
Eur. Phys. J. C            (2024) 84:9 
https://doi.org/10.1140/epjc/s10052-023-12358-1

Regular Article - Theoretical Physics

Isotropization and complexity shift of gravitationally decoupled
charged anisotropic sources

Abeer M. Albalahi1,a, Z. Yousaf2,b , Akbar Ali1,c, S. Khan2,d

1 Department of Mathematics, College of Science, University of Ha’il, Ha’il, Kingdom of Saudi Arabia
2 Department of Mathematics, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan

Received: 15 November 2023 / Accepted: 13 December 2023
© The Author(s) 2024

Abstract This article focuses on investigating the role
of decoupling in isotropizing anisotropic, self-gravitational
charged sources with spherical symmetry through a well-
known gravitational technique, known as minimal geomet-
ric deformation (MGD). This technique separates the given
system into two gravitational systems: the Einstein-Maxwell
system and the gravitational system governed by additional
source. We employ novel approaches, including the zero
complexity factor and isotropization techniques, to construct
various charged compact star models using the Tolman IV as
the seed source within the framework of the MGD scheme.
The term complexity factor emerges as one of the structure-
defining scalar quantities resulting from the orthogonal split-
ting of the Riemann–Christoffel curvature tensor, as pro-
posed by Herrera (Phys Rev D 97(4):044010, 2018). This
scalar function, denoted as YT F , is associated with the fun-
damental structural characteristics of self-gravitational com-
pact configurations. Our approach is innovative in that it
derives the deformation functions by imposing the require-
ment of YT F = 0 and employs isotropization techniques for
electrically charged anisotropic configurations.

1 Introduction

After the emergence of Einstein’s revolutionary conception
of gravitation, known as general relativity (GR), the quest
for analytical solutions to the Einstein gravitational equa-
tions (EFEs) has become a fascinating and challenging area
of research. The solutions to the EFEs unlock many myster-
ies of the universe by providing a pathway for understand-
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ing the physical consequences of gravitational interactions.
However, due to the non-linear nature of the EFEs, obtaining
analytical solutions with physical significance is challeng-
ing, except in specific scenarios. Several approaches have
been proposed to address this problem, with the goal of con-
structing feasible solutions. In this direction, Schwarzschild
did the pioneering work in constructing the exact solutions
to the EFEs exhibiting the exterior of static, spherically
symmetric self-gravitational configurations [2]. Afterward,
Tolman explored different analytical solutions by consider-
ing stellar structures coupled with perfect fluid distribution
[3]. However, in the context of GR, Lemaître [4] empha-
sized that the stellar structures may possess anisotropic mat-
ter distributions. According to his findings, spherical sym-
metry does not require the presence of an isotropic pres-
sure condition (pr = pt ). Bowers and Liang [5] pointed
out that considering anisotropy as the fluid approximation
describing the matter distribution of self-gravitational sys-
tems leads to a deeper understanding of these relativistic stel-
lar configurations. Furthermore, Ruderman investigated that
the existence of nuclear matter with extreme-density regimes
(ρ > 1015g/cm3) inside the self-gravitational compact con-
figuration may give rise to pressure anisotropy [6].

In high-density stellar systems, the pressure manifests in
two distinct components: the pressure along the radial direc-
tion (denoted as pr ) and the pressure along the tangential
direction (denoted as pt ). This phenomenon results in an
anisotropic pressure condition, where the radial pressure is
not equal to the tangential pressure (pr �= pt ). This parti-
tioning of the fluid’s pressure produces anisotropy within the
interior of self-gravitational fluid spheres, which can be cal-
culated through the anisotropic factor � ≡ pt−pr . The influ-
ence of pressure anisotropy within charged self-gravitational
fluid spheres was initially studied by Bonner [7] and subse-
quently investigated by Herrera and Ponce de León [8]. On
the other hand, Ram and Pandey explored the significance of
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local anisotropy within the context of alternative theories of
gravitation [9]. Numerous physical phenomena occurring in
high as well in low-density regimes are responsible for the
departures from local isotropy. In highly dense relativistic
structures, local anisotropy can arise due to phase transitions
during gravitational collapse, the presence of P-type super-
fluids, solid cores, viscosity, rotation, and the pion condensed
phase configuration [6,10,11]. Furthermore, the appearance
of local anisotropy within the structures of self-gravitational
sources has been comprehensively studied by [12]. It is worth
mentioning that despite assuming an initially isotropic mat-
ter distribution in the relativistic regime, the system tends to
generate pressure anisotropy as a result of the internal physi-
cal processes within the system [13]. In this respect, various
researchers [14–19] discussed the importance and implica-
tions of anisotropy, as well as the mechanisms that give rise to
anisotropies within charged and uncharged self-gravitational
fluid spheres, considering Einstein-Gauss-Bonnet gravities.

Apart from recognizing anisotropy as a crucial factor in
comprehending the complex arrangement of self-gravitating
compact sources, we can explore its connection with another
physical parameter, the complexity factor, which encom-
passes both density gradient and pressure anisotropy. The
term “complexity” comprises all the ingredients that pro-
duce intricacies in a system. Numerous efforts in developing
a fundamental definition of complexity across various scien-
tific domains have been made during the last few decades.
However, an exact and all-inclusive concept of complexity
that applies uniformly across all fields has yet to be achieved.
Within the domain of physics, the notion of complexity
emerges from examining two contrasting examples: a perfect
crystal, which represents complete order and thus possesses
low information content, and an isolated ideal gas, which
embodies complete disorder, leading to maximum informa-
tion. These serve as the simplest models and are regarded as
systems with zero complexity. Additional efforts have been
made to include other factors in the concept of complex-
ity for a more comprehensive and representative definition.
In this direction, Lopez–Ruiz proposed the notion of “dis-
equilibrium” based on the statistical point of view [20]. In
this context, the term “disequilibrium” reaches its maximum
value for a perfect crystal, as it significantly deviates from
equi-distribution among accessible states, while it remains at
zero for an ideal gas. Afterward, equilibrium is achieved by
defining a quantity as the product of the concepts of “dise-
quilibrium” and information. This approach eliminates com-
plexity for both the isolated ideal gas and the perfect crystal.

