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Abstract

Determining the nature of Dark Matter has been one of the biggest mysteries over

the past few decades. Cosmological models predict a universe comprising of 26%

Dark Matter, with Weakly Interacting Massive Particles (WIMPs) being one of the

leading candidates to explain its nature. The LUX-ZEPLIN (LZ) experiment aims

to explore the nature of Dark Matter. Using a dual-phase liquid xenon time projec-

tion chamber placed 4850 feet underground at the Sanford Underground Research

Facility (SURF) in SD USA, LZ hopes to reach groundbreaking sensitivities of

1.6×10−48 cm2 for a 40 GeV/c2 WIMP mass.

To prepare for the LZ data taking at the end of 2021, novel techniques used in

Machine Learning (ML) are used to develop and improve on existing data analy-

sis methods currently employed. ML, which is a sub-field of Artificial Intelligence

(AI), has seen some of the biggest growth over the past decade. The first part of this

thesis will concentrate on using standard ML techniques to improve on bismuth-

polonium (BiPo) tagging, which is vital to be able to constrain the backgrounds

generated by radon. Using a Random Forest classifier, simulated BiPo events are

trained upon, with the aim to find missed BiPo events not within the classical re-

gions of interest. This allows for further constraints on the total radon contribu-

tion.

The second part of this thesis will look at using Deep Learning - a subset of ML, to

explore position reconstruction techniques particularly important for events near the

walls of noble liquid TPCs, with the aim to increase the usable fiducial volume. The

impact of implementing such methods is illustrated using the LZ experiment.



Impact Statement

Research into confirming the existence of Dark Matter is a hot topic within the High

Energy Physics community, with the most sensitive Direct Detection Dark Matter

experiment about to start taking data within a few months. The LUX-ZEPLIN (LZ)

experiment will be the largest dark matter detector which operates a xenon target,

on earth. It will look for Weakly Interacting Massive Particle (WIMP) nucleon in-

teractions and will be the most sensitive experiment yet. Many challenges were

overcome in making the LZ experiment come to fruition, with engineering chal-

lenges arising from using over 10 tonnes of liquid xenon, and placing it over a mile

underground in the Homestake gold mine at the Sanford Underground Research

Facility, South Dakota US.

The use of Artificial Intelligence - another hot topic within the technology indus-

try, will be applied within this thesis. By using Artificial Neural Networks, built

to mimic the neurons inside the human brain, we were able to explore position

reconstruction techniques tested on simulated datasets of the LZ detector. This im-

provement may allow experiments such as LZ to have an even greater sensitivity to

WIMPs than predicted. Furthermore, other aspects of AI were utilised to show the

power that it can have in the analysis of data from physics experiments; namely the

use of Random Forests classifiers to classify Radon events.

Beyond academia, the use of AI will have a major impact on society, with possi-

ble applications in healthcare, energy and transport sectors. While using Neural

Networks for position reconstruction are already being used to control autonomous

cars.
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Chapter 1

Dark Matter

Surely, in the creation of the Heavens and the Earth, and in the

alternation of night and day, are signs for the people of wisdom.
Quran [3:190]

Ever since the dawn of creation, humans have looked up and marvelled at the infinite

vastness that lay before them. With the advancements of science and technology,

this endeavour has led mankind to look further and gain a deeper understanding of

the universe, and more importantly, their place within it.

Through these observations, an unknown substance seems to present itself to ob-

servers. This dark matter, as astronomers have coined, has eluded identification

by researchers, despite observations of its gravitational interference with ordinary

matter indicating to its presence [1]. The best cosmological models of the universe

suggest a universe comprised of 26% of dark matter. In this chapter, the evidence

for dark matter, proposed candidates and search methods are reviewed.

1.1 Evidence of Dark Matter

In this section, discussions for the evidence of dark matter will be carried out, start-

ing with observations carried out in the 1930s, and ending with results from mea-
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surements of the Cosmic Microwave Background (CMB) radiation.

1.1.1 Galaxy Clusters

During the 1930s, Fritz Zwicky was measuring galaxy clusters, when he noticed

that the mass that can be inferred by the stellar material in the Coma Galaxy cluster

was different to what can be inferred by looking at velocity dispersions of the galaxy

(see [2] for an example of the velocity dispersions of the 21 cm line observations of

the Coma cluster).

By counting the number of galaxies, and estimating the average mass of each

galaxy, Zwicky was able to calculate the potential energy. By using the virial theo-

rem to relate the total kinetic energy of a galaxy cluster to the gravitational potential

energy within the cluster, and applying it to velocity dispersions measured by the

galaxy, Zwicky found a mass-to-light ratio of over 400 solar masses [3].

The virial theorem relates the average total energy of discrete particles within a

stable system to the potential energy of the system, and can be written as

〈T 〉=−1
2

N

∑
k=1
〈Fk · rk〉 (1.1)

where 〈T 〉 relates the total time-averaged kinetic energy of the system, Fk the

force on a galaxy k, and rk representing the position of the particle within the sys-

tem.

The large mass-to-light ratio seen by Zwicky would indicate the existence of a type

of matter which would interact gravitationally, hence affecting the gravitational po-

tential energy of the galaxy, whilst not releasing any light, hence not contributing to

the luminosity of the galaxy [4] [5]. Further observations would go on to confirm

what Zwicky found, with observations of galaxy rotation curves being one of the

first to confirm the existence of a non-luminous type of matter.
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1.1.2 Galaxy Rotations

Vera Rubin was one of the first pioneers to present evidence for dark matter in the

1970s [6]. By studying the rotation curve measurements of galaxy clusters, Rubin’s

results showed an increase in stellar velocity up to an initial radius from the galaxy

core, with an almost constant velocity value thereafter the further one got from the

galaxy core.

However, according to Newtonian classical dynamics, the velocity of objects as a

function of radial distance r from the centre of a galaxy should be

v(r) =

√
GM(r)

r
(1.2)

with the mass

M(r) = 4π

∫
ρ(r)r2dr (1.3)

Since most of the matter is expected to be contained within the galaxy core, outside

the core, the dark matter density should fall as ρ(r) ∝
1√
r when approaching large

radii, as seen in equation 1.2.

In Figure 1.1, which shows the rotation curve of dwarf spiral galaxy NGC 6503, at

large distances from the galactic core, the velocity remains constant (dash-dotted

line). Hundreds of rotation curves have been measured [8] [9], and though there

are some anomalous results, the general pattern is that rotation velocities become

flat outside galactic cores, whereas from Equation 1.2 simple Newtonian dynamics

without dark matter implies that they should fall off as 1/
√

r.

This would suggest the existence of a halo of matter with a density profile derived

as follows [10]:

GMm
r2 =

mv2
c

r
(1.4)

where M is the mass of the galaxy, and m the mass of the object in orbit, r the
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Figure 1.1: Obervational data of Galaxy curves. Dashed line indicates contribution from
optical disk, dotted line from gas, and dash-dotted line from the dark matter
halo. Image taken from [7].

distance between them, and vc the constant velocity observed at large distances.

Since a constant rotational velocity at large distances vc is observed (as seen in

figure 1.1), rearranging the above equation, the function of the mass distribution as

a function of radius can be written as:

M(r) =
v2

cr
G

(1.5)

Taking a radial shell of thickness dr at a radius r from the centre of a galaxy core,

the differential mass enclosed within this shell is

dM(r) = 4πr2
ρ(r)dr

dM(r)
dr

= 4πr2
ρ(r)

(1.6)
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Figure 1.2: Plot showing the galaxy rotation curve for the M31 Andromeda galaxy. The
solid line shows the best fit to the data (square points). Dashed lines show the
contribution from different models, as labelled on the plot. Plot taken from
[11]. More galaxy rotation curves can be found in [9].

where ρ(r) represents the density of the galaxy. Substituting equation 1.5 for M(r)

into above equation, and differentiating will give the following

4πr2
ρ(r) =

v2
c

G

ρ(r) =
v2

c
4πr2G

(1.7)

Hence, this gives a density profile of the following form

ρ(r) ∝
1
r2 (1.8)

This sort of behaviour is present in other galaxies, with Andromeda (figure 1.2) and

the Milky Way also showing a constant velocity profile at further distances from

their respective galaxy centres [11][12]. All this evidence suggests a presence of a

dark matter halo, which would account for a large proportion of the mass within a

galaxy.
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Figure 1.3: Image of Bullet Cluster, with blue/purple region showing areas of greatest grav-
itational potential mapped using gravitational lensing, and pink indicating in-
terstellar gas regions. The image indicates the nature of dark matter being
non-interacting [13]. Image taken from [14].

1.1.3 Galaxy collisions

Another famous evidence for dark matter is the collision of two galaxies, as seen in

figure 1.3, and is an image of the Bullet Cluster galaxy [14]. Galaxies are comprised

of both luminous matter (∼ 1%−2% [15]) and plasmas (∼ 5%−15% [16]). During

a collision, the galaxies act as collisionless particles, while the plasma experiences

a ram-pressure [14], which slows down the movement of the plasma. Therefore the

galaxies within the collision decouple from the plasma.

Mapping the location of the plasma by measuring the emitted X-rays, a comparison

between the location of luminous matter and the plasma can be seen. The plasma

in each galaxy, interacting with each other, will remain closer to the point of inter-

action.

In the absence of non-luminous dark matter, the gravitational potential of the col-
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Figure 1.4: Plot showing the thermal spectrum of the CMB. Points indicate various inputs
of data, with solid line representing 2.73 K blackbody. Image taken from [17].

liding galaxies should trace the dominant visible component caused by the X-ray

emitting plasmas. However, in the presence of collisionless dark matter dominating

the mass component of the galaxies, the gravitational potential will follow the loca-

tion of the dark matter during the collision. This can be seen in figure 1.3, where

the location of the potential (as measured by weak gravitational lensing), is located

near the brightest point of the cluster (seen in purple). This indicates that the major-

ity of the galaxy consists of dark matter, thus interacting gravitationally but without

interacting with other particles in the collision [13].

1.1.4 Cosmological evidence

The Cosmic Microwave Background (CMB) is primordial radiation from the early

universe. According to the Hot Big Bang Model, the early universe is full of par-

ticles constantly scattering and producing radiation, with the last scattering taking

place when the universe was only 300,000 years old, after which the photons have
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Figure 1.5: A map of the CMB radiation. Image shows the temperature isotropies, with the
temperature difference between blue and red regions only a few thousandths of
a Kelvin. These correspond to matter density fluctuations within the distribu-
tion. Image taken from [18].

been travelling through the universe freely. This remnant radiation is still present

today but has been redshifted due to the expansion of the universe. Photons belong-

ing to the CMB can be detected with a spectral distribution following that of the

black-body function with T= 2.725K [19], the spectrum of which can be seen in

figure 1.4.

On large scales, the CMB is isotropic and homogenous. But subtracting the Milky

Way galaxy’s microwave foreground and dipole due to the galaxy motion relative

to the rest frame of the CMB radiation, the CMB is found to be uniform to 1 part

in 105. Fluctuations at the level of 1 part in 105 as a function of position on the sky

are a rich source of data for astrophysicists, who have used the so-called cosmic

background radiation data to estimate the visible and dark matter contribution to

the overall matter content of the Universe. Figure 1.5 shows these small tempera-

ture fluctuations (called anisotropies) as measured by the Planck collaboration [18].

These anisotropies can be used to determine cosmological parameters.

By looking at figure 1.5, a mapping can be found at different angular scales. The

angular scales represent the different physical sizes of the anisotropies and can be

parameterised as the multipole moments of spherical harmonics. Spherical har-
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Figure 1.6: Image showing the angular power spectrum of the Cosmic Microwave Back-
ground (CMB) temperature fluctuations, as measured by the Planck collabora-
tion. Green line shows the acoustic peaks of the ΛCDM model. Image taken
from [20].

monic wavelengths of λ = πdeg/l can be used to characterise these CMB fluctua-

tions, with small values in the multipole moment l corresponding to large distances

in the sky, whilst large values of l corresponding to smaller distances. These har-

monics can then be used to determine the wavelengths of the modes of the CMB on

a sphere. By looking at the mapping at different scales, a power spectrum can be

derived from the CMB background, thus showing the temperature fluctuations as a

function of angular size.

The density fluctuations within baryonic matter are imprinted onto the CMB mo-

ments before recombination on the surface of last scatter. These arise from the

effects of gravity and radiation pressure.

Figure 1.6 shows the power spectrum of the universe, as measured by the Planck

collaboration [18]. The location of the first peak can be used to find the total energy

density, with a multipole moment l ∼ 220 indicating a flat universe due to the sound

horizon at last scattering [21]. If light were to travel in a straight line (as would be

expected in a flat universe), then a Doppler peak would be found at 1o [22], which



10 1.1. Evidence of Dark Matter

can be seen in figure 1.6. Peaks 2 and 3 of figure 1.6 can be used to give information

regarding the baryon density and dark matter density in the universe [21].

By scanning the sky between the microwave to sub-millimetre spectrum, the Planck

collaboration were able to use the power spectrum from the CMB radiation to cal-

culate the baryon density Ωbh2 = 0.0224± 0.0001 and the dark matter density,

Ωch2 = 0.120± 0.001 [18], where h is a normalising constant given in equation

1.9, and Ho the current Hubble constant [18].

h =
Ho

100km s−1Mpc−1 (1.9)

The Lambda Cold Dark Matter Model of Cosmology (ΛCDM) model is consid-

ered the most accurate model of the universe currently. The model can be used

to determine the existence of non-baryonic and non-relativistic (cold) particles that

constitute the existence of dark matter in the universe.

By interacting predominantly through gravitational couplings, and not electromag-

netically, non-baryonic dark matter played an important role in the early formation

of the universe. Cold dark matter would clump due to small density perturbations

growing due to Jeans instabilities [23], whilst baryonic matter resisted clustering for

longer because of its coupling to radiation. This explains large scale structures [24]

existing today within the CMB. However, if the dark matter in the early universe

was relativistic, it would fail to form these gravitational wells, and the observed

large scale structure would be suppressed. This class of dark matter is referred to as

cold dark matter (CDM).

This damping would lead to no large scale structure being observed in the universe

[25]. Since large-scale structure formation is seen within the CMB, dark matter

particles must have been non-relativistic in the early universe [26].

By looking at the information within the CMB and the power spectrum derived from

it, a universe with ∼ 84% of its total mass being dark matter is found.
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1.1.5 Summary

Looking at all the observational and cosmological pieces of evidence indicates a

universe consisting of dark energy, dark matter and baryonic matter. Whilst the

Standard Model of Particle Physics can be used with a high degree of accuracy to

model the baryonic matter found within the universe, it does not offer any sugges-

tions as to the structure of dark matter. This leaves more than ∼ 85% of the mass of

the universe unaccounted for.

1.2 Dark Matter Candidates

There are three main categories of solution to the dark matter problem. These arise

through the introduction of new particles not previously described by the Standard

Model of Particle Physics; astrophysical objects such as primordial black holes;

and proposing new theories of cosmology through alternative gravity. This section

will look at the first category and will detail proposed candidates such as Axions,

Neutrinos and Weakly Interacting Massive Particles (WIMPs).

1.2.1 Axions

Axions are pseudo-Nambu-Goldstone bosons [27], and were first proposed by Pec-

cei and Quinn (PQ) as a way to reconcile the strong Charge-Parity (CP) problem

[28]. Nambu-Goldstone bosons are massless bosons which arise when the global

PQ symmetry is spontaneously broken at high mass scales. When adding in QCD

effects, the axion attains a small mass component, thus becoming a pseudo-Nambu-

Goldstone boson [29][27]. Within a mass range of 10−6 to 10−2 eV, axions pro-

duced in the early universe could be a solution for the abundance of dark mat-

ter.

The Axion Dark Matter Experiment (ADMX) collaboration uses a microwave cav-

ity experiment to look for the currently undetected axion by probing the axion-

photon coupling with a strong magnetic field [30]. Since Axions are expected

to convert to monochromatic photons, these can be detected using an antenna
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[31].

1.2.2 MACHOs and Primordial Black Holes

Another source that could impact the size of the undetected matter in the universe

is from Massive Astrophysical Compact Halo Objects (MACHOs). These are large

objects within galaxies that emit little radiation, thus being difficult to detect di-

rectly. They could range from faint stars, star remnants and substellar objects; with

searches via microlensing indicating that they do contribute to the unseen mass of

galactic halos. However, these alone cannot be used to explain the large mass dif-

ference of ∼ 25% of the galactic halos [32] [33] [34].

Primordial Black holes (PBH) could also contribute to dark matter, with the black

holes being produced before Big Bang Nucleosynthesis. However, since these have

masses below the sensitivity of microlensing surveys [35], looking for them has

been challenging, with predictions showing that primordial black holes only con-

tribute a small fraction of the mass of a galaxy [36].

In 2016, the Laser Interferometer Gravitational-Wave Observatory (LIGO) was able

to observe the gravitational waves produced by the collision of two black holes, with

the masses of both black holes greater than 30 solar masses [37]. This observation

by LIGO could indicate a new species of black holes which were formed in the early

universe. These new species of black holes could contribute to the matter associated

with dark matter if the mass range is between 20Ms ≤ M ≤ 100Ms (Ms being one

solar mass) [38] [39].

1.2.3 Sterile Neutrinos

The standard model neutrino was an early candidate for dark matter, as it is stable,

weakly-interacting and long-lived. However, by simulating relativistic neutrinos in

the early universe, large scale structure formation is not seen, hence indicating that

a new form of a particle is needed [40].

This could call for a new type of neutrino called a sterile neutrino which would be
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Majorana in nature with the mass arising from a seesaw mechanism [41]. These

sterile neutrinos could be postulated to only interact with standard model particles

via a small mixing angle, and could be a simpler explanation to what constitutes

dark matter [42].

1.2.4 WIMP Dark Matter

Another candidate for a particle that could constitute dark matter is Weakly Interact-

ing Massive Particles (WIMPs). These are theorised particles beyond the standard

model which are stable, long-lived, massive and non-relativistic. These particles

would also interact weakly with the current standard model particles, and gravita-

tionally, as well as possibly via another force carrier.

WIMPs are a strong candidate for constituting dark matter, as due to early universe

physics, WIMPs initially modelled to be in chemical equilibrium result in the cor-

rect abundance of ΩCDM, the cold dark matter density in the early universe.

In the early universe, the particles contained within this universe all exist within a

thermal plasma [43]. Since dark matter is assumed to be in thermal equilibrium with

baryonic matter in the early universe due to these high temperatures, after expansion

and cooling, these reaction rates would fall below the threshold required to remain

in thermal equilibrium. What is left is a universe with the relic abundance of dark

matter equal to what is observed today. Assuming an annihilation cross-section

on the order of the weak scale, a dark matter density similar to what is observed

cosmologically would be observed [44].

Extensions could be made to the family of particles in the standard model using

supersymmetry (SUSY), which introduces a symmetric “super-partner” to the par-

ticles within the standard model. These super-partners have the same internal quan-

tum number as their standard model counterparts, with their spin differing by one-

half. Hence every fermion has an associated supersymmetric bosonic partner, and

for every standard boson, there is an associated supersymmetric fermionic partner

[45]. The lightest neutralino provides a good WIMP candidate for particle dark mat-
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ter, having been created with other SUSY particles in the early universe [46].

The past decade of research into WIMP searches within the GeV mass range has

excluded a large amount of parameter space. The results from the LHC indicate a

lack of observations of non-standard model particles thus further constraining exist-

ing models [47] [48] [49], with the parameter space required for WIMPs to give the

correct relic abundance decreasing with these new limits [50]. This has meant fu-

ture searches for dark matter are now focusing towards constraining WIMP masses

within the sub-GeV range. These will be discussed in the following section.

1.3 WIMP Detection

There are three methods of detecting WIMP dark matter particles. The first of

which is indirect detection of dark matter. These mainly consist of astrophysi-

cal searches in places of high dark matter density such as the core of galaxies or

galaxy clusters [22]. These searches look for the annihilation of dark matter parti-

cles to produce detectable quantities such as gamma-rays, electron-positron pairs,

and neutrinos.

WIMP searches can also be conducted in production-decay experiments at detec-

tors, without relying on the hypothesised local halo abundance. This avenue of dark

matter detection relies on detecting any missing transverse energy, as any dark mat-

ter particles produced in a collision is expected to leave the detector without being

detected. An example of this are the events produced at the LHC detectors, where

any dark matter produced would leave the detector due to not interacting electro-

magnetically [51].

The final option, which is the detection of WIMPs from the local halo undergoing

collisions with a dedicated target in a direct search experiment apparatus, is the sub-

ject of the remainder of this thesis. In particular, discussions for the LZ experiment

will be discussed.
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1.3.1 Direct Detection Principles

The main principle behind direct detection is that dark matter particles can interact

with atomic nuclei by scattering elastically. Because WIMPs are massive particles,

their scattering process can be modelled as a non-relativistic two-body scattering

problem [52]. Direct detection relies on the dark matter present in the Milky Way,

with the distribution of dark matter in the Earth’s neighbourhood affecting the rate

of interaction. The density and velocity of WIMPs and relative motion of the Earth

with respect to the dark matter halo is needed to estimate the expected scattering

rate, with the halo assumed to be a standard isothermal and Gaussian, and with a

Maxwellian velocity distribution assumed [53].

WIMP density and velocity

Understanding the local WIMP dark matter density is necessary for direct detection

dark matter experiments. ρo, which is the local WIMP dark matter density, gives the

average mass of WIMPs over a few hundred parsecs [54]. The WIMP density is di-

rectly proportional to the expected differential rate, with uncertainties in the density

affecting the constraints on scattering cross-sections of WIMP dark matter.

The local WIMP density ρo = 0.3 GeVcm−3 is assumed when comparing different

direct detection results, with this estimate being accurate to ∼ O(2) [55]. However,

recent Gaia estimations give a value of ρo ∼ 0.47 GeV cm−3 [56].

The WIMP velocity distribution is calculated using the local circular velocity of the

sun around the galaxy core υc = 220 kms−1, and the local escape velocity υesc =

544 kms−1 and the mean velocity of the earth υearth = 245 kms−1 relative to the

dark matter halo.

Using these values, a Standard Model Halo (SHM) can be assumed, which is mod-

elled to be an isothermal sphere with an isotropic Maxwellian velocity distribution

[57], and can be written as:
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f (υ) =
1

(2πσ2)1/2 exp(−|υ |
2

2σ2 ) (1.10)

where σ is the speed dispersion, and is related to the local circular speed as σ =

ρc
√

3/2 [58]. Although including baryon physics within the velocity distribution

would alter the shape of the velocity distribution away from being Maxwellian,

[59] showed that these would not alter the results when only a Maxwellian velocity

distribution is used.

WIMP-Nucleon scattering

Although WIMPs are theorised to only interact weakly with standard model parti-

cles, a large flux of WIMPs in the Milky Way halo allows for a small percentage of

interactions to occur elastically with atomic nuclei. The cross-section σ is needed

when calculating the interaction between a WIMP and a nucleus,

σo = A2
(

µN

µn

)2

σn (1.11)

with σo being the spin-independent zero-momentum cross-section which describes

the coherent interaction between a WIMP and the whole nucleus, A being the atomic

number of the target nucleus, µN and µn being the WIMP-nuclear and WIMP-

nucleon reduced-mass respectively, and σn the scalar WIMP-nucleon cross-section.

