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(CINVESTAV)
Vocal externo

Dr. Eduardo S. Tututi Hernández
(FCFM-UMSNH)
Vocal externo

Dr. Arturo Fernández Tellez
(FCFM-BUAP)

Suplente
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2.2.1. Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2. Sector de Higgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3. Sector de Yang-Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4. Sector de Yukawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.5. Sector de corrientes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. El lagrangiano de QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Lagrangiano efectivo de Yang-Mills 17
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4.5.3. Asimetŕıa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5. El proceso γγ →W+W− 39
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Resumen

En esta tesis de doctorado, se presenta un estudio de posibles señales de desviaciones de la
simetŕıa de Lorentz en colisionadores fotónicos y hadrónicos. Dicho estudio se realiza en el contexto
de dos teoŕıas efectivas diferentes, pero que tienen en común un grupo de Lorentz extendido como
fuente de nueva f́ısica. En un caso, se estudian posibles efectos de violación de la simetŕıa de Lorentz
en el contexto del Modelo Estándar (SM) Extendido (SME), el cual es una teoŕıa de campo efectiva
que introduce violación de CPT y de Lorentz en forma independiente de modelo. En este tipo
de teoŕıa, la nueva f́ısica surge de fuentes tales como, por ejemplo, un rompimiento espontáneo
de la simetŕıa de Lorentz o por la presencia de un espacio-tiempo no conmutativo (NCSM); la
caracteŕıstica de este tipo de nueva f́ısica es la presencia de tensores de Lorentz constantes que
señalan direcciones preferenciales en el espacio. En el otro tipo de teoŕıa, se estudian posibles
señales de nueva f́ısica provenientes de la presencia de una quinta dimensión espacial compacta,
a través de la formulación del Modelo Estándar en cinco dimensiones (SM5D), en este esquema
no hay violación de la simetŕıa de Lorentz, pero los efectos de nueva f́ısica tienen que ver con una
modificación al grupo de Lorentz: SO(1, 4) es roto expĺıcitamente a SO(1, 3) v́ıa compactificación.
La caracteŕıstica de este tipo de teoŕıas es un grupo de Lorentz más grande que el estándar, el
cual da lugar a la presencia de nuevos campos masivos conocidos con el nombre de excitaciones de
Kaluza-Klein.

En el marco del SME, el cual contiene como subteoŕıa al NCSM, se propone una extensión
del sector de Yang-Mills de la teoŕıa electrodébil que consiste en la introducción del invariante de
SUL(2), Oαβ = Tr

(
WαλWβρW

λρ
)
, el cual es un 2-tensor de Lorentz. Este operador es contráıdo

con un tensor constante totalmente antisimétrico, bαβOαβ , que conduce a modificaciones en los
vértices WWγ y WWγγ. Los efectos de estos vértices modificados con respecto a su estructura
estándar, son estudiados a través de los procesos de colisión γe→Wνe y γγ →WW en el contexto
del Colisionador Lineal Internacional (ILC). Los efectos de la violación de la simetŕıa de Lorentz son
contrastados con posibles efectos de nueva f́ısica provenientes de otro tipo de fuentes, los cuales se
parametrizan en el contexto de la extensión del SM por medio de una teoŕıa efectiva convencional
(CESM), y que en este caso consiste en realizar la contracción de Oαβ con el tensor métrico,
gαβOαβ . De esta manera, los efectos de violación de Lorentz en el SME están caracterizados por
la parte antisimétrica de Oαβ , mientras que los efectos de la CESM surgen de su parte simétrica.
Se muestra que las señales de desviaciones de la simetŕıa de Lorentz pueden ser aisladas de otro
tipo de señales de nueva f́ısica.

En el marco del SM5D, se presenta un análisis completo del proceso gg → γγ en el contexto
del Gran Colisonador Hadrónico (LHC). Se estudian los efectos a nivel de un lazo de los modos de
Kaluza-Klein sobre el proceso resonante gg → H → γγ y también sobre el proceso directo de caja
gg → γγ. Se analiza el rango de valores de la escala de compactificación que es consistente con los
resultados presentados para el canal difotónico por los experimentos ATLAS y CMS. También, se
estudia la resonancia de más alta enerǵıa dada por el proceso gg → A(2n) → γγ, donde A(2n) es
una excitación pseudoescalar de Kaluza-Klein.
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Caṕıtulo 1

Introducción

La búsqueda por conocer y entender los mecanismos más sutiles de la naturaleza nos ha llevado
a la idea pretenciosa de intentar comprender cómo y porqué es que dichos mecanismos están
presentes. En este sentido, algunos aspectos a destacar han sido el desarrollo del método cient́ıfico
a lo largo de la historia de la humanidad, aśı como las técnicas para generar conocimiento mediante
el empleo, por ejemplo, de las matemáticas como herramienta fundamental. De este modo, la
exploración de las preguntas fundamentales de la naturaleza siempre va ligada a una interpretación
de la manera como la percibimos a ésta. Dicha interpretación, unida a un análisis cuantitativo, nos
dan como resultado conjeturas libres de especulaciones.

Uno de los caminos a los que nos ha llevado el método cient́ıfico es el estudio de lo que sucede a
un nivel más profundo de lo macroscópico. En otras palabras, anhelamos entender aquello que no
se puede percibir con nuestros sentidos. Uno de esos campos de investigación es el de las part́ıculas
elementales, que tiene por sustento teórico al modelo estándar de las interacciones electrodébiles y
fuertes. Esta teoŕıa ha tenido gran éxito ya que ha sido muy precisa en las predicciones de nume-
rosos resultados experimentales, que han sido escrutados mediante los colisionadores de part́ıculas
durante las últimas décadas. Infortunadamente, el SM no es suficiente para explicar diversas cues-
tiones fundamentales, por ejemplo, el problema de las familias fermiónicas. De este modo, surge la
motivación por conocer qué fenómenos suceden más allá del SM, pues las evidencias experimentales
nos llevan a suponer que el SM es una teoŕıa representando el ĺımite que se obtiene a bajas enerǵıas
de una teoŕıa mucho más general. Esta teoŕıa fundamental, válida a enerǵıas mayores a las que
están a nuestro alcance actualmente, debeŕıa explicar las preguntas fundamentales para las que el
SM carece de respuesta. En este contexto, uno de los caminos a explorar consiste en estudiar los
modelos extendidos, de tal modo que seamos capaces de cuantificar con precisión todas y cada una
de las desviaciones del SM por pequeñas que éstas sean. Si los resultados experimentales corroboran
estas desviaciones, tendŕıamos evidencia de la presencia de efectos de nueva f́ısica.

En este trabajo de tesis se abordan diversos problemas en el contexto de algunos modelos ex-
tendidos. Entre los objetivos principales de estudio tenemos la búsqueda de efectos de violación
de la simetŕıa de Lorentz y la búsqueda de posibles efectos a nivel de fluctuaciones cuánticas re-
lacionados con la presencia de dimensiones extra. Esta tesis se compone de ocho caṕıtulos, en los
cuales se describe con gran detalle al SM, para después abordar el tratamiento de dos problemas
de frontera en la f́ısica de part́ıculas elementales relacionados con el estudio de posibles efectos
de violación de la simetŕıa de Lorentz. En espećıfico, se estudian los efectos de violación de la
simetŕıa de Lorentz a través de las colisiones γe → Wνe y γγ → W+W−, en el contexto del coli-
sionador lineal internacional. El propósito de este estudio consiste en inducir efectos de violación
de la simetŕıa de Lorentz (EVL) por medio de la presencia de un campo tensorial de fondo, lo
cual constituye un mecanismo simple para inducir direcciones preferenciales en el espacio-tiempo
cuando se propaga la luz. Simultáneamente, se estudian los efectos de nueva f́ısica que pudieran
surgir de fuentes convencionales de f́ısica más allá del SM, tales como los que aparecen en teoŕıas
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CAPÍTULO 1. INTRODUCCIÓN

efectivas convencionales, las cuales respetan la simetŕıa de norma y son invariantes relativistas. Los
resultados obtenidos respecto a los dos enfoques teóricos mencionados con antelación nos serán de
mucha utilidad para poder distinguir que tipo de nueva f́ısica se está manifestando y si seŕıa posible
encontrar evidencia del efecto puro de violación de Lorentz. Los efectos de nueva f́ısica correspon-
dientes a violación de la simetŕıa de Lorentz y a la presencia de la CESM son inducidos a través de
los vértices WWγ y WWγγ. Nuestro estudio requiere reproducir los resultados correspondientes
a las amplitudes de helicidad de los procesos γe→Wνe y γγ → W+W− en el contexto del SM, ya
que sus contribuciones a observables tales como la sección eficaz diferencial y la sección eficaz total
deben ser comparadas con las contribuciones que surgen del modelo estándar extendido, que es el
modelo que no respeta la simetŕıa de Lorentz, y también con las contribuciones de la CESM. Pues
dicha comparación nos permitirá introducir escenarios en los cuales se podŕıan apreciar de forma
clara los efectos de nueva f́ısica; especialmente aquellos relacionados con violación de la simetŕıa
de Lorentz. En particular, nos enfocaremos en los observables donde las contribuciones del SM se
encuentren suprimidas con respecto a las contribuciones de nueva f́ısica o incluso no existan, pues
en este tipo de casos tendremos una excelente oportunidad para destacar los efectos de nueva f́ısica
y compararlos entre śı.

Como otro objetivo importante de este trabajo de tesis, se estudiarán las contribuciones de los
llamados modos excitados de Kalulza-Klein (KK) sobre la dispersión gg → γγ, en el contexto del
Modelo Estándar en cinco dimensiones. Como se sabe, este proceso ha jugado un papel central en el
reciente descubrimiento del bosón de Higgs del SM realizado por los experimentos ATLAS y CMS
del CERN. La fusión de gluones a pares de fotones (gg → γγ) es una reacción que se ha estudiado
exhaustivamente en el contexto del SM. Se ha encontrado que dicha fusión de gluones es un proceso
tan importante como la aniquilación de pares de quarks a pares de fotones. Inclusive, la primera
es aproximadamente dos veces mayor que la aniquilación de pares de quarks. La producción de
pares de fotones v́ıa fusión de gluones constituye un fondo (background) intŕınseco respecto a la
producción de pares de fotones a través del bosón de Higgs. Aśı, uno de los objetivos de esta tesis
consiste en estudiar los efectos de los modos KK en la fusión de gluones a pares de fotones, es decir,
nuestro estudio se enfoca en el análisis del proceso de dispersión gg → γγ (el fondo debido a los
lazos de caja y la señal de resonancia del bosón de Higgs H(0)), mediado por los modos KK de los
quarks del SM. Además, para redondear el estudio y en búsqueda de posibles efectos de nueva f́ısica,
también se analizará la resonancia de un pseudoescalar, A(2n), v́ıa el proceso gg → A(2n) → γγ,
el cual aparece en el contexto del SM5D. Cabe mencionarse que el SM5D es una teoŕıa altamente
predictiva, ya que las observables del SM son renormalizables a orden de un lazo, además de que
sólo introduce un parámetro adicional, a saber, la escala de nueva f́ısica caracterizada por el tamaño
de la dimensión extra. Nuestro objetivo central es investigar de manera sistemática la sensitividad
del proceso gg → γγ a la escala de compactificación. En particular, estableceremos para que
rango de valores de esta escala existe compatibilidad con los últimos resultados presentados por
los experimentos ATLAS y CMS.

El contenido de la tesis está organizado de la siguiente manera: en el caṕıtulo 2 se describe con
gran detalle al SM. En el caṕıtulo 3 se presentan los Lagrangianos del sector de Yang-Mills para la
CESM y el modelo estándar no conmutativo (NCSM por sus siglas en inglés) 1, puesto que de dichos
Lagrangianos se obtendrán las reglas de Feynman asociadas a los vértices WWγ y WWγγ. En el
caṕıtulo 4 se muestran los resultados anaĺıticos de las amplitudes de helicidad para la dispersión
γe → Wνe en el contexto del SM, de la CESM y del SME. Además, se presentan los resultados
numéricos para la sección eficaz diferencial, la sección eficaz total y la asimetŕıa RL en el contexto
de los tres modelos mencionados arriba. En el caṕıtulo 5 se presenta el estudio anaĺıtico y numérico
de amplitudes de helicidad para el proceso γγ →W−W+ en el contexto del SM, de la CESM y del
SME, estudiándose la sección eficaz diferencial, la sección eficaz total y tres tipos de asimetŕıas, en
el contexto del SM, de la CESM y el SME. En el caṕıtulo 6 se presenta el marco teórico necesario
para el cálculo de reglas de Feynman involucradas en el proceso gg → γγ en el contexto del SM5D.

1El NCSM está inclúıdo dentro del SME.
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En el caṕıtulo 7 se estudian anaĺıticamente los procesos gg → H,A(2n) → γγ en el contexto del
SM5D, posteriormente, se estudia el impacto numérico de los modos KK sobre dichos procesos y
se realiza una comparación entre las contribuciones del bosón de Higgs y el pseudoescalar A(2n),
ambos en la vecindad de resonancia. Finalmente, en el caṕıtulo 8 presentamos las conclusiones de
este trabajo de tesis.
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Caṕıtulo 2

El Modelo Estándar

2.1. Introducción

El SM [1, 2] es la teoŕıa cuántica-relativista de las interacciones fuerte, débil y electromagnética
que está basado en el grupo de norma SUC(3)×SUL(2)×UY (1). El grupo SUC(3) caracteriza las
interacciones fuertes, mientras que el grupo SUL(2)×UY (1) define las interacciones electrodébiles.
Esto indica que el conjunto de campos de norma asociados al grupo SUC(3)× SUL(2)×UY (1) se
puede dividir en tres conjuntos: 8 asociados a SUC(3), y luego 3 para SUL(2), y finalmente uno
para UY (1). La interacción fuerte es mediada por los gluones, los cuales se acoplan exclusivamente
a las part́ıculas de materia conocidas como quarks. La interacción débil resulta del intercambio de
los bosones de norma masivos W± y Z, mientras que la interacción electromagnética es mediada
por el fotón.

El grupo electrodébil SUL(2) × UY (1) es roto espontáneamente a la escala de Fermi v = 246
GeV, a el grupo electromagnético Uem(1) por medio de un sector de campos escalares dados en
una representación no trivial del grupo. Tres de los cuatro campos de norma obtienen una masa.
El único campo superviviente sin masa es el fotón. El grupo SUC(3) no se ve afectado por el
mecanismo de Higgs. Los fermiones en el modelo estándar son agrupados en tres “familias”. En
cada familia, se aprecia el mismo patrón: los fermiones de helicidad izquierda son agrupados en una
representación de dobletes en virtud del grupo SUL(2), mientras que los fermiones de helicidad
derecha se agrupan en una representación de singuletes de SUL(2).

El campo escalar complejo Φ, constituye un doblete en virtud de SU(2) con hipercarga igual
a +1, el cual después de realizar el mecanismo de Higgs pierde tres de sus componentes, dejando
sólo un campo escalar neutro real, conocido como part́ıcula f́ısica de Higgs.

2.2. El Modelo Estándar de las interacciones electrodébiles

2.2.1. Introducción

Una interesante peculiaridad de la interacción débil es que distingue entre los estados de helici-
dad de los fermiones, es decir, los bosones de normaW± y Z se acoplan con diferentes intensidades
a dichos estados, lo cual debe reflejarse en sus representaciones bajo el grupo SUL(2). Para este
propósito, los quarks y leptones son agrupados en dobletes izquierdos de SUL(2), de la siguiente
manera:

QiL =

(
ui
di

)

L

, LiL =

(
νi
li

)

L

, (2.1)

donde ui = u, c, t, di = d, s, b, son quarks de tipo up y down, respectivamente. Por otra parte,
li = e, µ, τ, son los leptones cargados y νi = νe, νµ, ντ , sus respectivos neutrinos. En nuestra
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notación i representa un ı́ndice de sabor. Por otra parte, los estados de helicidad derecha son
introducidos como singletes de SUL(2); liR, uiR y diR. Los estados de helicidad izquierda y derecha
de un fermión Ψ son definidos por:

ΨL,R =
1

2
(1∓ γ5)Ψ ≡ PL,RΨ. (2.2)

En la teoŕıa no se introducen los estados de helicidad derecha de los neutrinos debido a que expe-
rimentalmente no se han detectado. Hoy en d́ıa se sabe que esto sólo podŕıa ser una aproximación,
pues todo indica que los neutrinos deben poseer masas distintas de cero aunque muy pequeñas [3].

Además, debido a que el grupo electrodébil es covariante bajo transformaciones de norma
locales, la invariancia de la teoŕıa electrodébil ante dichas transformaciones se logra al introducir
una derivada covariante

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

σi

2
W i

µ, (2.3)

donde Bµ y Y/2 representan el campo de norma y el generador asociado con el grupo abeliano
UY (1). Similarmente, W i

µ(i = 1, 2, 3) y σi/2 son los campos de norma y los generadores, en la re-
presentación de dobletes, asociados con el grupo SUL(2). Los campos de norma (W 1

µ ,W
2
µ ,W

3
µ , Bµ)

definen, mediante combinaciones lineales, a los campos de masa (W−
µ ,W

+
µ , Zµ, Aµ). También, la

derivada covariante se introduce en los términos cinéticos fermiónicos, que a su vez inducen la pre-
sencia de acoplamientos entre fermiones y bosones de norma. Este tipo de interacciones conforman
el llamado sector de corrientes.

Una caracteŕıstica importante de la interacción débil consiste en que los correspondientes bo-
sones de norma son masivos. Sin embargo, es importante mencionar que no es posible introducir
los términos de masa directamente sin romper expĺıcitamente la invariancia de norma de la teoŕıa.
Las masas de los mismos son introducidos en la teoŕıa no mediante un rompimiento expĺıcito de la
simetŕıa de norma, sino por medio de un rompimiento espontáneo de la simetŕıa (RES). Como es
sabido, el rompimiento espontáneo de una simetŕıa global conduce a la presencia de campos esca-
lares de masa cero, conocidos con el nombre de bosones de Goldstone. El rompimiento espontáneo
de una simetŕıa de norma da lugar a la absorción de los bosones de Goldstone por algunos de los
bosones de norma del grupo, fenómeno conocido con el nombre de “mecanismo de Higgs”. El grupo
electrodébil SUL(2)×UY (1) es roto espontáneamente a la escala de Fermi v = 246 GeV, a el grupo
electromagnético Uem(1) a través de un sector de campos escalares dados en una representación no
trivial del grupo. Para generar las masas de los tres bosones de norma asociados con la interacción
débil se requiere por lo menos de tres campos escalares, pero el número mı́nimo de tales campos
que se pueden introducir de manera consistente son los cuatro contenidos en un doblete complejo
de SUL(2). El doblete que contiene a tales campos escalares es llamado doblete de Higgs. Esto se
traduce, después de un rompimiento apropiado de la simetŕıa, en la presencia de tres campos no
masivos o seudobosones de Goldstone y un campo escalar real f́ısico, conocido con el nombre de
escalar de Higgs. Los seudobosones de Goldstone no representan grados de libertad verdaderos, por
lo cual estos son eliminados en la norma unitaria. Asignando número de hipercarga igual a +1 al
doblete escalar de Higgs, el grupo electrodébil es roto espontáneamente al grupo electromagnético
Uem(1), cuyo generador queda expresado como una combinación lineal del generador Y/2 del grupo
UY (1), y del generador T 3 = σ3/2 del grupo SUL(2), de acuerdo con

Q = T 3 +
Y

2
. (2.4)

El mecanismo de Higgs permite dotar de masa a todas las part́ıculas del SM. En el sector de
Higgs, el cual está formado por el sector cinético y el potencial de Higgs, se generan las masas
de los bosones débiles, estas surgen del término cinético; también se genera la masa del bosón de
Higgs, justamente del término de potencial. Por otra parte, las masas de los fermiones de la teoŕıa
son generados cuando se forman invariantes con combinaciones entre el doblete de Higgs y los
dobletes izquierdos y singuletes derechos de los fermiones, todos estos invariantes son agrupados
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en el sector de Yukawa. El modelo contiene, además, el llamado sector de Yang-Mills, el cual
representa la esencia de la estructura de norma de la teoŕıa.

El lagrangiano para la teoŕıa electrodébil (TED) se divide en dos partes, una que contiene
solamente a los campos bosónicos y otra que contiene campos fermiónicos y bosónicos (ver caṕıtulo
11 de [1]). La parte bosónica se divide a su vez en los sectores de Higgs y de Yang-Mills. El sector
bosónico-fermiónico se divide también en los sectores de corrientes y de Yukawa. De este modo, el
lagrangiano se puede escribir como:

L = LF + LB, (2.5)

donde

LF = LC + LY , (2.6)

LB = LH + LY M , (2.7)

con LC ,LY ,LH y LY M representando los sectores de corrientes, Yukawa, Higgs y Yang-Mills,
respectivamente. En los siguientes apartados se presentará una breve descripción de cada uno de
estos sectores, con énfasis particular en el sector de Yukawa.

2.2.2. Sector de Higgs

Como ya se mencionó anteriormente, es en este sector donde se implementa el mecanismo de
Higgs que permite dar masa a los bosones de norma débilesW± y Z, y también al bosón de Higgs.
Este sector también determina las interacciones entre estas part́ıculas. El lagrangiano está dado
por:

LH = (DµΦ)
†(DµΦ)− V (Φ†,Φ), (2.8)

donde Dµ es la derivada covariante en la representación de dobletes, dada por la ecuación (2.3) y
V (Φ†,Φ) es el llamado potencial de Higgs, cuya estructura renormalizable tiene la forma

V (Φ†,Φ) = µ2(Φ†Φ) + λ(Φ†Φ)2 (2.9)

donde

Φ(x) =

(
φ1,1 + iφ1,2
φ2,1 + iφ2,2

)
=

(
φ1(x)

φ2(x)

)
(2.10)

es el doblete de Higgs, al cual se le asigna un número de hipercarga Y = +1. En la expresión para el
potencial, el coeficiente λ representa un número real positivo y µ es un parámetro con dimensiones
de masa, mediante el cual se establece la condición esencial para realizar un RES en la teoŕıa. En
efecto, si µ2 > 0, el vaćıo Φ0 es único y no es posible realizar un RES, pero si µ2 < 0, entonces se
tiene el caso de un vaćıo degenerado, que además satisface la condición

Φ†
0Φ0 = |φ01|2 + |φ02|2 =

−µ2

2λ
, (2.11)

donde Φ0 = 〈|Φ|〉 es el valor esperado en el vaćıo del doblete de Higgs, el cual rompe espontánea-
mente la simetŕıa electrodébil a el grupo electromagnético. Esto significa que Φ0 debe ser invariante
bajo el grupo electromagnético (esto es necesario para garantizar la conservación de la carga eléctri-
ca), es decir, si U ∈ Uem(1), entonces UΦ0 = Φ0, lo que implica que el generador de este grupo
dado por la ecuación (2.4) lo aniquila: QΦ0 = 0. Sin pérdida de generalidad se puede elegir la
siguiente dirección

Φ0 =

(
0
υ√
2

)
, (2.12)

con

υ2 =
−µ2

2λ
, (2.13)
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ya que cualquier otra elección de Φ0 esta relacionada con la ecuación (2.12) mediante una trans-
formación global del grupo electrodébil.

El RES aparece como consecuencia de elegir a uno sólo de los vaćıos. Como ya se mencionó,
cuando las simetŕıas involucradas son globales, el resultado es la presencia de campos escalares
sin masa, conocidos con el nombre de bosones de Goldstone. Sin embargo, cuando la simetŕıa es
de norma (el caso que nos interesa), el resultado es la presencia de bosones de norma masivos,
uno por cada generador roto de la simetŕıa. A este fenómeno, donde los bosones de Goldstone
son absorbidos por los campos de norma asociados con los generadores rotos, se le conoce con el
nombre de mecanismo de Higgs.

La teoŕıa debe ser considerada en el entorno de este estado de mı́nima enerǵıa. Aśı que se
introduce el desplazamiento

Φ → Φ0 +Φ =
1√
2

(
0

υ

)
+

(
G+

W

(H + iGZ)/
√
2

)
, (2.14)

donde G+
W y GZ son los seudobosones de Goldstone asociados a los bosones de norma débiles W±

y Z0, respectivamente, en tanto que H representa al escalar de Higgs. En términos de la expresión
anterior, el potencial de Higgs toma la forma

V (Φ†,Φ) = µ2(Φ0 +Φ)†(Φ0 +Φ) + λ[(Φ0 +Φ)†(Φ0 +Φ)]2

=
λυ4

4
− m2

H

2
H2 − λυH3 − λ

4
H4

− 2λυH(G2
Z + 2G+

WG−
W )− λ

2
G2

ZH
2

− λ(H2 +G2
Z)G

+
WG−

W − λ

4
G4

Z − λ(G+
WG−

W )2, (2.15)

de donde se puede apreciar que sólo el campo de Higgs, H , tiene masa distinta de cero dada por
m2

H = 2λυ2. Es en esta parte donde se dan los autoacoplamientos del bosón de Higgs.
En lo que respecta a la parte cinética del sector Higgs, ésta se puede escribir de la siguiente

manera

[Dµ(Φ0 +Φ)]†[Dµ(Φ0 +Φ)] = (DµΦ0)
†(DµΦ0) + (DµΦ0)

†(DµΦ)

+ (DµΦ)
†(DµΦ0) + (DµΦ)

†(DµΦ), (2.16)

donde Φ0 y Φ son las expresiones dadas en la ecuación (2.14). De esta expresión se pueden identificar
los términos de masa para los bosones débiles, dados por

(DµΦ0)
†(DµΦ0) = m2

WW−
µ W

+
µ + (W 3

µ , Bµ)M

(
W 3

µ

Bµ

)
, (2.17)

donde mW = g2v/2 es la masa asociada al bosón de norma débil cargado, definido por

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), (2.18)

además

M =
1

2
m2

W

(
1 −g1/g2

−g1/g2 g21/g
2
2

)
, (2.19)

es la matriz de masa asociada con los camposW 3
µ y Bµ, la cual debe ser diagonalizada para eliminar

el término bilinealW 3
µB

µ. Resolviendo el problema de eigenvalores y definiendo cW = g2/
√
g21 + g22

y sW = g1/
√
g21 + g22 , con cW = cos θW y sW = sin θW , se encuentra que la siguiente matriz

S =

(
cW sW
−sW cW

)
, (2.20)
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diagonaliza a M , en efecto

S†MS =
1

2
m2

W

(
1 + g21/g

2
2 0

0 0

)
, (2.21)

además (
W 3

µ

Bµ

)
= S

(
Zµ

Aµ

)
. (2.22)

Por lo tanto,

(DµΦ0)
†(DµΦ0) = m2

WW−
µ W

+
µ +

m2
Z

2
ZµZ

µ, (2.23)

donde mZ = mW /cW es la masa del bosón débil neutro Zµ. El bosón Aµ permanece sin masa,
por lo que es identificado como el fotón. De los dos términos de la parte cinética que involucran
la mezcla de Φ0 y Φ resultan los acoplamientos trilineales HV V , mientras que el último término
genera los términos cuárticos HHV V (V =W,Z).

2.2.3. Sector de Yang-Mills

La estructura de este sector está completamente definida por el carácter no abeliano del grupo
electrodébil. Los invariantes correspondientes no pueden ser construidos con los campos de norma
directamente, sino por medio de las estructuras covariantes dadas por el tensor de campo Wµν =
T iW i

µν , asociado con el grupo no abeliano SUL(2) y el correspondiente tensor Bµν del grupo
abeliano UY (1), los cuales transforman como

W ′
µν = UWµνU

†, U ǫ SUL(2), (2.24)

y
B′

µν = Bµν . (2.25)

De manera expĺıcita, los tensores de campo están dados por

W i
µν = ∂µW

i
ν − ∂νW

i
µ + g2ǫ

ijkW j
µW

k
ν , (2.26)

y
Bµν = ∂µBν − ∂νBµ. (2.27)

Con estos objetos, se puede construir el siguiente lagrangiano renormalizable

LYM = −1

2
Tr[W i

µνW
µν
i ]− 1

4
BµνB

µν , (2.28)

el cual, después de utilizar la normalización Tr[T iT j] = δij/2 para los generadores del grupo
SUL(2), el lagrangiano se puede reescribir como

LYM = −1

4
W i

µνW
µν
i − 1

4
BµνB

µν . (2.29)

Con los campos de masa W±
µ (definidos en la ecuación (2.18)), Zµ y Aµ (los cuales surgen direc-

tamente de la ecuación (2.22)) dados por

W 3
µ = cWZµ + sWAµ, (2.30)

Bµ = −sWZµ + cWAµ, (2.31)

e introduciendo, además, los siguientes tensores:

Ŵ±
µν =

1√
2
(W 1

µν ∓ iW 2
µν), (2.32)
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Zµν = ∂µZν − ∂νZµ, (2.33)

Fµν = ∂µAν − ∂νAµ, (2.34)

el lagrangiano de Yang-Mills adquiere la forma

LY M = −1

2
Ŵ−

µνŴ
µν
+ − 1

4
FµνF

µν − 1

4
ZµνZ

µν

− ig2(sWFµν + cWZµν)W
−µW+ν

+ g22(W
−
µ W

+
ν −W+

µ W
−
ν )(W−µW+ν −W+µW−ν). (2.35)

Este lagrangiano contiene las partes cinéticas de los cuatro bosones de norma, aśı como sus auto-
interacciones.