Furthermore, substantial attempts have been made to out-
line the concept of complexity within the framework of self-
gravitational fluid spheres, such as white dwarf and neu-
tron stars, using Einstein’s gravity and modified theories
of gravitation [21–23]. A few years ago, Herrera [1] pro-
posed an alternative characterization of complexity concern-

ing static, self-gravitational perfect fluid spheres, derived
from the scalar function emerging in the orthogonal decom-
position of the Riemann–Christoffel curvature tensor. This
novel concept is based on the assumption that relativistic
systems with homogeneous density and isotropic pressure
are the simplest. Moreover, this natural definition of com-
plexity allows for the formulation of multiple solutions cor-
responding to anisotropic self-gravitational fluid configura-
tions with zero complexity. Therefore, it would be intriguing
to explore the impact of the complexity factor on anisotropic
self-gravitational stellar configurations

The gravitational decoupling scheme for constructing ana-
lytical solutions to EFEs of general relativity was initially
proposed by Ovalle [24]. This systematic approach studies
time-independent, self-gravitating stellar sources that exhibit
spherical symmetry using EFEs

Rα
β − 1

2
Rδα

β = κ2[T α
β ]tot, (1)

having two sources that interact gravitationally. It is notable
that in the extended form (so-called extended geometric
deformation scheme) the above system affects both the radial
and the temporal metric components, and these entities
can interact, exchanging energy and momentum in order to
decouple the EFEs [25]. Thus, the total energy-momentum
tensor (EMT) can be written as

[T α
β ]tot = T α

β + ϕ	α
β. (2)

Here, 	α
β is an additional gravitational source and ϕ repre-

sents a constant that is responsible for observing the effects
of θα

β with respect to T α
β . The appearance of this new gravi-

tational source makes it very difficult to formulate analytical
solutions to the EFEs. In this regard, the scheme of mini-
mal geometric deformation emerges as a novel and benefi-
cial technique for investigating and analyzing stellar solu-
tions. This method is especially valuable in scenarios that
go beyond trivial cases, such as when we need to approxi-
mate the interiors of self-gravitational structures with more
realistic fluid distributions, as opposed to ideal perfect fluids
[26,27]. Furthermore, it is also captivating in the framework
of modified gravitational theories that often introduce new
and challenging characteristics due to their complex mecha-
nisms. The MGD-scheme was primarily established [28,29]
to study the spherically symmetric, self-gravitational struc-
tures in Randall–Sundrum brane-world framework [30,31].
Subsequently, its application extended to studying the new-
found black hole solutions and hypothesized dark matter
[25,32,33].

The MGD scheme exhibits several interesting character-
istics, making it a powerful tool for exploring new analytical
solutions to the EFEs. This approach includes two key fea-
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tures: (i) it enables the possible extension of fundamental
solutions to the EFEs into more intricate domains by intro-
ducing an additional gravitational source into the seed source
T α

β as

T α
β �→ [T α

β ]tot = T α
β + T (1)α

β , (3)

similarly, for another gravitational source T (2)α
β , we get

T α
β �→ [T α

β ]tot = T α
β + T (2)α

β . (4)

The above procedure can be repeated by introducing further
gravitational sources T (n)α

β to obtain the extended form of the
simple solutions to the EFEs associated with T α

β . (ii) it also
enables us to construct the solutions to the EFEs associated
with [T α

β ]tot by splitting it into more simple terms as

[T α
β ]tot →

{
T α

β, T (i)α
β

}
, (5)

which can be solved independently.
Starting with the pioneering work of Rosseland and

Eddington, the study of self-gravitational, charged fluid
spheres has a long history [34,35]. Afterward, understanding
the influence of electrical charge on the evolution and mecha-
nism of compact self-gravitational fluids has been emerged as
a captivating topic for cosmologists. An analysis of the estab-
lished Reissner–Nordström (RN) spacetime geometry shows
that spherical, compact self-gravitating fluids possessing
charged dust distributions could potentially hinder relativistic
gravitational collapse, which seems to be an inherent aspect
of Schwarzschild’s geometry [2,36]. Hence, the introduction
of an electric field within the matter distribution allows us
to evade singularities. Bonnor investigated the electromag-
netic effects on the gravitational collapse of a spherical dust
fluid distribution and pointed out that the collapse process
decelerates as a result of electrical repulsion. In recent times,
several investigations have been carried out to find the ana-
lytical stellar solutions to the EFEs. These solutions may be
used in the modeling of self-gravitational stellar configura-
tions such as charged black holes, neutron stars, strange quark
stars, and other stellar structures [37–41]. Varela et al. exam-
ined the self-gravitational spherical structures with a charged
fluid distribution by deriving solutions to the charged EFEs
subject to the Karori and Barua metric potentials. Arbanil
et al. [42] analyzed several self-gravitational, charged poly-
tropic spheres satisfying the equation of state. They exam-
ined certain physical features of the system by constructing
the hydrostatic equilibrium condition. They also analyzed
the Buchdahl limit and concluded that this limit is maximum
and the corresponding structure is a quasi-black hole. Conse-
quently, the modeling of charged compact stellar configura-
tion by developing the analytical stellar solutions to charged

EFEs may be proved very intriguing. In this respect, many
researchers have explored analytical solutions to the charged
EFEs exhibiting charged anisotropic stellar configurations
[43–49]. Motivated by this scenario, we develop a model of
spherical stellar fluids endowed with electrical charge by con-
sidering conditions that involve minimal complexity factors
and isotropization.

In this article, we are mainly interested in investigating the
role of the gravitational decoupling scheme in controlling
certain physical features of the charged, self-gravitational
compact configuration satisfying the conditions of zero com-
plexity factor and isotropization. We will employ the MGD
scheme, which is based on deforming only the radial met-
ric component and allows no energy exchange between the
two gravitational sources in Eq. (2). check grammar Next,
we will need to ensure that the entire gravitational system,
with ϕ = 1, exhibits certain features that may be different
from those observed for ϕ = 0. More specifically, our ini-
tial requirement will be that the anisotropic pressure turns
out to be isotropic for ϕ = 1. The subsequent sections of
the article are structured in the following manner: In Sect.
2, we will review the Einstein–Maxwell formalism for a
gravitationally decoupled system with spherical symmetry
and derive the corresponding field equations. We present the
basic ingredients of gravitational decoupling through MGD-
scheme in order to generate anisotropic stellar structure solu-
tions in Sect. 3. Section 4 is dedicated to the comprehen-
sive study of isoropization of the self-gravitational spherical
sources through graphical representation. Then, in Sect. 4,
we formulate the complexity factor under MGD-scheme and
generate different stellar structure models by imposing the
zero complexity factor condition for Tolman IV solutions.
Finally, Sect. 5 provides the main findings and the conclud-
ing remarks.