This indicates that the scattering rate is larger for larger atomic nuclei, due to the A2

dependence.

The differential recoil rate can then be given as:

dR
dER

= F2(q)
ρoσo

2mW µ2
N

∫
νmin

f (υ)
υ

dυ (1.12)

where ρo is the local WIMP density, with other values described above. The f (υ)/υ

term takes into account the velocity of WIMPs within the dark matter halo to the

relative motion of the earth, with the solutions to the velocity integral found in [60],
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and an example of which can be found in equation 1.13

∫
vmin

f (υ)
υ

=
1

υoy
(1.13)

with y = υearth
υo

, and υo =
√

2
3σo.

F2(q) is a form factor [61], and accounts for the suppression of event rates for

heavier nuclei, which is dependent on the momentum transfer q =
√

2mNER. The

form factor must be included to take into account the inability to approximate the

nucleus as a homogeneous sphere.

The minimum velocity υmin, is defined as the minimum velocity of a WIMP which

can be detected by a given detector threshold Ethr of a detector [62], and is given

by

υmin =

√
mW Ethr

2µ2
N

(1.14)

Since the recoil rate depends on the mass of the WIMP as well as the mass of the

target nuclei, a comparison can be made to compare the rate for different target

nuclei. Figure 1.7 shows the comparison for the event rate of a 100 GeV/c2 WIMP

with a cross-section σo = 10−45 cm−2 for different nuclei. It can be seen that xenon

has a higher interaction rate compared to other materials, due to the A2 term in

equation 1.11 contributing to a larger cross-section for xenon compared to argon,

thus making it a good target nucleus to detect WIMP interactions.

1.3.2 Direct Detection Experiments

The main aim of a dark matter direct detection experiment is to find the interac-

tion signal caused by a dark matter particle within the dark matter halo of the Milky

Way, as the Earth travels through it. This signal can produce three distinct signatures

which are detectable: scintillation, ionisation, and heat (phonons), each of which is

referred to as a detection channel. Since the first proposal of direct detection experi-
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Figure 1.7: Plot showing the WIMP-nucleon scattering against recoil energy for a 100 GeV
WIMP, with σ = 10−45 cm−2 for Xe, Ge, Ar and Ne. A perfect energy reso-
lution and an isothermal dark matter halo model is assumed. Coloured dots
indicate the current thresholds for each technology. Image taken from [63].

ments in the 1980s [52], many experimental concepts have been developed to probe

WIMP-nucleon interactions, and detect at least one of the three signatures.

The energies of an expected WIMP interaction are of the order∼O(10−100 KeV),

with the expected rate for a WIMP mass of∼ 100 GeV/c2 is≤ 1 event kg−1 year−1

[64]. Thus the challenge in designing an experiment to detect such an event signal is

to reduce backgrounds as much as possible. This is accomplished by placing exper-

iments underground to reduce backgrounds originating from cosmogenic sources

(discussed in chapter 4 and 5), as well as reducing any trace radioactivity from the

detector components used in the detector construction.
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Figure 1.8: Image showing the principle of cryogenic detectors. They are cooled to sub
mK-temperatures. The presence of a thermal bath allows the detector to be
weakly coupled to it. Red line shows the trajectory of a particle χ interacting
with the dielectric crystal. Image taken from [65].

Combining experimental methods for the different signatures produced by a dark

matter interaction with a target nucleus can allow different interactions to be dis-

tinguished. Nuclear recoils (NR) can be caused by the neutrons and the daughter

nuclei produced in radioactive decays of particles within the detector, whilst elec-

tron recoils (ER) can be caused by gamma radiation.

Cryogenic and Solid-State Detectors

Some categories of detectors are operated below room temperature to reduce noise

or to enable use of certain targets. For example, noble liquids such as xenon must

operate at ∼ 90 K. Other detectors, such as those sensitive to phonons from re-

coils may need to operate much colder, ∼ 4 K. Cryogenic detectors are an example

of such detectors. They look for the detection of heat, and the scintillation light

produced due to ionisation during a particle interaction [65]. Figure 1.8 shows an

image of a cryogenic detector.
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By using a different combination of signal channels (heat and ionisation), cryogenic

detectors can determine between electron and nuclear recoils. This is seen in the

EDELWEISS [66] and the CDMS experiments [67]. Because these experiments

use crystals as their target material, scaling up to larger masses makes it difficult,

thus achieving a higher exposure is challenging.

The SuperCDMS experiment [67], based in the Soudan Mine, US, uses a germa-

nium detector to detect both ionisation and phonons. An electric field is applied to

the germanium detector, thus allowing the electrons to be extracted from the sur-

face. Sensors are placed at the faces of the germanium crystal to detect phonons.

The 2018 results gave an upper limit of 1.4×10−44 cm2 for a 1690 kg-day exposure

for the WIMP-nucleon spin-independent cross section [68].

Noble Gas-Liquid Detectors

Detectors made from liquified noble gases for direct detection dark matter ex-

periments are some of the most sensitive detectors to detect WIMPs within the

(10−100) KeV range. Two main detector mediums, liquid-xenon (LXe) and liquid-

argon (LAr) have seen more prevalent uses compared to other noble gases when

looking for scintillation and ionisation signals. With the ability to scale up to larger

fiducial masses easier with LXe and LAr - as the fiducial mass is dependent on the

amount of LXe or LAr within the detector, they are an excellent choice for experi-

ments probing dark matter and neutrinoless double beta decay.

Experiments employing LXe in particular as the detector medium can offer excel-

lent [x,y,z] vertex reconstruction and ER/NR discrimination by using a two-phase

time-projection chamber configuration such as LUX [69], XENON [70] and the

ZEPLIN (II/III) experiments [71] [72]. The scintillation light signal (S1) is detected

using photomultiplier tubes (PMTs) placed at the top and bottom of the detector,

with LXe scintillating at ∼ 178 nm, and the PMTs having a quantum efficiency

of 30.6% [73]. By placing an electric drift field of known strength, the ionisation

charge produced during an interaction can be transported to the gas region, where it
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Figure 1.9: Plot shows the upper limits at 90% Confidence Level (CL) on spin-independent
WIMP-nucleon cross sections for a range of WIMP masses for the leading dark
matter experiments (as of end of 2020). Larger masses are constrained by noble
gas TPCs (red and orange lines), with cryogenic crystals (yellow line) give the
best limit for low WIMP masses. Blue shaded region shows the irreducible
background from neutrinos (often denoted as the neutrino-floor) [74]. Image
taken from [75]

then induces an electroluminescence light (S2) which is also detected by the PMTs.

LXe also allows for fiducialisation, whereby ERs and wall backgrounds are reduced

by rejecting events outside a central detection region. PMTs, the signals detected

and their quantum efficiencies are discussed in further detail in chapter 2.

Equation 1.11 shows that the cross-section is dependant on the atomic number

of the atom used as a medium for WIMP interactions. Since xenon has a larger

atomic number compared to argon, the A2 term allows for a better cross-section to

be achieved. The current best limits for SI-WIMP-nucleon interactions are shown

in figure 1.9 showing limits placed on a large range of WIMP masses, with detec-

tors employing LXe technology (red and orange lines in figure 1.9) giving the best

limits over the past decade.
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1.3.3 Next Generation Experiments

Construction of the next generation (Generation-Z) of LXe direct detection dark

matter experiments is complete, with results from the XENONnT [76] and LUX-

ZEPLIN (LZ) [77] experiments expected in late 2021/early 2022. This shows the

promise of LXe technology, with results expected to close much of the parameter

space to the neutrino floor for WIMPs of mass greater than 10 GeV. The neutrino-

floor is caused due to nuclear recoils from neutrino-nucleus scattering [74]. This

reduces the improvement in sensitivity for WIMPs within that region. This can

already be seen at low WIMP masses (mχ ≤ 10 GeV/c2), where the presence of

the neutrino backgrounds caused by 8B is limiting the sensitivity to WIMPs. The

next chapter will detail the LZ experiment, and will be the main topic of discussion

throughout this thesis.

Further beyond these experiments, work has already started on the next generation

of experiments using LXe TPC technology, with the DARWIN collaborations [78]

merging to build a ‘Generation-3’ (G3) experiment with over 50-tonnes of LXe be-

ing employed. With such a large active mass region, DARWIN plans to penetrate

into the neutrino floor produced by atmospheric, solar and supernova neutrinos to

definitively test the standard WIMP hypothesis [79]. DARWIN will also have sensi-

tivity to well-motivated alternative (non-WIMP) models of dark matter, exotic neu-

trino physics, and Beyond Standard Model (BSM) searches including neutrinoless

double-beta decay with world-leading sensitivity.



Chapter 2

The LUX-ZEPLIN Experiment

Verily, We have created all things with due proportion

Quran [54:49]

The LUX-ZEPLIN (LZ) experiment is a direct detection dark matter experiment

which uses a two-phase liquid xenon time-projection chamber (LXe TPC). Since

the origins of time-projection chambers from the 1970s, this technology has been

pushing the boundary of direct detection WIMP searches [65], with the LUX exper-

iment one of the first to report strong limits on WIMP dark matter.

The next generation LZ experiment is located at the Davis Cavern in the Sanford

Underground Research Facility (SURF) in Lead, South Dakota USA. It is placed

4850 feet underground, and aims to build upon LUX to set more stringent limits on

WIMP-nucleon interactions in order to detect dark matter. This section will intro-

duce particle interactions in liquid and gaseous xenon, the theory behind signal gen-

eration, as well as looking at the LZ detector and some of its design features.

2.1 Liquid-Xenon Time Projection Chambers

LXe TPCs have been improving the sensitivity to WIMP-nucleon interactions, with

many experiments employing the same technology over the years. Since their ori-
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gins in the 1970s [80] [81], LXe TPCs use liquid and gaseous xenon as a scintilla-

tion medium to measure particle interactions. This has allowed strong limits to be

place on spin-independent and spin-dependent WIMP-nucleon cross-sections for a

range of WIMP masses. As the main factors which determine the sensitivity of

TPCs is the background rate of the nearby surroundings as well as the amount of

xenon within the experiment, scale-up of liquid xenon experiments is possible so

long as the purity of the target and the granularity of the readout can be maintained

at scale.

Xenon is a good material to be used in TPCs for low-background WIMP searches. It

is sensitive to WIMP-nucleon cross-sections of the order of (10−100 GeV) because

of its relatively high atomic number A = 131, as well as not having any long-lived

radioactive isotopes. Isotopes with an odd number of neutrons render such detectors

sensitive to spin-dependent WIMP-nucleon interactions [82].

Particle interactions with LXe atoms produce prompt scintillation photons as well as

ionisation electrons. Since xenon is transparent to its scintillation light, the signal

created is detectable, with low energy interactions producing a measurable signal

[63].

Having a large atomic number also allows xenon to have excellent self-shielding.

This is where backgrounds originating from outside the detector or from surfaces

within the instruments are stopped in a short distance within the liquid xenon.

In general, dual-phase LXe TPCs are constructed with a large mass of liquid xenon

placed under an electric field, with a small gas region at the top of the detector.

Scintillation photons are detected with photomultiplier tubes (PMTs) placed at the

top and bottom of the liquid-gaseous volume. The presence of the vertical electric

field helps extract the ionisation electrons to the gas region, with the strength of the

electric field being several 100s V/cm. Upon reaching the liquid-gaseous surface,

these ionisation electrons are accelerated within the gas region, thus producing elec-

troluminescence light. This light is also detected by the PMTs. By combining the

signals of the scintillation light with the time delay of the electroluminescence light,
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Figure 2.1: Schematic image showing a particle interaction inside the LZ TPC. The in-
coming particle produces the S1 signal (shown in orange) with the electrons
drifting towards the gas layer via an applied Electric field to produce the S2
signal. PMTs are placed at the top and bottom of the detector. 3D position
reconstruction is achieved by looking at the hit pattern of the PMTs at the top
for x-y reconstruction, with the z-position determined by the time difference
between the S1 and S2 signals [73].

good XYZ position reconstruction and background discrimination can be achieved.

Position reconstruction and background discrimination will be discussed further in

chapter 5.

These will be discussed further in the following sub-sections.
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2.2 Particle interactions and Detection in LXe

TPCs

Interactions within a LXe TPC produce two characteristic recoils separately, both of

which are used to determine the nature of the interacting particle. Backgrounds orig-

inating from radioactive isotopes emitting beta or gamma particles undergo electron

recoils predominantly resulting in electron recoils. An electron recoil (ER) is the

collision of the incoming particle with one of the electrons of a xenon atom in the

target. Neutral particles like WIMPs or neutrons undergo nuclear recoils (NR),

where the incoming particle collides with the atomic nucleus of a xenon atom. The

recoiling particle in both ER and NR interactions scatter with neighbouring elec-

trons and nuclei of other xenon atoms, thus causing scintillation photons, ionisation

electrons and heat. Current TPC designs are only capable of detecting scintillation

photons and ionisation electrons; the heat produced in collisions dissipates in the

target without detection.

2.2.1 Scintillation (S1) Signals

Primary scintillation (S1) signals are generated following the collision of the inci-

dent particle with an electron or nucleus in the target. Either NR or ER processes

result in a xenon atom in an excited state. This excited xenon atom forms a molec-

ular dimer with a neighbouring xenon atom, with excited states with vibrational

excitation different from purely electronic excitation. This excimer then de-excites

to the ground state, thus producing a vacuum ultra-violet (VUV) photon. This can

be seen by the following set of equations [63] [83]:
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Pi +Xe→ Xe∗+Pi (2.1)

Xe∗+Xe→ Xe∗,ν2 (2.2)

Xe∗,ν2 +Xe→ Xe∗2 +Xe (2.3)

Xe∗2→ Xe+Xe+ γ (2.4)

whereby Pi is an incoming particle producing an electronic or nuclear recoil (e.g

gamma ray or WIMPs), Xe a xenon atom, with ν being used to determine purely

electronic excitation (ν = 0) from vibrationally excited states, which mostly de-

excite non-radiatively, but can emit infrared photons.

Equation 2.1 shows the excitation of a xenon atom, equation 2.2 is the formation

of a dimer with an excited vibrational degree of freedom, equation 2.3 is the decay

of a vibrationally excited dimer to a xenon molecule with an electron in an excited

state only, and equation 2.4 is the decay of the excited xenon dimer to xenon atoms

with the release of a gamma photon.

The second way in which scintillation photons are released is by the recombination

of ionisation electrons [63] [83], with the end result being the release of a gamma

photon the same as the process above, and can be seen below:

Pi +Xe→ Xe++Pi + e− (2.5)

Xe++Xe+Xe→ Xe+2 +Xe (2.6)

Xe+2 + e−→ Xe∗∗+Xe (2.7)

Xe∗∗+Xe→ Xe∗+Xe+heat (2.8)

Xe∗+Xe→ Xe∗,ν2 (2.9)

Xe∗,ν2 +Xe→ Xe∗2 +Xe (2.10)

Xe∗2→ Xe+Xe+ γ (2.11)
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where equation 2.5 shows the ionization of xenon, equation 2.6 shows the produc-

tion of di-atomic xenon atoms when ionised xenon interacts with a neighbouring

xenon atom, equation 2.7 shows the recombination of di-atomic xenon to produce

an excited atomic state (Xe∗∗), equations 2.8-2.9 show the formation of a vibra-

tionally excited dimer. The decay of the dimer (equations 2.10 and 2.11) follows

an identical de-excitation path similar to the processes seen in equation 2.3 and 2.4,

ending with the release of a gamma photon.

The number of ionisation electrons undergoing this process is a function of the

initial recoil energy of the interaction and the strength of the electric field applied

[84]. Having a stronger field drifts free electrons away from the interaction point,

therefore constraining this recombination luminescence.

The VUV scintillation light released has a wavelength of 178 nm, with a FWHM of

14 nm. Impurities such as water molecules cause absorption of the light, necessitat-

ing the use of very high purity liquid xenon. In LZ, an absorption length of 30-100

nm is expected, with the scintillation photons (also referred to as the S1-signal)

being detected at PMTs located at the top and bottom of the detector [63].

Higher energy interactions

Particles with a larger amount of energy (i.e. α particles ≥ MeV) can sometimes

lead to processes of higher order. These higher order processes can decrease the

number of scintillation photons released (hence a lower S1 signal is found). The

particle tracks formed due to these higher energy interactions increases the density

of the excited xenon atoms present, thus the probability of two excited atoms in-

teracting is greater. Therefore a higher ionisation rate is found within the tracks

formed. This process is called bi-excitonic quenching [85], with the process be-

ing:

Xe∗+Xe∗→ Xe++Xe+ e− (2.12)
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If the single excited xenon atom has a large enough energy to ionise a neutral xenon

atom from the ground state, then the following process is found, where

Xe∗+Xe→ Xe++Xe+ e− (2.13)

This process is called penning ionisation.

Both these processes can lead to a suppression of the S1 signal at higher energies,

and will be an important feature when using Machine Learning to identify processes

which have high energy interactions.

2.2.2 Secondary (S2) Signals

The remaining electrons which escape recombination drift upwards towards the liq-

uid surface due to an applied vertical electric field, hence moving away from the

point of interaction. An electric field of several kV/cm is applied at the liquid sur-

face to allow the drifting electrons to overcome the potential barrier at the surface

level, thus allowing them to escape into the gas phase. This electric field is gener-

ated by placing grids on either side of the surface level [86].

In the gas region, the electrons are accelerated to enable them to excite the xenon gas

atoms within the gas region, with the de-excitation of these gaseous xenon atoms

producing the secondary S2 (electroluminescence) signal. This S2 signal is detected

by both the top and bottom PMT arrays, with the number of photons within the S2

signal dependent on the strength of the applied electric field within the TPC.

The S2 signal size is of orders of magnitude larger compared to the S1 signal, with

a time delay between the two signals being used to determine the z-position of the

interaction. This requires detailed information regarding the strength of the electric

field applied.

In LZ, a drift field of E = 310 V/cm is used, hence electrons travelling from the

bottom of the TPC (height = 1.46m) takes ∼ 800 µs to reach the gas region at the

top of the TPC.
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The ionisation electrons within the TPC also diffuse in the transverse (x-y) plane,

alongside the diffusion in the longitudinal (z) direction (DL). This transverse dif-

fusion (DT ) however has no first-order effect on the S2 signal size, with the ratio

between both diffusions DL/DT ∼ 0.1. This is realised by an expected diffusion of

2.2 mm in the transverse direction [73].

However, impurities within the LXe can lead to uncertainties in the S2 signal size.

This is as electronegative molecules such as O2, H2O or N2O present in the LXe

can affect the mobility of the ionisation electrons. By capturing the drifting elec-

trons, these molecules can then become negative ions with a lower mobility. This

is dependent on the concentration of the impurities within the LXe, with the im-

purities present within LXe by the outgassing of detector components. This shows

the importance of purification of LXe, with contaminant levels ∼O(ppb) or lower

required for lower energy events.

2.2.3 Light and Charge Yields

Incoming particles producing either electronic or nuclear recoils deposit energy E.

This energy can be expressed by the number of excitons, ne, and electron-ion pairs,

ni, as

E = LW (ne +ni) (2.14)

where L is the called the Lindhard factor, and accounts for the energy lost due to

heat, and W in equation 2.14 is the energy needed to liberate a single electron or

electron-ion pair, and is measured [84] to be

W = 13.7±0.2 eV (2.15)

For electronic recoils, an L = 1 is assumed, as all the energy is assumed to go into

the electronics system. For nuclear recoils, the Lindhard model states that
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L =
kg(ε)

1+ kg(ε)
(2.16)

and describes the fraction of recoil energy which is transferred to electrons, with

g(ε) describing the ratios between electronic and nuclear stopping powers. k is a

proportionality constant between the electronic stopping power and velocity of a

recoiling nucleus [87], with the Lindhard model describing interactions with LXe

atoms below 2 keV accurately [88].

Measurable Quantities

In order to parameterise the detected signals well, measurable quantities specific to

LXe TPCs must be taken into account in order to measure the detectable S1 and

S2 signals produced. Hence, the number of VUV photons nγ and the number of

electrons ne released during an interaction can be expressed as:

nγ = Nex +Nir (2.17)

ne = Ni(1− r) (2.18)

where Nex is the total number of excited xenon atoms, Ni the total number of ionised

xenon atoms, and r being the fraction of ions recombining. Hence, the size of the

S1 and S2 signals (in terms of detected photons) can be written as:

S1 = nγg1 (2.19)

S2 = neεNphg1,gas (2.20)

where g1 is the light collection efficiency, with g1,gas the light collection efficiency

in gas. Nph is the number of electroluminescence photons released per electron, and
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ε being equal to the electron extraction efficiency. Hence,

g2 = εNphg1,gas

can be defined as the electron detection efficiency. Therefore the Energy E from

equation 2.14 would become

E = LW
(

S1

g1
+

S2

g2

)
(2.21)

Using calibration sources, both g1 and g2 can be measured, as was done in for

the LUX experiment [89]. Both electron and nuclear recoils have a difference in

the light and charge yields they produce, with the ratio of exciton to electron-ion

pairs ≤ 0.2 [90] for ER events, and for NRs, the ratio being ∼ 1. Hence, different

calibration sources are used, with γ-rays being used for ERs. An example of this

difference would be that an ER of energy 6 keV would produce the same charge and

light yield as a ∼ 60 keV recoil from an NR.

2.2.4 Discrimination

For low-background direct detection experiments, it is important to understand the

backgrounds which are present within the detector. These background levels must

be kept low enough to ensure a good signal in the parameter space that is being ob-

served. LXe TPCs allow for good distinction which allow for background reduction

by being able to discriminate between ER and NR events.

When plotting events in S1-S2 space, ERs and NRs form two distinct bands due to

the difference in ratios between ionisation electrons and scintillation photons. This

can be seen in figure 2.2, with ER events being shown in blue, and NR events in

orange. ER events leaking into the NR region (as shown by the blue points going

into regions of the NR band) limit the discrimination power. LZ is expected to

achieve an ER/NR discrimination of 99.5% [91].
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Figure 2.2: ER and NR discrimination, as taken from the LUX experiment, with the S1
signal measured in detected photons (phd). Cyan represents the ER band, whilst
Orange shows the NR band. Filled circles show the Gaussian mean, whilst
smaller circles show the ±σ to the Gaussian mean. Lines (solid and dashed)
represent power law fits to the means and ±σ . Image taken from [89].

2.3 The LUX-ZEPLIN Detector

The LZ Experiment is a worldwide collaboration of universities and academic insti-

tutions. The experiment is based at the Sanford Underground Research Facility in

South Dakota, US. The detector is ∼ 20 times larger than its predecessor LUX, but

employs the same detector principles of a TPC for low background direct detection

experiments. The active mass of liquid xenon used in LZ will be 7 tonnes, with the

detector placed 4850 feet (∼ 1500 m) underground within a water tank, to reduce

backgrounds and maximise the sensitivity.