2.2.4. Sector de Yukawa

Como ya se mencionó con antelación, el SM contiene dos sectores de fermiones con estructura de
norma y de Lorentz completamente diferentes. Uno de estos es el sector de Yukawa, cuya estructura
de Lorentz es de tipo escalar y seudoescalar. Este sector tiene el propósito de generar las masas de
los fermiones v́ıa el rompimiento espontáneo de la simetŕıa electrodébil, ya que, del hecho de que
los estados de helicidad se definen en diferentes representaciones del grupo, no es posible definir sus
masas en forma invariante de norma. Además, dicho sector contiene invariantes que se construyen
como productos de campos de norma que vinculan fermiones de diferente helicidad acoplados al
doblete de Higgs. Puesto que en la TED no se definen los estados de helicidad derecha de los
neutrinos, éstos no tienen ninguna manifestación f́ısica en este sector.

Para campos de norma, al contrario de lo que ocurre en el sector de corrientes, como se verá en
la siguiente sección, los términos de Yukawa violan expĺıcitamente el sabor. Cuando ambos sectores
se expresan en términos de campos de masa, la situación se invierte en el sector de quarks, pues
mientras el sector de Yukawa de quarks es invariante de sabor (un sólo doblete de Higgs), las
corrientes cargadas dan lugar a acoplamientos entre miembros de diferentes familias, lo que conduce
a la presencia de corrientes neutras con cambio de sabor a orden de un lazo. Las corrientes neutras
son, sin duda, interesantes por constituir predicciones puramente cuánticas. Sin embargo, respecto
a los leptones ambos sectores son invariantes de sabor, esto se debe a la ausencia de neutrinos con
helicidad derecha.

El lagrangiano renormalizable más general se puede descomponer en dos partes independientes
como sigue

LY = LY
q + LY

l , (2.36)

donde LY
q y LY

l son los lagrangianos de los sectores de quarks y de leptones, respectivamente. A
continuación se estudian con cierto grado de detalle cada uno de estos sectores.

Sector de Yukawa para quarks

Dado que en el caso de los quarks existen estados derechos para los dos miembros del doblete
izquierdo, es necesario considerar otro objeto que transforme covariantemente bajo el grupo SUL(2),
el cual está dado por

Φ̃ = iσ2Φ∗ =

(
0 1
−1 0

)(
φ−

φ0∗

)
=

(
φ0∗

−φ−
)
, (2.37)

done σ2 es una de las matrices de Pauli. Φ̃ también tiene valor de hipercraga Y = +1. Con la
ayuda de este objeto podemos escribir el lagrangiano del sector de Yukawa para los quarks de la
siguiente manera

LY
q = −Y u

ij Q̄
′
iLΦ̃u

′
jR − Y d

ijQ̄
′
iLΦd

′
jR + h.c., (2.38)
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donde Y u
ij , Y

d
ij son constantes arbitrarias, llamadas constantes de Yukawa. Aqúı las primas denotan

los estados de norma. Observe que este lagrangiano no conserva el sabor, ya que las matrices Y u,d

no están sujetas a ningún tipo de restricción, en particular no son diagonales.
En términos de los vectores en el espacio de sabor definidos por

U ′ =




u′

c′

t′


 , D′ =




d′

s′

b′


 , (2.39)

y de las matrices de masa

Mu
ij =

υ√
2
Y u
ij , Md

ij =
υ√
2
Y d
ij , (2.40)

el lagrangiano del sector de Yukawa para los quarks se puede escribir como

LY
q = −

(
1 +

H

υ

)
(Ū ′

LM
uU ′

R + D̄′
LM

dD′
R)

+
i

υ
GZ(Ū

′
LM

uU ′
R − D̄′

LM
dD′

R)

−
√
2

υ
G−

W D̄′
LM

uU ′
R +

√
2

υ
G+

W Ū ′
LM

dD′
R + h.c. (2.41)

Las masas de los quarks se definen diagonalizando la parte cuadrática de este lagrangiano. Para
esto se definen los campos de masa mediante las siguientes transformaciones

UL,R = V u
L,RU

′
L,R, DL,R = V d

L,RD
′
L,R, (2.42)

las matrices V u,d
L,R deben ser unitarias con el fin de preservar la estructura canónica de los términos

cinéticos que aparecen en el sector de corrientes, que a su vez garantiza la existencia de propagadores
en su forma canónica. Existe un teorema del álgebra lineal que nos garantiza que para cualquier
matriz M , es posible encontrar dos matrices unitarias A y B, tales que AMB sea real y diagonal.
La demostración de este teorema se sigue directamente de la descomposición polar de la matriz
M , dada por

M = HU, (2.43)

donde la matriz H es hermı́tica y U es unitaria. Dado que toda matriz hermı́tica puede ser diago-
nalizada por una matriz unitaria, es decir, S†HS es diagonal con S† = S−1, es claro que tomando
A = S† y B = U †S, obtenemos que

AMB = S†MU †S = S†(HU)U †S = S†HS, (2.44)

el cual es diagonal y real, ya que los eigenvalores de H† = H son reales.
Dado que las matrices V u,d

L,R son unitarias, este teorema nos garantiza que las matrices

V u,d
L Mu,dV u,d†

R sean reales y diagonales, como debe ser ya que los elementos de la diagonal re-
presentan a las masas de los quarks.

En términos de los campos de masa (U y D), el lagrangiano del sector de Yukawa para los
quarks se escribe como

LY
q = −

(
1 +

H

υ

)
(ŪM̄uU + D̄M̄dD)

+
iγ5

υ
GZ(ŪM̄

uU − D̄M̄dD)

−
√
2

υ
G−

W D̄(K†M̄uPR − M̄dK†PL)U

+

√
2

υ
G+

W Ū(KM̄dPR − M̄uKPL)D, (2.45)
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donde
K = V u

L V
d†
L , (2.46)

es la matriz de CKM. Y M̄u,d son matrices de masa dadas por

M̄u = V u
LM

uV u†
R =




mu 0 0
0 mc 0
0 0 mt


 , M̄d = V d

LM
dV d†

R =




md 0 0
0 ms 0
0 0 mb


 . (2.47)

De esta manera, en términos de los campos de masa, el sector de Yukawa de quarks conserva el
sabor, es decir, el bosón de Higgs sólo se acopla a pares del mismo tipo de quarks.

Sector de Yukawa para leptones

Para el caso de los leptones, tomando en cuenta que no existen los estados de helicidad derecha
para los neutrinos, podemos escribir el lagrangiano para este sector de la siguiente forma

LY
l = −Y l

ijL̄
′
iLΦl

′
jR + h.c. (2.48)

donde Y l
ij son las componentes de la matriz de Yukawa.

En términos de los campos en el espacio de sabor

E′ =




e′

µ′

τ ′


 , ν′ =




ν′e
ν′µ
ν′τ


 , (2.49)

y de la matriz de masa

M l
ij =

υ√
2
Y l
ij , (2.50)

podemos escribir al lagrangiano del sector de Yukawa para los leptones como

LY
l = −

(
1 +

H

υ

)
Ē′

LM
lE′

R

− i

υ
GZĒ

′
LM

lE′
R −

√
2

υ
G+

W ν̄′M lE′
R + h.c. (2.51)

Como en el caso de los quarks, las masas de los leptones se definen diagonalizando la parte
cuadrática del lagrangiano. Como antes, se definen los campos de masa mediante las siguientes
transformaciones

EL,R = V l
L,RE

′
L,R, νL = V l

Lν
′
L, (2.52)

donde V l
L,R son matrices de rotación unitarias. Aśı, en términos de los campos de masa, el lagran-

giano de Yukawa para los leptones se escribe como

LY
l = −

(
1 +

H

υ

)
ĒM̄ lE

− iγ5

υ
GZĒM̄

lE −
√
2

υ
(G+

W ν̄M̄ lPRE +G−
W ĒM̄ lPLν). (2.53)

Puesto que siempre es posible encontrar las matrices unitarias V l
L,R tales que M̄ l = V l

LM
lV l†

R se

real y diagonal, como se requiere para definir los términos de masa. La matriz M̄ l está dada por

M̄ l =




me 0 0
0 mµ 0
0 0 mτ


 , (2.54)

donde los elementos de la diagonal son las masa de los respectivos leptones cargados.
Como ocurre en el sector de quarks, en términos de los campos de masa, el sector de Yukawa

para los leptones conserva el sabor, es decir, el bosón de Higgs sólo se acopla al mismo tipo de
leptón cargado.
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2.2. EL MODELO ESTÁNDAR DE LAS INTERACCIONES ELECTRODÉBILES

2.2.5. Sector de corrientes

Este sector se genera al sustituir la derivada ordinaria por la derivada covariante asociada al
grupo electrodébil en el sector cinético de quarks y leptones, lo cual da lugar a la presencia de
acoplamientos de los fermiones con los campos de norma que poseen estructuras de Lorentz carac-
terizadas por las matrices de Dirac γµ y γ5γµ. Todos los términos contienen un par de fermiones
de la misma helicidad, lo que resulta de la necesidad de conservar la invariancia de norma. A los
acoplamientos de pares de fermiones con el bosón W± se les conoce como corrientes cargadas,
mientras que a los acoplamientos con los bosones Z y A reciben el nombre de corrientes neutras.
El lagrangiano invariante de norma se descompone en dos partes

LC = LC
q + LC

l , (2.55)

donde LC
q y LC

l representan los sectores de corrientes de quarks y de leptones, respectivamente

Sector de corrientes para quarks

En términos de los campos de norma, el lagrangiano del sector de corrientes para los quarks
conserva el sabor y está dado por

LC
q = iQ̄′

iLγ
µDµQ

′
iL + iū′iRγ

µDµu
′
iR + id̄′iRγ

µDµd
′
iR, (2.56)

el cual, una vez expresado en términos de los campos de masa, toma la siguiente forma

LC
q = iŪγµ∂µU + iD̄γµ∂µD +

g2√
2
(W+

µ J
−µ + J+

µ W
−µ) +

g2
2cW

ZµJ
µ
Z + eAµJ

µ
A, (2.57)

en donde se han definido las corrientes cargadas J−µ y neutras Jµ
Z y Jµ

A de la siguiente forma

J−µ = ŪLγ
µKDL, (2.58)

Jµ
Z = Ūγµ(guV + guAγ

5)U + D̄γµ(gdV + gdAγ
5)D, (2.59)

Jµ
A = ŪγµU + D̄γµD. (2.60)

En estas expresiones K es la matriz de CKM dada en la ecuación (2.46), mientras que gui

V y gui

A

(ui = u, d) son constantes de acoplamiento que dependen esencialmente de la carga del quark ui.

Se puede observar que, como consecuencia de la unitariedad de las matrices de rotación V u,d
L,R, las

corrientes neutras conservan el sabor, sin embargo en las corrientes cargadas se dan transiciones
entre diferentes familias a través de la matriz de CKM. La presencia de corrientes cargadas con
cambio de sabor a nivel de árbol da lugar a que se generen corrientes neutras con cambio de sabor
a nivel de un lazo.

Sector de corrientes para leptones

Debido a la ausencia de neutrinos derechos, el lagrangiano de corrientes correspondiente a los
leptones es más sencillo y está dado por

LC
l = iL̄′

iLγ
µDµL

′
iL + il̄′iRγ

µDµl
′
iR, (2.61)

el cual, como en el caso de los quarks, conserva el sabor.
En términos de los campos de masa, el lagrangiano de corrientes para los leptones toma la

forma

LC
l = iĒiγ

µ∂µEi + iν̄Lγ
µ∂µνL +

g2√
2
(W+

µ J
−µ + J+

µ W
−µ) +

g2
2cW

ZµJ
µ
Z + eAµJ

µ
A, (2.62)
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2.3. EL LAGRANGIANO DE QCD

donde, como en el caso de los quarks, se han definido las corrientes cargadas J−µ y neutras Jµ
Z y

Jµ
A de la siguiente manera

J−µ = ν̄Lγ
µEL, (2.63)

Jµ
Z = ν̄γµ(gνV + gνAγ

5)ν + Ēγµ(gEV + gEAγ
5)E, (2.64)

Jµ
A = ν̄Lγ

µνL + ĒγµE, (2.65)

donde gliV , g
li
A (li = ν, E) son constantes de acoplamiento que dependen de los números cuánticos

con que se acomodan los leptones en el grupo electrodébil. En este caso, debido a la ausencia de
neutrinos derechos, las corrientes cargadas y neutras conservan el sabor a todo orden en la serie
perturbativa. Es importante señalar que la ausencia de interacciones entre leptones de diferentes
familias mediadas por el bosón débil cargado, en contraste con lo que ocurre con los quarks, no
sólo se debe a la inexistencia de neutrinos derechos, sino también a que el sector de corrientes es
originalmente invariante de sabor.

2.3. El lagrangiano de QCD

La interacción fuerte es descrita por una teoŕıa de Yang-Mills, basado en el grupo SUC(3).
Esto, junto con el requerimiento de que la teoŕıa sea renormalizable, fija completamente la forma
del lagrangiano. La teoŕıa es llamada Cromodinámica Cuántica (QCD por sus siglas en ingles) y
el lagrangiano usualmente se escribe como

LQCD = −1

2
Tr[GµνG

µν ] + q̄i(iγ
µDµ −mi)qi, (2.66)

en esta expresión existe una suma sobre el ı́ndice de sabor i (qi = u, d, s, c, b, t), la derivada
covariante está dada por

Dµ = ∂µ − igsGµ, (2.67)

y
Gµν = ∂µGν − ∂νGµ − igs[Gµ, Gν ], (2.68)

gs es la constante fuerte de acoplamiento asociada al grupo SUC(3). El campo de norma Gµ =
Ga

µλ
a/2, donde las matrices λa son las matrices de Gell-Mann, los generadores del grupo SUC(3),

las cuales satisfacen la siguiente relación de conmutación

[λa, λb] = 2ifabcλc, (2.69)

fabc es la constante de estructura antisimétrica del grupo, además se tiene la condición de norma-
lización

Tr[λaλb] = 2δab. (2.70)

Los campos de norma de la interacción fuerte Ga
µ, son llamados “gluones”, y en acuerdo con la

simetŕıa de norma SUC(3) están presentes ocho gluones. La invariancia de norma de color es exacta,
irrompible ante cualquier mecanismo, tal que los gluones no adquieren masa. Incluso, como se trata
de una teoŕıa no abeliana, como en el caso de la interacción débil, los gluones interactúan entre śı,
por lo tanto, surgen vértices trilineales y cuárticos. Además, en analoǵıa con la parte electrodébil
de la teoŕıa, del Lagrangiano de interacción entre fermiones y bosones de norma, aparecen los
acoplamientos entre quarks y gluones.
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Caṕıtulo 3

Lagrangiano efectivo de

Yang-Mills

Algunos mecanismos de violación de la simetŕıa de Lorentz han sido encontrados dentro del con-
texto de gravedad cuántica [4]. Debido a que este tipo de teoŕıas no se han establecido f́ısicamente
por completo, se ha formulado una versión efectiva que contiene al SM junto con gravedad. Más
aún, existe una interpretación mı́nima de dicha teoŕıa efectiva, en la cual no está presente la grave-
dad [5], conocida como SME [6]. Si bien el SME tiene su motivación en escenarios espećıficos en el
contexto de teoŕıa de cuerdas o en relatividad general con rompimiento espontáneo de la simetŕıa,
éste modelo trasciende más allá pues su propiedad de ser una teoŕıa efectiva le da el valor de la
generalidad. Por tanto, el SME ofrece una herramienta poderosa para investigar posibles efectos de
violación de Lorentz en forma independiente del modelo. Violación de Lorentz también puede sur-
gir dentro del contexto de teoŕıas de campo formuladas en un espacio-tiempo no conmutativo [7].
La idea de que el espacio-tiempo podŕıa ser no conmutativo a cortas distancias o a muy altas
enerǵıas ha sido objeto de mucho interés recientemente, como consecuencia de la propuesta teórica
de Seiberg y Witten en modelos de cuerdas [8], en donde se pueden conectar teoŕıas de norma
conmutativas y no conmutativas. Un método para formular al SM no conmutativo como una teoŕıa
efectiva, expresada en potencias del parámetro de la no conmutatividad del espacio-tiempo ha sido
propuesto en las referencias [9, 10]. La teoŕıa efectiva resultante es menos amplia que el SME, pues
ésta proviene de la idea espećıfica de la no conmutatividad del espacio-tiempo; en la referencia [11]
se ha probado que el NCSM es un subconjunto del SME. Aunque estas teoŕıas introducen campos
de fondo constantes que llevan consigo ı́ndices de Lorentz, estos no son invariantes de Lorentz bajo
transformaciones generales de Lorentz, sólo son invariantes ante transformaciones de Lorentz de
tipo observador. Como está discutido en la referencia [11], existen dos distintas clases de transfor-
maciones de Lorentz, a saber, transformaciones de Lorentz tipo observador y transformaciones de
Lorentz de part́ıcula. La primera clase corresponde a los cambios de coordenadas, mientras que la
segunda clase está asociada con el cambio de aparato de medición [12].

La violación de la simetŕıa de Lorentz seŕıa una indicación dramática de la presencia de efectos
de nueva f́ısica. Puesto que se ha predicho que esta clase de fenómenos podŕıan originarse a muy
altas enerǵıas, su manifestación a bajas enerǵıas sólo podŕıa detectarse en aquellos procesos que se
encuentran muy suprimidos o prohibidos en el contexto del SM. En particular, como parte de esta
tesis deseamos estudiar la sensibilidad a efectos de violación de Lorentz v́ıa procesos de dispersión
tales como γe → Wνe y γγ → W+W− ante la presencia de los acoplamientos anómalos WWγ y
WWγγ. Estos dos vértices pueden aparecer en los contextos del SME, el NCSM y la CESM; esta
última difiere de las dos primeras en el sentido de que es formulada bajo la suposición de que debe
respetar simultáneamente simetŕıa de Lorentz y simetŕıa de norma. En cuanto a efectos de violación
de Lorentz se refiere, los vértices anómalosWWγ y WWγγ provienen de un sector electrodébil de
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Yang-Mills acoplado con un 2-tensor antisimétrico constante bαβ. Este campo de fondo constante
que surge en el contexto del NCSM como una medición de la no conmutatividad del espacio-tiempo
(usualmente establecido como [xα, xβ ] = iθαβ [10]) o como un valor de expectación de vaćıo de
un campo tensorial Bαβ [13] en relatividad general, no ha sido considerado hasta ahora dentro del
SME, pues sólo se han introducido interacciones invariantes de tipo observador de dimensión menor
que cuatro que no involucran objetos constantes con dos ı́ndices. Otra motivación para estudiar
violación de Lorentz por medio de este tensor proviene del hecho de que éste puede acoplarse
con operadores de dimensión seis invariantes ante SUL(2) × UY (1), lo cual se consigue sólo con
la intensidad de dicho tensor acoplándose con SUL(2); en su versión invariante de Lorentz, esta
propuesta ha sido objeto de gran interés en la literatura [14, 15, 16, 17, 18, 40]. Por otra parte,
como ya se ha discutido en el contexto de cuantización de teoŕıa de cuerdas [8] y en relatividad
general con rompimiento espontáneo de la simetŕıa [13], existe más que una simple analoǵıa entre
las seis cantidades bαβ y las seis componentes del tensor de campo electromagnético Fαβ . Para
cualquier propósito práctico, los campos de fondo constantes adimensionales ei ≡ Λ2

LV b
0i y bi ≡

(1/2)Λ2
LV ǫ

ijkbjk, donde ΛLV la escala de nueva f́ısica, juegan el rol de un agente externo que puede
inducir desviaciones respecto a predicciones del SM, las cuales en principio posiblemente podŕıan
observarse en experimentos futuros de altas enerǵıas.

Como se mencionó arriba, nos centraremos en la parte del sector de Yang-Mills que caracteriza
al SME (o también al NCSM) modificado por la presencia del invariante tipo observador que surge
de la contracción de bαβ con un 2-tensor de Lorentz invariante bajo el grupo de norma SUL(2).
Este sector extendido de Yang-Mills genera los vértices no renormalizables WWγ y WWγγ, los
cuales difieren sustancialmente del que aparece en el contexto de la CESM. Se verá más adelante
que los vértices anómalos WWγ y WWγγ surgen en el SME (o en el NCSM) de un operador de
dimensión seis el cual es invariante bajo el grupo de norma SUL(2), pero es un 2-tensor bajo el
grupo de Lorentz, mientras que en la CESM, este operador es invariante bajo el grupo de norma
y el grupo de Lorentz. Técnicamente hablando, esto significa que sólo la parte antisimétrica en los
dos ı́ndices de Lorentz contribuye a las amplitudes f́ısicas en el SME debido a la antisimetŕıa de
bαβ , en contraste, sólo la parte simétrica en la CESM contribuye puesto que el operador invariante
es obtenido a través de la contracción del tensor métrico gαβ en lugar de bαβ .

A continuación, presentamos una breve discusión sobre las principales diferencias entre el SME,
el NCSM y la CESM. El sector electrodébil extendido de Yang-Mills que se considerará aqúı puede
surgir tanto en el SME como en el NCSM; el último siendo un subconjunto del primero [11].
Por lo tanto, comparemos primero el NCSM con la CESM. El NCSM está caracterizado por un
Lagrangiano efectivo de la forma [10]1

LNCSM = LSM + θαβ
N6∑

i=1

O(6)
i αβ + θαβθµν

N8∑

i=1

O(8)
i αβµν + · · · , (3.1)

donde LSM es el Lagrangiano usual del SM. Aqúı, O(6)
i αβ, O

(8)
i αβµν , · · · , son conjuntos de N6, N8, · · · ,

correspondientes a operadores invariantes ante SUC(3)× SUL(2) × UY (1) de dimensión canónica
6, 8, · · · , y son tensores de Lorentz de rango 2, 4, · · · , respectivamente, los cuales se acoplan al
tensor de fondo constante θαβ . Debe notarse que debido al carácter antisimétrico de θαβ sólo la

parte antisimétrica de los tensores invariantes de Lorentz O(6)
i αβ , O

(8)
i αβµν , · · · contribuirán. Por otra

lado, la CESM es construida con operadores no renormalizables O(n) de dimensión n > 4 que son
invariantes bajo el grupo de norma y el grupo de Lorentz:

LCESM = LSM +
∑

n=5

Nn∑

i=1

αn
i

Λn−4
O(n)

i . (3.2)

1En esta parte de la presentación, se usará θαβ en lugar de bαβ , ya que esta es la notación usada en la literatura
relacionada con el NCSM.
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3.1. LOS VÉRTICES WWγ Y WWγγ EN EL CESM

W+λ(k1) W−ρ(k2)

Aµ(q)

= +ie(Γ0
λρµ + Γθ

λρµ)

Figura 3.1: vértice WWγ, (todas las part́ıculas entrando).

No es dif́ıcil convencerse que la parte simétrica de los tensores de Lorentz que aparecen en LNCSM ,

definidos a través de la contracción con el tensor métrico O(6)
i = gαβO(6)

i αβ , O
(8)
i = gαβgµνO(8)

i αβµν +
· · · , es la que contribuye en la CESM [20]. No obstante, es importante señalar que la contribución
a observables f́ısicos de los operadores que aparecen en LCESM deben diferir de aquella que surge

en LNCSM , pues en el primer caso sólo contribuye la parte simétrica de O(6)
i αβ , O

(8)
i αβµν , · · · , al

contrario, en el último caso, sólo contribuye la parte antisimétrica. Este punto será clarificado más
abajo para el caso espećıfico del sector de Yang-Mills.

A partir de ahora, nos enfocamos en presentar las caracteŕısticas que son relevantes para nuestra
discusión, es aśı que dirigimos la atención a los Lagrangianos en los cuales están contenidos los
vértices WWγ y WWγγ en el contexto del NCSM y la CESM.

3.1. Los vértices WWγ y WWγγ en el CESM

El sector de Yang-Mills extendido para la CESM está dado por el siguiente Lagrangiano:

LCESM
Y M = −1

4
W a

µνW
aµν − 1

4
BµνB

µν + LY M
GF − 4ig

3!

αW

Λ2
OW , (3.3)

donde LY M
GF es el término que fija la norma, el cual para nuestros propósitos, conviene se defina

mediante el uso de una norma no lineal [22]. Este procedimiento es covariante bajo el grupo
electromagnético, debido a lo cual permite cancelar los vértices no f́ısicos. En nuestro caso, la
norma no lineal permite eliminar dos de los cinco diagramas de Feynman que aparecen al usar la
norma lineal para el proceso γγ →W+W−. Los primeros tres términos de LCESM

Y M corresponden a
las contribuciones usuales en el sector de Yang-Mills del SM, mientras que en el último término se
establece la forma del sector de Yang-Mills extendido para la CESM, en donde el operadorOW es el
responsable de la aparición de nuevas contribuciones a los vértices WWγ y WWγγ. En espećıfico,

OW = gαβO(6)
αβ , donde O(6)

αβ es un operador con dimensión canónica seis y es un invariante del
grupo de norma SUL(2). En forma expĺıcita, este operador se encuentra dado por

O(6)
αβ = Tr[WαµWβνW

µν ]

=
i

4
ǫabcW

a
αµW

b
βνW

cµν , (3.4)

donde Wµν = T aW a
µν y T a son los generadores del grupo SUL(2) que satisfacen Tr[T a, T b] = δab

2 .

Debe notarse que en esta formulación contribuye únicamente la parte simétrica del tensor O(6)
αβ .
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3.1. LOS VÉRTICES WWγ Y WWγγ EN EL CESM

Una vez que se aplica el rompimiento espontáneo de la simetŕıa, el lagrangiano que contiene al
vértice WWγ queda dado por

LCESM
WWγ = L0

WWγγ + LαW

WWγγ , (3.5)

donde la parte correspondiente al SM tiene la siguiente forma

L0
WWγ = ie

[
(W−

µνW
+ν −W+

µνW
−ν)Aµ − Fµν [W−µ,W+ν ]− 1

ξ
Aµ(W

−µ∂νW
+ν −W+µ∂νW

−ν)

]
,

(3.6)
mientras que la contribución efectiva al acoplamiento WWγ está dada por

LαW

WWγ =
ieαW

Λ2
F ρηW−

λρW
+λ
η . (3.7)

De este Lagrangiano se deriva la regla de Feynman para el vértice WWγ, que se escribe de la
siguiente manera 2

ΓCESM
µλρ (q, k2, k3) = Γ0

µλρ(q, k2, k3) + ΓαW

µλρ(q, k2, k3),

donde

Γ0
µλρ(q, k2, k3) = ie

[
(k2 − k3)µgλρ + (q − k2 −

1

ξ
k3)ρgλµ − (q − k3 −

1

ξ
k2)λgρµ

]
, (3.8)

es la contribución del SM a la función vértice ΓCESM
µλρ (q, k2, k3) y

ΓαW

µλρ(q, k2, k3) =
ieαW

Λ2
(qηδβµ − qβδηµ)(k

α
2 gηλ − k2ηδ

α
λ )(k3αgβρ − k3βgαρ), (3.9)

es la contribución anómala a ΓCESM
µλρ (q, k2, k3). Nótese que la función vértice ΓαW

µλρ(q, k2, k3) satisface
las siguientes identidades de Ward simples

qµΓαW

µλρ(q, k2, k3) = 0,

kλ2Γ
αW

µλρ(q, k2, k3) = 0,

kρ3Γ
αW

µλρ(q, k2, k3) = 0.

Por otra parte, el Lagrangiano asociado al vértice WWγγ está dado por

LCESM
WWγγ = L0

WWγγ + LαW

WWγγ , (3.10)

donde

L0
WWγγ = −e

2

2
(AµW

−
ν −AνW

−
ν )(Aµ(W+ν −AνW+µ)− e2

ξ
AµAνW

−µW+ν , (3.11)

es la contribución del SM y

LαW

WWγγ =
e2αW

Λ2
F ρη[W−

λρ(AηW
+λ −W+

η A
λ) + (AλW

−
ρ −W−

λ Aρ)W
+λ
η ], (3.12)

es la contribución anómala.
De LCESM

WWγγ se desprende la función vértice referente al acoplamientoWWγγ 3, la cual se puede
escribe como

ΓCESM
µνλρ = Γ0

µνλρ + ΓαW

µνλρ,

2La regla de Feynman se interpreta siguiendo la notación de la figura 3.1.
3Se debe usar la notación de la figura 3.2 para interpretar la regla de Feynman.
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3.2. LOS VÉRTICES WWγ Y WWγγ EN EL SME

W+λ(k3)
W−ρ(k4)

Aµ(k1) Aν(k2)

= −ie2(Γ0
µνλρ + Γθ

µνλρ)

Figura 3.2: vértice WWγγ, (todas las part́ıculas entrando).

donde

Γ0
µνλρ = −ie2

[
2gλρgµν − (1− 1

ξ
)(gλµgρν + gρµgλν)

]
, (3.13)

es la contribución del SM y

ΓαW

µνλρ(k1, k2, k3, k4) =
ie2αW

Λ2
(Γση

µ Γσηλρν (k3, k4) + Γση
ν Γσηλρµ(k3, k4)), (3.14)

es la aportación anómala, siendo

Γση
µ = kσ1 δ

η
µ − kη1δ

σ
µ ,

Γση
ν = kσ2 δ

η
ν − kη2δ

σ
ν ,

con

Γσηλρν (k3, k4) = (gανgηλ − gηνgαλ)(k4αgσρ − k4σgαρ)

−(gανgσρ − gσνgαρ)(k3αgηλ − k3ηgαλ).