2 Einstein–Maxwell formalism of gravitationally
decoupled structures

The standard action for gravitationally decoupled stel-
lar structure may be expressed by inserting an addition
lagrangian density for the additional gravitational source as

A = SEH + ϕS	 = 1

2κ2

∫ √−g (R + Lm + Le + ϕL	) d4x,

(6)

where R = Rα
α = gαβ Rαβ , with Rαβ being the Ricci ten-

sor and g = det (gαβ), while κ2 is the usual gravitational
coupling constant. In addition, Lm , Le and L	 represent
the lagrangian densities corresponding to matter, charge and
extra gravitational sources, respectively. To describe the den-
sity of matter fields Lm associated with the seed source,
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the corresponding energy–momentum tensor (EMT) can be
encoded as

Tαβ = − 2√−g
δ(

√−gLm)

δgαβ
. (7)

Since Lm is a function of gαβ only, therefore the above
expression implies

Tαβ = −2
δ(Lm)

δgαβ

+ gαβLm, (8)

On the other hand, we denote the EMTs associated with the
electromagnetic and additional gravitational fields as Eαβ

and 	αβ , respectively, which can be defined in terms of the
Lagrangian densities Le and L	 as

Eαβ = −gαβLe + 2
δ(Le)

δgαβ
, (9)

	αβ = 2
δ(Lθ )

δgαβ
− gαβL	, (10)

Finally, the variation of the modified Einstein–Hilbert action
(6) with respect to gαβ provides the gravitational equations
of motion for the charged decoupled anisotropic system as

Rα
β − 1

2
Rδα

β = κ2
(
[T α

β ]tot + Eα
β

)
, (11)

where [T α
β ]tot EMT describing the distribution of anisotropic

fluid configuration radial pressure Pr , tangential pressure Pt
and energy density ε is given by

[T α
β ]tot = (ε + Pt )U

αUβ − Ptδ
α
β + (Pr − Pt )ξ

αξβ, (12)

where ξα denotes the unit four-vector andUα symbolizes the
four-velocity of the fluid configuration, defined as

Uα = e−ν/2δα
0 and ξα = e−λ/2δα

1, (13)

for which UαUα = −ξαξα = 1 and ξαUα = 0. On the other
hand, the quantity 	α

β stands as an additional gravitational
source term that interacts with the anisotropic fluid through
the constant ϕ. Furthermore, the divergence-free property
of the Einstein tensor enables the EMT to comply with the
conservation relation

∇α

(
[T α

β ]tot + Eα
β

)
= 0. (14)

The line element to model the interior region of spherically
symmetric stellar distribution in the standard Schwarzschild-
like coordinates xα = (t, r, θ, ϑ) reads

ds2 = gαβdx
αdxβ

= eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϑ2, (15)

where the variables ν ≡ ν(r) and λ ≡ λ(r). In addition,
the EMT describing the electromagnetic interactions on self-
gravitational fluid spheres, is defined as follows

Eα
β = 2

κ2

[
1

4
δα

βFσς F
σς − Fα

σ F
σ
β

]
, (16)

where the anti-symmetric tensorial term Fαβ = ∂βφα −∂αφβ

is known as Maxwell-tensor whereφα = φ(r)δ0
α encodes the

four-potential. Furthermore, the anti-symmetric tensor Fαβ

satisfies the Maxwell’s equations of electromagnetic fields
as

∇β

[
(−g)1/2Fαβ

]
= μm(−g)1/2Jα, ∂[σ Fαβ] = 0. (17)

Here, μm = 4π is the magnetic permeability, while Jα rep-
resents the current density defined as

Jα = �e(r)U
α, with Uα = δα

0√
gαα

, (18)

where �e is the electric charge density. Then, the combination
of the above expressions with Maxwell’s equations produces
the following 2nd order linear differential equation in the
variable φ as

d2φ

dr2 + 1

2r

[
4 − r(ν′ + λ′)

] dφ

dr
= μm�e(r)e

ν+λ/2, (19)

whose solution is given as

dφ

dr
= Q(r)

r2 e(ν+λ)/2. (20)

Here, Q(r) = μm
∫ r

0 �e(r)eλ/2y2dy represents the total
charge contained within the interior of the self-gravitating
stellar configuration. Consequently, the non-null constituents
of Eα

β reads

E0
0 = E1

1 = −E2
2 = −E3

3 = Q2(r)

κ2r4 , (21)

κ2([T 0
0]tot + E0

0) = e−λ

(
eλ

r2 + λ′

r
− 1

r2

)
, (22)

κ2([T 1
1]tot + E1

1) = e−λ

(
eλ

r2 − ν′

r
− 1

r2

)
, (23)

κ2([T 2
2]tot + E2

2) = e−λ

(
λ′ν′

4
− ν′′

2
− ν′2

4
− ν′

2r
+ λ′

2r

)
,

(24)

where [T 3
3]tot + E3

3 = [T 2
2]tot + E2

2 as a consequence of
spherically symmetric case and f ′ ≡ ∂r f . Also, from the
above set of differential equations, we have
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[T 0
0]tot = T 0

0 + ϕ	0
0, (25)

[T 1
1]tot = T 1

1 + ϕ	1
1, (26)

[T 2
2]tot = T 2

2 + ϕ	2
2. (27)

The linear combination of the Eqs. (14)–(16) produces
the generalized hydrostatic equilibrium equation for the
anisotropic fluid and reads

0 =
(
[T 1

1]tot + E1
1

)′ − ν′

2

(
[T 0

0]tot + E0
0 − [T 1

1]tot − E1
1

)

− 2

r

(
[T 2

2]tot + E2
2 − [T 1

1]tot − E1
1

)
,

0 =
(
T 1

1 + E1
1

)′ − ν′

2

(
T 0

0 + E0
0 − T 1

1 − E1
1

)

− 2

r

(
T 2

2 + E2
2 − T 1

1 − E1
1

)
+ ϕL

(
	α

α

)
, (28)

where

L
(
	α

α

) ≡
[(

	1
1

)′ − ν′

2

(
	0

0 − 	1
1

)
− 2

r

(
	2

2 − 	1
1

)]
.

