors concretely as Λ∗ (Cm). There is then the representation

ρ|Spin(n) : Spin (n)→ SU (Σ2m) .

Since ρ : Cl2m → End (Λ∗ (Cm)) is an algebra homomorphism, for α ∈ spin (n) =
L
(
Λ2 (Cm)

)
⊂ Cl2m, we have ρ (etα) = etρ(α), and so(

ρ|Spin(n)

)′
(α) = d

dtρ
(
etα
)

= d
dt

(
etρ(α)

)
= ρ (α) .

Thus, (
ρ|Spin(n)

)′
= ρ|spin(n) = ρ|L(Λ2(Cm)).

Recall that we also have the 2-fold covering c : Spin (n)→ SO (n). Since there is a
natural injection

ι : U (m)→ SO (n) ,

at first one might guess that on the level of Lie algebras, the action of u (m) ⊂
so (2m) ∼= spin (2m) on Λ∗ (Cm) given by(

ρ|Spin(n)

)′
: u (m)→ End (Λ∗ (Cm))

coincides with the usual (Λ∗)
′

: u (m) → End (Λ∗ (Cm)) where Λ∗ : U (m) →
End (Λ∗ (Cm)) is the usual representation induced by the defining (identitity) rep-
resentation U (m) → U (Cm). Explicitly, for A ∈ U (m) and 0 ≤ l ≤ m, we have
Λl (A) ∈ End

(
Λl (Cm)

)
given by

Λl (A) (fj1 ∧ fj2 ∧ · · · ∧ fjl) := Afj1 ∧Afj2 ∧ · · · ∧Afjl ,
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and this extends to Λ∗ : U (m)→ End (Λ∗ (Cm)). Although
(
ρ|Spin(n)

)′ 6= (Λ∗)
′
, the

two representations are related in a way which will ultimately exhibit
√

2
(
∂̄ + ∂̄∗

)
at least locally as a twisted generalized Dirac operator, thereby justifying the com-

putation (18.156) via forms. We now describe how
(
ρ|Spin(n)

)′
and (Λ∗)

′
are related.

For λ = (λ1, . . . , λm) ∈ Rm, let Bλ ∈ u (m) be the diagonal matrix

Bλ := diag (iλ1, . . . , iλm) .

The endomorphism (Λ∗)
′
(Bλ) ∈ End (Λ∗ (Cm)) leaves each of the Λl (Cm) (l =

1, · · · ,m) fixed. Explicitly,
(
Λl
)′

(Bλ) ∈ End
(
Λl (Cm)

)
(induced byBλ ∈ End (Cm))

is given simply by

Λl (Bλ) (fj1 ∧ fj2 ∧ · · · ∧ fjl) = i (λj1 + · · ·+ λjl) (fj1 ∧ fj2 ∧ · · · ∧ fjl) .

We wish to compare (Λ∗)
′
(Bλ) with(

ρ|Spin(n)

)′ (
c′−1 (ι (Bλ))

)
∈ End (Σ2m) = End (Λ∗ (Cm)) .

Recall that for A = [aij ] ∈ so (n), the Lie agebra isomorphism c′ : spin (2m) =
L
(
Λ2
(
R2m

)) ∼= so (n) for the covering c : Spin (2m)→ SO (2m) is given by

c′(− 1
4

∑
i,j

aijeiej) := A.

For ι : U (m)→ SO (n) , the associated Lie algebra map ι′ : u (m)→ so (n) applied
to Bλ is given by

ι′ (Bλ) (e2j−1) = λje2j and ι′ (Bλ) (e2j) = −λje2j−1, j = 1, . . . ,m, so that

ι′ (Bλ)2j,2j−1 = λj and ι′ (Bλ)2j−1,2j = −λj .

Then

ι′ (Bλ) = c′(− 1
4

∑n

i,j=1
ι (Bλ)ij eiej) = c′(− 1

2

∑m

j=1
ι (Bλ)2j−1,2j e2j−1e2j)

= c′( 1
2

∑m

j=1
λje2j−1e2j).

We have shown (see (18.14), p. 490) that the action of ρ (e2j−1e2j) on fj1 ∧ fj2 ∧
· · · ∧ fjl is given by

ρ (e2j−1e2j) (fj1 ∧ fj2 ∧ · · · ∧ fjl)

=

{
i (fj1 ∧ fj2 ∧ · · · ∧ fjl) if jk = j for some k
−i (fj1 ∧ fj2 ∧ · · · ∧ fjl) if jk 6= j for all k

= 2i

(∑l

k=1
δjjk (fj1 ∧ fj2 ∧ · · · ∧ fjl)

)
− i (fj1 ∧ fj2 ∧ · · · ∧ fjl) , and so

(
ρ|Spin(n)

)′ (
c′−1 (ι′ (Bλ))

)
(fj1 ∧ fj2 ∧ · · · ∧ fjl)

= ρ( 1
2

∑
j

λje2j−1e2j) (fj1 ∧ fj2 ∧ · · · ∧ fjl)

= i
∑m

j=1

∑l

k=1
λjδ

j
jk

(fj1 ∧ fj2 ∧ · · · ∧ fjl)− i
(

1
2

∑m

j=1
λj

)
(fj1 ∧ fj2 ∧ · · · ∧ fjl)

=
(
Λl
)′

(Bλ) (fj1 ∧ fj2 ∧ · · · ∧ fjl)− i
(

1
2

∑m

j=1
λj

)
(fj1 ∧ fj2 ∧ · · · ∧ fjl)

=
((

Λl
)′

(Bλ)− i
(

1
2

∑m

j=1
λj

))
(fj1 ∧ fj2 ∧ · · · ∧ fjl) .
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Since this holds for arbitrary l,

ρ
(
c′−1 (ι′ (Bλ))

)
= − 1

2

(
i
∑m

j=1
λj

)
+ (Λ∗)

′
(Bλ)

= − 1
2 Tr (Bλ) Id + (Λ∗)

′
(Bλ) , or

(Λ∗)
′
(Bλ) = 1

2 Tr (Bλ) Id +ρ
(
c′−1 (ι′ (Bλ))

)
.(18.157)

Although (Λ∗)
′
(Bλ) and ρ

(
c′−1 (ι′ (Bλ))

)
are different, this formula provides a defi-

nite comparison. While (Λ∗)
′
does not have values in ρ (spin (2m)) = ρ

(
L
(
Λ2
(
R2m

)))
,

it does have values in the slightly larger space ρC (iR⊕ spin (2m)). Note that
iR⊕ spin (2m) is the Lie algebra of

U (1) Spin (2m) := {zg : g ∈ Spin (2m) , z ∈ C, |z| = 1} ⊂ Cl (2m) .

This suggests (as we will show) that possibly there is a homomorphism

j : U (m)→ U (1) Spin (2m) such that

ρC ◦ j′ = (Λ∗)
′

: u (m)→ End (Λ∗ (Cm)) .

If so, then by (18.157),

j′ (Bλ) = ρ−1
C ◦ Λ∗′ (Bλ) = 1

2 Tr (Bλ) + c′−1 (ι′ (Bλ)) ⊆ iR⊕ spin (2m) .

From this, it can be conjectured that for A ∈ U (m) with an orthonormal basis of
eigenvectors v1, . . . , vm and eigenvalues eiθ1 , . . . , eiθm , one can define

j (A) = exp
(
i
2

∑m

k=1
θk

)∏m

k=1

(
cos
(

1
2θk
)

+ sin
(

1
2θk
))
vkJvk.

However, there is a problem (not impossibly difficult) with showing that this yields
a well defined, continuous homomorphism, independent of the choice of the vk.
Alternatively, we obtain j as follows. Note that the homomorphism

(18.158) χ : U (1)× Spin (2m)→ U (1) Spin (2m) given by χ (z, σ) := zσ

is onto with kernel {± (1, 1)}, since

zg = 1⇒ g = z−1 ⇒ g ∈ R ∩ U (1)⇒ g = ±1⇒ (z, g) = ± (1, 1) .

Thus, we are motivated to define

(18.159) Spinc (n) := U (1) Spin (2m) ∼=
U (1)× Spin (n)

{± (1, 1)}
.

Often Spinc (n) is defined to be the group on the right. This has the advantage of
making it clear that Spinc (n) is not U (1) × Spin (n), and our definition exhibits
Spinc (n) as a subgroup of Cl (2m), with Lie algebra iR ⊕ spin (2m). There is a
double-covering homomorphism (with kernel {1,−1})

Sq × c : Spinc (n)→ U (1)× SO (n) given by

(Sq × c) (zg) :=
(
z2, c (g)

)
,(18.160)

which is well-defined since
(

(−z)2
, c (−g)

)
=
(
z2, c (g)

)
.
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Proposition 18.70. There exists a lifting homomorphism j : U (m)→ Spinc (n),
such that det×ι = j ◦ (Sq × c); i.e., the diagram

(18.161)

Spinc (n)
ρC→ U (Σ2m) = U (Λ∗ (Cm))

j

↗ ↓ Sq × c
U (m)

det×ι→ U (1)× SO (n)

commutes. Moreover,

ρC ◦ j = Λ∗ : U (m)→ U (Λ∗ (Cm)) .

Proof. The existence of a continuous map j : U (m)→ Spinc (n) with det×ι =
j ◦ (Sq × c) will be deduced from covering space theory by showing

(det×ι)# (π1 (U (m) , I)) ⊆ (Sq × c)# (π1 (Spinc (n) , 1)) .

We have

π1 (U (m) , I) ∼= Z, π1 (Spinc (n) , 1) ∼= Z, and

π1 (U (1)× SO (n) , (1, I)) ∼= Z× Z2.

The generator, say gU(m), of π1 (U (m) , I) is represented by U (1)→ U (m) , given

by eiθ 7→ diag
(
eiθ, 1, . . . , 1

)
, and the generator gSO(n) of π1 (SO (n) , I) is repre-

sented by

eiθ 7→
[

cos θ − sin θ
sin θ cos θ

]
⊕ I2n−2.

By means of gU(m) and gSO(n), we identify π1 (U (1)× SO (n) , (1, I)) = Z× Z2. We

have (det×ι)#

(
gU(m)

)
=
(
gU(1), gSO(n)

)
, since

(det×ι)
(
diag

(
eiθ, 1, . . . , 1

))
=

(
eiθ,

[
cos θ − sin θ
sin θ cos θ

]
⊕ I2n−2

)
,

The group G of covering transformations of the covering Sq×c : Spinc (n)→ U (1)×
SO (n) consists of Id and the map zg 7→ −zg. The image, say N , of π1 (Spinc (n) , 1)
under the monomorphism (Sq × c)# is then a subgroup of π1 (U (1)× SO (n) , (1, I)) =
Z× Z2. Note that N is normal since Z× Z2 is abelian. From standard covering
space theory, we then have Z2

∼= G ∼= (Z× Z2) /N . There are several subgroups of
Z× Z2 of index 2, namely Z×{0}, 2Z× Z2, and

(18.162) N = {(p, pmod 2) : p ∈ Z}
which is generated by (1, 1) =

(
gU(1), gSO(n)

)
. To prove (18.162), it suffices to

observe that

eiθ 7→ eiθ/2
(
cos
(

1
2θ
)

+ sin
(

1
2θ
)
e1e2

)
, 0 ≤ θ ≤ 2π

is a loop in Spinc (n) projecting via Sq × c to a representative of (1, 1). This loop
then represents the generator, say gc, of π1 (Spinc (n) , 1) ∼= N ∼= Z. Now

(Sq × c)
[
eiθ/2, cos

(
1
2θ
)

+ sin
(

1
2θ
)
e1e2

]
=

(
eiθ, c

(
cos

θ

2
+ sin

θ

2
e1e2

))
=

(
eiθ,

[
cos θ − sin θ
sin θ cos θ

]
⊕ I2n−2

)
= (det×ι)

(
diag

(
eiθ, 1, . . . , 1

))
⇒ (det×ι)#

(
gU(m)

)
= (Sq × c)# (gc)

⇒ (det×ι)# (π1 (U (m))) = (Sq × c)# (π1 (Spinc (n))) .
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Covering space theory then provides us with a topological lifting j in the diagram
(18.161) which sends I ∈ U (m) to 1 ∈ Spinc (n). We prove that j is a homomor-
phism as follows. Since det×ι is a homomorphism and Sq × c is a two-fold cover,
for all A1, A2 ∈ U (m), we have

j (A1A2) j (A2)
−1
j (A1)

−1
= 1 or − 1,

but the left side is a continuous function of (A1, A2) which is 1 at (A1, A2) =

(I, I) , whence j (A1A2) j (A2)
−1
j (A1)

−1
= 1 for all (A1, A2) in the connected

space U (m)×U (m). Of course, the lift j of the C∞ map det×ι is smooth, since the
covering Sq× c is a local diffeomorphism. That ρC ◦ j = Λ∗ : U (m)→ U (Λ∗ (Cm))
can be deduced as follows. Since

(ρC ◦ j)′ (Bλ) =
(
ρC ◦ (Sq × c)′−1 ◦ (det×ι)′

)
(Bλ)

= ρC ◦ (Sq × c)′−1
(Tr (Bλ) , ι′ (Bλ))

= ρC
(

1
2 Tr (Bλ) + c′−1 (ι′ (Bλ))

)
= 1

2 Tr (Bλ) + ρ
(
c′−1 (ι′ (Bλ))

)
= (Λ∗)

′
(Bλ) ,

by (18.157), (ρC ◦ j)′ and Λ∗′ agree on the (Cartan) subalgebra t := {Bλ : λ ∈ Rm} ⊂
u (m) which is the Lie algebra of the (maximal) torus

T :=
{
diag

(
eiλ1 , . . . , eiλm

)
: λ ∈ Rm

}
⊂ U (m) .

Thus, Λ∗|T = (ρC ◦ j) |T . Those sufficiently familiar with the theory of representa-
tions of compact Lie groups will then conclude that Λ∗ = ρC ◦ j, but for those less
familiar with the theory, we offer the following. Since for every A ∈ U (m) there is
B ∈ U (m) such that BAB−1 ∈ T , we have

Tr (Λ∗ (A)) = Tr
(

Λ∗ (B)
−1

Λ∗ (A) Λ∗ (B)
)

= Tr
(
Λ∗
(
BAB−1

))
= Tr

(
(ρC ◦ j)

(
BAB−1

))
= Tr ((ρC ◦ j) (A)) .

Hence the characters Tr ◦ (ρC ◦ j) and Tr ◦Λ∗ of the representations ρC ◦ j and
Λ∗ are the same, which implies (see 4.10.2, p. 107 of [Wal]) that ρC ◦ j and Λ∗

are equivalent. Thus ρC ◦ j and Λ∗ differ by a constant multiple on each of the
irreducible subspaces Λl (Cm). But the constant multipliers are all 1, since ρ ◦ j
and Λ∗ agree on T . Hence, Λ∗ = ρC ◦ j; i.e., we have

(18.163)

Spinc (n)
ρC→ U (Λ∗ (Cm)) = U (Σ2m)

↑ j ↓ Id

U (m)
Λ∗→ U (Λ∗ (Cm)) .

�

Let M be a complex manifold of complex dimension m with a Riemannian
metric h which makes M a Kähler manifold. The homomorphism j : U (m) →
Spinc (n) yields a Spinc (n)-bundle PSpinc(n) →M, namely

PSpinc(n) := U (M)×U(m) Spinc (n) , and a bundle morphism

fj : U (M)→ PSpin(n) (namely, u 7→ [u, 1] ),
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which is equivariant in the sense that fj (uA) = fj (u) j (A). The bundle Λ0,n (TCM
∗)

of complex dimension 1 is known as the canonical line bundle for M . Let PU(1) be

the unitrary frame bundle for Λn,0 (TCM). Then

Λ0,n (TCM
∗) ∼= Λn,0 (TCM) = PU(1) ×U(1) C,

There is an equivariant bundle morphism ∧n : U (M) → PU(1) given by ∧n (u) 7→
u (e1)∧· · ·∧u (em), where e1, . . . , em is the standard basis for Cm and u : Cm → TM

is a unitary frame. Since we will find that it is only necessary to exhibit
√

2
(
∂ + ∂̄

)
locally as a twisted Dirac operator, until further notice, we now hypothesize (as is
always locally the case)
(18.164)

Assumption: There are
1. a spin structure PSpin(n) → FM and principal U (1) -bundle P ′U(1), and

2. an equivariant bundle map πχ : P ′U(1) ×f PSpin(n) → PSpinc(n),

such that πχ ((p′, p) g) = πχ ((p′, p))χ (g) for all g ∈ U (1)× Spin (n) .

We then have a commutative diagram of bundle morphisms

P ′U(1) ×f PSpin(n)

πχ ↓
U (M)

fj→ PSpinc(n)

↓ ∧n ↘fdet×ι ↓ πSq×c
PU(1)

Id×In→ PU(1) ×f FM

equivariant with respect to the following diagram of group homomorphisms:

U (1)× Spin (n)
↓ χ

U (m)
j→ Spinc (n)

↓ det ↘det×ι ↓ Sq × c
U (1)

Id×I→ U (1)× SO (n) .

Since ((Sq × c) ◦ χ) (z, g) = (Sq × c) (zg) =
(
z2, c (g)

)
, under the composition

πSq×c◦πχ, a point (p′, p) ∈ P ′U(1)×f PSpin(n) is sent to a point (q′, q) ∈ PU(1)×f FM
where q′ is independent of the choice of p. Thus, πSq×c ◦ πχ determines a bundle
map, say

πs : P ′U(1) → PU(1).

Moreover, since πs (p′z) = πs (p′) z2, πs is a double cover. Since πs and C⊗C ∼= C
are equivariant relative to the homomorphism z 7→ z2 of U (1), it follows that
L := P ′U(1) ×U(1) C is a line bundle, such that

L⊗ L ∼= PU(1) ×U(1) C = Λn,0 (TCM) ∼= Λ0,n (TCM
∗) .

In other words, under the assumption (18.164), L is a square-root of the canonical
line bundle for M . In general, L exists locally. As usual, let

Σ± (M) := PSpin(n) ×Spin(n) Σ±2m and Σ (M) := Σ+ (M)⊕ Σ− (M) .

We claim that there is a natural isomorphism

(18.165) L⊗ Σ (M) ∼= Λ0,∗ (TCM
∗) .
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Let µ : U (1)→ U (C) be given by µ (z)w = zw. We then have the representation

µ⊗ ρ : U (1)× Spin (n)→ U (C⊗R Σ2m)

There is also an isomorphism φ : C⊗R Σ2m → Σ2m given by φ (z ⊗ σ) := zσ. Note
that φ equivariant in the sense that for each (ζ, g) ∈ U (1)× Spin (n) ,

C⊗R Σ2m
(µ⊗ρ)(ζ,g)→ C⊗R Σ2m

φ ↓ ↓ φ
Σ2m

ρC(χ(ζ,g))→ Σ2m

commutes. Indeed, for z ⊗ σ ∈ C⊗R Σ2m,

ρC (χ (ζ, g)) (φ (z ⊗ σ)) = ρC (ζg) (zσ) = ζρ (g) (zσ) = ζzρ (g) (σ)

= φ (ζz ⊗ ρ (g) (σ)) = φ ((ι⊗ ρ) (ζ, g) z ⊗ σ) .

Consequently, the diagram (where Φ (T ) := φ ◦ T ◦ φ−1)

U (1)× Spin (n)
µ⊗ρ→ U (C⊗R Σ2m)

χ ↓ ↓ Φ

Spinc (n)
ρC→ U (Σ2m) ,

↑ j ↓ Id

U (m)
Λ∗→ U (Λ∗ (Cm))

commutes and extends (18.163). Since Λ∗ = ρC◦j : U (m)→ U (Σ2m) = U (Λ∗ (Cm)),
it follows (see Proposition 16.22, p.380) that

(18.166) U (M)×U(m) Λ∗ (Cm) ∼= PSpinc(n) ×Spinc(n) Σ2m.

Moreover, since the diagrams

C⊗R Σ2m
(µ⊗ρ)(ζ,g)→ C⊗R Σ2m

φ ↓ ↓ φ
Σ2m

ρC(χ(ζ,g))→ Σ2m

and
U (1)× Spin (n)

µ⊗ρ→ U (C⊗R Σ2m)
χ ↓ ↓ Φ

Spinc (n)
ρC→ U (Σ2m) ,

commute, the isomorphism φ : C⊗Σ2m → Σ2m is equivariant. Then (see Proposi-
tion 16.22, p.380)

L⊗ Σ (M) = PU(1)×Spin(n) ×U(1)×Spin(n) (C⊗ Σ2m)

∼= PSpinc(n) ×Spinc(n) Σ2m
∼= U (M)×U(m) Λ∗ (Cm)

∼= Λ0,∗ (TCM
∗) ,(18.167)

where we have used (18.166). This is the desired natural isomorphism (18.165).
Note that via (18.167), Λ0,∗ (TCM

∗) may be regarded as an associated bundle of
PU(1)×Spin(n). However, Λ0,∗ (TCM

∗) is not associated to FM or PSpin(n) and hence
is not a Clifford module bundle in the strict sense of Definition (18.54). Never-
theless, under the Assumption (18.164), Λ0,∗ (TCM

∗) is a twisted Clifford module
bundle, since Σ (M) is a Clifford module bundle and Λ0,∗ (TCM

∗) is obtained by
twisting Σ (M) with L. To prove the Hirzebruch-Riemann-Roch Theorem, it re-

mains to check the twisted Dirac operator DL,Σ2m corresponds to
√

2
(
∂̄ + ∂̄∗

)
.

More precisely, the above isomorphism in (18.167), say

φM : L⊗ Σ (M) ∼= Λ0,∗ (TCM
∗) ,
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provides us with a linear isomorphism

Γ (φM ) : C∞ (L⊗ Σ (M))→ Ω0,∗ (M) given by

Γ (φM ) [ψ] (y) = φM (ψ (y)) .

Of course the isomorphism φM of vector bundles also induces a corresponding
isomorphism, still denoted by Γ (φM ), between the spaces of exterior forms with
values in these vector bundles. Now we need to show that, under Γ (φM ), the

twisted Dirac operator DL,Σ2m on C∞ (L⊗ Σ (M)) corresponds to
√

2
(
∂̄ + ∂̄∗

)
on

Ω0,∗ (M). In other words,

Γ (φM )
[
DL,Σ2mψ

]
=
√

2
(
∂̄ + ∂̄∗

)
(Γ (φM ) [ψ])

Recall that

DL,Σ2m := (1⊗ cl) ◦ ∇ : C∞ (L⊗ Σ (M))→ C∞ (L⊗ Σ (M)) ,

while √
2
(
∂̄ + ∂̄∗

)
:= Ω0,∗ (M)→ Ω0,∗ (M) .

We first need to show that Γ (φM ) respects covariant differentiation

Γ (φM ) [∇ψ] = ∇ (Γ (φM ) [ψ]) ,

but this is a consequence of the facts that φ is equivariant and that the connection
forms on PU(1)×Spin(n) and PSpinc(n) are both pull-backs via

PU(1)×Spin(n)
πχ→ PSpinc(n)

πSq×c→ PU(1)×SO(n)

of the connection 1-form θ0,n⊕θ on PU(1)×SO(n), where θ is the Levi-Civita on FM

and θ0,n is the connection induced by θ on unitrary frame bundle for Λ0,n (TCM
∗),

namely PU(1). We show

(18.168) Γ (φM ) [Dψ] =
√

2
(
∂̄ + ∂̄∗

)
(Γ (φM ) [ψ])

as follows. It is enough to show that (18.168) holds at an arbitrary point x ∈
M . We continue to let

(
x1 + iy1, . . . , xm + iym

)
be complex coordinates about

x ∈ M such that
(
∂x1 , ∂y1 , . . . , ∂xm , ∂ym

)
are orthonormal at x relative to hx, and

∇ (∂xi) = ∇
(
∂yi
)

= 0 at x. It is convenient to replace our model Λ∗ (Cm) for

Σ2m by Λ0,∗ ((C⊗R Cm)
∗)

which is unitarially equivalent to Λ∗ (Cm) via the the
C-linear map

Λ∗ (Cm) ∼= Λ0,∗ ((C⊗R Cm)
∗)

induced by
√

2[ ◦ π0,1 : Cm ∼= Λ0,1
(
(C⊗R Cm)

∗)
, i.e.,

Λ1 (Cm) 3 v 7→
√

2[
(

1
2 (v + iJv)

)
∈ Λ0,1

(
(C⊗R Cm)

∗)
Note that

∣∣([ ◦ π0,1
)

(v)
∣∣ =

∣∣π0,1 (v)
∣∣ = 1√

2
|v|, so that

∣∣√2
(
[ ◦ π0,1

)
(v)
∣∣ = |v|.

Clifford multiplication of v ∈ R2m ∼= Cm on Λ0,∗ ((C⊗R Cm)
∗)

is then
√

2
((
[ ◦ π0,1

)
(v) ∧ − x

(
[ ◦ π0,1

)
(v)
)
.

Any section of ψ ∈ C∞ (L⊗ Σ (M)) is locally of the form

ψ =

m∑
k=1

∑
(j)k

ψj1...jk (φM )
−1 (

dz̄j1 ∧ · · · ∧ dz̄jk
)
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and Γ (φM ) [ψ] ∈ Ω0,∗ (M,C) is given by

Γ (φM ) [ψ] =

m∑
k=1

∑
(j)k

ψj1...jkdz̄
j1 ∧ · · · ∧ dz̄jk , ψj1...jk ∈ C∞ (M,C) .

Let

µC =
dz1 ∧ · · · ∧ dzm

|dz1 ∧ · · · ∧ dzm|
and µ̄C =

dz̄1 ∧ · · · ∧ dz̄m

|dz̄1 ∧ · · · ∧ dz̄m|
Then µ̄C is a local frame for the canonical line bundle Λ0,n (TCM

∗); i.e., µ̄C is a
local section of PU(1) and we let

√
µ̄C denote the corresponding local section of

P ′U(1) so that

(φM )
−1 (

dz̄j1 ∧ · · · ∧ dz̄jk
)

=
√
µ̄C ⊗

(
dz̄j1 ∧ · · · ∧ dz̄jk

)
.

Since dzk and dz̄k are parallel at x, µC and µ̄C are also parallel at x. Moreover,(
[ ◦ π0,1

)
(∂xk) = [ 1

2

(
∂xk + i∂yk

)
= [ (∂z̄k) = 1

2dz̄
k and(

[ ◦ π0,1
) (
∂yk
)

= [ 1
2

(
∂yk − i∂xk

)
= [ (−i∂z̄k) = i[ (∂z̄k) = i

2dz̄
k.

Thus at x,

DL,Σ2mψ =

m∑
k=1

∑
(j)k

DL,Σ2m

(
ψj1...jk (φM )

−1 (
dz̄j1 ∧ · · · ∧ dz̄jk

))

=

m∑
k=1

∑
(j)k

DL,Σ2m
(
ψj1...jk

√
µ̄C ⊗

(
dz̄j1 ∧ · · · ∧ dz̄jk

))
and

1√
2
DL,Σ2m

(
ψj1...jk

√
µ̄C ⊗

(
dz̄j1 ∧ · · · ∧ dz̄jk

))
=
(
[
(
∂0,1
xl

)
∧ −[

(
∂0,1
xl

)
x
)
∂xl (ψj1...jk)

√
µ̄C ⊗ dz̄j1 ∧ · · · ∧ dz̄jk

+
(
[
(
∂0,1
yl

)
∧ −[

(
∂0,1
yl

)
x
)
∂yl (ψj1...jk)

√
µ̄C ⊗ dz̄j1 ∧ · · · ∧ dz̄jk

=
(

1
2dz̄

l ∧ − 1
2dz̄

lx
)
∂xl (ψj1...jk)

√
µ̄C ⊗ dz̄j1 ∧ · · · ∧ dz̄jk

+
(
i
2dz̄

l ∧ − i
2dz̄

lx
)
∂yl (ψj1...jk)

√
µ̄C ⊗ dz̄j1 ∧ · · · ∧ dz̄jk

=
(
dz̄l ∧ −dz̄lx

)
1
2

(
∂xl + i∂yl

)
(ψj1...jk)

√
µ̄C ⊗ dz̄j1 ∧ · · · ∧ dz̄jk

= ∂z̄l (ψj1...jk)
(
dz̄l ∧ −dz̄lx

)√
µ̄C ⊗ dz̄j1 ∧ · · · ∧ dz̄jk .

Hence,

1√
2
Γ (φM )

[
DL,Σ2m

(
ψj1...jk

√
µ̄C ⊗

(
dz̄j1 ∧ · · · ∧ dz̄jk

))]
= ∂z̄l (ψj1...jk)

(
dz̄l ∧ −dz̄lx

)
Γ (φ)

(√
µ̄C ⊗ dz̄j1 ∧ · · · ∧ dz̄jk

)
= ∂z̄l (ψj1...jk)

(
dz̄l ∧ −dz̄lx

)
dz̄j1 ∧ · · · ∧ dz̄jk

=
(
∂̄ + ∂̄∗

) (
ψj1...jkdz̄

j1 ∧ · · · ∧ dz̄jk
)

=
(
∂̄ + ∂̄∗

) (
Γ (φM )

[
ψj1...jk

√
µ̄C ⊗ dz̄j1 ∧ · · · ∧ dz̄jk

])
and (18.168) holds by linearity. Since

Σ+
2m = Λeven (Cm) :=

⊕
l even

Λl (Cm) , while

Σ−2m = Λodd (Cm) :=
⊕

l odd
Λl (Cm) ,
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we have

L⊗ Σ+ (M)
φM∼= Λ0,even (TCM

∗) and L⊗ Σ− (M)
φM∼= Λ0,odd (TCM

∗) , and

Γ (φM ) ◦ DL,Σ2m ◦ Γ (φM )
−1

=
√

2
(
∂̄ + ∂̄∗

)
: Ω0,even (M)→ Ω0,odd (M) .

Hence under Assumption (18.164), we have exhibited
√

2
(
∂̄ + ∂̄∗

)
as a twisted Dirac

operator, and locally so if (18.164) fails globally. Thus, on a suitable neighborhood

B about any point (e.g., a normal ball), the local index density for
√

2
(
∂̄ + ∂̄∗

)
coincides with that for DL,Σ2m on B, where P ′U(1), PSpin(n), L and Σ (B) may only

exist over B. Let θ be the Levi-Civita connection 1-form on FM , let θ̃ be the
connection 1-form c′−1 (C∗ (θ|FB)) on PSpin(n), let θ0,m be the connection form

on PU(1) = U
(
Λ0,m (TCM

∗)
)

induced by θ|U(M), and let θ̃0,m = 1
2π
∗
sθ

0,m be the
related connection on P ′U(1) where πs : P ′U(1) → PU(1) is the double cover. The local

index density form for
√

2
(
∂̄ + ∂̄∗

)
|Ω0,even(M) is the same as that for DL,Σ2m on B,

namely

ch
(
L, θ̃0,m

)
∧ Â (M, θ)

= ch
(
L, θ̃0,m

)
∧ ch

(
PSpin(n), θ̃, ρ

′
)
∧ Ã (M, θ)

=
(
ch
(
P ′U(1), θ̃

0,m, µ′
)
∧ ch

(
PSpin(n), θ̃, ρ

′
))
∧ Ã (M, θ)

= ch
(
P ′U(1) × PSpin(n), θ̃

0,m ⊕ θ̃, (µ⊗ ρ)
′
)
∧ Ã (M, θ)

= ch
(
U (M) , θ|U(M),Λ

0,∗′) ∧ Ã (M, θ)

= ch
(
Λ0,∗ ((TCM)

∗)) ∧ Ã (M, θ) = Td (TM, θ) .(18.169)

Thus, we obtain

Theorem 18.71 (Hirzebruch-Riemann-Roch Theorem). Let M be a compact
Kähler manifold. Then

Index
((
∂̄ + ∂̄∗

)
: Ω0,even (M)→ Ω0,odd (M)

)
= Td (TM) [M ] .

There is also a twisted version of the Hirzebruch-Riemann-Roch Theorem. Let
E → M be a Hermitian vector bundle with a covariant derivative ∇E arising
from a unitary connection 1-form ε on U (E). We have the spaces Ωp,q (M,E) :=
C∞ (E ⊗ Λp,q (TCM

∗)) of E-valued forms of bidegree (p, q), which are locally of the
form (in multi-index notation)

φ =
1

p!q!

∑
(j),(k)

f(j)p;(k)q
⊗ dz(j)p ∧ dz̄(k)q ,

where f(j)p;(k)q
is a local section of E. Moreover, there are global operators

∂E : Ωp,q (M,E)→ Ωp+1,q (M,E) and ∂̄E : Ωp,q (M,E)→ Ωp,q+1 (M,E)
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determined locally by

∂Eφ =
1

p!q!

∑
h,(j),(k)

∇E∂
zh

(
f(j)p;(k)q

)
dzh ∧ dz(j)p ∧ dz̄(k)q , and

∂̄Eφ =
1

p!q!

∑
h,(j),(k)

∇E∂
z̄h

(
f(j)p;(k)q

)
dz̄h ∧ dz(j)p ∧ dz̄(k)q .(18.170)

Note that just as ∂̄ + ∂̄∗ was shown to be locally a twisted Dirac operator (twisted
by L), ∂̄E + ∂̄E∗ is also locally a twisted Dirac operator (twisted by E ⊗ L).

Theorem 18.72 (Twisted Hirzebruch-Riemann-Roch Theorem). Let M be a
compact Kähler manifold and let E →M be a Hermitian vector bundle. Then

Index
(
∂̄E + ∂̄E∗ : Ω0,even (M,E)→ Ω0,odd (M,E)

)
= (ch (E) ` Td (M)) [M ] .

Proof. Using the local computation (18.169), we get

ch
(
E ⊗ L, (ε, θ̃0,m)

)
∧ Â (M, θ)

= ch (E, ε) ∧
(
ch
(
L, θ̃0,m

)
∧ Â (M, θ)

)
= ch (E, ε) ∧Td (TM, θ) .

�

There is a perhaps more familiar version of Theorem 18.72 which applies when
E → M is holomorphic. We say that the complex vector bundle of complex fiber
dimension N πE : E → M over the complex manifold M is holomorphic if E
has the structure of a complex manifold, and about each point x ∈ M there is a
neighborhood B and a biholomorphic vector bundle map

φB : π−1
E (B)→ B × CN .

which we call a holomorphic trivialization. If E has complex fiber dimensionN , then
the C-linear frames of E (linear maps u from CN to Ex for x ∈M) form a principal
GL (N,C)-bundle, say π̃E : GL (E) → M , and if E has a Hermitian structure,
U (E) → M is a principal subbundle. Although U (E) does not generally have a
complex structure, we show that GL (E) does. Each holomorphic trivialization φB
determines a section uφ : B → GL (E) given (for z ∈CN ) by

uφ (y) (z) = φ−1
B (y, z) .

An arbitrary frame u ∈ GL (E) at y ∈ B is of the form uφ (y) ◦ Aφ (u) for some
Aφ (u) ∈ GL (N,C). We then obtain a map

φ̃B : GL (E) |B → B ×GL (N,C) given by φ̃B (u) = (y,Aφ (u))

If φ′B′ : π−1
E (B′)→ B′ × CN is another holomorphic trivialization, then

uφ (y) ◦Aφ (u) = u = uφ′ (y) ◦Aφ′ (u) , and so(
φ̃′B′ ◦ φ̃−1

B

)
(y,Aφ (u)) = φ̃′B′ (u) =

(
y, uφ′ (y)

−1 ◦ uφ (y) ◦Aφ (u)
)
.
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Now φ̃′B′ ◦φ̃
−1
B : (B ∩B′)×GL (N,C)→ (B ∩B′)×GL (N,C) is holomorphic, since

for (y, C) ∈ (B ∩B′)×GL (N,C),(
φ̃′B′ ◦ φ̃−1

B

)
(y, C) =

(
y, uφ′ (y)

−1 ◦ uφ (y) ◦ C
)

=
(
y,
(
φ′−1
B′ (y, ·)

)−1 ◦ φ−1
B (y, ·) ◦ C

)
(18.171)

is a holomorphic function of (y, C). We now define an operator

∂̄E : Ωp,q (M,E)→ Ωp,q+1 (M,E)

that generalizes ∂̄ : Ωp,q (M) → Ωp,q+1 (M) which is the special case E = M × C.
If f1, . . . , fN is the standard basis for CN and sj (x) := φ−1

B (x, fj), then locally, ∂̄E
is given by

∂̄E

(∑
k,(i)p,(j)q

αk,(i)(j)sk ⊗ dz(i)p ∧ dz̄(j)q

)
:=
∑

k,(i),(j)
∂̄
(
αk,(i)(j)

)
sk ⊗ dz(i) ∧ dz̄(j).(18.172)

This is well-defined (independent of local holomorphic trivialization and coordi-
nates), since ∂̄ kills holomorphic functions. By definition, the kernel of ∂̄E consists
of the holomorphic sections of E. Note that ∂̄E ◦ ∂̄E = 0 and so we have an exact
sequence

Ω0,0 (M,E)
∂̄E→ · · · ∂̄E→ Ω0,q (M,E)

∂̄E→ Ω0,q+1 (M,E)
∂̄E→ · · · ,

along with cohomology groups

Hq (OE) :=
Ker

(
∂̄E |Ω0,q(M,E)

)
∂̄E (Ω0,q−1 (M,E))

.