A LXe skin also exists which surrounds the TPC, as well as an Outer Detector
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Figure 2.3: Cross section of the LZ experiment, with human for scale purposes. Main
detector components are labelled [73].

using gadolinium-loaded liquid scintillator (GdLS) to veto any events not within

the region of interest (ROI). This section will highlight detector design of LZ, as

well as the steps being taken for data taking to begin at the end of 2021.

2.3.1 The LZ TPC

The detectors used in LZ are placed within a cryostat made of double-walled

vacuum-insulated titanium [92]. The Inner Cryostat Vessel (ICV) houses both the

TPC and the LXe skin region, thus employing a total of 10 tonnes of liquid xenon,

and is suspended inside the Outer Cryostat Vessel (OCV). The TPC is a cylinder of

height and diameter equal to 1.46 m, and contains 7 tonnes of LXe, thus referred to

the active region. The TPC walls are made of PTFE, with a reflectivity of ≥ 97.3%

when in LXe [93]. This ensures they are highly reflective thus increasing the light

collection of the S1 and S2 signals as seen by the PMTs.

There are four stainless steel woven wire grids, to which high voltages are applied

and placed within the TPC, thus creating three distinct field regions: the Extraction

Field (electroluminescence) Region (EFR), the Drift Field Region (DFR) and the
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Table 2.1: Dimentions of the LZ detector [91].

Parameter Value
TPC height 1.46 m

TPC inner diameter 1.46 m
Active LXe mass 7000 kg

Xenon skin thickness 4.0 - 8.0 cm
Inner Cryostat diameter 1.58 - 1.66 m
Inner Cryostat height 2.59 m

Outer Cryostat diameter 1.83 m
Outer Cryostat height 3.04 m

GdLS tank outer radius 1.64 m
GdLS mass 17.3 tonnes

Water tank diameter 7.62 m
Water tank height 5.92 m
Water tank mass 228 tonnes

Table 2.2: Design voltages and field strengths for the grids used in the LZ experiment [73].

Grid/Region Voltage/Field Strength
Cathode Grid -50 kV

Gate Grid -4 kV
Anode Grid +4 kV

Electroluminescence Region 10.6 kV/cm
Drift Field Region 0.31 kV/cm

Reverse Field Region (RFR).

The DFR contains the drift field in which the active region of the LXe will be. It is

between the cathode, which is located at the bottom of the detector; and the gate,

which is located just below the liquid xenon surface level. This drift field region is

the main region where the majority of the ionisation electrons will drift from after

an interaction.

The EFR is located at the top of the detector, between the gate and anode grids,

with the anode being placed within the xenon gas region, just below the top PMT

arrays. The fields in the EFR are significantly higher in this region to allow for

the electrons which drift upwards to increase the electron extraction efficiency, with

∼ 820 electroluminescence photons being released per electron in this region for

the S2 signal.
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Figure 2.4: Cross section of the LZ TPC, with grids and approximate dimensions shown.
Directions of the three main electric fields also shown (not to scale).

The RFR is between the cathode at the bottom of the TPC, and the bottom grid, with

the field in the opposite direction to shield the bottom PMTs - which are immersed

in the liquid xenon, from the strong electric field. Events which occur within this

RFR region only have an S1 signal, as the ionisation electrons in this regions are

not extracted. Figure 2.4 shows an image of the field directions, grids and the

TPC.

2.3.2 PMTs

The LZ TPC has 494 photomultiplier tubes (PMTs) which monitor the active re-

gion of the LXe, with 253 PMTs located in the top array, and the remaining 241

located in the bottom array. The 3-inch PMTs (model no R11410-22) were de-

veloped by Hamamatsu, and were optimised for low-radioactivity searches in cold

liquid xenon [73]. With an average quantum efficiency of 30.9% to VUV light, they

were designed to have a low dark count and a high single photo-electron resolution.
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The PMTs have 12 dynode stages, and operate at a nominal voltage of 1500 V, with

a nominal gain of 5×106. The PMTs are installed in titanium support structures at

both the top and bottom PMT arrays, with the layout of the PMT arrays optimised

to achieve a high light collection efficiency.

The PMTs are laid out in a closed hexagonal pattern to maximise coverage of the

TPC. Since S1 light is mostly detected by the bottom array, high detection effi-

ciencies are needed for low-NR events, as well as giving the ability to discriminate

between ER and NR events. The top array detects the S2-signal, and is also used for

position reconstruction of events. To improve the position reconstruction accuracy

for fiducialisation, the outermost PMTs in the top array are located above the TPC

wall.

2.3.3 LZ Skin and Outer region

The skin region in the LZ experiment plays an important role in identifying any

background events. The skin is a mass of LXe which sits outside the TPC, and

serves as a dielectric insulation between the TPC and the ICV. 93 1-inch PMTs

(model no R8520) and 20 2-inch PMTs (model no R8778) look for scintillation-

only events caused by γ-rays, with a further 19 2-inch PMTs (model no R8778)

observing the dome region. Since WIMPs would cause an energy deposition within

the TPC by only interacting once with a xenon atom, any WIMP-like event (such as

neutron scatters) within the TPC which cause other energy depositions in the outer

regions must not be a WIMP, but an event caused by backgrounds.

The Outer Detector consists of 10 acrylic tanks which are filled with 17 tonnes of

Gadolinium-loaded Liquid Scintillator (GdLS). It is near-hermetically sealed, and

is a γ-ray and neutron veto system. It is surrounded by 120 8-inch PMTs (model n0

R5912) which are placed outside of the acrylic tanks. Linear alkylbenzene (LAB)

is used as the liquid scintillator, with 0.1% of neutral Gadolinium added to improve

the detection of neutrons [94].

If a WIMP-like event caused by a background such as a neutron interacts with a
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Figure 2.5: Schematic drawing of the acrylic tanks. Green tanks will cover the sides of the
TPC, whilst the blue will cover the top of the TPC, and below the OD. Red
shows the displacer cylinders [73].

xenon atom in the TPC, it is also likely to interact within the outer detector by cap-

turing on the gadolinium. This would create a burst of several γ-rays of energy ∼ 8

MeV, which then create a large signal within the liquid scintillator. This system

works well in being a veto system to WIMP-like events, as the Outer Detector re-

sponse time is within the time window of an event in the TPC [73], thus allowing

an accurate correlation between NR events in the TPC.

2.3.4 LZ Xenon System

The xenon used within LZ must be kept at 175 K, and is maintained by using a

thermosyphon system. These are a set of closed-loops heat pipes which use nitrogen

as the process fluid. All the LXe which is held mainly within the TPC is drained via

weir pipes and passes through a getter. It is then condensed back and re-circulated

back into the detector (see figure 2.6). This system not only cools, but removes any

impurities within the LXe which may have entered via outgassing of the materials
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Figure 2.6: Overview of the circulation system used in LZ. The gas region in the TPC
begins just after the wier used for draining the TPC. LXe travels from TPC to
the xenon tower, which uses a heat-exchanger to heat the LXe. Gaseous xenon
is pumped through a heated Zirconium getter, which then condenses back to
the detector. The radon removal system removes radon by treating the Xe gas.
Most of the xenon in LZ is held in the TPC [73].

used within the detector such as the PTFE panelling on the walls of the TPC. The

total time taken to purify and cool all the LXe (10 tonnes) is approx 2.4 days, with

a simplified image of the xenon system employed by LZ shows in figure 2.6.

2.3.5 Data Acquisition (DAQ) System

The signal generated from events which are captured from PMTs are amplified by

analogue front-end electronics, with two channels per PMT used for different am-

plifications. A high-gain channel is used for low energy events, and amplifies the

signal 40 times, whereas a low-gain channel is used for high energy events, and

amplifies by a factor of 4.

Each signal is digitised at 100 MHz, and utilises a 14-bit resolution with a dynamic
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range of 2 V. Because of the longevity of LZ in being able to run for long exposure

times, Pulse Only Digitisation (POD) is employed. This is where only the pulses

and the minimum amount of baseline are digitised [95]. More details about the data

which will be acquired throughout the LZ experiment will be presented in the next

chapter.

2.4 Calibrations

An extensive calibration effort is employed to accurately measure the response of

LZ. Both external calibrations (i.e. where calibration sources are placed outside

the TPC) and internal calibrations (where sources are placed within the TPC) are

employed, with the use of internal calibrations providing a way to calibrate the

detector whilst overcoming the self-shielding of xenon. An overview of all the

calibrations (both internal and external) is shown in table 2.3.

2.4.1 Internal Calibrations

For internal calibrations, specific isotopes of the relevant calibration material is in-

jected into the LXe circulation system. This allows for uniform mixing of the iso-

tope with the LXe in the TPC. These will be carried out for short-lived isotopes

such as 83mKr, and hence be stored in solid form to allow for easier handling.

For longer lived isotopes such as 3H, tritiated methane (CH3T) is stored as pres-

surised gas, and is injected with the LXe into the TPC. This pioneering method was

first used in the LUX experiment to calibrate the ER band to low energy thresholds.

The purification system employed by LUX (and thus LZ) was able to remove any

tritiated methane molecules from the TPC thus removing any backgrounds which

may have been associated with it [96].

2.4.2 External Calibrations

Between the Inner Cryostat Vessel (ICV) and the Outer Cryostat Vessel (OCV), 3

vertical stainless steel tubes exist to allow for calibration sources to be deployed,
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Table 2.3: The calibration sources used in the LZ experiment. The type of interaction, en-
ergy deposition, half-life, purpose and deployment is shown. Internal sources
are sources which are gaseous, and are injected within the Xe circulation. Cali-
bration sources (CSD) deploys sources between the ICV and OCV, and is mainly
used for gamma and neutron sources. External sources are those which are lo-
cated outside the OCV [91].

Isotope/Particle Energy [keV] half-life Purpose Deployment
3H - β 18.6 12.5 y ER band Internal
14C - β 156 5730 y ER band Internal

83mKr - γ 9.4, 32.1 1.83 h TPC (x,y,z) Internal
131mXe - γ 164 11.8 d TPC (x,y,z), Xe skin Internal

220Rn - (α,β ,γ) various 10.6 h Xe skin Internal
22Na - γ 511, 1275 2.61 y TPC and OD CSD
54Mn - γ 835 312 d ER response CSD
57Co - γ 122 0.74 y Xe skin CSD
60Co - γ 1173, 1333 5.27 y ER response CSD
133Ba - γ 356 10.5 y ER response CSD
228Th - γ 2615 1.91 y ER response CSD

124AmLi - (α,n) 1500 432 y NR band CSD
124AmBe - (α,n) 11000 432 y NR band CSD

252Cf - n Watt spectrum 1.65 y NR efficiency CSD
88YBe - (γ,n) 152 106 d NR response External

124SbBe - (γ,n) 22.5 60.2 d NR response External
205BiBe - (γ,n) 88.5 15.3 d NR response External
206BiBe - (γ,n) 47 6.24 d NR response External

DD - n 272 - 400 - NR light/charge yield External
DD - n 2450 - NR light/charge yield External

thus allowing sources specific to neutron and gamma calibration to be introduced.

These sources are used to calibrate the NR band, and characterise the response of

the system.

For external calibrations, a photo-neutron source was used to calibrate the low en-

ergy NRs which would be expected in LZ, with the source located above the outer

cryostat [73]. For NR calibrations, a mono-energetic Deuterium-Deuterium (D-D)

source is used, with the generator setup being placed outside the water tank. The

neutrons travel through the conduits in the water tank and outer detector to reach

the LXe in the TPC. This was also used in LUX for NR calibrations, and allowed

for in-situ calibrations at low energies [97].
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2.5 Backgrounds in LZ

The ability to understand and characterize the background activity present at LZ

is vital to achieve a world beating WIMP-nucleon sensitivity. This is as not being

able to fully understand the background components which the detector will see

can deter the ability to attribute statistical significance on any potential excess of a

detected signal. This section will highlight the main sources of backgrounds that

LZ faces.

2.5.1 Cosmogenic Backgrounds

These are backgrounds such as the muon flux, which at the surface level was mea-

sured to be (1.149±0.017)×10−2 s−1cm−2sr−1 [98]. This is mitigated by placing

the LZ detector at 4850 feet underground (4300 water equivalent), and surrounding

it by the water tank reduces the muon flux by a factor of 3× 106 relative to the

surface. By using the Outer Detector, the remaining muons are vetoed due to them

placing energy deposits in the water tank.

The muon flux can also generate neutrons by interacting with the cavern walls.

These neutrons are problematic, as they would create more backgrounds in the de-

tector. However, neutrons are expected to scatter multiple times within the TPC

[99], as well as create an energy deposit in the outer detectors. Hence these can be

vetoed thus reducing their contribution by a factor of 6 [100].

2.5.2 Surface Contaminants

Surface contaminants present a large amount of backgrounds to LZ. These can be

introduced via dust accumulation on the inner side of the PTFE during the assembly

process.

To try and mitigate this, LZ has set a target for plate-out of the radon daughters to be

0.5 mBq/m2 for the walls around the TPC, with a maximum of 10 mBq/m2 for all

other areas. The total amount of dust accumulation is set to 500 ng/cm2 to minimise

the risk associated with this. More details about radon plate-out will be discussed
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in Chapter 4 of this thesis.

2.5.3 Trace radioactive contaminants

Due to nuclear fission weapons tests being carried out by countries throughout the

20th century, the prevalance of radioactive isotopes in the air has increased [101]

[102]. 238U, 235U and 232Th and their progeny are the most prevalent within LZ,

with events within their daughter nuclei being of particular importance, since they

can lead to ER and NR within WIMP energy regions of interest. Hence, a thor-

ough screening of all detector components used in LZ has had to be undertaken

[73].

Natural xenon also contains a small amount of 85Kr and 39Ar. These mix uniformly

throughout the LXe, and lead to ER events mainly due to β -decay. To remove these

contaminants, LZ purifies the LXe using chromatography [73], with the reduction

of Kr/Xe being 0.075 ppt g/g (parts per trillion grams per gram of Xe), and Ar/Xe

less than 0.45 ppb g/g (parts per billion grams per gram of Xe).

Another source of backgrounds occur from cosmogenic activation of some of the

isotopes of Xe, mainly 129mXe, 131mXe, 133Xe, each with a half-life of 8.9 days,

11.9 days and 5.3 days respectively. However, due to their short lifetimes, their

contribution to the total background rate at LZ can be minimised by implementing

a cooling period of∼ 8 months of the LXe underground before taking any data. This

would reduce the contribution caused by these isotopes to negligible levels.

2.5.4 Irreducible backgrounds

LZ is sufficiently sensitive to measure neutrinos from many sources. Backgrounds

caused by neutrinos are also expected to contribute to the total backgrounds seen

by LZ, with the PP-solar neutrino flux expected to induce ER events. Additionally,

atmospheric neutrinos can also induce NR events, with 8B solar neutrinos causing

low energy NR events [91].

The total contribution of all the predicted LZ backgrounds for a 1000 day run is
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(a)

(b)

Figure 2.7: Projected backgrounds for single-scatter events only for a 1000-day run of LZ.
These do not include vetos by detectors. Pink line in both plots is the summed
total background due to Detector (Det), Surroundings (Sur) and Environment
(Env). Brown line in 2.7b indicates backgrounds due to Diffuse Supernova
Neutrinos (DSN). Orange line in 2.7b is backgrounds due to Atmospheric Neu-
trinos (Atm). Image taken from [91].
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shown in figure 2.7 [91]



Chapter 3

Machine Learning and LZ

Read! Your Lord is the Most Gracious. Who taught by the pen. He

taught man what he did not know.
Quran [96:3-5]

Algorithms that can ‘learn’ from a set of experiences has been the holy grail for

computer scientists and engineers since the first concept of a computer was devel-

oped. Algorithms that can perform such tasks are called Machine Learning (ML)

algorithms [103]. This ability to learn from experiences (data) can allow machine

learning algorithms to solve problems that are too complex for classical algorithms

- which rely on statically-defined steps, to compute. In this chapter, a survey of the

previous attempts to use machine learning within the context of WIMP dark matter

searches will be presented. An overview of machine learning concepts and ideas

will also be highlighted, with an emphasis on deep learning in particular and its use

within High Energy Physics. Since machine learning algorithms rely heavily on

large datasets, the LZ data set will be discussed, and the data acquisition procedure

of LZ.
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3.1 Overview of Machine Learning

Machine learning is a field within computer science which describes the ability of

an algorithm to learn features from a dataset [104]. The aim of the algorithm is to

improve its ability to learn patterns within the data automatically through experi-

ence, and without the need of intervention from a user [105]. It is an active field

of research within Computer Science, with research within the field increasing over

the last two decades [106].

Currently, machine learning is applied to solve four broad categories of problems:

clustering, classification, regression, and feature extraction and reduction [103]. In

classification problems, the goal of a ML algorithm is to learn the underlying pattern

which maps a set of features to a discrete label, with the aim to apply the learned

pattern on new input data. An example of such a method is the Random Forest

Classifier [107]. Regression problems are similar to classification tasks, with the

labels instead being continuous variables. Linear Regression [108] is an example of

such a regression task.

Clustering problems involves learning features within the dataset such that similar

data points can be grouped together. The data provided to the ML algorithm is not

labelled, hence the ML algorithm must find distinguishing features to separate the

data points into clusters. An example of such a method is the use of neural networks

[109] being applied to unlabelled handwritten digits.

Finally, in feature extraction and reduction problems, the goal of the ML algorithm

is to reduce the number of dimensions of a dataset such that the data can be repre-

sented by its most important features [110]. This can either be done by removing

a number of features that are correlated with each other or introducing a new fea-

ture which is combination of different features. An example of such a method is

Principle Component Analysis (PCA) [111], which works by projecting the input

data onto a lower dimensional space such that it maximises the variance within the

features [112]. Although PCA can be used by itself, it is also used as a data pre-

processing step to reduce the dimension of a dimensionally high dataset to allow
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other ML methods to be used.

The use of ML methods within different disciplines has increased over the past

decade, with applications in biology [113], law [114], security [115] and health-

care [116] providing new insights into each respective field. The next section will

highlight some of the applications of ML within Physics.

3.2 Machine Learning within Physics

The use of machine learning methods has been prevalent within physics experiments

over the past two decades [117], and has helped experiments such as the LHC in

the discovery of the Higgs boson [118]. Within Astrophysics, machine learning

has been used extensively [119] since the 1980s, with techniques such as Princi-

pal Component Analysis (PCA) [111] used in the classification of spiral galaxies

[120].

For cosmological simulations, machine learning has been used to help understand

dark matter haloes [121] by teaching machine learning algorithms how to popu-

late galaxies into dark matter haloes using data from the MUFASA simulations

[122].

Neural networks have recently been used on data from the XENON1T experiment

[123] to detect WIMP interactions [124]. There, a specific type of neural networks

called convolutional neural networks - described in more detail in the next section,

were applied to simulated events consisting of electron recoils (ER) as background,

and 500 GeV/c2 WIMP masses as signal, with an accuracy greater than 85% being

achieved.

Within the LZ collaboration, machine learning has been used to classify the wide

range of pulses recorded by the PMTs on simulated data [125]. To achieve this, a

combination of Random Forests [126] and neural networks were implemented, and

compared with classical methods. The results showed that the machine learning ap-

proach was able to achieve an accuracy greater than 99%, and was higher compared
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to the classical methods used.

3.3 Fundamentals

Machine learning algorithms are used for a wide variety of tasks, with some of

the most common being classification and regression. In classification tasks, an

algorithm is asked which category k a set of inputs xi belongs to. In regression, the

algorithm is asked to predict a numerical value given a set of inputs xi.

However, the learning process by which an algorithm learns is dependent on the

dataset it is given. The two main categories are then supervised learning; whereby

the target values y and input features xi are given to the learning algorithm, and

unsupervised learning; where only the input features xi is given.

This section will deal with the mathematical formulation for the learning process

of machine learning algorithms, with a specific emphasis on supervised learn-

ing.

3.3.1 The Learning Process

The data that is used as input for machine learning algorithms can be represented

in terms of a vector space X = Rn. In this vector space, a feature is defined to be

each dimension, with features being observable quantities. Hence, a dataset can be

defined as a set of feature vectors xi which are sampled from an (often unknown)

underlying probability distribution P(x). Therefore, a machine learning algorithm

can be defined as containing a model f and loss function L

f (x,ω)→ Y (3.1)

L( f ,x)→ R (3.2)

where f is a function which maps from a feature vector x to an outcome Y given

a vector of parameters ω; and the loss function L measures the performance of the
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model by taking into account the feature vectors and the outcome. An optimisation

method is needed to tune the parameters of the model by taking steps within the

learning process to minimise the loss.

Hence, ‘learning’ of a machine learning algorithm can be defined more generally

as “if its performance at tasks T, as measured by [some performance measure] P,

improves with experience E” [103].

3.3.2 Training an Algorithm

This learning process is often called ‘training’ and is similar to classical optimi-

sation problems, but with an added aim of the model to find the useful properties

that generalise over the training data in order to be applied to new datasets. This is

different to classical optimisation problems, where the aim is to find the parameters

that give the optimal loss [127].

Evaluating a machine learning model on an unseen test dataset can thus give a mea-

sure at how good the model is at generalising the patterns within the data. This test

dataset should be chosen such that it is representative of the whole distribution of

the dataset, and is not involved in the training process.

Mathematically, the training of machine learning algorithms takes the form of a

gradient-based optimisation, whereby

∇ωL = 0 (3.3)

Hence, steps are taken to descend the gradient of L with respect to ω to minimise

L.

Although this can be done over the entire dataset, it is often impractical due to

computational limitations caused by large datasets or high dimensionality. Hence,

smaller batches of the training dataset are often taken, with the gradient of these

smaller batches taken instead. This stochastic gradient descent (SGD) [103] method

thus updates the parameters of the model as
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ω → ω−η∇ωL (3.4)

where η is defined as the learning rate. This is a non-learned parameter that controls

the step-size change of each parameter. By making changes in the parameters ω

iteratively, the aim of an optimiser is to converge to a global minimum.

There are many more optimisation algorithms which work better compared to SGD,

with the Adam optimiser [128] often being used widely due to it incorporating a

‘momentum-like’ parameter during the update process. A review of different opti-

misers being found in [103].

3.3.3 Generalisation and Model Capacity

For every machine learning algorithm, the space of functions available to each

model to describe the observed (training) data is called the hypothesis space for

the model. An example of this can be the hypothesis space fro linear regression,

whereby the hypothesis space can only be for functions of the form

y =
N

∑
i=0

ωixi (3.5)

Hence, by having a larger hypothesis space available to a model, the capacity of the

model to generalise the data is increased, thus increasing its descriptive power [103].

However, restrictions must be made to the size of the hypothesis space available to

the model. A very large capacity can lead to over-fitting, whereas having a very

small capacity leads to under-fitting. These errors in generalisation can be seen

in figure 3.1, where various fits are done to a training dataset that is quadratic in

nature.

An under-fit model will not be able to generalise the data well, hence an estimate

will not fit the data. Hence, if the hypothesis space available to the model is too

small, then it would not be able to capture the generalisations of the model [103].