(29)

The expression (28) is commonly known as the conserva-
tion equation for the charged anisotropic fluid distribution
endowed with spherical symmetry. Now, we characterize the
	-components in terms of new variables as

ρ	 = ϕ	0
0, p	

r = −ϕ	1
1, p	

t = −ϕ	2
2, (30)

Then, we have

ε = ρ + ρ	, Pr = pr + p	
r , Pt = pt + p	

t , (31)

where ε encode the effective energy density, while Pr and
Pt symbolize the effective radial and tangential pressures,
respectively. By considering the above definitions, the pres-
sure anisotropy may be expressed as

[�]tot ≡ Pt − Pr = � + ϕ�	, (32)

with

[�]tot = p⊥ − pr and

�	 = p	⊥ − p	
r = ϕ

(
	1

1 − 	2
2

)
. (33)

where � and i	 measure the pressure anisotropy caused by
the seed source T α

β and the additional gravitational source
	α

β , respectively.

3 Gravitational decoupling by complete geometric
deformation

The MGD-scheme is concerned with a certain transformation
of the inverse radial-component of gαβ as

[
g̃rr (r)

]−1 �→ [
grr (r)

]−1 = [
g̃rr (r)

]−1 + ϕF(r), (34)

where the arbitrary function F(r) signifies the geometric
deformation experienced by metric g̃αβ . The decoupling of
gravitational configurations via the above-stated transforma-
tion has been effectively utilized in various contexts, includ-
ing:

• Deriving physically viable and exact solutions for self-
gravitational compact sources endowed with spherical
symmetry [50–55].

• Constructing mini black hole solutions [56].
• Understanding the phenomena of gravitational lensing

beyond the framework of Einstein’s gravity [57].
• Establishing the uniformity of the standard Schwarzschild

exterior solution for self-gravitational fluid spheres, com-
posed of usual matter within the realm of brane-world
[58].

• Analyzing the corrections to observable parameters of
dark SU (N ) stars as a result of variable tension fluid
branes [59].

Next, we will employ the MGD-scheme to solve the grav-
itational system (25)–(28). The MGD-scheme is based on
the solving the EFEs for each component {T α

β,	α
β}, inde-

pendently. Then, the complete solution of the system corre-
sponding to the gravitational source [T α

β ]tot is obtained by
the principle of superposition. Later on, we will see that this
scheme transforms the gravitational system so that the grav-
itational equations of motion corresponding to the 	-sector
will satisfy the quasi-Einstein system. Now, we continue by
examining a solution to the system (25)–(28) with ϕ = 0,
given by

ds2 = gαβdx
αdxβ = eη(r)dt2

− eμ(r)dr2 − r2dθ2 − r2 sin2 θdϑ2, (35)

with

2ms

r
≡ 1 − e−μ(r) + Q2

r2

≡ κ2

2

∫ r

0

[
ρ(y) + Q2

8πy2

]
y2dr + Q2

r2 . (36)

is the mass function associated with the standard Einstein–
Maxwell Now, we employ the GD by using the MGD-scheme
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to investigate the cumulative impact of the extra gravitational
source on the seed source. To achieve this, we transform the
metric variables eλ and eν as suggested by Ovalle [24] in the
following manner

η(r) �→ ν(r) = η(r) + ϕ f (r), (37)

e−μ(r) �→ e−λ(r) = e−μ(r) + ϕF(r), (38)

where the functions f (r) and F(r) represent the deforma-
tions experienced by temporal and radial metric components.
one specific possibility stands out, referred to as the MGD-
scheme, which reads

f (r) → 0, (39)

F(r) → F∗(r), (40)

Consequently, the line element (35) undergoes minimal
deformation due to the source 	α

β , whose radial metric com-
ponent turns out to be

e−μ(r) �→ e−λ(r) = e−μ(r) + ϕF∗(r), (41)

however, the temporal metric component remains the same.
Now, by plugging the above-stated deformed metric func-
tions into the gravitational system (22)–(24), we obtain the
following sets of differential equations:

(i) The Charged EFEs equations of motion for the seed
source corresponding to ϕ = 0, are given as

κ2
(

ρ + Q2

κ2r4

)
= e−μ

(
eμ

r2 + μ′

r
− 1

r2

)
, (42)

κ2
(
pr − Q2

κ2r4

)
= e−μ

(
eμ

r2 − η′

r
− 1

r2

)
, (43)

κ2
(
pt + Q2

κ2r4

)
= e−μ

(
μ′η′

4
− η′′

2
− η′2

4
− η′

2r
+ μ′

2r

)
.

(44)

By definition, the EMT associated with the charged
anisotropic seed source is divergence-free, i.e, it obeys the
standard conservation relation, which can be expressed as
follows

dpr
dr

= −η′

2
(ρ + pr ) + 2

r

[
(pt − pr ) + Q2

κ2r3

dQ

dr

]
, (45)

where

η′

2
= prκ2r4 + 2rms − 2Q2

2r(r2 − 2rms + Q2)
. (46)

Here, it is notable that the above system of differential equa-
tions is equivalent to the system of Eqs. (22)–(24) if we set
the coupling parameter 	 = 0, between the two sectors.