Γσηλρµ(k3, k4) se obtiene de Γσηλρν (k3, k4) al sustituir ν por µ.
La función vértice anómala ΓαW

µνλρ satisface las siguientes identidades

kµ1Γ
αW

µνλρ =
ie2αW

Λ2
Γση
ν kµ1Γσηλρµ

kν2Γ
αW

µνλρ =
ie2αW

Λ2
Γση
µ kν2Γσηλρν

kµ1 k
ν
2Γ

αW

µνλρ = 0.

Estas propiedades serán de gran utilidad para demostrar invariancia de norma en el proceso γγ →
W+W−.

3.2. Los vértices WWγ y WWγγ en el SME

En el contexto del espacio-tiempo no conmutativo (como se mencionó anteriormente, el NCSM
es un subconjunto de SME), el sector de Yang-Mills de la teoŕıa electrodébil se puede escribir como
sigue [21, 23]

LNC
Y M = LSM

Y M − igbαβOαβ . (3.15)
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donde bαβ es un tensor antisimétrico de segundo rango que representa a un campo de fondo
constante, el cual es responsable de la violación de la simetŕıa de Lorentz [24]. De este modo, sólo

la parte antisimétrica de O(6)
αβ contribuye al SME.

A continuación escribiremos los Lagrangianos correspondientes a los vértices anómalosWWγ y
WWγγ, junto con sus respectivas funciones vértice, donde únicamente se presenta la contribución
del tensor bαβ , ya que la contribución del SM se analizó en la sección anterior. El efecto del campo
de fondo bαβ sobre el vértice WWγ se aprecia en el siguiente Lagrangiano

Lb
WWγ =

ie

2
bαβ(W−

αλW
+
βρF

λρ +W+
αλW

−λρFβρ +W−
βρW

+λρFαλ). (3.16)

De este Lagrangiano se obtiene la regla de Feynman asociada a la contribución de bαβ para el
vértice WWγ, que expĺıcitamente se puede escribir aśı

Γb
µλρ(q, k2, k3) =

ie

2
bαβT ηξ

µ Γαβηξλρ, (3.17)

donde

T ηξ
µ = qξδηµ − qηδξµ, (3.18)

con

Γαβηξλρ = (k2βgξλ − k2ξgβλ)(k3αgηρ − k3ηgαρ)

+gηβ(k2αgσλ − k2σgαλ)(k
σ
3 gξρ − k3ξδ

σ
ρ )

+gηα(k2ξδ
σ
λ − kσ2 gξλ)(k3βgσρ − k3σgβρ).

Note que qµT ση
µ = 0, lo cual indica que existe invariancia de norma expĺıcita bajo el grupo Ue(1).

Además, tenemos que

kλ2Γαβσηλρ = 0,

kρ3Γαβσηλρ = 0,

lo que implica que el campo de norma W se manifiesta únicamente a través del tensor Wµν en el
acoplamiento WWγ. Esto significa que no hay contribuciones del modo longitudinal del bosón W
a dicho acoplamiento, lo que garantiza resultados anaĺıticos invariantes de norma.

Por otra parte, el efecto del campo de fondo bαβ sobre el vértice WWγγ se visualiza en el
siguiente Lagrangiano

Lb
WWγγ = −e

2

2
bαβF ση[W−

ασ(AβW
+
η −AηW

+
β )−W+

βη(AαW
−
σ −AσW

−
α )

+gβσ(W
−
ωη(AαW

+ω −AωW+
α )−W+

αω(A
ωW−

η −AηW
−ω))

+gασ(W
−
βω(AηW

+ω −AωW+
η )−W+

ηω(AβW
−ω −AωW−

β ))]. (3.19)

De la fórmula (3.19) se deriva la función vértice WWγγ, que al usar la notación de la figura 3.2,
se puede escribir como sigue

Γb
µνλρ = − ie

2

2
bαβ(Γση

µ Γαβσηλρν + Γση
ν Γαβσηλρµ), (3.20)

donde

Γση
µ = kσ1 δ

η
µ − kη1δ

σ
µ ,

Γση
ν = kσ2 δ

η
ν − kη2δ

σ
ν ,
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con

Γαβσηλρν(k3, k4) = (gβνgηλ − gηνgβλ)(k4αgσρ − k4σgαρ)

−(gανgσρ − gσνgαρ)(k3βgηλ − k3ηgβλ)

+gβσ[gαν(k4λgηρ − k4ηgλρ)− gαλ(k4νgηρ − k4ηgνρ)

−gηρ(k3αgλν − k3νgαλ)− gην(k3αgλρ − k3ρgαλ)]

+gασ[gην(k4βgλρ − k4λgβρ)− gηλ(k4βgρν − k4νgβρ)

−gβν(k3ηgλρ − k3ρgηλ)− gβρ(k3ηgλν − k3νgηλ)].

Obsérvese que Γαβσηλρµ(k3, k4) se obtiene de Γαβσηλρν(k3, k4) al sustituir ν por µ.
La función vértice Γb

µνλρ satisface las siguientes identidades

kµ1Γ
b
µνλρ = −1

2
bαβΓση

ν kµ1Γαβσηλρµ

kν2Γ
b
µνλρ = −1

2
bαβΓση

µ kν2Γαβσηλρν

kµ1 k
ν
2Γ

b
µνλρ = 0.

Claramente,

kµ1Γαβσηλρµ 6= 0

kν2Γαβσηλρν 6= 0.

Esta información será usada para mostrar invariancia de norma expĺıcita en el proceso γγ →
W+W− a través de su amplitud.

23





Caṕıtulo 4

El proceso γe → Wνe

En este caṕıtulo presentamos los resultados del cálculo anaĺıtico de las amplitudes helicidad
correspondientes a la dispersión γe → Wνe [24]. La contribución anómala a dicho proceso es
inducida por el acoplamiento anómalo WWγ en el contexto de la CESM y el SME. El estudio
teórico de las amplitudes se realizó en el marco de referencia de centro de masa.

4.1. Cinemática

La notación y convenciones usadas en la cinemática que interviene en el proceso γe→ Wνe se
muestran en las figuras 4.1 y 4.2, en donde el momento del fotón se toma a lo largo de la dirección
+z. Los ı́ndices de Lorentz y momentos se especifican de la siguiente manera:

Aµ(k1) + e−(p1) →W−
ν (k2) + νe(p2). (4.1)

Entonces, en dicho marco de referencia, los vectores de momento y polarización se pueden escribir
de la siguiente manera:

pµ1 =

√
s

2
(1, 0, 0, 1), (4.2)

kµ1 =

√
s

2
(1, 0, 0,−1), (4.3)

pµ2 =
s−m2

W

2
√
s

(1, sin θ, 0, cos θ), (4.4)

kµ2 =
s+m2

W

2
√
s

(1,−r sin θ, 0,−r cos θ), (4.5)

ǫµ(k1, λγ) =
1√
2
(0, 1,−iλγ, 0), (4.6)

ǫ∗ν(k2, λW ) =
1√
2
(0, cos θ, iλW ,− sin θ), (4.7)

ǫ∗ν(k2, 0) =
s+m2

W

2mW
√
s
(r,− sin θ, 0,− cos θ), (4.8)

donde

r =
s−m2

W

s+m2
W

. (4.9)
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Aqúı, λW representa los estados de polarización transversales del bosón de norma W . Por otra
parte, las variables de Mandelstam están dadas por

s = (k1 + p1)
2, (4.10)

t = (k1 − k2)
2 = −(s−m2

W ) sin2
θ

2
, (4.11)

u = (k1 − p2)
2 = −(s−m2

W ) cos2
θ

2
. (4.12)

+

γ

e−

e−

W−

νe

γ W−

e− νe

W+

Figura 4.1: Diagramas de Feynman que contribuyen a la reacción γe→Wνe a nivel árbol.

θ
γ

k1p1

e z

xνe
p2

W
k2

φ χ

ep bp

Figura 4.2: La reacción γe→Wνe en el marco de c.m. en presencia de un campo de fondo constante
bαβ . En la figura, ep y bp son las componentes de los vectores e y b en el plano de colisión.

Al usar la información presentada arriba podemos determinar la sección eficaz diferencial pola-
rizada en función de las amplitudes de helicidad. Entonces, la sección eficaz diferencial polarizada
puede ser escrita como:

(
d σλγ λ̄W

dΩ

)

CM

=
1

64 π2

s−m2
W

s2
|Mλγ λ̄W

|2, (4.13)

donde Mλγ λ̄W
son las amplitudes de helicidad, cuyas componentes transversal y longitudinal están

definidas por

Mλγ λ̄W
=

{ Mλγ λW
, λW = ±1

Mλγ λ0
W
, λ0W = 0.

(4.14)

Debido a que las enerǵıas utilizadas en el estudio del proceso γe → Wνe son varios órdenes de
magnitud mayores que la masa del electrón, podemos despreciar esta última. En esta aproximación,
el electrón y el neutrino son izquierdos.

Las amplitudes de helicidad se pueden escribir de la siguiente manera:

Mλγ λ̄W
= MSM

λγ λ̄W
+MNP

λγ λ̄W
(4.15)

donde los supeŕındices SM y NP denotan las contribuciones para SM y nueva f́ısica, respectiva-
mente. Como ya se ha comentado, se considerarán los efectos de f́ısica más allá de la escala de
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Fermi sobre el vértice WWγ en dos esquemas independientes de modelo, a saber, la CESM, que
respeta la simetŕıa de Lorentz y la invariancia de norma del SM, y el SME, el cual viola la simetŕıa
de Lorentz pero respeta la invariancia de norma del SM.

4.2. Las amplitudes de helicidad del Modelo Estándar

En la aproximación de Born, la contribución del SM al proceso eγ →Wνe se da a través de los
diagramas de Feynman que se muestran en la figura 4.1. La amplitud correspondiente está dada
por

MSM
λγ λ̄W

=
eg√
2
u(p2)PRΓ

SM
µν u(p1) ε

µ(k1, λγ) ε
∗ν(k2, λ̄W ), (4.16)

donde

ΓSM
µν = − i

s

{
γν (/p1 + /k1) γµ +

s

(t−m2
W )

[
2γµ k1ν + 2γν k2µ − gµν

(
/k1 + /k2

)]}
, (4.17)

PR = 1
2 (1 + γ5) es el proyector derecho, y se ha utilizado de forma expĺıcita las condiciones de

transversalidad: k1 ·ε(k1, λγ) = 0 y k2 ·ε∗(k2, λ̄W ) = 0. Los cálculos se realizaron en la norma unita-
ria. Observe que kµ1 u(p2)PRΓ

SM
µν u(p1) = 0, lo cual refleja invariancia de norma electromagnética.

En forma expĺıcita, las amplitudes de helicidad correspondientes se pueden escribir de la siguiente
manera

MSM
λγ λW

= − i
√
2π α

sW

√
1− x cos

(
θ
2

)

1 + x− (1− x) cos θ

(
λW + λγ − 3 (1 + λγ λW )

+x (λW − 1)(λγ − 3) + (x (λW − 1)− λW − 1)(λγ + 1) cos θ
)
, (4.18)

MSM
λγ λ0

W
= − i 8 πα

sW

√
1− x

√
x (λγ + 1) cos2

(
θ
2

)
sin
(
θ
2

)

1 + x− (1− x) cos θ
, (4.19)

donde x = m2
W /s y sW = sin θW , siendo θW el ángulo de Weinberg. Note que MSM

−+ = 0 y
MSM

− 0 = 0 a este orden de teoŕıa de perturbaciones.

4.3. Efectos de nueva f́ısica en el contexto de la CESM

En este escenario de f́ısica más allá del SM, la simetŕıa de Lorentz es respetada, por lo que
solamente la parte simétrica del operador Oαβ contribuye a la reacción eγ →Wνe. La contribución
correspondiente a la amplitud se puede escribir como

MCESM
λγ λ̄W

= MSM
λγ λ̄W

− iegαW√
2Λ2

1

t−m2
W

[ū(p2)PRγ
αu(p1)] Γ

CESM
αµν εµ(k1, λ1)ε

∗ν(k2, λ̄W ) , (4.20)

donde
ΓCESM
αµν =

(
kρ1δ

η
µ − kη1δ

ρ
µ

) (
kλ2 gην − k2ηδ

λ
ν

)
[(k2 − k1)λ gρα − (k2 − k1)ρgλα] . (4.21)

Después de varios cálculos algebraicos, se obtienen las amplitudes de helicidad

MCESM
λγ λW

−MSM
λγ λW

=
i2
√
2πα

sW
αW

( s

Λ2

) √
1− x sin2

(
θ
2

)
cos
(
θ
2

)

1 + x− (1− x) cos θ

× [1− λγλW − (1− λW )λγx] , (4.22)

MCESM
λγ 0 −MSM

λγ 0 =
iπα

sW
αW

( s

Λ2

) √
x
√
1− x sin

(
θ
2

)

1 + x− (1− x) cos θ

×{(1 + λγ)(1− x) + [3− x− (1 + x)λγ ] cos θ} . (4.23)

Observe que MCESM
+ + = MSM

+ +, pero MCESM
± 0 6= MSM

± 0 .
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4.4. Efectos de nueva f́ısica en el contexto del SME

En esta sección se presentan las amplitudes helicidad para el proceso eγ → Wνe en presencia
de un tensor de fondo antisimétrico constante bαβ . Las caracteŕısticas geométricas de la colisión
se muestran en la figura 4.2. En esta figura, los campos de fondo constantes, tipo eléctrico, ei ≡
Λ2
LV b

0i, y tipo magnético, bi ≡ (1/2)Λ2
LV ǫ

ijkbjk, se han descompuesto en componentes paralelas,
ep y bp, y perpendiculares, ey y by, al plano de colisión (el plano x − z). El ángulo de colisión en
el marco de centro de masa se denota por θ, mientras φ y χ son los ángulos formados por ep y bp
con el eje +z, respectivamente. Al hacer uso de la siguiente identidad

aα b
αβ cβ =

1

Λ2
LV

[c0 e · a− a0 e · c+ b · (a× c)] , (4.24)

la cual es válida para dos 4-vectores arbitrarios aµ y cµ. La amplitud se puede escribir como sigue:

MSME
λγ λ̄W

= MSM
λγ λ̄W

+
ieg

2
√
2

[
u(p2)PR ΓSME

µν u(p1)
]
εµ(k1, λγ) ε

∗ν(k2, λW̄ ) , (4.25)

donde

ΓSME
µν =

bαβ

2 (t−m2
W )

{
(m2

W − t)(γµgανk2β − γµgανk1β − γβk2αgµν)

+ (m2
W + t)(γαk1βgµν − γµk1αgβν)

+γν
[ (
m2

W − t
)
((k1α − k2α) gβµ + gαµk2β) + 4k2αk1βk2µ

]

+ 2
[
k2α (2γµk1β + γβk2µ) + γα

(
k1βk2µ −m2

W gβµ
) ]
k1ν

+ 2/k1
[
− 2k2αk1βgµν + (k1αgβν + gαν (k1β − k2β)) k2µ

− (k1α − k2α) gβµk1ν + gαµ (tgβν + k2βk1ν)
]}

(4.26)

Después de varios cálculos algebraicos tediosos, las amplitudes de helicidad asociadas pueden
escribirse de la siguiente manera

MSME
λγ λW

−MSM
λγ λW

=

(
πα

16
√
2sW

)(
s

Λ2
LV

) √
1− x

1 + x− (1− x) cos θ

×
[
EλW

y ey +BλW
p bp + i (EλW

p ep +BλW
y by)

]
, (4.27)

MSME
λγ λ0

W
−MSM

λγ λ0
W

=

(
πα

16sW

)(
s

Λ2
LV

) √
1− x√

x (1 + x− (1− x) cos θ)

×
[
E

λ0
W

y ey +B
λ0
W

p bp + i (E
λ0
W

p ep +B
λ0
W

y by)
]
, (4.28)

donde

EλW
y =4

{
− λW + λγ + x[λWx+ x+ 4λW + (2x+ 4(x+ 3)λW + 7)λγ − 1]

+ (λW − λγ + x(λW x+ x− 2λW + (2x+ 4(x− 1)λW + 3)λγ + 5)) cos(θ)
}
sin

(
θ

2

)
,

BλW
p =− 2

{[
2(4λγλW + λW + 2λγ + 1)x2 + (4λγλW + 2λW + 9λγ − 11)x− 5λγ − 4(3λγλW

+ λW ) + 3
]
sin(θ − χ) + (x− 1)[λWx+ x− λW + 2(x− 1)(2λW + 1)λγ + 1] sin(2θ − χ)

− [(x− 1)(x+ (x− 5)λW + 3) + 2(6λW + x(x+ 2(x− 4)λW + 3) + 2)λγ] sin(χ)

− [2λWx+ x− 2λW + (x− 1)(4λW + 1)λγ + 1] sin(θ + χ)
}
sin

(
θ

2

)
,
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EλW
p =− 2

[
2(x+ 3)((x− 1)λW − 2)− (−3λW + x(x + (x+ 18)λW + 12) + 3)λγ

+ 4(−λγλW + 2λW − 2x(λW + 2) + x(λW + 3)λγ + λγ + 4) cos(θ)

+ (x− 1)((x − 1)λW (λγ − 2) + xλγ + λγ + 4) cos(2θ)
]
cos(φ) cos

(
θ

2

)

− 2
[
− 2x((x + 5)λW + 12) + (−λW + x(x + (x− 12)λW − 4) + 3)λγ

+ 2(λW − λγ + x(−2xλW + λW + (x+ (x− 1)λW + 4)λγ − 6)) cos(θ)

+ (x− 1)((x − 1)λW (λγ − 2) + xλγ + λγ + 4) cos(2θ) + 4
]
sin

(
θ

2

)
sin(φ),

BλW
y =4

{
[λW (λγ − 2) + λγ]x2 + [2(λγ − 1) + 3λW (λγ + 1)]x

− 3λW − 2λWλγ − 3λγ
[
(λW (λγ − 2) + λγ)x2 − (3λγλW + λW + 4λγ + 6)x

+ 3λW + 2λWλγ + 3λγ + 4
]
cos(θ) − 4

}
sin

(
θ

2

)
,

E
λ0
W

y = 4x(−λγ + x((2x + 5)λγ − 4) + (λγ + x(2xλγ + λγ + 4) + 2) cos(θ)− 2) cos

(
θ

2

)
,

B
λ0
W

p =4x
{
[x(xλγ + λγ + 3) + (−λγ + x(2xλγ + 3λγ − 4) + 2) cos(θ)

+(x− 1)((x− 1)λγ + 1) cos(2θ)− 1] sin(χ) cos

(
θ

2

)

−[2(λγ + x(2xλγ − λγ − 1)− 1) cos(θ)

+(x− 1)(3(xλγ + λγ − 1) + ((x− 1)λγ + 1) cos(2θ))] cos(χ) sin

(
θ

2

)}
,

E
λ0
W

p =4x
[
λγ + x(x+ 3λγ + 7) + (x+ 1)(2x− 2λγ + 1) cos(θ)

+ (x− 1)(x− λγ − 3) cos(2θ)− 4
]
sin(φ) cos

(
θ

2

)

− 4x
[
3x(x− λγ) + 3λγ + 4((x− 1)x− (x+ 1)λγ) cos(θ)

+ (x− 1)(x− λγ − 3) cos(2θ) + 5
]
cos(φ) sin

(
θ

2

)
,

B
λ0
W

y =− 4x
(
2x2 − 2λγx+ x+ 2λγ +

(
2x2 + x+ 2(x− 1)λγ − 1

)
cos(θ) + 1

)
cos

(
θ

2

)
.

Como ya se mencionó, estamos interesados no sólo en el estudio de posibles desviaciones del
SM sobre la reacción eγ → Wνe bajo los contextos de la CESM y del SME, sino también en la
comparación entre śı de estas fuentes de nueva f́ısica.

4.5. Discusión

En esta sección se analizan los resultados numéricos. Se puede observar a partir de las ecuaciones
(4.18)-(4.19) que existen seis estados de polarización, a saber: (−,−), (−,+), (−, 0), (+,−), (+,+)
y (+, 0). A pesar de que las amplitudes polarizadas (−,+) y (−, 0) del SM son exactamente cero
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a nivel del árbol, estas amplitudes polarizadas reciben contribuciones a nivel de un lazo [25]. Sin
embargo, por simplicidad, en este estudio no se considerarán dichas contribuciones, es aśı que
concentramos toda la atención en los efectos a nivel de árbol.

La nueva f́ısica que viola la simetŕıa de Lorentz proporciona información adicional que podŕıa
ser más interesante que la nueva f́ısica que respeta dicha simetŕıa. Esto puede ser evidenciado
no sólo por el valor relativo de la escala de nueva f́ısica, sino también debido a las direcciones
privilegiadas que surgen con la presencia de los campos de fondo constantes b y e. Con el fin de
buscar posibles escenarios de violación de la simetŕıa de Lorentz se estudiará con detalle a la sección
eficaz diferencial para el proceso eγ → Wνe. Es importante hacer hincapié en que la información
sobre la dependencia simultánea de direcciones angulares privilegiadas de los campos de fondo y
el ángulo de dispersión se pierde al estudiar la sección eficaz total, ya que el ángulo de dispersión
se integra. Por lo tanto, esto justifica la necesidad de realizar un estudio exhaustivo de la sección
eficaz diferencial. Una de las preguntas que queremos responder es si la violación de Lorentz es
más sensible al campo de fondo b o al campo de fondo e. Principalmente, estamos interesados en
la búsqueda de escenarios en los que, o bien la contribución del SM esté ausente, o los efectos de
nueva f́ısica sean mucho más grandes que la contribución del SM. En este sentido, buscamos los
valores óptimos para los parámetros que violan simetŕıa de Lorentz pues los efectos de nueva f́ısica
derivados de SME se magnificarán. Para ello, analizaremos tres escenarios diferentes, a saber: a)
e = 0, b 6= 0, b) e 6= 0, b = 0 y c) e 6= 0, b 6= 0.

Como ya se ha señalado, nos interesa contrastar los efectos de nueva f́ısica que surgen en el
enfoque de la CESM con aquellos que aparecen en el contexto del SME, ya que cualquiera de los dos
podŕıa ser observado en el ILC. Para hacer predicciones, se deben asumir valores para los paráme-
tros de la CESM, (Λ, αW ), y para los respectivos parámetros del SME, (ΛLV , Ep, ey, bp, by, χ, φ).
En la referencia [21], se calculó una cota sobre la escala de enerǵıa a la cual apareceŕıan los EVL
proveniente de los datos experimentales sobre el decaimiento B → XSγ, en espećıfico, ΛLV > 1·96
TeV. Debido a esto y por motivos de comparación se asumirá que Λ = ΛLV = 2 TeV. Además, se
tomará αW = 1.

4.5.1. Sección eficaz diferencial

Debido a las limitaciones experimentales, se discutirá nuestro análisis numérico de la sección
eficaz diferencial en el intervalo de ángulo de dispersión 20◦ < θ < 160◦, lo cual, además, es
consistente con los cortes cinemáticos introducidos en la referencia [25], en donde se calcula la
dispersión eγ →Wνe en el contexto del SM. Sólo analizaremos el comportamiento de las secciones
eficaces diferenciales para los estados de polarización (+,+), (+,−), (−,+), (−, 0), ya que los efectos
de nueva f́ısica son marginales para los estados (−,−), (+, 0).
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Figura 4.3: Sección eficaz diferencial para el proceso eγ →Wνe en el estado de polarización (+,+),
con

√
s = 1 TeV (e = 0, b 6= 0). (a) χ = 78·46

◦. (b) θ = 160◦.
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Escenario e = 0, b 6= 0

En todos los casos, vamos a utilizar los valores bp = by = 1 para el campo constante b.
Colisión (+,+). En este tipo de colisión no hay contribución anómala proveniente de la CESM,
por lo que los efectos de nueva f́ısica surgen exclusivamente del SME. En consecuencia, este es un
buen escenario para detectar señales de violación de Lorentz. En la figura 4.3, se presenta la sección
eficaz diferencial polarizada en función del ángulo de dispersión y del ángulo χ. En la figura 4.3(a),
se muestran las secciones eficaces diferenciales tanto para el SM como para el SME en función de
cos θ. De esta figura, se puede apreciar que el efecto que viola Lorentz es aproximadamente dos
órdenes de magnitud más grande que la predicción del SM para χ = 78·46

◦ y θ = 160◦. La
figura 4.3(b) muestra a la sección eficaz diferencial como una función de cosχ, en donde se aprecia
claramente que la sección eficaz diferencial alcanza su valor máximo en χ = 78·46

◦. De ambas
figuras se puede concluir que el efecto de violación de Lorentz se hace más intenso en la vecindad
de θ = 160◦ y χ = 78·46

◦. La caracteŕıstica principal de esta colisión es que sólo aparece la nueva
f́ısica que tiene como fuente a la violación de Lorentz.
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Figura 4.4: Sección eficaz diferencial para el proceso eγ →Wνe en el estado de polarización (−,+),
con

√
s = 1 TeV (e = 0, b 6= 0), donde no hay contribución de SM. (a) χ = 78·46

◦. (b) θ = 160◦.
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Figura 4.5: Sección eficaz diferencial para el proceso eγ →Wνe en el estado de polarización (+,−),
con

√
s = 1 TeV (e = 0, b 6= 0). (a) χ = 79·63

◦. (b) θ = 160◦.

Colisión (−,+). La caracteŕıstica principal de esta colisión es que la contribución del SM es
exactamente cero a este orden de teoŕıa de perturbaciones. Por lo tanto, es un buen escenario para
confrontar los efectos de nueva f́ısica provenientes de la CESM y del SME. En la figura 4.4, se
presenta la sección eficaz diferencial polarizada en el estado (−,+) como función del ángulo de
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CAPÍTULO 4. EL PROCESO γE →WνE
4.5. DISCUSIÓN

dispersión y el ángulo χ. De esta figura se puede apreciar un comportamiento totalmente diferente
entre los dos tipos de efectos de nueva f́ısica. En la figura 4.4(a), la cual despliega a la sección eficaz
diferencial en función de cos θ, se puede observar que la contribución de la CESM es más grande
que la del SME alrededor de 3 órdenes de magnitud para θ = 25◦. Sin embargo, cuando θ = 155◦,
la contribución del SME es mayor que la contribución de la CESM en aproximadamente 1 orden
de magnitud. En la figura 4.4(b), se puede apreciar que los efectos de nueva f́ısica derivados del
SME se ven favorecidos por direcciones angulares en la vecindad de χ = 78·46

◦ y θ = 160◦. La
detección de efectos de nueva f́ısica se ve favorecida por esta colisión, ya que la contribución de
SM surge por primera vez a orden de un lazo. Las señales procedentes del SME y de la CESM se
distinguen claramente en algunas regiones angulares.

Colisión (+,−). En la figura 4.5 mostramos la sección eficaz diferencial polarizada (+,−) como
una función del ángulo de dispersión y la dirección angular χ, correspondiente a bp. En este caso,
la contribución del SM es subdominante. En esta figura se puede apreciar un comportamiento muy
diferente entre las contribuciones del SME y de la CESM. En la figura 4.5(a), aparece la sección
eficaz diferencial en función de cos θ, mostrando que la brecha entre la contribución de SME y
SM se maximiza cuando el ángulo de dispersión tiende a 180◦. En particular, para χ = 78·46

◦ y
θ = 155◦ la contribución del SME domina en 3 órdenes de magnitud. Para el mismo ángulo de
dispersión, la contribución de la CESM es también más grande que la del SM en alrededor de 2
órdenes de magnitud. Sin embargo, la contribución de la CESM es mayor que la del SME cerca de
2 órdenes de magnitud para θ = 25◦. Una vez más, en la figura 4.5(b), podemos ver que la dirección
angular preferencial para la f́ısica procedente del SME tiene lugar en la vecindad de χ = 78·46

◦

para θ = 160◦. La peculiaridad de esta colisión es que la contribución del SM es subdominante
con respecto a los efectos de nueva f́ısica que surgen tanto en el SME y la CESM. Además, ambas
fuentes de f́ısica más allá del SM se pueden distinguir en algunas regiones angulares.