This can be seen by fitting a linear function to the data. In an over-fit model, the
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Figure 3.1: An example of Underfitting, Appropriate Capacity, and Overfitting. x was ran-
domly sampled, with y = x2 calculated. Underfitting shows a linear fit to the
data, with the fit function unable to capture the curvature of the function. Ap-
propriate Capacity shows a quadratic function fit to the data; indicating a good
level of fit hence generalising well to unseen data. The overfitting plot shows
a polynomial of degree 9 being used to fit the data, with the fit going through
all the points exactly. More information regarding the use of Moore-Penrose
pseudoinverse to solve for underdetermined equations found in [103].

model will give results that pass through all the points exactly, hence not being able

to generalise the data. This can be seen by fitting a 9-th degree polynomial to the

data.

To overcome this issue of model capacity, regularisation can be done to the model

parameters ω , and is beyond the scope of this thesis. Further information found in

[103].

3.3.4 The Random Forest

Instead of training only one machine learning algorithm on a training dataset, it

can be useful to train multiple models and combine their outputs e.g by a weighted

sum. An example of this is the Random Forest classifier, which is an ensemble of

Decision Trees trained together [107].

Although first developed in the early 2000s [107], random forests are some of the

most successful methods when used with large volumes of information. They are
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simple to use, with only a small number of parameters to tune for optimal results

[107].

Random Forest classifiers work by finding the most important features in a random

subset of features. By training multiple decision trees on these subsets of data,

the random forest classifier ensembles multiple decision trees. Therefore, when

unseen (test) data is analysed using the trained random forest classifier, the decision

tree ensemble all make a prediction. The random forest algorithm then picks the

classification with the most votes.

3.4 Deep Learning

Deep Learning is a subset of Machine Learning and is based on Artificial Neural

Networks (ANNs) in a way to mimic the neurons in the brain [129] [103]. They are

especially adept at working with datasets with a large number of features, with the

name referring to the number of layers of artificial neurons within a model. With

the advancements in hardware, namely GPUs, as well as having larger and larger

datasets available, deep learning has seen a large increase in development over the

past decade [106]. This section will highlight the main features of deep learning and

artificial neural networks. Convolutional neural networks, a type of neural network

used in computer vision, will also be discussed.

3.4.1 Artificial Neural Networks

Artificial Neural Networks mimic the neurons found in brain cells. A single neuron

is called a node, which receives an input signal consisting of a feature vector xi, a

collection of weights in a weight vector ωi, and bias b; and releases an output signal

y, which is calculated by applying a non-linear activation function f on the sum of

the inputs z. This can be expressed mathematically as
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Figure 3.2: Left: Image showing the inputs to a single neuron, which takes inputs from the
previous layer. These values are then combined using equation 3.6 to produce
an output. This output then feeds into the next layer. Right: Image showing
a complete neural network. Each neuron within the network is connected to
every other neuron in the previous layer, and every neuron in the next layer. The
process described on the Left takes place within every hidden neuron (shown in
green) within the network. Blue-filled circles indicate input data, with purple-
filled circles indicating the output of the network. Image taken from [130].

y = f (z) (3.6)

z =
N

∑
i=1

ωixi +b (3.7)

where N is the total number of neurons within the layer. An image of a single

artificial neuron can be seen in figure 3.2. The most common activation functions

generally used in neural networks are the tanh, sigmoid and rectified linear unit

(ReLU) functions shown below respectively.

f (z) =
ez− e−z

ez + e−z (3.8)

f (z) =
1

1+ e−z (3.9)

f (z) =

0 z≤ 0

z z > 0
(3.10)
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The need for non-linear functions used as activation functions arises due to the

fact that by using a linear function, the neural network would just output a linear

combination of the inputs to the neural network. Hence even by adding many layers

of neurons, a linear activation function would only output a linear combination of

the input features.

3.4.2 Assembling Neural Networks

Neural Networks come in very different architectures, each designed to solve a

specific set of problems distinct to the dataset, and each utilising different types

of neurons. In this thesis, feedforward neural networks will be discussed. These

are networks where the layers of neurons are assembled linearly, with each layer

feeding into the next layer until the output layer. The fully-connectedness of a layer

is when each neuron in layer l is connected to every other neuron in the adjacent

layers l +1 and l−1.

The number of hidden layers - layers between the input and output layers, can vary;

with an increase in hidden layers leading to higher model complexity [131]. Hence,

by having more hidden layers, the network can be modelled as a combination of

equation 3.6, and can be expressed [132] to give the value of any neuron as

zn+1
j = ∑

k
ω

n+1
jk yn

k +bn+1
l (3.11)

yn+1
j = f (zn+1

j ) (3.12)

where yn
k is the value of neuron k in hidden layer n - and is similar to equation 3.6,

and the weight vector ω
n+1
jk represents how neuron k in layer n affects neuron j in

layer n+1. Thus the output of the network is obtained by going through equations

3.11 and 3.12 layer by layer, starting at the input layer n = 0. Hence by increasing

the number of hidden layers, deep learning can allow for more complex datasets to

be generalised.
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3.4.3 Training Neural Networks

Training neural networks is similar to training any other machine learning algorithm

whereby the set of parameters ω is optimised in order to minimise the loss function

L. Hence, by using some form of gradient descent i.e. SGD, a single iteration of

training a neural network involves a forward pass, a backward pass, and updating

the weights.

In a forward pass, the input of feature vectors is run through the network, with the

application of the activation functions, weights and biases applied and stored. This

will continue until the final output y is outputted. The backward pass is similar

to the forward pass, but with the output layer vectors going back to the input. At

each neuron, the gradient ∂L/∂ωi j is calculated. Finally, the weights are updated

following gradient descent.

3.4.4 Network Depth

Although increasing the number of hidden layers in a neural network increases

the complexity, and thus allowing neural networks to solve more complex prob-

lems; an increase in depth produces issues such as the vanishing gradient problem

[133].

In the training process, the gradients calculated at each neuron can have gradients

within [0,1]. These would be multiplied by the number of layers in the network,

thus causing the gradients to become very small. This would result in very slow

training, with each weight update getting smaller. However, this generally occurs

when using the sigmoid activation function. If gradients become too large, then the

opposite issue can occur, whereby the gradients increase exponentially (thus called

the exploding gradient problem), when larger than 1.

3.4.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are designed to specifically work with im-

age data, and are used in computer vision tasks where object detection is necessary
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Figure 3.3: Image shows an example of 2D convolution when applied on an input data of
size 4x3. The kernel is applied to each section where the size of the kernel can
be overlaid. Different types of methods are used for when the kernel reaches the
edge of the 2D input, with the image showing a “valid” convolution - where the
output is only for positions where the entire kernel lies within the data. Kernel
values can be taken prior, or learnt during training. Image taken from [103].

[134]. This section will outline how convolutional neural networks work.

Images can be represented in data by pixel sizes for height and width, with the

depth usually referring to the red-blue-green (RGB) channels in an image. If a

fully connected multi-layer perceptron (MLP) [135] was used on image data of size

(100× 100× 3), there would be 30000 inputs for each neuron in the next fully

connected layer. This would lead to a large number of parameters to be calculated,

even for smaller networks. Having a large number of parameters would then lead to

a network that is difficult to train.

CNNs introduce two new types of neural network layers; convolutional and pool-

ing layers [136]. A convolutional layer applies a convolutional operation of the
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Figure 3.4: Image showing the effects of pooling on a dataset, with the two most common
pooling types mentioned - Max and Average Pooling. Max pooling can lead to
faster training, whereas average pooling retains more information thus keeping
translational invariance, but suffers from longer training time. Image taken
from [137].

form

s(t) =
∫

x(a)w(t−a)da (3.13)

where x(a) is the input of features, and w(t− a) the kernel function applied to the

input data. The output s(t) is generally referred to as the feature map [103].

Hence these convolutional operations apply local transformations to a local section

of the input. These are then applied to each local section on the input data, with the

total section then forming the feature map. These can be seen figure 3.3, where a

(2× 2) kernel is applied to an input of size (4× 3), with the local section of size

(2×2) applied on the input data.

Changing the sizes of the kernel function leads to different effects, which are nec-

essary to be taken into account for different datasets. An example of this can be that
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Figure 3.5: Image showing an example of a convolutional neural network architecture, with
a single convolutional and pooling layer, followed by a fully connected layer
leading to an output. Image taken from [138].

changing the kernel size can lead to feature reduction of the data.

Pooling layers are used in convolutional neural networks to reduce the size of the

previous layer to a single value by mapping sections of the input space. An example

can be seen in figure 3.4, which shows the most common types of pooling; Max and

Average Pooling. By using a pooling layer, the model complexity can be reduced,

with max-pooling often allowing for faster training of the network, as well as allow-

ing for translational invariance. However, by using average pooling, the region of

interest within the section is taken into account, thus not losing much information.

However, this does lead to networks with average pooling layers taking longer to

train.

Summary

Machine learning algorithms try to learn generalisations and patterns found within

an input dataset. They do this by optimising a set of weights by reducing a loss

function. A brief overview of machine learning algorithms was given in this chap-

ter to set the foundations for the methods and architectures used for the LZ direct

detection dark matter experiment. This ability to learn generalisations allows ma-

chine learning to be tested across a wide variety of diagnostic and analysis methods

in LZ. The next section will describe the data processing techniques deployed in the
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LZ experiment.
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3.5 LZ Data Generation

In order to be able to apply any machine learning algorithms to data, an under-

standing of the processes implemented to generate that data is required. LZ uses

its own simulations software package, which was designed and built simultane-

ously with the physical design and construction of the detector. This section will

briefly describe the LZ simulations package stack, which is built utilising closely

the GEANT4 package used extensively in High Energy Physics Experiments.

3.5.1 Simulations

Before any data acquisition can take place, an extensive simulations campaign must

be run in order to understand the response of detector apparatuses to background

and signal events. Monte Carlo simulations can be used to test theories against data

thus giving a deeper meaning of the physics involved.

By using simulations, the background rates involved in the LZ experiment can

be fully understood, thus giving the ability to set sensitivity limits and WIMP-

discovery potentials. Simulations also allow for the tuning and optimisation of

detector components and operations. Taking into account background rates spe-

cific to the materials used in construction, a detector optimised in detecting low

background dark matter signals can be built.

The LZ simulation stack works by simulating an initial energy deposit in LXe and

simulating its trajectory and energy depositions until an output that is designed to be

identical in data type to what real data would look like. The initial energy deposit is

run using an in-house code base developed on top of GEANT4 [139] called BAC-

CARAT (Basically A Component Centric Analog Response To Anything) [140].

This package is primarily used to generate and track particles within the detector

and to identify and record the points of interaction. It is also designed to be more

user friendly for easier operations.

By using a component centric approach, BACCARAT allows for more accurate

modelling of materials that are used in construction. This is vital in low background
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Figure 3.6: The LZ detector geometry constructed by BACCARAT. Image shows a blue
water tank with PMTs, with the Outer Detector shown in yellow. The ICV and
the OCV are shown in green, with the TPC in purple.
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experiments, where accurate detector component modelling is needed to mimic im-

purities found within the materials. It uses C++ for fast computations, and can

allow for component-specific background values and recording levels to optimise

data storage.

Implementing, and being built on top of GEANT4, BACCARAT also includes

physics modules within the GEANT4 toolkit such as G4EMLivermorePhysics. This

allows for effects such as those induced by low energy electrons ∼ 10 eV to be in-

cluded.

After running BACCARAT, the output can be fed into two different simulation

chains (see figure 3.7), depending on the intended use. A fast chain exists which

allows for quick simulations generally used on a smaller scale. Hence the output of

BACCARAT is given to NEST (Noble Element Simulation Technique) [141]. This

software package uses light and charge yield to convert the energy depositions to

S1 and S2 signals. However, the fast chain is unable to give PMT information such

as photon hits, or the times of interactions.

In order to simulate what a real-world event would look like, the full chain in the

LZ simulation stack is utilised. This is where the output of BACCARAT is fed into

the Detector Electronics Response (DER) package. This package models the PMT

and electronics response to photons reaching the photocathode. It can model PMT

specific features such as the quantum efficiency, afterpulsing and noise, and the

electronics used in the front and back-end of the PMTs, thus enabling the generation

of realistic waveforms.

This output is then saved in a data format identical to the format which will be used

when recording real data, mainly opened using the ROOT analysis package. This is

a package which utilises C++ in order to analyse large amounts of data [142].

However, saving the waveforms data requires extra storage space, hence the wave-

forms are then analysed using the LZ Analysis Package (LZap). This deconstructs

the waveforms into pulse and event-level information (instead of the time-series data

available in the waveforms) which are then used in analyses. This reduction creates
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Table 3.1: Parameters of the LZ detector used in simulations [91]. phd refers to photons
detected, ph referes to photon, SE to single electron, and PDE refers to photon
detection efficiency.

Parameter Value
Electric Field 310 V/cm

Electron Lifetime 850 µs
Electron Extraction Efficiency 95%

Average PMT Efficiency 27%
Average PDE in liquid (g1) 0.119 phd/ph
Average PDE in Gas (g1,gas) 0.102 phd/ph

Single Electron Size 83 phd
Effective charge gain (g2) 79.2 phd/e

S1 coincidence level 3 ph
Singe phe trigger efficiency 95 %

PTFE reflectivity in LXe 97.7 %
PTFE reflectivity in GVe 85 %

Reduced Quantities (RQs) files, which are saved in .root file format, utilising the

tree and branch structure available.

3.5.2 Detector Parameters

For BACCARAT to simulate accurately, the detector parameters seen in table 3.1

were used. After initialising an event to be simulated, the photons would travel

within the LXe, reflecting off the PTFE walls before being detected by a PMT. A

g1 value was set to represent the average successful recording of a single photon

by taking into account the PMT quantum efficiencies and reflectivity. g2 represents

the photons that are detected from a raw S2 signal. It takes into account the liquid-

gas boundary and the extraction efficiency, as well as the lost electron correction

this produces. This is different to the single electron size, which is the value of the

number of photons extracted for a single electron.

3.5.3 Sensitivity Calculations

A Profile Likelihood Ratio (PLR) method is used to calculate the LZ sensitivity

[143] [144]. The median 90% confidence level upper limit on a specific WIMP

mass is found for a background-only hypothesis. NEST is used to create probability
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Figure 3.8: The projected sensitivity of LZ to WIMP-nucleon elastic scattering for a 1000
day run, and with a 5.6 tonne fiducial mass [91]. The sensitivities of LUX (blue
line), XENON1T (green line) and PandaX-II (orange line) are also displayed
- with the latest PandaX-II result not displayed due to still undergoing peer-
review.

density functions (PDFs) parameterised in S1c and S2c (which are corrected values

for the S1 and S2 signal sizes), which are then fed into the PLR. BACCARAT

is used to simulate the expected background rates caused by material and surface

radioactivity. Hence, for a 40 GeV/c2 WIMP mass, the LZ sensitivity is calculated

to be 1.7× 10−48 cm2 [91] for a 1000-day run with a 5.6-tonne fiducial volume

mass, and can be seen in figure 3.8.

3.6 Data Flow

LZ aims to detect low energy events, with the focus on looking at events below

40 keV because of exponentially falling WIMP signal models. To compare the

amount of data storage that each event takes, the predecessor to LZ - the Large

Underground Xenon experiment (LUX), can be examined, where each event took
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Figure 3.9: Image showing the LZ data flow schematic [145].

203 kB of data storage (1.7 kB/channel). Since LZ has ∼ 4 times the number of

PMTs, each event in LZ will take ∼ 1.6 mB of data from the TPC only [73]. Hence

for a 1000 day science run, LZ expects to collect a total of 2 PB of data (equivalent

to 1015 bytes), with an average of 2.8 TB of data per day.

This section will highlight the main data engineering principles undertaken by LZ

to ensure data taking happens efficiently and continuously.

Figure 3.9 shows a schematic of the data flow implemented by LZ. Five Event

Builders take input from the 15 Data Collector disks (DAQ1-15) to assemble events

by extracting relevant information. These are stored on local disks underground

before being transferred to the surface.

The data is then transferred to two Data Centres for storage and analysis. These are

the US Data Centre (USDC) located at UC Berkeley and NERSC; and the UKDC,

located at Imperial College London.

A portion of the data is analysed via the Data Quality Monitor (DQM). These are

separate servers located at the Davis Laboratory which monitor the performance of

the detector. The DQM will monitor detector parameters such as trigger rates and

the hit distributions of the PMTs. This allows for instant detector monitoring if

significant deviations were to occur. All the data is also stored on physical tapes for
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archiving as a final redundancy.

3.7 Summary

An overview of the theory of Machine Learning techniques used was presented, and

these will underpin the remainder of the thesis. The data upon which these machine

learning techniques will be applied to was also discussed, with an overview of the

simulation program BACCARAT given, as well as the LZ computing stack. Finally,

an overview of the data flow that will be used by LZ was given, highlighting the final

data storage capacity expected after Science Run 1 - the first science dataset that will

release results in late 2021/early 2022.



Chapter 4

Radon backgrounds in LZ

He is the One who created seven heavens, one above the other. You

will never see any imperfection in the creation of the Most

Compassionate. So look again - do you see any flaws? Then look

again and again — your sight will return frustrated and weary.
Quran [67:3-4]

Radon was discovered in 1900 by Friedrich Ernst Dorn, who showed a radioac-

tive gas emanating from radium while studying its decay chain [146]. At normal

room temperature, radon is a colourless, tasteless and odourless radioactive gas,

with all of its isotopes being radioactive. Due to advancements in being able to

reduce radiogenic backgrounds in LXe within direct detection dark matter exper-

iments thanks to high precision radio-assays of components [147] [148] and 3D

vertex reconstruction, backgrounds attributed to radon are one of the biggest con-

tributors to the WIMP search Regions of Interest (ROI). This chapter will focus on

measuring radon within the LZ experiment; highlighting methods to measure its

activity using classical methods, as well as using Machine Learning.
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4.1 Overview

Radon is a naturally occurring noble element present in the air. It has an atomic

number of 86 and is the 6th noble gas in the periodic table. It is a monoatomic and

inert gas that is naturally found in nature. Due to being a noble element, radon has

long diffusion lengths within solids, thus making it difficult to remove chemically,

hence mitigation of radon is done by employing physical means.

Radon has relatively large melting and boiling points at 202K and 211.5K, and a

density of 9.7 kg/m3. Radon is produced via the decay of its parent radium, and its

activity can vary significantly due to differences in the environment. Atmospheric

activities of radon are approximately 10 Bq/m3, with indoor activities reaching up

to ∼ 50 Bq/m3 [149] [150].

Radon related backgrounds were analysed using the 3rd Mock Data Challenge

(MDC3) dataset produced by the LZ collaboration, with the challenge running be-

tween July - October 2019. The dataset was the final Monte Carlo simulation based

challenge produced by the LZ collaboration and is the closest resemblance to real

data being produced during the first Science Run, due to start in late 2021.

Background activities for radon and its daughters were not made public to the col-

laboration, hence allowing for a blind analysis of the data and testing of algorithms

in preparation for data collection and rapid turnaround of results. This blinding was

to ensure no bias was present within the analysis of the dataset when quantifying

backgrounds.

This chapter begins with an overview of the radon decay chain, the backgrounds

produced from its daughters and their effects on the WIMP search ROI. A tagging

algorithm to identify radon rates using the Bismuth-Polonium decay chain will be

discussed, as well as results for implementing it on the MDC3 WIMP search dataset.

Analysis of the cuts used for the BiPo tagging will be shown, as well as results

calculating the radon activity. The use of Machine Learning as another possible

way to find radon related backgrounds will also be introduced and discussed.
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Figure 4.1: Image showing the 238U decay chain. Image adapted from [151].
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Figure 4.2: Image showing the 232Th decay chain. Image adapted from [151].
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Figure 4.3: LZ sensitivity projection to spin-independent WIMPs for different concentra-
tions of radon. A goal concentration of 0.67 mBq is shown along with a purple
line, whereas the reduced (dashed purple line) gives a “worst-case” scenario
[73].

4.2 Radon Physics

222Rn is produced in the tail of the 238U decay chain, as shown in figure 4.1, and

decays via alpha and beta decays until reaching the stable Lead isotope. Due to

the half-lives of all the daughters ranging vastly from milliseconds to thousands of

years, secular equilibrium is achieved where the quantity of 222Rn remains constant

because its production rate is equal to its decay rate. This occurs when there is

a difference in the relative half-life of parent and daughter nuclei. Therefore, by

measuring the activity of one part of the chain, the activity of the rest of the chain

can be inferred. This method is used when determining the activity of 222Rn, as it

allows for the measurements of 222Rn daughters.

The main method of radon entering the TPC and causing a background is due to

the presence of primordial 238U. Thus, materials exposed to air which have 222Rn

present can cause isotopic plate-out on the surface [152]. 210Pb, which has a half-
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Figure 4.4: Image showing the branching ratios of the BiPo-214 decay.

life τ1/2 = 22.3y, is the main isotope within the 238U chain which causes a breaking

in this secular equilibrium. Dust molecules also present a large source of radon

background, with a cumulative dust count of 1g [91] being set. The effect of radon

backgrounds on the WIMP search sensitivity can be seen in figure 4.3.

Materials that are in direct contact with gaseous or LXe are surfaces that contribute

the largest to the backgrounds caused by radon. With a half-life of τ = 3.8 days,
222Rn is expected to mix homogeneously with the active volume.

The alpha decays present within the radon decay chain are of high energy, with Q-

values exceeding 5.5 MeV. This energy is above the WIMP search ROI, however,

these can often lead to other backgrounds from the recoiling nucleus. These alphas

are easily detected within the data due to their large energy deposits corresponding

to large S1 signals. The beta decays present affect the WIMP Search ROI more, with

backgrounds contributing to the ER background - these will be further discussed in

the following sections.

The main reason for such a high background is the naked-beta decay which occurs

from the ground-state to ground-state of 214Pb - which is found within the 222Rn

chain, to 214Bi at a branching ratio of 9.2%, as seen in figure 4.4. A naked-beta

decay is when the 214Pb decays without emitting a gamma. When the emission of

the gamma occurs, the Skin or Outer Detector (OD) is able to detect this gamma,



75 4.2. Radon Physics

Table 4.1: Table showing the details of isotopes in the 222Rn decay chain until 2214Po.

Isotope Decay Q-Value [MeV] τ1/2 Daughter
226Ra α 4.87 1602 yr 222Rn
222Rn α 5.59 3.82 days 218Po
218Po α 6.12 3.07 min 214Pb
214Pb β 1.02 26.9 min 214Bi
214Bi β 3.27 19.8 min 214Po
214Po α 7.83 162.3 µs 210Pb

hence veto the event. However, during naked beta decay, the decay would produce

a uniform ER background, with a β -spectrum reaching 1019 keV. A summary of

the decay of each isotope in the 222Rn sub-chain is found in table 4.1.

4.2.1 Radon projection in LZ

LZ carried out large scale measurements of individual material components at var-

ious facilities to find the contribution that each component would give to the total

radon background present in LZ. The ICV was also measured at various stages of

the construction, with a final assay made after the completion of the ICV.