(ii) Now, we proceed to the term 	α
β to investigate

the gravitational consequences corresponding to additional
source on the electrically charged anisotropic fluid solution
{η,μ, ρ, pr , pt }. In this respect, the quasi-Einstein gravita-
tional system associated with 	-sector can be expressed by
the following expressions

κ2ρ	 = −ϕF∗
(

1

r2 + F∗′

rF∗

)
, (47)

κ2 p	
r = ϕF∗

(
1

r2 + η′

r

)
, (48)

κ2 p	
t = ϕF∗

(
η′′

2
+ η′2

4
+ η′

2r

)
+ ϕF∗

(
η′ + 2

r

)
. (49)

Once again, the corresponding conservation relation or the
hydrostatic equilibrium equation satisfying the divergence-
free relation

∇α	α
β = 0, (50)

can be explicitly written as

dp	
r

dr
= −η′

2
(ρ	 + p	

r ) + 2

r
(p	

t − p	
r ), (51)

where

η′

2
= prκ2r4 + 2rms

2r(r2 − 2rms)
. (52)

From the above expression, we get

m = ms − ϕ

2
rF∗. (53)

According to Herrera’s definition [1], the mass functionm(r)
for the decoupled gravitational may be expressed as

m(r) = κ2r3

6
ε − κ2

6

∫ r

0

(
ε′y3 − 6QQ′

κ2y

)
dy. (54)

Now, utilizing the relation (22), we get

m(r) = ms(r) + m	(r), (55)

with

ms(r) = κ2r3

6
ε − κ2

6

∫ r

0

(
[ε(y)]′y3 − 6QQ′

κ2y

)
dy, (56)

and

m	(r) = κ2r3

6
ρ	 − κ2

6

∫ r

0
[ρ	(y)]′y3dy, (57)
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wherems(r) andm	(r) encode the mass function associated
with the seed source T α

β and the extra gravitational source
	α

β .

4 Isotropization of self-gravitational sources

This section explains the formulation of Casadio’s systematic
method for isotropizing the decoupled gravitational system
(22)–(24) using the MGD-scheme [60]. As discussed earlier
in expression (32), the total anisotropy [�]tot corresponding
to the decoupled gravitational system could possibly be dis-
tinct from the anisotropy caused by the extra gravitational
interaction ϕ�	. Our primary objective here is to achieve
isotropization. This can be accomplished by considering an
anisotropic gravitational system with � �= 0, leading to the
transformation of the system into the isotropic regime with
[�]tot = 0, as a result of including the additional source
	α

β . This isotropic gravitational system is characterized by
relations (22)–(24). This modification can be precisely con-
trolled by the coupling parameter ϕ. The case ϕ = 0 cor-
responds to the anisotropic configuration, while the case
ϕ = 1 represents the isotropic gravitational system. There-
fore, [�]tot = � + ϕ�	 = 0, with ϕ = 1 reads

� = −�	 �⇒ � = −(	1
1 − 	2

2) = −(p	
r − p	⊥). (58)

Then, the combination of the Eqs. (48) and (49) with Eq. (58)
produces an ODE, defined as

F∗

4κ2

(
2η′′ + η′2 − 2η′

r
− 4

r2

)
+ F ′∗

4κ2

(
η′ + 2

r

)
+ � = 0,

(59)

which encode a first-order linear ODE in the deformation
function F∗(r), while it is a second-order nonlinear equa-
tion in the metric variable η(r). Later on, we will solve this
differential equation for the function F∗(r). The solution
to this relation describes the effects of the extra gravita-
tional source 	α

β , which can calculated by using any well-
established solution of the stellar system (42)–(44) expressed
by the functions η(r) and μ(r) along with assuming any fea-
sible form ofF∗(r). As an illustrative example, we will apply
the above-mentioned scheme to achieve isotropy in the self-
gravitational stellar structure regulated only by the tangential
pressure, as expressed by

η(r) = ln

[
Y 2

(
1 + r2

X2

)]
, (60)

e−μ(r) = X2 + r2

X2 + 3r2 , (61)

ρ(r) = 6r4(X2 + r2) − Q2(X2 + 3r2)2

κ2r4(X2 + 3r2)2 , (62)

pt (r) = 3r6 − Q2(X2 + 3r2)2

κ2r4(X2 + 3r2)2 , (63)

pr (r) − Q2

κ2r4 = 0, with 0 ≤ r ≤ R. (64)

Here, R specifies the surface of the self-gravitational stellar
configuration. Prospective applications of this class of solu-
tions in finding the spherical anisotropic fluid distributions
have been studied by many researchers [12,50,61–64]. The
values of the constant parameters X and Y can be calculated
via smooth matching of the inner seed metric with the outer
RN metric at surface r > R. In the context of gravitational
decoupling, Ovalle [25] considered the following form of the
well-established RN metric

ds2 = gαβdx
αdxβ =

(
1 − 2M

r
+ Q̂2

r2

)
dt2

−
(

1 − 2M

r
+ Q̂2

r2

)−1

dr2 − r2dθ2 − r2 sin2 θdϑ2.

(65)

In this expression, ms(R) = M and Q(R) = Q̂ encode the
overall mass and charge inside the self-gravitational com-
pact structure corresponding to source T α

β , respectively. By
expressing the first and second fundamental form explicitly,
we obtain the following expressions

eη(R) = 1 − 2M

R
+ Q̂2

R2 , (66)

e−μ(R) = 1 − 2M

R
+ Q̂2

R2 , (67)

pr (R) − Q̂2

R2 = 0. (68)

Using the matching conditions (66), (67) and (68), we obtain

Y 2 = 1 − 3M

R
,

X2

R2 = R2 − 3M

M
, (69)

where, we must have M/R < 1/3 or R > 3M for X2 > 0
and Y 2 > 0. The solution of the ODE (59) can be defined as

F∗(r) = r2(r2 + X2)

2r2 + X2

[
1

3r2 + X2 − 1

K2

]
. (70)

Here, the term K denotes an arbitrary constant of integration
with dimensions of length. Next, we find the value of Pr can
be determined by plugging the metric variables (41) and (66)
in the Einstein–Maxwell equation of motion (23) as

Pr = ϕr2F∗(r)(3r2 + X2) + Q2(r2 + X2)

κ2r4(r2 + X2)
. (71)
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Consequently, the matching sonstraint (68) for the outer RN
metric provides

F∗(R) = 0 �⇒ K2 = 3R2 + X2. (72)

This relation shows that the value of M remains same in both
the cases, i.e.,

m(R) = ms(R) = M, (73)

Consequently, the constant parameters X and Y retain their
values, as defined in Eq. (69). Now, the corresponding defor-
mation function turn out to be

F∗(r) = 3r2(R2 − r2)(r2 + X2)

(2r2 + X2)(3r2 + A2)(3R2 + A2)
. (74)

The expression for effective energy density ε takes the form

ε(r, ϕ) = ρ(r) + Q2(3r2 + X2)2(3r2 + X2)2(2R2 + X2) − ϕr2[18r8 − 6r6R2 + (5r2 − 3R2)X6]
κ2(2r2 + X2)2(3r2 + X2)2(2R2 + X2)

− ϕr2[2(11r4 − 5r2R2)X2 + (31r6 − 9r4R2)]
κ2(2r2 + X2)2(3r2 + X2)2(2R2 + X2)

, (75)

whereas the effective radial pressure takes the following form

Pr (r, ϕ) = 3ϕr2(R2 − r2) − Q2(2r2 + X2)(3R2 + X2)

κ2(2r2 + X2)(3R2 + X2)
.

