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Neutrons from Antineutrinos
● Neutrons are an important source of energy
reconstruction bias for oscillation experiments

● MINERvA can detect neutrons efficiently[1]

● Multi-neutron cross section: 2p2h- and FSI-rich[2]

Cross Section
● Cross section for 2+ neutrons at Eavail < 100 MeV
● Data prefers models without dedicated 2p2h tune
● Uncertainties dominated by GEANT neutron modeling[3]

Neutron Counting in MINERvA
● MINERvA sees neutrons primarily by their inelastic
scatters
● Primarily protons
● Some photons at low neutron energy
● Rarely see nuclear fragments

● Neutron candidates must be:
● Away from muon
● > 1.5 MeV energy
● Not connected to vertex
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Background Constraint
● Leading backgrounds to multi-neutron interactions:

● 1 Neutron: mostly antineutrino QE-like
● High Eavailable: energy mis-reconstructed for pions

● Sideband fits resemble trends in past MINERvA publications

GENIE v3 Comparisons
● 2 2p2h models[4][5][6]:

● Empirical: different data from MnvTunev1
● Nieves = Valencia

● High momentum tail driven by FSI, not 2p2h

Conclusions
● Neutron production sensitive to 2p2h and FSI
● Extracted differential cross section for model comparisons
● Many leading models do not agree
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