Colisión (−, 0). Esta colisión es un buen modo de buscar efectos de nueva f́ısica, ya que no
hay contribuciones del SM a nivel árbol. En la figura 4.6 se muestra la sección eficaz diferencial
polarizada (−, 0) en función del ángulo de dispersión y la dirección angular χ, correspondiente a
bp. De esta figura se observa un comportamiento completamente diferente entre las contribuciones
del SME y de la CESM. En particular, la contribución de la CESM es exactamente cero para
θ = 90◦. De la figura 4.6(a), la cual muestra la sección eficaz diferencial en función de cos θ, se
puede apreciar claramente la violación de Lorentz en la vecindad de θ = 90◦. La figura 4.6(b)
muestra que la detección óptima de señal de violación de Lorentz podŕıa ocurrir en la vecindad de
χ = 25◦ o χ = 155◦.
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Figura 4.6: Sección eficaz diferencial para el proceso eγ →Wνe en el estado de polarización (−, 0),
con

√
s = 1 TeV (e = 0, b 6= 0), donde no hay contribución de SM. (a) χ = 0◦. (b) θ = 90◦.

Para terminar, nos gustaŕıa resumir nuestros resultados sobre el impacto de la violación de
Lorentz caracterizada por la presencia de un campo de fondo constante tipo magnético. Nos en-
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focamos en los escenarios óptimos para buscar señales de violación de Lorentz. Los efectos de
violación de Lorentz en la colisión (+,+) se manifiestan claramente en la vecindad de θ = 160◦

y χ ≃ 79◦. La sección eficaz diferencial correspondiente es aproximadamente 10−4 pb, siendo la
predicción del SM aproximadamente 2 órdenes de magnitud más pequeña. En cuanto a la colisión
(−,+) se refiere, la señal de violación de Lorentz también se hace ńıtida en la vecindad de θ = 160◦

y χ ≃ 79◦, y la sección eficaz diferencial correspondiente es también del orden de 10−4 pb. La ca-
racteŕıstica principal de este caso es que la contribución del SM es exactamente cero a este orden
de la teoŕıa de perturbaciones, lo cual implica que tenemos señales puras de nueva f́ısica. Por otra
parte, la colisión (+,−) muestra que, como en los dos casos anteriores, las señales de violación de
Lorentz son favorecidas en la vecindad de θ = 160◦ y χ ≃ 79◦, en donde la sección eficaz diferencial
asociada es del orden de 10−4 pb. En este caso, la contribución del SM es subdominante para
todos los ángulos de dispersión. En cuanto a la colisión (−, 0) se refiere, vemos que ésta muestra un
comportamiento at́ıpico, ya que una señal de violación de Lorentz se ve favorecida en la vecindad
de θ = 90◦ y χ ≃ 0◦. Aunque la sección eficaz diferencial es menor que en las otras colisiones en
aproximadamente 2 órdenes de magnitud, es importante tener en cuenta que se trata de una señal
muy clara de violación de Lorentz debido a que la contribución del SM desaparece exactamente a
este orden de la teoŕıa de perturbaciones y la contribución de la CESM es cercana a cero en dicha
vecindad.
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Figura 4.7: Sección eficaz diferencial para el proceso eγ →Wνe en el estado de polarización (+,+),
con

√
s = 1 TeV (e 6= 0, b = 0). (a) φ = 0◦. (b) θ = 160◦.

Escenario e 6= 0, b = 0

En este caso vamos a utilizar ep = ey = 1 para los componentes paralelas y normal del campo
de fondo constante e.
Colisión (+,+). Debe recordarse que no hay contribuciones de la CESM a esta colisión. En
la figura 4.7, se muestra la sección eficaz diferencial polarizada (+,+) en función del ángulo de
dispersión y la dirección angular φ, correspondiente a ep. De esta figura, se puede apreciar que la
sección eficaz diferencial es del orden de 10−6 pb en la vecindad de χ = 78·46

◦ para θ = 160◦. Esto
contrasta con el escenario e = 0, b 6= 0, donde la sección eficaz diferencial correspondiente es del
orden de 10−4 pb. De la figura 4.7 se puede concluir que el efecto de violación de Lorentz no es
importante en este estado de polarización. Esta colisión es esencialmente insensible a efectos de
nueva f́ısica.
Colisión (−,+). Como ya se ha comentado, en este caso no hay contribución del SM al orden
más bajo en teoŕıa de perturbaciones. En la figura 4.8, se presenta la sección eficaz diferencial
polarizada (−,+) en función del ángulo de dispersión y del ángulo φ, en donde se puede observar
que la contribución de la CESM es aproximadamente 2 órdenes de magnitud más grande que la que
proviene del SME y es dominante en casi todo el rango de variación del ángulo de dispersión. En
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Figura 4.8: Sección eficaz diferencial para el proceso eγ →Wνe en el estado de polarización (−,+),
con

√
s = 1 TeV (e 6= 0, b = 0), no hay contribución de SM. (a) φ = 36·87

◦. (b) θ = 160◦.

esta colisión, los efectos de nueva f́ısica, cuya fuente no es la violación de Lorentz son claramente
dominantes.
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Figura 4.9: Sección eficaz diferencial para el proceso eγ →Wνe en el estado de polarización (+,−),
con

√
s = 1 TeV (e 6= 0, b = 0). (a) φ = 123·37

◦. (b) θ = 90◦.

Colisión (+,−). La figura 4.9 muestra la sección eficaz diferencial polarizada (−,+) en función
del ángulo de dispersión y la dirección angular φ, correspondiente a ep. Al igual que en el escenario
anterior, aqúı también la contribución del SM es subdominante. En la figura 4.9(a) se presenta
la sección eficaz diferencial en función de cos θ. A partir de esta figura, se puede apreciar que la
contribución de la CESM es más grande que la contribución del SME en aproximadamente un
orden de magnitud para θ = 25◦. Una vez más, los efectos de nueva f́ısica derivados de la CESM
dominan sobre los efectos del SME.
Colisión (−, 0). Recordemos que no hay contribución de SM para esta colisión. En la figura 4.10
mostramos la sección eficaz diferencial polarizada (−, 0) en función del ángulo de dispersión y del
ángulo φ. En la figura 4.10(a) se exhibe la sección eficaz diferencial en función de cos θ, mientras
que la figura 4.10(b) muestra que la región de detección óptima de señales de violación de Lorentz
corresponde a φ = 90◦. De ambas figuras, se puede apreciar una clara señal de violación de Lorentz
en la vecindad de θ = 90◦ y φ = 90◦. Esta colisión muestra una ventana a través de la cual se
podŕıa observar una señal de violación de Lorentz.

En resumen, las señales de violación de Lorentz están menos favorecidas en este escenario, con
la excepción de la colisión (−, 0), la cual muestra una clara señal de violación de Lorentz en la
vecindad de θ = 90◦ y φ = 90◦; sin embargo, la sección eficaz diferencial correspondiente es del
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Figura 4.10: Sección eficaz diferencial para el proceso eγ →Wνe en el estado de polarización (−, 0)
,con

√
s = 1 TeV (e 6= 0, b = 0), no hay contribución de SM. (a) φ = 90◦. (b) θ = 90◦.

orden 10−6 pb, lo cual está a 2 órdenes de magnitud por abajo de los casos favorables de violación
de Lorentz que surgen en el escenario e = 0,b 6= 0.

Escenario e 6= 0, b 6= 0

Como se ha venido enfatizando, el objetivo principal de este estudio consiste en encontrar
regiones angulares para las secciones eficaces diferenciales donde las señales de violación de Lorentz
puedan aislarse no sólo de la contribución del SM, sino también de otras fuentes anómalas de nueva
f́ısica. En los dos escenarios analizados con antelación, hemos encontrado que las señales de violación
de Lorentz se pueden observar claramente cuando e = 0, b 6= 0, no aśı para e 6= 0, b = 0, en
la que los efectos de nueva f́ısica, que surgen de otras fuentes son dominantes. Por otra parte, los
valores de las secciones eficaces diferenciales en el primer escenario son, en términos generales, 2
órdenes de magnitud mayores que en el segundo escenario. Por lo tanto, se puede esperar que en
un escenario más general con los dos campos de fondo presentes, los campos tipo eléctrico y tipo
magnético, no se modifiquen esencialmente las predicciones obtenidas para cuando e = 0, b 6= 0.
Se realizó un análisis exhaustivo para el escenario e 6= 0, b 6= 0 considerando efectos sutiles de
interferencia, pero en esencia no se encuentran cambios sustanciales al comparar estos resultados
con aquellos obtenidos en el escenario e = 0, b 6= 0.

4.5.2. Sección eficaz total

En este apartado concentramos la atención en aquellas regiones angulares en donde las señales
de violación de la simetŕıa de Lorentz se destaquen notoriamente. En particular, se analizará úni-
camente el escenario e = 0, b 6= 0 por ser el más prometedor. Como se demostró en secciones
anteriores, las señales de violación de Lorentz se magnifican en la vecindad de θ = 160◦ y χ = 80◦

para secciones eficaces diferenciales con estados de polarización (+,+), (+,−) y (−,+), las cuales
son del mismo orden de magnitud cuando son evaluadas en dichos valores de parámetros angula-
res. En cuanto al caso de la sección eficaz diferencial (−, 0) se refiere, recordemos que aparece una
señal de violación de Lorentz muy clara en la vecindad de θ = 90◦ y χ = 0◦, pero está suprimida
por cerca de 2 órdenes de magnitud con respecto a las secciones eficaces diferenciales con estados
de polarización (+,+), (+,−) y (−,+). Con esta información en mente y para poder distinguir
mejor los efectos de violación de Lorentz, restringiremos el intervalo de integración a la región
angular 150◦ < θ < 170◦ para las secciones eficaces diferenciales en los estados de polarización
(+,+), (+,−) y (−,+), con χ = 80◦. Para el caso de la sección eficaz polarizada (−, 0), vamos a
considerar una región de integración angular correspondiente a 80◦ < θ < 100◦, con χ = 0◦.
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En la figura 4.11, podemos visualizar el comportamiento de la sección eficaz polarizada (+,+)
en función de la enerǵıa de centro de masa; que está integrada en la región angular 150◦ < θ < 170◦.
De esta figura, se observa un claro efecto de violación de Lorentz a partir de

√
s ≃ 350 GeV, el

cual puede alcanzar un valor de hasta 3 órdenes de magnitud por encima de la señal del SM para√
s ≃ 1000 GeV (recordemos que no hay señal de la CESM para este estado polarización).
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Figura 4.11: Sección eficaz polarizada (+,+) para la reacción eγ →Wνe; integrada en el intervalo
150◦ < θ < 170◦. Se considera sólo el escenario dominante e = 0, b 6= 0, con χ = 80◦.

La figura 4.12 describe el comportamiento de la sección eficaz polarizada (+,−) para el intervalo
de enerǵıa 200 GeV<

√
s <1000 GeV. En esta figura, se puede observar que la señal del SME es

dominante sobre las señales de la CESM y del SM en al menos un orden de magnitud a partir de√
s ≃ 560 GeV. Como ocurre en el caso (+,+), para enerǵıas mayores que

√
s = 350 GeV, la señal

de violación de Lorentz es claramente más grande que las demás señales.
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Figura 4.12: Sección eficaz polarizada (+,−) para la reacción eγ →Wνe; integrada en el intervalo
150◦ < θ < 170◦. Sólo se considera el escenario dominante e = 0, b 6= 0, con χ = 80◦.

En la figura 4.13 se muestra la sección eficaz polarizada (−,+) en función de la enerǵıa de
centro de masa, en donde se observa que la señal del SME es más grande que la señal de la CESM
(recordemos que no hay contribución del SM para este estado de polarización a nivel de árbol) en
alrededor de un orden de magnitud para la región 200 GeV ≤ √

s ≤ 1000 GeV.
En los tres casos previos analizados, la señal de violación de Lorentz se manifiesta con intensi-

dades que van desde 10−2 fb a 10−1 fb. Estos resultados serán contrastados con aquellos obtenidos
para el estado de polarización (−, 0). La figura 4.14 describe la sección eficaz polarizada (−, 0) en
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Figura 4.13: Sección eficaz polarizada (−,+) para la reacción eγ →Wνe; integrada en el intervalo
150◦ < θ < 170◦. Sólo se considera el escenario dominante e = 0, b 6= 0, con χ = 80◦.
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Figura 4.14: Sección eficaz polarizada (−, 0) para la reacción eγ →Wνe; integrada en el intervalo
80◦ < θ < 100◦. Se considera sólo el escenario dominante e = 0, b 6= 0, con χ = 0◦.

función de la enerǵıa de centro de masa. De dicha figura, se puede percibir que el SME predice
una sección eficaz que va desde 10−5 fb a 10−3 fb, la cual es mayor que la es predicha por la
CESM en más de un orden de magnitud en todo el intervalo de enerǵıa considerado. Aqúı, la señal
de violación de Lorentz está suprimida en más de un orden de magnitud en comparación con las
señales de violación de Lorentz que surgen en los estados de polarización (+,+), (+,−) y (−,+).
Con la recopilación de información descrita en esta sección, podemos estimar el número de eventos
correspondientes a señales de violación de Lorentz en el ILC. Puesto que en el ILC se espera una
luminosidad integrada de 500 fb−1 en los primeros años de operación [26], estimamos alrededor de
algunas decenas de eventos para señales de violación de la simetŕıa Lorentz correspondientes a los
estados de polarización mejor favorecidos.

4.5.3. Asimetŕıa

Una observable de interés experimental es la asimetŕıa de la polarización, la cual está definida
como [25]

ARL =
σ(λγ = +)− σ(λγ = −)

σ(λγ = +) + σ(λγ = −)
. (4.29)
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Puesto que estamos interesados en estudiar el impacto de violación de la simetŕıa de Lorentz sobre
esta observable, al igual que en la sección anterior, centraremos nuestro análisis en el escenario
en el cual se maximiza la predicción del SME; este corresponde a 150◦ < θ < 170◦, χ = 80◦

y (e = 0, bp = 1, by = 1). En el análisis, por propósitos de comparación con trabajos previos
realizados en el contexto del SM [25], están incluidos los resultados para ARL sin el uso de cortes
en el ángulo de dispersión (0◦ < θ < 180◦).

En la figura 4.15(a) se muestra la asimetŕıa ARL en función de la enerǵıa de centro de masa de
la colisión, en donde se presentan resultados con corte y sin corte en el ángulo de dispersión. En
el primer caso, se considera una región angular establecida por 1500 < θ < 1700. En el segundo
caso, hemos reproducido el resultado para el SM a nivel árbol [25]. En particular, se comprobó que
la asimetŕıa del SM sin corte angular, ASM

RL , tiende a cero a medida que la enerǵıa se hace muy
grande. Este fenómeno no aparece cuando se introduce el corte en el ángulo de dispersión. Antes de
proseguir con la discusión, es importante señalar que en este análisis no se incluyen los resultados
de la contribución de la CESM, puesto que sus efectos están muy suprimidos y no se aprecian
diferencias significativas al ser comparados con la contribución del SM. La figura 4.15(a) muestra
un comportamiento interesante para la asimetŕıa del SME con corte angular, en la que se puede
apreciar que el efecto de violación de Lorentz reduce el comportamiento negativo proveniente de
la asimetŕıa con corte del SM. Se debe tener en cuenta que este efecto va creciendo a medida que
aumenta la enerǵıa de colisión.
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Figura 4.15: (a) Asimetŕıa en la reacción eγ → Wνe a nivel árbol. (b) Corrección del SME a la
asimetŕıa del SM a nivel árbol para el proceso eγ →Wνe.

Con el objetivo de enfatizar la importancia relativa de la contribución del SME a la asimetŕıa,
se puede separar la contribución de nueva f́ısica de la siguiente manera

ARL = ASM
RL + δARL , (4.30)

donde ASM
RL es la asimetŕıa del SM y δARL contiene la contribución de la interferencia entre el SM

y el SME, aśı como la contribución pura de nueva f́ısica. En la figura 4.15(b) se presenta δARL en
función de la enerǵıa de colisión en el centro de masa. A enerǵıas de colisión cercanas a 1 TeV, la
contribución del SME a la asimetŕıa está por encima de la predicción del SM. Además, se puede
observar que el efecto puro de nueva f́ısica del SME conduce a una desviación en la asimetŕıa, la
cual es cercana a la unidad para

√
s = 1 TeV, lo que constituye una clara señal de violación de la

simetŕıa de Lorentz.
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Caṕıtulo 5

El proceso γγ → W+W−

En esta sección se presentan las amplitudes correspondientes a la reacción γγ → W+W− en
el contexto del SM, la CESM y el SME. Dichas amplitudes evidenciarán de manera expĺıcita
invariancia de norma. Además, exhibiremos las amplitudes de helicidad para el SM, la CESM y el
SME.

5.1. Cinemática

La notación y convenciones usadas en esta subsección quedan determinadas a través de las
figuras 5.1 y 5.2. Los ı́ndices de Lorentz, cuadrimomentos y cuadrivectores de polarización se
especifican a continuación:

Aµ(k1)A
ν(k2) →W−λ(k3)W

+ρ(k4) (5.1)

kµ1 =

√
s

2
(1, 0, 0, 1), (5.2)

kν2 =

√
s

2
(1, 0, 0,−1), (5.3)

kλ3 =

√
s

2
(1, β sin θ, 0, β cos θ), (5.4)

kρ4 =

√
s

2
(1,−β sin θ, 0,−β cos θ), (5.5)

ǫµ(k1, λ1) =
1√
2
(0, 1, iλ1, 0), (5.6)

ǫν(k1, λ2) =
1√
2
(0,−1, iλ2, 0), (5.7)

ǫ∗λ(k3, λ3) =
1√
2
(0, cos θ, iλ3,− sin θ), (5.8)

ǫ∗ρ(k4, λ4) =
1√
2
(0,− cos θ, iλ4, sin θ), (5.9)

ǫ∗λ(k3, λ
0
3) =

√
s

2mW
(β, sin θ, 0, cos θ), (5.10)

ǫ∗ρ(k4, λ
0
4) =

√
s

2mW
(β,− sin θ, 0,− cos θ), (5.11)
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Aµ(k1) W−λ(k3)

W+ρ(k4)Aν(k2) W−λ(k3)

W+ρ(k4)Aµ(k1)

Aν(k2)

Aν(k2)

Aµ(k1) W−λ(k3)

W+ρ(k4)

W+(k1 − k3) W+(k2 − k3)

Figura 5.1: Diagramas de Feynman que contribuyen al proceso γγ → W+W− en una norma no
lineal (con los fotones entrando y los bosones W saliendo).

donde β =
√
1− 4m2

W /s , λi = ±1 para i = 1, 2, 3, 4 y λ03,4 = 0. Por otro lado, las variables de
Mandelstam quedan determinadas expĺıcitamente por

s = (k1 + k2)
2, (5.12)

t = (k1 − k3)
2 = −s

2

(
1− 2m2

W

s
− β cos θ

)
, (5.13)

t = (k1 − k4)
2 = −s

2

(
1− 2m2

W

s
+ β cos θ

)
. (5.14)

Al considerar toda la información expuesta arriba podemos determinar la sección eficaz dife-
rencial polarizada en función de las amplitudes de helicidad. Por tanto, la sección eficaz diferencial
polarizada puede ser escrita como

(
dσλ1λ2λ3λ4

dΩ

)

CM

=
1

64π2

√
s− 4m2

W

s3/2

∣∣Mλ1λ2λ3λ4

∣∣2 , (5.15)

donde Mλ1λ2λ3λ4
son las amplitudes de helicidad y λi ≡ λ0i , λi son las helicidades longitudinales

y transversales del bosón de norma W , respectivamente.

5.2. Amplitudes invariantes de norma

Antes de obtener las amplitudes de helicidad se analizan las amplitudes con invariancia de
norma expĺıcita para el SM, la CESM y el SME. La contribución al proceso γγ → W−W+ en
la norma no lineal está dada por los diagramas que se muestran en la figura 5.1. Se mostrarán
resultados con simetŕıa de Bose e invariancia de norma expĺıcita.
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5.2.1. Amplitud invariante de norma para el SM

La amplitud invariante se puede escribir como

MSM = MSM
µνλρǫ

µ(k1, λ1)ǫ
ν(k2, λ2)ǫ

λ∗(k3, λ3)ǫ
ρ∗(k4, λ4).

Al agrupar de forma adecuada se logra obtener una amplitud con invariancia de norma expĺıcita,
la cual está dada por

MSM
µνλρ = 2ie2

5∑

i=1

N
SM(i)
µνλρ , (5.16)

donde

N
SM(1)
µνλρ = (k1ξgλµ − k1λgξµ)(k2ξgρν − k2ρgξν),

N
SM(3)
µνλρ =

(
k4µ
k1 · k4

− k3µ
k1 · k3

)
(k2λgνρ − k2ρgλν),

N
SM(5)
µνλρ = gλρ

(
k3µk4ν
k1 · k3

+
k3νk4µ
k1 · k4

− gµν

)
= gλρ

(
k3µk4ν
k2 · k4

+
k3νk4µ
k2 · k3

− gµν

)
,

las estructuras N
SM(2,4)
µνλρ se obtienen, respectivamente, de N

SM(1,3)
µνλρ por simetŕıa de Bose. Las

estructuras N i
µνλρ son invariantes de norma por śı solas, es decir, satisfacen las identidades de

Ward

N
(i)
µνλρk

µ
1 = 0, (5.17)

N
(i)
µνλρk

ν
2 = 0. (5.18)

5.2.2. Amplitud invariante de norma para la CESM

Para el caso de la CESM, su amplitud invariante está dada por

MCESM = (MSM
µνλρ +MαW

µνλρ)ǫ
µ(k1, λ1)ǫ

ν(k2, λ2)ǫ
λ∗(k3, λ3)ǫ

ρ∗(k4, λ4),

= MSM +MαW .

Puesto que en la sección anterior se analizó la amplitud MSM , aqúı sólo nos enfocamos en la
contribución efectiva, a primer orden en αW , cuya amplitud asociada está dada por

−iMαW

µνλρ =
Γ0
ρχν(−k4, k1 − k3, k2)Γ

αW

χλµ(k3 − k1,−k3, k1)
t−m2

W

+
Γ0
χλµ(k3 − k1,−k3, k1)ΓαW

ρχν (−k4, k1 − k3, k2)

t−m2
W

+
Γ0
ρχµ(−k4, k2 − k3, k1)Γ

αW

χλν (k3 − k2,−k3, k2)
u−m2

W

+
Γ0
χλλν(k3 − k2,−k3, k2)ΓαW

ρχν (−k4, k2 − k3, k1)

u−m2
W

+ΓαW

µνλρ(k1, k2,−k3,−k4), (5.19)

donde Γ0,αW

µνλ (k1, k2, k3) y ΓαW

µνλρ(k1, k2, k3, k4) son las funciones vértice correspondientes a los aco-

plamientosW−W+γ yW−W+γγ respectivamente. Después de manipulaciones algebraicas se pue-
de obtener una amplitud con invariancia de norma expĺıcita, que se puede escribir como
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CAPÍTULO 5. EL PROCESO γγ →W+W−

5.2. AMPLITUDES INVARIANTES DE NORMA

MαW

µνλρ =
ie2αW

Λ2

10∑

i=1

N
αW (i)
µνλρ , (5.20)

donde

N
αW (1)
µνλρ =

1

k2 · k4
(kη1δ

β
µ − kβ1 δ

η
µ)(k2χgρν − k2ρgχν)(k3βgαλ − k3αgβλ)((k2 − k4)

αgηχ − (k2 − k4)ηδ
α
χ),

N
αW (3)
µνλρ =

1

k2 · k4
(k1λgχµ − k1χgλµ)(k

η
2δ

β
ν − kβ2 δ

η
ν )(k4ηδ

α
ρ − kα4 gηρ)((k2 − k3)αgβχ − (k1 − k3)βgαχ),

N
αW (5)
µνλρ =(kη1δ

β
µ − kβ1 δ

η
µ)

(
k3ν
k2 · k3

− k4ν
k2 · k4

)
(k3βgαλ − k3αgβλ)(k4ηδ

α
ρ − kα4 gηρ),

N
αW (7)
µνλρ =(kη1δ

β
µ − kβ1 δ

η
µ)

(
k4ν
k2 · k4

(kα2 gηρ − k2ηδ
α
ρ )− (δαν gηρ − gηνδ

α
ρ )

)
(k3βgαλ − k3αgβλ),

N
αW (9)
µνλρ =(kη1δ

β
µ − kβ1 δ

η
µ)

(
k3ν
k2 · k3

(k2αgβλ − k2βgαλ)− (gανgβλ − gβνgαλ)

)
(k4ηδ

α
ρ − kα4 gηρ,

el resto de las estructuras se obtienen por simetŕıa de Bose. Las estructuras N
αW (i)
µνλρ son invariantes

de norma por śı solas, es decir, satisfacen las identidades de Ward dadas en las ecuaciones (5.17)
y (5.18).

5.2.3. Amplitud invariante de norma para el SME

La amplitud invariante se encuentra dada por

MNC = (MSM
µνλρ +Mb

µνλρ)ǫ
µ(k1, λ1)ǫ

ν(k2, λ2)ǫ
λ∗(k3, λ3)ǫ

ρ∗(k4, λ4),

= (MSM +Mb).

Al igual que en la sección anterior, aqúı nos concentramos sólo en el efecto del campo de fondo,
que a primer orden en bαβ , tiene asociada la siguiente amplitud

−iMb
µνλρ =

Γ0,b
ρχν(−k4, k1 − k3, k2)Γ

b
χλµ(k3 − k1,−k3, k1)

t−m2
W

+
Γ0,b
χλµ(k3 − k1,−k3, k1)Γb

ρχν (−k4, k1 − k3, k2)

t−m2
W

+
Γ0,b
ρχµ(−k4, k2 − k3, k1)Γ

b
χλν (k3 − k2,−k3, k2)

u−m2
W

+
Γ0,b
χλλν(k3 − k2,−k3, k2)Γb

ρχν (−k4, k2 − k3, k1)

u−m2
W

+ Γb
µνλρ(k1, k2,−k3,−k4), (5.21)

donde Γ0,b
µνλ(k1, k2, k3) y Γb

µνλρ(k1, k2, k3, k4) son las funciones vértice correspondientes a los acopla-

mientos W−W+γ y W−W+γγ respectivamente. Después de manipulaciones algebraicas se logra
obtener una amplitud con invariancia de norma expĺıcita, la cual se puede escribir como

Mb
µνλρ =

ie2

2
bαβ

26∑

i=1

N
b(i)
αβµνλρ, (5.22)
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donde

N
b(1)
αβµνλρ =(kσ1 δ

η
µ − kη1δ

σ
µ)(k2ρδ

χ
ν − kχ2 gρν)

(
Γ1
αβσηχλ

2k2 · k4

)
,

N
b(3)
αβµνλρ =(kσ1 δ

η
µ − kη1δ

σ
µ)(k

χ
2 gλν − k2λδ

χ
ν )

(
Γ3
αβσηρχ

2k2 · k3

)
,

N
b(5)
αβµνλρ =(kσ1 δ

η
µ − kη1δ

σ
µ)

(
k4ν

2k2 · k4
− k3ν

2k2 · k3

)
Γ5
αβσηρλ,

N
b(7)
αβµνλρ =(kσ1 δ

η
µ − kη1δ

σ
µ)

(
k3ν

2k2 · k3
(k2αgσλ − k2σgαλ)−

1

2
(gανgσλ − gσνgαλ)

)
(k4βgηρ − k4ηgβρ),

N
b(11)
αβµνλρ =(kσ1 δ

η
µ − kη1δ

σ
µ)

(
k4ν

2k2 · k4
k3 · k2 −

1

2
k3ν

)
(gασgηρgβλ − gβσgαρgηλ),

N
b(15)
αβµνλρ =(kσ1 δ

η
µ − kη1δ

σ
µ)

(
k4ν

2k2 · k4
k2α − 1

2
gαν

)
(k3ρgηλ − k3ηgλρ)gβσ,

N
b(19)
αβµνλρ =(kσ1 δ

η
µ − kη1δ

σ
µ)

(
k4ν

2k2 · k4
k2η − 1

2
gην

)
(k3βgρλ − k3ρgβλ)gασ,

N
b(23)
αβµνλρ =(kσ1 δ

η
µ − kη1δ

σ
µ)

(
k4ν

2k2 · k4
k2λ − 1

2
gλν

)
(k3ηgβσgαρ − k3βgασgηρ),

con

Γ1
αβσηχλ =(k3σgαλ − k3αgσλ)((k3 − k1)βgηχ − (k3 − k1)ηgβχ)

+ gβσ(k3ηδ
ω
λ − kω3 gηλ)((k3 − k1)αgωχ − (k3 − k1)ωgαχ)

+ gασ(k3ωgβλ − k3βgωλ)((k3 − k1)ηδ
ω
χ − (k3 − k1)

ωgηχ),

Γ3
αβσηρχ =(k4ηgβρ − k4βgηρ)((k2 − k3)αgσχ − (k2 − k3)σgαχ)

+ gβσ(k4ωgαρ− k4αgωρ)((k2 − k3)
ωgηχ − (k2 − k3)ηδ

ω
χ)

+ gασ(k
ω
4 gηρ − k4ηδ

ω
ρ )((k2 − k3)βgωχ − (k2 − k3)

ωgβχ),

Γ5
αβσηχλ =(k3σgαλ − k3αgσλ)((k4ηgβρ − k4βgηρ)

+ gβσ(k3ηδ
ω
λ − kω3 gηλ)(k4ωgαρ− k4αgωρ)

+ gασ(k3ωgβλ − k3βgωλ)(k
ω
4 gηρ − k4ηδ

ω
ρ .
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El resto de las estructuras de norma se obtienen mediante los siguientes intercambios:

k1 ↔ k2, µ↔ ν





N
b(1)
αβµνλρ → N

b(2)
αβµνλρ

N
b(3)
αβµνλρ → N

b(4)
αβµνλρ

N
b(5)
αβµνλρ → N

b(6)
αβµνλρ

N
b(7)
αβµνλρ → N

b(8)
αβµνλρ

N
b(11)
αβµνλρ → N

b(12)
αβµνλρ

N
b(15)
αβµνλρ → N

b(16)
αβµνλρ

N
b(19)
αβµνλρ → N

b(20)
αβµνλρ

N
b(23)
αβµνλρ → N

b(23)
αβµνλρ

,

k3 ↔ k4, λ↔ ρ





N
b(7)
αβµνλρ → N

b(9)
αβµνλρ

N
b(11)
αβµνλρ → N

b(13)
αβµνλρ

N
b(15)
αβµνλρ → N

b(17)
αβµνλρ

N
b(19)
αβµνλρ → N

b(21)
αβµνλρ

N
b(23)
αβµνλρ → N

b(25)
αβµνλρ

,

k1 ↔ k2, µ↔ ν, k3 ↔ k4, λ↔ ρ





N
b(7)
αβµνλρ → N

b(10)
αβµνλρ

N
b(11)
αβµνλρ → N

b(14)
αβµνλρ

N
b(15)
αβµνλρ → N

b(18)
αβµνλρ

N
b(19)
αβµνλρ → N

b(22)
αβµνλρ

N
b(23)
αβµνλρ → N

b(26)
αβµνλρ

.