Since ∂̄E ◦ ∂̄E = 0, ∂̄E is like a covariant derivative operator for a connection 1-
form on GL (E) with zero curvature. Indeed, on B×GL (N,C) there is a standard
flat connection 1-form given in terms of coordinates (y, C) by C−1dC. On B′ ×
GL (N,C), with coordinates (y, C ′), we have C ′−1dC ′. In view of (18.171),

C ′ =
(
φ′−1
B′ (y, ·)

)−1 ◦ φ−1
B (y, ·) ◦ C and so

dC ′ = d
((
φ′−1
B′ (y, ·)

)−1 ◦ φ−1
B (y, ·)

)
◦ C ′ +

(
φ′−1
B′ (y, ·)

)−1 ◦ φ−1
B (y, ·) ◦ dC

Because of the first term, it is not true that C ′−1dC ′ = C−1dC. However, the (0, 1)-

component of the first term is 0 since
(
φ′−1
B′ (y, ·)

)−1 ◦ φ−1
B (y, ·) is a holomorphic

function of y, and so

C ′−1∂̄C ′ = C−1∂̄C on (B ∩B′)×GL (N,C) .

In particular, the equations ∂̄C ′ = 0 and ∂̄C = 0 define the same horizontal dis-
tribution of subspaces of T 0,1

(
π̃−1
E (B ∩B′)

)
⊆ T 0,1 (GL (E)), of C-dimension m,

and so we obtain a well-defined horizontal distribution of T 0,1 (GL (E)). A gen-
uine connection on GL (E) determines a horizontal distribution of real subspaces
T (GL (E)) of R-dimension 2m, and hence a horizontal distribution TC (GL (E)) of
C-dimension 2m. In essence, C−1∂̄C is the well-defined (0, 1)-component of an ill-
defined flat connection C−1dC, and ∂̄E is the well-defined (0, 1)-component of the
“ill-defined covariant derivative” for C−1dC. To avoid additional notation, we still
use C−1∂̄C to denote the global (0, 1)-form given locally as C−1∂̄C. Proposition
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18.76 below asserts that the Hermitian metric on E determines a standard well-
defined (1, 0)-component ω1,0 whose sum with C−1∂̄C is a “complex connection
1-form”

ω = ω1,0 ⊕ C−1∂̄C ∈ Ω1
C (GL (E) , glC (n,C)) ,

where glC (n,C) = C ⊗R gl (n,C). By “complex connection 1-form”, we mean
that although ω is not necessarily the complex extension of a (real) connection
1-form in Ω1 (GL (E) , gl (n,C)), at each point u ∈ GL (E) the form ω is defined on
TC GL (E)u := C⊗R Tu GL (E) and satisfies the usual relations

ωu
(
d
dt (u exp tA)

)
= A and R∗gω = g−1ωg,

for A ∈ gl (N,C) and g ∈ GL (N,C).

Definition 18.73. Let ω be a complex connection 1-form on GL (E) for a holo-
morphic vector bundle E. Then ω is compatible with the complex structure
on E if ω0,1 = C−1∂̄C.

Let Herm (N) be the space of all Hermitian N × N matrices and let r :
GL (N,C)→ End (Herm (N)) be the representation given by

r (g) (η) =
(
g−1

)T
ηḡ−1, for g ∈ GL (N,C) and η ∈ Herm (N) .

Note that r (g) is just pull-back by g−1, since

XT (r (g) (η)) Ȳ = XT
(
g−1

)T
ηḡ−1Ȳ =

(
g−1X

)T
η
(
g−1Y

)
.

Definition 18.74. If E has a Hermitian structure H, then ω is a Hermitian

connection for H if DωH̃ = 0, where

H̃ ∈ Ω̄0 (GL (E) , Herm (N))

=
{
f ∈ C∞ (GL (E) , Herm (N)) : f (ug) = r

(
g−1

)
f (u)

}
.

is the equivariant function corresponding to H.

Remark 18.75. If ∇E : C∞ (M,E) → Ω1 (M,E) is the covariant derivative
arising from ω, then ω is compatible with the complex structure on E iff

π0,1 ◦ ∇E = ∂̄E or ∇E = ∂̄E +
(
∇E
)1,0

.

Moreover, ω is a Hermitian connection for H if

d (H (V,W )) = H
(
∇EV,W

)
+H

(
V,∇EW

)
.

The connection in the following Proposition is variously known as the Chern
connection, the (1, 0)-connection, the metric connection, and the canonical connec-
tion for the Hermitian, holomorphic vector bundle E.

Proposition 18.76. Let M be a complex manifold and let E →M be a holo-
morphic vector bundle with Hermitian metric H. Then there is a unique complex
connection 1-form ω on GL (E) which is both compatible with the complex structure
on E and a Hermitian connection for H.

Proof. First we prove uniqueness. Suppose that ω exists. Then

(18.173) 0 = DωH̃ = dH̃ + r′ (ω) H̃ = dH̃ − ωH̃ − H̃ω.
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Note also that

H̃ (ug) = r
(
g−1

)
(H̃ (u)) = gT H̃ (u) ḡ

⇒ dH̃ (A∗u) = AT H̃ (u) + H̃ (u) Ā.(18.174)

Using the complex structure on GL (E), ω decomposes as ω = ω1,0⊕ω0,1. Observe
that ω1,0 and ω0,1 have values in C ⊗R gl (n,C), and any A ∈ gl (n,C) splits as

A1,0 + A0,1, where A1,0 = A0,1 ∈ C ⊗R gl (n,C). Since ω is compatible with
the complex structure on E, ω0,1 = C−1∂̄C in terms of the “coordinates” (y, C)
in B × GL (N,C). Then ω1,0 is uniquely determined by taking the (1, 0)-part of
(18.173), namely

0 = ∂H̃ −
(
ω1,0

)T
H̃ − H̃ω0,1 ⇒

(
ω1,0

)T
H̃ = ∂H̃ − H̃ω0,1

⇒ ω1,0 =

((
∂H̃ − H̃ω0,1

)(
H̃
)−1

)T
= H̃−1T

(
∂H̃T − ω0,1

T
H̃T
)
.

Since ω0,1
T

=
(
C−1∂̄C

)T
= ∂

(
C̄T
) (
C̄T
)−1

, we get

(18.175) ω1,0 = H̃−1T
(
∂H̃T − ∂

(
C̄T
) (
C̄T
)−1

H̃T
)
.

Thus, ω is unique. We mention that taking the (0, 1)-part of (18.173) and using H̃ =

H̃T gives the same result. Now if ω1,0 is defined by (18.175), then the sum

ω := H̃−1T
(
∂H̃T − ∂

(
C̄T
) (
C̄T
)−1

H̃T
)
⊕ C−1∂̄C

= H̃−1T
(
∂
(
C̄T
(
C̄T
)−1

H̃T
)
− ∂

(
C̄T
) (
C̄T
)−1

H̃T
)
⊕ C−1∂̄C

= H̃−1T C̄T∂
((
C̄T
)−1
)
H̃T ⊕ C−1∂̄C

is a complex connection on GL (E). Indeed, we have R∗gω = g−1ωg, since

(Cg)
−1
∂̄ (Cg) = g−1

(
C−1∂̄C

)
g, and(

r
(
g−1

)
H̃
)−1T

(
∂
(
r
(
g−1

)
H̃
)T
− ∂

(
Cg

T
)(

Cg
T
)−1 (

r
(
g−1

)
H̃
)T)

=
(
gT H̃ḡ

)−1T
(
∂
(
gT H̃ḡ

)T
− ∂

(
Cg

T
)(

Cg
T
)−1 (

gT H̃ḡ
)T)

=
(
g−1H̃−1T ḡ−1T

)(
ḡT∂

(
H̃T
)
g − ḡT∂

(
C
T
)(

C
T−1

ḡT−1
)(

ḡT H̃T g
))

= g−1H̃−1T
(
∂H̃T − ḡT∂

(
C̄T
) (
C̄T
)−1

H̃T
)
g.

To show ω (A∗) = A for A ∈ gl (n,C), note that (18.174) implies

∂H̃T (A∗u) = H̃TA1,0 +
(
ĀT
)1,0

H̃T , and then

ε̃ (A∗) = H̃−1T
(
∂H̃T (A∗)− ∂

(
C̄T
)

(A∗)
(
C̄T
)−1

H̃T
)
⊕ C−1∂̄C (A∗)

= H̃−1T
((
H̃TA1,0 +

(
ĀT
)1,0

H̃T
)
−
(
ĀT
)1,0

H̃T
)
⊕A0,1

= A1,0 ⊕A0,1 = A.

�
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If E is a holomorphic Hermitian bundle over a Kähler manifold and ∇E is the
covariant derivative of a complex connection 1-form on GL (E) which is a Hermitian
connection and compatible with the complex structure on E, then ∂̄E defined in
(18.170) agrees with ∂̄E defined in (18.172). Hence, by a Hodge theoretic proof
strictly analogous to that of Theorem 18.67, when E is Hermitian and holomorphic
we have

Hq (OE) ∼= Hq (E) := Ker
((
∂̄E + ∂̄E ∗

)
|Ω0,q(M,E)

)
.

The following theorem is then immediate.

Theorem 18.77 (Holomorphic Hirzebruch-Riemann-Roch Theorem). Let M
be a compact Kähler manifold and let E → M be a Hermitian holomorphic vector
bundle. Then the holomorphic Euler characteristic of E is given by

χ (E) :=
∑m

q=0
(−1)

q
dimHq (OE)

= Index
(
∂̄E + ∂̄E∗ : Ω0,even (M,E)→ Ω0,odd (M,E)

)
= (ch (E) ` Td (M)) [M ] .

In particular, χ (E), which seems to depend on the holomorphic structure of E,
actually only depends on the topology of E.



CHAPTER 19

Seiberg-Witten Theory

1. Background and Survey

Since the early 1980s, S. K. Donaldson and others have been proving re-
sults about smooth 4-manifolds using moduli spaces of instantons (self-dual SU(2)-
connections modulo gauge transformations). The approach inspired by Seiberg and
Witten (see [SW]) uses monopole moduli spaces (twisted spinor fields paired with
abelian U(1)-connections, modulo gauge transformations). Seiberg-Witten theory
not only provides simpler proofs of most of Donaldson’s results, but has generated
many new results, notably Taubes’ work concerning symplectic manifolds (e.g., see
[Tau94] and [Tau95]). We first introduce some notation, and review the major
results.

For a compact, simply-connected (and connected), oriented 4-manifold X, let
[X] ∈ H4(X;Z) be the fundamental class determined by the orientation. For the
standard definitions and results from algebraic topology in what follows, we refer
the reader to [Gr] and [Sp]. Let

QX : H2(X;Z)×H2(X;Z)→ Z
be the symmetric bilinear form (the so-called intersection form of X) given by

(19.1) QX(α, β) := [X] a (α ` β) = 〈α ` β, [X]〉 ,
where ` and a are the cup and cap products, and 〈·, ·〉 denotes the pairing between
homology and cohomology, namely the Kronecker product

〈·, ·〉 : Hq(X;Z)×Hq(X;Z)→ Z.

Note that if the orientation of X is switched, then QX changes to −QX . It is known
(see [Gr, p.180]) that α 7→ 〈α, ·〉 defines a surjection

h : Hq(X;Z)→ Hom (Hq(X;Z);Z) ,

but in general there may be a kernel. The Universal Coefficient Theorem (see [Gr,
p.189]) yields a split exact sequence

0→ Ext (Hq−1(X;Z);Z)→ Hq(X;Z)
h→ Hom (Hq(X;Z),Z)→ 0.

Since we assumed that X is simply-connected, H1(X;Z) = 0, and so

(19.2) h : H2(X;Z) ∼= Hom(H2(X;Z),Z),

which is a free, abelian Z-module (i.e., a lattice). In the smooth category, QX(α, β) =∫
X
α̃∧β̃, where α̃ and β̃ are closed 2-forms representing (non-torsion) integral classes

α and β, and the integral is defined via the given orientation on X. Poincaré duality
states that we have an isomorphism

(19.3) P := [X] a (·) : Hi(X;Z) ∼= H4−i(X;Z)

611
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Thus, H2(X;Z) ∼= H2(X;Z) is also a lattice. Hence, we may alternatively use

QX : H2(X;Z)×H2(X;Z)→ Z.

The term “intersection form” follows from the fact that if two classes in H2(X;Z)
are represented by a compact, oriented embedded surfaces which intersect trans-
versely, then QX on this pair is the intersection number of the two surfaces (i.e.,
the algebraic number of signed intersections, where the sign is ±1, depending on
whether the combined orientation of surfaces at an intersection point agrees with
that of X).

Proposition 19.1. If X is a compact, simply-connected, oriented 4-manifold,
then any class in H2(X;Z) is a homological sum of compact, oriented embedded
surfaces.

Proof. (sketch) Since X is simply-connected, the Hurewicz Isomorphism The-
orem (see [Sp, p.398]) yields an isomorphism π2 (X,x0) ∼= H2(X;Z). This implies
that the generators of H2(X;Z) can be represented by maps S2 → X. Such a
map can be approximated (within the same homotopy class) by an immersion f
with transverse self-intersections. We can find a small 4-ball Bi about each self-
intersection i (say i ∈ {1, . . . , g}), such that f

(
S2
)
∩ Bi consists of two disks Di1

and Di2 intersecting at a point. Note that f
(
S2
)
∩ ∂Bi is the union of the disjoint

circles ∂D1 and ∂D2 which can be joined by an embedded tube Ti ⊆ Bi (e.g.,(
(1− u) ei2πt, uei2πt

)
, t, u ∈ [0, 1]). Replacing Di1 ∪Di2 by Ti for each i, we obtain

an embedded surface Σ. Note that homology classes of Σ and f
(
S2
)

in H2(X;Z)
are the same in H2(X;Z), since these classes trivially determine the same element
in H2(X − ∪iB;Z) which is isomorphic to H2(X;Z) because attaching 4-balls to
X − ∪iB does not alter H2 (see [Gr, p.118]). Moreover, since Σ is obtained by
attaching g handles to S2 − ∪gi=1 (Di1 ∪Di2), Σ is an oriented surface of genus
g. �

Exercise 19.2. The connected sum M1#M2 of two n-manifolds M1 and M2

is the manifold obtained by removing a ball from each and gluing the exposed spher-
ical boundaries together. Show that for two compact, simply-connected, oriented
4-manifolds X1 and X2, we have

(19.4) QX1#X2
∼= QX1

⊕QX2
.

If needed, see [MilH, p.103-5].

Since X is simply-connected,

H1(X;Z) ∼= Hom(H1(X;Z),Z)⊕Tor (H0(X;Z) = {0}

{0} = H1(X;Z)
P∼= H3(X;Z) and H3(X;Z)

P∼= H1(X;Z) = {0}.

Thus, QX provides all of the homological/cohomological information about X. In-
deed, Milnor (in [Mil58]) announced that the oriented homotopy type of a simply-
connected, compact, oriented four-manifold X is completely determined by QX . A
proof is given in [MilH, p.103-5]. The form QX is nondegenerate over Z, meaning
that

w 7→ QX(w, ·) defines an isomorphim H2(X;Z) ∼= Hom(H2(X;Z),Z).
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This isomorphism is just

h ◦ P−1 : H2(X;Z)
P−1

∼= H2(X;Z)
h∼= Hom(H2(X;Z),Z).

Indeed, we can write w = [X] a α for a unique α = P−1(w) ∈ H2(X;Z). Then for
z := [X] a β ∈ H2(X;Z),

QX(w, z) = QX([X] a α, [X] a β) = QX(α, β) = [X] a (α ` β)

= [X] a (β ` α) = ([X] a β) a α

= z a α = 〈α, z〉 =
[(
h ◦ P−1

)
(w)
]

(z) .

Thus, the matrix of QX relative to a basis (i.e., a set of independent generators)
of H2(X;Z) not only has integer entries, but also has determinant ±1 (i.e., is
unimodular). Indeed, if {e1, ..., en} is a basis of H2(X;Z) and {δ1, ..., δn} is the
dual basis, then nondegeneracy implies that there are α1, ..., αn ∈ H2(X,Z), such
that (for αi =

∑n
k=1 αikek, αik ∈ Z)

(19.5) δi = QX(αi, ·) or δij = δi(ej) = QX(αi, ej) =

n∑
k=1

αik [QX ]kj .

Thus, [αik] is the inverse matrix of [QX ] with integer entries, and det (QX) det ([αik]) =
1⇒ det (QX) = ±1. In [Fr], Michael Freedman showed that any unimodular sym-
metric bilinear form over Zn (0 < n ∈ Z) is isomorphic to QX for some topological,
simply-connected, compact, oriented 4-manifold X. Moreover, up to homeomor-
phism there are at most two such X having a given intersection form. In order to
state this result more precisely, we introduce some terminology.

A unimodular symmetric bilinear form Q on a lattice, say Zn (n is the rank
of Q), is called even if Q(α, α) is even for all α ∈ Zn. Otherwise, Q is called odd.
Note Q is even iff all of the diagonal elements of a matrix representing Q are even,
since

Q(α, α) =

n∑
i=1

α2
iQ(ei, ei) + 2

n∑
i<j

αiαjQ(ei, ej) ≡
n∑
i=1

α2
iQ(ei, ei) mod 2.

The signature τ(Q) of Q is the number of positive minus the number of negative
entries when Q is diagonalized over R. If τ(Q) = ±rank(Q), then Q is definite and
otherwise Q is indefinite . The forms which indefinite are easy to describe (see
[MilH]):
1. If Q is indefinite and odd of rank n, then, relative to some basis, the matrix [Q]
of Q is given by the standard forms

(19.6) [Q] = diag(1, p..., 1,−1, q...,−1), p+ q = n.

2. If Q is indefinite and even, then relative to some basis, [Q] is block-diagonal,
with

(19.7) [Q] = H ⊕ ...⊕H ⊕± (E8 ⊕ ...⊕ E8) , (at least one H summand) where
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(19.8) H :=

[
0 1
1 0

]
and E8 :=



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


.

Remark 19.3. We show that (19.6) is the intersection form for the connected
sum

(19.9)
(
#pCP2

)
#
(

#qCP2
)

:=
(
CP2# p...#CP2

)
#
(
CP2# q...#CP2

)
.

Here CP2 is CP2 but with the orientation reversed. Recall (see [Gr, p.119]) that
H2

(
CP2

) ∼= Z with generator α :=
[(
CP1

)
1

]
, where

(
CP1

)
1

:= {[1, z1, 0]} ⊂
CP2. To compute Q (α, α), we note that

(
CP1

)
1

meets the homologous
(
CP1

)
2

:=

{[1, 0, z2]} ⊂ CP2 (with
[(
CP1

)
2

]
= α =

[(
CP1

)
1

]
) at the single point [1, 0, 0] with

intersection number +1, whereas in CP2 the intersection number is −1.

Remark 19.4. Over the reals, H (where “H” stands for hyperbolic) is equiva-
lent to diag(1,−1), but H is not equivalent to diag(1,−1) over Z, since diag(1,−1)
is odd but H is even. We can see that H is the intersection form for S2 × S2,
as follows. Each of the generators

[
S2 × {y}

]
or
[
{x} × S2

]
in H2

(
S2 × S2

)
has

self-intersection number 0, since (for y 6= y′,
[
S2 × {y}

]
=
[
S2 × {y′}

]
but S2 ×

{y} ∩ S2 × {y′} = φ. The intersection number of S2 × {y} with {x} × S2 is 1;
here S2 × S2 inherits its orientation from the S2 factors. Note that S2 × S2 is not
homotopic to CP(2)#CP(2), since H �diag(1,−1).

Remark 19.5. Note that the number of E8 summands is 1
8 of the signature of

the even, indefinite form Q in (19.7). The form E8 gets its name from the fact that
it is isomorphic to the Cartan matrix for e8, one of the exceptional Lie algebras.
Let e1, . . . , en be the standard basis vectors of Rn. In general, for any integer
k > 0, there is a lattice E4k in R4k generated by the vectors ei ± ej , −ei ± ej
(i, j ∈ {1, . . . , 4k} , i 6= j), and 1

2 (±e1 ± · · · ± e4k), where the numbers of “+ signs”
and “− signs” in the last expression are equal mod 2. In the case k = 2, there are
4
(

8
2

)
+ 27 = 240 of these vectors and these can be identified with the roots of e8

(note dim e8 = 8 + 240 = 248); see [Hum, p.65]. Moreover, there is a transitive
group of isometries on this set (see [MilH, p.28]). By definition, the form E4k is
the restriction to E4k of the usual dot product on R4k. To see that this definition
is consistent with the form E8 defined in (19.8), one may do the following exercise.

Exercise 19.6. Find generators f1, . . . , f8 of the lattice E8, such that the matrix
[fi · fj ] is the one in (19.8). [Hint. One can choose f1 = e1 − e2, f2 = e3 − e2 and
f8 = 1

2 ((e1 + · · ·+ e6)− (e7 + e8)). Find f3, . . . , f7.]

If Q is definite and even, the rank of Q is a multiple of 8. When the rank n = 8,
up to isomorphism there is only E8. When n = 16, there are E8 ⊕ E8 and E16.
When n = 24, we have 24, including E8 ⊕ E8 ⊕ E8, E8 ⊕ E16, and the so-called



19.1. BACKGROUND AND SURVEY 615

Leech lattice. However, the possibilities increase very rapidly. When n = 32, there
are over 10 million different classes. When n = 40, there are over 1051 different
classes. There are also definite, non-diagonalizable odd Q; e.g, the direct sum of
a definite, even form and diag(1, ..., 1). Moreover, there are indecomposable, odd,
definite Q. These results are stated in [MilH], but the primary source is [Ser].

Theorem 19.7. (M. Freedman, [Fr]; see also [FQ]). Any unimodular quadratic
form Q over Zn (n arbitrary) is isomorphic to QX for some topological, simply-
connected, compact, oriented 4-manifold X. Moreover, up to homeomorphism, X
is unique if Q is even. If Q is odd there are two such X. For one of these X×S1 is
smoothable, and for the other X×S1 is not smoothable (i.e., its Kirby-Siebenmann
invariant is nonzero).

Corollary 19.8. (Poincaré’s conjecture in dimension 4) If a topological man-
ifold is X is homotopic to S4 (e.g., X is simply-connected and has trivial even
intersection form QX = 0), then X is homeomorphic to S4.

Corollary 19.9. There are over 10 million topologically distinct, simply-
connected topological 4-manifolds with even, definite intersection forms of rank 32.

By the following result of Donaldson, none of the manifolds in Corollary 19.9
admits a differentiable structure.

Theorem 19.10. (S. K. Donaldson [Don83]). If X is a compact, simply-
connected, smooth (i.e., C∞) 4-manifold with a definite intersection form QX , then
QX is a standard diagonalizable form (i.e., according to Theorem 19.7, topologically

X must be a connected sum of CP2s or CP2s).

Donaldson also proved some results about the possible indefinite, even forms
of smooth, compact, simply connected, 4-manifolds.

Theorem 19.11. ([Don90]). If the form

(19.10) (⊕MH)⊕ (± (⊕NE8))

is realized by a smooth, compact, simply connected 4-manifold and N > 0, then we
must have M ≥ 3.

A K3 surface is a compact, simply-connected, complex surface X (dimCX = 2)
with trivial canonical bundle Λ2,0 (TCM

∗) (see p.584 and 601). An example is the
complex variety z 4

1 +z 4
2 +z 4

3 +z 4
4 = 0 in CP3. It is a deep fact that all K3 surfaces

are diffeomorphic. However, in the holomorphic category the family of K3 surfaces
is 20-dimensional [GH, p. 593]. For a K3 surface, the intersection form is known
to be

QK3 = (⊕3H)⊕ (−⊕2 E8) .

By Proposition 18.18 (p. 18.18) we know that a compact, orientable manifold
X admits a spin structure if and only if w2(X) = 0. There is also the following
characterization in terms of the intersection form QX .

Proposition 19.12. Let X be a compact, simply-connected 4-manifold. Then
X has a spin structure (i.e., w2(X) = 0) ⇔ QX is even.
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Proof. Since X is simply-connected, H2 (X;Z) is free and so reduction mod
2 r∗ : H2 (X;Z) → H2 (X;Z2) is onto. We first establish a special case of Wu’s
formula

(19.11) QX2 (w2 (X) , r∗ (α)) = QX2 (r∗ (α) , r∗ (α)) for all α ∈ H2 (X;Z) ,

where QX2 : H2 (X;Z2)×H2 (X;Z2)→ Z2 is simply given by

QX2 (r∗ (α) , r∗ (α)) := QX (α, α) mod 2 ∈ Z2.

By Proposition 19.1, we may assume that the Poincaré dual of α is [Σ] ∈ H2 (X;Z)
for some compact orientable surface Σ embedded in X. Using (18.16), p. 496,

QX2 (w2 (X) , r∗ (α)) = 〈w2 (TX|Σg) , r∗ ([Σg])〉
= 〈w2 (TΣg ⊕NΣg) , r∗ ([Σg])〉
= 〈w2 (TΣg) , r∗ ([Σg])〉+ 〈w2 (NΣg) , r∗ ([Σg])〉 .

By Proposition 18.19p.498, this is

= (〈c1 (TΣg) , [Σg]〉+ 〈c1 (NΣg) , [Σg]〉) mod 2 = 〈c1 (NΣg) , [Σg]〉mod 2

= QX ([Σg] , [Σg]) mod 2 = QX (α, α) mod 2 = QX2 (r∗ (α) , r∗ (α)) .

By Remark 16.66 (p.430) 〈c1 (NΣg) , [Σg]〉 is the self-intersection numberQX ([Σg] , [Σg])
of Σg. Thus,

QX2 (w2 (X) , r∗ (α)) = 〈c1 (NΣg) , [Σg]〉mod 2 = QX ([Σg] , [Σg]) mod 2

= QX (α, α) mod 2 = QX2 (r∗ (α) , r∗ (α)) ,

and so we have (19.11). �

Recall that X admits a spin structure if w2(X) = 0. Thus, Rochlin’s Theorem
(see Corollary 18.52, p. 562) may be restated as

Theorem 19.13. (Rochlin’s Theorem) The signature τ (X) of a simply con-
nected, smooth, compact 4-manifold X with QX even must be a multiple of 16.
Thus, N in 19.10 must be even.

Corollary 19.14. The topological manifold with intersection form E8 guar-
anteed to exist by Freedman’s Theorem 19.7 does not admit a smooth structure.

In view of Theorems 19.10, 19.11 and 19.13,

Theorem 19.15. Among compact, simply connected, smooth 4-manifolds X
with QX even (i.e., those which are spin), K3 surfaces (including those with oppo-
site orientation) have simplest possible QX with an E8 summand, namely (⊕3H)⊕
(±⊕2 E8).

Proof. By Theorem 19.10, if QX is even, then it must be indefinite, and hence
it must be of the form (⊕MH)⊕ (±⊕N (E8)). By Theorem 19.11, we have M ≥ 3,
and by Theorem 19.13, N ≥ 2. The K3 surface and its “opposite” realize the lower
bounds. �

Note that for X = #p (K3) #
(
#qS

2
)
, we have

QX = (⊕3pH)⊕ (−⊕2p E8)⊕ (⊕qH) = (⊕3p+qH)⊕ (−⊕2p E8)
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For this X and all known examples of smooth, compact, simply connected 4-
manifolds with even, indefinite QX as in (19.10), one has M ≥ 3

2N . For such
QX , we have b2 (X) = 2M + 8N and |τ (X)| = 8N . Thus,

b2 (X) ≥ 11
8 |τ (X)| ⇔ 8 (2M + 8N) ≥ 11 · 8N

⇔ 16M ≥ (88− 64)N = 24N ⇔M ≥ 3
2N.

The conjecture that M ≥ 3
2N is the same as

Conjecture 1. (The 11
8 -conjecture)A simply connected, smooth, compact 4-

manifold, X with QX even satisfies

b2 (X) ≥ 11
8 |τ (X)| ,

where b2 (X) is the second Betti number (the rank of QX) and τ (X) is the signature
of QX .

While the 11
8 -conjecture may still be open, M. Furuta [Fu01] used Seiberg-

Witten Theory to prove a strict bound of 10
8 , namely

b2 (X) = 2M + 8N ≥ 10N + 2 = 10
8 |τ (X)|+ 2.

For X a smooth, simply-connected, compact orientable 4-manifold with “self-
dual betti number” b2+ (X) > 1 and odd, Donaldson also found some invariants

(19.12) qdk̄(X) : ×dk̄/2H2(X,Z)→ Z
which are symmetric polynomials (Donaldson’s polynomial invariants) of degree dk̄,
k̄ = 1, 2, 3... . Here

(19.13) dk̄ = 8k̄ − 3(1− b1 (X) + b2+ (X)),

which reduces to the even integer 8k̄−3(b2+ (X) + 1) under the above assumptions
on X. The number dk̄ in (19.13) is the “virtual dimension” of the moduli space
Mk̄ of anti-self-dual connections for a principal SU (2)-bundle P → X with k̄ :=
c2
(
P ×SU(2) C2

)
[X].

Remark 19.16. Donaldson (and almost everyone else now) have found it con-
venient to work with moduli spaces of anti-self-dual (ASD) connections, instead
of the self-dual connections which we have dealt with in this book. However, one
can translate between the two by changing the orientation of X. In particular, we
defined k := −c2

(
P ×SU(2) C2

)
[X], and replacing the orientation [X] by − [X],

Donaldson’s k (which we have denoted by k̄) is obtained. Moreover, b2+ (X) be-
comes b2− (X) under [X]→ − [X].

As we will now explain, we implicitly obtained the analogous formula for
“virtual dimension” dk of the moduli space Mk of self-dual connections (where
k := −c2

(
P ×SU(2) C2

)
[X]), namely

dk = 8k − 3(1− b1 (X) + b2− (X)).

Indeed, this is the index of the operator T : Ω1 (E) → Ω0 (E) ⊕ Ω2
− (E), where

E := P ×SU(2) su(2), and

T (τ) :=
(
δωτ, 1

2 (1− ∗)Dωτ
)
, for τ ∈ Ωk (E) .

We found (see (17.39) and (17.40) p.463, or (18.145) p.583) that

Index (T ) = 2ch2 (E) [M ]− 1
2 dimE · (χ (M)− sig (M)) .
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To show that this is dk, recall from Proposition 17.7 (p.447) that for E′ := P ×SU(2)

C2 and E := P ×SU(2) su(2)C, we have −4k = 4c2 (E′) = c2 (E) = −ch2 (E), and
so

Index (T ) = 8k − 3
2 (χ (M)− sig (M))

= 8k − 3
2

(
2− 2b1 (X) + b2+ (X) + b2− (X)−

(
b2+ (X)− b2− (X)

))
= 8k − 3

(
1− b1 (X) + b2− (X)

)
.

Donaldson’s polynomial invariants can be used to distinguish smooth 4-manifolds
having the same intersection form. For example, we have

Proposition 19.17. ([DK, p.27]) For any simply connected, complex surface
S with b2+(S) > 3, there is a smooth 4-manifold which is homotopy equivalent to
S, but not diffeomorphic to S, nor to any complex surface.

In dimension 4, there is a radical difference between the smooth category and
the topological category. Unlike in the topological category, the function

[X]smooth 7→ [QX ]

is far from being 1-1 or onto. Moreover, differential topology in dimension 4 is
unlike that in other dimensions. For one thing, there are uncountably many exotic
R4’s (homeomorphic to R4 but not diffeomorphic to R4 or to each other); (see
[Gom]). There is no exotic Rn for n 6= 4. In dimensions greater than 4, there
can be only a finite number of nondiffeomorphic compact manifolds which have the
same homotopy type and Pontrjagin classes. However, by generalizing examples of
Donaldson, Robert Friedman and John Morgan proved

Theorem 19.18. ([FM]). There are infinitely many nondiffeomorphic smooth

structures on CP2#
(

#qCP2
)

for any q ≥ 9.

Recall that two C∞ n-manifolds M0 and M1 are h-cobordant if there is a
C∞ (n+ 1)-manifold N , with ∂ N = M0 ∪M1, such that M0 and M1 are strong
deformation retracts of N . The triple is called (N,M0,M1) an h-cobordism.

Theorem 19.19. (h-cobordism theorem [Sm61]; see also [Mil65])). Let (N,M0,M1)
be an h-cobordism with N (and hence M0 and M1) simply-connected. If n =
dim(Mi) ≥ 5, then N is diffeomorphic to M0 × [0, 1] , and consequently M0 and
M1 are diffeomorphic.

We can use Theorem 19.18 this to show that the analog of Smale’s h-cobordism
theorem fails dramatically in dimension 4 in the smooth category. In contrast,
Friedman showed that the h-cobordism theorem holds in the topological category
in dimension 4. First, there is the result of C.T.C. Wall:

Theorem 19.20. ([Wall, 1964])Two simply-connected, smooth, compact 4-
manifolds with isomorphic intersection forms are h-cobordant.
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Thus, there is an h-cobordism N between CP2#(#9CP2) and any of its infin-

itely many exotic versions, say X. However, since CP2#(#9CP2) and X are not
diffeomorphic, N cannot be diffeomorphic to a product.

Let X be a smooth, compact, oriented 4-manifold (not necessarily simply-
connected). For any L ∈ H2(X,Z) (which can be interpreted as a complex line
bundle) we will later define a Seiberg-Witten invariant SW (L) ∈ Z, provided
b2+(X) ≥ 2. Thus,

(19.14) SW : H2(X,Z)→ Z.

Moreover, we will see that (as with the Donaldson polynomials) the Seiberg-Witten
invariants are all 0, unless b1(X) + b2+(X) is odd. Reportedly, many (if not all) of
the previous instanton results of Donaldson and his coworkers (e.g., Kronheimer,
Friedman, Morgan, Mrowka) can be proved more easily and pushed further using
Seiberg-Witten invariants rather than using of Donaldson’s invariants. Moreover,
Taubes has proven a number of new results concerning symplectic manifolds, which
we describe following a few definitions.

Definition 19.21. A symplectic form or symplectic structure on a smooth
manifold X is a closed 2-form ω on X which is nondegenerate in the sense that
ω[ (V ) := ω (·, V ) defines an isomorhism TxX ∼= (TxX)

∗
at each x ∈ X. The pair

(X,ω) is called a symplectic manifold. A diffeomorphism f : X1 → X2 between
two symplectic manifolds (X1, ω1) and (X2, ω2) such that f∗ω2 = ω1 is called a
symplectomorphism. If such symplectomorphism exists, then (X1, ω1) and
(X2, ω2) are called symplectomorphic.

For a symplectic manifold (X,ω), one can choose (uniquely up to homotopy)
an almost complex structure J which is compatible with ω in the sense that
hJ (V,W ) := ω(V, JW ) is a Riemannian metric. Indeed, let Met (M) ⊂ T 0,2 (M)
be the convex set of metric tensors and let J (M,ω) be the set of complex structures.
Following [McS, p.61], we will define a canonical surjective functionR : Met (M)→
J (M,ω). Then not only is J (M,ω) nonvoid, but also given J0, J1 ∈ J (M,ω)
with J0 = R (g0) and J1 = R (g1), we have a homotopy J (t) := R ((1− t) g0 + tg1)
connecting J0 with J1 in J (M,ω). For g ∈ Met (M), we define R (g) ∈ J (M,ω)
as follows. Let A ∈ Aut (TX) be determined by g (AV,W ) = ω(V,W ). Then the
adjoint A∗ of A relative to g is defined by

g (V,A∗W ) = g (AV,W ) , and A∗ = −A, (i.e., A is g-skew-symmetric) since

g (V,A∗W ) = g (AV,W ) = ω(V,W ) = −ω(W,V ) = −g (AW,V ) = g (V,−AW ) .

Now −A2 = A∗A ∈ Aut (TX) is g-symmetric and positive-definite, and hence it has
a unique g-symmetric, positive-definite square root, say S ∈ Aut (TX), such that
S2 = A∗A = −A2. Let R (g) := J := S−1A. Then J2 = S−2A2 = −A−2A2 = − Id.
Moreover,

ω(V, JW ) = g (AV, JW ) = g
(
AV, S−1AW

)
is symmetric in V and W , and ω(V, JV ) = g

(
AV, S−1AV

)
> 0 for V 6= 0, since

A is invertible and S−1 is positive-definite. Thus, kJ (V,W ) := g
(
AV, S−1AV

)
=

ω(V, JW ) is a positive-definite metric, and so R (g) ∈ J (M,ω).
For a compatible J ∈ J (M,ω) , the associated cannonical class KX :=

−c1(TJX) = c1(Λ2,0
J (X)) then only depends only on ω. In the case dimX = 4, ω

is self-dual relative to the metric g and orientation ω ∧ ω.
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Theorem 19.22. ([Tau95]) If (X,ω) is a compact, symplectic 4-manifold with
b2+(X) ≥ 2, then the Seiberg-Witten invariant SW (KX) is ±1 and (KX ` [ω]) [X] ≥
0. If SW (k) 6= 0 for any other class k ∈ H2(X,Z), then

(19.15) |k ` [ω]| ≤ KX ` [ω],

with equality only if k = ±KX .

