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Abstract. This paper presents an implementation of a Ceph file system (CephFS) use case
at the ARC Center of Excellence for Particle Physics at the Terascale (CoEPP). CoEPP’s
CephFS provides a posix-like file system on top of a Ceph RADOS object store, deployed on
commodity hardware and without single points of failure. By delivering a unique file system
namespace at different CoEPP centres spread across Australia, local HEP researchers can
store, process and share data independently of their geographical locations. CephFS is also
used as the back-end file system for a WLCG ATLAS user area at the Australian Tier-2.
Dedicated SRM and XROOTD services, deployed on top of CoEPP’s CephFS, integrates it in
ATLAS data distributed operations. This setup, while allowing Australian HEP researchers to
trigger data movement via ATLAS grid tools, also enables local posix-like read access providing
greater control to scientists of their data flows. In this article we will present details on
CoEPP’s Ceph/CephFS implementation and report performance I/O metrics collected during
the testing/tuning phase of the system.

1. Introduction

The ARC Centre of Excellence for Particle Physics at the Terascale (CoEPP) was established
in 2011 as a collaborative research venture between the University of Melbourne, the University
of Adelaide, the University of Sydney and Monash University. It provides a common
umbrella for the coordination of High Energy Physics activities, bringing together theoretical
and experimental physicists working within Australia. CoEPP also enables the Australian
participation in the ATLAS experiment at the Large Hadron Collider (LHC) at CERN in Geneva,
and in the BELLE II experiment at SuperKEKB in Japan.

The distributed nature of CoEPP’s centres raises a difficult challenge on how to provide
computing and storage services satisfying everyone, everywhere. Each CoEPP centre was
initially equipped with a dedicated NFS server (∼60TB) and a small pool of local physical
computing resources for interactive workloads and batch system submissions. Researchers
soon realized that the computing capacity available to them was not sufficient for processing
their workloads in a timely manner. This issue was addressed through collaboration with the
National eResearch Collaboration Tools and Resources project (NECTAR) [1], an Australian
governmental funded body which operates an OpenStack computing service. NECTAR granted
access to a maximum of 1400 virtual processors for CoEPP activities. Virtual machines were
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built and configured as CoEPP resources and integrated in a dedicated batch system. The system
was later enhanced with an elastic central computing service (DynamicCluster) [2] capable to
scale up or down virtual machines according to the workload demand. This cloud-based service
rapidly became CoEPP’s primary computing infrastructure.

The fact that researchers could now access a larger set of computing resources emphasized a
second problem: how to share and process data stored elsewhere? Soon it became evident that
copying large data sets (ranging from hundreds of GBs to some TBs) between CoEPP centres
and the cloud service was not an effective solution. This highlighted the need to provide a shared
storage infrastructure accessible to anyone, everywhere. The problem was the lack of funding to
support the acquisition of dedicated resources for this purpose. An opportunity came along with
the acquisition of larger storage capacity servers and the release of out-of warranty resources
under the yearly review of the Australian Tier-2 capacity for ATLAS. The challenge was now
on how build a performant distributed storage system with commodity hardware.

2. State of the Art: distributed storage systems

The focus of our work is on products that address, first and foremost, individual researchers
needs. For this reason, we excluded products not designed for a traditional use, as common HEP
grid solutions (DPM, dCache and others) or Hadoop’s file system (HDFS) which, in general, do
not offer the best user experience nor can be directly mounted for a user to view.

IBM GPFS / Spectrum scale [3] is a distributed parallel file systems widely used in high
performance computing with exceptional performances. The need to keep costs under control
eliminated this solution due to its expensive license.

Lustre filesystem [4] is a mature free open source product normally offered as an alternative
to GPFS. However, we questioned its capability to operate with commodity hardware. Lustre
high availability operation relies on host-based failover: two metadata servers (MDS) configured
as an active/passive pair, and object storage servers (OSS) deployed in an active/active mode
(to provides redundancy without extra overhead). This solution will not scale in an environment
where we expect a high number of hard drives failures (rather than host failures).