Se puede mostrar fácilmente que las estructuras N
b(i)
αβµνλρ satisfacen las identidades de Ward dadas

en las ecuaciones (5.17) y (5.18).

5.3. Amplitudes de helicidad

Para obtener las amplitudes de helicidad contraemos las amplitudes tensoriales con los vectores
de polarización asociados a los fotones y bosones W . De esta manera, las amplitudes de helicidad
para el SM se pueden escribir como

MSM
λ1λ2λ3λ4

=
ie2

4(β2 cos2(θ) − 1)
{−(λ1λ2 + 3)(1 + λ3λ4)β

2 + 4(λ1 + λ2)(λ3 + λ4)β

− 6λ1λ2λ3λ4 + 2λ3λ4 − 4 + 4(λ1 − λ2)(λ3 − λ4) cos(θ)

+ (1− λ1λ2)[β
2(1 + λ3λ4)− 2] cos(2θ)},

MSM
λ1λ2λ0

3λ
0
4
=

ie2s

8m2
W (β2 cos2(θ) − 1)

(β2 − 1){−(λ1λ2 + 3)β2 + (β2 − 2)(1− λ1λ2) cos(2θ) + 4},

MSM
λ1λ2λ3λ0

4
=

ie2
√
s√

2mW (β2 cos2(θ)− 1)
(β2 − 1){(1− λ1λ2) cos(θ)− (λ1 − λ2)λ3} sin(θ),

MSM
λ1λ2λ0

3λ4
=

ie2
√
s√

2mW (β2 cos2(θ)− 1)
(β2 − 1){(1− λ1λ2) cos(θ) + (λ1 − λ2)λ4} sin(θ).

De aqúı se puede observar que las amplitudes en los estados de polarización (±,±, 0,±),
(±,±,±, 0), (±,±, 0,∓), (±,±,∓, 0), (±,±,±,∓) y (±,±,∓,±), son idénticamente cero, como
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en la referencia [27]. Además, se corroboran las siguientes simetŕıas

MSM
λ1λ2λ3λ4

(s, t, u) = MSM
λ2λ1λ3λ4

(s, u, t),

MSM
λ1λ2λ3λ4

(s, t, u) = MSM
λ−1λ−2λ−4λ−3

(s, u, t),

MSM
λ1λ2λ3λ4

(s, t, u) = MSM
λ−2λ−1λ−4λ−3

(s, t, u),

que corresponden a las simetŕıas de Bose, CP y Bose+CP, respectivamente. Con respecto a las
simetŕıas de paridad P y conjugación de carga C, se tienen las siguientes relaciones

MSM
λ1λ2λ3λ4

(s, t, u) p MSM
λ−1λ−2λ−3λ−4

(s, t, u),

MSM
λ1λ2λ3λ4

(s, t, u) c MsM
λ1λ2λ4λ3

(s, u, t),

5.3.1. Amplitudes de helicidad para la CESM

Al considerar sólo la contribución efectiva αW , las amplitudes de helicidad se obtienen de la
siguiente manera

MαW

λ1λ2λ3λ4
=
ie2αW

Λ2
MαW

µνλρǫ
µ(k1, λ1)ǫ

ν(k2, λ2)ǫ
λ∗(k3, λ3)ǫ

ρ∗(k4, λ4),

MαW

λ1λ2λ3λ0
4
=
ie2αW

Λ2
MαW

µνλρǫ
µ(k1, λ1)ǫ

ν(k2, λ2)ǫ
λ∗(k3, λ3)ǫ

ρ∗(k4, λ
0
4),

MαW

λ1λ2λ0
3λ4

=
ie2αW

Λ2
MαW

µνλρǫ
µ(k1, λ1)ǫ

ν(k2, λ2)ǫ
λ∗(k3, λ

0
3)ǫ

ρ∗(k4, λ4),

MαW

λ1λ2λ0
3λ

0
4
=
ie2αW

Λ2
MαW

µνλρǫ
µ(k1, λ1)ǫ

ν(k2, λ2)ǫ
λ∗(k3, λ

0
3)ǫ

ρ∗(k4, λ
0
4),

en donde después de realizar algunas operaciones algebraicas, podemos escribir las amplitudes de
helicidad como sigue

MαW

λ1λ2λ3λ4
=

ie2αW s

16Λ2(1− β2 cos2(θ))
{3(λ1 + λ2)(λ3 + λ4)β

3 − 2(λ1λ2λ3λ4 − λ3λ4 − 2)β2

− 5(λ1 + λ2)(λ3 + λ4)β − 2(λ1λ2 + 1)(2λ3λ4 + 1)

+ [(β3 + β)(λ1 + λ2)(λ3 + λ4)

− λ1λ2(2 − (6λ3λ4 + 4)β2)− 2] cos(2θ)},

MαW

λ1λ2λ0
3λ

0
4
=

−ie2αW s2

8m2
WΛ2(β2 cos2(θ)− 1)

(β2 − 1)2(λ1λ2 + 1) sin2(θ),

MαW

λ1λ2λ3λ0
4
=

−ie2αW s3/2(β2 − 1) sin(θ)

8
√
2mWΛ2(β2 cos2(θ) − 1)

{(λ1−λ2)λ3β2+[2(β2−1)λ1λ2+β(λ1+λ2)λ3−2] cos(θ)},

MαW

λ1λ2λ0
3λ4

=
−ie2αW s3/2(β2 − 1) sin(θ)

8
√
2mWΛ2(β2 cos2(θ) − 1)

{(λ2−λ1)λ4β2+[2(β2−1)λ1λ2+β(λ1+λ2)λ4−2] cos(θ)}.

En estos casos, se puede observar que las amplitudes en los estados de polarización (±,∓,±,∓),
(±,∓,∓,±) y (±,∓, 0, 0), son igual a cero.
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x

z

y

−→
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−→
b p

θ

χ
φ
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k 2

−→
k 3

−→
k 4

W+

W−

γγ

Figura 5.2: Reacción γγ →W−W+ en el marco de c.m. en presencia del campo de fondo bαβ . En
la figura, ep y bp son las componentes de los vectores e y b en el plano de colisión, respectivamente.

5.3.2. Amplitudes de helicidad en el SME

Ahora presentaremos el análisis de las amplitudes de helicidad en presencia del campo de fondo,
las cuales quedan dadas por

Mb
λ1λ2λ3λ4

= ie2Mb
µνλρǫ

µ(k1, λ1)ǫ
ν(k2, λ2)ǫ

λ∗(k3, λ3)ǫ
ρ∗(k4, λ4),

Mb
λ1λ2λ3λ0

4
= ie2Mb

µνλρǫ
µ(k1, λ1)ǫ

ν(k2, λ2)ǫ
λ∗(k3, λ3)ǫ

ρ∗(k4, λ
0
4),

Mb
λ1λ2λ0

3λ4
= ie2Mb

µνλρǫ
µ(k1, λ1)ǫ

ν(k2, λ2)ǫ
λ∗(k3, λ

0
3)ǫ

ρ∗(k4, λ4),

Mb
λ1λ2λ0

3λ
0
4

= ie2Mb
µνλρǫ

µ(k1, λ1)ǫ
ν(k2, λ2)ǫ

λ∗(k3, λ
0
3)ǫ

ρ∗(k4, λ
0
4).

Las caracteŕısticas geométricas de la colisión se muestran en la figura 5.2. En dicha figura, el campo
tipo eléctrico, ei ≡ Λ2

LV b
0i, y el campo tipo magnético, bi ≡ (1/2)Λ2

LV ǫ
ijkbjk, se han descompuesto

en componentes paralelas, ep y bp, y perpendiculares, ey y by, con respecto plano de colisión (el
plano x− z). El ángulo de dispersión se denota por θ, mientras que φ y χ son los ángulos formados
por ep y bp con el eje +z, respectivamente. Además, para simplificar el análisis haremos uso de la
identidad (4.24).

Después de realizar la contracción de la amplitud, Mb
µνλρ, con los vectores de polarización

y utilizando la cinemática del proceso junto con la identidad anterior se obtienen las siguientes
expresiones

Mb
λ1λ2λ3λ4

=
e2s[Ey

λ1λ2λ3λ4
ey +Bp

λ1λ2λ3λ4
bp + i(Ep

λ1λ2λ3λ4
ep +By

λ1λ2λ3λ4
by)]

128Λ2
LV (β

2 cos2(θ)− 1)
,

Mb
λ1λ2λ3λ0

4
=
e2s3/2[Ey

λ1λ2λ3λ0
4
ey +Bp

λ1λ2λ3λ0
4
bp + i(Ep

λ1λ2λ3λ0
4
ep +By

λ1λ2λ3λ0
4
by)]

64
√
2mWΛ2

LV (β
2 cos(2θ) + β2 − 2)

,

Mb
λ1λ2λ0

3λ4
=
e2s3/2[Ey

λ1λ2λ0
3λ4
ey +Bp

λ1λ2λ0
3λ4

bp + i(Ep
λ1λ2λ0

3λ4
ep +By

λ1λ2λ0
3λ4
by)]

64
√
2mWΛ2

LV (β
2 cos(2θ) + β2 − 2)

,

Mb
λ1λ2λ0

3λ
0
4
=
e2s2[Ey

λ1λ2λ0
3λ

0
4
ey +Bp

λ1λ2λ0
3λ

0
4
bp + i(Ep

λ1λ2λ0
3λ

0
4
ep +By

λ1λ2λ0
3λ

0
4
by)]

32m2
WΛ2

LV (β
2 cos(2θ) + β2 − 2)

.

Las expresiones para Ep,y y Bp,y se presentan a continuación. En primer lugar, mostramos las
expresiones correspondientes a las componentes transversales de los bosones de norma W (λ3,4 =
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±1):

Ep
λ1λ2λ3λ4

=sin(θ) sin(φ)
{
β
[
16
(
λ2(λ4 − 2λ3) + λ1(λ3 − 2λ4)

)
−
(
λ1(14λ3 − λ4) + λ2(14λ4 − λ3)

)
β2

−
(
2λ1λ2(1− 16λ3λ4) + 24

)
β
]
+ 2
[
(4− 6λ1λ2 − 6λ3λ4)β

3 + (2λ1λ3 − 21(λ2λ3 + λ1λ4)

+ 2λ2λ4)β
2 − 2

(
14− 4λ3λ4 − λ1λ2(3− 16λ3λ4)

)
β − 4(λ1 + λ2)(λ3 + λ4)

]
cos(θ)

+ β
[
8
(
(λ1 + λ2)(λ4 + λ3)β

2 − 4(λ1λ2λ3λ4 + 1)β + λ1(λ3 − 3λ4) + λ2(λ4 − 3λ3)
)
cos(2θ)

+ 2
(
β(2λ1λ3 − 7λ2λ3 − 7λ1λ4 + 2λ2λ4 − 2β(λ1λ2 + λ3λ4 + 2))− 2(2− λ1λ2)

)
cos(3θ)

+ β
(
− βλ2(2λ4 + λ3)− βλ1(2λ3 + λ4) + 2λ1λ2 − 8

)
cos(4θ)

]}
cos(φ) + 2

{
2
[
− 2(λ1λ2

+ 5λ3λ4 + 6)β3 + (5λ1λ3 − 4λ2λ3 − 4λ1λ4 + 5λ2λ4)β
2 + 2

(
6λ3λ4 − λ1λ2(8λ3λ4 + 1)

− 2
)
β + 5(λ1 + λ2)(λ3 + λ4)

]
+ β

[(
− λ2λ3β

2 − (10λ1λ2 + 40)β + 2λ3(11λ1 − 7λ2)

+ (22λ2 − λ1(β
2 + 32λ2λ3β + 14))λ4

)
cos(θ) + 2

(
− 2(λ1λ2 + λ3λ4 + 2)β2 − 9(λ2λ3 + λ1λ4)β

+ 2(λ1λ2 − 2)
)
cos(2θ) + β

(
2λ1(λ2 − βλ3)− βλ2(λ3 + 2λ4)− βλ1λ4 − 8

)
cos(3θ)

]}

Ey
λ1λ2λ3λ4

=− 2β
{[
(λ2 − λ1)(2β

2 − 5)− (λ1λ2λ3 + 2λ3)β −
(
− β(λ1λ2 + 2)

+ 2(5β2 − 6)(λ1 − λ2)λ3
)
λ4
]
sin(θ) + 2

[
2(λ4 − λ3)β

2 − (λ1 − λ2)λ3λ4β

+ λ1λ2(λ4 − λ3)
]
sin(2θ) +

[
2λ2(λ3λ4 + 1)β2 − 2λ1(λ3λ4 + 1)β2

− λ1λ2(λ3 − λ4)β − 2(λ3 − λ4)β + λ1 − λ2
]
sin(3θ),

Bp
λ1λ2λ3λ4

=− 2
{
cos(θ)

[
2β
(
(λ1 + λ2)β

2 − (3− 2λ1λ2)(λ3 + λ4)β − 2(λ1 + λ2)(1 + 2λ3λ4)
)

− 4(λ1λ2 + 1)(λ3 + λ4) + β
(
(−5(λ3 + λ4)β

2 − (λ1 + λ2)(8λ3λ4 + 5)β

+ 4(λ1λ2 + 1)(λ3 + λ4)) cos(θ) + 2(−2λ2 + β(λ3 + λ4 − βλ2)− λ1(β
2 + 4λ2(λ3 + λ4)β

+ 2)) cos(2θ) + β(βλ3 − 3λ2 − λ1(4βλ2(λ3 + λ4) + 3) + βλ4) cos(3θ)
)]

cos(χ)

+
[
2
(
(λ1 + λ2)(3 + 2λ3λ4)β

3 + (3 − 14λ1λ2)(λ3 + λ4)β
2 − 2(λ1 + λ2)(2 − λ3λ4)β

− 2(4λ1λ2 + 3)(λ3 + λ4)
)
+ β

(
(3− 32λ1λ2)(λ3 + λ4)β

2 − (λ1 + λ2)(5 − 4λ3λ4)β

− 4(4λ1λ2 + 1)(λ3 + λ4)
)
cos(θ) + 2β

(
− 2λ2 − β(βλ2(1 + 2λ3λ4)− 3(λ3 + λ4))

− λ1((2λ3λ4 + 1)β2 + 4λ2(λ3 + λ4)β + 2)
)
cos(2θ) + β2

(
βλ3 − 3λ2

− λ1(4βλ2(λ3 + λ4) + 3) + βλ4
)
cos(3θ)

]
sin(θ) sin(χ)

}
,

By
λ1λ2λ3λ4

=
[
4(9β2 + 1)λ2λ3 + 2(15β2 + 2)λ2λ4 + λ1

(
− (36λ4 + 30λ3)β

2 − 4(λ3 + λ4)
)]

sin(θ)

+ β
[
(λ2 + λ1)(λ4 − λ3) sin(4θ)β

2 + 2
(
(λ2 − 4λ1)λ4 − (λ1 − 4λ2)λ3

)
sin(3θ)β

− 2
(
(λ1 − λ2)(10λ3β

2 + 10λ4β
2) + λ1(7λ4 − λ3)− λ2(7λ3 − λ4))

)
sin(2θ)

]
.

En segundo lugar, se muestran las funciones Ep,y y Bp,y para las componentes longitudinales de
los bosones de norma W (λ03,4 = 0):

Ep
λ1λ2λ0

3λ
0
4
=2β(β2 − 1)

[
− cos(θ)

(
4β2 + 5(4− 3λ1λ2)β cos(θ) + (4− λ1λ2)β cos(3θ)− 14λ1λ2

+ (4 − 4β2 − 2λ1λ2) cos(2θ)− 20
)
cos(φ) −

(
2(8β2 − λ1λ2 − 18)− β(3λ1λ2

+ 28) cos(θ) + (4− 8β2 − 2λ1λ2) cos(2θ) + β(4− λ1λ2) cos(3θ)
)
sin(θ) sin(φ)

]
,

Ey
λ1λ2λ0

3λ
0
4
=− 2β(β2 − 1)(λ1 − λ2)

(
− 4β2 + 10β cos(θ) + cos(2θ) + 13

)
sin(θ),

Bp
λ1λ2λ0

3λ
0
4
=β(β2 − 1)(λ1 + λ2)

{
cos(θ)

[
β
(
6β − 19 cos(θ) + 3 cos(3θ)

)
+ 2(β2 + 2) cos(2θ)

− 28
]
cos(χ) +

[
β
(
2β + cos(θ) + 3 cos(3θ)

)
+ 2(β2 + 2) cos(2θ)− 4

]
sin(θ) sin(χ)

}
,

By
λ1λ2λ0

3λ
0
4
=0.
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Finalmente, se exponen las funciones Ep,y y Bp,y cuando se tiene una componente longitudinal y
una componente transversal de los bosones de norma W (λ3 = ±1, λ04 = 0):

Ep
λ1λ2λ3λ0

4
=2
{
4β
[
β2 − (3β2 − 5)λ1λ2

]
− 2
[
2(β4 + β2 + 1)λ1 − (5β4 − 11β2 − 2)λ2

]
λ3

+ β
[(
(12− 11λ1λ2)β

3 − (22λ1 − λ2)λ3β
2 − 2(4− 9λ1λ2)β + 8(λ1 − 3λ2)λ3

)
cos(θ)

+
(
4(β2 + (1− β2)λ1λ2 − 2)− 2β(4λ1β

2 − 3λ2β
2 − 2λ1 − 7λ2)λ3

)
cos(2θ)

+ β
(
(β2 − 2)(4− λ1λ2)− β(2λ1 + λ2)λ3

)
cos(3θ)

]}
cos(φ) sin(θ) +

{
β
(
(3λ1λ2 + 20)β3

− (32λ1 − 45λ2)λ3β
2 − 6(4− λ1λ2)β + 2(23λ1 − 27λ2)λ3

)
− 2
(
(13λ1 − 6λ2)λ3β

4

− 6(λ1λ2 + 6)β3 − (28λ1 − λ2)λ3β
2 + 2(18− λ1λ2)β + 10(λ1 + λ2)

)
cos(θ)

− β
[
2
(
− 2(λ1λ2 + 4)β3 − (11λ1 − 3λ2)λ3β

2 + 2(4− λ1λ2)β + (11λ1 − 7λ2)λ3
)
cos(2θ)

− 2
(
β(β2(3λ1 − 4λ2) + 9λ2)λ3 − 2(β2 − 1)(2− λ1λ2)

)
cos(3θ) + β

(
(β2 − 2)(4− λ1λ2)

− β(λ2 + 2λ1)λ3
)
cos(4θ)

]}
sin(φ),

Ey
λ1λ2λ3λ0

4
=2
{(

7(β2 − 3)λ2 − 4βλ3
)
β2 +

[
− 11λ2 − β(3λ3β

2 − 4λ2β + 2λ3)

+ λ1
(
17β((1− β2)λ2λ3 − β) + 19

)]
β cos(θ) +

(
3(λ2 − λ1)β

3 − 2(3λ1λ2 + 2)λ3β
2

+ (3λ1 − 7λ2)β − 2λ1λ2λ3
)
β cos(2θ) +

[
λ1 − λ2 − 3λ1β

2 −
(
β2 + (1− β2)λ1λ2

+ 2
)
λ3β

]
β cos(3θ) + 10λ2 + λ1

[
β
(
β(β2 − 26λ2λ3β − 11) + 34λ2λ3

)
+ 10

]}
,

Bp
λ1λ2λ3λ0

4
=− 2

{
− (6λ2 + 10λ1)β

3 + 8(λ1 + λ2)β +
[
−
(
(3λ1 + 4λ2)β

3 + 3(8λ1λ2 + 7)λ3β
2

+ (5λ1 − 7λ2)β + 4λ1λ2λ3 + 4λ3
)
cos(θ)− 2

(
(2− β2)λ2 + β(5β2 − 1)λ3

+ λ1(β
2 + 4λ2λ3β + 2)

)
cos(2θ) + β

(
βλ3 − 3λ2 + λ1(3β

2 − 4λ2λ3β − 3)
)
cos(3θ)

]
β

+ 2
(
3β4 − (10λ1λ2 + 9)β2 − 2λ1λ2 − 2

)
λ3
}
cos(χ) sin(θ)−

{
(2β4 − 29β2 − 4)λ2

+ β(21β2 + 4)λ3 + λ1
(
− 7β4 + 23β2 + 4(11β2 + 4)λ2λ3β + 4

)
+ β

[
2
(
− (3λ2 + λ1)β

3

+ 2(12λ1λ2 + 5)λ3β
2 + 7(λ1 − λ2)β + 8λ1λ2λ3 + 2λ3

)
cos(2θ) + 2

(
− (β2 + 2)λ2

+ 3β(β2 − 1)λ3 + λ1(β
2 + 4λ2λ3β + 2)

)
cos(3θ)− β

(
βλ3 − 3λ2 + λ1(3β

2 − 4λ2λ3β

− 3)
)
cos(4θ)

]
+ 2
(
λ3β

4 + (7λ1 − 19λ2)β
3 + 11(4λ1λ2 + 1)λ3β

2 + 6(λ1 − λ2)β

+ 4(3 + 4λ1λ2)λ3
)
cos(θ)

}
sin(χ),

By
λ1λ2λ3λ0

4
=2(−2λ1λ2 + 7)β4 + (17λ1 − 11λ2)λ3β

3 − 12(λ1λ2 + 6)β2 + 2(5λ1 − λ2)λ3β

+
{
2
[
2β
(
− (λ1λ2 + 4)β2 − λ1λ2 − 6

)
+
(
(11λ1 − 3λ2)β

2 − λ1 − 7λ2
)
λ3
]
cos(2θ)

+ β
[
− 2(3βλ1λ2 + 4λ3λ2 + λ1λ2) cos(3θ) + β

(
2β + (λ1 + λ2)λ3

)
cos(4θ)

]}
β

− 8(3λ1λ2 + 4) + 2
(
2(λ1 + 3λ2)λ3β

4 − (17λ1λ2 + 48)β3 + (19λ1 − 16λ2)λ3β
2

− 4(λ1λ2 + 4)β + 2(λ1 − λ2)λ3
)
cos(θ).

Las funciones Ep,y y Bp,y para los estados de polarización restantes, a saber λ03 = 0, λ4 = ±1, se
obtienen de las inmediatas anteriores al hacer los intercambios λ1 ↔ λ2 y λ3 → λ4, lo cual implica
que

Ep,y
λ1λ2λ3λ0

4
→ Ep,y

λ1λ2λ0
3λ4

,

Bp,y
λ1λ2λ3λ0

4
→ −Bp,y

λ1λ2λ0
3λ4

.

Debe notarse que todas las amplitudes de helicidad del SME son diferentes de cero; a diferencia
de lo que ocurre en el SM y la CESM. Esto implica que tenemos estados de polarización en los cuales
aparece puro el efecto de la f́ısica que viola simetŕıa de Lorentz. A estos estados de polarización se
les pondrá especial atención en la discusión de resultados.
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5.4. Discusión

Al igual que en el proceso γe → Wνe, buscamos los valores óptimos para los parámetros que
violan simetŕıa de Lorentz pues los efectos de nueva f́ısica derivados del SME se magnificarán.
Para ello, analizaremos tres escenarios diferentes, a saber: a) e = 0, b 6= 0, b), e 6= 0, b = 0
y c) e 6= 0, b 6= 0. En cuanto a predicciones se refiere, al igual que en el estudio del proceso
γe→ Wνe, se asumen los mismos valores de parámetros para la CESM, (Λ, αW ), y para el SME,
(ΛLV , ep, ey, bp, by, φ, χ).

La nomenclatura de los distintos estados de polarización usará la notación introducida en la re-
ferencia [28]. Los estados de polarización de las part́ıculas involucradas en la dispersión γγ →WW
se indican de la siguiente manera: el primer par corresponde a los fotones, y el segundo par toca a
los bosones W. Se utilizarán las etiquetas +, − para indicar fotones derechos e izquierdos, respec-
tivamente, L para el estado longitudinal del bosón W y T indica la suma de dos polarizaciones
transversales del bosón W .

5.4.1. Sección eficaz diferencial

Debido a las limitaciones experimentales, se discutirá nuestro análisis numérico de la sección
eficaz diferencial en el intervalo de ángulo de dispersión 20◦ < θ < 160◦, lo cual, además, es
consistente con los cortes cinemáticos introducidos en la referencia [28], en donde se calcula el
proceso γγ → WW en el contexto del SM. Sólo analizaremos el comportamiento de las secciones
eficaces diferenciales para los estados de polarización (±,±, L, L), (±,∓, L, L), (±,∓, (L, T+T, L)),
(±,±, (L, T +T, L)), ya que los efectos de nueva f́ısica son marginales para los estados (±,±, T, T ),
(±,∓, T, T ). Resulta importante destacar que la contribución anómala proveniente de la CESM
resulta ser casi nula para todos los estados de colisión y como se mencionó anteriormente en algunos
estados es exactamente cero.

Escenario e = 0, b 6= 0

Aqúı utilizaremos los valores by = bp = 1 para el campo b. En este escenario tampoco se analiza
el estado de polarización (±,∓, L, L), ya que los efectos de nueva f́ısica son marginales.

Colisión (±,±, L, L). Para este tipo de colisión los efectos de nueva f́ısica que provienen del
SME llegan a estar hasta 2 órdenes de magnitud por encima de la señal del SM. En la figura 5.3 se
presenta la sección eficaz diferencial polarizada en función del ángulo de dispersión y la dirección
angular χ, correspondiente a bp. En la figura 5.3(a) se puede apreciar claramente que la sección
eficaz diferencial alcanza su valor máximo en χ = 176·96

◦ y θ = 20◦, siendo del orden de 10−2 pb.
En la figura 5.3(b) se observa que la sección eficaz diferencial alcanza su valor máximo cerca de
los extremos del intervalo angular χ, para χ ≈ 0◦ y χ ≈ 180◦, espećıficamente, el valor máximo
corresponde a χ = 176·96

◦. De ambas cifras uno puede concluir que la violación de Lorentz se hace
más intensa en la vecindad de θ = 20◦ y χ = 176·96

◦.
Colisión (±,∓, (L, T + T, L). En este tipo de colisión los efectos de nueva f́ısica referentes al

SME llegan a estar hasta 3 órdenes de magnitud por encima de la señal del SM. La sección eficaz
diferencial polarizada en función del ángulo de dispersión y la dirección angular χ, correspondiente
a bp, se presenta en la figura 5.4. En la figura 5.4(a), se observa claramente que la sección eficaz
diferencial alcanza su valor máximo en la región donde θ = 20◦, para χ = 97·41

◦, siendo del orden
de 10 pb. En la figura 5.4(b) se puede apreciar que la sección eficaz diferencial alcanza su valor
máximo en χ = 97·41

◦. Del estudio previo se puede concluir que los efectos de violación de Lorentz
se hace más intensos en la vecindad de θ = 20◦ y χ = 97·41

◦.
Colisión (±,±, (L, T +T, L). Este estado de polarización resulta interesante ya que sólo están

presentes efectos de nueva f́ısica, puesto que la contribución del SM a nivel árbol es exactamente
cero. Por lo tanto es un buen escenario para confrontar los efectos de nueva f́ısica procedentes de la
CESM y del SME. En la figura 5.5 se presenta la sección eficaz diferencial polarizada en función del
ángulo de dispersión y la dirección angular χ, correspondiente a bp. En la figura 5.5(a), se observa
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Figura 5.3: Sección eficaz diferencial para el proceso γγ → WW en el estado de polarización
(±,±, L, L), con √

s = 1 TeV (e = 0, b 6= 0). (a) χ = 176·96
◦. (b) θ = 20◦.
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Figura 5.5: Sección eficaz diferencial para el proceso γγ → WW en el estado de polarización
(±,±, (L, T + T, L)), con

√
s = 1 TeV (e = 0, b 6= 0). (a) χ = 102·36

◦. (b) θ = 20◦.
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claramente que la sección eficaz diferencial alcanza su valor máximo en θ = 20◦ para χ = 102·36
◦,

siendo del orden de 102 pb. De la figura 5.5(b) se puede apreciar que la sección eficaz diferencial
alcanza su valor máximo χ = 102·36

◦. De ambas cifras uno puede concluir que la violación de
Lorentz se hace más intensa en la vecindad de θ = 20◦ y χ = 102·36

◦. Esta colisión es relevante
pues la detección de efectos de nueva f́ısica con violación de simetŕıa de Lorentz se pueden observar
con mayor facilidad en este estado de polarización, ya que como se mencionó anteriormente, la
contribución de SM es cero a este orden de teoŕıa de perturbaciones, además de que la señal
procedente de la CESM está suprimida.