Corollary 19.23. If (X,ω) is a compact, symplectic 4-manifold, then b1(X)+
b2+(X) is odd; otherwise, SW (KX) = 0, contrary to Theorem 19.22.

Corollary 19.24. If X = X1#X2, where neither X1 nor X2 have negative-
definite intersection forms (i.e., b2+ (X1) and b2+ (X2) are strictly positive), then
X does not have a symplectic structure compatible with the given orientation. For
example, when n ≥ 2 and m ≥ 0,

(19.16)
(
#nCP2

)
#
(

#mCP2
)

= CP2#
(
#n−1CP2

)
#
(

#mCP2
)

admits no symplectic structure.

Proof. It is known that such X have Seiberg-Witten invariant 0. �

The following proves a conjecture of Mark Gotay.

Corollary 19.25. While #3CP2 has an almost complex structure, it has no
symplectic form.

Proof. In order for c ∈ H2 (X,Z) to be the first Chern class of an almost complex
structure on the compact, orientable 4-manifoldX, it is necessary and sufficient that
c = w2(X) mod 2, and QX (c, c) = 2χ (X) + 3τ (X). For X = #3CP2, H2 (X,Z) ∼=
⊕3Z, QX ∼= diag(1, 1, 1) , w2(X)←→ (1, 1, 1) and 2χ (X) + 3τ (X) = 2 · 5 + 3 · 3 =
19. If c ←→ (k1, k2, k3) , then c = w2(X) mod 2 ⇔ k1, k2 and k3 are odd, and
QX (c, c) = 2χ (X) + 3σ (X)⇔

∑
k2
i = 19. Thus, (k1, k2, k3) = (1, 3, 3) will do. Of

course, #3CP2 has no symplectic form by Corollary 19.24.

LetK ∈ H2(CP2,Z) denote the Chern class of the canonical line bundle Λ2,0(CP2)

of CP2. We have K = −c1(TCP2) = −3[ξ̂] = −3[κ/π], where ξ̂ is the dual of the
tautological bundle ξ :=

{
(p, v) ∈ CP2 × C3 : v ∈ p

}
and κ is the Kähler form of

CP2 with the standard Fubini-Studi metric. Note that

(K ` [κ])
[
CP2

]
= (−3[κ/π] ` [κ])

[
CP2

]
= −3/π < 0.

More generally, using Seiberg-Witten theory Clifford Taubes proved

Theorem 19.26. ([Tau95]) For any symplectic structure
(
CP2, ω

)
, let K be the

Chern class of the canonical line bundle of an almost complex structure J compatible
with ω (i.e., ω (X,Y ) = h (JX, Y ) for a Riemannian metric h on CP2). Then
(K ` [ω])

[
CP2

]
< 0.

The Donaldson invariants and (more simply) SW invariants can also be used
to prove the Thom Conjecture in “considerable generality” and specifically the
classical case of CP2 (see [KM94]), namely

Theorem 19.27. (Thom Conjecture). In a compact Kähler surface X, any
complex curve C (i.e., a holomorphic immersion of a Riemann surface) has the
smallest genus among all surfaces immersed in X which are homologous to C.
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For a purely geometrical application, we have the result

Theorem 19.28. ([Wit94]) No compact 4-manifold X with b1(X) > 0 and
with a nonzero SW -invariant can have a metric with positive scalar curvature.

We also have the following result of C. LeBrun

Theorem 19.29. ([LeB]). Any compact, Einstein 4-manifold X with a non-
zero SW -invariant satisfies χ(X) ≥ 3τ(X).

Remark 19.30. A result of Hitchin ([?, 1974]) says that an Einstein 4-manifold
X satisfies χ(X) ≥ 3

2 |τ(X)| , with equality implying that X is flat or is covered by
a K3 surface (with χ = 24 and τ = −16). Thus, Theorem 19.29 provides a stronger
result when τ(X) > 0. In the case of a complex surface, χ(X) ≥ 3τ(X) is the same
as c2 ≥ c 2

1 − 2c2 or the Miyaoka-Yau inequality 3c2(X) ≥ c1(X)2.

2. Spinc Structures and the Seiberg-Witten Equations

Recall from (18.159), p.598, that

Spinc (n) := U (1) Spin (n) ∼=
U (1)× Spin (n)

{± (1, 1)}
.

Moreover, recall that there is a homomorphism

rc : Spinc (n)→ U (1)× SO (n) given by

rc (zg) :=
(
z2, c (g)

)
,(19.17)

with kernel {[1, I], [1,−I]} ∼= Z2, where c : Spin (n)→ SO (n) is the 2-fold cover.

Definition 19.31. A Spinc structure for an oriented Riemannian n-manifold
X consists of a principal Spinc(n)-bundle πc : PSpinc(n) → X, a principal U (1)-
bundle π1 : PU(1) → X, and an rc-equivariant bundle map

(19.18) πrc : PSpinc(n) → PU(1) × FX,
where FX → X is the principal SO(n)-bundle of oriented orthonormal frames.
Here, PU(1)×FX is the fibered (as opposed to Cartesian) product consisting of pairs
(p1, p2) with π1(p1) = πF (p2). Naturally, PU(1) × FX is a principal U (1)× SO(n)-

bundle. The Chern class in H2(X;Z) of the line bundle associated to PU(1) → X
is called the canonical class of the Spinc(n)-structure.

By Proposition 18.18 (p.497) that an oriented, Riemannian manifold X has
a spin structure if and only if w2 (X) = 0 ∈ H2 (X,Z2), where w2 (X) is the
second Stieffel-Whitney class defined in Definition 18.16, p.496. The condition
under which X admits a Spinc(n)-structure is much weaker. Indeed, we will show
that any oriented, Riemannian 4-manifold X has a Spinc(n)-structure. To describe

the condition, observe that the short exact sequence 0→ Z m→ Z r→ Z/2Z = Z2 → 0
(where m denotes multiplication by 2) induces a long exact sequence

(19.19) ...→ Hi(X;Z)
m∗→ Hi(X;Z)

r∗→ Hi(X;Z2)
δ→ Hi+1(X;Z)→ ...,

where δ is the Bochstein homomorphism.
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Theorem 19.32. An oriented Riemannian n-manifold X has a Spinc structure
if and only if the Stiefel-Whitney class w2(X) ∈ H2(X;Z2) is the mod 2 reduction
r∗ ([w̃]) (see (19.19)) of an integral class [w̃] ∈ H2(X;Z). Then [w̃] is the canonical
class of some Spinc(n)-structure for X.

Proof. Up to smooth equivalence, complex line bundles (or equivalently prin-
cipal U(1)-bundles) over X may be regarded (via their transition functions) as

elements of H1(X; U(1)) (C̆ech cohomology with coefficients in the sheaf of germs
of U(1)-valued functions); see the beginning of Section .18.2 where the construction
was carried out for the frame bundle. Associated with the exact sequence

(19.20) 0→ Z→ R→ U(1)→ 0,

we have the long exact C̆ech cohomology sequence

(19.21) ...→ H1(X; R̃)→ H1(X; U(1))
c1→ H2(X;Z)→ H2(X; R̃)→ ...,

The homomorphism c1 : H1(X; U(1)) → H2(X;Z) is defined in the same way as
the homomorphism w2 : H1(X; SO(n)) → H2(X;Z2) was defined in Definition
18.16, p.496, where the exact sequence in that case was 0 → Z2 → Spin(n) →
SO(n)→ 0. By one definition, the first Chern class of a line bundle in H1(X; U(1))

is just its image under c1 in (19.21). In (19.21), R̃ is the sheaf of germs of C∞ R-

valued functions on X, as opposed to the constant sheaf R whose C̆ech cohomology
coincides with the usual de Rham cohomology H∗(X;R). It is not hard to show

(via partitions of unity) that Hi(X; R̃) = 0 for i > 0. Thus, c1 : H1(X; U(1)) ∼=
H2(X;Z); i.e., up to isomorphism a principal U(1)-bundle are determined by its
first Chern class. Associated with the sequence

0→ Z2
i→ Spin(n)

c→ SO(n)→ 0,

we have exact C̆ech cohomology sequence

(19.22) ...→ H1(X;Z2)
i∗→ H1(X; Spin(n))

c∗→ H1(X; SO(n))
w2→ H2(X;Z2),

where for nonabelian groups G, H1(X;G) is a pointed set instead of a group. By
Definition 18.16, p.496, w2 assigns to each equivalence class of SO(n)-bundles, its
second Steifel-Whitney class. Thus, for a principal SO(n)-bundle ξ, w2 (ξ) is the
obstruction to finding a spin stucture covering ξ, and w2 ([FX]) (or w2 (X)) the is
obstruction in the special case of the bundle FX of oriented orthonormal frames.
For the sequence

0→ Z2
i→ Spinc(n)

rc→ U(1)× SO(n)→ 0,

there is an exact seqence

...→ H1(X;Z2)
i∗→ H1(X; Spinc(n))

rc∗→

→ H1(X; U(1))⊕H1(X; SO(n))
c̃1+w2→ H2(X;Z2),(19.23)

where c̃1 is the composition H1(X; U(1))
c1→ H2(X;Z)

r∗→ H2(X;Z2). Suppose
r∗ ([w̃]) = w2(X) for some [w̃] ∈ H2(X;Z). Then c−1

1 ([w̃]) ∈ H1(X; U(1)) de-
fines (up to equivalence) a principal U(1)-bundle PU(1). Thus, the obstruction to
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obtaining a Spinc structure over PU(1) × FX with canonical class [w̃] is

(c̃1 + w2)
(
c−1
1 ([w̃])⊕ [FX]

)
= c̃1

(
c−1
1 ([w̃])

)
+ w2 ([FX])

= r∗ ([w̃]) + w2(X) = w2(X) + w2(X) = 0,(19.24)

since w2(X) is in the Z2-module H2(X;Z2). Conversely, if there is a Spinc struc-
ture over PU(1) × FX with canonical class [w̃] ∈ H2(X;Z), then c̃1

(
c−1
1 ([w̃])

)
+

w2 ([FX]) = 0, in which case

w2 ([FX]) = c̃1
(
c−1
1 ([w̃])

)
=
(
r∗ ◦ c1 ◦ c−1

1

)
[w̃] = r∗ ([w̃]) .

�

Remark 19.33. By the exact sequence (19.19), any two integral classes [w̃] ∈
r−1
∗ (w2(X)) differ by an element of

Ker
(
H2(X;Z)

r∗→ H2(X;Z2)
)
∼= m∗H

2(X;Z) = 2H2(X;Z).

Thus, 2H2(X;Z) acts on the set r−1
∗ (w2(X)) of choices for [w̃]. Once a choice of

the canonical class [w̃] is made, any two choices of isomorphism classes [PSpinc(n)]

differ by the image of i∗
(
H1(X;Z2)

)
in (19.23). Assuming that X has a Spinc

structure, the set of Spinc structures on X is then parametrized by 2H2(X;Z) ⊕
i∗
(
H1(X;Z2)

)
.

We thank Bob Little for providing the references [HiHo] and [Mas] for follow-
ing result.

Theorem 19.34. The Stiefel-Whitney class w2 (X) ∈ H2(X;Z2) of a compact,
orientable Riemannian 4-manifold X is in fact the mod 2 reduction of some in-
tegral class [w̃] ∈ H2(X;Z). Consequently, any compact, orientable Riemannian
4-manifold admits a Spinc-structure.

Proof. We need to show that w2 (X) ∈ r∗
(
H2(X;Z)

)
, for r∗ : H2(X;Z) →

H2(X;Z2) as in (19.19). Let T 2(X) be the torsion subgroup of H2(X;Z). Suppose
that we can show that

r∗
(
H2(X;Z)

)
= r∗

(
T 2(X)

)⊥
, where(19.25)

r∗
(
T 2(X)

)⊥
:=
{
z ∈ H2(X;Z2) : z ` r∗(t) = 0, ∀t ∈ T 2(X)

}
.

Then it would suffice to show that w2 (X) ` r∗(t) = 0 for all t ∈ T 2(X). According
to Wu’s formula

w2 (X) ` r∗(t) = r∗(t) ` r∗(t) = r∗ (t ` t) = 0,

where the last equality follows since t ` t is in the torsion subgroup ofH4(X;Z) ∼= Z,
whence t ` t = 0. Thus it remains to show (19.25). Now r∗

(
H2(X;Z)

)
⊆

r∗
(
T 2(X)

)⊥
, since r∗(h) ` r∗(t) = r∗(h ` t) = 0 because h ` t is a torsion

element of the torsionless group H4(X;Z) ∼= Z. Thus, it suffices to prove that

dim r∗
(
H2(X;Z)

)
= dim r∗

(
T 2(X)

)⊥
as vector spaces over Z2. Since

` : H2(X;Z2)×H2(X;Z2)→ H4(X;Z2) ∼= Z2

is nondegenerate, dim r∗
(
T 2(X)

)⊥
= dimH2(X;Z2) − dim r∗

(
T 2(X)

)
. Let bi =

rankHi(X;Z) and let ci be the number of cyclic summands of Hi(X;Z) of order
equal to a power of 2 in the primary decomposition. We have dim r∗

(
T 2(X)

)
= c2,
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and dim r∗
(
H2(X;Z)

)
= b2+c2. Moreover, δ

(
H2(X;Z2)

)
= Ker

(
H3(X;Z)

m∗→ H3(X;Z)
)
∼=

⊕c3Z2. Thus, from the exact sequence

...→ H2(X;Z)
m∗→ H2(X;Z)

r∗→ H2(X;Z2)
δ→ H3(X;Z)

m∗→ H3(X;Z)→ ...,

we obtain

dimH2(X;Z2) = dim r∗
(
H2(X;Z)

)
+ dim δ

(
H2(X;Z2)

)
= b2 + c2 + c3.

Hence,

dim r∗
(
T 2(X)

)⊥
= dimH2(X;Z2)−dim r∗

(
T 2(X)

)
= b2 + c2 + c3 − c2 = b2 + c3.

Now, dim r∗
(
H2(X;Z)

)
= b2 + c2. Thus, it remains to show that c2 = c3. Using

the Universal Coefficient Theorem ([Gr, p.194] or [Sp, Corollary 4, p.244]),

(19.26) H3(X;Z) ∼= F3(X)⊕ T2(X),

where Ti(X) is the torsion subgroup of Hi(X;Z) and Fi(X) = Hi(X;Z)/Ti(X). By
Poincaré duality (which we can use, since X is orientable),

(19.27) H2(X;Z) ∼= H2(X;Z) ∼= F2(X)⊕ T2(X).

Thus, the torsion subgroup of H3(X;Z) is the same as that of H2(X;Z), and hence
c3 = c2. �

In the case of compact, almost complex 2m-manifolds X, w2(X) is the mod
2 reduction of the integral class c1(Λm,0 (X)) = −c1(TX), and hence X admits a
Spinc-structure with canonical class c1(Λm,0 (X)). Since it might be the case that
H1(X,Z2) 6= 0, this does not uniquely determine a Spinc structure for X. However,
we will now show that there is a standard Spinc structure for X, using the existence
of the lift h : U(m)→ Spinc(2m) of det×ι : U(m) → U(1)× SO(2m).

Proposition 19.35. Any Riemannian 2m-manifold X with almost complex
structure J , with a metric h compatible with J (i.e., h (JV, JV ) = h (V, V )) admits a
standard Spinc-structure, with canonical class being the Chern class of the canonical
line bundle Λm,0 (X).

Proof. Let PU(m) be the unitary frame bundle of X. The homomorphism
j : U(m)→ Spinc(2m) of Proposition 18.70 (p.599) provides a principal Spinc(2m)-
bundle PSpinc → X and j-equivariant map

PU(m) → PU(m) ×j Spinc(2m) =: PSpinc

(see Proposition 16.19, p.378). The homomorphism det×ι : U(m) → U(1) ×
SO(2m) yields a principal bundle PU(1)×SO(2m) → X which can be identified with
PU(1) × FX, where FX is the oriented orthonormal frame of X and PU(1) is the

frame bundle for the canonical line bundle Λm,0 (X); for this one may use Remark
16.20 (p. 379) and note that a frame in PU(m) determines a frame in PU(1) and a
(oriented) frame in FX. The homomorphism rc : Spinc(2m) → U(1) × SO(2m)
(that satisfies rc ◦ j = det×ι) then yields an rc-equivariant map

PSpinc → PU(1)×SO(2m)
∼= PU(1) × FX,

which provides the desired standard Spinc-structure. �
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For a Spinc structure PSpinc(n)
πrc→ PU(1) × FX we have a Spinc(n)-principal

bundle

πc : PSpinc(n)
πrc→ PU(1) × FX → X

Moreover, there is a representation

Spinc(n)
ρC→ U (Σ2m)

which is just the restriction of ρC : Cl(n) → End (Σ2m) to Spinc(n) ⊂ Cl(n).
As in (18.13), p. 18.13, there are also the Spinc(n)-invariant eigenspaces Σ±2m of
νC := ime1 · · · e2m. Thus, we may form the associated bundles

Σ±c (X) := PSpinc(n) ×ρC Σ±2m → X and Σc (X) := Σ+
c (X)⊕ Σ−c (X)

Let ω be a connection on PU(1) and let θ be the Levi-Civita connection on FX. Then

ω ⊕ θ is a connection on PU(1) × FX and (ω ⊕ θ)c := π∗rc (ω ⊕ θ) may be regarded
as a connection on PSpinc(n) under the isomorphism of Lie algebras spinc (n) ∼=
u (1)⊕so (n) induced by the double-covering rc : Spinc(n)→ U (1)×SO (n). Hence,
there is a covariant differentiation operator for (ω ⊕ θ)c, say

∇(ω⊕θ)c : C∞ (Σc2m (X))→ C∞
(
Λ1 (X)⊗ Σc2m (X)

)
.

Moreover, there is a well-defined Clifford multiplication

Λ1 (X)⊗ Σc (X)
cl→ Σc (X) with cl

(
Λ1 (X)⊗ Σ±c (X)

)
⊂ Σ∓c (X) .

induced by the representation ρC : Cl(n) → End (Σ2m). Thus, we have a Spinc-
Dirac operator

Dc : C∞ (Σc (X))
cl◦∇(ω⊕θ)c

→ C∞ (Σc (X)) .

For index computations, as well as for a better understanding of this operator, we
will show that Dc is locally a twisted Dirac operator. The twist is by a locally
defined square root of the canonical line bundle

L := PU(1) ×µ C→ X,

where µ : U (1) → U (C) is simply given by µ (z)w = zw; note that c1 (L) is (by

definition) the canonical class of the Spinc structure PSpinc(n)
πrc→ PU(1) × FX. Let

BX be a coordinate ball of X. Since PU(1) and FX are trivial over BX , there

is a µ2-equivariant double cover P ′U(1) → PU(1)|BX and a trivial spin structure

PSpin(n) → FX|BX . Define a 2-fold cover

χ : U (1)× Spin (2m)→ U (1) Spin (2m) = Spinc (2m) by χ (z, σ) := zσ.

Since PSpinc(n)|BX is also trivial, we have a χ-equivariant covering

P ′U(1) × PSpin(n)
πχ→ PSpinc(n)|BX

and a 4-fold rc ◦ χ-equivariant covering

πrc ◦ πχ : P ′U(1) × PSpin(n)
πχ→ PSpinc(n)|BX

πrc→
(
PU(1) × FX

)
|BX

Let L′ (BX) := P ′U(1)×µC. By Proposition 16.22 (p. 380) L′ (BX)⊗L′ (BX) ∼= L|BX
naturally, since φ : C⊗ C→ C (given by φ (w1 ⊗ w2) := w1w2) satisfies

φ (((µ⊗ µ) (z)) (w1 ⊗ w2)) = φ (zw1 ⊗ zw2) = z2w1w2

= µ
(
µ2 (z)

)
(φ (w ⊗ w′)) .
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Also using Proposition 16.22 again, we have

Φ : L′ (BX)⊗ Σ2m (BX) ∼= Σc2m (X) |BX .

Indeed in this case, let φ : C⊗ Σ2m → Σ2m be given by φ (w ⊗ ψ) = wψ, and note
that for (z, σ) ∈ U (1)× Spin (2m), we have χ-equivariance in the sense

φ ((z, σ) · (w ⊗ ψ)) = φ ((zw ⊗ σ · ψ)) = zw (σ · ψ)

= zσ · (wψ) = χ (z, σ) · wψ = χ (z, σ) · φ (w ⊗ ψ) .

Because of the naturality of the isomorphism Φ, the twisted Dirac operatorDL′(BX) ∈
End (C∞ (L′ (BX)⊗ Σ2m (BX))) coresponds to Dc ∈ End (C∞ (Σc2m (X) |BX)), in
the sense that

DL
′(BX) (ψ) = Φ−1 (Dc (Φ (ψ))) .

Proposition 19.36. For a Spinc-structure πrc : PSpinc(n) → PU(1) × FX, let

Ωω ∈ Ω2 (X, iR) be the curvature of the connection ω on PU(1), and let S be the
scalar curvature of X. For ψ ∈ C∞ (Σc (X)), and an orthonormal frame E1, . . . , En
at x ∈ X, let Rω

x ∈ Cl (TM)x be defined by

Rω
x = 1

2

∑
j,k

ΩωjkEjEk, and let (Rωψ) (x) := Rω
x · ψ (x) .

Then, we have

(19.28) D2
cψ = −∆ψ + 1

2R
ωψ + 1

4Sψ.

Proof. Since Dc is locally a twisted Dirac operator, this (19.28) is a conse-
quence of Proposition 18.25 (p. 506). Note that we have the factor 1

2 in 1
2R

ωψ since
the local Dirac operator is twisted by L′ = P ′U(1)×µC, rather than L = PU(1)×µC ∼=
L′⊗L′, and the curvature Ωω

′ ∈ Ω2 (X, iR) of the “lift” ω′ := 1
2π
∗
1 (ω) of ω to P ′U(1)

is 1
2Ωω. Note since π1 : P ′U(1) → PU(1)|BX is µ2-equivariant, π1∗ (A∗) = 2A∗ for

A ∈ u (1) so that (as required of a connection)

ω′ (A∗) = 1
2π
∗
1 (ω) (A∗) = 1

2ω (π1∗ (A∗)) = 1
2ω (2A∗) = A.

�

One way to motivate the Seiberg-Witten equations without delving into super-
symmetric QCD ([SW]) is to try to generalize to 4-manifolds with Spinc structures,
the fact that spin manifolds with positive scalar curvature have no nonzero har-
monic spinors (see Corollary 18.26, p. 506). Mimicing the computation in the proof
of Corollary 18.26, we have for ψ ∈ C∞ (Σc (X))∥∥D2

cψ
∥∥2

=
(
D2
cψ,ψ

)
=
(
−∆ψ + 1

2R
ωψ + 1

4Sψ, ψ
)

=
∥∥∥∇(ω⊕θ)cψ

∥∥∥2

+ 1
2 (Rωψ,ψ) + 1

4 (Sψ, ψ) .(19.29)

Note that

〈Rωψ,ψ〉 =
〈

1
2

∑
j,k

ΩωjkEjEk · ψ (x) , ψ (x)
〉

= 1
2

∑
j,k

Ωωjk 〈EjEk · ψ (x) , ψ (x)〉
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Let Ωω = Ω+ + Ω− be the decomposition of Ωω into its self-dual and anti-self-dual
parts, and let Rω = R+ +R− be the corresponding decomposition of Rω. We claim
that

(Rωψ,ψ) =
(
R+ψ+, ψ+

)
+
(
R−ψ−, ψ−

)
,

where ψ = ψ+ + ψ− is the decomposition of

ψ ∈ C∞ (Σc (X)) = C∞
(
Σ+
c (X)

)
⊕ C∞

(
Σ−c (X)

)
.

Indeed, for νC := i2e1e2e3e4 = −e1e2e3e4, we have νCR
± = ±R±, since ν2

C = Id
and

νCe2e3 = −e1e2e3e4e2e3 = −e1e2e3e2e3e4 = e1e4

νCe3e1 = −e1e2e3e4e3e1 = e2e3e4e3 = e2e4

νCe1e2 = −e1e2e3e4e1e2 = −e1e2e1e2e3e4 = e3e4.

Thus, νCR
±ψ+ = ±R±ψ+ ⇒ R±ψ+ ∈ C∞ (Σ±c (X)). However, we know that

R±ψ+ ∈ C∞ (Σ+
c (X)), since Rx = 1

2

∑
j,k ΩωjkEjEk is in the even part of Cl (TM)x.

Thus, R−ψ+ = 0 and R+ψ+ ∈ C∞ (Σ+
c (X)). Similarly, R+ψ− = 0 and R−ψ− ∈

C∞ (Σ−c (X)). Thus, (19.29) becomes∥∥D2
cψ
∥∥2

=
∥∥∥∇(ω⊕θ)cψ

∥∥∥2

+ 1
2

(
R+ψ+, ψ+

)
+ 1

2

(
R−ψ−, ψ−

)
+ 1

4 (Sψ, ψ) .

In particular,

(19.30)
∥∥D2

cψ
+
∥∥2

=
∥∥∥∇(ω⊕θ)cψ+

∥∥∥2

+ 1
2

(
R+ψ+, ψ+

)
+ 1

4

(
Sψ+, ψ+

)
Note that at x ∈ X,〈

Rω (x)ψ+ (x) , ψ+ (x)
〉

=
〈

1
2

∑
j,k

Ωω+
jk EjEk · ψ

+ (x) , ψ+ (x)
〉

= 1
2

∑
j,k

Ωω+
jk

〈
EjEk · ψ+ (x) , ψ+ (x)

〉
=
〈
Ωω+
x , q

(
ψ+ (x)

)〉
,(19.31)

where q (ψ+ (x)) is the self-dual part of

(19.32) Q
(
ψ+ (x)

)
:= 1

2

∑
j,k

〈
EjEk · ψ+ (x) , ψ+ (x)

〉
ϕj ∧ ϕk ∈ Λ2

x (X, iR) .

Note that Q (ψ+ (x)) has values in iR, since〈
EjEk · ψ+ (x) , ψ+ (x)

〉
ϕj ∧ ϕk =

〈
ψ+ (x) , EkEjψ

+ (x)
〉
ϕj ∧ ϕk

= −
〈
ψ+ (x) , EkEjψ

+ (x)
〉
ϕk ∧ ϕj = −〈EkEjψ+ (x) , ψ+ (x)〉ϕk ∧ ϕj .

Since q appears throughout S-W theory, it is fitting to make a formal definition.

Definition 19.37. The quadratic map q : C∞ (Σ+
c (X)) → Ω2+ (X, iR) is

defined by

q
(
ψ+
)

(x) = 1
2 (1 + ∗)Q

(
ψ+ (x)

)
,

where Q (ψ+ (x)) is given by (19.32). See also Remarks 19.38 and 19.40 below.



628 19. SEIBERG-WITTEN THEORY

From (19.30) and (19.31), we obtain∥∥D2
cψ

+
∥∥2

=
∥∥∥∇(ω⊕θ)cψ+

∥∥∥2

+ 1
2

(
Ωω+, q

(
ψ+
))

+ 1
4

(
Sψ+, ψ+

)
,

and perhaps the simplest way to guarantee that

Dcψ+ = 0 and 0 6= S ≥ 0⇒ ψ+ = 0

is to assume that Ωω+ = q (ψ+) so that 1
2 〈Ω

ω+, q (ψ+)〉 = 1
2 |q (ψ+)|2 ≥ 0. We

write Dc as Dωc and Ω+ as Ωω+, to indicate their dependence on ω. Based on the
above motivation, the (unperturbed) S-W equations (S-W for Seiberg-Witten)
for the pair (ω, ψ+) are simply

Dωc ψ+ = 0 and Ωω+ = q
(
ψ+
)

.

An immediate consequence of our derivation is that when 0 6= S ≥ 0, (ω, ψ+) is
a solution of the S-W equations if and only if ψ+ = 0 and Ωω+ = 0 (i.e., ω has
anti-self-dual curvature). Since the space of solutions of the S-W equations is not
always nice, it is generally necessary to study the perturbed S-W equations

(19.33) Dωc ψ+ = 0 and Ωω+ = q
(
ψ+
)

+ η.

where η ∈ Ω2+ (X, iR) is a given self-dual 2-form which supplies the perturbation.

Remark 19.38. The quadratic map q : C∞ (Σ+
c (X))→ Ω2+ (X, iR) is induced

by a pointwise map qx : Σ+
c (X)x → Λ2+

x (X, iR). This qx is derived from a purely

algebraic quadratic map q0 : Σ+
2 → iΛ2+

(
R4
)
, given by

q0 (ψ) =
(

1
2

∑
j,k

〈
ejekψ

+, ψ+
〉
ej ∧ ek

)+

=
〈
e2e3ψ

+, ψ+
〉
e2 ∧ e3 +

〈
e1e4ψ

+, ψ+
〉
e1 ∧ e4 + · · ·

=
〈

1
2 (e2e3 + e1e4) + 1

2 (e2e3 − e1e4)ψ+, ψ+
〉
e2 ∧ e3

+
〈

1
2 (e2e3 + e1e4)− 1

2 (e2e3 − e1e4)ψ+, ψ+
〉
e1 ∧ e4 + · · ·

=
〈

1
2 (e2e3 + e1e4)ψ+, ψ+

〉
(e2 ∧ e3 + e1 ∧ e4) + · · ·

= 1
2

〈
(e2e3 + e1e4) · ψ+, ψ+

〉
(e2 ∧ e3 + e1 ∧ e4) +

1
2

〈
(e3e1 + e2e4) · ψ+, ψ+

〉
(e3 ∧ e1 + e2 ∧ e4) +

1
2

〈
(e1e2 + e3e4) · ψ+, ψ+

〉
(e1 ∧ e2 + e3 ∧ e4) .

Exercise 19.39. We can make q0 (ψ) more explicit by identifying Σ+
2 with C2

and (in view of Example 18.8, p. 486) by using the fact that Clifford multiplication
by 1

2 (e2e3 + e1e4) corresponds to quaternionic multiplication by i on H, or by iσ1

on C2, where σ1 is the first Pauli matrix (see 15.70, p. 352), etc.. Verify that
(a)

q0 (ψ) = i
(
ψ2ψ1 + ψ1ψ2

)
(e2 ∧ e3 + e1 ∧ e4) +(

ψ2ψ1 − ψ1ψ2

)
(e3 ∧ e1 + e2 ∧ e4) +(

ψ1ψ1 − ψ2ψ2

)
(e1 ∧ e2 + e3 ∧ e4) ∈ iΛ2+

(
R4
)
.

(b)
1
2 |q0 (ψ)|2 = |ψ|4 .
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Remark 19.40. Note that q0 (ψ) = q̃0 (ψ,ψ) where the real bilinear form q̃0 is
given by

q̃0 (ψ, ξ) = i
(
ψ2ξ1 + ψ1ξ2

)
(e2 ∧ e3 + e1 ∧ e4) +(

ψ2ξ1 − ψ1ξ2

)
(e3 ∧ e1 + e2 ∧ e4) +

i
(
ψ1ξ1 − ψ2ξ2

)
(e1 ∧ e2 + e3 ∧ e4) ∈ C⊗ Λ2+

(
R4
)
,

or equivalently

q̃0 (ψ, ξ) = 1
2 (q0 (ψ + ξ)− q0 (ψ)− q0 (ξ))

+ i
2 (q0 (ψ + iξ)− q0 (ψ)− q0 (ξ)) .

Also observe that q̃0 (·, ·) is linear in the first slot, conjugate linear in the second

slot, and q̃0 (ξ, ψ) = −q̃0 (ψ, ξ) so that q̃0 (ψ,ψ) ∈ iΛ2+
(
R4
)
. Similar statements

hold for the form

(19.34) q̃ : C∞
(
Σ+
c (X)

)
× C∞

(
Σ+
c (X)

)
→ Ω2+ (X,C)

associated with q : C∞ (Σ+
c (X))→ Ω2+ (X, iR).

3. The Manifold of Moduli

A certain subgroup GA1

(
PSpinc(n)

)
of the group of gauge transformations

GA
(
PSpinc(n)

)
acts on the space of solutions (ω, ψ+) of the perturbed S-W equa-

tions. In this context, the quotient space is known as the moduli space. We will
show that for a generic choice of the perturbation η, the moduli space is a com-
pact manifold. The Seiberg-Witten invariant is obtained by integrating a certain
form over this manifold. Much of the effort involved is directed toward showing
that this Seiberg-Witten invariant is well-defined, independent of a suitable choice
of perturbation η and Riemannian metric for X, so that it only depends on the
differentiable structure on X and the choice of Spinc structure.

The subgroup GA1

(
PSpinc(n)

)
of the group GA

(
PSpinc(n)

)
of gauge transfor-

mations of PSpinc(n) → X is defined as follows. For s ∈ C∞ (X,U (1)), note that

[s (x) , 1] = {± (s (x) , 1)} ∈ U (1)× Spin (n)

{± (1, 1)}
= Spinc (n)

is in the center of Spinc (n). Let Fs ∈ C∞
(
PSpinc(n), PSpinc(n)

)
be given by

Fs(p) := p · [s (πc(p)) , 1] ,

where πc : PSpinc(n) → X, is in GA
(
PSpinc(n)

)
. Then Fs ∈ GA

(
PSpinc(n)

)
, since

(19.35) Fs(pg) = pg · [s (πc(p)) , 1] = p · [s (πc(p)) , 1] g = Fs(p)g,

for any g ∈ Spinc (n). Thus, via s 7→ Fs, we may regard C∞ (X,U (1)) as a
subgroup, say GA1

(
PSpinc(n)

)
, of GA

(
PSpinc(n)

)
. Note that for πrc : PSpinc(n) →

PU(1) × FX, x = πc(p) with p ∈ PSpinc(n), we have

πrc (Fs(p)) = πrc (p · [s (x) , 1])) = πrc (p) · rc ([s (x) , 1]) = πrc (p) ·
(
s (x)

2
, Id
)
.

Thus, Fs ∈ GA1

(
PSpinc(n)

)
induces the gauge transformation p1 7→ p1s (x)

2
on

PU(1). Hence, using Proposition 16.28 (p. 382) with fs ∈ C
(
PU(1),U (1)

)
given by

fs (p1) = p1s (π1 (p1))
2

= p1 ((π∗1s) (p1))
2

= p1

(
π∗1s

2
)

(p1)



630 19. SEIBERG-WITTEN THEORY

(where π1 : PU(1) → X), we have that C∞ (X,U (1)) acts on the set C
(
PU(1)

)
of

connections ω on PU(1) via

s · ω = fsf
−1
s∗ + fsωf

−1
s = fsf

−1
s∗ + ω =

(
π∗1s

2
)
d
(
π∗1s
−2
)

+ ω

= π∗1
(
s2ds−2

)
+ ω = π∗1

(
−s22s−3ds

)
+ ω = ω + π∗1

(
−2s−1ds

)
.

Moreover, Proposition 16.28 implies that C∞ (X,U (1)) ultimately acts on C∞ (X,Σ+
c (X))

via the simple rule

(s · ψ) (x) = s (x)ψ (x) .

We show that if (ω, ψ) is solves the S-W equations, then

(19.36) s · (ω, ψ) := (s · ω, s · ψ) = (ω + π∗1
(
−2s−1ds

)
, sψ).

(for all s ∈ C∞(X,U(1))) is also a solution. By Corollary 16.29 (p. 383) and the fact
the group U (1) of PU(1) is abelian, Ωs·ω = π∗1

(
s2
)

Ωωπ∗1
(
s−2
)

= Ωω. Alternatively,

Ωs·ω = d (s · ω) = d
(
ω + π∗1

(
−2s−1ds

))
= dω − 2π∗1

(
d
(
s−1ds

))
= dω − 2π∗1

(
−s−2ds ∧ ds+ s−1d2s

)
= Ωω,

since ds∧ds = 0 and d2s = 0. Also, since the inner product on Σ+
c (X) is Hermitian,

we have

q (s · ψ) = q (sψ) = ss̄q (ψ) = |s|2 q (ψ) = q (ψ) .

Hence, as scalar multiplication does not affect duality, we have

(19.37) Ωω+ = q (ψ) + η ⇒ Ω(s·ω)+ = Ωω+ = q (ψ) + η = q (s · ψ) + η.

Using Proposition 16.26 (p. 381) and the linearity of Clifford mutiplication, we also
have

(19.38) Ds·ωc (s · ψ) = s · Dωc ψ, so that Dωc ψ = 0⇒ Ds·ωc (s · ψ) = 0.