(76)

Finally, the effective tangential pressure can be calculated
through the relation Pt = Pr +�, where the total anisotropy
of the gravitational system is

[�]tot(r, ϕ) = 3(1 − α)r2

κ2(3r2 + X2)2 . (77)

The above expression shows that the total anisotropy of the
system vanishes for ϕ = 1. Notably, the relations (75)–(77)
are the analytical stellar solutions to the charged EFEs of
motion (22)–(24) for all values of the parameter ϕ. Addition-
ally, we can easily conclude that the case ϕ = 0 corresponds
to the anisotropic gravitational model. However, as the value
of ϕ gradually increases, it undergoes continuous deforma-
tion towards the isotropic case, characterized by ϕ = 1. in
Eqs. (60)–(64). Therefore, we can closely observe the pro-
cess of isotropization by continually varying the parameter
a within the range (0, 1). In this context, the plots of total
anisotropy � and the radial pressure Pr for different values
of the parameter ϕ is shown in Figs. 1 and 2, respectively.

5 Complexity of gravitationally decoupled sources

This section deals with constructing a solution to the charged
gravitational system of Eqs. (22)–(24) under the MGD-
scheme and obeying the zero-complexity condition. The def-
inition of complexity factor in terms of a scalar function for
static, anisotropic spherical self-gravitational sources was
initially suggested by Herrera [1], and then generalized to
the case of dynamical sources in [65] (for further applica-
tions, see [16,66–69]). The scalar function representing the
complexity factor is denoted as YT F . It can be evaluated by
considering two fundamental fluid variables: the anisotropy-
exhibiting factor � and the density gradient [ρ(r)]′. Accord-
ing to Herrera’s newly developed definition, we define the
quantity YT F as the complexity-measuring factor for time-
independent, compact anisotropic fluid spheres. This factor
is defined as

Fig. 1 Diagrammatic scheme of the radial component of pressure
[Pr × 103] versus radial coordinate r for various values of the cou-
pling parameter ϕ with compactness factor M

R = 0.2
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Fig. 2 Diagrammatic scheme of the total pressure anisotropy � versus
r for various values of the coupling parameter ϕ with compactness factor
M
R = 0.2

YT F = κ2�(r) + 2Q2

r4 − κ2

2r3

∫ r

0

[
ρ(y) + Q2

κ2r4

]′
y3dy.

(78)

As pointed out in [1], the structure scalar YT F signifies the
influence of both anisotropy and density variation on the Tol-
man mass (mT ). More specifically, it describes how the phys-
ical parameters defined in YT F lead to variations in mT . The
Tolman mass is can be encoded as

mT = κ2

2

∫ r

0
e(η+λ)/2

(
T 0

0 + E0
0 − T 1

1 − E1
1

− 2T 2
2 − 2E2

2

)
y2dy, (79)

Then, using Eqs. (22)–(24) in the above expression, we get

mT = η′

2
r2e(η−λ)/2 +

∫ r

0

Q2

y2 e(ν+λ)/2dy. (80)

Next, we consider the four-acceleration aα , defined by

aα = Vα;βV β. (81)

For time-independent gravitational field (15), the above
expression adopts a specific form

aα = aKα, where a = −mT

r2 e−η/2. (82)

Thus, mT represent the active gravitational mass [12,70].
To examine the impact of YT F on the mass function mT ,

we reformulate Eq. (79) in the context of the complexity-
measuring factor as

mT =
( r

R

)3
MT + r3

∫ R

r

e(η+λ)/2

y
YT Fdy. (83)

Here, the term MT denotes the total Tolman mass. Based on
Herrera’s [12] observations, it is significant to mention that

• The scalar function YT F appears to be zero not only for
spherical stellar fluids with isotropic pressure but also for
any other fluid configurations in which both terms in Eq.
(83) vanish identically.

• Based on the above-mentioned criteria, it is clear that
there may exist various stellar configurations satisfying
zero complexity factor condition.

• It is important to emphasize that while pressure anisotropy
influences YT F locally, the same does not apply to energy
density inhomogeneity.

Thus, YT F measures the deviation of the Tolman mass for a
specific stellar system with an isotropic fluid configuration
when pressure anisotropy and energy density gradients are
non-zero. Casadio and his coworkers [60] proposed that the
scalar functionYT F satisfies an additional property within the
framework of the MGD-scheme. Hence, the overall complex-
ity of the stellar structure will be determined by the combined
contributions of two existing complexity-measuring scalar
functions originating from the gravitational sources T α

β and
	α

β . Hence, based on the above-mentioned information, the
complexity factor YT F , as described in Eq. (78), can also
be expressed as the combination of two scalar factors con-
tributing to the complexity associated with the gravitational
sources T α

β and 	α
β as

[YT F ]tot = κ2[�]tot + 2Q2

r4 − κ2

2r3

∫ r

0

[
ε(y) + Q2

κ2r4

]′
y3dy

= κ2� + 2Q2

r4 − κ2

2r3

∫ r

0

[
ρ(y) + Q2

κ2r4

]′
y3dy

+ κ2�	 − κ2

2r3

∫ r

0
[ρ	(y)]′y3dy, (84)

which an be defined as

[YT F ]tot = YT F + Y	
T F . (85)

In this context, we define YT F as the complexity factor cor-
responding to the primary source T α

β , while Y	
T F represents

the complexity factor linked to the additional gravitational
source 	α

β . Here, we want to emphasize that this outcome
is independent of the MGD-scheme discussed in Sect. 2.
Nonetheless, it implies the possibility of employing gravi-
tational decoupling to develop a link between two distinct
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stellar structures, regardless of whether they possess identi-
cal or differing complexity factors.