Red Hat offers two different open source solutions: Gluster [5] and Ceph [6]. Gluster was
primary developed as a scale-out file storage solution that adds extensions for object storage.
Ceph is a highly scalable object storage product with block and file capabilities. Both use a
hashing algorithm, exported to all servers, to place data that allows them to figure out where
a particular data item should be kept. As a result, both systems can easily replicate data.
Moreover, the lack of central metadata files means that there is no bottleneck in file access.
It is often argued that Gluster should be better as a scale-out NAS and that Ceph would
better fit object storage applications and block storage provisioning (for example, in the cloud).
Nevertheless, both solutions seem to cover the same kind of use cases. The major technical
difference between the two is how they handle replication and rebalance after failures. Ceph is
able to identify problematic storage devices, mark them down and automatically replicate the
data held there (using copies from other healthy devices). This automatic self healing process
is managed by a highly customazible and configurable algorithm. In Gluster, the policy replica
placement into failure domains must be manually defined by the administrator.

Overall, Ceph seemed more appropriate to work with commodity hardware due to its self
recovering and healing behaviour. Moreover, HEP is represented in Ceph community bodies
(through CERN) providing a direct link to raise requirements and guarantee they are addressed
in a timely manner. Given all these considerations, we opted to further investigate Ceph.

2.1. Ceph overview

Ceph is a cutting edge, open source, distributed data storage technology. It is based on self-
healing, intelligent object storage devices (OSDs), a combination of CPU, network interfaces,
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local cache and underlying disk space. An even set of lightweight monitors are responsible for
monitoring the state of each OSD and ensure a highly available and healthy distributed object
store cluster (called RADOS). Applications can directly store, retrieve or delete objects from
RADOS through LIBRADOS, a library offered in many different implementation (C, C++, Java,
Python, Ruby and PHP). LIBRADOS stripes the data by writing byte ranges to predictable
named objects, grouped in placement groups, and delivered to OSDs according to a specific
but configurable algorithm (named CRUSH). Ceph also provides standard clients, which by
embedding LIBRADOS functionality, allow an easier and tranparent access to the object store:

• RADOS Gateway (RGW): an HTTP REST gateway for RADOS object store.

• RADOS Block Devices (RBD): a reliable fully distributed block-based storage interface.
RBD is supported in Qemu, and heavily used for the provision of virtual machines in cloud-
based systems like OpenStack and CloudStack (that rely on libvirt and Qemu).

• CephFS: a distributed posix-like file system with scale out metadata management. At
the time of writing, only one active metadata server can be deployed. However, CephFS
promises to deliver a cluster of metadata servers dynamically partitioning responsibility for
the file system namespace and distributing the metadata workload based on client accesses.

Ceph is gaining popularity across the Worldwide LHC community with many OpenStack,
RGW and RBD deployments and a growing usage for physics activities. At CERN Tier-0, a
RGW is used to enable a RADOS storage back-end for OpenStack Cinder and Glance services.
Other use cases are the provision of NFS (∼50TB across 28 servers) or CVMFS stratum 0
services under RBD. On the grid front, there has been community work focused on developing
RADOS plugins for GRIDFTP services and a bespoke HEP protocol called XROOTD.

CephFS has not been subject to the same level of interest partially because it is a less mature
product. However, it delivers a set of functionality which may have a big impact on physics
analysis, especially for local research activities:

(i) CephFS represents a drop in replacement for any kind of local or network file system.

(ii) Data and metadata are directly stored in RADOS, and therefore, can easily scale up with
the object store size. This is a considerable enhancement with respect to traditional posix
file systems, specially for the metadata, where the maximum number of inodes is constrained
by the size of the metadata partition, and can be quickly exhausted.

(iii) Different stripping layouts can be defined at the directory level using extended attributes.
This provides a flexible mechanism to fine tune how the data should be stored under different
(application) use cases. Clients can write a (customizable) number of stripe units of data
(with a customizable size) to their corresponding objects in parallel. Since objects get
mapped to different placement groups and further mapped to different OSDs, each write
occurs in parallel at the maximum write speed.

(iv) Ceph provides two types of CephFS clients: a kernel module and a fuse client. The kernel
module provides higher performance. However, the fuse client is a flexible way to access the
file system without having to rely on functionality only available in modern kernels. This
is of extreme value on the slow evolving HEP systems where the transition to more modern
environments is heavily constrained by experimental restrictions.