We denote the orbit of (ω, ψ) ∈ C
(
PU(1)

)
×C∞ (Σ+

c (X)) under C∞ (X,U (1))
by

[ω, ψ] := {s · (ω, ψ) : s ∈ C∞ (X,U (1))}

Definition 19.41. For a fixed self-dual η ∈ Ω2+ (X, iR), the set

Mη :=
{

[ω, ψ] : Dωc ψ+ = 0 and Ωω+ = q
(
ψ+
)

+ η
}

of orbits of solutions (ω, ψ) of the perturbed S-W equations is known as the moduli
space for the Spinc structure (PSpinc(n), PU(1)).

Mη is not always a manifold in a natural way. However, we will show that
there are generic perturbations η such that Mη (if nonempty) is naturally a finite-
dimensional manifold at points [(ω, ψ)] where ψ 6= 0.

We compute the dimension of Mη formally as follows. Any two connections
on PU(1) differ by a one-form which is the pull-back of a one-form on the base X.

Thus, C
(
PU(1)

)
is an affine space associated with associated vector space

Ω
1 (
PU(1), iR

) π∗1∼= Ω1 (X, iR) ,
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which then formally serves as the tangent space TωC
(
PU(1)

)
. The formal tangent

space of the orbit of a point (ω, ψ) ∈ C
(
PU(1)

)
×C∞ (Σ+

c (X)) under the action of
C∞(X,U(1)) is the subspace of

T(ω,ψ)

(
C
(
PU(1)

)
× C∞

(
Σ+
c (X)

))
:= Ω1

(
PU(1), iR

)
⊕ C∞

(
Σ+
c (X)

)
consisting of elements of the form (where θ ∈ C∞(X,R))

d

dt

(
eitθ · (ω, ψ)

)∣∣∣∣
t=0

=
d

dt

(
ω + π∗1

(
−2e−itθd

(
eitθ
))
, eitθψ

)∣∣∣∣
t=0

= (−2idθ, iθψ) ∈ Ω1 (X, iR)× C∞
(
Σ+
c (X)

)
,

where we have (and will continue) to identify Ω
1 (
PU(1), iR

)
and Ω1 (X, iR). Now,

Ω1
(
PU(1), iR

)
⊕ C∞ (Σ+

c (X)) has an inner product given by

〈(iα, ξ) , (iα′, ξ′)〉 =

∫
X

h (α, α′) + Re (〈ξ, ξ′〉) νh,

where h (α, α′) is the usual inner product on covectors and νh is the volume form,
each induced by the Riemannian metric h on X. A vector (iα, ξ) is normal to the
orbit if we have (where δ = − ∗ d∗ is the formal L2-adjoint of d)

0 = 〈(iα, ξ) , (−2idθ, iθψ)〉 = 〈α,−2dθ〉+ 1
2 (〈ξ, iθψ〉+ 〈iθψ, ξ〉)

=
〈
−2 (δα)− i

2 (〈ξ, ψ〉 − 〈ψ, ξ〉) , θ
〉

for all θ ∈ C∞(X,R), or

(19.39) iδα+ 1
4 (〈ψ, ξ〉 − 〈ξ, ψ〉) = 0.

Consider the so-called Seiberg-Witten function

(19.40) Φ : C
(
PU(1)

)
× C∞

(
Σ+
c (X)

)
→ Ω2+(X, iR)⊕ C∞

(
Σ+
c (X)

)
given by

(19.41) Φ(ω, ψ) = (Ωω+ − q (ψ)− η,Dωc ψ).

The set of solutions of the S-W equations is Φ−1(0, 0). We formally compute the
differential

Φ∗(ω,ψ)(iα, ξ) = d
dt (Ω

(ω+tiα)+ − q (ψ + tξ) ,Dω+tiα
c (ψ + tξ))

∣∣∣
t=0

= (i (dα)
+ − q̃ (ξ, ψ)− q̃ (ψ, ξ) ,Dωc ξ + 1

2 iα · ψ),

where α · ψ is shorthand for cl(α# ⊗ ψ) (i.e., Clifford multiplication of ψ by the
vector field α# dual to the one-form α).

Since the tangent space of the moduli space M at [ω, ψ] can be formally iden-
tified with the intersection of Ker Φ∗(ω,ψ) with the normal space of the orbit of the
action of C∞(X,U(1)) through (ω, ψ), we see that formally the tangent space of
M at [(ω, ψ)] is the kernel of the real operator

(19.42) B : Ω1 (X, iR)⊕C∞
(
Σ+
c (X)

)
→ C∞ (X,R)⊕Ω2+ (X, iR)⊕C∞

(
Σ−c (X)

)
given by

B(iα, ξ) :=
(
iδα+ 1

4 (〈ψ, ξ〉 − 〈ξ, ψ〉) ,Φ∗(ω,ψ)(iα, ξ)
)
.

We will now compute the IndexB, which provides a lower bound on dim(KerB).
In general, dim(CokerB) 6= 0, but later we will show that for a generic choice of
self-dual 2-form η, Coker(B) = 0 at any point in Φ−1

η (0, 0) for which ψ 6= 0. Hence
the index of B will turn out to be the dimension of a (perturbed) moduli space.
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One consequence of the Atiyah-Singer Index Theorem is that the index of an
elliptic operator is determined by its highest order part. The top order part of
differential operator B is the first-order differential operator

(19.43) B1(iα, ξ) :=
(
δ (iα) , d (iα)

+
,Dωc ξ

)
=
(
δ ⊕ d+ ⊕Dωc

)
(iα, ξ).

Each of the operators δ ⊕ d+ : Ω1 (X, iR) → Ω0 (X, iR) ⊕ Ω2+ (X, iR) and Dωc :
C∞ (Σ+

c (X)) → C∞ (Σ−c (X)) is elliptic. Indeed, δ ⊕ d+ is elliptic, since we have
previously shown that δ ⊕ d− is elliptic (see the proof of Theorem 17.15, p. 462,
where T0 := δ⊕d−) and δ⊕d+ results from δ⊕d− by changing the orientation of X,
which does not affect ellipticity. The formal adjoint of (δ ⊕ d+)

∗
is d⊕δ|Ω2+ (X, iR),

and

Index
(
δ ⊕ d+

)
= dim Ker

(
δ ⊕ d+

)
− dim Ker

((
δ ⊕ d+

)∗)
= b1 −

(
1 + b+2

)
= 1

2 (b1 + b3)−
(
1 + 1

2

(
b+2 − b

−
2

)
+ 1

2

(
b+2 + b−2

))
= − 1

2 (1− b1 + b2 − b3 + 1)− 1
2 sig (X)

= − 1
2 (χ (X) + sig (X)) .

Now Dωc is locally a Dirac operator twisted by L′. Thus, we may apply the Local
Index Formula for twisted Dirac operators (Theorem 18.45, p. 544). Since locally
L′ ⊗ L′ = L, on the level of forms we have (where ω′ := 1

2π
∗
1 (ω)) c1 (L′, ω′) =

2c1 (L, ω) and

ch (L′, ω′) = 1 + c1 (L′, ω′) + 1
2c1 (L′, ω′)

2

= 1 + 1
2c1 (L, ω) + 1

8c1 (L, ω)
2
.

Then the Local Index Formula yields

IndexDωc =
(

1 + 1
2c1 (L) + 1

8c1 (L)
2 ` Â (X)

)
[X]

=
(

1 + 1
2c1 (L) + 1

8c1 (L)
2 `

(
1− 1

24p1 (TX)
))

[X]

=
(

1
8c1 (L)

2 − 1
24p1 (TX)

)
[X]

= 1
8c1 (L)

2
[X]− 1

243 sig (X) = 1
8

(
c1 (L)

2
[X]− sig (X)

)
,

where p1 (TX) [X] = 3 sig (X) by the Hirzebruch Signature Theorem (Theorem
18.59, p. 573). Since IndexB will turn out to be the dimension of a (perturbed)
moduli space, we denote IndexB by d (X,L). In summary, the index of the real
operator B is then given by

d (X,L) := IndexB = IndexB1 = Index
(
δ ⊕ d+

)
+ IndexRDωc

= b1 −
(
1 + b+2

)
+ IndexRDωc

= − 1
2 (χ (X) + sig (X)) + 2 · 1

8

(
c1 (L)

2
[X]− sig (X)

)
= 1

4

(
c1(L)2 − 2χ(X)− 3 sig(X)

)
.(19.44)

Remark 19.42. Note that as indexR(Dωc ) = 2· indexC(Dωc ) is even, IndexR(B) ≡
Index (δ ⊕ d+) mod 2. Since Index (δ ⊕ d+) = b1− b2+−1, indexR(B) is even if and
only if b1 + b2+ is odd (i.e., IndexR(B) and b1 + b2+ have opposite parity).
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Having computed the formal dimension d (X,L) of moduli space, one would
like to verify that under suitable conditions that it is a manifold. This requires the
introduction of function spaces and hard analysis. The set of solutions of the S-W
equations is Φ−1(0, 0). In this chapter, we have assumed thus far that all objects
are in the C∞ category. Spaces of C∞ sections can be made into Fréchet spaces,
but without extra conditions, the implicit function theorem fails for maps between
Fréchet spaces. Thus, even if we could prove that Φ∗(ω,ψ) is onto, one could not

deduce that Φ−1(0, 0) is a manifold. Instead, we enlarge the spaces involved to
suitable Sobolev spaces which are Hilbert (or Banach) spaces. In that category,
one has inverse and implicit function theorems, as we have seen in Sections 77.3
and/or 17.4. Moreover, we will need

Theorem 19.43 (Unique Continuation (see [Ar])). Let E → X be a vector
bundle over a connected manifold X and let D : C∞(E)←↩ be a second-order, ellip-
tic differential operator whose symbol is a multiple of the identity at each nonzero
covector (i.e., a “scalar” symbol). If Du = 0 and u = 0 on some open set, then
u = 0 on X.

The appropriate Sobolev extension of the S-W function (19.40) , an appropriate
extension is (for sufficiently large k)

Φ2,k+1 : C2,k+1
(
PU(1)

)
×W 2,k+1

(
Σ+
c (X)

)
→W 2,k

(
Λ2+(X, iR)

)
⊕W 2,k

(
Σ−c (X)

)
.

Note that we need k+ 1 > 4
2 (i.e., k ≥ 2) in order that q define a bounded bilinear

form on W 2,k+1 (Σ+
c (X))×W 2,k+1 (Σ+

c (X))→W 2,k+1
(
Λ2+(X, iR)

)
according to

Proposition 17.22, p. 469. We remark that while a connection 1-form ω ∈ C
(
PU(1)

)
is not a 1-form defined on X, any two connection 1-forms ω1 and ω0 on PU(1) differ
by a 1-form ω1 − ω0 that uniquely projects to a 1-form on X which we also denote
by ω1−ω0. Thus, given a fixed arbitrary choice of a connection ω0 ∈ C

(
PU(1)

)
, the

space C
(
PU(1)

)
can be identified with Ω1(X, iR), via ω1 ↔ ω1 − ω0. Then

C2,k+1
(
PU(1)

)
:= ω0 +W 2,k+1

(
Λ1(X, iR)

)
,

which is really independent of the choice of ω0. Assume that k ≥ 2. Let

W 2,k+1
(
Σ+
c (X)

)∗
:= W 2,k+1

(
Σ+
c (X)

)
− {0} and

CWPk := C2,k+1
(
PU(1)

)
×W 2,k+1

(
Σ+
c (X)

)∗ ×W 2,k
(
Λ2+(X, iR)

)
.(19.45)

The tangent space of the Banach manifold CWPk at (ω, ψ, η) is

T(ω,ψ,η)CWPk := W 2,k+1
(
Λ1(X, iR)

)
×W 2,k+1

(
Σ+
c (X)

)∗ ×W 2,k
(
Λ2+(X, iR)

)
Define

F : CWPk →W 2,k
(
Λ2+(X, iR)

)
⊕W 2,k

(
Σ−c (X)

)
by

F (ω, ψ, η) := Φ2,k+1(ω, ψ) = (Ωω+ − q (ψ)− η,Dωc ψ).(19.46)

Theorem 19.44. If for some triple (ω, ψ, η) ∈ CWPk we have F (ω, ψ, η) = 0,
then the differential

F∗ : T(ω,ψ,η)CWPk →W 2,k
(
Λ2+(X, iR)

)
⊕W 2,k

(
Σ−c (X)

)
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at (ω, ψ, η) is given by

F∗ (ω′, ψ′, η′) =
(

(dω′)
+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′)− η′, Dωc ψ′ + 1

2ω
′ · ψ

)
,

and F∗ is onto.

Proof. Note that for η′ ∈W 2,k
(
Λ2+(X, iR)

)
, F∗ (0, 0,−η′) = (η′, 0), so that

Im (F∗) ⊇W 2,k
(
Λ2+(X, iR)

)
⊕0. It suffices to show that for any ξ′ ∈W 2,k (Σ−c (X)),

there is some ω′ ∈W 2,k+1
(
Λ1(X, iR)

)
and ψ′ ∈W 2,k+1 (Σ+

c (X)), such that

ξ′ = Dωc ψ′ + 1
2ω
′ · ψ,

since then

F∗

(
ω′, ψ′, (dω′)

+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′)− η′
)

= (η′, ξ′).

Thus, it remains to show that the map

D : W 2,k+1
(
Λ1(X, iR)

)
×W 2,k+1

(
Σ+
c (X)

)
→W 2,k

(
Σ−c (X)

)
given by

(19.47) D (ω′, ψ′) = Dωc ψ′ + 1
2ω
′ · ψ

is onto. Since Dωc is elliptic, the operator D is also elliptic. Thus, according to
Proposition 17.23 (applied to the elliptic formal adjoint D∗ of D), D is onto if
Ker(D∗) is 0. We determine D∗ as follows. For ξ ∈ C∞ (Σ−c (X)) , we have (where
(·, ·) is the L2 inner product on C∞ (Σ−c (X)))(

Dωc ψ′ + 1
2ω
′ · ψ, ξ

)
= (ψ′,Dωc ξ) +

∫
X

〈
ω′, i Im

(〈
1
2cl(·)ψ, ξ

〉)〉
g
νg,

using the fact that ω′ is iR-valued. Thus,

D∗ξ = i Im
(〈

1
2cl(·)ψ, ξ

〉)
⊕Dωc ξ

= i
4 (〈cl(·)ψ, ξ〉 − 〈ξ, cl(·)ψ〉)⊕Dωc ξ.

Hence

D∗ξ = 0⇔ Dωc ξ = 0 and Im 〈cl(·)ψ, ξ〉 = 0.

We have assumed that ψ 6= 0 and Dωc ψ = 0. If Dωc ξ = 0 and ξ 6= 0, then by the
Theorem 19.43 (p. 633), neither ψ nor ξ can vanish on an open set. (Note that
we are actually applying Theorem 19.43 with D = Dωc ∗Dωc which is a second-
order operator with “scalar” symbol, and Dωc ξ = 0 ⇔ Dω∗c Dωc ξ = 0.) Hence
there must be a point x ∈ X where both ψ and ξ are nonzero. At x the cov-
ector Im

(〈
1
2cl(·)ψ, ξ

〉)
is nonzero. Indeed, first recall that Clifford multiplication

takes R4 onto R·SU(Σ+
2 ,Σ

−
2 ). Since SU(2) acts transitively on the unit sphere in

C2, we know there is some vector V ∈ Tx(X), so that cl(V )ψ(x) = iξ(x) and
Im
〈

1
2cl(V )ψ(x), ξ(x)

〉
= Im

〈
1
2 iξ(x), ξ(x)

〉
= 1

2 〈ξ(x), ξ(x)〉 > 0. Thus, necessarily
ξ = 0, and D in (19.47) is onto as required. �

Theorem 19.44 and Theorem 17.24 (Implicit Function Theorem I, p. 470) yield
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Corollary 19.45. The parametrized solution space

SWPk := F−1(0, 0)

=
{

(ω, ψ, η) ∈ CWPk : Ωω+ − q (ψ)− η = 0, Dωc ψ = 0
}

(19.48)

(if nonvoid) is a Hilbert submanifold of CWPk with tangent space at (ω, ψ, η) being
the kernel of F∗.

We need to indicate the sense in which the group C∞(X,U(1)) of gauge trans-
formations can be enlarged to a C∞ Banach manifold W 2,k+2(X,U(1)) (where
k ≥ 1) and group for which the group operation (r, s) 7→ rs−1 is C∞. We have
(where the last inclusion is compact by Proposition 17.20, p.468, since 2 (k + 2) > 4)

W 2,k+2(X,U(1)) :=
{
s ∈W 2,k+2(X,C) : ss̄ = 1 (a.e.)

}
⊆W 2,k+2(X,C)

ι
⊆ C0(X,C),

and soW 2,k+2(X,U(1)) inherits a topological metric fromW 2,k+2(X,C). Moreover,
since C0(X,U(1)) is closed in C0(X,C), W 2,k+2(X,U(1)) = ι−1 (C0(X,U(1))) is
closed in W 2,k+2(X,C). Hence, W 2,k+2(X,U(1)) is a complete metric space. For
any s ∈W 2,k+2(X,U(1)), we define a function

Exps : W 2,k+2(X, iR)→W 2,k+2(X,U(1)) by Exps(iθ)(x) = eiθ(x)s(x).

For iθ ∈ W 2,k+2(X, iR), the fact that Exps(iθ) ∈ W 2,k+2(X,U(1)) follows from
Proposition 17.22 (p. 469) and

Proposition 19.46. If f : E → F is any C∞ fiber-preserving map (not neces-
sarily linear on fibers), then left-composition by f defines a C∞ map from W p,k (E)
to W p,k (F ) if k − n

p > 0.

Proof. See [Pal68, p. ???]. �

Proposition 19.47. For k ≥ 1, W 2,k+2(X,U(1)) is a C∞ Banach manifold
and W 2,k+2(X,U(1))2 3 (t, s) 7→ ts−1 = ts̄ ∈W 2,k+2(X,U(1)) is C∞.

Proof. Let d(z1, z2) denote the angular distance between z1 and z2 in the unit
circle U(1). For ρ ∈ [0, π], define

Uρ(s) :=
{
t ∈W 2,k+2(X,U(1)) : d(t(x), s(x)) < ρ for all x ∈ X

}
,

and Oρ :=
{
iθ ∈W 2,k+2(X, iR) : |iθ(x)| < ρ for all x ∈ X

}
.

Since the inclusion W 2,k+2(X, iR) ⊆ C0(X, iR) is continuous, Oρ is open. More-
over,

Exps|Oρ : Oρ → Uρ(s)

is bijective. We denote the inverse by Logs : Uρ(s)→ Oρ, and it is given by

Logs(t)(x) = i arg
(
t(x)s(x)

)
,

where arg(eiθ) = θ for |θ| < π. In order that the set of charts Logs, s ∈W 2,k+2(X,U(1)),
define a differentiable structure on W 2,k+2(X,U(1)), we need to show that

Logs ◦ Log−1
t : Logt (Uρ(s) ∩ Uρ(t))→ Logs (Uρ(s) ∩ Uρ(t))
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is C∞. Note that if ρ < π
2 , then(

Logs ◦ Log−1
t

)
(iθ) (x) = Logs

(
Log−1

t (iθ)
)

(x) = i arg
(
Log−1

t (iθ) (x)s(x)
)

= i arg
(
Expt (iθ) (x)s(x)

)
= i arg

(
eiθ(x)t(x)s(x)

)
= i θ(x) + i arg

(
t(x)s(x)

)
= i θ(x) + Logs(t)(x).

Thus, Logs ◦Log−1
t is a translation of W 2,k+2(X, iR) by Logs(t) ∈W 2,k+2(X, iR),

which is C∞. Hence, W 2,k+2(X,U(1)) is a Banach manifold. The mapping from
W 2,k+2(X,U(1))2 to W 2,k+2(X,U(1)) given by (t, s) 7→ ts−1 = ts̄ is C∞, since in
terms of charts about t0, s0 and t0s̄0 it is given by(

i arg
(
t t0
)
, i arg (s s0)

)
= (Logt0(t), Logs0(s))

7→ Logt0s̄0 (ts̄) = i arg
(
t s̄ t0s̄0

)
= i arg

(
t t0s̄ s0

)
= i arg

(
t t0
)
− i arg (s s0) .

(i.e., (u, v) 7→ u−v). One could also show that W 2,k+2(X,U(1)) is a closed (Hilbert)
submanifold and subgroup of W 2,k+2(X,C∗). Since W 2,k+2(X,C∗) is covered by
a single chart in which the group operations are certainly C∞ (using Propositions
17.22 and 19.46), the restrictions of the group operations to W 2,k+2(X,U(1)) are
smooth. Thus, W 2,k+2(X,U(1)) is a closed Lie subgroup of W 2,k+2(X,C∗). �

For k ≥ 2, W 2,k+2(X,U(1)) acts smoothly and freely on CWPk via

(19.49) s · (ω, ψ, η) =
(
ω + π∗1

(
−2s−1ds

)
, sψ, η

)
Note that s−1ds ∈W 2,k+1(X,Λ1 (X, iR)) by Proposition 17.22 (p. 469), since s−1 ∈
W 2,k+2(X,U(1)) and ds ∈ W 2,k+1(X,Λ1 (X,C))) and 2 (k + 1) > 4; also s−1ds is
iR-valued, since

s−1ds = s−1ds = sd
(
s−1
)

= s(−s−2ds) = −s−1ds).

For k ≥ 3, s−1ds is C1 since k + 1 − 4
2 ≥ 2 > 1 and Proposition 17.20 (p. 468)

then applies. Thus, for k ≥ 3 we can compute d
(
s−1ds

)
= −s−2ds ∧ ds = 0

in the usual way. The computations leading to (19.37) and (19.38) then apply
to show that SWPk ⊆ CWPk is invariant under the action of W 2,k+2(X,U(1))
for k ≥ 3. We wish to construct quotient manifolds CWPk/W 2,k+2(X,U(1)) and
SWPk/W 2,k+2(X,U(1)). In doing this, we will need to repeatedly use a family of
elliptic operators parametrized by (ω, ψ, η) ∈ CWPk for k ≥ 2. Using (19.42) for
the motivation (and noting that η is just carried along for the ride for now), this
family is

B(ω,ψ,η),k : W 2,k+1
(
Λ1 (X, iR)

)
⊕W 2,k+1

(
Σ+
c (X)

)
→W 2,k (X, iR)⊕W 2,k

(
Λ2+ (X, iR)

)
⊕W 2,k

(
Σ−c (X)

)
,

given by

(19.50) B(ω,ψ,η),k (ω′, ψ′) :=

 δω′ − 1
4 (〈ψ′, ψ〉 − 〈ψ,ψ′〉)

dω′+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′)
Dωψ′ + 1

2ω
′ · ψ


Proposition 17.22 (p. 469) is used in showing that this is well-defined. For the time
being, both (ω, ψ, η) ∈ CWPk and k ≥ 2 will be fixed, and we write B(ω,ψ,η),k

simply as B. It is convenient to introduce the following notation.
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Notation 19.48. Let

U1 := W 2,k+1
(
Λ1 (X, iR)

)
, U2 := W 2,k+1 (Σ+

c (X))

V1 := W 2,k (X, iR) , V2 := W 2,k
(
Λ2+ (X, iR)

)
, V3 := W 2,k (Σ−c (X)) .

Then we write

B =
(
B1, B2, B3

)
: U1 ⊕ U2 → V1 ⊕ V2 ⊕ V3, where

B1 : U1 ⊕ U2 → V1 with B1 (ω′, ψ′) = δω′ − 1
4 (〈ψ′, ψ〉 − 〈ψ,ψ′〉)

B2 : U1 ⊕ U2 → V2 with B2 (ω′, ψ′) = dω′+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′)
B3 : U1 ⊕ U2 → V3 with B3 (ω′, ψ′) = Dωc ψ′ + 1

2ω
′ · ψ.

Since B is elliptic, the symbols of B1, B2, and B3 are surjective but not in-
jective. We need to compute the appropriate Sobolev extensions of the L2 formal
adjoints of B1, B2, and B3.(

B1
)∗

: W 2,k+2 (X, iR)→ U1 ⊕ U2(
B2
)∗

: W 2,k+2
(
Λ2+ (X, iR)

)
→ U1 ⊕ U2(

B3
)∗

: W 2,k+2 (Σ−c (X))→ U1 ⊕ U2

The final results are: (
B1
)∗

(iθ) =
(
idk+2θ,− i

2θψ
)(

B2
)∗

(γ) =
(
δk+2γ, S∗ψ (γ)

)
(
B3
)∗

(ξ) =
(
T ∗ψ (ξ) , (Dωc )

k+2
ξ
)
,

where S∗ψ and T ∗ψ are 0-th order operators, described below. Since iR is a real

vector space with real inner product 〈a, b〉 := ab, the spaces Ωj (X, iR) are also
real vector spaces with real inner products, and so the formal adjoints need to
be computed relative to real L2 inner products. Hence, although Σ±c (X) has
a Hermitian inner product, say 〈ψ1, ψ2〉 , we must use the real inner product

Re (〈ψ1, ψ2〉) = 1
2 (〈ψ1, ψ2〉+ 〈ψ2, ψ1〉) . We first compute

(
B1
)∗

:∫
X

〈
iθ, B1 (ω′, ψ′)

〉
νg =

∫
X

〈
iθ, δω′ + 1

4 (〈ψ,ψ′〉 − 〈ψ′, ψ〉)
〉
νg

=

∫
X

〈iθ, δω′〉 νg −
∫
X

1
4 (〈iθψ, ψ′〉+ 〈ψ′, iθψ〉) νg

=

∫
X

〈idθ, ω′〉 νg −
∫
X

1
2 Re (〈iθψ, ψ′〉) νg

=

∫
X

〈(
idθ,− i

2θψ
)
, (ω′, ψ′)

〉
νg.

For
(
B2
)∗
, we first note that there is a 0-th order differential operator Sψ :

C∞ (Σ+
c (X))→ Ω2+(X, iR) given by Sψ (ψ′) = q̃ (ψ′, ψ) + q̃ (ψ,ψ′). The adjoint of

Sψ, say S∗ψ : Ω2+(X, iR)→ C∞ (Σ+
c (X)) , has the property that for γ ∈ Ω2+(X, iR),

〈γ, q̃ (ψ′, ψ) + q̃ (ψ,ψ′)〉 = 〈γ, Sψ (ψ′)〉 = Re
〈
S∗ψ (γ) , ψ′

〉
.

While one can find an explicit expression for S∗ψ (γ), the important point is that

S∗ψ : Ω2+(X, iR)→C∞(Σ+
c (X)) is again a 0-th order differential operator. The
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formal adjoint of B2 is computed via∫
X

〈
γ,B2 (ω′, ψ′)

〉
νg =

∫
X

〈γ, dω′ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′)〉 νg

=

∫
X

〈δγ, ω′〉 νg −
∫
X

〈γ, q̃ (ψ′, ψ) + q̃ (ψ,ψ′)〉 νg

=

∫
X

〈δγ, ω′〉 νg −
∫
X

Re
〈
S∗ψ (γ) , ψ′

〉
νg

=

∫
X

〈(
δγ,−S∗ψ (γ)

)
, (ω′, ψ′)

〉
νg.(19.51)

For
(
B3
)∗

, let ξ ∈ C∞(Σ−c (X)), and note that∫
X

Re
〈
ξ,B3 (ω′, ψ′)

〉
νg =

∫
X

Re
〈
ξ,Dωc ψ′ + 1

2ω
′ · ψ

〉
νg

=

∫
X

Re
〈
ξ, 1

2ω
′ · ψ

〉
+ Re 〈Dωc ξ, ψ′〉 νg

=

∫
X

〈
T ∗ψ (ξ) , ω′

〉
+ Re 〈Dωc ξ, ψ′〉 νg

=

∫
X

〈(
T ∗ψ (ξ) ,Dωc ξ

)
, (ω′, ψ′)

〉
νg.(19.52)

Here T ∗ψ is the 0-th order operator which is the adjoint of the 0-th order operator

Tψ : Ω1(X, iR)→ C∞(Σ−c (X)) given by Tψ(ω′) = 1
2ω
′ · ψ.

Theorem 19.49. For k ≥ 2, the quotient space of moduli

MCWPk := CWPk/W 2,k+2(X,U(1))

has the structure of a Hausdorff C∞ Hilbert manifold.

Proof. We first will produce a “local slice” of the action of W 2,k+2(X,U(1))
on CWPk. Previously (see (19.39)) we found that at a point (ω, ψ, η) ∈ CWPk, a
vector (ω′, ψ′, η′) ∈ T(ω,ψ,η) (CWPk) is formally L2-orthogonal to the orbit

W 2,k+2(X,U(1)) · (ω, ψ, η)

iff

δω′ − 1
4 (〈ψ′, ψ〉 − 〈ψ,ψ′〉) = 0,

i.e., iff (ω′, ψ′) ∈ Ker
(
B1
)
. Note that

− 2B1∗ ⊕ 0 : W 2,k+2 (X, iR)→ U1 ⊕ U2 ⊕ V2,

given by
(
−2B1∗

k ⊕ 0
)

(iθ) = (−2idθ, iθψ, 0) ,

is the differential at 1 ∈W 2,k+2 (X,U(1)) of the map

W 2,k+2 (X,U(1))→ CWPk given by

s 7→ s · (ω, ψ, η) =
(
ω − 2π∗1

(
s−1ds

)
, sψ, η

)
.

Since the symbol of B1∗ is injective, we have the decomposition (see Proposition
17.23, p. 469)

(19.53) U1 ⊕ U2 = Ker
(
B1
)
⊕ Im

(
B1∗)



19.3. THE MANIFOLD OF MODULI 639

into closed subspaces which are L2-orthogonal. For a fixed (ω, ψ, η), we define a
C∞ map

J = J(ω,ψ,η) :
(
Ker(B1)× V2

)
×W 2,k+2 (X,U(1))→ CWPk by

J(x, s) := s · ((ω, ψ, η) + x) ; i.e.,

J((ω′, ψ′, η′) , s) = s · ((ω, ψ, η) + (ω′, ψ′, η′))

=
(
ω + ω′ − 2π∗1

(
s−1ds

)
, s (ψ + ψ′) , η + η′

)
.

At (0, 0, 1) ∈ Ker(B1)× V2 ×W 2,k+2 (X,U(1)), the differential

J∗(0,0,1) : Ker
(
B1
)
⊕ V2 ⊕ V1 → T(ω,ψ,η) (CWPk) ∼= U1 ⊕ U2 ⊕ V2

is given by

J∗(0,0,1)((ω
′, ψ′) , η′, iθ) = (ω′ − 2idθ, iθψ + ψ′, η′)

= (ω′, ψ′, η′) + (−2idθ, iθψ, 0) = (ω′, ψ′, η′)− 2B1∗ (iθ) .

Thus, on Ker
(
B1
)
⊕ V2 ⊕ 0, J∗(0,0,1) is the “inclusion” Ker

(
B1
)
⊕ V2 ⊕ 0 ⊆ U1 ⊕

U2 ⊕ V2, and on 0 ⊕ 0 ⊕ V1, J∗(0,0,1) is −2B1∗ : V1 → U1 ⊕ U2 ⊕ 0. Thus using
(19.53), we have that J∗(0,0,1) is onto. The kernel of J∗(0,0,1) is trivial. Indeed, since

Ker
(
B1
)
⊥ Im

(
B1∗), we have

(19.54) (ω′, ψ′, η′) +B1∗ (iθ) = 0⇒ (ω′, ψ′, η′) = 0 and B1∗ (iθ) = 0,

and iθ = 0, since Ker(B1∗) is trivial (recall ψ 6= 0). Thus, by the Inverse Func-
tion Theorem, Theorem 17.26 (p. 470), there are open neighborhoods U of 0 ∈
Ker

(
B1
)
× V2 and V of 1 ∈ W 2,k+2 (X,U(1)), such that J | (U × V ) : U × V →

J (U × V ) is a diffeomorphism onto a neighborhood J (U × V ) of (ω, ψ, η) ∈ CWPk.
Thus, points of CWPk near (ω, ψ, η) are uniquely of the form

J(x, s) = s · ((ω, ψ, η) + x) for x ∈ Ker(B1)× V2

(i.e., for x in the “normal space” to the orbit of (ω, ψ, η)). In other words, U is a
“local slice of the action”. On our way to a global slice, let

Q : CWPk → CWPk/W 2,k+2 (X,U(1))

be the quotient function and define a diffeomorphism

j(ω,ψ,η) : U → J(ω,ψ,η) (U × {1}) by

j(ω,ψ,η) (x) := J(ω,ψ,η) (x, 1) = (ω, ψ, η) + x.

We now show that the mapping

ϕ(ω,ψ,η) : U → CWPk/W 2,k+2 (X,U(1))

given by

(19.55) ϕ(ω,ψ,η) (K) := [(ω, ψ, η) +K] = Q ◦ j(ω,ψ,η) (K)

is 1-1 if U is chosen small enough. Suppose that for K1 = (ω1, ψ1, η1) and K2 =
(ω2, ψ2, η2) ∈ U, we have ϕ(ω,ψ,η) (K1) = ϕ(ω,ψ,η) (K2). Then s · ((ω, ψ, η) +K1) =
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(ω, ψ, η) +K2 for some s ∈W 2,k+2 (X,U(1)) , i.e.,

s · ((ω, ψ, η) + (ω1, ψ1, η1))

=
(
ω − 2π∗1

(
s−1ds

)
+ ω1, sψ + sψ1, η + η1

)
= (ω + ω2, ψ + ψ2, η + η2) .(19.56)

Thus, ω − 2π∗1
(
s−1ds

)
+ ω1 = ω + ω2, sψ + sψ1 = ψ + ψ2, and η1 = η2. Hence,

2π∗1
(
s−1ds

)
= ω1 − ω2 and (s− 1)ψ = (ψ2 − ψ1)− (s− 1)ψ1.

Now, let

Uε :=
{

(ω′, ψ′, η′) ∈ U : ‖ψ′‖2,k+1 ≤ ε and ‖ω′‖2,k+1 ≤ ε
}
⊆ U.

For K1, K2 ∈ Uε, we have

(19.57)
∥∥2s−1ds

∥∥
2,k+1

= ‖ω1 − ω2‖2,k+1 ≤ 2ε,

and for some constant C,

‖(s− 1)ψ‖2,k+1 ≤ ‖ψ2 − ψ1‖+ ‖(s− 1)ψ1‖2,k+1

≤ 2ε+ C ‖s− 1‖2,k+1 ‖ψ1‖2,k+1 ≤
(

2 + C ‖s− 1‖2,k+1

)
ε.

Proposition 17.20 and (19.57) yield
∥∥s−1ds

∥∥
C0 ≤ C ′

∥∥s−1ds
∥∥

2,k+1
≤ C ′ε, for some

constant C ′ and k ≥ 2. Thus, for ε sufficiently small, we deduce that s is arbitrarily
C0-close to some constant, say s0, with ‖s− s0‖C0 ≤ ε0. We show s0 = 1. If s0 6= 1,
then for ε0 <

1
2 |1− s0|, |s (x)− 1| > 1

2 |1− s0| > 0 for all x ∈ X. For k ≥ 2, there
is a also a constant C ′′ such that

(19.58) ‖(s− 1)ψ‖C0 ≤ C ′′ ‖(s− 1)ψ‖2,k+1 ≤ C
′′
(

2 + C ‖(s− 1)‖2,k+1

)
ε

can be made arbitrarily small with ε. However, since ψ 6= 0, there is some x0 with
ψ (x0) 6= 0 and

|(s (x0)− 1)ψ (x0)| = |(s (x0)− 1)| |ψ (x0)| ≥ 1
2 |1− s0| |ψ (x0)| ,

which contradicts (19.58). Thus, s0 = 1, and (19.57) then implies that s ∈ V for
sufficiently small ε. Since J |Uε × V is 1-1 and s ∈ V , (19.56) then yields

J (K1, s) = J (K2, 1)⇒ (K1, s) = (K2, 1)⇒ K1 = K2.

Thus, by replacing U by Uε for sufficiently small ε, the mapping

ϕ(ω,ψ,η) : U → ϕ(ω,ψ,η) (U) = Q ◦ j(ω,ψ,η) (U) ⊆ CWPk/W 2,k+2 (X,U(1))

is 1-1. We wish to show that the

(19.59) ϕ−1
(ω,ψ,η) : ϕ(ω,ψ,η) (U)→ U

form a collection of coordinate charts for CWPk/W 2,k+2 (X,U(1)) with C∞ coor-
dinate transitions. Suppose that we have two such charts, say

ϕ−1
(ω1,ψ1,η1) : ϕ(ω,ψ,η) (U1)→ U1 and ϕ−1

(ω2,ψ2,η2) : ϕ(ω,ψ,η) (U2)→ U2

with [(ω0, ψ0, η0)] ∈ ϕ(ω1,ψ1,η1) (U1) ∩ ϕ(ω2,ψ2,η2) (U2) .