5.1 Two stellar structures with same complexity factor

In this subsection, we impose a particular constraint on an
extra gravitational source to model another spherical stellar
configuration and assess its physical relevance. To achieve
this, we assume that the additional fluid source is free from
complexity. Consequently, we have [YT F ]tot = YT F , which
implies Y	

T F = 0 or

�	 = 1

2r3

∫ r

0
[ρ	(y)]′y3dy, (86)

where

∫ r

0
[ρ	(y)]′y3dy = 2ϕ

κ2

(F ′∗

r2 − F∗

2r

)
r3. (87)

Next, using Eqs. (47)–(49) in Eq. (86), we get

F∗
(

2η′′ + η′2 − 2η′

r
− 8

r2

)
+ F ′∗

(
η′ + 4

r

)
= 0. (88)

Any solution to the above differential equation can be
employed to measure the additional fluid source 	α

β . More
precisely, for any solution involving metric variables η and μ

for the Einstein–Maxwell gravitational equations (42)–(44),
the condition [YT F ]tot = YT F allows us to construct another
stellar solution to the system (22)–(24) satisfying same com-
plexity factor condition. This process can be followed by con-
tinuously varying the constant parameter ϕ as in the previous
section, where the initial solution corresponds to ϕ = 0, and
the ultimate solution corresponds to ϕ = 1. However, since
the expression (88) is independent of the parameter ϕ, the
complexity factor stays constant regardless of the value of ϕ.
This approach also indicates that matching constraints (66)–
(68) have a substantial impact on defining the final outcome..
Specifically, the condition [YT F ]tot = YT F can only be ful-
filled by adjusting the compactness of the stellar structure.
For this purpose, we consider the well-established Tolman IV
metric components as a solution to the gravitational system
(42)–(44), which is defined as

eη = Y 2
(

1 + r2

X2

)
, (89)

e−μ = (Z2 − r2)(X2 + r2)

Z2(X2 + 2r2)
, (90)

exhibiting the isotropic fluid configuration arises from the
energy density

ρ(r) = 3X4 + X2(7r2 + 3C2) + 2r2(3r2 + Z2)

κ2Z2(2r2 + X2)2 , (91)

and the isotropic pressure

p(r) = Z2 − X2 − 3r2

κ2Z2(2r2 + X2)
, (92)

where the values of the constants X ,Y , and Z within the men-
tioned solution are established through matching constraints
(66)–(68). These conditions provides the same values (69) as
in the previous section, along with an additional value

Z2

R2 = R

M
. (93)

Then, using the definition of complexity factor (78), we
obtain the value of YT F as

[YT F ]tot = YT F = r2(X2 + 2Z2)

Z2(2r2 + X2)2 . (94)

The substitution of the metric variable (89) in the differential
equation (88) provides the the expression for F∗(r) as

F∗(r) = r2(r2 + X2)

K2(3r2 + 2X2)
. (95)

Here, K denotes an arbitrary constant of integration with
dimensions of length. From the geometric deformation
expression (40), the new form of the metric function can
be cast as

e−λ(r) = (Z2 − r2)(r2 + X2)

Z2(2r2 + X2)
+ ϕ

r2(r2 + X2)

K2(3r2 + 2X2)
, (96)

which produces an effective energy density ε as

ε (r, ϕ,K) = ρ(r) + Q2

κ2r4 − ϕ
(9r2 + 13r2X2 + 6X2)

κ2(3r2 + 2X2)2K2 ,

(97)

and effective radial pressure component Pr as

Pr (r, ϕ,K) = p(r) − Q2

κ2r4 − ϕ
(3r2 + 2X2)

κ2(3r2 + 2X2)K2 . (98)

The effective tangential pressure component is obtained
through the relation Pt = Pr + [�]tot, with the pressure
anisotropy

[�]tot (r, ϕ,K) = ϕ
r2X2

κ2(3r2 + 2X2)2K2 . (99)
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Fig. 3 The behavior of the complexity factor [YT F × 10] versus radial
coordinate for various values of the parameterϕ with compactness factor
M
R = 0.2

It is worth mentioning that the relations (89) and (96)–(99)
represent complete exact solution to the charged EFEs (22)–
(24). This represents a novel anisotropic form of the Tolman
IV solution (89)–(92), wherein the total complexity factor
[YT F ]tot formally aligns with the complexity factor defined
in expression (94). On the other hand, after employing the
matching constraints (66)–(68) to find the constant param-
eters X , Y , and Z in the metric functions (89) and (96)–
(99), it becomes evident that the values of X and Y remain
unchanged (as in the expression (69)), while the parameter Z
transforms into a function of the lengthK and the anisotropic
parameter ϕ.

Z2
ϕK = R3

M
− ϕ(X2 + 2R2)(X2 + 3R2)2

K2(2X2 + 3R2) + ϕ(X4 + 5X2R2 + 6R4)
,

(100)

whereas the total complexity factor takes the form

[YT F ]tot (r, ϕ,K) = r2(X2 + 2Z2
ϕK)

Z2
ϕK(2r2 + X2)2

. (101)

A comparison between Eqs. (94) and (101) reveals a crucial
observation: the complexity factor changes (as shown in Fig.
3) as we vary the parameter ϕ until we perform a transfor-
mation on the radius R → RϕK and the mass M → MϕK in
a manner such that

ZϕK(MϕK, RϕK) = R3

M
= Z(M, R). (102)

In this expression, we may consider ϕ = 1 for RϕK and MϕK,
without any loss of generality. Nevertheless, we maintain the
freedom to define the arbitrary length scale K. This implies

that the criterion [YT F ]tot = YT F can be applicable across a
continuous range of systems with varying radius R and mass
M .

5.2 New charged stellar solutions under zero complexity
factor condition

In this section, we discuss the possibility of constructing
novel self-gravitational stellar models satisfying the condi-
tion [YT F ]tot = 0 based on an initial solution whereYT F �= 0.
In this case, the expression [YT F ]tot = YT F + Y	

T F reads

[YT F ]tot = YT F + κ2�	 − κ2

2r3

∫ r

0
[ρ	(y)]′y3dy, (103)

with ϕ = 1. Next, the substitution of the expressions (47)–
(49) in the above expression yield the first-order ODE as

F∗

4

(
2η′′ + η′2 − 2η′

r − 8
r2

)
+ F ′∗

4

(
η′ + 4

r

)
+ YT F = 0.