3. CoEPP’s CephFS: On the road to production

Our testing infrastructure consisted of a small pre-production Centos7 RADOS cluster, version
9.2.0 (Infernalis), with 3 monitors and 32 x 3TB RAID-0 SAS disks (8 per storage server)
deployed as OSDs with data and journal partitions collocated in the same devices. Ceph storage
nodes were connected to a 10Gb/s NIC, both on a public network as well as on a private storage
network. The CephFS layer was added through the deployment of a metadata server with 32GB
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of memory. The data and metadata pools were created with a 3x replication level, and the file
system mounted on a 10Gb/s Scientific Linux 6 server using a long term support kernel.

Because researchers main interest was in Ceph file system capability, our testing activities
focused on CephFS. Since our hardware setup was not optimized (for example, OSD journals
were not deployed on SSDs as suggested by best practices), the underlying idea was to study
CephFS performance as a function of its stripping layout parameterizations more than to get
an upper limit for I/O bandwidth. We used the Flexible IO tester (aka fio) [7] to probe CephFS
performance. The client cache was purged before each test and all fio runs were executed with
ioengine=libaio, iodepth=64 and direct=1. Fio tests consisted of writing or reading 8GB files
of data, with variable fio block size (from 4KB to 512KB), to and from CephFS directories with
different layouts. Three customizable parameters define the directory layout: object size, stripe
size and stripe count. The object size was kept fixed to 4MB (its default value). This choice
was supported by preliminary RADOS benchmark tests. The stripe unit and stripe count varied
from 64KB to 512KB, and from 2 to 8, respectively.

Figure 1 presents the measured bandwidth for single threaded fio write runs, using different
fio block sizes, as a function of CephFS’s directory stripe unit. The performance for sequential
and random write operations are shown in the figure’s left and right plots, respectively. Figure 2
presents the equivalent measurement for read operations. We observe a correlation between the
stripe unit and the application block size, i.e., a growth of the bandwidth as the stripe unit
approaches the fio block size, followed by a saturation at its maximum value for stripe unit ≥

fio block size.
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Figure 1. Bandwidth as a function of CephFS stripe unit (with fixed object size=4̇MB and
stripe count=8) for single threaded sequential (left) and random (right) fio write operations.

Figure 3 presents the measured bandwidth for single threaded fio runs as a function of
CephFS’s directory stripe count. The left plot superimposes the results for sequential and
random write operations while the right plot superimposes the results for sequential and random
read operations. All measurements were executed using a fixed value (512KB) for the fio block
size and the stripe unit which according to previous results, maximizes performance. We do
not observe a dependency of the bandwidth values as a function of the stripe count. This
observation contradicts the current literature where one might expect a significant performance
by increasing the stripe count. The fundamental argument is that clients will write the stripe
units to their objects in parallel. By spreading that write over multiple objects (which map
to different placement groups and OSDs) Ceph can reduce the number of seeks per drive and
combine the throughput of multiple drives to achieve faster write (or read) speeds. Finally, we
observe a slight performance degradation when comparing random with sequential operations:
∼13% and ∼4% for write and read operations.
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Figure 2. Bandwidth as a function of CephFS stripe unit (with fixed object size= 4MB and
stripe count=8) for single threaded sequential (left) and random (right) fio read operations.
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Figure 3. Bandwidth as a function of CephFS stripe count (with fixed object size= 4MB
and stripe unit= 512KB) for single threaded fio runs. The results for sequential and random
oepration are superimposed for writes (left) and read (right) fio tests.

Figure 4 presents the measured aggregated bandwidth for multi-threaded fio runs as a function
of the number of threads, in sequential and random mode, for write (left) and read (right)
operations. These results show that the aggregated bandwidth scales as a function of the number
of threads. Up to 128 fio threads, the maximum value tested, the aggregated bandwidth does
not give signs to saturate. In the read cases, it seems near the theoretical value of 1.25GB/s.

To assess the robustness of the system, we stressed our pre-production infrastructure with
a wide set of crash tests: simulation of OSD service failures, OSD file system problems, OSD
journal failures, storage server failures and connectivity issues. Ceph was always able to recognize
problems and automatically trigger data recovery from other healthy instances. However, it was
also clear that the detection of the failure was not immediate, sometimes happening a few hours
later. Moreover, without knowing à prióri the source of the problem, its diagnosis is time
consuming due to the distributed nature of the system, the high amount of generated logs, their
complexity, and the necessity to correlate events in an effective way.