We may assume (ω0, ψ0, η0) ∈ j(ω1,ψ1,η1) (U1). There is s0 ∈W 2,k+2 (X,U(1)), such
that (ω0, ψ0, η0) · s0 ∈ j(ω2,ψ2,η2) (U2) . We show that there is a neighborhood U ′1 of



19.3. THE MANIFOLD OF MODULI 641

(ω0, ψ0, η0) in j(ω1,ψ1,η1) (U1) and some s = eiθ ∈ C∞
(
U ′1,W

2,k+2 (X,U(1))
)
, such

that for all x ∈ U ′1

Rs0s(x) := x · s0 · s (x) ∈ j(ω2,ψ2,η2) (U2) ,

where Rs0s : U ′1 → CWPk is C∞. The following computation will then yield

ϕ−1
(ω2,ψ2,η2) ◦ ϕ(ω1,ψ1,η1) =

(
j(ω2,ψ2,η2)

)−1 ◦ Rs0s ◦ j(ω1,ψ1,η1) on U ′1, which is a com-

position of C∞ mappings, as required: For x = j(ω1,ψ1,η1) (y) ∈ U ′1 (i.e., y ∈
j−1
(ω1,ψ1,η1)(U

′
1) ⊆ U1),(

ϕ−1
(ω2,ψ2,η2) ◦ ϕ(ω1,ψ1,η1)

)
(y) =

((
Q ◦ j(ω2,ψ2,η2)

)−1 ◦
(
Q ◦ j(ω1,ψ1,η1)

))
(y)

=
(
Q ◦ j(ω2,ψ2,η2)

)−1
([x]) =

(
Q ◦ j(ω2,ψ2,η2)

)−1
([x · s0 · s (x)])

=
(
Q ◦ j(ω2,ψ2,η2)

)−1
([Rs0s (x)]) =

(
j(ω2,ψ2,η2)

)−1
(Rs0s (x))

=
((
j(ω2,ψ2,η2)

)−1 ◦Rs0s ◦ j(ω1,ψ1,η1)

)
(y) .

We seek θ ∈ C∞
(
U ′1,W

2,k+2 (X,R)
)

such that, for

s = eiθ ∈ C∞
(
U ′1,W

2,k+2 (X,U(1))
)
,

we have

B1
(ω2,ψ2,η2) ((ω, ψ, η) · s0 · s (ω, ψ, η)− (ω2, ψ2, η2)) = 0

for all (ω, ψ, η) in a neighborhood of (ω0, ψ0, η0) in j(ω1,ψ1,η1) (U1) . Define

F : j(ω1,ψ1,η1) (U1)×W 2,k+2 (X,R)→W 2,k (X,R) by

F ((ω, ψ, η) , θ) = B1
(ω2,ψ2,η2)

(
(ω, ψ, η) · s0 · eiθ − (ω2, ψ2, η2)

)
= B1

(ω2,ψ2,η2)

(
ω − ω2 − 2s−1

0 ds0 − 2idθ, eiθs0ψ − ψ2, η − η2

)
.(19.60)

Using the fact that (ω0, ψ0, η0)·s0 ∈ J(ω2,ψ2,η2) (U2), we have F ((ω0, ψ0, η0) , 0) = 0.
The existence of θ will follow from the Implicit Function Theorem (Theorem 17.25,
p. 470), provided that at ((ω0, ψ0, η0) , 0)

∂θF : W 2,k+2 (X,R)→W 2,k (X,R)

is onto. However, using

B1
(ω2,ψ2,η2) (ω′, ψ′, η′) = δω′ + 1

4 (〈ψ,ψ′〉 − 〈ψ′, ψ〉) , we have

∂θF (θ′) = B1
(ω2,ψ2,η2)

(
2idθ′,−iθ′s−1

0 ψ0, 0
)

= 2iδdθ′ + 1
4

(〈
ψ2,−iθ′s−1

0 ψ0

〉
−
〈
−iθ′s−1

0 ψ0, ψ2

〉)
= 2iδdθ′ + 1

4

(
iθ′
〈
ψ2, s

−1
0 ψ0

〉
+ iθ′

〈
s−1

0 ψ0, ψ2

〉)
= 2i

(
δdθ′ + 1

8θ
′ (〈s−1

0 ψ0, ψ2

〉
+
〈
ψ2, s

−1
0 ψ0

〉))
.

Since the elliptic operator

θ′ 7→ δdθ′ + 1
8θ
′ (〈s−1

0 ψ0, ψ2

〉
+
〈
ψ2, s

−1
0 ψ0

〉)
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is self-adjoint, it suffices to prove that its kernel is trivial. If ∂θF (θ′) = 0, then

0 =

∫
X

〈
δdθ′ + 1

8θ
′ (〈s−1

0 ψ0, ψ2

〉
+
〈
ψ2, s

−1
0 ψ0

〉)
, θ′
〉
νg

=

∫
X

|dθ′|2 + 1
8

(〈
s−1

0 ψ0, ψ2

〉
+
〈
ψ2, s

−1
0 ψ0

〉)
θ′2 νg.(19.61)

In the case s−1
0 ψ0 = ψ2, this last equation holds only if θ′ = 0. However, in general

we must ensure that the neighborhoods U associated with points (ω, ψ, η) are chosen

small enough so that for all
(
ω̃, ψ̃, η̃

)
∈ j(ω,ψ,η) (U), the operator

∆ψ̃ : θ 7→ δdθ + 1
4

(〈
ψ̃, ψ

〉
+
〈
ψ, ψ̃

〉)
θ

is invertible. This is certainly true for
(
ω̃, ψ̃, η̃

)
= (ω, ψ, η) . The invertible op-

erators from W 2,k+2 (X,R) to W 2,k (X,R) form an open set in the Banach space
Hom

(
W 2,k+2 (X,R) ,W 2,k (X,R)

)
of continuous linear maps. By Proposition 17.22

(p. 469), we have∥∥∥(∆ψ̃ −∆ψ

)
θ
∥∥∥

2,k
=
∥∥∥ 1

4

(〈
ψ̃ − ψ,ψ

〉
+
〈
ψ, ψ̃ − ψ

〉)
θ
∥∥∥

2,k

≤ C ‖ψ‖2,k
∥∥∥ψ̃ − ψ∥∥∥

2,k
‖θ‖2,k

≤ C ‖ψ‖2,k
∥∥∥ψ̃ − ψ∥∥∥

2,k+1
‖θ‖2,k+2

Thus,
∥∥∥∆ψ̃ −∆ψ

∥∥∥ ≤ C ‖ψ‖2,k ∥∥∥ψ̃ − ψ∥∥∥
2,k+1

which shows that ∆ψ̃ will be invertible

for ψ̃ sufficiently W 2,k+1-close (in fact W 2,k-close) to ψ. Thus, the neighborhoods U
associated with points (ω, ψ, η) can be chosen small enough so that the coordinate
transition functions will be smooth.

It remains to show that the topology of CWPk/W 2,k+2 (X,U(1)) induced by
the charts is Hausdorff. Since all spaces involved are second countable, it suffices
to show that if a sequence [xn] in CWPk/W 2,k+2 (X,U(1)) converges to both [y]
and [z], then [y] = [z]. If [xn] converges to both [y] and [z], then there are sequences
rn and tn ∈W 2,k+2 (X,U(1)) such that rn ·xn → y and tn ·xn → z. Let yn = rn ·xn,
then yn → y and for sn := r−1

n tn, we have sn · yn = tn · xn → z. Thus, it suffices
to prove that if yn → y and sn · yn → z, then there is a convergent subsequence,
say sni → s, in which case sni · yn → y · s, and so z = y · s (since CWPk is a
metric space) and [y] = [z]. In other words, we need to show that the action of
W 2,k+2 (X,U(1)) on CWPk is proper. To show this, let

(19.62) (ωn, ψn, ηn)→ (ω, ψ, η) ∈ CWPk,
and suppose that

sn · (ωn, ψn, ηn)→ (β, φ, ζ) for sn ∈W 2,k+2 (X,U(1)) .

Then

ωn − 2s−1
n dsn = sn · ωn =: βn → β ∈ C2,k+1

(
PU(1)

)
⇒ −2s−1

n dsn = βn − ωn → β − ω ∈W 2,k+1
(
Λ1(X, iR)

)
.

Since (k + 2)− 4
2 > 0 for k > 0,

sn ∈W 2,k+2(X,U(1))⇒ sn ∈ C0(X,U(1)) and |sn(x)|2 = 1.
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Thus, sn is bounded in W p,0(X,U(1)) for all p ≥ 1. Also, 2s−1
n dsn = βn − ωn ∈

W 2,k+1
(
Λ1(X, iR)

)
⊆W 2,2

(
Λ1(X, iR)

)
. Thus, by Proposition 17.22 (p. 469) with

k3 − n
p3

= 0− 4
5 < −

4
6 =

(
0− 4

6

)
+
(
2− 4

2

)
=
(
k1 − n

p1

)
+
(
k2 − n

p2

)
,

we have that

dsn = 1
2sn (βn − ωn) ∈W 5,0

(
Λ1(X, iR)

)
, and

‖dsn‖5,0 ≤ C ‖sn‖6,0 ‖βn − ωn‖2,2 .(19.63)

Now βn − ωn is bounded in W 2,k+1
(
Λ1(X, iR)

)
and hence in W 2,q

(
Λ1(X, iR)

)
for q ≤ k + 1 (e.g., for q ≤ 3). Thus, as both sn and dsn are bounded in
W 5,0 (X,U(1)) , we have that sn bounded in W 5,1 (X,U(1)) . Since βn − ωn is
bounded in W 2,3

(
X,Λ1(iR)

)
, it is also bounded in W 5,1 (X,U(1)) , since 1− 4

5 ≤
2 − 4

3 . Hence, by (19.63) and the Proposition 17.22 (p. 469) with ki = 1, pi = 5,

ki − 4
pi

= 1
5 > 0, i = 1, 2, 3,

‖dsn‖5,1 ≤ C ‖sn‖5,1 ‖Bn − ωn‖5,1
Thus, ‖dsn‖5,1 is bounded, and hence ‖sn‖5,2 is bounded. Now, as k ≥ 2,

W 2,k+1
(
Λ1(X, iR)

)
⊆W 2,3

(
Λ1(X, iR)

)
⊆W 3,2

(
Λ1(X, iR)

)
,

since 3 − 4
2 > 2 − 4

3 . Hence, as βn − ωn ∈ W 2,k+1
(
Λ1(X, iR)

)
is bounded in

W 3,2
(
Λ1(X, iR)

)
, we have

‖dsn‖3,2 ≤ C ‖sn‖5,2 ‖βn − ωn‖3,2 .

Thus, ‖sn‖3,3 is bounded, and consequently ‖sn‖2,3 is bounded. Inductively, sup-

pose that ‖sn‖2,j+1 is bounded for some 2 ≤ j ≤ k. Since j + 1 − 4
2 = j − 1 > 0,

Proposition 17.22 (p. 469) yields

‖dsn‖2,j+1 ≤ C ‖sn‖2,j+1 ‖Bn − ωn‖2,j+1 ,

so that ‖sn‖2,j+2 is bounded. Hence, by induction, ‖sn‖2,k+2 is bounded. By

Theorem 7.15 (p. 198), there is a subsequence, say s′n, of sn which converges in
W 2,k+1(X,U(1)). Now, in W 2,k+1(X,U(1)),

ds′n − ds′m = 1
2s
′
n (β′n − ω′n)− 1

2s
′
m (β′m − ω′m)

= 1
2 (s′n − s′m) (β′n − ω′n) + 1

2s
′
m (β′n − ω′n)− 1

2s
′
m (β′m − ω′m)

= 1
2 (s′n − s′m) (β′n − ω′n) + 1

2s
′
m ((β′n − ω′n)− (β′m − ω′m)) .

Thus, by Proposition 17.22 (p. 469),

‖ds′n − ds′m‖2,k+1 ≤ C1 ‖(s′n − s′m)‖2,k+1 ‖β
′
n − ω′n‖2,k+1

+ C2 ‖s′m‖2,k+1 ‖(β
′
n − ω′n)− (β′m − ω′m)‖2,k+1 .

Hence, ds′n converges in W 2,k+1 (X,C), and so s′n converges in W 2,k+2 (X,U(1)) ,
since s′n is known to converge in W 2,0 (X,U(1)). �

We now turn our attention to defining the manifold structure for the set

MSWPk := SWPk/W 2,k+2(X,U(1))

called the parametrized moduli space of solutions of the perturbed SW equations,
where the parameter is the perturbation η ranging over W 2,k(X,Λ2+ (X)).
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Theorem 19.50. For k ≥ 3, the parametrized moduli space MSWPk (if non-
empty) is a closed Hilbert submanifold of MCWPk. At a point (ω, ψ, η) ∈ SWPk,
the differential Q∗(ω,ψ,η) of the projection Q : CWPk → MCWPk restricts to an
isomorphism

Q∗(ω,ψ,η) : T(ω,ψ,η) (SWPk) ∩Ker
(
B1
)
→ T[(ω,ψ,η)] (MSWPk) .

In other words, the tangent space at [(ω, ψ, η)] ∈ MSWPk is the projection of the
orthogonal complement of the tangent space of the orbit W 2,k+2(X,U(1)) · (ω, ψ, η)
in T(ω,ψ,η)(F

−1(0, 0)) = Ker
(
F∗(ω,ψ,η)

)
, namely

T[(ω,ψ,η)] (MSWPk)

∼= Ker
(
F∗(ω,ψ,η)

)
∩
{

(ω′, ψ′, η′) : δω′ − 1
2 (〈ψ′, ψ〉 − 〈ψ,ψ′〉) = 0

}
=
{

(ω′, ψ′, η′) : (dω′)
+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′)− η′ = 0,

Dωc ψ′ + 1
2ω
′ · ψ = 0, δω′ − 1

2 (〈ψ′, ψ〉 − 〈ψ,ψ′〉) = 0
}

=
{

(ω′, ψ′, η′) : B1 (ω′, ψ′) = 0, B2 (ω′, ψ′)− η′ = 0, B3 (ω′, ψ′) = 0
}

.(19.64)

Proof. Recall that SWPk was shown to be a submanifold of CWPk which
is invariant under W 2,k+2(X,U(1)) for k ≥ 3. We need to exhibit MSWPk as a
submanifold of MCWPk. This will be accomplished by showing, via the Implicit
Function Theorem, that MSWPk is a submanifold when viewed in a coordinate
neighborhood of MCWPk. Recall (see (19.46)) that

F : CWPk →W 2,k
(
Λ2+(X, iR)

)
⊕W 2,k

(
Σ−c (X)

)
is given by

F (ω, ψ, η) = (Ωω+ − q (ψ)− η,Dωc ψ).

A standard coordinate chart about [ω, ψ, η] ∈MCWPk is ϕ−1
(ω,ψ,η) : ϕ(ω,ψ,η) (U)→

U (see (19.55) and (19.59)), where

ϕ(ω,ψ,η) = Q ◦ j(ω,ψ,η) : U →MSWPk
and U ⊆ Ker(B1) × V2 and

(
Q ◦ j(ω,ψ,η)

)
(x) = [x+ (ω, ψ, η)] . Since (ω, ψ, η) will

be fixed, we drop the subscript (ω, ψ, η) . It suffices to show that in terms of the
coordinate chart about (ω, ψ, η) ∈ SWPk, we have that ϕ−1 (MSWPk ∩ ϕ (U)) is
a submanifold of U near 0 ∈ U . We have

ϕ−1 (MSWPk ∩ ϕ (U)) = (Q ◦ j)−1
(MSWPk ∩ ϕ (U))

= j−1 ◦ (Q|j(U))
−1

(MSWPk ∩ ϕ (U)) = j−1 (SWPk ∩ j (U))

= j−1
(
F−1 (0, 0) ∩ j (U)

)
= (F ◦ j)−1

(0, 0) .

By the Implicit Function Theorem I (Theorem 17.24, p. 470), we need to show that
(F ◦ j)∗0 is onto. Now

(19.65) (F ◦ j)∗0 : Ker(B1)⊕W 2,k
(
Λ2+(X, iR)

)
→ V2 ⊕ V3,

is given by

(F ◦ j)∗0 (ω′, ψ′, η′) = F∗(ω,ψ,η) (ω′, ψ′, η′) =
(
B2 (ω′, ψ′)− η′, B3 (ω′, ψ′)

)
.

We assume that (ω, ψ, η) ∈ SWPk, in which case (F ◦ j) (0) = (0, 0) . Since
Im (F ◦ j)∗0 ⊇ V2 ⊕ 0, it suffices to prove that B3

(
Ker(B1)

)
= V3. The proof
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of Theorem 19.44 contains a proof that B3 : U1 ⊕ U2 → V3 is onto. Since
U1 ⊕ U2 = Ker

(
B3
)
⊕ Im

(
B3∗), we know that B3

(
Im
(
B3∗)) = V3. Thus, it

suffices to show that

Im
(
B3∗) ⊆ Ker

(
B1
)

or Ker
(
B3
)
⊇ Im

(
B1∗) .

Thus, we need B3 ◦B1∗ = 0. To this end

B3
(
B1∗ (iθ)

)
= B3

(
idθ,− i

2θψ
)

= Dωc
(
− i

2θψ
)

+ i
2dθ · ψ

= − i
2θD

ω
c ψ − i

2dθ · ψ + i
2dθ · ψ = − i

2θD
ω
c ψ = 0,

since we have assumed (ω, ψ, η) ∈ SWPk. Finally note that we have the identifica-
tion

T(ω,ψ,η)MSWPk ∼= Ker ((F ◦ j)∗0)

=
{

(ω′, ψ′, η′) : B1 (ω′, ψ′) = 0, B2 (ω′, ψ′)− η′ = 0, B3 (ω′, ψ′) = 0
}
,(19.66)

as required. �

We have a smooth projection mapping

(19.67) p :MSWPk →W 2,k
(
Λ2+(X, iR)

)
, where p ([ω, ψ, η]) = η.

Let
(19.68)
SWk (η) := p−1(η) =

{
[ω, ψ, η] ∈MSWPk : Ωω+ − q (ψ)− η = 0,Dωc ψ = 0

}
.

Theorem 19.51. Near a point (ω, ψ, η) ∈ SWPk where p[ω,ψ,η]∗ is onto (i.e.,

η is an achieved regular value of p), we have that SWk (η) := p−1(η) is a smooth
manifold of dimension

d(X,L) := b1 −
(
1 + b2+

)
+ 1

4

(
c1(L)2 − sig(X)

)
.

Proof. By the Implicit Function Theorem I (Theorem 17.24, p. 470), SWk (η)
is a smooth submanifold of MSWPk. Moreover, by (19.66) and (19.67),

(19.69) p∗[ω,ψ,η] (ω′, ψ′, η′) = η′ = B2 (ω′, ψ′) = (dω′)
+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′) .

Thus,

T[ω,ψ,η]

(
p−1(η)

)
= ker

(
p∗[ω,ψ,η] : T[ω,ψ,η]MSWPk →W 2,k

(
Λ2+(X, iR)

))
∼=
{

(ω′, ψ′, 0) ∈ T(ω,ψ,η)CWPk : (dω′)
+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′) = 0,

Dωψ′ + 1
2ω
′ · ψ = 0, δω′ − 1

2 〈ψ,ψ
′〉 = 0

}
which can be identified with the kernel of the elliptic operator

B : W 2,k+1
(
Λ1 (X, iR)

)
⊕W 2,k+1

(
Σ+
c (X)

)
→W 2,k (X, iR)⊕W 2,k

(
Λ2+ (X, iR)

)
⊕W 2,k

(
Σ−c (X)

)
of (19.50). We need to show that if p[ω,ψ,η]∗ is onto, then B is onto, so that
Index (B) = dim Ker (B). Assuming that p[ω,ψ,η]∗ in (19.69) is onto, the map

(19.70) (ω′, ψ′) 7→ (dω′)
+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′)

must be onto, even for (ω′, ψ′) constrained by B3(ω′, ψ′) := Dωψ′ + 1
2ω
′ · ψ = 0

(see (19.66)). Thus, the projection of the image of B to W 2,k
(
Λ2+(X, iR)

)
⊕

W 2,k (Σ−c (X)) contains W 2,k
(
Λ2+(X, iR)

)
⊕ 0. We already know from the proof of
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Theorem 19.44 that for F (ω, ψ, η) = 0 and ψ 6= 0, the map (where (ψ′, ω′) is now
unrestricted)

(ψ′, ω′) 7→ Dωψ′ + 1
2ω
′ · ψ

is onto. Thus, the projection of the image of B to W 2,k
(
Λ2+(X)

)
⊕W 2,k (Σ−c (X)) is

onto. It remains to show that the image B contains W 2,k (M, iR)⊕0⊕0. For an ar-
bitrary function θ ∈W 2,k+2 (X,R) , we have (ω, ψ, η) ·eitθ =

(
ω + 2itdθ, e−itθψ, η

)
.

Since F (ω, ψ, η) = 0⇒ F
(
(ω, ψ, η) · eitθ

)
= 0, we know that

d
dt

(
ω + 2itdθ, e−itθψ, η

)∣∣
t=0

= (2idθ,−iθψ, 0) ∈ ker
(
F∗(ω,ψ,η)

)
.

Thus,

B (2idθ,−iθψ) =

[
δ (2dθ) + i

2 (〈−iθψ, ψ〉 − 〈ψ,−iθψ〉) ,
F∗(ω,ψ,η) (2idθ,−iθψ, 0)

]
=
(
2δ (dθ) + 1

2 (〈θψ, ψ〉+ 〈ψ, θψ〉) , 0, 0
)

=
(
2
(
δdθ + 1

4 〈ψ,ψ〉 θ
)
, 0, 0

)
.

Now δdθ = −∆θ, where ∆ is the usual Laplace operator on C∞(X,R), extended to
W 2,k+2 (X,R) . Since the operator −∆+ 1

4 〈ψ,ψ〉 is elliptic and formally self-adjoint,
to show that

θ 7→ 2i
(
δdθ + 1

4 〈ψ,ψ〉 θ
)

is onto W 2,k (M, iR) it suffices to show that the kernel of −∆ + 1
4 〈ψ,ψ〉 is 0.

However, −∆θ + 1
4 〈ψ,ψ〉 θ = 0 implies

0 =

∫
X

(
−∆θ + 1

4 〈ψ,ψ〉 θ
)
θ νg =

∫
X

‖dθ‖2 + 1
4 〈ψ,ψ〉 θ

2 νg

Thus, θ = 0 since ψ 6= 0. Hence, B is onto, and its index is the dimension of its
kernel. This index was found (see (19.44)) to be b1−(1+b2+)+ 1

4

(
c1(L)2 − sig(X)

)
.
�

We would like to use the Sard-Smale Theorem (see [Sm68]) stated below to
conclude that the set of all η ∈ W 2,k

(
Λ2+(X)

)
, for which p−1(η) is either void

or a manifold of dimension d(X,L), is residual. Recall that a residual set is a
subset containing the intersection of a countable collection of open, dense subsets.
A residual set of a complete metric space is dense by the Baire Category Theorem.

Theorem 19.52 (Sard-Smale Theorem). Let f : B1 → B2 be a Cr Fredholm
mapping between Banach manifolds (i.e., f∗x is Fredholm for each x ∈ B1). and let

(19.71) C := {f(x) : x ∈ B1 and f∗x is not onto}

(i.e., C is the set of critical values of f). If B1 is separable and r > {max (0, index (f∗x)) : x ∈ B1}
(in particular, if f is C∞), then B2 − f(C) is residual.

Remark 19.53. Often B2 − f(C) is called the set of regular values, but if f
is not onto, B2 − f(C) will contain points which are not values of f at all (e.g.,
consider a constant map f).

In order to apply Theorem 19.52 to p : MSWPk → W 2,k
(
Λ2+(X, iR)

)
, we

need
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Theorem 19.54. For each (ω, ψ, η) ∈ SWPk,

p∗[ω,ψ,η] : T[ω,ψ,η]MSWPk →W 2,k
(
Λ2+(X, iR)

)
is Fredholm. Moreover, the index of p∗[ω,ψ,η] is the same as the index of

B(ω,ψ,η),k : W 2,k+1
(
Λ1 (X, iR)

)
⊕W 2,k+1

(
Σ+
c (X)

)
→W 2,k (X, iR)⊕W 2,k

(
Λ2+ (X, iR)

)
⊕W 2,k

(
Σ−c (X)

)
.

Proof. We will use some of the facts we have shown about the related operator
B(ω,ψ,η),k. We use Notation 19.48 (p. 637), namely

U1 := W 2,k+1
(
Λ1 (X, iR)

)
, U2 := W 2,k+1 (Σ+

c (X))

V1 := W 2,k (X, iR) , V2 := W 2,k
(
Λ2+ (X, iR)

)
, V3 := W 2,k (Σ−c (X)) .

and

B =
(
B1, B2, B3

)
: U1 ⊕ U2 → V1 ⊕ V2 ⊕ V3, where

B1 : U1 ⊕ U2 → V1 with B1 (ω′, ψ′) = δω′ − 1
4 (〈ψ′, ψ〉 − 〈ψ,ψ′〉)

B2 : U1 ⊕ U2 → V2 with B2 (ω′, ψ′) = dω′+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′)
B3 : U1 ⊕ U2 → V3 with B3 (ω′, ψ′) = Dωc ψ′ + 1

2ω
′ · ψ.

From 19.64, we have

T[ω,ψ,η]MSWPk
∼=
{

(ω′, ψ′, η′) ∈ T(ω,ψ,η)CWPk : (dω′)
+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′) = η′,

Dω
c ψ
′ + 1

2ω
′ · ψ = 0, δω′ − 1

2 (〈ψ′, ψ〉 − 〈ψ,ψ′〉) = 0
}

=

{
(ω′, ψ′, η′) ∈ T(ω,ψ,η)CWPk :
B1 (ω′, ψ′) = 0, B2 (ω′, ψ′) = η′, B3 (ω′, ψ′) = 0

}
∼= Ker

(
B1 ⊕B3

)
.

Moreover,

p∗[ω,ψ,η] (ω′, ψ′, η′) = η′ = (dω′)
+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′) ,

or under the final isomorphism in 19.66,

p∗[ω,ψ,η] = B2|Ker
(
B1 ⊕B3

)
: Ker

(
B1 ⊕B3

)
→ V2.

In order to show that p∗[ω,ψ,η] is Fredholm, we need the following

1.) Ker
(
p∗[ω,ψ,η]

) ∼= Ker
(
B2|Ker

(
B1 ⊕B3

))
is finite-dimensional

2.) Im
(
p∗[ω,ψ,η]

)
= B2

(
Ker

(
B1 ⊕B3

))
is closed and of finite

codimension in V2.

Now (1.) holds, since

Ker
(
p∗[ω,ψ,η]

)
= Ker

(
B2| ker

(
B1 ⊕B3

))
= Ker

(
B1 ⊕B2 ⊕B3

)
= Ker (B) ,

and B is elliptic. To prove (2.), we first show that it suffices to prove that

(19.72) B (U1 ⊕ U2)
⊥ ∩ (V1 ⊕ 0V2

⊕ V3) = 0.

Note that under the obvious imbedding V2 → 0V1 ⊕ V2 ⊕ 0V3 ,

B2
(
ker
(
B1 ⊕B3

)) ∼= B (U1 ⊕ U2) ∩ (0V1
⊕ V2 ⊕ 0V3

) .
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Thus, since B (U1 ⊕ U2) is closed in V1 ⊕ V2 ⊕ V3, B2
(
ker
(
B1 ⊕B3

))
is closed in

V2. Assuming (19.72), we have a 1-1 projection

π : B (U1 ⊕ U2)
⊥ → (V1 ⊕ 0V2

⊕ V3)
⊥

= 0V1
⊕ V2 ⊕ 0V3

∼= V2.

Note that from the yet to be proven fact (19.72), we also obtain

V1 ⊕ V2 ⊕ V3 = B (U1 ⊕ U2) + (V1 ⊕ 0V2 ⊕ V3)
⊥

= B (U1 ⊕ U2) + 0V1 ⊕ V2 ⊕ 0V3 .

Thus, B1 ⊕B3 : U1 ⊕ U2 → V1 ⊕ V3 is onto. We will prove that

Im (π) = π
(
B (U1 ⊕ U2)

⊥
)

= B2
(
Ker

(
B1 ⊕B3

))⊥
,

from which we will obtain

(19.73) π : B (U1 ⊕ U2)
⊥ ∼= B2

(
Ker

(
B1 ⊕B3

))⊥
.

Then, sinceB is Fredholm, dimB (U1 ⊕ U2)
⊥
<∞, and so dimB2

(
Ker

(
B1 ⊕B3

))⊥
<

∞. Since

0V1 ⊕B2
(
Ker

(
B1 ⊕B3

))
⊕ 0V3

= B (U1 ⊕ U2) ∩ (0V1 ⊕ V2 ⊕ 0V3) ⊆ B (U1 ⊕ U2) ,

we have π
(
B (U1 ⊕ U2)

⊥
)
⊆ B2

(
Ker

(
B1 ⊕B3

))⊥
. To show the reverse inclusion,

let w ∈ B2
(
Ker

(
B1 ⊕B3

))⊥ ⊆ V2. For arbitrary v ∈ V1 ⊕ V3, we have v =(
B1 ⊕B3

)
(u) for some u ∈ U1 ⊕ U2, since B1 ⊕ B3 : U1 ⊕ U2 → V1 ⊕ V3 is onto.

Define

L : V1 ⊕ V3 → R by L (v) = −
〈
B2 (u) , w

〉
.

L is well defined since w ∈ B2
(
Ker

(
B1 ⊕B3

))⊥
. Thus, there is some w′ ∈ V1⊕V3

such that 〈
w′,
(
B1 ⊕B3

)
(u)
〉

= 〈w′, v〉 = L (v) = −
〈
B2 (u) , w

〉
for all u ∈ u ∈ U1 ⊕ U2. Then

〈w′ + w,B (u)〉 =
〈
w′,
(
B1 ⊕B3

)
(u)
〉

+
〈
B2 (u) , w

〉
= 0,

so that w′+w ∈ B (U1 ⊕ U2)
⊥

. Since w′ ∈ V1⊕V3 and w ∈ B2
(
Ker

(
B1 ⊕B3

))⊥
,

we have π (w′ + w) = w. Thus, B2
(
Ker

(
B1 ⊕B3

))⊥ ⊆ π (B (U1 ⊕ U2)
⊥
)

, and we

have the isomorphism 19.73. Thus, from the yet to be proven (19.72), we obtain

Index
(
p∗[ω,ψ,η]

)
= dim Ker p∗[ω,ψ,η] − dim Coker p∗[ω,ψ,η]

= dim KerB − dim
(
B2
(
Ker

(
B1 ⊕B3

))⊥)
= dim KerB − dim

(
B (U1 ⊕ U2)

⊥
)

= dim KerB − dim CokerB = IndexB.

Hence, it only remains to show B (U1 ⊕ U2)
⊥ ∩ (V1 ⊕ 0V2

⊕ V3) = 0. Suppose that
(f, 0, ξ) ∈ V1 ⊕ 0V2 ⊕ V3 and for all (ω′, ψ′) ∈ U1 ⊕ U2, we have (where the zero-th
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order operator Tψ and its adjoint T ∗ψ were defined near 19.52)

0 = 〈B (ω′, ψ′) , (f, 0, ξ)〉 =
〈
B1 (ω′, ψ′) , f

〉
+
〈
B3 (ω′, ψ′) , ξ

〉
=
〈

(ω′, ψ′) ,
(
B1
)∗
f
〉

+
〈

(ω′, ψ′) ,
(
B3
)∗
ξ
〉

=
〈
(ω′, ψ′) ,

(
i df,− i

2fψ
)〉

+
〈
(ω′, ψ′) ,

(
T ∗ψξ,D

ω
c ξ
)〉

=
〈
ω′, i df + T ∗ψξ

〉
+
〈
ψ′, Dω

c ξ − i
2fψ

〉
.(19.74)

Then

(19.75) i df + T ∗ψξ = 0 and Dω
c ξ − i

2fψ = 0.

Since Dω
c ψ = 0,

0 = Dω
c D

ω
c ξ − i

2D
ω
c (fψ) = Dω

c D
ω
c ξ − i

2df · ψ −
i
2fD

ω
c ψ

= Dω
c D

ω
c ξ + 1

2T
∗
ψξ · ψ.

Thus,

0 =

∫
X

〈
Dω
c D

ω
c ξ + 1

2T
∗
ψξ · ψ, ξ

〉
v =

∫
X

〈Dω
c D

ω
c ξ, ξ〉+ 1

2

〈
Tψ
(
T ∗ψξ

)
, ξ
〉
v

=

∫
X

〈Dω
c ξ,D

ω
c ξ〉+ 1

2

〈
T ∗ψξ, T

∗
ψξ
〉
v

⇒ 0 = T ∗ψξ = −idf and i
2fψ = Dω

c ξ = 0.

Hence, f is constant, and i
2fψ = 0 then implies f = 0, since ψ 6= 0. Also, at any

point p where ψ (p) 6= 0, the map Λ1
p (X, iR) → W−p (X) given by α 7→ α · ψ (p)

is 1-1 since α · (α · ψ (p)) = ψ (p) 6= 0, and it is onto since dimR Λ1
p (X, iR) =

dimRW
−
p (X) = 4. Hence Tψ and T ∗ψ are isomorphisms at any point where ψ (p) 6= 0.

Hence 0 = T ∗ψξ ⇒ ξψ = 0, but then ξ = 0 on the nonvoid open set where ψ 6= 0.

Since Dω
c ξ = 0, unique continuation (Theorem 19.43) then yields ξ = 0. Thus,

(f, 0, ξ) = (0, 0, 0) and we have (19.72), as required. �

Theorem 19.55. For a η in a residual subset of W 2,k
(
Λ2+ (X, iR)

)
, either

p−1(η) (i.e., SWk (η)) is empty or p−1(η) is a submanifold of MSWPk of dimen-
sion d(X,L) = b1 −

(
1 + b2+

)
+ 1

4

(
c1(L)2 − sig(X)

)
.

Proof. According to Theorem 19.54, p :MSWPk →W 2,k
(
Λ2+ (X, iR)

)
has

a Fredholm derivative throughoutMSWPk. Thus, by Theorem 19.52, W 2,k
(
Λ2+ (X, iR)

)
−

p (C) is residual, where C is the critical set of p. For any point η ∈W 2,k
(
Λ2+ (X, iR)

)
−

p (C) , we have that p∗ is onto at each point in p−1 (η) . If p−1 (η) is not empty, then
p−1 (η) is a submanifold of MSWPk of dimension d(X,L) by Theorem 19.51. �



650 19. SEIBERG-WITTEN THEORY

4. Compactness of Moduli Spaces and the Definition of S-W Invariants

Here we establish that moduli spaces of solutions of generically perturbed S-W
equations are compact, and proceed to show that the S-W invariants are defined.
First we examine the consequences of the S-W equations in conjunction with the
“Spinc Bochner-Weitzenbock” formula (19.28), p. 626.

Proposition 19.56. If (ω, ψ) ∈ C
(
PU(1)

)
× C∞ (Σ+

c (X)) is a solution of the

perturbed S-W equations Dωc ψ = 0, Ωω+ = q (ψ)+η, for some η ∈ Ω2+(X, iR), then
we have

0 =
〈
D2
cψ,ψ

〉
= −〈∆ψ,ψ〉+ 1

2 〈R
ωψ,ψ〉+ 1

4S |ψ|
2

= −〈∆ψ,ψ〉+ 1
2 |ψ|

4
+ 1

2 〈η, q (ψ)〉+ 1
4S |ψ|

2
.(19.76)

at each point of X. Integrating this, yields

(19.77)

∫
X

|∇ψ|2 + 1
2 |ψ|

4
+ 1

2 〈η, q (ψ)〉+ 1
4S |ψ|

2
νg = 0.

Proof. Using (19.31) on p. 19.31, Ωω+ = q (ψ)+η, and Exercise 19.39 (p. 628),
we have

〈Rωψ,ψ〉 =
〈
Ωω+, q (ψ)

〉
= 〈q (ψ) + η, q (ψ)〉

= |q (ψ)|2 + 〈η, q (ψ)〉 = |ψ|4 + 〈η, q (ψ)〉 ,

from which (19.76) follows from Dωc ψ = 0 and Proposition 19.36, p. 626. Note that
(19.77) follows upon integration, since ∆ := −∇∗∇. �

Proposition 19.57. For (ω, ψ, η) as in Proposition 19.56, we have

(19.78) |ψ(x)|2 ≤ max
y∈X

(√
2 |η(y)| − 1

2S(y), 0
)
.

Hence, there is an a priori bound on ‖ψ‖C0 . In particular, if η = 0 and S ≥ 0,
then we must have ψ = 0 and Ωω+ = q (ψ) + η = 0.

Proof. Let E1, . . . , E4 be locally-defined orthonormal frame field, parallel at
a point x ∈ X (i.e., ∇EiEj = 0 at x). Then

∆
(
|ψ|2

)
=
∑4

i=1
Ei [Ei [〈ψ,ψ〉]]

=

4∑
i=1

〈∇Ei∇Eiψ(x), ψ(x)〉+ 2 〈∇Eiψ(x),∇Eiψ(x)〉+ 〈ψ(x),∇Ei∇Eiψ(x)〉

= 〈−∇∗∇ψ(x), ψ(x)〉+ 2 |∇ψ(x)|2 + 〈ψ(x),−∇∗∇ψ(x)〉 .
Hence,

∆
(
|ψ|2

)
= 2 |∇ψ|2 − 2 Re 〈∇∗∇ψ,ψ〉 .