At cold temperatures where LZ is expected to operate (175.8 K), radon diffusion

from materials in contact with the LXe is suppressed. This, coupled with how

emanation rates are also affected by the type of material - with porous materials

such as ceramics and plastics yielding larger emanation rates; result in uncertainties

of the suppression rates at cold temperatures. This leads to a projected radon activity

of 11.0± 1.0 mBq under less-conservative cold suppression rates [148], and with

the deployment of the radon removal system to also lower radon levels.

4.2.2 Investigating the shape of the radon decay spectrum in

LZ

The decay of 222Rn observed in LZ looks like figure 4.5, which shows the electron

recoil energy [keV] and rate. The plot shows all the beta decays within the 222Rn

chain which causes a background. The reason for the shape is due to electromag-

netic interactions between an excited nucleus and the inner shell electrons after a
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Figure 4.5: Plot showing the simulated decay spectrum of 222Rn using BACCARAT (black
line), overlaid with energies caused by Internal Conversion [153].

beta decay has occurred. This interaction can cause the inner electrons to be ejected,

which then causes a hole to appear. This is then filled by electrons from the shell

above, with the process being repeated by subsequent holes being produced within

inner shells. This process leads to x-ray and auger electrons being released.

The beta decay spectrum of 214Pb is the main component of background for LZ.

There are 3 main branching ratios for the decay of 214Pb to 214Bi. The first branch

is called the naked-beta decay. This occurs 9.2% of the time, and is the decay that

affects the WIMP search ROI the most. This is as this decay does not have an

associated γ-ray, hence vetoing this event is difficult.

The next decay which affects the shape of the 222Rn decay has a branching ratio

of 41.1%, where a step at 295 keV occurs, followed by the remaining energy being

shared for beta decay. Another jump in the rate seen in figure 4.5 occurs at energy

325 keV, and has a branching ratio of 46.5%. Finally, an increase occurs at 839 keV,

with the remaining 180 keV going towards beta decay. This has a branching ratio

of 2.8%.
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4.2.3 Investigating the Radon Decay Chain

In order to fully understand the relationship between the progenies of 222Rn and its

daughters, it can be helpful to consider the following notation to help keep track of

all the atoms and their decay constants:

222Rn→218 Po→214 Pb→214 Bi→214 Po (4.1)

N0,λ0→ N1,λ1→ N2,λ2→ N3,λ3→ N4,λ4 (4.2)

Thus, the number of atoms of a given daughter of 222Rn can be modelled by looking

at the decay of its direct parent isotope. This can be represented as

dNi

dt
= λi−1Ni−1−λiNi (4.3)

The number of atoms for each daughter isotope and their number Ni can be calcu-

lated as time t evolves, by iteratively solving equation 4.3 starting with i = 0 rep-

resenting 222Rn, and taking initial starting conditions i.e. t = 0,N0 = xBq,N1−4 =

0.

Figure 4.6 indicates that the activities of all progenies of 222Rn until 214Po reach

equilibrium within∼4.5 hours after an initial activity of 222Rn. Hence by measuring

the activities of 222Rn daughters, the initial activity of 222Rn can be inferred, pro-

vided that equilibrium has been achieved. By measuring the activities of a Bismuth-

Polonium (BiPo) decay, which has a known event topology within the LZ detector,

the activity of 222Rn can be measured.

4.3 Bismuth-Polonium (BiPo) Decay

As radon diffuses into the TPC from the materials, it decays into 218Po and 214Pb

ions via alpha decay. The 214Pb decays via beta decay to form 214Bi ion, which
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Figure 4.6: Plot showing the change in activities of 222Rn and its daughters, with an initial
222Rn activity of 1mBq. Plot adapted from [154].

then decays again quickly via beta decay to form 214Po. These ions drift towards

the cathode. The half-life of the 214Po is 164.3 µs, and releases an alpha particle

of energy 7.7 MeV to form the stable 210Pb, which has a half-life of 22 years. This

section will discuss how to infer 214Pb activity, using measurements of 214Bi and
214Po and the fact that they can be seen together in a single event due to the short

half-life.

4.3.1 Monte Carlo dataset

The datasets used for this analysis were the MDC3 background dataset, be-

tween dates = [2018-04-06 to 2018-04-19] hence comprising of 14 days of sim-

ulated WIMP search data. Initial coincidence cuts were applied to the dataset

PMTcoincidence > 2, hence removing any pulses which had a PMT coincidence of

less than 2 PMTs. When calculating the activity, the live times for each individual

file was found, with the total livetime tlivetime = 1137156 s used. This was due to

some of the files being resulting in errors during the processing step of the MDC3

simulation.
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Figure 4.7: Image cartoon showing a ‘perfect’ BiPo event signal within LZ. Pulse heights
and widths are not to scale, and only representative to relative sizes.

4.3.2 BiPo Tagging Algorithm

To tag the BiPo event present within the 222Rn chain, characteristics of the decay

were used as the basis for the tagging algorithm. A BiPo decay is defined as a beta

decay followed by a relatively quick alpha decay of fixed energy Q = 7.7 MeV, as

can be seen in the schematic in figure 4.7. It was assumed that all the 214Bi would

decay into 214Po since there is a branching ratio of above 99%. To tag a BiPo, all

S1 pulses per event were put into pairs with the time difference tdi f f between each

pair found. Since the 214Po has a half-life t1/2 = 164.3 µs, S1 pairs which had a

time difference less than 164 µs were used. The application of this can be seen in

appendix A on line 473.

When determining the time difference to choose between the two S1 pairs, different

time separations were considered, with the aim to find out how many BiPo events

would be included within the time separation. The percentage of particles with a

time difference tdi f f between two S1s can be calculated as:

∫ tdi f f
0 λe−λ tdt∫

∞

0 λe−λ tdt
= 1− e−λ tdi f f (4.4)
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Table 4.2: Table showing the percentage of BiPo events remaining for different tdi f f val-
ues.

tdi f f [µs] Percentage within 214Po Percentage within 212Po
0.5 0.21 68.5
1 0.42 90.1
5 2.1 99.9
10 4.1 99.9

100 34.4 100.0
164 50.0 100.0
200 57.1 100.0
300 71.8 100.0

where λ = ln(2)/t1/2 and is the activity of the 214Po.

Equation 4.4 can be used to calculate the percentage of BiPo events remaining

within a 0− tdi f f between the two S1s of a BiPo, as can be seen in table 4.2.

Table 4.2 shows that keeping a large time difference between two S1s increases the

percentage of BiPo events observed. However, by keeping a large time difference,

the possibility of BiPo events leaking into another event time window is increased,

as well as adding events that may not be BiPos.

BiPos found in the 220Rn chain also have the same decay profile as a BiPo within the
222Rn chain, however the 212Po has a shorter half-life t1/2 = 300ns. Table 4.2 also

shows the percentage of particles remaining within tdi f f between two S1s for BiPo-

212. After 1µs, more than 70% of 212Po have decayed. Hence, the time difference

between 214Po events was changed to be [1−164]µs.

The false acceptance rate (FAR) and false rejection rate (FRR) for applying a timing

cut of tdi f f = [1− 164]µs can be calculated when finding BiPos. The false accep-

tance rate is the amount of false events (i.e. not BiPos) which would accidentally

pass through this timing cut. Since 212Po has a short half-life (300 ns), a BiPo decay

within the 212Po chain would not be able to pass through the upper limit of this cut

(164µs). However, more than 9.9% of 212Po would remain after the lower limit of

the timing cut has been applied (1µs). Hence, a false acceptance rate of 9.9% is

associated with the timing cut tdi f f = [1−164]µs.
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Figure 4.8: Histogram showing Pulse Areas for the known alpha decays of 222Rn and 218Po,
each decaying with energy 5.5 MeV and 6 MeV respectively. Vertical red and
green lines show peak S1 pulse areas in detected photons (phd). Gaussian
fits are applied to the peaks, with a mean (mu) and standard deviation (std)
calculated, and used to calculate the uncertainties in figure 4.9.

The false rejection rate is the rate at which correct BiPo events would be rejected

by a cut. Since the half-life of 214Po is 164.3µs, the upper limit of the timing cut

would remove 50% of actual BiPo events. The lower limit on the timing cut would

also remove 0.42% of correct BiPo events from passing through the cut. Hence, this

would give a FRR of 50.4% for the timing cut.

The second S1 pulse in each S1 pair would correspond to the α-decay of the 214Po,

hence having a known energy of Q = 7.7 MeV. To estimate the pulse area of this S1,

known pulse areas of two α-decays corresponding to the 222Rn and 218Po, as seen

in figure 4.8 were used. The pulse area was then extrapolated by assuming a linear

relationship between the pulse area and energy of the α-decay of the form

S1[phd] = LY×Energy[MeV] (4.5)

Hence, the S1 pulse area of an α-decay of the 214Po was estimated to be 85000±
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Figure 4.9: Plot showing pulse areas of 222Rn and 218Po (blue dots) taken from figure 4.8,
with the error bars being the width of the fitted Gaussians. These are then
extrapolated to find the Pulse Area in detected photons (phd) for the 7.7 MeV
α-decay of 214Po. Red shaded region shows the±σ uncertainty in the projected
values of the pulse area of 214Po. This gives a S1 pulse area for 214Po of 85000
± 960 phd.

960 detected photons [phd]. Since the second S1 would correspond to the alpha of

the 214Po of energy 7.7 MeV, its pulse area was used to limit which areas would

correspond to the 214Po. Hence, a pulse area limit of 85000± 960 was placed on

the second S1 pulse pair.

The first S1 pulse in a BiPo would correspond to the 214Bi β -decay, therefore there

was a range of energies that the associated β particle would have up to Q = 3.28

MeV. However, this is the upper bound, with the energy of the 214Bi being shared

between the beta particle and the antineutrino produced in the decay.

4.3.3 Cuts to S1 pulses

Top-Bottom Asymmetry (TBA) was also used to distinguish between different α-

decays. TBA is the ratio between the light collected the top and bottom PMT arrays,

and is defined as:
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Figure 4.10: Plot showing Pulse Area vs TBA for all S1 pulses. Each vertical band repre-
sents an α-decay of 222Rn daughters, with the first band due to the 5.5 MeV
α-decay of 222Rn, the second band representing the 6 MeV α-decay of 218Po,
and the third band representing 7.7 MeV α-decay of 214Po.

TBA =
Top−Bottom
Top+Bottom

(4.6)

where Top and Bottom is the light collected in the respective PMT arrays. Since

high energy α-decay would produce large amounts of light, TBA can be used to

estimate where in the TPC an α-decay took place. A large Top value would imply

an α-decay near the top of the TPC, which would correspond to a TBA approaching

1. A TBA near -1 would imply an event near the bottom of the TPC.

However, since LZ has a gas-liquid interface near the top of the TPC, there would

be internal reflection of the light produced from an S1 pulse, hence TBA values

would be expected to be nearer to -1 for high energy α-decays, as more light would

be collected at the Bottom PMT arrays. This can be seen in figure 4.11 which

shows pulse area vs TBA. The majority of the S1 α-decays have negative TBA
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Figure 4.11: Plot showing Pulse Area vs TBA. S1 pulses within an event are paired to-
gether, with the time difference tdi f f calculated. Orange points show events in
for which tdi f f is within [1,164 µs], thus corresponding to a BiPo decay.

values.

The vertical bands seen in 4.11 were identified to be the α-decays found within the
222Rn decay chain, with the orange band showing all S1 pulse areas of the second

S1 between all the S1-pairs with tdi f f within [1,164µs]. Hence, only S1 pairs in

which the second S1 pulse would be within the orange region seen in figure 4.11

would go onto the next stage of the BiPo tagging algorithm.

By looking at figure 4.11, the bands exist as bands of finite pulse areas due to the

definite energies of the α-decays within each 222Rn isotope. The pulse areas shown

by the orange bands are the α-decays of 214Po and 212Po, each belonging to the

radon and Thoron chains respectively. These two bands within the TBA vs pulse

area plot would be expected to occur due to the unique event topology of a BiPo

event. The relative number densities of the 214Po and 212Po bands in figure 4.11

(shown more clearly as the red and green bands in figure 4.15) are also indicative
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of the number of BiPo events expected to pass the initial tdi f f cut.

Although α-decays would be expected to have a definite pulse area value due to

the α energies being definite, a variation within the S1 values is observed relative

to the TBA values, as seen in figure 4.11. The majority of S1 events in the bulk of

the Liquid Xenon are totally internally reflected and collected in the bottom PMT

arrays. There is a dependence of the Light Collection Efficiency (LCE) with depth

for S1 interactions within the Liquid Xenon. The bottom PMT array would see the

majority of events due to the strong internal reflection of the VUV light occurring

at the liquid surface. Hence, S1s occurring at the bottom of the TPC would have a

higher detection efficiency compared to events occurring near the top [155].

4.3.4 Cuts to S2 pulses

A limit was also places on the S2s for each event passing through the initial S1 cut.

This was done by placing a limit on the minimum peak amplitude that the S2 must

have. Peak amplitude was chosen instead of pulse area for the S2 pulses, as it was

often found that electron trains, which occur after a large S2 pulse, get misclassified

as S2s. These misclassified S2s are large in time and short in amplitude, hence

would still have an S2 value comparable to an S2 associated with a BiPo.

Figure 4.12 shows the number of S2 pulses per event after applying the initial limits

on the S1 pairs from section 4.3.3. The histogram shows that there are a large

number of S2s per event, hence only using the number of S2s as a cut would be

insufficient.

However, the majority of these S2s would be misclassified electron-trains being

classified as S2s, hence by placing a bound of peak amplitude pA > 500phd/s ,

figure 4.13 shows the remaining number of S2s per event. These are S2s which

have a peak amplitude greater than 500 phd/s only.

Since the first S2 in a BiPo topology would correspond to the β -decay of the 214Bi, it

would have a range of values, as the energy released is shared between the β particle

and anti-neutrino. Thus, for BiPo decays with a lower β energy, the associated S2
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Figure 4.12: Plot showing the number of S2s per event.

Figure 4.13: Plot showing the number of S2s per event.
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Table 4.3: Table showing the number of events remaining after applying each successive
cut.

Cut applied Events remaining
No cut 1778204

tdi f f only 34393
S2 cut only 13718

Total 11008

would also be smaller. Hence this could contribute to the number of events with

only 1 S2 above 500 phd/s, as seen in figure 4.13.

4.3.5 Example of BiPo Event

Pulses that have been tagged by the BiPo algorithm can be seen in the LZ event-

viewer in figure 4.14. Figure 4.14 shows an example of a clean BiPo event. The S1s

are followed by two high energy S2s, with the time between the S1 and S2 pulses

being the amount of time taken for the drift of the electrons within the TPC.

The time between the S1 pulses indicates that time taken for the 214Po to decay,

whilst the time taken for the first S2 pulse to arrive shows the time taken for the

electrons to drift from the initial β -decay.

4.3.6 Analysis and Discussion

After applying all the cuts mentioned in this section, the total number of BiPo

events found was NBiPo = 11008. By using table 4.2, this number would only ac-

count for 49.8% of actual BiPo events, hence the total number of BiPo events can

be estimated to be double NBiPo, thus giving Ntot = 22018. This gave an activity
222Rn = 3.58 µBq/kg±0.04 µBq/kg.

To account for the uncertainty in the measurement, the Poisson error was used,

which gave an error of e = ±0.04 µBq/kg. Error due to the pulse classifier was

also taken into account, as the LZap classifier has a pulse classifier that is 99%

accurate. This gave an additional error of e =±0.01 µBq/kg.

By using a cuts based method to analyse the decay of a BiPo event, an estimate for
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Figure 4.14: Event trace showing a tagged BiPo pulse using the LZ Event Viewer. Top
shows a whole BiPo event from the start of the trigger to the end, thus showing
the length of a typical LZ event recorded to data. Middle plot shows the
S1 events only of the BiPo, with the time different between S1 pulses being
∼ 36 µs. Bottom plot shows the S2 events corresponding to the BiPo event,
with information regarding the first S2 pulse being highlighted. The event
follows the ‘perfect’ BiPo schematic shown in figure 4.7.
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the activity of 222Rn was found to be 222Rn = 3.58 µBq/kg± 0.04 µBq/kg. The

region which this cut based method extracted (shown in orange in figure 4.11) is

defined to be the BiPo region, hence all events within this region are defined to be a

BiPo events.

Estimates for the false acceptance and rejection rates can be found by looking at

the cuts applied when defining this region, with the tdi f f = [1,164µs] cut giving an

upper estimate for the FAR of 9.9%, and a FRR of 50.4%. However, the upper limit

of the timing cut was based on one half-life of 214Po of 164 µs, which corresponds

to exactly half of the estimated number of decays that would be expected. Since

the number of expected BiPo events is double the number of BiPo events found,

the effect of the upper limit on the FRR will be negligible, thus giving a FRR only

dependent on the lower tdi f f = 1µs, with a value of 0.42%.

4.4 Machine Learning for BiPo Tagging

Machine Learning is an area within Computer Science that allows for computers to

learn generalities from data, which can then be applied to new datasets. Although

the 1950s saw the advent of the Turing Test - a test designed to test the cognitive

abilities of a Machine, as well as the first Artificial Neural Network being devel-

oped, research - and thus excitement, has increased over the last few decades due to

the increasing computational resources available to help train algorithms.

This section will apply some fundamental Machine Learning classifiers to the LZ

dataset to help find BiPo events within the dataset.

4.4.1 Decision Tree Classifier

A Decision Tree classifier was used to train on 2000 BiPo events (shown in red in

figure 4.15) from the 222Rn chain. This training dataset was chosen at random from

within the BiPo-214 region, which had a total of∼ 6000 events, thus corresponding

to∼ 33%. 2000 non-BiPo events were also chosen to be within the training set, and

were chosen to be at random from outside the BiPo region of interest.
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Figure 4.15: Scatter plot showing the different locations of the BiPo events, with red show-
ing BiPo-214, and Green showing BiPo-212 events.

A Decision Tree classifier, discussed in chapter 3 of this thesis, was initially chosen

as a classifier due to its versatility when being used with numerical and categorical

data types. The rules that govern a Decision Tree classifier are easier to generate

and understand, and the classifier requires little data manipulation when being used.

Python 3.7.1 and scikit-learn [156] was used to implement the Decision

Tree algorithm (and later the Random Forest algorithm) when developing a machine

learning algorithm for BiPo analysis.

The training data was in tabular format, with Reduced Quantities (RQs) chosen

which would represent a BiPo event as a whole. 19 RQs were chosen as features

for the training set, and represented the features of the 2 S1s, as well as the time

difference between them (see table 4.4 for list of RQs used). Any RQs which were

event-specific, and not generalised for a BiPo event, were removed i.e. start time

of S1s were not included, as these are event specific. However, the time difference

between two S1 events was chosen as a feature, as these would be latent features

for all BiPo events.

The trained classifier was tested on a subset of unseen data initially to optimise its
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Table 4.4: Table describing the total number of Reduced Quantities (RQs) used as features
for the inputs to the Machine Learning algorithms. A short description is also
given regarding what they represent. aft5 is time (ns) at which a pulse reaches
5% of the total area relative to the start of the pulse.

RQ name Description
area 1 Pulse Area of first S1 pulse
area 2 Pulse Area of second S1 pulse
TBA 1 TBA of first S1 pulse
TBA 2 TBA of second S1 pulse
promptFaction 1 Prompt faction of first S1 pulse. Prompt faction

is the ratio of the area of a pulse within the first
50 ns to the total area of the pulse.

promptFaction 2 Prompt faction of second S1 pulse.
peakAmp 1 Peak amplitude of the first S1 pulse
peakAmp 2 Peak amplitude of the second S1 pulse
peak time 1 Time taken to reach peak amplitude for first S1

pulse
peak time 2 Time taken to reach peak amplitude for second

S1 pulse
pulseArea50 1 Area in fixed integration window ranging from

aft5 to 50 ns after aft5 for first S1 pulse
pulseArea50 2 Area in fixed integration window ranging from

aft5 to 50 ns after aft5 for second S1 pulse
pulseArea100 1 Area in fixed integration window ranging from

aft5 to 100 ns after aft5 for first S1 pulse
pulseArea100 2 Area in fixed integration window ranging from

aft5 to 100 ns after aft5 for second S1 pulse
rmsWidth 1 Width of pulse for first S1 pulse
rmsWidth 2 Width of pulse for second S1 pulse
FWHM 1 Full width half maximum for first S1 pulse
FWHM 2 Full width half maximum for second S1 pulse
time diff (ns) time between both S1 pulses
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Figure 4.16: Scatter plot showing what the ML classifier classified as BiPo events. These
events were not in the training set.

accuracy. By tuning the hyperparameters (such as the depth of the tree) of the Deci-

sion Tree, a classification accuracy of 98.1% was achieved. Accuracy is defined as

correctly identifying whether an event was a BiPo or not, from the test dataset.

Figure 4.16 shows the results from the Decision Tree classifier with input test data

being the remaining events. The results show what the classifier classified as BiPo

events. These were events that were not within the training set.

The results show that the classifier was able to recover the remaining 4000 events

from within the BiPo-214 spectrum, with only 74 events being misclassified as not

a BiPo. Figure 4.16 also shows that the classifier was able to recover events from

within the BiPo-212 band. Although these were not included from within the train-

ing set, the overall time-series event topology of a BiPo-212 is similar to a BiPo-

214 event topology. This would suggest that the classifier was able to generalise

the unique qualities of BiPo events. These generalities would also be similar for a

BiPo-212 event, hence indicating that the classifier did not overfit the data.

The results also show events that are not within either of the red and green bands
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Figure 4.17: Image showing the confusion matrices for the Decision Tree classifiers. A
confusion matrix is a specific table layout to allow for the visualisation of the
classifications of an algorithm. Each box (starting from the top left, and going
in a clockwise manner) represents the True Positive (TP), False Negative (FN),
True Negative (TN) and False Positive (FP) of a classification output [136].

shown in figure 4.15. These are events that the ML classifier has classified to be

BiPo events, but were completely missed out using a classical analysis. In total,

57 extra events were classified as BiPos by the Decision Tree classifier, but which

were not within either of the 214Po or 212Po bands. This gave a total rate for 222Rn=

3.60 µBq/kg ±0.04 µBq/kg using the Decision Tree classifier.

The confusion matrix can be used to calculate the FAR and FRR [136] of the Deci-

sion Tree classifier using the equations
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Figure 4.18: Event Waveform showing a classified BiPo event using ML which was not
within the original ROI. The characteristic signature of a BiPo can be seen,
with two S1s followed by two S2s.

FAR =
False Positive

False Positive + True Negative
(4.7)

FRR =
False Negative

False Negative + True Positive
(4.8)

Thus, by using the confusion matrix as seen in figure 4.17, a FAR of 1.74% and a

FRR of 1.89% is found.

Figure 4.18 shows an example of such an event. From the waveform spectrum, a

BiPo event is seen with 2 S1s which have a time difference of less than 164 µs, and

the second S1 corresponding to the alpha of the 214Po. These are followed by 2 S2s

of high energy.