With the focus to deliver higher storage capacity with greater performance, we upgraded
our system to Ceph 10.2.2 (Jewel, the latest major release) and expanded our infrastructure to
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Figure 4. Aggregated bandwidth as measured by a variable number of fio threads during
sequential and random write (left) and read (right) operations. The CephFS’s directory layout
was set with an object size= 4MB, stripe unit= 512KB) and stripe count=8.

11 storage servers providing 112 x 3TB OSDs (with 4GB of RAM per OSD). A fundamental
difference with respect to the pre-production setup was the decoupling of OSD journals from
data partitions in the same device. OSDs journals were deployed in Solid State Disks (4 journal
partitions per SSD). For a higher CephFS availability, we deployed a standby-replay MDS.

During the pre-production phase, it became clear that the CephFS kernel client was not
a flexible solution. Users’ experimental collaborations only provide analysis software bundles
certified for Scientific Linux 6 (SL6). On the other hand, mounting CephFS using a kernel
module requires kernel version 2.6.34 or later, but SL6 distributions only release version 2.6.32.
An alternative was the installation of a long term kernel (as done for our pre-production testing).
However, kernel clients are always behind in terms of bug fixes and new functionality because
it takes time to push new developments through the kernel release cycle. For these reasons,
we use ceph-fuse at the cost of slightly lower performance. A recent study from ebay [8]
demonstrated that ceph fuse was 3-4 times slower than the kernel client while completing 10000
”touch” operations of new files, and 7-8 times slower while creating 4096 (1KB) files (using
O DSYNC). Although less performant, it is more flexible (works in user space), reliable (synced
with latest developments) and portable (easily patched, recompiled and deployed). Starting from
the Infernalis major release, Red Hat dropped the support for RHEL 6 derivatives, including
Scientific Linux 6. Without main stream binaries, we were forced to build ceph-fuse and all its
(non-SL6) dependencies. This bundle was installed in CoEPP’s CVMFS stratum 0, served to
hosts via CVMFS clients, and activated via environment modules using puppet.

CoEPP’s Ceph / CephFS core infrastructure is based in Melbourne, and more than 150 ceph-
fuse clients are distributed among CoEPP centres and NECTAR zones spanning the Adelaide,
Melbourne and Sydney regions. AARNET (the Australian research network provider) connects
state capitals with a Nx100G dense wavelength division multiplexing (DWDM) network, and
the major Australian universities are served by 40GB points of presence (PoP), guaranteeing
high standard connectivity. To assess how researchers experience CephFS over the WAN, we
isolated a 4-core (16GB RAM) virtual machine running in Nectar Sydney zone (the longest
network path) with an average network latency of 13-14ms (as reported by ping). Several
bi-directional iperf (60 s) measurements showed bandwidth values fluctuating around 1Gb/s,
with maximum and minimum values of 1.6Gb/s and 0.7Gb/s, respectively. It is important to
note that we do not control the virtual machine hypervisor meaning that other virtual machines
hosted in the same hypervisor may interfere with the measurements. Table 1 presents aggregated
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bandwidth and latency measurements, obtained running fio, for an NFS system (the legacy
CoEPP solution) and CoEPP’s new CephFS system. All fio runs were executed with bs=4M,
ioengine=libaio, iodepth=64 and direct=1. Cache effects were minimized using 32 threads and
2GB files per thread (4 times the available RAM). We conclude that while write operations are
equivalent between both systems, Ceph provides a slightly better bandwidth and no performance
degradation between sequential and random read operations, at the expense of higher latency.

Table 1. NFS and CephFS average aggregated bandwidth (MB/s) and thread latency (ms) for
a 32 thread fio test running from a virtual machine in Nectar Sydney zone.

write (lat) randwrite (lat) read (lat) randread (lat)

NFS [MB/s] 127 (65.4ms) 129 (64.3ms) 191 (11.9ms) 122 (18.5ms)
CephFS [MB/s] 131 (52.1ms) 112 (60.5ms) 205 (34.8ms) 205 (35.1ms)