Escenario e 6= 0, b = 0

Aqúı utilizaremos los valores ey = ep = 1 para el campo e.
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Figura 5.6: Sección eficaz diferencial para el proceso γγ → WW en el estado de polarización
(±,±, L, L), con √

s = 1 TeV (e 6= 0, b = 0). (a) φ = 17·48
◦. (b) θ = 20◦.

Colisión (±,±, L, L). En este tipo de colisión hay una región angular en la que los efectos de
nueva f́ısica provenientes del SME llegan a ser hasta 2 órdenes de magnitud superior a la señal
del SM. En la figura 5.6 se presenta la sección eficaz diferencial polarizada en función del ángulo
de dispersión y la dirección angular φ, correspondiente a ep. En la figura 5.6(a), se puede apreciar
claramente que la sección eficaz diferencial alcanza su valor máximo en φ = 17·48

◦ y θ = 20◦,
siendo del orden de 10−1 pb. De la figura 5.6(b) se observa que la sección eficaz diferencial alcanza
su valor máximo cerca de los extremos, φ ≈ 0◦ y φ ≈ 180◦, y que mediante un análisis detallado
se encuentra que el valor máximo está en φ = 17·48

◦. De ambas cifras uno puede concluir que la
violación de Lorentz se hace más intensa en la vecindad de θ = 20◦ y φ = 17·48

◦.
Colisión (±,∓, L, L). Para este tipo de colisión, a diferencia del escenario anterior, existe una

región angular en la que los efectos de nueva f́ısica provenientes del SME resultan ser ligeramente
mayores a la contribución del SM. En la figura 5.7 se presenta la sección eficaz diferencial polarizada
en función del ángulo de dispersión y la dirección angular φ, correspondiente a ep. En la figura 5.7(a)
se puede apreciar claramente que la sección eficaz diferencial alcanza su valor máximo en φ = 79·76

◦

y θ = 20◦, siendo del mismo orden que la respectiva contribución del SM, aun aśı, es ligeramente
más grande. De la figura 5.7(b) se observa que la sección eficaz diferencial alcanza su valor máximo
en φ = 17·48

◦. De ambas cifras uno puede concluir que la violación de Lorentz se hace más intensa
en la vecindad de θ = 20◦ y φ = 17·48

◦. La peculiaridad de esta colisión es que no hay contribución
del vértice anómalo correspondiente al CESM, sin embargo, la nueva f́ısica que viola simetŕıa de
Lorentz es del mismo orden que la contribución del SM.

Colisión (±,∓, (L, T + T, L)). En este tipo de colisión los efectos de nueva f́ısica provenientes
del SME resultan estar hasta 2 órdenes de magnitud por encima de la señal del SM. En la figura 5.8,
se presenta la sección eficaz diferencial polarizada en función del ángulo de dispersión y la dirección
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Figura 5.7: Sección eficaz diferencial para el proceso γγ → WW en el estado de polarización
(±,∓, L, L), con √

s = 1 TeV (e 6= 0, b = 0). (a) φ = 79·76
◦. (b) θ = 20◦.

10
−3

10
−2

10
−1

10
0

10
1

10
2

−1 −0.5  0  0.5  1

d
σ/

d
Ω

  
[p

b
]

cos θ

SM
CESM

SME

(a)

10
−1

10
0

10
1

−1 −0.5  0  0.5  1

d
σ/

d
Ω

  
[p

b
]

cos φ

SME

(b)

Figura 5.8: Sección eficaz diferencial para el proceso γγ → WW en el estado de polarización
(±,∓, (L, T + T, L)), con

√
s = 1 TeV (b = 0, e 6= 0). (a) φ = 73·99

◦. (b) θ = 20◦.

angular φ, correspondiente a ep. En la figura 5.8(a), se puede ver claramente que la sección eficaz
diferencial alcanza su valor máximo en φ = 162·19

◦ y θ = 20◦, siendo del orden 10 pb. En
la figura 5.8(b), se puede observar que la sección eficaz diferencial alcanza su valor máximo en
φ = 162·19

◦. De ambas cifras uno puede concluir que la violación de Lorentz se hace más intensa
en la vecindad de θ = 20◦ y φ = 162·19

◦.
Colisión (±,±, (L, T +T, L)). Recuerde que para este tipo de colisión no hay contribución del

SM. En la figura 5.9 se presenta la sección eficaz diferencial polarizada en función del ángulo de
dispersión y la dirección angular φ, correspondiente a ep. En la figura 5.9(a), se percibe claramente
que la sección eficaz diferencial alcanza su valor máximo en φ = 73·99

◦ y θ = 20◦, siendo del orden
10 pb. En la figura 5.9(b) se aprecia que la sección eficaz diferencial alcanza su valor máximo en
φ = 73·99

◦. Lo anterior nos lleva a concluir que la violación de Lorentz se hace más intensa en la
vecindad de θ = 20◦ y φ = 73·99

◦.

Escenario e 6= 0, b 6= 0

Como se ha venido enfatizando, el objetivo principal de este estudio consiste en encontrar
regiones angulares por medio de las secciones eficaces diferenciales en donde las señales de viola-
ción de Lorentz puedan aislarse no sólo de la contribución del SM, sino también de otras fuentes
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Figura 5.9: Sección eficaz diferencial para el proceso γγ → WW con polarización (±,±, (L, T +
T, L)), con

√
s = 1 TeV (b = 0, e 6= 0). (a) φ = 162,19◦. (b) θ = 20◦.

anómalas de nueva f́ısica. En los dos escenarios analizados anteriormente, hemos encontrado que las
señales de violación de Lorentz se pueden ver claramente en los estados de polarización (±,±, L, L),
(±,∓, (L, T + T, L)) y (±,±, (L, T + T, L)). Por otra parte, los valores de las secciones eficaces di-
ferenciales para los estados de polarización (±,∓, (L, T +T, L)) y (±,±, (L, T +T, L)) en el primer
escenario son, en términos generales, un orden de magnitud mayores que en el segundo escenario.
Por lo tanto, se puede esperar que en un escenario más general con los dos campos de fondo pre-
sentes, los campos tipo eléctrico y tipo magnético, no se modifiquen esencialmente las predicciones
obtenidas para cuando e = 0, b 6= 0. Sin embargo, para el estado de polarización (±,±, L, L) los
valores de las secciones eficaces diferenciales en el segundo escenario son, al menos en la región
20 < q < 40, un orden de magnitud mayores que en el primer escenario. Se realizó un análisis
exhaustivo para el escenario e 6= 0, b 6= 0 considerando efectos sutiles de interferencia, pero en
esencia no se encuentran cambios tangibles respecto al patrón genérico encontrado para el escenario
e = 0, b 6= 0.

5.4.2. Sección eficaz total

En este apartado enfocamos la atención en aquellas regiones angulares en donde las señales
de violación de la simetŕıa de Lorentz se destaquen notoriamente. Como se demostró en secciones
anteriores, las señales de violación de Lorentz se magnifican en la vecindad de θ = 20◦ y χ ≃ 100◦

para secciones eficaces diferenciales con estados de polarización (±,∓, (L, T+T, L)) y (±,±, (L, T+
T, L)). En cuanto al caso de la sección eficaz diferencial (±,±, L, L) se refiere, recordemos que
aparece una señal de violación de Lorentz muy clara en la vecindad de χ = 176·96

◦ y θ = 20◦,
pero, en general, está suprimida en al menos un orden de magnitud con respecto a las secciones
eficaces diferenciales con estados de polarización (±,∓, (L, T + T, L)) y (±,±, (L, T + T, L)). Con
esta información en mente y para poder distinguir mejor los efectos de violación de Lorentz, se
tomará como intervalo de integración a la región angular en la que se maximice este efecto. En
la figura 5.10 podemos visualizar el comportamiento de la sección eficaz polarizada (±,∓, (L, T +
T, L)) en función de la enerǵıa de centro de masa; que está integrada en la región angular 20◦ <
θ < 40◦. De esta figura, se observa un claro efecto de violación de Lorentz a partir de

√
s ≃ 500

GeV, el cual puede alcanzar un valor de hasta 2 órdenes de magnitud por encima de la señal del SM
para

√
s ≃ 900 GeV. En la figura 5.11 podemos visualizar el comportamiento de la sección eficaz

polarizada (±,±, (L, T + T, L)) en función de la enerǵıa de centro de masa; que está integrada en
la región angular 20◦ < θ < 40◦. Recordemos que para este estado de polarización sólo existen las
contribuciones anómalas. De las gráficas, se puede observar que las sección eficaces crecen con la
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CAPÍTULO 5. EL PROCESO γγ →W+W−

5.4. DISCUSIÓN
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Figura 5.11: Sección eficaz para el proceso γγ → WW en el estado de polarización (±,±, (L, T +
T, L)); integrada en el intervalo 20◦ < θ < 40◦. Se considera sólo el escenario dominante (e = 0,
b 6= 0).

enerǵıa, pero la contribución proveniente del SME es claramente dominante, pues en
√
s ≃ 1000

GeV llega a ser más de 5 órdenes de magnitud mayor que la respectiva contribución de la CESM.

En la figura 5.12 podemos visualizar el comportamiento de la sección eficaz polarizada
(±,±, L, L) en función de la enerǵıa de centro de masa; que está integrada en la región angu-
lar 20◦ < θ < 40◦. De esta figura, se observa un claro efecto de violación de Lorentz a partir de√
s ≃ 600 GeV, el cual puede alcanzar un valor de un orden de magnitud por encima de la señal

del SM para
√
s ≃ 1000 GeV.

Finalmente, realizaremos un estudio sobre la producción de pares de bosonesW en términos de
la escala de enerǵıa de violación de Lorentz. La información recabada nos dirá si es factible visualizar
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Figura 5.12: Sección eficaz para el proceso γγ → WW en el estado de polarización (±,±, L, L);
integrada en el intervalo 20◦ < θ < 40◦. Se considera sólo el escenario dominante (e 6= 0, b = 0).
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Figura 5.13: Sección eficaz convolucionada para el estado de polarización (±,±, (L, T + T, L)) en
función de ΛLV . Se considera sólo el escenario dominante (e 6= 0, b = 0).

posibles efectos de violación de Lorentz consistentes con escalas de enerǵıa de violación de Lorentz
obtenidas en estudios recientes [29], en donde éstos valores son completamente discordantes, debido
a que las cotas van desde 150 GeV hasta 106 TeV. De acuerdo con nuestros resultados, es claro que
el escenario ideal de estudio donde la simetŕıa de Lorentz se viola, corresponde a e = 0, b 6= 0 para
el estado de polarización (±,±, (L, T+T, L)), puesto que este escenario ofrece contribuciones puras
de nueva f́ısica. Aśı, para analizar la posibilidad de detección de señales de violación de Lorentz
en el ILC, v́ıa la reacción γγ → WW , es esencial calcular la sección eficaz total convolucionada
e+e− → γγ → WW [30]. La figura 5.13 muestra a la sección eficaz convolucionada en función de
la escala de violación de Lorentz, la cual va desde 2 TeV a 50 TeV. Se aprecia claramente que la
contribución de la CESM es marginal al ser comparada con la señal de violación de Lorentz, debido
a que la última es 4 órdenes de magnitud más intensa a lo largo del intervalo de escalas de enerǵıa

55
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considerado. En la última etapa de operación del ILC, se espera que este colisionador opere a una
enerǵıa de centro de masa de 1 TeV con una luminosidad integrada de 1000 fb−1 [26]. Por lo tanto,
es estimado que el número de eventos esperados para el estado de polarización (±,±, (L, T +T, L))
seŕıa cuando mucho de dos eventos para ΛLV = 32 TeV [31].

5.4.3. Asimetŕıas

En la literatura se han introducido observables las cuales tienen la peculiaridad de ser sensibles
a la presencia de acoplamientos anómalos [28, 32]. Estos observables pueden depender de la sección
eficaz total polarizada y no polarizada como se aprecia a continuación

RIO =
σ(|cosθ| < 0·4)

σ(| cos θ| < 0·8)
,

RLT =
σLL

σTT
,

R02 =
σ++

σ+−
.
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Figura 5.14: Asimetŕıa RIO en la reacción γγ → WW . Sólo se estudia el escenario dominante
(e = 0, b 6= 0).

Puesto que el principal objetivo de este caṕıtulo es estudiar el impacto de posibles efectos de
violación de Lorentz, enfocamos el estudio en el escenario (e = 0, b 6= 0). En cuanto a la asimetŕıa
RIO se refiere, el análisis se realizará en el mismo escenario donde se calculó la contribución del
SM [28, 32]. Para las asimetŕıas restantes se propone el intervalo de estudio 20◦ < θ < 40◦ para
χ = 100◦; intervalo en donde se maximizan los efectos de violación de Lorentz (corte VL). Por
razones de comparación con trabajos previos realizados en el contexto del SM [28, 32], resultados
con el corte usual, | cos θ| < 0·8, también serán presentados.

El comportamiento de la asimetŕıaRIO en función de la enerǵıa de centro de masa se muestra en
la figura 5.14. Se observa claramente una desviación de la contribución del SME respecto a la señal
de SM a partir de

√
s ≃ 800 GeV, donde efectos de violación de Lorentz interfieren negativamente

reduciendo la intensidad de la asimetŕıa del SM a medida que aumenta la enerǵıa. Al situarnos en√
s = 1 TeV, podemos apreciar una brecha de 0.01 en RIO, lo cual constituye un efecto apreciable

de violación de Lorentz. Es importante comentar que debido al intervalo angular elegido (en el cual
están suprimidos los efectos de la CESM), la asimetŕıa RIO es insensible a los efectos de la CESM
y no se aprecian desviaciones relevantes respecto a la predicción en el SM.

56
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Figura 5.16: Asimetŕıa R02 en la reacción γγ →WW . Sólo es considerado el escenario dominante
(e = 0, b 6= 0).

En la figura 5.15, se muestra la asimetŕıa RLT como función de la enerǵıa de centro de masa
para el corte usual y el corte VL. De esta figura, se puede observar que cuando se usa el corte usual,
no se aprecian diferencias significativas entre el SME y el SM. No obstante, cuando el corte VL es
impuesto, se puede ver que la contribución del SME se comporta completamente diferente respecto
de la señal del SM a medida que aumenta la enerǵıa de centro de masa; a partir de

√
s ≃ 600 GeV

los efectos de violación de Lorentz contribuyen con interferencia constructiva, por lo que la señal
del SM crece. En espećıfico, si nos fijamos en

√
s = 1 TeV, la brecha entre la señal original del SM

y la señal del SME es de 2× 10−3 unidades, lo cual indica una clara señal de violación de Lorentz.
En la figura 5.16, se muestra la asimetŕıa R02 en función de la enerǵıa de centro de masa para el

corte usual y el corte VL. De dicha figura, en cuanto al primer caso se refiere, hemos de mencionar
que se han reproducido los resultados del SM. En el segundo caso, a partir de

√
s ≃ 800 GeV, se

pueden apreciar cambios bastante intensos entre las señales del SME y el SM. Para este observable,
se destaca que los efectos de violación de Lorentz contribuyen con interferencia constructiva; en la
vecindad de

√
s = 1 TeV, la diferencia entre las señales de SME y SM es de 0.3 unidades. Por lo

tanto, este efecto representa una señal muy clara de violación de Lorentz.

57
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Dimensiones

Como se sabe, la existencia de una part́ıcula escalar con las caracteŕısticas del bosón de Higgs
que predice el SM ha sido establecida recientemente por los experimentos ATLAS [33, 34] y
CMS [35, 36] del CERN. El propósito de este apartado de la tesis es estudiar las implicacio-
nes de una quinta dimensión compacta sobre el proceso de fusión de gluones gg → γγ en el contexo
del LHC a la luz de los últimos resultados reportados por los experimentos ATLAS y CMS sobre
la producción del bosón de Higgs en el canal difotónico. Como ya se mencionó en la introducción,
nuestro objetivo es investigar el rango de valores para la escala de compactificación consistente con
los resultados experimentales existentes, mediante el estudio del proceso resonante gg → H → γγ.
A más altas enerǵıas, nos interesa estudiar el proceso directo de caja gg → γγ y el proceso reso-
nante gg → A(2n) → γγ, donde A(2n) es un modo de Kaluza-Klein pseudoescalar. Un detallado
análisis de estos procesos [37] será presentado en el siguiente caṕıtulo. En este caṕıtulo se presenta
una breve discusión del marco teórico provisto por el SM5D [38] para la realización de los cálculos
de estos procesos.

6.1. Estructura básica del SM con una dimensión extra uni-

versal

Las implicaciones fenomenológicas de dimensiones extra sobre observables del SM han sido
objeto de importante interés desde que Antoniadis, Arkani-Hamed, Dimopoulos y Dvali [39] argu-
mentaron que dimensiones extras relativamente grandes podŕıan ser detectadas a la escala de TeVs.
En este tipo de formulaciones de teoŕıas de campo (cuyos campos son genéricamente denotados por
ϕa(x, y), con a representando ı́ndices de covariancia y x ∈ M4, y ∈ Mn), se asume la existencia de
un espacio-tiempo caracterizado por una variedad m-dimensional de la forma Mm = M4 ×Mn,
donde M4 es la variedad espacio-temporal estándar y Mn es una subvariedad espacial de dimen-
sión n que caracteriza las dimensiones extras. Por consistencia con el experimento, se asume que
la subvariedad espacial Mn está apropiadamente compactificada. Las teoŕıas de campo que tie-
nen como base la variedad soporte Mm, son teoŕıas de norma gobernadas por el grupo de norma
SU(N,Mm) y por el grupo de Poincaré ISO(1,m−1) [40, 41], esto es, los campos que determinan
los grados de libertad de la teoŕıa son objetos que se transforman covariantemente bajo ambos
tipos de grupos. Dado que la variedad Mn es compacta, uno puede realizar un desarrollo en serie
de Fourier para los campos ϕa(x, y) (y también para los momentos canónicos correspondientes)
con respecto a las coordenadas compactas y. Los coeficientes de Fourier o modos de Fourier de
la serie respectiva son funciones que dependen de las coordenadas x solamente. Como ha sido
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demostrado en la referencia [41], el mapeo dado a través de la serie de Fourier es canónico en el
sentido usual. Esta transformación canónica mapea objetos covariantes de los grupos SU(N,Mm)
y ISO(1,m− 1) en objetos covariantes (los modos de Fourier o modos excitados de Kaluza-Klein)
de los grupos estándar SU(N,M4) y ISO(1, 3).

Recientemente, una formulación completa del SM en 5 cinco dimensiones (SM5D) ha sido
presentada [38]. Esta formulación introduce la presencia de una torre infinita de nuevos campos
(los modos de KK) asociados a las part́ıculas del SM. Considere al SM en un espacio-tiempo de
cinco dimensiones, con la quinta coordenada y compactada en un ćırculo de radio R. Como ya fue
establecido, las cuatro coordenadas estándar se indican mediante x, mientras que la coordenada de
la quinta dimensión estará representada por y. En el contexto de dimensiones extras universales
(UED por su siglas en inglés), uno asume que todos los campos y parámetros de norma son funciones
periódicas en esta coordenada y expandidos en series de Fourier a lo largo de ella [38, 42]. En general,
para un determinado campo o parámetro de norma, se tiene que:

ϕ(x, y) =
1√
2πR

ϕ(0)(x) +

∞∑

n=1

[
ϕ(n)+(x) cos

(ny
R

)
+ ϕ(n)−(x) sin

(ny
R

)]
, (6.1)

donde el modo cero ϕ0(x) se identifica como el correspondiente campo del SM y los ϕ(n)±(x)
son reconocidos como excitaciones KK. Dado que, en general, no todos los modos cero de la
serie de Fourier tienen asociado una contraparte en el SM, como es el caso de, por ejemplo, la
quinta componente de los campos de norma, es conveniente eliminar algunos de estos grados de
libertad mediante la imposición de simetŕıas adicionales que actúen sobre la quinta coordenada.
Una posibilidad es exigir que los campos de la teoŕıa obedezcan alguna propiedad de paridad
definida bajo la reflexión y → −y. Si imponemos que los campos de cinco dimensiones sean pares
bajo la reflexión, sólo el modo cero y los coeficientes ϕ(n)+ aparecen en la correspondiente serie de
Fourier, mientras que si se requiere que los campos sean impares, sólo los coeficientes ϕ(n)− están
presentes en la serie. Al implementar esta simetŕıa se reemplaza el ćırculo S1 por el orbifold S1/Z2

en el que se identifica y con −y.
De acuerdo con lo anteriormente dicho, los campos de norma Aa

M (x, y) (con Aa
M (x, y) pudiendo

ser uno de cualquiera de los campos de norma asociados con el grupo del SM, SU(3,Mm) ×
SUL(2,Mm)×U(1,Mm)), donde M = µ, 5, se asume que son funciones peŕıodicas con respecto a
la quinta coordenada

Aa
µ(x, y + 2πR) = Aa

µ(x, y) , (6.2)

Aa
5(x, y + 2πR) = Aa

5(x, y) , (6.3)

los cuales están sujetos a satisfacer la siguientes condiciones de paridad

Aa
µ(x,−y) = Aa

µ(x, y) , (6.4)

Aa
5(x,−y) = −Aa

5(x, y) . (6.5)

Entonces, las series de Fourier correspondienstes son:

Aa
µ(x, y) =

1√
2πR

A(0)a
µ (x) +

∞∑

n=1

1√
πR

A(n)a
µ (x) cos

(ny
R

)
, (6.6)

Aa
5(x, y) =

∞∑

n=1

1√
πR

A
(n)a
5 (x) sin

(ny
R

)
. (6.7)

El modo cero y las excitaciones de KK son objetos covariantes bajo los grupos estándar SO(1, 3) y

SU(N,M4). En efecto, A
(0)a
µ (x) son los campos de norma asociados con SU(N,M4) y se transfor-

man como un 4-vector bajo el grupo de Lorentz SU(N,M4)SO(1, 3). Por otra parte, los modos de
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KK, A
(n)a
µ (x) y A

(n)a
5 (x), son 4-vectores y escalares de Lorentz, respectivamente, y se transforman

en la representación adujunta de SU(N,M4) [40, 41, 38].
En lo que respecta al campo de Higgs, uno asume que satisface los siguientes requerimientos

de periodicidad y paridad

Φ(x, y + 2πR) = Φ(x, y) , (6.8)

Φ(x,−y) = Φ(x, y) , (6.9)

aśı que el desarrollo de fourier correspondiente es

Φ(x, y) =
1√
2πR

Φ(0)(x) +

∞∑

n=1

1√
πR

Φ(n)(x) cos
(ny
R

)
. (6.10)

En esta expresión, Φ(0)(x) es identificado como el doblete de Higgs estándar, mientras que Φ(n)(x)
son excitaciones de KK que se transforman de igual manera que Φ(0)(x) bajo el grupo elec-
trodébil [38].

En cinco dimensiones, los campos de Dirac son todav́ıa objetos con cuatro componentes, como
en el caso de cuatro dimensiones. Esto se debe al hecho de que las matrices de Dirac ΓM = γµ, iγ5
satisfacen el álgebra Clifford

[ΓM ,ΓN ]+ = 2gMN , (6.11)

donde [ , ]+ representa al anticonmutador y gMN = (+ − − − −) es el tensor métrico en cinco
dimensiones. Sin embargo, no hay quiralidad en cinco dimensiones. La razón es que es imposible
construir una matriz nilpotente Γ5 que además anticonmute con todos los ΓM . Afortunadamente,
la operación de paridad y → −y se puede utilizar con el fin de reproducir el doblete izquierdo y
el singulete derecho de SUL(2) en cuatro dimensiones. En virtud de esta operación de simetŕıa,
los campos de Dirac de cinco dimensiones transforman como ψ → γ5ψ(x,−y). Teniendo en cuenta
esto y el hecho de que en cuatro dimensiones los fermiones derechos aparecen sólo como singuletes
de SUL(2), mientras que los izquierdos están presentes sólo como dobletes de SUL(2), exigimos que
las correspondientes representaciones en cinco dimensiones de este grupo, f(x, y) y F (x, y), sean,
respectivamente, pares e impares bajo esta transformación. En consecuencia, se puede escribir

f(x, y) =
1√
2πR

f
(0)
R (x) +

∞∑

n=1

1√
πR

[
f̂
(n)
R (x) cos

(ny
R

)
+ f̂

(n)
L (x) sin

(ny
R

)]
,

F (x, y) =
1√
2πR

F
(0)
L (x) +

∞∑

n=1

1√
πR

[
F

(n)
L (x) cos

(ny
R

)
+ F

(n)
R (x) sin

(ny
R

)]
.

El modo cero f
(0)
R (x) representa al singulete izquierdo de SUL(2) del SM, mientras que el modo

cero F
(0)
L (x) representa al doblete derecho del SM, además, el modo KK f̂

(n)
L

(
f̂
(n)
R

)
representa el

singulete derecho (izquierdo) de SUL(2), mientras que F
(n)
L

(
F

(n)
R

)
representa el doblete derecho

(izquierdo) de SUL(2).
Como se ha demostrado en la referencia [38], las masas de los modos excitados de KK están

dadas por

m2
f(n) = (n/R)2 +m2

f(0) , (6.12)

m2
B(n) = (n/R)2 +m2

B(0) , (6.13)

para fermiones y bosones, respectivamente. En estas expresiones, mf(0) y mB(0) representan las
masas de las part́ıculas del SM. El SM5D se discute con todo detalle en la referencia [38]. En este
trabajo, sólo reproduciremos las reglas de Feynman necesarias para calcular los efectos de un lazo
sobre el proceso de fusión de gluones gg → γγ. Como ya se mencionó, este proceso de dispersión
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consta de tres subprocesos en el contexto del SM5D, a saber, el proceso resonante gg → H(0) → γγ,
el cual es mediado por el vértice de un lazo ggH(0), en el cual circulan los quarks estándar y sus
modos de KK, y por el lazo H(0)γγ, en el cual circulan todos los fermiones cargados y sus modos
de KK, aśı como el bosón W (0) y sus excitaciones de KK. Otro proceso resonante de más altas
enerǵıas, el cual no está presente en el SM, es gg → A(2n) → γγ, donde A(2n) es un modo de KK
pseudoescalar [38]. Este subproceso resonante está caracterizado también por dos lazos dados por
los vértices ggA(2n) y A(2n)γγ, al primero de los cuales contribuyen los quarks excitados, mientras
que al segundo contribuyen todos los modos excitados de los fermiones cargados. Finalmente, está el
proceso directo de caja gg → γγ, al cual contribuyen todos los quarks y sus excitaciones de KK. A
continuación presentaremos las Lagrangianas que generan los acoplamientos involucrados en estos
procesos.

6.2. Acoplamiento de escalares a pares de fermiones

Como ya se dijo, para el proceso de nuestro interés, gg → γγ, es necesario conocer los acopla-
mientos del bosón de HiggsH(0) y el pseudoescalarA(2n), a pares de fermiones KK. El acoplamiento
del bosón Higgs a pares de fermiones está dado por el siguiente Lagrangiano

LH(0)f(n)f(n) = −
gmf(0)

2mW (0)

H(0)

{
f̄ (0)f (0) +

[
sinα

(n)
f

(
f̄ (n)f (n) +

¯̂
f (n)f̂ (n)

)

+ cosα
(n)
f

(
f̄ (n)γ5f̂

(n) +
¯̂
f (n)γ5f

(n)
)]}

, (6.14)

donde f representa a un quark o un leptón cargado y α
(n)
f viene dado por tanα

(n)
f = mf(0)/(n/R).