(104)

Then, again using the Tolman IV solution (91), we obtain the
following expression

F∗(r) = r2(X2 + r2)

K2(3r2 + 2X2)

[
1 + r2(X2 + 2Z2)

2Z2(2r2 + X2)

]
. (105)

Here, K symbolize an arbitrary constant of integration (with
dimensions of length). Hence, the modified version of the
complexity factor, derived from the transformed radial metric
function (96), takes the form

[YT F ]tot(r, ϕ) = (1 − ϕ)
r2(X2 + 2Z2)

Z2(2r2 + X2)2 . (106)

Note that the above-mentioned expression becomes zero for
ϕ = 1, and the corresponding stellar solution emerges as
complexity-free. Hence, this solution smoothly interpolates
between ϕ = 0 (initial value) and ϕ = 1 (zero complexity
factor). For ϕ = 1, the matching constraints (66)–(68) yield
the same values for the constants X and Y as presented in
(69). However, the value of Z turns out to be

Z2 = 3K2(X2 + 3R2)

2(X2 + 3R2 + 3K2)
. (107)

Finally, the new radial component can be cast as

e−λ(r) = (r2 + X2)(2X2 − 3r2 + 6R2)

(3r2 + 2X2)(3R2 + X2)
, (108)
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whereas the effective radial competent of pressure becomes

Pr = Q2

κ2r4 + 9(R2 − r2)

κ2(X2 + 3R2)(3r2 + 2X2)
, (109)

ε(r) = − Q2

κ2r4 + 3[8X2 + 2X2(7r2 + 3R2) + 3r2(3r2 + R2)]
κ2(X2 + 3R2)(3r2 + 2X2)2 ,

(110)

The effective tangential component of pressure is Pt (r) =
Pr (r) + [�]tot(r), where pressure anisotropy is defined as

[�]tot(r) = − 3r2(2X2 + 3R2)

κ2(X2 + 3R2)(3r2 + 2X2)2 . (111)

This self-gravitational stellar model differs from the previ-
ous one in that the complexity factor vanishes for ϕ = 1
regardless of R and M . Hence, we have transformed the Tol-
man IV fluid, characterized by a given radius R, mass M ,
and the complexity factor (94), into an entire family of self-
gravitational systems for arbitrary values of the length scale
K. These systems share the same radius R and mass M but
exhibit zero complexity, which is parameterized by K.

6 Summary and discussions

The gravitational decoupling scheme is an innovative and
highly effective approach for modeling self-gravitating,
anisotropic fluid systems with multiple energy–momentum
tensors. By providing an exact solution from one of these
gravitational sources, this approach allows for the construc-
tion of exact solutions involving additional sources. In this
study, we investigated how both pressure anisotropy and the
complexity factor of the gravitational structure play a signifi-
cant role in constructing Einstein–Maxwell self-gravitational
models by applying gravitational decoupling via the MGD-
scheme. To obtain a gravitationally decoupled solution using
the MGD scheme for the self-gravitational compact struc-
ture, we start by specifying the modified action for the
decoupled system. In this manner, we obtain the charged
EFEs for the decoupled gravitational system, which corre-
sponds to the total EMT within the framework of spherically
symmetric geometry. Then, for the corresponding Einstein–
Maxwell system of gravitational equations, we employ the
MGD-scheme, in which only the inverse-radial metric com-
ponent is modified, as suggested by Ovalle [25]. This scheme
divides the original system into two time-independent, spher-

ical charged compact sources {T α
β,	α

β}. The gravitational
source T α

β describes the distribution of charged anisotropic
fluid, while 	α

β corresponds to the quasi-Einstein system.
The MGD-scheme uniquely arises from gravitational inter-
actions between the two sectors, devoid of any exchange of
energy and momentum between them.

This investigation is different in a way that it focuses
on employing the MGD-scheme to impose specific physical
features satisfied by the entire gravitational structure. The
uniqueness of this study lies in the significance of gravita-
tional decoupling, which imparts specific physical features to
the entire spherically symmetric, self-gravitational charged
fluid sphere. To ensure the physical acceptability and proper
behavior of any stellar structure model, it is essential to exam-
ine its fundamental thermodynamic characteristics, includ-
ing density, pressure, and anisotropy. We have plotted the
figures by assuming the values of the constant parameter
ϕ = 0.0, 0.2, 0.3, 0.5, 0.7, and 1.0.

In Fig. 1, the effective radial pressure Pr profile displays
a monotonically decreasing behavior with respect to r . We
observed that Pr has attained its maximum value at the cen-
ter of the self-gravitational compact system for some fixed
value of ϕ. The radial pressure Pr gradually decreases until
it disappears at the boundary, as expected, due to the absence
of energy flux to the surrounding spacetime. The impact
resulting from the deformation parameter ϕ describes that
the radial pressure increases as ϕ increases.

Due to unequal principle stresses, i.e., Pr �= Pt , pressure
anisotropy arises, which is expressed through the anisotropic
factor [�]total, as displayed in Fig. 2. In this context, it can be
easily observed that the anisotropic factor is zero at the core of
the stellar system for all values of coupling parameter ϕ and
then gradually increases with the increase in r . Additionally,
it is observed that the anisotropic factor rises with an increase
in the value of r , implying that gravitational decoupling leads
to a more anisotropic nature in the fluid distribution. The
positive anisotropy grows as it approaches the boundary of
the stellar object.

The behavior of the total complexity factor for first case for
different values of the deformation constant is displayed in
Fig. 3. The complexity factor starts at zero at the center of the
configuration, gradually increases, peaks at a certain point,
and then decreases towards the surface. Finally, the behavior
of the radial pressure Pr with zero complexity factor in the
last case is displayed in Fig. 4. Hence, it can be asserted that
the charged complexity factor is pivotal for improving the
stability of the system.
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Fig. 4 The behavior of radial component of pressure Pr × 103 ver-
sus radial coordinate r for the Tolman IV solution (YT F �= 0) and its
anisotropic form with [YT F ]tot = 0 for compactification factor M

R = 0.2
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