4.4.2 Random Forest Classifier

As well as a Decision Tree classifier a Random Forest classifier was also trained

on the same data set to improve the classification accuracy, as well as compare

between the classifiers. This is as Decision Trees can also suffer from overfitting,

hence when being given new unseen data, the classifier may not be able to classify

properly. This results when the classifier has not generalised the features unique to

a BiPo, hence not being able to apply those generalisations to different datasets. An
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Figure 4.19: Confusion matrix for the Random Forest classifier tested on a subset of the
test dataset.

example of this would be when a BiPo event occurs near the end of an event. In an

overfitted Decision Tree, the event would not be classified as a BiPo, as the majority

of BiPo events occur near the start of an event.

A Random Forest is a collection of Decision Trees being applied to the data, thus is

an example of Ensemble Learning. Ensemble Learning is when many classifiers are

applied to a dataset for a classification task, with the aim of averaging the results,

thus leading to a more accurate classification.

By applying a Random Forest classifier to the same train and test dataset as that

used for the Decision Tree Classifier, an accuracy of 99.2% was found. This is to

be expected, as due to Random Forest being comprised of many Decision Trees,
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thus results would be better compared to a normal Decision Tree. The accuracy was

calculated by comparing with the MCTruth information, with the confusion matrix

for both ML classifiers shown in figures 4.19 and 4.17. Hence, by using the Random

Forest classifier, a total rate for 222Rn = 3.62 µBq/kg ±0.03 µBq/kg was found.

The smaller error is due to the higher accuracy of the Random Forest classifier being

able to determine BiPo events, as compared to the Decision Tree classifier.

By using equations 4.7 and 4.19, a FAR = 0.42% and FRR = 1.27% is found for

the random forest classifier. Comparing these rates to the decision tree classifier,

the random forest classifier performs better, with a lower FRR and FAR. Both clas-

sifiers also have a lower FAR compared to the classical method, with the random

forest classifier also having similar false rejection rates compared to the classical

method.

4.4.3 Feature Importance

Figure 4.20 and 4.21 show the relative importance that the classifiers gave to each

of the RQ features during the training process. Although both figures give impor-

tance to pulseArea 50, there are more features used within the Random Forest

Classifier than the Decision Tree classifier.

4.21 shows that the pulse areas of the first and second S1 pulses were the most

important features during the training process, with area 2, pulseArea50 2

and pulseArea100 2 being the most important features. Although there is

some degeneracy, as they all correspond to the pulse area of the second S1 pulse,

they all have different definitions, using a combination of them would allow for a

more accurate description of the pulse area.

Figure 4.21 also indicates that peak amplitude and rms-width are also important

features when classifying BiPo events. These reduced quantities are not used in

the initial classification process mentioned in section 4.3.3, however, are given im-

portance for the Random Forest classifier. The importance of time diff in both

classifiers is lower than initially thought, as it would be assumed that the time dif-
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Figure 4.20: Plot showing the relative importance that the Decision Tree Classifier gave
to each input features for Classification. A suffix ‘1’ refers to information
regarding the 1st S1 pulse, associated with the β -decay of the 214Bi, and a
suffix ‘2’ refers to the S1 pulse associated with the α-decay of the 214Po.

ference between the two S1 pulses would be the main discerning factor in BiPo and

non-BiPo events.

4.4.4 Other Features

By looking at the relative feature importance in figure 4.21, the peak amplitude of

the second S1 peak can be compared to the pulse area for the dataset. Figure 4.22

shows the pulse area vs peak amplitude for all the S1 points in the MDC3 dataset.

The plot indicates that there are distinct regions within the phase space, with the

location of the α-decays all occupying a similar region of space.

Since an α-decay is of high energy, the S1 pulse would have a large energy, hence

this would result in a larger amplitude.
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Figure 4.21: Plot showing the relative importance that the Random Forest Classifier gave
to each input features for Classification. A suffix ‘1’ refers to information
regarding the 1st S1 pulse, associated with the β -decay of the 214Bi, and a
suffix ‘2’ refers to the S1 pulse associated with the α-decay of the 214Po.

Table 4.5: Table showing 222Rn activities from the different methods.

Classifier Type 222Rn Activity
Actual 3.65 µBq/kg ± 0.03 µBq/kg

Classical 3.58 µBq/kg ± 0.04 µBq/kg
Decision Tree (ML) 3.60 µBq/kg ± 0.04 µBq/kg

Random Forest (ML) 3.62 µBq/kg ± 0.03 µBq/kg
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Figure 4.22: Pulse Area vs Peak Amplitude for all points.

Figure 4.23: Pulse Area vs Peak Amplitude [phd] for all points, with orange points show-
ing the S1 pulses relating to the 214Po α decay. The 214Po α decay has a
higher ratio of area and amplitude due to the higher energy α decay (7.7 MeV)
compared to the other decays within the 222Rn chain. This results in a larger
area, as more energy is deposited, but also a larger amplitude, recorded by the
PMTs.
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4.5 Conclusion

The study conducted in this chapter demonstrated two methods of tagging BiPo

events to measure the activity of 222Rn within the LZ detector, with the results

shown in table 4.5. The first method employed classical techniques to find BiPo

events. These methods applied known cuts to pulse area and TBA space to help

characterize the unique decays present within a BiPo. BiPos are defined as being

from within a certain region of interest (ROI) within the pulse area vs TBA phase

space. Although these bands, as seen in figure 4.15 and figure 4.11, would repre-

sent the majority of BiPo decays, there is still the possibility of BiPo events being

characterised to occur outside of this region. This could be due to the assumption of

the initial timing cut being made between the events, with only the half-life being

considered. Due to this cut, events that have a timing separation greater than this

would not be seen.

The second method was to use Machine Learning to help classify BiPo events.

Decision Tree and Random Forest classifiers were implemented, with a training set

consisting of 2000 BiPo and 2000 non-BiPo events. By using more features than the

classical method for tagging BiPo events, the classifiers - specifically the Random

Forest Classifier, was able to tag events with an accuracy of over 99%. The classifier

was also able to run over all the data set to then find more BiPo events not within

the defined regions within pulse area vs TBA space, as used for the classical BiPo

tagging algorithm. This demonstrates readiness to rapidly retrieve a 222Rn rate from

real data.

Due to the nature of WIMP Searches, and how less than 8 events per year are ex-

pected [91], being able to correctly identify any backgrounds which would be within

the ROI is vital to increasing the sensitivity to WIMPs. Since the 222Rn chain

has a naked beta decay due to 214Pb which contributes much of the backgrounds

within the ROI, being able to tag such events would help in the sensitivity to WIMP

searches.

By using Machine Learning, BiPo events that were not within the specified region
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defined classically were found. By tagging these events, the number of expected

backgrounds within the 222Rn chain can be quantified, and thus increase the sensi-

tivity to WIMPs.

To improve on the Machine Learning method of tagging BiPos, more input fea-

tures could be used. The removal of degeneracy between features could also yield

a higher accuracy, as the classifier would then be able to give importance to more

distinguishing features. The use of a larger training dataset could have been imple-

mented to help the classifier learn more generalities from a BiPo.

Neural Networks could also be implemented as a way to analyse events on an RQ

level, as well as working on the time series data of each event. This would mean

using Long Short-Term Memory (LSTM) neural networks [157] to help classify

events using the time-series event data.



Chapter 5

Position Reconstruction using ML

No leaf falls without His knowledge, nor is there a single grain in

the darkness of the earth, or anything - fresh or withered, that is not

written in a clear Record.
Quran [6:59]

One benefit of using a dual-phase LXe TPC is the ability to reconstruct the position

of events in three dimensions. By being able to carry out this reconstruction, LZ

can determine the physical origin of an event, which can then be used to determine

the probability of an event being a WIMP-like particle or a background.

The z-position of an event can be calculated by measuring the time difference be-

tween an S1 and S2 signal. The xy-position of an event is determined by analysing

the hit pattern of an S2 pulse incident on the top PMT array. However, due to dif-

ficulty in calibrations, coupled with reflections with the PTFE walls, xy-position

reconstruction can be difficult to achieve, with events near the walls being more

difficult to reconstruct.
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5.1 Overview

This chapter will look into the Mercury algorithm [158], the current method of xy-

position reconstruction employed by LZ, and initially developed for LUX. It will

then discuss the limitations of such algorithms for events originating at the edge

of the TPC. Results from a new method of xy-position reconstruction using con-

volutional neural networks will be discussed, with illustrative comparisons made

between the leakage of events at the walls being reconstructed within the fiducial

volume, being discussed. It must be noted that representative values for the param-

eters chosen by the author are used for the Mercury/LZap results presented here for

ease of comparison with ML techniques. For exact prediction for LZ, the reader is

directed to read [73].

5.2 Motivation

Liquid xenon time projection chambers benefit from the self-shielding feature that

comes from using liquid xenon as a detection medium. By having a large atomic

number (Z = 54) and a large density (∼ 3 g/cm3), liquid xenon is able to attenu-

ate radiogenic backgrounds within the outer edge of the liquid volume. This thus

creates a low background fiducial region within the centre of the detector, which is

ideal for low energy recoils caused by WIMPs. Figure 5.1 shows this self-shielding

effect within LZ in action, with a radioactively quiet region located in the centre of

the detector shown in white.

Hence, accurate position reconstruction is needed to ensure that only events within

the inner fiducial volume are analysed when calculating the sensitivity to WIMP

masses, with xy-position reconstruction being vital in knowing where in the TPC

an event has occurred. A fiducial volume of radial width = 68 cm and height z =

∼ 134 cm has been taken for LZ, giving a fiducial volume of ∼ 5.6 tonnes.

The layout of the PMTs has been specifically designed to optimise the light col-

lection efficiency, with the S1 signal being primarily detected in the bottom array.

Hence the layout of the bottom array is mainly in a hexagonal array, with the PMT
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Figure 5.1: Image showing the effect of the fiducial volume in reducing the number of
events within the centre of the LXe TPC. Left shows the NR event scatters
with no vetoing; and right shows the same input data with Outer Detector (OD)
and Xenon Skin vetoing taking place. The integrated counts for each are 1.03
counts / 1000 days with veto system in place, and 10.4 counts / 1000 days with
no veto system in place. Taken from [91].

faces covering ∼ 54% of the bottom array area [73], with the remaining 46% being

covered by PTFE. The top array is mainly used for xy-position reconstruction and

collects the majority of the S2 light released in an interaction. This can be seen in

figure 5.10 which shows an image of the bottom array.

The PMT placement in the top array is thus in a hexagonal pattern, with a circular

ring of PMTs along the outer edge to improve the position reconstruction along the

walls. There is also an overhang of the PMTs along the outer edge for the TPCs to

further improve xy-position reconstruction along the edges of the TPC. Figure 5.9

shows an image of the top array.

However, even with the current layout of PMTs within the top array to optimise the

xy-position reconstruction accuracy, this chapter will present a new method which

will improve on the current position reconstruction, with an aim to improve the

xy-position reconstruction specifically at the TPC edges (called walls).

5.3 The Mercury Method

Mercury was used in LUX as a new way to reconstruct the xy-position of events

within the TPC. It is a statistical method in which Light Response Functions (LRFs)
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are found for each PMT. These are functions that characterise the response of the

PMTs as a function of the position of the emission of the S2 light emitted at an event

vertex. It relies on the maximum likelihood test to find the best output parameters

to predict the response of each PMT caused by interactions at an initial arbitrary

distance from the PMT.

The difference between Mercury and other conventional methods used is how the

LRFs are obtained. In Mercury, the LRFs are obtained iteratively, by fitting to

calibration data until the LRFs converge to below a threshold.

The LRFs are functions developed for each PMT i, and is defined as the probability

that a photon from an S2-signal which is detected by the PMTs, is detected by PMT

i. These can be different for each PMT, as the PMTs within the top PMT array are

subject to different levels of reflectivity from the PTFE walls, with PMTs near the

edge detecting more reflected light compared to those within the centre.

To calibrate Mercury for position reconstruction, 83mKr was used in LUX, with

subsequent simulations developed and used for LZ. 83mKr isotope has a half-life

of 1.83 hours which occur in two transitions of energy 32.1 keV and 9.4 keV, and

can be seen in figure 5.2. This gives an S2 signal between 4000 phd and 20000 phd,

which is also distributed along many PMTs in the top array. The signal is dependent

on the depth of the 83mKr in the TPC, with decays lower in the TPC giving a smaller

S2 signal. The decays also ensure that the PMTs do not get saturated, with the

spread of the decays giving S2 signals below 10000 for any one PMT.

For accurate LRF, the distribution of the 83mKr must be uniform within the TPC.

This was achieved for LUX [159], with simulations developed for LZ to ensure a

uniform distribution of 83mKr events within the LZ TPC.

5.4 1D Convolutional Neural Network

To test possible improvements on the accuracy of the position reconstruction given

by Mercury, convolutional neural networks were implemented. The aim was to
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Figure 5.2: Image showing decay of Kr83m, used in the calibration of Mercury. Blue boxes
indicate a decay due to Internal Conversion (IC), yellow boxes indicate a decay
via Auger electrons [160]. The emission of Auger and IC electrons make up
the majority of the decay method for Kr83m. Green and red boxes indicate a
decay via the emission of X-ray and γ-ray photons respectively. Size of each
box horizontally is proportional to its probability to decay. Vertical axis is
represents the energy of the decay. Image adapted from [161].

train on a simulated dataset generated during the MDC3 data generation, with the

training set specifically containing wall events of different origins. This can be seen

in figure 5.3, which shows a subset of the training dataset locations. The training

set contained ∼ 300000 events which were used for training.

Both BACCARAT and DER were used in the full chain to simulate the events to

simulate the response of the detector running live. Events were analysed using

LZap - the LZ analysis package which contains the Mercury method currently im-

plemented. When running LZap to achieve the output given by Mercury, two Re-

constructed Quantities (RQ) were available: one giving the position without a cor-

rection applied, and one with a correction. The difference is due to a mapping that

is applied to map the uncorrected Mercury predictions to variations in the Electric-
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Field within the detector. Hence the corrected positions represent the true position

predicted by Mercury and is used for comparison thereof.

Convolutional neural networks were chosen due to their ability to generalise spatial

features within the input data. This would not be possible if a feed-forward fully

dense neural network was chosen, as the relationship between PMT locations in real

space would not be modelled. Figure 5.4 shows an example 1D input to the neural

network.

The data was initially represented as a 1D input as it has lower dimensionality com-

pared to a 2D input. This was to examine whether these could be used in theory to

reconstruct the position. Further work on a 2D input is demonstrated in the next few

sections. The size of the input data was thus 253, with each dimension in data space

representing a single PMT input. The PMTs were normalised to ensure uniformity

throughout the training process.

5.4.1 Model Architecture

Many models were trained to try and determine the best architecture which would

give an accurate output to the xy-position, whilst also taking into account computa-

tional limitations as well as training time. Four layers of convolutional neurons and

max-pooling layers were used to initially work onto the dataset. These were then

flattened, with a feed-forward network used to take the output from the convolu-

tional layers, with three dense layers being used. The output layer had two neurons

to give values of the x and y predicted position.

5.4.2 Comparing on Test data

The LZ TPC wall is defined to be at a distance r = 72 cm in radius from the TPC

centre, with the current fiducial volume edge being at r = 68cm. To compare the

predictions of the neural network with mercury, the original location of the event

must be known. This can be found by using the MCTruth RQ location of the event,

which is given as an output during the simulations and not seen during training or
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Figure 5.3: Image showing the input training data to both the Machine Learning methods.
Axes are in cm, with a top-down view of the events in the xy space. Image
shows 1/10th of the total number of events within training dataset.

Figure 5.4: Image showing the 1D input to the 1D ML CNN of the Top array. Each PMT
is numbered from the centre, with numbers going out in concentric circles to-
wards the outer edge of the TPC. This means that events near the edge of the
TPC may not necessarily be shown together using a 1D input.
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by Mercury.

The Euclidean distance between the true position and predicted positions for ML

and Mercury (called LZap in plots) were taken, with a larger distance between the

truth and predicted position indicating a larger error in that position.

Figure 5.5 shows the average difference between predicted and truth position for

Mercury (labelled LZap, and seen in orange) and machine learning (seen in blue).

At smaller radii from the centre, Mercury performs better compared to the 1D con-

volutional network (labelled as ML). This is to be expected, as the number of points

within the training dataset set was significantly lower for smaller radii, hence the

neural network was not able to learn parameters needed for accurate position recon-

struction at smaller radii.

However, as the radius increases, the average difference between a predicted posi-

tion for ML decreases compares to Mercury, with Mercury (LZap) giving a larger

difference in predicted position from truth position the further the distance is from

the centre. This could be due to how nearer the edges, a full hit-pattern is not seen,

with only edge PMTs giving responses. Hence, this could be one reason for the

large difference in error between Mercury and the Truth position.

Wall events within Test dataset

One major source of backgrounds within LZ are wall events caused by charged

radon-progeny which has undergone plate-out onto the surface of the PTFE detector

walls. These radon progeny decay from the walls, with either the α-decay or the
210Po daughter either decaying towards the centre of the TPC. This can lead to

misreconstruction of the position of the event.

To compare only wall events within the test data, a cut of test events originating be-

tween 72cm < r < 73cm was taken, with the aim to compare the predicted position

of both Mercury and ML. Figure 5.6a shows a plot of reconstructed position for ML

for a section of the TPC. The reconstructed positions are closer to the original po-

sition of the wall, as compared to figure 5.6b, which shows a lot more events being
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(a) 1D ML reconstruction on test dataset. (b) Mercury reconstruction on test dataset.

Figure 5.6: Image showing the events within the test dataset used for training (Orange)
and reconstructed position due to ML (Blue) and Mercury (Red). Test dataset
contained over 25000 data points.

reconstructed within the TPC.

The leakage of these events can also be found (see section 5.4.3 for more detail on

leakage) in figure 5.7. The plot shows that the convolutional neural network has

a better leakage compared to LZap, with the number of events that leak into the

fiducial volume an order of magnitude smaller for the machine learning position

reconstruction compared to LZap.

However, the test dataset contained S2 pulses of varying sizes, most of which would

be below the threshold of S2 acceptance for WIMP searches ROI. These smaller

sized S2s would be more difficult to reconstruct their position, with more leaking

into the fiducial volume. To find a better way of comparing the leakages of ML and

Mercury, a standard size of S2 pulses would need to be simulated at the wall. This

will be discussed in the next section.



112 5.4. 1D Convolutional Neural Network

Figure 5.7: Image showing the leakage of ML and LZap and LZap corrected (Mercury) on
the test dataset. The LZap corrected takes into account the drift of electrons
towards the centre of the TPC. It is shown separately in this image, but in
further images where only LZap in mentioned, the correction is applied. Plot
with linear y-axis is shown in Appendix B.1.

5.4.3 Leakage

Another way to characterise the performance of a position reconstruction algorithm

is by testing the number of events that originate at the walls of the TPC, but are

reconstructed at a different position from the wall. A standard set of events that

is used is the signal caused by 5 thermal electrons situated just below the LXe

level, and originating at the wall of the TPC. The signal caused by these 5 thermal

electrons would produce an S2 signal size of 400 detected photons (phd). In total,

more than 106 events were simulated using BACCARAT of such events, with the
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aim to find to compare the leakages between the 1D convolutional network and

Mercury (also called LZap in plots).

The reconstructed events given by the position reconstruction of these thermal elec-

trons can then give a leakage fraction - the fraction of events that leak into the

fiducial volume which originated from the walls. The fiducial volume is currently

defined as being 4cm from the walls of the TPC.

Since the PMT array is radially symmetric, the leakage can be found by only sim-

ulating the thermal electrons from a single point at the wall. For convenience, the

origin of the points is given at [x,y,z] = [0,72,145.5]. Since only the top array is

used for xy-reconstruction, the bottom array PMTs are not considered.

Figure 5.8 shows the leakages of ML and Mercury for the signal caused by 5 ther-

mal electrons. The plot shows that the leakage produced by ML is lower compared

to mercury by over 3 orders of magnitude for a distance of 2 cm from the wall, in-

dicating that a lower fraction of events are reconstructed within the fiducial volume

for ML-1D compared to Mercury.

Figure 5.8 indicates that by using the 1D ML position reconstruction for wall events,

a leakage of lower than 10−5 after 2 cm from the TPC wall can be achieved. This

would give a fiducial volume of∼ 6.2 tonnes, which is 600 kg larger than the current

5.6 tonnes fiducial volume. However, a better leakage may be possible if a 2D input

was used instead. This will be discussed further in the next section.
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Figure 5.8: Plot showing leakages of ML-1D and Mercury on 106 events each consisting of
5 thermal electrons. The events were simulated using BACCARAT, and were
given an initial location at the top edge of the detector [x,y,z] = [0,72,145.5].
Plot shows that the leakage fraction using ML of low energy thermal events is
less than 10−5 compared to Mercury.
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Figure 5.9: Image showing the top array PMT layout in LZ. The Top array employs a cir-
cular structure of PMT layout, with the outer ring of PMTs placed further than
the TPC walls. This is to improve position reconstruction and light collection
for events nearer to the walls of the TPC. In total, there are 253 PMTs in the
Top array.
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Figure 5.10: Image showing the bottom array PMT layout in LZ. The Bottom array places
PMTs in a hexagonal honeycomb-structure to allow for better light collection
of the bottom array. In total, there are 241 PMTs in the bottom array.



117 5.5. 2D Convolutional Neural Network

5.5 2D Convolutional Neural Network

A 2D input to the CNN was also constructed to see whether a greater improvement

could be achieved for position reconstruction for wall events, and can be seen in

figure 5.11. Since the input to a 2D CNN must be a (n× n) square matrix, the

PMT position representations were adjusted in order to allow for the input to be a

(20×20) input, with zero-padding between some of the PMTs channels.

5.5.1 Model Architecture

The 2D CNN was trained on the same dataset, with many model architectures

tested. The best model contained 3 sets of convolutional layers with network sizes

[250,500,750], with pooling layers after every layer. This was then followed by

3 fully connected dense layers of sizes [1000,256,64], and an output layer of 2

neurons, each corresponding to the x and y dimension.

It was found that more neurons, and thus more layers were needed in the 2D input

compared to the 1D input. This could be due to the increased complexity involved in

analysing 2D input data, as the data would have a higher dimensionality compared

to the 1D input data. Padding between the PMT channels to create the (20× 20)

input also added sparsity to the data, which may have contributed to the greater need

for complexity.

Max pooling was used instead of Average pooling, even though the latter is pre-

dicted to be better for tasks that require generalisations in positional space. This

was due to the sparsity introduced within the input data by zero-padding, hence av-

eraging samples within the data would mean a loss in the intensity contributed by

each PMT.

Challenges in Training

However, training the 2D CNN was more challenging compared to the 1D input.

This was caused mainly by the increase in the number of parameters that were

trainable in the 2D CNN. By increasing the number of layers and neurons, the total
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Figure 5.11: Image showing the input data for 2D Convolutional neural network. Since the
input of the Neural Network is in square matrices, the PMTs were arranged
in 2D space, with zero padding involved to pad between the PMTs. This
also reduced the dimensionality of the dataset, as well as allowing for the
2D position to be taken into account by the Neural Network. All pulse area
values were summed for each event, with the input data being normalised
before being input to the Neural Network.

number of parameters to optimise was over 5 million. This led to an increase in the

training time required to minimise the loss function.