If |ψ|2 achieves its maximum at x′,then ∆
(
|ψ|2

)
(x′) ≤ 0, and so at x′

−2 Re 〈∆ψ,ψ〉 = 2 Re 〈∇∗∇ψ,ψ〉 = 2 |∇ψ|2 −∆
(
|ψ|2

)
≥ 0.
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From (19.76), we have

1
2 |ψ|

4
+ 1

2 Re 〈η, q (ψ)〉+ 1
4S |ψ|

2
= Re 〈∆ψ,ψ〉 .

Re 〈η, q (ψ)〉 ≤ |η| |q (ψ)| ≤
√

2 |η| |ψ|2 ,
using 1

2 |q (ψ)|2 = |ψ|4 from Exercise 19.39 b. Thus, at x′,

1
2

(
|ψ|2 −

√
2 |η|+ 1

2S
)
|ψ|2 = 1

2 |ψ|
4 − 1

2

√
2 |η| |ψ|2 + 1

4S |ψ|
2

≤ 1
2 |ψ|

4
+ 1

2 Re 〈η, q (ψ)〉+ 1
4S |ψ|

2
= Re 〈∆ψ,ψ〉 ≤ 0

Hence, either ψ(x′) = 0 (and so ψ = 0), or for all x ∈ X,

|ψ(x)|2 ≤ |ψ(x′)|2 ≤
(√

2 |η(x′)| − 1
2S(x′)

)
≤ max

y∈X

(√
2 |η(y)| − 1

2S(y)
)
.

�

Corollary 19.58. For (ω, ψ, η) as in Proposition 19.56, we have∣∣Ωω+
∣∣ = |q (ψ) + η| ≤

√
2 |ψ|2 + |η|

≤ max
y∈X

(
2 |η(y)| − 1

2

√
2S(y), 0

)
+ max

y∈X
(|η(y)|) .(19.79)

For a fixed oriented, Riemannian manifold (X, g) and form η, there is an upper
bound on the number of Spinc-structures for which the S-W moduli space has a
nonnegative formal dimension.

Proof. Using 1
2 |q (ψ)|2 = |ψ|4 from Exercise 19.39 b and Proposition 19.57,

(19.79) is evident. For a Spinc stucture PSpinc → PU(1)×SO(4) → X, let L be the
complex line bundle PU(1) ×U(1) C. Recall that the formal dimension of moduli
space is

(19.80) 1
4

(
c1 (L)

2
[X]− 2χ(X)− 3τ(X)

)
where c1 (L)

2
[X] is the evaluation of the the cup-square of the first Chern class

c1 (L) on [X]. If this is assumed to be nonnegative, then

(19.81) 2χ(X) + 3τ(X) ≤ c1 (L)
2

[X].

For any connection ω on PU(1) with curvature form Ωω ∈ Ω2(X, iR), we have

c1 (L)
2

[X] =

∫
X

i
2πΩω ∧ i

2πΩω = −1
4π2

∫
X

(
Ωω+ + Ωω−

)
∧
(
Ωω+ + Ωω−

)
= −1

4π2

∫
X

(
Ωω+ + Ωω−

)
∧
(
∗Ωω+ − ∗Ωω−

)
= −1

4π2

∫
X

Ωω+ ∧ ∗Ωω+ − Ωω+ ∧ ∗Ωω− + Ωω− ∧ ∗Ωω+ − Ωω− ∧ ∗Ωω−

= 1
4π2

∫
X

(∣∣Ωω+
∣∣2 − 〈Ωω+,Ωω−

〉
+
〈
Ωω−,Ωω+

〉
−
∣∣Ωω−∣∣2) νg

= 1
4π2

(∥∥Ωω+
∥∥2 −

∥∥Ωω−
∥∥2
)

.(19.82)

By (19.79), we have an upper bound on ‖Ωω+‖2. Then (19.82) together with the

lower bound (19.81) on c1 (L) [X] gives us an upper bound on
∥∥F−A ∥∥2

. Hence, there
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is an upper bound on ‖Ωω‖2. By Hodge theory (see Theorem 18.58, p. 571), the
closed form i

2πΩω has a unique representative, say βω, in the lattice of integral

harmonic 2-forms. Since ‖βω‖ ≤
∥∥ i

2πΩω
∥∥, we have an upper bound on ‖βω‖ and

there are only a finite number of such βω in the lattice within a ball. Thus, there are
only finitely many possibilities for the canonical class c1 (L) =

[
i

2πΩω
]
. For each of

these possibilities, there are only #H1(X,Z2) < ∞ distinct Spinc structures (see
19.33, 623). �

Lemma 19.59. Let ω0 be a C∞ connection on PU(1) → X. For any k ≥ 0, let

ω ∈ C2,k+1(PU(1)). Then there is s ∈ W 2,k+2(X,U(1)), such that s · ω := ω0 + α,

where α ∈W 2,k+1(Λ1 (X)), δα = 0, and

(19.83) ‖α‖22,k+1 ≤ C
∥∥Ωω+

∥∥2

2,k
+K,

where C and K are independent of α.

Proof. For some α0 ∈ W 2,k+1(Λ1 (X)) we have ω = ω0 + α0. For eiθ ∈
W 2,k+2(X,U(1)), eiθ · ω = ω0 + α0 − 2idθ. Thus, we first find θ ∈ W 2,k+2(X,R),
such that δ (α0 − 2idθ) = 0 or

(19.84) δdθ = − i
2δα0.

Since δd = −∆ is a formally self-adjoint elliptic operator, this can be solved for θ
as long as δα0 is L2 orthogonal to ker (∆) which consists of the constant functions.
However, 〈δα0, c〉2,0 = 〈α0, dc〉2,0 = 0, for any constant function c. Hence, we
can can solve for θ and take α = α0 + 2idθ to obtain δα = 0. However, further
modifications are necessary to produce α satisfying 19.83. Thus, let α1 = α0 +2idθ.
Now,

(19.85) Ωω = Ωe
iθ·ω = Ωω0+α1 = Ωω0 + dα1.

By the Hodge Decomposition Theorem (Theorem 18.57, p. 571), we can uniquely
write α1 = h + β, where h is harmonic (i.e., dh = 0 and δh = 0) and β ∈
W 2,k(Λ1 (X)) is orthogonal to the subspace of harmonic forms. Note that 0 =
δα1 = δ (h+ β) = δβ. We have

(19.86) Ωω+ = Ωω0+ + dα+
1 = Ωω0+ + dh+ + dβ+ = Ωω0+ + dβ+.

The operator

(19.87) δ ⊕ d+ : Ω1 (X)→ Ω0 (X)⊕ Ω2+ (X)

is elliptic and β⊥Ker (δ ⊕ d) = Ker (δ ⊕ d+) , since

(dγ)
+

= 0⇒ 0 = δ ((1 + ∗) dγ) = δdγ + δ ∗ dγ
= δdγ − ∗d ∗ ∗dγ = δdγ − ∗d2γ = δdγ

⇒ 0 = (δdγ, γ) = (dγ, dγ)⇒ dγ = 0.

Thus, there is a constant C (independent of β) such that

‖β‖22,k+1 ≤ C
(
‖δβ‖22,k +

∥∥dβ+
∥∥2

2,k

)
= C

∥∥dβ+
∥∥2

2,k
= C

∥∥Ωω+ − Ωω0+
∥∥2

2,k

≤ C
∥∥Ωω+

∥∥2

2,k
+ C

∥∥Ωω0+
∥∥2

2,k
= C

∥∥F+
ω

∥∥2

2,k
+K ′
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However, α1 = h+β and we cannot deduce that ‖h‖22,k+1 ≤ K ′′, and hence we need

a further gauge transformation. The group H1 (X,Z) ⊂ H1 (X,R) can be regarded
as a lattice in the b1-dimensional vector space of harmonic 1-forms. For a harmonic
1-form ξ ∈ H1 (X,Z) , we have a well-defined function s0 ∈ C∞ (X,U (1)) , given

by s0(x) := exp
(

2πi
∫
γ
ξ
)

where γ is a path joining a fixed x0 to x in X. We have(
eiθs0

)
· ω = s0 ·

(
eiθ · ω

)
= ω0 + α1 − 2s0

−1ds0 = ω0 + β + h− 4πiξ

If d is the ‖ · ‖22,k+1-diameter of a fundamental cell of the lattice H1 (X,Z) , then

we can choose ξ ∈ H1 (X,Z) so that ‖h− 4πiξ‖ ≤ 2πd. Then for s := eiθs0 and
α := β + h− 4πiξ, we have s · ω := ω0 + α, where

‖α‖22,k+1 = ‖β + h− 4πiξ‖22,k+1 ≤ ‖β‖
2
2,k+1 + ‖h− 4πiξ‖22,k+1

≤ C
∥∥F+

ω

∥∥2

2,k
+K ′ + 2πd

and C and K ′ + 2πd are independent of α. �

Theorem 19.60. For k ≥ 4, let (ω′, ψ′) ∈ C2,k+1(PU(1))×W 2,k+1(Σ+
c (X)) be

a solution of

(19.88) Ωω
′+ − q(ψ′) = η and Dω

′

c ψ
′ = 0,

where η ∈ iΩ2+ (X) is a C∞ form and an achieved regular value of the projection
p : MSWPk+1 → W 2,k(Λ2+(X, iR)). Let ω0 be a fixed choice of C∞ connection.
In accordance with Lemma 19.59, for some s ∈ W 2,k+2(X,U(1)), we have s · ω′ =
ω0 +α, for α ∈W 2,k+1(iΛ1(X)) with δα = 0. Let (ω, ψ) := s · (ω′, ψ′). We assume
that the harmonic component of 1

2πiα lies in a fixed fundamental domain of the
lattice of integral harmonic 1-forms (see the proof of Lemma 19.59). Then there
are constants C(k′) depending only on g, η, ω0 and k′ ≥ 3, such that

(19.89) ‖α‖2,k′ + ‖ψ‖2,k′ ≤ C(k′),

where ‖ψ‖2,k′ is computed using the Levi-Civita connection for X and the connec-

tion ω0 on PU(1). In particular, α and ψ are C∞, as is ω = s · ω′ = ω0 + α.

Proof. Since W 2,5(Σ+
c (X)) ⊆ C2(Σ+

c (X)), the argument of Proposition 19.57
applies to yield a uniform bound on ‖ψ‖C0 . Here and elsewhere, “uniform bound”
means a bound which only depends on η and the metric g on X (in particular, not
on ψ or ω). By (19.77), we have

(19.90)

∫
X

|∇ωψ|2 ≤
∫
X

1
4 |S| |ψ|

2
+ 1

2 |ψ|
4

+ 1
2 |〈η, q (ψ)〉| νg.

However, this does not yet give us a uniform bound on ‖ψ‖2,1, since we are using

ω0 (not ω) to define ‖ψ‖2,1. Now

(19.91) ∇ωψ = ∇ω0ψ + 1
2αψ or ∇ω0ψ = ∇ωψ − 1

2αψ.

Thus, we need a uniform bound on ‖αψ‖2,0 to produce a uniform bound on ‖ψ‖2,1 .
For this it suffices to produce a uniform bound on ‖α‖2,0, since there is a uniform

bound on ‖ψ‖C0 . We can in fact produce a uniform bound on ‖α‖2,2 as follows.
By Lemma 19.59, we have

(19.92) ‖α‖22,k+1 ≤ C
∥∥Ωω+

∥∥2

2,k
+K,
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whence it suffices to obtain a uniform bound on ‖Ωω+‖22,1 to get a uniform bound

on ‖α‖22,2. Since

δ + d : Ω2(X)→ Ω1(X)⊕ Ω3(X)

has injective symbol, the Sobolev extension

(δ + d)
2,k+1

: W 2,k+1
(
Λ2(X)

)
→W 2,k

(
Λ1(X)

)
⊕W 2,k

(
Λ3(X)

)
has a finite-dimensional kernel H2(X) consisting of C∞ harmonic 2-forms and

W 2,k+1
(
Λ2(X)

)
= H2(X)⊕H2(X)⊥.

Since (δ + d)
2,k+1 |H2(X)⊥ has a continuous inverse on its image, there is a constant

C, such that for all β ∈W 2,k+1
(
Λ2(X)

)
,∥∥β⊥∥∥

2,k+1
≤ C

∥∥∥(δ + d)
2,k+1

β
∥∥∥

2,k
,

where β⊥ is the orthogonal projection of into H2(X)⊥. Since δ = ± ∗ d∗, if β is
self-dual, then δβ = ± ∗ dβ, and so ‖δβ‖2,k = ‖dβ‖2,k. Thus,∥∥β⊥∥∥

2,k+1
≤
√

2C
∥∥d2,k+1β

∥∥
2,k
.

Applying this with β = Ωω+, we get

(19.93)
∥∥∥(Ωω+

)⊥∥∥∥
2,k+1

≤
√

2C
∥∥d2,k+1Ωω+

∥∥
2,k
.

Since all norms are equivalent on the finite-dimensional kernel H2(X), the fact that
there is a uniform C0 bound on Ωω+ = q (ψ) + η gives us a uniform W 2,k bound on
the harmonic part of Ωω+. To get a uniform bound on Ωω+ itself, first note (where
θ is the Levi-Civita connection) that

(19.94) ∇θΩω+ = q̃ (∇ωψ,ψ) + q̃ (ψ,∇ωψ) +∇θη.

While we are in the process of getting a uniform bound on ‖ψ‖2,1, we already know

that ‖ψ‖C0 and ‖∇ωψ‖2,0 are uniformly bounded by (19.78) and (19.90). Thus,∥∥∇θΩω+
∥∥

2,0
is uniformly bounded by (19.94). This yields a uniform bound on∥∥d2,k+1Ωω+
∥∥

2,0
in (19.93), and hence on

∥∥∥(Ωω+)
⊥
∥∥∥

2,1
. Thus, ‖Ωω+‖2,1 is uniformly

bounded. By (19.92), ‖α‖22,2 is then uniformly bounded, and ‖ψ‖2,1 is uniformly

bounded via (19.91). Now we wish to show that ‖ψ‖2,3 is uniformly bounded. Note
that

0 = Dωc ψ = Dω0
c ψ + 1

2α · ψ ⇒ D
ω0
c ψ = − 1

2α · ψ.
Since ‖α‖2,2 and ‖ψ‖p2,0

are bounded for each p2 ≥ 1, Proposition 17.22 (p. 17.22)

implies that ‖α · ψ‖p3,k3
is uniformly bounded, provided k3− 4

p3
≤ min

(
2− 4

2 , 0−
4
p2

)
=

− 4
p2

. In particular, taking p2 ≥ 4, ‖α · ψ‖4,0 is uniformly bounded, and hence

‖Dω0
c ψ‖4,0 is uniformly bounded. Since Dω0

c is an elliptic operator, we not only
have a continuous map

Dω0
c : W 4,1(Σ+

c (X))→W 4,0(Σ−c (X)),

but also by Proposition 17.21 (468),

‖ψ‖4,1 ≤ C
(
‖Dω0

c ψ‖4,0 + ‖ψ‖4,0
)
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for some constant C depending only on Dω0
c . Thus, there is a uniform bound on

‖ψ‖4,1. Since ‖α‖2,2 and ‖ψ‖4,1 are bounded, Proposition 17.22 (p. 17.22) implies

that ‖α · ψ‖p3,k3
is uniformly bounded, provided k3 − 4

p3
< min

(
2− 4

2 , 1−
4
4

)
= 0.

Thus, with k3 = 1 and p3 = 3, ‖Dω0
c ψ‖3,1 = ‖α · ψ‖3,1 is uniformly bounded. Using

‖ψ‖3,2 ≤ C
(
‖Dω0

c ψ‖3,1 + ‖ψ‖3,1
)
,

we deduce that ‖ψ‖3,2 is uniformly bounded. Then Proposition 17.22 (p. 17.22)

implies that ‖Dω0
c ψ‖2,2 = ‖α · ψ‖2,2 is uniformly bounded, since ‖α‖2,2 and ‖ψ‖3,2

are uniformly bounded (note that max
(
2− 4

2 , 2−
4
3

)
= 2

3 > 0). Using

‖ψ‖2,3 ≤ C
(∥∥∥(Dω0

c )
2,3
ψ
∥∥∥

2,2
+ ‖ψ‖2,2

)
,

‖ψ‖2,3 is uniformly bounded. Moreover, from Ω+
ω = q (ψ) + η, we get that ‖Ω+

ω ‖3,2
is uniformly bounded since Proposition 17.22 (p. 17.22) implies that ‖q (ψ)‖3,2 is

bounded (here k − n
p = 2− 4

3 > 0). By (19.83), we then have a uniform bound on

‖α‖2,4.

In summary, thus far we have shown ‖α‖2,k′ + ‖ψ‖2,k′ ≤ C(k′) for k′ = 2 and

k′ = 3. Assume that we have this result for some k′ ≥ 3. By Proposition 17.22 (p.
17.22) ‖Dω0

c ψ‖2,k′ = ‖α · ψ‖2,k′ is uniformly bounded since k′ − 4
2 > 0. Then,

‖ψ‖2,k′+1 ≤ C
(
‖Dω0

c ψ‖2,k′ + ‖ψ‖2,k′
)

gives us a uniform bound on ‖ψ‖2,k′+1. From Ωω+ = q (ψ) + η and the fact that

‖q (ψ)‖2,k′ is uniformly bounded, we get a uniform bound for ‖Ωω+‖2,k′ . Finally,

(19.92) gives us a uniform bound on ‖α‖2,k′+1. �

Corollary 19.61. For k ≥ 4, let (ω′n, ψ
′
n) ∈ C2,k+1(PU(1))×W 2,k+1(Σ+

c (X))
be a sequence of solutions of the S-W equations

(19.95) Ωω
′+ − q(ψ) = η and Dω

′

c ψ
′ = 0,

where η ∈ iΩ2+ (X) is a C∞ form and an achieved regular value of the projection p :
MSWPk+1 →W 2,k(iΛ2+(X)). The sequence (ωn, ψn) := sn·(ω′n, ψ′n) of C∞ solutions
of the S-W equations produced in Theorem 19.60 has a subsequence which is con-
vergent in the C∞ topology to a C∞ solution (ω, ψ) of the S-W equations 19.95.

Proof. The inclusion of W 2,k spaces in the corresponding Ck−3 spaces is
compact for k ≥ 3. This means that a sequence which is bounded in W 2,k has
a subsequence convergent in Ck−3. Because of the bound 19.89 for k ≥ 3, we
can choose a subsequence of (An, ψn) converging in C0. Then we can choose a
subsequence of the subsequence converging in C1. Continuing, we obtain a sequence
of subsequences, and the diagonal subsequence converges in Ck for all k, and hence
in C∞ to a C∞ solution. �

Corollary 19.61 does not imply that the solution (ω, ψ) to which (ωn, ψn) con-
verges is in p−1

k (η), since we might have ψ = 0, and then (ω, 0) /∈ CWPk; see

(19.45), p. 633). In order to prove that the manifold p−1
k (η) is compact, we need to

avoid using those η ∈ W 2,k
(
Λ2+(X)

)
for which there are reducible solutions (i.e.,
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solutions for which ψ = 0). If b+2 > 0, we now show how such η can be avoided. If
(ω, ψ) is a reducible solution of the S-W equations, then

(19.96) Ωω+ = q (ψ) + η = q (0) + η = η.

We can always write

Ωω = H (Ωω) + dα

where H (Ωω) is the harmonic part of Ωω and α ∈ W 2,k+1(Λ1(X, iR)). The coho-
mology class of Ωω is determined by PU(1), since

[
i

2πΩω
]

= c1(PU(1)). Thus, H (Ωω)
is uniquely determined by the metric and PU(1) and is independent of the choice of

ω ∈ C2,k+1
(
PU(1)

)
. For a given metric g and PU(1), we set γg

(
PU(1)

)
:= H (Ωω) .

Thus,

(H (Ωω) + dα)
+

= H (Ωω)
+

+ dα+ = γg
(
PU(1)

)+
+ dα+

Let

H+ : W 2,k+1(Λ2(X, iR))→ H2+(X, iR)g

denote the L2-orthogonal projection (given by Hodge theory) onto the self-dual har-
monic 2-forms relative to g. Then (19.96) will not hold for any ω ∈ C2,k+1

(
PU(1)

)
,

as long as

(19.97) H+ (η) 6= γg
(
PU(1)

)+
,

since then H+ (Ωω) = γg
(
PU(1)

)+ 6= H+ (η) . The affine subspace

(19.98) Ag
(
PU(1)

)
:=
{
η ∈W 2,k+1(Λ2+(X, iR)) : H+ (η) = γg

(
PU(1)

)+}
is closed and of codimension b+2 in W 2,k+1(Λ2+(X, iR)).

Theorem 19.62. (Compactness of SWk(η)). For any fixed metric g and Spinc

structure for X, let pk : MSWPk → W 2,k(Λ2(X, iR)+) be the projection where
k ≥ 4. Assume that b+2 > 0. For generic η ∈ W 2,k(Λ2(X, iR)+) (i.e., for η in
a residual subset) and SWk(η) := p−1

k (η), either SWk(η) = φ or SWk(η) is a
compact C∞ manifold of dimension

(19.99) d(X,L) = b1 −
(
1 + b2+

)
+ 1

4

(
c1(L)2 − τ(X)

)
,

where L is the canonical line bundle for the Spinc-structure. In the case η ∈
Ω2+(X, iR) := C∞(Λ2+(X, iR)) is an achieved regular value of pk : MSWPk →
W 2,k(Λ2(X, iR)+), we let SW∞(η) be the set of C∞ solutions of the S-W equa-
tions modulo C∞(X,U(1)). The natural map fk : SW∞(η) → SWk(η) given by
fk([ω, ψ]) = [ω, ψ]k is a bijection.

Proof. By Theorem 19.55 (p. 649), the only new issue in the first claim is
compactness. By intersecting the residual subset of Theorem 19.55 with the open,
dense complement of Ag

(
PU(1)

)
(using b+2 > 0), we obtain residual subset, say

T , of W 2,k(Λ2(X, iR)+) such for η ∈ T , there are no ω ∈ C2,k+1
(
PU(1)

)
with

Ωω+ = η, and hence no solutions of the perturbed S-W equations with ψ = 0.
Thus, for η ∈ T , the limit (ω, ψ) in Corollary 19.61 is not reducible and hence it
is in p−1

k (η) which is then compact. We now prove that fk : SW∞(η) → SWk(η)
is a bijection. If [ω′, ψ′]k ∈ SWk(η), then (by Theorem 19.60), [ω′, ψ′]k = [ω, ψ]k
for a C∞ solution (ω, ψ) of the S-W equations perturbed by η. Thus, fk is onto.
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To show that fk is 1-1, we argue as follows. If [ω1, ψ1]k = [ω2, ψ2]k for some C∞

ω1, ψ1, ω2, ψ2, then (ω2, ψ2) = s · (ω1, ψ1) for some s ∈W 2,k+2 (X,U(1)) , i.e.

(19.100) 2s−1ds = ω2 − ω1, and ψ2 = sψ1.

Since locally s = eiθ, we have 2idθ = 2s−1ds = ω2 − ω1 is C∞ and hence θ and s
are C∞. Hence [ω1, ψ1] = [ω2, ψ2] in SW∞(η). �

Remark 19.63. If pk has an achieved regular value say η0, then all η ∈
W 2,k(Λ2(X, iR)+) which are sufficiently close to η0 will be achieved regular val-
ues (the compactness of SWk(η0) is used for this). Since C∞(Λ2+(X, iR)) is dense
in W 2,k(Λ2(X, iR)+), there will be C∞ achieved regular values for which the bound
19.89 applies.

We wish to show how the moduli space Mk+1 (η) is used to define an integer,
known as the S-W-invariant for a given Spinc structure for X. It turns out that
the S-W-invariant is independent of a suitable choice of η and of the Riemannian
metric on X, provided that b+2 ≥ 2. We first give the definition and establish the
independence later.

Let η ∈ Ω2+(X, iR)+ = C∞(Λ2+(X, iR)) be a regular achieved value of pk :
MSWPk →W 2,k(Λ2(X, iR)+) so that Theorem 19.62 applies, and hence SW∞(η)
is a compact, smooth manifold of dimension d(X,L). We let Sol (η) denote the set
of all C∞ solutions of the S-W equations (perturbed by η) so that

SW∞(η) = Sol (η) /C∞ (X,U(1))

Choose x0 ∈ X and consider the subgroup say G0 ⊆ C∞ (X,U(1)) of those s, such
that s (x0) = 1. We then have a mapping

(19.101) π : Sol (η) /G0 → SW(η) := SW∞(η)

with π ([(ω, ψ)]0) = [(ω, ψ)] , where [(ω, ψ)]0 denotes the G0-orbit of (ω, ψ) ∈
Sol (η) .We claim that (19.101) is a principal U(1)-bundle. For [(ω, ψ)]0 ∈ SWk/G0,
let U(1) act on Sol (η) /G0 from the right via

[(ω, ψ)]0 · e
iθ0 =

[
e−iθ0 · (ω, ψ)

]
0

=
[(
ω, e−iθ0ψ

)]
0
.

To show that the action is free, suppose that in SWk/G0 we have
[(
ω, e−iθ0ψ

)]
0

=

[(ω, ψ)]0 · eiθ0 = [(ω, ψ)]0. Then there is s ∈ G0, such ω = −2s−1ds + ω (i.e., s is
constant and hence 1, since s ∈ G0) and e−iθ0ψ = s−1ψ = ψ. Thus, since ψ 6= 0,
e−iθ0 = 1, and hence the U(1) action is free. The fibers of π are the orbits of this
U(1)-action. Indeed, if π ([(ω1, ψ1)]0) = π ([(ω2, ψ2)]0) , then [(ω1, ψ1)] = [(ω2, ψ2)] .
Hence (ω2, ψ2) = s · (ω1, ψ1) for some s ∈ C∞ (X,U(1)). We can write

s = s s (x0)
−1
s (x0) = s0s (x0) , where s0 := s s (x0)

−1 ∈ G0.

Then

[(ω2, ψ2)]0 = [s · (ω1, ψ1)]0 = [s0s (x0) · (ω1, ψ1)]0

= [s0 · (ω1, ψ1)]0 · s (x0)
−1

= [(ω1, ψ1)]0 · s (x0)
−1
.

Thus, U(1) acts transitively on the fibers of π, and it is clear that the U(1)-action
preserves the fibers. The local triviality of 19.101 may be shown ultimately using
constructions as in the proofs of Theorem 19.49 (p. 638) and Theorem 19.50 (p. 644),
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and so (19.101) defines a principal U(1)-bundle. Let c1 (η) ∈ H2 (SW (η) ,Z) be
the first Chern class of (19.101). Note that d(X,L) in (19.99) is even iff b1 + b+2 is
odd. Once we give SW (η) an orientation, if d(X,L) is even, then the evaluation

of the 1
2d(X,L)-fold cup product c1 (η)

d(X,L)/2
:= c1 (η) `

d(X,L)/2
· · · ` c1 (η) on the

fundamental class [SW (η)] ∈ Hd(X,L)/2 (SW (η) ,Z) yields the Seiberg-Witten
invariant

(19.102) SW ([PSpinc ]) := c1 (η)
d(X,L)/2

[SW (η)] ∈ Z.

The orientation for SW (η) is defined as follows. The tangent space of SW (η)
is (see Theorem 19.54, p. 647)

T[ω,ψ,η]

(
p−1(η)

)
= Ker

(
p∗[ω,ψ,η] : T[ω,ψ,η]MSWPk →W 2,k

(
Λ2+(X, iR)

)) ∼= KerB(ω,ψ,η),k

∼=


(ω′, ψ′, η′) ∈ T(ω,ψ,η)CWPk :

0 = B (ω′, ψ′, η′) :=

 (dω′)
+ − q̃ (ψ′, ψ)− q̃ (ψ,ψ′)
Dωc ψ′ + 1

2ω
′ · ψ

δω′ − 1
2 〈ψ,ψ

′〉


 ,

where

B = B(ω,ψ,η),k : W 2,k+1
(
Λ1 (X, iR)

)
⊕W 2,k+1

(
Σ+
c (X)

)
→W 2,k (X, iR)⊕W 2,k

(
Λ2+ (X, iR)

)
⊕W 2,k

(
Σ−c (X)

)
.(19.103)

Thus, we need some way to orient Ker(B). Associated with any Fredholm operator
F : V →W, between Hilbert spaces, there is the 1-dimensional space
(19.104)

detF := Λtop(KerF )⊗ Λtop(KerF ∗) := Λdim(kerF )(KerF )⊗ Λdim(kerF∗)(KerF ∗).

In the event that F is onto (i.e., KerF ∗ = {0}), orienting detF is equivalent to
orienting KerF . Let

(19.105) B (t) (ω′, ψ′, η′) :=

 δω′ − 1−t
2 〈ψ,ψ

′〉
(dω′)

+ − (1− t) (q̃ (ψ′, ψ) + q̃ (ψ,ψ′))
Dωc ψ′ + 1−t

2 ω′ · ψ = 0

 .
This is a family of elliptic operators over [0, 1] and it can be shown that {detB (t) : t ∈ [0, 1]}
is a continuous line bundle over [0, 1] . As [0, 1] is contractible, this line bundle is
trivial and an orientation for detB (1) determines an orientation for detB (0) (i.e.,
for kerB, since B is onto, by the assumption that η is an achieved regular value of
p; see the proof of Theorem 19.51, p. 645). Now

B(1) =
(
δ, d+,Dωc

)
,

and we have (see the computations following (19.43), p. 632)

KerB(1) = H1 (X, iR)⊕KerDωc and

KerB(1)∗ = iR⊕H2+ (X, iR)⊕Ker (Dω∗c ) .

Thus,

detB(1) = Λtop
(
H1 (X, iR)⊕ kerDωc

)
⊗ Λtop

(
iR⊕H2+ (X, iR)⊕Ker (Dω∗c )

)
As kerDωc and kerDω∗c are complex spaces, they have a natural orientation. More-
over, iR has the natural orientation i. Thus, we need only to choose a fixed orienta-
tion for H1 (X, iR) ∼= H1 (X, iR) and H2+ (X, iR) ∼= H2+ (X, iR) to determine an
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orientation for detB(1). We assume that this has been done. Hence, the orientation
class [SW (η)] in (19.102) is determined.

It remains to show that SW (PSpinc) is independent of the metric g onX and the
perturbing form η. Let FX(g) denote the bundle of oriented orthonormal frames
for to the metric g. We first point out that when the metric is on X is changed from
g1 to g2, the bundle of oriented orthonormal frames on X changes from FX(g1) to
FX(g2). These are seen to be isomorphic as follows. Let Aut (TX) ⊂ End (TX) =
T 1,1X be the bundle of invertible linear transformations of the tangent spaces of
X. First we show that there is a canonical automorphism ϕ ∈ C∞ (Aut (TX)) of
the tangent bundle, such that

g1 (Y,Z) = (g2 · ϕ) (Y,Z) := g2 (ϕ (Y ) , ϕ (Z))

for all Y, Z ∈ TpX and p ∈ X. More precisely, we prove

Proposition 19.64. For Riemannian metrics g1 and g2 on X, there is a unique
positive, g1-symmetric ϕ ∈ C∞ (Aut (TX)) such that

g1 = g2 · ϕ and g1 (ϕ (Y ) , Z) = g1 (Y, ϕ (Z))

Proof. At each point p ∈ X, αp ∈ GL(TpX) exists, such that g2 · αp = g1 at
p. Just let αp take g1-orthonormal basis of TpX to a g2-orthonormal basis of TpX.
If βp ∈ GL(TpX) also satisfies g2 · βp = g1, then βp = αp ◦ A for some orthogonal
(relative to g1) A ∈ Og1

(TpX). Indeed,

g1 ·A = g1 ·
(
α−1
p ◦ βp

)
=
(
g1 · α−1

p

)
· βp = g2 · βp = g1.

Using T to denote transpose relative to g1, we have

βp ◦ βTp = (αp ◦A) ◦ (αp ◦A)
T

= αp ◦A ◦AT ◦ αTp = αp ◦ αTp .

Thus, the positive g1-symmetric map αp ◦ αTp is independent of the choice of αp,

and it has a unique, g1-symmetric, positive square-root
√
αp ◦ αTp . We take ϕp ∈

Aut (TpX) to be
√
αp ◦ αTp , and ϕ ∈ C∞ (Aut (TX)) is defined. �

Notation 19.65. Let S+
g1
X → X be the bundle of positive g1-symmetric op-

erators.

Thus, we have a canonical ϕ ∈ C∞
(
S+
g1
X
)
⊆ C∞ (Aut (TX)) satisfying g2 ·ϕ = g1.

We define

Lϕ : FX(g1)→ FX(g2)

by Lϕ (u) := ϕp ◦ u where FX(g1) 3 u : R4 → TpX is an isometry (i.e., an
oriented orthonormal frame relative to g1). Note that Lϕ is equivariant (Lϕ(u◦A) =
ϕ ◦u ◦A = Lϕ(u) ◦A for A ∈ SO(4)). Consequently, the Levi-Civita connection for
FX(g2) pulls back to a connection (but not necessarily the Levi-Civita connection)
for FX(g1). We can extend Lϕ to

I × Lϕ : PU(1) × FX(g1)→ PU(1) × FX(g2).
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Then pull back by I ×L−1
ϕ of Spinc-bundles πrc(g1) : PSpinc(g1)→ PU(1)×FX(g1)

gives us a canonical one-to-one correspondence between the Spinc structures for
(X, g1) and those for (X, g2) :

(19.106)
PSpinc(g1)

Jϕ→ PSpinc(g2) :=
(
I × L−1

ϕ

)!
PSpinc(g1)

↓ πrc(g1) ↓ πrc(g2)

PU(1) × FX(g1)
I×Lϕ→ PU(1) × FX(g2), where

(
I × L−1

ϕ

)!
PSpinc(g1)

:=
{

((p, u) , p̃) ∈
(
PU(1) × FX(g2)

)
× PSpinc(g1) : πrc(g1) (p̃) =

(
p, L−1

ϕ u
)}

.

That is, the fiber of PSpinc(g2) over (p, u) ∈ PU(1) × FX(g2) is given by((
I × L−1

ϕ

)!
PSpinc(g1)

)
(p,u)

= {(p, u)} × PSpinc(g1)(p,L−1
ϕ u)

The action of σ ∈ Spinc (4) on PSpinc(g2) is given by

((p, u) , p̃) · σ = ((p, u) · rc (σ) , p̃ · σ) .

The map πrc(g2) : PSpinc(g2)→ PU(1) × FX(g2) is defined by

πrc(g2) ((p, u) , p̃) := (p, u) ,

and note that πrc(g2) is rc-equivariant, since

πrc(g2) (((p, u) , p̃) · σ) = πrc(g2) (((p, u) · rc (σ) , p̃ · σ))

= (p, u) · rc (σ) = πrc(g2) ((p, u) , p̃) · rc (σ) .

Also, for p̃ ∈ PSpinc(g1) with πrc(g1) (p̃) =
(
p, L−1

ϕ u
)
, we have

Jϕ (p̃) := ((p, u) , p̃) ∈ PSpinc(g2) and

(πrc(g2) ◦ Jϕ) (p̃) = πrc(g2) ((p, u) , p̃) = (p, u)

= (I × Lϕ)
(
p, L−1

ϕ u
)

= ((I × Lϕ) ◦ πrc(g1)) (p̃) .

Connections and equivariant functions (e.g., twisted spinor fields) on PSpinc(g2)
pullback via Jϕ to connections and equivariant functions on PSpinc(g1). Thus,
the connections and twisted spinor fields on PSpinc(g2) associated with the metric
g2 can all be identified with connections and twisted spinor fields on PSpinc(g1)
associated with a fixed metric g1. However, the pull-back of the Dirac operator
and the star operator for g2 are not the same as the usual Dirac operator and star
operator for g1, and we must elaborate on this. Note that ϕ ∈ C∞

(
S+
g1
X
)

induces
ϕ∗ ∈ C∞ (Aut(Λ∗ (X))), where (ϕ∗α) (Y1, ..., Yk) = α (ϕ (Y1) , ..., ϕ (Yk)). The star
operator ∗g2

of g2 = g1 · ϕ−1 is given by

∗g2
= ϕ−1∗ ◦ ∗g1

◦ ϕ∗.

Observe that

η ∈ Ω2+g1 (X, iR)⇔ ϕ−1∗η ∈ Ω2+g2 (X, iR), since

∗g2

(
ϕ−1∗η

)
=
(
ϕ−1∗ ◦ ∗g1 ◦ ϕ∗

) (
ϕ−1∗η

)
= ϕ−1∗ (∗g1η) .
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Note that

Ωω+g2 = ϕ−1∗η ⇔ 1
2

(
1 + ϕ−1∗ ◦ ∗g1 ◦ ϕ∗

)
Ωω = ϕ−1∗η

⇔ 1
2 (ϕ∗ + ∗g1

◦ ϕ∗) Ωω = η

⇔ 1
2 (1 + ∗g1)ϕ∗Ωω = η

⇔ (ϕ∗Ωω)
+g1 = η.