Observe que están presentes acoplamientos con cambio de sabor, es decir, el acoplamiento
H(0)f (n)f̂ (n).

Los modos KK del pseudoescalar A(s) surgen del siguiente doblete de KK

Φ(s) =

(
φ(s)+

H(s)+iA(s)√
2

)
, (6.15)

las masas de los bosones pseudoescalares vienen dadas por: m2
A(s) = (s/R)2 +m2

Z(0) , s 6= 0. Los

modos KK de fermiones cargados, f (n), sólo se acoplan a modos pares del pseudoescalar A(2n) (en
los procesos de nuestro interés), este tipo de acoplamientos están dados por el siguiente Lagrangiano

LA(2n)q(n)q(n) = −
igm

(0)
f√

2mW (0)

A(2n)

{
sin

α
(n)
f

2
cos

α
(n)
f

2

[
f̄ (n)γ5f

(n) +
¯̂
f (n)γ5f̂

(n)
]}
. (6.16)

6.3. Acoplamiento de bosones de norma a par de fermiones

Entre la información relevante necesaria para calcular los efectos de los modos KK sobre los
procesos de dispersión que deseamos estudiar, es requerido conocer los acoplamientos de los bosones
de norma A(0), Z(0), W (0) y G(0) a pares de fermiones KK. Aśı, se tiene que la correspondiente
corriente electromagnética es diagonal y viene dada por

LA(0)f(n)f(n) = e
∑

f=e,u,d

Qf

(
f̄ (0)γµf (0) + f̄ (n)γµf (n) +

¯̂
f (n)γµf̂ (n)

)
A(0)

µ , (6.17)

donde Qf es la carga del fermión, e representa a los leptones cargados del SM, u y d simbolizan
a los quarks de tipo up y down, respectivamente. El acoplamiento entre gluones y quarks también
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es diagonal

LG(0)q(n)q(n) = e
∑

q=u,d

Qq

(
q̄(0)γµ

λa

2
q(0) + q̄(n)γµ

λa

2
q(n) + ¯̂q(n)γµ

λa

2
q̂(n)

)
G(0) a

µ , (6.18)

donde λa son las matrices de Gell-Mann. Las ecuaciones (6.17) y (6.18) nos dicen que las reglas de

Feynman para los acoplamientos A(0)f (n)f (n), A(0)f̂ (n)f̂ (n), G(0)q(n)q(n) y G(0)q̂(n)q̂(n) son iguales
a las que aparecen en el SM.

6.4. Acoplamiento entre escalares y bosones de norma

Además de los acoplamientos anteriores, se necesitan conocer los vértices para las interacciones:
H(0)H(n)−H(n)+, H(0)W (n)−W (n)+, A(0)H(n)−H(n)+ y A(0)W+(n)W−(n) (no confundir el cam-
po del fotón A(0) con el del pseudoescalar A(s)) 1, los cuales están definidos por los siguientes
Lagrangianos:

LH(0)H(n)−H(n)+ =−
gm2

H(0)

4m2
W (0)

2c2αH
(0)H(n)−H(n)+, (6.19)

LH(0)W (n)−W (n)+ = gm2
W (0)H

(0)(W (0)−
µ W (0)+µ +W (n)−

µ W (n)+µ), (6.20)

LA(0)H−(n)H+(n) =− ieA(0)
µ (H(n)+∂µH(n)− −H(n)−∂µH(n)+), (6.21)

LW (0)3W (n)−W (n)+ =− ig

[
(W (0)+

µν W (0)−ν −W (0)−
µν W (0)+ν)W (0)3µ

+W (0)3
µν W (0)−µW (0)+ν

+ (W (n)+
µν W (n)−ν −W (n)−

µν W (n)+ν)W (0)3µ

+W (0)3
µν W (n)−µW (n)+ν

]
, (6.22)

donde cα ≡ cosα y tanα = mW (0)/
(
nR−1

)
para n ≥ 1. La masa de los escalares cargados está dada

por mH(n)+ =
√
(nR−1)2 +m2

H(0) .

1No es necesario introducir otra notación ya que no se estudiarán efectos de excitaciones KK del fotón, además,
tampoco existe el modo (0) para el pseudoescalar.
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Fusión gg → γγ en el SM5D

La fusión de gluones a pares de fotones es un proceso que se ha estudiado en el contexto
del modelo estándar [43]. De dicho análisis se comprueba que la fusión de gluones es un proceso
tan importante como la aniquilación de pares de quarks a pares de fotones. Incluso, la fusión
de gluones es dos veces mayor que la aniquilación de pares de quarks debido principalmente a la
presencia del quark top. La producción de pares de fotones v́ıa fusión de gluones constituye un fondo
(background) intŕınseco respecto a la producción de un par de fotones mediante el decaimiento del
Higgs, lo cual se vuelve importante si la masa del bosón de Higgs es menor que dos veces la masa
del bosón W [43], lo cual ocurre en la naturaleza, pues ahora se sabe la masa del Higgs es de
mH ≃ 125 GeV [44, 45]. El objetivo principal de este trabajo radica en estudiar los efectos de
los modos KK, en la fusión de gluones a pares de fotones, es decir, nuestro estudio se enfoca en
el análisis del proceso de dispersión gg → γγ (el fondo debido a los lazos de caja y la señal de
resonancia del bosón de Higgs H(0)), mediado por los modos KK de los quarks del SM; también
se analizará la resonancia de un pseudoescalar A(2n), el cual surge en el SM5D.

gbµ2(p2)

gaµ1(p1) γµ4(p4)

γµ3(p3)

Figura 7.1: Fusión.

Siguiendo la figura 7.1, se establecen cuadrimomentos, ı́ndices de Lorentz y color de las part́ıcu-
las, como

gaµ1
(p1)g

b
µ2
(p2)γµ3(p3)γµ4(p4) . (7.1)

La amplitud es

Mgg→γγ = Mµ1µ2µ3µ4ab
gg→γγ ǫaµ1

(~p1, λ1)ǫ
b
µ2
(~p2, λ2)ǫ

∗
µ3
(~p3, λ3)ǫ

∗
µ4
(~p4, λ4) , (7.2)

con cinemática
p
µ1,2,3,4

1,2,3,4 = 0 , p21,2,3,4 = 0 , p1 + p2 = p3 + p4 . (7.3)

La fusión en el SM5D está conformada por tres procesos, ilustrados en la figura 7.2, dados por

MSM5D
gg→γγ = MSM5D

gg→H(0)→γγ +
∞∑

n=1

Mgg→A(2n)→γγ +MSM5D
gg→Box→γγ , (7.4)
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7.1. FUSIÓN RESONANTE GG→ S → γγ, S ≡ H(0), A(2N)

H(0)(p1 + p2)

gaµ1(p1)

gbµ2(p2)

q(n), q̂(n)

γµ4(p4)

γµ3(p3)(a)

A(2n)(p1 + p2)

gaµ1(p1)

gbµ2(p2)

q(n), q̂(n) f (n), f̂ (n)

γµ4(p4)

γµ3(p3)(b)

(c)

q(n), q̂(n)

gbµ2(p2)

gaµ1(p1) γµ4(p4)

γµ3(p3)

Figura 7.2: Fusión gg → γγ en el SM5D.

donde H(0) es el Higgs del SM, A(2n) son pseudoescalares1 del SM5D y la caja es debida a quarks
del SM5D. Téngase presente que el SM está contenido en el SM5D.

El estudio del proceso gg → γγ se comenzará en primer lugar por los canales de señal más
importante: gg → S → γγ, S ≡ H(0), A(2n) resonantes cuando

√
s = mS ; en segundo lugar se

estudiará la señal de fondo, o continua, gg → Caja → γγ.

7.1. Fusión resonante gg → S → γγ, S ≡ H(0), A(2n)

Se tiene una fusión de dos lazos conectados mediante una part́ıcula de esṕın 0. Este proceso es
separable en los subprocesos gg → S y S → γγ como

Mgg→S→γγ = Mµ1µ2µ3µ4

gg→S→γγǫ
a
µ1
ǫbµ2

ǫ∗µ3
ǫ∗µ4

= Mgg→SDSMS→γγ , (7.5)

dando lugar a dos subamplitudes, la primera es

Mgg→S = Mµ1µ2ab
gg→S ǫaµ1

ǫbµ2

= fgg→ST
µ1µ2

gg→Sδabǫ
a
µ1
ǫbµ2

(7.6)

con fgg→S factor de forma, T µ1µ2

gg→S estructura de Lorentz y δab coeficiente de estructura de color.
El propagador Breit-Wigner del escalar intermediario es

DS ≡ i

(p1 + p2)2 −m2
S + imSΓS

(7.7)

con ΓS la anchura de decaimiento principal de S. La segunda subamplitud es

MS→γγ = Mµ3µ4

S→γγǫ
∗
µ3
ǫ∗µ4

= fS→γγT
µ3µ4

S→γγǫ
∗
µ3
ǫ∗µ4

. (7.8)

Finalmente

Mgg→S→γγ = fgg→ST
µ1µ2

gg→Sδabǫ
a
µ1
ǫbµ2

DSfS→γγT
µ3µ4

S→γγǫ
∗
µ3
ǫ∗µ4

. (7.9)

Cabe adelantar que se satisface finitud, invariancia de norma de gluones y fotones

piµi
Mµ1µ2µ3µ4

gg→S→γγ = 0 , i = 1, 2, 3, 4 , (7.10)

y simetŕıa de Bose entre gluones p1, µ1, a↔ p2, µ2, b, y entre fotones p3, µ3 ↔ p4, µ4.

1Puesto que surgen exclusivamente de la nueva f́ısica es entonces innecesario etiquetar su amplitud con SM5D,
ésto con afán de no recargar notación.
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7.1. FUSIÓN RESONANTE GG→ S → γγ, S ≡ H(0), A(2N)
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H±(n)

(d)

H(0)

γ

γ

H±(n)

(e)

Figura 7.3: Decaimientos del Higgs en el canal gg → H(0) → γγ en el SM5D.

7.1.1. Fusión gg → H(0) → γγ

Este proceso es bien conocido en el SM y modelos extendidos, tiene una larga tradición en la
literatura [46, 47, 48, 49, 50]. Ilustrado en la figura 7.2(a), el proceso en el SM5D tiene por amplitud

MSM5D
gg→H(0)→γγ = MSM5D

gg→H(0)DH(0)MSM5D
H(0)→γγ . (7.11)

Primer lazo, izquierdo, debido a un triángulo de quarks

MSM5D
gg→H(0) = fSM5D

gg→H(0)T
µ1µ2

gg→H(0)δabǫ
a
µ1
ǫbµ2

, (7.12)

T µ1µ2

gg→H(0) = gµ1µ2 − pµ1

2 pµ2

1

p1 · p2
, (7.13)

fSM5D
gg→H(0) ≡ − i

√
α√

πsWmW (0)

6∑

i=1

∞∑

n=0

δ(n)α(n)
s m

q
(0)
i

ζ
q
(n)
i

m
q
(n)
i

[
1−

(
p1 · p2 − 2m2

q
(n)
i

)
C

q
(n)
i

0

]
. (7.14)

donde n indica la torre de KK, n = 0 corresponde al SM, n ≥ 1 a excitaciones KK; δ(n) = δ(0,≥1) ≡
(1, 2) indica la degeneración de los quarks q y q̂ excitados; α

(n)
s = α

(0,≥1)
s = (αs, α

KK
s ), siendo αs la

usual dependiente de la enerǵıa del proceso [51], y αKK
s en el contexto de dimensiones extra [52];

además y ζ
f
(n)
i

≡
(
1, sinα

(n)
f

)
, tanα

f
(n)
i

= m
f
(0)
i

/
(
nR−1

)
con n ≥ 1; por último, α = α(mZ ) es la

constante de estructura fina y sW ≡ sen θW el ángulo débil.
Para estudiar el bosón de Higgs en resonancia se debe tomar el propagador Breit-Wigner, el

cual esta dado por

DH(0) ≡ i

(p1 + p2)2 −m2
H(0) + imH(0)ΓH(0)

. (7.15)

Segundo lazo, derecho, formado por los lazos ilustrados en la figura 7.3, tiene por amplitud

MSM5D
H(0)→γγ = fSM5D

H(0)→γγT
µ3µ4

H(0)→γγ
ǫ∗µ3

ǫ∗µ4
, (7.16)

T µ3µ4

H(0)→γγ
= gµ3µ4 − (p1 + p2)

µ3pµ4

3

(p1 + p2) · p3
, (7.17)

fSM5D
H(0)→γγ = fW

H(0)→γγ + ff
H(0)→γγ

+ fH+

H(0)→γγ , (7.18)

con los factores de forma

fW
H(0)→γγ ≡ iα3/2mW (0)√

πsW

∞∑

n=0

{
3 +

(p1 + p2) · p3
m2

W (n)

+ 6
[
m2

W (n) − (p1 + p2) · p3
]
CW (n)

0

}
; (7.19)
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7.1. FUSIÓN RESONANTE GG→ S → γγ, S ≡ H(0), A(2N)

ff
H(0)→γγ

≡ − i2α3/2

√
πsWmW (0)

9∑

i=1

∞∑

n=0

δ(n)Q2
fimf

(0)
i

Nfi
C ζf(n)

i

m
f
(n)
i

{
1−
[
(p1+p2) ·p3−2m2

f
(n)
i

]
C

f
(n)
i

0

}
;

(7.20)

fH+

H(0)→γγ ≡
iα3/2c2αm

2
H(0)

2
√
πsWmW (0)

∞∑

n=1

(
1 + 2m2

H(n)C
H(n)+

0

)
, (7.21)

siendo fW
H(0)→γγ

el factor de forma debido a W virtuales, figura 7.3(a)-(b); ff
H(0)→γγ

el debido

a fermiones virtuales, figura 7.3(c); y fH+

H(0)→γγ
el debido a bosones de Higgs virtuales cargados,

figura 7.3(d)-(e), donde Nf
C es el número de color fermiónico, N q

C = 3 para quarks y N l
C = 1 para

leptones.
La función escalar Passarino-Veltman Cm

0 presente en todos los factores de forma está dada
por

Cm
0 ≡ C0(0, 0, s,m

2,m2,m2)

= −2

s
arctan2

(
1√
τ − 1

)

=





− 2
s arcsin

2
(

1√
τ

)
, τ ≥ 1

1
2s

[
log
(

1+
√
1−τ

1−
√
1−τ

)
− iπ

]2
, τ < 1

, (7.22)

τ ≡ 4m2

s
, (7.23)

con el cuadrado de la enerǵıa de centro de masa de la fusión de gluones s = (p1+p2)
2 = (p3+p4)

2 =
2p1 · p2 = 2(p1 + p2) · p3.

Finalmente la amplitud para el proceso gg → H(0) → γγ en el SM5D se puede escribir como

MSM5D
gg→H(0)→γγ = fSM5D

gg→H(0)T
µ1µ2

gg→H(0)δabǫ
a
µ1
ǫbµ2

DH(0)fSM5D
H(0)→γγT

µ3µ4

H(0)→γγ
ǫ∗µ3

ǫ∗µ4
. (7.24)

7.1.2. Fusión gg → A(2n) → γγ

El proceso, ilustrado en la figura 7.2(b), tiene por amplitud

∞∑

n=1

Mgg→A(2n)→γγ =
∞∑

n=1

Mgg→A(2n)DA(2n)MA(2n)→γγ . (7.25)

Primer lazo, izquierdo,

Mgg→A(2n) = fgg→A(2n)T
µ1µ2

gg→A(2n)δabǫ
a
µ1
ǫbµ2

, (7.26)

T µ1µ2

gg→A(2n) = ǫµ1µ2p1p2 , (7.27)

fgg→A(2n) ≡ −
√
αα

(n)
s δ(n)√

2πsWmW (0)

6∑

i=1

m2

q
(0)
i

C
q
(n)
i

0 . (7.28)

Propagador Breit-Wigner del pseudoescalar intermediario

DA(2n) ≡ i

(p1 + p2)2 −m2
A(2n) + imA(2n)ΓA(2n)

. (7.29)

Segundo lazo, derecho,

MA(2n)→γγ = fA(2n)→γγT
µ3µ4

A(2n)→γγ
ǫ∗µ3

ǫ∗µ4
, (7.30)
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7.2. FUSIÓN GG→ CAJA → γγ

donde

T µ3µ4 = ǫµ3µ4(p1+p2)p3 , (7.31)

fA(2n)→γγ ≡
√
2α3/2δ(n)√
πsWmW (0)

9∑

i=1

Q2
fiN

fi
C m

2

f
(0)
i

C
f
(n)
i

0 . (7.32)

Las constantes presentes α, α
(n)
s , δ(n), Nfi

C y la función escalar C0 se han comentado en la
sección anterior.

Finalmente la amplitud para el proceso gg → A(2n) → γγ en el SM5D se puede escribir como

Mgg→A(2n)→γγ = fgg→A(2n)T
µ1µ2

gg→A(2n)δabǫ
a
µ1
ǫbµ2

DA(2n)fA(2n)→γγT
µ3µ4

A(2n)→γγ
ǫ∗µ3

ǫ∗µ4
. (7.33)

7.2. Fusión gg → Caja → γγ

Este canal de caja de quarks es la señal de fondo, o continua, de todo el proceso gg → γγ.
Los lazos de caja involucrados son enteramente análogos a los trabajados en [53, 54, 55, 56],
exceptuando la cinemática, por tanto no serán exhibidos aqúı expĺıcitamente.

Atendiendo a la simetŕıa de Bose entre gluones y fotones surgen seis lazos, el primero, de acuerdo
a la figura 7.2(c), tiene configuración gaµ1

(p1)g
b
µ2
(p2)γµ3 (p3)γµ4(p4), los restantes son g

a
µ1
gbµ2

γµ4γµ3 ,

gaµ1
γµ3g

b
µ2
γµ4 , g

b
µ2
gaµ1

γµ3γµ4 , g
b
µ2
gaµ1

γµ4γµ3 y gbµ2
γµ3g

a
µ1
γµ4 . La amplitud total es

MSM5D
gg→Box→γγ = Mµ1µ2µ3µ4ab

Box ǫaµ1
ǫbµ2

ǫ∗µ3
ǫ∗µ4

= −i8α
6∑

i=1

∞∑

n=0

18∑

j=1

δ(n)α(n)
s Q2

qif
q
(n)
i

j T µ1µ2µ3µ4

j δabǫ
a
µ1
ǫbµ2

ǫ∗µ3
ǫ∗µ4

, (7.34)

donde n indica la torre de KK, n = 0 corresponde al SM, n ≥ 1 a excitaciones KK; δ(n) = δ(0,≥1) ≡
(1, 2) indica la degeneración de los quarks q y q̂ excitados; α

(n)
s = α

(0,≥1)
s = (αs, α

KK
s ), siendo αs la

usual dependiente de la enerǵıa del proceso [51], y αKK
s en el contexto de dimensiones extra [52].

La amplitud es finita, satisface invariancia de norma

piµi
Mµ1µ2µ3µ4ab

Box = 0 , i = 1, 2, 3, 4, (7.35)

y cumple simetŕıa de Bose entre gluones p1, µ1, a↔ p2, µ2, b, y entre fotones p3, µ3 ↔ p4, µ4. Para
la presentación final se aprovecha la base de 18 términos, desarrollada en [53] y también empleada
en [54, 55, 56], cuya virtud es manifestar expĺıcitamente la simetŕıa de Bose entre gluones. Las
estructuras de Lorentz son

T µ1µ2µ3µ4

1 = (p1 · p2gµ1µ2 − pµ1

2 pµ2

1 )(p1 · p3gµ3µ4 − pµ3

1 pµ4

3 ) , (7.36)

T µ1µ2µ3µ4

7 = (p1 · p3pµ1

2 − p1 · p2pµ1

3 )(p2 · p3gµ2µ3 − pµ2

3 pµ3

2 )pµ4

2 , (7.37)

T µ1µ2µ3µ4

13 = (p1 · p3gµ1µ2 − pµ1

3 pµ2

1 )(p2 · p3gµ3µ4 − pµ3

2 pµ4

3 )

+(p1 · p2pµ1

3 − p1 · p3pµ1

2 )(pµ2

3 gµ3µ4 − pµ4

3 gµ2µ3) , (7.38)

satisfacen

piµi
T µ1µ2µ3µ4

i = 0 , i = 1, 2, 3 . (7.39)

Los factores de forma f q están dados en el apéndice. Los restantes términos se logran por simetŕıa de
Bose entre gluones, consúltese la tabla II de [53]. Desde luego, es posible implementar la invariancia
ante p4µ4 y obtener una base de 14 términos, pero ésta arruina la explicitez de la simetŕıa entre
gluones.
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7.3. SECCIÓN EFICAZ DE GG→ γγ

7.3. Sección eficaz de gg → γγ

Téngase bien presente que en este trabajo interesa estimar la razón σSM5D
gg→γγ/σ

SM
gg→γγ para la

cual no es necesario calcular desde la fusión hadrónica2 σ(pp→ gg → γγ), porque las integrales de
las funciones de densidad partónicas son las mismas para el SM y el SM5D, que en consecuencia
se cancelan en la razón.

Para el proceso en turno la sección eficaz es

σgg→γγ =
1

16πs2
S
∫ − 1

4 s

− 3
4 s

|Mgg→γγ |2dt , (7.40)

∣∣Mgg→γγ

∣∣2 =
1

2

1

2

1

Ng

1

Ng

∣∣Mgg→γγ

∣∣2 , (7.41)

siendo ésta la amplitud cuadrada3 promediada, S = 1/2! es el factor estad́ıstico debido a dos
part́ıculas idénticas en el estado final: los fotones. En (7.41) cada 1/2 se debe al promedio de
los estados de polarización de cada gluón, además, por cada gluón 1/Ng promedia el número de
gluones Ng = 8. El ĺımite de integración para el espacio completo es −s ≤ t ≤ 0, sin embargo,
se aplica el corte implementado por Dicus en [43], siendo éste fenomenológicamente más adecuado
como observable: −1/2(120◦) ≤ cos θcm ≤ 1/2(60◦), que en términos de t es − 3

4s ≤ t ≤ − 1
4s, ésto

mediante t = −s(1− cos θcm)/2.
La amplitud cuadrada para el SM está conformada por

∣∣MSM
gg→γγ

∣∣2 =
∣∣MSM

gg→H(0)→γγ

∣∣2 +
∣∣MSM

gg→Box→γγ

∣∣2

+2Re
(
MSM

gg→H(0)→γγM∗SM
gg→Box→γγ

)
. (7.42)

Para el SM5D la amplitud cuadrada, de acuerdo a (7.4), es

∣∣MSM5D
gg→γγ

∣∣2 =
∣∣MSM5D

gg→H(0)→γγ

∣∣2 +
∣∣∣∣∣
∞∑

n=1

Mgg→A(2n)→γγ

∣∣∣∣∣

2

+
∣∣MSM5D

gg→Box→γγ

∣∣2

+2Re
(
MSM5D

gg→H(0)→γγM∗SM5D
gg→Box→γγ

)

+2Re
(
Mgg→A(2n)→γγM∗SM5D

gg→Box→γγ

)
, (7.43)

no hay interferencia H(0) −A(2n). El SM es caso particular del SM5D.
Es oportuno enfatizar que el proceso total gg → γγ alcanza sus mejores valores cuando en

gg → S → γγ el escalar S está en resonancia
√
s = mS . Fuera de dicho valor concreto de la enerǵıa

la señal del canal resonante es altamente suprimida y entonces el proceso total es dominado por la
contribución de caja.

7.4. Escalares resonantes y la aproximación de anchura es-

trecha NWA

Como ya se advirtió, el subproceso gg → S → γγ arrojará el valor más destacado de todo el
proceso gg → γγ cuando el escalar esté en resonancia, lo cual ocurre en

√
s = mS . El estudio de

dicha resonancia se llevará a cabo mediante la aproximación de anchura estrecha, Narrow Width

2En la literatura suele indicarse como σ
(

σ̂(
√
ŝ)
)

, donde σ(
√
s) es la colisión hadrónica pp → gg con enerǵıa

√
s,

y σ̂(
√
ŝ) refiere a gg → γγ con enerǵıa

√
ŝ.

3La suma de polarizaciones de gluones es
∑

λ=1,2 ǫ
a∗
µ (p, λ)ǫa

′

ν (p, λ′) = −gµνδ
aa′

, y la de fotones
∑

λ=1,2 ǫ
∗

µ(p, λ)ǫν(p, λ
′) = −gµν .
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7.4. ESCALARES RESONANTES Y LA APROXIMACIÓN DE ANCHURA ESTRECHA NWA

Approximation 4 (NWA), la cual permite analizar dicha resonancia con información pura de capa de
masa. Como se verá más adelante, tanto el Higgs como el pseudoescalar satisfacen las condiciones
para la implementación de la NWA.

La fusión gg → S → γγ solamente tiene canal s, por tanto
∫ −s/4

−3s/4
dt = Cs , siendo C ≡ 1/2 el

corte fenomenológico implementado. Entonces, la sección eficaz de gg → S → γγ es

σgg→S→γγ(
√
s) =

1

8192πs

∣∣Mgg→S

∣∣2∣∣DS

∣∣2∣∣MS→γγ

∣∣2C , (7.44)

∣∣Mgg→S

∣∣2 =
∣∣fgg→S

∣∣2∣∣T µ1µ2

gg→Sδabǫ
a
µ1
ǫbµ2

∣∣2 ,
∣∣MS→γγ

∣∣2 =
∣∣fS→γγ

∣∣2∣∣T µ3µ4

S→γγǫ
∗
µ3
ǫ∗µ4

∣∣2 . (7.45)

La NWA [57] es válida cuando ΓS ≪ mS , donde ΓS es la anchura de decaimiento principal de
S, está dada por

|DS |2 =
1

(s−m2
S)

2
+m2

SΓ
2
S

≈ π

mSΓS
δ
(
s−m2

S

)
, (7.46)

donde la delta de Dirac tiene unidades GeV−2. Aplicada a (7.44) resulta

σNWA
gg→S→γγ = σgg→SBrS→γγC

=
1

8192m3
S

∣∣MS→gg

∣∣2∣∣MS→γγ

∣∣2

ΓS
Cδ
(
s−m2

S

)
, (7.47)

este último resultado es posible debido a que cuando
√
s = mS entonces Mgg→S = MS→gg. La

sección eficaz de producción gg → S es [47]

σgg→S =
π2

8mS
ΓS→ggδ

(
s−m2

S

)
, (7.48)

ΓS→gg =
1

32πmS

∣∣MS→gg

∣∣2

=
1

32πmS

∣∣fS→gg

∣∣2∣∣T µ1µ2

S→ggδabǫ
a
µ1
ǫbµ2

∣∣2 , (7.49)

y la razón de decaimiento de S → γγ

BrS→γγ =
ΓS→γγ

ΓS
, (7.50)

ΓS→γγ =
1

32πmS

∣∣MS→γγ

∣∣2

=
1

32πmS

∣∣fS→γγ

∣∣2∣∣T µ3µ4

S→γγǫ
∗
µ3
ǫ∗µ4

∣∣2 . (7.51)

Para el Higgs los tensores cuadrados son
∣∣T µ1µ2

gg→H(0)δabǫ
a
µ1
ǫbµ2

∣∣2 = 16 ,
∣∣T µ3µ4

H(0)→γγ
ǫ∗µ3

ǫ∗µ4

∣∣2 = 2 . (7.52)

Para los pseudoescalares los tensores cuadrados son
∣∣T µ1µ2

gg→A(2n)δabǫ
a
µ1
ǫbµ2

∣∣2 = 4s2 ,

∣∣T µ3µ4

A(2n)→γγ
ǫ∗µ3

ǫ∗µ4

∣∣2 =
s2

2
. (7.53)

4Conocida también como Zero Width Approximation (ZWA).

71
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7.5. RESULTADOS

7.5. Resultados

7.5.1. Fusión gg → γγ en el SM5D

En el SM la sección eficaz es

σSM
gg→γγ(

√
s) = σSM

gg→H(0)→γγ + σSM
gg→Box→γγ + σSM

gg→H(0)−Box→γγ . (7.54)

Como se verá a continuación, la señal más importantes de gg → γγ se debe en primer lugar a el
canal gg → H(0) → γγ con el Higgs en resonancia

√
s = mH(0) , fuera de dicho valor concreto de la

enerǵıa la señal de este canal es altamente suprimida, siendo entonces, en segundo lugar, el canal
gg → Caja → γγ quien aporta el mejor valor.

A continuación se analizan los diversos procesos que componen a gg → γγ, comenzando en
primer lugar por la resonancia del Higgs, en segundo lugar por la contribución de caja, y en tercer
lugar el análisis del proceso completo.