5.5.2 Leakage

The leakage of the 2D CNN was also calculated and can be seen in figure 5.13.

It shows that the leakage for the 2D CNN falls below 10−5 after only 1 cm from

the TPC wall. This is much lower compared to the leakage produced by Mercury,

which is seen in orange in figure 5.13. This can be used to determine a new wall

boundary for the fiducial volume which can be used when using the 2D position

reconstruction using Machine Learning.
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Figure 5.12: Plot shows the non-uniformity of the Electric field at the top of the TPC near
the walls. Black lines represent the electric field lines in the absence of diffu-
sion. Taken from [73].

However, due to the non-uniformity of the electric field near the wall, as seen in

figure 5.12, a maximum distance of only 2 cm from the TPC wall can be taken.

This is as nearer to the edge of the TPC, the electric field is non-uniform [73],

hence leading to the movement of ions in a non-uniform way. This non-uniformity

was not included in simulations of events using BACCARAT for MDC3, which

assumed that the electric field was uniform throughout the TPC.

Therefore, by taking a new fiducial volume which is a distance of 2 cm from the

wall, this would give a new fiducial volume mass of 6.2 tonnes of LXe.
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Figure 5.13: Plot showing the leakage of Mercury (orange) and ML (blue) for the 2D input
ML model. The leakage shows that mercury only achieves a leakage fraction
of 10−4 whereas the ML model achieves the same leakage fraction at below
1cm from the TPC wall. This is significantly better compared to Mercury,
as well as the 1D ML input seen in figure 5.8. Both models in this figure
were tested on 10−6 events consisting of 5 thermal electrons originating at
[x,y,z] = [0,72,145.5].
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Table 5.1: Total ER and NR backgrounds with 99.5% ER discrimination and 50% NR effi-
ciency for both the current fiducial volume of 5.6 tonnes and a proposed increase
of 6.2 tonnes of fiducal if using ML 2D position reconstruction for wall events.

Recoil 5.6T (4cm wall) 6.2T (2cm wall)
ER 1195 1351
NR 1.06 1.27

Total 6.51 7.39

5.6 Background studies

When changing the distance of the fiducial volume wall location, there would be an

increase in backgrounds which have to be taken into account. This can be seen by

looking at figure 5.14, which shows the projected NR backgrounds. By increasing

the size of the wall, there would be a larger component of backgrounds within the

fiducial volume, with 1.27 NR events / 1000 days expected for a wall distance of 2

cm, and 1.06 NR events / 1000 days expected for a wall distance of 4 cm.

Changing the wall distance also affects the ER backgrounds, which are more promi-

nent compared to the NR. This is due to the fact that having a smaller wall distance

(hence larger fiducial volume), more gamma and wall events would be within the

fiducial volume. This can be seen in figure 5.15, where the boundary of the fiducial

volume for a 2cm wall includes more ER events compared to the boundary of the

wall with 4 cm. Hence, the expected counts would be 1351 ER expected / 1000 days

for 2 cm wall, compared to 1195 ER expected / 1000 days for 4 cm wall.

Assuming a 99.5% ER/NR discrimination, and an NR efficiency of 50%, the total

number of expected events for a 5.6 tonne fiducial volume is 6.51 per 1000 day run.

For a 6.2 tonne fiducial volume, 7.39 events are expected per 1000 day run.

By taking the ratio between the expected total ER and NR events between 5.6 tonnes

and 6.2 tonnes in fiducial volume, the backgrounds for each component can be taken

and scaled. Hence, these can then be used to feed into the PLR method (see next

section) in developing background PDFs that can be input into the PLR method to

determine the impact of having a larger fiducial volume on the LZ sensitivity.
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(a) Plot showing the NR backgrounds for 4cm wall.

(b) Plot showing the NR backgrounds for 2cm wall.

Figure 5.14: Figure comparing the number of backgrounds within the different fiducial vol-
ume sizes of 2 cm and 4 cm from the TPC wall. The input data was the MDC3
dataset.
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Figure 5.15 can also be used to show the origin of the ER events, with all the ER

events located at the edges of the wall (high R2) value, with no ER events expected

at the bottom of the TPC (low Z), and even fewer events expected at the top (high

Z). This shows that the origin of the ER background events originates at the walls.

This is different for NR background events, as seen in figure 5.14, where the number

of NR background events occurs around the edges of the fiducial volume.

5.7 LZ Sensitivity

The expected outcome of the LZ experiment is the discovery of dark matter par-

ticles by searching for an excess of events that is higher compared to the number

of events expected from the background model; or to verify that the background

model implemented is accurate and place a statistical limit to exclude model pa-

rameters.

A null-hypothesis H0 and an alternative hypothesis H1 are evaluated, with H0 being

assumed to be true unless the observed data seen by the experiment requires the

rejection of the null hypothesis H0 and acceptance of the alternative hypothesis

H1.

In order to discover dark matter, signals that are in excess of the expected back-

ground are examined. The H0 in this case is then the background-only hypothesis,

with H1 being a background + signal hypothesis that is only accepted if the data

suggests a rejection of the initial null hypothesis, as it is incompatible with the ob-

served data.

If the observed data seen by the experiment fails to reject the null hypothesis, then

the observed data can still be used to determine which areas of the parameter space

is excluded by the observed data. This is the limit-setting scenario and is used

to give the sensitivity of the experiment as well as help determine the theoretical

parameter space still possible for a discovery.

To determine the discovery potential and LZ Sensitivity to WIMPs, the Profile Like-
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(a) Plot showing the ER backgrounds for 4cm wall.

(b) Plot showing the ER backgrounds for 2cm wall.

Figure 5.15: Figure comparing the number of backgrounds within the different fiducial vol-
ume sizes of 2cm and 4cm from the TPC wall. The input data was the MDC3
dataset.
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lihood Ratio (PLR) test statistic is used [144]. This uses an unbinned maximum

likelihood and allows comparisons to be made on an event by event level of the ob-

served data to a given model. The PLR method was implemented using the RooStats

package, which is used commonly within High Energy Physics communities. The

LZ experiment built upon the RooStats package to develop the LZStats package.

The following section will highlight briefly the foundations of the PLR test statis-

tic, and how it can be used to obtain the sensitivity of LZ to 5.6 and 6.2 tonnes of

fiducial mass LXe.

5.7.1 The PLR Method

The LZ experiment will record large amounts of data, almost ∼ 3Pb during a 1000-

day science run to help in the discovery of WIMPs. Hence, cuts are needed to

restrict the WIMP search, with the four cuts used for the WIMP search detailed as

follows:

• Region of Interest (ROI) cut - this is to constrain the energy window for a 40

GeV/c2 WIMP. This is equivalent to 1.5-6 keV for ER events, and 6-30 keV

for NRs.

• Single Scatter cut - where an event must only scatter once, with the energy

deposition taking place at a specific vertex in xyz coordinate space within the

TPC

• Veto cut - with both skin and outer-detector vetos being applied.

• Fiducial Volume - events must take place within the fiducial volume of the

detector.

The region of interest (ROI) can be used to place a limit on the size of S1 and S2

signals, hence only S1s with size 0 < S1c80 detected photons (phd) are accepted;

and for S2s, a signal size of greater than 420 phd is required.

Each event that passes a cut is then parameterised by a vector of observed quan-

tities x = [S1c,S2c,x,y,z, t], however, the spatial quantities are uniform due to the
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fiducialisation of the TPC, with the events also assumed to be time-independent,

hence the variables used in the PLR are only the S1 and S2 signal sizes, therefore

x = [S1c,S2c], with the subscript showing corrected quantities.

Different hypotheses can be represented, each of which representing different mod-

els under background and signal probabilities, using probability density functions

(PDFs). These would represent a particular event for a specific signal or back-

ground component, and can be expressed as fc(x|θ), where the subscript c repre-

sents different components of the background or signal models. By summing each

of these components, the total probability model for N components can be expressed

as

f (x|θ) =
N

∑
c=1

(
µc(θ)

µ(θ)
) fc(x|θ) (5.1)

where µc(θ) represents the expected number of events, and µ(θ) is the total number

of events summed over the components.

Given a dataset D = xi
n
i=1 with n events, where each event is drawn independently

from the same underlying distribution, the joint probability distribution can be cal-

culated, as it would be equal to the product of each individual probability distribu-

tion of each event. This is then equal to

f (D|θ) = Pois(n|µ(θ))
n

∏
i=1

f (xi|θ) (5.2)

=

[
µ(θ)n

n!
e−µ(θ)

] n

∏
i=1

f (xi|θ) (5.3)

The PLR test-statistic

The likelihood function L(θ) is the same as equation 5.2, and can be used to deter-

mine what combination of model parameters are needed to maximise the probability

of obtaining the observed dataset Dobs. Hence, Lθ allows a way to determine the
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level of agreement between a given hypothesis and the observed data obtained. This

is done by creating a test-statistic t(D), which is a scalar function used to discrimi-

nate hypotheses. For each hypothesis H0 and H1, a test-statistic distribution f(t|H0)

and f(t|H1) is calculated.

The profile likelihood ratio is a widely used test statistic of the form

λ (µ) =
L(µ, ˆ̂ν)
L(µ̂, ν̂)

(5.4)

where µ is the given parameter of interest, and ν represents the collection of nui-

sance parameters [144] [143]. These nuisance parameters are added into the final

form of the likelihood function, and are approximated as Gaussian constraints, as

they contain some uncertainty on the estimate.

The double hat ˆ̂ν is the conditional maximum-likelihood estimator, and represents

the value of ν that maximises the log-likelihood for a fixed µ . The single hat ν̂

in the denominator is the maximum likelihood estimator (MLE) for µ and is the

function that maximises the likelihood function.

Hence, when comparing different hypotheses, a test statistic of the form

tµ =−2log(λ (µ)) (5.5)

which can take values between [0,∞], with large values of tµ indicating incompati-

bility between the hypotheses.

By taking the p-value, which is defined as the probability of obtaining the observed

dataset under the assumption that the null hypothesis is true, a hypothesis test can be

defined to determine the statistical relevance of accepting the null hypothesis.
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p = P(t > tobs|H0) (5.6)

=
∫

∞

tobs

f (t|H0)dt (5.7)

By taking a pre-determined size of a critical region α , the null hypothesis would be

rejected if the observed test statistic tobs is within this region, hence if p < α .

A confidence level (CL) can be defined as CL = (1−α), and represents the confi-

dence level of the test, with typical values of α either 5% or 10%. In the remaining

of this thesis, and generally in direct detection dark matter experiments, a confi-

dence level of 90% is taken (hence α = 10%).

5.7.2 Impact of larger fiducial volume on LZ Sensitivity

By taking a larger fiducial volume with a 2 cm wall distance, thus corresponding to

a fiducial mass of 6.2 tonnes LXe, the sensitivity can be calculated using the Profile

Likelihood Ratio (PLR) method, and is shown in figure 5.16. The plot shows that

by increasing the fiducial volume by 600 kg of LXe for a 1000 day run, there is an

increase in the sensitivity to WIMPs, with the largest change being seen between 18

to 45 GeV/c2 WIMP masses. For a WIMP mass of 40 GeV/c2, a 6.2 tonne fiducial

mass gave a sensitivity of 1.41×10−48 cm2, compared to 1.76×10−48 cm2 for 5.6

tonnes LXe.

This improvement in the sensitivity by utilising a position reconstruction method

based upon machine learning shows the potential that Artificial Intelligence (AI)

can have on dark matter physics experiments. By changing only the method of po-

sition reconstruction, an increase in the fiducial volume of over 11% can be found,

which thus leads to an increase in the sensitivity by ∼ 20% for a 40 GeV/c2 WIMP

mass.
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Figure 5.16: Plot showing the projected sensitivity for LZ - 6.2 tonnes, LZ - 5.6 tonnes,
Xenon 1T and LUX 2014 to SI WIMP-nucleon elastic scattering for 1000
days.

5.8 Discussion

Changing the size of the fiducial volume, and how that impacts the LZ sensitivity

to WIMPs was shown in this section. Having an accurate position reconstruction

process, specifically for wall events, is essential to reduce wall backgrounds and

improve on the LZ sensitivity to WIMP masses. By increasing the wall distance of

the fiducial volume from 4 cm to 2 cm using the 2D ML position reconstruction,

a larger fiducial mass of 600 kg is added, with a leakage of lower than 10−6 being

achieved.

Although having a larger fiducial volume will increase the expected ER and NR

background rate of events within the TPC volume by 0.88 counts / 1000 year, these

would be taken into account by using the Outer Detector and Skin veto systems

utilised by LZ. An ER/NR discrimination of greater than 99.5% would also be

utilised in helping to improve the increase in events caused by having a larger fidu-

cial volume.
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5.9 Conclusion

This study looked at using a novel method for position reconstruction for wall events

using Machine Learning, which were trained on simulated wall events using both

1D and 2D input. Accurate position reconstruction is vital in ensuring that events

taking place due to radon plate-out (see the previous chapter), as well as ER events

caused by gamma-ray backgrounds, do not enter the fiducial volume.

The study used representative values in the Mercury/LZap case for comparative

studies with ML techniques using CNNs. Although these values may differ slightly

from the actual values used in the actual LZ experiment, this study highlighted the

potential gains in position reconstruction that might be made by deploying such ML

techniques in such experiments.

Although both the 1D and 2D neural networks performed well in reconstructing the

position, the 2D neural network was able to give a better leakage ratio compared to

the 1D network. This led to an increase of the wall distance from 4cm to 2cm closer

to the TPC edge, and an increase in fiducial volume change of 600 kg. Increasing the

fiducial mass by 600 kg would be equivalent to running the current LZ experiment

at 5.6 tonnes an extra ∼ 110 days. This shows the impact that increasing the size

of the fiducial volume wall from 4cm to 2cm would give. Taking this increase in

backgrounds and fiducial volume into account, there would still be an improvement

in LZ sensitivity to 40 GeV/c2 WIMPs of 1.41×10−48 cm2.

This study only investigated using neural networks for position reconstruction near

the edges of the TPC. This was carried out by the large number of events near the

walls in the training set. In order to achieve high accuracy position reconstruction

for events at all radii, events with known positions would have to be simulated for

all radii. These large number of events would also lead to difficulty in training and

optimisation, with a large range of radii leading to difficulties in the network being

able to generalise.
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Event Classification

And He is the One Who created the day and the night, the sun and

the moon — each travelling in an orbit.
Quran [21:33]

Being able to classify events accurately is vital to the LZ experiment to help discern

between backgrounds and signal events. When classifying events, the main aim

is to be able to distinguish between single scatter (SS) and multiple scatter (MS)

events from each other. Since WIMPs are only expected to produce single scatter

events, whereas other backgrounds such as highly energetic gamma-ray events can

produce multiple scatters, developing a framework that can distinguish between the

two is key in being able to look at the desired physics.

This chapter will look at the current method of event classification employed by LZ,

as well as presenting an ML proof of concept framework to show how analysing the

time series waveforms can also give strong results for event classification.

6.1 Overview

The LZ detector will record over ∼ 1010 events during its first science run, with a

mixture of background and signal events mixed together. With all this data, it is
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important to be able to classify each event accurately. Currently, LZ looks at the

position of events within the fiducial volume, and whether an event position takes

place within 2 mm of each other within xyz space, and with the S2s being within

10 ns within each other.

An example of the difference between a single and a multiple scatter is seen in figure

6.1, where a single scatter will produce a single S2 pulse whereas a multiple scat-

ter event would produce a merged S2 pulse superimposed onto each other. These

merged S2 pulses can be incorrectly classified as being one single S2. Hence, when

taking the reduced quantities of the pulses - which is done to ease the data analysis,

the incorrect pulse areas are taken, thus giving an error when analysing our WIMP

region of interest. To try and improve on this, a time series random forest classifier

was developed to analyse the raw waveforms summed over each PMT to try and

classify single scatter from multiple scatter events, and will be discussed in the next

section.

6.2 Time Series Random Forest Classifier

The sktime implementation of the Time series forest classifier was used [162]

when classifying the different events to classify between single, multiple and other

scatter events. It works by randomly selecting shapelets [163] - a section of data

within the time domain, and feeds them into a forest of decision trees. These deci-

sion trees are then modelled with the random forest approach [107], with temporal

features calculated over the shapelets. By feeding the shapelets into an ensemble

of decision trees, we can more generality to our classifier in being able to find the

temporal features which distinguish different class labels within our data. These can

then be used to make decision tree boundaries within our ensemble, thus allowing

for classification to take place. More information on the time series forest classifier

can be found in [163].

To try and improve on the classification of single and multiple scatter events, a

time series random forest classifier was implemented. This is a novel type of ma-
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(a) SS event

(b) MS event

Figure 6.1: Plots comparing both single and multiple scatter events.

chine learning classifier which analyses the time-series waveforms produced by the

PMTs, and classifies them on an event level.

The time-series waveforms were analysed instead of the reduced quantities, as the

reduced quantities are created by running LZap onto the waveforms. Hence, it was

necessary to try and use training data which consisted of unprocessed data.

However, by using the waveforms instead of the reduced quantities, the size of

the amount of data being analysed was considerably larger, as the event wave-

forms would take up a larger amount of data. Since LZ uses pulse only digitisa-

tion, whereby only signals above a certain base-threshold is recorded on the event

level, the pulses within an event had to be zero-padded to ensure the timing be-

tween pulses was maintained. This can be seen in figure 6.2, where the ‘deadtime’

between pulses was zero-padded.
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(a) SS event

(b) MS event

Figure 6.2: Plots comparing both single and multiple scatter events. In the MS event, since
the even took place within a short time frame, the S2s are overlapped. This
would make it seem as if it is one S2 pulse, instead of two distinct scatters
close together.
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6.2.1 Training dataset

To train the time series random forest classifier, accurate labels for events were

needed. This was achieved by hand scanning∼ 600 events, and labelling the events

as either Single Scatter, Multiple Scatter, or Other. The test dataset contained ∼ 35,

events for each class label.

The hand scanning was undertaken with over 15 people taking part, with each event

being checked by two people to correctly classify the events.

6.3 Discussion

Figure 6.3 shows the confusion matrix for the time series classifier applied to the test

dataset. It shows what the classifier output was for each class label, and indicates

that the classifier was able to predict the class labels correctly 96% of the time.

Although this is lower compared to LZap efficiency of 98%, this accuracy would be

improved with more data being available in the training set.

The LZap confusion matrix was calculated with the training dataset, as it would

have provided a more coherent picture of the accuracy of LZap in determining be-

tween single scatter and multiple scatter events. This was not possible when testing

the accuracy of the time series random forest classifier, as the training dataset was

already ‘seen’, hence to get a meaningful value of the accuracy, the smaller test

dataset was used.

6.4 Conclusion

An innovative method to distinguish between single scatter, multiple scatter and

other events was developed using a time series random forest classifier. This classi-

fier takes in the raw time-series input of the PMTs, and classifies them by looking

for the temporal differences in pulse shapes, which result from the different types of

scatters. This is in contrast with the implementation currently used in LZ, which is

dependent on analysing the reduced quantities (RQs) of each pulse within an event,
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(a) Confusion matrix for ML on test dataset.

(b) Confusion matrix for the current LZap implementation on the
training dataset. The larger dataset was used for LZap as it is
already pre-trained, hence the training dataset was already un-
seen; thus a larger dataset would give a more accurate picture of
the accuracy.

Figure 6.3: Image showing the confusion matrices for the Time Series Random Forest clas-
sifier (blue) and LZap (green).
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as well as looking at the time and xyz position of each event. Although the accu-

racy of the ML algorithm was lower compared to the current implementation used

by LZ, it was shown that even with a training dataset of ∼ 600 events, an accuracy

of 96% was achieved. This accuracy is likely to improve significantly given a larger

training dataset.

Different time-series machine learning methods [164] could also be used to improve

on the accuracy given, such as kernel-based methods. These methods employ dy-

namic time warping (DTW) [165] to transform the time-series dataset into a higher

dimensional space. This would then allow for differences in the temporal features

specific to different events to be classified more easily.

6.5 Further Work

There are many avenues that future work may lead to within this area of using

time-series machine learning methods for event classification. The most important

feature when using this method is the ability to classify different types of events

based solely on the waveforms produced by the PMTs. This could be classifying

specific background events caused by 222Rn or 83mKr, something only currently

possible by placing linear cuts on the reduced quantities produced by each pulse

within the event.



Chapter 7

Conclusion and Outlook

What you (O humanity) have been given of knowledge is but little.

Quran [17:85]

The work presented in this thesis focused on using Machine Learning techniques for

the LZ experiment. Chapter 4 focused on using a Random Forest classifier to de-

termine background BiPo events produced by the decay of 222Rn. This background

is important, as it produces events within our region of interest for WIMP searches

due to its daughters 214Pb undergoing naked-beta decay. It was found that by using

a Random Forest classifier, BiPo events could be classified which were outside the

region classically associated with them. This was done by inputting more features

to the classifier than what is classically analysed when searching for BiPos.

Chapter 5 then presented work on implementing a convolutional neural network

(CNN) for position reconstruction specifically for wall events. By using CNNs, the

fiducial volume of a test experiment resembling LZ could be increased from 5.6

tonnes to 6.2 tonnes. This increase in fiducial volume size would lead to an im-

provement in LZ sensitivity for 40 GeV/c2 WIMPs of 1.41×10−48 cm2, compared

with 1.76×10−48 cm2 for 5.6 tonnes LXe at 90% CL. The increase in fiducial vol-

ume by 600 kg is equivalent to running LZ in its current discovery mode with a
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fiducial volume mass of 5.6 tonnes by over 110 days.

Finally, a brief study on the use of machine learning techniques on the time-series

waveforms produced by the PMTs to classify different types of events was intro-

duced, with an accuracy of 96% being found. Although the accuracy was slightly

lower compared to the current method employed by LZ, this was likely caused by

having a smaller training dataset of only ∼ 600 events. Given that the main data

domain of the LZ experiment is time-series data, this method provides an excellent

way to analyse and classify different events.

The construction phase of LZ has now been complete, with the data taking phase

of Science Run 1 (SR1) imminent. Given that the use of Machine Learning and

Artificial Intelligence within the Physics community will increase in the years to

come, the implementation of such technologies is set to revolutionise the insights

produced by fundamental physics experiments in the coming years. This places the

LZ experiment and similar LXe TPCs in an exceptional position to explore more

areas within the WIMP parameter space, and may even allow it to finally answer

the question of the nature of dark matter.



Appendix A

BiPo code

Scripts used for BiPo analysis in chapter 4.

1 import uproot

2 import numpy as np

3 import pandas as pd

4 import matplotlib.pyplot as plt

5 from mpl_toolkits.mplot3d import Axes3D

6 import scipy.fftpack

7 import os

8 from IPython.display import clear_output

9

10 #####

11 # These functions below are to do with the creating dataframes

by taking in

12 # the lzap RQ files .