Thus, in the case ψ = 0, the S-W equation Ω
+g2
ω = ϕ−1∗η relative to g2 is equivalent

to (ϕ∗Ωω)
+g1 = η. The other S-W equation Dωc ψ = 0 also depends on the metric.

Let θ2 ∈ C(PSO(4)(g2)) be the Levi-Civita connection of g2 and let ω ∈ C(PU(1)).
Then L∗ϕθ2 ∈ C(PSO(4)(g1)), but θ1 6= L∗ϕθ2 in general. Due to the commutativity
of (19.106),

(rc)
−1 (

Prc (g1)
∗ (
ω ⊕ L∗ϕθ2

))
= J∗ϕ

(
(rc)
−1 (

Prc (g2)
∗

(ω ⊕ θ2)
))
.

If Σc,g (X) = Σ+
c,g (X) ⊕ Σ−c,g (X) denotes the bundle of virtual twisted spinors

relative to g, then

Σc,g1 (X) = PSpinc(g1)×Spinc Σ4

Jϕ×SpincIΣ4∼= PSpinc(g2)×Spinc Σ4 = Σc,g2 (X)

where

(Jϕ ×Spinc IΣ4) ([p, w]) := [Jϕ (p) , w] .

If ψ ∈ C∞(Σc,g2
(X)) corresponds to the equivariant Σ4-valued function ψ̃ ∈

Ω
0
(PSpinc(g2),Σ4), then (Jϕ ×Spinc IΣ4

)
−1

(ψ) ∈ C∞(Σg1,c (X)) corresponds to the
pull-back

J∗ϕψ̃ := ψ̃ ◦ Jϕ ∈ Ω
0
(PSpinc(g1),Σ4).

Consequently, we will denote the isomorphism C∞(Σc,g2
(X)) ∼= C∞(Σc,g1

(X))

induced by (Jϕ ×Spinc IΣ4
)
−1

simply by

J∗ϕ : C∞(Σc,g2
(X)) ∼= C∞(Σc,g1

(X))

In other words, there is a well-defined notion (i.e., J∗ϕ) of pull-back of twisted

spinors, induced by ϕ ∈ C∞
(
S+
g1
X
)
. We let ∇(ω,θ2) denote covariant differentiation

on C∞(Σc,g2
(X)) for the connection (rc)

−1 (
Prc (g2)

∗
(ω ⊕ θ2)

)
, and ∇(ω,L∗ϕθ2) de-

note covariant differentiation on C∞(Σc,g1 (X)) for the connection (rc)
−1 (

Prc (g1)
∗ (
ω ⊕ L∗ϕθ2

))
.

One can check that for ψ ∈ C∞(Σc,g2
(X)),

∇(ω,L∗ϕθ2)
Y

(
J∗ϕψ

)
= J∗ϕ∇

(ω,θ2)
ϕ(Y ) ψ.

In other words, regarding ∇(ω,L∗ϕθ2)J∗ϕψ ∈ C∞
(
Λ1(X)⊗ Σc,g2

(X)
)

as a Σg (X)-
valued 1-form,

∇(ω,L∗ϕθ2)
(
J∗ϕψ

)
=
(
ϕ∗ ⊗ J∗ϕ

) (
∇(ω,θ2)ψ

)
.

We denote Clifford multiplication relative to g by

clg : Λ∗ (X)⊗ Σg,c (X)→ Σg,c (X)

We have

clg1

((
ϕ∗ ⊗ J∗ϕ

)
(α⊗ ψ)

)
= clg1

(
(ϕ∗α)⊗ J∗ϕψ

)
= J∗ϕ (clg2

(α⊗ ψ)) .
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Thus,

J∗ϕ
(
D(ω,θ2)ψ

)
= J∗ϕ

(
clg2

(
∇(ω,θ2) (ψ)

))
= clg1

((
ϕ∗ ⊗ J∗ϕ

) (
∇(ω,θ2) (ψ)

))
= clg1

(
∇(ω,L∗ϕθ2)

(
J∗ϕψ

))
.

Letting

D(ω,L∗ϕθ2)
c := clg1

◦ ∇(ω,L∗ϕθ2),

we then have

J∗ϕ

(
D(ω,θ2)
c ψ

)
= D(ω,L∗ϕθ2)

c

(
J∗ϕψ

)
or

D(ω,L∗ϕθ2)
c = J∗ϕ ◦ D(ω,θ2)

c ◦ J∗ϕ−1 : C∞ (Σg1
(X))→ C∞ (Σg1

(X)) .

Thus,

D(ω,θ2)
c J∗ϕ−1ψ = 0⇔ D(ω,L∗ϕθ2)

c ψ = 0.

We can also view

clg : Λ∗ (X)⊗ Σc,g (X)→ Σc,g (X) as clg : Λ∗ (X)→ End (Σc,g (X)) .

Recall (see (19.34), p. 629) that there is a bilinear map

q̃g : C∞
(
Σ+
c,g (X)

)
× C∞

(
Σ+
c,g (X)

)
→ Ω2+g (X,C) .

We have

q̃g1

(
J∗ϕψ, J

∗
ϕζ
)

= (ϕ∗q̃g2
) (ψ, ζ) or q̃g1

(ψ, ζ) = (ϕ∗q̃g2
)
(
J∗ϕ−1ψ, J∗ϕ−1ζ

)
.

If qg is the quadratic map corressponding to q̃g, we have

Ωω+g2 − qg2

(
J∗ϕ−1ψ

)
= ϕ−1∗η

⇔ ϕ∗
(

Ωω+g2 − qg2

(
J∗ϕ−1ψ

))
= η

⇔ (ϕ∗Ωω)
+g1 − ϕ∗qg2

(
J∗ϕ−1ψ

)
= η

⇔ (ϕ∗Ωω)
+g1 − qg1

(ψ) = η.(19.107)

In summary, we have the following equivalence between the S-W equations for the
metric g2 := g1 · ϕ−1 and the ϕ-perturbed S-W equations involving spinor fields
which are associated with the fixed Spinc structure for the metric g1 PSpinc (g1)→
PU(1) × FX(g1):

(19.108)
D(ω,θ2)
c J∗ϕ−1ψ = 0

Ωω+g2 − qg2

(
J∗ϕ−1ψ

)
= ϕ−1∗η

⇔ D(ω,L∗ϕθ2)
c ψ = 0

(ϕ∗Ωω)
+g1 − qg1 (ψ) = η

We call the latter equations, the g1-based S-W equations perturbed by ϕ ∈
C∞ (Aut (TX)) and η ∈ Ω2,+g1 (X, iR). In Section 19.3, the metric g was fixed and
the S-W equations were only perturbed by η ∈ Ω2,+g (X, iR) (orW 2,k

(
Λ2,+g (X, iR)

)
.

Here, we may still regard the metric g1 as being fixed and C∞. However, there is
an additional space of perturbations, namely C∞

(
S+
g1
X
)
⊂ C∞ (End (TX)) or an

appropriate Sobolev enlargement, say W 2,k′
(
S+
g1
X
)
⊂W 2,k′ (End (TX)), where k′

is sufficiently large depending on k. One complication which arises is that (in local
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coordinates) the coefficients of the Dirac operator D(ω,L∗ϕθ2)
are not necessarily C∞

if ϕ ∈ W 2,k′
(
S+
g1
X
)
. Since the Levi-Civita connection for a metric may be locally

expressed (via Christoffel symbols) in terms of the metric cofficients and their first

derivatives, the coefficients of D(ω,L∗ϕθ2)
will be in W 2,k′−1 ⊆ Cm for m < k′ − 3.

For elliptic operators with sufficiently regular coefficients, there are versions (see
[Can]) of the Fundamental Elliptic Estimate (Proposition 17.21, p. 17.21), Elliptic
Decomposition (Proposition 17.23) and Unique Continuation (Theorem 19.43) with
the same conclusions. We always choose k′ large enough so that these conclusions
hold. We mention that the Sobolev norms in these theorems are still all defined in
terms of the fixed C∞metric g1, as opposed to g1 · ϕ−1. We need to address how
the theorems of Section 19.3 are modified when the additional pertubation space
W 2,k′

(
S+
g1
X
)

is included.
We set

CWPSk := CWPk ×W 2,k′
(
S+
g1
X)
)
,

where the “S” stands for “symmetric”. We have the extended map (see (19.46))

FS : CWPSk →W 2,k
(
Λ2+ (X, iR)

)
⊕W 2,k

(
Σ−c (X)

)
given by

FS (ω, ψ, η, ϕ) :=

(
(ϕ∗Ωω)

+g1 − qg1
(ψ)− η, D(ω,L∗ϕθ2)

c ψ

)
If FS (ω, ψ, η, ϕ) = 0, then the differential FS∗(ω,ψ,η,ϕ) is onto. Indeed, the proof of
Theorem 19.44 shows that even the partial derivative of FS (A,ψ, η, ϕ) with respect
to (A,ψ, η) is onto, where ϕ is held fixed. Essentially all we need to do is apply
Theorem 19.44 (p. 633) in the case where the underlying metric is g1 · ϕ−1. Even
though g1 · ϕ−1 need not be C∞, the same argument goes through if k′ is chosen
large enough. Thus,

SWPSk := (FS)
−1

(0, 0)

is a Hilbert submanifold of CWPSk by Theorem 17.24 (Implicit Function Theorem
I, p. 470). The group W 2,k+2(X,U(1)) of gauge transformations acts trivially on

the extra parameter space W 2,k′
(
S+
g1
X
)
. Consequently, Theorem 19.49 (p. 638)

implies that

MCWPSk := CWPSk/W 2,k+2(X,U(1)) ∼= CWPk/W 2,k+2(X,U(1))× Sk
is a Hausdorff C∞ Hilbert manifold. Since J∗ϕ−1 (s · ψ) = J∗ϕ−1

(
s−1ψ

)
= s−1J∗ϕ−1 (ψ),

the group W 2,k+2(X,U(1)) leaves the space SWPSk of parametrized g1-based so-
lutions of equations (19.108) invariant. We may then form the quotient

MSWPSk := SWPSk/W 2,k+2(X,U(1)),

and prove that this is a closed Hilbert submanifold of MCWPSk as in Theorem
19.50, p. 644. There is a projection map

ps :MSWPSk →W 2,k
(
Λ2+ (X, iR)

)
×W 2,k′

(
S+
g1
X)
)

given by

ps ([(A,ψ, η, ϕ)]) = (η, ϕ) ,

and the g1-based moduli space SWg1,k(η, ϕ) at a fixed (η, ϕ) is defined by

SWg1,k(η, ϕ) := (ps)
−1

(η, ϕ) .
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For the moduli spaces SWk(η) (defined in (19.68), p. 645), the underlying metric
g was fixed and hence it was not included in the notation. If we do include it, we
write SWk(η, g). Then we have

SWg1,k(η, ϕ) ∼= SWk(ϕ−1∗η, g1 · ϕ−1).

In the definition SWk (η) := p−1
k (η) (see Theorem 19.62) the right side depends on

the choice of η, but it could also depend on the chosen metric on X. Thus, in place
of (19.102) we should really write

SW([PSpinc ], η, g) := c1(η, g)d(L)/2[SW(η, g)],

and show that this is independent of the choice of a suitable pair (η, g), in the case
b+2 ≥ 2. Here “suitable” means that η is in the residual subset of Theorem 19.62,
where the underlying metric is g. In terms of the g1-based framework, we are to
show that

SWg1
([PSpinc ], η, ϕ) := c1(η, ϕ)d(L)/2[SWg1

(η, ϕ)]

is independent of a suitable pair (η, ϕ), namely a pair for which (ϕ−1∗η, g1 ·ϕ−1) is

suitable. One necessary condition for the suitability of (η, ϕ) is that (ϕ∗Ωω)
+g1 6= η

for all connections ω, so that there will be no solutions of the S-Wg1
equations for

which ψ = 0. We call the set of such pairs in W 2,k
(
Λ2+ (X, iR)

)
×W 2,k′ (Sg1

X)

meeting this condition FRk, since the condition guarantees that W 2,k+2(X,U(1))
acts freely on CWPSk, and we call such (η, ϕ) an FRk pair. As in the case where
the metric is fixed, we will show that the complement of FRk lies in a submanifold
of codimension b+2 . Then as a consequence of the Fredholm Transversality Theorem
below, for b+2 ≥ 2, two FRk pairs (η0, ϕ0) and (η1, ϕ1) can be joined by a path say
(η (t) , ϕ (t)) of FRk pairs. We will eventually show that generically such a path
yields an oriented cobordism between SWg1(η0, ϕ0) and SWg1(η1, ϕ1). The Chern
classes c1(η, ϕ) ∈ H2 (SWg1

([PSpinc ], η, ϕ),Z) are restrictions of the Chern class,
say c1 ∈ H2 (MCWPS,Z) , of the U(1) bundle

CWPS/G0 →MCWPS := CWPS/C∞(X,U(1)).

Thus, the evaluation of c
d(L)/2
1 on the two cobordent (and hence homologous) sub-

manifolds SWg1
(η0, ϕ0) and SWg1

(η1, ϕ1) yields the same integer. Hence,

SWg1
([PSpinc ], η0, ϕ0) := c1(η0, ϕ0)d(L)/2[SWg1

(η0, ϕ0)]

= c
d(L)/2
1 [SWg1

(η0, ϕ0)] = c
d(L)/2
1 [SWg1

(η1, ϕ1)]

= c1(η1, ϕ1)d(L)/2[SWg1
(η1, ϕ1)] =: SWg1

([PSpinc ], η1, ϕ1),

or equivalently,

SW([PSpinc ], ϕ
−1∗
0 η, g1 · ϕ0) = SW([PSpinc ], ϕ

−1∗
1 η, g1 · ϕ1).

Since any suitable pair (η0, g0) can be written in the form
(
ϕ−1∗

0 η, g1 · ϕ0

)
for some

suitable (η, ϕ0), the independence of SW([PSpinc ], η, g) on (η, g) will then be estab-
lished.

We now show that the set

(19.109) (FRk)
c

=

{
(η, ϕ) ∈W 2,k

(
Λ2+ (X, iR)

)
×W 2,k′ (Pg1(TX)) :

(ϕ∗FA)
+g1 = η for some A ∈ C2,k+1(PU(1))

}
of unsuitable pairs is contained in a submanifold of codimension b+2 . Recall that for
any metric g on X, the g-harmonic representative Hg (Ωω) = γg(PU(1)) of [Ωω] =
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−2πi c1(PU(1)) ∈ 2πiH2(X,Z) is independent of the choice of ω. If (η, ϕ) ∈ (FRk)
c
,

then (ϕ∗Ωω)
+g1 = η for some ω, and

0 = (ϕ∗Ωω)
+g1 − η ⇒ 0 = Hg2

(
ϕ−1∗

(
(ϕ∗Ωω)

+g1 − η
))

= Hg2

(
Ωω+g2 − ϕ−1∗η

)
= Hg2

(Ωω)
+g2 −Hg2

(
ϕ−1∗η

)
= γg2(PU(1))

+g2 −Hg2

(
ϕ−1∗η

)
or

Hg2

(
ϕ−1∗η

)
= γg2

(PU(1))
+g2 ∈ H2+

g2
(X, iR).

Thus, it suffices to prove that the map

J : W 2,k
(
Λ2+ (X, iR)

)
×W 2,k′ (Sg1

X)→ H2+
g2

(X, iR), given by

J(η, ϕ) = Hg2

(
ϕ−1∗η

)
,

has a surjective differential at (η, ϕ), since J−1
(
γg2

(PU(1))
+g2
)

will then be a sub-

manifold of codimension dim
(
H2+
g2

(X, iR)
)

= b+2 containing (FRk)
c
. We have

J(η,ϕ)∗(η
′, ϕ′) = Hg2

((
ϕ−1∗ϕ′∗ϕ−1∗) (η)

)+g2 +Hg2

(
ϕ−1∗η′

)+g2
= Hg2

((
ϕ−1 ◦ ϕ′ ◦ ϕ−1

)∗
(η)
)+g2

+Hg2

(
ϕ−1∗η′

)+g2 .
Given any ξ ∈ H2+

g2
(X, iR), we have ϕ∗ξ ∈W 2,k

(
Λ2+ (X, iR)

)
and J(η,ϕ)∗(ϕ

∗ξ, 0) =

Hg2

(
ϕ−1∗ϕ∗ξ

)
= Hg2

(ξ) = ξ, as required. In order to produce an oriented cobor-
dism between SWg1

(η0, ϕ0) and SWg1
(η1, ϕ1), we need to recall some definitions

and results from transversality theory.

Definition 19.66 (transversality). Given C∞ maps f1 : M1 → N and f2 :
M2 → N for Banach manifolds M1, M2 and N , we say that f1 and f2 are trans-
verse to each other if for all (x1, x2) ∈ M1 ×M2 with f1(x1) = f2(x2), we have
f1∗ (Tx1

M1) + f2∗ (Tx2
M2) = TyN , where y = f1(x1) = f2(x2). We write f1 t f2.

We can show that if f1 and f2 are transverse to each other, then (with ∆N :=
diag (N))

(f1 × f2)
−1

(∆N ) := {(x1, x2) ∈M1 ×M2 : f1(x1) = f2(x2)}

is a submanifold of M1 ×M2. Indeed, in terms of a coordinate ball ϕ : U → B
about y = f1(x1) = f2(x2) ∈ U (where B is a ball about 0 in some Banach space),
we have

(f1 × f2)
−1
(

∆ϕ−1( 1
2B)

)
=

{
(x1, x2) ∈ (ϕ ◦ f1)

−1 ( 1
2B
)
× (ϕ ◦ f2)

−1 ( 1
2B
)

:
(ϕ ◦ f1) (x1)− (ϕ ◦ f2) (x2) = 0

}
= (ϕ ◦ f1 − ϕ ◦ f2)

−1
(0) ,

where

ϕ ◦ f1 − ϕ ◦ f2 : (ϕ ◦ f1)
−1 ( 1

2B
)
× (ϕ ◦ f2)

−1 ( 1
2B
)
→ B

is given by

(ϕ ◦ f1 − ϕ ◦ f2) (x1, x2) = (ϕ ◦ f1) (x1)− (ϕ ◦ f2) (x2) .
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Since f1 and f2 are transverse, (ϕ ◦ f1 − ϕ ◦ f2)∗ is onto at each point of (ϕ ◦ f1 − ϕ ◦ f2)
−1

(0).

Thus, by the Implicit Function Theorem I (Theorem 17.24, p. 470), (f1 × f2)
−1

(∆N )
is a submanifold of M1 ×M2. We also have

Theorem 19.67 (Fredholm Transversality). Let f1 : M1 → N and f2 : M2 →
N be C∞ maps for Banach manifolds M1, M2 and N with dimM2 < ∞ and f2

Fredholm. Then there is a map f̃2 : M2 → N arbitrarily close to f2 in the topology
of C∞ convergenge on compact sets), such that f1 t f̃2. Moreover, if f1 t f2 for

points in a closed subset C of M2, then we may assume that f̃2 = f2 on C.

One consequence of the FTT (Fredholm Transversality Theorem) is that any
two points, say p and q, in the complement of a codimension 2 submanifold M1 of a
pathwise connected Banach manifold N can be joined by a curve which lies outside
of M1. Indeed, let M2 = [0, 1], let f2 : [0, 1]→ N be a curve joining p to q, and let

f1 : M1 → N be inclusion. By the FTT, f2 can be purturbed to f̃2 : [0, 1] → N

(still joining p to q), with f1 t f̃2. It must be the case that f̃2 ([0, 1]) ∩M1 = φ,
since f1∗ (Tx1

M1) + f2∗ (Tx2
M2) = TyN is impossible as M1 has codimension 2 and

dim f2∗ (Tx2M2) ≤ 1. As a corollary, we have

Theorem 19.68. For b+2 ≥ 2, two FRk pairs (η0, ϕ0) and (η1, ϕ1) can be joined
by a path say (η (t) , ϕ (t)) of FRk pairs.

We now apply the FTT to the case whereN = W 2,k+1
(
Λ2,+(X, iR)

)
×W 2,k′ (Sg1

X) ,
M1 =MSWPSk, M2 = [0, 1],

f1 = ps :MSWPSk →W 2,k+1
(
Λ2,+(X, iR)

)
×W 2,k′ (Sg1

X)

and

f2 : [0, 1]→W 2,k+1
(
Λ2,+(X, iR)

)
×W 2,k′ (Sg1X)

is a curve joining two FRk pairs (η0, ϕ0) and (η1, ϕ1) which are regular values of
ps. Since (η0, ϕ0) and (η1, ϕ1) are regular values of ps,we have that ps t f2 at the

endpoints 0 and 1 of [0, 1]. By the FTT, f2 can be purturbed to f̃2 (still joining

(η0, ϕ0) and (η1, ϕ1)), so that ps t f̃2. Then
(
f1 × f̃2

)−1

(∆N ) is a submanifold of

MSWPSk × [0, 1]. Moreover,

C :=
(
f1 × f̃2

)−1

(∆N )

=
{

([ω, ψ, η, ϕ], t) ∈MSWPSk × [0, 1] : (η, ϕ) = ps ([A,ψ, η, ϕ]) = f̃2 (t)
}

= ∪0≤t≤1SWg1,k(f̃2 (t))× {t} .

We have that

∂

((
f1 × f̃2

)−1

(∆N )

)
=
(
SWg1,k(f̃2 (0))× {0}

)
∪
(
SWg1,k(f̃2 (1))× {1}

)
= (SWg1,k(η0, ϕ0)× {0}) ∪ (SWg1,k(η1, ϕ1)× {1}) .

We still must show that C is compact and orientable. Once this is done, we proceed
as follows. The mapping π : C →MSWPSk given by ([ω, ψ, η, ϕ], t) 7→ [ω, ψ, η, ϕ]
exhibits the equality of homology classes (we drop the index k)

[SWg1
(η0, ϕ0)] = [SWg1

(η1, ϕ1)] ∈ Hd(L) (MCWPS,Z)
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The invariance of the S-W invariant then follows:

SWg1·ϕ0
([PSpinc ], η0)

= SWg1
([PSpinc ], η0, ϕ0) = c1(η0, ϕ0)d(L)/2[SWg1

(η0, ϕ0)]

= c
d(L)/2
1 [SWg1

(η0, ϕ0)] = c
d(L)/2
1 [SWg1

(η1, ϕ1)]

= c1(η1, ϕ1)d(L)/2[SWg1
(η1, ϕ1)] = SWg1

([PSpinc ], η1, ϕ1)

= SWg1·ϕ1([PSpinc ], η1).

We now show that C is compact. The compactness results (see Corollary
19.61 and Theorem 19.62) for the individual moduli spaces depend on the estimate
(19.89), namely

(19.110) ‖α‖2,k′ + ‖ψ‖2,k′ ≤ C(k′)

where the constants C (k′) only depend on X, η, ω0 and k′ ≥ 3. There, X had a
fixed Riemannian metric g and the dependence of C (k′) on X implies a possible

dependence of C (k′) on g (or equivalently, on ϕ ∈ W 2,k′ (Sg1X)). However, in
retracing the steps involved in producing the constant C(k′), one finds as long as

η and ϕ vary within a compact subset of W 2,k+1
(
Λ2,+(X, iR)

)
×W 2,k′′ (Sg1

X) for
sufficiently large k and k′′, there is an upper bound on the constants C (k′) for a
fixed k′. For example, the relevant inequalities on which (19.110) is based are (??),
(??), and various inequalities which come from applying the Fundamental Elliptic
Estimate (Proposition 17.21, p. 468) and Sobolev Multiplication (Proposition 17.22,
p. 469). In all cases the constants involved depend on the Sobolev norms (relative
to g1) of η and ϕ of sufficiently large order. Thus, we can find constants C (k′) such

that 19.110 (or a g1-based version) holds for (η, ϕ) ∈ f̃2 ([0, 1]). The compactness
of C then follows.

We can produce an orientation on C as follows. Let z := (z1, 1) := ([A,ψ, η, ϕ], t) ∈
C. The tangent space of C at z is

TzC =
{(
v, a ∂∂t

)
∈ Tz1 (MSWPSk)× R : (ps)∗ (v) = af̃ ′2 (t)

}
.

We wish to identify TzC as the kernel of a Fredholm map which onto, and proceed
as in the discussion following (19.104). Let

FS (ω, ψ, η, ϕ) :=
(

(ϕ∗Ωω)
+g1 − qg1

(ψ)− η, D(ω,L∗ϕθ2)
ψ
)
,

so that for z1 = [ω, ψ, η, ϕ] , FS (ω, ψ, η, ϕ) = 0. Now (ω′, ψ′, η′, ϕ′) ∈ Tz1 (MSWPSk)
means that FS∗(ω,ψ,η,ϕ) (ω′, ψ′, η′, ϕ′) = 0, and

B1 (ω′, ψ′, η′, ϕ′) + L1 (ϕ′) = 0,

where
B1 (ω′, ψ′, η′, ϕ′) := δω′ − 1

4 (〈ψ′, ψ〉 − 〈ψ,ψ′〉)
and L1 = L1 (ω, ψ, η, ϕ) is a zero-th order operator. We also have

FS∗(ω,ψ,η,ϕ) (ω′, ψ′, η′, ϕ′) =

(
B2 (ω′, ψ′)− η′ + L2 (ϕ′) ,
B3 (ω′, ψ′) + L3 (ϕ′)

)
,

where

B2 (ω′, ψ′) := (ϕ∗dω′)
+ − q̃g1

(ψ′, ψ)− q̃g1
(ψ,ψ′)

B3 (ω′, ψ′) := D(ω,L∗ϕθ2)
ψ′ + 1

2ω
′ · ψ(19.111)
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and Li = Li (ω, ψ, η, ϕ) is a zero-th order operator (i = 2, 3). We have

v :=
(
(ω′, ψ′, η′, ϕ′) , a ∂∂t

)
∈ TzC (ω′, ψ′, η′, ϕ′)

⇔


B1 (ω′, ψ′) + L1 (ϕ′) = 0
FS∗(ω,ψ,η,ϕ) (ω′, ψ′, η′, ϕ′) = 0

(η′, ϕ′) = (ps)∗ (ω′, ψ′, η′, ϕ′) = af̃ ′2 (t)

⇔


B1 (ω′, ψ′) + L1 (ϕ′) = 0
B2 (ω′, ψ′)− η′ + L2 (ϕ′) = 0
B3 (ω′, ψ′) + L3 (ϕ′) = 0

(η′, ϕ′)− af̃ ′2 (t) = 0.

⇔


H1 (v) := B1 (ω′, ψ′) + L1 (ϕ′) = 0

H2 (v) := B2 (ω′, ψ′)− 1
2

(
η′ + af̃ ′22 (t)

)
+ L2 (ϕ′) = 0

H3 (v) := B3 (ω′, ψ′) + L3 (ϕ′) = 0

H4 (v) := (η′, ϕ′)− af̃ ′2 (t) = 0.

Since f1 = ps and f̃2 are transverse, any ξ ∈ L2,k
(
Λ2,+ (X, iR)

)
⊕L2,k′ (Sg1X) is of

the form ξ = (η′, ϕ′)+f̃2∗
(
c ∂∂t
)

for some c ∈ R and (ω′, ψ′, η′, ϕ′) ∈ Tq1 (MSWPSk) .

Hence, the Fredholm mapH =
(
H1, H2, H3, H4

)
is onto and has kernel Tz1 (MSWPSk).

If FS (ω, ψ, η, ϕ) = 0, then the differential FS∗(ω,ψ,η,ϕ) is onto. For s ∈ [0, 1], define
the deformation Hs by

H1
s (v) := B1 (s) (ω′, ψ′) + (1− s)L1 (ϕ′)

H2
s (v) := B2 (s) (ω′, ψ′)− 1

2 (1− s)
(
η′ + af̃ ′22 (t)

)
+ (1− s)L2 (ϕ′)

H3
s (v) := B3 (s) (ω′, ψ′) + (1− s)L3 (ϕ′)

H4
s (v) := (η′, ϕ′)− (1− s) af̃ ′2 (t) ,

where Bi (s) was the deformation defined in (19.105). When s = 0, we arrive at
the operator with block matrix

B1 (1) 0 0
B2 (1) 0 0
B3 (1) 0 0

0 Id 0


where the boldface entries are defined on L2,k

(
Λ2,+ (X, iR)

)
⊕L2,k′ (Sg1

(X)). The

kernel of H1 is ker
(
B1 (1)⊕B2 (1)⊕B3 (1)

)
⊕ (0, 0)⊕R, and the cokernel of H1 is

coker
(
B1 (1)⊕B2 (1)⊕B3 (1)

)
⊕(0, 0)⊕0. Each of these has a natural orientation

(see the discussion following (19.105)).



APPENDIX A

Fourier Series and Integrals - Fundamental
Principles

Synopsis. Fourier Series: The Fundamental Function Spaces on S1; Density; Or-

thonormal Basis; Fourier Coefficients; Plancherel’s Identity; Product and Convolution.

The Fourier Integral: Different Integral Conventions; Duality Between Local and Global

- Point and Neighborhood - Multiplication and Differentiation - Bounded and Continu-

ous; Fourier Inversion Formula; Plancherel and Poisson Summation Formulae; Parseval’s

Equality; Higher Dimensional Fourier Integrals

The following fundamentals and elementary facts are standard mathematical
knowledge today, and can be found in a great number of text books in analysis. As
a general reference, we mention [DM, 1972].

1. Fourier Series

We use the notation S1 := {z ∈ C : |z| = 1}, and define the function spaces

C0(S1) :=

{
the Banach space of continuous C-valued functions on S1 with
the norm ‖f‖∞ := sup

{
|f(z)| : z ∈ S1

}
,

L1(S1) :=

{
the Banach space of C-valued, integrable functions on S1 with
the norm ‖f‖1 :=

∫
S1 |f | ,

L2(S1) :=

{
the Hilbert space of square-integrable C-valued functions on S1

with inner product 〈f, g〉 :=
∫
S1 fḡ and norm ‖f‖2 :=

√
〈f, f〉.

Warning: Functions in L1(S1) or L2(S1) are identified if they agree outside a
set of measure zero. In particular, f is identified with the zero function, if f
is zero almost everywhere; i.e., f is nonzero only on a set of measure zero. In
this way, we have ‖f‖ = 0 precisely when f = 0. Thus, strictly speaking, the
elements of L1(S1) or L2(S1) are not functions, but rather equivalence classes of
functions. While this is true, in practice it is much simpler and generally harmless
to disregard this fine distinction, and we will do this in what follows. Moreover, it
is convenient to regard L1(S1) as L1([0, 1]), and L2(S1) as L2([0, 1]), and we will do

so often without comment. Then ‖f‖1 :=
∫ 1

0
|f(x)| dx and 〈f, g〉 :=

∫ 1

0
f(x)g(x) dx.

Perhaps f(0) 6= f(1), but this does not matter in L1 or L2 since {0, 1} is of measure
0. However, C0(S1) and C0([0, 1]) are not naturally identified.

Exercise A.1. Show that L2(S1) with 〈·, ·〉 is indeed a Hilbert space. We need
to show:
a) 〈·, ·〉 : L2(S1)× L2(S1)→ C is well defined. [Hint: The pointwise estimate

2|f(z)g(z)| = 2 |f(z)| |g(z)| ≤ |f(z)|2 + |g(z)|2

669
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shows that fḡ ∈ L1(S1) for f, g ∈ L2(S1).]

b) 〈·, ·〉 is sesquilinear, namely 〈f, g〉 is C-linear in f , and 〈f, g〉 = 〈g, f〉 (i.e., 〈f, g〉
is conjugate linear in g). Also 〈·, ·〉 is positive; i.e., 〈f, f〉 ≥ 0 and 〈f, f〉 = 0 only
for f = 0. (All of this is trivial.)
c) L2(S1) is a complex vector space. [Hint: For closure under addition, prove
Hermann Minkowski’s inequality ‖f + g‖2 ≤ ‖f‖2 +‖g‖2 (the Triangle Inequality).]
d) L2(S1) is complete. [Hint: In order to prove that a Cauchy sequence {fn} in
L2(S1) (i.e., ‖fn − fm‖2 → 0 as n,m → ∞) possesses a limit f ∈ L2(S1) (i.e.,
‖fn − f‖2 → 0 as n → ∞), one applies the fundamental convergence theorems
which distinguish the Lebesgue integral from the Riemann integral. The rather
technical proof can be found in [DM, p.16-20].]
e) L2(S1) is separable. [Hint: Show that the family of piecewise constant functions,
having rational real and imaginary parts and with jumps at finitely many rational
points, is dense in L2(S1).]

Approximation: With the help of the smoothing functions of the kind

g (x) :=

{
c exp

(
(x− a)

−1
(x− b)−1

)
for a < x < b

0 for x ≤ a or x ≥ b
it follows that C∞(S1) is dense in L2(S1).

Convolution: In L1(S1), there is a commutative and associative product
(known as convolution) given by

(f ∗ g)(x) :=

∫ 1

0

f(x− y)g(y) dy, x ∈ [0, 1] ,

where we assume that f is extended periodically of period 1 so that f(x−y) makes
sense when x − y /∈ [0, 1]. This makes L1(S1) an algebra (without identity). By
applying the theorem of Guido Fubini on iterated integrals, we obtain

‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1 .
Moreover, one can show that, relative to ∗, L2(S1) is an ideal in L1(S1) hence, f ∗g
is in L2(S), whenever one of the factors lies in L2(S). See [DM, p.41].

Orthonormal systems: The family {zn : n ∈ Z}, where zn : S1 → C is
the function that assigns to each z ∈ S1 the value zn, is a complete orthonormal
system in L2(S1). Regarding L2(S1) as L2([0, 1]), the corresponding functions have
the form e2πinx.

Fourier series: This orthonormal system is complete; i.e., its linear span is
dense in L2(S1). Because of this, each function f ∈ L2(S1) can be expanded in a
Fourier series

f =
∑∞

n=−∞
f̂(n)zn (i.e., lim

k→∞
‖ f −

∑k

n=−k
f̂(n)zn ‖2 = 0).

with the Fourier coefficients

(A.1) f̂(n) := 〈f, zn〉 =

∫ 1

0

f(x)e−2πinx dx.

Note that f equals its infinite Fourier series, in the sense that the partial sums∑
|n|≤k f̂(n)zn converge to f in the L2(S1)-norm as k → ∞, but not necessarily

pointwise. The function

f 7→
{
f̂ (n)

}∞
n=−∞

= . . . , f̂ (−1) , f̂ (0) , f̂ (1) , . . .
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is an isomorphism from L2(S1) to the space L2(Z) of absolute square-summable
sequences of complex numbers. The isomorphism is an isometry, namely

‖f‖22 =
∑∞

n=−∞
|f̂ (n) |2 (Plancherel’s Identity).

Details are in [DM]. The Fourier coefficients are also defined for f ∈ L1(S1), and
by Fubini’s Theorem, it then follows [DM, p.42] that

(f ∗ g)̂ (n) = f̂(n)ĝ(n).

Incidentally, the algebra A of those sequences which appear as the Fourier coeffi-
cients of integrable functions has been barely investigated: “The best information
available to date indicates that A has no decent description at all.” [DM, p.43].

On the other hand, when the product fg (in the sense of pointwise multipli-
cation) is integrable (e.g., when f, g ∈ L2(S), by Exercise A.1a), then the Fourier
coefficients satisfy

(fg)̂ (n) = (f̂ ∗ ĝ)(n) :=
∑∞

k=−∞
f̂ (n− k) ĝ(k).

For the proof, we do not need Fubini’s Theorem as above, but rather we insert the
Fourier series of g in the formula for (fg)̂ (n), and then use the usual limit theorems
for the Lebesgue integral, to interchange the integral and sum.

2. The Fourier Integral

One can proceed from the standard representation of functions on a circle as
functions of period 1 on the real line, to the more general case of period T , and
then let T go to ∞. This leads to the concept of the Fourier transform. Let L1(R)
denote the Banach space of integrable functions with

‖f‖1 :=

∫ ∞
−∞
|f(x)| dx <∞.

Different Integral Conventions. In [DM, p.86f.], the Fourier transform of
f ∈ L1(R) is defined as

(A.2) f̂DM (ξ) :=

∫ ∞
−∞

f(x)e−i2πξxdx,

which is a natural extension of (A.1), namely f̂(n) :=
∫ 1

0
f(x)e−i2πnxdx.

In the previous edition [BlBo85, p.82] of this book, the Fourier transform was
given as

f̂B(ξ) :=

∫ ∞
−∞

f(x)e−iξxdx = f̂DM (ξ/2π).