Higgs resonante en el SM

Comenzando por el subproceso gg → H(0) → γγ, éste presenta su más destacado valor cuando√
s = mH(0) = 125 GeV. Puesto que ΓH(0) ≪ mH(0) , siendo ΓH(0) = 4, 03 × 10−3 GeV [58], el

proceso satisface el requisito para la aplicación de la NWA. De acuerdo a (7.44) y (7.52) la sección
eficaz usual con Higgs intermediario en función de la enerǵıa es

σSM
gg→H(0)→γγ(

√
s) =

1

8192πs

∣∣MSM
gg→H(0)

∣∣2∣∣DH(0)

∣∣2∣∣MSM
H(0)→γγ

∣∣2C

=
1

256πs

∣∣fSM
gg→H(0)

∣∣2∣∣fSM
H(0)→γγ

∣∣2
(
s−m2

H(0)

)2
+m2

H(0)Γ
2
H(0)

C . (7.55)
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Figura 7.4: Canal gg → H(0) → γγ. El punto resonante
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(7.56), fuera la resonancia la evaluación es con la sección eficaz usual (7.55).
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En tanto que la sección eficaz con la NWA es

σSM,NWA
gg→H(0)→γγ

= σSM
gg→H(0)Br

SM
H(0)→γγC

=
1

256m3
H(0)

∣∣fSM
H(0)→gg

∣∣2∣∣fSM
H(0)→γγ

∣∣2

ΓH(0)

Cδ
(
s−m2

H(0)

)

= 9,50× 10−1 pb , (7.56)

ésto a partir de (7.48)-(7.51) y (7.52). La figura 7.4 ilustra el comportamiento del proceso en
función de la enerǵıa (7.55), donde el punto resonante

√
s = mH(0) es evaluado con la NWA (7.56),

fuera la resonancia la evaluación es con la sección eficaz usual dada por la ecuación (7.55). En la
tabla 7.1 se muestran los valores necesarios para obtener la sección eficaz para la señal del Higgs
en resonancia, empleando la NWA, donde se ha aplicado el corte fenomenológico C = 1/2.

Tabla 7.1: Valores de σSM,NWA

gg→H(0)→γγ
, con ΓH(0) = 4, 03× 10−3 GeV [58]. Téngase presente que se ha

aplicado un corte fenomenológico.
√
s [GeV] σSM,NWA

gg→H(0)→γγ
[pb] σSM

gg→H(0) [pb] ΓSM
H(0)→gg

[GeV] BrSM
H(0)→γγ

ΓSM
H(0)→γγ

[GeV]

mH(0) = 125 9.50×10−1 7.29×102 1.89×10−4 2.6×10−3 1.06×10−5

Caja en el SM

La sección eficaz del proceso gg → Caja → γγ, fondo o continuo de gg → γγ, es

σSM
gg→Box→γγ =

1

8192πs2

∫ − 1
4 s

− 3
4 s

∣∣MSM
gg→Box→γγ

∣∣2dt . (7.57)

Cuando
√
s = mH(0) contribuye con 3.03×10−1pb, que manifiestamente compite con la señal del

Higgs resonante 9,50 × 10−1 pb, siendo del mismo orden de magnitud. Téngase muy en cuenta
que la caja es altamente sensible al corte fenomenológico aplicado, por ejemplo, sin corte resulta
5×103 pb. La figura 7.5 muestra su comportamiento en función de la enerǵıa 0.5≤ √

s ≤10 TeV, en
tal intervalo a bajas enerǵıas la caja alcanza el orden 10−2 pb, en tanto que a altas enerǵıa desciende
hasta 10−5 pb. El proceso se debe principalmente a la interferencia entre quarks ligeros y al up,
predominando la señal de los quarks ligeros tipo up sobre la de los tipo down. Esta contribución
es la predominante en todo el proceso gg → γγ cuando

√
s 6= mH(0) .

Proceso total en el SM

El valor del proceso total gg → γγ en
√
s = H(0) = 125 GeV es 1.25 pb. Los detalles de

los canales que lo conforman están dados en la tabla 7.2, siendo destacable el hecho de que la
resonancia y la caja, fondo del proceso, son del mismo orden de magnitud; la interferencia de la
resonancia y la caja es destructiva, siendo del orden de 10−3 pb. Fuera de resonancia el proceso
total se debe enteramente a la contribución de caja, compárense figuras 7.4 y 7.5.

7.5.2. Fusión gg → γγ en el SM5D

En el SM5D la sección eficaz es

σSM5D
gg→γγ(

√
s) = σSM5D

gg→H(0)→γγ + σgg→A(2n)→γγ + σSM5D
gg→Box→γγ

+σSM5D
gg→H(0)−Box→γγ + σSM5D

gg→A(2n)−Box→γγ . (7.58)
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CAPÍTULO 7. FUSIÓN GG→ γγ EN EL SM5D

7.5. RESULTADOS

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 10 7.5 5 4 3 2 1 0.5

σ 
(g

g
 →

 B
o
x
 →

 γ
γ)

 [
p
b
]

s
1/2

 [TeV]

SM
u
d
s
c
b
t

Int. quarks

Figura 7.5: Canal gg → Caja → γγ del SM en función de
√
s. Los quarks ligeros tipo up son los

que dan la mejor señal.

Tabla 7.2: Valores de σSM
gg→γγ en la resonancia del Higgs. Téngase presente que se ha aplicado un

corte fenomenológico.
√
s [GeV] σSM,NWA

gg→H(0)→γγ
[pb] σSM

gg→Box→γγ [pb] σSM
gg→Box−H(0)→γγ

[pb] σSM
gg→γγ [pb]

mH(0) = 125 9.50×10−1 3.03×10−1 -3× 10−3 1.25

Análogamente al caso del SM, en el SM5D las principales contribuciones del proceso total ocu-
rren cuando los canales gg → S → γγ, S ≡ H(0), A(2n) entran en resonancia. El canal con Higgs
intermediario entra en resonancia cuando

√
s = mH(0) , en tanto que el canal con pseudoescalar

intermediario entra en resonancia cuando
√
s=mA(2n)=

√
(2nR−1)2 +m2

Z(0) . Fuera de dichas re-

sonancias la señal del proceso es altamente suprimida y dominada por la contribución de fondo: la
caja.

A continuación se analizan los diversos procesos que componen a gg → γγ, comenzando en
primer lugar por la resonancia del Higgs, en segundo lugar por la resonancia de los pseudoescalares,
en tercer lugar por la contribución de caja, y por cuarto y último el análisis del proceso completo.

Higgs resonante en el SM5D

Comenzando por el canal gg → H(0) → γγ, la sección eficaz usual, es decir, con propagador
Breit-Wigner, es

σSM5D
gg→H(0)→γγ(

√
s) =

1

8192πs

∣∣MSM5D
gg→H(0)

∣∣2∣∣DH(0)

∣∣2∣∣MSM5D
H(0)→γγ

∣∣2C

=
1

256πs

∣∣fSM5D
gg→H(0)

∣∣2∣∣fSM5D
H(0)→γγ

∣∣2
(
s−m2

H(0)

)2
+m2

H(0)Γ
2
H(0)

C , (7.59)

con los factores de forma dados en (7.14) y (7.18). La sección eficaz con la NWA es

σSM5D,NWA

gg→H(0)→γγ
= σSM5D

gg→H(0)Br
SM5D
H(0)→γγC

=
1

256m3
H(0)

∣∣fSM5D
H(0)→gg

∣∣2∣∣fSM5D
H(0)→γγ

∣∣2

ΓH(0)

Cδ
(
s−m2

H(0)

)
. (7.60)
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La figura 7.5.2 y la tabla 7.3 presentan la razón del canal gg → H(0) → γγ del SM vs. SM5D en
función de R−1

σSM5D,NWA
gg→H(0)→γγ

σSM,NWA
gg→H(0)→γγ

=

∣∣∣fSM5D
H(0)→gg

∣∣∣
2

∣∣∣fSM
H(0)→gg

∣∣∣
2

∣∣∣fSM5D
H(0)→γγ

∣∣∣
2

∣∣∣fSM
H(0)→γγ

∣∣∣
2 , (7.61)

donde σSM,NWA

gg→H(0)→γγ
= 9,50× 10−1 pb dado en (7.56). El exceso de señal debido al SM5D es acorde

con la literatura para este proceso en dimensiones extra [59, 60, 61], en particular compárese esta
figura con la primera gráfica de la figura 5 de [59]. Experimentalmente, el canal gg → H(0) → γγ
concuerda con el exceso de señal reportado en ATLAS [44] y CMS [45]. Más adelante se compa-
rará lo aqúı obtenido con lo experimental.
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Figura 7.6: Razón del canal gg → H(0) → γγ con Higgs resonante
√
s = mH(0) del SM vs. SM5D

en función de R−1.

Como es sabido, en la resonancia
√
s = mH(0) el canal gg → H(0) → γγ puede ser estudiado por

dos subprocesos, el de producción de Higgs gg → H(0) y el de decaimiento del Higgs H(0) → γγ.
El subproceso de producción de Higgs puede ser estimado mediante gg → H(0) → V V ∗, V ≡
W (0)±, Z(0),

σSM5D
gg→H(0)→V V ∗

σSM
gg→H(0)→V V ∗

=

∣∣∣fSM5D
H(0)→gg

∣∣∣
2

∣∣∣fSM
H(0)→gg

∣∣∣
2 , (7.62)

donde se cancela la señal H(0) → V V ∗ por ser la misma para el SM y el SM5D, puesto que el
SM5D no modifica el vértice de árbol H(0)V V . La figura 7.5.2 y la tabla 7.4 muestran los valores
de (7.62) en función de R−1. El exceso resultante es fiel con la literatura de dimensiones extra para
este canal [59, 60, 61], compárese esta figura con la segunda gráfica de la figura 5 de [59].

El segundo subproceso del canal resonante gg → H(0) → γγ, el decaimiento del Higgs H(0) →
γγ, esta dado por

ΓSM5D
H(0)→γγ

ΓSM
H(0)→γγ

=

∣∣∣fSM5D
H(0)→γγ

∣∣∣
2

∣∣∣fSM
H(0)→γγ

∣∣∣
2 . (7.63)

La figura 7.8 presenta la razón (7.63) en función del radio R−1, evaluado en
√
s = mH(0) . El déficit

obtenido concuerda con la literatura de dimensiones extra para este canal [59, 60, 61], compárese
esta figura con la tercera gráfica de la figura 5 de [59].
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Tabla 7.3: Razón del canal gg → H(0) → γγ con Higgs resonante
√
s = mH(0) del SM vs. SM5D

en función de R−1 (valores de la figura 7.5.2).

R−1 [TeV] σSM5D,NWA
gg→H(0)→γγ

/σSM,NWA
gg→H(0)→γγ

0.5 1.67
0.6 1.46
0.7 1.34
0.8 1.26
0.9 1.20
1 1.16
1.1 1.14
1.2 1.11
1.3 1.10
1.4 1.08
1.5 1.07
1.6 1.06
1.7 1.06
1.8 1.05
1.9 1.04
2 1.04
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Figura 7.7: Razón del canal gg → H(0) → V V ∗, V ≡ W±Z, con Higgs resonante
√
s = mH(0) del

SM vs. SM5D en función de R−1.

En śıntesis, en el SM5D el exceso total de gg → H(0) → γγ se mantiene debido a que el
excedente de producción de Higgs gg → H(0) supera el déficit del decaimiento H(0) → γγ.

En cuanto a los últimos resultados experimentales reportado por ATLAS y CMS, para gg →
H(0) → γγ se tiene σ/σSM = 1.8 ± 0.5 (mH =126.5 GeV) en ATLAS [34], mientras que en CMS
se tiene σ/σSM = 0.78+0,28

−0,26 (mH = 125 GeV) y σ/σSM = 1.11+0,32
−0,30 (mH =124.5 GeV) ver tabla 4

de [36] (estos valores se obtuvieron en esquemas de análisis diferentes, para más detalle ver [36]).
Para gg → H(0) → V V ∗ en el canal ZZ∗ reportan σ/σSM = 1.2 ± 0.6 (mH(0) = 125 GeV) en
ATLAS [34] y σ/σSM = 0,91+0,30

−0,24 (mH = 125.8 GeV) [63] en CMS; para el canal con WW ∗ se
tiene σ/σSM = 1.5 ± 0.6 (mH = 125 GeV) en ATLAS [34] y σ/σSM = 0.76 ± 0.21 (mH = 125
GeV) en CMS, ver tabla 5 de [64].
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Tabla 7.4: Razón del canal gg → H(0) → V V ∗, V ≡ W±Z con Higgs resonante
√
s = mH(0) del

SM vs. SM5D en función de R−1 (valores de la figura 7.5.2).

R−1 [TeV] σSM5D
gg→H(0)→V V ∗

/σSM
gg→H(0)→V V ∗

0.5 1.88
0.6 1.59
0.7 1.43
0.8 1.32
0.9 1.25
1 1.20
1.1 1.17
1.2 1.14
1.3 1.12
1.4 1.10
1.5 1.09
1.6 1.08
1.7 1.07
1.8 1.06
1.9 1.05
2 1.05

 0.88

 0.9

 0.92
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 0.98

 1
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Figura 7.8: Razón del canal H(0) → γγ, evaluado en
√
s = mH(0) , del SM vs. SM5D en función de

R−1.

De la figura 7.5.2 y la tabla 7.3, se observa que nuestros datos, para el proceso gg → H → γγ,
concuerdan con lo reportado por ATLAS para un radio de compactación entre 500 Gev ≤ R−1 <
800 GeV, y con respecto a CMS (considerando σ/σSM = 1.11+0,32

−0,30), se tiene que nuestros datos

concuerdan para R−1 > 600 GeV.

De la figura 7.5.2 y la tabla 7.4, para el canal ZZ∗, se observa que nuestros datos concuerdan
con lo reportado por ATLAS para R−1 ≥ 500 GeV, y con respecto a CMS el radio debe ser
R−1 ≥ 1 TeV. En cuanto al canal WW ∗ sólo es compatible con los datos obtenidos por ATLAS
para R−1 ≥ 500 GeV, puesto que lo que reporta CMS es que lo observado es menor a lo que predice
SM, caso opuesto a lo que se tiene en el SM5D.
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7.5.3. Pseudoescalares resonantes del SM5D

Téngase presente que la resonancia del Higgs ocurre a baja enerǵıa cuando
√
s = mH(0) = 125

GeV, en tanto que las resonancias pseudoescalares gg → A(2n) → γγ sucede a alta enerǵıa
√
s =

mA(2n) =
√
(2nR−1)2 +m2

Z(0) . La primera resonancia debida al pseudoescalar más ligero posible,

en un escenario R−1 = 500 GeV, se da cuando
√
s = mA(2) = 1004.15 GeV. Fuera de dicho valor

espećıfico de la enerǵıa la señal es altamente suprimida.

La sección eficaz ordinaria, esto es, con Breit-Wigner, está dada por

σgg→A(2n)→γγ(
√
s) =

∞∑

n=1

1

8192πs

∣∣Mgg→A(2n)

∣∣2∣∣DA(2n)

∣∣2∣∣MA(2n)→γγ

∣∣2C

=

∞∑

n=1

s3

4096π

∣∣fgg→A(2n)

∣∣2∣∣fA(2n)→γγ

∣∣2
(
s−m2

A(2n)

)2
+m2

A(2n)Γ
2
A(2n)→gg

C , (7.64)

aqúı se ha empleado el resultado (7.53), y el decaimiento principal del pseudoescalar es A(2n) → gg.
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Figura 7.9: Anchura de decaimiento de pseudoescalares en el canal dominante, A(2n) → gg, como
función de R−1.

La aplicación de la NWA requiere ΓA(2n) ≪ mA(2n) , lo cual se satisface. La figura 7.9 ilustra el
comportamiento del decaimiento principal

ΓA(2n)→gg ≡ 1

32πmA(2n)

∣∣MA(2n)→gg

∣∣2

=
m3

A(2n)

8π

∣∣fA(2n)→gg

∣∣2 , (7.65)

con el factor de forma dado en (7.28) y
√
s = mA(2n) . Entonces, cumpliéndose el requisito para la
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aplicación de la NWA, se consigue

σNWA
gg→A(2n)→γγ =

∞∑

n=1

σgg→A(2n)BrA(2n)→γγC

=
∞∑

n=1

m5
A(2n)

4096

∣∣fA(2n)→gg

∣∣2∣∣fA(2n)→γγ

∣∣2

ΓA(2n)→gg

Cδ
(
s−m2

A(2n)

)

=

∞∑

n=1

πm2
A(2n)

516

∣∣fA(2n)→γγ

∣∣2Cδ
(
s−m2

A(2n)

)
. (7.66)

En el escenario más ligero R−1 = 0.5 TeV, la primera resonancia del pseudoescalar más ligero
posible A(2) sucede en

√
s = mA(2) = 1.00415 TeV, la segunda resonancia debida a A(4) ocurre en√

s = mA(4) = 2.00208 TeV, la tercera debida a A(6) surge en
√
s = mA(6) = 3.00139 TeV. Fuera

de las resonancias la señal se suprime a 10−10 pb.

En la figura 7.10 se compara la resonancia de pseudoescalares con la resonancia del Higgs en el
SM, donde σSM,NWA

gg→H(0)→γγ
=0.95 pb, de la ecuación (7.56). Aunque las resonancias de pseudoescalares

ocurren a enerǵıas
√
s mucho mayores que la del Higgs, esta figura muestra que un pseudoescalar

ligero de 1 TeV podŕıa superar hasta por 31 veces la resonancia del Higgs.
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Figura 7.10: Razón de resonancias σgg→A(2n)→γγ/σ
SM
gg→H(0)→γγ

en función de R−1, con

σSM,NWA
gg→H(0)→γγ

=0.95 pb.

Caja en el SM5D

En el SM5D la caja solamente presenta desviaciones respecto del SM a altas enerǵıas, a bajas
enerǵıas las desviaciones son mı́nimas, puesto que la escala de compactación R−1 no alcanza a
manifestarse. Más aún, como cabŕıa esperar, en

√
s = mH(0) no hay ninguna discrepancia entre el

SM5D y el SM. La figura 7.11 muestra la razón del SM vs. SM5D, la señal más relevante se produce
a altas enerǵıas de la enerǵıa de fusión de gluones

√
s para R−1 = 0.5 TeV, el radio inverso más

ligero posible. A más alta enerǵıa la curva se desacopla.

79
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s para diversos casos de

R−1.

Proceso total en el SM5D

En el SM5D a bajas enerǵıas la contribución más importante a todo el proceso gg → γγ ocurre
cuando el canal gg → H(0) → γγ es resonante, ésto cuando

√
s = mH(0) = 125 GeV, fuera de dicho

valor el proceso es dominado enteramente por el fondo del proceso gg → Caja → γγ, mientras que
la contribución de pseudoescalares comenzará a participar de manera importante con resonancias
a partir de

√
s = mA(2) =1004.15 GeV, de acuerdo al escenario más ligero R−1 = 500 GeV.

En la figura 7.12 se presenta el proceso total gg → γγ en la resonancia del Higgs
√
s = mH(0) =

125 GeV en el SM5D en función de R−1, donde las contribuciones capitales son gg → H(0) → γγ y
gg → Caja → γγ, en tanto que la interferencia H(0) −Caja es destructiva con valor casi constante
de −4 × 10−4 pb para todo R−1, mientras que resultan absolutamente marginales las señales de
A(2n) y la interferencia A(2n) − Caja, incluso para el radio inverso más ligero en consideración de
R−1 =0.5 TeV, siendo ∼ 10−17 pb y ∼ −10−13 pb, respectivamente.

La figura 7.13 exhiben la razon del proceso total gg → γγ en la resonancia del Higgs
√
s = mH(0)

del SM vs. SM5D en función de R−1. Comparando esta razón del proceso total gg → γγ con la
razón del subproceso gg → H(0) → γγ, es evidente que la primera razón total resulta ligeramente
amortiguada que la razón del subproceso de Higgs resonante.
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Figura 7.12: Fusión total gg → γγ en la resonancia del Higgs
√
s = mH(0) en el SM5D en función

de R−1. Sólo son relevantes las contribuciones gg → H(0) → γγ y gg → Caja → γγ, las demás son
altamente suprimidas.

Tabla 7.5: Fusión total gg → γγ en la resonancia del Higgs
√
s = mH(0) en el SM5D en función de

R−1 (valores de la figura 7.12).

R−1 [TeV] σSM5D,NWA
gg→H(0)→γγ

[pb] σSM5D
gg→Box→γγ [pb] σSM5D

gg→γγ [pb]

0.5 1.588 0.304 1.892
0.6 1.392 0.307 1.699
0.7 1.274 0.306 1.580
0.8 1.197 0.306 1.503
0.9 1.144 0.306 1.450
1 1.107 0.306 1.413
1.1 1.079 0.306 1.385
1.2 1.058 0.306 1.364
1.3 1.042 0.306 1.348
1.4 1.029 0.306 1.335
1.5 1.019 0.306 1.324
1.6 1.010 0.306 1.316
1.7 1.003 0.306 1.309
1.8 0.997 0.306 1.303
1.9 0.993 0.306 1.300
2 0.988 0.307 1.294
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Figura 7.13: Razón del proceso total gg → γγ en la resonancia del Higgs
√
s = mH(0) del SM vs.

SM5D en función de R−1.

Tabla 7.6: Razón del proceso total gg → γγ en la resonancia del Higgs
√
s = mH(0) del SM vs.

SM5D en función de R−1 (valores de la figura 7.13).

R−1 [TeV] σSM5D
gg→γγ/σ

SM
gg→γγ

0.5 1.514
0.6 1.360
0.7 1.264
0.8 1.202
0.9 1.161
1 1.130
1.1 1.107
1.2 1.091
1.3 1.078
1.4 1.068
1.5 1.059
1.6 1.053
1.7 1.047
1.8 1.042
1.9 1.040
2 1.035
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Conclusiones

Colisiones de fotones

Se computaron las amplitudes de helicidad para la dispersión γe → Wνe en el contexto del
SME y la CESM, donde se reprodujeron resultados anaĺıticos y numéricos previamente calculados
al orden más bajo en el contexto del SM. El primero es una extensión invariante de norma del SM en
donde se incorpora violación de Lorentz en un enfoque independiente de modelo, el último, es una
teoŕıa efectiva en donde se incorporan efectos de nueva f́ısica, también mediante un tratamiento
independiente de modelo, pero sujeto a respetar tanto simetŕıa de Lorentz como invariancia de
norma del SM. Los efectos de nueva f́ısica en el contexto de la CESM se incorporan mediante el
invariante de Lorentz gαβOαβ . En contraste, efectos de violación de Lorentz no renormalizables
fueron considerados en el contexto del SME por medio del invariante bαβOαβ , con b

αβ siendo un
tensor antisimétrico constante de rango 2. Las componentes de dicho tensor fueron parametrizadas
en términos de vectores espaciales tipo campo eléctrico y magnético. Se encontró que el escenario
más promisorio para búsqueda de señales de violación de Lorentz corresponde a: e = 0 y b 6= 0,
en la vecindad de θ = 160◦ y χ = 80◦. Las señales de importancia provienen de los estados de
polarización: (+,+), (+,−) y (−,+). Para |b| ∼ 1 y χ = 80◦, la sección eficaz integrada sobre el
intervalo de ángulo de dispersión 150◦ < θ < 170◦ adquiere valores de entre uno y dos órdenes
de magnitud por arriba de los efectos de fondo. En el mejor de los casos, la señal de violación de
Lorentz va desde 10−2 fb hasta 10−1 fb. Al considerar una luminosidad integrada de 500 fb−1, la
cual es esperada para los primeros años de operación del ILC, podŕıan encontrarse del orden de
decenas de eventos siempre que la escala de violación de Lorentz se manifieste alrededor de 2 TeV.

Se estudiaron exhaustivamente las amplitudes de helicidad para el proceso γγ → WW , en
donde se han reproducido los resultados conocidos en el contexto del SM al orden más bajo, más
aún, para el mismo proceso, se han calculado las contribuciones provenientes de la CESM y del
SME. En el contexto de la CESM, los efectos de nueva f́ısica fueron incorporados por medio del
invariante de Lorentz gαβOαβ . En contraparte, se consideraron los efectos de violación de Lorentz
no renormalizables a través del invariante bαβOαβ , donde b

αβ es un tensor antisimétrico constante
de rango 2. Las seis componentes independientes de dicho tensor fueron parametrizadas en términos
de vectores espaciales tipo eléctrico y tipo magnético. Se encontró que el mejor escenario en donde
las señales de violación de Lorentz se maximizan, corresponde a e = 0, b 6= 0, para el estado
de polarización (±,±, (L, T + T, L)) (no hay contribución del SM), en la vecindad de θ ≈ 20◦ y
χ ≈ 100◦. El análisis de las secciones eficaces diferenciales permitió concluir que la región angular
óptima para estudiar EVL es de 20◦ < θ < 40◦. Espećıficamente, para |b| ∼ 1 y χ = 100◦, la sección
eficaz total convolucionada adquiere valores de 102 fb y 10−4 fb para el intervalo de escalas de
violación de Lorentz de 2 TeV< ΛLV <50 TeV. Al explorar la posibilidad de detección de posibles
señales de violación de Lorentz en el contexto del ILC, se encuentra que para la luminosidad
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integrada esperada en la última etapa de operación, 1000 fb−1, hasta 2 eventos relacionados con
violación de Lorentz podŕıan detectarse consistentes con ΛLV ≈ 32 TeV.

Colisiones hadrónicas

Se estudió el proceso gg → γγ de forma anaĺıtica y numérica en el contexto del SM5D. En
la región de resonancia del bosón de Higgs y dentro del intervalo de enerǵıas consistentes con un
rango de radios de compactación de 0.5 TeV ≤ R−1 ≤ 2 TeV, se obtienen los siguientes resultados:
considerando el proceso completo, es decir, contribución de cajas y señal resonante del bosón de
Higgs, se tiene que la razón señal del SM5D partida por la señal del SM cae en el rango de 1.51 ≤
σSM5D,NWA
gg→γγ /σSM,NWA

gg→γγ ≤ 1.03, para
√
s = mH =125.5 GeV; mientras que tomando únicamente

la señal resonante del bosón de Higgs, se tiene que 1.67 ≤ σSM5D,NWA
gg→γγ /σSM,NWA

gg→γγ ≤ 1.04. El
ruido debido a la contribución de cajas no es despreciable en la señal resonante del bosón de
Higgs, siendo apenas un orden de magnitud menor, y fuera de la resonancia es dominante. Si
comparamos nuestros resultados con los reportes experimentales de ATLAS y CMS, σ/σSM =
1·55

+0·33
−0·28

y σ/σSM = 1·56± 0·43, para mH = 125·5 GeV, respectivamente, se observa que nuestros
resultados para el rango de 500 GeV ≤ R−1 ≤ 800 GeV caen en el exceso reportado por las dos
colaboraciones experimentales. Estos resultados deben valorarse pues dado que el experimento no
descarta fluctuaciones con la señal teórica del SM, pueden existir ventanas en las cuales posibles
efectos de modos excitados de KK se estén manifestando y mediante una medición más fina podŕıa
decirse si cabŕıa la posibilidad de su presencia o no sobre el proceso gg → γγ. Por otra parte,
en cuanto a las señales resonantes de los pseudoescalares A(2n) se refiere, estas podŕıan superar
hasta por 31 veces la señal en resonancia del bosón de Higgs; es importante aclarar que estas
resonancias van apareciendo a diferentes enerǵıas, y a medida que crece la enerǵıa de centro de masa
la sección eficaz aumenta. Por lo tanto, requerimos de mediciones experimentales para enerǵıas
mayores a 700 GeV con el fin de poder establecer la importancia de éste estudio. Por último, en
la NWA, se implementó un estudio de los procesos gg → H → V ∗V ∗ para V = Z(0),W (0), con
el Higgs resonante, hallándose un exceso en el coeficiente de señal del SM5D sobre señal del SM,
el cual corresponde a un intervalo de 1.88 ≤ σSM5D,NWA

gg→V ∗V ∗ /σSM,NWA
gg→V ∗V ∗ ≤ 1.05; resultado que entra

en el intervalo reportado por ATLAS y CMS: σ/σSM = 1·33
+0·21
−0·18

y σ/σSM = 0·87 ± 0·23, para
mH = 125·5 GeV, respectivamente. Aśı, para los procesos gg → H → V ∗V ∗, el exceso en señal
medida respecto a señal predicha en el SM podŕıa dar lugar a la presencia de nueva f́ısica, en
particular, efectos de nueva f́ısica relacionados con la presencia de una quinta dimensión.
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Apéndice A

Factores de forma de las cajas en

la dispersión gg → γγ

Se abrevian las funciones Passarino-Veltman contenidas en los factores de forma f q como
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donde pij ≡ pi · pj con i, j=1, 2, 3.

Factores de forma:

f q
1 =
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0(1)(3p13 − 2p12)
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[14] S.-P. Chia, Phys. Lett. B 240, 465 (1990).

[15] K. A. Peterson, Phys. Lett. B 282, 207 (1992).

[16] T. G. Rizzo, Phys. Lett. B 315, 471 (1993).

87



[17] X.-G. He and B. McKellar, Phys. Lett. B 320, 165 (1994).
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