13 #

14 #

15 #####

16

17 def initialiser(PATH):

18 """

19 Will return FILE and KEYS for an lzap file in PATH.

20 PATH must be string

21 """

22 file = uproot.open(PATH)
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23 keys = file.keys()

24

25 sub = b’Events’

26 EventKeys = [s for s in keys if sub in s]

27

28 FILE = file[EventKeys[0]]

29 TPCHG = FILE[’pulsesTPCHG’]

30

31 return FILE, TPCHG

32

33 def classifier_pulses(KEY, debug = False):

34 """

35 Will take in the KEY (i.e. TPCHG) and return classification in

the form of a list

36 """

37

38 classes = KEY[’pulsesTPCHG.classification’].array()

39 classifications = []

40 n = 0

41

42 while n < classes.shape[0]:

43 pulse = classes[n]

44 decoded = [x.decode(’utf-8’) for x in pulse]

45 classifications.append(decoded)

46 n = n + 1

47

48 pulse_classifications = []

49 for alist in classifications:

50 for blist in alist:

51 pulse_classifications.append(blist)

52

53 return pulse_classifications

54

55

56 def sequence_maker(KEY):

57 """



142

58 Will make a sequence of what pulses have arrived.

59 1 - S1

60 2 - S2

61 3 - SPE (Single PhotoElectron)

62 4 - MPE (Multiple PhotoElectron)

63 5 - SE (Single Electron)

64 Hence will return: [1,3,3,3,3,2,4,4,4,4] etc

65 """

66

67 S1_prob = KEY[’pulsesTPCHG.s1Probability’].array()

68 S2_prob = KEY[’pulsesTPCHG.s2Probability’].array() *2

69 SPE_prob = KEY[’pulsesTPCHG.singlePEprobability’].array() *3

70 MPE_prob = KEY[’pulsesTPCHG.multiplePEprobability’].array() *4

71 SE_prob = KEY[’pulsesTPCHG.singleElectronProbability’].array()

*5

72 other_s1_prob = KEY[’pulsesTPCHG.otherProbability’].array() *6

73 other_s2_prob = KEY[’pulsesTPCHG.otherS2Probability’].array()

*7

74

75 sequence = S1_prob + S2_prob + SPE_prob + MPE_prob + SE_prob +

other_s1_prob + other_s2_prob

76 S1_S2 = S1_prob + S2_prob + other_s1_prob + other_s2_prob

77

78 sequence = sequence.astype(int)

79 S1_S2 = S1_S2.astype(int)

80

81

82 return sequence, S1_S2

83

84 def coincidence_cut(input_df):

85 """

86 Will apply the coincidence (remove all with PMT < 3)

87

88 """

89
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90 input_df = input_df[input_df.coincidence > 2] # Coincidence

cut > 2

91

92 return input_df

93

94 def applying_cuts(input_df):

95 ’’’

96 Will apply the cuts to a dataframe

97 ’’’

98

99 output_df = coincidence_cut(input_df)

100 return output_df

101

102

103

104

105 def eventID_maker(KEY):

106 """

107 Will make the EventID list using an RQ (preferably pulseArea)

108 """

109 # This cell will make the EventIDs so that it is easier to

know which pulse belongs to which Event

110 RQ = KEY[’pulsesTPCHG.s1Probability’].array()

111 eventID = []

112 n = 0

113 for event in RQ:

114 num = len(event)

115 evt = np.ones(num) * n

116 eventID.append(evt)

117 n = n + 1

118 eventID = np.array(eventID)

119 eventID = np.concatenate(eventID).ravel()

120

121 return eventID

122

123 def eventID_maker2(ROOT, KEY):
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124 """

125 Will make the EventID AND EventID per raw file.

126 Args:

127 ROOT; FILE

128 KEY; TPCHG

129 """

130 RQ = KEY[’pulsesTPCHG.s1Probability’].array()

131 rawfile = ROOT[’eventHeader.rawFileName’].array()

132

133 values, counts = np.unique(rawfile, return_counts=True)

134

135 eventID = []

136 raw_eventID = [np.arange(x) for x in counts]

137 raw_eventID = np.concatenate(raw_eventID).ravel()

138 raw_evtID = []

139

140

141 n = 0

142 idx = 0

143 raw_idx = 0

144

145 for event in RQ:

146 num = len(event)

147 evt = np.ones(num) * n

148 eventID.append(evt)

149

150 raw_evt = np.ones(num) * raw_eventID[n]

151 raw_evtID.append(raw_evt)

152

153

154 n = n + 1

155 raw_evtID = np.concatenate(raw_evtID).ravel()

156

157

158 eventID = np.array(eventID)

159 eventID = np.concatenate(eventID).ravel()
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160

161 return eventID, raw_evtID

162

163

164 def rawfile_maker(ROOT, KEY):

165 """

166 Will take in the root file struct (i.e. ROOT = file[’Events

;71’] ),

167 as well as another KEY i.e. TPCHG (where TPCHG_71 = file[’

Events;71’][’pulsesTPCHG.’])

168 and return a list of all the filenames

169 """

170

171 rawfile = ROOT[’eventHeader.rawFileName’].array()

172 RQ = KEY[’pulsesTPCHG.s1Probability’].array()

173

174 names_raw = []

175

176 n = 0

177

178 while n < rawfile.shape[0]:

179 filename = rawfile[n]

180 for pulse in RQ[n]:

181 names_raw.append(filename)

182

183 n = n + 1

184

185

186 return names_raw

187

188

189

190

191 def initial_df(KEY, debug = False):

192 """

193 Will make the initial dataframe with the main RQs
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194 """

195

196 pulseArea = KEY[’pulsesTPCHG.pulseArea_phd’].array()

197 pulseID = KEY[’pulsesTPCHG.pulseID’].array()

198 #s1Probability = KEY[’pulsesTPCHG.s1Probability’].array()

199 TBA = KEY[’pulsesTPCHG.topBottomAsymmetry’].array()

200 xpos = KEY[’pulsesTPCHG.s2Xposition_cm’].array()

201 ypos = KEY[’pulsesTPCHG.s2Yposition_cm’].array()

202 promptFaction = KEY[’pulsesTPCHG.promptFraction50ns’].array()

203 peakAmp = KEY[’pulsesTPCHG.peakAmp’].array()

204 coincidence = KEY[’pulsesTPCHG.coincidence’].array()

205 rq_start = KEY[’pulsesTPCHG.pulseStartTime_ns’].array()

206 rq_end = KEY[’pulsesTPCHG.pulseEndTime_ns’].array()

207 pulse_type, _ = sequence_maker(KEY) # To make an array which

will return the pulse types

208

209 if debug:

210 print ("Loaded in the RQs successfully")

211

212 eventID = eventID_maker(KEY)

213 classifications = classifier_pulses(KEY)

214 if debug:

215 print("Events and Classifications loaded")

216

217 df = pd.DataFrame({’eventID_RQ’: eventID,

218 ’pulseID’: pulseID.flatten(),

219 ’pulseType’: pulse_type.flatten(),

220 ’classification’: classifications,

221 ’pulseArea’: pulseArea.flatten(),

222 ’TBA’: TBA.flatten(),

223 ’promptFaction’: promptFaction.flatten(),

224 ’peakAmp’: peakAmp.flatten(),

225 ’coincidence’: coincidence.flatten(),

226 ’start_time’:rq_start.flatten(),

227 ’end_time’:rq_end.flatten()

228 })
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229

230

231 return df

232

233 def raw_df_maker(ROOT, KEY):

234 """

235 Function which will make a df of [RawFIleName, EventID,

PulseID]

236 Args:

237 ROOT: i.e. FILE = file[’Events;71’]

238 KEYL i.e. TPCHG = file[’Events;71’][TPCHG]

239 """

240

241 rawFiles = rawfile_maker(ROOT, KEY)

242 eventID, raw_eventID = eventID_maker2(ROOT, KEY)

243 pulseID = KEY[’pulsesTPCHG.pulseID’].array().flatten()

244 classes = classifier_pulses(KEY)

245

246

247

248

249 df = pd.DataFrame({"rawFileName" : rawFiles,

250 "eventID_Raw" : raw_eventID,

251 "eventID_RQ" : eventID,

252 "pulseID" : pulseID,

253 "pulseType": classes})

254

255 return df

256

257

258

259

260

261 def appender_df(DF, KEY, title, rq_val):

262 """
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263 This function will append a column of rq_val to the initial

dataframe

264

265 Input:

266 DF: initial dataframe

267 KEY: the uproot key e.g TPCHG

268 title: type(str); what title you want the new column to be

269 rq_val: type(str); the rq_entry in the KEY

270 """

271

272 RQ = KEY[rq_val].array().flatten()

273

274 #col = pd.DataFrame({title: RQ})

275 DF[title] = RQ

276

277

278 return DF

279

280 def raw_finder(rawdf, evtID, pulse_id, show = False):

281 """

282 Function which will return the raw_file_fame when giving in as

args

283 the eventID and pulseID that you want to know

284 """

285 df = raw_df[(raw_df[’eventID_RQ’]==evtID) & (raw_df[’pulseID’

]==pulse_id)]

286

287 if show == True:

288 return df.iloc[0][0]

289 else:

290 return df

291

292 def df_file_maker(PATH):

293 import os

294 """

295 Will make a df for all the RQ files found within PATH.
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296 Must be str with / at the end i.e. data/background/

297 """

298

299 #finding the root files

300 files = os.listdir(PATH)

301 files.sort()

302 file_path = [PATH + file for file in files]

303

304 rq_files = []

305

306 final_df = pd.DataFrame([])

307

308 i = 0

309 while i < len(file_path):

310

311 file = uproot.open(file_path[i]) #background data

312 keys = file.keys()

313

314 #rq_files.append(f)

315

316 sub = b’Events’

317 EventKeys = [s for s in keys if sub in s]

318

319 FILE = file[EventKeys[0]]

320 TPCHG = FILE[’pulsesTPCHG.’]

321

322 df = initial_df(TPCHG)

323 final_df = final_df.append(df)

324

325

326

327 rq_files.extend([files[i]] * df.shape[0])

328

329

330 print(files[i], " Files remaining = " , len(file_path) - i

)
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331 i = i + 1

332 clear_output(wait=True)

333

334 final_df.insert(0, ’RQ_File_Name’, rq_files, True )

335 print(’Completed. Loaded in ’, len(file_path), ’ files’)

336

337 return final_df

338

339 def df_file_appender(PATH, DF, title, rq_val):

340 """

341 This function will append a column of rq_val to the initial

dataframe

342

343 Input:

344 PATH: path of the list of lzap RQs that you have

345 DF: initial dataframe

346 title: type(str); what title you want the new column to be

347 rq_val: type(str); the rq_entry in the KEY

348

349 """

350

351 files = os.listdir(PATH)

352 files.sort()

353 files = [PATH + file for file in files]

354

355 col_df = pd.DataFrame([])

356

357 test_empty = []

358 n = 0

359

360 for f in files:

361 file = uproot.open(f)

362 keys = file.keys()

363

364 sub = b’Events’

365 EventKeys = [s for s in keys if sub in s]



151

366

367 FILE = file[EventKeys[0]]

368 TPCHG = FILE[’pulsesTPCHG.’]

369

370 RQ = TPCHG[rq_val].array().flatten()

371 #RQ2 = RQ[:,np.newaxis]

372

373 test_empty.append(RQ)

374 n = n + 1

375 print (n)

376 clear_output(wait=True)

377

378 test_empty = np.concatenate(test_empty).ravel()

379

380 DF[title] = test_empty

381

382 #DF.insert(0,title, test_empty, True )

383 print(’Completed’)

384

385 return DF

386

387

388 #####

389 #

390 # These functions are to do with the actual BiPo tagging

391 #

392 #####

393

394

395 def time_diff(idx1, idx2, start_array):

396 ’’’

397 Function which will take the indices of 2 pulses from the same

event, and return the time difference

398 (in nanoseconds) between them.

399

400 idx1, idx2 - type: int; index of pulse 1 and pulse 2
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401 start_array - type: array; array with the start times

402 ’’’

403

404 diff = start_array[idx2] - start_array[idx1]

405

406 return diff

407

408 def tagger(dataframe, event):

409 """

410 This function will take in a dataframe of all the events, and

return another dataframe with columns:

411 [EventID, pulseID_1, pulseID_2, start_time_1, start_time_2,’

start_1’, ’start_2’, time_diff(ns)]

412

413 The purpose is to find the time difference between two S1

pulses for BiPo tagging for a specific event

414

415 dataframe: dataframe

416 event: EventID that you want to look at

417

418 """

419 evt_df = dataframe[dataframe.eventID_RQ == event]

420 #file_name = evt_df[’RQ_File_Name’].to_list()

421 evt = evt_df[’eventID_RQ’].values

422 types = evt_df[’pulseType’].values

423 tba = evt_df[’TBA’].values

424 #classes = evt_df[’classification’].to_list()

425 times = evt_df[’start_time’].values

426 id_0 = evt_df[’pulseID’].values

427 areas = evt_df[’pulseArea’].values

428 prompt_faction = evt_df[’promptFaction’].values

429 end_times = evt_df[’end_time’].values

430

431

432 n = 0

433 test_array = np.empty((0,14), dtype=int)
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434

435 while n < types.shape[0]:

436

437 if types[n] == 1.0:

438

439 m = n + 1

440 #print(n,m)

441 while m < types.shape[0]:

442

443 #if types[n] == 1.0:

444 if types[m] == 1.0:

445 diff = time_diff(n,m,times)

446

447 arr = np.array([evt[n],

448 id_0[n], id_0[m],

449 areas[n], areas[m],

450 times[n], times[m],

451 tba[n], tba[m],

452 end_times[n], end_times[m],

453 prompt_faction[n],

prompt_faction[m],

454 diff])

455 test_array = np.append(test_array, [arr], axis

=0 )

456 #print(n, m)

457 m = m + 1

458

459 n = n + 1

460 arr = pd.DataFrame(test_array, columns=[’EventID_RQ’,

461 ’pulseID_1’,’pulseID_2

’,

462 ’area_1’, ’area_2’,

463 ’start_1’, ’start_2’,

464 ’TBA_1’,’TBA_2’,

465 ’end_1’,’end_2’,
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466 ’promptFaction_1’,’

promptFaction_2’,

467 ’time_diff_(ns)’])

468

469 return arr

470

471

472

473 def tagger2(dataframe, event, max_diff = 164000):

474 """

475 This function will take in a dataframe of all the events, and

return another dataframe with columns:

476 [EventID, pulseID_1, pulseID_2, start_time_1, start_time_2,’

start_1’, ’start_2’, time_diff(ns)]

477

478 The purpose is to find the time difference between two S1

pulses for BiPo tagging for a specific event

479

480 dataframe: dataframe

481 event: EventID that you want to look at

482 max_diff: the max time_diff between two s1 events

483

484 """

485 evt_df = dataframe[dataframe.eventID_RQ == event]

486 #file_name = evt_df[’RQ_File_Name’].to_list()

487 evt = evt_df[’eventID_RQ’].values

488 types = evt_df[’pulseType’].values

489 tba = evt_df[’TBA’].values

490 #classes = evt_df[’classification’].to_list()

491 times = evt_df[’start_time’].values

492 id_0 = evt_df[’pulseID’].values

493 areas = evt_df[’pulseArea’].values

494 prompt_faction = evt_df[’promptFaction’].values

495 end_times = evt_df[’end_time’].values

496

497 peak_amp = evt_df[’peakAmp’].values
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498 peak_time = evt_df[’peak_time’].values

499 pulseArea50 = evt_df[’pulseArea50’].values

500 pulseArea100 = evt_df[’pulseArea100’].values

501 rmsWidth = evt_df[’rmsWidth’].values

502 FWHM = evt_df[’FWHM’].values

503

504

505 n = 0

506 test_array = np.empty((0,26), dtype=int)

507

508 while n < types.shape[0]:

509

510 if types[n] == 1.0:

511

512 m = n + 1

513 #print(n,m)

514 while m < types.shape[0]:

515

516 #if types[n] == 1.0:

517 if types[m] == 1.0:

518 diff = time_diff(n,m,times)

519

520 if diff < max_diff:

521

522 arr = np.array([evt[n],

523 id_0[n], id_0[m],

524 areas[n], areas[m],

525 times[n], times[m],

526 tba[n], tba[m],

527 end_times[n], end_times[m

],

528 prompt_faction[n],

prompt_faction[m],

529 peak_amp[n], peak_amp[m],

530 peak_time[n], peak_time[m

],
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531 pulseArea50[n],

pulseArea50[m],

532 pulseArea100[n],

pulseArea100[m],

533 rmsWidth[n], rmsWidth[m],

534 FWHM[n], FWHM[m],

535 diff])

536 test_array = np.append(test_array, [arr],

axis=0 )

537 #print(n, m)

538 m = m + 1

539

540 n = n + 1

541 arr = pd.DataFrame(test_array, columns=[’EventID_RQ’,

542 ’pulseID_1’,’pulseID_2

’,

543 ’area_1’, ’area_2’,

544 ’start_1’, ’start_2’,

545 ’TBA_1’,’TBA_2’,

546 ’end_1’,’end_2’,

547 ’promptFaction_1’,’

promptFaction_2’,

548 ’peakAmp_1’,’peakAmp_2

’,

549 ’peak_time_1’,’

peak_time_2’,

550 ’pulseArea50_1’,’

pulseArea50_2’,

551 ’pulseArea100_1’,’

pulseArea100_2’,

552 ’rmsWidth_1’,’

rmsWidth_2’,

553 ’FWHM_1’,’FWHM_2’,

554 ’time_diff_(ns)’])

555

556 return arr
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557

558

559

560

561 def s1_finder(df):

562 """

563 Function which will run through the df of all the events, and

return another dataframe with all pairings

564 of an S1 followed by another S1 within an event, and the time

between then

565 """

566

567 rq_files = df[’RQ_File_Name’].unique()

568

569

570 event_IDs = []

571

572 n = 0

573

574 while n < rq_files.shape[0]:

575 events = df[df[’RQ_File_Name’] == rq_files[n]][’eventID_RQ

’].unique()

576 event_IDs.append(events)

577 clear_output(wait=True)

578 print(rq_files.shape[0] - n)

579 n = n + 1

580

581

582

583 n = 0

584 m = 0

585

586 tagged_df = pd.DataFrame([])

587 while n < rq_files.shape[0]:

588 rq_df = df[df[’RQ_File_Name’] == rq_files[n]]

589 evt_df = pd.DataFrame([])
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590

591 event = event_IDs[n]

592 while m < event.shape[0]:

593 event_df = tagger2(rq_df, event[m])

594 evt_df = evt_df.append(event_df)

595

596

597 clear_output(wait=True)

598 print(n,m, event.shape[0]-m)

599 m = m + 1

600

601 filename = [rq_files[n] for _ in range(evt_df.shape[0])]

602 evt_df.insert(0,’RQ_File_Name’, filename)

603 tagged_df = tagged_df.append(evt_df)

604

605 m = 0

606 n = n + 1

607

608 #tagged_df.to_csv(’tagged_df.csv’)

609 return tagged_df

610 print(’Finished’)

Script for training Decision Tree and Random Forest classifiers.

1 import uproot

2 import numpy as np

3 import pandas as pd

4 import matplotlib.pyplot as plt

5 import os

6 from IPython.display import clear_output

7

8 #####

9 # Code for training ML for BiPo

10 #

11 #####

12

13 # ---------- Decision Tree Classifier
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14

15

16 from sklearn.tree import DecisionTreeClassifier

17 classifier = DecisionTreeClassifier(criterion=’entropy’,

random_state=0)

18 classifier.fit(X_train, y_train)

19

20 DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion

=’entropy’,

21 max_depth=None, max_features=None,

max_leaf_nodes=None,

22 min_impurity_decrease=0.0,

min_impurity_split=None,

23 min_samples_leaf=1, min_samples_split=2,

24 min_weight_fraction_leaf=0.0, presort=’

deprecated’,

25 random_state=0, splitter=’best’)

26

27

28 y_pred = classifier.predict(X_test)

29

30 cm = confusion_matrix(y_test, y_pred)

31

32 accuracy_score(y_test, y_pred)

33

34 # ---------- Feature Importance

35 feature = []

36 score = []

37 for name, importance in zip(X_train.columns, classifier.

feature_importances_):

38 feature.append(name)

39 score.append(importance)

40 print(name, "=", importance)

41

42

43
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44 # ---------- Random Forest Classifier

45 from sklearn.ensemble import RandomForestClassifier

46

47 clf = RandomForestClassifier(n_jobs=2, random_state=0)

48

49

50 clf.fit(X_train, y_train)

51

52 RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight

=None,

53 criterion=’gini’, max_depth=None,

max_features=’auto’,

54 max_leaf_nodes=None, max_samples=None,

55 min_impurity_decrease=0.0,

min_impurity_split=None,

56 min_samples_leaf=1, min_samples_split=2,

57 min_weight_fraction_leaf=0.0, n_estimators

=100, n_jobs=2,

58 oob_score=False, random_state=0, verbose=0,

59 warm_start=False)

60

61 y_pred = clf.predict(X_test)

62

63

64 cm = confusion_matrix(y_test, y_pred)

65 accuracy_score(y_test, y_pred)
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Figure B.1: Image showing the leakage of ML and LZap and LZap corrected (Mercury) on
the test dataset with a linear y-axis. The LZap corrected takes into account the
drift of electrons towards the centre of the TPC. It is shown separately in this
image, but in further images where only LZap in mentioned, the correction is
applied.



Bibliography

163



Bibliography

[1] Bing-Lin Young. A survey of dark matter and related topics in cosmology.

Frontiers of Physics, 12(2):1–219, 2017.

[2] Giuseppe Gavazzi. 21 centimeter study of spiral galaxies in the coma super-

cluster. The Astrophysical Journal, 320:96–121, 1987.

[3] Gianfranco Bertone and Dan Hooper. History of dark matter. Reviews of

Modern Physics, 90(4):045002, 2018.

[4] Fritz Zwicky. On the masses of nebulae and of clusters of nebulae. The

Astrophysical Journal, 86:217, 1937.

[5] Fritz Zwicky. Die rotverschiebung von extragalaktischen nebeln. Helvetica

physica acta, 6:110–127, 1933.

[6] Vera C Rubin and W Kent Ford Jr. Rotation of the andromeda nebula from

a spectroscopic survey of emission regions. The Astrophysical Journal, 159:

379, 1970.

[7] KG Begeman and Broeils et al. Extended rotation curves of spiral galaxies:

Dark haloes and modified dynamics. Monthly Notices of the Royal Astro-

nomical Society, 249(3):523–537, 1991.

[8] Massimo Persic, Paolo Salucci, and Fulvio Stel. The universal rotation curve

of spiral galaxies—i. the dark matter connection. Monthly Notices of the

Royal Astronomical Society, 281(1):27–47, 1996.

[9] Bruce Hoeneisen et al. A study of dark matter with spiral galaxy rota-



165 Bibliography

tion curves. International Journal of Astronomy and Astrophysics, 9(02):

71, 2019.

[10] JR Brownstein and JW Moffat. Galaxy rotation curves without nonbaryonic

dark matter. The Astrophysical Journal, 636(2):721, 2006.

[11] Claude Carignan and Chemin et al. The extended hi rotation curve and mass

distribution of m31. The Astrophysical Journal Letters, 641(2):L109, 2006.
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