This agrees with the main stream in analysis and information theory. In [Rud,
p.167] (and [BlCs, p.423]), we find the definition

f̂R(ξ) :=
1√
2π

∫ ∞
−∞

f(x)e−iξxdx =
1√
2π
f̂B(ξ) =

1√
2π
f̂DM (ξ/2π).

In Remark A.3 (below, p.674), there are cogent reasons for adopting any one of the
above definitions. Since our emphasis in this book is on the application of Fourier
transforms to differential equations and we wish the Fourier transform to be an
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L2 isometry, we use f̂R as Remark A.3 suggests. Thus, we define the Fourier
transform of f ∈ L1 (R) via

(A.3) f̂(ξ) :=
1√
2π

∫ ∞
−∞

f(x)e−iξxdx.

Since it is an irritating annoyance to have to include the factor 1/
√

2π, we adopt
the notation

d̄x := dx/
√

2π, so that f̂(ξ) =

∫ ∞
−∞

f(x)e−iξxd̄x.

Convolution, Multiplication, Differentiation, and Inversion. We con-
sider the Fourier transformation on the spaces C∞↓ (R), L1(R) and L2(R). Here,

C∞↓ (R) is the space of rapidly decreasing C∞ functions on R (with complex val-

ues). Rapidly decreasing means that these functions and all their derivatives tend
to 0 at infinity, even when they are multiplied by arbitrary polynomials. L1(R) is
an algebra (without identity) under convolution

(f ∗ g)(x) :=

∫ ∞
−∞

f(x− y)g(y)dy,

and we have [DM, p.87f.]:

‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1 .

L2(R) is the Hilbert space (proved as in Exercise A.1) of square integrable functions
with

〈f, g〉 :=

∫ ∞
−∞

f(x)g(x) dx and ‖f‖2 :=
√
〈f, f〉

By the argument of Exercise A.1a, it follows that C∞↓ (R) is dense in L1(R), as well

as in L2(R). Naturally one cannot expect, as with functions on the (compact) circle
S1, that C∞(R) or C0(R) will be contained in the Lebesgue spaces.

A further complication arises since we no longer have L2 ⊆ L1, or even L1 ⊆ L2.
For example, if f(x) = 1 for |x| < 1 and f(x) = 0 for |x| ≥ 1, then

f(x) |x|−2/3 ∈ L1(R) \ L2(R) and (1− f(x)) |x|−2/3 ∈ L2(R) \ L1(R).

Exercise A.2. The following statements are easy to prove:

(a) For each f ∈ L1(R) and each ξ ∈ R, f̂(ξ) is well defined.
(b) If f ∈ C1(R), f ′ ∈ L1(R) and ixf(x) stands for the function x 7→ ixf(x) which
is assumed to be in L1(R), then we have

(A.4) (f ′)̂ (ξ) = iξf̂(ξ) and

(A.5) (f̂)′(ξ) = −(ixf(x))̂ (ξ).

The proof of each is via integration by parts. Using the following notation for the
various operations above

(Df) (x) :=
1

i
f ′(x), (Mf) (x) := xf(x), and Ff := f̂ ,

we have

FDf = MFf and DFf = −FMf.
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More generally, by induction, we have (for f ∈ C∞↓ (R) and p, q ∈ N)

MpDqFf = (−1)
q FMqDpf.

This formula is of fundamental importance for the treatment of differential oper-
ators (with constant coefficients) which are converted into simple multipliers. See
Chapter 8 on pseudo-differential operators. From the topological viewpoint these
formulas are most remarkable, because they express a deep duality between local
and global properties: Thus (A.4) relates the smoothness of f with the rate of

decay (asymptotic behavior) of f̂ , and (A.5) relates the smoothness of f̂ with the

decay of f . In fact, f̂ is differentiable (a local property) when f decreases so fast
that the Fourier integral of −ixf(x) converges. This local–global duality is also a
feature of the index formula for elliptic operators, and we will deal with it further
in that context.
(c) The Fourier Inversion Formula

f(x) =
1√
2π

∫ ∞
−∞

f̂(ξ)eiξxdξ

holds for f ∈ C∞↓ (R). In direct analogy with the role of Fourier coefficients in

Fourier series, f̂(ξ) is the density of the frequency ξ in the harmonic decomposition
of f .
[Hint: Prove the formula first for functions with compact support (i.e., vanishing
outside a compact subset of R). In this case there are no difficulties with the limit
process which reduces to functions of period T and then let T go to infinity. Use
smoothing functions as following Exercise A.1e in order to approximate rapidly
decreasing C∞ functions by functions of compact support. The L1(R) estimates
needed next are somewhat tricky, but can be looked up in [DM, p.89f]. A shorter
direct proof can be found in [Hö63, 1963, p.18f].]
(d) As a corollary to the proof of (c), one obtains the Plancherel formula

‖f̂ ‖2 = ‖f‖2

and that

F : C∞↓ (R)→ C∞↓ (R)

is linear and bijective, where F again denotes the Fourier transformation. By the
Fourier Inversion Formula, we obtain the inverse transformation(

F−1f
)

(x) = (Ff) (−x).

(e) Extend F from C∞↓ (R) to L2(R)! [Hint: Approximate f ∈ L2(R) in the L2(R)-

norm by a sequence {fn} with fn ∈ C∞↓ (R). Using the additivity of F and the

Plancherel Identity, show that {f̂n} is a Cauchy sequence in L2(R), whence f̂ :=

lim f̂n defines an element of the Hilbert space L2(R). Finally check that f̂ indeed
depends only on f and not on the choice of the sequence. In this way, one obtains
an isomorphism from L2(R) to L2(R), which we denote by F again.]
(f) The spaces C∞↓ (R) and L2(R) share the property that they are mapped into

themselves by F . This is not true for L1(R). Still, one can easily show [DM, p.102]
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that for f ∈ L1(R),

(i) f̂ ∈ C0 (R)

(ii) lim|ξ|→∞ f̂ (ξ) = 0

(iii) (f ∗ g)̂(ξ) =
√

2πf̂ (ξ) ĝ (ξ) .

Remark A.3. Here we consider the merits of the three definitions

f̂DM (ξ) :=

∫ ∞
−∞

f(x)e−i2πξxdx,

f̂B(ξ) :=

∫ ∞
−∞

f(x)e−iξxdx = f̂DM (ξ/2π) and

f̂R(ξ) :=

∫ ∞
−∞

f(x)e−iξxd′x :=
1√
2π

∫ ∞
−∞

f(x)e−iξxdx =
1√
2π
f̂DM (ξ/2π),

found in [DM, p.87], [BlBo85, p.82], and [Rud, p.167]. The main advantage of

f̂B is that there is no 2π or
√

2π. However, in terms of f̂B , the Plancherel formula

becomes ‖f̂B‖2 =
√

2π ‖f‖2 so that f 7→ f̂B is not an isometry, which is a drawback.

We do have ‖f̂DM‖2 = ‖f‖2. Moreover, f̂DM is good for expressing the remarkable
Poisson summation formula

(A.6)
∑∞

k=−∞
f(kL) =

1

L

∑∞

k=−∞
f̂DM (k/L) ,

which holds for f ∈ C∞↓ (R) and any L > 0. This relates the sum of f over the

lattice {kL : k ∈ Z} to the sum of f̂ over the reciprocal lattice {k/L : k ∈ Z}. Using

f̂R or f̂B , this becomes∑∞

k=−∞
f(kL) =

√
2π

L

∑∞

k=−∞
f̂R (2πk/L) =

1

L

∑∞

k=−∞
f̂B (2πk/L)

which is less esthetic and harder to recall. The convolution theorem gives (f ∗ g) B̂ =

f̂B ĝB and (f ∗ g) D̂M = f̂DM ĝDM , both of which look better than (f ∗ g) R̂ =√
2πf̂RĝR. So far, f̂DM seems to be the best choice. However,

(f ′)̂DM (ξ) = 2πiξf̂DM (ξ),

and the excess baggage of the 2π makes f̂DM a bit cumbersome for applications

to differential equations. Thus, we have adopted f̂R, but not passionately and not

exclusively; indeed in almost all of Chapter 4, we use f̂B since the factor 1/
√

2π
only serves as a needless distraction.

Higher Dimensional Fourier Integrals. By the theorem of Guido Fubini,
the closed linear span of the n-fold products

f1(x1) · · · fn(xn)

of functions in L2(R) is in L2(Rn) (Prove!). Thus, the preceding concepts and
results carry over directly to the case of several variables:

Definition A.4. (a) As above, define the spaces C∞↓ (Rn), L1(Rn), and L2(Rn);

(b) the Fourier transform

f̂(ξ) :=

∫
Rn
f(x)e−i〈x,ξ〉d̄x with d̄x = (2π)−n/2dx1 · · · dxn,
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where x = (x1, ..., xn), ξ = (ξ1, ..., ξn), and 〈x, ξ〉 = x1ξ1 + ...+ xnξn; and
(c) the convolution

L1(Rn)× L1(Rn) −→ L1(Rn)
(f, g) 7→ (f ∗ g)(x) :=

∫
Rn f(x− y)g(y)dy, x ∈ Rn.

We leave it to the reader to check that f ∗ g is well defined, i.e., for almost all
x ∈ Rn, the integrand y 7→ f(x− y)g(y)dy belongs to L1.

Exercise A.5. Show:
(a) The Fourier Inversion Formula

f(x) =

∫
Rn
f̂(ξ)ei〈x,ξ〉d̄ξ, where f ∈ C∞↓ (Rn).

(b) The Differentiation-Multiplication Conversion for multi-indices p, q,

MpDqF = (−1)|q|FDpMq, with Dq := (−1)|q|
∂|q|

∂xq11 · · · ∂x
qn
n
,

where Ff := f̂ for f ∈ C∞↓ (Rn) and |q| := q1 + · · ·+ qn.

(c) The Integrable-Continuous Conversion f ∈ L1(Rn)⇒ f̂ ∈ C0(Rn).

(d) Plancherel Formula ‖f̂ ‖2 = ‖f‖2 and more general Parseval’s Equality∫
Rn f(x)g(x) dx =

∫
Rn f̂(ξ)ĝ(ξ) dξ, for f, g ∈ L2(Rn).

(e) The Convolution Theorems f̂g = (2π)n/2
(
f̂ ∗ ĝ

)
and f̂ ĝ = (2π)−n/2(f ∗g)̂ ,

if f, g, f̂ , ĝ ∈ L1(Rn).
Details are in [DM, p.132f] or [Hö63, 1963, p.17-19].



APPENDIX B

Vector Bundles

1. Basic Definitions and First Examples

Let X be a topological space. A family of vector spaces over X is a topo-
logical space E together with

(i) a continuous surjective map p : E → X and
(ii) a vector space structure of finite dimension in each Ex := p−1 (x),

which carries the topology induced by E.
By “vector spaces”, we mean complex vector spaces, unless explicitly indicated

otherwise. The mapping p is called the projection;; E is called the total space of
the family; X is the parameter space or base space of the family; for x ∈ X, Ex
is the fiber over x. A section of a family p : E → X is a continuous map s : X → E
such that (p ◦ s)(x) = x for all x ∈ X.

Ex

E

X

s( )x

s

A homomorphism (bundle map) from one family p : E → X to another
q : F → X is a continuous map φ : E → F such that

(i) q ◦ φ = p and
(ii) φx : Ex → Fx is a linear map for each x ∈ X. We write φ ∈ Hom(E,F ).

We say that such a φ is an isomorphism when φ is bijective and φ−1 is
continuous. E and F are called isomorphic when there is an isomorphism between
them. We write φ ∈ Iso(E,F ) and E ∼= F .

Exercise B.1. a) Let V be a finite-dimensional vector space; e.g., V = CN .
Show that a family of vector spaces over X is obtained by taking E := X ×V with
p : E → X being the projection on the first factor. This is the product family VX

676



B.1. BASIC DEFINITIONS AND FIRST EXAMPLES 677

with fiber V .
b) If F is a family which is isomorphic to a product family, then one calls F trivial.
Show that a trivial family of finite dimensional (real) vector spaces is obtained, if

E :=
{

(x, y,−λy, λx) : x, y, λ ∈ R and x2 + y2 = 1
}

and

p(x, y, ·, ·) := (x, y).

In general, prove that a bundle F is isomorphic to a product family VX , if and only
if one can find N sections si : X → P such that s1(x), ..., sN (x) forms a basis for
Fx for each x ∈ X; here N = dimV .
c) Let Y be a subset of X and E a family of vector spaces over X with projection
p. Show that p−1(Y )→ Y is a family over Y . We call this the restriction of E to
Y , and write E|Y for this family.
d) More generally: Let Y be an arbitrary topological space and f : Y → X a
continuous map. As follows, define the induced family f∗(p) : f∗(E)→ Y : Take
f∗(E) to be the subspace of Y ×E consisting of points (y, e) with f(y) = p(e); the
projection and the vector space structure on the fibers are self-evident. Show: For

each further map g : Z → Y , there is a natural isomorphism (fg)∗(E)
∼=→ g∗f∗(E)

which one obtains by mapping each point of the form (z, e) with z ∈ Z and e ∈ E
to the point (z, g(z), e). If f : Y → X is the inclusion, then there is an isomorphism

E|Y
∼=→ f∗(F ) given by mapping e ∈ E|Y to the point (p(e), e).

f *( )E y Ef y( )

f( )yf

y

Y

f(Y )

A family of vector spaces is called locally trivial, if each x ∈ X possesses a
neighborhood U such that E|U is trivial. A locally trivial family is called a vector
bundle; trivial families are called trivial bundles. If f : Y → X and E is a vector
bundle over X, clearly f∗(E) is a vector bundle over Y which we call the induced
bundle (lifted bundle, pull-back).

Note: If E is a vector bundle over X, then x 7→ dim(Ex) is a locally constant
function onX, and hence is constant on each connected component ofX. If dim(Ex)
is constant on all of X, then one says that E has (fiber-)dimension equal to the
common fiber dimension dim(Ex). If X is a manifold, then the real dimension of
E (regarded as a topological space) equals dim(X) + 2 dim(Ex). Vector bundles of
fiber dimension 1 are also called line bundles.

Since a vector bundle is locally trivial, each section can be written locally as
a vector-valued function on the base space. For a vector bundle E, we denote the
space of sections of E by C0(E); C0(E) is a vector space in a natural way via
pointwise addition, etc.
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Exercise B.2. a) Let V be a (complex) vector space and PV its associated
“projective space” of all one-dimensional linear subspaces of V . We can write
PV = (V \ {0})/ ∼, where ∼ is the equivalence relation v ∼ w ⇔ λv = w for some
λ ∈ C. We define HV ⊆ PV × V as the set of all (x, v) such that x ∈ PV , v ∈ V ,
and v belongs to the complex line x. Show that H is a vector bundle in a natural
way. (The construction goes back to Heinz Hopf.)
b) Go through the corresponding construction in the (more intuitive) category of
real vector bundles when V is real (e.g., Rn), and show that HV is a real subbundle
of PV × V of fiber dimension 1, and that HV is nontrivial if dimV ≥ 2.
c) For the moment, we remain in the real category and consider the following family
(parametrized by θ ∈ [0, 2π]) of integro-differential equations for C∞ functions f
on the unit interval which satisfy the boundary condition f(0) = f(1) :

cos θ f(x) + sin θ
df

dx
= cos θ

∫ 1

0

f(x) dx, θ ∈ [0, π] ,

cos θ f(x) + sin θ Lf(x)) = cos θ

∫ 1

0

f(x) dx+ sin θ

∫ 1

0

Lf(x) dx, θ ∈ [π, 2π] .

Here, L : C0(S1) → C0(S1) is a fixed operator with L2 = − Id. Show that the
solutions of the family of equations form a real vector bundle over the circle S1 :=
R/2πZ that is nontrivial and isomorphic to the bundle HR2 . (Actually, every real
line bundle over S1 is either trivial or isomorphic to HR2 see also [BJ, 3.23.9].)

[Hint for b): In contrast to the complex numbers, −1 cannot be deformed into 1
without going through 0. Thus, a real bundle is nontrivial, if it remains connected
after the zero section is removed.
For c): First show that for 0 ≤ θ ≤ π, the solutions are the constant functions
c1, and for π ≤ θ ≤ 2π the solutions are the functions c cos θ 1 − sin θ L (1) , c ∈
R. With the topology of S × C0(I) or of S1 × R (since every solution can be
written in the form c1 + c2L(1)), construct a family of 1-dimensional (real) vector
spaces over S1 and show the local triviality. For this use the initial value map
f 7→ f(0). Note that this map can vanish for a solution f 6= 0 at a parameter
θ0, namely if cos θ0 = sin θ0 L (1) (0). How can one proceed in a neighborhood of
θ0? Distinguish the cases where L (1) (0) is positive, negative or zero. Incidentally,
how does one obtain an L with L2 = − Id? Start with the Fourier series f(x) =
a0 +

∑∞
ν=1 (aν sin νx+ bν cos νx), and replace aν by bν+1 and bν by −aν−1; see also

[Si70].]
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Remark B.3. a) and b) describe the origin of the bundle concept in analytic
and projective geometry. Part c) is characteristic for many functional analytic
situations with “jumps” where the passage from one side to another (from one
solution curve to another of the same equation) cannot be understood within the
given space but requires an extension of the system (e.g., by parametrization). A
basic model for such a process is present in the geometry of number fields (see Hint
for b)). Many classical results of analysis – especially concerning the dependence
of the solutions of a functional equation on the variation of its coefficients and
on the zeros and poles of its solutions – can be aptly formulated in the language
of vector bundles. Conversely, the theorem of Grothendieck, for example, that
every holomorphic vector bundle E on the Riemannian number sphere S2 = P(C2)
can be represented as a Whitney sum E1 ⊕ · · · ⊕ En of line bundles (Am. J.
Math. 79 (1957), 121-138) was known to analysts at the beginning of the century:
See G. Birkhoff, Math. Ann. 54 (1913), 122-139, where Grothendieck’s theorem
appears as a theorem about matrices of analytic functions. Birkhoff was led to
this theorem through his investigation of the singular points of ordinary differential
equations; further see D. Hilbert, Gött. Nachr. (1905), 307-358, who gave a proof
of Grothendieck’s theorem for N = 2 in his “Fundamentals of a General Theory of
Integral Equations” in connection with the “Riemannian Problem” (Contributed
by M. Schneider).

Exercise B.4. Show that the usual operations for vector spaces in linear alge-
bra also make sense for vector bundles. In particular, for vector bundles E and F
over the same base, investigate the direct sum E⊕F , the tensor product E⊗F ,
the homomorphism bundle Hom(E,F ), the isomorphism bundle Iso(E,F ),
and the dual bundle E∗ := Hom(E,CX). Show that the bundles E∗ ⊗ F and
Hom(E,F ) are isomorphic. Also, carry over the concepts of subspace and quotient
space from linear algebra to the corresponding concepts of a subbundle F of E
and a quotient bundle E/F .
[Hint: Make use of the fact that the corresponding operations in the “structure
group” GL(N,C) are continuous! Example: recall E∗ = Hom (E,CX) and intro-
duce a topology on E∗|U which makes U × CN → E∗|U a homeomorphism, where
φ : E|U → U × CN is a local trivialization for E over the open subset U ⊆ X. Let
ψ : E|V → V ×CN be another trivialization. Do φ and ψ define the same topology
on E∗|U∩V ? Does the continuity of (ψ ◦ φ−1)∗ : (U ∩ V ) × CN → (U ∩ V ) × CN
follow from that of (U ∩ V )× CN → (U ∩ V )× CN? For this, write the two chart

changes in the form U ∩ V → GL(N,C) and prove (!) that GL(N,C)
∗→ GL(N,C)

is continuous.]

2. Homotopy Equivalence and Isomorphy

We denote the set of isomorphism classes of vector bundles over X by Vect(X),
and let VectN (X) denote the subset of Vect(X) consisting of the classes of bundles
of dimension N . Vect(X) is an abelian semigroup under the operation ⊕. In
Vect(X), there is a naturally distinguished element, namely the class of the trivial
bundle of dimension N . A vector bundle over a point is a vector space, and hence
Vect(X) can be identified with the semigroup Z+ of non-negative integers, in this
case. However, in the general ease, when there are nontrivial bundles (see Exercise
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B.2 above), the isomorphism classes of vector bundles are not determined by their
dimensions.

Two continuous mappings f, h : X → Y are homotopic, if there is a continuous
map F : X×I → Y (I := [0, 1]) such that F0 := F (·, 0) = f and F1 := F (·, 1) = h.
The map f : X → Y is a homotopy-equivalence, if there is a continuous map
g : Y → X such that g ◦ f ∼ IdX and f ◦ g ∼ IdY (“∼” means “homotopic”).
X and Y are then called homotopy equivalent. The set of homotopy classes of
maps X → Y is denoted by [X,Y ]. X is called contractible, if X is homotopy
equivalent to a point.

Theorem B.5. (i) If f : X → Y is a homotopy equivalence, then the transfor-
mation f∗ : Vect(Y ) → Vect(X) of Exercise B.1d is bijective. (Assume X and Y
compact.)
(ii) If X is contractible, then every bundle over X is trivial, and Vect(X) is iso-
morphic to the non-negative integers.

Proof. (ii) follows easily from (i), since VectN (P ) consists only of the isomor-
phism class of the trivial bundle of dimension N , in the case where P is a point.
(i) follows from the fact that F ∗0E

∼= F ∗1E, if F : X × I → Y is a homotopy of f
and E is a vector bundle over Y . We give a proof of this in three steps:

Step 1: Let H be a vector bundle over X × I, fix a τ ∈ I, and let s ∈
C0(H|X×{τ}). We show that s can be extended to a section S ∈ C0(H) with
S (·, τ) = s. Since a section of a vector bundle can be regarded locally as a graph
of a continuous vector-valued function, one can locally apply the Tietze Extension
Theorem [Du]: We can find a neighborhood U about each (x, τ), and a section
t ∈ C0(H|U ) such that t and s coincide on (X × {τ}) ∩ U .

X I£

X£f g¿

( )x,¿

¿

x

X

U

By the compactness of X, we can obtain a finite system {Uj}, {tj} with X×{τ} ⊂
∪Uj . If {φj} is a C0 partition of unity subordinate to {Uj} (see also Theorem 6.4,
p. 157), then we set

sj :=

{
tjφj on Uj

0 on (X × I) \ Uj .
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By construction sj ∈ C0(H); hence,
∑
sj ∈ C0(H) is a well-defined extension of s.

Step 2: From Step 1, we conclude that two vector bundles G and G′ over X × I
which are isomorphic over X × {τ}, are also isomorphic in a neighborhood of
X × {τ}: Each s ∈ Iso(G|X×{τ}, G′|X×{τ}) be regarded as a section of H|X×{τ},
where H denotes the bundle Hom(G,G′) of linear maps from fibers of G to cor-
responding fibers of G′. Let S ∈ C0(H) be an extension of s. Then the set
W := {z ∈ X × I : Sz ∈ Hom (G,G′) is bijective} is open in X×I (by the classical
zero determinant argument) and contains all of X × {τ} by construction. Since
the inverse map of GL(N,C) is continuous, it follows that the mapping z → S−1

z is
continuous, and hence a bundle isomorphism is defined on W .
Step 3. We now set G := F ∗E and G′ := p∗(Fτ )∗E, where Fτ (x) := F (x, τ) and
p : X × I → X is the projection.

X I£X

p

Y

F F
¿

X

I

¿

By Exercise B.1d, G and G′ are isomorphic over X × {τ}, and by Step 2, they are
also isomorphic in a whole neighborhood, which we can take to be a strip X× δ(τ),
by the compactness of X. For all ρ ∈ δ(τ), we then have (Fρ)

∗E ∼= (Fτ )∗E. Since
the unit interval I is compact and connected, we obtain that the isomorphism
classes of (Fτ )∗E do not depend on τ . �

Remark B.6. The statements proved in the first two steps of the proof, also
apply to more general situations, and are occasionally formulated as independent
theorems; e.g., see [AB64b, p.233f] or [Ati67a, p.16]. One can also express the
result of our proof somewhat more generally (we write X × Z instead of X × I):
Each vector bundle E over the topological space X×Z (X and Z compact) can be
regarded as a “continuous” family of vector bundles E over X where the parameter
z is in Z, and the isomorphism classes of E in Vect(X) are locally constant.

3. Clutching Construction and Suspension

Vector bundles are often given via a clutching or gluing construction: Let
X = X1 ∪X2 and A = X1 ∩X2, where all spaces are compact. Let Ei be a vector
bundle over Xi and φ : E1|A → E2|A an isomorphism. Then we define the vector
bundle E1 ∪φE2 over X as follows. As a topological space E1 ∪φE2 is the quotient
space of the disjoint union E1 +E2 under the equivalence relation which identifies
e1 ∈ E1|A with φ (e1) ∈ E2|A. If we regard X as the corresponding quotient space
of X1 +X2, then we obtain a natural projection p : E1 ∪φ E2 → X and p−1(x) has
a natural vector space structure for each x ∈ X.

Exercise B.7. a) Show that E1 ∪φ E2 is a vector bundle.
b) Show that the isomorphism class of E1 ∪φ E2 depends solely on the homotopy
class of the isomorphism φ : E1|A→ E2|A.
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[Hint for a): It remains only to show that E1 ∪φ E2 is locally trivial. Outside of A,
this is clear. In order to extend a trivialization of E1 on a neighborhood V1 ⊆ X of
a point a ∈ A to a trivialization of E2 over V2 with a ∈ V2 ⊆ X2, argue as in Step 2
of Theorem B.5. See also [AB64b, p.235] or [Ati67a, p.21]. For b): Reduce to
Theorem B.5. See also the given sources.]

We now give VectN (X) a homotopy-theoretic interpretation, when X can be
represented as the suspension S(Y ) of another space Y .1 Here the suspension
S(Y ) is the union of two cones over Y . Thus, we write S(Y ) := C+(Y ) ∪ C−(Y ),
where C+(Y ) := Y × [0, 1

2 ]/Y × {0} and C−(Y ) := Y × [ 1
2 , 1]/Y × {1}. Then

Y = C+(Y ) ∩ C−(Y ). We note that the suspension S(Sn) of the n-sphere is
homeomorphic to the (n+ 1)-sphere Sn+1.

Y

S(Y )

C
+(Y )

C
{(Y )

Theorem B.8. The clutching of trivial bundles over C+(Y ) and C−(Y ) defines

a natural isomorphism [Y,GL(N,C)]
∼=→ VectN (S(Y )).

Proof. (i) Each l : Y → GL(N,C) yields a bundle over SY via the clutching
of the N -dimensional trivial bundles over the two cones, and homotopic maps l0
and l1 yield isomorphic bundles; see the proof of Theorem B.5(i). (ii) Conversely,
we have the composition

VectN (SY )→ VectN (C−Y )⊕VectN (C+Y )→ [Y,GL(N,C)],

the left arrow is given by the restrictions of the bundle, where one obtains triv-
ial bundles since C±Y are contractible (see Theorem B.5(ii).) If α± are such
trivializations, then the right arrow is defined by taking the homotopy class of

(α+|Y ) (α−|Y )
−1

: Y → GL(N,C), which actually only depends on the homotopy
classes of α± and hence only on the isomorphism class in VectN (SY ). (iii) By
construction the functions given in (i) and (ii) are inverse to each other. �

Exercise B.9. Show HC2 ∼= CB0
∪a CB∞ , where HC2 is the complex line

bundle over PC2 = C ∪ {∞} = S2 = B0 ∪ B∞ defined in Exercise B.2a; here
(z0, z1) are homogeneous coordinates for PC2 with (0, 1) = ∞, and z = z1/z0 is
the coordinate for C, B0 := {z ∈ C : |z| ≤ 1}, and B∞ := {z ∈ C : |z| ≥ 1} ∪ {∞}

1With the concept of Grassmann manifolds, one can give a homotopy-theoretic definition of
VectN (X) for arbitrary X; see [Ati67a, p.24-30].
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(the two canonical hemispheres of S2). Finally, a : z 7→ z, is the standard map
S1 → C× := {C \ {0}} = GL(1,C).

Exercise B.10. Show that for each bundle E, there is a bundle F such E⊕F
is trivial. [Hint: Show first with the help of a finite open cover of the compact pa-
rameter space X and a suitable partition of unity, that C0(E) contains an “ample”
subspace; i.e., a subspace V ⊆ C0(E) such that each point of E is in the image of
a section s ∈ V . If dimV = N , then we have an epimorphism φ : X × CN → E,
and consequently there is an isomorphism E ⊕F → X ×CN where F is the kernel
bundle of φ; see also [Ati67a, p.26 f] or the related technique in the proof of our
Embedding Theorem 6.7c, p.162.]

Exercise B.11. Let X be a topological space which possesses in addition the
structure of a C∞ manifold of dimension n (see Chapter 6).
a) Show that the tangent bundle TX is a (real) vector bundle over X; do the same
for the “normal bundle” NX, when X is a submanifold of a Riemannian manifold
Y .
b) When may one call a continuous vector bundle over X, whose total space is a
C∞ manifold, a C∞ vector bundle? Show that each (continuous) vector bundle
over X is isomorphic to a C∞ vector bundle.
[Hint for a): First investigate the case X = S1 and show that TS1 is isomorphic
to the real line bundle defined in Exercise B.1b. In the general case, this “direct”
method is also possible, since one can (see Theorem 6.7c, p. 160) embed X into a
high dimensional Euclidean space, and thus realize TX as a (real) subbundle of a
higher dimensional trivial bundle. It is easier (especially since TX is in general not
trivial; e.g., for X = S2, see Exercise 11.23, p. 284) to carry out a local analysis,
where each chart u from the C∞ atlas yields a local trivialization of TX via the
differential forms (du1, ..., dun); see Chapter 6. See also the discussion below.
For b): For the definition of C∞ vector bundles, see also [BJ, Ch.3], and for
the topological equivalence of the categories of C0 and C∞ vector bundles, see
the Whitney Approximation Theorem in [BJ, p.66]. Details of the argument are
in [Hir, p.101], where it is shown that one can make E itself into a C∞ vector
bundle.]

Remark B.12. From Exercise B.11b, it follows (without loss of generality) that
we only need to investigate C∞ vector bundles, if the base is C∞. Exercise B.10
does not say that we always encounter trivial bundles (compare with the analogous
- but deeper embedding theorem for manifolds, Theorem 6.7c, p. 160): Roughly, the
carrying along of additional “irrelevant” parameters is not only redundant, but can
also produce so much “noise” that this noise destroys the structure of the problem
or renders it unrecognizable. This is the case with the index problem for elliptic
operators, whose solution consists exactly in distinguishing certain vector bundles
generated by the symbol of the operator; see Part III.

The idea of a vector bundle originates in the analysis of non-Euclidean mani-
folds. Otherwise, according to Theorem B.5(ii), there are only trivial bundles, since
Euclidean space is contractible. As an example, let c : I → X be a differentiable
path in a manifold X. Classical mechanics considers the velocity vector ċ(t) for
t ∈ I. For the physicist it was always clear (by reasons of physics) how c(t) is
multiplied by a scalar, how ċ1(t1) and ċ2(t2) are added or how the equality of ċ1(t1)
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and ċ2(t2) is checked when c1, c2 : I → X. are two paths in X with c1(t1) = c2(t2).
From the point of view of physics no confusion between a velocity vector and a
position vector was conceivable, but the earliest mathematical abstractions could
not express the difference: If the position vectors c(t) are represented as triples of
real numbers (c1(t), c2(t), c3(t)), then the velocity vector is (ċ1(t), ċ2(t), ċ3(t)) where
ċi(t) is the derivative of ċi at t. Thus, c(t) and ċ(t) are both elements of the single
vector space R3. This low level of abstraction was fully sufficient as long as X was
Euclidean space (actually an affine space – but choose a base point and call it 0).
In this case there is indeed a natural interpretation of the velocity vector ċ(t) at

the space point c(t) as a velocity vector ˙̃c(t) at the point c̃(t) = 0. In fact, consider
the translated path c̃ : I → X with c̃(τ) := c(τ) − c(t), τ ∈ I. This means that
the tangent spaces at the various points of X can be identified canonically (via the
retraction r : X → {0}) with the tangent space at the point 0. In the language
of vector bundles, we could say TX ∼= r∗(TX|{0}). Here TX is the, totality of all

velocity vectors, the fiber TxX is R3, the restricted bundle TX|{0} is precisely the

space {0} × R3 ∼= R3 and the induced bundle r∗({0} × R3) is the trivial bundle
X × R3.

Let us next consider the case that X is a submanifold of a Euclidean space
Y , say the 2-sphere in 3-space. Every velocity vector ċ (t) can be considered as an
element of the tangent space of Y at the point c(t) and hence an element of the
tangent space of Y at 0 (due to the translation described above), i.e., as n-tuple
of derivatives of the coordinate functions of c. Already by reason of dimensions it
is clear that, in general, the tangent space TxX of all velocity vectors X of paths
through x cannot be identified with the full tangent space T0Y but only with some
subspace and it may be different for each x

Example B.13. X = S1 and Y = R2

'

x = e i = (cos , sin )' ' '

T Sx(
1)

(1,0)({1,0)

If we follow the translation with a rotation through the angle φ, then we have
identified all tangent spaces TxS

1 with the same subspace of T0R2 or with the
tangent space T(0,1)S

1. We write TS1 = q∗(TS1|{(1,0)}), where q : S1 → (1, 0) is

the retraction and TS1| {(1, 0)} can be identified with {(1, 0)} × R. Consequently
TS1 ∼= S1 × R, i.e., the tangent bundle of S1 is trivial.

In analytic terms this circumstance is expressed by saying that there exists a
nowhere vanishing tangential vector field on S1; i.e., at each point a non-vanishing
velocity vector can be chosen and in a continuous fashion. For example choose at
x = (cos θ, sin θ) the unit velocity vector ċ(φ/2π), where c : I → X is given by
c(t) = (cos 2πt, sin 2πt). Usually we write d

dθ

∣∣
x

instead of ċ(φ/2π). Then d
dθ is the

nowhere vanishing vector field and it defines an isomorphism TS1 ∼= S1 × R. The
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isomorphism is, for all x ∈ S1, given by the map TxS
1 → R which assigns to a

velocity vector the value λ, if it is equal to λ · d
dθ

∣∣
x
.

Example B.14. X = S2 and Y = R3. Here the situation is different. There
is no canonical way of identifying all tangent spaces. In other words, the tangent
bundle TS2 is non-trivial. If not there would exist two tangential vector fields on
S2 which are linearly independent at each point of S2. But on S2 there is not even
a single vector field that vanishes nowhere (Exercise 11.23, p. 284). This example
shows that it might be useful (indeed necessary) to distinguish tangent spaces at
different points. As one goes on to consider manifolds without an explicitly given
imbedding in Euclidean spaces, as in physics with the theory of relativity, the notion
of a bundle becomes indispensable.

The modern concept of a bundle evolved from the topology and geometry of
manifolds as practiced by Heinz Hopf and others since the 1920’s. In the 1950’s
the notion was precisely formulated, and the classification of bundles and their
systematic employment in deep problems of geometry and analysis started. (For the
theory of characteristic classes, see e.g., the concise [GIN] or the more elaborated
[Hi66a, p.49 f], [KN69, Chapter XII], and Section 16.16.7.) Crudely expressed,
the success of these methods derives from their utilizing given or manufactured
“classical” structures (such as the tangent bundles or bundles of differential forms)
on the manifolds under discussion to the greatest extent possible and thus shifting
the plane of study from manifolds – which are conceptually simpler but harder to
understand – to vector bundles which are more easily analyzed.

Differently put, while for topological manifolds and other “triangulable” spaces,
one depends at first on the combinatorial methods of the analysis of “cell decompo-
sitions”, and while for differentiable manifolds only the group of diffeomorphisms
is a priori available for investigation, vector bundles offer more opportunity for
manipulations because of their richer structure. Principally, large parts of linear
algebra can be used directly. (Incidentally, these play an important role also for
the other method, albeit under the surface.) For example (see above Exercise B.4)
one can perform linear constructions with vector bundles such as forming direct
sums and quotients, which is impossible to do with manifolds. Also, “clutching
functions” which can be used to build complicated manifolds from simpler ones
(see e.g., Exercise 6.46, p. 188), i.e., the diffeomorphisms, become linear only in
the first derivative (“functional matrix” or “Jacobian”). In contrast, Theorem B.5
shows how much (via linear clutching functions) the topology of vector bundles can
be reduced to the geometry of the matrix spaces of linear algebra.

At the start of the 1960’s linear algebra had “matured” enough with the Period-
icity Theorem (for the (stable) homotopy groups of invertible matrices) discovered
by Raoul Bott just before. Michael Francis Atiyah and Friedrich Hirzebruch ex-
tracted from these methods an abstract formalism – K-theory – which they devel-
oped as a generalized cohomology theory, using stability classes of vector bundles;
see Chapter 11.
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in älterer und neuerer Zeit. Jber. Deutsch. Math.-Verein. 3 (1892/93), 107-566.
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[Hö66b] —, Pseudo-differential operators and hypoelliptic equations, Math. Soc. Symp. X on

Singular Integral Operators, 1966, 138-183.
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