3.1. ATLAS Tier-2 integration

CoEPP’s CephFS is also used as the back-end file system of an ATLAS user area (a second
localgroupdisk) at the Australian Tier-2. Its integration into ATLAS FAX, a federated storage
systems based on XRootD, is enabled by an XRootD server ability to access a posix file system.
Client software tools like ROOT or xrdcp can be used to read data from this storage service
regardless of location. On the other hand, the support for ATLAS Distributed Data Management
(DDM) operations is provided through the deployment of StoRM, a Storage Resource Manager
that relies on a posix file system back-end. StoRM will manage all data transfers from and
to this space. Moreover, it allows us to define default ACLs, a list of ACL entries that will be
applied automatically on each read (srmPrepareToGet) and write (srmPrepareToPut) operation
(see figure 5). Through this functionality, it is possible to allow local access to files or directories
to groups different from the one that made the SRM request. A user can then trigger data to
be copied via Rucio (Web UI or CLI), monitor the transfer by checking the presence of files as
well as their sizes, and later analyse these data by submitting batch jobs to their local clusters.

Figure 5. CoEPP’s CephFS architecture for ATLAS DDM and ATLAS FAX interoperability.

4. A year of CoEPP’s CephFS in production

CoEPP’s CephFS operation has not been fully transparent. The following issues were identified:

• When multiple clients read and write files simultaneously, all caches must be disabled and
all operations should go directly to the OSDs, to avoid clients from reading staled data.
Ceph-fuse can dinamically disable its own cache but the kernel pagecache can only be turned
off by setting ’fuse disable pagecache = true’ in the configuration file.

• Ceph-fuse allocates more virtual memory than it is actually used. Our ceph-fuse client
was compiled against glibc (>1.10) malloc function, which introduces memory pools called
arenas (8 per core in 64 bits machines). Each memory pool takes 64MB of address space. As
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a result, our 24 core hosts were showing 8 x 24 x 64MB=12288MB of used virtual memory.
We decreased the number of arenas (from 8 to 4) with no visible performance impact by
setting MALLOC ARENA MAX environment variable before starting ceph-fuse.

• Ceph-fuse clients are sensitive to random network perturbations and can enter a stale state.
For the client to tolerate better short term connectivity issues, fine tune metadata server
settings, such as ’mds session timeout’, ’mds reconnect timeout’ and ’mds session autoclose’.

• Ceph-fuse is made available to hosts via cvmfs. When a machine is reaching its memory
limits, cvmfs processes are eligible to be killed by Linux OOM breaking the ceph-fuse client.

• Ceph Jewel 10.2.2 (our current version) does not properly handle listings of directories
with high number (millions) of files leading to craches of the metadata server. Ceph 10.2.3
partially mitigates this issue by introducing a limit on the number of files per directory
(100000). Future releases will solve this problem through directory fragmentation.

• Clients are frequently ’failing to respond to cache pressure’. This is a message displayed
by Ceph to alert that one or more clients are not releasing inodes from their caches as
requested by the metadata server. Our investigations showed non-used clients unable to
release their cached data. This points to a bug in the ceph-fuse client.

• The metadata server uses memory pools for memory allocation, and it doesn’t (currently)
release memory back to the OS because it’s doing its own cache size enforcement. When
the cache size limits aren’t being enforced this becomes a problem.

• It is not uncommon to only see Ceph(FS) bugs fixed on the eve of major releases. This
is a problem for production systems where the main wish is to concentrate in addressing
critical problems without introducing new functionality.

5. Summary and Conclusions

CoEPP’s CephFS has been in production for more than a year. It is the chosen solution to
address researchers’ requirements toward more transparent data access and availability between
CoEPP centres. In a pre-production environment, it was possible to understand how to fine
tune CephFS directory layouts for particular use cases. Our bandwidth measurements showed
a strong correlation between directory stripe unit and the application block size, reaching
maximum throughput when the application block size matches the stripe unit. The product
also showed itself as robust being able to automatically deal with disk, host and connectivity
failures. CoEPP’s production Ceph / CephFS core infrastructure is based in Melbourne, and
more than 150 ceph-fuse clients are distributed among centres spanning the Adelaide, Melbourne
and Sydney regions. The system performance is able to match (and even supersede) the previous
NFS legacy solution. The cost is a slight higher I/O latency experienced by users due to the
ceph-fuse client use in WAN mode, not critical under the current use case, where the data is
used as input and output of long runtime batch processing jobs. After its first six months in
operation, we are continuously increasing the system capacity due to researchers heavy use.
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